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Preface

It is our pleasure to present the proceedings of the 19th International Confer-
ence on Analytical and Stochastic Modelling and Applications (ASMTA 2012)
which was held in Grenoble, France. ASMTA conferences have become estab-
lished quality events in the calendar of analytical, numerical and even simulation
experts in Europe and well beyond. In addition to regular participants from the
main centers of expertise from the UK, Belgium, Germany, Belarus, France,
Italy, Latvia, Hungary and many other countries, we received newcomers with
interesting contributions from other countries such as Korea, Japan and Sweden.

The quality of this year’s program was exceptionally high. The conference
committee was extremely selective this year, accepting only 20 papers. As ever,
the International Program Committee reviewed the submissions critically and
in detail, thereby assisting the Program Chairs in making the final decision as
well as in providing the authors with useful comments to improve their papers.
We would therefore like to thank every member of the Program Committee for
their time and efforts.

We are very grateful for the generous support of the Université Joseph Fourier,
and their efforts for organizing the conference.

We thank the authors and participants for their contribution to ASMTA
2012.

4 June 2012 Khalid Al-Begain
Dieter Fiems

Jean-Marc Vincent
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Queueing System MAP/M/N as a Model

of Call Center with Call-Back Option

Chesoong Kim1, Olga Dudina2, Alexander Dudin2,�, and Sergey Dudin2

1 Sangji University, Wonju, Kangwon, 220-702, Korea
2 Belarusian State University, 4, Nezavisimosti Ave., Minsk, 220030, Belarus

dowoo@sangji.ac.kr, dudina olga@email.com,
dudin@bsu.by, dudin@madrid.com

Abstract. A multi-server queueing system with a Markovian Arrival
Process (MAP ), an infinite buffer and impatient customers useful in
modeling a call center with a call-back option is investigated. The service
time of a customer by a server has an exponential distribution. If all
servers are busy at a customer arrival epoch, the customer may leave
the system forever or move to the buffer (such a customer is referred
to as a real customer), or, alternatively, request for call-back (such a
customer is referred to as a virtual customer). During a waiting period,
the real customer can be impatient and can leave the system without
the service or request for call-back (becomes a virtual customer). An
efficient algorithm for calculating the stationary probabilities of system
states is proposed. Some key performance measures are calculated. The
Laplace-Stieltjes transform of the sojourn time distribution for virtual
customers is derived. Some numerical results are presented.

Keywords: Call Center, Call-Back, Markovian Arrival Process, Multi-
Server Queueing System.

1 Introduction

A call center is a centralised office used by companies for receiving and servicing
their clients’ requests by telephone. The call centers are an integral part of the
companies whose activities are directly related to the contact with their cus-
tomers. Under increasing competition among the companies, customer’s service
is becoming increasingly important, so not only the image but also the profit of
the company depends on the effective operation of its call center. The problem of
the effective service of a large number of calls with minimal losses of customers
and minimal operating costs is of primary importance. This problem can be
successfully solved by means of informing the customers about the anticipated
delays and providing a so called call-back option. This means that the customer
who does not want to wait on the line has an opportunity to leave his (her) phone
number and an operator of the call center will contact him (her) for the service

� Corresponding author.
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2 C. Kim et al.

later on. This option allows to keep customers’ calls, to avoid frustration of the
customers, make more smooth load of the operators and increase the effective-
ness of their work. As practice shows, in the call centers that do not provide the
call-back option some part of the customers’ service time is spent on listening
the customers’ complaints about the long waiting time, while in the call centers
with the call-back option the customer has his (her) own choice – to wait for
the response of the operator or to leave his (her) phone number for contact and
due to this the customers rarely complain. Thus, the use of the call-back option
can reduce the average customer’s waiting and service time and provide more
uniform load of the operators.

Adequate mathematical modeling the call centers leads to substantial increase
of their economic efficiency, reduces the maintenance costs and improves the
quality of the customers’ service. For modeling the call centers, the queueing
theory is often used. For the references and the present state-of-art in investiga-
tion of the call centers the reader is referred to the survey [1], the papers [2], [3]
and references therein.

In this paper we consider a multi-server queueing system with an infinite buffer
and impatient customers which can be used for modeling and optimization of
the call center with the call-back option. If all operators are busy at a customer
arrival epoch, the customer is reported about the current queue length (”visible”
queue) and his (her) estimated waiting time, and is requested to decide based on
provided information, whether to balk (leave the system permanently without
the service), wait on the line, or leave his (her) phone number. In the latter case,
an operator of the call center will call back to the customer later when there
will be a free operator. Statistic shows that customers that receive information
about their place in the buffer or waiting time, are 1.5-2 times more patient,
than the customers that do not have such information. As a result, a number
of unserviced customers is greatly reduced, therefore consideration of ”visible”
queue and call-back option is an important point in the modeling the modern
call center.

In the papers [4] and [5], an asymptotic analysis of the model of the call
center with visible queue and call-back option in case of heavy load for a large
number of operators is presented. In our paper, we present an exact analytical
analysis of the model without the restriction that the number of operators is
enough large. We consider more general customers’ arrival process (what allows
to take into account bursty nature of flows in modern call centers) and possibility
of customers abandonment. Comparing to the paper [6], we also consider more
general customers arrival process (for which it is hardly possible to exploit level
crossing technique applied in [6]). We allow possibility of leaving the system
without the service depending on information about the current queue length.
We take into account the additional time necessary to provide the service to
customers that choose the call-back option (and possibility that such customers
will not accept the offer to get the service) and we provide more complete analysis
of characteristics of processing of call back customers.
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2 Mathematical Model

The structure of the system under consideration is presented on Figure 1.

Fig. 1. Structure of the system

The system has N identical operators (servers) and waiting space (buffer,
lines).

The customers (calls) arrive to the system according to the MAP. Arrivals
can occur at the epochs of transitions of the underlying process νt, t ≥ 0, which
is an irreducible continuous time Markov chain with state space {0, 1, . . . ,W}.
The sojourn time of this chain in the state ν is exponentially distributed with the
positive finite parameter λν . When the sojourn time in the state ν expires, with

probability p
(0)
ν,ν′ the process νt jumps to the state ν′ without a generation of a

customer, ν, ν′ = 0,W, ν �= ν′, and with probability p
(1)
ν,ν′ the process νt jumps

to the state ν′ with the generation of a customer, ν, ν′ = 0,W . The notation
ν = 0,W means that the parameter ν takes the values in the set {0, 1, . . . ,W}.

The behavior of the MAP is completely characterized by the matrices D0 and
D1 defined by the entries (D0)ν,ν = −λν , ν = 0,W , (D0)ν,ν′ = λνp

(0)
ν,ν′ , ν, ν′ =

0,W, ν �= ν′, and (D1)ν,ν′ = λνp
(1)
ν,ν′ , ν, ν′ = 0,W. The matrix D(1) = D0 +D1

represents the generator of the process νt, t ≥ 0.
The average arrival rate is given as λ = θD1e, where θ is the unique solution

to the system θD(1) = 0, θe = 1. Here e is a column vector of appropriate size
consisting of 1’s and 0 is a row vector of appropriate size consisting of zeroes. The
squared coefficient of variation of intervals between successive arrivals is given as
c2var = 2λθ(−D0)

−1e−1. The coefficient of correlation of two successive intervals
between arrivals is given as ccor = (λθ(−D0)

−1(D(1)−D0)(−D0)
−1e− 1)/c2var.

For more information about the MAP see [7].
If, at an arbitrary customer arrival epoch, there is an available server, the

customer is admitted to the system and occupies the free server. Otherwise, the
customer has the following three possible options: (i) to leave the system without
the service, (ii) to become a real customer, i.e., enter the buffer and wait in the
system until some server will become available for him (her), or (iii) to become a
virtual customer, i.e., to join an infinite size virtual pool of customers and wait
until it will be picked up for the service. We assume that both real and virtual
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customers are served according to the rule First In - First Out. The difference
between two types of customers is that the real customer physically presents
in the system (holds a line or occupies a place in a buffer) while the virtual
customers just leaves his (her) phone number and an operator will call him (her)
and offer the service later on when the system will be not congested. We suggest
that the service to a virtual customer is offered only when the queue of real
customers is empty and there is a free server.

We assume the following discipline for making a choice among options (i)-(iii).
The number of real customers in a buffer can not exceed a certain threshold R.
So, if at an arbitrary customer arrival epoch all servers are busy and all R
positions in the buffer are occupied, then this customer has only options (i) or
(iii). He (she) leaves the system with probability δ or becomes a virtual customer
with complementary probability. If, at an arbitrary customer arrival epoch, all
servers are busy and there are r, r = 0, R− 1, real customers in the buffer,
the arriving customer leaves the system with probability q, with complementary
probability the customer decides to wait for the service. In latter case he (she)
becomes a real customer with probability 1−pr, and with probability pr he (she)
becomes a virtual customer. The dependence of probability of joining a buffer
on the current number of customers in the buffer realizes the conception of the
visible queue, usefulness of which was mentioned in introduction.

The service time at each server has an exponential distribution with the pa-
rameter μ, 0 < μ < ∞, independently on the type of a customer.

If, at the service completion epoch, there is no real customer in the buffer,
a free server starts to dial to the virtual customer placed first into the virtual
pool. During a dial time the server is blocked. The dial time has an exponential
distribution with the parameter μ̃, 0 < μ̃ < ∞. We assume that the server does
not succeed to connect to the customer (the customer’s phone is busy or does not
answer) with probability h. In this case the virtual customer is considered lost
and the blocked server becomes free. With probability 1− h the server connects
to the customer and starts the service of the virtual customer.

The real customers are impatient, i.e., the customer leaves the buffer after an
exponentially distributed with the parameter α, 0 < α < ∞, time, conditioned
on the fact that this customer is not servicing. In case of leaving the buffer due
to impatience, the real customer leaves the system forever with probability γ or
becomes a virtual customer with complementary probability.

3 The Process of System States

The behavior of the system under consideration can be described in terms of
the regular irreducible continuous-time Markov chain ξt = {it, rt, nt, νt}, t ≥
0, where it is the total number of customers in the system, it ≥ 0, rt is the
number of customers in the buffer, rt = 0,max{0,min{it −N,R}}, nt is the
number of servers which process the customers (not accounting the servers that
currently are blocked because they dial up to the virtual customers, if any),
nt = 0,min{it, N}, νt is the state of the underlying process of the MAP ,
νt = 0,W, at the epoch t, t ≥ 0.
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Lemma 1. The infinitesimal generator Q = (Qi,j)i,j≥0 of the Markov chain
ξt, t ≥ 0, has the block tridiagonal structure. The non-zero blocks Qi,j, i, j ≥ 0,
have the following form:

Q0,0 = D0, Qi,i = −(μCi + μ̃C̃i − (1− h)μ̃C̃iÊi)⊕D0, 1 ≤ i < N,

QN,N = −(μCN + μ̃C̃N − (1− h)μ̃C̃N ÊN )⊕ (D0 + qD1),

Qi,i = I(i−N+1)(N+1)⊗(D0+qD1)−Ii−N+1⊗(μCN+μ̃C̃N−(1−h)μ̃C̃N ÊN )⊗IW̄+

+(−αCi−N + (1 − γ)αCi−NEi−N )⊗ I(N+1)W̄ , N < i < N + R,

Qi,i = Q1 = I(R+1)(N+1) ⊗D0 − IR+1 ⊗ (μCN + μ̃C̃N − (1− h)μ̃C̃N ÊN )⊗ IW̄+

+Δ⊗ IN+1 ⊗D1 + (−αCR + (1− γ)αCRER)⊗ I(N+1)W̄ , i ≥ N +R,

Qi,i−1 = (μCiE
−
i + hμ̃C̃iẼ

−
i )⊗ IW̄ , 1 ≤ i ≤ N,

Qi,i−1 = Īi−N⊗(μCNEN+hμ̃C̃N )⊗IW̄+(E−
i−N−Īi−N )⊗(μCN+hμ̃C̃N ÊN )⊗IW̄+

+γαCi−NE−
i−N ⊗ I(N+1)W̄ , N < i ≤ N +R,

Qi,i−1 = Q0 = Î ⊗ (μCNEN + hμ̃C̃N )⊗ IW̄+

+ER ⊗ (μCN + hμ̃C̃N ÊN )⊗ IW̄ + γαCRER ⊗ I(N+1)W̄ , i > N +R,

Qi,i+1 = E+
i ⊗D1, 0 ≤ i < N,

Qi,i+1 = (1− q)(Ii−N+1 − P̄i−N )E+
i−N ⊗ IN+1 ⊗D1+

+(1− q)P̄i−N Ẽ+
i−N ⊗ IN+1 ⊗D1, N ≤ i < N +R,

Qi,i+1 = Q2 = (Δ̄ÊR + Δ̃)⊗ IN+1 ⊗D1, i ≥ N +R,

where
I is an identity matrix; ⊕ and ⊗ are symbols of Kronecker’s sum and product

respectively, see, e.g., [8]; W̄ = W + 1;
Cl = diag{0, 1, . . . , l}, C̃l = diag{l, l− 1, . . . , 0}, l = 1,max{N,R};
P̄l = diag{p0, p1, . . . , pl}, l = 0, R− 1;
Δ = diag{q, q, . . . , q, δ}, Δ̄ = (1− q)diag{1− p0, 1− p1, . . . , 1− pR−1, 0}, Δ̃ =

diag{(1− q)p0, (1− q)p1, . . . , (1 − q)pR−1, 1− δ};
E−

l , Ẽ−
l , l = 1,max{N,R}, are the matrices of size (l + 1) × l with all zero

entries except entries (E−
l )0,0, (E

−
l )i,i−1, i = 1, l, (Ẽ−

l )i,i, i = 0, l, which are
equal to 1;

E+
l , Ẽ+

l , l = 0,max{N,R} − 1, are the matrices of size (l + 1)× (l + 2) with

all zero entries except entries (E+
l )i,i+1, i = 0, l, (Ẽ+

l )i,i, i = 0, l− 1, which are
equal to 1;

Êl, l = 1,max{N,R}, are the square matrices of size l+1 with all zero entries
except entries (Êl)i,i+1, i = 0, l − 1, which are equal to 1;

El, l = 1,max{N,R}, are the square matrices of size l+1 with all zero entries
except entries (E)i,i−1, i = 1, l, which are equal to 1;
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Īl are the matrices of size (l + 1)× l with all zero entries except entry (Īl)0,0
which is equal to 1;

Î is the square matrix of size R + 1 with all zero entries except entry (Î)0,0
which is equal to 1.

The proof of Lemma 1 is implemented by means of the analysis of all transitions
of the Markov chain ξt, t ≥ 0, during the interval of an infinitesimal length and
rewriting intensities of these transitions in the block matrix form.

The Markov chain ξt, t ≥ 0, belongs to the class of the continuous time quasi-
birth-and-death processes, see, e.g., [9]. It follows from [9] that the ergodicity
condition of the quasi-birth-and-death process is the fulfillment of the inequality

yQ0e > yQ2e, (1)

where the row vector y = (y0,y1, . . . ,yR) is the unique solution to the following
system of linear algebraic equations

y(Q0 +Q1 +Q2) = 0, ye = 1. (2)

If the dimension of system (2) is small, it can be easily solved on a computer by
standard methods. Otherwise, taking into account that the matrix Q0+Q1+Q2

has in our case the block tridiagonal structure, to solve this system we can
propose the following numerically stable algorithm.

Theorem 1. The sub-vectors yr, r = 0, R, of the vector y are computed as

yr = yr−1Tr−1 = y0Fr, r = 1, R,

where the matrices Fr are calculated using the recurrent formulas

F0 = I, Fr = Fr−1Tr−1, r = 1, R,

the matrices Tr, r = 0, R− 1, are calculated using the backward recursion

Tr = −Q̄r,r+1(Q̄r+1,r+1 + Tr+1Q̄r+2,r+1)
−1, r = R− 2, R− 3, . . . , 0,

under the initial condition TR−1 = −Q̄R−1,R(Q̄R,R)
−1, the vector y0 is the

unique solution to the system

y0(Q̄0,0 + T0Q̄1,0) = 0, y0

R∑
r=0

Fre = 1.

Here

Q̄r,r = −(μCN + μ̃C̃N − (1− h)μ̃C̃N ÊN )⊗ IW̄ + δr,0(μCNEN + hμ̃C̃N )⊗ IW̄+

+IN+1⊗D0+((1− δr,R)((1− q)pr+ q)+ δr,R)IN+1⊗D1− rαI(N+1)W̄ , r = 0, R,

Q̄r,r+1 = (1− q)(1 − pr)IN+1 ⊗D1, r = 0, R− 1,

Q̄r,r−1 = (μCN + hμ̃C̃N ÊN )⊗ IW̄ + rαI(N+1)W̄ , r = 1, R,

where δi,j is a symbol of Kronecker’s delta.
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If the ergodicity condition (1) of the Markov chain ξt is fulfilled, then the sta-
tionary probabilities of the system states exist and are defined as follows:

π(i, r, n, ν) = lim
t→∞P{it = i, rt = r, nt = n, νt = ν},

i ≥ 0, r = 0,max{0,min{i−N,R}}, n = 0,min{i, N}, ν = 0,W.

Let us form the row vectors πi, i ≥ 0, of the probabilities π(i, r, n, ν), enumerated
in the lexicographic order of the components r, n, ν:

π(i, r, n) = (π(i, r, n, 0), π(i, r, n, 1), . . . , π(i, r, n,W )),

π(i, r) = (π(i, r, 0),π(i, r, 1), . . . ,π(i, r,min{i, N})),
πi = (π(i, 0),π(i, 1), . . . ,π(i,max{0,min{i−N,R}})).

It is well-known that the probability vectors πi, i ≥ 0, satisfy the following
system of linear algebraic equations:

(π0,π1, . . . ,πi, . . . )Q = 0, (π0,π1, . . . ,πi, . . . )e = 1 (3)

where Q is the infinitesimal generator of the Markov chain ξt, t ≥ 0.
To solve system (3), the following numerically stable algorithm can be used.

Theorem 2. The vectors πi, i ≥ 0, are defined as follows

πi = π0Φi, i ≥ 1,

where the matrices Φi are calculated using the recurrent formulas:

Φ0 = I, Φi = −Φi−1Qi−1,i(Qi,i +Qi,i+1Gi)
−1

, i = 1, N +R− 1,

ΦN+R = −ΦN+R−1QN+R−1,N+R(Q1 +Q2G)
−1

,

Φi = −Φi−1Q0(Q1 +Q2G)−1, i > N +R,

and the vector π0 is the unique solution to the system

π0(Q0,0 +Q0,1G0) = 0,π0

∞∑
i=0

Φie = 1.

The matrices Gi are calculated using the backward recursion

Gi = −(Qi+1,i+1 +Qi+1,i+2Gi+1)
−1Qi+1,i, i = N +R− 1, N +R− 2, . . . , 0,

where GN+R = G, the matrix G is the minimal nonnegative solution of the
matrix equation

Q2G
2 +Q1G+Q0 = O.

Proof. Proof is based on the results of the paper [10] taking into account the
special structure of the generator Q.
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4 Performance Measures

As soon as the vectors πi, i ≥ 0, have been calculated, we are able to find
various performance measures of the system under consideration.

The average number of customers in the system is calculated as L =
∞∑
i=1

iπie.

The average number of (real and virtual) customers, which wait for the service,

is calculated as N buffer =
∞∑

i=N+1

(i−N)πie.

The average number of real customers, which wait for the service, is defined

as N buffer
real =

∞∑
i=N+1

min{i−N,R}∑
r=1

rπ(i, r)e.

The average number of virtual customers, which wait for the service, is defined

as N buffer
virt =

∞∑
i=N+1

min{i−N,R}∑
r=0

(i−N − r)π(i, r)e.

The average number of busy and blocked servers is calculated as Nserver =
∞∑
i=1

min{i, N}πie.

The average number of busy servers is calculated as

Nserver
busy =

∞∑
i=1

max{0,min{i−N,R}}∑
r=0

min{i,N}∑
n=1

nπ(i, r, n)e.

The average number of blocked servers is calculated as

Nserver
block =

∞∑
i=1

max{0,min{i−N,R}}∑
r=0

min{i,N−1}∑
n=0

(min{i, N} − n)π(i, r, n)e.

The probability P esc−loss
real that an arbitrary real customer arrives when all servers

are busy, r, r < R, real customers present in the buffer, and this customer does
not join the buffer and leaves the system is defined as

P esc−loss
real = λ−1q

∞∑
i=N

min{i−N,R−1}∑
r=0

π(i, r)(IN+1 ⊗D1)e.

The loss probability of an arbitrary real customer at the entrance to the system
due to the presence of R real customers in the buffer is calculated as

P ent−loss
real = λ−1

∞∑
i=N+R

π(i, R)(IN+1 ⊗D1)e.

The probability P to−virt
real that an arbitrary customer arrives when all servers are

busy, r, r < R, real customers present in the buffer, and this customer becomes
virtual is defined as

P to−virt
real = λ−1(1 − q)

∞∑
i=N

min{i−N,R−1}∑
r=0

prπ(i, r)(IN+1 ⊗D1)e.
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The probability P imp−loss
real that an arbitrary real customer arrives when all

servers are busy, r, r < R, real customers present in the buffer, and this cus-
tomer will go to the buffer and leave it due to impatience is defined as

P imp−loss
real = λ−1(1−q)

∞∑
i=N

min{i−N,R−1}∑
r=0

(1−pr)
N∑

n=0

π(i, r, n)D1e(1−z(r+1, n)),

where z(r, n) are defined as probabilities that during the waiting time of a real
customer in the buffer this customer does not leave the system due to impatience
conditioned on the fact that at its arrival epoch there are r − 1, r = 0, R− 1,
real customers in the buffer and n customers in the service, n = 0, N .

The probabilities z(r, n) are calculated as follows:

z(1, N) = (α+Nμ)
−1

Nμ,

z(1, n) = (α+ nμ+ (N − n)μ̃)
−1×

×[nμ+ h(N − n)μ̃+ (1 − h)(N − n)μ̃z(1, n+ 1)], n = N − 1, N − 2, . . . , 0,

z(r,N) = (rα +Nμ)
−1

[Nμ+ (r − 1)α]z(r − 1, N), r = 2, R,

z(r, n) = (rα+ nμ+ (N − n)μ̃)−1[(nμ+ (r − 1)α)z(r − 1, n)+

+h(N−n)μ̃z(r−1, n+1)+(1−h)(N−n)μ̃z(r, n+1)], n=N−1, N−2, . . . , 0, r=2, R.

The loss probability of an arbitrary real customer is calculated as

P loss
real = P esc−loss

real + P ent−loss
real + P to−virt

real + P imp−loss
real .

The intensity of flow of customers, which get the service in the system, is calcu-
lated as λout = μNserver

busy .

The loss probability of an arbitrary customer is calculated as P loss = 1− λout

λ .

5 Distribution of the Sojourn and Waiting Times of a
Virtual Customer

Due to the lack of space, we omit results for distribution of the sojourn time
of an arbitrary real customer in the system under study and present only the
results for the distribution of the sojourn time of an arbitrary virtual customer.

Let Vvirt(x) be the distribution function of the sojourn time of an arbitrary

virtual customer in the system and vvirt(s) =
∞∫
0

e−sxdVvirt(x), Re s > 0, be its

Laplace-Stieltjes transform (LST ).
Let us tag an arbitrary virtual customer and keep track of its staying in

the system. We will derive the expression for the LST vvirt(s) by means of the
method of collective marks (method of additional event, method of catastrophes)
for references, see, e.g., [11], [12]. To this end, we interpret the variable s as the



10 C. Kim et al.

intensity of some imaginary stationary Poisson flow of catastrophes. So, vvirt(s)
has the meaning of the probability that no catastrophe arrives during the sojourn
time of the tagged virtual customer.

Let vvirt(s, l, r, n, ν) be the the probability that the catastrophe will not arrive
during the rest of the tagged customer sojourn time in the system conditioned on
the fact that, at the given moment, the tagged customer has the position number
l, l ≥ 1, in the system (i.e., there are l − 1 real or virtual customers that arrived
earlier than the tagged customer), the number of the real customers in the buffer
is equal to r, r = 0,min{l− 1, R}, the number of the customers, which are getting
the service, is equal to n, n = 0, N, and the state of the process νt, t ≥ 0, is ν.

Let us enumerate the probabilities vvirt(s, l, r, n, ν) in the lexicographic order
of the component ν and combine them into the column vectors vvirt(s, l, r, n).

Theorem 3. The LST vvirt(s) of the distribution of an arbitrary virtual cus-
tomer’s sojourn time in the system is computed by

vvirt(s) = λ−1[(1− q)
∞∑

i=N

min{i−N,R−1}∑
r=0

pr

N∑
n=0

π(i, r, n)D1vvirt(s, i−N + 1, r, n)+

+(1− δ)

∞∑
i=N+R

N∑
n=0

π(i, R, n)D1vvirt(s, i−N + 1, R, n)]+

+(1− δγ,1)(αN
buffer
real )

−1
∞∑

i=N+1

min{i−N,R}∑
r=1

rα

N∑
n=0

π(i, r, n)vvirt(s, i−N + 1, r − 1, n),

where the vectors vvirt(s, l, r, n) can be found from the following system of linear
algebraic equations:

vvirt(s, l, r, n) =

[
(s+ rα+ nμ+ (N − n)μ̃)I −D0

]−1

× (4)

×
[
δr,0

(
(1 − δl,1)[nμvvirt(s, l − 1, 0, n− 1) + h(N − n)μ̃vvirt(s, l − 1, 0, n)]+

+δl,1eW̄ (nμ+ h(N − n)μ̃)
μ̃

s+ μ̃
(h+ (1− h)

μ

s+ μ
)

)
+

+(1−δr,0)

(
(rα+nμ)vvirt(s, l−1, r−1, n)+h(N−n)μ̃vvirt(s, l−1, r−1, n+1)

)
+

+(1−δr,R)

(
(1−q)(1−pr)D1vvirt(s, l+1, r+1, n)+((1−q)pr+q)D1vvirt(s, l, r, n)

)
+

+δr,RD1vvirt(s, l, r, n) + (1− h)(N − n)μ̃vvirt(s, l, r, n+ 1)

]
,

l > 0, r = 0,min{l − 1, R}, n = 0, N.
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To find the solution to system (4) let us introduce the column vectors

vvirt(s, l, r) = (vvirt(s, l, r, 0), . . . ,vvirt(s, l, r,N))T ,

vvirt(s, l) = (vvirt(s, l, 0), . . . ,vvirt(s, l,min{l − 1, R}))T ,
vvirt(s) = (vvirt(s, 1), . . . ,vvirt(s,R), . . . )T ,

and rewrite system (4) into the matrix form as

−(sI −Ql
r)vvirt(s, l, r) + δr,0(1 − δl,1)Q̃

l−1
0 vvirt(s, l − 1, 0)+ (5)

+(1− δr,0)(1 − δl,1)Q
l−1
r−1vvirt(s, l − 1, r − 1)+

+(1−δr,R)Q
l+1
r+1vvirt(s, l+1, r+1)+δr,0δl,1ã(s) = 0T , l > 0, r = 0,min{l− 1, R},

where

Ql
r = IN+1 ⊗ (D0 + (1− δr,R)((1 − q)pr + q)D1 + δr,RD1)−

−(rαIN+1 + μCN + μ̃C̃N − (1− h)μ̃C̃N ÊN )⊗ IW̄ , l > 0,

Q̃l−1
0 = (μCNEN + hμ̃C̃N )⊗ IW̄ , l > 1,

Ql−1
r−1 = (rαIN+1 + μCN + hμ̃C̃N ÊN )⊗ IW̄ , l > 1, r = 1,min{l − 1, R},

Ql+1
r+1 = IN+1 ⊗ (1− q)(1 − pr)D1, l > 0, r = 0,min{l, R} − 1,

ã(s) =
μ̃

s+ μ̃
(h+ (1 − h)

μ

s+ μ
)(μCN + hμ̃C̃N )eN+1 ⊗ eW̄ .

Let us also introduce the vector a(s) = (ãT (s),0, . . . ,0, . . . )T , and the block
tridiagonal matrix Ω = (Ωl,r)l,r≥0 with the non-zero blocks

Ωl,l = −(1− δl,1)αCl−1 ⊗ I(N+1)W̄ − Il ⊗ (μCN + μ̃C̃N − (1−h)μ̃C̃N ÊN )⊗ IW̄+

+((1− q)P̄l−1 + qIl)⊗ IN+1 ⊗D1 + Il(N+1) ⊗D0, l = 1, R,

Ωl,l = Ω1 = −αCR ⊗ I(N+1)W̄ − IR+1 ⊗ (μCN + μ̃C̃N − (1− h)μ̃C̃N ÊN )⊗ IW̄+

+Ē(Δ̃+qIR+1)⊗IN+1⊗D1+(IR+1−Ē)⊗IN+1⊗D1+I(R+1)(N+1)⊗D0, l > R,

Ωl,l−1 = Īl−1 ⊗ (μCNEN + hμ̃C̃N )⊗ IW̄+

+(E−
l−1− Īl−1)⊗ (μCN +hμ̃C̃N ÊN )⊗ IW̄ +αCl−1E

−
l−1⊗ I(N+1)W̄ , l = 2, R+ 1,

Ωl,l−1 = Ω0 = Î ⊗ (μCNEN + hμ̃C̃N )⊗ IW̄+

+ER ⊗ (μCN + hμ̃C̃N ÊN )⊗ IW̄ + αCRER ⊗ I(N+1)W̄ , l ≥ R+ 2,

Ωl,l+1 = (1− q)(Il − P̄l−1)E
+
l−1 ⊗ IN+1 ⊗D1, l = 1, R,

Ωl,l+1 = Ω2 = ĒΔ̄ÊR ⊗ IN+1 ⊗D1, l > R,

where Ē is the square matrix of size R+1 with all zero entries except the entries
(Ē)i,i, i = 0, R− 1, which are equal to 1.

Using this notation we can rewrite system (5) into the form

(Ω − sI)vvirt(s) + a(s) = 0T . (6)

To solve system (6), the following algorithm can be used.
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Theorem 4. The components vvirt(s, l), l ≥ 1, of the vector vvirt(s) can be
calculated as follows:
the vector vvirt(s, 1) is the unique solution to the system

(Ω1,1 − sI +Ω1,2F2(s))vvirt(s, 1) = −ã(s),

the rest of the components is given by

vvirt(s, l) = Fl(s)vvirt(s, l − 1), l = 2, 3, . . . , R+ 1,

vvirt(s, l) = A(s)vvirt(s, l − 1), l > R + 1,

where the matrix functions Fl(s), l = 2, R, are calculated using the backward
recursion

Fl(s) = −(Ωl,l − sI +Ωl,l+1Fl+1(s))
−1

Ωl,l−1, l = R,R− 1, . . . , 2,

under the initial condition FR+1(s) = −(Ω1 − sI +Ω2A(s))
−1

ΩR+1,R.
Here the matrix function A(s) is the minimal nonnegative solution of the

matrix equation

Ω2A
2(s) + (Ω1 − sI)A(s) +Ω0 = O.

Corollary 1. The average sojourn time V soj
virt of an arbitrary virtual customer

is calculated by

V soj
virt = −v′virt(s)|s=0 =

= −λ−1[(1− q)

∞∑
i=N

min{i−N,R−1}∑
r=0

pr

N∑
n=0

π(i, r, n)D1v
′
virt(s, i−N + 1, r, n)|s=0+

+(1− δ)

∞∑
i=N+R

N∑
n=0

π(i, R, n)D1v
′
virt(s, i−N + 1, R, n)|s=0]+

−(1− δγ,1)(αN
buffer
real )

−1
∞∑

i=N

min{i−N,R}∑
r=1

rα
N∑

n=0

π(i, r, n)v′
virt(s, i−N +1, r− 1, n)|s=0.

Here the column vectors v′
virt(s, l, r, n)|s=0 are calculated as the sub-vectors of

the vectors v′
virt(s, l)|s=0, l ≥ 1, computed by

v′
virt(0, l) = F ′

l (0)e+ Fl(0)v
′
virt(0, l− 1), l = 2, 3, . . . , R+ 1,

v′
virt(0, l) = A′(0)e+A(0)v′

virt(0, l− 1), l > R+ 1,

where the matrices F ′
l (0), l = 2, R, are calculated using the backward recursion

F ′
l (0) = (Ωl,l +Ωl,l+1Fl+1(0))

−1×

×(Ωl,l+1F ′
l+1(0)− I)(Ωl,l +Ωl,l+1Fl+1(0))

−1
Ωl,l−1, l = R,R− 1, . . . , 2,
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under the initial condition

F ′
R+1(0) = (Ω1 +Ω2A(0))

−1
(Ω2A

′(0)− I)(Ω1 +Ω2A(0))
−1

ΩR+1,R,

here the matrix function A′(0) is the minimal nonnegative solution of the matrix
equation

Ω2(A
′(0)A(0) +A(0)A′(0)) +Ω1A

′(0)−A(0) = O,

the vector v′
virt(0, 1) is the unique solution to the system

(Ω1,1 +Ω1,2F2(0))v
′
virt(0, 1) = −ã′(0)−Ω1,2F ′

2(0)e+ e.

Corollary 2. The average waiting time V wait
virt of an arbitrary virtual customer,

which got a service, is calculated by V wait
virt = V soj

virt − 1
μ̃ − 1

μ .

Remark 1. By analogy with the vector vvirt(s) of the conditional LST s
vvirt(s, l, r, n, ν) of the sojourn time distribution, it is possible to introduce the
vector wvirt(s) of the conditional LST s of the waiting time distribution. It can
be shown that this vector can be computed from the equation

(Ω − sI)wvirt(s) + â(s) = 0T

where the vector â(s) is defined by

â(s) = (āT (s),0, . . . ,0, . . . )T , ā(s) = (μCN + hμ̃C̃N )eN+1 ⊗ eW̄ .

By means of numerical inverting the components of the vector wvirt(s), see, e.g.,
[13], it is possible to compute the conditional waiting time distribution of the
virtual customer which joins to the busy system at the moment when he (she)
gets the position number l, l ≥ 1, in the system, the number of servers providing
the service is equal to n, n = 0, N, and the state of the arrival underlying process
is equal to ν, ν = 0,W. This distribution can be used for informing the arriving
customer about the expected time till the moment when he (she) will be called
for the service.

6 Optimization Problem

The aim of optimization is maximization of one of the possible cost criteria of
the system operation:

J(N,R) = aλout − λ(b1P
esc−loss
real + b2δP

ent−loss
real + b3γP

imp−loss
real )− cN − dR

under the condition on the average waiting time of the virtual customers

V wait
virt < V. (7)

Here a is the average profit obtained by the call center from servicing of one
customer, λout is the intensity of the flow of customers, which got successful ser-
vice in the system, b1, b2, b3 are the charges of the call center when the arriving
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customer is lost due to unwillingness to wait, absence of the place in a buffer and
impatience, respectively, c is the charge paid for maintenance of one operator
per unit time, d is the charge paid for maintenance of one place in the buffer per
unit time, V wait

virt is the average waiting time of the virtual customer, V is the
admissible waiting time.

We fixed the following cost coefficients: a = 15, b1 = 10, b2 = 20, b3 = 20, c =
3.5, d = 0.1 and assumed that the average waiting time of the virtual customer
must be less than V = 10.

We consider the MAP defined by the matrices

D0 =

(
−10.81440 0

0 −0.35107

)
, D1 =

(
10.74244 0.07196
0.19556 0.15551

)
.

It has the fundamental arrival rate λ = 8, the coefficient of correlation ccor = 0.2,
and the coefficient of variation cvar = 3.51.

We assume that the service rate μ = 0.72, the dial rate μ̃ = 2, the intensity
of impatience α = 0.2, the probabilities γ = 0.4, δ = 0.5, q = 0.1, h = 0.15, the
probabilities pr = 0.2 + 0.02r, r = 0, R− 1.

Figure 2 illustrates the dependence of the cost criterion J(N,R) on the number
of servers N and the buffer capacity R.

Fig. 2. The dependence of the cost criterion J(N,R) on the number of servers N and
the buffer capacity R

Let us note that if N < 9 for R = 1, 2, N < 10 for R = 3, 5 and N < 11 for
R = 6, 30 ergodicity condition (1) is not fulfilled. For other values of N and R,
for which the value of criterion is not represented on the figure 2, condition (1)
is fulfilled, but inequality (7) is violated. The optimal value of the cost criterion
J(N,R) is equal to 51.27 and the optimal number of servers N = 16 and the
buffer capacity R = 9.
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7 Conclusion

The multi-server queueing system with the visible queue, call-back option, and
impatient customers is investigated. The main performance measures are calcu-
lated. The Laplace-Stieltjes transform of the sojourn time distribution for call-
back customers is derived. The obtained results can be used for performance
evaluation and optimization of the call centers of banks, emergency and infor-
mation services, mobile operators.
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Abstract. In call centers, call blending consists in the mixing of incom-
ing and outgoing call activity. Artalejo and Phung-Duc recently provided
an apt model for such a setting, with a two way communication retrial
queue. However, by assuming a classical (proportional) retrial rate for
the incoming calls, the outgoing call activity is largely blocked when
many incoming calls are in orbit, which may be unwanted, especially
when outgoing calls are vital to the service offered.

In this paper, we assume a balanced way of call blending, through a
retrial queue with constant retrial rate for incoming calls. For the single
server case (one operator), a generating functions approach enables de-
riving explicit formulas for the joint stationary distribution of the num-
ber of incoming calls and the system state, and also for the factorial
moments. This is complemented with a stability analysis, expressions
for performance measures, and also recursive formulas, allowing reliable
numerical calculation. For the multiserver case (multiple operators), we
provide a quasi-birth-and-death process formulation, enabling deriving a
sufficient and necessary condition for stability in this case, as well as a
numerical recipe to obtain the stationary distribution.

Keywords: Markov chain, retrial queues, single server, multiserver, call
centers, call blending.

1 Introduction

Retrial queues have received considerable attention over recent years, providing
an apt model for the performance evaluation of call centers, computer networks,
and communications systems. An overview is given in [1,2]. Characteristic of
retrial queues is the fact that calls (or, in general, customers) that cannot be
served upon arrival enter an orbit and request for a retrial after some random
time. Due to this, analysis of a retrial queue is more difficult than that of its
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counterpart model without retrial, and explicit results can only be obtained in
a few special cases [3].

Here, we consider a specific retrial queue model with application to call cen-
ters. As explained in [4], a central characteristic of a call center is whether it
handles inbound traffic, with incoming calls, or outbound traffic, with outgoing
calls. Correspondingly, they are referred to as inbound and outbound call cen-
ters. Most retrial queue models in literature assume such a system, with one
way communication. However, often, call centers are not strictly inbound or
outbound, and typically handle a mixture of incoming and outgoing calls. Typi-
cally, incoming calls are assigned to operators by an Automatic Call Distributor
(ACD). For outgoing calls, calls are either initiated by the ACD (automatically),
or by the operators (manually).

The principle of mixing is referred to as call blending, with two way commu-
nication, serving several purposes.

– Firstly, it may be added to the regular tasks, as in the case of an inbound
call center in which operators utilize their idle time to perform secondary,
non-urgent outgoing calls. Then, call blending is primarily a way to increase
overall productivity, by increasing operator utilization, potentially through
a control policy. A mathematical analysis and optimization of such a policy
is presented in [5].

– Secondly, it may occur as an integral part of the tasks performed at the call
center. In this case, incoming as well as outgoing calls are vital elements of
the service delivered, and should both be performed. This occurs when tasks
necessitate several calls in both directions.

Both cases can be modeled with a retrial queue supporting two way communica-
tion. More precisely, [6] assumes a model with classical retrial rate for incoming
calls (see Section 2.1 for definition of retrial rate). Such a choice results in an apt
model for the first case, since the outgoing call activity is indeed largest when
few incoming calls are in orbit, and smallest when many are in orbit. However,
in the second case, such behavior is undesirable, since the outgoing call activity
should also continue regularly while many incoming calls are awaiting service.
By assuming a constant retrial rate, outgoing calls are still initiated regularly
(either by the ACD or by the operators), even if the number of incoming calls
in orbit is high.

Further, note that many types of call blending can be identified; Koole and
Mandelbaum [4] provide an excellent overview. A high-level discussion and basic
performance analysis is provided in [7]. The paper [8] presents a collection of
Markov chain models for call centers, including a discussion of model fidelity and
efficacy, in a simulation context. Although different in several ways, Model M1 in
[8], with “all blend agents and no mismatches” shares many of the assumptions
of the two way communication retrial queue model presented in [6] and here
(see also Section 2.1): inbound calls arriving according to a Poisson process,
with independent and identically distributed (i.i.d.) service times drawn from
an exponential distribution for inbound as well as outbound calls. Further, in
[8] and here, multiple identical blend agents (or operators) are assumed (only
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1 in [6]), as well as a First-Come-First-Served (FCFS) order for the queue of
incoming calls. More precisely, although the model presented here does not make
assumptions on the service order for the queue, constant retrial rate is commonly
associated with FCFS ordering in the orbit queue (see e.g. [9,10], and [11,12] for
discussion), with only the customer at the head of the queue able to request for
service. In this regard, FCFS ordering of incoming call requests may be viewed
as a more natural (but not only) way to realize a constant retrial rate.

As mentioned earlier, [6] shares many of the assumptions of the single server
part of this work. However, assuming constant instead of classical retrial rate
leads to completely different expressions for the variables analyzed, with no
simple (mathematical) way to relate the obtained results to those of [6]. In
terms of analysis, more closely related to this contribution is [13]. In this paper, a
service system is analyzed in which a processor must serve two types of impatient
units, with either infinitely impatient or infinitely patient customers. Assuming
general service times, a variant of Takács’ equation is derived which also holds
for the system considered in this work, with exponentially distributed service
times. In this regard, this paper [13] provides an interesting reference, but does
not contain any of the derivations and expressions reported here.

The contribution of this paper is twofold. First, we carry out an extensive
analysis for the single server retrial queue with two way communication and
constant retrial rate in which we derive explicit expressions for the joint sta-
tionary distribution and their partial generating functions as well as recursive
formulae. Second, we formulate the multiserver case by a quasi-birth-and-death
process for which the stability condition and a numerical recipe are presented.

The remainder of this paper is structured as follows. In Section 2, we set out
the model and assumptions of the current work, as well as the balance equations
governing the system’s behavior. Section 3 presents an exhaustive analysis of
the single server case (one operator), including a study of stability, as well as
closed-form expressions for the joint stationary distribution of the number of
incoming calls and the system state, and several other measures of interest. In
Section 4, we consider the multiserver model (multiple operators), through a
formulation using a quasi-birth-and-death process. As explained, this allows to
apply standard numerical recipes to obtain the stationary distribution as well
as the stability condition. Finally, conclusions are drawn in Section 5.

2 Model

In this section, we first list the assumptions made in this work, introducing
notation for the parameters involved. This allows to formulate a set of balance
equations, which will provide the starting point for the analysis in the next
section.

2.1 Assumptions

A single server retrial queue with two way communication is considered. Primary
incoming call requests arrive at the server (or operator) according to a Poisson
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process with rate λ. Incoming calls finding an idle server receive service instantly.
In case of a busy server, the incoming call enters an orbit. Within the orbit, a
constant retrial policy is applied, i.e., the arrival rate of customers from the
orbit is μ(1 − δ0,n) provided that there are n customers in the orbit, where
δ0,n denotes the Kronecker delta. This is opposed to the case analyzed in [6],
with a classical retrial rate nμ, which depends on the number of customers
in orbit, n. As mentioned, constant retrial rate occurs when customers form a
FCFS queue in the orbit, and only the customer at the head of the queue can
request service. In addition, when the server turns idle, it makes an outgoing
call after an exponentially distributed time with rate α. The service times of the
incoming and outgoing calls are i.i.d., exponentially distributed with rate ν1 and
ν2 respectively.

2.2 Markov Chain and Balance Equations

Let S(t) denote the state of the server at time t,

S(t) =

⎧⎪⎨⎪⎩
0 if the server is idle,

1 if the server is providingan incoming service,

2 if the server is providingan outgoing service,

and let N(t) denote the number of calls in orbit at time t. Here, the couple
{(S(t), N(t)); t ≥ 0} forms a Markov chain on the state space {0, 1, 2}×Z+, with
Z+ = {0, 1, 2, . . .}. Given that the Markov chain is aperiodic and irreducible,
under the condition that the system is stable, the probability distributions as-
sociated with the variables involved converge to a unique stochastic equilibrium
for t → ∞, to

πi,j = lim
t→∞Pr[S(t) = i , N(t) = j], (i, j) ∈ {0, 1, 2} × Z+ .

The condition for stability will be derived in Section 3. Now, the probabilities
πi,j , (i, j) ∈ {0, 1, 2}×Z+, are characterized by following set of balance equations,

(λ+ α+ μ(1− δ0,j))π0,j = v1π1,j + v2π2,j , (1)

(λ+ v1)π1,j = λπ0,j + μπ0,j+1 + λπ1,j−1, (2)

(λ+ ν2)π2,j = απ0,j + λπ2,j−1, (3)

for j ∈ Z+, with δ0,j = 1 for j = 0 and zero elsewhere, and πi,−1 = 0 for
i ∈ {1, 2}.

Let Πi(z), i ∈ {0, 1, 2}, denote the partial generating functions

Πi(z) =

∞∑
j=0

πi,jz
j, i ∈ {0, 1, 2} ,

with z a complex number, z ∈ C. Multiplying the balance equations (1-3) by zj

and taking the sum over j ∈ Z+, the balance equations are transformed to the
z-domain, yielding
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(λ+ α+ μ)Π0(z)− μπ0,0 = v1Π1(z) + v2Π2(z), (4)

(λ+ v1)Π1(z) = (λ+ μz−1)Π0(z)− μπ0,0z
−1 + λzΠ1(z), (5)

(λ + ν2)Π2(z) = αΠ0(z) + λzΠ2(z). (6)

Summing (4-6), multiplying with z and dividing by (z − 1) leads to an orbit
balance equation,

μ(Π0(z)− π0,0) = λz(Π1(z) +Π2(z)) , (7)

which will prove useful at several points in the analysis below.

3 Analysis

This section provides the analysis of the single-server case. We first derive ex-
plicit expressions for the three partial probability generating functions Πi(z),
i ∈ {0, 1, 2}, associated with the stationary distribution probabilities πi,j , (i, j) ∈
{0, 1, 2} × Z+. From these, a stability condition is derived, and inversion of the
generating functions to the probability domain yields closed-form expressions for
the stationary distribution. Further, we treat the factorial moments, recursive
formulas, first moments and a cost model.

3.1 Generating Functions

Looking for explicit expressions for the Πi(z), i ∈ {0, 1, 2}, we first remark that
Π1(z) can be expressed in terms of Π0(z) through (4), leading to

Π1(z) =
1

ν1
(λ+ α+ μ− ν2

α

λ+ ν2 − λz
)Π0(z)−

μ

ν1
π0,0 , (8)

while (6) yields that

Π2(z) =
α

λ+ ν2 − λz
Π0(z) . (9)

Substituting (9) and (8) in (7), we obtain

Π0(z) = π0,0(1−
λz

ν1
)

(
1− λz

μν1

(
λ+ μ+ α

λ+ ν1 − λz

λ+ ν2 − λz

))−1

. (10)

Now, only π0,0 needs to be determined to make (10) explicit. To obtain π0,0, we
evaluate the partial generating functions in z = 1, and then verify the normal-
ization condition. We obtain

Π0(1) = π0,0

(
1− λ

ν1

)(
1− λ

μν1

(
λ+ μ+ α

ν1
ν2

))−1

,

Π1(1) =
λ+ μ

ν1
Π0(1)−

μ

ν1
π0,0, (11)

Π2(1) =
α

ν2
Π0(1).
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Introducing some additional notation,

ρ =
λ

ν1
, σ =

α

ν2
,

and requiring that
∑2

i=0 Πi(1) = 1, some calculations yield

π0,0 =
1− λ

μ (ρ+ σ + μ
ν1
)

1 + σ
. (12)

Expression (10) and (12) together provide an expression for the partial gener-
ating function Π0(z), which is a function of only the model parameters, and
thus explicit, as wanted. Explicit expressions for Π1(z) and Π2(z) are readily
obtained, by substituting Π0(z) in (8) and (9), respectively.

Finally, with (12), we can simplify (11), to obtain

Π0(1) =
1− ρ

1 + σ
, Π1(1) = ρ , Π2(1) = σ

1− ρ

1 + σ
. (13)

These steady-state probabilities have also been obtained in [6] for the model
with classical retrial rate. This is somewhat surprising, since assumptions are
different, and all three generating functions (Π0(z), Π1(z) and Π2(z)) reported
here differ significantly from those in [6]. The fact that the values of (13) match
can be understood from the fact that no incoming calls are ever lost (and thus,
Π1(1) should amount to the traffic load).

3.2 Stability Condition

With π0,0 obtained by (12), a characterization of stability is now straightfor-
ward. More precisely, requesting π0,0 to be larger than zero leads to the stability
condition for the single-server system,

−μ+ (λ + μ)
λ

ν1
+ α

λ

ν2
< 0 . (14)

3.3 Stationary Distribution

At this point, we derive explicit formulae for π0,j , π1,j and π2,j , j ∈ Z+. We
already have π0,0 from (12), and start by deriving π0,j , j ≥ 1, from (10). To
this end, we transform Π0(z) from (10) as follows

Π0(z) =
π0,0(1− ρz)(1− θz)

1
b z

2 − a
b z + 1

, (15)

where

θ =
λ

λ+ ν2
, a =

(λ+ μ)(λ+ ν2) + α(λ + ν1) + μν1
λ(λ + α+ μ)

, b =
μν1(λ+ ν2)

λ2(λ+ α+ μ)
.
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Through a partial fraction expansion, this can be rewritten as

Π0(z) = π0,0

(
1 +

z

z1

C

1− z
z1

+
z

z2

D

1− z
z2

)
, (16)

with

C =
(1− ρz)(1− θz)

1− z
z2

∣∣
z=z1

=
z2(1 − ρz1)(1 − θz1)

z2 − z1
,

D =
(1− ρz)(1− θz)

1− z
z1

∣∣
z=z2

=
z1(1 − ρz2)(1 − θz2)

z1 − z2
,

where z1 and z2 denote the real and positive poles of Π0(z), namely

z1 =
a+

√
a2 − 4b

2
, z2 =

a−
√
a2 − 4b

2
,

with z1 + z2 = a, and z1z2 = b. If stability condition (14) holds, z1 > z2 > 1, so
enabling inversion of (16) to the probability domain, as

π0,j = π0,0

[
C

(
1

z1

)j

+D

(
1

z2

)j
]
, j ≥ 1 . (17)

To obtain π1,j and π2,j , we expand the partial generating functions into simpler
fractions, which can easily be inverted from the z-domain to the probability do-
main. A useful expression in the calculation is obtained from (15), by performing
a partial fraction expansion, leading to

1

1− θz
Π0(z) = π0,0(1− ρz)

(
1

(1− z1
z2
)(1 − z

z1
)
+

1

(1 − z2
z1
)(1− z

z2
)

)
.

Using this, and (8) and (17), we obtain

π1,0 =
1

ν1
π0,0(λ+ α− αν2

λ+ ν2
) , (18)

π1,j =
1

ν1
π0,0

[
C

(
λ+ α+ μ− αν2

(λ+ ν2)(1 − θz1)

)(
1

z1

)j

+D

(
λ+ α+ μ− αν2

(λ+ ν2)(1− θz2)

)(
1

z2

)j
]
, j ≥ 1 . (19)

Similarly, with (9) and (17), we find

π2,0 =
α

λ+ ν2
π0,0 , (20)

π2,j =
α

λ+ ν2
π0,0

[
C

1− θz1

(
1

z1

)j

+
D

1− θz2

(
1

z2

)j
]
, j ≥ 1 . (21)

As such, for j ∈ Z+, π0,j is given by (12) and (17), π1,j by (18) and (19), and
π2,j by (20) and (21).
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Remark 1. In the derivations presented above, we implicitly assumed that z1 /∈
{z2, ρ−1, θ−1}, and z2 /∈ {ρ−1, θ−1}. This assumption excludes some minor spe-
cial cases where the inversion from z-domain to the probability domain requires
small modifications.

3.4 Factorial Moments

Next, we derive explicit expressions for the partial factorial momentsM i
k, (i, k) ∈

{0, 1, 2} × Z+, which relate to the coefficients of zk in the series Πi(1 + z) as
follows,

Πi(1 + z) =

∞∑
k=0

M i
k

k!
zk, i ∈ {0, 1, 2} . (22)

For k = 0, (13) already provides the answer, since M i
0 = Πi(1). For k ≥ 1,

expressing Π0(1 + z) using (16), we obtain

M0
k = k!π0,0

(
Cz1

(z1 − 1)k+1
+

Dz2
(z2 − 1)k+1

)
, k ≥ 1 ,

M1
k =

k!π0,0

ν1

[(
λ+ α+ μ− αν2

(λ+ ν2)(1− θz1)

)
Cz1

(z1 − 1)k+1

+

(
λ+ α+ μ− αν2

(λ+ ν2)(1 − θz2)

)
Cz2

(z2 − 1)k+1

]
, k ≥ 1 ,

M2
k =

αk!π0,0

λ+ ν2

[
1

1− θz1

Cz1
(z1 − 1)k+1

+
1

1− θz2

Cz2
(z2 − 1)k+1

]
, k ≥ 1 .

Together with (13) (with Πi(1) = M i
0), this provides explicit expressions for all

M i
k, k ∈ Z+, i ∈ {0, 1, 2}.

3.5 Recursive Formulae

In Sections 3.3 and 3.4, explicit expressions are given for the stationary distribu-
tion and the partial factorial moments. However, since the coefficients involved
may be either positive or negative, numerical computation may be unreliable.
Opposed to this, a recursive computation with only positive terms provides a
numerically stable alternative.

The stationary probabilities can be expressed recursively as follows,

π0,j =
λ(π1,j−1 + π2,j−1)

μ
, j ≥ 1 , (23)

π2,j =
απ0,j + λπ2,j−1

λ+ ν2
, j ≥ 1 , (24)

π1,j =
λ(π0,j + π2,j + π1,j−1)

ν1
, j ≥ 1 , (25)
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where we recall that π0,0 is given by (12), π1,0 by (18), and π2,0 by (20). Expres-
sion (23) can be obtained from (7), whereas (24) is derived from (3), and (25)
from the combination of (2) and (24).

For the partial factorial moments, starting point is the expression (7), substi-
tuting z with (1 + z). Appealing to (22), we find that

M0
k =

λ(M1
k +M2

k ) + kλ(M1
k−1 +M2

k−1)

μ
, k ≥ 1 . (26)

Similarly, from (6), substituting z with (1 + z), we obtain

M2
k =

αM0
k + kλM2

k−1

ν2
, k ≥ 1 . (27)

Further, adding (7) to the product of (5) and z allows to derive that

M1
k =

λ(M0
k +M2

k + kM1
k−1)

ν1 − λ
, k ≥ 1 . (28)

Substituting (27) and (28) in (26) yields

M0
k = kλ ·

ν1ν2M
1
k−1 + [λν1 + ν2(ν1 − λ)]M2

k−1

μν2(ν1 − λ) − λ(αν1 + λν2)
, k ≥ 1 . (29)

Expressions (27), (28) and (29), and (13) (with Πi(1) = M i
0) together provide

the recursive formulation for the partial factorial moments. It should be noted
that the denominator of (29) is positive due to the stability condition (14).

3.6 First Moments and Cost Model

In this section, deriving first moments allows formulating a cost model. From
(10), we find that

M0
1 = Π

′
0(1) = π0,0

(
Cz1

(1− z1)2
+

Dz2
(1− z2)2

)
,

which, after some calculations using z1 + z2 = a and z1z2 = b, is simplified as

M0
1 = π0,0b

a− 2 + (ρ+ θ)(1 − b) + ρθ(2b− a)

(1− a+ b)2
. (30)

Let E[N ] denote the average number of customers in the orbit, i.e.,

E[N ] = M0
1 +M1

1 +M2
1 .

It follows from (26) that

M1
1 +M2

1 =
μ

λ
M0

1 − (M1
0 +M2

0 ),
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Fig. 1. Cost as a function of varying α, for the parameter settings specified in Table 1

leading to

E[N ] =
λ+ μ

λ
M0

1 − ρ+ σ

1 + σ
,

where M0
1 is given by (30).

Let U denote the utilization of the server, i.e., U = M1
0 +M2

0 . From a manage-
ment point of view, we need to minimize 1−U . At the same time, we also need
to minimize the number of customers in the orbit E[N ]. These considerations
motivate the following cost model,

min f(α) = C1(1− U) + C2E[N ],

s.t. − μ+ (λ+ μ)
λ

ν1
+ α

λ

ν2
< 0, α ≥ 0 ,

where the inequality comes from the stability condition and C1 and C2 are the
cost of idle server and of a retrial customer. The cost model formulation boils
down to finding the optimal α while keeping all other parameters constant.

Remark 2. In our model, there are a number of free parameters such as λ, μ, ν1, ν2
and α. Thus, the optimization formulation presented above is only one of sev-
eral options. However, aiming for the optimization of α is natural in the call
center context, as it can be controlled by the operator (directly), or by the ACD
(automatically).

In Fig. 1, the cost model is evaluated for varying α, under the parameter setting
specified in Table 1. For the setting considered in Fig. 1a, cost evaluation yields
a non-trivial optimal value for α when C1 ∈ {300, 500}. This corresponds to
the case where the cost of idle server (C1) is (much) larger than the cost of a
retrial customer (C2, fixed to 1). Opposed to this, when the cost of idle server is
small, C1 = 10, the cost function is monotonically increasing, and the optimum
is trivially found for α = 0, with no outgoing call activity, which is intuitive.
For various ν2, illustrated in Fig. 1b, cost evaluation yields clear optima for α,
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Table 1. Parameter setting for the numerical examples considered in Fig. 1

Figure λ ν1 ν2 μ C1 C2

(a) 0.5 1 2 1 various 1
(b) 0.5 1 various 1 100 1

increasing with increasing ν2, rate parameter of the outgoing call service time
distribution. In the optimum, apparently, reduced duration of outgoing calls
is matched by an increased rate for outgoing call activity, which is also quite
intuitive.

4 Multiple Operators

While the analysis of the previous section assumed a single operator (single
server), we now shift focus to the case of multiple operators (multiserver). In
particular, we consider an M/M/c/c (c ≥ 1) retrial queue with constant retrial
rate and two way communication, where the notations λ, μ, ν1, ν2 and α have
the same definitions as above. The behavior of each server in this multiserver
model is the same as that of the single server case, i.e., an idle server makes
an outgoing call after an exponentially distributed time with rate α. We first
provide a Quasi-Birth-and-Death (QBD) process formulation, identifying all the
components of the involved infinitesimal generator and block matrices. Next, we
highlight stability, and also examine the numerical recipe for the calculation of
the stationary probabilities.

4.1 Infinitesimal Generator and Matrices

Let S1(t), S2(t) andN(t) denote the numbers of incoming calls and outgoing calls
in the servers and the number of customers in the orbit at time t, respectively. It
is easy to see that {X(t) = (S1(t), S2(t), N(t)); t ≥ 0} forms a level-independent
QBD process in the state space

S = {(i, j, k); i = 0, 1, . . . , c, j = 0, 1, . . . , c− i, j ∈ Z+}.

Let O denote a matrix with an appropriate size with all zero entries. It is easy
to see that the infinitesimal generator of {X(t); t ≥ 0} is given by

Q =

⎛⎜⎜⎜⎜⎜⎝
A0 A+ O O · · ·
A− A A+ O · · ·
O A− A A+ · · ·
O O A− A · · ·
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎠ .
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The block matrices A−, A, A+ and A+ are explicitly written as follows,

A− =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

O A−
0 O · · · O

O O A−
1

. . .
...

...
. . .

. . .
. . . O

... O A−
c−1

O · · · · · · O O

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0,1 A0,0 O · · · · · · O

A1,2 A1,1 A1,0
. . .

...

O A2,2 A2,1
. . .

. . .
...

...
. . .

. . .
. . .

. . . O
...

. . .
. . . Ac−1,1 Ac−1,0

O · · · · · · O Ac,2 Ac,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

A+ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

A+
0 O O · · · O

O A+
1 O

. . .
...

...
. . .

. . .
. . . O

... A+
c−1 O

O · · · · · · O A+
c

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, A0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0
0,1 A0,0 O · · · · · · O

A1,2 A0
1,1 A1,0

. . .
...

O A2,2 A0
2,1

. . .
. . .

...
...

. . .
. . .

. . .
. . . O

...
. . .

. . . A0
c−1,1 Ac−1,0

O · · · · · · O Ac,2 A0
c,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where A−
i (i = 0, 1, . . . , c − 1), A+

i (i = 0, 1, . . . , c), Ai,2 (i = 1, 2, . . . , c), Ai,1,
A0

i,1 (i = 0, 1, . . . , c) and Ai,0 (i = 0, 1, . . . , c − 1) are (c − i + 1) × (c − i),
(c − i + 1) × (c − i + 1), (c − i + 1) × (c − i + 2), (c − i + 1) × (c − i + 1),
(c− i+1)× (c− i+1) and (c− i+1)× (c− i) matrices respectively, with entries
given by

A−
i (j, j

′) =
{
μ, j′ = j (j = 0, 1, . . . , c− i− 1),
0, otherwise,

A+
i (j, j

′) =
{
λ, j′ = j = c− i,
0, otherwise,

Ai,2(j, j
′) =

{
iν1, j′ = j (j = 0, 1, . . . , c− i),
0, otherwise,

Ai,1(j, j
′) =

⎧⎪⎪⎨⎪⎪⎩
(c− i− j)α, j′ = j + 1 (j = 0, 1, . . . , c− i − 1),
jν2, j′ = j − 1 (j = 1, 2, . . . , c− i),
−γi,j , j′ = j (j = 0, 1, . . . , c− i),
0, otherwise,

A0
i,1(j, j

′) =

⎧⎪⎪⎨⎪⎪⎩
(c− i− j)α, j′ = j + 1 (j = 0, 1, . . . , c− i − 1),
jν2, j′ = j − 1 (j = 1, 2, . . . , c− i),
−γ0

i,j , j′ = j (j = 0, 1, . . . , c− i),
0, otherwise,

Ai,0(j, j
′) =

{
λ, j′ = j (j = 0, 1, . . . , c− i− 1),
0, otherwise,

where γi,j = λ+μ+ iν1+jν2+(c− i−j)α, and γ0
i,j = λ+ iν1+jν2+(c− i−j)α.
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4.2 Stability Condition

We consider the matrix P = A− +A+A+, which is the infinitesimal generator
of the irreducible Markov chain {C(t) = (S1(t), S2(t)); t ≥ 0} on the state space
V = {(i, j); i = 0, 1, . . . , c, j = 0, 1, . . . , c−i}. It should be noted that this Markov
chain represents the behavior of the servers regardless of the number of customers
in the orbit when it is large enough. Let pi,j = limt→∞ Pr(S1(t) = i, S2(t) = j)
for (i, j) ∈ V . Furthermore, let pi = (pi,0, pi,1, . . . , pi,c−i) (i = 0, 1, . . . , c). In
addition, let p = (p0,p1, . . . ,pc) denote the stationary distribution of {C(t); t ≥
0}, which is the unique solution of the following system of equations.

pP = 0, pe = 1,

where 0 and e denote a row and a column vector with an appropriate size with
all zero and all one entries, respectively. The necessary and sufficient condition
for the stability of {X(t); t ≥ 0} is given by

pA+e < pA−e, (31)

according to [14]. Because the number of states of {C(t); t ≥ 0} is finite the
stability condition presented by (31) itself is explicit. However, it seems that a
simple scalar form in terms of given parameters is not easily obtainable.

Special Case. As a way to verify consistency, we apply the multiserver stability
condition to the single-server case. For the matrices, we obtain

A+ =

⎛⎝0 0 0
0 λ 0
0 0 λ

⎞⎠ , A− =

⎛⎝0 0 μ
0 0 0
0 0 0

⎞⎠ ,

A =

⎛⎝−(λ+ α+ μ) α λ
ν2 −(λ+ ν2) 0
ν1 0 −ν1

⎞⎠ ,

P =

⎛⎝−(λ+ α+ μ) α λ+ μ
ν2 −ν2 0
ν1 0 −ν1

⎞⎠ .

We have

p0,1 =
α

ν2
p0,0, p1,0 =

λ+ μ

ν1
p0,0.

Thus, the stability condition (31) yields,

λ
α

ν2
+ λ

λ+ μ

ν1
< μ,

which is consistent with (14), as should.
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4.3 Stationary Distribution

In this section, we derive the stationary distribution for {X(t); t ≥ 0}. Under
the stability condition derived in the previous section, the stationary distribution
exists. Let

πi,j,k = lim
t→∞Pr(S1(t) = i, S2(t) = j,N(t) = k), (i, j, k) ∈ S,

πi,k = (πi,0,k, πi,1,k, . . . , πi,c−i,k),

πk = (π0,k,π1,k, . . . ,πc,k).

According to the matrix-analytic method, we have

πk+1 = πkR, k ∈ Z+,

where the matrix R is the minimal nonnegative solution of

A+ +AR +A−R2 = O,

for which several efficient numerical algorithms are available [14]. For example,
R can be obtained as limn→∞ Rn, where {Rn;n ∈ Z+} is defined by

R0 = O, Rn+1 = A−1A+ +A−1A−R2
n, n ∈ Z+.

Furthermore, R can be also obtained by the matrix continued fraction approach
presented in [15]. Finally, the boundary vector π0 is determined by

π0A
0 + π1A

− = 0,
∞∑
k=0

πke = 1 ,

which is equivalent to

π0(A
0 +RA−) = 0, π0(I −R)−1e = 1.

4.4 First Moments and Cost Model

We define the generating function for {πk; k ∈ Z+} as

π(z) =

∞∑
k=0

πkz
k = π0(I − zR)−1.

Let Mn, n ∈ Z+ denote the nth factorial moment vector of partial factorial

moments M
(i,j)
n , (i, j) ∈ V . We then have

Mn =
d

dz
π(z)

∣∣∣∣
z=1

= π0n!(I −R)−(n+1)Rn.

Let πS
i,j = limt→∞ Pr(S1(t) = i, S2(t) = j), (i, j) ∈ V . We also define

πS
i = (πS

i,0, π
S
i,1, . . . , π

S
i,c−i), πS = (π0,π1, . . . ,πc).



30 T. Phung-Duc and W. Rogiest

We then have

πS =

∞∑
k=0

πk = π0(I −R)−1.

Let E[S1] and E[S2] denote the average number of incoming and outgoing calls
in the servers, respectively. We have

E[S1] =

c∑
i=0

i

c−i∑
j=0

πS
i,j , E[S2] =

c∑
i=0

c−i∑
j=0

πS
i,jj.

On the other hand, Little’s formula yields

E[S1] =
λ

ν1
.

Let U denote the utilization of a server at the steady state, i.e.,

U =
E[S1] + E[S2]

c
=

λ

cν1
+

E[S2]

c
.

From a management point of view, we need to minimize 1−U , i.e., the fraction of
time where the server is idle. At the same time, from a service point of view, we
also need to minimize the average number of customers in the orbit E[N ] = M1e.
These needs motivate us to consider an optimization problem finding the optimal
value of the rate of outgoing calls.

min f(α) = C1(1− U) + C2E[N ],

s.t. pA+e < pA−e, α ≥ 0,

where the inequality is the stability condition, and C1 and C2 reflect the cost
of idle server and of a retrial customer. Similar to the single-server case, the
optimization consists in finding the optimal α while keeping all other parameters
constant.

5 Conclusion

This paper presents the analysis of a two way communication retrial queue model
applicable to a call center with balanced call blending. By assuming a constant
retrial rate for the incoming calls, outgoing call activity is still possible when
many incoming calls are in orbit, corresponding to balanced blending.

For the single server case, we derived the partial generating functions associ-
ated with the joint stationary distribution of the number of incoming calls and
the system state. From this, we extracted explicit (closed-form) expressions for
the involved probabilities, and also for the partial factorial moments. Both were
also characterized with a recursive formulation. Further, the system’s stability
condition was derived, and a cost model was proposed. For the multiserver case,
a formulation by a quasi-birth-and-death process was assumed. The involved
matrices were derived, as well as an expression for the multiserver stability
condition. Finally, also a numerical recipe for the stationary distribution was
presented, and an associated cost model was proposed.
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Abstract. This paper considers a discrete-time queueing system with
one server and two classes of customers. All arriving customers are ac-
commodated in one queue, and are served in a First-Come-First-Served
order, regardless of their classes. The total numbers of arrivals during
consecutive time slots are i.i.d. random variables with arbitrary distri-
bution. The classes of consecutively arriving customers, however, are
correlated in a Markovian way, i.e., the probability that a customer be-
longs to a class depends on the class of the previously arrived customer.
Service-time distributions are assumed to be general but class-dependent.
We use probability generating functions to study the system analytically.
The major aim of the paper is to estimate the impact of the interclass
correlation in the arrival stream on the queueing performance of the sys-
tem, in terms of the (average) number of customers in the system and
the (average) customer delay and customer waiting time.

1 Introduction

Various types of scheduling disciplines have been investigated within the context
of multi-class queueing systems. We mention, among others, priority scheduling
(see, e.g., [4, 8, 11, 13, 15]), weighted fair queueing (WFQ) (see, e.g., [14, 17]),
random order of service (ROS) (see, e.g., [1, 3, 10]), and generalized processor
sharing (GPS) (see, e.g., [9,12,16]). Strangely enough, only few results have been
derived for multi-class First-Come-First-Served (FCFS) systems, i.e., queueing
systems in which the customers of different classes are accommodated in one
queue and served in their order of arrival, irrespective of the classes they belong
to (a recent paper is [5]). The present paper presents the analysis of a discrete-
time model that fits in this category.

In classical multi-class queueing models, furthermore, it is generally assumed
that the different classes occur randomly and independently in the arrival stream
of customers (this is also the case in [5]). In this paper, however, we explicitly
wish to examine the effect of so-called interclass correlation (or class clustering)

K. Al-Begain, D. Fiems, and J.-M. Vincent (Eds.): ASMTA 2012, LNCS 7314, pp. 32–46, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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in the arrival process. Specifically, we are interested to know whether the degree
to which customers of the same class have the tendency to arrive (and be served)
closely together (i.e., back-to-back), or, conversely, the degree to which such
customers have the tendency to be spread in time and mixed with customers
of the other class, has a substantial impact on the performance of a two-class
FCFS queueing system. In order to do so, we superimpose a two-state Markovian
interclass correlation model (with arbitrary transition probabilities) on top of a
regular general independent arrival process model for the aggregated customer
stream. Service-time distributions are class-dependent but completely general. It
is clear that the interclass correlation between consecutive customers can also be
viewed as a form of non-independence between service times. One application
of this queueing model is obvious: the two customers classes can model, for
example, voice and data packets in a heterogeneous telecommunication system.
It is common knowledge that data packets are significantly larger than voice
packets. Then it is easy to see that if data packets have the tendency to arrive in
clusters, the performance of the system may be degraded severely (with respect
to voice packets). In this paper, we measure this degradation.

We first derive the probability generating function (pgf) of the total number
of customers in the system at customer departure times. From this result, we
can easily obtain the corresponding pgf valid at arbitrary slot boundaries. Var-
ious performance measures of practical use, such as the mean system content,
the mean customer delay and the mean customer waiting time, can be easily
derived from these pgf’s by applying the moment-generating property of pgf’s
and by using Little’s law. The resulting formulas and a number of numerical
examples reveal that the system under study can exhibit two types of stochas-
tic equilibrium, depending on the values of the system parameters: a “strong”
equilibrium in which both customer classes individually generate less work than
the system can handle (during periods where only such customers arrive), and a
“compensated” type of equilibrium whereby one customer class creates overload
situations which are compensated by strong under-load periods generated by the
other customer class. In the latter case, our results clearly demonstrate the cru-
cial importance of the amount of interclass correlation on the usual performance
parameters of the system.

