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Preface

Multidimensional scaling (MDS) is a powerful statistical method that maps prox-
imity data on pairs of objects (i.e., data expressing the similarity or the dissimilarity
of pairs of objects) into distances between points in a multidimensional space. The
space is usually two-dimensional, sometimes also three-dimensional, and seldom
more than three-dimensional. Unfolding is a related method for preference data
(e.g., persons’ ratings on choice objects such as consumer goods). It maps these
data into distances between points representing the persons and points representing
the choice objects.

The purpose of MDS and unfolding is often just visualizing the data so it
becomes easier for the user to explore and to understand their structure. However,
both MDS and unfolding can also be used to test a variety of structural hypotheses
about the data or even psychological theories of judgment or choice. Thousands of
publications have used MDS and unfolding in these ways.

This book is a brief introduction to MDS and unfolding. It discusses the issues
that always come up when MDS or unfolding is used in substantive research, and it
shows how to actually run such analyses. The aim is conceptual understanding and
practical know-how rather than mathematical precision and proof. It is more like a
driving lesson, not like engineering a car. These are different things, and the
engineer is not necessarily a better driver.

In this second edition, we focus much more on R packages and the R envi-
ronment than we did in the first edition. However, we decided not to drop other
computer packages (such as SPSS and its modules, in particular), because many
users are (still?) using these programs. Moreover, some of these programs have
features that are not available in R yet. On the other hand, we mention highly
special stand-alone programs only occasionally, since many of them are hard to get
and difficult to use.

This edition also puts much more emphasis on unfolding. Unfolding was almost
completely neglected in the first edition, since nobody used it, even though it is a
powerful method and an interesting model. Things have changed recently:
Unfolding seems to become more popular in substantive research and in consulting.
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With regard to MDS, we introduce and explain recent developments that are
concerned with the goodness of an MDS solution and with its substantive inter-
pretation. They are particularly important for the MDS user, for reviewers, and for
journal editors. For example, MDS users can now test the statistical significance of
MDS (and unfolding) solutions using methods that require computer simulations
that were difficult to run within traditional statistics packages but that are now easily
feasible within the R environment.

We also present various new examples of how to run an MDS or an unfolding
job using R. These examples are almost all substantively relevant and not just
contrived illustrative examples. Most data that we use in this book are also readily
available in the R package SMACOF so that the user can check our analyses.

To make our cases as concrete as possible, we repeatedly show R scripts for
running the jobs. In these scripts, we tried adhering to the R etiquette of writing R
code, but did not follow it strictly where it would waste too much space. For
example, we often use the semicolon to write more than just one command per line.
Prettier code can easily be generated by marking the code and then typing Ctrl
+Shift+A in RStudio, for example, or by using the tidy sourceðÞ function in
the formatR package. The scripts shown in this book (and a few additional ones)
are also available, in prettier form, in the supplementary script file. Additional
material to this book can be downloaded from http://extras.springer.com. It should
also be noted that some plots do not correspond exactly to those produced by the
various scripts. Rather, some plots were slightly edited by hand to unclutter, in
particular, the labels attached to the points in scatter plots.

Münster, Germany Ingwer Borg
Rotterdam, The Netherlands Patrick J. F. Groenen
Cambridge, USA Patrick Mair
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Chapter 1
First Steps

Abstract The basic ideas of MDS are introduced doing MDS by hand. Then, MDS
is done using statistical software. The goodness of the MDS configuration is evalu-
ated by correlating its distances with the data. Unfolding is introduced with a small
example.

Keywords MDS · Iteration · Proximities · Dimensional interpretation
Goodness of fit · Unfolding

1.1 Basic Ideas of Multidimensional Scaling

The basic ideas of MDS are easily explained using a small example. Consider
Table1.1. It contains the correlations of different crimes in 50 US states. The corre-
lations show, for example, that if there are many cases of Assault in a state, then there
are also many cases ofMurder (r = 0.81).We now scale these correlations viaMDS.
This means that we try to represent the seven crimes by seven points in a geometric
space so that any two points lie the closer together the greater the correlation of the
crimes that these points represent.

To reach this goal, we take seven cards, andwrite the name of one crime on each of
them, fromMurder toAutoTheft. These cards are thenplacedon a table in an arbitrary
arrangement (Fig. 1.1). Their distances are measured (Fig. 1.2) and compared with
the correlations in Table1.1. This comparison shows that the configuration in Fig. 1.1
does not represent the data in the desired sense. For example, the cards for Murder
and Assault should be relatively close together, because these crimes are correlated
with 0.81, whereas the cards forMurder and Larceny should be farther apart, as these
crimes are correlated with only 0.06. We, therefore, try to move the cards repeatedly
in small steps (“iteratively”) so that the distances correspondmore closely to the data.
Figure1.3 demonstrates in which directions the cards should be shifted to improve
the correspondence of data and distances.

Improving a given configuration iteratively by hand can be fairly tedious. It also
does not guarantee convergence to a stable and optimal configuration. So, let an

© The Author(s) 2018
I. Borg et al., Applied Multidimensional Scaling and Unfolding,
SpringerBriefs in Statistics, https://doi.org/10.1007/978-3-319-73471-2_1
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2 1 First Steps

Table 1.1: Correlations of crime rates in 50 US states

Crime Murder Rape Robbery Assault Burglary Larceny Auto Theft

Murder 1.00 0.52 0.34 0.81 0.28 0.06 0.11

Rape 0.52 1.00 0.55 0.70 0.68 0.60 0.44

Robbery 0.34 0.55 1.00 0.56 0.62 0.44 0.62

Assault 0.81 0.70 0.56 1.00 0.52 0.32 0.33

Burglary 0.28 0.68 0.62 0.52 1.00 0.80 0.70

Larceny 0.06 0.60 0.44 0.32 0.80 1.00 0.55

Auto Theft 0.11 0.44 0.62 0.33 0.70 0.55 1.00

Murder

Rape

Larceny Burglary

Assault

Auto Theft

Robbery

Fig. 1.1: Initial configuration for an
MDS of the data in Table1.1

Murder

Rape

Larceny Burglary

Assault

Auto Theft

Robbery

1
2

6
5

4
3

Fig. 1.2: Measuring distances with a
ruler

MDS computer algorithm do the job. It systematically moves the points step by step
to improve the fit to the data.

There existmany goodMDSprograms.One such program isProxscal, amodule
of Spss. To use Proxscal, we first save the correlation matrix of Table1.1 in a file
that we call ‘CorrCrimes.sav’. Then, we only need some clicks in Proxscal’s menus
(click: Analyze > Scale > Multidimensional Scaling (Proxscal)) or, alternatively,
execute the following commands:

1 GET FILE=‘CorrCrimes.sav’.
2 PROXSCAL VARIABLES=Murder to AutoTheft
3 /TRANSFORMATION=INTERVAL
4 /PROXIMITIES=SIMILARITIES .

The PROXIMITIES sub-command informs the program that the data—called proximi-
ties in this context, a generic term for both similarity and dissimilarity data—must be
interpreted as similarities by the program.That is, small data values should bemapped
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Murder

Rape

Larceny Burglary

Assault

Auto Theft

Robbery

Fig. 1.3: Directions for point move-
ments to improve the MDS configura-
tion

Murder

Rape

Robbery

Assault
Burglary

Larceny

Auto Theft

Fig. 1.4: Optimal computer-generated
MDS solution

into large distances, and large data values into small distances. Also, we want to map
the correlations linearly into MDS distances, preserving their differences (“inter-
vals”) in the distances. InProxscal, we thus request /TRANSFORMATION=INTERVAL.
No further specifications are needed. The program uses its default settings to generate
an MDS solution (Fig. 1.4).

Many other programs exist forMDS.One example is theMDSmodule in Systat.
Systat can be run using commands, or by clicking on various options in a graphical
user interface. Having loaded the correlation matrix as our data, we call the MDS
module and its menu in Fig. 1.5. We select the variables Murder, Rape, etc., and
leave all other specifications as they are, except the one for “Regression”, where we
request that the MDS program should optimize the relation of data to distances in
the sense of a least-squares linear regression. Clicking on the OK button makes the
program find and plot an MDS configuration.

A third implementation is the mds() function of the R (R Core Team 2017)
package smacof (De Leeuw and Mair 2009). smacof is open source and, most
importantly, allows using the sheer boundless capabilities of the R environment and
its thousands of software packages for additional analyses, simulations, and graphics.
So, we will mostly use smacof in this book.

smacof is run by commands. A few commands suffice to do the MDS analysis
of the given data. Note that smacof always requires that the data either come as
dissimilarities, or that they have been converted to dissimilarities (accomplished
here by the sim2diss function).



4 1 First Steps

Fig. 1.5: GUI of the MDS module in Systat

1 library(smacof) ## load smacof package
2 data(crimes) ## load data set "crimes"
3 diss <- sim2diss(crimes, method="corr") ## correlations-->dissimilarities
4 result <- mds(diss, type="interval") ## run MDS and store in "result"
5 result ## show basic information about the MDS job
6 names(result) ## show names of what is contained in object "result"
7 plot(result) ## plot MDS configuration (as in Fig. 1.6)

Figure1.6 shows these commands in the upper left-hand panel of RStudio, a
graphical user interface for R. If you run these commands, an MDS solution is
generated and stored in an object called “result” (along with other information about
the MDS job; see p. 119). The MDS configuration is plotted in the lower right-hand
panel of RStudio.

All three computer programs—Proxscal, Systat, and smacof—generate
essentially the same MDS solution for the crime data. This solution is not only
optimal, but also quite good, as Fig. 1.7 shows. This scatter plot demonstrates that
our data and the corresponding MDS distances have an almost perfect linear relation
(r = −0.989). Hence, the data are properly visualized and theMDS distances have a
clear meaning: The closer two points in the MDS solution, the higher the correlation
of the variables that they represent.
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Fig. 1.6: Running an MDS for the crime data using smacof out of RStudio
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Fig. 1.7: Relation of data in Table1.1
and distances in Fig. 1.4
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Fig. 1.8:MDS solution with two inter-
pretations: neighborhoods and princi-
pal axes (crossed lines)

What has been gained by analyzing the crime data via MDS? First, instead of 21
correlations, we get a simple picture of the empirical interrelations. This allows us
to actually see and more easily explore the structure of the correlations: The higher
the correlation of two crimes, the smaller the distance between the corresponding
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Murder
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Auto Theft
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Fig. 1.9: One-dimensional MDS solu-
tion for the crime data
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Fig. 1.10: Relation of data in Table1.1
and distances in 1d MDS solution in
Fig. 1.9

points inMDS space. The crimes form certain neighborhoods inMDS:Crimeswhere
persons come to harm emerge in one such neighborhood, and property crimes form
another neighborhood. Hence, if the Murder rate is high in a state, then Assault
and Rape also tend to be relatively frequent. The same applies to property crimes.
Robbery lies between these neighborhoods, possibly because Robbery may not only
damage the victims’ possessions but also their bodies.

This interpretation builds primarily on the first principal axis.1 This axis cor-
responds to the horizontal dashed line running through the origin of the graph in
Fig. 1.8.

The second principal axis is difficult to interpret. On this axis, Larceny and Rob-
bery are farthest apart. Hence, these two crimes might lead to a meaningful inter-
pretation of the second dimension, but no compelling interpretation seems to offer
itself. This dimension may simply represent the noise of the data. So, one can ask
whether it suffices to represent the given data in a one-dimensional (1d) MDS space.

1The first principal axis is a straight line which runs through the point cloud so that it is closest
to the points. That is, the sum of the (squared) distances of the points from this line is minimal.
The second principal axis is perpendicular to the first and explains the maximum of the remaining
variance.



1.1 Basic Ideas of Multidimensional Scaling 7

The answer to this question is easily found: One simply sets “Dimension= 1” in the
GUI in Fig. 1.5, for example, and then repeats the MDS analysis, leaving all other
specifications as before.

Figure1.9 shows the one-dimensional (1d) solution. It closely reproduces the first
principal axis of Fig. 1.4. However, its distances correlate with only r = 0.866 with
the data. Thus, this MDS solution does not represent the data that well. This is also
evident from the regression graph in Fig. 1.10. It exhibits clearly more scatter about a
linear regression trend than the graph for the two-dimensional (2d) MDS solution in
Fig. 1.7. One should, therefore, not interpret this configuration too closely, because
it is partly misleading. For example, we note in the data matrix that Robbery and
Burglary are correlated with 0.62. We find the same correlation for Robbery and
Auto Theft. Yet, in the 1d MDS solution in Fig. 1.9, Burglary is about half as far
from Robbery as Auto Theft is from Robbery. So, here we have an example of
a noteworthy representation error. On the other hand, this is the largest error, and
many of the other data relations are represented quite well. Moreover, the 1d scale
makes sense too: It orders the various crimes in terms of increasing violence and
brutality.

Table 1.2: Preference rating scores of five persons for four objects, using a 10-point
scale (a); embedded into a 9× 9 proximity matrix (b); NA = missing data

(a) Preference ratings

A B C D

1 3 7 4 9

2 10 8 7 1

3 7 2 5 6

4 8 5 6 7

5 4 7 1 10

(b) Ratings embedded into proximity matrix

A B C D 1 2 3 4 5

A NA NA NA NA 3 10 7 8 4

B NA NA NA NA 7 8 2 5 7

C NA NA NA NA 4 7 5 6 1

D NA NA NA NA 9 1 6 7 10

1 3 7 4 9 NA NA NA NA NA

2 10 8 7 1 NA NA NA NA NA

3 7 2 5 6 NA NA NA NA NA

4 8 5 6 7 NA NA NA NA NA

5 4 7 1 10 NA NA NA NA NA
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1.2 Basic Ideas of Unfolding

An interesting model that is closely related to MDS is unfolding. While MDS is
mostly used to study the proximity structure (often the inter-correlations) of just
about any variables, unfolding typically deals with preference data of N persons for
n objects and it maps these data directly into MDS distances. An unfolding solution,
therefore, represents both persons and variables in a joint space, not just the variables.

We illustrate this with the small example in Table1.2 (left). It shows preference
ratings of persons 1, . . . , 5 for objects A, . . . , D (cars, soft drinks, political parties,
or whatever). The scores are on a 10-point scale, where 10 means “my choice”,
“feel very positive about it”, “excellent”, etc. We can take Table1.2 (a) and insert it
into a complete proximity matrix as shown in Table1.2 (b). The cells outside of the
data blocks have “NA” entries, because we have no data for the proximities among
persons and among objects, respectively.

The matrix in Table1.2 (b) can be scaled with standard MDS: (1) The MDS
representation should have four points for the objects A, . . . , D, and five points
for the persons 1, . . . , 5; (2) since the data are similarities, we want the model to
represent greater data values by smaller distances: A person point should be the closer
to an object point, the higher this person rates the object; (3) the NA data impose
no restrictions on the MDS solution. For example, the distance between point A and
point B can have any value, because it does not represent an observed value. Only the
distances among person points and objects points must correspond to given values.
Distances within persons and within objects can be chosen arbitrarily.

To find an unfolding solution, we can use the mds() function in smacof as
follows2:

1 data <- matrix(c(NA,NA,NA,NA, 3,10, 7, 8, 4,
2 NA,NA,NA,NA, 7, 8, 2, 5, 7,
3 NA,NA,NA,NA, 4, 7, 5, 6, 1,
4 NA,NA,NA,NA, 9, 1, 6, 7,10,
5 3, 7, 4, 9, NA,NA,NA,NA,NA,
6 10, 8, 7, 1, NA,NA,NA,NA,NA,
7 7, 2, 5, 6, NA,NA,NA,NA,NA,
8 8, 5, 6, 7, NA,NA,NA,NA,NA,
9 4, 7, 1,10, NA,NA,NA,NA,NA), nrow=9, ncol=9)

10 colnames(data) <- c( "A", "B", "C", "D", "1", "2", "3", "4", "5" )
11 diss <- sim2diss(data, method = 10) # convert ratings into dissimilarities
12 result <- mds(diss, type="ordinal")
13 ## ------------------ Configuration Plot (Fig. 1.11) ----------------------
14 plot(result, col="cadetblue", pch=16, label.conf=list(cex=1.5, pos=5),
15 ylim=c(-1.2, 1.2), cex.axis=1.2, cex.lab=1.2,
16 xlab="Dimension 1", ylab="Dimension 2", main="")
17 ## ------------------ Shepard Diagram (Fig. 1.12) -------------------------
18 dat <- data[lower.tri(diss)]; dist <- as.vector(result$confdist)
19 dhat <- as.vector(result$dhat)
20 plot(dat, dist, pch=21, cex=2, ylim=c(0.8, 2.5), xlim=c(0, 11),
21 xlab="Preference Ratings", ylab="Distances in Unfolding Space" )
22 points(dat, dhat, pch=16, col="blue"); dat2 <- dat[order(dat, -dhat)]
23 dhat2 <- dhat[order(dat, -dhat)]; lines(dat2, dhat2, col="red")

2The code can be greatly simplified by using plot(result) and plot(result,
plot.type = "Shepard") for plots with default properties. The plots can be modified by
various arguments (as in the first plot command). The user can also generate his/her own plots using
other R-functions or packages as shown here for the Shepard diagram.
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Fig. 1.11: Ordinal unfolding solution Fig. 1.12: Unfolding distances ver-
sus preference data, with monotone
regression line

With the commands 1–12,we obtain an almost perfect (ordinal) unfolding solution
(Fig. 1.11). That is, the order of the preference data corresponds closely to the order
of the distances between person points and object points of the unfolding solution.
For example, the observed rating of person 1 for object A is r(1, A) = 3, and
this is mapped into the unfolding distance d(1, A) = 1.82. Moreover, the observed
rating r(5,C) = 1 corresponds to d(5,C) = 1.88. So, r(1, A) > r(5,C) and
d(1, A) < d(5,C), which means that these two observations are represented by
distances that are properly ordered.

The fit of the unfolding solution to the data is comprehensively shown by the
Shepard diagram3 in Fig. 1.12. The plot exhibits that the (data-based) distances of
the unfolding solution are nearly (inversely) ordered as the data that they repre-
sent. The model fit would be 100% perfect, if all open circles were on a (weakly4)
monotonically dropping regression line running from left to right.

The points representing the persons in an unfolding solution are often called ideal
points, because they are the points of maximal preference in space. The closer an
object to a person’s ideal point, the stronger his/her preference for that object.

What does an unfolding solution tell us?Assume the objects A, . . . , D in Fig. 1.11
were automobiles. A market researcher may conclude here that the test persons
discriminate among these cars using two dimensions: In their perception, A and C

3A Shepard diagram is a scatter plot of the data versus the MDS/unfolding distances, together with
the regression line used in the particular scaling model.
4“Weakly” means that the trend line exhibits some horizontal sections. In practice, this is irrelevant,
because if you tilt the steps just a little, the regression trend keeps dropping as you move to the right
on the X -axis.