The outline of this paper is as follows. In Section 2, we describe the mathemat-
ical model. Section 3 first presents an analysis of the total number of customers
in the system at customer departure times; next, the pgf of the system content
at random slot boundaries is derived from this result. We discuss the results,
both conceptually and quantitatively, in Section 4. Some conclusions are drawn
in Section 5.

2 Mathematical Model

We consider a discrete-time queueing system with infinite waiting room, one
server, and two classes of customers, named A and B. As in all discrete-time
models, the time axis is divided into fixed-length intervals referred to as slots in
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the sequel. New customers may enter the system at any given (continuous) point
on the time axis, but services are synchronized to (i.e., can only start and end
at) slot boundaries. Customers are served in their order of arrival, regardless of
the class they belong to. We call this service discipline “global FCFS”.

1−α

β

1−β

α A B

Fig. 1. Two-state Markov chain of the customer classes

The arrival process of new customers in the system is characterized in two
steps. First, we model the total (aggregated) arrival stream of new customers by
means of a sequence of i.i.d. non-negative discrete random variables (denoting
the numbers of arrivals in consecutive slots) with common probability generating
function (pgf) E(z). The (total) mean number of arrivals per slot, in the sequel
referred to as the (total) mean arrival rate, is given by λ � E′(1). Next, we
describe the occurrence of the two classes in the sequence of the consecutively
arriving customers. In this study, we assume that both classes of customers ac-
count for part of the total load of the system, i.e., both customer classes are
“mixed” in the arrival stream, but there may be some degree of “class cluster-
ing” in the arrival process, i.e., customers of any given class may (or may not)
have a tendency to “arrive back-to-back”. Mathematically, this means that the
classes of two consecutive customers may be non-independent. Specifically, we
assume a first-order Markovian type of correlation between the classes of two
consecutively arriving customers, which basically means that the probability
that the next customer belongs to a given class depends on the class of the pre-
viously arrived customer. Let tk denote the class of customer k. The transition
probabilities of the Markov chain that determines the class of the consecutively
arriving customers are then defined as (see Fig. 1)

Prob[tk+1 = A | tk = A] � α , (1)

Prob[tk+1 = B | tk = A] � 1− α , (2)

Prob[tk+1 = A | tk = B] � 1− β , (3)

Prob[tk+1 = B | tk = B] � β . (4)

It is well known that for a two-state Markov chain of this type, the steady-state
probabilities tA and tB of finding the chain in state A and B are given by

tA � lim
k→∞

Prob[tk = A] =
1− β

2− α− β
(5)
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and

tB � lim
k→∞

Prob[tk = B] =
1− α

2− α− β
, (6)

respectively (see, e.g., [2]). The quantities tA and tB can be interpreted as the
fractions of class A and class B customers in the arrival stream. The (steady-
state) correlation coefficient of the Markov chain, i.e., the amount of correlation
between the classes of two consecutively arriving customers (in the steady state),
is given by

γ � lim
k→∞

E[tktk+1]− E[tk]E[tk+1]√
var[tk] var[tk+1]

= α+ β − 1 . (7)

We will indicate the parameter γ (−1 ≤ γ ≤ +1) as the interclass correlation in
the sequel. Positive values of γ correspond to a situation whereby the customers
of any given class have a tendency to cluster, while negative values of γ refer
to arrival streams in which the customers of classes A and B have a tendency
to alternate, i.e., be mixed more strongly. The case where γ = 0, of course,
corresponds to the classical assumption that classes of subsequent customers are
independent.

The service process of the system is characterized by attaching to each cus-
tomer a corresponding service time, which indicates the number of time slots
required to give complete service to the customer at hand. The service times of
customers are class-dependent and are modelled as a sequence of independent
positive discrete random variables with pgf’s A(z) and B(z). The corresponding
mean values are given by μA � A′(1) and μB � B′(1) for customers of class A
and B, respectively.

3 System Analysis

3.1 System Equations at Customer Departure Times

Let uk denote the total system content, i.e., the total number of customers
present in the system just after the service completion of the k-th customer,
and, as before, let tk indicate the class customer k belongs to. Then, as a con-
sequence of all the model assumptions in Section 2, the couple (tk, uk) forms a
Markovian state description of the system (at customer departure times).

The state transitions of the quantities {tk} are governed by the Eqs. (1)-(4),
whereas for the quantities {uk}, the following recursive system equations can be
established (see Figs. 2 and 3):

uk+1 =

{
uk − 1 + gk+1 if uk > 0
fk+1 + gk+1 if uk = 0

. (8)

Here, the quantity gk+1 is defined as the number of arrivals in the system during
the service time of customer k+1, while fk+1 indicates the number of customers
arriving after customer k + 1 in its arrival slot.
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Fig. 2. Relationship between uk and uk+1 when uk > 0
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Fig. 3. Relationship between uk and uk+1 when uk = 0

It is easily seen that the pgf of fk+1 is given by the pgf of the number of
additional arrivals in a slot with at least one arrival, i.e.,

F (z) � E[zfk+1 ] =
E(z)− E(0)

z[1− E(0)]
, (9)

regardless of the class of customer k + 1. The distribution of the quantity gk+1,
however, does depend on the class of customer k + 1. We have

GA(z) � E[zgk+1 | tk+1 = A] = A(E(z)) , (10)

GB(z) � E[zgk+1 | tk+1 = B] = B(E(z)) . (11)

3.2 System Content at Customer Departure Times

Let us assume that the queueing system at hand is stable, i.e., that the stability
condition is fulfilled. Intuitively, it is not difficult to see that the system is stable
if and only if the average amount of work entering the system per slot is strictly
less than 1, i.e., if and only if λE[c] < 1, with E[c] the average service time of
an arbitrary customer. Expressed in the basic parameters of our system, this is
equivalent to the condition

λ(tAμA + tBμB) < 1 , (12)
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where the quantities tA and tB are the steady-state probabilities of the arrival
Markov chain (see Eqs. (5) and (6)). Assuming this condition fulfilled, we define
the joint steady-state probabilities of the Markov chain {(tk, uk)} as

pA(i) � lim
k→∞

Prob[tk = A, uk = i] (13)

and

pB(i) � lim
k→∞

Prob[tk = B, uk = i] , (14)

for all i ≥ 0. The corresponding partial pgf’s are defined as PA(z) and PB(z).
Then the steady-state pgf P (z) of the total system content at customer departure
times is equal to PA(z) + PB(z).

We now establish two linear equations for PA(z) and PB(z). We depart from
the balance equations of the Markov chain {(tk, uk)} for class A:

pA(j) =
∞∑
i=0

pA(i)α lim
k→∞

Prob[uk+1 = j | tk+1 = A, uk = i]

+

∞∑
i=0

pB(i)(1− β) lim
k→∞

Prob[uk+1 = j | tk+1 = A, uk = i] . (15)

Next, we introduce pgf’s into this equation:

PA(z) =α

∞∑
i=0

pA(i) lim
k→∞

E[zuk+1 | tk+1 = A, uk = i]

+ (1− β)

∞∑
i=0

pB(i) lim
k→∞

E[zuk+1 | tk+1 = A, uk = i] . (16)

The expected values in (16) can be further developed by using the system equa-
tions (see Eq. 8):

lim
k→∞

E[zuk+1 | tk+1 = A, uk = i] = lim
k→∞

E[zi−1+gk+1 | tk+1 = A]

= zi−1GA(z) , (17)

for i ≥ 1, and

lim
k→∞

E[zuk+1 | tk+1 = A, uk = 0] = lim
k→∞

E[zfk+1+gk+1 | tk+1 = A]

=F (z)GA(z) . (18)

Putting everything together, we then obtain

PA(z) =α
GA(z)

z
[PA(z)− PA(0)] + αPA(0)F (z)GA(z)

+ (1− β)
GA(z)

z
[PB(z)− PB(0)] + (1− β)PB(0)F (z)GA(z) . (19)
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Using Eqs. (9)-(11), we finally obtain a first linear equation between PA(z) and
PB(z):

[z − αA(E(z))]PA(z)− (1− β)A(E(z))PB(z)

=
E(z)− 1

1− E(0)
[αPA(0) + (1− β)PB(0)]A(E(z)) .

(20)

Starting from the balance equations for class B, we can derive a second, similar
equation:

[z − βB(E(z))]PB(z)− (1 − α)B(E(z))PA(z)

=
E(z)− 1

1 − E(0)
[βPB(0) + (1 − α)PA(0)]B(E(z)) .

(21)

Eqs. (20) and (21) form a set of two linear equations for the two unknown partial
pgf’s PA(z) and PB(z). Expressions for these pgf’s can be found by solving the
set. Then adding up PA(z) and PB(z) leads to the following expression for the
pgf P (z):

P (z) =
P (0)(E(z)− 1)

1− E(0)

× z[pAA(E(z)) + pBB(E(z))] + (1 − α− β)A(E(z))B(E(z))

z2 − z[αA(E(z)) + βB(E(z))] − (1− α− β)A(E(z))B(E(z))
, (22)

where the quantities pA and pB are defined as

pA � αPA(0) + (1− β)PB(0)

P (0)
(23)

and

pB � (1 − α)PA(0) + βPB(0)

P (0)
, (24)

respectively. It is not difficult to see that pA and pB denote the conditional prob-
abilities that a customer entering an empty system (in the steady state) belongs
to class A or B: pX � limk→∞ Prob[tk+1 = X |uk = 0], with X ∈ {A,B}.

The probability P (0) can be derived explicitly from the normalization condi-
tion of the pgf P (z), i.e., the condition P (1) = 1. The result is given by

P (0) =
1− E(0)

λ
[1− λ(tAμA + tBμB)] =

1− E(0)

λ
{1− λE[c]} , (25)

where, as before, the quantities tA and tB are the steady-state probabilities of the
arrival Markov chain, defined in Eqs. (5) and (6), and E[c] denotes the average
service time of an arbitrary customer. It then remains for us to calculate the
two unknown probabilities pA and pB, of which we know from (23) and (24)
that pA+pB = 1. The unknowns can be determined, in general, by invoking the
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well-known property that pgf’s such as P (z) are bounded inside the closed unit
disk {z : |z| ≤ 1} of the complex z-plane, at least when the stability condition
(12) of the queueing system is met (only in such a case our analysis was justified
and P (z) can be viewed as a legitimate pgf). Now, it can be shown by means of
Rouché’s theorem from complex analysis [2,7] that the denominator of Eq. (22)
has exactly two zeroes inside the closed unit disk of the complex z-plane, one
of which is equal to 1, as soon as the stability condition (12) is fulfilled. It is
clear that these two zeroes should also be zeroes of the numerator of Eq. (22), as
P (z) must remain bounded in those points. For the zero z = 1, this condition is
fulfilled regardless of the values of the unknowns pA and pB, since the numerator
of (22) contains a factor E(z)− 1. However, for the second zero, say z = ẑ, the
requirement that the numerator should vanish yields a linear equation for the
two unknowns. A second linear equation is given by pA + pB = 1. In general,
i.e., when the pgf’s A(z) and B(z) are different, the two unknown probabilities
pA and pB can be found as the solutions of the two established linear equations.
We obtain

pA =
αA(E(ẑ))− (1− β)B(E(ẑ))− ẑ

A(E(ẑ))−B(E(ẑ))
(26)

and

pB =
βB(E(ẑ))− (1− α)A(E(ẑ))− ẑ

B(E(ẑ))−A(E(ẑ))
. (27)

Once the zero ẑ has been computed (numerically), pA and pB can be derived
from (26) and (27). Substitution of the obtained values and of Eq. (25) in (22)
then leads to a fully determined expression of the steady-state pgf P (z) of the
total system content at customer departure times.

3.3 System Content at Random Slot Boundaries

It has been shown in [2] that in any discrete-time queueing system with one single
server and independent arrivals from slot to slot (with pgf E(z)), regardless of
the precise characteristics of the service process and the intra-slot details of the
arrival process (the position of the arrival instants within the slot, single arrivals
or batch arrivals, etc.), the following simple relationship is valid between the pgf
S(z) of the system content at random slot boundaries and the pgf P (z) valid at
customer departure times:

P (z) =
E(z)− 1

λ(z − 1)
S(z) . (28)

In the previous subsection, we have found an expression for the pgf P (z). Hence,
it is easy to obtain an expression for S(z). From S(z), various performance
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measures of practical importance can be derived. For instance, the mean system
content at random slot marks can be found as E[s] = S′(1). After long and
tedious calculations, this results in

E[s] = ρ+
λ2C′′(1) + E′′(1)C′(1)

2(1− ρ)
+

γtAtBλ
2(μA − μB)

2

(1 − γ)(1− ρ)

+
λ(pA − tA)(μA − μB)

1− γ
, (29)

where tA and tB are expressed in Eqs. (5) and (6), γ is the interclass correlation
defined in (7), C′(1) and C′′(1) are derivatives of the pgf C(z) of the service time
of an arbitrary customer (i.e., C(z) � tAA(z) + tBB(z)), ρ (= λC′(1)) is the
total load of the queueing system, and pA and pB are the unknown probabilities
defined in (23) and (24) and calculated as (26) and (27) (as soon as the zero ẑ
has been determined numerically). The first term (ρ) in Eq. (29) corresponds
to the mean number of customers in service, the other three terms account for
the mean queue content, i.e., the mean number of customers that are actually
waiting to be served.

Higher-order moments of the system-content distribution can be obtained by
computing higher-order derivatives of the pgf S(z). By applying (the discrete-
time version of) Little’s law (see, e.g., [6]), the mean delay (system time) of an
arbitrary customer can be obtained as E[d] = E[s]/λ. The mean waiting time of
an arbitrary customer can be derived from this as E[w] = E[d]− E[c]:

E[w] =
λ2C′′(1) + E′′(1)C′(1)

2λ(1− ρ)
+

γtAtBλ(μA − μB)
2

(1− γ)(1− ρ)
+

(pA − tA)(μA − μB)

1− γ
.

(30)

4 Discussion of Results and Numerical Examples

In this section, we discuss the results, both from a qualitative perspective and
by means of some numerical examples. The first interesting result obtained is

the form of the stability condition λ <
1

E[c]
=

1

tAμA + tBμB
, which shows that

the maximum achievable throughput of this system, expressed in customers per
slot, is completely determined by the mean service time of an arbitrary customer,
regardless of the possible interclass correlation.

Next, we focus on the mean system content at random slot marks (see Eq. (29)).
This result explicitly and very clearly shows the influence of the various system
parameters on the performance of the system. As could be expected intuitively,
the mean system content depends on the first two moments of the arrival process
(as represented by the quantities λ and E′′(1), and to some extent ρ = λC′(1))
and the first two moments of the service times (contained in the quantities C′(1),
C′′(1), μA, μB , and also ρ = λC′(1)). It is not surprising that E[s] goes to in-
finity as ρ approaches its limiting value 1, dictated by the stability condition of
the system. However, it is striking that E[s] also seems to increase without bound
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if the interclass correlation γ = α + β − 1 approaches the value +1, even when
the stability condition ρ < 1 is met. Positive interclass correlation appears to be
very detrimental for the performance of the system, whereas negative interclass
correlation has a very moderate positive effect on the performance.

The first two terms in Eq. (29) correspond to the classical result that would
be obtained in a system without interclass correlation and with service-time pgf
C(z) (see, e.g., [2]). This means that the third and fourth term in (29) can be
fully attributed to the presence of interclass correlation in the arrival process.
We note, indeed, that the third term vanishes when γ = 0; in the fourth term,
both tA and pA reduce to the same value α when γ = 0 (see Eqs. (5) and (26),
with ẑ = 0), which implies that the fourth term is equal to zero as well in that
case. It is easy to see that the third and fourth term also disappear when all
customers have the same service-time distribution, i.e., when A(z) = B(z) and,
hence, μA = μB, and, finally, when there is only one class of customers in the
system, i.e., when either α = 1 (and, hence, pA = tA = 1 and tB = 0) or β = 1
(and, therefore, pA = tA = 0).

Let us now consider some numerical results. In a first example, we assume
Poisson arrivals (i.e., E(z) = eλ(z−1)), equal fractions of both classes of customers
in the arrival stream (i.e., tA = tB = 0.5), geometrically distributed service times
for both classes, i.e.,

X(z) =
z

μX + (1− μX)z
, (31)

with X ∈ {A,B}, and with μA = 8 and μB = 2. The stability condition is then
given by ρ = λ[tAμA + tBμB] = 5λ < 1 (i.e., λ < 0.2).
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Fig. 4 shows the mean system content E[s] as a function of the load ρ, for
various values of the interclass correlation γ. The figure confirms that, for given
values of ρ < 1, the parameter γ has a major impact on the results when it is pos-
itive and only a minor influence when it is negative. An intuitive explanation of
this phenomenon lies in the observation that the numbers of consecutive class-A
and class-B customers in the arrival stream both increase dramatically as γ ap-
proaches the value +1. Indeed, the mean number of class-A (class-B) customers

between two consecutive class-B (class-A) customers is given by
1

1− α
=

2

1− γ

(
1

1− β
=

2

1− γ
). For negative values of γ, this implies that customers of both

classes alternate strongly; for positive values of γ, there may be very long se-
quences of customers of the same class. During such periods, the momentary
load is either given by ρA � λμA = 8λ or by ρB � λμB = 2λ. It is easily seen
that the stability condition ρ < 1, or λ < 0.2, guarantees that ρB < 1, but
not necessarily that ρA < 1. It is clear that if λ or ρ are small enough (more
specifically, λ < 0.125 or ρ < 0.625), ρA < 1 and ρB < 1, i.e., the system is
locally stable both during A- and B-sequences (and, hence, also globally stable
- we call this the “strong” equilibrium), while if 0.125 ≤ λ < 0.2, or, equiva-
lently, 0.625 ≤ ρ < 1, ρB < 1 but ρA > 1, i.e., the system is locally stable during
B-sequences but not during A-sequences. In the latter case, labelled as the “com-
pensated” equilibrium, (global) stability is assured because although the queue
size builds up during A-sequences (because, on average, more work arrives than
the server can perform), it decreases again during B-sequences (when much less
work enters than the server can execute). In other words, the overload periods
created by the A-customers are compensated by the underload periods of the
B-customers. When the interclass correlation approaches +1, however, the am-
plitude of these queue size variations goes to infinity, implying that the mean
system content does the same.

The same behavior can be observed in Fig. 5, where we have plotted E[s] as
a function of γ for various values of ρ. The figure illustrates very clearly that
the system content grows without bound as γ → +1 when ρ is higher than its
critical value 0.625. When ρ is less than this critical value, on the other hand,
the mean system content remains finite for all values of γ. Although we have
explained this behaviour intuitively in the previous paragraph, it is somewhat
unexpected in view of Eq. (29). Indeed, Eq. (29) seems to say that E[s] should
become unbounded as γ → +1, regardless of the other system parameters. The
third and fourth term in (29) both approach infinity for γ → 1; however, when
ρ is less than its critical value, the terms cancel each other causing their sum to
remain finite.

A second example is treated in Figs. 6 and 7. Again, we assume Poisson arrivals
and geometrically distributed service times for both classes. Here, however, μA =
100 and μB = 10. The interclass correlation γ is kept constant at 0.8. This
implies that α = 0.8 + 0.2tA, β = 1 − 0.2tA, and ρ = 10λ(1 + 9tA). We now
investigate the impact of the parameter tA, i.e., the fraction of class-A customers
in the arrival stream, on the mean system content and the mean waiting times
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Fig. 5. Mean system content E[s] versus interclass correlation γ for various values of
the load ρ

of the customers. Fig. 6 shows the mean system content E[s] versus tA, for
various values of ρ, whereas Fig. 7 illustrates the corresponding results for the
mean waiting time E[w] of the customers. Fig. 6 reveals that, for any given
value of the total load ρ, the mean system content increases as a function of
tA for “low” values of tA (more or less in the interval 0 ≤ tA ≤ 0.1), then
reaches a maximum value for tA somewhere around 0.1, and, finally decreases
monotonically in the interval 0.1 ≤ tA ≤ 1. An intuitive explanation might be
as follows. For tA = 0, all customers belong to class B (with a short service time
of 10 slots); as soon as tA becomes positive, say 0 ≤ tA ≤ 0.1, class-A customers
(with a long service time of 100 slots) arrive sporadically and (when in service)
somehow block the regular processing of class-B customers, which causes the
system content to increase. If, however, tA increases further (while the total
load ρ remains constant), the system receives considerably less customers (for
the same amount of work), which explains the decreasing system content in the
interval 0.1 ≤ tA ≤ 1.

The behaviour of the mean waiting time (see Fig. 7) is qualitatively a bit sim-
ilar as for the mean system content. More specifically, it can be observed that
the mean waiting times also increase for “low” values of tA to reach a maximum
value and then decrease for “higher” values of tA. However, the maximum value
of the waiting time is attained for tA around 0.25, whereas the highest mean
system content occurs for tA in the vicinity of 0.1. Also, the rates at which the
mean waiting times increase and decrease seem relatively slower than for the
mean system content. Intuitively, this can be attributed to the fact that the
waiting time reflects the unfinished work in the system (at the arrival instant
of a customer), while the system content indicates the number of customers in the
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system, whereby all customers contribute identically, irrespective of their service
time, i.e., irrespective of the amount of work they represent. The fact that the
mean waiting time (and, hence, the unfinished work in the system) for tA = 0 is
substantially smaller than for all other values of tA can be explained by the higher
burstiness of the arrival process of work units if class-B customers (bringing small
amounts of work) are alternated with class-A customers (bringing large batches
of work at the same time), which happens as soon as tA gets positive.
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5 Conclusions

In this paper, we have studied a discrete-time queueing system with one server
and two classes of customers, and operating under the global FCFS service dis-
cipline. We have assumed independent (aggregated) arrivals from slot to slot
combined with a general first-order Markovian interclass correlation model, and
general but class-dependent service-time distributions. We have been able to de-
rive the main performance measures of the system in semi-analytical form, i.e.,
we have obtained explicit expressions for such quantities as the mean system con-
tent and the mean customer waiting time in terms of the basic parameters of the
model and one parameter which is only implicitly known through a non-linear
equation that it satisfies.

The results reveal that the interclass correlation does not have any effect on
the stability condition of the system, but it may have a very direct and great
influence on the main performance measures of the system. More specifically,
when the system is (globally) stable, we have observed that two different kinds
of global equilibrium are possible, depending on the exact value of the load. For
“low” values of the load, the system exhibits a “strong” equilibrium, whereas
for higher loads, the system reaches a “compensated” type of equilibrium. Es-
pecially in the latter case, the impact of strong positive interclass correlation
may be devastating for the queueing performance. We therefore believe that the
phenomenon of class clustering in the context of multi-class queueing systems de-
serves more attention than it traditionally has received in the classical queueing
literature.
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Abstract. A finite-buffer queueing system with Poisson arrivals and
generally distributed service times is considered. Every time when the
system empties, a single vacation is initialized, during which the ser-
vice process is blocked. A system of integral equations for the transient
distributions of the virtual waiting time v(t) at a fixed moment t, con-
ditioned by the numbers of packets present in the system at the open-
ing, is derived. A compact formula for the 2-fold Laplace transform of
the conditional distribution of v(t) is found and written down using a
special-type sequence called a potential. From this representation the
stationary distribution of v(t) as t → ∞ and its mean can be easily
obtained. Theoretical results are illustrated by numerical examples as
well.

Keywords: Finite-buffer queue, Poisson arrivals, Stationary state, Tran-
sient state, Virtual waiting time.

1 Introduction

Finite-buffer queueing systems are intensively investigated due to their many
applications in the performance evaluation of telecommunication and computer
networks. Finite systems with server vacations can be applied in SVC (switched
virtual connection) networks where the vacation period can be considered as a
time needed for the server to release an SVC or the time for setting up any next
SVC (see [14]). Unfortunately, the analysis of such systems is often restricted
to the stationary state. However, in practice applications, the investigation of
stochastic system characteristics in the transient state becomes more and more
desired. Indeed, e.g. permanently changing parameters of IP traffic in telecom-
munications routers cause that the stationary state of the modelling queueing
system, in mathematical sense, quite frequently in practice does not exist.

In the article we study the M/G/1/N system with a single vacation policy
and exhaustive service. Every time when the system becomes empty (including
the case when the system starts working being empty), a single vacation time of
random duration begins. During the vacation the service process is stopped and
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all packets occurring in this period are accumulated in the buffer queue or, in
the case of buffer saturation, are lost. After the vacation the service of packets
begins immediately.

In the paper the distribution function of the virtual waiting time v(t), i.e.
the time needed to start the service process of the packet that joins the system
exactly at time t, is analyzed. Applying the formula of total probability with
respect to the first departure epoch after the opening, a system of integral equa-
tions for the distributions of the transient virtual waiting time v(t) conditioned
by different initial states (numbers of packets) of the system, is build. Next, a
specific-type system of equations for the double transforms of conditioned dis-
tributions of v(t) is obtained and solved. The solution is written down explicitly
by means of a special-type sequence, called a potential, connected with “input”
parameters of the system. The main formula can be easily treated numerically.
In particular, sample numerical results for the stationary virtual waiting time
distribution and its mean are attached.

The review of results for stationary systems with server vacations can be found
in monograph [16]. In [6] a general-type system with batch arrivals and exponen-
tially distributed single vacations is considered on the first vacation cycle, using
the technique of Wiener-Hopf factorization and integral equations. New results
for transient characteristics of the MX/G/1 system with single vacations can be
found in [7], [8] and [9]. In particular, in [7] the explicit representation for the
2-fold transform of the departure process is obtained.

Finite systems with server vacations are studied e.g. in [3], [4], [14], [15] and
[17]. In particular, in [3] the formula for the mean of the waiting time is derived
but only in the steady state of the system. The Laplace-Stieltjes transform of the
stationary waiting time in the system with Markovian arrival process is found
in [14]. The generalization of this result for the case of BMAP is given in [15]
where, additionally, two service disciplines are considered. In [17] the formula
for the stationary waiting time distribution in the system with single Poisson
arrivals and multiple vacations is derived.

Transient results for finite-buffer models are significantly less frequent in the
literature. Stationary results can be found in [16]. In [11] the representation
for the Laplace transform of the probability generating function of departure
counting process in the MX/G/1/N queue with batch arrivals is obtained. The
formulae for the transient virtual waiting time in a finite system can be found
in monograph [2] where the cases of single Poisson, MMPP and BMAP input
flows are considered.

The transient waiting time distribution in the general-type queueing system
with batch arrivals and infinite buffer is investigated in [5] (virtual waiting time)
and [10] (actual waiting time), using the mixed technique based on supplemen-
tary variables’ approach, Volterra-type integral equations and Wiener-Hopf fac-
torization method.

The article is organized as follows. In the next Section 2 we give a mathemat-
ical description of the system and state some auxiliary results. In Section 3 we
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build a system of equations for the 2-fold Laplace transform of the conditional
virtual waiting time distributions. In Section 4 we state in the explicit form, as
the main result, the solution of the system introduced in Section 3. Section 5 is
devoted to numerical computations: for sample queueing systems, applying the
result from the previous section, we obtain the stationary distributions of the
virtual waiting time and their means using, one of algorithms for the numerical
Laplace transform inversion. The last Section 6 contains conclusions.

2 The Queueing System and Auxiliary Results

In the article we study a queueing system of the M/G/1/N type with single
vacations. The total system capacity is assumed to be equal N i.e. there are
N −1 places in the buffer queue and one place in service. Let us denote by λ the
intensity of the Poisson arrival process and by F (·) a general d.f. (distribution
function) of the service time. Assume that single vacation durations are generally
distributed with a d.f. G(·). Standardly, it is assumed that all interarrival times,
service times and sucessive single vacation durations are totally independent.

Introduce the Laplace-Stieltjes transforms of d.fs F (·) and G(·) as follows:

f(s) =

∫ ∞

0

e−stdF (t), g(s) =

∫ ∞

0

e−stdG(t), Re(s) > 0. (1)

Besides, let F j∗(·) denotes the j-fold Laplace-Stieltjes convolution of the d.f.
F (·) with itself i.e.

F 0∗(t) = 1, F 1∗(t) = F (t), F j∗(t) =
∫ t

0

F (j−1)∗(t− y)dF (y), (2)

where t > 0.
Finally, letX(t) denotes the number of packets present in the system at time t.
In [12] (see also [2], [13]) the following system of equations is considered:

n∑
k=−1

ak+1xn−k − xn = ψn, n ≥ 0, (3)

where sequences (an)
∞
n=0 (a0 �= 0) and (ψn)

∞
n=0 are known, and the sequence

(xn)
∞
n=0 is unknown.

The following theorem (see [2], [12]) states the explicit representation for
the nth term of the sequence (xn) using a known another sequence given in a
recurrent way.

Theorem 1. The solution of the system (3) can be written in the following
form:

xn = CRn+1 +
n∑

k=0

Rn−kψk, n ≥ 0, (4)
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where C is a constant independent on n and the sequence (Rn)
∞
n=0, called a

potential, is defined recursively as follows:

R0 = 0, R1 = a−1
0 , Rn+1 = R1(Rn −

n∑
k=0

ak+1Rn−k), n ≥ 1. (5)

As it turns out later, the system of equations for the 2-fold transforms of condi-
tional virtual waiting time distributions can be transformed to the form of (3),
and hence it can be solved using the result (4) from Theorem 1.

3 Equations for the 2-Fold Transform of the Virtual
Waiting Time Distribution

Let us introduce the following notation:

Vn(t, x) = P{v(t) < x |X(0) = n}, x > 0, t > 0, 0 ≤ n ≤ N. (6)

Thus, Vn(t, x) is a distribution of the virtual waiting time v(t) conditioned by
the number of packets present in the system at the opening.

Note that if the system is empty at time t = 0, then the formula of total
probability leads to the following equation:

V0(t, x) =

∫ t

0

[N−1∑
k=1

(λu)k

k!
e−λuVk(t− u, x) + VN (t− u, x)

∞∑
k=N

(λu)k

k!
e−λu

]
dG(u)

+ λ

∫ t

0

dG(u)

∫ t

u

e−λyV1(t− y, x)dy + e−λtG(t)

+

N−1∑
k=1

(λt)k

k!
e−λt

∫ ∞

t

F k∗(x− u+ t)dG(u)

+
(
1−G(t)

) ∞∑
k=N

(λt)k

k!
e−λt + e−λt

(
G(t+ x)−G(t)

)
. (7)

Let us briefly comment the last equation. Indeed, the first summand on the right
side of (7) presents the situation in that the first single vacation ends before t
and during it at least one arrival occurs. Because of the finite system capacity
(equal to N), in the case of k ≥ N jumps of the Poisson process (describing the
input stream of packets) during the vacation, the number of packets at the end
of the vacation equals N (k −N packets are lost).

In the second summand on the right side of (7) the vacation also ends before
t but the first arrival occurs after the vacation completion epoch. In particular,
if the first packet enters after t, then v(t) = 0.
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The third summand on the right side of (7) describes the case in that the
vacation ends after time t but there are some arrivals before t. Then the ran-
dom event {v(t) < x} is equivalent to the event {service time of k packets plus
(u − t) < x}, where k denotes the number of packets occurring before t, and u
stands for the completion epoch of the single vacation. Of course

P{service time of k packets plus (u− t) < x} = F k∗(x− u+ t).

In the fourth summand in (7) the vacation ends after t but the “virtual” packet
arriving exactly at time t is lost since the buffer is saturated at this time (at
least N jumps of the Poisson arrival process occur before t). Hence {v(t) < x}
with probability one.

Finally, in the last summand on the right side of (7) the vacation ends after
t and, besides, there are no arrivals before t.

As it is well known (see e.g. [1]), the service completion epochs are renewal
moments in the single-server queueing system with Poisson arrivals. Applying
the formula of total probability with respect to the first service completion epoch
after the opening of the system, we obtain the following system of integral equa-
tions for the conditional distributions Vn(t, x), where 1 ≤ n ≤ N :

Vn(t, x) =

∫ t

0

[N−n−1∑
k=0

(λy)k

k!
e−λyVn+k−1(t− y, x)

+ VN−1(t− y, x)

∞∑
k=N−n

(λy)k

k!
e−λy

]
dF (y)

+

∫ ∞

t

[N−n−1∑
k=0

(λt)k

k!
e−λtF (n+k−1)∗(x− y + t)

+

∞∑
k=N−n

(λt)k

k!
e−λtF (N−1)∗(x− y + t)

]
dF (y), (8)

The interpretation of the right side of (8) is similar to (7): the first integral on
the right side of (8) relates to the situation in that the first service ends before
time t, and the second one - to the case of no service completion epochs occurring
before t.

Let us introduce into the system of equations (7)–(8) the double Laplace
transform of Vn(t, x) (on the arguments t and x) defined as follows:

V̂n(s, z) =

∫ ∞

0

e−stdt

∫ ∞

0

e−zxVn(t, x)dx, Re(s) > 0, Re(z) > 0, n ≥ 0. (9)
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Next, let us define the following sequences:

ak(s) =

∫ ∞

0

e−(s+λ)t (λt)
k

k!
dF (t), (10)

bk(s, z) =

∫ ∞

0

e−zxdx

∫ ∞

0

e−(s+λ)t (λt)
k

k!
dt

∫ ∞

t

F k∗(x − u+ t)dG(u), (11)

ck(s, z) = z−1

∫ ∞

0

e−(s+λ)t (λt)
k

k!

(
1−G(t)

)
dt, (12)

d(s, z) =

∫ ∞

0

e−zxdx

∫ ∞

0

e−(s+λ)tG(t+ x)dt, (13)

hk,j(s, z) =

∫ ∞

0

e−zxdx

∫ ∞

0

e−(s+λ)t (λt)
k

k!
dt

∫ ∞

t

F j∗(x− y + t)dF (y), (14)

qk(s, z) =

N−k−1∑
j=0

hj,k+j−1(s, z) +

∞∑
j=N−k

hj,N−1(s, z), (15)

rk(s) =

∫ ∞

0

e−(s+λ)t (λt)
k

k!
dG(t). (16)

Let us note that the following representations hold true:∫ ∞

0

e−zxdx

∫ ∞

0

e−stdt

∫ t

0

(λy)k

k!
e−λyVk(t− y, x)dF (y) = ak(s)V̂k(s, z),∫ ∞

0

e−zxdx

∫ ∞

0

e−stdt

∫ t

0

(λy)k

k!
e−λyVk(t− y, x)dG(y) = rk(s)V̂k(s, z),

λ

∫ ∞

0

e−zxdx

∫ ∞

0

e−stdt

∫ t

0

dG(u)

∫ t

u

e−λyV1(t− y, x)dy =
λ

λ+ s
g(λ+ s)V̂1(s, z).

Taking into consideration the above formulae and notations (10)–(16), the sys-
tem of equations (7)–(8) can be transformed to the following form:

V̂0(s, z) =

N−1∑
k=1

rk(s)V̂k(s, z) + V̂N (s, z)

∞∑
k=N

rk(s)

+
λ

λ+ s
g(λ+ s)V̂1(s, z) +

N−1∑
k=1

bk(s, z) +

∞∑
k=N

ck(s, z) + d(s, z) (17)

and

V̂n(s, z) =
N−n−1∑
k=0

ak(s)V̂n+k−1(s, z) + V̂N−1(s, z)
∞∑

k=N−n

ak(s) + qn(s, z), (18)

where 1 ≤ n ≤ N.
Substituting now

Tn(s, z) = V̂N−n(s, z), 0 ≤ n ≤ N, (19)
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we can rewrite equations (17)–(18) as

TN(s, z) =

N−1∑
k=1

rk(s)TN−k(s, z) + T0(s, z)

∞∑
k=N

rk(s)

+
λ

λ+ s
g(λ+ s)TN−1(s, z) +

N−1∑
k=1

bk(s, z) +

∞∑
k=N

ck(s, z) + d(s, z) (20)

and

n∑
k=−1

ak+1(s)Tn−k(s, z)− Tn(s, z) = ϕn(s, z), (21)

where 0 ≤ n ≤ N − 1, and

ϕn(s, z) = an+1(s)T0(s, z)− T1(s, z)
∞∑

k=n+1

ak(s)− qN−n(s, z). (22)

Let us note that the system (21) has the same form as (3) with unknown functions
Tn(s, z), and an(s) and ϕn(s, z) playing roles of ak and ψn respectively. Of
course, since now terms of the sequence (an) depend on the argument s, then
the potential (Rn) will be dependent on s too. Similarly, since Tn is a function
of s and z, then the constant C, in general, will be a function of s and z too.

4 Main Result

From the representation (4) in Theorem 1, adjusting to the system (21), follows
that the solution of (21) can be written in the following form:

Tn(s, z) = C(s, z)Rn+1(s) +

n∑
k=0

Rn−k(s)ϕk(s, z), n ≥ 0, (23)

where the constant C(s, z) is independent on n and the sequence
(
Rn(s)

)∞
n=0

(the potential connected with the sequence
(
an(s)

)∞
n=0

) is defined as follows
(compare to (5)):

R0(s) = 0, R1(s) = a−1
0 (s),

Rn+1(s) = R1(s)
(
Rn(s)−

n∑
k=0

ak+1(s)Rn−k(s)
)
, n ≥ 1. (24)

To state the formula for Tn(s, z) explicitly, we must find representations for
C(s, z), and T0(s, z) and T1(s, z) occurring in (22).

Substituting n = 0 into the formula (23) we obtain

C(s, z) =
T0(s, z)

R1(s)
= a0(s)T0(s, z). (25)
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Similarly, substituting n = 0 into the formula (21) we get

a0(s)T1(s, z) + a1(s)T0(s, z)− T0(s, z) = ϕ0(s, z) (26)

and hence, since
∑∞

k=0 ak(s) = f(s), we obtain

T1(s, z) =
T0(s, z)− qN (s, z)

f(s)
. (27)

Now let us substitute (25) and (27) into the formula (23). We obtain (compare [2])

Tn(s, z) = a0(s)Rn+1(s)T0(s, z) +

n∑
k=0

Rn−k(s)

×
(
ak+1(s)T0(s, z)− T1(s, z)

∞∑
i=k+1

ai(s)− qN−k(s, z)
)

= T0(s, z)
[
a0(s)Rn+1(s) +

n∑
k=0

Rn−k(s)
(
ak+1(s)−

1

f(s)

∞∑
i=k+1

ai(s)
)]

+

n∑
k=0

Rn−k(s)
(qN (s, z)

f(s)

∞∑
i=k+1

ai(s)− qN−k(s, z)
)

= T0(s, z)Θn(s) + Φn(s, z), (28)

where

Θn(s) = a0(s)Rn+1(s) +
n∑

k=0

Rn−k(s)
(
ak+1(s)−

1

f(s)

∞∑
i=k+1

ai(s)
)
, (29)

Φn(s, z) =

n∑
k=0

Rn−k(s)
[qN (s, z)

f(s)

∞∑
i=k+1

ai(s)− qN−k(s, z)
]
. (30)

Applying the formula (28) in (20) we can eliminate T0(s, z). Indeed, we have

T0(s, z)ΘN (s) + ΦN (s, z)

=
N−1∑
k=1

rk(s)
(
T0(s, z)ΘN−k(s) + ΦN−k(s, z)

)
+ T0(s, z)

∞∑
k=N

rk(s)

+
λ

λ+ s
g(λ+ s)

(
T0(s, z)ΘN−1(s) + ΦN−1(s, z)

)
+

N−1∑
k=1

bk(s, z) +
∞∑

k=N

ck(s, z) + d(s, z) (31)

and hence we obtain

T0(s, z) =

∑N−1
k=1 bk(s, z) +

∑∞
k=N ck(s, z) + d(s, z)−DΦ(s, z)

DΘ(s)−
∑∞

k=N rk(s)
, (32)
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where

DΦ(s, z) = ΦN (s, z)− λ(λ + s)−1g(λ+ s)ΦN−1(s, z)−
N−1∑
k=1

rk(s)ΦN−k(s, z),

(33)

and

DΘ(s) = ΘN (s)− λ(λ + s)−1g(λ+ s)ΘN−1(s)−
N−1∑
k=1

rk(s)ΘN−k(s). (34)

Now the formulae (19), (28), (29), (30), (32), (33) and (34) lead to the following
main theorem:

Theorem 2. The 2-fold Laplace transform of the conditional virtual waiting
time distribution in the M/G/1/N -type queueing system with single vacations
can be written in the following form:

V̂n(s, z) =

∫ ∞

0

e−zxdx

∫ ∞

0

e−stP{v(t) < x |X(0) = n}dt

=

∑N−1
k=1 bk(s, z) +

∑∞
k=N ck(s, z) + d(s, z)−DΦ(s, z)

DΘ(s)−
∑∞

k=N rk(s)
ΘN−n(s) + ΦN−n(s, z),

(35)

where 0 ≤ n ≤ N, and the formulae for bk(s, z), ck(s, z), d(s, z), rk(s), Θn(s),
Φn(s, z), DΦ(s, z) and DΘ(s) are given in (11), (12), (13), (16), (29), (30), (33)
and (34) respectively.

Of course, in the case of G(t) ≡ 1, t > 0, when we get a classical M/G/1/N -type
system (formally we have a single vacation of zero duration), the formula (35)
also holds true.

Since in the last Theorem the double transform V̂n(s, z) of the virtual waiting
time distribution is given explicitly, then the formula (35) can be applied in
practice in different ways.

Firstly, the representation for the Laplace transform of the stationary waiting
time distribution (as t → ∞) can be found, using the Tauberian theorem as
follows: ∫ ∞

0

e−zxP{v(∞) < x}dx = lim
s↓0

sV̂n(s, z). (36)

Similarly, the mean Ev of the stationary waiting time v can be obtained in the
following way:

Ev = − d

dz

(
z lim

s↓0
sV̂n(s, z)

)∣∣∣
z=0

, (37)

where n in the formulae (36) and (37) can be chosen arbitrarily, since the station-
ary waiting time distribution is independent on the initial state of the system.
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5 Numerical Examples

In this section we present numerical examples in which we derive, using the
formulae (35), (36) and (37), the stationary waiting time distribution V (x) =
P{v(∞) < x} and its mean Ev =

∫∞
0 xdV (x) for sample queueing systems. In

all computations we use the Mathematica environment.

(1) Let us take into cosideration the system in that N = 5, λ = 4, F (x) =
1 − e−2x, x > 0 (exponentially distributed service time with mean 0.5) and
G(x) = 1 − e−x(1 + x), x > 0 (2-Erlang distribution with parameter 1 of the
single vacation duration).

For such a system, using the formula (35) and next (36), we obtain∫ ∞

0

e−zxP{v(∞) < x}dx

=
11412320+ 27777552z+ 23664336z2 + 10049640z3 + 364710z4

356635z(1 + z)2(2 + z)5

+964193z5 + 161956z6 + 12413z7

356635z(1+ z)2(2 + z)5
. (38)

Inverting (38) on the argument z we get

V (x) =
1

1069905

(
1069905− 12e−x(−10754 + 9981x)

− 2e−2x(580857 + 1018404x+ 928392x2 + 531680x3 + 178592x4)
)

(39)

and hence Ev = 2.066.
The stationary waiting time distribution (39) is presented in Figure 1.

(2) Assume now that N = 4, λ = 8, service times are exponentially distributed
with mean 1 and G(x) is the same as in the case (1).

Using the formulae (35) and (36) we find∫ ∞

0

e−zxP{v(∞) < x}dx

=
315004145+ 362270293z+ 57365618z2 + 13427330z3

315004145z(1+ z)5

+4086349z4 + 721625z5

315004145z(1+ z)5
. (40)

Inverting (40) on the argument z we obtain

V (x) =
1

315004145

(
315004145− 24e−x(13095105+ 13075179x

+ 6448044x2 + 1910560x3 + 64x4)
)
. (41)

Hence (see (37)) we get Ev = 3.84995.
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Fig. 1. Stationary waiting time distribution in the case (1)
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Fig. 2. Stationary waiting time distribution in the case (2)

The stationary distribution (41) is presented in Figure 2.

(3) Consider now the system described by exponential distributions, with λ = 3
(the mean of interarrival time equal to 0.333), and the means of the service time
and the vacation duration equal to 1. In Table 1 we present the values of Ev,
computed using the formula (37), as a function of increasing system capacity N
(for N = 1 to 10).
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Table 1. Mean of the stationary waiting time Ev as a function of the system capacityN

System capacity N Mean of the stationary waiting time Ev

1 0
2 1.54982
3 2.53652
4 3.52184
5 4.51110
6 5.50508
7 6.50217
8 7.50088
9 8.50035
10 9.50013

As one can note, the mean of the time required for a packet to initialize its
service increases as the buffer-queue capacity increases. Indeed, intuitively, in
the case of small buffer capacity the probability of packet loss increases and, in
consequence, the mean of the waiting time is low, since for all lost packets the
waiting time equals 0. As the buffer capacity increases, the loss probability of a
packet is smaller and smaller, and Ev increases.

(4) Now, let us take into consideration the system of size N = 3, and exponen-
tially distributed service times and vacation durations with means 1. In Table 2
we present the mean of the stationary waiting time Ev as a function of different
values of λ.

Table 2. Mean of the stationary waiting time Ev as a function of the intensity of
Poisson arrivals λ

Intensity of Poisson arrivals λ Mean of the stationary waiting time Ev

0.2 0
1 1.75610
2 2.31380
3 2.53652
5 2.72803
15 2.92002
40 2.97276
80 2.98691
150 2.99316
300 2.99662

Obviously, as one can observe, as the intensity of packet arrivals λ increases,
then the mean time of waiting in the queue Ev increases too, but for large λ′s
stabilizes. This observation has the following intuitive explanation. For relatively
small intensity of arrivals, Ev increases as the probability of the buffer overflow
decreases. In the case of large values of λ a lot of packets are lost due to the buffer
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congestion. Then, in practice, v(t) is positive only for such t for which the system
contains N − 1 packets. Since for large λ′s the differences between the waiting
times for arrivals are very small, hence the values Ev are close to each other.

(5) Lastly, let us examine the influence of the single vacation duration on the
mean of the waiting time in the stationary state of the system. Let us consider
the system in which N = 3, λ = 4 and service times are exponentially dis-
tributed with mean 1. Let us assume that durations of successive vacations have
exponential distributions with mean γ−1. In Table 3 we present the mean of the
stationary waiting time Ev as a function of different values of γ−1.

Table 3. Mean of the stationary waiting time Ev as a function of the mean of vacation
duration

Mean of the vacation duration γ−1 Mean of the stationary waiting time Ev

0.333 2.68260
0.5 2.67806
1 2.65507

1.25 2.64133
5 2.43077
20 1.89790

66.667 1.32699
1000 0.80270
10000 0.75540

1000000 0

As one can observe, in the considered example, the longer duration of the
vacation period, the shorter the mean waiting time. It is intuitively clear: if the
service is blocked for a very long time (compared to the intensity of arrivals),
then the number of packets lost due to the buffer overflow is very large and,
hence, the value of Ev decreases (since for the lost packets the mean of the
waiting time equals 0).

6 Conclusions

In the paper the M/G/1/N -type queueing system with single vacations and ex-
haustive service is considered. A system of integral equations for the distributions
of the transient virtual waiting time v(t), conditioned by the number of packets
present in the system at the opening, is built. The solution of the corresponding
system obtained for double transforms of distributions of v(t) is found applying
the potential method. The final formula is written down using the sequence, called
the potential, defined recursively by means of “input” parameters of the system.
The representation is convenient for numerical treatment. Some examples are at-
tached, in which the influence of the Poisson arrival rate, the buffer size and the
vacation duration for the mean of the stationary waiting time is examined.
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Abstract. In this paper we consider the analysis of an M/D/1 vacation
queue with periodically gated discipline. The motivation of introducing
the new periodically gated discipline comes from the stochastic behavior
of a kind of contention-based bandwidth reservation mechanism applied
in wireless networks. The analysis utilizes a former result from polling
model, which expresses the number of customers at arbitrary epoch in
terms of the number of customers at start and end of vacations. The mean
and the probability-generating function of the number of customers at
arbitrary epoch are determined.

In the last part of the paper we demonstrate the application of the
model to the non real-time uplink traffic in IEEE 802.16-based wireless
broadband networks.

Keywords: queueing theory, vacation model, Markov chain, contention-
based bandwidth reservation, IEEE 802.16.

1 Introduction

Vacation model is an extension of the basic queue, in which the single server
takes vacation occasionally. For details on classical vacation models and their
solution the reader is referred to the survey of Doshi [4] and to the book of
Takagi [10].

Vacation models are widely used queueing theoretical tools. This is mainly due
to their generality. On the other hand, vacation models can be tailored to the
needs of the application under investigation, which facilitates the applicability
of these models. Such examples are multi-server vacation models (see e.g. [11],
[13] or [8]) or working vacation models (see e.g. [9], [12] or [7]).

In this paper we introduce a new service discipline for the M/D/1 vacation
model. The periodically gated discipline is an extension of the gated discipline.
The way of the customers in the gated system can be modeled with the help of a
gate. The arriving customers are accumulated in a buffer A behind a closed gate.
At the end of the vacation the gate is opened and the accumulated customers
move to the buffer B, from which they will be served. Then the gate is closed
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immediately and the service of the customers in the buffer B starts. Thus, in
the gated system, only those customers are served in the actual service period
which are present at start of that service period. Under the periodically gated
discipline the gate may be opened several times also during the service period.
This allows moving of newly accumulated customers from behind the gate into
the buffer B with stochastic periodicity. When buffer B becomes empty the
server goes to vacation. The vacation ends at natural epoch when the gate opens
next time according to its prescribed stochastic periodicity. Hence in this model
the vacation period depends on the stochastic period, which itself depends on
the arrival process.

The motivation of introducing the new periodically gated vacation model
lies in the stochastic behavior of a kind of contention-based bandwidth reserva-
tion mechanism applied in wireless networks. As part of this kind of reservation
mechanism a collision resolution process is invoked. The newly arriving pack-
ets (corresponding to customers) must wait during the collision resolution in
a reservation buffer (corresponding to buffer A), from which they move to the
scheduling buffer (corresponding to buffer B) when the collision resolution pro-
cess ends successfully. Thus packets move from reservation buffer to scheduling
buffer with stochastic periodicity also during scheduling the packets (correspond-
ing to service).

Due to the assumption of constant probability of successful collision resolution
(see the independent conditional collision probability assumption proposed by
Bianchi [2]) the length of each of these stochastic periods can be modeled as a
sum of the time until first arrival during it and a shifted geometrically distributed
random variable, whose parameter is the above constant probability. Thus the
length of such stochastic period depends also on the arrival process during it. The
time interval during which the scheduling buffer (buffer B) is empty corresponds
to the vacation period. The vacation period ends next time when packets come
from the reservation buffer to the scheduling buffer (next gate opening).

The main contribution of this paper is the analysis of the periodically gated
vacation model. In the first step a Markov chain embedded at the gate opening
epochs is applied to determine the steady-state probabilities of the number of
customers at that epochs. Then the probability-generating function (PGF) and
the mean number of customers are determined at both start and end of vacation.
Based on them the PGF and the mean of the number of customers at arbitrary
epoch are determined, for which the work-conserving property of the model and
a former result for polling models ([3], [6]) are utilized. In the last part of the
paper we demonstrate the application of the model to the non real-time uplink
traffic in IEEE 802.16-based wireless broadband networks ([5]) by establishing
the formula for determining the mean packet delay. A detailed evaluation of the
application of the periodically gated vacation model to the above network is a
topic of future work.

The rest of this paper is organized as follows. In section 2 the model and
the notations are introduced and explained. The analysis at characteristic epochs
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of the model is presented in section 3. In section 4 the PGF and the mean of
the number of customers at arbitrary epoch are derived. Finally the application
of the model to IEEE 802.16-based wireless broadband networks is described in
section 5.

2 Model Description

We consider a queue with vacations and periodically gated service discipline.
Customers arrive to the system according to the Poisson process with rate λ.
The infinite length queue is divided into two buffer parts separated by a gate. The
customers arrive to buffer A behind the closed gate. Eventually the gate opens,
which causes moving of all customers from buffer A into buffer B. Afterwards
the gate is closed immediately. Whenever buffer B is not empty its customers
are served. In contrast to the gated discipline, in this model the opening of
the gate occurs also during the service period, i.e. when buffer B is not empty.
The customer service time is constant and denoted by b. We count the time in
customer service time units, i.e all the considered time periods in this model are
integer multiples of the constant customer service time. Under the periodically
gated service discipline the gate opens with stochastic periodicity. The time
between two consecutive openings of the gate is the sum of the time until the
first customer arrival and the gate period. The distribution of the gate period is
shifted geometrical with parameter 0 < p ≤ 1 in terms of the constant service
time. The gate period also includes the time unit, during which the first customer
arrives (see Fig. 1). The epochs of gate openings are called G-epochs.

next
G−epoch

last
G−epoch

gate period

first arrival

first arrival
time until

...

time units

Fig. 1. Gate period in periodically gated vacation model

When buffer B becomes empty the server goes to vacation. The vacation takes
until the next G-epoch. Thus the length of vacation period depends on the gate
period and it can also depend on the arrival process if buffer A is also empty at
start of vacation. In this case the vacation period depends on the arrival process
via the time until the first customer arrival during it. The M/D/1 periodically
gated vacation model is illustrated in Fig. 2.
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... ...

...

... ...

empty
buffer B

... ...

...

time units

vacationservice period service period ...

G−epoch G−epoch G−epoch G−epoch G−epoch

Fig. 2. Periodically gated vacation model

We impose the following assumptions on the periodically gated vacation
model:

A.1 The arrival rate and the customer service time are positive and finite,
i.e. 0 < λ < ∞, 0 < b < ∞.

A.2 The arrival process and the customer service times are mutually inde-
pendent.

A.3 Work-conserving property: If the service begins then it is work conserving
up to end of the service according to the periodically gated service discipline.

We assume that the model is stable. Only finite number of customers can
be accumulated during the vacation period, since both the arrival rate and the
mean gate period are finite. Hence to ensure the stability of the model only the
service period must be considered. This model is stable if the arrival rate does
not exceed the mean service rate ( 1b ). Thus the condition of the stability can be
given as

ρ < 1, (1)

where ρ = λb is the server utilization.
When ŷ(z) is a PGF, ŷ′(z) denotes its first derivative with respect to z.

Furthermore for the PGF ŷ(z), y(k) denotes its k-th derivative at z = 1 for

k ≥ 1, i.e., y(k) = dk

dzk ŷ(z)|z=1. Additionally [Y]j,l stands for the j, l-th element
of matrix Y. Similarly [y]j denotes the j-th element of vector y.

3 Analysis at Characteristic Epochs of the System

In this section we analyze the number of customers at G-epochs, at start of
vacation and at end of vacation. Throughout this paper the G-epoch stands for
the epoch just after the gate openings. Similarly under start and end of vacations
we understand the epochs just after start and end of vacations, respectively.

In the following we establish an embedded Markov chain in order to determine
the distribution of the number of customers at G-epochs. Then we relate the
number of customers at start of vacation to the number of customers at G-
epochs. Finally we give a relationship to determine the distribution of the number
of customers at end of vacation from the distribution of the number of customers
at start of vacation.
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3.1 The Number of Customers at G-Epochs

Let q(G)(�) be the number of customers in the system at l-th G-epochs for � > 0.
The sequence {qG(�), � > 0} is a homogenous embedded Markov chain on the
state space ({1, 2, . . .}). Let p(G)(j, k) denote the probability of transition from
state j to state k in this Markov chain, i.e.

p(G)(j, k) = P{q(G)(�+ 1) = k | q(G)(�) = j}, � ≥ 1, j, k ≥ 1.

Theorem 1. In the stable M/D/1 periodically gated vacation model satisfying
assumptions A.1 - A.3 the transition probabilities of the Markov chain embedded
at G-epochs are given as

p(G)(j, k) =

j−1∑
m=max(j−k+1,1)

m−1∑
n=0

(1− p)np
(
e−ρ

)m−n−1
(2)

k−j+m∑
l=1

ρl

l!
e−ρ (ρn)k−j+m−l

(k − j +m− l)!
e−ρn

+

∞∑
m=j

m−1∑
n=0

(1− p)np
(
e−ρ

)m−n−1
k∑

l=1

ρl

l!
e−ρ (ρn)

k−l

(k − l)!
e−ρn j, k ≥ 1,

where max(a, b) stands for the highest value of set (a, b).

Proof. We partition the transition probability from state j to state k on the
number of time units in between, which is denoted by m ≥ 1. The operation of
the model implies that there must be at least one arrival during the transition.
Let n denote the number of time units during the transition after the time unit
of the first arrival. Clearly 0 ≤ n ≤ m − 1. The transition from state j to state
k and the notations are shown in Fig. 3.

Either all the j customers are served during the transition, in which case
m ≥ j, or at least one of them is still in the system at the end of the transition,
which implies m ≤ j − 1.

Let us firstly consider the latter case, i.e. when m ≤ j − 1. In this case there
are at least (j−m) customers present in the system at the end of the transition.
Hence there are k − (j − m) arrivals. It follows that m ≥ j − k + 1, since
k − j +m ≥ 1. However also m ≥ 1 must hold and thus for the range of m we
get max(j − k + 1, 1) ≤ m ≤ j − 1.

The gate period consists of the time unit of the first arrival and the next n
time units. According to its shifted geometrical distribution the corresponding
probability is given by (1− p)np. Assuming l ≥ 1 arrivals in the time unit of the
first arrival implies k − j +m − l arrivals during the next n time units. It also
implies that there is no arrival in the first m−n− 1 time units of the transition.
The corresponding probability summing over the possible values of l yields

(
e−λb

)m−n−1
k−j+m∑

l=1

(λb)l

l!
e−λb (λnb)k−j+m−l

(k − j +m− l)!
e−λnb.
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first arrivals
"l" customers

"m" time units

next
G−epoch

last
G−epoch

"n" time units

...

"j" customers "k" customers

Fig. 3. Transition between two consecutive G-epochs

Taking into account also the probability of gate period and summing over the
possible values of n gives the partial transition probability from state j to state
k, given that the number of time units during the transition is m, and m ≤ j−1,
as

m−1∑
n=0

(1 − p)np
(
e−λb

)m−n−1
k−j+m∑

l=1

(λb)l

l!
e−λb (λnb)k−j+m−l

(k − j +m− l)!
e−λnb. (3)

We follow the same line of arguments for the case of m ≥ j. Now the boundary
for m is given as m ≥ j, since it is the only constraint for m. In this case there
are k arrivals during the transition and thus l goes up to k. Therefore the partial
transition probability from state j to state k, given that the number of time
units during the transition is m, and m ≥ j, can be expressed as

m−1∑
n=0

(1− p)np
(
e−λb

)m−n−1
k∑

l=1

(λb)l

l!
e−λb (λnb)

k−l

(k − l)!
e−λnb. (4)

Utilizing ρ = λb, the statement of the theorem comes from (3) and (4) by
summing out m over the corresponding ranges. �

Let p
(G)
k denote the equilibrium probability that the Markov chain embedded at

G-epochs is in state k. To keep the computation of the equilibrium probabilities
tractable we apply an upper limit X on the number of customers in the system,
i.e. k ≤ X . This results in finite number of equilibrium probabilities and tran-
sition probabilities and hence also finite number of equilibrium equations. We
remark here that the resulted embedded Markov chain is always stable, since it
has finite number of states due to the truncation and it is irreducible (see (2)).
The proper value of X depends on the required precision and can be determined

in iterative manner until the difference of consecutive values of probabilities p
(G)
k ,

for every k ≤ X , becomes less than the specified error. In the computation, the

probabilities p
(G)
k for k > X are set 0, since they can be neglected.
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We define the 1 × X vector θ, representing the equilibrium probabilities of

the above Markov chain, by its k-th element as [θ]k = p
(G)
k . We also define the

X ×X matrix Π representing the transition probabilities of the above Markov
chain as [Π ]j,k = p(G)(j, k). Due to the truncation, the row sums of matrix Π
becomes less than 1. Hence, in the computation, these row sums are corrected to
1 (e.g. by applying normalization) ensuring that matrix Π remains stochastic,
which is needed for the right computation.

The equilibrium probabilities of the Markov chain embedded at G-epochs can
be uniquely determined from the following system of linear equations

θΠ = θ, θe =

X∑
k=1

p
(G)
k = 1, (5)

where e denotes the X×1 column vector having all elements equal to one. Based
on the p(G)(k) equilibrium probabilities the steady-state PGF of the number of
customers at the G-epochs, ĝ(z), is defined as

ĝ(z) =

∞∑
k=1

p
(G)
k zk, |z| ≤ 1.

3.2 The Number of Customers at Start of Vacation

Let q
(m)
k be the steady-state probability that the number of customers in the

system at start of vacation is k for k > 0. We define m̂∗(z) as

m̂∗(z) =
∞∑
k=0

q
(m)
k zk, |z| ≤ 1.

Note that the probabilities q
(m)
k covers only the cases when vacation is reached,

i.e. buffer B becomes empty between two consecutive G-epochs. However buffer
B does not necessarily become empty in these periods, only in a fraction of all

possible stochastic sample paths. It follows that
∑∞

k=0 q
(m)
k < 1 and hence the

probabilities q
(m)
k and m̂∗(z) must be normalized. Therefore we also define p

(m)
k

as the steady-state conditional probability that the number of customers in the
system at start of vacation is k, given that there is a vacation, for k > 0. The

p
(m)
k probabilities can be computed from the q

(m)
k probabilities as

p
(m)
k =

q
(m)
k∑∞

k=0 q
(m)
k

. (6)

The PGF corresponding to the probabilities p
(m)
k is defined as

m̂(z) =

∞∑
k=0

p
(m)
k zk, |z| ≤ 1.
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The definitions of m̂(z) and m̂∗(z) as well as (6) imply that m̂(z) can be expressed
from m̂∗(z) as

m̂(z) =
m̂∗(z)
m̂∗(1)

. (7)

Theorem 2. In the stable M/D/1 periodically gated vacation model satisfying
assumptions A.1 - A.3 the relation between the PGFs of the number of cus-
tomers at start of vacation and at G-epochs is given as

m̂(z) =
1− (1− p) eρ

1− (1− p) eρz

p ĝ
(
e−ρ
)− (1− p) (eρz − 1) ĝ

(
(1− p) e−ρ(1−z)

)
p ĝ (e−ρ)− (1− p) (eρ − 1) ĝ (1− p)

. (8)

Proof. Let j ≥ 1 be the number of customers at the G-epoch preceding the

considered start of vacation. We condition the steady-state probability q
(m)
k on

j. The vacation starts after serving all j customers. Therefore the interval up to
the start of vacation from the last G-epoch preceding it consists of exactly j time
units. During this interval there is no new gate opening. Therefore either there
is no arrival during these j time units or the gate period exceeds this interval.

The probability of no arrivals during j time units can be given as
(
e−λb

)j
.

Unconditioning on j gives the probability q
(m)
0 as

q
(m)
0 =

∞∑
j=1

p
(G)
j

(
e−λb

)j
. (9)

Now let us consider the other case. In this case there are k arrivals during the
j time units. Let n denote the number of time units after the time unit of the
first arrival. It follows that 0 ≤ n ≤ j − 1. The transition from the last G-epoch
to the start of vacation and the notations are shown in Fig. 4.

The probability that the gate period exceeds the time until the start of va-
cation is given as (1 − p)n+1. Assuming l ≥ 1 arrivals in the time unit of the
first arrival implies k − l arrivals during the next n time units. It also implies
that there is no arrival in the first j − n − 1 time units of the transition. The
corresponding probability summing over the possible values of l results in

(
e−λb

)j−n−1
k∑

l=1

(λb)l

l!
e−λb (λnb)

k−l

(k − l)!
e−λnb.

Taking into account also the probability of no gate openings and summing over
the possible values of n gives the conditional probability of having k customers
in the system at start of vacation, given that j customers are present in the
system at last G-epoch, as

j−1∑
n=0

(1 − p)n+1
(
e−λb

)j−n−1
k∑

l=1

(λb)l

l!
e−λb (λnb)

k−l

(k − l)!
e−λnb.
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first arrivals
"l" customers

"n" time units

...

buffer B

empty buffer A

empty

"j" time units

last
G−epoch

start of
vacation

"j" customers

"k" customers

Fig. 4. Transition from last G-epoch to start of vacation

Unconditioning on j results in the probability q
(m)
k for k ≥ 1 as

q
(m)
k =

∞∑
j=1

p
(G)
j

j−1∑
n=0

(1− p)n+1
(
e−λb

)j−n−1
k∑

l=1

(λb)l

l!
e−λb (λnb)

k−l

(k − l)!
e−λnb. (10)

Using (9), (10) and the definition of m̂∗(z), as well as rearranging yield

m̂∗(z) =
p ĝ (e−ρ)− (1− p) (eρz − 1) ĝ

(
(1 − p) e−ρ(1−z)

)
1− (1− p) eρz

. (11)

Applying (11) to (7) results in the statement of the theorem. �

The mean of the steady-state number of customers at start of vacation can
be computed by taking the first derivative of (8) at z = 1, which results in

m(1) =
(1− p)ρ (p eρĝ (e−ρ)− p eρĝ(1− p))

(1− (1− p) eρ) (pĝ (e−ρ)− (eρ − 1) (1− p)ĝ(1 − p))

− (1− p)ρ ((eρ − 1) (1− (1− p) eρ) (1 − p)ĝ′(1 − p))

(1− (1− p) eρ) (pĝ (e−ρ)− (eρ − 1) (1− p)ĝ(1 − p))
(12)

3.3 The Number of Customers at End of Vacation

Let p
(f)
k be the steady-state probability that the number of customers in the

system at end of vacation is k for k > 0. The corresponding PGF of the steady-
state number of customers at end of vacation, f̂(z), is defined as

f̂(z) =

∞∑
k=1

p
(f)
k zk, |z| ≤ 1.
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Theorem 3. In the stable M/D/1 periodically gated vacation model satisfying

assumptions A.1 - A.3 f̂(z) can be expressed by means of m̂(z) as

f̂(z) =
pe−ρ(1−z)m̂(z)− p p

(m)
0 e−ρ 1−e−ρ(1−z)

1−e−ρ

1− (1 − p)e−ρ(1−z)
, (13)

where p
(m)
0 is given as

p
(m)
0 =

(1− (1 − p) eρ) ĝ (e−ρ)

p ĝ (e−ρ)− (1− p) (eρ − 1) ĝ (1− p)
. (14)

Proof. The number of customers at end of vacation is at least one, since also
the end of vacation is a G-epoch. The number of customers at end of vacation is
the sum of the number of customers at start of vacation and those which arrive
during the vacation period.

Either there are no customers in the system at start of vacation, in which case
the gate can not be opened before the time unit of the first arrival, or there is at
least one customer present at start of vacation, in which case the gate opening
can occur at end of any of subsequent time units.

We start with the case when no customers are present in the system at start
of vacation. Assuming m time units before the time unit of the first arrival and
n time units afterwards as well as l arrivals in the time unit of the first arrival
(see Fig. 5), the corresponding partial probability of having k customers at end
of vacation can be expressed as

p
(m)
0

∞∑
m=0

(
e−λb

)m ∞∑
n=0

(1 − p)np

k∑
l=1

(λb)l

l!
e−λb (λnb)

k−l

(k − l)!
e−λnb. (15)

"n" time units

...

buffer B

empty buffer A

empty

next
G−epoch

=
vacation
end ofstart of

vacation

"m"
time units

emptyfirst arrivals
"l" customers

"k" customers

Fig. 5. Transition during vacation when no customer present at start of vacation
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buffer B

start of
vacation

next
G−epoch =

vacation
end of

"n" time units

...

empty

"k−j" arrivals buffer Aempty"j" customers

"k" customers

Fig. 6. Transition during vacation when at least one customer present at start of
vacation

In the other case there are j ≥ 1 customers in the system at start of vacation.
Hence there are k − j arrivals during the vacation consisting of n time units.
Thus the gate period ends exactly after n time units (see Fig. 6). Hence the
corresponding partial probability of having k customers at end of vacation can
be given for this case as

k∑
j=1

p
(m)
j

∞∑
n=1

(1− p)n−1p
(λnb)k−j

(k − j)!
e−λnb. (16)

Putting (15) and (16) together the probability of having k customers at end of
vacation can be expressed as

p
(f)
k = p

(m)
0

∞∑
m=0

(
e−λb

)m ∞∑
n=0

(1− p)np

k∑
l=1

(λb)l

l!
e−λb (λnb)

k−l

(k − l)!
e−λnb

+

k∑
j=1

p
(m)
j

∞∑
n=1

(1− p)n−1p
(λnb)k−j

(k − j)!
e−λnb. (17)

Starting from the definition of f̂(z), using (17) and performing several rearrange-
ments results in the first statement of the theorem. The second statement comes
by setting z = 0 in (8) and rearranging it. �

The mean of the steady-state number of customers at end of vacation can be
computed by taking the first derivative of (13) at z = 1, which results in

f (1) =

(
p p

(m)
0 + eρ − 1

)
ρ+ p (eρ − 1)m(1)

p (eρ − 1)
(18)
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4 Analysis at Arbitrary Epoch

In this section we give the expressions of the PGF and the mean of the steady-
state number of customers in an arbitrary epoch. Afterwards we summarize the
procedure for computing the above mentioned mean.

4.1 The Number of Customers at Arbitrary Epoch

Let N(t) be the number of customers in the system at time t for t ≥ 0. We define
q̂(z) as the PGF of the steady-state number of customers in an arbitrary epoch
as

q̂(z) = lim
t→∞

∞∑
k=0

P {N (t) = k} zk, |z| ≤ 1.

Theorem 4. In the stable M/D/1 periodically gated vacation model satisfying
assumptions A.1 - A.3 the PGF of the steady-state number of customers in an
arbitrary epoch can be expressed as

q̂(z) =
(1 − ρ)e−ρ(1−z)

e−ρ(1−z) − z

p (eρ − 1)(
p p

(m)
0 + eρ − 1

)
ρ

×
(
1− e−ρ(1−z)

)
m̂(z) + p p

(m)
0 e−ρ 1−e−ρ(1−z)

1−e−ρ

1− (1− p)e−ρ(1−z)
, (19)

where m̂(z) and p
(m)
0 are given by (8) and (14), respectively.

Proof. In the classical vacation model the steady-state number of customers in
an arbitrary epoch can be expressed in terms of the steady-state number of
customers at start and end of vacation (see in [3] and [6]) as

q̂(z) =
(1− ρ)B̃(λ− λz)

B̃(λ− λz)− z

m̂(z)− f̂(z)

f (1) −m(1)
, (20)

where B̃(s) is the Laplace-Stieljes transform (LST) of the customer service time.
In fact the arguments used for the proof of this relation in [3] are valid for models,
in which the work-conserving property holds during the service period, i.e. this
relation holds in broader settings. It follows that it holds also for the periodically
gated vacation model.

Due to constant customer service time B̃(s) = e−sb. Using it and applying
(13) and (18) in (20) gives the statement of the theorem. �

Corollary 1. In the stable M/D/1 periodically gated vacation model satisfying
assumptions A.1 - A.3 the mean of the steady-state number of customers in an
arbitrary epoch can be expressed as
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q(1) = ρ+
ρ2

2(1− ρ)
+

(2− p)ρ2
(
p p

(m)
0 + eρ − 1

)
+ 2p ρ (eρ − 1)m(1)

2p
(
p p

(m)
0 + eρ − 1

)
ρ

, (21)

where m(1) and p
(m)
0 are given by (12) and (14), respectively.

Proof. The statement comes by taking the first derivative of (19) at z = 1. �

4.2 The Computational Procedure

The computational steps of the mean steady-state number of customers of this
model can be summarized as follows:

1. Calculation of the equilibrium probabilities of the Markov chain embedded

at G-epochs, p
(G)
k for 1 ≤ k ≤ X , from the system of linear equations (5).

2. Calculation of the moment m(1) and the probability p
(m)
0 from the probabil-

ities p
(G)
k by applying (12), (14) and the definition of ĝ(z).

3. Computation of q(1) from the quantities m(1) and p
(m)
0 by applying (21).

4.3 Numerical Example

Fig. 7 shows the dependency of q(1) on the parameter p for several values of ρ.
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Fig. 7. The dependency of the mean steady-state number of customers on the param-
eter p for several values of ρ

5 Application to the IEEE 802.16 Network

We apply the periodically gated vacation model to the uplink (UL) non real-time
(nrtPS) traffic in IEEE 802.16 based network. We apply the framework of [1].
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5.1 Analytical Model of the Uplink Non Real-Time Traffic in the
IEEE 802.16 Network

We assume that the probability of the successful BW-Req transmission at each

SS (denoted by p
(b)
i ) is constant (this is based on [2]). As a consequence of it

the statistical behavior of each SS can be considered independently of the other
SSs. According to it we consider the behavior of the tagged SS i.

The tagged SS i corresponds to the periodically gated vacation model. Pack-
ets arriving to SS i are the customers of the model. The reservation buffer and
the scheduling buffer corresponds to buffer A and B of the queue, respectively.
The successful BW-Req transmission is represented by a gate opening event.
The scheduling of a packet is represented by a customer service. The constant
length frame corresponds to b. The probability of successful bandwidth reserva-

tion (p
(b)
i ) is the parameter p of the model. Finally the packet arrival rate at SS

i corresponds to λ of the model.

5.2 The Mean Packet Delay

The overall delay is composed of several parts, from which the major parts are
the reservation delay, W r

i , and the scheduling delay, W s
i . The reservation and

the scheduling delay is the time period the packet takes in the reservation and
in the scheduling buffer, respectively. Therefore E [W r

i +W s
i ] can be computed

from the steady-state number of customers in the queue of the periodically gated
vacation model (r(1)) by applying Little’s law as

E [W r
i +W s

i ] =
r(1)

λi
, (22)

where r(1) can be expressed by applying (21) as

r(1) = q(1) − ρ =
ρ2

2(1− ρ)
+

(2− p)ρ2
(
p p

(m)
0 + eρ − 1

)
+ 2p ρ (eρ − 1)m(1)

2p
(
p p

(m)
0 + eρ − 1

)
ρ

. (23)
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Abstract. In mobile networks, call admission control (CAC) is widely
used in reaching of the quality of service (QoS) requirements. However,
as the CACs schemes give priority to the handoff calls, the blocking
probability is degraded. In this paper we propose a new scheme which
is based on the combinaison of CAC scheme and load sharing policy
between a cluster of surrounding cells. Our scheme forces some calls to
handover, with conditions, to neighboring cells in order to avoid the
blocking states in the serving cell. Thus we prove, in the case of one cell,
that our scheme permits to improve both the dropping and blocking
probabilities.

We use multidimensional’s Markov chains to model the systems be-
cause of the consideration of occupation and failure/reparations of chan-
nels. Therefore, it is difficult to deduce intuitively the relevance of our
scheme versus others in the literatures. So, we apply a mathematical
method based on stochastic comparisons in other to prove that our
scheme provides better performance measures. We illustrate these proofs
by numerical results in order to show the relevance of our mechanism to
improve QoS of mobile networks.

Keywords: Performability, Handoff, Load sharing, QoS, Stochastic
comparisons, Markov chains.

1 Introduction

In cellular and mobile communication system, user’s mobility during service ac-
cess is a key element. Sometimes, it may happen that a moving mobile terminal
(MT) could not receive a good signal from its serving base station (BS). Then
the control element of system may decide to hand over this MT to one other
better serving BS. Unfortunately, the handoff call may be dropped due to the
lack of good quality signal or unavailable channel from target cell (adjacent).
Since dropping a call in progress is considered to have a more negative impact
from the user’s perspective than a new incoming call, then an extensive work has
been done in the definition of call admission control (CAC) mechanisms [1,2] in
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order to reduce the dropping probability of ongoing calls. Other techniques re-
lated to the signal quality are very relevant to ensure that the handoff call is not
dropped. The MAHO (Mobile Assisted HandOff) [3] is based on collective deci-
sion between the MT and the surrounding BS. The MT reports periodically their
RSSI/BER (received signal strenght indicator, bit error rate) values to assist the
serving BS for handoff decision. Although this scheme ensures that the MT has
a good signal before handoff, it doesn’t provide information about the channel
availability. Channel reservation for handoff calls are efficient techniques to limit
the call dropping probability. In [4], one or more channels are reserved (called the
guard channels - GC), and the CAC mechanism is implemented. Guard channels
based scheme had focused only on the channel availability while making handoff
decision. Therefore the handed call faces the risk of being dropped in case of
the target BS offers poor signal quality. Since these two techniques are based
on single criterion, signal quality for MAHO and number of guard channel for
GC, in [5] authors propose a multi-criteria scheme to address this limitation
and reduce the handoff dropping probability. This scheme, called MG and which
combines MAHO and GC, ensures that a call is handed off if the target cell is
able to provide a free channel as well as an acceptable signal quality. All of these
techniques contribute certainly to reduce the dropping of ongoing calls but un-
fortunately increase the blocking probability of the new calls. Further techniques
based on load or resource availability in home cell and neighbour cells are pro-
posed in [6,7] without significant improvement of the system capacity compared
to the introduced complexity [8]. A comprehensive survey on handoff and CAC
techniques can be found in [1]. To address the debasement of the blocking prob-
ability because of the mechanism of guard channel, we propose a new scheme
to improve the dropping probability of ongoing calls and, at the same time, to
limit the blocking probability of new calls. The proposed technique, called LMG
(Load sharing Maho with Guard channels) includes two mechanisms. The first
one is the CAC mechanism based on a number g of guard channels reserved for
the handovers. If the cell is under-loaded (when the number of free channels is
upper or equal to the guard channel threshold g ) then both new and handoff
calls are accepted for services. Whenever the number of free channels goes lower
than g, the new calls are refused and only handoff calls get services. Moreover,
MG makes sure that MT has a good signal quality and available channel from
target cell. The second one implements the load sharing policy when the cell is
overloaded. We consider the threshold s which is the minimum number of free
channels in the cell from which we decide to force the handover for calls in the
edge of the cell. The handovers are forced to adjacent cells which are able to pro-
vide acceptable signal quality until the total number of free channels goes upper
than s. Therefore, we reduce the load of the cell and we improve the blocking
probability of new calls.

In practice, the systems we consider are usually represented by multidimen-
sional processes with very large state spaces, so quantitative analysis is very
difficult if there is no specific solution form [9]. We propose to use a mathemati-
cal method based on stochastic comparisons of Markov processes [10]. Stochastic
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comparison method can be applied for the performance evaluation of different
kinds of network architectures [11].

This method can be used to compare two different systems from their perfor-
mance or reliability, or also to build from a complex system, bounding systems
easier to solve as an example on a reduced state space [12]. More recently, metrics
like first flush occurrence on G-networks with catastrophe [13] have been studied
using the stochastic comparison. In [14], bounds are defined by removing links
between queues in a Jackson network in order to compute the transient proba-
bility distribution. In this paper, we use stochastic comparisons in order to prove
mathematically that our system (LMG) provides better performance measures
(handoff-call blocking probability and new call blocking probability) than MG
system. The systems that we study are complex to analyse. Because they are
multidimensional and moreover they evolve with many events as we consider
both occupation and failures/reparation of the channels. So we need to apply a
mathematical method in order to prove that the LMG system is better than MG.
The stochastic comparison is very efficient, as we compare the equation evolu-
tions of the systems using the coupling by events [15]. We give numerical results
on the performance measures in order to show that our mechanism is efficient.
This paper is organized as follows: in the section after, we describe MAHO, MG,
and LMG systems. After that, we present the stochastic comparison method,
and we prove that our system provides better performance measures. In section
IV, we give the numerical results on the performance measures. Achieved results
and extension of this work are discussed in the conclusion.

2 Systems Description

The system we study is represented by a cellular network where each cell con-
tains n channels. Under the condition that all neighbouring cells are statistically
identical, a single cell in isolation is representative and all interactions will be
captured through a handoff call arrival process [16,17]. The system is prone to
the channel failure and reparation. If failure occurs on an occupied channel, the
communication is switched to another free channel if available and lost other-
wise [18]. We consider a channel failure by the unavailability of such channel due
to excessively interference, multi-path, fading, etc. We assume that the arrival
process of new calls and handoff calls are Poisson. The call holding time and
cell residency for both types of calls is exponentially distributed. The same is
for times to channel failure and reparation. We assume that all channels share
a single repair facility. Let the set N = {0, . . . , n}. We denote by xc ∈ N and
xe ∈ N denote the number of occupied channels in the center of cell and the
edge of the cell. If x ∈ N denotes the total idle channels into the cell, then
(xc + xe) ≤ x. Thus the model described above is a composite model for the
combined performance and availability analysis. It is an homogeneous irreducible
Continuous-time Markov Chain (CTMC), taking values in the finite state space
A = N3 and each state of cell is defined by the tuple x = (x, xc, xe).
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The system is described by the following parameters.

λc new call arrival rate is in the center of cell
λe new call arrival rate in the edge of the cell
λh handoff-call arrival rate in the edge of the cell
μt the rate for a call to terminate into the cell
μr channel residency time
γ failure rate

1/τ mean channel repair time

Note that a new call can be either destined to the center or to the edge of
cell with rate λc and λe respectively. In the other hand, handoff arrivals (with
rate λh) and departure (with rate μr) from cell can only occur on the edge.
We assume that there is no local handover between center and edge area in the
same cell [19]. Because of the tehchnique of frequency hopping, the interference
level is the same for all channels. Therfore, the intracell mobility not provides
significant improvement and, it is possible to switch off the corresponding Flag.

In the next section, we describe in detail the different schemes that we want
to compare.

2.1 MAHO Scheme Based Model

Since the standard MAHO is based only on the signal quality, new and ongoing
calls access fairly to the resources when there are available channels. In this
scheme, we consider both occupation and availability of the resource due to
failures and reparations. When MAHO is applied on the understudied model,
we have the following cases for the transitions :

– The arrival rate of new calls in the center of the cell is λc if xc + xe < x,
otherwise it is null. So the evolution equation of the system is such that xc

increases by one (see (1)).
– The arrival rate of new calls in the edge of the cell is λe if xc + xe < x,

otherwise it is null. The evolution equation is given by transition (2).
– The arrival rate of handoff calls in the edge of the cell is λh if xc + xe < x,

otherwise it is null. The evolution equation is given by transition (2).
– The total service rate denoted μc for calls in the center of the cell is the rate

to have a free channel in the center of the cell. As we have xc busy channels
then μc = xc ∗ μt. The evolution equation is given by transition (3).

– The total service rate denoted μe for calls in the edge of the cell is the sum
of the rate for a call to terminate and the handoff departure rate so it is
μe = xe ∗ (μt + μr). The evolution equation is given by transition (4).

– The failure rate is xcγ for busy channels in the center of the cell if all the
channels are busy : x = xc+xe. So in this case both x and xc decreases (see
equation 5). The evolution equation is given by transition (5). It is similar
for the calls at the edge of the cell, see transition (6).
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– The failure rate is (x− (xc + xe)) ∗ γ + (xc + xe)γ equivalent of fail of a free
channel, or a busy channel in the center or in the edge, if x− (xc + xe) > 0.
In the case where a busy channel fails, the communication is switched to
another free channel, so only the number of available channels x decreases
by one. The evolution equation is given by transition (7).

– The repair rate is τ , so x increases by one (see transition (8)).

So the evolution equations are as follows :

x → (x,min{n, xc + 1}, xe), with rate λc, (1)

if xc + xe < x.

→ (x, xc,min{n, xe + 1}), with rate λe + λh, (2)

if xc + xe < x.

→ (x,max{0, xc − 1}, xe), with rate μc = xcμt. (3)

→ (x, xc,max{0, xe − 1}), with rate μe = xe(μt + μr). (4)

→ (max{0, x− 1},max{0, xc − 1}, xe), (5)

with rate xcγ if x = xc + xe.

→ (max{0, x− 1}, xc,max{0, xe − 1}), (6)

with rate xeγ if x = xc + xe.

→ (max{0, x− 1}, xc, xe), (7)

with rate (xe + xc)γ + (x− (xc + xe))γ,

if x > (xc + xe).

→ (min{n, x+ 1}, xc, xe), (8)

with rate τ.

For this model, we have represented the corresponding CTMC for n = 3 in Fig.1.
We can see easily the complexity of the system from the number of states and
kinds of events. The handoff calls dropping probabilities PMAHO

d and new calls
blocking probabilities PMAHO

b , are computed on the same states (precisely on
states x such that x = xc + xe). We denote by πMAHO

i,j,k the probability of the

state x = (x, xc, xe) to have the value (i, j, k). Obviously, both PMAHO
d and

PMAHO
b are equals and are written as follows:

PMAHO
d = PMAHO

b =
n∑

j=0

n∑
i=j

πMAHO
i,j,i−j (9)

Next, we present the MG scheme which combines the MAHO system, with a
CAC procedure based on g guard channels (GC) in order to give the priority
to handoff calls over new calls. The goal is to reduce the handoff calls dropping
probability.
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Fig. 1. The MAHO Markov Chain model

2.2 MG Scheme: Combined MAHO and GC Schemes

The MG scheme considers both MAHO scheme and a CAC (Call Admission
Control) procedure, based on a guard channel scheme (GC) which reserves a
subset of g channels for handoff calls. Whenever the number of free channels
is lower or equal than the threshold g, CAC rejects new calls and accepts only
handoff calls until the number of free channels goes upper than the threshold.
In the case of all the channels are occupied, both new and handoff calls are
rejected. MAHO scheme ensures that a handed call has always an acceptable
signal quality. It means that α = 1, where α is the probability that the handoff
call will be a success [5]. From state x = (x, xc, xe), the different transition rates
are defined as follows when MG is applied:

1. The total arrival rate of new calls in the center of the cell is λc if x−(xc+xe) >
g otherwise it is null (see transition (10)).

2. The total arrival rate in the edge of the cell is the sum of the new call arrival
rate in the edge of the cell and handoff arrival rate λe + λh if the number of
free channels is upper than the number of guard channels (x−(xc+xe) > g),
(see transition (11)). Otherwise, only handed off calls are admitted, so the
arrival rate is λh (see transition 12).
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3. The total service rate for calls in the center of the cell is μc = xc ∗ μt, (see
transition 13).

4. The total service rate for calls in the edge of the cell is μe = xe ∗ (μt + μr),
(see transition 14)

5. The failure rate is xcγ for busy channels in the center of the cell if all the
channels are busy : x = xc+xe. The evolution equation is given by transition
(15). It is similar for the calls at the edge of the cell, see transition (16).

6. The failure rate is (x− (xc + xe)) ∗ γ + (xc + xe)γ equivalent of fail of a free
channel, or a busy channel in the center or in the edge, if x− (xc + xe) > 0.
In the case where a busy channel fails, the communication is switched to
another free channel, so only the number of available channels x decreases
by one. The evolution equation is given by transition (17).

7. The repair rate is τ , so x increases by one (see transition (18)).

And the evolution equations of the system are as follows:

x → (x,min{n, xc + 1}, xe), with rate λc, (10)

if x− (xc + xe) > g.

→ (x, xc,min{n, xe + 1}), with rate λe + λh, (11)

if x− (xc + xe) > g.

→ (x, xc,min{n, xe + 1}), with rate λh, (12)

if x− (xc + xe) ≤ g.

→ (x,max{0, xc − 1}, xe), with rate μc = xcμt. (13)

→ (x, xc,max{0, xe − 1}), with rate μe = xe(μt + μr). (14)

→ (max{0, x− 1}, xc,max{0, xe − 1}), (15)

with rate xeγ if x = xc + xe.

→ (max{0, x− 1},max{0, xc − 1}, xe), (16)

with rate xcγ if x = xc + xe.

→ (max{0, x− 1}, xc, xe), (17)

with rate (xe + xc)γ + (x− (xc + xe))γ,

if x > (xc + xe).

→ (min{n, x+ 1}, xc, xe), (18)

with rate τ.

For this model, the handoff calls dropping probabilities PMG
d are computed on

states x such that x = xc + xe. We denote by πMG(i, j, k) the probability of
the state x = (x, xc, xe) to have the value (i, j, k). So PMG

d is computed by sum-
ming the probabilities of states (i, j, k) such that k = i − j, by considering that
0 ≤ j ≤ n − g due to the reserved channels for handoff calls. For PMG

b , the prob-
ability is computed by summing the probabilities πMG

i,j,k such that i − (j + k) ≤ g.
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The handoff call dropping probabilities and the new call blocking probabilities are
then given by:

PMG
d =

n−g∑
j=0

n∑
i=j

πMG
i,j,i−j and PMG

b =

n−g∑
j=0

g∑
k=0

n∑
i=j+k

πMG
i,j,i−j−k . (19)

We can notice that, although MG improves the dropping probability, the ex-
clusive reservation of guard channels for handoff calls, degrades the blocking
probability of new calls.

2.3 Our Proposed Scheme: LMG (Load Sharing Maho with Guard
Channels)

The relevance of our scheme is to combine both the CAC mechanism with forced
handoff in order to improve both the dropping probability and the blocking
probability. We consider two thresholds : g for the number of channels reserved
for handovers, and s which represents the minimum number of free channels
from which we decide to force the calls located in the edge of cell to handoff to
adjacent cells. In order to facilitate the presentation, we suppose that (g=s).

The forced handoff works by modifying the channel residency time for calls
that are on the edge of the cell according to the load. If the number of free
channels exceeds g, the channel residency rate is μr. So the total service rate
is the sum of the rate for a call to terminate and the channel residency rate is
μe = xe ∗ (μt + μr) (see equation (24)). In the case where the number of free
channels is lower than g, our scheme forces calls located at edge of the cell to
handed off to the adjacent cells with rate μr0, under conditions of good signal
and channel availability. The total service rate is μe0 = xe ∗ (μt + μr + μr0) and
the transition is given in equation (25). In this scheme, users of overloaded cell
will be served by adjacent cells to avoid loss. Load share can be achieved by
controlling various radio access parameters and push to the less loaded cell with
threshold mechanism that can be used for load sharing.

From the assumptions on the call arrivals and the services, we deduce that
the system is represented by a Markov chain denoted {XLMG(t), t ≥ 0}. From
state x = (x, xc, xe), the different transitions are as follows :

x → (x,min{n, xc + 1}, xe), with rate λc, (20)

if x− (xc + xe) > g.

→ (x, xc,min{n, xe + 1}), with rate λe + λh, (21)

if x− (xc + xe) > g.

→ (x, xc,min{n, xe + 1}), with rate λh, (22)

if x− (xc + xe) ≤ g.

→ (x,max{0, xc − 1}, xe), with rate μc = xcμt. (23)

→ (x, xc,max{0, xe − 1}), with rate μe = xe(μt + μr), (24)

if x− (xc + xe) > g.



84 I.-I. Aouled and H. Castel-Taleb

→ (x, xc,max{0, xe − 1}), with rate μe0 = xe(μt + μr + μr0), (25)

if x− (xc + xe) ≤ g.

→ (max{0, x− 1}, xc,max{0, xe − 1}), (26)

with rate xeγ if x = xc + xe.

→ (max{0, x− 1},max{0, xc − 1}, xe), (27)

with rate xcγ if x = xc + xe.

→ (max{0, x− 1}, xc, xe), (28)

with rate (xe + xc)γ + (x− (xc + xe))γ,

if x > (xc + xe).

→ (min{n, x+ 1}, xc, xe), with rate τ. (29)

The Fig.2 shows the markov chain model of the system with the LMG features
and such that g=s=1 and n=3. For this model, the handoff calls dropping prob-
abilities PLMG

d and PLMG
b are computed on the same states than in the case of

MG mechanism. The formulas for dropping and blocking probabilities are:

PLMG
d =

n−g∑
j=0

n∑
i=j

πLMG
i,j,i−j and PLMG

b =

n−g∑
j=0

g∑
k=0

n∑
i=j+k

πLMG
i,j,i−j−k (30)

3 Bounding Systems and Stochastic Comparisons

The goal of this section is to prove that our system (LMG) has a lower handoff
call dropping probability and new call blocking probability than MG system.
We apply the stochastic comparison method in order to prove the comparison
between these performance measures. The stochastic comparison is based on the
stochastic ordering theory. Next, we give some definitions and theorems which
will be applied for our proof.

3.1 Stochastic Ordering Theory

Let A be a discrete, and countable state space, and � be at least a preorder
(reflexive,transitive but not necessarily an anti-symmetric binary relation) on
A. We consider two random variables X and Y defined respectively on A. The
well-known sample path ordering �st is defined as follows [10]:

Definition 1. X �st Y ⇔ E[(f(X))] ≤ E[(f(Y ))] ∀f : A → R+, �
−increasing whenever the expectations exist.

Now we focus on the stochastic comparisons of multidimensional Continuous
Time Markov Chains (CTMC)s. Let {X1(t), t ≥ 0} (resp. {X2(t), t ≥ 0}) be a
CTMC taking values on A. The stochastic comparison in the sense of �st order-
ing is defined as follows [10]:
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Fig. 2. The LMG Markov Chain model

Definition 2. {X1(t), t ≥ 0} is said to be less in the sense of the stochastic
ordering �st than {X2(t), t ≥ 0} written as ({X1(t), t ≥ 0} �st {X2(t), t ≥ 0}),
if:

X1(0) �st X2(0) =⇒ X1(t) �st X2(t), ∀t > 0

For the stochastic comparison of Markov processes, the coupling method is very
used. It is applied for the definition of the �st ordering. This method is equivalent
to the definition of a coupled version of the processes in order to compare their
sample paths. For the coupling of {X(t), t ≥ 0} and {Y (t), t ≥ 0}, we define

two other Markov chains on A:
{
X̂(t), t ≥ 0

}
( resp.

{
Ŷ (t), t ≥ 0

}
) with the

same infinitesimal generator then {X(t), t ≥ 0} (resp. {Y (t), t ≥ 0}). The �st

comparison by coupling is established by the following theorem [15]:

Theorem 1. The following propositions are equivalent:

1. {X(t), t ≥ 0} �st {Y (t), t ≥ 0}
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2. there exists the coupling {(X̂(t), Ŷ (t), t ≥ 0} such that ∀ω ∈ Ω :

X̂(0)(ω) � Ŷ (0)(ω) ⇒ X̂(t)(ω) � Ŷ (t)(ω), ∀t > 0

Next, we apply this theory in order to prove that our mechanism provides lower
performance measures.

3.2 Stochastic Comparison of the Mechanisms

As the LMG system is based on the system MG we propose to compare them us-
ing stochastic comparisons (it is obvious that MG provides better performances
than MAHO system). We denote by {XMG(t), t ≥ 0} the Markov process repre-
senting the MG system, and {XLMG(t), t ≥ 0} the Markov process representing
the LMG system. Let A be the state space of the processes. As the dropping
probability is written as the sum of probabilities for states x = (x, xc, xe) ∈ A
such that x = xc+xe, then we can write it as a reward function on the probability
distribution such that the reward equals one for states x such that x = xc + xe,
and 0 for other states. For the blocking probability, then it is also written from
a reward function which equals 1 on states such that x − (xc + xe) ≤ g and 0
for others. As the comparison of these performance measures for MG and LMG
systems can be made only if the rewards functions are increasing functions ac-
cording to the preorder defined on the state space A, then the preorder is such
that when the number of free channels decreases, then the states are upper.

For all x,y ∈ A, we define the preorder �. So x ≺ y if :

x− (xe + xc) > y − (ye + yc)

or
x− (xe + xc) = y − (ye + yc) and xe > ye, xc > yc

and x = y if x = y, and xc = yc, xe = ye.
We will prove that :

{XLMG(t), t ≥ 0} �st {XMG(t), t ≥ 0} (31)

We apply Theorem 1, so we define {X̂LMG(t), t ≥ 0} (resp. {X̂MG(t), t ≥ 0})
with the same infini tesimal generator than {XLMG(t), t ≥ 0} (resp. {XMG(t), t ≥
0}).

We suppose that : X̂LMG(t) � X̂MG(t), and we prove that :

X̂LMG(t+ dt) � X̂MG(t+ dt) (32)

We consider the different events happening in the systems :

– arrivals in the center of the cell of new calls : as the arrival rates are the
same (λc), then if we have an arrival in XLMG(t), then we have also an
arrival in XMG(t), so inequality (32) is verified. For other kinds of arrivals
(in the edge of new calls or handovers) then the order is also verified as the
processes work equivalently.
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– for the ends of communications in the center of the cell, if we have an end of
communication in XMG(t), then we have also an end of communication in
XLMG(t) as the processes work equivalently. So inequality (32) is verified.

– for the ends of communications in the edge of the cell or handoff, in the
case where x− (xe + xc) > g, the processes work equivalently and with the
same rates : so if these events happen in XMG(t) then they happen also in
XLMG(t). In the case where x− (xe + xc) ≤ g, due to the forced handoff, as
the total service rate to make free an edge channel is xe(μt + μr + μr0) in
XLMG(t) so upper than in XMG(t) which is xe(μt+μr), then the inequality
32 is obviously verified. And intuitively due to the preorder �, we see that
XLMG(t) has more free channels than XMG(t).

– for the failure rates and reparations, the processes are similar so inequality
(32) is verified

So we deduce that equation (31) is verified. And for the stationary probability
distributions we have ΠLMG �st ΠMG. As the handoff-call dropping proba-
bilities of LMG and MG have the same reward functions and are increasing
functions according to the preorder � then we deduce that :

PLMG
d ≤ PMG

d , and PLMG
b ≤ PMG

b (33)

Next, we give some numerical results on the different systems in order to compare
the performance measures.

4 Numerical Results

We take the following values for the parameters : the number of channels con-
sidered in the cell is n = 10, and we denote by λ as the total average arrival rate
(the center and the edge) in the cell. λ varies from 10 to 40 calls per minute. We
take λc = 0.6∗λ, λe = 0.4∗λ. For the arrivals of the handovers, we suppose that
λh = 0.1 ∗ λ. The call holding time is 1/μt = 3 minutes, the channel residency
time 1/μr = 1.5 minutes. The rate of failures is γ = 1/hour, and the repair
time 1/τ is 30 minutes. The number of guard channels is g = 2. We take two
values for the forced handoff rate μr0 : 1 and 2 per minute, in order to see the
influence of this parameter.

To show the improvement provided by the new scheme, we compare the per-
formance measures for the three different schemes : MAHO, MG, and LMG.

The numerical values are obtained through Matlab/Simulink simulator. We
consider with 95% confidence the indifference region with width 0,01 of the
stimated value. In other words, if the estimated value is X̂ , the exact value X
lies in X̂ − 0.01X̂ ≤ X ≤ X̂ + 0.01X̂ with probability 0.95.

In Fig.3 and Fig.4, we compare respectively the blocking probability of the
new calls and the dropping handoff calls probability for the different schemes :
MAHO, MG, and our scheme LMG.

We observe that MG provides lower handoff call blocking probability than
MAHO, but the new call blocking probability is upper because of channels re-
served for handoff calls.
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Fig. 3. New call blocking probability
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Fig. 4. Handoff call dropping probability

Also, we can see the relevance of the LMG scheme which provides both a lower
new call blocking probability than MG, and also a better handoff call dropping
probability. This is due to the fact that LMG releases resources by forcing some
MT located in the edge of cell to move to the adjacent cells.

We remark also the impact of the forced handoff rate μr0 : we emphasize that
when it increases, the performance measures are improved.
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5 Conclusion

In this paper, we propose a new mechanism based on a CAC procedure with
guard channels and forced handoff in order to improve at the same time the
handoff call dropping probability and the new call blocking probability. We ap-
ply the stochastic comparisons in order to prove that the performance of our
mechanism provides better results than others. We give some numerical results
in order to show clearly the relevance of our mechanism.

As a future work, we aim to consider the case of multiple cells in order to
obtain a more realistic system with interactions between cells. We could envisage
also to adapt LMG to COMB-type networks where users, in the edge of cells,
will receive composite signals from a pool of surrounding cells.
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Abstract. In this paper, we propose a simple theoretical model to compute the
maximum spatial reuse feasible in a VANET. We focus on the ad hoc mode of
the IEEE 802.11p standard. Our model offers simple and closed formulae on the
maximum number of simultaneous transmitters, and on the distribution of the
distance between them. It leads to an accurate upper bound on the maximum
capacity. In order to validate our approach, results from the analytical models are
compared to simulations performed with the network simulator NS-3. We take
into account different traffic distributions (traffic of vehicles) and we study the
impact of this traffic on capacity.

1 Introduction

In recent years, Inter-Vehicle Communication (IVC) has become an intense research
area, as part of Intelligent Transportation Systems. It assumes that all or a subset of
the vehicles is equipped with radio devices, enabling communication between them.
Although classical 802.11 can be used for IVC, specific technologies such as IEEE
802.11p [1] (also referred to as Wireless Access in Vehicular Environments, WAVE)
have been standardized to support these communications. This standard includes data
exchanges between vehicles (ad hoc mode) and between infrastructure and vehicles.
When the ad hoc mode is used, the network formed by the vehicles is called a Vehicular
Ad hoc NETwork (VANET).

VANET can be used by two families of applications. The first family is user ori-
ented. In this case the VANET may be used to advertise restaurants, gas stations, traffic
condition, etc. But the most important applications are related to road safety. Informa-
tion on road conditions, speed, traffic or alert messages (signalling an accident) may be
exchanged in the VANET allowing drivers to anticipate dangerous situations [2]. Data
from embedded sensors may also be exchanged in order to increase the perception of
the environment. This helps drivers to make appropriate decisions, as it increases the in-
formation available on road conditions and traffic situations. The amount of data which
can be exchanged between vehicles is thus crucial. Design of these applications has to
take into account the limited capacity of the VANET to control the quantity of informa-
tion which can be sent to other vehicles. In such networks, capacity is mainly limited
by the 802.11p spatial reuse. As channels are shared by all the nodes, only a subset of
nodes, sufficiently far from each other, can emit at the same time.

In this paper, we evaluate the maximum spatial reuse of the 802.11p technology.
Our approach can be presented through a simple example. Let us consider the vehi-
cles depicted in Figure 1. We suppose that we are in a saturated case where all these

K. Al-Begain, D. Fiems, and J.-M. Vincent (Eds.): ASMTA 2012, LNCS 7314, pp. 91–105, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Vehicles competing for 
access to the medium

Vehicles that have gained 
access to the medium

Fig. 1. Example of concurrent transmissions: the 802.11p MAC layer (CSMA/CA) set the rules
to access the medium. Only orange vehicles are allowed to transmit frames at the same time.

vehicles wish to send a frame. The MAC layer of the 802.11p standard will select a
subset of vehicles which will be allowed to transmit their frames (they are colored in
orange in the figure). It selects vehicles in such a way that distances between concurrent
transmitters is sufficiently great to avoid interference between the transmissions. At the
same time, the capacity is directly related to these distances as they limit the number
of simultaneous transmitters. This paper aims to propose a simple model to evaluate
the distribution of these distances. We propose a Markovian model where locations of
transmitting nodes are built recursively according to the rules used by the 802.11 MAC
layer. The equilibrium distribution of this Markov chain allows us to deduce the mean
intensity of the concurrent transmitters, i.e. the mean number of transmitting nodes per
kilometer. Also, it leads to an estimate of the capacity. The capacity is defined here as
the maximum number of frames per second that the network is able to send. Unlike
classical approaches dealing with the asymptotic behavior of the capacity, our approach
offers accurate estimates of this capacity. Results from the analytical model are then
compared to simulations performed with the network simulator NS-3 [3]. We take into
account different traffic scenarios (traffic of vehicles). The first scenario assumes that
the distance between vehicles is constant and the second one uses a traffic simulator
to emulate drivers’ behavior on a highway. The combination of NS-3 and the traffic
simulator allows us to obtain simulations that are as realistic as possible.

The paper is organized as follows. In Section 2 we present the technological con-
text of this study. Section 3 overviews related works dealing with capacity of ad hoc
networks and VANET. Our contributions with regard to the existing approaches are
highlighted in the same section. The models are presented in Section 4. Theoretical es-
timations of the capacity and simulation results are compared in Section 5. We conclude
in Section 6.

2 CSMA/CA in 802.11p

The IEEE 802.11p spectrum is composed of six service channels and one control chan-
nel. The control channel will be used for broadcast communications dedicated to high
priority data and management frames, especially for safety communications. It should
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be the privileged channel used to disseminate messages from safety applications. The
service channels can be used for safety and service applications, broadcast and unicast
communications. The MAC layer in 802.11p is similar to the IEEE 802.11e Quality
of Service extension. Application messages are categorized into one of four different
queues depending on their level of priority. Each queue uses the classical CSMA/CA
(Carrier Sense Multiple Access/Congestion Avoidance) mechanism to access the
medium, but CSMA/CA parameters (backoff, etc.) are different from one queue to an-
other in order to favour frames with high priority. In CSMA/CA, a candidate transmitter
senses the channel before effectively transmitting. Depending on the channel state, idle
or busy, the transmission is started or postponed. Clear Channel Assessment (CCA)
depends on the MAC protocol and the terminal settings. For the CSMA/CA protocols
used in IEEE 802.11, CCA is performed according to one of these three methods.

1. CCA Mode 1: Energy above threshold. CCA shall report a busy medium upon
detecting any energy above the Energy Detection (ED) threshold. In this case, the
channel occupancy is related to the total interference level.

2. CCA Mode 2: Carrier sense only. CCA shall report a busy medium only upon
the detection of a signal compliant with its own standard, i.e. same physical layer
(PHY) characteristics, such as modulation or spreading. Note that depending on
threshold values, this signal may be above or below the ED threshold.

3. CCA Mode 3: Carrier sense with energy above threshold. CCA shall report a busy
medium using a logical combination (e.g. AND or OR) of Detection of a compliant
signal AND/OR Energy above the ED threshold.

The CCA mechanism ensures that there is a minimal distance between simultaneous
transmitters (except when a collision occurs). If the receiver is in the transmitter radio
range, it guarantees a low interference level at the receiver location. Also, it limits the
number of simultaneous transmitters in a given area, and thus the number of frames
that can be sent per second. Therefore, there is a direct relationship between the spatial
reuse imposed by the CCA mechanism and the network capacity.

3 Related Works

A theoretical bound on the capacity of ad hoc networks was initially investigated in [4]

where the authors prove that, in a network of n nodes, a capacity of Ω
(

1√
n·logn

)
is

feasible. In [5], the authors improved this bound and proved that an asymptotic capac-

ity of Ω
(

1√
n

)
is feasible. In these two articles, the capacity is reached by means of

a particular transmission scheduling and routing scheme. In [6] and [7], more realistic
link models have been used, both leading to a maximum asymptotic capacity of O

(
1
n

)
.

In particular, the authors of [7] have shown that when there is a non-zero probability
of erroneous frame reception, the cumulative impact of packet losses over intermedi-
ate links results in a lower capacity. Finally, it is shown in [5], that when the path-loss
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function is bounded, the capacity is also O
(
1
n

)
. However these last two results also

suppose particular transmission scheduling and routing schemes. Moreover, all these
studies deal with the asymptotic behavior of the capacity with regard to the number of
nodes and do not propose precise estimates of this capacity.

On the other hand, in CSMA/CA based wireless networks, the transmission schedul-
ing is distributed and asynchronous. It is not planned in advance and depends on the link
conditions, interference, etc. at the time a node wants to emit its frame. The number of
simultaneous transmitters is thus closely related to the CSMA/CA mechanism which
limits the spatial reuse of the channel. The total number of frames sent in the whole
network is thus bounded by a constant C whatever the number of nodes and the type of
routing schemes. This constant has been evaluated in [8]. Therefore, CSMA/CA multi
hop wireless networks would offer a capacity of O

(
1
n

)
.

However all these studies focus on networks where nodes are distributed on the plane
or in a 2-dimensional observation window. VANETs have very different topologies as
the vehicles/nodes are distributed along roads and highways. Radio range of the nodes
(about 700 meters with 802.11p in rural environment) being much greater than the
road width, we can consider that the topology is distributed on a line rather than in a
2 dimensional space. Lines, grids or topologies composed of a set of lines (to model
streets in a city) are thus more appropriate to model VANET topologies.

In [9,10], the authors propose a bound on VANET capacity. They show that when
nodes are at constant intervals or exponentially distributed along a line, the capacity is

Ω
(
1
n

)
and Ω

(
1

n·ln(n)
)

in downtown (city) grids. But it is also an asymptotic bound.

Moreover, physical and MAC layers are unrealistic, radio ranges are constant and the
same for all the nodes, interference is not taken into account and they assume a per-
fect transmission scheduling between the nodes. Thus, this bound cannot be applied to
802.11p networks.

In [11], the broadcast capacity of a VANET is estimated. The idea is similar to this
paper; an estimation of the number of simultaneous transmitters is proposed. But this
evaluation is based on numerical evaluation only, using integer programming.

The contributions of this paper are as follow. We propose two simple models to eval-
uate the maximum capacity of VANET. The first one, presented in Section 4.1, estimates
the number of simultaneous transmitters for the CCA mode 2 of the 802.11. It is based
on a existing mathematical model known as the packing problem. Since the extension
of this model is not tractable for the CCA mode 1, we propose instead a Markovian ap-
proach. It is presented in Section 4.2. For this Markov chain, we deduce the transmitter
intensity and the mean capacity. Also, we are able to compute the exact distribution of
the distance between transmitters. To validate our approach, the theoretical results are
compared to realistic simulations performed with NS-3. They focus on the CCA mode
1. Simulations show that our approach is suitable for evaluating the maximum capac-
ity of VANET precisely. It gives precise estimates of CSMA/CA performances, rather
than just the asymptotic behaviors, and can consequently be used as a dimensioning or
parametrizing tool.
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4 Modeling CCA Mode 1 and 2

4.1 Model for CCA Mode 2

When CCA mode 2 is used, the medium is assumed to be busy when a 802.11p frame is
detected. This corresponds to cases where the node sensing the medium is at a distance
where the signal from the transmitter is detected and compliant to the 802.11 standard.
In this case, this approach is rather sensitive to the highest interfering signal rather than
the overall interference level. A simple model consists of considering that the maximum
distance at which a 802.11 frame is detected is constant. Let R be this distance. The
medium is then busy if there is a transmitting node located at a distance less than R.
With this model, the problem about the maximum number of simultaneous transmitters
comes down to the following question: how many segment with size 2 ·R can we put in
a certain interval [a, b] under the constraint that the centers of these segment cannot be
covered by another segment? The answer is simple. If we consider that the first point is
located at a, we just have to set a segment at a distance R from the previous one until
reaching b. But in a VANET, underlying transmitters are randomly distributed on the
line, and transmitters are chosen randomly (it depends on the applications, backoffs,
etc.). A more appropriate model consists in placing the segments randomly in [a, b].
The first segment is placed uniformly in [a, b]. Then, we place the second segment
uniformly into all points x of [a, b] such that a segment at x does not cover the center
of the previous segment, and so on. The process terminates when there are no gaps in
[a, b] large enough to host another segment. This model is referred to as the packing
problem. A rigorous analysis [12] shows that the mean number of segments divided
by the interval length (b − a) tends to a constant c ≈ 0.7476 when (b − a) → +∞.
The number of simultaneous transmitters with CCA mode 2 can then be estimated as
(b− a) c

2·R for b− a large enough.

4.2 A Markovian Approach for CCA Mode 1

For CCA mode 1, where the sum of signals from all the current transmitters (i.e. In-
terference) is taken into account, assumptions about radio environment are required to
model the signal strengths received from the current transmitters. Interference at a node
located at x is generally considered as the sum of all interfering signals:

I(x) =
∑
xi∈Φ

l(‖xi − x‖) (1)

where Φ is the set of concurrent transmitters, ‖xi−x‖ is the Euclidian distance between
the nodes at x and xi, and l(.) is the path-loss function describing the received signal
strength as a function of the distance. The medium is considered idle for a node at x if
I(x) < θ where θ is the Energy Threshold (ED). In this case, the node at x can transmit
its frame and becomes a transmitter. An approach similar to the packing problem could
be considered in this case. For a given interval [a, b], we sequentially add points uni-
formly distributed in all points x of [a, b] such that I(x) < θ. But this classical packing
approach does not seem tractable. Therefore, we propose a tractable model, based on a
Markov chain, to represent transmitters’ location.
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Fig. 2. Notations used in the model. The figure shows how the points X2 and X3 are distributed.

This model aims to evaluate the maximum number of simultaneous transmitters in a
CSMA/CA network using CCA mode 1. First, we present the different assumptions on
the path-loss function and Interference. Then, we define the intervals where the random
variables of the Markov chain take their values. In the last paragraph, we present the
transition density function and the main results (in Theorem 1).

a) Assumptions. We assume that the medium is detected idle for a node at X ∈ IR+ if:

I(X) < θ (2)

where I(X) is the interference at X and θ is the ED threshold (CCA mode 1). Here,
I(X) is defined as:

I(X) = l(X − L) + l(R−X) (3)

where L and R are the locations of the two closest transmitters from X , the closest
ones on the left and on the right. Function l(.) is the path-loss function. In our model,
Interference is thus computed from the signal strength of the two closest interferers.
For the parameters of 802.11p technology, this model is very similar to a model where
Interference from all the transmitters is taken into account. Indeed, as there is a signifi-
cant distance between two successive transmitting nodes (due to the CCA mechanism),
Interference generated by distant interferers is negligible with regard to the closest ones
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(in 802.11p and in a rural environment, the second interferer in a given direction will
be at least 1 km away from the first one).

We assume that the path-loss function verifies the following conditions:

– l(.) is continuous,
– l(.) is a decreasing function,
– l(0) > θ, where θ is a positive constant (the ED threshold),
– limd→+∞ l(u) = 0,
– there exists u ∈ IR+ such that l(u) > θ and l(v) is strictly decreasing and differen-

tiable for all v ∈ [u,+∞).

These conditions hold for path-loss functions with the form: l(u) = PT min(1, c/uα)
where PT is the transmitting power (with PT > θ), c and d are two positive constants
(c > 0 and α > 2.0).

b) State space of the Markov chain. The chain is denoted (Xn)n∈IN with Xn−1 < Xn.
It represents the simultaneous transmitters of a CSMA/CA network and consists in a
sequence of random points distributed on the line. Since all these transmitters/points
have detected the medium idle, Interference at each point Xn must be less than the
CCA threshold θ:

I(Xn) < θ ∀n ≥ 0

There is thus a minimal distance between the points of the process. We define a function
S(.) to describe this distance. According to equation (3) and the CCA condition, S(u)
is defined as the solution of

l(u) + l(S(u)) = θ (4)

where u corresponds to the distance between the two previous transmitters. Xn is thus
distributed in [Xn−1 + S(Xn−2 −Xn−1),+∞].

A second assumption allows us to bound this interval. Since we are trying to estimate
the maximum number of simultaneous transmitters, we shall distribute the points in
such a way that it is not possible to add more points which could detect the medium
idle. Consequently, the distance between transmitters must be bound by a maximal
distance in order to prevent the presence of intermediate transmitters. Let dmax be this
distance, it is solution of

2 · l
(
dmax

2

)
= θ (5)

Thus, each pointXn (n > 1) belongs to the interval [Xn−1+S(Xn−1−Xn−2), Xn−1+
dmax]. Distances between the transmitters are denoted ξi = Xi −Xi−1.

c) Building the point process. The point process is built as follows. The first two trans-
mitters are located at X0 = 0 and at X1 with X1 ≤ dmax almost surely. Assumptions
about the distribution of X1 are given in the theorem below.

The other points are built recursively. The location of a transmitter Xn (n > 1) is
distributed in [Xn−1 + S(Xn−1 − Xn−2), Xn−1 + dmax]. For convenience, we con-
sider the sequence ξn = Xn −Xn−1 rather than Xn. ξn (n > 1) is thus distributed in
[S(ξn−1), dmax]. It is possible to consider a different distribution on this interval lead-
ing to a different density of transmitters. As we do not know a priori the distribution of
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the distance between the transmitters, we have considered different distributions. In this
paper, only the most accurate distribution, which has been determined by simulations,
is presented. This distribution is the linear distribution in [S(ξn−1), dmax]. By linear
distribution we mean an affine function, positive in [S(ξn−1), dmax], null at dmax, and
such that its integral on [S(ξn−1), dmax] is 1. The pdf fξn|ξn−1

(.) of ξn = Xn −Xn−1

given ξn−1 = Xn−1 −Xn−2 is then:

fξn|ξn−1=s(u) =
( −2

(dmax − S(s))2
u+

2dmax

(dmax − S(s))2

)
1u∈[S(s),dmax] (6)

where 1u∈[S(s),dmax] is the indicator function, equals to 1 if u ∈ [S(s), dmax] and 0
otherwise. The sequence (ξn)n≥0 is thus a Markov chain which takes its values in the
continuous state space [S(dmax), dmax]. In Figure 2, we present an example of this
point process and the different notations. The stationary distribution of this Markov
chain is given in the following theorem:

Theorem 1. The process (ξn)n≥0 defined in this Section is a Markov chain. The sta-
tionary distribution of ξn is π(s) with:

π(s) = a · (dmax − s)(dmax − S(s))21s∈[S(dmax),dmax] (7)

where a is a normalizing factor. The chain (ξn)n>0 converges in total variation to the
distribution π(s) for all initial distribution of ξ1 in [S(dmax), dmax]. If ξ1 follows the
stationary distribution π(.) then ξn follows the distribution π(.) for all n with n > 0.

The proof of this theorem is given in the appendix. In the following, we assume that
ξ1 follows the distribution π(.). The intensity λ of the point process (Xn)n∈IN , i.e. the
mean number of point per unit length, is then given by:

λ =
1

E[ξ1]
=

(∫ dmax

S(dmax)

sπ(s)ds

)−1

(8)

The inverse of this intensity λ is the mean distance between two consecutive transmit-
ters. Hence, the number of simultaneous transmitters over a road with length d will be
λ× d. Consequently, the capacity which is defined as the mean number of frames sent
per second in the network can be estimated as:

Capacity(d) =
λ× d

T
(9)

where λ is the intensity given by equation (8), d is the length of the road and T is the
mean time to transmit a frame. This time takes into account the DIFS, the time to trans-
mit the frame, the SIFS and the acknowledgement. We could wonder if it is pertinent to
consider the number of transmitted frames rather than the number of received frames for
the capacity. In practice, the ED threshold is significantly less than the signal strength
required for correct reception. Therefore, when the transmitters respect the CCA rules,
Interference does not disturb reception and the number of transmitted frames corre-
sponds to the number of received ones. This will be validated by simulations in the
next Section. Our simulations have shown that the only time, frames are not received
properly is when collisions occur, i.e. when the CCA rules are not respected.
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5 Simulations

In this Section, we compare the theoretical evaluation of the capacity to simulations
performed with the network simulator NS-3 [3]. In the theoretical model, we consider
the path-loss function used in NS-3. We compute for this path-loss the corresponding
functions S(.), π(.), and the different constants (dmax, λ, T , etc.). We compute for all
the simulations a confidence interval of 95%. For the simulations, all of the nodes trans-
mit frames to a neighbor with a constant bit rate. All parameters are given in Table 1
and are set according to the IEEE 802.11p standard.

For vehicle locations, we take into account two scenarios: a scenario where the
distances between vehicles are constant, and a scenario where vehicle locations are
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Fig. 3. Mean number of simultaneous transmitters and capacity for constant inter-distances
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Fig. 4. Mean number of simultaneous transmitters and capacity for the traffic simulator

obtained from a realistic traffic simulator. This traffic simulator allows us to faithfully
emulate driver behavior. On a highway, driver behavior is limited to accelerating, brak-
ing and changing lanes. We assume that there is no off-ramp on the section of highway.
A desired speed is associated with each vehicle. It corresponds to the speed that the
driver would reach if he was alone in his lane. If the driver is alone (the downstream ve-
hicle is sufficiently far), he adapts his acceleration to reach his desired speed (free flow
regime). If he is not alone, he adapts his acceleration to the vehicles around (car fol-
lowing regime). He can also change lanes if the conditions of another lane seem better.
All these decisions are functions of traffic condition (speed and distance) and random
variables used to introduce a different behavior for each vehicle. This kind of simula-
tion is called micro simulation [13], and the model we used which has been tuned and
validated with regard to real data collected on a highway is presented in detail in [14].
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(b) Traffic simulator.

Fig. 5. Distribution of the distances between concurrent transmitters

With the traffic simulator, we simulated a road/highway of 50 km with 2 lanes. The
desired speed of the vehicles follows a Normal distribution with mean 120 km/h and
standard deviation σ = 10. The distance shown on the x-axis in the figures corresponds
to the mean distance between two successive vehicles.

a) Intensity and capacity results. In Figures 3 and 4 we plotted the mean number of
transmitters and the capacity. The different figures correspond to the two kind of traf-
fic: constant inter-distance and trajectories generated by the traffic simulator. It is worth
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Table 1. Simulation parameters

Theoretical and NS-3 Parameters Numerical Values

IEEE 802.11std 802.11p - CCH channel

Path-loss function l(d) = Pt ·min
(
1, 10−4.5677

d3

)
CCA mode CCA mode 1
ED Threshold (θ) −82 dBm
Emission power Pt 43 dBm
Number of samples per point 100
Length of the packet 1024 bytes
Duration of the simulation 4 sec

S(u)
(
2.29 × 10−10 − u−3

)−1
3

dmax 4120 m
λ 0.379 × 10−3

DIFS 34 μs
Road length (d) 50 km
SIFS 16 μs

noting that the two traffic distributions (constant and traffic simulator) do not impact
the results. This counter intuitive result is explained by the fact that the radio range and
detection distance of the 802.11p technology are really greater than the mean distance
between nodes. Comments are thus the same for these two traffic scenarios. When we
processed the results from the NS-3 simulator, we distinguished transmitters provok-
ing a collision and the ones respecting the CCA rules. When we do not take into ac-
count collisions, the theoretical model gives an accurate bound on both intensity and
capacity. For the capacity, the difference is only 4% for 10 veh/km (distance between
vehicles=100 meters) in Figure 3(b). The theoretical bound is thus approached even for
very low density traffic as 10 veh/km corresponds to very sparse traffic. It was difficult
to increase this density as the simulated highway is 50km (we already have 500 vehicles
when the density is 10 veh/km). When we consider all the transmitters, the transmitters’
intensity obtained by simulations exceeds the theoretical one. This is caused by trans-
mitters provoking collisions, which by definition does not respect the CCA rules.

b) Distribution of the distance between transmitters. In Figure 5, we plotted the dis-
tributions of the distance between transmitters obtained with NS-3, and the distribution
π. The abscissa is [S(dmax), dmax]. The simulated highway is 50 km with 2 lanes and
10 vehicles per kilometer in average. We collected distances between transmitters from
100 samples. For each sample we collected the distances between the transmitters and
we plotted the corresponding empirical probability density function. The shape of the
distribution for the transmitters without collisions fits very well with the stationary dis-
tribution π(.). Nevertheless, we can observe a small difference when the function is
decreasing. This difference is caused by samples greater than dmax. Indeed, it is very
difficult to reach the absolute saturation of the network, where the medium is busy at
every location, all the time. Therefore, sometimes there are regions where the medium
is idle. Even if we simulated an important CBR for each source, nodes do not try to
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access the medium all the time because they are in the backoff procedure, they have
nothing to send, etc. However if we consider only samples less than dmax, we obtain
the curve in Figure 5(b). This allows us to estimate the distribution in the saturated
case since we neglect the network parts where the medium is idle. It appears that it fits
with the theoretical distribution π(.) closely. If we compute the mean value of these
samples, we obtain a mean inter-distance equal to 2.7 km corresponding to the mean
inter-distance proposed in our model (2.64 km). It empirically proves that the theoret-
ical model corresponds to a case where the CCA rule is respected by all the nodes (no
collisions), and where the medium is spatially busy. Even if these conditions are not
feasible in practice, the proposed Markovian approach still offers accurate bounds on
the number of transmitters and capacity of VANET.

6 Conclusion

The particular topology of VANET, where nodes are distributed along a line, allows
us to derive a simple model based on the Markov chain. It models distances between
concurrent transmitters. Comparisons to realistic simulations show that the model is ac-
curate and that it is quite independent of the traffic distribution. The theoretical intensity
of the number of transmitters offers a very good upper bound on capacity, i.e. on the
maximum number of frames that can be transmitted per second and per unit length. Our
model can be used to tune the CSMA/CA parameters in order to optimize the capac-
ity. Also, the distribution of the distance between two transmitters can be combined to
elaborate radio models to evaluate Interference, Bit or Frame Error Rates. In this paper,
the path-loss function does not take into account the multipath and fading properties
of wireless link. We are currently working on an extension of this model to take into
account more elaborate wireless models.
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Proof. Proof of Theorem 1. First, we prove that if the initial distribution of the Markov
chain (the distribution of ξ1) is π, ξn follows the distribution π for all n > 0. It suffices
to show that π is the stationary distribution for this chain. We need to prove that

π(s) =

∫ dmax

S(dmax)

fξn|ξn−1=y(s)π(y)dy (10)

with π(s) = a (dmax − S(s))
2
(dmax − s) and fξn|ξn−1=y(s) given by equation 6.

We get, ∫ dmax

S(dmax)

fξn|ξn−1=y(s)π(y)dy

=

∫ dmax

S(dmax)

( −2

(dmax − S(y))2
s+

2dmax

(dmax − S(y))2

)
(11)

× 1s∈[S(y),dmax]a(dmax − y)(dmax − S(y))2dy (12)

= 2a(dmax − s)

∫ dmax

S−1(s)

(dmax − y)dy (13)

= a (dmax − s) (dmax − S−1(s))2 (14)

where S−1(.) is the inverse function of S(.). This function exists since due to the prop-
erties of the function l(.), S(u) is bijective, differentiable and strictly decreasing in
[S(dmax), dmax]. To conclude, note that S−1(x) = S(x).

a (dmax − s) (dmax − S−1(s))2

= a (dmax − s) (dmax − S(s))2 = π(s) (15)

Also, we prove that ξn converges in total variation (it implies convergence in distri-
bution) to π for any initial distribution of ξ1 in (S(dmax), dmax]. We apply the Theo-
rem 1 in [15] to prove this convergence. Since we have proved that π was the station-
ary distribution, it suffices to prove that the kernel P of this Markov chain is strongly
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π−irreducible, i.e. ∀x ∈ (S(dmax), dmax] and A ⊂ [S(dmax), dmax] with π(A) > 0,
there is a positive integer nxA such that Pn(x,A) > 0 ∀n ≥ nxA. In our case,
π(A) > 0 with A ⊂ [S(dmax), dmax] is equivalent to ν(A) > 0 where ν(.) is the
Lebesgue measure in IR+. The kernel P describes the transition probabilities, in our
case it is formally defined as:

P (x,A) =

∫
A

fξ2|ξ1=x(y)dy (16)

with A ⊂ [S(dmax), dmax]. Pn(., .) is the distribution of ξn (n > 1) given ξ1. It may
be defined recursively:

Pn(x,A) =

∫ dmax

S(dmax)

P (x, dy)Pn−1(y,A) (17)

First, note that if Pm(x,A) > 0 with m > 0, Pn(x,A) > 0 ∀n ≥ m. It can be easily
proved by recurrence: Since Pm(x,A) > 0 ∀y ∈ [S(dmax), dmax] and P (x, dy) =
fξ2|ξ1=x(y)dy with fξ2|ξ1=x(y) > 0 ∀y ∈ [S(x), dmax], Pm+1(x,A) expressed as

Pm+1(x,A) =

∫ dmax

S(dmax)

P (x, dy)Pm(y,A) (18)

will be positive if ν([S(x), dmax]) > 0, in other words if x > S(dmax). We prove now
that P 2(x,A) for all x ∈ [S(x), dmax] and A ⊂ [S(x), dmax] with ν(A) > 0. nxA can
thus be chosen equal to 2. Let a = min{u, u ∈ A},

P 2(x,A) =

∫ dmax

S(dmax)

P (y,A)fξ2|ξ1=x(y)dy (19)

≥
∫ dmax

S(min(x,a))

P (y,A)fξ2|ξ1=x(y)dy (20)

> 0

Indeed, P (y,A) > 0 and fξ2|ξ1=x(y) > 0 for all y in [S(min(x, a)), dmax]. Equa-
tion (20) is thus positive when ν([S(min(x, a)), dmax]) > 0, i.e. when x > S(dmax).
This proves that the Markov chain is strongly π−irreducible, and thus μPn converges
in total variation to π when n → +∞ for any initial distribution μ in (S(dmax), dmax].
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Abstract. The users of actual computing infrastructures allowing the
resource provision (such as clouds) are often asked to decide about the
proper amount of equipment (virtual machines, VMs) required to exe-
cute their requests while satisfying a set of performance objectives. These
types of decisions are particularly difficult since the direct correlation be-
tween the resources allocated and the performance offered is influenced
by a number of factors such as the characteristic of the different class of
requests, the capacity of the resources, the workload sharing the same
physical hardware, the dynamic variation of the mix of requests of the
different classes in concurrent execution. In this paper we derive the im-
pact on several performance indexes by two popular techniques, namely,
consolidation and replication, adopted in virtual computing infrastruc-
tures. In particular we present an analytical model to determine the best
consolidation or replication options that matches given performance ob-
jectives specified through a set of constraints.

1 Introduction

Consolidation and replication techniques are commonly used to manage effi-
ciently large datacenters. According to the former technique, the load of several
systems are merged in a reduced number of servers minimizing operational costs.
The latter technique partition the load among several physical machines execut-
ing replicated applications: in this way, the requests flow each server has to
handle is reduced and the performance improved.

Both these techniques have several positive aspects but also they may result
in complex management and technical problems that require wide knowledge in
several computer science topics to be satisfactorily solved.

While the introduction of virtualization concept alleviated some of the diffi-
culties related to the management of large infrastructures (see, e.g., [16,17]), it
also increased the logical distance between the users and the physical resources
making more complex the performance forecast. This problem is particularly
evident in virtual environments, such as clouds, where users have a limited or
no control of the hardware allocated to execute their requests. These drawbacks,
coupled with the heterogeneity of the actual workload service demands [8] and
the variability of arrival patterns [14] make from a user perspective the matching
of its performance expectations a very difficult task.
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This paper explores the relationships between the resources consolidation/
replication actions and the performance experienced by users in systems running
mixes of different classes of applications. Indeed, these actions play a fundamen-
tal role in determining the overall performance since they have a direct impact
on the bottleneck creation and migration.

In the considered infrastructure the subjects of consolidation and replication
actions are Virtual Machines (VMs) that users may startup or shutdown. Users
provision VMs in a quantity assumed sufficient to satisfy their requirements. The
number of instanced VMs has a strong impact on the performance experienced.
Under-provisioning will provide unsatisfactory performance, that may lead to
violating its expectations, while over-provisioning will result in a waste of money.

We will focus on the forecast of performance resulting from consolidation
and replication actions from a user perspective. In particular, we present an
analytical technique that allows to determine the optimal consolidation or repli-
cation actions to match a user performance objectives subject to a number of
constraints.

In the literature, there are several works that deal with the optimal alloca-
tion of resources in virtual environments. Several techniques and models focus on
database consolidation, some like in [7] by means of workload monitoring for load
balancing, others like in [11] using data migration and task scheduling. Other
techniques, as in [2,3,10] are aimed to maintain acceptable application perfor-
mance levels while minimizing the costs of migration/consolidation of resources.
Many works propose different approaches to enable autonomic controller to sat-
isfy service level objectives by dynamically provisioning resources, as [6,15,18].
In particular, in [5,13] the dynamic allocation of VMs in cloud environment is
described.

The technique proposed in this paper is different from the previous one since
we study the impact of consolidation/replication actions on performance indexes
subject to constraints considering VMs executing concurrently applications hav-
ing heterogeneous service demands, i.e., running a multiclass workload. Also,
the suggested approach to the identification of the optimal number of VMs that
satisfy performance objectives is proactive while the approaches proposed in
literature are reactive.

The structure of the paper is as follows. In the next section we describe the
technique used to model consolidation and replication actions. In Section 3 we
derive the minimum number of replications needed to handle a given multiclass
workload, and we extend the methodology in Section 4 to deal with performance
constraints. Examples are analyzed in Section 5. Section 6 concludes the paper.

2 The System Model

Consider a system with a multiclass open workload composed by R resources
and C customer classes. Let R = {1, 2, ..., R} be the set of resource indexes
and C = {1, 2, ..., C} be the set of customer class indexes. The mean service
demand of a class c job at resource r is defined as the product of the mean
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service time of a class c job for each visit to resource r and the mean number
of visits by a class c job to resource r, and it is denoted by a R × C matrix
D∗ whose element d∗rc represents the service demand that a class c job requires
from the r-th resource, i.e., the mean time required by resource c to its complete
execution. The jobs arrive to the system with a global rate Λ, and are subdivided
among the classes according to the values βc, with

∑C
c=1 βc = 1. The vector

β = |β1 . . . βC |, referred to as the population mix, allows the definition of the
arrival vector λ = |λ1λC |, with λc = Λ · βc. We assume that resources can be
either consolidated or replicated. Two resources are consolidated when they are
implemented as two different virtual machines on the same physical system. To
simplify the presentation, we consider that the services that are consolidated in
a single physical machine are the ones of indexes R − 1 and R.

We assume that the effects of resource consolidation is the sum of the ser-
vice demands of the two service centers. With this assumption, the matrix D#

resulting from the consolidation of resources R − 1 and R has R − 1 rows; row
R− 1 represents the consolidated resource:

d#r,c = d∗r,c ∀c ∈ {1, 2, ..., C}, ∀r ∈ {1, 2, ..., R− 2}
d#R−1,c = d∗R−1,c + d∗R,c ∀c ∈ {1, 2, ..., C} (1)

With the replication technique a service is deployed through several physical
machines reducing the workload each server has to handle. We assume to have
mr instances for each resource r with mr ≥ 1, ∀r ∈ {1, 2, ..., R}. Let m be
the total number of service centers that the system with replications will have
m =

∑R
r=1mr. With these assumptions we have that m ≥ R. We assume that

traffic is equally shared among the mr instances of the r-th resource. Then, the
service demands of a system with replications is described by a matrix D with m
rows and C columns. Rows are partitioned in R groups, each of them composed
by mr identical rows, corresponding to the mr instances of the r-th resource.
The demand associated to each row in a group can be derived from D∗, by
considering that each instance of the server has the same demand as the original
model, with a visit ratio equal to 1

mr
. In particular, we can define:

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1

⎧⎪⎪⎨⎪⎪⎩
d∗
11

m1
. . .

d∗
1C

m1

...
d∗
11

m1
. . .

d∗
1C

m1

...

mR

⎧⎪⎪⎨⎪⎪⎩
d∗
R1

mR
. . .

d∗
R1

mR

...
d∗
R1

mR
. . .

d∗
RC

mR

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2)

The purpose of consolidation is to reduce the number of physical machines re-
quired to handle workloads characterized by very low demands. Replication on
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the other hand allows to share requests among several machines to handle very
high workloads. It is based on the assumption that a load balancer can equally
share the demands among the replicated resources: of course if the load is ex-
tremely high, the load balancer becomes the bottleneck of the system, and it
must be replicated as well.

2.1 Example of Consolidation/Replication Actions

Let us consider a system with a multiclass open workload composed of C = 2
classes of customers, and R = 3 resources. The demand matrix D∗ in msec is:

D∗ =

∣∣∣∣∣∣
391 238
281 346
223 450

∣∣∣∣∣∣ (3)

Depending on the population mix β, resource 1 or resource 3 can be saturated.
The system performs a bottleneck switch at β1 = 0.5579 (see [1] for the compu-
tation of the bottleneck switching point). This means that with 0 ≤ β1 < 0.5579,
resource 1 is the bottleneck of the system, otherwise the bottleneck is resource
3. Using standard queueing theory results (see e.g.,[12,9]), in Figure 1 we plot
the system response time as function of the population mix β = |β1 (1−β1)| for
different arrival rate Λ and different replication or consolidation patterns. The
actual demand matrices, obtained after consolidation and replication are shown
in Figure 1(c) and (f) respectively. Figure 1(a) shows the effect of consolidation
when the system is lightly utilized, i.e., the global arrival rate is low with re-
spect to the maximum load that the system can handle. This system is stable
for all the different population mixes β, and the response time increases with the
number of resources consolidated on the same physical machine: this is caused
by the fact that no workload partitioning can be applied, which is natural when
the server runs on separate hardware. It is interesting to see that the choice of
the particular consolidation pattern affects the performance, and that the best
choice is function of the population mix. When class 1 jobs are dominant, i.e.,
(β1 ≈ 1), then consolidating resource 2 and 3 is the action that gives the best
results in terms of response time, with respect of the combination of the other
resources, e.g., 1 and 3 or 1 and 2 or 1,2,3. This is behavior is emphasized in
Figure 1(b) where the system is unstable when all the resources are consolidated
in a single physical resource, and cannot be stable for β < 0.13 when resource
2 and 3 are consolidated. Indeed, the best choice is always to consolidate the
machines that are not bottleneck for a particular population mix β.

Replication on the other hand reduces the response time. As shown in Figure
1(d), the best choice, again depending on the population mix β, correspond to
the replication of the bottleneck resource. Figure 1(e) shows the same replica-
tion scheme when the system is very heavily loaded, i.e., the global arrival rate is
close to the maximum load that the system can handle. In this case replication
can make stable a system otherwise unstable. It is also interesting to see that
the replication of resource 2, the one that is never a bottleneck, has the effect of
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Consolidations of resources

Res 1+2 Res 2+3 Res 1+3 Res 1+2+3

672 584 391 238 614 688 895 1034
223 450 504 796 281 346

Replication of resources

2x Res 1 2x Res 2 2x Res 3

195.5 119 391 238 391 238
195.5 119 140.5 173 281 346
281 346 140.5 173 111.5 225
223 450 223 450 111.5 225

(c) (f)

Fig. 1. Response time in msec vs population mix β1 of various consolidation and
replication configurations of the system described by the demand matrix D∗ of Eq.
3 for different arrival rate Λ: (a) consolidation with Λ = 0.008; (b) consolidation
with λ = 0.0014; (c) service demands for the consolidated cases; (d) replication with
Λ = 0.0014; (e) replication with Λ = 0.0028; (f) service demands for the replicated
cases. NOTE: in (b) and (e) the plotted response time is capped at 15000msec in order
to avoid out-of-scale values.

reducing the response time when β ∈ [0.4, 0.8], but it does not extend the stabil-
ity region of the system which remains the same as the one of the non-replicated
case. The response time of a replicated system has a lower bound, which can
be computed by considering all the resources as infinite server resources. The
minimum response time of the infinite server case is also shown in Figure 1(d)
and (e) to emphasize the difference between the obtained response time and its
lower bound.
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2.2 Maximum Consolidation Workload

With a light load, all the resources can be consolidated in a single physical
machine. In this case, the demand matrix reduces to a 1×C vector DK = |dK1c|,
with each element defined as:

dK1c =
R∑

r=1

d∗rc, ∀c ∈ {1, 2, ..., C}. (4)

The utilization of the resources is UK = λDK = ΛβDK . Since the utilization
must be ≤ 1, we can compute the maximum arrival rate that the consolidated
system can handle ΛK(β) as:

ΛK(β) =
1

βDK
=

(
C∑

c=1

βcd
K
1c

)−1

. (5)

In other words, given a population mix β, all the virtual machines can be con-
solidate in a single physical machine if Λ < ΛK(β). For this reason ΛK(β) will
be referred as the maximum consolidation workload.

2.3 Minimum Number of Physical Machines

Suppose now that we have a high workload Λ for which some resource of the
system must be replicated. We can prove that the theoretical minimum number
of physical machines required to handle the workload mT

min(β) is:

mT
min(β) =

⌈
Λ

Λk(β)

⌉
=
⌈
ΛβDK

⌉
. (6)

Proof. The minimum number of virtual machines m =
∑R

r=1mr required to
handle a workload of intensity Λ and population mix β must guarantee that the
utilization of all the resources is strictly less than one:

C∑
c=1

λc
d∗rc
mr

< 1 ∀1 ≤ r ≤ R. (7)

from which we can compute mr:

mr >

C∑
c=1

λcd
∗
rc = Λ

C∑
c=1

βcd
∗
rc. (8)

If we apply the definition of m we obtain:

m =

R∑
r=1

mr >

R∑
r=1

Λ

C∑
c=1

βcd
∗
rc = Λ

C∑
c=1

βc

R∑
r=1

d∗rc = Λ

C∑
c=1

βcd
K
1c =

Λ

Λk(β)
(9)

If we consider that the minimum number of physical machines should be an
integer, and we round m to the closest higher integer, we obtain the definition
of mT

min(β) give in Eq. 6.
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The theoretical minimum requires the replication of a server that consolidates
all the resources, which can be unpractical. If we require that each resource
holds at most one service, then the theoretical minimum is just a lower bound to
the actual minimum, which could be a little bit higher. In Section 3 the actual
minimum will be considered, and in Section 5 both cases will be compared.

3 Computing the Best Number of Replications

We want to study the system as the arrival rate increases. We can express the
number of servers for resource r as a fraction of the total number of allocated
servers m. In particular we define:

γr =
mr

m
, with:

R∑
r=1

γr = 1. (10)

Let γ = |γ1 . . . γR| be the vector representing the instances mix. As we have
seen, in order to maintain the system stable, the number of VMs must grow
accordingly to the increased arrival rate. In particular, reversing the definition
of ΛK(β) given in Eq. 5, we may express the total arrival rate as a function of
m (the total number of VMs):

Λ = mΛK(β). (11)

We can thus define the stability condition, that is the condition of the system in
which the utilization of all the resources should be strictly less than one:

max
r

{
C∑

c=1

Λβcd
∗
rc

mr

}
= max

r

{
ΛK(β)

γr

C∑
c=1

βcd
∗
rc

}
< 1. (12)

The best allocation strategy would saturate all the available physical machines,
raising their utilization to 1. In other words, it will be:

∀r ∈ {1, 2, ..., R} : Λ
K(β)

γr

C∑
c=1

βcd
∗
rc = 1. (13)

From Eq. 13, we can then compute γr:

γr = ΛK(β)

C∑
c=1

βcd
∗
rc. (14)

It can be easily proven that with the definition given in Eq. 14 is consistent with
the definition of γr, that is that

∑R
r=1 γr = 1.

Proof. If we sum the γr for all the resources we obtain:

R∑
r=1

γr =

R∑
r=1

ΛK(β)

C∑
c=1

βcd
∗
rc = ΛK(β)

C∑
c=1

βc

R∑
r=1

d∗rc = ΛK(β)
1

ΛK(β)
= 1

(15)
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Eq. 6 and Eq. 14 are very important, because they tell us how many virtual
machines m should be provisioned, and which fraction of these machines should
be used to host a particular service r, to be able to serve an input workload
of intensity Λ distributed according to a given population mix β. In particular,
inserting Eq. 6 in 14, we can obtain:

mr = �mγr� =
⌈
Λ

C∑
c=1

βcd
∗
rc

⌉
. (16)

We can use the results from Eq. 16 to compute the actual minimum number of
physical machines mA

min(β) required to handle a workload Λ as:

mA
min(β) =

R∑
r=1

mr. (17)

Note that by definition, we have that mT
min(β) ≤ mA

min(β), but the relative
difference between mT

min(β) and mA
min(β) tends to 0 as Λ tends to infinity.

4 Matching Performance Objectives

The technique presented in Section 3 can be extended to take into account Per-
formance Constraints (PCs). In particular, m and γ can be computed to not
only guaranty stability, but also to ensure that a given set of constraints are
respected. Several PCs can be defined by a user in order to match his own ex-
pectations or objectives. In this paper we will focus on requirements concerning:
the utilization of a resource r by a class c, the utilization of a resource r, the
mean residence time of a resource r, and the mean system response time.