10 1 First Steps

differ from D only on “Dimension 1”, while A, C , and D differ from B primarily
on “Dimension 2”. The substantive meaning of these dimensions has to be inferred
from the properties of the four cars:What, for example, do cars A andC share?What
makes them so different from D? And in what sense is car B in between the other
cars? The different persons have a common perception of the cars, but they differ in
what they prefer.

Special statistical software exists for unfolding. The unfolding() function of
smacof is the most flexible program. It offers unfolding for data on different scale
levels (ordinal, interval, and ratio), for example, and it also allows splitting the data
matrix into rows if one feels that comparing the data across persons does not make
sense. Moreover, it contains some confirmatory methods (such as forcing the object
points onto a perfect circle, for example) that can sometimes be extremely useful
(see Chap.8).

Using a special unfolding program not only makes the analysis less cumbersome,
but such programs are designed to avoid degenerate solutions that can easily result
in unfolding because of the big “NA” blocks in the data. For such data, an ordinary
MDS program (see, e.g., Fig. 1.5 and the option “Rectangular (unfolding model)”)
may deliver a solution where all person points lie in one dense cluster, and all object
points in another such cluster, orwhere all person points lie in one point and all objects
points are on a circle around this person point, for example. In such solutions, the
distances between person points and object points are all practically equal. Thus, they
do not differ much from values that are ordered exactly as the data are ordered—
whatever the data! Expressed in terms of a Shepard diagram, the regression line is
essentially a straight horizontal line. This “representation” of the data is, therefore,
trivial and uninformative.

1.3 Summary

MDS represents proximity data as distances among points in a multidimensional
space. The scaling begins with some initial configuration. Its points are then moved
iteratively so that the fit of distances and data is improved until no further improve-
ment seems possible. If the fit is good, the MDS solution can be interpreted in terms
of content. Unfolding is a special MDS model that represents both the row variables
(usually: persons) and the column variables (usually: objects) of a proximity matrix
(usually: preference data). For unfolding, special statistical software exists that is
easier to use than ordinary MDS programs and that is designed to avoid degenerate
solutions.
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Chapter 2
The Purpose of MDS and Unfolding

Abstract The different purposes of MDS are explained: MDS for visualizing prox-
imity data; MDS for uncovering latent dimensions; MDS as a psychological theory
about judgments of similarity; MDS for testing structural hypotheses; unfolding as
a psychological theory about judgments of preference.

Keywords Latent dimension · Distance axiom · Minkowski distance · Euclidean
distance · City-block distance · Dominance metric · Partition · Facet · Radex ·
Cylindrex · External unfolding · Internal unfolding

2.1 MDS for Visualizing Proximity Data

In recent years, MDS has mostly been used as a tool for analyzing proximity data of
all kinds (e.g., correlations, similarity ratings, co-occurrence data). Most of all, MDS
serves to visualize such data, making them accessible to the eye of the researcher.
Let us consider a typical application. Figure2.1 shows a case from industrial psy-
chology. Its 27 points represent 25 items and two indexes from an employee survey
in an international IT company. Two examples for the items are: “All in all, I am
satisfied with my pay,” and “I like my work,” both employing a Likert-type response
scale ranging from “fully agree” to “fully disagree.” The two indexes are scale val-
ues that summarize the employees’ responses to a number of items that focus on
their affective commitment to the company and on their general job satisfaction,
respectively. The distance between two points in Fig. 2.1 represents (quite precisely)
the correlation of the respective variables. As all variables are non-negatively inter-
correlated, it is particularly easy to interpret this MDS configuration: The closer two
points, the higher the correlation of the variables they represent. Hence, one notes,
for example, that since “satisfied with pay” and “satisfied with benefits” are close
neighbors in theMDS plane (see lower left-hand corner of the plot), employees rated
these issues similarly: Those who were relatively satisfied with one job aspect were
also relatively satisfied with the other aspect. In contrast, being satisfied with pay is
far from “encouraged to voice new ideas” (see top of the plot), and, hence, these two
items are essentially uncorrelated.

© The Author(s) 2018
I. Borg et al., Applied Multidimensional Scaling and Unfolding,
SpringerBriefs in Statistics, https://doi.org/10.1007/978-3-319-73471-2_2
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Fig. 2.1 MDS representation of the correlations of 25 items and 2 indexes of an employee survey in
an international IT company. The grayed area contains likely drivers of organizational commitment

The value of this MDS configuration is based on the notion that a picture is worth
more than a 1,000 words or numbers. Without proper statistical tools, it is impossible
to understand the structure among the 27 × 27 inter-correlation matrix with its 351
coefficients, while the MDS configuration is easy to explore and helpful for guiding
data-based discussions.

The fact that 351 correlations can be represented by distances among 27 points that
lie in a merely two-dimensional space makes clear, moreover, that the data are highly
structured. Random data would require much higher-dimensional spaces. Hence, the
persons who answered this employee survey must have generated their answers from
a consistent system of attitudes and opinions, and not by generating evasive random
ratings.

The ratings also make sense psychologically, because items of similar content are
grouped in small neighborhoods of the MDS space. For example, the various items
related to management (e.g., trust management, trust management board, support
strategy) form such a neighborhood of items that received similar ratings in the
survey.

One also notes that the one point that represents general job satisfaction lies
somewhere in the central region of the point configuration. This central position
reflects the fact that general job satisfaction is positively correlated with each of
the 25 items of this survey. Items located more at the border of the MDS plot are
substantially and positively correlated with the items in their neighborhood, but not
with items opposite of them in the configuration. With them, they are essentially
uncorrelated.

The plot leads to many more insights. One notes, for example, that the employees
tend to be the more satisfied with their job in general, the more they like their tasks
and the more they are satisfied with their opportunities for advancement. Satisfaction
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with working conditions, in contrast, is a relatively poor predictor of general job
satisfaction in this company.

Because the company suffered from high turnover, the variable “commitment to
the company” was of particular interest. Management wanted to know what could be
done to reduce turnover. The MDS configuration can be explored for answers to this
question. One begins by studying the neighborhood of the point representing com-
mitment to the company (see dark cloud around the commitment point in Fig. 2.1),
looking for items that offer themselves for action. That is, one attempts to find points
close to commitment that received poor ratings andwhere actions that would improve
these ratings appear possible. Expressed in terms of the MDS configuration, this can
be understood as grabbing such a point and then pulling it upwards so that the whole
plane is lifted like a rubber sheet, first of all in the neighborhood of commitment.
Managers understand this notion and, if guided properly, they are able to identify
and discuss likely “drivers” of the variable of interest efficiently and effectively. In
the given configuration, one notes, for example, that the employees’ commitment
is strongly correlated with how they feel about their opportunities for advancement
(42% satisfied (see Borg 2008, p. 311f.) ); with how much they like the work they do
(69% like it); with how satisfied they are with the company overall (88% satisfied);
and,most of all,with howpositive they feel about “performance pays” (only 36%pos-
itive). Thus, if one interprets this network of correlations causally, with the variables
in the neighborhood of commitment as potential drivers of commitment, it appears
that the employees’ commitment can be enhanced most effectively by improving
the employees’ opinions about the performance-dependency of their pay and how
they feel about their chances for advancement. Improving other variables, such as
the employees’ attitudes toward management, is not likely to impact organizational
commitment that much.

In this example, MDS serves to visualize the inter-correlations among a set of
items. The user is given a natural platform to see, explore, and discuss the structure
of these items. This can be particularly useful if the number of items is large, because
each additional item adds just one new point to the MDS plot, while it adds as many
new coefficients to a correlation matrix as there are variables.

2.2 MDS for Uncovering Latent Dimensions of Judgment

A fundamental question of psychology is how subjective impressions of similarity
come about. Why does Julia look like Mike’s daughter? How come that a Porsche
appears to be more similar to a Ferrari than to a Cadillac? To explain such judgments
or perceptions, distance models offer themselves as natural candidates. In such mod-
els, the various objects are first conceived as points in a “psychological space” that is
spanned by the subjective attributes of the objects. The distances among the points
then serve to generate overall impressions of greater or smaller similarity. Yet, the
problem with such models is that one hardly ever knows what attributes a person
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assigns to the objects under consideration. This is where MDS comes in: With its
help, one attempts to infer these attributes from global similarity judgments.

Let us consider an example that is typical for the early days of MDS.Wish (1971)
wanted to know the attributes that people use when judging the similarity of different
countries. He conducted an experiment where 18 students were asked to rate each
pair of 12 different countries on their overall similarity. For these ratings, an answer
scale from “extremely dissimilar” (coded as 1) to “extremely similar” (coded as 9)
was offered to the respondents. No explanation was given on what was meant by
“similar”: “There were no instructions concerning the characteristics on which these
similarity judgments were to be made; this was information to discover rather than to
impose” (Kruskal and Wish 1978, p. 30). The observed similarity ratings, averaged
over the 18 respondents, are available in smacof, where they can be called by the
command data(wish).1 They are also shown in Table3.1(lower half) on p. 30.

An MDS analysis of these data with one of the major MDS programs, using
the usual default parameters,2 delivers the solution shown in Fig. 2.2. Older MDS
programs generate only the Cartesian coordinates of the points (as shown in Table2.1
in columns “Dim.1” and “Dim.2,” respectively, together called coordinate matrix
and denoted as X in this book). Modern programs also produce graphical output as
in Fig. 2.2. The plot shows, for example, that the countries Yugoslavia and USSR
are represented by points that are close together. In the data table, we find that the
similarity rating on these two countries is relatively high (=6.67, the largest value).
So, this relation is properly represented in theMDS plane. In Fig. 2.2, we note further
that the points representing Brazil and China are far from each other and that their
similarity rating is small (=2.39). Thus, this relation is also properly represented in
the MDS solution. Checking more of these correspondences suggests that the MDS
solution is a good representation of the similarity data.

If we arewilling to accept that the givenMDSplane exhibits the essential structure
of the similarity data, we can interpret this psychological map. In particular, we now
ask what psychologically meaningful “dimensions” span this space. Formally, the
map is spanned by what the computer program delivers, i.e., by “Dimension 1” and
“Dimension 2.” These dimensions are the principal axes of the point configuration.
However, one can also rotate these dimensions (holding the configuration of points
fixed), because any other system of two coordinate axes—even oblique ones—also
spans the plane. Hence, one looks for a coordinate system that is psychologically
mostmeaningful.Wish (1971) suggests that rotating the coordinate system in Fig. 2.2
by 45 degrees leads to such dimensions. On the diagonal from the South-West to the
North-East corner of Fig. 2.2, Congo, Brazil, and Cuba are on one end, while Japan,
Israel, and the USA are on the other end. On the basis of what he knew about these
countries, and assuming that the respondents used similar criteria, Wish interpreted

1Typingdata() gives you a listing of all the data sets available in theR packages loaded previously
by library(); data(wish) loads the data set wish; help(wish) provides information
about wish.
2Most MDS programs are set, by default, to deliver a two-dimensional solution for data assumed
to have an ordinal scale level.
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Fig. 2.2 MDS
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Table 2.1 Coordinates X of points in Fig. 2.2; Economic Development and Number of Inhabitants
show further measurements on these countries in 1971

X Economic Number of

Country No. Dim.1 Dim.2 Development In-habitants (millions)

Brazil 1 0.33 −0.80 3 87

Congo 2 −0.40 −0.82 1 17

Cuba 3 −0.58 −0.35 3 8

Egypt 4 −0.44 −0.04 3 30

France 5 0.42 −0.20 8 1

India 6 −0.13 −0.13 3 500

Israel 7 0.59 0.25 7 3

Japan 8 0.42 0.57 9 100

China 9 −0.72 0.46 4 750

USSR 10 −0.12 0.51 7 235

USA 11 0.79 0.05 10 201

Yugoslavia 12 −0.17 0.51 6 20

this diagonal as “underdeveloped versus developed.” The second dimension, the
North-West to the South-East line, was interpreted as “Pro-Communist versus Pro-
Western.”

These interpretations are meant as hypotheses about the attributes that the respon-
dents (not the researcher!) use when they generate their similarity judgments. That
is, the respondents are assumed to look at each pair of countries, compute their dif-
ferences in terms of Underdeveloped/Developed and Pro-Communist/Pro-Western,
respectively, and then derive an overall distance from these two intra-dimensional
distances. Whether this explanation is indeed valid cannot be checked any further
with the given data. MDS only suggests that this is a model that is compatible with
the observations.



16 2 The Purpose of MDS and Unfolding

2.3 Distance Formulas as Models of Judgment

The above study on the subjective similarity of countries does not explain exactly
how an overall similarity judgment is generated based on the information given by the
psychological space. One way to conceive of that process is to interpret the distance
formula as a psychological composition rule.

Distances (also called “metrics”) are functions that assign a real value to each pair
of elements from a set. Distance functions—in the following denoted as di j—have
the following properties. For each pair (i, j),

1. dii = d j j = 0 ≤ di j (Distances have nonnegative values; only the self-distance
is equal to zero.)

2. di j = d ji (Symmetry: The distance from i to j is the same as the distance from j
to i .)

3. di j ≤ dik + dkj (Triangle inequality: The distance from i to j via k is at least as
large as the direct “path” from i to j .)

One can check if given dissimilarity data for pairs of objects satisfy these proper-
ties. If they do, they are distances; if they do not, they are not distances (even though
they may be “approximate” distances).

A set M of objects together with a distance function d is called a metric space. A
special case of a metric space is the Euclidean space. Its distance function does not
only satisfy the above distance axioms, but it can also be interpreted geometrically as
the distance of the points i and j of a multidimensional Cartesian space. That means
that Euclidean distances can be computed from the points’ Cartesian coordinates as

di j (X) =
√
(xi1 − x j1)2 + ... + (xim − x jm)2, (2.1)

=
(

m∑
a=1

(xia − x ja)
2

)1/2

, (2.2)

where X denotes a configuration of n points in m-dimensional space, and xia is
the value (“coordinate”) of point i on the coordinate axis a. This formula can be
generalized to a family of distance functions, theMinkowski distances:

di j (X) =
(

m∑
a=1

|xia − x ja|p
)1/p

, p ≥ 1. (2.3)

Setting p = 2, formula (2.3) becomes the Euclidean distance. For p = 1, one gets
the city-block distance; for p → ∞, the formula yields the dominance metric.

As a model for judgments of (dis-)similarity, the city-block distance (p = 1)
seems to be the most plausible composition rule, at least in case of “analyzable”
stimuliwith “obvious and compelling” (Torgerson1958, p. 254) dimensions. It claims
that a person forms a judgment by first assessing the distance of the respective two
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objects on each of the m dimensions of the psychological space, and then adding
these intra-dimensional distances to arrive at an overall rating of dissimilarity.

If one interprets formula (2.3) literally, then it suggests for p = 2 that the person
first squares each intra-dimensional distance, then sums the resulting values, and
finally takes the square root. This appears hardly plausible. However, one can also
interpret the formula differently. That is, the parameter p of the distance formula can
be seen as a weight function: For values of p > 1, large intra-dimensional distances
have an over-proportional influence on the global judgment, and when p → ∞, only
the largest intra-dimensional distance matters. Indeed, for p-values as small as 10,
the global distance is almost equal to the largest intra-dimensional distance.3 Thus,
one hypothesis is that when judgments become more difficult (e.g., because of time
pressure), persons tend to focus on the largest intra-dimensional distances only. This
corresponds, formally, to choosing a large p value.

Another line of argumentation is that city-block composition rules make sense
only for analyzable stimuli with their obvious and compelling dimensions (such
as geometric figures like rectangles), whereas for “integral” stimuli (such as color
patches), the Euclidean distance that expresses the length of the direct path through
the psychological space is more adequate (Garner 1974).

Choosing parameters other than p = 2 has surprising consequences. It generates
geometries that differ substantially from those we are familiar with. What we know,
and what is called the natural geometry, is Euclidean geometry. It is natural because
distances and structures in Euclidean geometry are as they “should” be. A circle,
for example, is “round.” If p �= 1, circles do not seem to be round. In the city-
block plane, a circle looks like a square that sits on one of its corners (see left panel
of Fig. 2.3). Yet, this geometrical figure is indeed a circle, because it is the set of
all points that have the same distance from their midpoint M . The reason for its
peculiar-looking shape is that the distances of any two points in the city-block plane
correspond to the length of a path between these points that can run only in North-
South or West-East directions, but never along diagonals—just like walking from A
to B in Manhattan, where the distance may be “two blocks West and three blocks
North.” Hence the name city-block distance. For points that lie on a line parallel
to one of the coordinate axes, all Minkowski distances are equal (see points M and
i in Fig. 2.3); otherwise, they are not equal. If you walk from M to j (or to j ′ or
j ′′, respectively) on a Euclidean path (“as the crow flies”), the distance is shorter
than choosing the city-block path which runs around the corner. The shortest path
corresponds to the dominance distance: The largest intra-dimensional difference will
get you from M to the other points. This is important for the MDS user because it
shows that rotating the coordinate axes generally changes all Minkowski distances,
except Euclidean distances.

3This is easy to see from an example: If point i has the coordinates (0, 0) and j the coordinates
(3, 2), we get the intra-dimensional distances |0− 3| = 3 and |0− 2| = 2, respectively. The overall
distance di j , with p = 1, is thus equal to 2+ 3 = 5.00. For p = 2, the overall distance is 3.61. For
p = 10, it is equal to 3.01.
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Fig. 2.3 Three circles with the same radius in the city-block plane, the Euclidean plane, and the
dominance plane, respectively

To see how the distance formula can serve as a model of judgment, consider an
experiment by Borg and Leutner (1983). They constructed rectangles on the basis
of the grid design in Fig. 2.4. Each point in this grid defines a rectangle. Rectangle
6, for example, had a width of 4.25cm and a height of 1.25cm; rectangle 4 was
3.00cm wide and 2.75cm tall. A total of 21 persons rated (twice) the similarity of
each pair of these 16 rectangles (see example in Fig. 2.4, lower panel) on a 10-point
scale ranging from “0= equal, identical” to “9= very different.” The means of these
ratings over persons and replications is given by calling data(rectangles) in the
smacof package.

The MDS representation (using city-block distances)4 of these ratings is the grid
of solid points in Fig. 2.5. From what we discussed above, we know that this config-
uration must not be rotated relative to the given coordinate axes, because rotations
would change its (city-block) distances and, since theMDS representation in Fig. 2.5
is the best-possible data representation, this would deteriorate the correspondence of
MDS distances and data.

If one allows for some rescaling of the width and height coordinates of the rect-
angles, one can fit the design configuration quite well to the MDS configuration (see
grid of dashed lines in Fig. 2.5). The rescaling also makes psychological sense: It
exhibits a logarithmic shrinkage of the grid lines from left to right and from bottom
to top, as expected by psychophysical theory.

The deviations of the rescaled design grid from the MDS configuration do not
seem to be systematic. Hence, onemay conclude that the subjects did indeed generate
their ratings by a composition rule described by the city-block distance formula
(including a logarithmic rescaling of intra-dimensional distances according to the
Weber–Fechner law). TheMDSsolution also shows that differences in the rectangles’
heights are psychologically more important for similarity judgments than differences
in the rectangles’ widths.

4The solution was computed with Systat. Neither Proxscal nor smacof offer city-block dis-
tances. In Systat, the city-block metric is invoked by setting the “R-metric:” option in the GUI in
Fig. 1.5 equal to “1”.
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2.4 MDS for Testing Structural Hypotheses

A frequent application of MDS is testing structural hypotheses. A typical case is
intelligence diagnostics (Guttman and Levy 1991). Here, persons are asked to solve
several test items. The items can be classified on the basis of their content into
different categories of two design factors, called facets in this context. Some test
items require the testee to solve computational problemswith numbers and numerical
operations. Other items ask for geometrical solutionswhere figures have to be rotated
in three-dimensional space or pictures have to be completed. Other test items require
applying learned rules, while still others have to be solved by finding such rules. One
can always code test items in terms of such facets, but the facets are truly interesting
only if they exert some control over the observations, i.e., if the distinctions they
make are mirrored somehow in corresponding effects on the data side. The data in
our small example are the inter-correlations of eight intelligence test items shown
in Table2.2. The items are coded in terms of the facets “Format = {N(umerical),
G(eometrical)}” and “Requirement = {A(pply), I(nfer)}”.

A 2dMDS representation of the data in Table2.2 is shown in Fig. 2.6. We now ask
whether the facets Format and Requirement surface in some way in this plane. For
the facet Format, we find that the plane can indeed be partitioned by a straight line
such that all points labeled as “G” are on one side, and all “N” points on the other
(Fig. 2.7). Similarly, using the codings for the facet Requirement, the plane can be
partitioned into two subregions, an A- and an I-region. For the Requirement facet,
we have drawn the partitioning line in a curved way, anticipating test items of a third
kind on this facet: Guttman and Levy (1991) extend the facet Requirement by adding
the element “Learning.” They also extend the facet Format by adding “Verbal.”
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Table 2.2 Inter-correlations of eight intelligence test items, together with codings on two facets

Format Requirement Item 1 2 3 4 5 6 7 8

N A 1 1.00 0.67 0.40 0.19 0.12 0.25 0.26 0.39

N A 2 0.67 1.00 0.50 0.26 0.20 0.28 0.26 0.38

N I 3 0.40 0.50 1.00 0.52 0.39 0.31 0.18 0.24

G I 4 0.19 0.26 0.52 1.00 0.55 0.49 0.25 0.22

G I 5 0.12 0.20 0.39 0.55 1.00 0.46 0.29 0.14

G A 6 0.25 0.28 0.31 0.49 0.46 1.00 0.42 0.38

G A 7 0.26 0.26 0.18 0.25 0.29 0.42 1.00 0.40

G A 8 0.39 0.38 0.24 0.22 0.14 0.38 0.40 1.00

3=NI

2=NA

1=NA

8=GA

7=GA

6=GA

5=GI

4=GI

Fig. 2.6 MDS solution for correlations in
Table2.2

Fig. 2.7 MDS configuration partitioned by
two facets

For the inter-correlations of items in this extended 3× 3 design, that is, for items
coded in terms of two 3-element facets, MDS leads to structures with a partitioning
system as shown in Fig. 2.8. This pattern, termed radex, is often found for items
that combine a qualitative facet (such as Format) and an ordered facet (such as
Requirement). For the universe of typical intelligence test items, Guttman and Levy
(1991) suggest yet another facet, calledCommunication. It distinguishes amongOral,
Manual, and Paper-and-Pencil items. If there are test items of all 3 × 3 × 3 types,
MDS leads to a three-dimensional cylindrex structure as shown in Fig. 2.9. Such a
cylindrex shows, for example, that items of the Infer type have relatively high inter-
correlations (given a certain mode of Communication), irrespective of their Format.
It is interesting to see that Apply is “in between” Infer and Learn. We also note that
our small sample of test items of Table2.2 fits perfectly into the larger structure of
the universe of intelligence test items.
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Fig. 2.8 Schematic radex of intelligence test
items

Fig. 2.9 Cylindrex of intelligence test items

A more recent example of using MDS to test structural hypotheses is a study by
Borg et al. (2017).5 They asked 151 US adults to answer the PVQ40, a question-
naire that measures the personal importance of ten basic values (PO = power, AC =
achievement, HE= hedonism, ST= stimulation, SD= self-direction, UN= univer-
salism, BE = benevolence, TR = tradition, CO = conformity, and SE = security).
The PVQ consists of 40 items, each a short portrait of one person. Each portrait
describes a person’s goals, aspirations, and desires that reflect that person’s values.
Participants rate the extent to which each person portrayed is similar to themselves,
using a 6-point response scale ranging from “not like me at all” (0) to “very much
like me” (6).

Value researchers typically first inter-correlate the scores of such items and then
run ordinal MDS on the correlations. This leads to Fig. 2.10, computed by smacof
(see the R script on p. 22). It represents the correlations among the items rather
precisely, as can be seen by the relatively small scatter about the regression line in
Fig. 2.11. The 40 points in Fig. 2.10 are labeled here in terms of the basic values
that the items are measuring. For example, co1 is item 1 of the PVQ measuring
conformity, and po2 is item 2 assessing power. To facilitate interpretation, a set
of straight lines was added here by hand. These lines cut (“partition”) the space
like a cake into wedge-like regions. The partitioning lines form a particular pattern
called circumplex, a circle of regions emanating from a common origin. Each region
contains only items of one particular type—except for a few minor errors where
points (e.g., co4 or tr1) fall into the respective neighboring region. Such a structure

5The data set is contained in smacof. It is loaded automatically when calling smacof. You can
check it by typing attributes(PVQ40) or head(PVQ40), for example. There is no need to
explicitly load the data by typing data(PVQ40), but it would give you an error message if a file
with this name does not exist.
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Fig. 2.11 Shepard diagram of MDS config-
uration in Fig. 2.10

is certainly unlikely to result by chance, and this is even more true since it replicates
numerous similar studies.

Another way to look at the MDS solution is checking to what extent items con-
structed to measure the same construct appear homogeneous. This analysis can be
made easier by drawing convex hulls around items that belong to the same category
(Fig. 2.12). Since all items are coded here as se1, co2, etc., we can generate such a
plot as follows6:

1 r <- cor(PVQ40, use="pairwise.complete.obs")
2 diss <- sim2diss(r, method="corr")
3 res <- mds(delta=diss, type="ordinal") ## ordinal MDS
4 codes <- substring(colnames(PVQ40), 1, 2)
5 plot(res, main="", hull.conf=list(hull=TRUE, ind=codes, col="coral1", lwd=2))

Rather than scaling items, one could first average the various item ratings to
yield importance indexes for each of the ten basic values, and then run an MDS on
the 10 × 10 inter-correlation matrix of these index scores7:

6Note thatweuse thefirst twocharacters of the variables’ codes (i.e., “se”, “co”, etc.) inind=codes
to group the points.
7We show here how this is done, but the result is also directly available in smacof in the file
PVQ40agg.
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Fig. 2.12 MDS solution of personal values
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Fig. 2.13 MDS configuration of ten indexes
on basic personal values; double-arrowed
lines show two oppositions; circle optimally
fitted to points

1 SE <- rowMeans(subset(PVQ40, select=c(se1,se2)), na.rm=TRUE)
2 CO <- rowMeans(subset(PVQ40, select=c(co1,co2)), na.rm=TRUE)
3 TR <- rowMeans(subset(PVQ40, select=c(tr1,tr2)), na.rm=TRUE)
4 BE <- rowMeans(subset(PVQ40, select=c(be1,be2)), na.rm=TRUE)
5 UN <- rowMeans(subset(PVQ40, select=c(un1,un2,un3)), na.rm=TRUE)
6 SD <- rowMeans(subset(PVQ40, select=c(sd1,sd2)), na.rm=TRUE)
7 ST <- rowMeans(subset(PVQ40, select=c(st1,st2)), na.rm=TRUE)
8 HE <- rowMeans(subset(PVQ40, select=c(he1,he2)), na.rm=TRUE)
9 AC <- rowMeans(subset(PVQ40, select=c(ac1,ac2)), na.rm=TRUE)

10 PO <- rowMeans(subset(PVQ40, select=c(po1,po2)), na.rm=TRUE)
11 raw <- cbind(SE,CO,TR,BE,UN,SD,ST,HE,AC,PO)
12 R <- cor(raw); diss <- sim2diss(R, method="corr")
13 result <- mds(diss, type="ordinal"); plot(result)
14 out <- fitCircle(result$conf[,1], result$conf[,2])
15 draw.circle(out$cx, out$cy, radius=out$radius, border="black", lty=2)

Figure2.13 shows that this analysis yields a simple pattern: The ten value points
are close to a circle fitted to the point configuration using the fitCircle() func-
tion. Moreover, the order of the points on this circle replicates what many other
studies have found. Figure2.13 also exhibits an interpretation in terms of two
bipolar directions: self-enhancement versus self-transcendence, and openness to
change versus conservation.

2.5 Unfolding as a Psychological Model of Preference

Let us continue with the above data set on personal values, but now analyze it by
unfolding. Unfolding stays closer to the data, and individuals are not lost in correla-
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tions computed across individuals. So, one can ask whether the circle of values also
exists within individuals. In external unfolding, we would attempt to represent each
individual by adding one particular point to the configuration in Fig. 2.13. This per-
son point should be located so that the distances from this point to the value points
correspond to this person’s importance scores. For example, if a person assigns a
high importance value to power, his/her person point should be close to the point PO
in Fig. 2.13. If security is rated as not so important, this person point should be far
from the point SE.8

External unfolding is rarely used, because one typically wants to allow the data
to speak for themselves. Hence, unfolding is almost always done without using any
fixed configurations. For this internal type of unfolding, we can use Prefscal in
Spss or the unfolding() function in smacof. For the latter, we first have to
reverse the importance scores by turning them into dissimilarities.9 Dissimilarities
can be produced by subtracting each importance score from the largest observed
importance score. We then search for a configuration with 10 points for the 10 basic
values and with 146 additional points for the 146 individuals such that the distances
between the person points and the value points directly match the dissimilarities
(except for an overall scaling factor).10 The commands for this job are11:

1 c <- PVQ40agg - rowMeans(PVQ40agg) ## center ratings
2 diss <- max(c) - c ## turn preference ratings into dissimilarities
3 result <- unfolding(diss)
4 plot(result,
5 pch = 16, cex=2, main="",
6 col.columns="black", label.conf.columns = list(pos=3, col=1, cex=1.5),
7 col.rows = "red", label.conf.rows = list(pos=1, col="red", cex=1) )
8 para <- fitCircle(result$conf.col[,1], result$conf.col[,2])
9 draw.circle(para$cx, para$cy, radius=para$radius, border="blue", lty=2)

Figures2.14 and 2.15 show the results. The points representing the ten personal
values PO, ... , SE lie close to a circle (dashed line). They also form certain basic
oppositions (“higher-order values”), i.e., self-enhancement (PO, AC) versus self-
transcendence (BE, UN) and openness to change (HE, ST, SD) versus conservation
(TR, CO, SE), as predicted by Schwartz (1992). Indeed, even their order on the circle
supports the theory.

Thepersons are represented inFig. 2.14 by the points labeledwith the rownumbers
of the data matrix. Almost every person is well represented in this configuration.
That is not trivial, because, for example, a person who rates achievement as not so

8Expressed more formally, in external unfolding either the person points or the object points are
fixed and the other points are then optimally fitted into this fixed point configuration.
9We here also first center each person’s ratings, i.e., subtract the mean of his/her ratings from his/her
rating scores to generate “relative value priorities.” This leads to a simpler model by reducing the
dimensionality of the solution. See Sect. 8.1.
10This model is ratio unfolding. This is the default of the unfolding() function.
11You can generate a nice plot by simply typing plot(result). We here show some ways to
customize such plots. You can also useR graphics or special graphics packages for customized plot-
ting. However, smacof offers some easy-to-use arguments for plotting convex hulls (see Fig. 2.12)
or confidence regions of the points (see Fig. 3.8) that are particularly useful in the MDS context.
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Fig. 2.14 Unfolding solution of PVQ40
data; numbers represent persons; circle opti-
mally fitted to points representing personal
values

Fig. 2.15 Shepard diagramof unfolding dis-
tances versus reversed importance ratings
(dissimilarities)

important but power as very important would not fit well into this solution, because
this person’s profile would require a point that is far from AC but close to PO. Such
a point obviously does not exist in Fig. 2.14, because AC and PO are close together
and, thus, must receive similar ratings.

We can also run an unfolding job on all 40 items rather than on only 10 indexes
derived from these items. This allows a more detailed study. In particular, we can
check the homogeneity of the indexes. To run this job, we use the commands in the
box on p. 26 below.

We thus obtain Fig. 2.16where the persons points are displayed by triangles (men)
or by circles (women). We first note that when rotating this configuration by about
60 degrees counter-clockwise, it becomes easier to compare it to Fig. 2.14, because
then the points that relate to AC, for example, move to the top of the plot, and those
measuring UN and BE to the left lower corner of the box. The overall orientation of
anMDS plot is not determined by the data and, therefore, substantively meaningless.

When taking a closer look at Fig. 2.16, we see that the items in some categories
(e.g., TR) scatter quite a bit in space, while others (e.g., PO) form dense clusters.
Also, there is considerable overlap of the various types of value items (e.g., BE and
UN). This indicates that the circle of 10 basic values may be understood more as a
continuum of personal values with gradual transitions rather than as a necklace of
discrete points.

One can also take a closer look at the distribution of the person points in the
unfolding solution. For example, one can ask whether men and women can be dis-
criminated in this space, and how age shows up in the configuration of person points.
These questions can be answered by using the dimensions of the unfolding space as
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Fig. 2.16 Unfolding solution for 40 items measuring personal values; open circles/triangles repre-
sent female/male persons; dashed line optimally represents persons’ age; solid line is the discrimi-
nant for gender

predictors of the dependent variables gender and age, respectively, as in the following
script:

1 data.r <- na.omit(PVQ40) ## eliminate persons with missing values
2 data1 <- data.r - rowMeans(data.r) ## center ratings
3 diss <- max(data1)-data1; unf <- unfolding(diss)
4 plot(unf, what="columns", col.columns=1,
5 label.conf.columns=list(col="black"), main="")
6 ## external variables ------------------------------------------------------
7 gender <- attr(data.r, "Gender")[-attr(data.r, "na.action")]
8 points(unf$conf.row, pch=gender, cex=1.5, lwd=2) ## pch by gender
9 circle <- fitCircle(unf$conf.col[,1], unf$conf.col[,2])

10 draw.circle(circle[[1]], circle[[2]], radius=circle[[3]])
11 ## discriminant analysis for gender ----------------------------------------
12 require(MASS); Y <- unf$conf.row; z <- as.data.frame(cbind(gender, Y))
13 fit <- lda(gender ~ Y, na.action="na.omit", data=z) ## discriminant gender
14 abline(a=0, b=fit$scaling[2]/fit$scaling[1], lty=1, col="red")
15 LDS <- as.data.frame(predict(fit)); L4 <- LDS[,4]
16 tt <- t.test(L4 ~ gender); tt ## t-test for gender discrimination
17 ## multiple regression for age ---------------------------------------------
18 age <- attr(rr, "Age")[-attr(data.r, "na.action")]
19 f <- lm(age ~ Y[,1]+Y[,2])
20 wy <- f$coefficients[3]; wx <- f$coefficients[2]
21 slope <- wy/wx; abline(a=0, b=slope, lty=2, col="blue")
22 age.pred <- predict(f); r <- cor(age, age.pred ); r ## fit of age line
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The dashed line represents the persons’ age in the unfolding plot. The projections
of the persons onto this line are correlated with their age with r = .41. So, older
respondents tend to lean more toward TR and CO, and younger ones more toward
ST/HE and PO/AC, a typical finding in value research. The other line is the discrim-
inant for gender. This is the line on which females and males are best separated.
Females tend to lie significantly more at the BE/UN end of this scale, and men closer
to PO/AC—also normal in value research.

2.6 Summary

MDS started as a psychological model of how persons arrive at judgments of sim-
ilarity. The model claims that the objects of interest can be understood as points in
psychological (i, j) space spanned by the objects’ subjective attributes, and that sim-
ilarity judgments are generated by computing the distance between points. Today,
MDS is used primarily for visualizing proximity data so that their structure becomes
accessible to the researcher’s eye for exploration or for testing. Structural hypotheses
are often based on content-based classifications of the variables of interest. Such clas-
sifications should surface in the MDS space in corresponding (ordered or unordered)
regions. Unfolding is even more psychology-based: It represents both persons and
objects as points in a joint space such that the distances between each person’s point
and each object point represent the observed preference data.
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Chapter 3
The Fit of MDS and Unfolding Solutions

Abstract Ways to assess the goodness of anMDS solution are discussed. The Stress
measure is defined as an index that aggregates representation errors. Criteria for
evaluating Stress are presented. Stress per Point (SPP) is defined as a way to assess
the fit of single points.

Keywords Representation error · Stress · Disparity · Shepard diagram · Stress-1
Stress norm · SPP

3.1 The Global Stress of MDS Solutions

We visualized the goodness of MDS and unfolding solutions above through Shepard
diagrams, i.e., scatterplots of the data versus the distances that represent these data
in the model. Figure3.1 gives another example, this one for the MDS representation
in Fig. 2.2 of the mean similarity ratings on twelve countries. To understand this
diagram in detail, we first look at the data that it represents.