4.1 Constraints on the Utilization of a Class in a Resource

In Eq. 12, the parameters m and γ were compute to make the system stable. If
instead of saturating all the resource, we want to limit the utilization of the class
c at station r to a value 0 ≤ urc < 0 (with

∑C
c=1 urc ≤ 1, ∀r), Eq. 12 becomes:

ΛK(β)

γr
βcd

∗
rc < urc. (18)

Eq. 18 should be valid for all the classes c. We can thus find the minimum value
of γr that satisfy the PCs on the utilization for all the classes as:

γr = max
c

{
ΛK(β)

urc
βcd

∗
rc

}
. (19)

In this case however, we can have that
∑R

r=1 γr > 1. The number of replicas mr

for the r-th resource can be computed exactly as in Eq. 16:

mr = �mγr� =
⌈

Λγr
Λk(β)

⌉
. (20)
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The minimum number of servers m that respect the PCs mPCs

min(β) can thus be
computed as follows:

mPCs

min(β) =

R∑
r=1

⌈
Λγr
Λk(β)

⌉
. (21)

4.2 Constraints on the Total Utilization of a Resource

Suppose instead that we want to limit the total utilization of a resource r to be
at most ur, and to be equally shared among the classes. In this case we will have
that:

ΛK(β)

γr

C∑
c=1

βcd
∗
rc < ur, (22)

from which we can easily determine γr:

γr =
ΛK(β)

ur

C∑
c=1

βcd
∗
rc. (23)

The same considerations given in Section 4.1 about the possibility of having∑R
r=1 γr > 1 and its implications are also valid for this PC and for the ones

considered in the following sections.

4.3 Constraints on Mean Resource Residence Time

Now, let us consider a PC that imposes that the mean residence time of a resource
should be less than a given ϑr. Using the standard queueing theory results, we
can formulate this requirement as:

mr

C∑
c′=1

λc′

Λ

d∗rc′
mr

1− ΛK(β)

γr

C∑
c=1

βcd
∗
rc

=

C∑
c=1

βcd
∗
rc

1− ΛK(β)

γr

C∑
c=1

βcd
∗
rc

< ϑr, (24)

Note that, since the resource is split in mr replicas, we have to consider the sum
of the residence time at all the replicas, and this is why the first member on the
left hand side of Eq. 24 is multiplied by mr. We may compute γr, as:

γr =

ϑrΛ
K(β)

C∑
c=1

βcd
∗
rc

ϑr −
C∑

c=1

βcd
∗
rc

. (25)
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4.4 Constraints on the System Response Time

If we require that the mean system response time should be less than a given
threshold ϑ, we can express this constraint as:

R∑
r=1

mr

C∑
c′=1

λc′

Λ

d∗rc′
mr

1− ΛK(β)

γr

C∑
c=1

βcd
∗
rc

=

R∑
r=1

C∑
c=1

βcd
∗
rc

1− ΛK(β)

γr

C∑
c=1

βcd
∗
rc

< ϑ, (26)

The previous Eq. has infinite solutions in γr. Determining the optimal value
(i.e., the one that minimizes the total number of physical machines), requires
the solution of a non-linear optimization problem. We can however very easily
compute one of the solutions (which might be sub-optimal). If we define γr as:

γr =
1

α
ΛK(β)

C∑
c=1

βcd
∗
rc. (27)

then Eq. 26 becomes:

R∑
r=1

C∑
c=1

βcd
∗
rc

1

1− α
=

1

ΛK(β)(1 − α)
< ϑ, (28)

we can compute α:

α =
1

ϑ

(
ϑ− 1

ΛK(β)

)
(29)

from which we derive:

γr =

ϑΛK(β)

C∑
c=1

βcd
∗
rc

ϑ− 1

ΛK(β)

. (30)

5 Examples

In this section we will first show how the Equations given in Section 4 can
be used to properly choose the number of replicas required to handle a given
workload while respecting a set of PCs. We then apply the proposed results on
a test system to investigate if is it better to replicate consolidated services, or to
replicate separate services. The test system was simulated using the JMT tool
[4]: confidence interval at 99% were evaluated, but only mean values are shown
to simplify the presentation.
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5.1 Sizing a System

Let us consider the three-tier system with C = 2 classes, and R = 3 resources,
characterized by the demand matrix D of Eq. 3. Suppose that the utiliza-
tion of each resource r for each class c must be less than the following given
values urc:

|urc| =

∣∣∣∣∣∣
0.5 0.5
0.3 0.7
0.65 0.35

∣∣∣∣∣∣ . (31)

If we apply the results presented in Section 4.1, we obtain that the number of
replica for each service mr should be |mr| = |1 1 3|. In the following, to simplify
the notation, we will denote this particular configuration of replicas simply as
1-1-3. Figure 2(a) shows the utilization of all the combination of classes and
resources for the 1-1-2 and the 1-1-3 configurations, together with the target
value required by the PC. As it can be seen, the 1-1-3 configuration respects
all the PCs, while the 1-1-2 violate the constraint on the second class for the
third resource (C2-R3), where the utilization is about 40% and the requirement
should be less than 35%. Next we put the requirement on the utilizations of single
resources to be less than ur defined as |ur| = |0.5 0.3 0.8|. Using the results
presented in Section 4.2, we can see that at least 2-4-2 replicas are required to
satisfy the PCs. In Figure 2(b) we present the utilization of the resources for three
configurations: 2-2-2, 2-3-2 and 2-4-2. Clearly the 2-2-2 configuration violates the
PC on the second resource. At first sight, the 2-3-2 configuration would seem
to be adequate to satisfy all the constraints. However, at a closer look, we can
see that with this configuration the utilization of the second resource would be
30.26%, slightly higher than the 30% required by the PC. Constraints on the
response time of the single resources is considered in Figure 2(c), where there
PCs are set according to the following values, in msec: |ϑr| = |1000 500 1050|.
In this case, applying the results presented in Section 4.3, we have that minimum
configuration should have at least 2-3-2, and a 2-2-2 configuration will violate
the PC on the second resource. Finally, we consider the system response time
and we use the expression presented in Section 4.4. In particular we examine
a series of possible constraints, ϑ = 14000msec, ϑ = 8200msec, ϑ = 4200msec,
ϑ = 2200msec, ϑ = 1200msec and we compute the configuration required to
obtain such system response time. They are 1-1-2, 1-2-2, 2-2-2, 2-2-2 and 5,6,6
respectively. Figure 2(d) shows that by using the proposed configuration the
system response time is always lower than the requirement. However, since the
Equations given in Section 4.4 compute only a sub-optimal solution, there could
be cases where the constraint can be met with a smaller set of machines. In this
case this happens for the ϑ = 4200msec constraint, which is met not only for
the 2-2-2 configuration (the one computed by Eq. 30), but also for the 1-2-2
configuration that uses one machine less.
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Fig. 2. Minimum number of physical machine to handle a workload arrival rate Λ =
0.0028 and population mix β = |0.36, 0.64| with the following constraints on the: (a)
utilization of a resource r by a class c; (b) total utilization of a resource r; (c) response
time of resource r; (d) system response time. The last two are expressed in msec.

5.2 Replication of Consolidated Servers vs. Replication of Single
Servers

In Eq. 6 and Eq. 17 we have seen that there are two minimum number of machines
that can be computed from the definition of a system: the theoretical minimum
mT

min(β), and the actual minimum mA
min(β). In principle it would be desirable

to use mT
min(β), since it is always smaller. Such minimum could be achieved by

first consolidating all the servers on a single resource, and then by replicating the
consolidated resource as much as required. This solution can be unpractical since
it would require to install many services on a single physical system, making it
more complex to maintain, and more resource consuming. However, if we do not
consider the practical issues, and we focus on the performance of the consolidated
system, will a system where we replicate a consolidated server be better than a
system where we replicate the single services? To investigate this question, we
use a simple demand matrix with values in msec:

D∗ =

∣∣∣∣∣∣
200 100
100 100
100 300

∣∣∣∣∣∣ , (32)
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that can be consolidated as: DK = |400 500|. This matrix has been chosen to
have the values computed by Eq. 16 integer for Λ = 0.04, to avoid the effects of
the smallest higher integer operator. We consider however two slightly smaller
workload intensities with Λ = 0.038 and Λ = 0.035 respectively. Figure 3 shows
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Fig. 3. Minimum number of physical machines for the consolidated or the replicated
case. Arrival rates: (a) Λ = 0.035; (b) Λ = 0.038.

the minimum number of machines required in both cases. As we can see, for the
highest load (Figure 3(b)), both the pure replicated and the consolidated case
have the same number of machines. With a smaller workload however, Figure
3(a), the replicated case is able to handle the same rate of requests with a few
(one or two) machines less. Let us focus on the utilization first (Figure 4). In
the consolidated case the system is always fully utilized (always greater than
95%), while in the replicated case, except for the bottleneck resource, the other
are less congested. Response time (Figure 5) is generally lower for the pure
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Fig. 4. Utilization of the resources for the consolidated or the replicated case. Arrival
rates: (a) Λ = 0.035; (b) Λ = 0.038.

replication case when the workload is smaller (Λ = 0.035), and it becomes larger
when the system is closer to saturation (Λ = 0.038). The only exception is for
β = |0.5 0.5|, where the system experience high response times even for the
pure replication case with Λ = 0.0035: this however is due to the third resource
which is utilized more than 99% as can be seen from Figure 4(a).
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So, to summarize the results, it would seem that from a pure performance
point of view, the replication of the consolidated server will always perform
better with respect to the pure replication case, allowing the user to either use
a smaller number of machines, or to experience shorter response time with the
same number of machines. However, since replication of consolidated machines
cannot be as practical as replication of servers, we can observe that the decrease
in performance of the latter is not so significant, and the difference between the
two solutions tends to decrease as the total number of machines increases.
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Fig. 5. System response time for the consolidated or the replicated cases with arrival
rate Λ = 0.035 (a) and Λ = 0.038 (b)

6 Conclusions

In this paper we have considered the topic of consolidation and replication from
a end-user point of view. In particular we have proposed very simple expressions
that can be used to predict the effect of consolidation, and to appropriately
dimension a system, in terms of replication of service, to match a given set of
performance objectives.

Future works will address more complex performance objectives, and will
consider more complex types of resources, to better capture the internal paral-
lelization characteristics related to multi-core and multi-threaded resources.
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13. Menascé, D.A.: Virtualization: Concepts, applications, and performance modeling
(2005)

14. Mi, N., Casale, G., Cherkasova, L., Smirni, E.: Sizing multi-tier systems with tem-
poral dependence: benchmarks and analytic models. J. Internet Services and Ap-
plications 1(2), 117–134 (2010)

15. Padala, P., Shin, K.G., Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant, A.,
Salem, K.: Adaptive control of virtualized resources in utility computing envi-
ronments. In: Proc. of the 2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems, EuroSys 2007, pp. 289–302. ACM, New York (2007)

16. VirtualBox, http://www.virtualbox.org
17. VMware, http://www.vmware.com
18. Watson, B.J., Marwah, M., Gmach, D., Chen, Y., Arlitt, M., Wang, Z.: Proba-

bilistic performance modeling of virtualized resource allocation. In: Proc. of the
7th International Conference on Autonomic Computing, ICAC 2010, pp. 99–108.
ACM, NY (2010)

http://www.virtualbox.org
http://www.vmware.com


Analysis of a Discrete-Time Queue with

Geometrically Distributed Service Capacities

Herwig Bruneel, Joris Walraevens, Dieter Claeys, and Sabine Wittevrongel

Department of Telecommunications and Information Processing (TELIN),
Ghent University,

Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium
{hb,jw,dclaeys,sw}@telin.ugent.be

Abstract. We consider a discrete-time queueing model whereby the ser-
vice capacity of the system, i.e., the number of work units that the sys-
tem can perform per time slot, is variable from slot to slot. Specifically,
we study the case where service capacities are independent from slot to
slot and geometrically distributed. New customers enter the system ac-
cording to a general independent arrival process. Service demands of the
customers are i.i.d. and arbitrarily distributed. For this (non-classical)
queueing model, we obtain explicit expressions for the probability gen-
erating functions (pgf’s) of the unfinished work in the system and the
queueing delay of an arbitrary customer. In case of geometric service de-
mands, we also obtain the pgf of the number of customers in the system
explicitly. By means of some numerical examples, we discuss the impact
of the service process of the customers on the system behavior.

Keywords: Discrete-time queueing model, Variable service capacity,
Analytic study, Closed-form results.

1 Introduction

In classical queueing models, it is generally assumed that some kind of customers
require some kind of service from a given service facility, containing one or mul-
tiple servers, which are each able to provide service to one customer at a time. A
large body of work exists especially on the analysis of single-server queues with
various types of arrival processes, service times, queueing disciplines, storage
capacities, etc., both in continuous-time and (to a lesser extent) discrete-time
settings. The study of multiserver queues, however, has traditionally received
much less attention, one important reason being that multiserver queues are
notoriously hard to analyze.

An important subclass of queueing models consists of queues with server in-
terruptions, whereby these server interruptions may be either driven by external
processes (such as breakdowns or higher-priority customers demanding service)
or they may correspond to vacations deliberately taken by the servers (e.g. when
the system becomes empty after a busy period). Here, again, the case of one sin-
gle server subject to interruptions has been the most commonly studied setting,
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although some work has also been reported on multiserver systems with server
breakdowns [6,10,15,19]. The current paper is related to the latter type of mod-
els in the sense that we consider a system whose service facility is able to deliver
more than one unit of work (i.e., service time) per time slot (as in other multi-
server models) and that the number of work units that can be executed per time
slot is not constant over time (which is typical for systems with server inter-
ruptions). More specifically, we consider a model in which the so-called service
capacity, i.e., the number of work units that the service facility is able to perform,
changes randomly from slot to slot. Service capacities are independent from slot
to slot and geometrically distributed. Customers demanding variable amounts of
work (as specified by the service-demand distribution, which can be arbitrary)
enter the system and are served in First-Come-First-Served (FCFS) order, i.e.,
during each slot the service facility executes as many work units as possible (as
specified by the momentary service capacity) to the customers present in the
system, in their order of arrival. The service of a next customer is only started
when the previous customer has received complete service.

Possible application areas of this type of queueing model are numerous. First,
it is closely related to the “effective bandwidth” or “effective capacity” concepts
in telecommunication networks, to model the time-varying capacity of stations
in wireless networks/LANs [7,13,14]. A wireless station can indeed be regarded
as a server with varying capacity, due to rate fluctuations of the physical channel
or at the MAC layer. A second potential application domain is the modeling of
a varying production capacity of a production system with a single product line
[1,12,18], in order to estimate the influence of this variability on the holding
times. The model also allows to evaluate the impact of a variable number of
workers in an HR-environment.

It turns out that, although the model dealt with in this paper belongs to
the category of very hard multiserver-type queues with server interruptions,
the assumption of geometric service capacities allows for a completely analytic
solution of the problem. Remarkably simple explicit expressions can be derived
for most quantities of interest, such as the pgf’s and mean values of the unfinished
work, the queueing delay and (with some restrictions) the buffer occupancy.

The structure of the paper is as follows. In Sect. 2, we describe the queueing
model under study. Section 3 presents the analysis of the (steady-state) unfin-
ished work in the system, resulting in an explicit expression for the pgf of this
quantity. In Sect. 4, we derive the pgf of the (steady-state) delay of an arbitrary
customer from the pgf of the unfinished work. All these results are valid for arbi-
trary service-demand distributions. It turns out that the derivation of the pgf of
the (steady-state) buffer occupancy is much harder. This is the topic of Sect. 5.
Section 6 is devoted to the special case where the service-demand distribution
is geometric; in this case, we do succeed to derive an explicit expression for the
pgf of the buffer occupancy. We discuss the results both conceptually and quan-
titatively in Sect. 7. Finally, some conclusions and directions for future work are
given in Sect. 8.
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2 Queueing Model Description

We consider a discrete-time queueing system with infinite waiting room and a
service facility (henceforth also referred to as the “server” of the system) which
can deliver a variable amount of service as time goes by. The time axis is divided
into fixed-length intervals referred to as time slots or, simply, slots, in the sequel.
New customers may enter the system at any given (continuous) point on the
time axis, but services are synchronized to (i.e., can only start and end at) slot
boundaries.

The arrival process of new customers in the system is characterized by means
of a sequence of independent and identically distributed (i.i.d.) nonnegative dis-
crete random variables with common probability mass function (pmf) a(n) and
common probability generating function (pgf) A(z). More specifically,

a(n) � Prob[n customer arrivals in one slot] , n ≥ 0 ; (1)

A(z) �
∞∑

n=0

a(n) zn . (2)

The mean number of customers entering the system per slot, in the sequel re-
ferred to as the mean arrival rate, is given by λ � A′(1).

The service process of the customers is described in two steps. First, we char-
acterize the demand that customers place upon the resources of the system, by
attaching to each customer a corresponding service demand, which indicates the
number of work units required to give complete service to the customer at hand.
The service demands of consecutive customers arriving at the system are mod-
eled as a sequence of i.i.d. positive discrete random variables with common pmf
s(n) and common pgf S(z). More specifically,

s(n) � Prob[service demand equals n work units] , n ≥ 1 ; (3)

S(z) �
∞∑
n=1

s(n) zn . (4)

The mean service demand of the customers is given by 1/σ � S′(1).
Next, we describe the (variable) resources of the server, by attaching to each

slot a corresponding service capacity, which indicates the number of work units
that the server is capable of delivering in this slot. We assume that service
capacities are nonnegative random variables, independent from slot to slot and
geometrically distributed, with common pmf r(n) and common pgf R(z). More
specifically,

r(n) � Prob[service capacity of n work units] =
1

1 + μ

(
μ

1 + μ

)n

, n ≥ 0 ; (5)

R(z) �
∞∑
n=0

r(n) zn =
1

1 + μ− μz
. (6)

The mean service capacity of the system (per slot) is given by μ = R′(1).
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Note that in traditional queueing models, the terms service demand and ser-
vice capacity are usually not used in the sense defined here. Instead, the term
service time is used to indicate the total time needed to serve one customer, i.e.,
the service time is the time a server (with an unspecified service capacity) needs
to serve a customer (with an implicit service demand). Since service time is an
ambiguous concept in our model, we do not use this term in the remainder.

The operation of the queueing system is as follows. Customers arrive in the
system according to an uncorrelated arrival process, characterized by the pgf
A(z), and take place in the queue in their order of arrival. The amount of
service required by each customer (expressed in work units) is given by their
corresponding service demand, described by the pgf S(z). The server serves cus-
tomers from the queue one by one in FCFS order, spending no more work units
in each slot than the available service capacity for that slot, which is described
by the pgf R(z). If the server disposes of less work units than needed to complete
the service of the customer being served in a slot, the service of that customer
continues in the next slot. If, on the contrary, the service capacity of the server
in a slot is higher than the remaining service demand of the customer in service,
then the server starts the service of the next customer in the queue (if any) or
(else) becomes idle. We assume that the service of a customer can start during
the slot following his arrival slot at the earliest.

3 Unfinished Work

3.1 System Equations

We start the analysis by defining a number of important random variables.
Specifically, let uk denote the unfinished work, i.e., the total number of work
units “present in” the system at the beginning of the k-th slot, and ek the total
amount of work entering the system during this slot. Furthermore, let rk denote
the service capacity during the k-th slot. Then, the following recursive system
equation can be established:

uk+1 = ek + (uk − rk)
+ , (7)

where the notation (. . .)+ indicates the quantity max(0, . . .).
In (7), the rk’s are i.i.d. random variables with (known) pgf R(z), as defined

in (5). The random variables {ek}, on the other hand, can be obtained as

ek =

ak∑
i=1

sk,i , (8)

where ak indicates the number of customers entering the system during slot k
(with known pgf A(z)), and the sk,i’s are the service demands (with common
pgf S(z)) of these customers. It is easily seen that the ek’s are i.i.d. with pgf

E(z) = A(S(z)) . (9)
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3.2 Analysis of the Unfinished Work

For all k, let Uk(z) denote the pgf of uk. Then, from (7) we can derive

Uk+1(z) = E(z) · E
[
z(uk−rk)

+
]

, (10)

with E[·] the expectation operator. The second factor in the right hand side of
(10) can be expanded further by means of the law of total probability (using
also the mutual independence of uk and rk):

E
[
z(uk−rk)

+
]

=

∞∑
n=0

r(n)

∞∑
i=0

uk(i)z
(i−n)+ , (11)

where, for all i ≥ 0,
uk(i) � Prob[uk = i] . (12)

Removing the (.)+ operator and introducing (5), we get

E
[
z(uk−rk)

+
]
=

∞∑
n=0

1

1 + μ

(
μ

1 + μ

)n
(

n∑
i=0

uk(i) +

∞∑
i=n+1

uk(i)z
i−n

)

=
∞∑
i=0

uk(i)

(
μ

1 + μ

)i

+
1

1 + μ

∞∑
i=1

uk(i)z
i
( μ
(1+μ)z )

i − 1

( μ
(1+μ)z )− 1

= Uk

(
μ

1 + μ

)
+

z

μ− (1 + μ)z

[
Uk

(
μ

(1 + μ)

)
− Uk(z)

]
. (13)

Combination of (10) and (13) then leads to

[μ− (1 + μ)z]Uk+1(z) = E(z)

(
μ(1− z)Uk

(
μ

1 + μ

)
− zUk(z)

)
. (14)

Now, let us assume that the queueing system at hand is stable, i.e., that the
stability condition [5,17] is fulfilled. The system is stable if and only if the mean
number of work units entering the system per slot, given by E′(1), is strictly
less than the mean service capacity per slot, given by R′(1), or, expressed in the
basic parameters of our system, if and only if

λ < μσ . (15)

This inequality says that the supremum of the achievable throughput of the
system, expressed in customers per slot, is given by μσ.

We now let the time parameter k go to infinity. Assuming the system reaches a
steady state, then both functions Uk(·) and Uk+1(·) converge to a common limit
function U(·), which denotes the pgf of the unfinished work at the beginning
of an arbitrary slot in steady state. As a result, (14) translates into a linear
equation for U(z), with solution

U(z) = μU

(
μ

1 + μ

)
(z − 1)E(z)

μ(z − 1)− z[E(z)− 1]
. (16)
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This expression is fully determined, except for the unknown quantity U( μ
1+μ ),

which, in turn, can be obtained by invoking the normalizing condition of the pgf
U(z), i.e., the condition U(1) = 1. It is not difficult to obtain

U

(
μ

1 + μ

)
= 1− λ

μσ
. (17)

With (9) and (17), we then finally get the following closed-form expression for
the steady-state pgf of the unfinished work in the system:

U(z) =
(μ− λ

σ )(z − 1)A(S(z))

μ(z − 1)− z[A(S(z))− 1]
. (18)

Various performance measures of the system, related to the unfinished work,
can be derived in explicit form from the above result. For instance, the mean
unfinished work in the system is given by

E[u] = U ′(1) =
2λ[(μ+ 1)σ − λ] +A′′(1) + λσ2S′′(1)

2σ(μσ − λ)
. (19)

Higher-order moments of the unfinished-work distribution can be obtained sim-
ilarly, by computing higher-order derivatives of U(z).

4 Customer Delay

We now turn to the analysis of the probability distribution of the delay (ex-
pressed in slots) customers incur in the system. More specifically, let C denote
an arbitrary customer entering the system in steady state, and let J denote the
slot during which C arrives. In the sequel, customer C will be referred to as
the “tagged customer”. We define the (discrete) delay d of customer C as the
total number of (full) slots between the arrival instant of C in the system and
the departure time of C from the system, i.e., d indicates the number of slots
between the end of slot J and the end of the slot during which the last work
unit of the service demand of C is actually being executed.

Owing to the FCFS queueing discipline used in the system, the delay d of the
tagged customer C is equal to the time needed to execute the unfinished work
present in the system just after slot J , but to be performed before or during the
service of customer C. In the next subsections, we first compute the pgf of this
amount of work. Next, from this, we derive the pgf of d.

4.1 Work to Be Performed before the Tagged Customer

Let ũ denote the unfinished work at the beginning of slot J , r̃ the available service
capacity during slot J (with pgf R(z) as defined in (5)), and f the number of
customers entering the system during slot J but to be served before C. Then, the
total amount of work to be performed before the service of the tagged customer
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C, still “present in” the system just after slot J , i.e., at the moment when the
delay d of customer C starts running, is given by

v = (ũ − r̃)+ +

f∑
i=1

s̃i , (20)

where the quantities s̃i refer to the service demands of the f customers entering
the system during slot J , but to be served before the tagged customer C.

It is well-known, see e.g. [2,9,15], that the pgf of f is given by

F (z) � E
[
zf
]
=

A(z)− 1

λ(z − 1)
. (21)

On the other hand, the independent nature of the arrival process (from slot to
slot) implies that the probability distribution of ũ, i.e., the unfinished work at
the beginning of the arrival slot of the tagged customer C, is identical to the
probability distribution of the unfinished work at the beginning of an arbitrary
slot in the steady state. This implies that the pgf of ũ is equal to the function
U(z) determined earlier (see (18)). For the same reason, the random variables f
and ũ are mutually independent. Putting all these elements together, we conclude
that the pgf of v can be obtained as

V (z) � E[zv] = E
[
z(ũ−r̃)+

]
·E

[
z
∑f

i=1 s̃i
]
=

U(z)

A(S(z))
· F (S(z)) , (22)

where, in the last step, we have used (9) and equation (10) for k → ∞.
Using (18), (21) and (22), we find the following explicit expression for V (z):

V (z) =
(μ− λ

σ )(z − 1)[A(S(z))− 1]

λ[S(z)− 1] {μ(z − 1)− z[A(S(z))− 1]} . (23)

4.2 Analysis of the Delay

The delay d of customer C is nothing else than the number of slots required
to perform the remaining service demands of the customers in front of C just
after slot J (which takes v work units) together with customer C itself (which
requires one full service demand s̃). That is, the delay d of customer C is equal
to the time needed to perform v+ s̃ work units. If we denote by r̃j the available
service capacity in the j-th slot after slot J , and by qi the total service capacity
available during i consecutive slots (just after slot J), then it is easy to see that

qi =

i∑
j=1

r̃j , (24)

with corresponding pgf
Qi(z) = R(z)i . (25)
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The distribution of the delay d can then be obtained as follows. First, we express
the tail distribution, for i ≥ 0, as

Prob[d > i] = Prob[qi < v + s̃] =

∞∑
n=0

Prob[qi = n] Prob[v + s̃ > n] . (26)

The reasoning behind this equation is that more than i slots are required to
remove v+ s̃ units of work from the system, if and only if at most v+ s̃− 1 work
units can be performed during i slots. We now z-transform the above equation
and represent Prob[qi = n] as a derivative, i.e.,

Prob[qi = n] =

[
1

n!

dn

dxn
Qi(x)

]
x=0

=

[
1

n!

dn

dxn
R(x)i

]
x=0

(27)

to obtain an equation for the pgf D(z) of the delay d:

D(z)− 1

z − 1
=

∞∑
i=0

zi Prob[d > i]

=

∞∑
n=0

1

n!
Prob[v + s̃ > n]

[
∂n

∂xn

∞∑
i=0

ziR(x)i

]
x=0

. (28)

In the above equation, the partial derivative can be expressed as[
∂n

∂xn

∞∑
i=0

ziR(x)i

]
x=0

=

[
∂n

∂xn

1

1− zR(x)

]
x=0

=

[
∂n

∂xn

1 + μ− μx

1− z + μ− μx

]
x=0

= δ(n) +
n!μnz

(1− z + μ)n+1
, (29)

where δ(n) is the well-known Kronecker delta-function, which equals 1 for n = 0
and 0 for all n > 0. Combination of (28) and (29) then leads to

D(z)− 1

z − 1
= 1 +

z

1− z + μ

∞∑
n=0

(
μ

1− z + μ

)n

Prob[v + s̃ > n]

= 1 +
z

1− z + μ

[
V (y)S(y)− 1

y − 1

]
y= μ

1−z+μ

. (30)

Using the formula we obtained earlier for the pgf V (·) in (23), this translates
into the following explicit expression for the pgf of the queueing delay:

D(z) =
μσ − λ

λμσ

z(z − 1)S( μ
1−z+μ)

[
A(S( μ

1−z+μ ))− 1
]

[
S( μ

1−z+μ )− 1
] [

z −A(S( μ
1−z+μ ))

] . (31)

Various delay-related performance measures can be derived from (31) in explicit
form. For instance, the mean delay can be obtained as

E[d] = D′(1) = 1 +
λσ + (μσ − λ)

μσ(μσ − λ)
+

μA′′(1) + λ2σS′′(1)
2λμ(μσ − λ)

. (32)
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Higher-order moments of the delay can be obtained by computing higher-order
derivatives of D(z) at z = 1.

5 Buffer Occupancy

The buffer occupancy is defined as the number of customers present in the sys-
tem. In this section, we try to find an expression for the pgf and/or the mean
value of the buffer occupancy from the results obtained in the previous sections.

Let us define bk as the buffer occupancy at the beginning of the k-th slot.
Then, clearly, the following relationships can be established between bk and the
unfinished work uk, defined in Sect. 3:

uk = 0 , if bk = 0 ; (33)

uk = ŝ1 + s2 + . . .+ sbk , if bk > 0 , (34)

where ŝ1 indicates the remaining service demand of the customer in service at
the beginning of slot k and s2, . . . , sbk denote the (full) service demands of the
other bk − 1 customers in the system at the beginning of slot k.

It is not straightforward to derive from the above equations a relationship
between the pgf’s of the unfinished work and the buffer occupancy. There are
two main reasons for this. First, it is not obvious how to find the distribution
(or pgf) of the random variable ŝ1: the classical results from renewal theory
[4,16] on the distribution of the residual lifetime in a sequence of i.i.d. random
variables are not applicable here, as the remaining service demand of an ongoing
service does not simply decrease by one unit per slot in the system under study
(because the service capacities are variable). Second, the random variables ŝ1
and bk, appearing in (33) and (34), are not necessarily independent. In the next
section, however, we shall see that these obstacles do not exist if the service
demands have a geometric distribution, and we shall be able to determine the
pgf of the buffer occupancy completely in that case.

It should also be noted that the mean buffer occupancy can always be derived
from the mean delay, by applying (the discrete-time version of) Little’s result
[8]:

E[b] = λE[d] = λ+
λ2σ + λ(μσ − λ)

μσ(μσ − λ)
+

μA′′(1) + λ2σS′′(1)
2μ(μσ − λ)

. (35)

6 Geometric Service Demands

In the previous sections, we have made no specific assumptions as to the precise
nature of the service-demand distribution, i.e., the pgf S(z) was arbitrary. In this
section, we explore the special case where the service demands are geometrically
distributed with mean value 1/σ, such that

s(n) = σ(1− σ)n−1 , n ≥ 1 ; S(z) =
σz

1− (1− σ)z
. (36)
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6.1 Performance Measures

The pgf of the unfinished work in the system at the beginning of an arbitrary
slot in steady state, given in general by (18), cannot be much simplified in case
of geometric service demands, i.e., the assumption of geometric service demands
does not seem to have much impact on the form of this pgf. The result reads

U(z) =
(μ− λ

σ )(z − 1)A( σz
1−(1−σ)z )

μ(z − 1)− z[A( σz
1−(1−σ)z )− 1]

. (37)

The corresponding expression for the mean unfinished work can be found from
(19) by the substitution S′′(1) = 2(1− σ)/σ2 as

E[u] =
2λ(1 + μσ − λ) +A′′(1)

2σ(μσ − λ)
. (38)

The general expressions of the pgf and the mean value of the customer delay,
given in (31) and (32), simplify considerably in case the service demands are
geometrically distributed. The results are given by

D(z) =
(μσ − λ)z[A( μσ

1+μσ−z )− 1]

λ[z −A( μσ
1+μσ−z )]

; (39)

E[d] = 1 +
2λ+A′′(1)
2λ(μσ − λ)

. (40)

With reference to the analysis of the buffer occupancy in Sect. 5, the assump-
tion of geometric service demands brings about substantial simplifications. The
main reason for this lies in the memoryless nature of the geometric distribution
[16], which implies that the distribution of the remaining service demand (ŝ1) is
identical to the distribution of a full service demand (such as s2, . . . , sbk). Also,
the distribution of ŝ1, in this case, is not influenced by the value of bk: although
bk may be correlated with the received amount of service of the customer in
service (at the beginning of slot k), this does not determine in any way the dis-
tribution of the remaining service demand, owing to the memoryless property of
the geometric distribution. As a consequence, (33) and (34) are equivalent to

uk =

bk∑
i=1

si , (41)

where the si’s are i.i.d. with geometric distribution (with mean 1/σ), which, in
addition, are independent of bk. The (steady-state) pgf of uk then simply follows
as

U(z) = B

(
σz

1− (1− σ)z

)
, (42)

which leads to

B(x) = U

(
x

σ + (1− σ)x

)
. (43)
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Using (37), we then get the pgf of the buffer occupancy explicitly as

B(z) =
(μσ − λ)(z − 1)A(z)

μσ(z − 1)− z[A(z)− 1]
. (44)

The mean buffer occupancy is derived as

E[b] = B′(1) = λ+
2λ+A′′(1)
2(μσ − λ)

. (45)

The same result can also be obtained by applying Little’s result, i.e., E[b] =
λE[d], to (40), which supports our confidence in the results of our analysis.

6.2 Geometric Invariance Property

We conclude this section on geometric service demands with the observation
that, in this particular case, the distributions of the buffer occupancy and the
delay depend on the service capacities and the service demands only through
the product μσ, as can be clearly seen from (39), (40), (44) and (45). This is
not true for the distribution of the unfinished work, though. We will refer to
this remarkable property with the term “geometric invariance” in the sequel.
This result implies that, for instance, doubling the mean service demands of
the customers (i.e., dividing σ by 2) and at the same time doubling the mean
per-slot service capacity of the system (i.e., multiplying μ by 2), does not alter
the delay and the buffer occupancy of the system, but it does double the mean
unfinished work in the system. Intuitively, this is acceptable, because higher
service demands appear to be compensated by the proportionally higher service
capacity, and hence, the effective service times of the customers (expressed in
slots) basically remain the same. The average amount of work in the system, of
course, doubles, as all work-related quantities scale up. The geometric invariance
property can also be interpreted as follows: if we replace the geometric service
demands (with mean 1/σ work units) with deterministic service demands equal
to 1 work unit each and we slow down the server from an average service capacity
of μ work units per slot to μσ work units per slot, the delay and the buffer
occupancy remain the same. Further, we will discover that all these conclusions
are not necessarily true for non-geometric service-demand distributions.

7 Discussion of Numerical Examples

In this section, we discuss the results obtained above by means of some numerical
examples. Specifically, we investigate the behavior of the system when one of the
parameters s (� 1/σ), μ and λ is varied. In order to make for a fair comparison,
we scale one of the other parameters to keep the load ρ (ρ = λs/μ) constant.

First, we examine the influence of varying the mean service demand s and
the mean service capacity μ while keeping their ratio constant. In Fig. 1(a),
the mean delay is depicted versus ρ, for the case of Poisson arrivals, s/μ = 0.5,



132 H. Bruneel et al.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

E
[d

]

ρ

s = 1

s=5, det

s=5, bursty

s=50, det

s=50, bursty

(a) vs. the load ρ; s = 1, 5 or 50

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 5  10  15  20  25  30  35  40

E
[d

]

s

deterministic

geometric

bursty

(b) vs. the mean demand s; ρ = 0.5

Fig. 1. Mean delay E[d] for Poisson arrivals and s/μ = 0.5

s = 1, 5 and 50 and for three possible distributions of the service demand, namely
deterministic, geometric or “bursty”. Here, “bursty” refers to the case where the
service demand of a customer is either 1 or 5 · s work units:

S(z) =
4s

5s− 1
z +

s− 1

5s− 1
z5s . (46)

When ρ → 0, the mean delay tends to the constant value 1+ s/μ, irrespective of
the absolute values of s and μ, or of the service-demand distribution. This can
be understood as follows: when ρ → 0, an arriving customer arrives in an empty
system. He therefore has to wait 1 slot extended with, on average, an extra 1/μ
slots per work unit, for a total of s/μ slots. Also, the mean delay increases with
increasing ρ, as expected. For s = 1, the service demand is deterministically equal
to 1. Because of the geometric invariance property (see Sect. 6), the mean delay
does not depend on the absolute values of s and μ for geometric demands, if s/μ
is kept constant. For these two reasons, the curve for s = 1 in Fig. 1(a) is identical
to the curves for other values of s and geometric demands, as well as for s = 1 and
the two ‘other’ service-demand distributions (which are all the same for s = 1).
When the demands are not geometric and s > 1, we see a completely different
picture; the mean delay can differ drastically when s varies, both in positive and
in negative sense. For service-demand distributions with less variance than the
geometric distribution (e.g., deterministic), larger demands and larger service
capacities are beneficial, while for more bursty demands, it is favorable to keep
the demands small. So, the geometric distribution seems to be a turning point.
These conclusions can also be drawn from Fig. 1(b). Here, we depict the mean
delay versus s, for ρ = 0.5 and, otherwise, the same assumptions as in Fig. 1(a).
The geometric invariance property is nicely illustrated by the constant line, while
it is demonstrated that less bursty (more bursty, respectively) distributions for
the service demand lead to lower mean delay decreasing with s (higher mean
delay increasing with s, respectively).

Second, the impact of a change in the mean arrival rate λ and the mean service
capacity μ is studied while maintaining their ratio constant. In Fig. 2, the mean
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Fig. 2. Mean delay E[d] and mean buffer occupancy E[b] vs. the mean service capacity
μ for Poisson, geometric and bursty arrivals, deterministic demands s = 50 and ρ = 0.5

delay and the mean buffer occupancy are plotted versus μ, for deterministic
service demands equal to s = 50, ρ = 0.5 and three possible distributions for the
number of per-slot arrivals, namely Poisson, geometric or “bursty”. In the latter
case, the number of arrivals is either 0 or 10 · λ:

A(z) = 0.9 + 0.1z10λ . (47)

From Fig. 2, we observe that the mean delay goes to ∞ when μ and λ go to 0,
while the mean buffer occupancy tends to 0. This is logical, since an arriving
customer (requiring s = 50 work units) needs a high number of slots to be served
completely when the capacity is low (even an infinite number of slots when the
capacity goes to 0). However, the arrival rate is small and, therefore, the mean
buffer occupancy is small as well (and zero if λ goes to 0). So, for low μ and
λ, the mean delay is almost entirely a result of one customer in the system not
having enough service capacity, rather than other customers being present that
have to be served before this customer. When μ increases slightly, most of the
customers are still waiting ‘alone’ in the system, so the mean delay decreases
(dramatically). For even higher μ, the positive effect of increasing μ is reduced by
increasing λ. For increasing λ, the mean buffer occupancy, therefore, increases,
while the mean delay evolves to a constant value for μ going to ∞. We further
note that a higher variance of the number of per-slot arrivals leads to higher
mean delays and buffer occupancies.

Finally, we keep the mean capacity μ constant and vary the mean arrival rate
λ and the mean service demand s, so as to keep the product λs constant. In
Fig. 3, we depict the mean delay as a function of s, when the service demands
are deterministic, geometric or bursty (according to (46)), for Poisson arrivals,
ρ = 0.5 and for μ = 0.2 (Fig. 3(a)) and μ = 10 (Fig. 3(b)). We perceive that
the mean delay increases dramatically when s increases, even when λ decreases
inversely proportionally. This is easily explained intuitively; increasing s and
decreasing λ entails less customer arrivals and a larger number of work units
per customer. As a result, the work-arrival process (i.e., the sequence of work
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Fig. 3. Mean delay E[d] vs. the mean demand s for λs a constant, Poisson arrivals and
ρ = 0.5

units that enter the system during consecutive slots) is burstier and thus leads
to larger delays. We also notice that a higher variance of the service demands
leads to a higher increment of the mean delay when s increases.

8 Conclusions

We have obtained explicit expressions for the main performance measures of
a basic discrete-time queueing model with variable service capacity. Numbers
of arrivals per slot and service demands have general distributions. The main
restriction seems to be the assumption that service capacities are i.i.d. and ge-
ometrically distributed. Although these assumptions may not be as general as
one would like, they do play a role in the analytic tractability of the model, and
they allow to study the behavior of a variable service-capacity system in concep-
tual terms. We have discovered the remarkable “geometric invariance” property
in case of geometric service demands. Numerical results show, however, that in
more general conditions, changing one of the system parameters can have an
undeniable impact on the performance, even when the load is kept constant.

As future work, more general service-capacity distributions can be considered
than the geometric distribution. In fact, some literature exists on similar models
whereby the service capacity is variable and not geometric. E.g., in [3,11,15], a
discrete-time queueing model is studied with constant service times of 1 slot each
and a constant number of servers, of which a variable number is available from
slot to slot. In terms of our model, this comes down to assuming that S(z) = z
and the service-capacity distribution has finite support, i.e., R(z) is a polynomial.
Although these papers consider non-geometric service capacities, they are not
more general than the present study: the analysis in these papers relies heavily
on the polynomial nature of R(z) and on the deterministic (single-slot) nature
of the service times (two restrictions that the present model does not have).

Acknowledgment. The second author is a Postdoctoral Fellow with the Re-
search Foundation - Flanders (FWO-Vlaanderen), Belgium.
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Abstract. We consider open Jackson queueing networks with mixed fi-
nite and infinite buffers and analyze the efficiency of sampling from their
exact stationary distribution. We show that perfect sampling is possible,
although the underlying Markov chain has a large or even infinite state
space. The main idea is to use a Jackson network with infinite buffers
(that has a product form stationary distribution) to bound the num-
ber of initial conditions to be considered in the coupling from the past
scheme. We also provide bounds on the sampling time of this new perfect
sampling algorithm under hyper-stability conditions (to be defined in the
paper) for each queue. These bounds show that the new algorithm is con-
siderably more efficient than existing perfect samplers even in the case
where all queues are finite. We illustrate this efficiency through numerical
experiments.

1 Introduction

The stationary behavior of queueing networks (QNs) can only be obtained quite
efficiently under specific assumptions that yield the so called product-form prop-
erty; e.g., [7]. This property means that the stationary probability distribution of
these networks can be decomposed, up to a normalizing constant, in the product
of the marginal distributions of each network node (or queue). In several cases,
product-form QNs are restrictive because they often assume that nodes have in-
finite buffer sizes or that the behavior of a network node does not depend on the
state of other nodes; e.g., [6]. In the context of Internet networks, blocking and
rejection mechanisms arise due to finite-buffer constraints and state-dependent
routing. While it is possible to obtain the stationary distribution of non-product-
form QNs through the solution of a set of linear equations, i.e., the global-balance
equations [2], the huge size of their state space makes this approach of practical
interest only for small networks. In this setting, simulation is a useful approach
to obtain robust measures and insights on the stationary performance.

At the cost of a slightly higher computational complexity than Monte Carlo
simulation, the exact stationary distribution can be sampled in finite time using
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a technique called coupling from the past (see the seminal work by Propp and
Wilson [11]). Unlike Monte Carlo simulation, this powerful technique produces
independent samples of ergodic finite Markov chains exactly distributed according
to their stationary distribution. For this reason, this technique is also known as
perfect sampling algorithm (PSA) and will be denoted by PSA in the remainder
of the paper.

This technique has been used to design simulation algorithms for queueing
networks with finite capacity buffers and rather general routing policies [12].
The main assumption needed to make these algorithms work is that the state
space is finite (or equivalently that the buffer capacities are all finite).

In this paper we present a new network simulation algorithm that can handle
finite and infinite buffers at the same time, with rejection of jobs arriving at a
saturated queue. We also derive a bound on its sampling time complexity and
show that it does not depend on the size of the state space, under a hyper-stability
condition (defined in section 4).

Related Work. As mentioned before, the original perfect sampling algorithm
has been adapted for the simulation of monotone queueing networks in [12]. The
complexity of this algorithm has been analyzed in [4] for acyclic networks, while
cyclic networks have been studied in [1].

A series of papers [3, 5, 9, 10] propose new perfect sampling algorithms (in-
troducing new ideas such as envelopes, splitting and skipping) for non-monotone
queueing networks. However, in all cases, it is essential that the underlying
Markov chain has a finite state space.

In [8], the concept of bounding process is introduced. The coupling between
the original process and the bounding process is different from what we propose
here. Actually we could not see how to use the coupling proposed in [8] when the
bounding process is not reversible. Our technique to construct the forward and
the backward chains does not use the same events for both chains but is based
on the same random innovations.

Outline. In section 2, we show how to use this concept for open Jackson queue-
ing networks with mixed finite and infinite buffers and in section 3 we propose
a new PSA based on this approach. We prove that this algorithm constructs
samples of the exact stationary distribution of the number of jobs in all queues.
In section 4 we establish a theoretical bound on the expected simulation time.
Finally, in section 5 we show that in the case where all buffers are finite our
algorithm clearly outperforms previous perfect samplers that all have larger sim-
ulation times. We illustrate this with numerical experiments in section 6.

2 Queueing Network Model

We consider an open Jackson queueing network (JQN) J with M queues. The
vector C = (C1, . . . , CM ) denotes the buffer size of each queue. Note that for
any i, Ci ∈ N∪∞, i.e. the buffers can either be finite or infinite. For 1 � i � M ,
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we denote by ei the vector in ZM with all the components equal to 0, except for
component i that is equal to 1.

An infinite stream of jobs that follow a Poisson process with rate λ0 joins the
JQN from an external source (numbered 0 in the following). The fact that the
external source is seen as a node of the network (numbered 0) will unify the
notations in the rest of the paper. To take this one step further, we also denote
μ0

def= λ0. The probability that a job joins queue i, upon arrival to the network,
is p0i. In queue i (i > 0), each job requires some processing for an exponentially
distributed amount of time with mean service rate μi. The service discipline of
each queue i is work-conserving. Upon completion of service at queue i, a job is
sent to queue j with probability pij , and it is accepted if queue j has an available
slot (i.e., if it is non-saturated), otherwise the job is lost. The probability that a
job leaves the network after service at i is pi0. We make the classical assumption
that the matrix P = (pi,j)i,j∈{0,...,M} is irreducible. This implies that all queues
always get new jobs and that all jobs eventually leave the network.

Under the foregoing assumptions, the stochastic process

{(X1(t), . . . , XM (t)) ∈ ZM : 0 ≤ Xi(t) ≤ Ci, ∀i}t≥0,

is a continuous-time Markov chain where Xi(t) denotes the number of jobs in
queue i at time t. The space of all the possible states is S def= {x ∈ ZM : 0 ≤
xi ≤ Ci, ∀i}. Our main notation is summarized in Table 1.

2.1 Discrete-Event Definition of JQN

The JQN J with M queues described above can be seen as a discrete-event sys-
tem with a single type of events, namely aij , (i, j ∈ {0, 1, . . . , M}) corresponding
to the service of one job in queue i that then joins queue j. The dummy queue 0
corresponds to the outside world: An event of type a0j is an exogenous arrival
in queue j and an event of type ai0 corresponds to the departure of a job from
queue i. If queue i is empty then event aij has no effect on the system. The set
of all events is denoted by A.

The rate of event aij is γij and it is independent of M and C, for any i, j.
Using the previous description of a JQN, for all i, j ∈ {0, 1, . . . , M}, γij = μipij .
The total event rate Γ

def=
∑M

i,j=0 γij is finite (we set γ00 = 0).
The continuous-time Markov chain described above can be transformed into a

discrete-time Markov chain (Xn)n∈N with the same stationary distribution using
uniformization by constant Γ . Using the foregoing assumption that the routing
matrix P is irreducible, this discrete chain is irreducible and aperiodic. The
evolution of the Markov chain (Xn)n∈N can be written under the form Xn+1 =
φ(Xn, Un+1) where (Un)n�0 are i.i.d random variables, uniformly distributed
over [0, 1].

The interval [0, 1] is partitioned into intervals Aij , corresponding to the events
aij , 0 � i, j � M . The interval Aij is of length γij/Γ , corresponding to the
probability of event aij . The forward transition function of the chain φ : S ×
[0, 1] → S is defined as follows:
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Table 1. Notation (in order of appearance)

QN Queuing network
JQN Jackson queuing network
PSA Perfect sampling algorithm [11]
J Jackson network to be sampled (finite/infinite queues)
M Number of queues
Ci Capacity of queue i
C Vector of queue capacities
ei Unit vector: with zero coordinates except the i-th one that is equal to 1.
λ0 Total exogenous job arrival rate (also μ0 = λ0).
p0i Fraction of exogenous jobs arriving at queue i
pij Routing probability from queue i to j
pi0 Probability that after service completion at queue i a job leaves the system
μi Service rate of queue i
S State space of the CTMC
aij Event “job leaving queue i and joining queue j”
A Set of all possible events
γij Rate of event aij (γij = μipi,j)
Γ Total event rate (Γ def

=
∑

ij γij)
Xn Uniformized, discrete-time Markov chain: number of jobs in each queue at time n

φ(x, u) Forward transition function from state x with innovation u
Un Sequence of i.i.d. random variables uniformly distributed over [0, 1]
J∞ Infinite-queue JQN
X∞

n Uniformized DTMC for J∞, the infinite-queue JQN
φ∞(x, u) Forward transition function for J∞, the infinite-queue JQN

� componentwise partial order
λi Total arrival rate in queue i (λi =

∑M
j=0 λjpji).

qij Routing probabilities for the reversed JQN.
θ0j Exogenous arrival rate in queue j for the reversed JQN.

β∞(x, u) Backward transition function
1A Indicator function: 1 if proposition A is true, 0 otherwise

X(1) Upper bounding process
X(2) Lower bounding process

PSA-BP Perfect sampling with bounding process (proposed algorithm)
Y ∞

n Reversed chain of X∞
n

Yn Reversed chain of Xn

τ (X(2), X(1)) Coalescence time of the trajectories of the chain Xn starting in X(1) and X(2).
Si Expected stationary size in queue i of the infinite-queue JQN
S Maximum expected stationary queue size: S

def
= maxi Si

– If u ∈ Aij then φ(x, u) = ((x − ei) ∨ 0 + ej1x−ei�0) ∧ C;
– If u ∈ A0j then φ(x, u) = (x + ej) ∧ C;
– If u ∈ Ai0 then φ(x, u) = (x − ei) ∨ 0.

This transition function can be extended to any finite sequence (u1, u2, . . . , uk) ∈
[0, 1]k, k ∈ N, by defining φ : S × [0, 1]k → S recursively:

φ(x, u1, u2, . . . , uk) def= φ(φ(x, u1), u2, . . . , uk).



140 A. Bušić, B. Gaujal, and F. Perronnin

2.2 Network with Infinite Buffers

Starting from J , we construct a new network J∞ that is identical to J except
for the buffer sizes: in J∞ all queues have infinite capacities. The state space of
this new network will be denoted by S∞ def= {x ∈ ZM : xi ≥ 0, ∀i}.

We further assume here that each queue of the infinite JQN is stable, i.e., the
total arrival rate at queue i λi, determined the traffic equation λj =

∑M
i=0 λipij

for 1 � i � M , satisfies λi < μi for 1 � i � M .
The corresponding discrete-time Markov chain is denoted (X∞

n )n∈N. The evo-
lution of the Markov chain (X∞

n )n∈N can be written under the form X∞
n+1 =

φ∞(X∞
n , Un+1) where:

– If u ∈ Aij then φ∞(x, u) = (x − ei) ∨ 0 + ej1x−ei�0;
– If u ∈ A0j then φ∞(x, u) = x + ej ;
– If u ∈ Ai0 then φ∞(x, u) = (x − ei) ∨ 0.

Similarly as before, φ∞ : S∞ × [0, 1]k → S∞ is defined recursively:

φ∞(x, u1, u2, . . . , uk) def= φ∞(φ∞(x, u1), u2, . . . , uk).

We consider the usual product partial order of states: for x,y ∈ S∞,

x � y iff xi � yi, 1 � i � M.

This new chain is an upper bound for the original system:

Lemma 1. For any u ∈ [0, 1], and any x ∈ S, functions φ and φ∞ satisfy:

φ(x, u) � φ∞(x, u).

Proof. This follows directly from the fact that for any u ∈ [0, 1], and any x ∈ S,
φ(x, u) = φ∞(x, u) ∧ C. �

To establish the comparison between the two chains, we also use the fact that
φ∞ is monotone in x. (Actually, the original system is also monotone, but we do
not need it for the proof of the bound.)

Lemma 2. For any u ∈ [0, 1], and any x,y ∈ S∞,

x � y ⇒ φ∞(x, u) � φ∞(y, u).

The proof is straightforward.
Combining the two lemmas, we get the sample path comparison of the two

systems:

Proposition 1. For any (u−t+1, . . . , u0) ∈ [0, 1]t, and any x ∈ S, y ∈ S∞,

x � y ⇒ φ(x, u−t+1, . . . , u0) � φ∞(y, u−t+1, . . . , u0).
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Proof. By induction on t. For t = 1, and any x � y, using first Lemma 1 and
then Lemma 2, we have φ(x, u0) � φ∞(x, u0) � φ∞(y, u0).

Assume now the induction statement is valid for t − 1. Let x � y, and de-
note x′ = φ(x, u−t+1), and y′ = φ∞(y, u−t+1). Using Lemmas 1 and 2, x′ =
φ(x, u−t+1) � φ∞(x, u−t+1) � φ∞(y, u−t+1) = y′. Now φ(x, u−t+1, . . . , u0) =
φ(x′, u−t+2, . . . , u0) and φ∞(y, u−t+1, . . . , u0) = φ∞(y′, u−t+2, . . . , u0), so

φ(x, u−t+1, . . . , u0) � φ∞(y′, u−t+2, . . . , u0)

by induction hypothesis. �
The new Markov chain (X∞

n )n∈N has three interesting properties:

1. As mentioned above, the process (X∞
n )n∈N is a bounding process of the

original process (Xn)n∈N;
2. (X∞

n )n∈N has a unique stationary distribution with the product form prop-
erty:

π∞(x1, . . . , xM ) =
M∏
i=1

(1 − ρi)ρxi

i , (1)

where ρi is the ratio of the total arrival rate in queue i, λi over the service
rate μi. The arrival rate in queue i satisfies the routing balance equations:
λi =

∑M
j=0 pjiλj , for all i.

3. The construction of Markov chain (X∞
n )n∈N can be reversed in time.

Reversed Chain. The reversed chain can also be modelled as a Jackson net-
work with M queues with service rate μi in queue i, whose routing probabilities
qij

def= pji.λj/λi, the probability that a customer leaves the system at queue i is
qi0

def= p0i.λ0/λi, and the exogenous arrival rate in queue j is θ0j
def= pj0λj .

Similarly as for the forward construction of the Markov chain, we define events
bi,j and corresponding intervals Bi,j , partitioning [0, 1], of length μiqij/Γ if i �= 0
and θ0j/Γ otherwise.

The backward transition function β∞ : S∞× [0, 1] → S∞ is defined as follows:

– If u ∈ B∞
ij then β∞(x, u) = (x − ei) ∨ 0 + ej1x−ei�0;

– If u ∈ B∞
0j then β∞(x, u) = x + ej ;

– If u ∈ B∞
i0 then β∞(x, u) = (x − ei) ∨ 0.

3 Perfect Sampling Algorithm

One can use the chain X∞
n to obtain the bounds for the initial condition of the

original chain Xn, as shown in Algorithm 1. Here is how this algorithm works.
First, generate at time 0 a stationary sample Y ∞ of the infinite system according
to the product form distribution π∞. Starting from Y ∞, construct a backward
trajectory up to time −t. At time −t, start a forward simulation using the same
innovation sequence from states X(2)(−t) = 0 and X(1)(−t) = Y ∞(−t). If the
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Algorithm 1. PSA with a Bounding Process (PSA-BP)
Data:
(1) An infinite i.i.d. sequence {U−n}n∈N

with U−k uniformly distributed in [0, 1].
(2) A state Y ∞ generated according to the distribution π∞.
Result: A state sampled from the stationary distribution of J
begin

t := 1;
repeat

for k = �t/2� to t − 1 do
Y ∞ := β∞(Y ∞, U−k);

X(1) := Y ∞ ∧ C; X(2) := 0;
for k = t − 1 downto 0 do

X(1) := φ(X(1), U−i);
X(2) := φ(X(2), U−i);

t := 2t;
until X(1) = X(2) ;
return X(1);

end

trajectories do not coalesce at time 0 (i.e. X(2)(0) and X(1)(0) are not equal),
then double the length of the simulation time to 2t. As shown in the proof below,
this does not introduce a bias in the output sample.

Theorem 1. The Algorithm PSA-BP terminates with probability 1. The output
of Algorithm PSA-BP is a state whose distribution is the stationary distribution
over the network J .

Proof. We first assume that the Algorithm PSA-BP terminates with probability
1, and show that in that case, the output of Algorithm PSA-BP is a state whose
distribution is the stationary distribution over the network J . Then we will
prove that the Algorithm PSA-BP terminates with probability 1.

Let us define the Markov chain (Y ∞
n )n∈N to be the reversed chain of (X∞

n )n∈N,
and (Yn)n∈N to be the reversed chain of (Xn)n∈N.

Since X∞
n is a bounding process of Xn, the reversed process Y ∞

n is also a
bounding process of the reversed process Yn. This implies that there exists a
backward transition function β : S × [0, 1] → S for the chain Yn such that for
any (u0, . . . , u−t+1) ∈ [0, 1]t,

β(x, u0, u−1, . . . , u−t+1) � β∞(y, u0, u−1, . . . , u−t+1), (2)

where β(x, u0, . . . , u−t+1)
def= β(β(x, u0), u−1, . . . , u−t+1) is the usual extension

of the function β to any finite sequence of innovations.
This backward transition function cannot be constructed explicitly in general.

Such a construction is not needed here, only the existence property is needed.
In the proposed PSA-BP Algorithm, the variable Y ∞(0) is generated accord-

ing to the stationary distribution of X∞
n . It is possible to define Y (0) such that
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Y (0) � Y ∞(0) and Y (0) has the stationary distribution of Yn (and of Xn). Now,
for any deterministic time t, let us define Y (−t) = β(Y (0), u0, u−1, . . . , u−t+1),
using the backward transition function β of the chain Yn (see the blue dotted line
in Figure 1), so that it also has the stationary distribution of Xn. By definition
of β, from relation (2) one has Y (−t) � Y ∞(−t). Now, starting from time −t
one has

Y ∞(−t) = X(1)(−t) � Y (−t) � X(2)(−t) = 0.

Moving forward in time, this implies that

X(1)(0) � φ(Y (−t), u−t+1, . . . , u0) � X(2)(0).

Since, φ(Y (−t), u−t+1, . . . , u0) has the stationary distribution of Xn, this is also
the case for X(1)(0) and for X(2)(0), when they coalesce. This construction is
illustrated in Figure 1.

Y (−t)

0

X(2)(−t)

−t

X(1)(0) = X(2)(0)

Y ∞(0)

Y (0)

X(1)(−t) = Y ∞(−t)

Fig. 1. Illustration of the proof. The variable Y (−t) has the stationary distribution of
Xn and is below Y ∞(−t).

The result being proved for any deterministic time t, the rest of the proof for
finite buffers is similar to the proof of the classical perfect sampling algorithm
(see for example the original proof in [11]).

Finally, we prove that the Algorithm PSA-BP terminates with probability 1.
The random variable Y ∞(−t) is distributed according to the stationary distri-
bution π∞. Thus, the stability assumption for chain (Y ∞)n∈N implies that we
have P (Y ∞(−t) = 0) > 0 (the zero state is to be understood componentwise).
In that case, since X(1) and X(2) are both bounded by (Y ∞)n∈N, we have that
X(1)(−t) = X(2)(−t), so we also have X(1)(0) = X(2)(0) and the algorithm ter-
minates. By the Borel-Cantelli lemma, this happens almost surely in finite time
so Algorithm PSA-BP terminates with probability 1. �

4 Complexity Analysis

The simulation time of PSA-BP can be decomposed into three steps:
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1. The generation of a sample Y ∞ with the stationary distribution of the
bounding process. Since this distribution is product form and since for each
queue the geometric law can be easily sampled in constant time, the time
complexity of this first step is O(M).

2. To obtain random events from the innovation sequence {U−n}n∈N
, we use

the Walker’s alias method [13] (for sampling discrete random variables in
O(1) time). The construction of alias table is linear in number of events,
so this pretreatment can be done in O(M2) time. Given the alias tables for
events ai,j and bi,j, the values of φ(x, u) and β∞(x, u) can be computed in
O(1) time.

3. The construction of the backward trajectory of Y ∞ as well as the forward
trajectories of X(1) and X(2) have the same expected duration, smaller than
12Eτ(X(2), X(1)), where τ(X(2), X(1)) is the coalescence time of two trajec-
tories of the Markov chain Xn, starting in X(1) and X(2) respectively, under
the same sequence of events.

A queue j ≥ 1 in a Jackson network J is hyper-stable if γj
def=

∑M
i=0 γij < μj .

The network is hyper-stable if all queues j ≥ 1 are hyper-stable. Note that
hyper-stability implies stability since λj � γj , j ≥ 1.

Theorem 2. If J is hyper-stable, then the expected sampling time of PSA-BP
satisfies Eτ(X(2), X(1)) � cσ2M

∑M
j=1 Sj, where c and σ are given in Equations

(5) and (6) resp. and Sj is the expected stationary size of queue j of the infinite
system J∞.

Proof. Starting from any state x and using any unit vector ei, let us consider
the trajectories X1(t), X2(t) and X0(t) of the forward Markov chain starting
respectively from states x+ ei, x and 0, under the same sequence of innovations
u1, . . . ut, . . .. up to the time when they all coalesce. By definition, X1(0) = x+ei,
X2(0) = x, X0(0) = 0, and for all t > 0 and i = 0, 1, 2, Xi(t)

def= φ(Xi(t− 1), ut).
At the coalescence time tc, X1(tc) = X2(tc) = X0(tc).

Let us also define the coalescence time t1 of the first two trajectories: X1(t1) =
X2(t1) and t0 of the last two trajectories: X2(t2) = X0(t2). By definition, t1 � tc
and t0 � tc.

Now only two things can happen: either X2(t) and X0(t) meet first (t0 < t1)
or X1(t) and X2(t) meet first (t1 � t0).

In the first case, the global coalescence time can be decomposed into t0 plus
the coalescence time of the two remaining states X ′

1
def= X1(t0) and X ′

0
def=

X0(t0), equal to tc − t0. In the second case, clearly t0 = tc. In both cases, tc
can decomposed into tc = t0 +(tc − t0) (that is degenerated in the second case).
Using the definitions of the coalescence time, this equality can be re-written

Eτ(x + ei, 0) = Eτ(x, 0) + Eτ(X ′
1, X

′
0). (3)

By inspecting all the possible events, it is easy to see that, since the L1 distance
between the original states x and x + ei is one, then the distance between X ′

1
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and X ′
0 is also at most one. This means that in the first case, there exists a unit

vector ek, k ∈ {1, . . . , M} such that X ′
1 = X ′

0 +ek. In the second case, X ′
0 = X ′

1,
so that Eτ(X ′

1, X
′
0) = 0. It was shown in [1] that if all queues are hyper-stable,

for any state x and any unit vector ek, then

Eτ(x + ek,x) ≤ cM

(
maxi

γi

μi

1 − maxi
γi

μi

)2

, (4)

where
c

def=
2

mini:pi0>0 pi0
. (5)

We also define

σ
def=

maxi
γi

μi

1 − maxi
γi

μi

. (6)

Since this bound (4) is uniform in x and k, then using the recurrence equations
(3) for any state x,

Eτ(x, 0) = Eτ(x − ei, 0) + Eτ(X ′
1, X

′
0) (7)

� Eτ(x − ei, 0) + cMσ2 (8)

= cMσ2
∑

i

xi. (9)

Now, let us consider the sampling time of PSA-BP. As mentioned before, this
time is less than 12Eτ(X(1), 0), where X(1) is equal to state Y ∞(−t). At each
time t, Y ∞(−t) is stationary and by monotonicity of the coalescence time with
respect to its starting point, this means that if tc = τ(X(1), 0) then EY ∞(−tc) �
(S1, . . . , SM ) where Si

def=
λi
μi

1−λi
μi

is the expected size in queue i in the network

J∞. Therefore,

Eτ(X(1), 0) � cMσ2
M∑

j=1

Sj . (10)

5 Comparison with the Classical Perfect Sampler

As discussed earlier, our new algorithm allows one to get perfect sampling of
Jackson networks with finite and infinite buffers. This was not possible with the
classical perfect sampling algorithms. Actually, this new approach also brings
improvements in the case where all buffers are finite. In that case, it reduces
the sampling time by a factor corresponding to the ratio between the maximum
capacity of the buffers over the expected size of the queues under the stationary
law of the bounding process. This is detailed below.

Let us first recall the classical perfect sampler for monotone finite Markov
chains derived from Jackson queueing networks.
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Algorithm 2. Coupling from the past (PSA) [11]
Data: {U−n}n∈N

Result: A state sampled from the stationary distribution of the JQN
begin

t := 1;
repeat

Z(1) := C; Z(2) := 0;
for i = t − 1 downto 0 do

Z(1) := φ(Z(1), U−i);
Z(2) := φ(Z(2), U−i);

t := 2t;
until Z(1) = Z(2) ;
return Z(1);

end

It is well known that Algorithm 2 outputs samples of the stationary distribu-
tion of the network as long as all buffers are finite. Otherwise, if X(1) has some
infinite coordinates, the algorithm does not converge.

The time complexity in the case where J is hyper-stable with finite queues
has been studied in [1]. The expected simulation time to get one sample is
O(M2f(M)

∑M
i=1 Ci) where f(M) is the average number of connections per

node.
As shown in Theorem 2, the expected coalescence time of our new sampler

is O(Mσ2
∑M

i=1 Si) (where Si is the expected stationary size of queue i in the
infinite system J∞). This may result in a big improvement over the classical
algorithm. Indeed, if the load in all queues is smaller than 0.8 (this is a typi-
cal situation), then S � 4, which is usually much smaller than the buffer size
(typically of order 100, 1000 or more).

Finally, the coalescence time of PSA-BP is stochastically smaller than the
coalescence time of PSA since the extreme starting point X(1)(−t) = Y ∞(−t)∧C
of the former is always smaller than the starting time of the latter, Z(1)(−t) = C.

In the next section, we show on a numerical example that the PSA-BP algo-
rithm 1 drastically outperforms the classical PSA Algorithm 2 with respect to
efficiency.

6 Numerical Experiments

We have implemented both algorithms over a standard laptop computer and
tested them over a queueing network where the M queues form a cycle, with
the same service time in each queue, μi = μ, the same exogenous arrival rate in
each queue (λ) and the same probability of leaving the system at each queue:
pi0 = p.

In that case, the infinite-queue system is stable if and only if λ/p < μ. We
have run both simulators and we measured the coalescence time (number of steps
t in Algorithm 1), as well as the simulation time (in seconds). Figures 2 and 3
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Fig. 2. Comparative coalescence time (number of steps) of Bounding-Process PSA
and Classic PSA. Circular networks with M=50 queues, λ = 4, μ = 10, pi0 = 0.5. The
capacity C of each queue varies from 1 to 300.

respectively present those values (with 95 % confidence intervals computed with
100 experiments per setting) when the capacity of the queues ranges from 1 to
300. One can notice that the coalescence time as well as the simulation time of
the classical perfect sampling algorithm grow linearly with the capacity of the
buffers, as predicted in [1]. The succession of flat parts with steep parts comes
from the doubling period scheme of the algorithm: the coalescence time of the
algorithm is the smallest power of 2 larger than the actual coalescence time.

As for the new algorithm, the coalescence time remains bounded (as shown by
Theorem 2) and the performance gap with the classical case becomes significant
as soon as the capacity becomes larger than 10 (on the simulated example).

On an absolute basis, we think it is remarkable to sample the stationary
distribution of such a queueing network, whose state space is 30050 ≈ 10123 in
less than 50 milliseconds over a standard laptop computer.
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Fig. 3. Comparative sampling time (CPU time) of Bounding-Process PSA and Classic
PSA. Circular networks with M=50 queues, λ = 4, μ = 10, pi0 = 0.5. The capacity C
of each queue varies from 1 to 300.

7 Conclusion

In this paper we have presented a new perfect sampler for Jackson queueing
networks with finite and infinite capacities in queues. A complexity analysis of
the algorithm shows that its expected sampling time does not depend on the ca-
pacities. This is a remarkable improvement over classical perfect samplers whose
sampling time increase at least linearly in the capacities, or fails when some ca-
pacities are infinite. Actually our approach is quite general and can be used for
any Markov chain for which a bounding process with a computable stationary
distribution exists. In the future, we plan to construct similar bounding processes
for a larger class of networks than the open Jackson networks with losses.
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Abstract. This paper investigates the performance of different
hybrid push-pull systems with a decoupling inventory at the semi-finished
products and reordering thresholds. Raw materials are ‘pushed’ into the
semi-finished product inventory and customers ‘pull’ products by placing
orders. Furthermore, production of semi-finished products starts when the
inventory goes below a certain level, referred to as the threshold value and
stops when the inventory attains stock capacity. As performance of the
decoupling stock is critical to the overall cost and performance of man-
ufacturing systems, this paper introduces a Markovian model for hybrid
push-pull systems. In particular, we focus on a queueing model with two
buffers, thereby accounting for both the decoupling stock as well as for
possible backlog of orders. By means of numerical examples, we assess the
impact of different reordering policies, irregular order arrivals, the set-up
time distribution and the order processing time distribution on the per-
formance of hybrid push-pull systems.

1 Introduction

In a make-to-stock system (push type), products are stocked in advance, while
in a make-to-order system (pull type), a product only starts to be manufac-
tured when a customer order is placed, see a.o [24,16,12,25,7]. Nowadays, as a
means to respond quickly to growing variety, shorter product life cycles while
keeping inventory costs as low as possible, hybrid push-pull systems are intro-
duced [23]. An important issue in the overall performance of such hybrid systems
is the position of the decoupling point [23,20]. Hoekstra et. al [10] defined the
customer order decoupling point (CODP) concept. These authors considered
market, product and production related factors as well as the desired service
level and associated inventory costs to locate the optimal decoupling point. Un-
der different hybrid push/pull control policies, Pandey and Khokhajaikiat [19]
conducted a case study concerning the design and performance evaluation of a
multistage production system. Results indicated that the choice of the optimal
decoupling positions changes with the extent of raw material constraint operat-
ing at the stages and the demand lead time variabilities. To account for a degree
of customisation and short delivery times, Blecker and Abdelkafi [2] considered a
decoupling point at the inventory of semi-finished products. Here, after an order
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is received, only the final completion step still needs to be done. A case study
at Phoenix showed that, by a hybrid approach, the company would save 20 to
25 percent of the total late costs and inventory costs compared to a pure push
approach, which was at that time being used [5]. Research on the performance
of the decoupling inventory in a hybrid push-pull system is therefore of main
importance. This is the subject of the present paper.

In the present setting, we use a queuing theoretic approach to study the hy-
brid push-pull system. Queuing theory has already been successfully applied
to assess decoupling points. Kaminsky and Kaya [13] considered a variety of
combined make-to-order (MTO) and make-to-stock (MTS) supply chains with
a single manufacturer and a single supplier in order to minimise a function of
the total inventory, lead times and tardiness. The arrival process at the man-
ufacturer is treated as a single facility with multiple classes of Poisson arrivals
scheduled FCFS. As in previous research, they concluded that costs can be cut
dramatically by using a combined system instead of pure MTO or MTS systems.
Ohta and al. [18] analysed a multi-product inventory system where demand for
each item arrive according to a Poisson process and the production time has an
Erlang distribution. An optimality condition that specifies whether each product
should be produced MTS or MTO is proposed. Bell [1] investigated a decoupling
inventory between two successive production stages, the demand at stage 2 be-
ing independent from production at stage 1. The stages are decoupled by storing
intermediate products. Limits on the available storage capacity and the rates of
flow production into and out of the decoupling inventory are set, which enables
the firm to determine the optimum capacities for the storage facility and to de-
termine the value of an additional supply of intermediate product. Chang and
Lu [4] studied a one-station production system consistent with MTO and MTS
productions and dealing with two types of random demands: ordinary demand
and specific demand. In this system, both types of demand arrive according to a
Poisson process and production times of the workstation are exponentially dis-
tributed. Specific demand has a higher priority with respect to ordinary demand
and the performance of this system is studied by means of matrix-geometric
methods.