Fig. 3.1 Shepard diagram
for the MDS solution in
Fig. 2.2
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Table 3.1 Data (lower half) and dhats (upper half)

Bra Con Cub Egy Fra Ind Isr Jap Chi USS USA Yug

Brazil – 0.775 0.775 1.192 0.775 0.775 1.190 1.192 1.705 1.449 0.775 1.449

Congo 4.83 – 0.775 0.775 1.071 0.775 1.449 1.449 1.190 1.400 1.577 1.192

Cuba 5.28 4.56 – 0.775 0.816 0.816 1.192 1.449 0.775 0.775 1.449 0.775

Egypt 3.44 5.00 5.17 – 0.775 0.436 0.775 1.190 0.775 0.775 1.449 0.775

France 4.72 4.00 4.11 4.78 – 1.19 0.816 0.816 1.192 0.775 0.436 0.775

India 4.50 4.83 4.00 5.83 3.44 – 0.816 0.775 0.816 0.775 0.816 0.816

Israel 3.83 3.33 3.61 4.67 4.00 4.11 – 0.775 1.449 0.816 0.436 0.775

Japan 3.50 3.39 2.94 3.83 4.22 4.50 4.83 – 0.816 0.775 0.436 0.775

China 2.39 4.00 5.50 4.39 3.67 4.11 3.00 4.17 – 0.628 1.577 0.775

USSR 3.06 3.39 5.44 4.39 5.06 4.50 4.17 4.61 5.72 – 0.775 0.054

USA 5.39 2.39 3.17 3.33 5.94 4.28 5.94 6.06 2.56 5.00 – 1.192

Yugosl. 3.17 3.50 5.11 4.28 4.72 4.00 4.44 4.28 5.06 6.67 3.56 –

The distances among the points in the MDS solution are exhibited numerically
in the upper half of Table3.2. The data are in the lower half of Table3.1. Data and
distances should be closely related in the sense of theMDSmodel. Since we chose an
ordinal MDS model here, the relationship should be monotonic, and this is roughly
the case for the 66 open circles in the Shepard diagram in Fig. 3.1. Each of these
circles represents one of the 66 data elements and its corresponding distance in the
MDS solution. For example, the mean rating for the pair Brazil–Congo (4.83) is
represented by the distance 0.775 between the points Brazil and Congo in Fig. 2.2.
Or, the most extreme rating of similarity (6.67, for the pair USSR and Yugoslavia)
corresponds to the MDS distance 0.054 (the smallest distance among the points).

To quantify this relationship uniquely, we first note that since the data are consid-
ered ordinal-scaled, i,e., they are fixed only up to order-preserving transformations.
We are free to choose anyone. One such choice is to rescale the data such that they
approximate the MDS distances as close as possible in a least-square sense. This
results in “dhat” values, often called disparities in the MDS literature. For our exam-
ple, they are as shown in the upper half of Table3.1.

The pairs of corresponding disparities and data are displayed by the small solid
points in the Shepard diagram in Fig. 3.1. When connected by a line in the order of
the data, these points form a (weakly) monotonically descending regression line. We
also note in passing that the regression line is roughly linear, with no wild steps or
bizarre curvatures. Hence, interval MDS can be expected to produce a very similar
MDS solution. This would also lead to a better interpretable relation of similarity data
toMDS distances in the sense that the persons generate their similarity judgments by
computing distances in the psychological map and then map them by a simple linear
function into numerical ratings. An even stronger model would be to do ratio MDS
where the mapping requires that distances are mapped proportionally into ratings.
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Table 3.2 Representaion errors (lower half) and distances (upper half)

Bra Con Cub Egy Fra Ind Isr Jap Chi USS USA Yug

Brazil – 0.737 1.017 1.088 0.612 0.814 1.08 1.372 1.647 1.384 0.966 1.404

Congo 0.001 – 0.500 0.783 1.034 0.734 1.454 1.613 1.316 1.352 1.475 1.344

Cuba 0.058 0.076 – 0.342 1.011 0.492 1.306 1.355 0.821 0.967 1.423 0.945

Egypt 0.011 0.000 0.187 – 0.876 0.321 1.062 1.051 0.572 0.626 1.231 0.603

France 0.026 0.001 0.038 0.010 – 0.559 0.473 0.764 1.323 0.888 0.441 0.923

India 0.002 0.002 0.105 0.013 0.400 – 0.814 0.896 0.840 0.64 0.941 0.643

Israel 0.012 0.000 0.013 0.082 0.118 0.000 – 0.358 1.329 0.752 0.286 0.802

Japan 0.032 0.027 0.009 0.019 0.003 0.015 0.174 – 1.155 0.548 0.635 0.600

China 0.003 0.016 0.002 0.041 0.017 0.001 0.014 0.114 – 0.607 1.571 0.555

USSR 0.004 0.002 0.037 0.022 0.013 0.018 0.004 0.051 0.000 – 1.019 0.052

USA 0.036 0.010 0.001 0.047 0.000 0.016 0.023 0.040 0.000 0.060 – 1.067

Yugosl. 0.002 0.023 0.029 0.029 0.022 0.030 0.001 0.031 0.048 0.000 0.016 –

If the MDS solution were perfect, then all open circles in the Shepard diagram in
Fig. 3.1 would lie on the monotonic regression line, because then all data would be
mapped into distances that are (weakly) ordered as the data. This is obviously not
true here. We can measure “how untrue” it is by considering the squared difference
of each disparity and its MDS distance. These representation errors are shown in
the lower half of Table3.2. Each of them corresponds to a distance in the Shepard
diagram in Fig. 3.1, namely the (squared) vertical distance between an open circle
and a solid point on the regression line.

One can see in Table3.2 that most errors are quite small, with some exceptions. In
particular, the pair Egypt and Cuba has a representation error of 0.187, and the one
for France versus India is even larger (0.400). Thus, some similarity judgments are
relatively poorly represented in MDS space or, expressed differently, in the psycho-
logical map of the various countries. This could have many reasons. For example,
the students who made the similarity judgments (back in the 1970’s) did not know
on what criteria they should compare these pairs of countries (“France and Egypt?
What do they have in common?”), while in other cases they would use geographical
closeness, population size, or political alignment as a basis for comparison. Or the
students did not agree on these countries so that when aggregating the data across
individuals, we get inconsistencies.

We can construct a global measure of fit (actually: misfit) from these data by
simply aggregating the squares of the representation errors (ei j ). This is called the
rawStress (σraw). In order to avoid having towrite everything twice for dissimilarities
and also for similarities, assume that the proximities are given as dissimilarities
(δi j ). If the proximities are similarities si j , they first need to be transformed into
dissimilarities (either “by hand” orwithin theMDSprogram). A simple scale reversal
is accomplished by δi j = c−si j , where c = maxi j (si j ). A secondwayof transforming
si j into δi j exists if all si j > 0. Then choosing δi j = 1/si j is often a good choice. In
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case of correlations ri j , we can use δi j = (1−ri j )1/2, a conversion turning correlations
into Euclidean distances.1

Now, assuming that the data are dissimilarities (δi j ),

σ 2
raw =

∑

i< j

e2i j =
∑

i< j

(
f (δi j ) − di j (X)

)2
, (3.1)

where f () is the regression function2 of the MDS model.3 Missing δi j ’s are skipped
in formula 3.1 when summing. The di j (X)’s are distances (computed by formula
2.3 for the configuration X). The f (δi j )’s are disparities, often written as d̂i j ’s and,
therefore, also called “dhat’s”. Disparities are computed by regression (of type f ) of
the dissimilarities onto the distances so that f (pi j ) = d̂i j whileminimizing (3.1). The
distances di j (X) are Euclidean distances in almost all MDS applications, computed
by formula (2.1).

Since (3.1) is minimized over both X and the d̂i j ’s, an obvious but trivial solution
is to choose X = 0 and all d̂i j = 0. To avoid this, (3.1) needs to be normalized. This
can be done by dividing (3.1) by the sum of the squared distances. Doing so and
taking the square root4 gives the usual Stress-1 loss function of MDS:

Stress-1 =
√∑

i< j

(
d̂i j − di j (X)

)2
/
∑

i< j

d2
i j (X). (3.2)

This normalization has the important consequence that the Stress values do not
depend on the size of configurationX and, therefore, can be compared across different
MDS solutions.

So, turning to Table3.1, the sum of the elements in the lower half of the table is the
numerator of Stress-1: 0.001+ 0.058+ · · ·+ 0.000 = 2.26. The sum of the squared
elements of the upper half is the denominator: 0.7372+1.0172+· · ·+1.0672 = 63.74.
Hence, Stress-1 = (2.26/63.74)1/2 = 0.188.

In Eq.3.1 for the raw Stress, we added that missing δi j ’s would be skipped. We
can express this more formally and more generally as

1Transformations that convert similarity data into dissimilarities can be done in smacof by the
function.sim2diss(). For example, if the data is given as the correlation matrix R, diss <-
sim2diss(R, method = "corr") will generate a dissimilarity matrix that can be used in
out <- mds(diss) to compute an MDS representation.
2So, for example, in ratio MDS f (δi j ) = b · δi j , where b (�= 0) is a global scaling factor.
In interval MDS, f (δi j ) = a+b ·δi j , where the additive constant a and the multiplicative constant
b are picked so that the Stress is minimized. In ordinal MDS, f () is required to be monotonic.
3Note that the sum

∑
i< j runs over the lower triangular part of the dissimilarities only, because it

is assumed that the data are symmetric as, for example, in case of Tables1.1 and 3.1. Asymmetric
data require special models. See Sect. 5.4.
4The square root has no deeper meaning here; its purpose is to make the resulting values less
condensed by introducing more scatter.
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σ 2
raw(X) =

∑

i< j

wi j
(
f (δi j ) − di j (X)

)2
, (3.3)

wherewi j are nonnegative fixedweights. Suchweights can be used to handlemissing
data by settingwi j = 0 for any missing δi j . However, the weights can also be used to
reduce or to increase the influence of each datum on the MDS solution. For example,
they can express different reliabilities of the data, or different degrees of certainty in
case of direct similarity ratings for pairs of points. They could also be a function of
the δi j ’s themselves. For example, one may want to weight the influence of the data
by their size so that large dissimilarities have more impact on the MDS solution than
small ones. One way to do that is setting wi j = δi j .

The weights have to be inserted into the denominator of the Stress formula too,
and so the formula for Stress-1 becomes

Stress-1 =
(∑

i< j wi j
(
d̂i j − di j (X)

)2
∑

i< j wi j d2
i j (X)

)1/2

. (3.4)

When using MDS, Stress-1 is almost always reported (and requested by journal
editors) as a fit index. Hence, when reading “Stress” in MDS publications, it can be
assumed to mean “Stress-1”. Other varieties of Stress exist too, but they are not used
anymore in practice (Borg and Groenen 2005).

3.2 Evaluating Stress Statistically

A perfect MDS solution has Stress = 0. If this is true then the distances of the MDS
configuration represent the data without any errors. The MDS solution in Fig. 2.2
has a Stress value of 0.19. Hence, it represents the data only approximately in the
desired sense. But is this good enough? What is often considered as the “nullest of
all null” criteria to answer this question is that the observed Stress must be clearly
smaller than the Stress value expected for random data. If this is not true, then it
is impossible to interpret the MDS distances in any meaningful sense because then
the distances are not reliably related to the data. In other words: The points in MDS
space are not fixed; rather, they can be moved around more or less arbitrarily without
affecting the Stress.

One way to benchmark Stress values is to ask what Stress values can be
expected when scaling random data. This is easily answered by running MDS
analyses for many (500, say) n × n proximity matrices with elements sampled
from a uniform random distribution and then computing the mean and other statis-
tics of the resulting Stress values for m dimensions (Spence and Ogilvie 1973).
smacof provides a function that allows the user to compute the expected Stress
for any particular combination of parameters: randomstress(n, ndim, nrep,

type = c("ratio", "interval", "ordinal", "mspline")). So, for a solu-
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Table 3.3 Random Stress norms (mean, 5th percentile) for ordinal, interval, and ratio MDS in 2
or 3 dimensions with 10, . . . , 100 points

Points Ordinal MDS Interval MDS Ratio MDS

2-dim. 3-dim. 2-dim. 3-dim. 2-dim. 3-dim.

n mean 5% mean 5% mean 5% mean 5% mean 5% av 5%

10 0.191 0.154 0.103 0.073 0.236 0.202 0.141 0.116 0.328 0.258 0.298 0.228

15 0.262 0.239 0.169 0.151 0.289 0.268 0.193 0.175 0.383 0.341 0.347 0.301

20 0.298 0.283 0.205 0.192 0.319 0.305 0.222 0.211 0.417 0.385 0.376 0.342

25 0.322 0.311 0.228 0.219 0.337 0.327 0.241 0.233 0.440 0.416 0.397 0.371

30 0.338 0.329 0.244 0.237 0.349 0.342 0.254 0.248 0.457 0.437 0.411 0.392

35 0.349 0.342 0.256 0.250 0.359 0.353 0.264 0.259 0.469 0.452 0.425 0.407

40 0.358 0.353 0.265 0.260 0.366 0.361 0.272 0.268 0.480 0.465 0.435 0.418

45 0.365 0.360 0.273 0.268 0.372 0.367 0.278 0.275 0.489 0.476 0.443 0.430

50 0.371 0.367 0.278 0.274 0.376 0.373 0.283 0.280 0.496 0.484 0.451 0.440

100 0.396 0.394 0.305 0.304 0.398 0.397 0.307 0.306 0.534 0.529 0.489 0.484

tion as in Fig. 2.10 and asking for 500 replications of MDS analyses with ran-
dom data, we would run distrib <- randomstress(n = 40, ndim = 2, nrep

= 500, type = "ordinal") and then check the resulting distribution. For exam-
ple, mean(distrib) delivers the mean value; quantile(distrib, .05) the 5th
percentile and min(distrib) the smallest Stress value of anyMDS in the simulation.

In practical applications, one almost always finds that the observed Stress value is
clearly smaller than Stress values that can be expected for random data. For example,
for the case in Fig. 2.10, Table3.3 shows that the expected random Stress is 0.358,
with a 5% of 0.353. The Stress value for the (ordinal) MDS solution in Fig. 2.10 is
0.179, and thus much smaller than these benchmark values. Indeed, it is even smaller
than the minimal Stress value found in the randomstress() simulation (0.347).

To see how Stress depends more generally on the number of points, on the dimen-
sionality of theMDS solution, and on the type of regression used by theMDSmodel,
consider Fig. 3.2 (Mair et al. 2016). It shows that we can expect that more points,
stronger scale-level assumptions (i.e., interval vs. ordinal), and smaller dimensional-
ity lead to higher Stress values. In other words, the more restrictive the MDS model,
the higher the Stress in general. The figure also shows that ordinal and interval MDS
do not differ much in terms of Stress (for random data sampled from U (0, 1)), but
ratio MDS is definitely more difficult to fit to such random data.

Using random data to obtain a Stress distribution under a null hypothesis means
that we are drawing dissimilarities from a population over which we assume a distri-
bution that does not necessarily reflect the data-generating process under question. A
more modern way to create a stress-sampling distribution under the null hypothesis
ofmisfit is running a permutation test (Mair et al. 2016). Here, the given data (not just
any random data) are permuted and then subjected to MDS. This is repeated many
times and the distribution of the resulting Stress values is analyzed. Obviously, the
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Fig. 3.2 Random Stress norms for ratio, interval, and ordinal MDS; for 1, 2, and 3 dimensions;
and for different numbers of points (n)

outcome of such a test always depends on the particular data, and so no norm tables
as in case of random data can be derived. However, when using smacof, a permu-
tation test is easy. All the user has to do is run an MDS analysis (e.g., my.results
<- mds(dissim)) and then evaluate the function permtest(my.results).The pro-
gram will generate and scale 100 data permutations and, in case of the country simi-
larity data and the solution in Fig. 2.2, inform the user: Observed stress value:

0.185 p-value: 0.03 . Hence, the Stress of 0.185 for these data is “significant”
at the 5% level.5 Note that the permutation test is somewhat stricter than the classical
random Stress norms. It also takes into account basic properties of the given data.
Therefore, it provides a sharper and more realistic null hypothesis than the one under
fully random dissimilarities.

3.3 Stress and MDS Dimensionality

Increasing the dimensionality of the MDS space always makes it easier to find a
solution with a better fit. Thus, Stress can be expected to drop as the dimensionality
of the MDS space goes up. This is also evident from Fig. 3.2. The question we
now ask is whether increasing the dimensionality of an MDS solution also leads
to “significantly” smaller Stress values. To answer this question, one would first

5You can display this result graphically. For example, by ex <- permtest(my.results);
hist(ex$stressvec), xlim=c(ex$stress.obs-.05, max(ex$stressvec)
+.05)); abline(v=ex$stress.obs, col="red"); points(ex$stress.obs,
0, cex = 2, pch = 16, col = "red"). The plot shows the distribution of the Stress
values for the permuted data, with a red vertical line at the point of the Stress value for the observed
data.
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Fig. 3.3 Scree plot of Stress
values of 1d–5d MDS
representations for PVQ40
data and for comparable
random data
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computeMDSsolutions in, say, 1, 2, 3, and higher-dimensional spaces and then check
how the Stress values decreasewhen the dimensionality goes up. Oneway to evaluate
the effect is to compare the observed Stress values with Stress values for random data
and look for an elbow in the decreasingStress versusDimensionality function, similar
to scree tests in factor analysis. As simulation studies suggest (Spence and Graef
1974), the elbow indicates the dimensionality where additional dimensions represent
only random components of the data. In real (not simulated) data, however, elbows
are rarely pronounced. Consider such a plot for the personal value data discussed
above on p. 22. Figure3.3 shows that the expected Stress values for random data with
40 points drop rather smoothly when increasing the dimensionality of the (ordinal)
MDS space. The Stress values for the PVQ40 data are all considerably smaller, and
they also show a slight elbow at 2 (or, less strongly, at 3) dimensions. This is nice
to know, because theoretical reasons and many previous studies also suggest a 2d
solution for these data.

3.4 Stress Per Point

Stress is a global measure of fit, an aggregation of all representation errors. A fit
index that lies between the global Stress and the individual representation errors is
the Stress contribution of a single point, called Stress per Point (SPP). It is computed
by first averaging the squared representation errors related to p. For example, for
the point Egypt we turn to Table3.1 and sum the representation errors in row Egypt
(0.011, 0.000, 0.187) and in column Egypt (0.010, 0.013, ... , 0.029). This yields
0.046. We then express this value as the percentage of the sum of all representation
errors: 0.46/4.52 · 100. The contribution of Egypt to the total Stress is, therefore,
10.25%.

SPP values are automatically produced by smacof when running result <-

mds(..). They can be called from the output object result by the command
result$spp:
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Fig. 3.4 Bubble plot for
country similarity ratings;
size of bubble represents
SPP of country
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Fig. 3.5 SPP values for country similarity MDS solution in Fig. 2.2

Brazil Congo Cuba Egypt France India Israel Japan China USSR USA Yugoslavia

4.19 3.51 12.27 10.25 14.35 13.29 9.75 11.38 5.71 4.70 5.49 5.11

TheSPPvalues can be exhibited graphicallywithin a normalMDSplot by drawing
the points as bubbles (Fig. 3.4). There is also a function to plot the distribution
of the SPP values: The command plot(result, plot.type = "stressplot")

produces Fig. 3.5. It shows that there are no true outliers, but quite some scatter in
terms of fit among the points.Why France is the highest Stress contributor and Congo
the country with the relatively best fit, needs to be investigated by further research.
One reason could be that France is a country that generates a relatively complex
mental representation so that different respondents may use different criteria when
comparing it to other countries. Congo, on the other hand, could be just the opposite:
The respondents may all perceive it in the same way as a developing African country.

When assessing SPP values, one should first note that they become smaller the
more points there are, because the SPP’s are just contribution percentages of the total
raw Stress. The mean value of the SPP’s is always 100/n (%), with n the number
of points. Moreover, with real and noisy data, there should always be some scatter
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Fig. 3.6 Heatmap of
representation errors of MDS
solution in Fig. 2.2

about this mean value.6 Yet, is a value such as the 14.35 for France a substantively
meaningful deviation or just a consequence of measurement error? To answer this
question, we can look at the components of this SPP value in more detail, that is at
the distribution of the representation errors shown in Table3.2 (lower half). Under-
standing this table can be made easier by representing it as a heat map as shown in
Fig. 3.6 where the cells are the darker the larger the respective representation error.7

For France, one notes that the large SPP value is caused primarily by one single com-
parison, the perceived similarity of France and India. It seems that the respondents
had problems to compare these two countries (“Similar? In what sense?”).

3.5 Conditions Causing High Stress in MDS

Evaluating a given Stress value is a complex matter. It involves a number of different
parameters and considerations:

• The number of points (n): The greater n, the larger the expected Stress (because the
number of distances in an MDS solution grows almost quadratically as a function
of n).

6Simulations using pure random data show that in case of 12 points the SPP values scatter about
8.33 with an sd of 3.10; 96% of the SPPs are in the range from 14.53 to 2.13.
7This heat map is generated by library(gplots); diss <- sim2diss
(wish, method=7); res <- mds(diss, type="ordinal"); RepErr <-
as.matrix((res$dhat - res$confdist)∧2); yr <- colorRampPalette
(c("lightyellow", "red"), space = "rgb")(100); heatmap.2( RepErr,
cellnote=round(RepErr,2), Rowv = NA, Colv = "Rowv", lhei=c(0.05,
0.15), margins = c(8, 8), key=FALSE, notecol = "black", trace =
"none", col = yr, symm = TRUE, dendrogram = "none") , where RepErr is
the matrix of representation errors.
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• The dimensionality of the MDS solution (m): The greater m, the smaller the
expected Stress (because higher-dimensional spaces offer more freedom for an
optimal positioning of points).

• The error component of the data: The greater the noise in the data, the larger the
expected Stress (random data require maximal dimensionality).

• The MDS model: Stronger MDS models lead to higher Stress values than weaker
MDS models, because they leave less freedom for choosing optimal d̂i j values.

• The number of ties when using the primary approach to ties in ordinal MDS
(see Sect. 5.1): The more ties (=equal values) in the proximities, the smaller the
expected Stress. The reason is that the primary approach to ties does not require
that ties be mapped into equal distances, so MDS has more freedom to find an
optimal solution.

• The proportion of missing proximities (missing data): The more data are missing,
the easier it is to find an MDS solution with small Stress.

• Outliers and other special cases: Different points contribute differently to the total
Stress; eliminating particular points or setting certain data asmissing (e.g., because
they are errors), can reduce the total Stress considerably.

3.6 Stress in Unfolding

Evaluating the fit of unfolding solutions is in principle the same as in MDS, but
statistical benchmarks have not been published yet for unfolding. The user would
have to either compute them him-/herself using random data in a cycle of unfolding
analyses, or use the function unfolding() in smacof, because it offers a significance
test. This test is a permutation test which is actually a sharper test than a test based on
random data. If result <- unfolding(..) is given, then the test is simply called
by permtest(result). Moreover, unfolding also computes and plots SPP values
for both row and column points (see example in Fig. 8.1).

3.7 Stability of MDS Solutions

An important issue when evaluating the goodness of an MDS solution is its stability.
That is, does the configuration remain essentially the same if, for example, one of the
points was removed? This question can be answered by jackknifing, a resampling
technique that systematically leaves out one observation from the dataset and com-
putes anMDS solution for the n−1 remaining data (De Leeuw andMeulman 1986).
Jackknifing is offered by smacof. Given the output object result <- mds(..),
you can call JK <- jackknife(result) to compute the jackknife. Then, simply
typing JK gives you a “stability measure.” This measure is hard to evaluate without
benchmarks but plot(JK) exhibits the MDS configuration together with a star of
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Fig. 3.8 Bootstrapping of MDS solution of
personal values; ellipses indicate 95% confi-
dence regions of points

lines attached to each point that gives you an impression of the stability of the MDS
configuration under the various n − 1 conditions.

We show this in Fig. 3.7 for the ten personal value indexes and their MDS solution
in Fig. 2.13. The end point of the stars show the respective point positions of the
n − 1 jackknife configurations, fitted to each other, and subsequently connected to
their centroid. We here see that this MDS configuration is almost not affected at all
when single points are left out. That is true for any point.

More useful for the applied MDS user is bootstrapping (Jacoby and Armstrong
2014). It requires that you have a person-by-variable matrix from which the prox-
imities are derived. If these proximities are the correlations of the columns, then
the following code8 gives you the interval MDS solution of Fig. 3.8 together with
ellipses surrounding each point that represents a personal value PO, ... , SE (Fig. 3.8).
These ellipses mark the 95% confidence regions of the points. They are reasonably
compact, indicating that our ordinal MDS analysis has identified a configuration of
points that are likely to lie at or close to the reported positions.

8Note that we first compute an MDS solution and then use the solution as the first argument when
calling boot. The second argument is the data file; the third is the type of proximity measure for
the variables; and the fourth is the number of bootstrapping samples you want the function to draw.
It is set here to 500.
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1 R <- cor(PVQ40agg); diss <- sim2diss(R)
2 result <- mds(diss, type="ordinal") ## 2D ordinal MDS
3 set.seed(123)
4 resboot <- bootmds(result, data=PVQ40agg, method.dat="pearson", nrep=500)
5 plot(resboot, main="", xlab="", ylab="", col.axis = "white", ell=list(lty=1,

col="black", cex=2, label.conf=list(label=TRUE, pos=3, col=1, cex=1.5)))

3.8 Summary

The formal goodness of an MDS solution is measured by computing the solution’s
Stress. Stress is a loss function: It is zero if the solution is perfect; otherwise, it is
greater than zero. Stress aggregates the representation errors of each data-distance
pair. They correspond to the (vertical) deviations from the regression line in a data-
vs.-distances plot (Shepard diagram).When evaluating the Stress value of a particular
MDS solution, the user must assess it in the context of various parameters and con-
tingencies such as the number of points, the dimensionality of the MDS space, the
rigidity of the particular MDS model, and the reliability of the data. A minimum
criterion for an acceptably low Stress value is that it is clearly smaller than the Stress
expected for random data. It is often useful to also study the contributions of the
various variables of the data matrix to the global Stress (Stress per Point, SPP) and
even the single representation errors of any Stress measure. This may help identify
outliers and other reasons for high Stress. Stability is another criterion of good-
ness of an MDS solution. It can be evaluated using jackknifing and bootstrapping.
Bootstrapping generates confidence regions for the points of theMDS configuration.
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Chapter 4
Proximities

Abstract Thedata forMDS, proximities, are discussed. Proximities can be collected
directly as judgments of similarity; proximities can be derived from data vectors;
proximities may result from converting other indexes; and co-occurrence data are
yet another popular form of proximities.

Keywords Similarity ratings · Sorting method · Feature model · LCJ model
Co-occurrence data · S-coefficient · Jaccard coefficient · Simple matching
coefficient · Gravity model

A major advantage of MDS over related statistical methods (e.g., factor analysis)
is that MDS can handle very different data as long as these data can be interpreted
as proximities, i.e., as measures of similarity or dissimilarity. They can be collected
either directly (e.g., as numerical ratings of similarity), or they can be derived from
other data (e.g., correlations).

4.1 Direct Proximities

In Sect. 2.2, we discussed a study where the similarity of different countries was
assessed by asking persons to rate the similarity of all pairs of 12 different countries
on a rating scale. More concretely, each pair of countries (e.g., “Japan–China”)
was presented to the respondents, together with a rating scale with nine categories
numbered from 1 to 9 and labeled as “very different” (for category 1) to “very
similar” (for category 9). This method generated 66 pairwise ratings per person,
enough data to scale each single person via MDS. A similar procedure was used in
Sect. 2.3, where a sample of subjects was asked to judge the pairwise similarities of
16 different rectangles on a 10-point rating scale ranging from “0=equal, identical”
to “9=very different.”

Pairwise similarity ratings can become difficult for the respondents. The rating
scale may be too fine-grained (or too coarse) for some respondents so that their
ratings become unreliable. Market researchers, therefore, typically prefer a sorting
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method over ratings, where the subjects workwith a deck of cards. Each card exhibits
exactly one pair of objects (e.g., the pair “Japan–China”). The subjects are asked to
sort the cards so that the card with the most similar pair is on top of the deck, and
the card showing the most dissimilar pair at the bottom. Since a complete sorting of
all cards is often time-consuming and difficult, the sorting is often simplified: The
subjects are asked to begin by sorting the cards into only two stacks, one for the
“similar” pairs, and one for the “dissimilar” pairs. For each stack, this two-stacks
sorting is repeated several times until the subjects feel that they cannot reliably split
the remaining stacks any further. One then numbers the various stacks from most
similar to least similar pairs and assigns these numbers to the pairs in the respective
stacks. Thus, pairs that belong to the same stack receive the same similarity score.

These examples show that collecting direct proximities can be done on the basis of
relatively simple judgments. However, pairwise ratings and card sortings also have
their drawbacks. They can both lead to an excessively large number of pairs that
must be judged by the subjects. For the n = 12 countries of the study in Sect. 2.2,
for example, each subject had to rate 66 different pairs of countries. That seems
acceptable, but for n = 20 countries, say, the number of different pairs goes up to
n · (n − 1)/2 = 190. Assessing that many pairs (even without replications) is a chal-
lenge even for a verymotivated test person. To alleviate this problem, various designs
for reducing the number of pair comparisons have been developed. It was found that
a random sample of all possible pairs is not only a simple but also a good method of
reduction: One collects only data on the pairs that belong to the random sample and
sets the proximities of all other pairs to “missing” (NA).

Spence and Domoney (1974) showed in extensive simulation studies that the
proportion of missing data can be as high as 80% and (ordinal) MDS is still able
to recover an underlying MDS configuration quite precisely. One should realize,
however, that these simulations made a number of simplifying assumptions that
cannot automatically be taken for granted in real applications. The simulations first
defined some random configuration inm-dimensional space. The distances among its
points were then superimposed with random noise and taken as proximities. Finally,
certain proximities were eliminated either randomly or per systematic design. Them-
dimensionalMDSconfigurations computed from these datawere then comparedwith
them-dimensional configurations that served to generate the data. The precision with
which MDS was able to reconstruct the original configurations from the proximities
was found to depend on the proportion of missing data; on the proportion of random
noise superimposed onto the distances; and on the number of points. In all simulated
cases, the dimensionality of the MDS solution was equal to the true dimensionality,
and the number of points was relatively large from anMDS user’s point of view (i.e.,
32 or more). Under these conditions, MDS was able to tolerate large proportions of
missing data. If, for example, one-third of the proximities is missing and the error
component is equal to 15%, then the MDS distances can be expected to correlate
with r = 0.97 with the original distances!

One can improve the robustness of MDS by collecting primarily proximities of
pairs of objects that seem very dissimilar rather than similar, because one thus has
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proximities for the large distances and they are particularly important for the precision
of recovery (Graef and Spence 1979).

The labor involved in data collection can be further reduced by simplifying the
individual similarity judgments. Rather than asking for graded ratings on, say, a 10-
point scale, onemayoffer only two response categories, “similar” (1) and “dissimilar”
(0) for each pair of objects. Summing such dichotomous data over replications or
over respondents leads to confusion frequencies or, after dividing by the number of
cases, to confusion probabilities. Yet, such aggregations are not necessarily required.
Green and Wind (1973) showed in a simulation study that robust MDS is possible
using coarse data—given advantageous side constraints such as scaling in the true
dimensionality and having many points. The study shows, though, that some grading
of the data is better than 1-0 data, but very fine grading has essentially no effect on
the robustness of MDS. Hence, if one collects direct proximities, it is not necessary
to measure up to many decimals (if that is possible at all); rather, nine or ten scale
categories are sufficient for MDS.

4.2 Derived Proximities

Direct proximities are rather rare in practice. Most applications of MDS are based on
proximity indexes derived from pairs of data vectors. One example is the proximities
used in Chap.1, where the correlations of the frequencies of different crimes in
different states were taken as proximities of these crimes.

Indexes of similarity are often used in market research. Assume we want to assess
the subjective similarity of different cars. Proximities could be generated by first
asking a sample of test persons to rate the cars we are interested in on such attributes
as design, fuel consumption, price, and performance. Then, the correlations of the
ratings for each pair of cars can be taken as an indicator of their perceived similarity.

Instead of using correlation coefficients, one can also consider measuring the sim-
ilarity of data profiles by the Euclidean or by the city-block distance. Such distances
can differ substantially from correlations. If, for example, two variables with n ele-
ments each have the same profile of ups and downs so that their values differ by an
additive constant a only, their correlation is r = 1 and their Euclidean distance is
a
√
n. Conversely, two variables with distance a

√
n correlate with r = −1 if their

profiles cross each other in the form of an X. Hence, whether one wants to use a
correlation or a distance for measuring the proximity of profiles must be carefully
considered.

If the variables are (im- or explicitly) standardized, the relation of correlations
and (Euclidean) distances becomes simpler. Assume you have two variables, X and
Y , both standardized so that they have zero means and sums-of-squares equal to 1.
Their product-moment correlation is simply rXY = ∑

i xi yi . Then, their Euclidean
distance is
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dXY =
(

N∑

i=1

(xi − yi )
2

)1/2

=
(∑

x2i +
∑

y2i − 2
∑

xi yi
)1/2

= const · √(1 − rXY ), where const = √
2. (4.1)

Hence, when using ordinal MDS, it becomes irrelevant which proximity measure is
used, because both yield (inversely) equivalent rank orders. For interval MDS, using
correlations or Euclidean distances also does not make much difference, because the
two measures are almost linearly related.1

Besides Euclidean and other Minkowski distances, many other distance func-
tions are used in data analysis. An interesting case is discussed by Restle (1959). In
his feature models of similarity, he defines the distance between two psychological
objects as the relative proportion of the elements in their mental representations that
are specific for each object. That is, for example, if a person associates with Japan
the features X, Y, and Z, and with China A, B, X, and Z, then their psychological
distance is 3/5 = 0.6, because there is a total of five different mental elements and
three of them (Y, A, and B) are specific ones.

4.3 Proximities from Index Conversions

Proximities can sometimes be generated by theory-guided conversions of givenmea-
surements on pairs of objects. Here is one example. Glushko (1975) was interested
in assessing the “psychological goodness” of dot patterns. He constructed a set of
different patterns and printed each pair on a separate card. Twenty subjects were then
asked to indicate which pattern in each pair is the “better” one. The pattern judged
“better” received a score of 1, the other one a 0. These scores were summed over all
subjects. A dissimilarity measure was constructed from these sums by subtracting
10 (i.e., the expected value for each pair of patterns if all 20 subjects would decide
their preferences randomly) from each sum and then taking the absolute value of this
difference.

Borg (1988) used a different conversion to turn dominance probabilities into prox-
imities. In the older psychological literature, many data sets are reported where N
persons are asked to judge which object in a pair of objects possesses more of a cer-
tain property. For example, considering crimes, the persons decide whether Murder
is “more serious” than arson or not. Or, for paintings, is picture A “prettier” than

1For other forms of standardization, the results are essentially the same. For example, when turning
the variables first into z-scores (with mean zero and sd = 1), Eq. (4.1) changes to const = √

2N .
Note, however, that when you compute a product-moment correlation, you implicitly standardize
your variables. If that makes sense, you should also standardize them before computing distances,
but then using correlations or distances does not make a difference in ordinal MDS.
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picture B? The object chosen by the subjects receives a score of 1; the other object is
rated as 0. If one then adds these dominance scores over all N subjects and divides by
N , dominance probabilities, pi j , are generated. Such data are often scaled by using
Thurstone’s law of comparative judgment procedure (Thurstone 1927). It assumes
that each pi j is related to the distance di j on a one-dimensional scale by a cumulative
normal function. This rather strong assumption can be replaced by a weaker model
that gives the data more room to speak for themselves: This model simply postulates
that the dominance probabilities are related to distances by a monotonically increas-
ing function, without specifying the exact form of this function. To find the function
that best satisfies this model, ordinal MDS can be used. First, however, one needs to
convert the dominance probabilities into dissimilarities via δi j = |pi j − 0.5|. Then,
theMDS distances—negatively signed if pi j > 0.5,meaning you have tomove to the
left from point i to get to j—are plotted against the pi j probabilities. If Thurstone’s
model is correct, the regression trend should form an inverted S-shaped function
running from the upper left-hand side to the lower right-hand side.

More examples for index conversions are discussed in Borg and Groenen (2005).
We do not pursue this topic here further, because the two examples above should have
made clear that it makes no sense to report such conversions one after the other in sta-
tistical textbooks. Rather, they always require substantive-theoretical considerations
that can be quite specific for the particular setting.

4.4 Co-occurrence Data

An interesting special case of proximities are co-occurrence data. Here is one exam-
ple. Coxon and Jones (1978) studied the categories that people use to classify occu-
pations. Their subjects were asked to sort a set of 32 occupational titles (such as
barman, statistician, and actor) on the basis of their overall similarity into as many
or as few groups as they wished. The result of this sorting can be expressed, for each
subject, by a 32 × 32 incidence matrix, Z, with a score of 1 wherever its row and
columns entries are sorted into the same group and 0 elsewhere.