The present study of the decoupling stock closely relates to literature on two-
part assembly systems, sometimes termed paired queues or kitting processes. For
such systems, there are two queues, each storing a specific part, and production
only starts when both part buffers are non-empty. In the current setting, one
part-buffer corresponds to the decoupling stock, while the other corresponds to
the list of backlogged orders. Also, production only starts when both buffers are
non-empty. Indeed, each delivery of a finished product requires both the order
specifications and a semi-finished product and can only be satisfied if both are
present. If both part-buffers have unlimited capacity, Harrison [9] was the first
to prove that, assuming no arrival control strategy, this queueing system is in-
herently unstable. In particular, he studied the multiple-input extension of the
GI/G/1 queue in which arrivals in each stream are described by an independent
renewal process and service times are independent and identically distributed.
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He showed that part waiting times converge to non-defective limiting distribu-
tions only if the buffer capacities are bounded. This was also demonstrated by
Latouche [14] who termed the two-part assembly system as waiting lines with
paired customers. He considered a system of infinite capacity queues with Pois-
son arrivals for both parts and exponential services. The steady state is attained,
i.e. the system is stable, if the arrival rates depend on the difference between
queue lengths. [3] extended Latouche’s research by considering two exponential
distributions, one for the part processing distribution, i.e. the synchronisation
phase, and the other for the assembly operation distribution. Approximations for
the throughput rate and average queue length were given. Lipper and Sengupta
[17] is another extension of the work of Latouche. In this paper, multiple Poisson
input streams arrive in buffers with finite capacity. A more general structure in
which parts are withdrawn from infinite pools and processed prior to assembly
has been studied by Hopp et. al [11] and Som et. al [22]. Som and Wilhem [21]
studied a two-queue system in which each part is processed according to an expo-
nential distribution and the assembly operation times are generally distributed.
They follow a matrix-geometric approach to numerically determine the marginal
distributions of both kit and end-product inventory positions. Finally, assuming
finite part-buffers, a two-part assembly system in a Markovian environment is
studied in [6] by numerically solving the corresponding Markov chains by the
generalized minimal residual method.

Furthermore, this article analyses hybrid push-pull systems with a threshold
inventory: once the stock of semi-finished products drops below some level, this
is either communicated to the production department if the parts are produced
in-house or an order is placed with a third-party company if this is not the case.
In both cases, it may take some time, the reordering time, before the inventory
is replenished. Then, production stops when the semi-finished product inventory
level attains stock capacity. The studied inventory control system closely relates
to the well-known economic order quantity (EOQ) model [8]. This is a determin-
istic fluid-model for a single inventory and determines optimal reordering policies
which balance the purchase, order and storage costs. While the single-part inven-
tory problem is well understood, both in a deterministic and a stochastic setting,
many issues of optimal inventory management in the multi-queue inventory case
remain unresolved, most prominently in the stochastic setting.

In contrast to previous research, this paper investigates a two-queue system
with one finite and one infinite buffer. Indeed, to limit involved costs, the de-
coupling stock needs to be sufficiently small. Hence, finite capacity is assumed.
However, no such assumption is imposed for the other queue: the order backlog
queue has an infinite capacity. Assuming a finite capacity product queue also
assures the existence of a steady-state solution, provided that the arrival rate
of orders is limited. In particular, this article analyses hybrid push-pull systems
under different threshold policies, assuming that production stops when the in-
ventory level reaches maximum capacity. Comparing versatility and numerical
tractability, we study the decoupling stock in a Markovian environment as in
[6]. This approach allows for assessing the effect of variability in the production
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process of semi-finished products, the ordering process and the delivery process
on the performance of the decoupling stock.

The remainder of this paper is organised as follows. Section 2 describes the
decoupling stock model at hand. In section 3, the decoupling inventory system is
analysed as a quasi-birth-and-death-process (QBD) and a number of specific ap-
plication scenarios for the decoupling inventory system are introduced. Also, the
numerical solution methodology is discussed and relevant performance measures
are determined. To illustrate our approach, section 4 considers some numerical
examples. Finally, conclusions are drawn in section 5.

2 Model Description

The decoupling stock is modelled as a queueing model with two queues, as
depicted in Figure 1. The product queue has finite capacity Cp and stores the
semi-finished products prior to being processed to finished products. Moreover,
production of semi-finished starts when the inventory goes below the threshold
value Tp and stops when the inventory level reaches capacity Cp. The order
queue keeps track of the orders that have not yet been delivered and has infinite
capacity. Arriving orders are served in accordance with a first-come-first-served
queueing discipline. Each order takes a semi-finished product from the product
queue and completes the product in accordance with order specifications. Note
that the two queues in the model at hand are tightly coupled. Departures from
the product queue are only possible when there are orders. Similarly, departures
from the order queue are only possible if there are semi-finished products in the
product queue.

Arrivals at both queues are modelled according to possibly dependent arrival
processes and order completion is not instantaneous. For ease of modelling, it
is assumed that there is a modulating Markov chain, arrival and service rates
depending on the state of this modulating chain. To be more precise, the decou-
pling inventory system is a three-dimensional continuous-time Markov Chain
with infinite state space N × {0, 1, 2, . . . , Cp} × K, K = {0, 1, . . . , K} being the

production Lp
Cp

product queue

Tp

∞

order backlog

Lo orders

order processing

M

Fig. 1. Decoupling inventory of semi-finished products in a hybrid push-pull system



154 E. De Cuypere, K. De Turck, and D. Fiems

state space of the modulating chain. At any time, the state of the decoupling
inventory system is described by the triplet [n, m, i], n being the number of
backlogged orders, m being the number of semi-finished products and i being
the state of the modulating chain. We now describe the state transitions.

– The state of the modulating chain can change when there are neither arrivals
nor departures. Let αij denote the transition rate from state i to state j
(i, j ∈ K, i �= j). Further, for ease of notation, let

αii = −
∑
j �=i

αij .

and let A = [αij ]i,j∈K denote the corresponding generator matrix. Further, it
is assumed that when either of the queues is empty, different transition rates
(when there are neither arrivals nor departures) can be specified: let α̂ij and
Â denote the transition rate from state i to state j and the corresponding
generator matrix, respectively.

– The state of the modulating chain may remain the same or may change
when there is an arrival. Let λ

(p)
ij and λ

(o)
ij denote the (marked) transition

rate from state i to state j when there is an arrival at the product queue
and the order queue, respectively. Moreover, let Λp = [λ(p)

ij ]i,j∈K and Λo =

[λ(o)
ij ]i,j∈K denote the corresponding generator matrices. Note that marked

self transitions from state i to state i are allowed.
– Analogously, the state of the modulating chain may remain the same or may

change when there is a departure (in each buffer). Let μij and M denote the
corresponding transition rate and generator matrix respectively.

Remark 1. The transition rates are dependent on the product queue size, the
state of the modulating chain and whether the order queue is empty, e.g. there
are no product arrivals when the queue is full, production starts only when the
semi-finished product inventory level goes below the threshold value and there
are only departures if both queues are non-empty.

3 Analysis

3.1 Quasi-Birth-Death Process

The studied Markov process is a homogeneous quasi-birth-and-death process
(QBD), see [15]. In the present setting, the so-called level or block-row number,
indicates the number of backlogged orders while the phase, i.e. the index within
a block element, indicates both the content of the decoupling stock and the state
of the Markovian environment. The one-step transitions are restricted to states
in the same level (from state (n, ∗, ∗) to state (n, ∗, ∗)) or in two adjacent levels
(from state (n, ∗, ∗) to state (n + 1, ∗, ∗) or state (n − 1, ∗, ∗)).
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We then find that the generator matrix of the Markov chain has the following
block matrix representation,

Q =

⎡⎢⎢⎢⎢⎢⎣
L′

p Lo 0 0 · · ·
W Lp Lo 0 · · ·
0 W Lp Lo · · ·
0 0 W Lp · · ·
...

...
...

...
. . .

⎤⎥⎥⎥⎥⎥⎦ . (1)

The blocks are given by,

Lo =

⎡⎢⎢⎢⎢⎢⎢⎣
Λ(0)

o 0 0 · · · 0
0 Λ(1)

o 0 · · · 0
0 0 Λ(2)

o · · · 0
...

...
...

. . .
...

0 0 0 · · · Λ(Cp)
o

⎤⎥⎥⎥⎥⎥⎥⎦ , Lp =

⎡⎢⎢⎢⎢⎢⎣
D(0) Λ(0)

p 0 · · · 0
0 D(1) Λ(1)

p · · · 0
0 0 D(2) · · · 0
...

...
...

. . .
...

0 0 0 · · · D(Cp)

⎤⎥⎥⎥⎥⎥⎦ , (2)

L′
p =

⎡⎢⎢⎢⎢⎢⎢⎣
D(0) Λ(0)

p 0 · · · 0
0 D(1) Λ(1)

p · · · 0
0 0 D(2) · · · 0
...

...
...

. . .
...

0 0 0 · · · D(Cp)

⎤⎥⎥⎥⎥⎥⎥⎦ , W =

⎡⎢⎢⎢⎢⎢⎣
0 0 · · · 0 0

M(1) 0 · · · 0 0
0 M(2) · · · 0 0
...

...
. . .

...
...

0 0 · · · M(Cp) 0

⎤⎥⎥⎥⎥⎥⎦ . (3)

with D(m) = A(m)−∂Λ(m)
o −∂Λ(m)

p −∂M(m) and D(m) = Â(m)−∂Λ(m)
o −∂Λ(m)

p

with m = (0, 1, 2, . . . , Cp) being the number of semi-finished products in the
buffer. Note that ∂X represents a diagonal matrix with diagonal elements equal
to the row sums of X. Intensities in the generator matrices Λo, Λp, D, D and
M are dependent of the product buffer content m. Therefore, we introduce the
superscript (m) to make this dependence explicit. Note that if no superscript is
indicated, the intensities in the generator matrix are equal for all numbers of
semi-finished products in the queue.

To simplify notation, states representing an inactive production and a prod-
uct queue content equal or less than the threshold value, are taken into account
in the generator matrix structure. However, as production is always active when
the semi-finished product inventory level is below the threshold value, the next
transition changes the given inactive background state to an active one. The ma-
trix structure also considers states where the number of semi-finished products
equals capacity and the background state is active. Again, the next transition
changes the background state into an inactive state.

In the general case, arrivals and departures at both queues are modelled
according to possibly dependent Markovian arrival processes (MAP) and phase-
type distributed order processing times, respectively. The Markovian arrival pro-
cesses are described by the generator matrices B(m)

1 and B(m)
3 with arrivals of

semi-finished products and orders respectively and the generator matrices B(m)
0
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and B(m)
2 without arrivals at the decoupling stock and the queue of backlogged

orders respectively. The phase-type distribution is completely characterised by
an initial probability vector τ and the matrix T which corresponds to non-
absorbing transitions [15]. Let t′ = −Te′ be the column vector with the rates to
the absorbing state with e a row vector of ones. We have,

Λp = B(m)
1 , Λo = B(m)

3 , A = B(m)
0 + B(m)

2 + T ,

Â = B(m)
0 + B(m)

2 , M = t′τ .

Before proceeding, we introduce a number of specific application scenarios of the
decoupling inventory system at hand.

Example 1. In the most basic setting, when the semi-finished product inventory
level goes below a given threshold value, semi-finished products arrive in the
queues in accordance with an independent Poisson process with parameter λp

and production stops when the stock capacity is reached. Orders arrive according
to an independent Poisson process with parameter λo and order processing times
are exponentially distributed with parameter μ. In this case, the modulating
state indicates whether the production of semi-finished products is active or
not. We have,

Λp = λpI , Λo = λoI , M = μI , A = Â = 0 .

Here I denotes the identity matrix.

Example 2. To account for variability in the production times of semi-finished
products, we consider a Markovian arrival process with the generator matrices
B

(m)
0 and B

(m)
1 as described above. Assuming Poisson arrivals of orders with pa-

rameter λo and order processing times exponentially distributed with parameter
μ, we have,

Λp = B(m)
1 , Λo = λoI , A = Â = B(m)

0 , M = μI .

Example 3. Unreliability in the ordering process can also be modelled by a
Markovian arrival process. Here, the MAP is described by the generator matrix
B(m)

3 of transitions with order arrivals and the generator matrix B(m)
2 without

arrivals. Retaining exponentially distributed order processing times and assum-
ing Poisson arrivals of semi-finished products, we have,

Λp = λpI , Λo = B(m)
3 , A = Â = B(m)

2 , M = μI .

Example 4. As for the arrival processes, the model at hand is sufficiently flex-
ible to include phase-type distributed order processing times. The phase-type
distribution is completely characterised by an initial probability vector τ and
the matrix T which corresponds to non-absorbing transitions [15]. Let t′ = −Te′

be the column vector with the rates to the absorbing state with e a row vec-
tor of ones. Assuming Poisson arrivals in both buffers (with rate λp and λo,
respectively), we get the following matrices,

Λp = λpI , Λo = λoI , A = T , Â = 0 M = t′τ .
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3.2 Methodology: The Matrix-Geometric Technique

Consider the above defined Markov process on the three-dimensional state space
{(n, m, i) | n ≥ 0, 0 ≤ m ≤ Cp, i = 0, 1, . . . , K} where i denotes the state of
the modulating chain, as the phase set i is defined in the finite state space K
(see section 2). A well-known method for finding the stationary distribution of
QBD processes is the matrix-geometric method. With π(n, m, i) the stationary
probability of the process being in state (n, m, i), and using the vector nota-
tion πk = (π(k, 0, 0), π(k, 0, 1), . . . , π(k, Cp, K)), the probability vectors can be
expressed as,

πk = π0Rk. (4)

where the so-called rate matrix R is the minimal non-negative solution of the
non-linear matrix equation R2W + RLp + Lo = 0. Here, we compute the rate
matrix by implementing the iterative algorithm of [15, chapter 8].

3.3 Performance Measures

Once the steady state probabilities have been determined numerically, we can
calculate a number of interesting performance measures for the decoupling in-
ventory system. For ease of notation, we introduce the marginal probability
mass functions of the queue content of the product queue and the order queue:
π(p)(m) =

∑
i∈K

∑∞
n=0 π(n, m, i) and π(o)(m) =

∑
i∈K

∑Cp

m=0 π(n, m, i).
Note that as the queue of the backlogged orders is infinite, the throughput of

the decoupling inventory system η equals the order arrival rate λo. In addition,
we have the following performance measures.

– The mean semi-finished product queue and the order backlog content: E Qp

and E Qo respectively,

EQp =
Cp∑
m

π(p)(m)m , E Qo =
∞∑
n

π(o)(n)n .

– The variance of the semi-finished product queue and the order backlog con-
tent: VarQp and VarQo respectively,

VarQp =
Cp∑
m

π(p)(m)m2 − (EQp)2 ,

VarQo =
∞∑
n

π(o)(n)n2 − (E Qo)2 .

– The mean lead time LT (calculated based on Little’s theorem) is the average
amount of time between the placement of an order and the completion to a
finished product:

LT =
EQo

λo
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– As the product queue has finite capacity, production prior to the decoupling
stock may be blocked. This happens when there is a product arrival and
the queue is full. Hence, blocking corresponds to the loss probability in the
product buffer. The loss probability is most easily expressed in terms of the
throughput η. We have,

bp =
λp − η

λp
=

λp − λo

λp
.

We now illustrate our approach by means of some numerical examples.

4 Numerical Examples

4.1 Poisson Arrivals and Exponential Order Processing Times

As a first example, the difference between the mean semi-finished product queue
and the mean order backlog content versus the threshold value of the semi-
finished product inventory is depicted in figure 2(a). We assume that semi-
finished products and orders arrive according to a Poisson process with
parameter λp = 1 and λo = 0.85, respectively. The inventory capacity Cp equals
20 and order processing times are exponentially distributed with service rate μ
equal to 1 for all curves. The described model is a decoupling inventory system
with Poisson arrivals and exponential order processing times as described in ex-
ample 1 of section 3. As the figure shows, the threshold value of 5 results on
average in no backlogged orders and no semi-finished products in stock. Under
and above this level, products and orders are on average backlogged, respec-
tively. Obviously, there is on average more stock of semi-finished products and
less backlog of orders as the threshold value increases.
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Fig. 2. There is a trade-off between the average stock of the semi-finished products
and the average number of backlogged orders and between the lead time

Figure 2(b) represents the trade-off between the maximum probability to have
the lead time higher or equal to 30 (left side) and the average stock of the semi-
finished products (right side). Note that we calculated the lead time distribution
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by using the one-sided Chebyshev’s inequality. Under the same parameter as-
sumptions of figure 2(a), the maximum probability to have the lead time higher
or equal to 30 decreases and the average stock increases as the inventory capacity
increases for each threshold value. Indeed, if more buffer capacity is available, it
will be used – the mean semi-finished product queue increases such that there is
on average less time required to deliver an order. Finally, in this numerical ex-
ample, we observe that the highest threshold value give the average best results:
the intersection between the two performance measures and the necessary stock
capacity have the lowest value.

4.2 Erlang Distributed Set-Up Times

The second numerical example quantifies the impact of variability in the pro-
duction process of semi-finished products on the decoupling inventory system.
In particular, we here study Erlang-distributed set-up times – the set-up time
starts when the semi-finished product inventory goes below a certain level and
stops after some Erlang distributed time. Then, the semi-finished products arrive
according to a Poisson process with arrival rate λp until the stock capacity is
reached. The described model is a decoupling inventory system with Markovian
arrivals as described in example 2 of section 3.
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Fig. 3. The shape of the set-up time distribution has a small effect on the mean number
of semi-finished products and on the mean lead time

Figure 3(a) 3(b) show the mean number of semi-finished products in the buffer
and the mean lead time of the system with a buffer capacity equal to 20 and a
threshold value equal to 5. In both figures, the arrival rate is varied and different
values of the variance of the set-up time process are assumed as indicated. The
order arrival rate λo equals 0.6, order processing times are assumed to be ex-
ponentially distributed with service rate μ equal to 1 and the mean set-up time
equals 1. As expected, the mean number of semi-finished products increases and
the mean lead time decreases as the arrival rate of the semi-finished products
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λp increases. Furthermore, the shape of the set-up time distribution has a very
small effect on both performance measures. In particular, the mean number of
semi-finished products and the mean lead time show respectively a slight de-
crease and increase as the variance of the set-up time distribution σ2

p increases.
This is due to the fact that the regularly the set-up time, the less semi-finished
products are on average in stock and the more orders are on average backlogged.

4.3 Markovian Arrival Process for Orders

We also quantify the impact of irregular order arrivals. To this end, we com-
pare both buffers with Poisson arrivals to corresponding decoupling inventory
systems with interrupted Poisson arrivals for the orders and Poisson arrivals for
the semi-finished products. The arrival interruptions account for inefficiency in
the ordering process. Order processing times are assumed to be exponentially
distributed with service rate μ equal to 1, this value being independent of the
number of products and orders in the different buffers. This numerical example
fits example 3 of section 3.

The interrupted Poisson process considered here is a two-state Markovian
process. In the active state, new orders arrive in accordance with a Poisson
process with rate λo whereas no new orders arrive in the inactive state. Let α and
β denote the rate from the active to the inactive state and vice versa, respectively.
We then use the following parameters to characterise the interrupted Poisson
process (IPP),

σ =
β

α + β
, κ =

1
α

+
1
β

, ρo = λoσ .

Note that σ is the fraction of time that the interrupted Poisson process is active,
the absolute time parameter κ is the average duration of an active and an inactive
period, and ρo is the arrival load of the orders.

Figure 4 shows the mean number of backlogged orders versus the arrival rate
of semi-finished products with buffer capacity Cp equal to 20 and the threshold
value Tp equal to 5 and 7 for Poisson arrivals as well as for interrupted Poisson
arrivals of orders. Order processing times are exponentially distributed with ser-
vice rate μ equal to one for all curves. In addition, we set σ = 0.8 and κ = 10
for the interrupted Poisson processes (λo equals 0.6 for Poisson arrivals and
0.75 for interrupted Poisson arrivals). As expected, the mean number of back-
logged orders decreases as the arrival rate of semi-finished products increases.
Furthermore, the impact of the threshold value on the average number of back-
logged orders decreases as the arrival rate of semi-finished products increases –
both Markovian models converge to some value for Tp equal to 5 and 7. Finally,
comparing interrupted Poisson and Poisson processes, burstiness in the ordering
process has a negative impact on performance – there is on average more time
required to deliver an order.



A Queueing Theoretic Approach to Decoupling Inventory 161

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

λp

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2
Mean number of backlogged orders

Tp=5 & Poisson

Tp=7 & Poisson

Tp=5 & IPP order

Tp=7 & IPP order

Fig. 4. Irregular order arrivals result in a higher average number of backlogged orders

4.4 Phase-Type Distributed Order Processing Times

The last numerical example quantifies the impact of the distribution of the order
processing times on the decoupling inventory performance. In particular, we here
study Erlang-distributed order processing times. This numerical example fits
example 4 of section 3.

Figure 5(a) and 5(b) depict the mean number of semi-finished products in
the buffer and the mean lead time of the decoupling inventory system. In both
figures, the arrival rate of semi-finished products is varied and different values
of the order processing time distribution are assumed as indicated. The service
rate μ equals 1 for all curves, the order arrival rate λo equals 0.6, the inventory
capacity Cp equals 20 and the threshold value Tp is equal to 5. Clearly, figure
5(a) and 5(b) show respectively that the buffer content of semi-finished products
converges to capacity and the lead time decreases until a certain value as the
arrival rate of semi-finished products increases. Concerning the mean number of
semi-finished products, we can conclude that the order processing time distribu-
tion has no significant effect on this performance measure. Indeed, we observe
that the difference is very small and that it decreases as the arrival rate of semi-
finished products increases. However, the difference between a variance σ2

s equal
to 1, 1/2 and 1/4 for the mean lead time remains constant and is significant,
especially when the arrival rate λp is smaller than 0.7. Furthermore, in this nu-
merical example, the mean number of semi-finished products decreases and the
mean lead time increases as the variance increases. Indeed, the results of figure
6 show that the zero probability increases slightly as the variance of the order
processing time distribution increases. As for Erlang distributed set-up times in
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Fig. 6. The zero probability increases when the variance of the order processing time
distribution decreases

section 4.2, we have a coupling effect between both performance measures – the
mean number of semi-finished products increases such that the mean number of
backlogged orders (and thus the mean lead time) decreases.

5 Conclusion

In this paper, we evaluate the performance of different hybrid push-pull sys-
tems with a decoupling inventory at the semi-finished products and reordering
thresholds. In particular, we investigate the impact of different reordering poli-
cies, irregular order arrivals as well as the set-up time distribution and the order
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processing time distribution on the performance of hybrid push-pull systems.
In the studied hybrid push-pull systems, production of semi-finished products
starts when the inventory goes below the so-called threshold value and stops
when the inventory attains stock capacity. Decoupling means that the comple-
tion of a semi-finished product is only possible when there is an order. These
orders are backlogged and can be satisfied only when the semi-finished products
are available. Therefore, the studied push-pull system is modelled as a homo-
geneous quasi-birth-and-death process (QBD) and solved with matrix-analytic
methods.

As our numerical examples show, there is trade-off to be made between the
inventory cost and the service level, as expected – e.g. a higher threshold value
causes on average a higher inventory cost and a smaller lead time. Furthermore,
irregular order arrivals have a negative impact on the performance of the hybrid
push-pull system. However, system performance is relatively insensitive to vari-
ation in the set-up time distribution and partially insensitive to variation in the
order processing time distribution. Future work will focus on determining the
total cost of the studied hybrid push-pull systems.
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Abstract. We consider split-merge systems with heterogeneous subtask
service times and limited output buffer space in which to hold completed
but as yet unmerged subtasks. An important practical problem in such
systems is to limit utilisation of the output buffer. This can be achieved
by judiciously delaying the processing of subtasks in order to cluster sub-
task completion times. In this paper we present a methodology to find
those deterministic subtask processing delays which minimise any given
percentile of the difference in times of appearance of the first and the
last subtasks in the output buffer. Technically this is achieved in three
main steps: firstly, we define an expression for the distribution of the
range of samples drawn from n independent heterogeneous service time
distributions. This is a generalisation of the well-known order statistic
result for the distribution of the range of n samples taken from the same
distribution. Secondly, we extend our model to incorporate deterministic
delays applied to the processing of subtasks. Finally, we present an op-
timisation scheme to find that vector of delays which minimises a given
percentile of the range of arrival times of subtasks in the output buffer.
A case study illustrates the applicability of our proposed approach.

1 Introduction

Numerous physical systems of practical interest feature a queue of incoming tasks
which split into synchronised subtasks that are processed in parallel at a set of
(potentially heterogeneous) servers. Subtasks that complete service are held in
an output buffer until all of its siblings have completed service. Examples of
such systems include the processing of logical I/O requests by a RAID enclosure
housing several physical disk drives [10], parallel job processing in MapReduce
environments comprising several compute nodes [19], and the assembly of cus-
tomer orders made up of multiple items in the highly-automated warehouses of
large online retailers [15].

The importance of performance prediction in such systems has been long ap-
preciated by performance modellers who have devised appropriate abstractions
for their representation, most notably split-merge queueing systems and their
less synchronised – but analytically much less tractable – counterparts, fork-join
queueing systems [2]. Understandably, for both kinds of model, the primary focus
of research work to date has been on the computation of moments of response
time, most especially the mean. For example, Harrison and Zertal present an
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approximation for moments of the maximum of service times in a split-merge
queueing system with general heterogeneous service times [8]; this gives an exact
result in the case of exponential queues. For fork-join systems with homogeneous
Markovian service time distributions, Nelson and Tantawi describe a technique
which yields approximate upper and lower bounds on the mean response time as
a function of the number of servers [13]. For the same system, Varki et al. [17]
present approximate bounds on mean response time. Varma and Makowski [18]
use interpolation between light and heavy traffic modes to approximate the mean
response time for a homogeneous system of fork-join M/M/1 queues. The same
fork-join system was considered in [9], where the maximum order statistic pro-
vides an easily-computable upper bound on response time.

By contrast, the focus of the present paper is not response time computation;
rather it concerns ways to control the variability of subtask completion time
(that is the difference in time between the arrival of the first and last subtasks
of a task in the output buffer) in split-merge systems. The idea is to try to
cluster the arrival of subtasks in the output buffer by applying judiciously cho-
sen deterministic delays to subtasks before they are dispatched to the parallel
servers. This has especial relevance for systems that involve the retrieval of or-
ders comprising multiple items from automated warehouses [15], since partially
completed subtasks must be held in a physical buffer space that is often limited
and highly utilised; consequently it is difficult to manage. Despite this, to the
best of our knowledge, this problem has not received significant attention in the
literature. Our previous work [16] presented a simple mean-based methodology
for computing the vector of deterministic subtask delays that minimises a cost
function given by the difference between the expected maximum and expected
minimum subtask completion times (across all subtasks arising from a particular
task). However, an expected value does not always satisfy service level objectives;
in addition there is a dependence between the maximum and minimum subtask
completion times which must be taken into account for any distributional anal-
ysis. The methodology we present here yields the set of subtask delays which
minimises any given percentile of the distribution of the difference in the time
of appearance of the first and last subtasks in the output buffer.

The technical contribution of this paper begins with a generalisation of the
well-known order statistics result for the distribution of the range when n sam-
ples are taken from a given distribution F (t). In particular, we present an exact
analytical expression for the distribution of the range of n samples taken from
heterogeneous distributions Fi(t) (i = 1, . . . , n). Having extended this theory
to incorporate deterministic subtask processing delays, we show how an opti-
misation procedure can be applied to a split-merge system to find that vector
of subtask delays which minimises a given percentile of the range of subtask
completion times.

The rest of the paper is organised as follows. Section 2 describes essential
preliminaries including a definition of split-merge systems and selected results
from the theory of order statistics. Section 3 presents various heterogeneous order
statistic results, including the distribution of the range. Section 4 shows how the
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basic split-merge model can be enhanced to support deterministic delays, defines
an appropriate objective function, and presents a related optimisation procedure.
Section 5 presents a case study which demonstrates the applicability of our work.
Section 6 concludes and considers appropriate directions for future work.

2 Essential Preliminaries

2.1 Parallel Systems

A split-merge system (see Fig. 1) is a composition of a queue of waiting tasks (as-
sumed to arrive according to a Poisson process with mean rate λ), a split point,
several heterogeneous servers (which serve their allocated subtask with general
service time distribution with mean service rate 1/μi), buffers for completed sub-
tasks (merge buffers) and a merge point [2]. We note that in practice in physical
systems it is not uncommon for the merge buffers to share the same physical
space which is managed as a single logical output buffer. When the queue of

��

��

��

λ

Split
point

Merge
point

Fig. 1. Split–Merge queueing model

waiting tasks is not empty and the parallel servers are idle, a task is injected
into the system from the head of the queue. The task is split into n subtasks at
the split point and the subtasks arrive simultaneously at the n parallel servers to
receive service. Completed subtasks join a merge buffer. Only after all subtasks
(belonging to a particular task) are present in the merge buffers does the original
task depart the system via the merge point. We note that this split-merge system
is a more synchronised type of fork-join system. In split-merge systems parallel
servers are blocked after they have served a subtask while the original task is
in the system, whereas in fork-join systems there is no queue of waiting tasks,
but there is a queue of subtasks at each parallel server. Split-merge systems can
also be said to be a more conservative type of fork-join system in the sense that
analysis of task response time in a split-merge system yields an upper bound on
task response time in a fork-join system [9].
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2.2 Theory of Order Statistics [6]

Definition: Let the increasing sequence X(1), X(2), . . . , X(n) be a permutation of
the real valued random variables X1, X2, . . . , Xn, i.e. the Xi arranged in ascend-
ing orderX(1) � X(2) � . . . � X(n). Then X(i) is called the ith order statistic, for
i = 1, 2, . . . , n. The first and last order statistics,X(1) andX(n), are the minimum
and maximum respectively, which are also called the extremes. T = X(n) −X(1)

is the range.
We assume initially that the random variables Xi are identically distributed

as well as independent (iid), but of course the X(i) are dependent because of the
ordering.

Distribution of the kth-Order Statistic (iid case)

If X1, X2, . . . , Xn are n independent random variables, the cumulative distri-
bution function (cdf) of the maximum order statistic (the maximum) is simply
given by

Fn(x) = Pr{X(n) � x} = Pr{Xi � x, 1 � i � n} = Fn(x)

Likewise, the cdf of the minimum statistic is:

F1(x) = Pr{X(1) � x} = 1−Pr{X(1) > x} = 1−Pr{Xi > x, 1 � i � n} = 1−[1−F (x)]n

These are special cases of the general cdf of the rth order statistic, Fr(x), which
can be expressed as:

Fr(x) = Pr{X(r) � x} = Pr{at least r of the Xi � x}

=

n∑
i=r

(
n
i

)
F (x)i[1− F (x)]n−i (1)

The pdf of Xr, fr(x) = F ′
r(x), where the prime denotes the derivative with

respect to x, when it exists, is then:

fr(x) =
n!

(r − 1)!(n− r)!
F r−1(x)f(x)[1 − F (x)]n−r .

Multiplying both sides by “small” ε, this result follows intuitively from noting
that we require one of the Xi to take a value in the interval (x, x + ε], exactly
r − 1 of the Xi to be less than or equal to x and exactly n − r of them to be
greater than x. The coefficient n!/((r − 1)!1!(n − r)!) is the number of ways of
doing this, given that the Xi are stochastically indistinguishable.

The joint density function of the rth and sth order statistics X(r), X(s), where
(1 � r < s � n), is:

frs(x, y) = SrsF
r−1(x)f(x)[F (y) − F (x)]s−r−1f(y)[1− F (y)]n−s (2)

where Srs = n!
(r−1)!(s−r−1)!(n−s)! , by similar reasoning. The corresponding joint

cdf Frs(x, y) of X(r) and X(s) may be obtained by integration of the pdf or,
alternatively, for x < y we have:
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Frs(x, y) = Pr{at least r of the Xi � x, at most n− s of the Xi > y}

=

n∑
j=s

j∑
i=r

Pr{exactly i of the Xi � x, exactly n− j of the Xi > y}

=

n∑
j=s

j∑
i=r

n!

i!(j − i)!(n− j)!
F i(x)[F (y) − F (x)]j−i[1− F (y)]n−j

Finally, the joint pdf for the k order statistics X(n1), . . . , X(nk), 1 � n1 < . . . <
nk � n), is, similarly, for x1 � . . . � xk:

fn1,...,nk
(x1, . . . , xk) = Sn1,...,nk

Fn1−1(x1)f(x1)[F (x2)− F (x1)]
n2−n1−1f(x2) · · ·

[F (xk)− F (xk−1)]
nk−nk−1−1f(xk)[1 − F (xk)]

n−nk

where Sn1,...,nk
= n!

(n1−1)!(n2−n1−1)!...(nk−nk−1−1)!(n−nk)!
.

Distribution of the Range

The pdf fTrs(x) of the interval Trs = X(s) −X(r) follows from the joint pdf of
the rth and sth order statistics in Eq. 2 by setting y = x + trs and integrating
over x, giving:

fTrs (trs) = Srs

∫ ∞

−∞
F r−1(x)f(x)[F (x+trs)−F (x)]s−r−1f(x+trs)[1−F (x+trs)]

n−sdx

In the special case when r = 1 and s = n, Trs is the range T = X(n) −X(1) and
the pdf simplifies to:

f(t) = n(n− 1)

∫ ∞

−∞
f(x)[F (x+ t)− F (x)]n−2f(x+ t)dx

The cdf of T then follows by integrating inside the integral with respect to x,
giving:

F (t) = n

∫ ∞

−∞
f(x)

∫ t

0

(n− 1)f(x+ t′)[F (x+ t′)− F (x)]n−2dt′dx

= n

∫ ∞

−∞
f(x)

[
[F (x+ t′)− F (x)]n−1

]t′=t

t′=0
dx

= n

∫ ∞

−∞
f(x)[F (x+ t)− F (x)]n−1dx (3)

As noted in [6], this equation follows intuitively by noting that the integrand
(multiplied by an infinitesimal quantity dx) is the probability that Xi falls into
the interval (x, x+ dx] (for some i) and the remaining n− 1 of the Xj , j �= i fall
into (x, x + t]. There are n ways of choosing i, giving the factor n.

3 Heterogeneous Order Statistics

We now consider n independent, real-valued random variables X1, . . . , Xn where
each Xi has an arbitrary probability distribution Fi(x) and probability density



170 I. Tsimashenka, W. Knottenbelt, and P. Harrison

function fi(x) = F ′
i (x). In this case of “heterogeneous” (or independent, but not

necessarily identically distributed) random variables, we call the order statistics
heterogeneous order statistics to distinguish them from the better known results
where the random variables are implicitly assumed to be identically distributed.

Recent decades have seen increasing consideration given to the heterogeneous
case in the literature. Key theoretical results for the distribution and density
functions of heterogeneous order statistics are summarised in [7]. This includes
the work of Sen [14], who derived bounds on the median and the tails of the
distribution of heterogeneous order statistics. Practical issues related to the nu-
merical computation of the ith heterogeneous order statistic are considered in [5],
with special consideration of recurrence relations among distribution functions
of order statistics.

Distribution of the rth Heterogeneous Order Statistic

The rth heterogeneous order statistic, derived similarly to Eq. 1, has the follow-
ing cdf:

F(r)(x) = Pr{X(r) � x} = Pr{at least r of the Xi � x}

=
n∑

i=r

∑
{�1,�2}∈Pi

i∏
k=1

F�1k(x)
n−i∏
k=1

[1− F�2k(x)]
(4)

where Pi is the set of all two-set partitions {D,E} of {1, 2, . . . , n} with |D| = i
and |E| = n− i, and �hk is the kth component of the vector �h for h = 1, 2.

Similarly to the homogeneous case, the minimum and maximum order statis-
tics are respectively given by:

F(1)(x) = Pr{X(1) � x} = 1− Pr{X(1) > x} =

1− Pr{Xi > x | 1 ≤ i ≤ n} = 1−
n∏

i=1

[1− Fi(x)],

and

F(n)(x) = Pr{X(n) � x} = Pr{Xi � x | 1 ≤ i ≤ n} =

n∏
i=1

Fi(x).

Differentiating Eq. 4 and simplifying yields the pdf:

f(r)(x) =

n∑
i=r

∑
{�1,�2}∈Pi

⎡
⎣ i∑
j=1

i∏
k=1,k �=j

F�1k
(x)

n−i∏
k=1

[1 − F�2k
(x)]f�1j

(x)−

n−i∑
j=1

i∏
k=1

F�1k
(x)

n−i∏
k=1,k �=j

[1 − F�2k
(x)]f�2j

(x)

⎤
⎦
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=

n∑
i=r

n∑
h=1

⎡
⎢⎢⎣

∑
{�1,�2}∈Ph−

i−1

i−1∏
k=1

F�1k
(x)

n−i∏
k=1

[1 − F�2k
(x)]fh(x)−

Ii<n

∑
{�1,�2}∈Ph−

i

i∏
k=1

F�1k
(x)

n−i−1∏
k=1

[1 − F�2k
(x)]fh(x)

⎤
⎥⎥⎦

=

n∑
h=1

fh(x)

⎡
⎢⎢⎣

n∑
i=r

∑
{�1,�2}∈Ph−

i−1

i−1∏
k=1

F�1k
(x)

n−i∏
k=1

[1 − F�2k
(x)]−

n∑
i=r+1

∑
{�1,�2}∈Ph−

i−1

i−1∏
k=1

F�1k
(x)

n−i∏
k=1

[1 − F�2k
(x)]

⎤
⎥⎥⎦

=

n∑
h=1

fh(x)
∑

{�1,�2}∈Ph−
r−1

r−1∏
k=1

F�1k
(x)

n−r∏
k=1

[1 − F�2k
(x)]

where I• is the indicator function and Ph−
i is the set of all 2-set partitions of

{1, 2, . . . , n} \ {h} with i elements in the first set and 1 ≤ h ≤ n. In fact this
result also follows from an intuitive argument using the infinitesimal interval
(x, x+ ε], as in the homogeneous case.

The joint density function frs(x, y) of two order statistics, X(r) and X(s), for
1 � r < s � n, follows similarly as:

f(r)(s)(x, y) =
∑

1≤h1 �=h2≤n

fh1(x)fh2(y)
∑

{�1,�2,�3}∈Ph1−,h2−
r−1,s−r−1

r−1∏
k=1

F�1k(x)× (5)

s−r−1∏
k=1

[F�2k(y)− F�2k(x)]

n−s∏
k=1

[1− F�3k(y)]

where Ph1−,h2−
i1,i2

is the set of all 3-set partitions of {1, 2, . . . , n} \ {h1, h2} with
i1 elements in the first set, i2 elements in the second set, and so n− i1 − i2 − 2
in the third, and 1 ≤ h1 �= h2 ≤ n.

Distribution of the Range for Heterogeneous Order Statistics

From the joint pdf of two heterogeneous order statistics in Eq. 5, we obtain the
pdf of the interval Trs = X(r) −X(s) by setting trs = y − x:

f(r:s)(trs) =
∑

1≤h1 �=h2≤n

∫ ∞

−∞
fh1

(x)fh2
(x+ trs) (6)

∑

{�1,�2,�3}∈Ph1−,h2−
r−1,s−r−1

r−1∏
k=1

F�1k (x)

s−r−1∏
k=1

[F�2k (x+ trs)− F�2k (x)]

n−s∏
k=1

[1− F�3k (x+ trs)]dx

For the range, we want the special case in which r = 1, s = n and T = X(n) −X(1),
giving the pdf:
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f(1:n)(t) =
∑

1≤h1 �=h2≤n

∫ ∞

−∞
fh1

(x)fh2
(x+ t)

∑
{�1,�2,�3}∈Ph1−,h2−

0,n−2

n−2∏
k=1

[F�2k
(x + t) − F�2k

(x)]dx

=
∑

1≤h1 �=h2≤n

∫ ∞

−∞
fh1

(x)fh2
(x+ t)

∏
k �=h1,h2

[Fk(x + t) − Fk(x)]dx (7)

The cdf now follows by integration (inside the sum and integral with respect to
x):

F(1:n)(t) =
∑

1≤h1 �=h2≤n

∫ ∞

−∞
fh1

(x)

∫ t

0
fh2

(x+ t′)
∏

k �=h1,h2

[Fk(x+ t′)− Fk(x)]dx dt′

=
∑

1≤h1≤n

∫ ∞

−∞
fh1

(x)
∏

k �=h1

[Fk(x+ t) − Fk(x)]dx (8)

In fact, the same result can be obtained by noting that Eq. 3 generalises using
the argument given immediately following it. This is that, given a particular
choice of i = 1, 2, . . . , n, the integrand (multiplied by an infinitesimal quantity dx)
is the probability that Xi falls into the interval (x, x+ dx] and the other Xj , j �= i

fall into (x, x+ t]. Of course there are n ways of choosing i, and so we have to sum
over n terms; in the homogeneous case, all these terms are the same, which gave
the factor n. For heterogeneous order statistics, we therefore obtain:

Frange(t) = F(1:n)(t) =
n∑

i=1

∫ ∞

−∞
fi(x)

n∏
j=1,j �=i

[Fj(x+ t) − Fj(x)]dx (9)

This is a useful result, which requires a sum of only n terms. It will form the
basis for range-optimisation in split-merge systems with heterogeneous service
time distributions as considered in the next section.

4 Controlling Variability in Split-Merge systems

Introducing Delays

Our aim is to control the variability of subtask completion (equivalently merge
buffer arrival) times by introducing a vector of delays:

d = (d1, d2, . . . , di, . . . , dn−1, dn) (10)

Here, element di of the vector d denotes the deterministic delay that will be
applied before a subtask is sent to server i for processing. We note that in order
to avoid unnecessarily delaying all subtasks we require that the subtask delay
for at least one server (the “bottleneck” server) be set to 0.

After applying the delays from Eq. 10, the distribution of the range from Eq. 9
becomes:

Frange(t,d) =
n∑

i=1

∫ ∞

−∞
fi(x− di)

n∏
j=1,j �=i

[Fj(x+ t− dj)− Fj(x− dj)]dx (11)

We assume that, ∀i, fi(t − di) = 0, ∀t < di. Similarly, ∀j, Fj(t − dj) = 0, ∀t < dj.
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Optimisation Procedure

In this section we move away from our previous mean-based technique [16] to-
wards a more sophisticated framework for finding delay vectors which provide
soft (probabilistic) guarantees on variability. More specifically, for a given prob-
ability α, we aim to minimise the 100αth percentile of variability with respect to
d. That is, we aim to solve for d in:

min
d

F−1
range(α,d) (12)

Put another way, we aim to find that vector d which yields the lowest value for
the 100αth percentile of the difference in the completion times of the first and
the last subtasks (belonging to each task).

Practically, we developed a numerical optimisation procedure by prototyping
it in Mathematica and subsequently implementing a full version of it in C++
for efficiency reasons. Evaluation of Eq. 11 for a given α and d is performed by
means of straightforward numerical integration using the trapezoidal rule. While
this is adequate and accurate for almost all continuous service time density and
distribution functions, complications arise in the case of the pdf of deterministic
service time density functions because of their infinitely thin, infinitely high
impulse. We choose to resolve this by replacing the deterministic pdf with delay
parameter a by the Gaussian approximation:

fDet(a)(x) ≈
1

c
√
π
e
− (x−a)2

c2

which becomes exact as c → 0; in practice we set c = 0.01.
In order to invert Eq. 11 for a given α and d, we make use of the well-known

Bisection method [4] which in turn exploits Bolzano’s Intermediate Value Theo-
rem. Although it is more computationally expensive than the Newton-Rhapson
method, we choose the Bisection method because its gradient-free nature makes
it considerably more robust. In circumstances where computational efficiency is
a critical concern, we note that it is possible to apply more efficient gradient-free
algorithms such as Brent’s method [3].

Finally, we explore the optimisation surface of F−1
range(α,d) with the initial d =

{0, . . . , 0} using a numerical optimization procedure. We constrain the search such
that di ≥ 0 for all i and

∏
i di = 0 (that is, the “bottleneck” server(s) should have

no unnecessary additional delay). In our implementation, we have used a simple
Nelder-Mead optimisation technique [12], although we note that a range of more
sophisticated (and correspondingly considerably more complex to implement)
gradient-free optimisation techniques are also available, e.g. [1, 11].

5 Case Study

Consider a split-merge system with 3 parallel servers having heterogeneous ser-
vice time density functions:
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f1(t) = Pareto(α = 3, b = 3.5) (E[X1] = 5.25, Med[X1] = 4.40972, Var[X1] = 9.1875)

f2(t) = Erlang(n = 2, λ = 1) (E[X2] = 2, Med[X2] = 1.67835, Var[X2] = 2)

f3(t) = Det(5) (E[X3] = 5, Med[X3] = 5, Var[X3] = 0)

Without adding any extra delays, it is straightforward to apply Eq. 9 in a simple
root finding algorithm (e.g. the Bisection method) to compute the 50th (α = 0.5)
and 90th (α = 0.9) percentile of the range of subtask arrival times as t = 3.629

time units and t = 5.52998 time units respectively.
Incorporating delays into the distribution of the range of subtask merge buffer

arrival times as per Eq. 11, and executing a Nelder-Mead optimisation (suitably
constrained so that

∏
i di = 0) to solve Eq. 12 given α = 0.5 for d yields

d = (0.79335, 3.47083, 0)

as shown in Figure 2. We note that in this case the “bottleneck” server is server
3, despite the fact that the server 1 has a higher mean service time than server 3.
With the incorporation of the optimal delays, the 50th percentile of the range of
subtask arrival times becomes t = 1.32592, representing an improvement of 63.4%
over the original system configuration without delays.

d2 d1

F−1
range(0.5,d)

Fig. 2. 50th percentile of the range of subtask merge buffer arrival times for various
deterministic processing delays. The optimal delay vector is d = (0.79335, 3.47083, 0).

For α = 0.9 we obtain
d = (0, 2.68176, 1.45705)

as shown in Figure 3. We note that for this percentile the “bottleneck” switched
from server 3 to server 1. With the incorporation of the optimal delays, the 90th
percentile of the range of subtask arrival times becomes t = 3.77626, representing
an improvement of 31.7% over the original system configuration without delays.
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d3 d2

F−1
range(0.9,d)

Fig. 3. 90th percentile of the range of subtask merge buffer arrival times for various
deterministic processing delays. The optimal delay vector is d = (0, 2.68176, 1.45705).
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Fig. 4. Distributions of the range of subtask merge buffer arrival times given subtask
delays optimised for various percentiles
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Figure 4 shows how the distribution of the range of subtask merge buffer
arrival times changes according to the optimised percentile. We note that a
change of the optimised percentile can have a significant impact on the quantiles
of Frange(t,d), according to how the “bottleneck” server shifts.

Although it is not our focus, it is interesting to consider the effect of the
subtask delays on the expected task completion time. For a system without
delays, the expected task completion time is E[X(n)] = 5.75712 time units. After
introducing subtask delays in order to minimise the 50th and 90th percentile
of the range of subtask processing times, the expected task completion time
becomes 6.57628 time units (14% increase) and 7.00894 time units (26%) increase
respectively.

6 Conclusions and Future Work

This paper has presented a methodology for controlling variability in split-merge
systems. Here variability is defined in terms of a given percentile of the range
of arrival times of subtasks in the merge buffers, and is controlled through the
application of judiciously chosen deterministic delays to subtask service times.
The methodology has three main building blocks. The first is an exact analyt-
ical expression for the distribution of the range of subtask merge buffer arrival
times over n heterogeneous servers in a split-merge system. This is a natural
generalisation of the well-known order statistics result for the distribution of
the range taken over n homogeneous servers. The second is the introduction of
deterministic subtask delays into the aforementioned expression. The third is
a optimisation procedure which yields the vector of subtask delays which min-
imises a given percentile of the range of subtask merge buffer arrival times. We
presented a case study which showed that the choice of percentile can have a
significant impact on the optimal delay vector and the “bottleneck” server.

As previously mentioned fork-join systems are significantly less analytically
tractable than split-merge systems. However, they are more realistic abstractions
of many real world systems on account of their less-constrained task synchronisa-
tion. Consequently a natural future direction of this work is to try and generalise
our results to fork-join systems. In line with previous research we believe we are
unlikely to find an exact analytical expression for the distribution of the range
of join buffer arrival times. However, a numerical approach and/or an analytical
approximation may be possible.

Finally, the scalability of our methodology to very large split-merge systems
with 100+ service nodes is currently an open question. However, large-scale prob-
lems are sometimes encountered when modelling real-life systems. Consequently
we will conduct experiments to assess the scaling behavior of our methodology. It
may be beneficial to devise an approach that makes use of parallel computations
using MPI (Message Passing Interface).
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Abstract. We present several new improvements for a recently pub-
lished algorithm [5] for computing the steady-state distribution of a fi-
nite ergodic Markov chain, which has a proved monotone convergence
under some structural constraints on the matrix. We show how to ac-
commodate infinite state space and that the structural constraints of
the algorithm are consistent with Pagerank matrix. We present how to
combine this algorithm with stochastic comparison theory to numerically
obtain bounds and we prove a pre-processing of the matrix which allows
to alleviate the structural constraints. The approaches are illustrated
through several small examples.

1 Introduction

One of us has recently presented in [5] a new numerical algorithm to compute
the steady state distribution of a discrete time Markov chain (DTMC in the fol-
lowing). Continuous-time Markov chains can be accommodated after an optimal
uniformization to make the matrix row diagonal dominant [6]. This algorithm
relies on a completely new iterative scheme based on operators ”max”, ”min”
and ”+”. At each step of the iteration, the algorithms provide upper and lower
bounds for each component of the steady-state distribution of a DTMC. Note
that we assumed in [5] that the chain is finite and that it has a stationary dis-
tribution. Here, we consider ergodic chains and we explain how we can handle
infinite ergodic chains.

It is important to notice that the upper and lower bounding vectors considered
here are not probability distribution vectors (as it is the case with the bounds
obtained using stochastic orders), this will be clearer after some examples in
Section 2 and 3. But all the elements of the vectors are non negative and are
smaller than 1.

These iterative algorithms all provide component-wise upper or lower bounds
at each iteration and some of them converge to the true solution under some tech-
nical conditions which are easy to check. More precisely we compute a quantity
denoted as Nabla (i.e. ∇, which is more precisely defined in the next section). A
sufficient condition for convergence is ||∇|| > 0. In this paper we denote by ||x||
the sum of the elements of vector x. The speed of convergence is also related to
||∇||. The larger the norm ||∇||, the faster the convergence.

K. Al-Begain, D. Fiems, and J.-M. Vincent (Eds.): ASMTA 2012, LNCS 7314, pp. 178–192, 2012.
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When ||∇|| > 0, these algorithms share very nice properties: first as it is proved
that the solution is within an interval, which decreases at each iteration and
leads to zero, we can state the convergence of numerical computation. Second,
we have a clear tradeoff between computation efforts and the tightness of the
numerical results. Third, under some technical conditions, when we apply the
lower bounding algorithm to an element-wise lower bound of the matrix, we
obtain a proved lower bound of the steady-state solution. Thus we are able to
obtain guarantee on the steady-state distribution or on the expectation of a
reward even if we do not completely compute all the entries of the matrix.

To the best of our knowledge the iterative equation used in [5] gives a new
interpretation of the steady-state distribution of DTMCs. Monotone sequences
converging to the the solution of non-negative linear systems have been pre-
viously studied by Berman and Plemmons [2] and extended to prove some al-
gorithms and to propose some heuristics for Markov chains by Semal in [11]
and for singular matrices by Song [13]. These approaches are not related to our
method (even if they obtain bounds for steady-state distributions) as they con-
sider some classical splittings of the linear system describing the equilibrium
equation, while we propose an iterative scheme which is original. The previ-
ous approaches have some drawbacks, which are inherent to the computation of
monotone sequences of probabilities, and which implies a normalization of the
vector. Therefore these approaches are extremely hard to use in practice. Un-
like Semal’s approach, our algorithms provide bounds at each iteration without
normalisation when ||∇|| > 0, and are simple to use.

But when ||∇|| = 0, both theoretical and practical results are much less
interesting. We do not have a proof of convergence to the steady-state distri-
bution, but we still have component-wise bounds. We can also obtain accurate
approximations but we do not know if they provide bounds for some steady-state
probabilities. Thus we investigate how we can improve the ideas proposed in [5]
to extend the applicability of the method for general stochastic matrices.

The paper is organised as follows. First in Section 2, we present a brief in-
troduction to our previous algorithms published in [5]. We also show that the
condition ||∇|| > 0 is true for positive matrices and this opens new techniques
to solve the ranking problem [10]. We also show how we can deal with denu-
merable state space under some technical conditions. Then, in Section 3 we
combine stochastic bounding techniques and our algorithms to compute effi-
ciently bounds. Section 4 is devoted to a preprocessing technique, which fills the
matrix to satisfy the constraint ||∇|| > 0. The paper is illustrated with several
small examples to illustrate the approach. Much larger matrices can be solved
as well, as a software tool is already available [8,4]. We will try to combine,
in the future, these algorithms with the polynomial approach developed in [7],
because some polynoms of a stochastic matrix increase the filling, while keeping
the steady-state distribution unchanged.



180 J.-M. Fourneau and F. Quessette

2 A Brief Introduction to I∇U and I∇L Algorithms

Let P be a transition matrix of a finite homogenous irreducible and aperiodic
discrete-time Markov chain (DTMC) with steady-state distribution π. In the
following, all the vectors are row vectors. The norm ||x|| of a vector is the sum
of its elements (they are non negative), and |A| is the size of set A.

We define ∇P[j] = mini P[i, j] and ΔP[j] = maxi P[i, j]. These two quantities
are clearly associated to bounds on the steady state distribution. Indeed, we have
the following trivial upper and lower component-wise bounding vectors:

Lemma 1

∇P[j] = min
i

P[i, j] ≤ π[j] =
∑
i

π[i]P[i, j] ≤ max
i

P[i, j] = ΔP[j].

Proof: Remember that π = πP, and π[j] is between 0 and 1 for all j.
Remark that vector ∇P may be equal to 0, but ΔP is positive as the chain is

irreducible.
The algorithms in [5] are based on this lemma and they try to improve the

bound at each iteration. The key quantity to prove the convergence of the al-
gorithms is the norm ||∇P||. One can find in [5] a proof that Algorithm I∇L
(Algorithm 1) provides at each iteration a new lower bound x(k). It is worthy
to remark that we can initialize the algorithm with a = b = ∇P. Note that the
”max” operator is applied component-wise. One can check that the conditions
on the initialisation part of the algorithm require that ||∇P|| > 0.

Algorithm 1. Algorithm Iterate ∇ Lower Bound (I∇L)

Require: a � π, b � ∇P and b �= 0.
Ensure: Successive values of x(k).

1: x(0) = a.
2: repeat

3: x(k+1) = max
{
x(k), x(k)P+ b(1− ||x(k)||)

}
.

4: until 1− ||x(k)|| < ε.

Similarly, one can derive a slightly different algorithm for the computation
of an upper bound y(k) (see Algorithm I∇U below). The only two differences
with Algorithm I∇L are the initialization step and the ”min” operator in the
iteration. We can use c = ΔP in the initialization step of algorithm (I∇U).

We gather in the following theorem the convergence results stated by one of
us in [5] (see this reference for the proofs):

Theorem 1. Let P be an irreducible and aperiodic stochastic matrix with steady-
state probability distribution π. If ∇P �= 0, Algorithm I∇L provides lower bounds



Some Improvements for the Computation 181

Algorithm 2. Algorithm Iterate ∇ Upper Bound (I∇U)

Require: c � π, b � ∇P and b �= 0.
Ensure: Successive values of y(k).

1: y(0) = c.
2: repeat

3: y(k+1) = min
{
y(k), y(k)P+ b(1− ||y(k)||)

}
.

4: until ||y(k)|| − 1 < ε.

for all components of π and converges to π for any value of the parameters a and
b such that a � π, b � ∇P, and b �= 0. Furthermore, Algorithm I∇L converges
faster than a geometric series with rate 1− ||b||.

Similarly, if ∇P �= 0, Algorithm I∇U gives a sequence of non-increasing upper
bounds for all the components of π, and it converges to π for any parameters c
and b which satisfy the constraints: c � π, b � ∇P and b �= 0.

It is worthy to remark that the best initialization to speed up the convergence
is b = ∇. Let us first provide an example to illustrate some features of these
algorithms.

Example 1. Consider matrix P1 =

⎡⎢⎢⎣
0.1 0.3 0.2 0.4
0.3 0. 0.3 0.4
0.2 0.4 0.4 0.
0.8 0. 0.2 0.

⎤⎥⎥⎦ .

Clearly, ∇P1 = [0.1, 0., 0.2, 0.]. Algorithm (I∇L) is initialized with a = b = ∇P1

and it gives the following sequence of lower bounds for the probabilities. The first
column in the table is the iteration index. The last column is the residual (i.e.
the amount of probability which has not been assigned at this iteration).

k 1 2 3 4 1− ||x(k)||
1 0.120000 0.110000 0.240000 0.040000 0.490000
2 0.174000 0.132000 0.259000 0.092000 0.343000
10 0.305143 0.200259 0.274736 0.200088 0.019773
15 0.311918 0.203534 0.275392 0.205833 0.003323
20 0.313057 0.204085 0.275502 0.206798 0.000559
25 0.313248 0.204177 0.275521 0.206960 0.000094
30 0.313280 0.204193 0.275524 0.206987 0.000016

Property 1. Finally, note that one can derive a upper bound from the lower
bound and the residual. We clearly have:

x(k) � π � x(k) + (1− ||x(k)||)e,

where e is a row vector whose entries are all equal to 1.

When ∇ = 0, slightly different versions of these algorithms are given in [5] but
they converge to an unknown multiple of π. We will propose in the next sections
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some theoretical results and some algorithms to improve the usability of these
algorithms. First we want to emphasis that a very important family of matrices
satisfy the constraint on the norm of ∇.

2.1 Positive Matrices

Remember that a positive matrix P is such that all the entries are positive (i.e.
P[i, j] > 0).

Property 2. Let P be a finite aperiodic positive matrix, all the entries of vector
∇ are positive.

Indeed; as the state space is finite and all the entries of P are positive, the
minimum of the entries over an arbitrary column is positive. This is a trivial
result but it may have a large application area. It is very unlikely that a transition
matrix of a Markov chain used for a performance evaluation model is positive.
However, the ranking matrix used by Google is positive [10]. Remember that the
ranking of pages is based on their relative steady-state probabilities.

Definition 1. The Google matrix for page ranking is based on two arguments:
the hyperlink structure of the web page which is reflected by matrix S in the
following equation and the random surfer model. More precisely we define:

G = αS+ (1− α)
eT e

n
,

where n is the size of the state space, α is a positive value smaller than 1 and e
is a vector whose entries are all equal to 1. S and G are stochastic matrices. S
is sparse and most likely reducible. Clearly G is positive.

Property 3. We have: ∇(G) ≥ (1 − α)/n e and ||∇G|| ≥ 1− α.

The proof is trivial and is omitted.
Note that it is not necessary to perform the multiplication of the vector x(k)

by G. It is sufficient to do the multiplication by matrix S. Indeed, we have:

x(k)G = αx(k)S+
(1− α)

n
x(k)eT e = αx(k)S+

(1− α)||x(k)||
n

e.

Property 4. The complexity of the modified version of the vector matrix product
is the number of non zero elements of S plus the number of states n. Furthermore,
one can stop the iterations when it is clear that the ranking will not be changed:
we just have to check if the intervals [x(k), y(k)] do not overlap anymore for the
entries we want to rank. Note that this proof of ranking cannot be provided by
the Power algorithm typically used.
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2.2 Denumerable Markov Chains

Assume now that the state space is infinite but denumerable and that there exist
a positive δ and a non empty and finite set of states A0 such that:

– the number of transitions out of an arbitrary state is finite,
– for all state i in A0, the entries P[j, i] are larger than δ for every state j,
– for all state i not in A0, there exists a state j such that entry P[j, i] is zero.

As a consequence, ∇[i] > 0 if and only if i ∈ A0. We also assume that the
transitions in the matrix are described by a finite set of rules associated with
probabilities provided by a high level description of the DTMC.

Clearly, these assumptions are extremely strong. But we cannot expect to nu-
merically solve the steady-state distribution of an infinite Markov chain without
further assumptions on the structure of the chain. The most interesting point is
that the approach is completely different of the analysis of structured Markov
chains such as QBD processes, and it may be used for chains that we do not
know how to solve.

The following property states that we can analyze the chain with I∇L Al-
gorithm even if the state space is infinite. However one must take into account
a graph representation of the problem to perform the vector-matrix product to
avoid the explicit representation of the infinite state space. We will denote this
framework for the computation as an ultra sparse representation. Let us be-
gin with the ultra sparse representation of the vector and the matrix before we
explain how we perform the successive operations of I∇L algorithm.

Definition 2. In an ultra sparse representation of the vector, one only stores
the non zero entries (for instance as a linked list).

Definition 3. An ultra sparse representation of the matrix consists in an im-
plicit representation of the transitions in the matrix described by the set of rules
previously mentioned and an explicit representation of a finite subset of the rows
of the matrix. Due to the assumption on the finiteness of the number of non zero
entries per row, this explicit part is a finite rectangular matrix. If we assume
that Ak is the set of rows we consider, we denote by [Pk] this rectangular block
from P. Let mk be the set of non zero elements of [Pk]. We assume that [Pk]
is stored in a sparse format. This representation changes at each iteration (k
is the iteration index) because the number of considered rows increase at each
iteration. Matrix [Pk] is built by induction from the high level specification of the
DTMC and previously computed block matrix [Pk−1].

Consider transition matrix as a directed graph. Let A be an arbitrary set of
nodes, Γ+(A) is the set of nodes j in S such that there exists a node i in A with
P [i, j] > 0. We assume that computing Γ+(A) is proportional to the number of
non zero transitions out of states in A. This is typically the case for many high
level formalisms used to represent the transitions. This is also true if the matrix
is already stored in an efficient sparse representation.
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In a product of a dense vector by a sparse matrix, we need to know all non
zero entries of the matrix. And they are infinite. In a multiplication of an ultra
sparse vector by an ultra sparse matrix, we only need to build the rows of the
matrix associated to non zero entries of the vector. Assume that, at step k, only
the entries in Ak of vector x(k) are positive. The rows whose index are not in Ak

will be multiplied by 0 during the vector-matrix product. Therefore, we do not
have to build them, to store them and to multiply them. With an ultra sparse
representation, we avoid to store an infinite number of non zero entries, and to
multiply them by 0.

Property 5. We assume that Algorithm I∇L is initialized with a = ∇ and
b = ∇. At iteration k, the indices of the non zero entries of x(k) are in set Ak

given by the induction: Ak = Ak−1 ∪ Γ+(Ak−1), where A0 (previously defined)
is such that ∇[i] > 0 if and only if i ∈ A0. Furthermore, the computation of x(k)

requires O(mk) steps.

Proof: By construction x(0) = ∇. Therefore one can build the ultra sparse version
of x(0) with a number of operations linear in the size of A0. Now consider the
computation of x(k) for an arbitrary k. It consists in five operations once block
[Pk] has been built: the vector matrix product, the computation of the norm, the
scalar multiplication of the vector, the additions of the vector and the maximum
of the vectors.

– Update [Pk] : add the new rows, which have not been obtained before. This
is equivalent to a BFS visit of the graph. The complexity is smaller than mk

due to the assumptions.

– The product of x(k−1) by [Pk] is a product of dense vector of size |Ak−1| by
a sparse matrix of size |Ak−1| × |Γ+(Ak−1)| with mk non zero entries. The
complexity is O(mk).

– The computation of the norm of x(k−1) requires O(|Ak−1|) computation
steps.

– The product of a scalar by the vector needs O(|A0|) computation steps.

– The addition needs O(|A0|) +O(|Γ+(Ak−1)|) steps.
– Finally, we compute the entry-wise maximum of a vector of size |A0 ∪

Γ+(Ak−1)| and a vector of size |Ak−1|. As these sets are not necessarily
disjoint, one can get the entry-wise maximum vector after |A0∪Γ+(Ak−1)∪
Ak−1| computation steps. By induction, A0 ⊂ Ak for all k. Therefore we
obtain Ak = Γ+(Ak−1) ∪ Ak−1, and x(k)[i] > 0 if and only if i ∈ Ak.

�
The main computation step is the vector-matrix product but due to the ultra
sparse product, we only consider a finite block of P at each iteration. The con-
vergence results obtained in [5] are still valid. We only avoid to multiply the
infinite part of the matrix by a null vector at each iteration. And the positive
part of the vector finitely increases at each step because each row of the matrix
has a finite non zero number of elements. We now consider the convergence time
and give an example.
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Property 6. The theorems in [5] are proved for finite matrices. However due to
the assumptions, the matrix is infinite but at each step we only consider a finite
matrix. Thus the previous results on convergence hold. Using Property 2 in [5],
one can easily state that the remaining mass of probability to be assigned after
iteration k is upper bounded by (1− ||∇||)k+1. Therefore for any precision ε, we

need less than k0 = � log(ε)
log(1−||∇||)� iterations to reach a residual smaller than ε.

This is not related to the size of the matrix. After k0 iterations we have observed
the convergence of the algorithm and all the entries of x(k) which have not been
computed, are proved to be smaller than ε as their sum is smaller than ε.

Finally, note that the assumption on the set of indices i such that ∇(i) > 0 to
be finite, is not necessary. If this set is infinite, we consider a value b ≤ ∇ which
is not zero on a finite set of indices and which is used to define A0.

Example 2. Consider the following DTMC (a toy example). The state space is
N. The transitions out of state i are described by:

destination probability
0 1/10 + 1/(10( i+1))
i 1/5

i+1 2/5
i+2 3/10 - 1/(10(i+1))

Clearly this example satisfies the constraints. The state space is denumerable
and the output degree of any node is finite (3 or 4). One can easily check that
A0 = {0}, ∇[0] = 1/10 and that ∇[i] = 0 for all positive index i. We report in
the next table the value of the lower bound for probability of state 0, the residual
and the number of non zero entries of the lower bound vector computed after k
iterations.

k π(0) Number of positive entries 1− ||x(k)||
1 0.13 3 0.81
10 0.159696 21 0.313811
20 0.162658 41 0.109419
50 0.163466 101 0.004638
100 0.163483 201 0.000024

We use a precision of 10−5 to stop the algorithm. We reach this precision after
109 iterations. And all the states which have not been computed have a probability
smaller than 10−5. We can also continue for a better precision: 10−6 is obtained
at iteration 131 and 10−8 at iteration 174. For this last iteration, only 349 pos-
itive probabilities were computed. All the other entries of vector π are proved to
be smaller than 10−8. It it worthy to remark that some computed probabilities
are also smaller than this threshold.

Finally, using Property 1, we get from the computation at step 100:

0.163483 ≤ π(0) ≤ 0.163483+ 0.000024 = 0.163507
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3 Stochastic Monotonicity

We present in this section how to combine stochastic comparison of matrices and
our algorithms. We first give a short introduction to the stochastic comparison of
DTMC. We then present two new results to efficiently obtain a bound. Indeed we
do not compute the exact results but stochastic bounds or element wise bounds.
The main objective of this section is to show that the algorithms can be used
in conjunction with some stochastic monotonicity arguments. It must be clear
that we impose that only the bounding matrix satisfy the constraints of our
algorithms. Therefore, we can apply this technique to any matrix.

3.1 A Brief Presentation of Stochastic Comparison of DTMC

We refer to the books [14,12] for the theoretical issues for comparison of ran-
dom variables and Markov chains. We assume that the state space is finite and
endowed with a total ordering. Let S be the state space.

Definition 4. Let X and Y be random variables. X is said to be less than Y
in the strong stochastic sense, (X ≤st Y ) if and only if E[f(X)] ≤ E[f(Y )] for
all non decreasing functions f : S → R, whenever the expectations exist.

This ordering provides the comparison of the underlying probability distribution
functions: X ≤st Y ↔ Prob(X > a) ≤ Prob(Y > a) ∀a ∈ S. Thus, it is more
probable for Y to take larger values than for X . Since ≤st ordering yields the
comparison of sample-paths, it is also known as sample-path ordering. We give
in the next proposition the ≤st comparison in the case of finite state space which
is more suitable for an algorithmic verification.

Property 1. Let X , Y be random variables taking values on {1, 2, · · · , n} and p,
q be probability vectors which are respectively denoting distributions of X and
Y , X ≤st Y iff

∑n
j=i p[j] ≤

∑n
j=i q[j] ∀i = {n, n − 1, · · · , 1}. It is worthy to

remark that X = Y implies that X ≤st Y .

Example 3. Consider p = [0.4, 0.2, 0.3, 0.1] and q = [0, 1, 0.5, 0.2, 0.2]. One can
check easily that p ≤st q as:⎡⎢⎢⎣

0.1 ≤ 0.2,
0.3 + 0.1 ≤ 0.2 + 0.2,
0.2 + 0.3 + 0.1 ≤ 0.5 + 0.2 + 0.2,
0.4 + 0.2 + 0.3 + 0.1 ≤ 0.1 + 0.5 + 0.2 + 0.2.

The stochastic comparison of random variables has been extended to the com-
parison of Markov chains. It is shown in Theorem 5.2.11 of [14, p.186] that
monotonicity and comparability of the probability transition matrices of time-
homogeneous Markov chains yield sufficient conditions to compare stochastically
the chains. We first define the monotonicity and comparability of stochastic ma-
trices and then, we present Vincent’s algorithm.
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Definition 5. Let P and Q be two stochastic matrices. Q is said to be an upper
bounding matrix of P in the sense of the strong stochastic order (P ≤st Q) if

Pi,∗ ≤st Qi,∗, ∀i

where Pi,∗ denotes the ith row of matrix P.

Definition 6. Let P be a stochastic matrix. P is said to be stochastically st-
monotone if for any probability vectors p and q,

p ≤st q =⇒ p P ≤st q P.

This is a rather general definition of monotonicity. In the case of finite state
space with a total ordering, we obtain a much easier characterization of st-
monotone stochastic matrices. P is st-monotone if and only if Pi,∗ ≤st Pi+1,∗
for all state i such that state i+ 1 exists.

One can easily verify in Example 4 that matrix P4 is not monotone while both
bounds (upper and lower) are st-monotone.

The following corollary allows us compare the steady-state distributions of
Markov chains when they exist.

Corollary 1. Let Q be a monotone, upper bounding matrix for P for the st-
ordering. If the steady-state distributions (ΠP and ΠQ) exist, then ΠP ≤st ΠQ.

Stochastic comparison and monotonicity can be represented by linear inequal-
ities. Once we have derived a set of equalities instead of inequalities, and once
we have ordered them, we obtain a constructive way to design a monotone up-
per bounding stochastic matrix Q for an arbitrary stochastic matrix P. This
algorithm is known as Vincent’s algorithm [1,9].