The incidence matrix Z in the example above is a data matrix of directly collected
same–different proximities. This is not always true for co-occurrence data, as the fol-
lowing study by England and Ruiz-Quintanilla (1994) demonstrates. These authors
studied “the meaning of working.” For that purpose, they asked large samples of
persons to consider a variety of statements such as “if it is physically strenuous” or
“if you have to do it” and check those statements that would define work for them.
The similarity of two statements was then defined as the frequency with which they
were both checked by the respondents. Note that “similarity” was never assessed
directly. Rather, it was defined by the researchers. No person in these surveys was
ever asked to directly judge the “similarity” or the “difference” of anything.

Co-occurrence data often consist of a binary presence–absence matrix. An exam-
ple is a data matrix where the columns represent medical diseases, the rows different
symptoms, and the entries the presence (1) or absence (0) of the symptom. For such
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Table 4.1 Cumulative frequencies of co-occurrence types for column variables x and y across all
rows; 1 and 0 indicate presence and absence, respectively, in the data matrix

x = 1 x = 0 Sum

y = 1 a b a + b

y = 0 c d c + d

Sum a + c b + d a + b + c + d

data, one can define surprisingly many similarity measures. For each pair of column
variables x and y, there are four possible types of co-occurrence for each row vari-
able: The row variable is present in both x and y (11); it is absent in both x and y
(00); or it is present in one case but not in the other case (10 or 01). The observed
frequencies of these types of co-occurrence for x and y across all rows of the data
matrix are denoted as a, d, b, and c, respectively, as shown in Table4.1.

Based on these frequencies, Gower (1985) proposed a system of similarity coef-
ficients. One of them is

S2 = a/(a + b + c + d) ,

the frequency of hits in both x and y, relative to the frequency of all possible com-
binations of hits in x and y (= a + b + c + d). Another coefficient is

S3 = a/(a + b + c) ,

the frequency of joint occurrences in x and y, relative to the frequency of cases where
at least one row variable is present in x and y (Jaccard similarity index).

Choosing a particular S-index over another such index can have dramatic conse-
quences. Bilsky et al. (1994) report a study on different behaviors exhibited in family
conflicts, ranging from calm discussions to physical assault. The intention was to
find out in which psychologically meaningful ways such behaviors can be scaled.
They conducted a survey asking which of a list of different conflict behaviors had
occurred in the respondent’s family in the last five years. If one assesses2 the similar-
ities of the reported behaviors by S3, a subsequentMDS generates a one-dimensional
scale on which the behaviors are arrayed from low to high aggression. This order
makes psychological sense. If one uses S2, however, then this simple solution falls
apart. The reason is that the very aggressive behaviors are also relatively rare, which
inflates d so that these behaviors become highly dissimilar in the S2 sense.

Of the many further variants of S-coefficients (Gower 1985; Cox et al. 2000; Borg
and Groenen 2005), we here mention the simple matching coefficient,

2An R-function, dist.binary(), for computing ten different S-coefficients—including S2, S3,
and S4 – among the columns of a binary data matrix can be found at https://rdrr.io/rforge/ade4/src/
R/dist.binary.R.

https://rdrr.io/rforge/ade4/src/R/dist.binary.R
https://rdrr.io/rforge/ade4/src/R/dist.binary.R
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S4 = (a + d)/(a + b + c + d) ,

which interprets both the joint occurrence and the joint nonoccurrence of events as
a sign of similarity. In the above example of conflict behaviors, S4 would assess the
rare forms of behavior as similar because they are rare.

4.5 The Gravity Model for Co-occurrences

Co-occurrences are, by themselves, almost never reasonable measures of similar-
ity. Rather, they have to be expressed relative to other observed (or theoretically
expected) co-occurrences or occurrences—as shown above for the S-coefficients.
Another interesting approach to process co-occurrence data is the gravity model
which formulates a congruence coefficient for co-occurrence data that is directly
related to distance estimates.

Let ckk denote the frequency with which stimulus k occurred in a given context,
and ci j the frequency with which stimulus i and stimulus j co-occurred. Then, the
gravity model defines the dissimilarity of i and j as

δi j =
(
cii c j j
ci j

)1/2

, for ci j > 0 . (4.2)

In (4.2), 1/ci j transforms the similarity measure ci j into a dissimilarity score;
multiplyingby cii c j j expresses the similarity relative to the product of the occurrences
of i and j ; and the square root follows from the origin of the model in physics.

The gravity model is based on Newton’s law of gravitation that expresses the
gravitational force F of two bodies with masses m1 and m2 and distance d as F =
G · (m1 · m2)/d2, with G the gravitation constant. So, if we interpret F as the force
of mutual attraction of two observed stimuli i j , their co-occurrence ci j as a measure
of that force, and the mass mk as ckk , we can estimate d as in formula (4.2).

Formula (4.2) leaves open what to do if two stimuli do not co-occur, that is, if
ci j = 0. Obviously, in that case, we cannot compute δi j by this formula. Rather, we
need a reasonable definition. One solution is setting δi j equal to a number greater
than any dissimilarity based on nonzero co-occurrence data. This would not affect an
ordinal MDS (with the primary approach to ties) of the resulting dissimilarities, but
it would affect an interval MDS, for example. Thus, the preferred solution that works
for any type of MDS is defining δi j as missing (=NA) in the zero co-occurrence case
so that these values are skipped in MDS.3

Tobler and Wineburg (1971) used the gravity model and MDS in an intrigu-
ing application constructing a map of Assyrian merchant colonies in Bronze Age

3If you have many cases of no co-occurrence, then your dissimilarity matrix becomes very sparse.
Then, of course,MDSmay become rather arbitrary, producing fancy configurations based on almost
no data.
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Anatolia (Turkey) on the basis of data provided by the Cappadocian cuneiform
tablets. They first formulated the gravity model as Ii j = kPi Pj/d2

i j , where “Ii j is
the interaction between places i and j ; k is a constant, depending on the phenomena;
Pi is the population of i ; Pj is the population of j ; and di j is the distance between
places i and j . Distance may be in hours, dollars, or kilometers; populations may be
in income, numbers of people, numbers of telephones, and so on; and the interaction
may be in numbers of letters exchanged, number of marriages, similarity of artifacts
or cultural traits, and so on” (p. 2). Tobler and Wineburg (1971) then chose the num-
ber of occurrences of a town’s name on the cuneiform tablets as Pi , and the number
of co-occurrences on the tablets as Ii j . The resulting distance estimates were used as
input for a 2d ordinal MDS in an effort to find the (largely unknown) geographical
map of the 62 “more important” places of 119 towns mentioned on the tablets.

Mair et al. (2014) report another application of the gravity model. They studied
the semantic space of certain self-reported statements of Republican voters in the
USA. These voters were asked to complete the sentence “I’am Republican, because
. . . ”. Their responses are published on the official Web site of the Republican party.
252 unique statements and the 35 most frequent key words were identified by text
analysis methods. They were used to form a 252 × 35 incidence matrix Z with cells
of 1 if statement i contains word j , and zero if not. The matrix product Z′Z is the
co-occurrence matrix C in formula (4.2).

Cwas then turned into dissimilarities using a slight extension of the above gravity
model, the power gravity model. This model replaces the exponent 1/2 in formula
(4.2) by λ/2. The exponent λ is chosen to weight the dissimilarities. With large
exponents, large dissimilarities become relativelymore important;withλ = 1,we get
the simple gravitymodel; andwith negative λ’s, the impact of small dissimilarities on
theMDS solution is increased.Mair et al. (2014) used λ = 2 for their data and remark
that “there is a trade-off between the structure determined by λ and the goodness-
of-fit as quantified by the Stress value: The more structure we create, the higher the
Stress value” (p. 5). This is so because heavily weighting large dissimilarities, for
example, makes it generally easier to find a low-Stress solution, because thenmost of
the smaller dissimilarities have essentially zero weights in the Stress measure. With
huge λ’s, only very few dissimilarities matter.

In smacof, one can simply use the gravity() function to process the incidence
matrix Y in the sense of the power gravity model. This makes it easy to use the
model:

1 data(GOPdtm)
2 gravD <- gravity(GOPdtm, lambda = 2)
3 res <- mds(gravD$gravdiss)
4 res$weightmat ## NA’s were blanked out when fitting the model
5 plot(res)
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4.6 Summary

MDS builds on proximity data. Many data qualify as proximity data. In psycho-
logical research, proximities are sometimes collected directly by asking persons to
rate the perceived similarity of objects of interest on a numerical rating scale. A
convenient alternative is sorting a stack of cards, with one card per object pair, in
terms of the objects’ similarity. Proximities can also be derived from other measures.
The inter-correlations of the variables in a typical person-by-variables data matrix,
for example, is a popular example. Sometimes, proximities can be constructed by
converting other measures on pairs of objects such as probabilities with which object
i dominates object j . Yet another form of proximity data are measures that build on
co-occurrence data, where the frequencieswithwhich the events i and j , respectively,
occur or do not occur at time t are combined into an index of co-occurrence such as
Gower’s S-indexes or the Jaccard index. For co-occurrence data with very skewed
distributions, the gravity model offers one possibility to generate dissimilarities that
lead to meaningful MDS solutions.
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Chapter 5
Variants of MDS Models

Abstract Various forms of MDS are discussed: ordinal MDS, metric MDS, MDS
with different distance functions, MDS for asymmetric proximities, individual dif-
ference MDS models, MDS for more than one proximity value per distance, and
weighting proximities in MDS.

Keywords Ordinal MDS · Interval MDS · Ratio MDS · Drift vector model
Indscal · Idioscal · Unfolding

5.1 The Type of Regression in MDS

Amain difference of various MDSmodels is the type of regression that these models
use. The most popular MDS model in research publications has been ordinal MDS,
sometimes also—less precisely—called nonmetric MDS. Ordinal MDS computes
an m-dimensional configuration X so that the order of the distances over X deviates
as little as possible from the order of the proximities. Hence, in ordinal MDS and
assuming that we have dissimilarities δi j as data (or that the proximities have been
converted into dissimilarities), the representation function

f : δi j → di j (X) (5.1)

is monotone so that
f : δi j < δkl → di j (X) ≤ dkl(X) (5.2)

for all pairs i and j, and k and l, respectively, for which data (dissimilarities) are
given. Proximities that are not defined (“missing data”) are skipped. That is, if pi j is
missing, it imposes no restriction onto the MDS solution so that the distance di j (X)

can be chosen arbitrarily.
An important distinction between two forms of ordinal MDS is how ties (i.e.,

equal data values) are treated. The default in most programs is that ties can be broken
in the MDS solution. That means that equal proximities need not be mapped into
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equal distances. This is called the primary approach to ties. The secondary approach
to ties (“keep ties tied”) leads to an additional requirement for ordinal MDS, namely

f : δi j = δkl → di j (X) = dkl(X). (5.3)

The primary approach to ties is usually more meaningful. Consider, for example,
the data discussed in Sect. 2.2 where subjects had to judge the similarity of different
countries on 9-point rating scales. Here, ties are unavoidable, because the rating scale
had only nine different levels: With 66 different pairs of countries, this will auto-
matically lead to the same proximity values for some pairs, even if the respondent
feels that the respective countries are not really equally similar. Using a 66-point
rating scale would not help either, because no respondent can make reliable distinc-
tions on such a scale. Moreover, each single judgment is somewhat fuzzy and not
absolutely reliable. Hence, equal ratings often mean something like “about equal”
or “practically equal” but not simply “equal.”

A second class of MDS models, called metricMDS, goes back to the beginnings
of MDS in the 1950’s (Torgerson 1952). Such models specify an analytic (usually
monotone) function for f rather than requiring that f must be only “some” mono-
tone function. Specifying analytic mapping functions for f has the advantage that
it becomes easier to trace the mathematical properties of such models. Moreover,
metric MDS avoids some technical problems of ordinal MDS such as, in particular,
degenerate solutions (see Sect. 7.5). On the other hand, they typically lead to solu-
tions with poorer fit to the data, because it is generally more difficult to represent data
in more restrictive models. Yet, this may not be a drawback, because an excellent
fit can also mean that more error is represented in the MDS solution. Ordinal MDS
tends to over-fit the data, while metric MDS may iron out error in the data so that
the solution becomes more robust and replicable.

The standard model of metric MDS is interval MDS, where

f : δi j → a + b · δi j = di j (X), (5.4)

with a and b ( �= 0) as free parameters. Interval MDS attempts to preserve the data
in the distances such that the relations of differences (“intervals”) among the data
are preserved.1 This makes sense, for example, if the data are interval-scaled. In that
case, no meaningful information is lost if the data are scaled by multiplying them by
some nonzero constant b and by adding an arbitrary constant a to each data value.
All statements about the data that remain invariant under such linear transformations
are considered meaningful; all other statements (e.g., statements about the ratio of
data values) are not meaningful.

1Consider Table 1.1. Auto Theft and Murder are correlated with .11; Rape and Larceny with .60;
the difference between these correlations is .49. This is about the same as the correlation between
Assault and Burglary (.52). So, in the interval MDS solution in Fig. 1.4, the difference of the
distances between the points for Auto Theft and for Murder should be about equal to the distance
between Assault and Burglary.
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More MDS models follow easily by choosing other mapping functions f (e.g.,
an exponential or a power function). However, if f is not at least weakly monotone,
then such functions do not lead to easily interpretable results.

AnMDSmodel that is stronger than interval MDS is ratio MDS, often considered
the most restrictive model in MDS. It drops the additive constant a of interval MDS
as an admissible transformation and searches for a solution that preserves the prox-
imities up to an overall scaling factor b (b �= 0). In case of the rectangle data analyzed
in Chap. 2, this model could be seriously considered, because here the response scale
started at “0=equal, identical” and hence scores of zero aremeaningful if the subjects
used the scale correctly.

The user chooses a particular MDS model f for a variety of reasons:

• Scale level. If theoretical or empirical reasons speak for a certain scale level of
the data, then it usually makes sense to pick a corresponding MDS model. The
choice of an appropriate scale level also depends on the zeitgeist to some extent. In
the 1970s, for example, ordinal MDS was heavily pushed, whereas today metric
(even: ratio) MDS has become the default (at least for statisticians) since it forces
the user to justify any substantively blind optimizing transformations of the data.

• Minimize assumptions. The researcher wants to assume as little as possible about
the relation of the data to MDS distances. Rather, he/she wants to let the data
speak for themselves. Or he/she wants to get something for as little as possible. A
typical case is a small inter-correlation matrix that is scaled with ordinal MDS and
then interpreted in terms of dimensions or in terms of regions with wildly curving
boundaries and many misplaced points. This can be useful as a first step in a field
of research where little is known, but, of course, it should be replaced with more
restrictive models in the long run.

• Robustness versus over-fitting. One often scales given proximities with both ordi-
nal MDS and interval MDS. Ordinal MDS leads to smaller Stress values than
interval MDS, but it may simply over-fit the data and, occasionally, it can also lead
to meaningless degenerate solutions (see Sect. 7.5). Hence, when running both
ordinal MDS and interval MDS, one can cross-validate the solutions and test for
artifacts.

• Nonlinear mappings. The proximities are sometimes predicted to have a nonlinear
relation to the distances in an MDS space. One example is Thurstone scaling,
discussed on p. 47. In that case, one may not know how to specify the regression
function analytically, or no program exists that would fit such a model, or one may
want to test a certain prediction about the regression trend but not enforce it. So,
ordinal MDS is used and then the Shepard diagram is studied closely for the shape
of the regression trend. One may also first replace the data with their ranks and
then use interval MDS: Weeks and Bentler (1979) have shown in simulations that
this rank-linear MDS successfully recovers configurations whose distances have
highly nonlinear (but still monotone) relations to the data.

• Dimensionality. Using weak MDS models leads to relatively small Stress values.
This is often taken as evidence that one does not need higher-dimensional repre-
sentation spaces. After all, if the Stress is small, then there is little left to explain.
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This reasoning is somewhat too formal, though, because what one is really inter-
ested in are meaningful and replicable solutions. The Stress of the solution is but
a technical index.

• Marketing. The user wants to get a small Stress value, because he/she fears that
otherwise his/her results will not be publishable. This is, of course, a poor reason,
because the Stress must always be evaluated relative to the particular MDSmodel,
the dimensionality of the solution space, the number of points, and many other
criteria such a robustness, stability, and replicability (Mair et al. 2016).

MDS models with other regression functions than those based on Steven’s four
classical scale levels exist too. One example is MDS with spline transformations on
the data. Splines are piecewise (connected in k knots) polynomial functions of the
n-th degree that lead to smooth (but not necessarily linear or monotone) regression
lines in Shepard diagrams. The knots and the degree of the polynomials control the
spline.

To illustrate what happenswhen running different types ofMDSwith real data, we
use the inter-correlations in Table 2.2. Figure5.1 exhibits the Shepard diagrams of 2d
MDS solutions for these correlations. They show that ratioMDS fails completely, not
because the regression trend is not nearly linear, but because the regression line must
run through the origin: Only then are the data mapped into distances that preserve
their ratios. The spline regression here is forced to run through the origin too. It is
almost completely linear and has almost the same Stress as interval MDS.

Figure5.1 shows, moreover, that ordinal MDS and interval MDS arrive at similar
conclusions. The regression trend in ordinal MDS is almost linear, except for local
steps and dents that are not interpretable andmost likely not replicable. Yet, the Stress
for ordinal MDS is clearly smaller than the Stress for interval MDS, simply because
the regression line is closer to the points in the Shepard diagram in case of ordinal
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MDS. Experience with empirical data shows that ordinal MDS and interval MDS
often lead to highly similar results. Simulation studies come to the same conclusion
(see Fig. 3.2). Ratio MDS is typically found to be much more demanding than either
ordinal or interval MDS.

5.2 Euclidean and Other Distances

A second criterion for classifying MDS models is choosing a particular distance
function. In psychology, the family of Minkowski metrics (specified in formula 2.3)
used to be popular for modeling subjective similarity judgments of different types
of stimuli (analyzable vs. integral stimuli) under different conditions (such as time,
pressure). However, applications of MDS in the current literature almost always use
Euclidean distances, because only they guarantee that the geometry is notmisleading.
Few MDS programs are even able to compute solutions with distances other than
Euclidean distances. If they offer other distance functions too, then typically only
the city-block metric.

Euclidean distances, as all other Minkowski distances, imply a flat geometry. In
special cases, it can be useful to construct MDS representations in curved spaces.
As an example, one can think of distances on a sphere. Here, the distance between
two points is the shortest path (“geodesic path”) in the two-dimensional curved
space (i.e., on the sphere), which is the length of a cord spanned between two points
over the surface of the sphere or, expressed more sloppily, airline distances. Curved
geometries can sometimes be useful (e.g., in psychophysics), but they are never used
in general data analysis situations. Circular scales do, however, play an important role
in psychology, but they do not require true curved-space analysis. Rather, they use
circles or balls embedded in Euclidean spaces. See, for example, “spherical MDS”
on p. 72 and “circular unfolding” on p. 103.

5.3 MDS of Asymmetric Proximities

Distances are always symmetric, i.e., di j = d ji , for all i, j . Proximities that are not
symmetric can, therefore, not be represented by distances in MDS models. Yet, as
long as the asymmetries are just error-based, no real problem arises. MDS simply
irons out these errors. Or the user eliminates or reduces them by averaging corre-
sponding data values.

Asymmetries may, however, be reliable and meaningful. Examples are the asym-
metries in an import–export matrix, where country i imports more from county j
than vice versa. Then, social networks can be studied in terms of how much each
person i likes the other person j : Liking is rarely fully symmetric, and asymmetries
can be very meaningful. A third example is simply the order of presentation when
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making pairwise comparisons of i and j : How similar is the Morse code di-di-da to
the subsequent da-di, and how similar is da-di to the following di-di-da (see p. 70)?

A simple approach of dealing with asymmetric proximities in the MDS context is
the drift vector model. The model requires decomposing the proximity matrix P into
a symmetric part S and an asymmetric part A. The symmetric part is computed by
averaging corresponding cells, S = (P + P′)/2, with elements si j = (pi j + p ji )/2.
Thismatrix is then scaled as usualwithMDS.The rest of the proximities isA = P−S,
with elements ai j = pi j − si j . This matrix is skew-symmetric. It can be represented
on top of theMDS solution for S by attaching an arrow on each point i that is directed
toward point j , or away from point j , depending on the sign of the asymmetry. The
length of this arrow is chosen as k · |ai j |, with k some convenient overall scaling
factor (e.g., k = 1/mean(pi j )).

We demonstrate this model with a small example. Let P be a matrix of similarity
values (e.g., the number of references in row journal i to column journal j):

P =
⎡
⎢⎣

0 4 6 13
5 0 37 21
4 38 0 16
8 31 18 0

⎤
⎥⎦ = S + A =

⎡
⎢⎣

0 4.5 5.0 10.5
4.5 0 37.5 26.0
5.0 37.5 0 17.0
10.5 26.0 17.0 0

⎤
⎥⎦ +

⎡
⎢⎣

0.0 −0.5 1.0 2.5
0.5 0.0 −0.5 −5.0

−1.0 0.5 0.0 −1.0
−2.5 5.0 1.0 0.0

⎤
⎥⎦ .

For S, interval MDS yields the point configuration in Fig. 5.2. The values of A are
represented as arrows in this plot. They are inserted one by one into theMDS solution.
For example, on point #2, an arrowwith a length of 5 units is attached pointing toward
point #4. The resultant of all arrows attached to a point is the drift vector of that point,
represented by the thick arrows with larger arrow heads in Fig. 5.2.

One notices in this vector field that, for example, journals #2 and #3 refer to
each other relatively often and also quite symmetrically (because these points are
close, and because the drift vectors are short). For journals #2 and #4, the mutual
referencing is clearly smaller and, moreover, it is also rather asymmetric: Journal #2
looks more toward #4 than vice versa.

One can experiment somewhat with how one wants to represent the symmetries
and the asymmetries (e.g., show all arrows or only resultant vectors; only vectorswith
the same meaning; use different scale factors for lengths of arrows). This can easily
be done by using andmodifying theR script for plotting Fig. 5.2 in the supplementary
code file.

Let us look at a real data example. Rothkopf (1957) studied to what extent 598 test
persons confused different acoustic Morse signals. He used 36 different signals, the
26 letters of the alphabet, and the natural numbers from 0 to 9. In the experiment, each
person had to judge whether two signals, i and j , presented acoustically one after the
other, were the same or not the same. Both (i, j) and ( j, i) had to be judged in the
experiment. The percentage of “Same!” judgments (i.e., the confusion probability)
for each pair is taken as a measure of the psychological similarity of each pair.
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Fig. 5.2 Asymmetry vectors over an MDS
solution; thick arrows with large heads are
resultants (drift vectors)

Fig. 5.3 MDS with drift vectors for Morse
code confusion data

The confusion probabilities are not symmetric. For example, the signal for i (di-di)
ismore frequently confusedwith a subsequent signal for s (di-di-di) than s is confused
with a subsequent i (35% vs. 16%). But do these asymmetries exhibit a systematic
pattern or are they just random?We answer this question using the driftVectors()
function of the smacof package2:

1 data(morse2) ## morse2 = 1 - confusion probabilities
2 fit.drift <- driftVectors(morse2, type="ordinal")
3 fit.drift
4 plot(fit.drift)

The solution is shown in Fig. 5.3. The configuration of points represents the sym-
metric part of the data quite well (Stress= 0.192). The resultant drift vectors form
a vector field that indeed exhibits a systematic trend: All arrows point more or less
into the same direction. Substantively, this means that long signals are more often
confused with short ones than vice versa (see p. 70f. for more information on these
data).

2Note that for converting a complete n× n matrix of similarities, P, into dissimilarities, you cannot
use sim2diss(), because it does not work on the whole matrix. Use your own conversion. For
example, run diss <- max(P) - P, and then use diss in driftVectors.
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5.4 Modeling Individual Differences in MDS

A popular variant of MDS is the dimensional weighting model, often called the Ind-
scalmodel by the name of its original computer program (Carroll and Chang 1970).
We explain the basic idea of this model using an experiment on color perception.
Helm (1964) asked a sample of test persons to assess the similarity of ten chips with
different colors (same brightness and same saturation). For each individual, similar-
ity scores were obtained for each pair of colors. Some test persons were deuteranopic
to some extent; i.e., they were not able to clearly distinguish green and purplish-red
(“red-green blind”).

Rather than first averaging the 16 data sets and then scaling the averaged data
with standard MDS, we can use them directly in the dimensional weighting model.
In this approach, we have to assume that there exists a group space,X, that represents
what all persons have in common. Moreover, each individual i has his/her individ-
ual space, Xi . The model claims that the various individuals in the sample are not
really that different. Rather, each individual space is a simple transform of the group
space. That is, Xi = XWi , where Wi is a diagonal matrix with positive elements.
Geometrically, this means that person i’s individual space is generated by stretching
or compressing the group space along its dimensions. Indscal fits this model by
searching for both an X and for a set of weight matrices Wi such that the distances
among the rows of the Xi ’s optimally correspond to the (admissibly transformed)
dissimilarities of the persons (the dhat’s). Expressed more formally, the distances are

di jk(X) =
(

m∑
a=1

wak(xia − x ja)
2

)1/2

, wak ≥ 0, (5.5)

where the parameter k = 1, ..., N stands for different individuals or cases.
For the Helm data, the group space (using smacof; see commands below) is

computed as presented in the left panel of Fig. 5.4: It is the expected color circle,
slightly squeezed in the vertical direction as the fitted circle (dashed line) shows.
The middle panel contains the model’s solution for the most deuteranopic person
CD4: Here, the color circle is stretched along Dimension 1 or, which has the same
effect, it is compressed along Dimension 2. This reflects that this person cannot
discriminate well between green and the purplish-red colors. The right panel exhibits
the solution for person N6a. This person, a color-normal person, stretches the group
space somewhat along Dimension 2.

1 res.helm <- indscal(helm, type="interval")
2 res.helm ## gives Stress-1 etc.
3 plot(res.helm) ## plots the group space
4 names(res.helm) ## shows elements of object res.helm
5 res.helm$cweights[[16]] ## prints weight matrix for person 16

The weights for the 16 data sets are visualized in Fig. 5.5, often called the subject
space of an Indscal solution. We here see that person CD4 stretches the group
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Fig. 5.5 Dimension weights of 16 individuals for group space shown in Fig. 5.4, left panel

space along Dimension 1 relative to Dimension 2 by a factor of roughly 3 (1.25 :
0.44). The weight ratio of person N6a is about 2:3. One must be careful, though,
in interpreting these weights: They are only meaningful relative to the group space,
and the group space is, unfortunately, not unique. If the group space is stretched or
compressed along its dimensions, different weights are found for each person, while
the overall fit of the MDS solution remains the same. What one can interpret as
data-driven, therefore, is merely that person CD4 weights the vertical dimension less
than person N6a, since this relation remains invariant under horizontal or vertical
stretchings of the group space. That N6a weights Dimension 2 three times as much
as CD4, or that he/she weights the dimensions in a certain weight ratio, is only true
relative to the group space in Fig. 5.4. This also explains why the color-normal person
N6a seems to put more weight on Dimension 2: The reason is that the group space
also contains the data of the color-deficient persons which makes the configuration
somewhat elliptical rather than circular as it would be true for color-normal persons
only.

The overall Stress of the Indscal solutionwith its 2d group space for the ten colors
and its sixteen 2 × 2 diagonal weight matrices is .123. The output object res.helm
contains additional fit indexes such as Stress-per-Point measures. Most important is
the fit of each person in this model. Here we find for person CD4 a Stress value of
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Fig. 5.6 Three separate standard interval MDS solutions for average color data, person’s CD3 data,
and person’s N6a data, respectively; configurations of CD3 and N6a Procrustean-fitted to average
data solution

.106 and for person N6a a value of .108. These values can be compared, for example,
with the Stress values of standard MDS that scales each person’s data separately. For
the averaged data, interval MDS finds a solution (Fig. 5.6, left panel) with a Stress
of .069. For person CD4, MDS finds a solution (Fig. 5.6, center panel; configuration
Procrustean-fitted to average data solution) with a Stress of .074, and for N6a with
.069. Thus, the Indscalmodel seems to be doing quite well and one could hope that
the dimensional weighting model with its simple individual differences theory irons
out error that is over-fitted in the standard MDS solutions. On the other hand, the
results of scaling the average data and each person’s data separately with standard
MDS lead to essentially the same substantive insights.

If one drops the idea of common dimensions for all individuals,3 a new model
arises, the Idioscalmodel (also called subjective metric model, elliptical distances
model, or subjective transformations model). It admits more general person-specific
transformations of the group space. Formally, in XWi = Xi , the matrix Wi is not
restricted to be diagonal, but can be any real-valued m × m matrix. Such a matrix
can be interpreted in various ways. One interpretation is that person i first rotates the
dimensions of the common space in his/her own way and then stretches/compresses
the space along these dimensions.4 Yet, such a transformation demolishes the major
selling point of the Indscal model, namely its unique dimensions. Not only has an
Indscal solution the same dimensions for all individuals, but any rotation of these
dimensions generally leads to higher Stress. Users of Indscal—market researchers
in particular—had always hoped that these dimensions were the “true” psychological
dimensions underlying the observations.

3Computationally, this is done by requesting constraint="idioscal" in the
smacofIndDiff() function or by simply using the idioscal() function.
4Wi can always be (uniquely) split by singular value decomposition into the product UDV′, where
U andV′ are rotations/reflections, andD is a diagonal matrix of dimension weights. Hence,XWi =
XUDV′ means the group space is first rotated/reflected by U, then weighted by D, and then rotated
once more.



5.4 Modeling Individual Differences in MDS 63

In the example above, meaningful dimensions were indeed identified, but one
should not expect that this will always be the case, simply because such dimensions
may not exist. The user should also know that the fit of the Indscal model is not
necessarily much worse if all dimension weights are set to the same value. Borg and
Lingoes (1978) report an example where the dimension weights scatter substantially
even though they explain very little additional variance over unit weights. In such a
case, the unique orientation of the dimensions is not very strong either.

The idea of the dimension weighting model can also be realized in a more step-
wise and bottom-up approach. This avoids some of the interpretation problems. To
do this, one first scales each of the given N data matrices, one by one, by stan-
dard MDS. One then uses Procrustean transformations (see Sect. 7.6 on p. 84f. for
details) to fit the N resulting configurations to each other by admissible transforma-
tions (rotations, reflections, size adjustments, and translations). The average of all
the fitted configurations is then taken as the “common” configuration (centroid con-
figuration), or, alternatively, one uses the MDS configuration based on the averaged
data as the group space. Subsequently, one identifies the dimensions of the group
space that, if weighted, optimally explain the individual MDS solutions. This hierar-
chical approach is used by the Procrustean-Individual-Differences-Scaling (Pindis)
model (Lingoes and Borg 1978). It also continues the bottom-up fitting process with
Idioscal and other more general models, all of them not very useful in practice.
However, the hierarchical approach suggests checking how much better the fit of
a more general model is compared to one with more restrictions. The user can ask
such a question using the smacofIndDiff() function by first running the above
script with constraint="identity" (see next section for more on that option),
then with constraint="indscal", and finally with constraint="idioscal".
The three resulting solutions have Stress values of .146, .123, and .121, respectively.
So, for the Helm color data, individual dimension weighting leads to a noticeable
Stress reduction, but admitting more general idiosyncratic transformations is hardly
worth it.

5.5 Scaling Replicated Proximities

In most MDS applications, we are dealing with exactly one data value per distance.
Modern MDS programs allow using not just one proximity (pi j ) for each distance
di j but two or more (p(k)

i j , k = 1, 2, ...). Consider Fig. 5.7, a stack of n × n complete
proximity matrices. Often, the values in such a data cube are first averaged over all
persons and then averaged once more over the two halves of the resulting complete
matrix. The data in the rectangle experiment described on p. 19 were generated in
this fashion. Alternatively, we could inform the MDS program that what we have is
one complete data matrix for each of N persons and that we want the program to
find a solution where each di j represents, as precisely as possible, up to N · (n2 − n)

proximities, where the “up to” means that missing data are possible. Only the main
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Person 1
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Fig. 5.7 Data cube consisting of complete proximity matrices for N persons

diagonals in each proximity matrix can never impact the MDS solution because
dii = 0, for any i , is true in any distance geometry.

As an example, consider two sets of inter-correlations among work values col-
lected in West and East Germany, respectively (see p. 84 for more on these data).
These data can be loaded by calling data(EW_eng) in smacof: This activates a list
of two correlation matrices, one for West Germany and the other for East Germany.
If we interpret the entries in these correlation matrices as replications or as indicators
of common German work value constructs, we could first average these matrices and
then scale the averaged correlations. However, this reduces the number of data that
determine the MDS solution in half, and more data for each distance should lead to
a more data-driven, more robust solution. To use both matrices to generate one MDS
solution, we can run this:

1 EW.diss <- list(east = sim2diss(EW_eng$east), west = sim2diss(EW_eng$west))
2 res <- smacofIndDiff(EW.diss, type="ordinal", constraint="identity")
3 res; summary(res) ## gives Stress, coordinates, SPP values
4 plot(res, main="East+West combined")

5.6 Weighting Proximities in MDS

We saw in formula 3.3 that introducing weights into the MDS loss function is easily
possible. It is always used if there are missing data, because then these weights are
set to zero in case of an NA value. This makes the MDS algorithm ignore the dis-
tances that correspond to (missing) proximities. The distances can take on any value
without affecting the Stress of the solution. However, for real data, one sometimes
has additional information about the data such as their reliability. In that case, one
may want to weight the more reliable data more in the Stress function. Another case
is the size of the data themselves. Judgments on the similarity of pairs of objects are
sometimes said to be the more difficult the more similar the objects are. The error
that this uncertainty introduces can be expressed by weighting observed dissimilar-
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ities the heavier the greater they are. In other words, larger dissimilarities should
determine the MDS solution more than smaller dissimilarities.

Computationally,weighting anMDSor anunfolding solution canbe easily accom-
plished by adding a weight matrix of the size of the data matrix to the call of theMDS
function or program. For example, assume we want to scale the inter-correlations in
Table 2.2, R, and assume further that we have a table of reliabilities of these cor-
relations, W. To run weighted MDS, we first have to convert the correlations into
dissimilarities by diss <- sim2diss(R) and then call result <- mds(diss,

weightmat=W).
If you experiment with different weight matrices, you will find, though, that

weights need considerable variance to affect the MDS configurations. One possibil-
ity is setting W <- Rˆq for some large or small q. For example, for q=10 the large
similarities (i.e., small dissimilarities) will be fitted much better than small similari-
ties (i.e., large dissimilarities) so that only the small distances in the plot should be
interpreted and the large distances be better ignored. For a very small q, e.g., q=-10
the reverse is true. Hence, weighting can be useful in practice but it may require some
experimentation. The Shepard diagramwill showwhich dissimilarities are well fitted
and which are not.

5.7 Summary

MDS is a family of different models. They differ in the way they map the proximi-
ties into distances, and in the distance functions they employ. The various regression
functions preserve certain properties of the data such as the ranks of the data in
ordinal MDS, the relative differences of any two data values in interval MDS, and
the ratios of the data in ratio MDS. Typically, Euclidean distances are chosen as the
targets in MDS. City-block distances or dominance metrics are also used in psycho-
logical modeling. Some MDS models allow using multiple proximities per distance.
Asymmetric proximities can be handled by the drift vector model: It represents their
symmetric part by the distances of an MDS configuration, and their skew-symmetric
part by drift vectors attached to the points. A popular MDS model is Indscalwhich
represents a set of N proximity matrices, one for each of N individuals, by one
common MDS space and by N sets of individual weights for its dimensions.
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Chapter 6
Confirmatory MDS

Abstract Different forms of confirmatory MDS are introduced, from weak forms
with external starting configurations to enforcing theoretical constraints onto the
MDS point coordinates or onto certain regions of the MDS space.

Keywords Confirmatory MDS · External scales · Dimensional constraints
Shearing · Axial partition · Penalty function

In the MDS models discussed so far, the computer was free to move the points
to any positions in space that would minimize the configuration’s Stress. This is
exploratory MDS. If one has clear hypotheses about the MDS configuration, one
may be less interested in blindly minimizing Stress, but rather in finding an optimal
theory-consistent MDS solution. This leads to confirmatory MDS.

6.1 Weak Confirmatory MDS

The least one can do when testing structural theories usingMDS is running theMDS
with an external initial configuration derived from theory rather than leaving it to
the program to choose its own start. This can help finding good solutions in the
vicinity of what is expected. One can also fit the MDS solutions thus obtained to
theory-based target configurations. For example, in case of the rectangle study from
Sect. 2.3, the design configuration of Fig. 2.4, appropriately stretched or compressed
along its dimensions, can serve both as an initial configuration and also as a target
in subsequent Procrustean transformations of the MDS configuration (see Sect. 7.6).

An external initial configuration can also help to make a set of different MDS
solutions more similar. Consider a study by Dichtl et al. (1980). These authors ana-
lyzed consumer perceptions of various automobiles collected year after year over
a period of five years. They first computed the MDS solution of the averaged data
and then used this configuration as the initial configuration when scaling each of the
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five yearly data sets. This makes it more likely that the various solutions are more
similar, because the MDS algorithm always begins its optimization process with the
same configuration.