{∑n
k=j Q[1, k] =

∑n
k=j P[1, k]∑n

k=j Q[i+ 1, k] = max(
∑n

k=j Q[i, k],
∑n

k=j P[i + 1, k]) ∀ i, j
(1)

A slightly different version is used to compute a lower bounding monotone ma-
trix:

{∑n
k=j Q[n, k] =

∑n
k=j P[n, k]∑n

k=j Q[i− 1, k] = min(
∑n

k=j Q[i, k],
∑n

k=j P[i− 1, k]) ∀ i, j
(2)

Due to the fact that matrices P and Q are stochastic, one can use the following
version of the constraints for a lower bound. This version is more convenient for
the extensions we propose in the next sections.

{∑n
k=j Q[n, k] =

∑n
k=j P[n, k]∑j

k=1 Q[i− 1, k] = max(
∑j

k=1 Q[i, k],
∑j

k=1 P[i− 1, k]) ∀ i, j
(3)
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Example 4. Consider the following stochastic matrix P2. Vincent’s algorithm
gives:

P2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.2 0.4 0. 0.3 0.1

0.2 0.1 0.3 0.2 0.2

0.2 0. 0.4 0.4 0.

0. 0.5 0.2 0. 0.3

0.2 0.1 0. 0.5 0.2

⎤
⎥⎥⎥⎥⎥⎥⎦
,LB2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.2 0.4 0.1 0.3 0.

0.2 0.3 0.2 0.3 0.

0.2 0.3 0.2 0.3 0.

0.2 0.3 0.2 0.1 0.2

0.2 0.1 0. 0.5 0.2

⎤
⎥⎥⎥⎥⎥⎥⎦
,UB2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.2 0.4 0. 0.3 0.1

0.2 0.1 0.3 0.2 0.2

0.2 0. 0.4 0.2 0.2

0. 0.2 0.4 0.1 0.3

0. 0.2 0.1 0.4 0.3

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Note that ∇(P2) = 0 and the norm of ∇(LB2)and ∇(UB2) are positive. Un-
fortunately this is not true in general as it can be seen with P3:

P3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.2 0.4 0. 0.4 0.

0.2 0.1 0.3 0.2 0.2

0.2 0. 0.4 0.4 0.

0.5 0. 0. 0. 0.5

0. 0.3 0.2 0. 0.5

⎤
⎥⎥⎥⎥⎥⎥⎦
,LB3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.5 0.1 0 0.4 0.

0.5 0. 0.1 0.4 0.

0.5 0. 0.1 0.4 0.

0.5 0. 0.0 0. 0.5

0. 0.3 0.2 0. 0.5

⎤
⎥⎥⎥⎥⎥⎥⎦
,UB3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.2 0.4 0. 0.4 0.0

0.2 0.1 0.3 0.2 0.2

0.2 0. 0.4 0.2 0.2

0.2 0. 0.3 0. 0.5

0. 0.2 0.3 0. 0.5

⎤
⎥⎥⎥⎥⎥⎥⎦
.

3.2 Using a Monotone Bound of a Non Monotone Matrix

We suppose that P is not monotone and we build a monotone lower bound of P.
Vincent’s algorithm [1,9] gives a lower bound monotone matrix whose steady-
state if it exists is a lower bound of πP. Unfortunately, the matrix we obtain with
Vincent’s algorithm is as hard to solve as the original one. Thus, we propose to
use the degree of freedom in the constraints for the stochastic bounds to compute
a monotone lower bound matrix M such that ∇M > 0.

The first algorithm receives as parameters a column index i and a positive
value ε and it builds a monotone lower bound such that ∇M[i] ≥ ε, while the
vector ∇ for the original matrix is equal to 0. Note that the algorithm may fail
and return an error message if it is not possible to build such a matrix. Remark
that this approach is related to the patterns presented by Busic in [3].

Algorithm MLBPL (3) proceeds in three phases. During phase one, it com-
putes column 1 to column i of the monotone lower bound of P using Vincent’s
algorithm (more precisely the set of constraints in system 3). Then, the second
phase is used to modify column i: we make all the entries larger than ε. If an
entry is already larger, we do not change it. Finally we compute columns i + 1
to n using again Vincent’s algorithm.

Theorem 2. If P satisfies
∑i

l=1 P[k, l] ≤ 1−ε for all k, then matrix M, obtained
by Algorithm 3 with parameters i and ε, is a monotone stochastic matrix which
is a lower bound of P such that ||∇(M)|| ≥ ε.

The proof, similar to the proof of Vincent’s Algorithm, is omitted for the sake
of concision. The condition

∑i
l=1 P[k, l] ≤ 1− ε is required for matrix M to be

stochastic.
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Algorithm 3. Monotone Lower Bounds with Positive Nabla (MLBPN)

Require: a state i, a value 1 > δ > 0, matrix P
Ensure: matrix M, a monotone lower of P such that ∇(M) > 0.
1: for j = 1 to i do
2: M[n, j] = P[n, j]
3: end for
4: for k = n− 1 down to 1 do
5: for j = 1 to i do

6: M[k, j] = max
(∑j

l=1 P[k, l],
∑j

l=1 M[k + 1, l]
)
−∑j−1

l=1 M[k, l]

7: end for
8: end for
9: for j = 1 to n do
10: M[j, i] = max(M[j, i], ε)
11: end for
12: for j = i+ 1 to n do
13: M[n, j] =

∑j
l=i P[n, l]−∑j−1

l=i M[n, l]
14: end for
15: for k = n− 1 down to 1 do
16: for j = i+ 1 to n do

17: M[k, j] = max
(∑j

l=1 P[k, l],
∑j

l=1 M[k + 1, l]
)
−∑j−1

l=1 M[k, l]

18: end for
19: end for

Example 5. Consider again matrix P3. It is not monotone (indeed row 2 and
row 3 are not comparable). We apply Algorithm 3 with parameters 3 and 0.1 to

obtain a lower bound:

⎡⎢⎢⎢⎢⎣
0.5 0.1 0.1 0.3 0.
0.5 0. 0.1 0.4 0.
0.5 0. 0.1 0.4 0.
0.5 0. 0..1 0. 0.4
0. 0.3 0.2 0. 0.5

⎤⎥⎥⎥⎥⎦ .

3.3 Using a Bound of a Monotone Matrix

Assume now that P is monotone. Thus, it is not necessary to build a monotone
lower bounding matrix to apply the comparison theorem for DTMC. Indeed, it is
sufficient that one of the two stochastic matrices we consider in the comparison
is monotone. The algorithm simply needs that M is a stochastic lower bound of
P and that ∇(M) has a positive norm. We proceed with the same three phases
as in the previous approach. However, during the first phase, we simply copy the
columns i to n of P into M.

Theorem 3. If P satisfies
∑i

l=1 P[k, l] ≤ 1−ε for all k, then matrix M obtained
with Algorithm 4 with parameters i and ε is a stochastic matrix which is a lower
bound of P such that ∇(M)(i) = ε.

The proof is omitted.
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Algorithm 4. Lower Bounds with Positive Nabla (LBPN)

Require: a state i, a value 1 > δ > 0, matrix P
Ensure: matrix M, a lower of P such that ∇(M) > 0.

1: for k = n down to 1 do
2: for j = 1 to i do
3: M[k, j] = P[k, j]
4: end for
5: end for
6: for j = 1 to n do
7: M[j, i] = max(M[j, i], ε)
8: end for
9: for j = i+ 1 to n do
10: M[n, j] =

∑j
l=i P[n, l]−∑j−1

l=i M[n, l]
11: end for
12: for k = n− 1 down to 1 do
13: for j = i+ 1 to n do

14: M[k, j] = max
(∑j

l=1 P[k, l],
∑j

l=1 M[k + 1, l]
)
−∑j−1

l=1 M[k, l]

15: end for
16: end for

Example 6. We illustrate the approach with matrix M4 which is given by Al-
gorithm LBPN on matrix P4 with parameters 3 and 0.1.

P4 =

⎡⎢⎢⎢⎢⎣
0.2 0.5 0.0 0.3 0.
0.1 0. 0.5 0. 0.4
0. 0.15 0.05 0.3 0.5
0. 0.1 0.. 0.4 0.5
0. 0.0 0.1 0.3 0.6

⎤⎥⎥⎥⎥⎦ , M4 =

⎡⎢⎢⎢⎢⎣
0.2 0.5 0.1 0.2 0.
0.1 0. 0.5 0. 0.4
0. 0.15 0.1 0.25 0.5
0. 0.1 0.1 0.3 0.5
0. 0. 0.1 0.3 0.6

⎤⎥⎥⎥⎥⎦ .

4 Filling the Matrix

We use some manipulations of the entries of the matrix to fill it, while we keep
unchanged the steady-state distribution. This is a rather unusual approach as
we typically avoid to fill the transition matrix to make the matrix sparse during
the numerical analysis.

Definition 7. Let i and j be two arbitrary distinct states, let α be positive, we
define the transform Fi,j,α as follows: Fi,j,α(M) = P such that

– P[k, l] = M[k, l], for all k and for all l �= i and l �= j.
– P[k, j] = (1− α)M[k, j], for all k, k �= j.
– P[j, j] = (1 − α)M[j, j] + α.
– P[k, i] = M[k, i] + αM[k, j], for all k, k �= j.
– P[j, i] = M[j, i] + αM[j, j]− α,

Lemma 2. If M is finite and ergodic and α < min(1, M[j,i]
1−M[j,j] ) , then Fi,j,α(M)

is stochastic and ergodic.
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Proof: First, note that the summations of the elements of the rows of Fi,j,α(M)
are all equal to 1. Furthermore, the constraint on α implies that the entry [i, j]
of this matrix is positive and that all the elements are non negative. Thus matrix
Fi,j,α(M) is stochastic. Finally, as M is finite and ergodic, it must be irreducible
and aperiodic. Clearly, all the transitions inM also exist in Fi,j,α(M). Remember
that irreducibility and aperiodicity are monotone properties (i.e. the properties
are still verified when we add new transitions). Therefore Fi,j,α(M) is finite,
aperiodic and irreducible. It must be ergodic. �
Lemma 3. Let π be the steady-state distribution of M, consider two arbitrary
distinct states i and j and an arbitrary positive value α, then πFi,j,α(M) = π.

Proof: consider an arbitrary state k, we have three cases to study:

– k = i. Let us compute
∑

l π[l]Fi,j,α(M)[l, i]. By construction, we have after
substitution:∑

l π[l]Fi,j,α(M)[l, i] = −απ[j] +
∑

l π[l]M[l, i] + α
∑

l π[l]M[l, j],
= −απ[j] + π[i] + απ[j],
= π[i].

– k = j. Again we compute the summation and we substitute the definition of
the transform to get:∑

l π[l]Fi,j,α(M)[l, j] = απ[j] + (1− α)
∑

l π[l]M[l, j],
= απ[j] + (1− α)π[j],
= π[j].

– k �= i, k �= j. After substitution:∑
l π[l]Fi,j,α(M)(l, k) =

∑
l π[l]M(l, k) = π[k].

And the proof is complete. �

Property 7. The transform Fi,j,α() requires at worst a number of steps linear
in the size of the state space. It can be less if row j has a sparse representation.
However one must remember that the goal of this approach is to fill row i due
to the contribution of row j. Therefore one must consider the rows which have
many non zero entries.

Clearly, one can used the transform to fill row i of matrix M until the norm of ∇
becomes positive. Indeed one can apply many transforms with various columns
j and factor α to fill row i.

Example 7. Consider again matrix P2 defined in Example 4. Clearly ∇(P2) is
0. We apply F1,2,0.1 on P2 to get the following matrix:

F1,2,0.1(P2) =

⎡⎢⎢⎢⎢⎣
0.24 0.36 0 0.3 0.1
0.11 0.19 0.3 0.2 0.2
0.20 0 0.4 0.4 0
0.05 0.45 0.2 0. 0.3
0.21 0.09 0 0.5 0.2

⎤⎥⎥⎥⎥⎦ .

And ∇(F1,2,0.1(P2)) = [0.05, 0, 0, 0, 0]. We can now apply I∇L and I∇U algo-
rithms. After 200 iterations the bounds for the probability are:
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k 1 2 3 4 5 1− ||x(k)||
lower 0.149022 0.226813 0.198361 0.254866 0.170905 0.000033
upper 0.149028 0.226827 0.198375 0.254883 0.170917 -0.000030

A careful inspection shows that α = 1/7 gives a better value for the norm of ∇
(i.e. in this case, it is the optimal value one can obtain with a transform with
row 2 used to fill row 1): ∇(F1,2,1/7(P2)) = [5/70, 0, 0, 0, 0].
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Abstract. We extend the population continuous time Markov chain for-
malism so that the state space is augmented with continuous variables
accumulated over time as functions of component populations. System
feedback can be expressed using accumulations that in turn can influence
the Markov chain behaviour via functional transition rates. We show how
to obtain mean-field differential equations capturing means and higher-
order moments of the discrete populations and continuous accumulation
variables. We also provide first- and second-order convergence results
and suggest a novel normal moment closure that can greatly improve
the accuracy of means and higher moments.

We demonstrate how such a framework is suitable for modelling feed-
back from globally-accumulated quantities such as energy consumption,
cost or temperature. Finally, we present a worked example modelling a
hypothetical heterogeneous computing cluster and its interaction with
air conditioning units.

1 Introduction

The behaviour of large computing clusters is often controlled by feedback from
various accumulated continuous quantities, such as temperature, energy consump-
tion or total cost. For example, an air-conditioning controller in a server farm
will react to the ambient temperature. At the same time, sophisticated thermally-
aware schedulers [23] can use temperature sensors to regulate server operation and
thus indirectly environmental temperature, creating a feedback loop.

Stochastic models of computing clusters will typically be very large and thus,
due to state-space explosion, will often lie outside the capabilities of traditional
performance analysis. However, the nature of these systems, consisting of many
identically-behaving cooperating components is suitable for mean-field type anal-
yses [e.g. 7, 10, 12]. Mean-field techniques have recently been extended to capture
certain accumulated rewards [21]. We show how to further adapt this approach
to allow modelling of feedback between the system model and the generated
accumulated quantities.

In Section 2, we extend the discrete state space of a Markov population model
with accumulated variables governed by integral equations. The accumulation

K. Al-Begain, D. Fiems, and J.-M. Vincent (Eds.): ASMTA 2012, LNCS 7314, pp. 193–211, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



194 A. Stefanek et al.

functions can involve component populations and the discrete transition rate
functions can depend on the accumulated variables, thus allowing feedback loops.
In Section 2.2 we extend the mean-field techniques to analyse means and higher
moments of component populations and accumulated variables. Section 3 jus-
tifies this approach by proving convergence to the solution of the mean field
equations as the scale of the system increases. In Section 3.2, based on second-
order convergence to a Gaussian process, we introduce a moment closure that
improves the accuracy of the approximation when the rates contain occurrences
of the minimum or maximum functions, common situations when modelling com-
puter systems, for example, the process algebra PEPA [10] or stochastic Petri
nets [19]. We demonstrate the techniques on a larger example of a heterogeneous
computing cluster with controlled temperature in Section 4.

1.1 Related Work

Capturing the feedback interaction between process-based agents and continu-
ously varying physical properties of a system falls in the realm of hybrid system
modelling. In the field of performance analysis, an initial example of this would
have been in FSPNs or fluid stochastic Petri nets [13] where fluid places are used
to capture continuously varying quantities. Discrete Petri net behaviour was in
turn governed by the level of a given fluid place. FSPNs could be simulated but
were restricted to only one or two fluid places in practice.

A detailed comparative study of hybrid process algebras can be found in [15].
A common feature in each of these hybrid process algebras is the expression of
continuous evolution via the embedding of ordinary differential equations in the
process model itself. In contrast, Bortollussi et al. [3] have developed stochas-
tic HYPE, a process formalism that generates both discrete and continuously
varying dynamics from the semantics of the process model alone.

In this paper we present a process mechanism that expresses feedback con-
trol as a result of accumulated reward variables in Markov population models.
Analysis of Markov Reward Models (MRMs) [18, 24] is if anything more compu-
tationally demanding than analysis of plain Markov models. In Stefanek et al.
[21], we showed how a fluid approximation could be constructed for a class of
MRMs, but we had no way of providing a feedback mechanism based on those
reward values.

In this paper we show how accumulated reward variables can be used to influ-
ence transition guards and rates in a large Markov model. We have not endeav-
oured to express the continuously varying rewards and variables in a process-style
language, as in [3]. Instead we have focused on showing convergence between the
ODE solution of the resulting population CTMC model with reward accumula-
tions (aPCTMC) and simulations of the underlying stochastic process. Further,
we consider higher moments of rewards with feedback, something we believe has
not been presented before for hybrid systems of such scale.
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2 Markov Population Models with Accumulations

In this section, we define an extension of a continuous-time Markov population
process (PCTMC). The state space of a PCTMC consists of vectors x ∈ Zn

+

of integer-valued populations, where x0 is the initial configuration. Transitions
of the Markov chain are defined via a set of transition classes C. Each class
c ∈ C specifies a difference vector lc ∈ Zn between the populations before and
after such a transition occurs and a rate function rc : Z

n
+ → R+ defining the

infinitesimal rate of transitions of class c as a function of populations in the
given state.

We illustrate the following definitions on a PCTMC representing a simple
client/system. We use the PEPA stochastic process algebra [12] to define a
PCTMC:

Client0
def
= (data, rdata ).Client1 Server 0

def
= (data, rdata ).Server 1

Client1
def
= (task , rtask ).Client0 Server 1

def
= (reset , rreset).Server0

Clients{Client0[NC ]} ��
data

Servers{Server0[NS]}

Here, the discrete state space consists of numerical vectors x = (C0, C1, S0, S1) ∈
Z4
+ and the initial state is (NC , 0, NS, 0), keeping track of the populations of

clients and servers in their respective states. There are 3 transition classes in
this model – one corresponding to the synchronised event where a client sends
its data to a server and two independent events where the client and the server
reset to their initial states. According to the PEPA operational semantics, the
respective change vectors and rate functions are l1 = (−1,−1, 1, 1) with r1(x) =
min(C0, S0)rdata , l2 = (1,−1, 0, 0) with r2(x) = C1 · rtask and l3 = (0, 0, 1,−1)
with r3(x) = S1 · rreset .

We augment the state space with a set of continuous variables governed by an
auxiliary system of integral equations whose evolution may additionally depend
on the discrete populations. The continuous variables can be used to track the
evolution of associated quantities such as energy use or temperature. Further-
more, the rates of the Markovian evolution of the discrete populations may also
depend on the value of these variables, thus allowing, for example, energy usage
over time to feedback into the control of the system.

2.1 Definition

The state space of a PCTMC with accumulations (aPCTMC ) is a subset of
Zn
+ ×Rm consisting of states (x,y), where x ∈ Zn

+ captures the discrete popula-
tions and y ∈ Rm captures the continuous accumulation variables. The discrete
populations evolve as in traditional PCTMCs, that is, according to a set C of
transition classes. The associated rate functions are extended onto the full state
space, that is rc : Zn

+ × Rm → R+ We denote the discrete-state component of
the associated stochastic process by X(t) with its initial state given by x0.
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The evolution of the continuous variablesY(t) is given by an integral equation
of the form:

Y(t) = y0 +

∫ t

0

g(X(s),Y(s)) ds (1)

where g : Zn
+×Rm → Rm is an accumulation function and y0 is the initial state

of the accumulation variables.
For example, in the client/server model we might wish to model generation of

heat energy by servers when in the active state Server1, resulting in an increase
in the total energy in the server room. In order to model the heating–cooling
process, we extend the discrete model also with air conditioning units:

Aircon0
def
= (on, λon(t)).Aircon1 Aircon1

def
= (off , λoff (t)).Aircon0(

Clients{Client0[NC ]}��
data

Servers{Server0[NS ]}
)
‖ Aircon{Aircon0[NA]}

where the rates λon and λoff are defined below. The active air conditioning units
contribute to the cooling of the environment, by transferring heat energy out of
the room. If we assume that the heat generation and cooling rates (rheat and
rcool) are constant over time, the heat energy in the server room can be captured
by an accumulated variable:

E(t) = E0 +

∫ t

0

rheatS1(u)− rcoolA1(u) du

where E0 is the initial energy in the room.
We can introduce feedback into the system by making the air conditioning

transition rates depend on the current temperature of the room. An approximate
physical model for the temperature is:

T (t) =
c

v
E(t) (2)

where c is a constant and v is the total volume of air in the room. One possible
control policy for the air conditioning units might be: when the temperature is
above a given threshold Tthresh , units switch on at some rate, otherwise active
units switch off:

λon(t) = ron if T (t) > Tthresh λoff (t) = roff if T (t) < Tthresh

and 0 otherwise.
In general, an aPCTMC process can be realised as a piecewise deterministic

Markov process (PDMP) [5]. However, in order for the above construction to
result in a uniquely well-defined PDMP on any finite interval of time, some reg-
ularity conditions are required. In particular, it is important that the possibility
of infinitely many jumps of the discrete component in a finite period of time is
prevented and also that the continuous component cannot grow unbounded in
a finite period of time, that is, that it cannot explode. The following conditions
are sufficient to achieve this, where X ⊂ Zn

+ is defined to be the reachable state
space of the discrete component:
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1. There exist A,B ∈ R+ such that for all x ∈ X , y ∈ Rm and c ∈ C:

‖g(x,y)‖ ≤ A(‖y‖ + 1) and rc(x,y) ≤ B(‖y‖ + 1)

2. The function g(x, ·) : Rm → Rm satisfies a local Lipschitz condition for each
x ∈ X .

3. For each c ∈ C, the function rc(x, ·) : Rm → R+ is measurable for each x ∈ X .

Assumption 2 guarantees that, between discrete jumps, the continuous compo-
nent is defined uniquely and exists as long as it does not explode. In fact, the
only way that the above construction will fail is if the continuous component
explodes, since, otherwise, the maximal jump rate is bounded by assumption 1.
However, if the continuous component does explode, say, at time t∗, then for any
t < t∗, we have:

‖Y(t)‖ ≤ ‖y0‖+
∫ t

0

‖g(X(s),Y(s))‖ ds ≤ ‖y0‖+At∗ +
∫ t

0

A‖Y(s))‖ ds

Applying a version of Grönwall’s lemma [e.g. 6, Page 498] yields:

‖Y(t)‖ ≤ [‖y0‖+At∗] exp(tA)

This implies that Y(t) cannot explode at time t∗ since it is continuous and
bounded by [‖y0‖+At∗] exp(t∗A) for any t < t∗. Thus we have a contradiction
and have shown that, subject to the assumptions above, our construction is
well-defined on finite intervals of time.

Note that transition rates can be defined using a discontinuous indicator func-
tion without breaking any of the above assumptions, such as the rates λon(t)
and λoff (t) above. Therefore the client/server model defines a valid aPCTMC
model.

2.2 Mean-Field Approximations

It is straightforward to extend simulation algorithms for CTMCs to realise traces
of the evolution of the discrete and continuous state components of aPCTMC
models. However, in the case of large models, simulation suffers from high com-
putational costs.

We show how to extend the efficient mean-field (a.k.a. fluid-analysis) approach
for the analysis of massive CTMC models [e.g. 10, 12, 25] to the case of aPCTMC
models. Specifically, define f : Rn ×Rm → Rn by f(x,y) :=

∑
c∈C rc(x,y)lc, for

suitable real extensions of the functions rc. Then an intuitive extension of the
mean-field approach yields the following systems of integral equations:

x(t) = x0 +

∫ t

0

f(x(s),y(s)) ds y(t) = y0 +

∫ t

0

g(x(s),y(s)) ds (3)

whose solutions can be interpreted as approximations to the means of the stochas-
tic processes X(t) and Y(t), respectively, or for sufficiently large populations, as
approximations to individual traces of the stochastic processes.
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For example, in the client/server model, we get equations such as:

s0(t) = NS +

∫ t

0

rresets1(u)− rdata min(c0(u), s0(u)) du

where we use lower case letters for the mean-field approximations of the respec-
tive population and accumulation processes.

In Section 3 we show that, in the limit of large populations, the traces of
the processes X(t) and Y(t) (and in particular the means E[X(t)] and E[Y(t)])
converge to the mean-field solutions x(t) and y(t), respectively. Since we will

usually be comparing means, we will adopt the notation Ẽ[X(t)] for x(t). For
example, Figure 1 shows the numerical solutions to the mean-field model of
Equation (3) as applied to the client/server model, compared to the estimates of
the exact means sampled from 105 simulation runs of the stochastic process. In
all figures in this paper, unless noted otherwise, the estimates from simulation
are shown as dotted lines. Appendix A shows the specific values of parameters
used to produce this figure and all the subsequent figures in this paper.
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Fig. 1. Approximation of mean component populations and accumulations in the
client/server model

2.3 Higher-Order Moments

In addition to approximations of means of populations and the accumulation
variables, systems of equations approximating higher-order moments may also
be derived by extending existing approaches [e.g. 9, 10, 21] for CTMCs. The joint
process (X(t),Y(t)) is clearly Markovian with infinitesimal generator A defined
on continuous and bounded functions h : Rn × Rm → R that are differentiable
in the last m variables:

Ah(x,y) := lim
t→0

E[h(X(t),Y(t))|(X(0),Y(0)) = (x,y)] − h(x,y)

t

=

m∑
i=1

gi(x,y)
∂h

∂yi
(x,y) +

∑
c∈C

rc(x,y)[h(x + lc,y) − h(x,y)]

It thus follows by Dynkin’s formula [e.g. 14, Lemma 17.21] that for t ∈ R+:

E[h(X(t),Y(t))] = h(x0,y0) +

∫ t

0

E[Ah(X(s),Y(s))] ds (4)
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Equations for second-order moments can be obtained by choosing h(x,y) :=
xiyj , xixj and yiyj for each appropriate i and j.1 In fact, monomial functions
of any order can be used to obtain equations for arbitrary order moments. How-
ever, if the functions f and g are non linear (as is usually the case), the term
E[Ah(X(s),Y(s))] will involve expectations of non-linear functions of popula-
tions and will thus need to be simplified by applying some form of moment-
closure approximation.

For example, in the client server model, the right hand side of Equation (4) will
contain terms of the form E[min(C0(t), S0(t))]. In the past, and in Equation (3)
above, the approximation min(E[C0(t)],E[S0(t)]) has been used. This has been
shown to work quite well in general for a large class of performance models
[20]. However, if the process remains close to states where the arguments of
the minimum function are equal, so-called switch points, for a long period of
time, the accuracy of this approximation can decrease significantly for systems
with low populations [20]. This is even more visible when the minimum function
involves accumulated variables in aPCTMC models. We address this issue with
a novel normal moment closure in Section 3.2.
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Fig. 2. Approximation of the evolution of standard deviation of populations and ac-
cumulations in the client/server model

Figure 2 shows approximations of standard deviations in the client/server

model (we extend the Ẽ[·] notation to higher moments and expressions on them,
such as variance). As demonstrated in previous work [20], this is quite accurate
in the case of the client and server populations, which are not dependent on
the accumulated variables, as depicted in Figure 2(a). However, in case of the
population of air conditioning units (Figure 2(b)), and the temperature variable
(Figure 2(c)), there are large quantitative and qualitative differences accumu-
lated over time. Section 3.2 will discuss ways to improve the accuracy.

1 Assuming that X is finite then the arguments of Section 2 guarantee that, over finite
intervals of time, the process (X(t),Y(t)) is bounded to remain in some compact set,
and then the boundedness requirement for the functions h need only be honoured
on this set.
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3 Convergence Properties

In this section of the paper we will prove that, in the limit of large populations, a
suitably rescaled aPCTMC model converges to its mean-field approximation. We
construct a sequence of aPCTMC models {(XN (t),YN (t)) ∈ Zn

+ × Rm}N∈Z+ .
We assume that the elements C and lc are fixed, but that the rate functions rNc
and also gN may vary with N . The initial conditions for the Nth model in the
sequence are given by (Nx0, Ny0) for some (x0,y0) ∈ Zn

+×Rm. For each model
in this sequence, we assume that the assumptions of Section 2 are satisfied so
that all of the processes are well defined and write SN ⊆ Zn

+ for the reachable
state space of the discrete component of the Nth process.

We assume further that the functions f : Rn × Rm → Rn, fc : R
n × Rm → R

and g : Rn × Rm → Rm can be defined independently of N as follows:

f(x,y) :=
∑
c∈C

lcfc(x,y) :=
∑
c∈C

(lc/N)rNc (Nx, Ny) g(x,y) := (1/N)gN(Nx, Ny)

and that f and g satisfy local Lipschitz conditions on Rn × Rm. Further, we
assume that solutions to the mean-field model given by Equation (3) exist glob-
ally. Define the rescaled processes X̄N (t) := XN (t)/N and ȲN (t) := YN (t)/N ,
then we require that there is some compact subset of Rn that contains all of
the state spaces of the rescaled processes X̄N (t). Assume also that gN (x,y) ≤
C(‖x‖ + ‖y‖ + 1) for all x ∈ SN and y ∈ Rm where C ∈ R+ is independent of
N . Then by an application of Grönwall’s lemma similar to that of Section 2, we
have that for all t ∈ [0, T ], the rescaled stochastic processes and the mean-field
approximations can be contained within a single compact set S ⊂ Rn+m that is
independent of N .2 Finally, we require that rNc (x,y) ≤ D(‖x‖+ ‖y‖+1) for all
c ∈ C, x ∈ SN and y ∈ {Ns : s ∈ S} where D ∈ R+ is independent of N .

The following theorem shows that the rescaled processes converge in proba-
bility to the mean-field approximation.

Theorem 1. Under the assumptions and setup given above, we have, for any
T > 0 and ε > 0:

lim
N→∞

P

{
sup

t∈[0,T ]

‖X̄(t)− x(t)‖ > ε

}
=0 lim

N→∞
P

{
sup

t∈[0,T ]

‖Ȳ(t)− y(t)‖ > ε

}
=0

Proof. We begin by representing each process (X̄N (t), ȲN (t)) in terms of mu-
tually independent rate-1 Poisson processes {Pc(t) : c ∈ C} by the random-time
change approach [6]:

X̄N (t) = x0 +
∑
c∈C

Pc

(∫ t

0

rNc (XN (s),YN (s)) ds

)
lc/N

ȲN (t) = y0 +

∫ t

0

g(X̄N (s), ȲN (s)) ds

2 Note that it is then only strictly necessary for this theorem that f , fc and g are
defined on S rather than on the whole of Rn+m.
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On S, f and g are both Lipschitz continuous; let K be a Lipschitz constant for
both functions. Now define:

DN (t) := sup
s∈[0,t]

∥∥∥∥X̄N (s)− x0 −
∫ s

0

f(X̄N (u), ȲN (u)) du

∥∥∥∥
and εN (t) := ‖X̄N (t)− x(t)‖ + ‖ȲN (t)− y(t)‖. Then we have for t ∈ [0, T ]:

εN(t) ≤ DN (T ) +

∫ t

0

‖g(X̄N (s), ȲN (s))− g(x(s),y(s))‖ ds

+

∫ t

0

‖f(X̄N (s), ȲN (s))− f(x(s),y(s))‖ ds ≤ DN (T ) + 2K

∫ t

0

εN (s) ds

and by Grönwall’s inequality, we obtain εN(t) ≤ DN (T ) exp(2KT ). Now note
that:

DN (T ) ≤

sup
s∈[0,T ]

∥∥∥∥∥∑
c∈C

lc
N

[
Pc

(∫ s

0

rNc (XN (u),YN (u)) du

)
−
∫ s

0

rNc (XN (u),YN (u)) du

]∥∥∥∥∥
which can be bounded above by

∑
c∈C ‖lc‖ sups∈[0,T ] |Pc(NCs)/N − Cs| for

some C ∈ R+ independent of N . The result then follows by the strong law
of large numbers for the Poisson process, which is equivalent to the functional
strong law of large numbers [e.g. 26, Section 3.2], that is, for all S ∈ R+,
sups∈[0,S] ‖Pc(Ns)/N − s‖ → 0 as N → ∞ with probability 1. �
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Fig. 3. Effect of rescaling on the first order mean-field approximation

In terms of the client/server model, scaling the number of components by N ,
and, in particular, the number of servers, can be assumed to require a room ap-
proximatelyN times larger in volume than that of the original system. Therefore
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it makes sense if the initial heat energy content of the room E0 is also scaled
by N and the total heat energy content of the room is divided by N in order to
obtain a physical model of the temperature as N increases, that is:

TN(t) =
c

Nv
EN (t) and EN

0 = NE0

Theorem 1 requires a continuity assumption on the transition rate and accumu-
lation functions in a aPCTMC model. The indicator functions λN

on and λN
off in

the client/server model do not satisfy these requirements. However, Figure 3 does
seem to suggest empirically that convergence may still occur. Indeed, extensions
of Theorem 1 to discontinuous rate functions may be possible by considering
mean-field models in terms of differential inclusions [2, 8], but we do not pursue
this further in this paper.

Instead, we can replace the 0/1–valued indicator functions in λN
on and λN

off

with a more smooth proportional control, setting:

λN
on(t) = (TN (t)− Tthresh)

+ron (5)

where f+ is the positive part of f , that is max(f, 0). For simplicity we also set
λN
off (t) = roff for all N . With this modification, Theorem 1 then applies, and is

illustrated in Figure 6.

3.1 Second-Order Convergence

In this section, we give a second-order Gaussian convergence result for the se-
quence of rescaled aPCTMC models, which will directly motivate the improved
moment closure approach of Section 3.2. We maintain all of the notation of the
previous section.

In addition to the assumptions of the previous section, we assume that we can
decompose f(x,y) =

∑
i 1{(x,y)∈Fi}f

i(x,y) and g(x,y) =
∑

j 1{(x,y)∈Gj}g
j(x,y)

where {Fi} and {Gj} are finite collections of disjoint open sets in Rn ×Rm such
that for each i [resp. j], f i [gj ] is totally differentiable on F i∩ int(S) [Gj∩ int(S)]
with uniformly continuous total derivative there. Then f [g] has uniformly con-
tinuous total derivative on ∪iFi ∩ int(S) [∪iGi ∩ int(S)], which we write as Df
[Dg].

Theorem 2. Fix T > 0. Assume that the set {t ∈ [0, T ] : (x(t),y(t)) /∈ ∪iFi ∩
∪jGj∩int(S)} has Lebesguemeasure zero. Then formutually independent standard
Brownian motions {Bc(t) : c ∈ C}, the following equations have a unique strong
solution [e.g. 16, Theorem 6.30] such that (EX(t),EY (t)) is jointly-Gaussian:

EX(t) :=

∫ t

0

Df(x(s),y(s)) · (EX(s),EY (s))T ds+
∑
c∈C

Bc

(∫ t

0

fc(x(s),y(s)) ds

)
lc

EY (t) :=

∫ t

0

Dg(x(s),y(s)) · (EX(s),EY (s))T ds
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Furthermore,
(

XN (t)−Nx(t)√
N

, YN (t)−Ny(t)√
N

)
⇒ (EX(t),EY (t)) as N → ∞, where

the convergence is weak on D([0, T ];Rn+m) endowed with the uniform topol-
ogy [e.g. 1].3

Proof. We assume the representation of the processes X̄N (t) and ȲN (t)) given
in Equation (5). Further it is possible [6, Corollary 5.5 and Remark 5.4] to con-
struct, on the same probability space as these processes, mutually independent
standard Brownian motions {Bc(t) : c ∈ C}, such that:

Zc := sup
t∈R+

|Pc(t)− t−Bc(t)|
log(2 ∨ t)

< ∞ almost surely

From this it follows that as N → ∞, almost surely:
√
N sup

t∈[0,T ]

∥∥∥∥X̄N (t)− x0 −
∫ t

0

f(X̄N (s), ȲN (s)) ds

−
∑
c∈C

Bc

(∫ t

0

rNc (XN (s),YN (s)) ds

)
(lc/N)

∥∥∥∥−→ 0 (6)

Adirect comparisonof XN (t)−Nx(t)√
N

withEX(t) and similarly forEY (t) usingEqua-

tion (6) yields the result. We omit further details here for the sake of brevity. �
Theorem 2 also demands the continuity assumption on the transition rate and ac-
cumulation functions in an aPCTMCmodel so does not apply to the client/server
model with threshold-based control. Indeed, Figure 4 shows that we do not even
seem to observe convergence of the standard deviation approximation empiri-
cally in this case.
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Fig. 4. Effect of scaling on the mean–field approximation of standard deviation of
active air conditioning unit population

In the case of the proportionally-controlled client/server model introduced
above, Theorem 2 can be applied, although, in our experiments, for populations
that are of similar orders to those considered in Figure 4, the approximation
of the standard deviation of the temperature variable can be very inaccurate
— convergence occurs very slowly. In the next section, based on the Gaussian
assumption justified by Theorem 2, we introduce a technique that can provide
significant improvements.

3 Informally, this is ‘uniform convergence in distribution over [0, T ]’.
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3.2 Normal Approximations

Theorem 2 suggests that both the discrete and continuous components X(t) and
Y(t) of an aPCTMC model can be approximated by a jointly Gaussian process
for sufficiently large populations. The proportionally-controlled client/server ex-
ample considered in this paper and, more generally, a large class of computer
performance models, for example, those specified using PEPA, stochastic Petri
nets or many-server queueing networks contain rates with occurrences of min-
imum functions. In such cases, Equation (4), when applied to extract a first
moment, contains expectations of the form E[min(α, β)] where α and β are lin-
ear combinations of any of the discrete or continuous components in the model at
some time t. The mean field approximation min(E[α],E[β]) can often be quite ac-
curate, but Theorem 2 suggests an alternative. Because a sequence of aPCTMC
processes converges to a Gaussian process, the marginal distributions at each
point in time converge to multivariate normal random variables. Using a result
for the moments of a minimum of two bivariate normal random variables [4], we
can obtain the following approximation (where Φ and φ are the CDF and PDF,
respectively, of a standard normal random variable):

E[min(α, β)] = E[α]Φ (Δ) + E[β]Φ (−Δ)− θφ (Δ) (7)

where θ := (Var[α]− 2Cov[α, β] + Var[β])
1/2

and Δ = (E[β]−E[α])/θ. This uses
only first- and second-order moments for which we can apply Equation (4) in
order to extract equations governing their evolution.

For second-order moments, the mean field equations contain expectations of
the form E[γmin(α, β)]. Experiments suggest that the following approximation
results in accurate approximations:

E[γmin(α, β)] ≈ E[γα]Φ (Δ) + E[γβ]Φ (−Δ)− E[γ]θφ (Δ) (8)

Figure 5 illustrates the improved accuracy for the discrete components of the
model with proportional control.
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Fig. 5. Improved accuracy with normal approximations. Figure (a) compares the
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when used in the mean-field equations for the mean and standard deviation of the S0

population.
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Fig. 6. Effect of scaling on the mean approximation when using the new normal ap-
proximations
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Fig. 7. Effect of scaling on standard deviation of temperature when using the new
normal approximations

It is straightforward to adapt the result of [4] to obtain an expression for the
maximum of bivariate normal random variables, so that an analogous approxi-
mation can be applied also to the proportional control expression (Equation (5)).
Figure 6 compares simulation estimates with the numerical solution to the mean-
field equations obtained from Equation (4) and with solutions to the new set of
mean-field equations obtained by replacing occurrences of the minimum and
maximum function according to the methods of this section. We see that this
results in significant improvements in accuracy.

Figure 7 shows further that the normal moment closure can result in an ac-
curate approximation of the standard deviation of the temperature even at rel-
atively low scales of the system.
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4 Worked Example

In this section we demonstrate the aPCTMC formalism and the efficient mean-
field techniques on a larger example of a heterogeneous computing cluster. Simi-
lar to the client/server model, we consider a high level abstraction of the system.
We assume that there are two types of servers in the cluster — ones with low
(class A) and ones with high power consumption (class B), respectively. Clients
in the system submit two types of jobs — with low (type 1) and high loads (type
2) on the servers. As in the client/server model, we include air conditioning units
that maintain the ambient temperature in the room. Additionally, servers are
capable of entering a sleep mode in the case that the temperature increases
above a threshold. Unlike in the case of the client/server model where the client
and server components of the discrete state space were unaffected by the accu-
mulated variables, this will result in an aPCTMC with a complete dependence
between the discrete components and the accumulated variables.

We use the PEPA process algebra to concisely describe the aPCTMC model
(j ∈ {A,B} is a server class and i ∈ {1, 2} is a job type):

Client
def
=
∑2

i=1(queuei, rq,i).Jobi Jobi
def
= (servicei, rservicei

).Client

Server j
def
=
∑2

i=1(service
j
i , rservice,i).Server

j
i + (sleep, λsleep(t)).Server

j
sleep

Server ji
def
= (reset , rreset).Server

j Server jsleep
def
= (wakeup, rwakeup).Server

j(
Servers{ServerA[NSA]|ServerB[NSB]}

)
‖ Aircon{Aircon0[NA]}

��
{servicei|1≤i≤4}Clients{Client [NC ]}

with rates λoff (t) = ron and

λsleep(t) = (T (t)− Tsleep)
+ · rj,sleep and λon(t) = (T (t)− Tthresh)

+ · ron
where temperature is defined as in Equation (2) and the energy variable is

E(t) = E0 +

∫ t

0

∑
j

(S j(u)cj,s + S j
sleep (u)cj,sl + S j

1 (u)cj,1 + S s(u)cj,2)− A1(u)cadu

for some constants cj,s, cj,sl , cj,1, cj,2, ca .
Additionally, we transform the model so that it is possible to use mean-field

techniques to calculate cumulative distribution functions of various passage-time
random variables [11]. We will compute the time until an individual client exe-
cutes its first high load job. Such measures are often used when expressing service
level agreements (SLAs). The example will show how the presented framework
can be used to study the trade-off between SLA satisfaction and the energy effi-
ciency of the system. An increasingly common metric assessing energy efficiency
of data centres is the Power Usage Efficiency (PUE) metric [17], calculated as
the ratio between the total energy consumption and the energy used by the
servers. In the above model, we can model the total energy consumption as an
accumulated variable:
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cluster model
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Fig. 9. Mean population of active airconditioning units and mean temperature in the
cluster model. The approximation of standard deviation in figure (b) was obtained by
applying the normal min closure from Section 3.2.

P (t) =

∫ t

0

∑
j

(pj,slS
j
sleep(u) + pj,sS

j(u) + pj,1S
j
1 (u) + pj,2S

j
2 (u)) + paA1(u)du

for some constants pj,s, pj,sl , pj,1, pj,2, pa.
The quantity U(t) represents the energy used for computation and is defined

as P (t), omitting the contribution of the air conditioning units and the servers
in the sleeping state. To obtain an approximation of the mean PUE, we compute
Ẽ[P (t)]/Ẽ[U(t)] for sufficiently large t (1000 in the examples below).

Figure 8 shows the mean populations of client and server-A components and
the passage-time CDF as obtained by the mean-field analysis. Figure 9 shows
the mean population of air conditioning units, its effect on the mean controlled
temperature and the PUE of the system.

One benefit of mean-field analysis is the relatively low computational cost
of numerically integrating the mean-field equations. This allows the evaluation
of a large number of system configurations in a short time. For example, we
can look at the relationship between the two temperature thresholds Tthresh and
Tsleep that specify when the air conditioning units start contributing to cooling
and servers switch to sleep mode, respectively. We fix the server threshold at 23
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Fig. 10. The effect of cooling threshold and the number of servers on the steady state
PUE metric and the number of servers in sleeping state. For each initial server popu-
lation NS , the thick black line shows the threshold under which the minimum PUE is
achieved.

units and search for the best air conditioning threshold. Our target measure to
minimise will be the PUE in steady state of the system and the constraints are
given by requiring satisfaction of the above SLA. Figure 10 explores a range of
system configurations with the number of servers of each type NS = NSA = NSB

varying between 50 and 1500 and the threshold Tthresh varying between 20 and
26 units.

Figure 10(a) shows the mean steady-state PUE for each configuration. For
each size of the computing cluster given by a value of NS, there is an opti-
mal value of Tthresh achieving a minimal PUE metric. These thresholds and the
corresponding optimal PUE values are shown by the thick solid line.

It can be seen that this is slightly below the server threshold, shown as the
red dotted line. For example, for NS = 850, the value of Tthresh achieving the
optimal PUE is 22.7. The SLA is achieved only when there are sufficiently many
servers in the system, shown as the darker region on the surface plot. Figure 10(b)
shows that the optimal PUE line minimises the number of sleeping servers, while
keeping the air conditioning units as lightly loaded as possible. Figure 10(c)
shows that line of minimum PUE separates the region with maximal standard
deviation of the temperature variable.
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5 Conclusion and Future Work

We have introduced the aPCTMC formalism, an extension to Markov popula-
tion models that allows efficient modelling of feedback from accumulated quan-
tities. We have extended the existing mean-field techniques to provide means
and higher moments of populations and accumulations for aPCTMC models.
Furthermore, we have provided convergence results justifying the mean-field ap-
proximation in the first- and second-order cases. The second-order result shows
that sequences of aPCTMC models with increasing component populations con-
verge to a jointly Gaussian process. This justifies the novel use of a normal ap-
proximation of minimum and maximum functions in the mean-field equations,
resulting in significantly improved accuracy in both first- and second-order cases.

We have demonstrated the new framework on a substantial example of a
computing cluster where server behaviour reacts to the ambient temperature
controlled by an air conditioning system. An important advantage of the mean-
field techniques is the low computational cost that can be used to explore a large
number of different system configurations.

All of the numerical results in this paper were produced using a prototype
implementation of the techniques in an extension to the Grouped PEPA Analyser
tool [22].

In future, we plan to more formally investigate the accuracy improvements
possible from the normal moment closures detailed in this paper. We also plan
to investigate more complex accumulation mechanisms. For example, Gaussian
noise might be introduced into the accumulation equations to account for error
in sensor measurements of the continuous quantities.
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A Parameters Used in the Examples

Table 1. Values of rate and initial population parameters used in the client/server
example, Figures 1, 2, 3, 4, 5

rdata = 0.6 rtask = 0.2 rreset = 0.1 ron = 0.2 roff = 0.2 rheat = 0.2 rcool = 0.4

NC = 40 NS = 30 NA = 20 Tthresh = 30 v = 1 c = 1

Table 2. Values of rate and initial population parameters used in the worked example,
Figures 8, 9, 10. The constants pB,· are set as the respective pA,· constants multiplied
by 1.7 and the heat constants c·,· are set as the corresponding p·,· constants multiplied
by a conversion factor 7.71 × 10−6.

rq,1 = 0.2 rq,2 = 0.5 rs,1 = 0.2 rs,2 = 0.2 rreset = 0.2 rwakeup = 0.3

ron = 0.2 roff = 0.2 T0 = 25 Tthresh = 20 Tsleep = 23

pA,s = 10 pA,sl = 1 pA,1 = 30 pA,2 = 37.5 rcool = 0.026

NC = 20000 NS = 1000 NA = 100
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Abstract. Performance evaluation of computer software or hardware
architectures may rely on the analysis of a complex stochastic model
whose specification is usually given in terms of a high level formalism
such as queueing networks, stochastic Petri nets, stochastic Automata or
Markovian process algebras. Compositionality is a key-feature of many
of these formalisms and allows the modeller to combine several (simple)
components to form a complex architecture. However, although these
formalisms allow for relative compact specifications of possibly complex
models, the derivation of the interested performance indices may be very
time and space consuming since the set of possible states of the model
tends to grow exponentially with the number of components.

In this paper we focus on models with underlying continuous time
Markov chains and we show sufficient conditions under which exact lump-
ing of the forward or the reversed process can be derived, allowing the
exact computation of marginal stationary probabilities of the cooperat-
ing components. The peculiarity of our method relies on the fact that
lumping is applied at component-level rather than to the CTMC of the
joint process, thus reducing both the memory requirement and the com-
putational cost of the subsequent solution of the model.

1 Introduction

System performance evaluation of computer software or hardware architectures
can rely on the analysis of stochastic models that can provide prediction and
comparison of design alternatives. Models are usually specified in terms of high
level formalisms such as queueing networks (see e.g., [19]), stochastic Petri nets
[20], stochastic Automata [21] or Markovian process algebra (see, e.g., the Per-
formance Evaluation Process Algebra -PEPA- [16]). Performance evaluation
and analysis of complex models can lead to the definition of large and com-
plex stochastic performance models whose direct solution can become unfeasible
(practically intractable) due to the computational complexity. Hence the analy-
sis of complex systems often requires hierarchical modeling or the composition
of sub-models. Compositionality is a key-feature of most of the performance
formalisms and allows the modeller to combine several (possibly simple) compo-
nents to form a complex architecture. However, although these formalisms allow
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for relative compact specifications of possibly complex models, the derivation of
the interested performance indices may be very time and space consuming since
the state space cardinality of the model tends to grow exponentially with the
number of system components. When the model state space becomes too large,
decomposition and aggregation techniques allow one to reduce the solution of a
large problem to that of several much smaller ones.

The application of aggregation and lumpability techniques has been proposed
to cope with large state space model solution, and it has been widely applied
for the various formalisms, e.g. exact and approximate aggregation in queueing
networks [1,4], decomposability and lumpablity for Markov chains [18,23], ag-
gregation of stochastic Petri nets [2], stochastic Automata or Markovian process
algebra [16,13], where the references should be considered just as examples of
remarkable works in the corresponding field.

As concerns lumpability, under certain conditions the state space of a Markov
chain can be partitioned into subsets of states, each of which can be seen as a
single state of a smaller Markov chain. Such a chain is said to be lumpable. The
process of lumping states in a Markov chain [18] defines a state space partition
of the Markov chain and a corresponding new lumped process with a reduced
state space. Specifically, consider a continuous-time homogeneous Markov chain
(CTMC) with state space S with n states and transition rate matrix Q. Let
s̃1, . . . , s̃N be a partition of space S, where usually N << n. The CTMC is
lumpable with respect to the partition if for any subset s̃i and states s, s′ ∈ s̃i,∑

s′′∈s̃k
Q(s, s′′) =

∑
s′′∈s̃k

Q(s′, s′′) for 0 ≤ k ≤ N . That is, for any two states
in a given subset the cumulative transition rate to any other partition is equal.
It is worthwhile to note that in [24] the authors give an algorithm that com-
putes the optimal lumping of a Markov chain (i.e., that with lowest number of
clusters) with a very efficient computational cost, O(m logn) where m is the
number of transitions. As concerns aggregation, several approaches to analyse
complex systems consider hierarchical decomposition of the model into a set of
submodels. Such a decomposition-aggregation approach defines three steps: 1)
partition of the original model into a set of sub-models, and analysis of each sub-
model in isolation; 2) definition of a new and smaller aggregated model where
each component represents an aggregated sub-model; 3) analysis of the aggre-
gated model. Exact aggregation defines the new aggregated model equivalent to
the original one, i.e., with the same solution for a set of performance indices,
usually the aggregated stationary state distribution. Unfortunately, exact aggre-
gation algorithms on the Markov chain have a computation complexity that is
comparable to that of the solution of the entire model [7]. However, some exact
aggregation methods have been defined directly in terms of model components
at a higher level of abstraction formalism, and not at the Markov chain level.
Moreover, under special constraints, conditions for exact aggregation have been
defined for various classes of Markov models and for product-form models, such
as product-form queueing networks [5,1]. Several approximate methods based
on decomposition and aggregation, such as those described in [7,22,6,10], have
also been proposed in the literature in the last decades. In this paper, we are
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interested in studying those formalisms that allow the modeller to describe a
system in a modular way. These formalisms can be widely applied in practice
because they conform to good engineering principles. For instance PEPA or
stochastic automata networks [21] represent important examples of formalisms
that yield a high modularity. In [16,13] the authors present an exact technique
to improve performance evaluation in PEPA models based on a relation called
strong equivalence. The idea is to exploit the intrinsic modular nature of PEPA
models. In [16] the author discusses the relations of the strong equivalence with
the previous results on Markov chain lumping. Following this idea, in considering
a model defined in terms of a set of cooperating components, we aim to apply
the notion of lumping at the component level rather than at the CTMC level
of the joint process. As in [16,13], we focus on stochastic performance models
with underlying CTMCs. With respect to the cited papers we give a notion of
lumpability which is more general and we present and prove two theorems on
lumping in cooperating stochastic models both for the original model and for
the time-reversed automata. Reversed processes have been known to be related
to model decompositions especially in case of product-form models [17,14]. Here,
we show that time-reversed processes can be used also in lumpability. In partic-
ular, we observe that a class of product-form models can be seen as a special
case of the results we present.

The paper is organized as follows. Next section introduces some theoretical
background and notation of the synchronization of the cooperating components.
Section 3 presents two theorems that provide an efficient computation of the
marginal steady-state probability distribution of the models obtained by exact
lumping of both the forward and reversed automata. Finally, Section 4 presents
some important final remarks.

2 Theoretical Background and Notation

In this paper we present the results in terms of cooperating automata -in a sim-
ilar fashion of what is done in [4]- however, we restrict our analysis to pairwise
cooperations (as, e.g., in [9]). We use bold letters to denote matrices and vec-
tors (which must be considered row-vectors unless differently stated). en is the
n−dimension vector whose components are all 1, In is the identity matrix of size
n× n. Sizes are omitted when they can be implicitly assumed. In what follows,
we first introduce the semantics of the synchronisation between two components
and then give the restrictions assumed in this paper.

Let us consider a pair of components M1 and M2 which synchronise on a set
of transition types T = {1, 2, . . . , T }. The rate of a transition type is a positive
real number λt, t ∈ T . For each label t ∈ T we define two matrices E1t and
E2t that describe the behaviour of component M1 and M2, respectively, with
respect to synchronisation t and whose dimensions are Nk × Nk for Ekt, with
k = 1, 2 and Nk representing the number of states of component Mk. Matrix
element Ekt(s, s

′) denotes the probability that automaton Mk moves from state
s to state s′ joint with a transition with the same type t performed by the other
automaton; hence 1 ≤ s, s′ ≤ Nj , and 0 ≤ Ekt(s, s

′) ≤ 1. Moreover, the sum
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Rkt(s) of any row s of matrix Ekt is in the interval [0, 1] and can be interpreted
as the probability that component Mk accepts to synchronise on t given that
its actual state is s. The infinitesimal generator Q of the CTMC underlying the
synchronisation of the two automata is defined as [23]:

Q =

T∑
t=1

λt(E1t ⊗E2t)−
T∑

t=1

λt(D1t ⊗D2t), (1)

where Dkt = diag(Ekte
�), and diag(v) (with v a n-dimension row-vector) is

defined as the n× n matrix:

diag(v)(s, s′) =

{
v(s) if s = s′

0 otherwise
,

and ⊗ denotes the Kronecker’s product operator.

2.1 Feed-Forward Synchronisations

The main restriction we consider in this work concerns the class of synchronisa-
tions that we admit in our model.

Definition 1 (Non-blocking synchronisation). We say that type t ∈ T is
non-blocking if for at least one of the cooperating automata M1 and M2 it holds
that Rkt(s) = 1 for all s = 1, . . . , Nk. In this case we say that t is active in Mh,
with h �= k, and passive in Mk, k, h ∈ {1, 2}.

Informally, we can say that in a non-blocking synchronisation, one of the two
cooperating automata (the active with respect to t) can carry out its activity of
type t independently of the current state of the other automaton. As an instance,
if we consider a tandem of two queues, and let t be the synchronisation between
the customer departures from the first queue and the arrivals at the second,
then a sufficient condition for the synchronisation to be non-blocking is that the
second queue has infinite buffer size. The following definition is needed to avoid
cycles among model synchronisation. In queueing theory this corresponds to the
possibility of defining queueing networks with a feed-forward structure.

Definition 2 (Feed-forward synchronisation). The model defined by the co-
operation of M1 and M2 on transition types T is feed-forward if it is possible to
identify a model Mk and Mh, h �= k, h, k ∈ {1, 2} such that for all t ∈ T one of
the following holds:

1. t is active in Mk and passive in Mh,
2. t is active in Mh and passive in Mk and Ekt = I.

We call Mk and Mh the active and passive model, respectively.

Without loss of generality, we henceforth order the model labels such that in M1

is active and M2 is passive.
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Remark 1. Observe that in a feed-forward synchronisation the infinitesimal gen-
erator underlying M1 is well-defined by:

Q1 =

T∑
t=1

λtE1t −
T∑

t=1

λtD1t, (2)

Hence, if Q1 is associated with an ergodic CTMC, we can compute the marginal
distribution of M1 in the cooperation. In fact, Condition 2 of Definition 2 states
that if M1 is passive with respect to a synchronisation type t, then it must
not have a synchronised state-change in case the other automaton performs a
transition of type t.

Note that if model M1 is such that E1t1 = E1t2 = I with t1 �= t2, then we can
replace transition types t1 and t2 with a new type t∗ for which E1t∗ = I and
E2t∗ = (λt1E2t1+λt2E2t2)λ

−1
t∗ , where λt∗ = maxs(

∑
s′(λt1E2t1+λt2E2t2)(s, s

′)).
As a consequence, in considering feed-forward synchronisations, we order the
transition types such that: for t = 1, we have E21 = I, for t = 2 we have
E12 = I and for 2 < t ≤ T we have that t is passive in M2. Moreover, we write
q22(s2, s

′
2) = λ2E22(s2, s

′
2), with 1 ≤ s2, s

′
2 ≤ N2 and qt1(s1, s

′
1) = λtE1t(s1, s

′
1)

for 1 ≤ t ≤ N1, t �= 2 and 1 ≤ s1, s
′
1 ≤ N1.

3 Exact Computation of Marginal Distribution

In this section we prove two theorems that can be applied to define efficient algo-
rithms for computing the marginal steady-state probability distribution for the
passive model based on the exact lumping of the forward or reversed processes
underlying the active component. Observe that, in this context, the concept of
lumpability as introduced in [18] is extended in order to take into account the
synchronising transition types. Roughly speaking, we aim to replace the active
component M1 by a smaller one denoted by M̃1 such that the marginal dis-
tribution of M2 in the cooperation M̃1 ⊗ M2 is identical to that of M2 in the
cooperation M1 ⊗ M2. In queueing theory, this idea has previously been ap-
plied for defining algorithms for approximate analysis of queueing networks (see,
among others, [16,15,3] and the reference therein). However Theorem 1 and 2
give sufficient conditions for deriving exact lumping similarly to what is done in
[16,13].

The following definition plays a pivotal role in what follows and extends the
concept of lumpability in order to deal with synchronising transition types.

Definition 3 (Exact lumped automata). Given active automaton M1, a
set of transition types T , and a partition of the states of M1 into Ñ1 clusters
S = {1̃, 2̃, . . . , Ñ1}, we say that S is an exact lumping for M1 if:

1. ∀s̃1, s̃′1 ∈ S, s̃′1 �= s̃1, ∀s1 ∈ s̃1 ϕ1
1(s1, s̃

′
1) = q̃11(s̃1, s̃

′
1)

2. ∀t > 2, ∀s̃1, s̃′1 ∈ S, ∀s1 ∈ s̃1 ϕt
1(s1, s̃

′
1) = q̃t1(s̃1, s̃

′
1),
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where ϕt
1(s1, s̃

′
1) =

∑
s′1∈s̃′1

qt1(s1, s
′
1). If M1 is lumpable with respect to S, we

define the automaton M̃1 with Ñ1 states as follows:

Ẽ11(s̃1, s̃
′
1) =

{
q̃11(s̃1, s̃

′
1)λ̃

−1
1 if s̃1 �= s̃2

0 otherwise

Ẽ12 = I, Ẽ1t(s̃1, s̃
′
1) = q̃t1(s̃1, s̃

′
1)λ̃

−1
t t > 2

where:

λ̃t = max
s̃1=1,...,Ñ1

⎛
⎝ Ñ1∑

s̃′1=1

q̃t1(s̃1, s̃
′
1)

⎞
⎠ for t �= 2, λ̃2 = λ2

are the rates associated with the transition types in the cooperation between M̃1

and M2.

Remark 2 (Exact lumping and strong equivalence). The reader familiar with pro-
cess algebra can observe that Definition 3 is closely related to the definition of
strong equivalence between PEPA processes given in [16]. The author exploits
this approach with the same aims that we have here. The difference between
Definition 3 and the concept of strong equivalence concerns the conditions about
the non-synchronising transitions, i.e., those that in PEPA are called τ -actions
(in our framework these correspond to transitions with type t = 1). In fact,
Definition 3 distinguishes between non-synchronising (t = 1) and synchronising
(t > 2) transition types, as the former does not need to have constant outgoing
rate from a state of a cluster to other states of the same cluster. Therefore, we
can say that strong equivalence implies lumping in the sense of Definition 3 but
not vice versa, as illustrated in Example 2.

As one may expect, if M̃1 is an exact lumped automaton of M1, then the CTMC
underlying M̃1 is an exact lumping of that of M1 in the standard sense of [18].
Proposition 1 trivially follows from Definition 3.

Proposition 1. Given active model M1, if model M̃1 is a lumping of M1 with
respect to partition S = {1̃, . . . , Ñ1}, then if two states s1 and s′1 belong to the
same cluster, then we have φt

1(s1) = φt
1(s

′
1), for all t > 2, where:

φt
1(s1) =

N1∑
s′1=1

qt1(s1, s
′
1).

In what follows we assume that M1, M2 and their cooperation to have ergodic
underlying CTMCs.

Theorem 1. Given the model M1 ⊗ M2, let M̃1 be an exact lumping of M1

whose clusters are S = {1̃, . . . , Ñ1}. Then, the marginal steady-state distribution
π2 of M2 is given by:

∀s2 = 1, . . . , N2, π2(s2) =

N1∑
s1=1

π(s1, s2) =

Ñ1∑
s̃1=1

π∗(s̃1, s2), (3)

where π is the steady-state distribution of the cooperation between M1 and M2

and π∗ that of the cooperation between M̃1 and M2.
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Theorem 1 appears in [16] considering the notion of strong-equivalence between
PEPA agents. The following proof is needed since Definition 3 is slightly different
as pointed out by Remark 2 and because M2 allows for probabilistic synchroni-
sations.

Proof of Theorem 1. The proof is based on verifying the global balance equa-
tions (GBEs) of model M2 when it cooperates with M̃1, where the transition

rates are conditioned on the state of M̃1 (see, e.g., [8]). Their solution gives π∗
2 ,

i.e., the marginal steady-state distribution of M2 when it cooperates with M̃1.
Then, we show that π∗

2 satisfies also the GBEs derived by the analysis of M2

cooperating with M1 and hence, by the uniqueness of the stationary distribution
we conclude the theorem, i.e., π2 = π∗

2 . Let us consider a generic state (s̃1, s2),

s̃1 = 1, . . . , Ñ1 and s2 = 1, . . . , N2. Recall that M1 and the cooperation between
M1 and M2 are ergodic, hence trivially also the cooperation between M̃1 and
M2 is ergodic as well as M̃1 itself. Let π̃1 be the steady-state distribution of M̃1.
The following GBE can be written as:

π∗
2(s2)

(
N2∑

s′2=1

q22(s2, s
′
2) +

T∑
t=3

Ñ1∑
s̃1=1

Ñ1∑
s̃′1=1

q̃t1(s̃1, s̃
′
1)π̃1(s̃1)

)

=

N2∑
s′2=1

π∗
2(s

′
2)

(
q22(s

′
2, s2) +

T∑
t=3

Ñ1∑
s̃1=1

Ñ1∑
s̃′1=1

q̃t1(s̃
′
1, s̃1)π̃1(s̃

′
1)E2t(s

′
2, s2)

)

We now apply the conditions given in Definition 3. In particular, observe that
for t > 2,

∑
s′1∈s̃′1

qt1(s1, s
′
1) is independent of the choice of s1 ∈ s̃1 and hence we

can write that:(∑
x∈s̃1

π1(x)

)⎛
⎝ ∑

s′1∈s̃′1

qt1(s1, s
′
1)

⎞
⎠ =

∑
s1∈s̃1

∑
s′1∈s̃′1

π1(s1)q
t
1(s1, s

′
1),

where π1 is the marginal distribution of M1. The CTMC underlying M1 is
lumpable with respect to partition S and hence ∀s̃1 = 1, . . . , Ñ1

∑
s1∈s̃1

π1(s1) =
π̃1(s̃1):

π∗
2(s2)

(
N2∑

s′2=1

q22(s2, s
′
2) +

T∑
t=3

Ñ1∑
s̃1=1

Ñ1∑
s̃′1=1

( ∑
s1∈s̃1

∑
s′1∈s̃′1

π1(s1)q
t
1(s1, s

′
1)
))

=

N2∑
s′2=1

π∗
2(s

′
2)

(
q22(s

′
2, s2) +

T∑
t=3

Ñ1∑
s̃1=1

Ñ1∑
s̃′1=1

( ∑
s′1∈s̃′1

∑
s1∈s̃1

π1(s
′
1)q

t
1(s

′
1, s1)

)
E2t(s

′
2, s2)

)

Finally, we rewrite the indices of the sums and obtain:

π∗
2(s2)

(
N2∑

s′2=1

q22(s2, s
′
2) +

T∑
t=3

N1∑
s1=1

N1∑
s′1=1

π1(s1)q
t
1(s1, s

′
1)

)

=

N2∑
s′2=1

π∗
2(s

′
2)

(
q22(s

′
2, s2) +

T∑
t=3

E2t(s
′
2, s2)

N1∑
s1=1

N1∑
s′1=1

π1(s
′
1)q

t
1(s

′
1, s1)

))
, (4)



Lumping and Reversed Processes in Cooperating Automata 219

that is the GBE for state s2 derived from the cooperation between M1 and
M2 considering the conditional transition rates. Therefore, by uniqueness of the
steady-state distribution, we conclude π2(s2) = π∗

2(s2) for 1 ≤ s2 ≤ N2. �

Timed-Reversed Automata. Theorem 2 relies on the theory of reversed Markov
processes as studied in [17] and successively in [14]. Before stating the second
theorem, we briefly review some results about reversed Markov processes [17].
Given a continuous time stochastic process X(t) we say that it is stationary if
(X(t1), X(t2), . . . , X(tn)) has the same joint-distribution of (X(t1 + τ), X(t2 +
τ), . . . X(tn + τ)) and we say that it is reversible if (X(t1), X(t2), . . . , X(tn))
has the same joint-distribution of (X(τ − t1), X(τ − t2), . . . , X(τ − tn)) for all
t1, . . . , tn, τ ∈ R and n ∈ N. It is easy to prove that a reversible process is also
stationary. For a reversible CTMC, the following relation holds:

π1(s1)q1(s1, s
′
1) = π1(s

′
1)q1(s

′
1, s1),

where π1(s1) is the stationary probability of s1 and s1, s
′
1 two arbitrary states of

the CTMC, and q1(s1, s
′
1) denotes the transition rate from s1 to s′1. Obviously, a

stationary process may be not reversible. In this case, it is still possible to define
the reversed process, but the joint-distribution of (X(t1), X(t2), . . . , X(tn)) is
in general different form that of process (X(τ − t1), X(τ − t2), . . . , X(τ − tn)).
Assume that the forward chain admits the steady-state distribution π1 and has
a transition from state s1 to s′1 with rate q(s1, s

′
1), then it can be proved that

the reversed process is still a Markov process with the same state space that has
a transition from s′1 to s1 whose rate qR1 (s

′
1, s1) is given by:

qR1 (s′1, s1) =
π(s1)

π(s′1)
q1(s1, s

′
1). (5)

Observe that from the transition rates of the reversed CTMC we can efficiently
compute the unnormalised steady-state distribution and vice versa. Based on
Equation (5) we give the following definition:

Definition 4 (Timed-reversed automata). Given the active automaton M1

synchronising on transition type T with rates λ1, . . . , λT , we define the timed-
reversed automaton MR

1 as follows:

ER
1t(s1, s

′
1) =

π1(s
′
1)

π1(s1)
qt1(s

′
1, s1)

1

λR
t

t �= 2

ER
12 = I

where:

λR
t = max

s1=1,...,N1

⎛
⎝ N1∑

s′1=1

qtR1 (s1, s
′
1)

⎞
⎠

and qtR1 (s1, s
′
1) = (π1(s

′
1)/π1(s1))q

t
1(s

′
1, s1), for all 1 ≤ s1, s

′
1 ≤ N1.

Theorem 2. Given the model M1 ⊗M2, let M
R
1 be the reversed automaton of

M1 and let M̃R
1 be an exact lumping of MR

1 whose clusters are S = {1̃, . . . , Ñ1}.
Then, the marginal steady-state distribution π2 of M2 is given by:

∀s2 = 1, . . . , N2, π2(s2) =

N1∑
s1=1

π(s1, s2) =

Ñ1∑
s̃1=1

π̃R(s̃1, s2), (6)
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where π is the steady-state distribution of the cooperation between M1 and M2

and π̃R that of the cooperation between M̃R
1 and M2.

Proof of Theorem 2. The first part of the proof resembles that of Theorem 1.
Here we rewrite Equation (4) for this case:

π∗
2(s2)

(
N2∑

s′2=1

q22(s2, s
′
2) +

T∑
t=3

N1∑
s1=1

N1∑
s′1=1

π1(s1)q
tR
1 (s1, s

′
1)

)

=

N2∑
s′2=1

π∗
2(s

′
2)

(
q22(s

′
2, s2) +

T∑
t=3

E2t(s
′
2, s2)

N1∑
s1=1

N1∑
s′1=1

π1(s
′
1)q

tR
1 (s′1, s1)

))
.

Applying Definition 4 we obtain:

π∗
2(s2)

(
N2∑

s′2=1

q22(s2, s
′
2) +

T∑
t=3

N1∑
s1=1

N1∑
s′1=1

π1(s1)q
t
1(s

′
1, s1)

π1(s
′
1)

π1(s1)

)

=

N2∑
s′2=1

π∗
2(s

′
2)

(
q22(s

′
2, s2) +

T∑
t=3

E2t(s
′
2, s2)

N1∑
s1=1

N1∑
s′1=1

π1(s
′
1)q

t
1(s1, s

′
1)
π1(s1)

π1(s′1)

))
,

that can be trivially simplified to observe that it is the GBE corresponding to
state s2 of M2 cooperating with M1. Hence, by uniqueness of the steady-state
probability we conclude that π2(s2) = π∗

2(s2) for 1 ≤ s2 ≤ N2. �

3.1 Running Examples

Before discussing some implications of Theorem 1 and 2 we apply them to some
examples.

Example 1 (Toy Example). We consider the automaton depicted by Figure 1 in
whichM1 has 4 states andM2 has 2 states. Synchronisation types are T = 3. The
figure depicts the behaviour of the automata in which the arcs are labelled by
the transition type t and the rate qti(si, s

′
i). For the sake of simplicity, transitions

with type 1 and 2 are omitted in automaton M2 and M1, respectively. Observe
that, according to Proposition 1 a necessary (but not sufficient) condition for
M1 to be lumpable with respect to a partition is that the sum of the rates of
type 3 transitions outgoing from states belonging to the same cluster should be
the same. In this case we have: φ3

1(1) = 0. φ3
1(2) = 7/12λ, φ3

1(3) = 3γ − 5/12λ,
φ3
1(4) = λ/2 + 2μ. Therefore, we immediately conclude that Theorem 1 is ap-

plicable only to the trivial case of M̃1 = M1. However, we can still try to apply
Theorem 2, but we need to compute the time-reversed automaton of M1 accord-
ing to Definition 4. MR

1 is depicted in Figure 2. Let φtR
1 (s1) =

∑
s′1
qtR1 (s1, s

′
1),

then we have: φ3R
1 (1) = φ3R

4 (4) = λ+μ and φ3R
1 (2) = φ3R

1 (3) = γ. This suggests
the possible lumping 1̃ = {1, 4} and 2̃ = {2, 3} that can be easily shown to be
exact according to Definition 3. Therefore, we can derive the lumped automaton
M̃R

1 of Figure 3. It is worthwhile to point out that it is not the case that the
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M 1 M 2

3, λ/4

1, λ

3, λ/4

1, γ − λ/3

3, γ − λ/12

3, 2(γ − λ/3)

1, λ/2

3, λ/6

3, λ/3
3, μ

1, μ 3, μ

3, λ/12
3, λ/3

3, 1

2, ε2

2, ε1
1

1

2

2

34

Fig. 1. Example of cooperation between two automata

M 1
R

3, λ

1, λ /4

3, λ /4

1, 2(γ − λ/3)

3, γ − λ/12

3, γ − λ/3

1, λ /4

3, λ /12

3, 2λ/3
3, μ

1, μ 3, μ

3, λ /3
3, λ /12

1 2

34

Fig. 2. Timed-reversed automaton of M1 depicted by Figure 1

M 1
R

3, λ

3, λ /12

1, λ /4

3, μ 3, γ − λ/12

1̃ 2̃

Fig. 3. Lumping of automaton MR
1 depicted in Figure 2

steady-state distribution of M1⊗M2 is identical to that of MR
1 ⊗M2, but we can

only compute the marginal distribution of M1 (by the solution of its underlying
CTMC) and of M2 by solving M̃R

1 ⊗M2 and aggregating the state probabilities
as specified by Theorem 2. Finally, we spot that φ1R

1 (1) = 0, while φ1R
1 (4) = μ

even if 1 and 4 belongs to the same cluster 1̃. This can happen because the the
transition of type 1 outgoing from 4 is directed to a state of the same cluster,
i.e., 1.

Example 2 (Producer-Consumer). Consider two identical software processes shar-
ing a common memory buffer. Each of those processes can alternate between
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P1 P1

P2

Pcomp

1, ε

3, λ

3, λ

3, λ3, λ 4, μ
4, μ4, μ

2, η

3, 1

3, 1

3, 13, 13, 1

4, 1

4, 14, 14, 1

4, 1

5, δ

5, δ5, δ

6, 1

6, 1

0

0

1

1

2

2

A B

N

E

α β

γ

3, 2λ 4, 2μ

Fig. 4. A model for a producer-consumer process and the relative buffer

producing data (with rate λ) which is written in the buffer and consuming them
with rate μ. Sometimes the process, while producing data (state 0), switches
to its internal state 1 with rate ε, however this transition does not stop the
production. If, for some reason, the process cannot produce data, it moves back
to the state 2 where it can consume data in the buffer with rate δ, forcing the
other process to skip its consuming phase and to return to the producing one.
Each of those processes can be modelled as in automaton P1 of Figure 4. In the
same figure the automaton P2 models the shared buffer, which has N memory
slots. Whenever there is an overflow, the buffer enters in an error state E until
it is emptied within an exponentially-distributed time with parameter η. We are
interested in computing the marginal steady state distribution of P2, e.g., to
analyse the frequency of buffer overflows given a set of parameters. According
to the conditions of Definition 3, P1 allows for the lumping shown in P̃1. Notice
that this lumping doesn’t respect the strong equivalence relation as defined in
[16]. Moreover, when we combine a process P ′

1 that behaves as P1 with another
one P

′′
1 identically modelled, imposing that whenever a transition labelled with

5 happens in one process a transition labelled with 6 is forced on the other
one, we are able to further aggregate the joint process, as shown in the lumping
Pcomp. Transitions of type 5 and 6 do not appear in the lumped process, because
joint transitions of those types are not synchronised with further processes. The
cardinality of the joint state space among the two instances of P1 and the buffer
model P2 can be thus reduced from 3× 3× (N + 2) to 3× (N + 2). Notice that
this aggregation cannot be found using state-of-the-art techniques such as in [13],
since we exploit Definition 3 to determine sufficient conditions for aggregation
and Theorem 1 to compute marginal steady state distributions.
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3.2 Theoretical Considerations about Theorem 1 and 2

In this section we have presented two theorems about lumping in cooperating
stochastic models. We already pointed out the connections between Theorem 1
and the notion of strong equivalence (and its consequences) presented in [16].
Now, we compare Theorem 2 with other relatively recent results that appeared in
literature, in particular for what concerns the analysis of product-form stochas-
tic models. A model is in product-form if the joint stationary distribution of an
ergodic joint state can be expressed in terms of the product of the marginal distri-
butions of its components considered in isolation and opportunely parametrised.
A very general theory about product-form models has been developed in [14]
where the author, based on process algebra analysis, gives sufficient conditions
for the cooperation of two models to be in product-form (Reversed Compound
Agent Theorem -RCAT-). If we reformulate those conditions in terms on coop-
erating stochastic automata, we have:

C1 If transition t > 2 is passive with respect to Mk, then each state of Mk has
exactly one outgoing transition of type t (and its weight is 1);

C2 If transition t > 2 is active with respect to Mk, then each state of Mk has
exactly one incoming transition of type t;

C3 Let t > 2 be an active type with respect to Mk, then the reversed rate
associated with each transition of type t in Mk is the same.

Observe that Conditions C2 and C3 imply that the timed-reversed automaton
MR

1 associated with M1 admits a lumping of one single state as illustrated by the
following example. From this we observe that when Theorem 2 is applied and an
automaton can be lumped into a single state, then we can also say that the joint
steady-state probability is given by the product of the marginal distributions of
the single automata.

Example 3 (G-network analysis). G-networks [11] are very powerful and versa-
tile class of models developed in queueing theory and they can be efficiently
studied because they yield a product-form stationary distribution. Let us con-
sider the model of Figure 5 that consists of two G-queues. Customers arrive at
Q1 and Q2 according to independent Poisson processes with rates λ1 and λ2, re-
spectively. Service time is exponentially distributed with mean μ−1

1 and μ−1
2 for

Q1 and Q2, respectively. At a service completion epoch at Q1, the customer can
move to Q2 as an ordinary customer with probability p+12, while it can enter Q2
as a negative customer with probability p−12. The effect of a negative customer
arrival at Q2 is to delete a positive one if the queue is non-empty (otherwise the
negative customer simply vanishes). In [14] it is shown that the reversed rates
of the transitions with types 3 and 4 in Q1 are constant and equal to λ1p

+
12 and

λ1p
−
12, respectively. According to RCAT we can obtain the marginal distribution

of Q2 by setting the rates of transitions with type 3 to λ1p
+
12 and those of tran-

sitions with type 4 to λ1p
−
12. Analogously, the application of Theorem 2 leads

to a lumping of MR
1 consisting of one single state with two self-loops: one with

type 3 and rate λ1p
+
12 and the other with type 4 and rate λ1p

−
12.
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Q1 Q2

Q1

Q2

λ1

λ2

μ1 μ2

1, λ11, λ11, λ1

3, μ1p
+
12

3, μ1p
+
123, μ1p

+
12

4, μ1p
−

12
4, μ1p

−

124, μ1p
−

12

3, 13, 13, 1

2, λ22, λ22, λ2

2, μ22, μ22, μ2

4, 14, 14, 1

0

0

1

1

2

2

Fig. 5. Graphical representation of a G-network and the corresponding model using
automata

Does the product-form property yield in case of a lumping to a single state
applying Theorem 1? The answer is negative as shown by the following coun-
terexample.

Example 4. This example is intentionally very simple in order to spot the dif-
ference between performing a lumping in the forward process or in the reversed.
We consider two exponential queues with synchronised arrivals modelled by a
Poisson process with rate λ as shown in Figure 6. Service rates are μ1 and μ2.
In this case we can apply Theorem 1, and queue Q1 is lumped into a model

Q1

Q2

Q1

Q2

λ

μ1

μ2

3, λ3, λ3, λ

1, μ11, μ11, μ1

3, 13, 13, 1

2, μ22, μ22, μ2

0

0

1

1

2

2

Fig. 6. Exponential queues with synchronised arrivals and their representation by
stochastic automata

M̃1 with a single state with one self-loop with type 3 and rate λ. Observe that
although the marginal distribution obtained for Q2 by the analysis of M̃1 ⊗Q2

is trivially correct, the model is not in product-form since the stationary prob-
ability is different from the product of the marginal distributions of Q1 and Q2

(although they can be derived without the derivation of the joint state space).

3.3 Practical Implementation of Exact Lumping

The problem of lumping Markov chains, PEPA models, queueing networks and
stochastic Petri nets has been widely addressed. In this context we mention the
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important algorithm based on a notion of isomorphism among PEPA components
presented in [13]. The isomorphism relation is stricter than the strong equivalence
(which is itself stricter than the conditions of Definition 3) and hence, as the
same authors point out, the resulting lumping may be not optimal. However, the
algorithm is very efficient, already implemented in the PEPA Workbench [12]
and the results it provides may be straightforwardly used to apply Theorem 1.
The same algorithm may still be applied once the time-reversed automaton has
been derived and hence apply Theorem 2. The problem of time-reversing PEPA
agents has been addressed in [14].

4 Final Remarks

In this paper we have proposed some theoretical results concerning the lumpa-
bility of cooperating stochastic automata, allowing to reduce the computational
cost of the derivation of the marginal distributions of two cooperating Marko-
vian agents. We use a notion of lumpability that is similar, but different, to that
proposed in [16] where the definition of the strong equivalence is applied with the
same purposes that we have here. In particular, the author aims to reduce the
cardinality of the joint state space of the cooperation of two stochastic models
by replacing one component by a simpler (but strongly equivalent) one. Here,
we show that the notion of lumpabiliy given by Definition 3 is different in terms
of how the non-synchronising transitions are treated. From a theoretical point
of view, we proved two theorems about lumping. In particular, to the best of
our knowledge, the connections between the lumping of the reversed process of
a stochastic automaton and the properties enjoyed by the joint process have
been not explored before. A remarkable exception is given by the product-form
theorem presented in [14] whose conditions could be reformulated in terms of
lumping of a timed reversed automaton: RCAT conditions are satisfied if the co-
operating processes admit a lumping of the time-reversed automata with a single
state. As concerns future directions of research, our aim is to extend Theorems 1
and 2 in order to overcome their limitations on the class of automata on which
those results can be applied. Moreover, we are developing a methodology for
approximating the marginal distributions in the cooperations of two stochastic
automata using results derived from the aforementioned theorems whenever an
exact lumping with a desired state space cardinality cannot be found.
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Abstract. Recent years have seen a considerable increase of attention
devoted to Poisson’s equation for Markov chains, which now has attained
a central place in Markov chain theory, due to the extensive list of ar-
eas where Poisson’s equation pops up: perturbation analysis, Markov
decision processes, limit theorems of Markov chains, etc. all find natural
expression when viewed from the vantage point of Poisson’s equation.

We describe how the use of generating functions helps solve Poisson’s
equation for different types of structured Markov chains and for driving
functions, and point out some applications. In particular, we solve Pois-
son’s equation in the transform domain for skip-free Markov chains and
Markov chains with linear displacement. Closed-form solutions are ob-
tained for a class of driving functions encompassing polynomial functions
and functions with finite support.

1 Introduction

In this paper, we investigate the use of transform-domain techniques to solve
Poisson’s equations associated with various classes of Markov chains. Poisson’s
equation (PE) has in recent years been acknowledged to be one of the central con-
cepts of Markov chains, almost equal in importance to the steady-state equation.
In order to advance the exposition, we introduce some notation. Let (Ω,F ,P)
be a probability space and let {Xn}, n ∈ Z, be a time-homogeneous Markov
chain, taking values in a countable state space X (this is not a strict necessity,
but as our example Markov chains will all have a countable state space, we have
opted to avoid the technicalities of dealing with more general state spaces). The
transition probabilities pij = P[Xn+1 = j|Xn = i], i, j ∈ X are recorded in a
(possibly countably infinite) transition matrix P .

Two linear systems of equations are commonly associated with such a Markov
chain. The first is the invariance equation that says that the stationary distri-
bution recorded in row vector π = [πi]i∈X , provided it exists, satisfies:

πj =
∑
i∈X

πipij , or in matrix notation: π = πP. (1)

K. Al-Begain, D. Fiems, and J.-M. Vincent (Eds.): ASMTA 2012, LNCS 7314, pp. 227–239, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The importance of this equation is such, that the expression ‘solving a Markov
chain’ is colloquially taken to mean almost unambiguously solving equation 1.

The second equation, Poisson’s equation (PE) – perhaps somewhat surpris-
ingly – has only quite recently been put on a comparable level of importance.
Its formulation requires a function on the state space f : X → R, which is de-
pending on the application referred to as the driving function, cost function or
reward function. Given this function f , we aim to assign a value hi to each state
i of the chain, which records the relative long-term cost of starting from state i
as compared to others. Indeed, Poisson’s equation is equal to:

hi = fi −
∑
j∈X

πjfj +
∑
j∈X

pijhj . (2)

In words, the relative value of state i is equal to the cost of state i, minus
the average cost in stationarity, plus the expected relative value of the Markov
chain one step in the future. Readers may notice the similarity with Bellman’s
equation [3] or with dynamic programming equations in general. Note that the
term Poisson’s equation is not native to probability theory, but hails from the
theory of partial differential equations and was chosen due to certain similarities
between the two. A slight rearrangement of terms results in the following perhaps
more familiar form:

(I − P )h = (I − 1π)f , (3)

where I denotes the identity matrix of appropriate dimension, 1 is a column
vector with element 1 on each row and f and h are the value and cost column
vectors respectively.

Solutions for the PE typically proceed from the fundamental kernel or devia-
tion matrix which will be introduced in the Sec. 2.

A variant equation that has shown to be relevant for applications is the dis-
counted Poisson’s equation:

hi − γ
∑
j

pijhj = fi, (4)

or in matrix notation:
(I − γP )h = f . (5)

where γ is referred to as the discount factor. The idea behind this equation
is that costs further in the future should have a smaller impact on the value
than short-term costs. In this paper, we will concentrate on the original Poisson
equation.

Neveu [9] seems to have been the first to coin the term Poisson’s equation
in a Markov context. Over the years, many new results were discovered, both
from a practitioner’s point of view, as more applications were discovered, such
as perturbation [5], limit theorems [10], constructing approximative models [7],
as well as from a theoretical point of view, which has resulted in a better, and
perhaps almost complete understanding as to when solutions of PE exist. A
key concept in this regard is V -uniform ergodicity [6], which provides sufficient
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conditions that seem close to necessary. Its importance was first noticed by
Hordijk and Spieksma [14], and taken to full generality by Meyn and Tweedie [6].

It is to be expected that the importance of Poisson’s equation will further
increase, as control of queueing systems gets a more pronounced place next
to mere performance analysis. In this paper, we tackle the Poisson’s equation
with transform-domain tools, which are since long popular in applied probability
and in queueing theory in particular [1, 2]. Related work includes the results
of Koole [13], who derived closed-form expressions for the deviation matrix of
birth-and-death-processes. Related work also includes [17, 18], which uses the
matrix-analytic paradigm but, in contrast to this paper, is restricted to finite
state spaces.

The outline of the rest of this paper is as follows. In Sec. 2 we outline the
general recipe and work out in detail a solution for the PE for some often en-
countered types of Markov chains, and in Sec. 3, we show an application to
the computation of the asymptotic variance. Finally, we shed a light on further
applications and offer some concluding remarks in Sec. 4.

2 Main Results

In this section, we outline a general recipe for solving Poisson’s equation with
transform-domain techniques. We will in the current paper generally take the
stance that ‘the spirit is more important than the letter’, and will only briefly
address such technical issues as the convergence, existence and uniqueness of
solutions for the occurring expressions. As tools for proving such existence exist
[6], a rigourous application of the results of this paper thus consists of proving
the existence of a PE solution with such means, calculating the solution with
the computational method of this paper, and verifying that it indeed satisfies
PE afterwards.

Let us assume for a moment that X = N and introduce some notation. For
a function on the state space recorded in a (either row or column) vector v =
[vi],i∈N, let Gv denote the corresponding generating function, i.e.

Gv(z) :=
∑
i

zivi. (6)

This kind of generating function is common enough in probability theory, as
it forms the basis of a quite successful probabilistic method [1, 2]. A bit more
unusual however is the generating function of a matrix P , which is defined as

GP (x, y) :=
∑
i

∑
j

xipijy
j . (7)

where we use the convention, here and in the rest of the paper, that sums run
over the state space X , unless specified otherwise.

Note: Although all countably infinite sets are isomorphic to N, and hence
the above definitions should be sufficient, it is sometimes unnatural to invoke
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such isomorphism. For example, when considering a random walk on the quarter
plane, it is unnatural to consider anything else than bivariate generating func-
tions, of the type Gv(z1, z2) :=

∑
i∈X

∑
j∈X zi1z

j
2vij . For the transform of the

corresponding transition matrix, the same line of reasoning results in a four-
dimensional generating function.

We shall now be concerned with finding the fundamental kernel Z, which has
the property that if a solution to Poisson’s equation exists, then h = Zf is the
solution for which πh = πf .1 The matrix Z satisfies (see e.g. [6]):

Z = (I − P + 1π)−1, (8)

whenever the inverse exists as a bounded linear operator.
The main starting point is the equation

Z(I − P + 1π) = I, (9)

which in the transform domain translates to

GZ(x, y)− GZP (x, y) + GZ(x, 1)Gπ(y) =
1

1− xy
. (10)

Note that GZ(x, 1) = 1/(1− x), as Z1 = 1, hence we have:

GZ(x, y)− GZP (x, y) =
1

1− xy
− Gπ(y)

1− x
, (11)

which is altogether not too different from the transform version of the invariance
equation:

Gπ(z)− GπP (z) = 0. (12)

Indeed, in both cases, success of the transform-domain recipe largely depends
on whether the expression for GπP (z) (resp. GZP (x, y)) can be conveniently
rewritten in terms of Gπ(z) (resp. GZ(x, y)). The examples below seem to indicate
that if the transform-domain solution can be found for the invariance equation,
the corresponding PE derivation is a bit more tedious, but not by much. In the
following subsections, we shall explicitly derive expressions for GZ(x, y) for a
variety of models.

2.1 Reflected Random Walks, Skip-Free to the Left

Let us consider Markov chains with the following often-encountered transition
matrix:

P =

⎛⎜⎜⎜⎝
b0 b1 b2 b3 · · ·
a0 a1 a2 a3 · · ·

a0 a1 a2 a3 · · ·
. . .

. . .
. . .

. . .

⎞⎟⎟⎟⎠ . (13)

1 It is easily checked that if h is a solution, then also h̃ = h + c1, for any c. In this
respect, a popular alternative ( [8]) for Z is the deviation matrix D = Z − 1π, so
that h̃ = Df is the PE solution for which πh̃ = 0.
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This Markov chain, which is a random walk on N, reflected at 0, has found
important applications in queueing theory. Firstly, it appears in the study of the
continuous-time M/G/1 queue at embedded points, but also in discrete-time
queues, it plays an important role. The qualification skip-free to the left refers
to the fact that while jumps to the right may be arbitrarily large, jumps to the
left are at most of size 1.

The invariance equation for this Markov chain has been derived many times.
We rederive it in the notation of the paper in order to be able to show the
similarities and differences with the PE. Let Ga(z) =

∑
i z

iai, Gb(z) =
∑

i z
ibi

and let zX stand for the row-vector (1, z, z2, . . . ). The invariance equation in the
transform domain (12), simplifies in this case to:

Gπ(z) = GπP (z) = πP
(
zX

)T
= π(Gb(z),Ga(z), zGa(z), z

2Ga(z), . . . )
T

= π0Gb(z) +
∑
j>0

πjz
j−1Ga(z)

= Gπ(0)Gb(z) + (Gπ(z)− Gπ(0))
Ga(z)

z
. (14)

The only unknown in this equation is Gπ(0), which we can find by differentiating
the above equation with respect to z and substituting z = 1, which gives after
some manipulations:

Gπ(0) =
1− G′

a(1)

1− G′
a(1) + G′

b(1)
. (15)

This leads to the following final expression for Gπ(z):

Gπ(z) =
1− G′

a(1)

1− G′
a(1) + G′

b(1)

zGb(z)− Ga(z)

z − Ga(z)
. (16)

For Poisson’s equation, we need an expression for GZP (x, y):

GZP (x, y) = xXZP
(
yX

)T
= xXZ(Gb(y),Ga(y), yGa(y), y

2Ga(y), . . . )
T

=
(
xXZ

)
0
Gb(y) +

∑
j>0

(
xXZ

)
j
yj−1Ga(y)

= GZ(x, 0)Gb(y) + (GZ(x, y)− GZ(x, 0))
Ga(y)

y
. (17)

which leads to

GZ(x, y)[y − Ga(y)]− GZ(x, 0)[yGb(y)− Ga(y)] =
y

1− xy
− yGπ(y)

1− x
. (18)
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Still unknown in this equation is the function GZ(x, 0), which we can recover
with almost exactly the same trick as before: we differentiate to y and then
substitute y = 1.

GZ(x, 0) =
1− G′

a(1) + G′
π(1)− x/(1− x)

(1− G′
a(1) + G′

b(1))(1 − x)
(19)

2.2 Reflected Random Walks, Limited Displacement

We now consider a generalization of the previous section that allows jumps of
maximally size c to the left (the standard term limited displacement refers to
exactly this restriction in leftward jumps):

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0,0 b0,1 b0,2 b0,3 · · ·
b1,0 b1,1 b1,2 b1,3 · · ·
...

...
...

...
bc−1,0 bc−1,1 bc−1,2 bc−1,3 · · ·
a0 a1 a2 a3 · · ·

a0 a1 a2 a3 · · ·
. . .

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (20)

This type of Markov chain finds applications in queues with multiple servers, or
in queues with batch servers. Let Ga(z) =

∑
i z

iai and Gbi(z) =
∑

j z
jbi,j .

We rederive the stationary distribution π which leads to

Gπ(z) = π(Gb0(z), . . . ,Gbc−1(z),Ga(z), zGa(z), . . . )
T

=

c−1∑
i=0

πiGbi(z) +

∞∑
i=c

πiz
i−cGa(z)

=

c−1∑
i=0

πiGbi(z) + [Gπ(z)−
c−1∑
i=0

πiz
i]
Ga(z)

zc
. (21)

After some elementary manipulations, this gives rise to

Gπ(z)[z
c − Ga(z)] =

c−1∑
i=0

πi[z
cGbi(z)− ziGa(z)], (22)

where πi is the ith component of the stationary vector π. We can determine the
first c components of this vector by computing the zeros inside the unit circle
of the equation Ga(z) = zc. Rouché’s theorem ensures the existence of exactly
c− 1 zeros ζj , |ζj | < 1, 0 < j < c, in addition to the zero ζ0 = 1. We thus find a
system of linear equations

c−1∑
i=0

πi[ζ
c
jGbi(ζj)− ζijGa(ζj)] = 0, for 0 < j < c. (23)

For the PE, we likewise get:
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GZP (x, y) = xXZ(Gb0(y), . . . ,Gbc−1(y),Ga(y), yGa(y), . . . )
T

=

c−1∑
i=0

Zi(x)Gbi (y) +

∞∑
i=c

Zi(x)y
i−cGa(y)

=

c−1∑
i=0

Zi(x)Gbi (y) + [GZ(x, y)−
c−1∑
i=0

Zi(x)y
i]
Ga(y)

yc
, (24)

where Zj(x) =
∑

i x
iZij . Substituting this into (11), we obtain:

GZ(x, y)[y
c −Ga(y)]−

c−1∑
i=0

Zi(x)[z
cGbi(z)− ziGa(z)] =

yc

1− xy
− ycGπ(y)

1− x
, (25)

As with the invariance equation we equally get a system of linear equations by
substituting y by ζk, k = 0, ..., c− 1. The equation for k = 0 is replaced by the
equation obtained by deriving (25) w.r.t. y and substituting y by 1, since the
former does not provide any additional information.

c−1∑
i=0

Zj(x)(j − c+ G′
a(1)− G′

bi
(1)) =

x/(1− x)− G′
π(1) + G′

a(1)− c

1− x
. (26)

Hence we see that all Zj(x) are linear combinations of the following form:

Zj(x) =

c−1∑
k=0

dkj
1− xζk

+
dcj

(1− x)2
, (27)

so that Zj(x) can have no other poles than ζ−1
k , and the problem is reduced to

finding the different dkj . Introduce matrices A and B where A is c× c and B is
(c+ 1)× c, and there elements are given as follows:

Ajk = j − c+ G′
a(1)− G′

bj
(1), k = 0

= ζjk − Gbj (ζk), k > 0 (28)

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

[G′
a(1)− G′

π(1)− c] −Gπ(ζ1) −Gπ(ζ2) · · · −Gπ(ζc−1)
0 1 · · · 0
0 1 · · · 0
...

. . .
...

0 · · · 1
x 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (29)

Then the (i, j)’th element of BA−1 is exactly di,j . Note that apart from the first
row, A can also be used for the invariance equation above (for obtaining πj ,
j = 0, ..., c − 1). Therefore in essence solving Poisson’s equation is numerically
not harder than solving the invariance equation.
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2.3 Extracting Information from GZ(x, y)

In this section, we explore how to get information on the infinite matrix Z by
means of generating function GZ(x, y). Specifically, we focus on results of the
form φZf for a given row vector φ and a column vector f . First, note that
Z(x, y) is in itself a result of this form, with ‘geometric’ vectors φ = [xi]i∈N and
f = [yi]i∈N. We first consider the special case for which φ is geometric but f has
a more general form, so that φZf = Gh(x), the generating function of the value
function corresponding with cost function f . We assume that all but finitely
many fi have the same sign, so that we can indeed swap sum and integral in the
following derivation:

Gh(x) =
∑
i,j

xiZijfj

=
1

2πı

∑
j

fj

∮
GZ(x, y)y

−j−1dy

=
1

2πı

∮
GZ(x, y)Gf (y

−1)y−1dy , (30)

where the integrals are taken along a suitable contour. Evaluation can proceed
numerically by approximating the integral by a sum, which in fact amounts to
the application of fast Fourier transform techniques (FFT). Such approximation
techniques are not required if f has one of the two fundamental forms:

f
(1)
j = jnαj or f

(2)
j = δkj . (31)

We have that Gh(1)(x) = GZf (1)(x) reduces to

Gh(1)(x) =

(
y
∂

∂y

)n

GZ(x, y)
∣∣∣
y=α

, (32)

while Gh(2)(x) = GZf (2)(x) can be written as:

Gh(2)(x) =
∂k

∂yk
GZ(x, y)

∣∣∣
y=0

(33)

Note that we have closed-form expressions for the generating function of the
value function if f is a (finite) linear combination of such forms as well. We
denote the set of such functions as C, which is closed under both addition and
multiplication. It contains all constant, polynomial, exponential, functions and
all linear combinations and products of such functions. As such, it is a dense set
on the set of functions f : X → R, meaning that any function can be arbitrarily
closely approximated.
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We now derive integral expressions for φZf :

φZf =
∑
i,j

φiZijfj

= −
∑
ij

φifj
1

4π2

∮ ∮
dxdyx−i−1GZ(x, y)y

−j−1

= − 1

4π2

∮ ∮
dxdyGφ(x

−1)x−1GZ(x, y)Gf (y
−1)y−1.

(34)

In case φ is also of a fundamental form:

φ
(1)
j = jmβj or φ

(2)
j = δ�j , (35)

we obtain for each of the four options a different expression for φZf :

φ(1)Zf (1) =

(
x
∂

∂x

)m(
y
∂

∂y

)n

GZ(x, y)
∣∣∣
(x,y)=(β,α)

, (36)

φ(1)Zf (2) =

(
x
∂

∂x

)m
1

k!

∂k

∂yk
GZ(x, y)

∣∣∣
(x,y)=(β,0)

, (37)

φ(2)Zf (1) =
1

�!

∂�

∂x�

(
y
∂

∂y

)n

GZ(x, y)
∣∣∣
(x,y)=(0,α)

, (38)

φ(2)Zf (2) =
1

�!

∂�

∂x�

1

k!

∂k

∂yk
GZ(x, y)

∣∣∣
(x,y)=(0,0)

. (39)

3 Application to Asymptotic Variance

The asymptotic variance (see e.g. [6]) of a functional f on a Markov chain {Xn}
is defined as follows:

γ2
f = lim

N→∞
1

N
E :

[
N−1∑
n=0

(f(Xn)− f̄)2

]
, (40)

where f̄ = πf , i.e. the expectation of f under stationarity.
This concept plays a key role in establishing a central limit theorem (CLT)

for Markov chains, indeed, under some fairly broad conditions [6], we have that
the sequence

(Nγ2
f )

−1/2
N−1∑
n=0

(f(Xn)− f̄),

converges to a normal distribution with zero mean and unit variance as N → ∞.
This property has many important applications, for example in planning sim-

ulations, but also in heavy-traffic theory, which we will illustrate in Sec. 3.2.
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3.1 Calculation of γ2
f

Calculating γ2
f directly from the formula (40) often leads to long-winded deriva-

tions, which can be alleviated if we carry it out in the following way: for h = Zf ,
we have (see [6]):

γ2
f =

∑
i

πi((hi)
2 − (hi − fi + f̄)2)

= 2
∑
i

πihifi −
∑
i

πi(fi)
2 − (f̄)2. (41)

where we made use of the fact that πh = πf . Note that only the first term
involves h. We show how to compute this term by using the techniques of Sec. 2.3.
Note that ∑

i

πihifi =
∑
i,j

πifiZijfj . (42)

If both πi and fi belong to the set C as defined in Sec. 2.3, then we obtain
a closed-form expression for the asymptotic variance. This implies that Gπ(z)
must be a rational function.

3.2 An Application to Heavy Traffic

Since Kingman [16], heavy-traffic theory is an important topic in queueing the-
ory. In the following, we give a very short account of the results for a single queue
(i.e. the G/G/1 model). In keeping with the conventions of rest of the paper,
we stick to a discrete-time scenario, although extensions to continuous time are
fairly straight-forward. Consider a queue with a stationary but not necessarily
independent input process {An} and a capacity c. The virtual work Wn at time
instant n is given by the recursive equation

Wn+1 = (Wn +An − c)+ (43)

Heavy-traffic theory is concerned with the limit as E : [A0] ↑ c and more specifi-
cally states that if the process {An} admits a CLT with mean ρ and asymptotic
variance γ2, then the mean virtual work in stationarity is equal to

E[W∞] =
γ2

2(c− ρ)
(44)

Moreover the stationary distribution converges to an exponential distribution
with a mean given by the above display.

In order to apply the results of this paper to a concrete queueing scenario.
We consider a two-queue model where the content of the first queue serves as
the input for the second queue:

(U
(1)
n+1, U

(2)
n+1) = ([U (1)

n +An − 1]+, [U (2)
n + U (1)

n − 1]+) (45)
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This may seem like an artificial model, but it might be used in the following
scenario. People are waiting in line for a service (for example, buying a ticket
at the movies), and while doing so, they make use of an internet hotspot, thus
creating internet traffic proportional to the number of waiting customers. A more
pragmatic reason is that it allows us to make direct use of the results for the class
of Markov chains of Sec. 2.1. With some extra work, e.g. by applying our recipe

to the two-dimensional Markov chain {(U (1)
n , D

(1)
n )}, where D

(1)
n denotes the

number of departures from the first queue, we may also consider more traditional
scenarios such as tandem queues etc., which in fact leads to the asymptotic
variance of departure processes as considered eg. in [15].

If we assume the second queue to be operating close to its maximal capac-
ity, then we can apply the aforementioned heavy-traffic results, as the sequence

{U (1)
n } forms a (dependent) input process for the second queue. We compute

the value of γ2
f in closed form. Note that in this particular case, fi = i. Let us

apply the results of Sec. 2.1 with Ga(z) = Gb(z) = a0 + a1z + a2z
2. Note that

we can derive closed-form solutions under broader conditions that we do here,
but we opt for a simple, tractable example. Let ρ1 = a1 + 2a2. We have that
Gπ(z) = (a0 − a2)/(a0 − a2z), such that πi = (1 − r)ri, with r = a2/a0. After
some (fairly straightforward) algebraic manipulations, we find that

GZ(x, y) =
1

a0 − a2y

( y (a0x− a2)

(1− x)(a0 − a2y)(1− xy)

+
a0 − a2 + a0/(a0 − a2)

1− x
− x

(1 − x)2

)
. (46)

Eq. (41) specializes in this case to

γ2 = 2(1− r)φZf − a0a2 + 2a22
(a0 − a2)2

. (47)

Note that φi = iri and fi = i, so that

φZf =
∂2

∂x∂y
GZ(x, y)

∣∣∣
(x,y)=(r,1)

, (48)

which leads to a long but closed-form expression for γ2.
In Figure 1, we illustrate the results of this section with a numerical example.

Note that there are only two degrees of freedom for the the parameters of the
first queue. When we fix the load ρ2 as seen by the second queue (which is equal
to a2/(a0 − a2), the mean content of the first queue), then a plausible choice
for the other parameter is given by a1, which is a measure for how quickly the
queue content process varies. We see that γ2 increases as a1 gets larger.

4 Further Applications and Concluding Remarks

As there are plenty of applications for Poisson’s equation next to asymptotic
variance, we presume that the methods of this paper may be useful in other
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Fig. 1. Plot of the asymptotic variance γ2 of the input stream against load of the
second queue for different values of a1

areas than in asymptotic variance. We give some initial findings on a few of
them.

Controlled Markov chains, or Markov decision processes, are perhaps the most
obvious application. As this work may help find efficient solution methods for
the value function (often a rather costly step), it may lead to better algorithms
for some classes of MDP. It seems of utmost importance however that every
policy leads to a Markov chain that is sufficiently structured.

Another application is perturbation of Markov chains. Consider a family of
Markov chains depending on a parameter α with transition matrices P (α). For
small values of α, The central formula for the stationary vector of a perturbed
system is as follows:

π(α) = π(0)
∑
k

((P (α) − P (0))(Z(0) − 1π(0)))k.

Although perturbation problems can sometimes be tackled in the transform do-
main without a detour to PE (see eg. [19]), the approach of this paper may lead
to a higher genericity, and potentially to more insight.

Summing up, we have derived transform-based solutions of Poisson’s equation
for some frequently encountered types of Markov chains and have pointed out
some applications. We show that the transform domain may form an attractive
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tool for researchers working with Poisson’s equation, and also that Poisson’s
equation may offer new results and applications for models that allow transform-
based solutions.
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Abstract. In this work we present and discuss a modelling framework
for the basic discharge process which occurs in simple electrochemical
battery cells. The main purpose is to provide a setting for analyzing
delivered capacity, battery life expectancy and other measures of perfor-
mance. This includes a number of deterministic and stochastic variations
of kinetic battery models. The primary tool is a novel phase plane anal-
ysis of the balance of nominal and theoretical capacity. In particular,
we study spatial versions of such models which lead to a linear diffusion
equation with Robin type boundary conditions under scaling. Explicit
solutions are obtained by considering reflected Brownian motion.

1 Introduction

This work concerns mathematical modeling of the state of charge and the voltage
level dynamics in simple battery cells under discharge. The purpose is to provide
an efficient framework for predicting battery life, delivered capacity and other
measures of performance, which takes into account that batteries are commonly
subject to considerable variation in performance. Such variations occur not only
because of variable usage patterns or variable disload mechanisms of the elec-
trochemically stored energy, but also as a result of recovery mechanisms in the
electrolyte. The type of battery we have in mind primarily is a non-rechargeable
and non-costly unit expected to last several years, such as a 3 Volts lithium-
ion coin battery to be deployed in large numbers for low-energy applications in
communication networks, sensor networks, etc.

A battery is made of one or several electrochemical cells. The modeling dis-
cussed here relies on the simplified view that a cell essentially consists of an
anode-cathode pair of electrodes connected by electrolyte, which may be liquid
as in lead-acid batteries or solid as in Li-ion batteries. In the cell, stored chemical
energy is converted into electrical energy through an oxidation reaction at the
anode. By Faraday’s first law the mass of active material altered at an electrode
is directly proportional to the quantity of electrical charge which is transfered at
the electrode in the battery reaction. The Nernst equation in electrochemistry
then states that the logarithm of electric charge determines the terminal voltage

K. Al-Begain, D. Fiems, and J.-M. Vincent (Eds.): ASMTA 2012, LNCS 7314, pp. 240–254, 2012.
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that exists between the pair of electrode terminals. It is the terminal voltage
that measures the ability of the battery to drive electric current.

The terminal voltage for a battery in a state of rest is typically larger in
magnitude than the terminal voltage under discharging due to effects of internal
resistance. Batteries for digital applications would often be expected to deliver
power spikes, either periodically in time or at random time points. Such pulsed
discharge patterns may have a different effect on terminal voltage to continuous
discharge loads of constant current.

The theoretical capacity of the battery is a measure of the maximal charge
which in principle could be obtainedwere the battery discharged arbitrarily slowly,
allowing the chemical reaction to equilibriate over time restricted only by the total
amount of active material contained in the cell. The nominal capacity of a battery
is typically a manufacturers specification of the amount of electric charge which
is delivered if the cell is put under constant load and drained of its energy over a
certain time interval. Normally the discharge process occurs on some intermediate
time scale that allows for recovery mechanisms to take place. This may slow down
the decrease of the state of charge or even cause the state of charge to increase.
A further mechanism known to affect the performance of a battery and which we
will take into account is the balance between migration and solid state diffusion.
The battery stops functioning if the terminal voltage passes below a minimal ac-
ceptable level or if the battery runs out of theoretical capacity.

In addition to introducing new modeling variations our study provides a sur-
vey of a number of battery models discussed in the literature. While the simplest
kinetic battery model introduced by Manwell and McGowan, [6,7], is essential
for our approach as a reference and background, we also consider the spatial
extension of this model, [10]. We do not discuss, however, another modeling
approach based on discrete Markov chains, see e.g. [1].

We summarize the novel contributions in this work as follows. Based on an
approach focusing on the interplay between remaining nominal capacity and
remaining theoretical capacity during discharge evolution we perform what ap-
pears to be a novel phase plane analysis of battery capacities. This allows us to
obtain battery life, gained capacity and delivered capacity as functions of the
basic model parameters and in some cases to optimize performance over such
parameters. The setting begins with the two-well kinetic battery ODE model
of constant current discharge but includes general situations such as regular
pulsed discharge or stochastic pointwise discharge. The unified approach to gen-
eral workload patterns and comparison of these appears to be new. We also
propose a new kinetic-diffusive battery model designed to describe the balance
between migration and drift diffusion. Finally, we extend the modeling approach
and generality of the models to a version where the bound charge is supposed
to be distributed over a spatial reservoir.

2 Some Principles of Battery Cell Dynamics

To introduce the main ideas of our approach, we consider a battery which is
initially fully loaded with nominal capacity N and which has the theoretical
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capacity T at time t = 0. Realistically, N ≤ T . For t ≥ 0 let x(t) denote
the level of available charge and v(t) the level of remaining theoretical capacity
of the battery at time t, so (v(0), x(0)) = (T,N). Charge is drawn from the
battery either continuously, or such that the charge level drops instantly from
one discrete level to a lower level. The discharge process acts randomly or in a
deterministic fashion and it acts continuously in time or at discrete time epochs.

The normalized and dimensionless quantity x̃(t) = x(t)/N ∈ [0, 1] represents
the state of charge of the battery at time t. A fully charged battery has x̃(t) =
1 and an empty one x̃(t) = 0. In practice a battery stops functioning before
it runs out of charge entirely at some level x0 which corresponds to voltage
reaching a cut-off level Ec. According to the Nernst equation the concentration
C of active material at an electrode determines the potential E according to
E = E0 − Ke lnC, where E0 is the equilibrium potential and Ke = RTa/nF
with R the ideal gas constant, Ta absolute temperature, n the valency of the
battery reaction (n = 1 for Lithium), and F Faraday’s constant. Faraday’s law
identifies the capacity Q of the cell as a multiple of C, with a proportionality
constant which is F times volume. Since x̃(t) is a measure of capacity we obtain
the terminal voltage Et of the cell at time t, as

Et = E0 +Ke ln x̃(t), 0 ≤ t ≤ t0,

where t0 is the battery life given by the first instance at which Et reaches the
cut-off voltage Ec < E0. For example, a Li-ion battery may have E0 = 3 and
Ec = 2 Volt.

N
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N
om

in
al

 c
ap

ac
it

y

Remaining theoretical capacity

Fig. 1. Phase-plane trace of nominal and theoretical capacities

It is natural to consider the trajectory of the system (v(t), x(t)), t ≥ 0, as
a path in the (v, x) phase plane starting in (T,N) at t = 0. Initially, the path
moves downwards and to the left in the (v, x) plane as the nominal and hence
the remaining theoretical capacity decreases. While the remaining theoretical
capacity continues its descent with the same average rate as the discharge pro-
cess, it is reasonable that the battery recovers some nominal charge capacity.
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This is because chemical transport in the electrolytes enables previously stored
material to become available, at least if λ is not too large. This effect is likely
to be less effective at lower levels of nominal charge.

If there exists a solution v0 > 0 of x(v) = x0 then v0 is the remaining capacity
at the battery charge expiration time. For this case we note that D = T − v0 is
the delivered capacity of the battery. We expect, based on the brief discussion
above, that D tends to T if λ → 0. Also, we normalize the nominal capacity
such that D tends to N if λ → ∞, c.f. [9], Figure 6. A closely related quantity
is the gain of the battery, G = T −N − v0. This is the capacity which is gained
during the life of the battery and measures the amount of bound charge that
the battery was able to convert into available charge and deplete during its time
of operation. Figure 1 indicates a typical trace in the phase-plane starting from
(T,N) and ending in (v0, 0).

3 The Kinetic Battery Model

The Kinetic Battery Model, [10], is a deterministic modeling approach which as-
sumes that charge is drawn continuously over time according to a given discharge
current i(t) ≥ 0, t ≥ 0. The average discharge rate is λ̄ = limt→∞ 1

t

∫ t

0
i(s) ds, if

this limit exists. The most basic case is a battery subject to constant discharge
over time, i(t) = λ. The total theoretical capacity of the battery is split in two
components called available charge and bound charge. As above, for t ≥ 0 let
v(t) denote the total capacity and x(t) the available capacity of the battery. Call
y(t) = v(t)− x(t) the bound charge. Suppose x(0) = N , v(0) = T > N .

The kinetic battery model involves a parameter c ∈ (0, 1) which allows the
ratios x(t)/c and y(t)/(1 − c) to be interpreted as the current heights of an
available charge well and a bound charge well, respectively. During operation
of the battery, bound charge is supposed to be made available according to a
rate which is proportional to the height difference y(t)/(1− c)− x(t)/c between
the bound and available charge wells. The matching with initial conditions then
dictates one should take c = N/T ∈ (0, 1) to be the fraction of total theoretical
capacity which is initially made available. Then at time t = 0, the wells have
equal height T and the charge flow gradient which builds up between the two
wells represents recovery of the battery, in the sense of its positive growth effect
on the nominal charge level x. As a result we obtain for (x(t), y(t)) the linear
system of differential equations⎧⎨⎩x′(t) = −i(t) + k

(
y(t)
1−c −

x(t)
c

)
, x(0) = N

y′(t) = −k
(

y(t)
1−c −

x(t)
c

)
, y(0) = T −N,

where k is a conductance parameter. Hence the total discharge process is inde-
pendent of the charge flow gradient and we have

v(t) = x(t) + y(t) = T −
∫ t

0

i(s) ds, t ≥ 0.



244 I. Kaj and V. Konané

The linear system is readily solved in terms of the parameters k, T and c = N/T ,
as {

x(t) = cv(t)− (1 − c)
∫ t

0 e
−k(t−s)/c(1−c) i(s) ds

y(t) = (1− c)v(t) +
∫ t

0 e−k(t−s)/c(1−c) i(s) ds.

Since cv(t)− x(t) ≥ 0 the system life equals

t0 = inf{t > 0 : x(t) = x0 or v(t) = 0} = inf{t > 0 : x(t) = x0}.

The model in this form is discussed in e.g. [5].

Phase Plane Analysis and General Workload Discharge. It is straight-
forward to extend the kinetic battery model and incorporate general discharge
patterns by replacing i(t) dt with some measure Λ(dt), and consider the differ-
ential system⎧⎨⎩dx(t) = −Λ(dt) + k

(
y(t)
1−c −

x(t)
c

)
dt, x(0) = N

dy(t) = −k
(

y(t)
1−c −

x(t)
c

)
dt, y(0) = T −N.

Then v(t) = x(t) + y(t) = T − Λ(t) and{
x(t) = cv(t)− (1 − c)

∫ t

0
e−k(t−s)/c(1−c) Λ(ds)

y(t) = (1 − c)v(t) +
∫ t

0
e−k(t−s)/c(1−c)Λ(ds).

For example, if a cell is subject to successive periods of low, medium and high
loads then Λ(dt) would be a continuous measure with discharge rates varying
accordingly from one time interval to the next.

Next we analyze in some detail and compare three types of discharge patterns
for the kinetic battery model in its extended form. First of all, for the constant
discharge case Λ(t) = λt we obtain the solution (vλ(t), xλ(t)), where vλ(t) =
T − λt and

xλ(t) = cvλ(t)− λc(1 − c)2k−1(1− e−kt/c(1−c)). (1)

In line with the phase plane view point in Figure 1, the corresponding trajectory
of the bivariate dynamical system (vλ(t), xλ(t)) in the (v, x)-plane with terminal
condition x(T ) = N is

x(v) = cv − Cλ(1 − e−k(T−v)/λc(1−c)), v ≤ T, Cλ = λc(1 − c)2/k. (2)

This system starts in (v, x) = (T,N) at time t = 0 and traces out a path below
the diagonal x = cv but above the line x = −(T −N)+ v which exits at time t0 in
(v0, x0), where 0 ≤ v0 ≤ T −N . The phase plane path depends on the parameters
λ and k only through the ratio λ/k. Figure 2 shows the drop of voltage according
to Et = 3+0.2 ln(x(t)/N) as a function of normalized capacity 1− v(t)/T (upper
panel) and phase plane curves (lower panel) until the cut-off voltage of 2 Volts
is reached, which occurs close to the time of complete discharge where x(t) ≈ 0.
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Three discharge rates, λ/k = 500, 1000, 2500 are indicated and compared to the
ideal case x = cv for a very small discharge current, which corresponds to 100%
utilization, and the worst case of highest loads where 40% of the available capacity
is utilized.
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Fig. 2. Upper panel: Voltage versus (normalized) capacity; Lower panel: Discharge
profiles for the kinetic battery model; Parameters: constant current load, N = 400,
T = 1000, λ/k = 500, 1000, 2500

Another case of interest is regularly spaced pulsed discharge. This is a relevant
model for batteries in sensor nodes programmed to carry out a fixed task once
per day, say. Here we let r > 0 be the time between any two consecutive pulses
each releasing the charge λr. The corresponding discharge measure is Λ(t) =

λr
∑�t/r�

j=1 δjr , for which the average discharge rate is kept at (approximately)

λt. The solution (x(r)(t), v(r)(t)) for this case is

v(r)(t) = T − Λ(t) ≈ T − λt

x(r)(t) = cv(r)(t)− (1− c)λr

�t/r�∑
j=1

e−k(t−jr)/c(1−c),

where evaluation of the geometric sum
∑�t/r�

j=1 (ekr/c(1−c))j yields

x(r) ≈ cv(r) − C
(r)
λ (1 − e−k(T−v(r))/λc(1−c)), C

(r)
λ =

λr(1 − c)

1− e−kr/c(1−c)
. (3)

The previous case Λ(t) = λt is recovered by taking an informal limit r → 0.

Strictly speaking, the curves with constants C
(r)
λ indicate the lower jump points
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Fig. 3. Discharge of pulsed kinetic battery model, r = 50, N = 400, T = 1000, λ/k =
1000

of the discharge profile. This is appropriate as the battery is considered empty
at the first instance when the voltage drops below Ec. Figure 3 shows phase
plane and the change of state with time for the kinetic battery model under
pulsed discharge with r = 50 and additional parameters N = 400, T = 1000,
λ̄/k = 1000. Two curves are shown for the case when the first pulse occurs at
t = 0 (blue) or t = r (black) and compared with the constant discharge case of
same average (red).

As a third example we let (Λ(t))t≥0 be a Poisson process with intensity measure
λdt. This is a battery released of charge pulsewise at random times uniformly
scattered over the time interval of operation with an average of λ per time unit.
The result is a system of random processes (V (t), X(t)) with V (t) = T −Λ(t) and

X(t) = cV (t)− (1− c)Z(t), Z(t) =

∫ t

0

e−k(t−s)/c(1−c) dΛ(s),

and Z(t) is known as a so called Poisson shot-noise process. Clearly, the expected
value EX(t) = xλ(t) is given by (1). Moreover, the shot-noise process has a
steady-state Z∞, such that asymptotically

Z(t) ⇒ Z∞, EZ∞ = λc(1 − c)/k, VarZ∞ = λc(1− c)/2k. (4)

Kinetic-Diffusive Battery Model. The kinetic battery model was primarily
framed for lead-acid batteries. Shortcomings of the model have been discussed
in e.g. [3], and attempts have been made to incorporate other designs. In the
context of Ni-MH batteries, [9] proposed a modified, non-linear, factor in the
flow charge between the two wells.
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For Li-ion cells a shortcoming of the kinetic battery model appears to be that
solid state diffusion is not taken into account. In solid phase the application of
an external driving force makes the diffusing particles experience a drift motion
in addition to random diffusion. This effect of diffusion drift of charge carriers
is discussed in detail in the specialized electrochemical litterature on all-solid
batteries and is known to hamper performance of the units, see e.g. [2]. We
propose the following modification of the dynamics of the two-well kinetic battery
model as a means of introducing in a simplistic but meaningful way a negative
drift in the flux of charge:⎧⎨⎩dx(t) = −Λ(dt) + k

(
(1− p)

(
y(t)
1−c −

x(t)
c

)
− p 1

c

(
N
c − y(t)

1−c

))
dt, x(0) = N

dy(t) = −k
(
(1− p)

(
y(t)
1−c −

x(t)
c

)
− p 1

c

(
N
c − y(t)

1−c

))
dt, y(0) = T −N.

Here, p, 0 ≤ p ≤ 1, signifies a fraction of the current flow of charge which is
removed and sent back to the bound well. The solution in this case is given by⎧⎪⎪⎨⎪⎪⎩

x(t) = (c+ (1− c)p)v(t)− (1 − c)pT − (1 − p)(1− c)
∫ t

0
e−k(t−s)/c(1−c) Λ(ds)

= (1− p)
(
cv(t)− (1− c)

∫ t

0 e
−k(t−s)/c(1−c)Λ(ds)

)
+ p(v(t)− (T −N))

v(t) = x(t) + y(t) = T − Λ(t)

Now choose a discharge measure Λ(dt). It is then straightforward to derive results
such as (2, 3) for the more general model that involves the drift parameter p.

Performance of the Kinetic Battery Model. Here we compare briefly de-
livered capacity and battery life for the kinetic battery model. For simplicity
we consider the standard model p = 0. All formulas listed in this section may
also be derived for the case 0 < p < 1 of the kinetic-diffusive modification dis-
cussed above. Indeed, we conclude this section with some comments on delivered
capacity for the general model.

We begin with the non-random models. The unused capacity that remains
after depletion of all available charge is the unique solution v0 > 0 of x(v) = x0.
The delivered capacity is D = T − v0 and the gained capacity G = D −N . By
(3) and (2), which we include as the case r = 0,

x0 = cv0 − C
(r)
λ (1 − e−k(T−v0)/λc(1−c)), C

(0)
λ = Cλ. (5)

Equation (5) may be solved explicitly in terms of the so called Lambert W
function, the principal branch of which we denote by W0. Then

v0 =
x0 + C

(r)
λ

c
− λc(1− c)

k
W0

( kC
(r)
λ

λc2(1 − c)
exp

{
− k(T − x0/c− C

(r)
λ )

λc(1− c)

})
However, for typical parameters the exponential term in (5) may be ignored for

v close to v0, and hence v0 ≈ (x0+C
(r)
λ )/c. In conclusion, the delivered capacity

D
(r)
λ for the deterministic version of the kinetic battery model is approximately
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D
(r)
λ ≈ T − x0/c− C

(r)
λ /c.

The lifelength t0 of the battery is directly proportional to the delivered capacity.
Indeed, since (v(t0), x(t0)) = (v0, x0) and v(t) = T − λt we have λt0 = D. As an
example, the lifelength for the continuous model (2) is obtained as the solution
t0 ∈ [T/λ− 1/k, T/λ] of

t0 =
T

λ
− x0

cλ
− 1

k
(1− c)2(1− e−kt0/c(1−c)).

Again this equation may be solved in terms of W0, as

t0 =
T

λ
− x0

cλ
− 1− c

k
+

c(1− c)

k
W0

(1
c
exp

{
− k(T − x0/c)

λc(1 − c)
+

1

c

})
.

Turning to the random model driven by Poisson discharge events, if we stop at
the random time t0 = min{t : X(t) = x0}, then by (4),

cV (t0) ≈ x0 + (1− c)Z∞ ≈ x0 + (1− c)EZ∞ = x0 + Cλ.

Hence

Λ(t0) ≈ T − x0 + Cλ

c
= T (1− x0 + Cλ

N
)

and so the distribution of the lifelength t0 is comparable to a Gamma distribution
Γ (m,λ) where m is an integer approximation of T (1− (x0 + Cλ)/N). Also, the
average delivered capacity for the Poisson model is given by Dλ = T (1− (x0 +
Cλ)/N).

As mentioned above it is straightforward to include the kinetic-diffusive ver-
sion. The delivered capacity will decrease with increasing p as illustrated in
Figure 4, with p = 0, p = 0.2 and p = 0.4. For the basic model p = 0, the
delivered capacity Dλ descends from its maximal value T , or T (1 − x0/N) in
case x0 > 0, to the asymptotic value N as λ → ∞. For p > 0 however there is a
maximal Tp ≈ (N−x0)/((1−p)c+p) which is attained for vanishing load, λ → 0.
The interpretation is that solid phase diffusion puts a principal restriction on
the amount of chemical energy which can be drawn from the cell.
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Fig. 4. Delivered capacity D as function of current load λ/k for p = 0 (upper), p = 0.2
(mid) and p = 0.4 (lower); T = 1000, N = 400
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4 Spatial Diffusion Models

This approach extends the mechanism of the kinetic battery model to act pair-
wise on adjacent fluid compartments spread out on a one-dimensional spatial
range. We begin with a discretized version and split the charges in m compo-
nents u(t) = (u1(t), . . . , um(t)). Here u1 is the available charge, u2 is a bound
well charge for u1 and so on until um, which is a bound well charge for um−1. As
charge is drawn from u1 electrochemical material continuously flows downwards
from each bound well to help recover the charge level at the next lower well.
By considering a limit of many small wells we obtain a limiting PDE for the
charge concentration profile, which may be solved explicitly and analyzed by
phase plane methods just as for the two-well case.

Spatial Version of the Kinetic Battery Model. By treating each pair of
adjacent components as available and bound wells, we obtain the coupled system
of linear equations⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

du1(t) = −Λ(dt) + kc(cu2(t)− (1− c)u1(t)) dt
du2(t) = −kc(cu2(t)− (1− c)u1(t)) dt+ kc(cu3(t)− (1 − c)u2(t)) dt

...
dum−1(t) = −kc(cum−1(t)− (1 − c)um−2(t)) dt

+kc(cum(t)− (1− c)um−1(t)) dt
dum(t) = −kc(cum(t)− (1 − c)um−1(t)) dt,

where we have put kc = k/c(1− c) as a temporary notation. Rewriting,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

du1(t) = −Λ(dt) + kc

2 (u2(t)− u1(t)) dt+ kc(c− 1/2)(u1(t) + u2(t)) dt

du2(t) =
kc

2 (u1(t)− 2u2(t) + u3(t)) dt+ kc(c− 1/2)(u3(t)− u1(t)) dt
...

dum−1(t) =
kc

2 (um−2(t)− 2um−1(t) + um(t)) dt
+kc(c− 1/2)(um(t)− um−2(t)) dt

dum(t) = −kc

2 (um(t)− um−1(t)) − kc(c− 1/2)(um−1(t) + um(t)) dt

To prepare for studying the limit as m → ∞ we introduce a new parameter �,
that will be tuned to the initial condition u(0) and N and T later, and think
of each well as occupying intervals of length �/m positioned uniformly on the
strip 0 ≤ x ≤ �. To this end, put ε = �/m, and for x = jε, j = 1, . . . ,m, let
uε(t, x) = uj(t). We also adapt conductivity by introducing the scaled parameter
κ = k/m2. Moreover, put κc = κ/c(1− c). Then, for x ∈ {2/m, . . . , (� − 1)/m},

duε(t, x) =
κc�

2

2

uε(t, x− ε)− 2uε(t, x) + uε(t, x+ ε)

ε2
dt

+κc�m(2c− 1)
u(t, x+ ε)− u(t, x− ε)

2ε
dt.
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The boundary equations attain the form

duε(t, ε)

m
= −Λ(dt)

m

+
κc

2

{
�
uε(t, 2ε)− uε(t, ε)

ε
+m(2c− 1)(uε(t, ε) + uε(t, 2ε))

}
dt

and

duε(t, �)

m
= −κc

2

{
�
uε(t, �)− uε(t, �− ε)

ε
+m(2c− 1)(uε(t, �− ε) + uε(t, �))

}
dt

We now consider the case of scaling the height parameter c = cm with the
number of spatial compartments by putting cm = (1+μ/m)/2. With μ �= 0 and
large m, this will keep the system close to the symmetric situation cm ∼ 1/2
but with a flux of charge at each adjacent pair of wells with magnitude of order
μ/m. This gives the approximative system

duε(t, x) = −Λ(dt)δε(dx) + 2κ�2
uε(t, x− ε)− 2xε(t, x) + uε(t, x+ ε)

ε2
dt

+4κ�μ
u(t, x+ ε)− u(t, x− ε)

2ε
dt

with Robin type boundary conditions

�
uε(t, 2ε)− uε(t, ε)

ε
= −2μuε(t, ε), �

uε(t, �− ε)− uε(t, �)

ε
= 2μuε(t, �− ε).

Taking an informal limit as m → ∞, we conclude that the relevant limiting
equation is

du(t, x) = −Λ(dt)δ0(dx) + 2κ�2
∂2u

∂x∂x
(t, x) dt + 4κ�μ

∂u

∂x
(t, x) dt, 0 ≤ x ≤ �

�
∂u

∂x
(t, 0+) = −2μu(t, 0), �

∂u

∂x
(t, �−) = 2μu(t, �), u(0, x) = u0(x).

Our interpretation is that u(t, 0)t≥0 represents the available charge of the
battery and {u(t, x), 0 < x < �}t≥0 represents the fluid level of a reservoir of
bound charge such that

∫
(0,�)

u(t, x) dx is what remains in the reservoir at time

t. For simplicity we will consider the case u0(y) = u0, y ∈ [0, �], for which initial
charge is uniformly located on the strip [0, �]. Hence

v(t) = u(t, 0) +

∫ �

0

u(t, x) dx, t ≥ 0, v(0) = u0 + u0�,

defines the remaining capacity in the system as function of time.
Now we are in position to relate the model parameters u0 and � to the battery

parameters N and T . For this we take the initial level of available charge to be
u0 = N and the initial content of the reservoir to be u0� = T − N . Then the
total potentially available charge is v(0) = T and we have � = T/N − 1.

Consider the parameters σ2 = 4κ�2 and β = −4κ�μ. Let (ξt)t≥0 denote a
Brownian motion with variance parameter σ2 and constant drift β. The initial
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condition is ξ0 = x ∈ (0, �) and the paths are subject to reflecting bound-
aries at both end points 0 and � with no loss of probability mass. Denote by
p�(t, y, x) the corresponding transition probability density function, such that
P (ξt ∈ dx|ξ0 = y) = p�(t, y, x) dx. Then the solution u(t, x) of the above PDE
has the representation

u(t, x) =

∫ �

0

u0(y)p�(t, y, x) dy −
∫ t

0

p�(t− s, 0, x)Λ(ds). (6)

The reflected Brownian motion (ξt) arises also as a model in economics and other
fields, see e.g. [11] and references in there. The transition density is given by

p�(t, y, x) =
2μ

�

e−2μx/�

1− e−2μ
+

2e−μ(x−y)/�

�
×

∞∑
n=1

(cos(
nπx

�
)− μ

nπ
sin(

nπx

�
))(cos(

nπy

�
)− μ

nπ
sin(

nπy

�
))
e−2κ(μ2+n2π2)t

1 + (μ/nπ)2
.

In particular, for the symmetric case, taking μ → 0,

p�(t, y, x) =
1

�
+

2

�

∞∑
n=1

cos(nπx/�) cos(nπy/�) e−2κn2π2t.

By (6),

u(t, x) = (T −N − λt)
2μ

�

e−2μx/�

1− e−2μ

+4Nμe−μx/�
∞∑
n=1

(cos(
nπx

�
)− μ

nπ
sin(

nπx

�
))
(−1)neμ − 1

μ2 + n2π2

e−2κ(μ2+n2π2)t

1 + (μ/nπ)2

−λe−μx/�

κ�

∞∑
n=1

(cos(
nπx

�
)− μ

nπ
sin(

nπx

�
))
n2π2(1 − e−2κ(μ2+n2π2)t)

(μ2 + n2π2)2
.

The remaining capacity is

v(t) = u(t, 0) +

∫ �

0

u(t, x) dx = u(t, 0) + T −N − λt.

Furthermore,

u(t, 0) = (T −N − λt)
1

�

2μ

1− e−2μ
− λ

κ�

∞∑
n=1

n2π2(1 − e−2κ(μ2+n2π2)t)

(μ2 + n2π2)2

+4Nμ

∞∑
n=1

((−1)neμ − 1)
n2π2 e−2κ(μ2+n2π2)t

(μ2 + n2π2)2
.
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This shows that the quantities (v, u) = (v(t), u(t, 0)) form an autonomous system
such that the relation between v and u = u(v) is given by

u = (v − u)
1

�

2μ

1− e−2μ
− λ

κ�

∞∑
n=1

n2π2(1 − e−2κ(μ2+n2π2)(T−N−v+u)/λ)

(μ2 + n2π2)2

+4Nμ

∞∑
n=1

((−1)neμ − 1)
n2π2 e−2κ(μ2+n2π2)(T−N−v+u)/λ

(μ2 + n2π2)2
.

As μ → 0,

u =
1

�
(v − u)− λ

κ�

∞∑
n=1

1

n2π2
(1− e−2κn2π2(T−N−v+u)/λ).

The important conclusion now is that we have obtained closed phase plane rep-
resentations of nominal and theoretical capacity also for the spatial model, at
least for constant load. Thus, performance can be studied just as for the two-well
model. Figure 5 displays typical discharge profiles of the driftless spatial version
of the kinetic battery model. The graphs are very similar to those for the basic
model in Figure 2. Figure 6 shows the effect of adding drift μ to the model.
With the same N and T as previously and for λ/κ = 2000, three discharge
profile curves are plotted with μ = −0.5, μ = 0 and μ = 0.5. Clearly, negative
drift lowers the delivered capacity whereas positive drift μ > 0 improves the
utilization of bound charge.
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Fig. 5. Discharge profiles of the spatial kinetic battery model, N = 400, T = 1000,
from left to right: λ/κ = 1000, 2000, 3000

Spatial Version of the Kinetic-Diffusive Battery Model. Finally we con-
sider a spatial extension of the proposed kinetic-diffusive model with symmetric
kinetic dynamics c = 1/2 but diffusive effect governed by p ≥ 0. Here, the total
conductivity has been partitioned into two mechanisms, see [8]. First the basic
flow of charge caused by the height difference between wells, secondly a drift
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Fig. 6. Discharge profiles of the spatial kinetic battery model with drift, N = 400,
T = 1000, κ = 1, λ = 2000, μ = −0.5, 0, 0.5

under the action of the discharge load which affects the bound charge. The pa-
rameter p controls the balance of these two contributions to the overall flux.
Putting q = 1− p,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

du1(t) = −Λ(dt) + 2kq(u2(t)− u1(t)) dt− 4kp(N − u2(t)) dt
du2(t) = 2kq(u1(t)− 2u2(t) + u3(t)) dt+ 4kp(u3(t)− u2(t)) dt

...
dum−1(t) = 2kq(um−2(t)− 2um−1(t) + um(t)) dt+ 4kp(um(t)− um−1(t)) dt
dum(t) = −2kq(um(t)− um−1(t)) + 4kp(N − um(t))

Again, we place m wells of width �/m on the interval 0 ≤ x ≤ �. With ε = �/m
and uε(t, x) = uj(t) for x = jε, j = 1, . . . ,m, and with scaled parameters
κ = k/m2 > 0 and ρ = mp > 0, we find for for x ∈ {2/m, . . . , (�− 1)/m},

duε(t, x) = 2κ�2(1 − ρ/m)
uε(t, x− ε)− 2uε(t, x) + uε(t, x+ ε)

ε2
dt

+4κ�ρ
u(t, x+ ε)− u(t, x)

ε
dt.

The boundary equations attain the form

duε(t, ε)

m
= −Λ(dt)

m
+2κ

{
�(1− ρ/m)

uε(t, 2ε)− uε(t, ε)

ε
− 2ρ(N − uε(t, 2ε))

}
dt

and

duε(t, �)

m
= −2κ

{
�(1− ρ/m)

uε(t, �)− uε(t, �− ε)

ε
− 2ρ(N − uε(t, �− ε))

}
dt.

Considering a limit for large m, this yields

du(t, x) = −Λ(dt)δ0(dx) + 2κ�2
∂2u

∂x∂x
(t, x) dt+ 4κ�ρ

∂u

∂x
(t, x) dt, 0 ≤ x ≤ �

�
∂u

∂x
(t, 0+) = 2ρ(N − u(t, 0)), �

∂u

∂x
(t, �−) = −2ρ(N − u(t, �)),
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with initial condition u(0, x) = u0(x). In comparison to the previous case where
a drift μ was created by keeping the height parameter c asymptotically of the
order c = 1/2+μ/2m, in this case we obtain the same equation with ρ replacing
μ but other boundary conditions still of the generalized Robin type.
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Abstract. Branching processes can describe the dynamics of various
queueing systems, peer-to-peer systems, delay tolerant networks, etc. In
this paper we study the basic stochastic recursion of multitype branch-
ing processes, but in two non-standard contexts. First, we consider this
recursion in the max-plus algebra where branching corresponds to find-
ing the maximal offspring of the current generation. Secondly, we con-
sider network-calculus-type deterministic bounds as introduced by Cruz,
which we extend to handle branching-type processes. The paper pro-
vides both qualitative and quantitative results and introduces various
applications of (max-plus) branching processes in queueing theory.

Keywords: Stochastic recursive equations, Branching processes, Max-
plus algebra, Network calculus.

1 Introduction

Branching processes model the dynamics of populations over successive genera-
tions, each member of some generation independently producing offspring in the
next generation in accordance with a given probability distribution. Originating
from the nobility and family extinction problem, branching process theory has
been applied in diverse fields including computer science and networking.

Branching processes have been frequently identified in queueing theory and
the connection between branching processes and queueing theory is well estab-
lished. Already in 1942, Borel showed that the numbers of customers in a busy
period of an M/G/1 queue corresponds to the number of generations till ex-
tinction of a Galton-Watson branching process [8,19]. Similarly, Crump-Mode-
Jagers branching processes describe the dynamics of processor sharing queues
[16], whereas multitype branching processes with immigration have been used
to study retrial queues [17] and polling systems [23].

Applications of branching processes in networking are not limited to queueing
theory. In [22], a multitype branching process is studied to determine the maxi-
mum stable throughput of tree algorithms with free access. Stability of the tree
algorithm corresponds to criticality of the associated multitype Galton-Watson
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branching process. Multitype branching processes with migration can also cap-
ture the dynamics of distributing a file into a delay tolerant network with the
single-hop forwarding paradigm [11]. In addition, peer-to-peer networks also pro-
vide many interesting applications of branching processes [12,13,21]. For exam-
ple, Leskala et Al. [21] study interacting branching processes in the context of
file sharing networks.

In this paper we study the basic stochastic recursion of multitype branching
processes, but in two non-standard contexts. The first part of the paper intro-
duces problems that yield similar recursions but where summation and multi-
plication are understood as being in another possible algebra than the standard
one. In particular, we define and characterize branching processes in the max-
plus algebra, for both discrete and continuous state spaces. As shown further, we
obtain general characterizations of the stationary behaviour of the single-type
branching process with independent migration in the max-plus algebra. In addi-
tion, multitype branching processes in the max-plus algebra are introduced and
sufficient conditions are proven for stability of these processes in the presence of
stationary ergodic migration.

We then introduce a deterministic framework for studying branching pro-
cesses. A deterministic view on branching allows for focussing on worst-case
behaviour rather then average behaviour, as advocated by literature on network
calculus. When designing a network so as to meet strict bounds on quality of
service, then standard probabilistic descriptions of input and output processes
are no longer relevant; one has to come up with a design adapted to the worst
case of the input process. Much attention has been given to producing a network
calculus in which each network element has a transfer function: it maps a given
description of its input process to a similar description of the output process.
A complete mapping of this type allows one to dimension buffers in the net-
work that guarantee that there are no losses [10,20]. A more complex situation
arises when the network includes feedback. The outputs are no longer functions
of exogenous traffic. Computing tight bounds for feedback systems proves to be
much harder. A well known example of such a system is given in part ii of [10];
the bound given there is indeed not tight and has later been improved. Other
examples of explicit or implicit feedback for which obtaining tight bounds is not
a simple task are presented in [2,3] in the context of polling systems.

The deterministic framework for branching processes closely relates to ar-
rival processes in network calculus. It concerns processes that are shaped at the
entrance of the network using RED (Random Early Discard) or leaky bucket
mechanisms. These processes are characterized by a bound ρ on the average rate
as well as some bounded σ on the burstiness. More precisely, the output process
is “σ − ρ constrained”, i.e. for any interval [s, t), the output process from such
a buffer is bounded by ρ(t − s) + σ. R. L. Cruz showed in [10] that standard
network elements preserve this type of bound. Moreover, they imply uniform
bounds on the amount of workload in the network, which allows one to dimen-
sion buffer sizes so as to guarantee no overflow as long as the input processes
are σ − ρ constrained. In this paper we study some form of feedback in which
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the arrival process itself depends on the output process. We show that if this
dependence can be described using σ− ρ type bounds, one still obtains uniform
bounds on the workload in the system. We show that the feedback mechanism is
of the same type that is used to define branching processes. Our results thus pro-
vide a motivation for investigating a deterministic type of branching processes.
Finally, as for ordinary network calculus, we relax the deterministic bounds by
introducing elements of stochastic network calculus [18].

2 Branching in the Standard Algebra

We start by recalling some basic characterization of branching in the standard
algebra. The standard branching process is defined as follows. Let Yn be the
number of individuals in generation n. Starting with a fixed Y0, we define recur-
sively

Yn+1 =

Yn∑
i=1

ξ(i)n

where ξ
(i)
n are independent and identically distributed (i.i.d.) random variables

taking non-negative integer values. Define An(m) :=
∑m

i=1 ξ
(i)
n , we can then

rewrite the above as
Yn+1 = An(Yn) . (1)

Given the definition of the branching process above, branching processes with
immigration are defined through the recursion,

Yn+1 = An(Yn) +Bn , (2)

Bn being referred to as the immigration component.
Next we recall the definition of branching process on a continuous state space.

We note that An is nonnegative and has a divisibility property: for any nonneg-
ative integers m, m1 and m2 such that m1 +m2 = m, and for any n,

An(m) = A(1)
n (m1) +A(2)

n (m2)

where for each n, A
(1)
n and A

(2)
n are independent random processes, both with the

same distribution as An. We take this property, together with the nonnegativity
of An as the basis to define the continuous state branching processes. Noting
that these properties are satisfied by Lévy processes, we define a continuous
state branching process as one satisfying (1) where An is a nonnegative Lévy
process (a subordinator).

Example 1. Consider an M/G/1 queue with gated repeated vacations: the ar-
rivals are modeled by a Poisson process and the service and vacation times con-
stitute sequences of i.i.d. random variables. Each time the server returns from
vacation, it closes a gate, and the next busy period starts. The busy period con-
sists of the service times requested by all those that are present when the gate
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is closed. When the busy period ends then the server leaves on vacation. The
period that consists of a busy period followed by a vacation is called a cycle. Let
Yn be the number of customers present at the beginning of the nth cycle. Let

ξ
(i)
n denote the number of customer arrivals during the service time of the ith
customer among those present in the queue at the beginning of cycle n and let
Bn be the number of arrivals during the nth vacation. With these definitions it
easily follows that Yn satisfies (2).

Example 2. Consider the model of the previous example and Let Cn be the nth
cycle time. Moreover, let An(Cn) denote the workload that arrives during Cn

(i.e. the time to serve all those that arrive during the nth cycle time) and Bn

denote the length of the n+1st vacation. Then again (2) holds (thereby replacing
Yn by Cn).

3 Branching in the Max-Plus Algebra

In the max-plus algebra, summation corresponds to max, and multiplication to
summation. Hence, we define the (single-type) branching process in the max-plus
as follows,

Yn+1 =

Yn⊕
i=1

ξ(i)n ,

where
⊕

stands for maximization and where {ξ(i)n } constitutes a doubly indexed
sequence of i.i.d. random variables taking non-negative integer values. Thus (1)
still holds but this time with,

An(m) :=

m⊕
i=1

ξ(i)n . (3)

When considering immigration we shall consider two forms. The first form is,

Yn+1 = An(Yn)⊗Bn , (4)

with ⊗ denoting summation in the standard algebra, such that the former ex-
pression can be written in the standard algebra as,

max
i=1,...,Yn

ξ(i)n +Bn .

Notice that we here replaced only the branching part by its max-plus version.
The second form of immigration we consider is,

Yn+1 = An(Yn)⊕Bn , (5)

which can be written in the standard algebra as,

Yn+1 = max
(

Yn
max
i=1

ξ(i)n , Bn

)
.
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To define continuous branching in the max-plus algebra, we relate max-plus
branching with a continuous state space to Lévy processes, just as is done for
ordinary branching. The max-plus equivalent of branching in continuous state
space is defined as the maximum step of a (non-decreasing) Lévy process Ln(t)
over an interval of length y,

An(y) = sup
0≤t<y

dLn(t) . (6)

Notice that the divisibility of the branching process now holds in the max-plus
algebra. For any non-negative real values y, y1 and y2 such that y1+y2 = y, and
for any n, we now have,

An(y) = A(1)
n (y1)⊕A(2)

n (y2) ,

An being defined in either (3) or (6) (in the former case, y1 and y2 are positive
integers).

We now consider some queueing systems whose dynamics can be described by
the max-plus branching processes introduced above.

Example 3. Consider a discrete-time infinite-server queue with exactly one ar-
rival at each time slot. We consider gated service and general vacations: when
the nth vacation ends, a gate is closed and the n + 1st busy period starts. Let
Yn denote the number of customers present when the nth busy period starts.
All customers that are present are served in parallel, their service times being

i.i.d. and the next vacation starts when all services are completed. Let ξ
(i)
n be

the service time of the ith customer served during the nth busy period and let
Bn denote the length of the nth vacation. As there is a single arrival in each
slot, the sequence Yn satisfies (4) with An as defined in (3).

Example 4. Consider the same model as in previous example and let Ŷn be the
number of customers at the end of the nth busy period. Retaining the notation
introduced in example 3, Ŷn relates to Yn as

Ŷn = An(Yn) = Yn+1 −Bn

such that,
Ŷn+1 = An+1(Ŷn)⊕ Ân+1(Bn) ,

by the divisibility of the max-plus branching process. Here Ân is an indepen-
dent copy of An such that Ân+1(Bn) represents the maximal service time of
a customer that arrives during the nth vacation. This is a branching process
in the max-plus algebra of the same type as (5), the migration process being

Qn
.
= Ân+1(Bn).

Example 5. We consider the same setting of the previous examples except for the
arrival process. The ith arrival occurs at time τ i and brings a service requirement
of ξ(i) which need not be integer valued. The arriving workload is then given by

V (t) =
∑
i

ξ(i)1{0 ≤ τ i ≤ t} .
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If the arrival process is Poisson, and the service times are i.i.d. and independent
of the arrival times, then V (t) is a non-decreasing Lévy process. The independent
increments property of Lévy processes allows us to introduce a sequence of i.i.d.
Lévy processes Vn(t), distributed as V (t) which denote the arriving workload
during the nth cycle. As before, the n+1st busy period is the maximum service
time of all those that arrived during the nth cycle,

An(Cn) := sup
0≤t≤Cn

dVn(t) .

Hence An is a max-branching process, see (6). As the n+1st cycle time equals the
sum of the largest service time of a customer that arrived during the preceding
cycle and the vacation length Bn, consecutive cycle times relate as in (4), Bn

being the length of the nth vacation as before.

4 Solution

4.1 Discrete State Space

We first consider max-plus branching with a discrete state space. For a discrete
random variable r, its distribution function and probability mass function are
denoted by Fr(i) = Pr[r ≤ i] and pr(i) = Pr[r = i], respectively, whereas
r∗(z) = E[zr] denotes its probability generating function.

We first solve (5). In this case, Yn+1 ≤ i if Bn ≤ i as well as all ξ
(j)
n for

j = 1, . . . , Yn; see (3). Hence, we have,

Pr(Yn+1 ≤ i) = E[Pr(Yn+1 ≤ i|Yn, Bn)] = E([Fξ(i)]
Yn1{Bn ≤ i}) .

Here 1{·} denotes the indicator function. As the consecutive Bn are i.i.d. and
independent of An, this gives

Pr(Yn+1 ≤ i) = Y ∗
n (Fξ(i)) Pr(Bn ≤ i) .

Let π be the steady state probability vector of Y , π(j) = Pr[Y = j], then we get
the following set of equations for π:

i∑
j=0

π(j) =

∞∑
j=0

π(j)[Fξ(i)]
jFB(i) . (7)

Now assume that ξn and Bn have finite support, they are both bounded by
an integer L. This implies that (7) consists of a set of at most L + 1 linear
equations which allows us to solve for the unknowns (together with the equation∑

i π(i) = 1).
We now solve (4) for the discrete state space. In this case, Yn+1 ≤ i if all

ξ
(j)
n ≤ i−Bn for j = 1, . . . , Yn; see (3). Hence, we have,
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Pr(Yn+1 ≤ i) = E[Pr(Yn+1 ≤ i|Yn, Bn)] =

i∑
�=0

E([Fξ(i − �)]Yn1{Bn = �})

=

i∑
�=0

Y ∗
n (Fξ(i − �)) pB(�) .

As before, let π be the steady state probability vector of Y , π(j) = Pr[Y = j],
then we get the following set of equations for π,

i∑
j=0

π(j) =

∞∑
j=0

i∑
�=0

π(j)[Fξ(i − �)]j pB(�)

Again assuming that ξn and Bn have finite support, let L denote the common
upper bound, the former set (7) consists of at most L linear equations which
allows us to solve for the unknowns (together with the normalization condition∑

i π(i) = 1).

4.2 Continuous State Space

We now consider max-plus branching with a continuous state space. For a con-
tinuous random variable r, let Fr(x) = Pr[r ≤ x] denote its distribution function
and, with some abuse of notation, let r∗(ζ) = E[exp(−ζr)] denote its Laplace-
Stieltjes transform.

We first consider (5). By conditioning on the Yn and Bn, we find,

Pr(Yn+1 ≤ x) = E[Pr(Yn+1 ≤ x|Yn, Bn)] = E(exp(λYn(σ(x) − 1))1{Bn ≤ x})
= Y ∗

n (λ(1 − σ(x)))FB (x) ,

where λ = Π [0,∞) and σ(x) = Π [0, x)/λ relate to the Lévy measure Π of Ln.
In view of the former expression, we then obtain the following integral equation,

Y ∗
n+1(ζ) =

∫ ∞

0

exp(−ζx)d(Y ∗
n (λ(1 − σ(x)))FB(x)) .

Therefore, the Laplace-Stieltjes transform of the steady state distribution of Y
satisfies,

Y ∗(ζ) = ζ

∫ ∞

0

Y ∗(λ(1 − σ(x)))FB(x)e
−ζxdx − Y ∗(λ)FB(0) .

We now consider (4). By conditioning on the Yn and Bn, we find,

Pr(Yn+1 ≤ x) = E[Pr(Yn+1 ≤ x|Yn, Bn)]

=

∫ x

0

E(exp(λYn(σ(x − y)− 1)))FB(dy)

=

∫ x

0

Y ∗
n (λ(1 − σ(x − y)))FB(dy) ,
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such that the Laplace-Stieltjes transform of the steady-state distribution satis-
fies,

Y ∗(ζ) = ζ

∫ ∞

0

∫ x

0

Y ∗(λ(1− σ(x− y)))e−ζxFB(dy)dx .

In general, no easy solution for these integral equations is available. One can
nevertheless resort to numerical solution techniques for integral equations, see
e.g. [15].

5 The Multitype Branching

We now turn to stability conditions for max-plus branching processes. We do
this in a more general setting: (i) we consider vector-valued processes and (ii)
we consider all types of processes which have the same divisibility property as
branching processes. In particular, consider the RK

+ valued process {Yn} and
denote the ith entry of Yn by Y i

n, i = 1, ...,K. The process Yn satisfies the
following equation in vector form:

Yn+1 = An(Yn) +Bn. (8)

The K-dimensional column vector Bn is a stationary ergodic stochastic process
whose entries Bi

n, i = 1, ...,K are in subsets of the nonnegative real numbers.
For each n, An are non-negative vector valued random fields that are non-

decreasing in their arguments. An are i.i.d. with respect to n, and An(0) = 0.
We characterize max-branching processes by their divisibility property. That

is, we assume that An satisfies the following. If for some k, y = y0+ y1 + ...+ yk

where ym are vectors, then An(y) can be represented as

An(y) =

k⊕
i=0

Â(i)
n (yi) (9)

where {Â(i)
n }i=0,1,2,...,k are identically distributed with the same distribution as

An(·). In particular, for any sequence k(n), {Â(k(n))
n }n are independent.

Remark 1. For a given n, we do not assume independence of the random vari-

ables {Â(i)
n }i=0,1,2,.... In the case of ordinary multitype branching processes, this

leads to a unified framework of linear difference equations and branching pro-
cesses. In the case of max-branching considered here, the correspondence with
max-plus-linear difference equations does not hold. Nevertheless, independence

of {Â(i)
n }i=0,1,2,... is not required for proving stability and is therefore not as-

sumed.

5.1 Examples

We first introduce some processes that satisfy the divisibility property.
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Example 6. We define the discrete multitype branching process A(y) as follows.
Let ξ(k)(n), k = 1, 2, 3, ..., n = 1, 2, 3, ... be a doubly-indexed sequence of i.i.d.
random K × K matrices. The elements of these matrices take values in the
nonnegative integers. Moreover, assume that for any � = 1, 2, 3, ..., �′ = 1, 2, 3, ...,

k = 1, ...,K, i = 1, ...,K, m = 1, ...,K, j = 1, ...,K and m �= k, ξ
(�)
ki and ξ

(�′)
mj are

independent.
Let yj be the jth element of the vector y, the ith element of the column vector

A(y) is given by

[A(y)]i =

K⊕
j=1

yj⊕
k=1

ξ
(k)
ji . (10)

One easily verifies that the divisibility property holds for this process.

Example 7. As for the single-type max-branching, we express the continuous
multitype max-branching in terms of Lévy processes. To this end, let Ln(y), y ∈
RK

+ be an additive Lévy field. That is, we assume that L(y) can be decomposed
into the sum of K independent RK

+ valued Lévy processes,

L(y) =

K∑
i=1

Li(yi) ,

yi being the ith element of the vector y as before. The jth element of the con-
tinuous multitype max-branching process A(y) is then defined as follows,

[A(y)]j =

K⊕
i=1

d[Li(yi)]j ,

where [Li(yi)]j is the jth element of Li(yi). Again, one easily verifies that the
divisibility property holds for this process.

5.2 Stability Conditions

We shall understand below
⊗k

i=n Ai(x) = x whenever k < n, and
⊗k

i=n Ai(x) =
Ak(Ak−1(...(An(x))..)) whenever k > n.

In the remainder, let ‖x‖ denote the max-norm in RK and, with some abuse
of notation, let ‖An‖ denote the corresponding operator norm,

‖An‖ = inf{c ≥ 0 : ‖An(y)‖ ≤ c‖y‖, ∀y ∈ RK} .

Let A .
= E[‖A0‖]. Then, we have An(y) ≤ ‖A0‖‖y‖, almost surely such that

E[An(y)] ≤ A‖y‖. By the independence of the consecutive branching processes,
this further implies for j > 1,

E

[∥∥∥∥∥
(

j⊗
i=1

Ai

)
(y)

∥∥∥∥∥
]
≤ Aj‖y‖ . (11)

We now introduce our stability conditions.
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Theorem 1. Let Yn satisfy (8), with An satisfying the divisibility property (9)
and Bn stationary ergodic. We then have the following.

(i) For n > 0, Yn can be written in the form

Yn = Ỹn +

(
n−1⊗
i=0

Â
(0)
i

)
(Y0) (12)

where

Ỹn =
n−1∑
j=0

⎛⎝ n−1⊗
i=n−j

Â
(n−j)
i

⎞⎠ (Bn−j−1) (13)

is the solution of (8) with initial condition Y0 = 0.

(ii) For A < 1 and E[‖B0‖] < ∞, there is a unique stationary solution Y ∗
n of

(8), distributed like,

Y ∗
n =d

∞∑
j=0

⎛⎝ n−1⊗
i=n−j

Â
(n−j)
i

⎞⎠ (Bn−j−1), n ∈ Z. (14)

The sum on the right side of (14) converges absolutely almost surely. Further-
more, one can construct a probability space such that limn→∞ ‖Yn − Y ∗

n ‖ =
0, almost surely, for any initial value Y0.

Proof. (13) is obtained by iterating (8). Now, define the following set of stochas-
tic recursions on the same probability space as Yn:

Y
[�]
n+1 = An(Y

[�]
n ) +Bn, m ≥ −�, Y

[�]
−� = 0. (15)

For each n ≥ 0, Y
[�]
n is monotonically non-decreasing in � so that the limit

Y ∗
n = limn→∞ Y

[�]
n is well defined. Since this is measurable on the tail σ-algebra

generated by the stationary ergodic sequence {An, Bn}, it is either finite almost
surely or infinite almost surely. The last possibility is excluded since it follows by

induction that for every � ≥ 0 and n ≥ −� that E[‖Y [�]
n ‖] ≤ (1 −A)−1 E[‖B0‖],

and hence E[‖Y ∗
n ‖] ≤ (1−A)−1 E[‖B0‖], which is finite.

By the definition of Â
(i)
n and by (11), we have

E

[∥∥∥∥∥
(

j⊗
i=1

Â
(0)
i

)
(y)

∥∥∥∥∥
]
= Aj‖y‖,

which converges to zero since A < 1. Since∥∥∥∥∥
(

j⊗
i=1

Â
(0)
i

)
(y)

∥∥∥∥∥
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is non-negative, it then follows from Fatou’s Lemma that it converges to zero
almost surely. Finally, this implies that the difference

Yn − Y ∗
n =

(
j⊗

i=1

Â
(0)
i

)
(Y0)−

(
j⊗

i=1

Â
(0)
i

)
(Y ∗

0 )

converges to 0 almost surely. This implies also the uniqueness of the stationary
regime.

Remark 2. Recall that two forms of immigration were studied in section 3. The
stability conditions of Theorem 1 also hold in the case:

Yn+1 = An(Yn)⊕Bn ,

An and Bn as defined in the current section. To verify this, note that the in-

equality E[‖Y [�]
n ‖] ≤ (1 −A)−1 E[‖B0‖] is also valid for this modified recursion.

The rest of the proof remains unaltered.

6 Deterministic Cruz Type Branching

We now return to ordinary branching processes and study these by means of a
Cruz-type network calculus. Recall the following definition of an arrival curve in
(deterministic) network calculus.

Definition 1. An arrival process is said to satisfy the (σ, ρ) constraints for some
constant ρ and σ, if it satisfies for any interval [s, t], t ≥ s:

A[s, t]
.
= A(t)−A(s) ≤ ρ(t− s) + σ .

In order to apply network calculus for branching processes, we first show how
a single arrival process can be identified for a standard discrete branching pro-
cesses. That is, the whole branching process can be derived from this single
arrival process. We shall apply the same type of derivation to an arrival process
that satisfies Cruz-type constraints and obtain a new recursive characterization
of the branching process. We then study the properties of the resulting process.

Consider a discrete-time, one-dimensional branching process given by

yn+1 =

yn∑
i=1

ξ
(n)
i +Bn

where ξ
(n)
i are i.i.d. random variables taking values nonnegative integer numbers.

This branching process is driven by an immigration process Bn and by an
infinite set ξ(n) of driving sequences. In making the relation between Cruz-type
processes and a branching type structure, the immigration term will not play
an important role, and we shall replace it for simplicity by a constant Bn = B.
Our extension of the Cruz framework is to replace the driving processes ξ(n) by
a single σ − ρ constrained arrival process.
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More generally, we shall define below the arrival processes for processes that
satisfy the recursion

yn+1 = An(yn) +Bn

where, in the case of standard discrete branching, we have

An(yn) =

yn∑
i=1

ξ
(n)
i (16)

where ξ
(n)
i are i.i.d. random variables taking values in the nonnegative integers.

Definition 2. Let A be a monotone nonnegative random function from R to R.
We call it an arrival generator process (AGP).

Given an AGP A and some t0, we define A1(y) as A1(y) = A[t0, t0 + y], for
0 ≤ y ≤ y1 and define t1 = t0 + y1. We then recursively define tn = yn + tn−1

and for n > 1,
An(y) = A[tn, tn + y]. (17)

where 0 ≤ y ≤ yn+1. Thus for a given AGP A, we obtain a unique sequence An

of arrival processes. Conversely, assume that the sequence An is given, then (17)
defines uniquely the AGP A.

Example 8. In the case of standard discrete branching, y is discrete and the AGP
A is the counting function of a single infinite i.i.d. sequence ζn,

A(y) =

y∑
n=1

ζn ,

where ζn have the same distribution as ξ
(n)
i . It is now easy to check that with

the definition (17), An(y) have the same distribution as those given by (16), and
in particular, the consecutive An are i.i.d.

Example 9. This way of describing a branching process easily extends to branch-
ing processes with a continuous state space. In particular, the AGP is now a
subordinator A. The construction above then ensures that consecutive An are
i.i.d. by the independent increment property of Lévy processes.

We now assume that the AGP is (σ, ρ) constraint which implies that all An are
(σ, ρ) constraint as well. Before proceeding to our main results, we note that if
each An is (σ, ρ) constraint, then the following bound is obtained by applying
the recursion directly.

yn+1 = An+1(yn) +B ≤ ρyn + σ +B ≤ ρ2yn−1 + ρ(σ +B) + σ +B

≤ . . . ≤ ρny1 +
1− ρn+1

1− ρ
(σ +B) (18)

We shall be mainly interested in the case ρ < 1 for which we get the following
uniform bound,

yn ≤ y1 +
σ +B

1− ρ
(19)

Finding tighter bounds is the subject of the following section.
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7 Bounds on Branching Process

We use the construction of the process given in the preceding section, based on
a AGP A. Define

σs,t = A[s, t]− ρ(t− s)

We can then rewrite the branching recursion as follows. The first step is,

y2 = A[0, y1] +B = ρy1 + σ0,t1 +B ,

whereas the nth step is,

yn+1 = A[tn, tn + yn] +B = ρyn + σtn,tn+1 +B .

Solving this recursion gives the following lemma.

Lemma 1. The branching process can be written as

yn+1 = ρny1 +

n−1∑
i=0

ρi(σtn−i,tn−i+1) +
1− ρn+1

1− ρ
B . (20)

We shall use the following Lemma, proved in [2].

Lemma 2. Suppose we have two sequences of real numbers, {Vi}ni=1 and {ζi}ni=1,
such that 0 ≤ ζ1 ≤ · · · ≤ ζn. Then

ζ1V1 + · · · + ζnVn ≤ ζn max{0, Vn, Vn + Vn−1, . . . , Vn + · · · + V1} . (21)

Proof. The proof is by induction on n. Suppose (21) holds for n. Since the right
hand side is non–negative, we can replace ζn with ζn+1 on the right hand side,
and add ζn+1Vn+1 to both sides, thus obtaining equation (22):

ζ1V1 + · · ·+ ζnVn + ζn+1Vn+1

≤ ζn+1 (Vn+1+max{0, Vn, Vn+Vn−1, . . . , Vn+· · ·+V1})
= ζn+1 max{Vn+1, Vn+1 + Vn, Vn+1 + Vn + Vn−1, . . . , Vn+1 + Vn + · · ·+ V1}
≤ ζn+1 max{0, Vn+1, Vn+1 + Vn, . . . , Vn+1 + · · ·+ V1} . (22)

which establishes (21) for n+ 1.

By combining the preceding lemmas, we now obtain a substantial improvement
over (19).

Theorem 2. Assume that ρ < 1. Then we have for all n

yn ≤ y1 + σ +
B

1− ρ
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Proof. The proof of the Theorem follows by combining the last two lemmas. The
sequence ζ̂i in the last Lemma corresponds to the power of ρ’s: ζn = ρ0 = 1,
ζn−1 = ρ, ζn−i = ρi. Also we have Vi = σti,ti+1 . All elements of the max in (21)
are given by a summation of the form

Vn + Vn−1 + ...+ Vn−i = σtn−i,tn+1

which is bounded by σ. This proves the bound.

It has been argued that deterministic bounds yield overly pessimistic perfor-
mance bounds, which gave rise to various competing stochastic network calculi
[18]. We here adopt the so-called traffic-amount-centric arrival curves to the
branching processes considered here.

Definition 3. An arrival process is said to satisfy the (σ, ρ) constraints proba-
bilistically with non-increasing bounding function f(x) for some constant ρ and
σ, if it satisfies for any interval [s, t], t ≥ s:

Pr[A[s, t]− ρ(t− s) > σ + x] ≤ f(x)

The definition above allows that the (σ, ρ) constraint is violated by the AGP,
albeit with a small probability which is bounded by f(x). We then obtain the
following probabilistic bound for the branching process.

Theorem 3. Assume that ρ < 1 and that An satisfies the (σ, ρ) constraints
probabilistically with bounding function f(x). Then we have,

Pr[yn+1 − ρny1 −
1− ρn+1

1− ρ
B > σ + x] ≤ f(x) .

Proof. Following the arguments of the proof of Theorem 2, we have,

yn+1 ≤ ρny1 + σt1,tn+1 +
1− ρn+1

1− ρ
B ,

or equivalently,

yn+1 − ρny1 −
1− ρn+1

1− ρ
B ≤ σt1,tn+1 ,

This inequality then implies,

Pr[yn+1 − ρny1 − 1− ρn+1

1− ρ
B > σ + x] ≤ Pr[σt1,tn+1 > σ + x] ≤ f(x) .

Here the last inequality follows from the definition of σt1,tn+1 and definition 3.



Branching Processes, the Max-Plus Algebra and Network Calculus 269

8 Conclusions

In this paper we reconsider branching processes and their use in evaluating per-
formance of communication systems from two non-standard perspectives. First,
we introduce max-plus branching, where branching corresponds to finding the
maximal offspring of a member of the current generation rather then summing
all offspring of members of the current generation. We show that, as for a stan-
dard branching processes, a divisibility property holds. However, in the case of
max-plus branching, dividing the current generation leads to maximizing over the
respective offspring. The divisibility property also allows us to define continuous-
state max-branching in terms of Lévy processes, just like for ordinary branching.
All max-plus branching processes are investigated in the presence of a migration
component which is either added in the ordinary sense or in the max-plus sense.
Various applications in queueing theory for this type of branching processes are
introduced along the way.

For the single-type discrete max-branching with i.i.d. migration, we obtain a
system of equations for the stationary solution. For the continuous equivalent, a
functional equation is obtained for the Laplace-Stieltjes transform of the station-
ary solution. Finally, for multitype max-branching, we study conditions which
ensures the existence of a stationary solution.

A network calculus approach to branching processes constitutes the second
non-standard perspective. We show that a branching process can be created from
a single arrival process and then find bounds on the growth of this branching pro-
cess in terms of the deterministic constraints on this arrival process. Finally, we
relax these constraints by assuming probabilistic bounds on the arrival process.
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Abstract. Phase-type (PH) distributions are being used to model a
wide range of phenomena in performance and dependability evaluation.
The resulting models may be employed in analytical as well as in
simulation-driven approaches. Simulations require the efficient genera-
tion of random variates from PH distributions. PH distributions have
different representations and different associated computational costs for
random-variate generation. In this paper we study the problem of effi-
cient representation and efficient generation of PH distributed variates.

Keywords: PH distribution, pseudo random number generation.

1 Introduction

Phase-type (PH) distributions [1] are very useful in modelling interarrival times,
failure times, and other phenomena in computer systems. They can be employed
in analytical approaches as well as in simulation-based evaluations. When PH
distributions are used in simulations, often large sets of random variates must
be generated, and thus efficiency of random-variate generation from PH distri-
butions is important. We consider algorithms that ‘play’ the underlying Markov
chain. These algorithms provide high accuracy, because they represent each PH
sample as a sum of exponential samples, directly following the definition of PH
distributions.

PH distributions have different Markovian representations. In [2] we observed
that the computational complexity of PH-distributed random-variate generation
depends on the representation. This fact poses the research problem of finding
the representation that is optimal for random-variate generation.

In [3] we addressed the question by considering the sub-class of Acyclic Phase-
type (APH) distributions. For APH distributions the optimal representation is
obtained as follows: Starting from any representation the first step is to transform
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the representation to the CF-1 canonical form defined in [4]. An APH distribu-
tion is in CF-1 form if the generator matrix has a bi-diagonal structure and the
transition rates are non-decreasing towards the absorbing state. Transformation
to the CF-1 form is always possible because all APH distributions have a CF-1
representation [4]. The second step is to find the optimal ordering of the diagonal
(and the associated sub-diagonal) elements. It is shown in [3] that for APH in
bi-diagonal form the optimal representation is the reversed CF-1 form if it is
Markovian. For the case when the reversed CF-1 form is not Markovian, heuris-
tic search algorithms are proposed to find the optimal ordering of the diagonal
elements.

In this paper we generalize the results obtained for the APH class to the PH
class. We propose to follow a similar approach. In the first step we transform
the representation to a sparse Markovian representation. To the best of our
knowledge, the only representation with these properties which is available for
the whole PH class is the monocyclic representation proposed by Mocanu and
Commault [5]. The monocyclic representation is a natural extension of the CF-1
form, in the sense that the generator matrix remains bi-diagonal, but on the
matrix block level. Due to their structures these matrix blocks are referred to
as feedback Erlang (FE) blocks. The second step of the proposed procedure is
to find the optimal ordering of the FE matrix blocks (and the associated sub-
diagonal matrix blocks). We are going to show that in contrast to the APH
case the optimal ordering of the FE blocks cannot be predicted in a simple way
(e.g., by the associated dominant eigenvalue). As a result, finding the optimal
representation composed by FE blocks is based on the use of exhaustive or
heuristic search algorithms over the set of possible ordering of the FE blocks.

The method proposed in this paper is composed of two parts, preprocessing
and random variate generation. The computational complexity of the sum of
both steps should be optimized in general. There are obvious extreme solutions
for the cases when very few and extremely large numbers of random samples
are required. In the first case the preprocessing phase can be omitted and in
the second case arbitrarily large look-up tables can be computed during the pre-
processing phase. Our proposed solution is between these extremes. We assume
106 − 1010 samples, where the cost of the preprocessing phase of our method is
negligible in case of moderate size (< 15 states) PH distributions. The cost of
the preprocessing phase increases sub-linearly with the size.

The paper is structured as follows.We first describe the notation used through-
out the paper and briefly recall the results from [3] in Section 2. In Section 3 we
propose an algorithm for generating random variates from general PH distribu-
tions with monocyclic representation and discuss the associated computational
cost. Section 4 presents the transformation of reordering the FE blocks in the
monocyclic representation and discusses its properties. A counterexample is pre-
sented to show that the nice ordering rules of APH representations are not
applicable in case of general PH distributions. In Section 5 we provide heuristics
for efficient search of optimal representation, and Section 6 studies the efficiency
of the proposed procedures.
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(a) Bi-diagonal form for APH distribu-
tions.
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(b) FE-diagonal form for general PH dis-
tributions.

Fig. 1. Comparison of bi-diagonal and FE-diagonal forms for PH distributions

2 Notation and Previous Results

A PH distribution of size n is described by an initial probability vector α ∈ IRn

and a sub-generator matrix Q ∈ IRn×n with entries qij such that qii < 0 and
qij ≥ 0 for i �= j. In this case the cumulative distribution function (CDF) is

F (x) = 1−αeQx1l,

where 1l is the column vector of ones of appropriate size. The representation
(α,Q) is not unique.

Definition 1. If P is invertible and P1l = 1l, then the similarity transformation
(αP,P−1QP) provides another representation of the same distribution, since
its CDF is

1−αPeP
−1QPt1l = 1−αPP−1eQtP1l = 1−αeQt1l.

The representation (α,Q) is called Markovian if ∀i : αi ≥ 0 and α1l = 1 and
Qii < 0, Qij ≥ 0, i �= j. With a Markovian representation, we refer to α as the
initial probability vector and to Q as the sub-generator matrix.

The computational complexity of PH-distributed random-variate generation
depends on the representation [2]. Our goal is to find the representation with
the lowest computational complexity. The optimization of APH representations
is based on bi-diagonal representations of APH distributions in [3]. In these
representations, the only non-zero entries of the sub-generator matrix Q are
on the diagonal and on the upper diagonal, with qi,i+1 = −qii. Bi-diagonal
representations can be conveniently specified by the vector Λ = (λ1, . . . , λn),
where λi = −qii for i = 1, . . . , n. Figure 1(a) shows the CTMC of an APH
distribution with size n = 4 in bi-diagonal form. All APH distributions have at
least one bi-diagonal representation with Markovian initialisation vector [4]. The
bi-diagonal representation with non-decreasing Λ is referred to as CF-1 form.

Bi-diagonal Markovian representations are only available if all eigenvalues of
the sub-generator matrix Q (i.e. all poles of the Laplace-Stieltjes Transform
of the distribution) are real. As general PH distributions may have complex
poles, [5] proposed the use of Feedback-Erlang (FE) blocks to represent pairs of
complex eigenvalues:
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Definition 2. [5] A Feedback-Erlang (FE) block with parameters (b, q, z) is a
chain of b states with transition rate q and one transition from the bth state
to the first state, with rate zq. The probability z ∈ [0, 1) is called the feedback
probability.

The dominant eigenvalue of the FE block with parameters (b, q, z) is always real
and given by r = −q

(
1− z1/b

)
[5]. Feedback-Erlang blocks with length b = 1

or feedback probability z = 0 are called degenerate FE blocks. Note that an
FE block (b, q, z) with length b = 1 corresponds to an exponential distribution
with rate q, while z = 0 gives the Erlang-b distribution with rate q (the sum
of b independent exponentially distributed random variables with parameter q).
In both cases, the dominant eigenvalue is −q. Analogously to the approach for
the APH class, we consider representations with a diagonal structure of the
sub-generator:

Definition 3. An FE-diagonal representation consisting of m Feedback-Erlang
blocks (bi, qi, zi), i = 1, . . . ,m has a sub-generator matrix Q where the only non-
zero entries are in the FE blocks along the diagonal and the transition rates from
the last state of a Feedback-Erlang block to the first state of the next one. The
size of the representation is n =

∑m
i=1 bi.

Where appropriate, we also use the vector notation

Υ = {(b1, q1, z1), . . . , (bm, qm, zm)},

to describe the structure of the sub-generator matrix. Figure 1(b) shows an
example of the CTMC of a general PH distribution in FE-diagonal form. In this
representation there are two FE blocks, one of length b1 = 1 with rate q1 = λ1,
and one of length b2 = 3 with rate q2 = λ2 and feedback probability z2. The
following theorem, restated from [5], ensures that every PH distribution has at
least one Markovian FE-diagonal representation:

Theorem 1. [5] Every PH distribution has a monocyclic representation with
Markovian initial vector. A monocyclic representation is an FE-diagonal repre-
sentation

Υ = {(b1, q1, z1), . . . , (bm, qm, zm)}

such that the dominant eigenvalues of the FE blocks are ordered by increasing
absolute value, |ri| ≤ |rj |, for 1 ≤ i ≤ j ≤ m.

The monocyclic form can be computed using, e.g., the implementations available
in the Butools library [6]. Note that for APH distributions the feedback prob-
abilities are zero for all blocks, i.e. FE-diagonal forms for APH distributions
consist of degenerate FE blocks. For the APH class the FE diagonal form thus
corresponds to the bi-diagonal form defined in [3], and the monocyclic form is
equivalent to the CF-1 form. The next section discusses an algorithm for gener-
ating random variates from a general PH distribution in FE-diagonal form.
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3 Random-Variate Generation from FE-Diagonal
Representations

Given a PH distribution with representation (α,Q) in FE-diagonal form with
FE-block vector Υ = {(b1, q1, z1), . . . , (bm, qm, zm)}, random variates can be
generated by the following algorithm:

Procedure FE-diagonal:
Let x := 0
Draw an α-distributed discrete sample for the initial state.
The chain is in block i and has to traverse l states until the block may be left
(e.g., for the left-most state of the ith block, l = bi).
while i ≤ m do

c = Geo(zi)
x+ = Erl(cbi + l, qi)
i + +
l = bi

end while

Return(x)

This algorithm was proposed as Procedure Monocyclic in [2], but can of course
also be applied to FE-diagonal representations. The algorithm uses the

Geo(p) =

⌊
lnU

ln p

⌋
and Erl(b, q) = −1

q
ln

(
b∏

i=1

Ui

)
(1)

operations for drawing a random variate from the Geometric distribution with
parameter p and support 0, 1, . . . , or the Erlang-b with rate q, respectively. In
both cases, U denotes a uniformly distributed pseudo random number on (0, 1).

The algorithm works as follows: An initial state is chosen according to the
initial probability vector α. We assume that this state belongs to FE block i,
and there are 1 ≤ l ≤ bi states to traverse before the chain may enter the next
block. Since all rates in the given FE block are equal (qi), this corresponds to an
Erlang-l distribution with rate qi. When the last state of the block is reached, one
may either enter the next block or follow the feedback-loop to the first state of
the current block. The number of loops c = 0, 1, . . . within the ith block follows
a geometric distribution with parameter zi. The random variate corresponding
to the loop is Erlang-c-distributed, again with rate qi. Consequently, for the
block entered upon initialisation the algorithm draws a random variate from
an Erlang-(cbi + l) distribution. All the remaining blocks until absorption are
entered at the first state, and thus the respective random variates for the jth
block (j = i+1, . . . ,m) are distributed according to (e1,Fj) distributions, where
e1 is the row vector with 1 at position 1 and zero everywhere else and Fj is the
sub-generator corresponding to the jth FE block. Following the argument for the
initial step, random variates from these distributions are generated from Erlang-
(cjbj + lj) distributions, where cj is the number of loops and lj = bj (since each
block is entered at the beginning and has to be traversed at least once).
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In a preliminary measurement study we observed that the computational cost
of computing logarithms dominates the cost of generating PH-distributed random
variates. Further Performance Measures Have Been Considered In [2]. Although
the exact cost ratio depends on hardware and software specifics, optimisation for
the number of logarithm operations appears to be an effective approach. The num-
ber of logarithm operations depends on the distribution of the initial probability
mass over the Feedback-Erlang blocks and is independent of both the distribu-
tion within the blocks and the length of the blocks. Computation of the expected
number of logarithms is straightforward:

n∗(α,Υ ) = 3βνT,

where β =
(∑b1

i=1 αi,
∑b1+b2

i=b1+1 αi, . . . ,
∑n

i=n−bm+1 αi

)
is the vector of initial

probabilities for each FE block, and the entries of ν = (m,m − 1, . . . , 1) give
the number of blocks to traverse when entering the ith FE block. The result is
multiplied by 3, because 3 logarithm operations are required for the computation
of the geometric and Erlang samples.

Usually, the FE-diagonal algorithm is more efficient than the algorithms that
simply ‘play’ the CTMC by selecting a sequence of states, due to the special
block bi-diagonal structure of the representation. When a general representation
is allowed, random selection of the next state is required in each step. This is
eliminated in the FE-diagonal algorithm, since the next FE block is uniquely de-
termined by the chain structure of the representation. Therefore, we consider the
optimisation of representations in FE-diagonal form, and we present numerical
results about the computational gain of the FE-diagonal algorithm in Section 6.

4 Optimisation for FE-Diagonal Representations of the
PH Class

The optimal representation of an APH for random-variate generation is the re-
versed CF-1 form (non-increasing Λ), if the reversed CF-1 is Markovian [3]. This
result was obtained by an analysis of the properties of the Swap operator, which
exchanges two adjacent entries of the vector Λ. The monocyclic representation
of the PH class is the generalization of the CF-1 form used for the APH class.
The obvious similarity between both forms raises the question whether the result
obtained for the APH class can be generalized to the PH class in FE diagonal
representation. To answer this question we introduce the similarity transforma-
tion matrix P that swaps two adjacent FE blocks and produces the new initial
probability vector α′ = αP.

Definition 4. The GSwap(α,A, i) operator exchanges the ith FE block with the
(i+1)th FE block (1 ≤ i ≤ m−1) on the diagonal in a block-bi-diagonal represen-
tation by swapping the ith and (i+1)th entry in the vector Υ (or, equivalently, by
swapping the block matrices associated with the FE blocks in the sub-generator).
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The associated similarity transformation matrix P has the form

P =

⎛⎝Iν×ν 0 0

0 P̂ 0
0 0 Iμ×μ

⎞⎠ , where ν =

i−1∑
k=1

bk, μ =

m∑
k=i+2

bk.

ν and μ are the number of states in front of and behind the two blocks, respec-
tively, and P̂ ∈ IR(bi+bi+1)×(bi+bi+1) is the solution of(

Fi −Fi1le1
0 Fi+1

)
P̂ = P̂

(
Fi+1 −Fi+11le1
0 Fi

)
(2)

P̂1l = 1l. (3)

P̂ is the similarity transformation matrix that swaps the order of the ith and
(i+1)th FE blocks. Due to the block upper-triangular structure of the coefficient
matrices in (2), P̂ is a block lower-triangular matrix. We use the GSwap(α,Υ , i)
notation to denote the swap operation of the ith and (i+ 1)th FE blocks.

We summarise the properties of the GSwap operator in the following remarks.
While the GSwap operator is a generalization of the Swap operator, the fact that
the Monocyclic form is block-bi-diagonal with block matrices potentially having
size larger than 1 results in one important difference, described in Remark 2.

Remark 1. The structure of P, which describes the GSwap operator (i.e. Q′ =
P−1QP), ensures that GSwap has only local effects on the initial probability
vector, i.e. it only affects the entries of the initial probability vector that belong
to the two FE blocks being swapped. We denote the vector of these probabilities
by α̂.

Remark 2. Given two Feedback-Erlang blocks (bi, qi, zi) and (bi+1, qi+1, zi+1)
with corresponding sub-generator matrix

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

−qi qi
. . .

. . .

ziqi −qi (1−zi)qi
−qi+1 qi+1

. . .
. . .

zi+1qi+1 −qi+1 (1−zi+1)qi+1

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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application of the GSwap operator exchanges the entire block matrices corre-
sponding to the FE blocks resulting in

Q′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

−qi+1 qi+1

. . .
. . .

zi+1qi+1 −qi+1 (1−zi+1)qi+1

−qi qi
. . .

. . .

ziqi −qi (1−zi)qi
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This means that the GSwap operator maintains the proper exit rates from the
FE blocks.

Remark 3. The Steinhaus-Johnson-Trotter theorem [7] ensures that all permuta-
tions of FE blocks can be obtained by repeated application of the GSwap operator.

According to Lemma 1 of [3], for APH distributions in bi-diagonal form any swap
of transition rates that moves a phase with a higher rate away from the absorbing
state and maintains a Markovian initialisation vector results in a more efficient
representation for simulation. This means that for APH distributions the direc-
tion of search for the optimal representation is known solely from the properties
of the sub-generator matrix and it is independent of the initial probability vector.
Unfortunately, the corresponding statement does not hold for PH distributions
in FE-diagonal form, as we demonstrate with the following counterexample:

Example 1. Let Q denote the Monocyclic sub-generator matrix defined by Υ =
((1, 0.1, 0), (b1, q1, z1), (b2, q2, z2)), where

b1 = 3, q1 = 1.5, z1 = 0.5 and b2 = 3, q2 = 1, z2 = 0.

Exchanging the second and third block results in Υ ′ = ((1, 0.1, 0), (b2, q2, z2),
(b1, q1, z1)) and the associated sub-generator matrix Q′. Let

P =

(
1

P̂

)
such that Q′ = P−1QP (4)

denote the similarity transformation that describes the GSwap operation for this
case, i.e. P̂ is the solution of Equations 2 and 3:

P̂ =

⎛⎜⎜⎜⎜⎜⎜⎝
1

0.3333 0.6667
0.1111 0.4444 0.4444

−0.925926 0.4444 0.8889 0.592593
0 −0.925926 0.4444 0.592593 0.8889
0 0 −0.925926 0.148148 0.4444 1.3333

⎞⎟⎟⎟⎟⎟⎟⎠ (5)
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Now consider the two initial vectors

α1 = (0.09 | 0.1, 0.3, 0.31 | 0.1, 0.1, 0),

and
α2 = (0.09 | 0.1, 0.3, 0.31 | 0.2, 0, 0)

whose only difference is the distribution of the probability mass assigned to
the third FE block. The costs for random-variate generation from (α1,Q) and
(α2,Q), are

n∗(α1,Q) = n∗(α2,Q) = 3 · (0.09 · 3 + 0.71 · 2 + 0.2) = 5.67.

After swapping the two blocks using P the resulting initial probability vectors
are

α′
1 = α1P = (0.09 | 0.141852, 0.28963, 0.271111 | 0.118519, 0.0888889, 0)

and

α′
2 = α2P = (0.09 | 0.0492593, 0.426667, 0.315556 | 0.118519, 0, 0)

respectively. Note that in α′
1 the initial probability mass assigned to the third FE

block increased from 0.2 to 0.207407, while in α′
2 the probability mass decreased

from 0.2 to 0.118519. The costs of random-variate generation changed as follows:

n∗(α′
1,Q

′) = 3 · 1.8825939 = 5.6477817,

n∗(α′
2,Q

′) = 3 · 1.9714836 = 5.9144508.

That is, with α1 swapping the blocks resulted in a cost decrease, while with α2

costs increased.

The example illustrates that with true FE-diagonal representations (i.e. those
with non-degenerate FE blocks) the effect of swapping two consecutive FE blocks
may depend not only on the properties of the sub-generator of the distribution,
but also on the distribution in the initial probability vector. Consequently, the
procedures proposed for finding the optimal representation of APH distributions
in [3] cannot be used for the PH class.

5 Algorithms for Monocyclic Optimisation

Example 1 shows that the reversed Monocyclic form of a true PH distribution
is not guaranteed to be optimal, even if the initialisation vector is Markovian.
Hence the efficient optimisation methods developed for the APH class cannot
be applied to the PH class, since, first, there is no general optimum that only
needs to be checked for non-negativity of the initialisation vector, and, second,
the direction in which to search for the optimum cannot be derived from the
sub-generator alone. On the other hand, Example 1 is not just bad news, since
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Algorithm GBubbleSortOptimise(α, Υ ):

for i = 1, . . . , m− 1 do
for j = 1, . . . , m− 1 do

(α′, Υ ′) :=GSwap(α, Υ , i)

if ComparisonHeuristic(α, Υ , j) = true ∧ α′ ≥ 0 then
(α, Υ ) := (α′, Υ ′)

else
break

end if
end for

end for
return (α, Υ )

Fig. 2. GBubbleSortOptimise attempts to re-order phases such that the global ordering
imposed by ComparisonHeuristic is generated

it also shows that a cost reduction by swapping adjacent FE blocks is indeed
possible.

The optimum for the FE-diagonal representation of a PH distribution can be
found by an optimisation of the costs over the set of all permutations of the FE
blocks. This exhaustive approach is guaranteed to find the optimum with respect
to all permutations, but involves generating and checking m! representations.
The approach may be feasible if neither the number of FE blocks m nor the
block lengths are too large, but running-times become prohibitive for large m or
large FE blocks. Large m require a large number of permutations to be checked,
while large FE blocks imply large P̂, and thus higher costs for solving (2) and (3).

Therefore, we propose extensions of the algorithms for efficient APH optimisa-
tion. We need to replace the strict ordering criterion available for the bi-diagonal
form of APH distributions with efficient heuristics. The general approach of the
algorithms GBubbleSortOptimise in Figure 2 and GFindMarkovian in Figure 3
are identical to those for APH optimization. In both algorithms, the compar-
ison of two adjacent rates has been replaced by a call to the generic routine
ComparisonHeuristic, which returns true or false, depending on whether the
two Feedback-Erlang blocks given as its arguments are in the order imposed by
the heuristic. The GBubbleSortOptimise algorithm is guaranteed to always find
a Markovian representation, since it does not leave the region of orderings with
Markovian initialisation vectors. The GFindMarkovian algorithm, on the other
hand, may terminate without finding a Markovian representation. It is guar-
anteed to terminate with a Markovian representation only with the eigenvalue
heuristic discussed below.

In the following we discuss four heuristics that can be used as Comparison-
Heuristic in either algorithm. The heuristics presented here have been derived
based on the following argument: In Lemma 1 of [3] we showed that the optimal
ordering for the APH case is obtained if the ordering of the elements of the
diagonal of the CF-1 form is reversed (provided that this ordering is Markovian).
Due to the simplicity of the CF-1 form, this re-ordering can be seen equivalently
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Algorithm GFindMarkovian(α, Υ ):

Let (α′, Υ ′) be the reversed Monocyclic form of (α, Υ ′)
r:=0
while ¬(α′ ≥ 0) do

i := max {2, argmini {α
′

i < 0}}
while ¬(α′ ≥ 0) ∧ ∃k : ComparisonHeuristic(Υ [k], Υ [k + 1]) = false do

k := argminj {j | i− 1 ≤ j ≤ m− 1 ∧ Υ [j] ≥ Υ [j + 1]}
(α′, Υ ′) := GSwap(α′, Υ ′, k)
if (α′, Υ ′) is a new representation then

r + +
end if
if r = m! then

goto END
end if

end while
end while
END:
return (α′, Υ ′)

Fig. 3. GFindMarkovian starts from the possibly non-Markovian reversed Monocyclic
form and searches for a Markovian representation by re-ordering phases such that the
reversed ordering imposed by ComparisonHeuristic is produced

as a re-ordering of the dominant eigenvalues, of the means, and of the exit rates.
Furthermore, property (3) in [3] corresponds to the determinant of the swap
matrix being larger than 1. These four criteria differ from each other if true
Feedback-Erlang blocks are compared.

Eigenvalues Heuristic. The eigenvalues heuristic relates to the CF-1 case
most directly. Recall that the monocyclic representation is defined such that the
Feedback Erlang blocks are ordered along the diagonal according to increasing
absolute value of their dominant eigenvalues. The eigenvalues heuristic directly
applies the observation from the CF-1 case that swapping two blocks may move
probability mass to the right iff the eigenvalue of the right phase is larger than
that of the left phase. Equivalently, in the monocyclic case probability mass may
be moved to the right if the dominant eigenvalue of the right FE block is larger
than that of the left FE block. We define the Eigenvalues heuristic as follows:

EigenvaluesHeuristic(α,Υ , i) =

{
true |ri| < |ri+1| ,
false else,

that is, the heuristic returns true if the absolute value of the dominant eigenvalue
of the ith block is larger than that of the (i + 1)th block.

Mean Heuristic. The mean heuristic stems from the following observation for
the CF-1 case: Re-ordering phases directly relates to re-ordering the means of
the associated distributions. I.e., swapping two phases such that the one with
higher rate is moved to the left is equivalent to swapping them such that the
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one with the lower mean moves to the left. This idea can be applied to the
monocyclic case as follows. First, we have to assign a mean to each FE block.
While this is unambiguous in the CF-1 case (where FE blocks are of length
1), in the monocyclic case probability mass may be assigned to all phases of a
block, rendering the mean dependent on the distribution of the mass. The most
straightforward approach is then to assign probability mass of 1 to the first entry
of the block. The mean of a Feedback-Erlang block (bi, qi, zi) with sub-generator
matrix Fi and probability mass 1 at the first entry is M̂i = e1(−Fi)

−11l. The
mean heuristic is then defined as

MeanHeuristic(α,Υ , i) =

{
true M̂i > M̂i+1,

false else.

Exit-Rates Heuristic. The exit-rates heuristic compares the exit rates (1 −
zi)qi, (1− zi+1)qi+1 of neighbouring FE blocks. Based on the result for the CF-1
case, optimisation then consists in re-ordering blocks such that the highest exit
rates (i.e. largest rates qi in the CF-1 case) move to the left. The heuristic is
defined as follows:

ExitRatesHeuristic(α,Υ , i) :=

{
true (1− zi)qi < (1− zi+1)qi+1,

false else.

Determinant Heuristic. For the APH case, the similarity transformation ma-
trix P̂ has the following explicit structure [3]:

P̂ =

(
1 0

qi−qi+1

qi

qi+1

qi
,

)
(6)

with determinant |P̂| = qi+1/qi. In this case, swapping two adjacent rates moves
probability mass to the right iff qi+1 > qi, or, equivalently, if |P̂| > 1. The
determinant heuristic, defined as

DeterminantHeuristic(α,Υ , i) :=

{
true |P̂| > 1,

false else.

generalizes this criterion to the general case.

5.1 Discussion

While these heuristics are exact for degenerate FE blocks, they may be mis-
leading with non-degenerate FE blocks, as can be illustrated using Example 1.
Table 1 shows the relevant properties considered by the eigenvalues, mean, and
exit rates heuristics. The determinant of the swap matrix P̂ is |P̂| = 0.208. Ob-
serve that the eigenvalues, mean, and exit rates heuristics would recommend to
swap the two blocks. As we saw in the counterexample, this is correct for α1,
but incorrect for α2. Likewise, the prediction by the determinant heuristic that
swapping would not move probability mass to the right is wrong for α1, but
correct for α2.
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Table 1. Properties of the FE blocks in Example 1

F1 F2

Dominant eigenvalue r2 = −0.3095 r1 = −1

Mean with mass 1 at first state M̂2 = 4 M̂1 = 3
Mean with normalised mass (α1) M2 = 4 M1 = 1.7042
Mean with normalised mass (α2) M2 = 2.5 M1 = 1.7042
Exit rate 0.75 1

6 Application of the Algorithms

We have implemented the proposed representation optimization methods in
Mathematica. To test their efficiency we also implemented a random general PH
representation generator. For a given size n, we first draw uniformly distributed
samples for the initial distribution, which are normalized later. We then draw
uniformly distributed samples for the off-diagonal elements of the generator ma-
trix and for the transition rates to the absorbing state of the PH distribution.
The mean ratio of the off-diagonal elements of the generator matrix and the
transition rates to the absorbing state has a significant effect on the cost of
random-variate generation. This ratio is referred to as termination rate below.

Having a random general PH representation we first compute the monocyclic
representation of the same distribution and then we optimize the representation
using the introduced heuristic approaches and an exhaustive search method by
interchanging the FE block of the representation. The exhaustive search method
evaluates all permutations of the FE blocks. The computational complexity of
the exhaustive search method becomes significant at n > 6. The heuristic search
algorithms perform a negligible number of GSwap operations compared to the
exhaustive search method and find suboptimal representations in the majority
of the cases. Table 2 shows the cost of generating PH-distributed random variates
based on the obtained representations. When the termination rate is equal to 1
and n = 6 there is a gain of ∼60% due to the transformation to the monocyclic
representation. A further ∼40% gain comes from heuristic optimisation of the FE
blocks. The results of the exhaustive search method indicates that the suboptimal
representation of the eigenvalue, the mean and the exit rate heuristics are very
close to the global optimum obtained by the exhaustive search method.

The rows of Table 2 demonstrate the effect of the termination rate. The higher
the transition rate to the absorbing state, the lower the number of state tran-
sitions before absorption. In case of fast transitions to the absorbing state the
simple simulation which ‘plays’ the transitions of the Markov chain until absorp-
tion is an efficient simulation method due to the low number of state transitions.
In this case the transformation to the monocyclic representation and the ad-
ditional optimization cannot reduce the cost of random-variate generation. For
both order 6 (Table 2) and order 10 (Table 3) the turning point is around ter-
mination rate ∼ 10: For higher termination rate the direct simulation is more
efficient, and vice versa for lower termination rate.
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Table 2. Average simulation costs (number of logarithms) for order 6 PH distribution
based on 100 samples

termination random mono eigenvalue mean exitrate determinant exhaustive
rate PH cyclic heuristic search

0.033 332.008 5.07253 3.06384 3.06234 3.12738 5.07174 3.02422
0.1 102.696 5.03166 3.02877 3.05235 3.11337 5.02784 3.01783
0.33 33.308 4.98996 3.08534 3.09713 3.15197 4.98222 3.01082
1 11.6818 4.24592 2.6476 2.61502 2.77029 4.2132 2.53818
3.3 4.53882 3.38355 2.23615 2.18118 2.25545 3.37198 2.11419
10 2.2624 2.7238 1.9441 1.92582 1.9441 2.72091 1.85605
33 1.50076 2.39407 1.91512 1.91488 1.91512 2.39407 1.83054

Table 3. Average simulation costs (number of logarithms) for order 10 PH distribution
based on 100 samples

termination random mono eigenvalue mean exitrate determinant
rate PH cyclic heuristic

0.033 561.077 8.64065 8.62078 8.62078 8.62078 8.64065
0.1 186.376 8.18222 8.17221 8.17221 8.17221 8.18222
0.33 58.8492 7.97052 7.9417 7.94135 7.94203 7.97014
1 19.4483 6.52973 6.47238 6.47238 6.47238 6.52973
3.3 7.07673 5.45818 5.38195 5.38257 5.38397 5.45661
10 3.15833 4.98105 4.96477 4.96336 4.96477 4.98105
33 1.77828 3.06237 3.05572 3.05572 3.05572 3.06237

It is interesting to see how the proposed transformation reduces the dynamics
of the cost. In the evaluated range of termination rates between 0.033 and 33,
the cost of random-variate generation with direct simulation varies from 1.5 to
332, while the cost of random-variate generation with optimized representation
varies from 1.8 to 3, and a bit larger dynamics reduction appears in Table 3.

Comparing the performance of heuristic optimization methods we obtain that
the eigenvalue and mean heuristics perform better than the exit-rate and deter-
minant heuristics. Based on the average performance in Tables 2 and 3, the order
of the heuristics is eigenvalue, mean, exit rate and determinant, and there are
only a few cases where the mean heuristic performs better than the eigenvalue
heuristic. The results of this section are computed by the GBubbleSortOptimise
procedure, which always terminates with Markovian initial vector.

7 Conclusion

In this paper we considered the optimization of phase-type distributions for
random-variate generation. We propose to use the FE-diagonal representations.
We studied optimization of the costs involved with random-variate generation
and showed by a counterexample that the nice ordering property of the APH
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class does not generalize to the PH class with FE-diagonal form. We developed
different heuristic algorithms for optimisation of the PH representation and stud-
ied the quality of the heuristics compared to the exhaustive search. The structure
of the original PH representation affects the gain of representation optimisation.
In a wide range of cases (termination rate < 10) the proposed procedure reduces
the cost of random-variate generation. Additionally, the proposed procedure sig-
nificantly reduces the dependence of the cost on the structure of the original PH
representation.
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Abstract. Computing prediction intervals is an important part of the forecasting 
process intended to indicate the likely uncertainty in point forecasts. Prediction 
intervals for future order statistics are widely used for reliability problems and 
other related problems. In this paper, we present an accurate procedure, called 
‘within-sample prediction of order statistics’, to obtain prediction limits for the 
number of failures that will be observed in a future inspection of a sample of 
units, based only on the results of the first in-service inspection of the same 
sample. The failure-time of such units is modeled with a two-parameter Weibull 
distribution indexed by scale and shape parameters β and δ, respectively. It will 
be noted that in the literature only the case is considered when the scale 
parameter β  is unknown, but the shape parameter δ  is known. As a rule, in 
practice the Weibull shape parameter δ . is not known. Instead it is estimated 
subjectively or from relevant data. Thus its value is uncertain. This δ 
uncertainty may contribute greater uncertainty to the construction of prediction 
limits for a future number of failures. In this paper, we consider the case when 
both parameters β and δ are unknown. In literature, for this situation, usually a 
Bayesian approach is used. Bayesian methods are not considered here. We note, 
however, that although subjective Bayesian prediction has a clear personal 
probability interpretation, it is not generally clear how this should be applied to 
non-personal prediction or decisions. Objective Bayesian methods, on the other 
hand, do not have clear probability interpretations in finite samples.  The 
technique proposed here for constructing prediction limits emphasizes pivotal 
quantities relevant for obtaining ancillary statistics and represents a special case 
of the method of invariant embedding of sample statistics into a performance 
index applicable whenever the statistical problem is invariant under a group of 
transformations, which acts transitively on the parameter space. This technique 
represents a simple and computationally attractive statistical method based on 
the constructive use of the invariance principle in mathematical statistics. 
Frequentist probability interpretation of the technique considered here is clear. 
Application to other distributions could follow directly. An example is given. 

Keywords: Number of failures, Weibull distribution, prediction limits. 
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1 Introduction 

Prediction of an unobserved random variable is a fundamental problem in statistics. 
Hahn and Nelson [1], Patel [2], and Hahn and Meeker [3] provided surveys of 
methods for statistical prediction for a variety of situations on this topic. In the areas 
of reliability and life-testing, this problem translates to obtaining prediction intervals 
for lifetime distributions. One of the earlier works on prediction for the Weibull 
distribution is by Mann and Saunders [4]. They considered prediction intervals for the 
smallest of a set of future observations, based on a small (two or three) preliminary 
sample of past observations. An expression for the warranty period (time before the 
failure of the first ordered observation from a set of future observations or a lot) was 
derived as a function of the ordered past observations. Mann [3] extended the results 
for lot sizes n = 10 (5) 25 and sample sizes m = 2 (1) n −3 for a specified assurance 
level of 0.95. This method requires numerical integration. In addition, the tables 
provided are limited to sample sizes less than 25 and are given only for the assurance 
level of 0.95. Antle and Rademaker [5] provided a method of obtaining a prediction 
bound for the largest observation from a future sample of the Type I extreme value 
distribution, based on the maximum likelihood estimates of the parameters. They used 
Monte Carlo simulations to obtain the prediction intervals. Using the well-known 
relationship between the Weibull distribution and the Type I extreme value 
distribution one can use their method to construct an upper prediction limit for the 
largest among a set of future Weibull observations. However this method is valid only 
for complete samples and limited to constructing an upper prediction limit for the 
largest among a set of future observations. Lawless [6] proposed a method for 
constructing prediction intervals for the smallest ordered observation among a set of k 
future observations based on a Type II censored sample of past observations. These 
results are based on the conditional distribution of the maximum likelihood estimates 
given a set of ancillary statistics. This procedure is exact, but it requires numerical 
integration, for each new sample obtained, to determine the prediction bounds. Mee 
and Kushary [7] provided a simulation based procedure for constructing prediction 
intervals for Weibull populations for Type II censored case. This procedure is based 
on maximum likelihood estimation and requires an iterative process to determine the 
percentile points. Meeker and Escobar [8] developed a method to determine the 
prediction limits (upper and lower) for the future number of fails (Y) in the time 
interval [tc, tw]. Such procedure is based upon the conditional binomial distribution of 
Y given that X components have failed in the time interval [0, tc]. Rostum [9] 
developed statistical models to predict the state of the pipelines in a network of water 
distribution. Nelson [10] provided simple prediction limits for the number of failures 
that will be observed in a future inspection of a sample of units. The past data consist 
of the cumulative number of failures in a previous inspection of the same sample of 
units. Life of such units is modeled with a Weibull distribution with a given shape 
parameter value. Nelson's prediction limits were motivated by the following 
application. Nuclear power plants contain large heat exchangers that transfer energy 
from the reactor to steam turbines. Such exchangers typically have 10,000 to 20,000 
stainless steel tubes that conduct the flow of steam. Due to stress and corrosion, the 
tubes develop cracks over time. Cracks are detected during planned inspections. The 
cracked tubes are subsequently plugged to remove them from service. To develop 
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efficient inspection and plugging strategies, plant management can use a prediction of 
the added number of tubes that will need plugging by a specified future time. A 
prediction expressed as an interval indicates the magnitude of the possible prediction 
error and quantifies the confidence in the prediction. Nelson [10] has established three 
procedures for the prediction intervals of the number of tubes to fail in components of 
heat exchangers, namely (I) the procedure of ratio of probabilities, (II) the procedure 
of ratio of probabilities simplified and (III) the likelihood ratio procedure. Nordman 
and Meeker [11] compared probability ratio, simplified probability ratio and 
likelihood ratio methods proposed by Nelson [10], assuming known the Weibull 
shape parameter δ. Nechval et al. [12] described a technique for using censored life 
data from extreme value distributions to construct prediction limits or intervals for 
future outcomes. Cox [13] presented a general approximate analytical approach to 
prediction based on the asymptotic distribution of maximum likelihood estimators. 
Atwood [14] used a similar approach. Efron and Tibshirani [15] described an 
approximate simulation/pivotal based approach. Beran [16] gave theoretical results on 
the properties of prediction statements computed with simulated (bootstrap) samples. 
Kalbfleisch [17] described a likelihood-based method, Thatcher [18] described the 
relationship between Bayesian and frequentist prediction for the binomial distribution, 
and Geisser [19] presented a more general overview of the Bayesian approach.  

In this paper, we use a frequentist procedure, which is called ‘within-sample 
prediction of future order statistics’, when the time-to-failure follows the two-
parameter Weibull distribution indexed by scale and shape parameters β  and δ. We 
consider the case when both parameters β and δ are unknown. The technique 
proposed here for constructing prediction limits emphasizes pivotal quantities relevant 
for obtaining ancillary statistics and represent a special case of the method of 
invariant embedding of sample statistics into a performance index applicable 
whenever the statistical problem is invariant under a group of transformations, which 
acts transitively on the parameter space [12, 20−28]. 

Conceptually, it is useful to distinguish between “new-sample” prediction, “within-
sample” prediction, and “new-within-sample” prediction. Some mathematical 
preliminaries for the within-sample prediction are given below. 

2 Mathematical Preliminaries for Within-Sample Prediction  

2.1 Prediction Limits for Future Order Statistics 

For within-sample prediction, the problem is to predict future events in a sample or 
process based on early data from that sample or process. For example, if m units are 
followed until tk and there are k observed failures, t1, …, tk, one could be interested in 
predicting the time of the next failure tk+1; time until r additional failures, tk+r; number 
of additional failures in a future interval. 

Theorem 1 (Lower (upper) one-sided prediction limit h on the lth order statistic Yl  
in a sample of m observations from the two-parameter Weibull distribution on the 
basis of the early-failure data Y1 ≤ ... ≤ Yk from the same sample). Let Y1 ≤ ... ≤ Yk be 
the  first  k  ordered  early-failure observations from a sample of size m from  the two- 
parameter Weibull distribution 
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where δ>0 and β>0 are the shape and scale parameters, respectively. Then a lower 
one-sided conditional (1−α) prediction limit h on the lth order statistic Yl (l > k) in the 
same sample is given by 
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where β


 and δ


are the maximum likelihood estimates of β and δ  based on the first k 

ordered past observations Y1 ≤ ... ≤ Yk from a sample of size m from the two-
parameter Weibull distribution (1), which can be found from solution of  
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(Observe that an upper one-sided conditional α prediction limit h on the lth order 
statistic Yl based on the first k ordered early-failure observations Y1 ≤ ... ≤ Yk, where  
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l > k, from the same sample may be obtained from a lower one-sided conditional 
(1−α) prediction limit by replacing 1−α by α (α <0.5)) 

Proof. The joint density of Y1 ≤ ... ≤ Yk and Yl is given by 
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Let β


, δ


 be the maximum likelihood estimates of β, δ, respectively,  based on Y1 ≤ 

... ≤ Yk  from a complete sample of size  m, and let 
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is the normalizing constant. Using (11), we have that 
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and the proof is complete.                                                                                                 

Theorem 2. (Proof that ,)/(1
δββ


=V )/(2 δδ


=V  and δββ


)/(3 =V ) are pivotal 

quantities). Let β


and δ


be the maximum likelihood estimates (MLEs) that are based 

on a complete random sample (Y1, …, Ym) of m observations from the Weibull(β,δ) 
distribution. Then the unconditional distributions of V1, V2 and V3 do not depend on β 
and δ, and these are the pivotal quantities. 

Proof. Let Y follow the two-parameter Weibull distribution with scale parameter β 
and shape parameter δ. The probability distribution function of Y is given by  
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Let (Y1, …, Ym) be a complete random sample of observations from the Weibull(β,δ) 

distribution. For the complete case, the MLE δ
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Let Ui, i=1, …, n, be a set of independent random variables distributed uniformly over 
the interval (0,1). Using the inverse transformation method on (14), the variable Yi 
may be expressed in terms of Ui as 
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is independent on the Weibull parameters. Multiplying (15) through by δ
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Substituting (17) into (19) gives 
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Equation (20) shows that for a given set of random numbers, there is a solution in 

terms of v2. The value of )/(2 δδ


=V  will thus vary from sample to sample in a way 

that depends only on sample size, and thus, we may assert that )/(2 δδ


=V  is a 

pivotal quantity. Substituting (17) into (16) gives 
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Thus, it follows from (20) and (21) that V1, V2 and V3 are pivotal quantities. This ends 
the proof.                                                                                                                         

It will be noted that these results are also valid for type II singly censored sample, but 
they are not valid if the samples are type I censored. 

Theorem 3. (Lower (upper) one-sided prediction limit h on the lth order statistic Yl in 
a sample of m observations from the two-parameter Weibull distribution, with δ=1, on 
the basis of the past kth order statistic Yk (k < l ≤ m) from the same sample via the 
ancillary statistic Yl/Yk). Let Yk be the kth order statistic in a sample of size m from the 
two-parameter Weibull distribution (1). Then a lower one-sided conditional (1−α) 
prediction limit h on the lth order statistic Yl (l > k) in the same sample is given by 

,khYwh =  (22) 

where wh satisfies the equation 
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Proof. The joint density of Yk, Yl (k < l) is given by  
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Using the invariant embedding technique [12, 20−28], we then find in a 
straightforward manner, that the joint density of W, Yk is 
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This ends the proof.                                                                                                        

Theorem 4. (Lower (upper) one-sided prediction limit h on the lth order statistic Yl in 
a sample of m observations from the two-parameter Weibull distribution, with δ=1, on 
the basis of the early-failure data Y1 ≤ ... ≤ Yk from the same sample). Let Y1 ≤ ... ≤ Yk 
be the first k ordered early-failure observations from a sample of size m from the two-
parameter Weibull distribution (1). Then a lower one-sided conditional (1−α) 
prediction limit h on the lth order statistic Yl (l > k) in the same sample is given by 
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β


 is the maximum likelihood estimates of β  based on the first k ordered past 

observations Y1 ≤ ... ≤ Yk from a sample of size m from the two-parameter Weibull 
distribution (1), which can be found from solution of  
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Proof. The joint density of Y1 ≤ ... ≤ Yk and Yl is given by   

)|, ..., ,( 1 βlk yyyf

1

1

expexpexp
1

)!()!1(

!
−−

=
















−−








−








−

−−−
= ∏

kl

lk
k

i

i yyy

lmkl

m

ββββ
 

 

× 







−

ββ
ly

exp
1









−−

β
ly

lm )(exp . (35) 

Let β


 be the maximum likelihood estimate of β, based on Y1 ≤ ... ≤ Yk  from a 

complete sample of size  m, and let 
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and the proof is complete.                                                                                               
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Theorem 5. (Lower (upper) one-sided prediction limit h on the lth order statistic Yl in 
a sample of m observations from the two-parameter Weibull distribution, with δ=1, on 
the basis of the past kth order statistic Yk (k < l ≤ m) from the same sample via the 
ancillary statistic (Yl −Yk)/Yk). Let Yk be the kth order statistic in a sample of size m 
from the two-parameter Weibull distribution (1). Then a lower one-sided conditional 
(1−α) prediction limit h on the lth order statistic Yl (l > k) in the same sample is given 
by 
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where hv  satisfies the equation 
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Proof. The joint density of Yk, Yl (k < l) is given by  
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Using the invariant embedding technique [12, 20−28], we then find in a 
straightforward manner, that the joint density of V, Yk is  
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This ends the proof.                                                                                                        

2.2 Prediction Limits for Future Number of Failures 

Consider the situation in which m units start service at time 0 and are observed until a 
time tc when the available Weibull failure data are to be analyzed. Failure times are 
recorded for the k units that fail in the interval [0, tc]. Then the data consist of the k 
smallest-order statistics Y1 < . . . < Yk ≤ tc and the information that the other m−k units 
will have failed after tc. With time (or Type I) censored data, tc is prescribed and k is 
random. With failure (or Type II) censored data, k is prescribed and tc = Yk is random.  

The problem of interest is to use the information obtained up to tc to construct the 
Weibull within-sample prediction limits (lower and upper) for the number of units 
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that will fail in the time interval [tc, tw]. For example, this tw could be the end of a 
warranty period. 

Consider the situation when tc = Yk. Under conditions of Theorem 1, the lower 
prediction limit for the number of units that will fail in the time interval [tc, tw] is 
given by  
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The upper prediction limit for the number of units that will fail in the time interval [tc, 
tw] is given by 

 ,1minupper −−= klL  (53) 

where 

( )α−≥>=
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1}|Pr{argmin )(
min

k
wl

mlk
tYl z .    (54) 

3 Numerical Example  

Consider the special case where m = 40 items simultaneously tested have life times 
following the Weibull distribution. Two items fail at times, 45 and 100 hours. 
Consider the situation when tc = Yk = 100 hours, where k=2. Suppose, say, tw= 450 
hours. Under conditions of Theorem 5, the lower prediction limit for the number of 
units that will fail in the time interval [tc, tw] is given by  
 

  ,123maxlower =−=−= klL       (55) 

where 
( ) ,3}Pr{argmaxmax =≤>=

≤<
αwl

mlk
tYl    α=0.05,          (56) 
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The upper prediction limit for the number of units that will fail in the time interval [tc, 
tw] is given by 

 ,1412171minupper =−−=−−= klL  (59) 

where 
 ( ) .171}Pr{argminmin =−≥>=

≤<
αwl

mlk
tYl     (60) 

4 Conclusion and Future Work 

The aim of the present paper is to construct lower (upper) prediction limits under 
parametric uncertainty that are exceeded with probability 1−α (α) by future 
observations or functions of observations. The prediction limits depend on early-
failure data of the same sample from the two-parameter Weibull distribution, the 
shape and scale parameters of which are not known.  

The methodology described here can be extended in several different directions to 
handle various problems that arise in practice.  

We have illustrated the prediction methods for log-location-scale distributions 
(such as the Weibull distribution). Application to other distributions could follow 
directly. 

The results obtained in this work can be used to solve the service problems of the 
following important engineering structures:  

(1) Transportation Systems and Vehicles – aircraft, space vehicles, trains, ships;  
(2) Civil Structures − bridges, dams, tunnels;  
(3) Power Generation – nuclear, fossil fuel and hydroelectric plants;  
(4) High-Value Manufactured Products − launch systems, satellites, semiconductor 

and electronic equipment;  
(5) Industrial Equipment − oil and gas exploration, production and processing 

equipment, chemical process facilities, pulp and paper. 
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