6.2 External Side Constraints on the Dimensions

A strict confirmatory MDS approach enforces a solution that satisfies the external
constraints while minimizing Stress. The simplest such model is to impose certain
restrictions onto dimensions that span the MDS space.

As an application example, we use the rectangle study from Sect. 2.3. Exploratory
MDS of these data leads to a solution that closely approximates a psychologically
reasonable transformation of the design grid (Fig. 2.5).We now employ confirmatory
MDS to enforce such a grid perfectly onto the solution and then check whether
this leads to Stress values that are still acceptably low. This can be realized by the
smacofConstraint() function. It allows the user to request that an n × m MDS
solutionX is generated by optimally scaling the column vectors of an external n×m
matrix Y. For Y, we here take the coordinates of the points in the design grid,
i.e., their width and height measurements (see Fig. 2.4 or simply activate these data
by data(rect_constr)). The columns of Y are called external scales, and after
optimal re-scaling, they become the internal scales, the columns of X.

Re-scaling can mean different things:

• In the simplest case, it means dimensional weighting. That is, the data are approx-
imated, as much as possible, by the distances computed on a configuration
whose dimensions are the optimally weighted columns of Y. Expressed formally
X = YC, with C a diagonal matrix that minimizes the Stress of X.

• If we drop the constraint that C is diagonal, then C becomes a composite trans-
formation. It can be understood as a rotation/reflection followed by dimensional
weighting and then rotated/reflected once more. Thus, expressed geometrically,
the dimensional weighting can be done along a rotated set of dimensions.

• A third case is allowing for optimal monotone transformations of Y’s columns or
of the columns of a rotated Y.

For the rectangle data, the third model is theoretically most convincing. We test
it by first running exploratory MDS and then plotting this solution with its points
connected as a grid. Then, we use this solution as the initial configuration in con-
firmatory MDS,1 enforcing an ordinal rescaling of the unrotated design dimensions.
Finally, we also allow for a rotation of the design configuration.

1If no external initial configuration is provided, the program will use a random start. In most
applications, this will not lead to low Stress nor to a meaningful solution.
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1 ## MDS with theory-based initial configuration
2 fit.expl <- mds(rectangles, type = "ordinal", init = rect_constr)
3 ## MDS enforcing an ordinally re-scaled design grid
4 fit.cfdiag <- smacofConstraint(rectangles, constraint = "diagonal",
5 type = "ordinal", ties = "secondary",
6 init = fit.expl$conf, external = rect_constr,
7 constraint.type = "ordinal")
8 ## Confirmatory MDS, also permitting a rotation of the design grid
9 fit.cflin <- smacofConstraint(rectangles, constraint = "linear",

10 type = "ordinal", ties = "secondary",
11 init = fit.expl$conf, external = rect_constr,
12 constraint.type = "ordinal")

Figure6.1 shows the resulting configurations. The exploratoryMDS solution (left
panel) is already nearly theory-compatible except for some small dents of the grid. Its
Stress is 0.089. The first confirmatory solution (middle panel) is theory-wise perfect,
with a Stress of 0.115. Hence, the dents of the grid in the exploratory MDS solution
do not explain the data “much” better. Rather, it seems that they essentially represent
some of the data noise. So, one may decide not to reject the hypothesis that the
observed judgments for the rectangles’ similarity are generated by a composition
rule that behaves just like the distance formula operating on the rectangles’ design
dimensions.

Ifwedrop the diagonality constraint onC,we get the sheared grid in the right panel
of Fig. 6.1. Its Stress is 0.103, slightly better than without the rotation. It suggests
that not the original dimensions were rescaled but a slightly rotated (but theoretically
obscure) dimension system. This causes the shearing of the grid. (In practice, such
shearings can become extreme in this model which make the solutions difficult to
interpret.)

If we set constraint.type="interval", the transformations on the design grid
are limited to stretchings of the external scales, i.e., to simple dimensional weightings
(plus possible shearings). Under this condition, the successively smaller compres-
sions of the grid along its dimensions generated by constraint.type="ordinal"
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Fig. 6.1 Exploratory (left) MDS of rectangle data of Sect. 2.3; and confirmatory MDS of the
same data with stretchings of the given dimensions (center panel) and with stretchings of rotated
dimensions (right panel)
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cannot occur anymore in theMDS solution. This would be undesirable here, because
the Weber–Fechner law of perception is predicting such logarithmic shrinkage
effects.

Returning to the model equation X = YC, we note that the matrix C represents
a linear transformation of the configuration Y. Any linear transformation can be
decomposed into rotations and dimensional weightings of Y. Algebraically, that
means that C can be split by singular value decomposition into the product PMQ,
where P andQ represent rotations andM is a diagonal matrix of dimension weights.
Thus, C first rotates the configuration Y in some way and then stretches and/or
compresses this rotated configuration along its dimensions and finally rotates the
result oncemore. IfC is a diagonal matrix, then the column vectors ofY are weighted
directly. IfC is not diagonal, thenY is first rotated and then dimensionally weighted,
and this is what causes the shearing.

A different approach to impose external constraints onto the MDS solution is
to focus on the distances of the MDS configuration, not on its coordinates. If, for
example, one requests for the rectangle data that d(1, 6) = d(2, 5), d(6, 11) =
d(7, 10), and d(11, 16) = d(12, 15) must hold in the MDS solution, shearings of
the point grid are avoided. To guarantee that a grid is generated in the first place, one
can additionally enforce that some of the horizontal grid distances be equally long,
e.g., that d(1, 5) = d(2, 6) = d(3, 7) = d(4, 8), d(5, 9) = d(6, 10) = d(7, 11) =
d(8, 12), and d(9, 13) = d(10, 14) = d(11, 15) = d(12, 16). Restrictions like these
can be imposed on the MDS configuration by the program Cmda (Borg and Lingoes
1980). Cmda is, unfortunately, an old Fortran program that is not easily accessible
and difficult to use because it is not always easy to derive what a given theory implies
for the distances among the points in MDS space.

6.3 Regional Axial Restrictions

One can use the methods discussed above to solve confirmatory MDS problems that
arise quite frequently in applied research, that is, impose particular axial partitions
onto the MDS solution. Here is an example. Rothkopf (1957) studied to what extent
test persons confused different acoustic Morse signals. He used 36 different signals,
the 26 letters of the alphabet, and the natural numbers from 0 to 9. The signal for A,
for example, is “di” (a beep with a duration of 0.05 s), followed by a pause (0.05 s)
and then by “da” (0.15 s). We code this as 1–2 or 12 for di-da.

The symmetrized confusion probabilities collected for these signals from
hundreds of test persons can be represented quite well in a two-dimensional MDS
configuration (Fig. 6.2). The partitioning lines were inserted by hand. They cut the
plane in two ways, related to two facets: The nine solid lines discriminate the sig-
nals into classes of signals with the same total duration (from 0.05 to 0.95 s); the
five dashed lines separate the signals on the basis of their composition (e.g., sig-
nals containing only long beeps are all on the right-hand side). The pattern of these
partitioning lines is not very simple, though, but partially rather curvy and hard to
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Fig. 6.3 Confirmatory MDS solution with
two perfect axial partitioning lines

describe. Particularly, the dashed lines are so twisted that the pattern of the emerging
regions does not exhibit a simple law of formation. Rather, the partitioning seems
over-fitted. The substantive researcher, therefore, would probably not bet that it can
be completely replicated with new data.

We now want to straighten the two sets of partitioning lines. For that purpose, we
again use the X = YC restriction. To generate the internal scales in X, we make use
of two of the signal codes’ properties, duration and type, as shown in Fig. 6.2 by the
vertical black boxes (duration) and the boxes on top labeled as “1”, “1>2”, “1=2”,
“2<1”, and “2” (type). Each Morse code is thus coded in terms of its duration into
one of ten categories and in terms of type into one of five categories. This defines
the external variables, Y. They can be viewed by typing data(morsescales);

morsescales in smacof.
With these constraints in an ordinal MDS, with ordinal external scales, and with

the primary approach to ties, we find the solution in Fig. 6.3. This simple-to-interpret
MDS solution has almost the same overall Stress as the exploratory MDS solution
in Fig. 6.2 (0.21 vs. 0.18). Upon closer investigation one notes, however, that the
confirmatory solution moved only very few points by more than a small amount.
Particularly, point 1 (at the bottom, to the right)wasmoved a lot so that the substantive
researcher may want to study this signal (and its relationship to other stimuli such
as signal 2) more closely. Overall, though, the simpler and, probably, also more
replicable solution in Fig. 6.3 appears to be the better springboard for further research.
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6.4 Circular and Spherical MDS

Spherical MDS is an MDS model where all points lie on the surface of an m-
dimensional sphere. There are data sets where it can be argued that spherical MDS
is more relevant than the usual flat-geometry MDS, but the really interesting case is
m = 2, i.e., the case where spherical MDS becomes circular MDS. Circular scales
abound in psychology. Two prominent examples are color perception (see Sect. 5.4
on p. 60ff.) and the psychology of personal values (see p. 21ff., and Chap. 8).

For personal values, we used exploratory MDS to study the structure of the inter-
correlations of value items. Figures2.10 and 2.13 indicate that the value items and
the value indexes form approximately circular configurations of points. We may ask
how much the Stress goes up if the points of the configurations were forced onto
perfect circles. An answer is found by using the smacofSphere() function: The
Stress of the exploratory solution is 0.051; it goes up to 0.085 in the perfect-circle
solution.

Enforcing a perfect circle for these data does, however, not really lead to new
insights, since the exploratory configuration is already roughly circular. Moreover,
a perfect circle is not needed for indexes that are based on real and therefore error-
affected data. To see more dramatic or unexpected effects, let us therefore request a
circularMDSconfiguration for the similarity of countries data represented in Fig. 2.2.
Since there is no substantive reason to enforce a circle, we should expect that this
constraint entails a substantial increment in Stress.

When running this type of analysis with smacofSphere(), we have a choice of
two algorithms: The primal algorithm enforces a strict circle from the beginning,
and the dual algorithm uses a penalty function that pushes the MDS solution in the
direction of a perfect circle. The default penalty weight is 100, and when setting it
to 22, say, the force that pulls the solution toward a perfect circle is mitigated. Let
us try both specifications as follows:

1 diss <- sim2diss(wish, method=max(wish))
2 res1 <- smacofSphere(diss, type="ordinal")
3 res2 <- smacofSphere(diss, type="ordinal", algorithm="dual", penalty=22)
4 res3 <- mds(diss)
5 res1$stress; res2$stress; res3$stress ## gives Stress values of each solution
6 op <- par(mfrow = c(1,3))
7 plot(res1, main="Circular MDS (primal)")
8 plot(res2, main="Circular MDS 2 (dual)")
9 plot(res3, main="Exploratory MDS")

10 par(op)

The three results are shown in Fig. 6.4. As expected, the solution generated by
the default algorithm (algorithm="primal") has all country points on a perfect
circle, while the solution computed by the dual algorithm and using penality=22

only comes close to a perfect circle. When setting the penalty weight to 100 (i.e., the
default value), then the circle is perfect too. So, we see that choosing smaller penalty
weights is a way to avoid that the algorithm is pushing too hard toward a perfect
circle.
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Fig. 6.4 Circular MDS using the primal and the dual algorithm, resp., and exploratory MDS (right
panel) of Wish country similarity data

The Stress values for the solutions in Fig. 6.4 are 0.271, 0.266, and 0.225, respec-
tively. The increment in Stress is not much higher than it is in case of the personal
values example discussed above, even though now there are 12 points and not just
10 points. However, one should take into account that the Stress for the Wish data
is quite high even without circular side constraints. Nevertheless, when studying the
three plots more closely, one can indeed see that the exploratory MDS solution is not
that far from being circular: Only France needs to be pulled somewhat to the outside
and Congo more toward the center of the plot. Whether a circular configuration for
the countries is substantively meaningful is, of course, another question.

When testing theories about real data, forcing the points onto a perfect circle in
MDS space may seem exaggerated formalism. An approximate circle would be
sufficient, but it is much harder to formulate this idea as a clear scaling target.
Moreover, a perfect circle is, by itself, rarely ever a meaningful structural theory.
It only becomes interesting if it is supplemented with additional notions such as a
particular order of the points on the circle. In case of the data on personal values
(see p. 25), the Theory on Universals in Values (Schwartz 1992) predicts such an
order. The theory also claims that the point order is structured into four subsets
of opposite higher-order personal values. This would split the circle into four arcs
that lie in four different quadrants. If you have inter-correlations as data, circular
scaling solutions with various additional constraints can be generated using the R
package CircE (Grassi et al. 2010). This program implements the Guttman–Browne
circumplex model for inter-correlations (Browne 1992). It assumes that an observed
correlation ri j corresponds to an angle between the vectors pointing to the points i
and j on a unit circle. The method does not accept order constraints, but they can be
approximated to some extent by restricting the points to lie in certain sectors of the
circle. For example, with the personal values grouped into four higher-order values,
and the PVQ40 data aggregated into ten indices as in the first 11 lines of the R script
on p. 23, the R commands are:
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1 require(CircE); R <- cor(PVQ40agg)
2 ## CircE commands (with lots of default agruments):
3 lower1 <- c(0,0,0,270,270,180,180,180,90,90) ## lower bounds for point angles
4 upper1 <- c(90,90,90,360,360,270,270,270,180,180) ## upper bounds
5 res <- CircE.BFGS(R, v.names=colnames(R), m=1, N=10, upper=upper1, lower=

lower1, equal.com=FALSE, equal.ang=FALSE)
6 CircE.Plot(res, ef=0.1)

CircE computes a circular configuration together with extensive output, includ-
ing many fit indexes such as GIF, AGIF, RMSEA that are used in structural equation
modeling. They test the hypothesis that the observed correlations match the corre-
lations derived from the model. See (Grassi et al. 2010) for detailed examples. For
the above PVQ40 data, the fit is highly significant, and the results are quite similar
to what is shown in Fig. 2.13.

6.5 Challenges of Confirmatory MDS

The challenges of confirmatory MDS for the user are, most of all, how to formulate
theoretical expectations so that they can be expressed in, say, a penalty function,
a pseudo-data matrix, or a system of equations that can be solved by an existing
confirmatoryMDSprogram.ConfirmatoryMDS, therefore, is oftenmuchharder than
exploratoryMDS, because it requires the user to not only develop explicit theories but
also translating them into a proper computational language. So far, theMDSprograms
accessible to the general user canhandle only relatively simple confirmatory analyses.
Dimensional restrictions are easy to test, while confirmatory MDS analyses with
regional restrictions are typically difficult to set up and solve. Computer programs
that allow all forms of restrictions (combined, in addition, with particular MDS
models, certain missing data patterns, or distances other than Euclidean distances)
do not exist yet. Rather, in such cases, a suitableMDSalgorithmmust be programmed
ad hoc.

If the users succeed generating a confirmatory MDS solution, a number of addi-
tional challenges await them. They have to evaluate not only the absolute Stress
values, but also the Stress increment resulting from adding the particular external
constraints to the MDS analysis. Typically, such evaluations amount to deciding
whether the Stress increment is substantial or not, given the number of points, the
dimensionality of the MDS space, the MDS model, the distance function, and the
quality of the data (error level). These and further criteria are summarized by Lingoes
and Borg (1983) in a quasi-statistical decision procedure.

An important additional criterion is the strength of the external constraints. These
constraints may be easy to satisfy for a given number of points in a given dimen-
sionality, but they may also be quite demanding. An approach for evaluating this
issue is described in Borg et al. (2011). They use data from a survey where a sample
of employees assessed 54 organizational culture themes (e.g., “being competitive,”
“working long hours,” and “being careful”) in terms of how important they are for
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them personally. The correlations of these importance ratings are represented in a
theory-compatible MDS solution, where the 54 points are forced into the quadrants
of a 2d coordinate system on the basis of a priori codings of the items in terms of
the TUV theory. The strength of the external constraints is assessed by studying the
Stress values that result from running 1,000 different confirmatory MDS analyses,
each one using a random permutation of these TUV codings. It is found that the
theory-based assignment of codes to the 54 items does indeed lead to a Stress value
that is smaller than any of the Stress values that are found if random permutations of
the codings are enforced onto theMDS solution. Hence, the codings are not trivial in
the sense that random assignments of the codings would lead to equally good MDS
solutions when enforced onto the configuration.

6.6 Summary

MDS is mostly used in an exploratory way, where the MDS configuration is cho-
sen so that the Stress is minimal. Confirmatory MDS enforces additional structure
onto the MDS space, or it at least tries to push the solution toward a theoretically
expected structure. Confirmatory MDS configurations may be very different from
exploratoryMDSsolutions.Often, their Stress is higher, but sometimes it is not.With-
out running confirmatory MDS, one would not know. A weak way to push an MDS
solution toward a theoretical structure is using a theory-derived initial configuration.
Harder confirmatory requirements need special MDS programs such as Proxscal
or smacofConstraint. With such programs, one can enforce certain dimensional
requirements and strict axial partitionings. Circular configurations require spherical
MDS programs such as smacofSphere() or CircE.
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Chapter 7
Typical Mistakes in MDS

Abstract Various mistakes that users tend to make when using MDS are discussed,
from using MDS for the wrong type of data, using MDS programs with suboptimal
specifications, to misinterpreting MDS solutions.

Keywords Global optimum · Local optimum · Termination criterion
Initial configuration · Degenerate solution · Dimensional interpretation
Regional interpretation · Procrustean transformation

7.1 Assigning the Wrong Polarity to Proximities

A frequent beginner’s mistake is scaling proximities with the wrong polarity. If the
data are similarities, but MDS treats them as dissimilarities (or vice versa), it will
generate a misleading solution with very high Stress. The MDS program cannot
know how to interpret the data and, therefore, works with its default interpretation
of the data. This usually means that the data are taken as dissimilarities. Yet, correla-
tions, for example, are similarities, because greater correlation coefficients indicate
higher similarity and, therefore, they should be represented by relatively small dis-
tances. If the user incorrectly specifies the data’s polarity, thenMDS cannot generate
meaningful solutions.

7.2 Using Too Few Iterations

Many MDS programs have suboptimal default specifications. In particular, they
typically terminate the iterations of their optimization algorithms before the process
has actually converged at a local minimum. This premature termination is caused
by setting the termination criteria too defensively. Many programs set the maximum
number of iterations to 100 or less, a specification that dates back to the times when
computing was slow and expensive. For example, the GUI box of Systat in Fig. 1.5
shows that, per default, thisMDS program allows at most 50 iterations. The iterations
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are also stopped if the Stress does not go down by more than 0.005 per iteration.
However, one can show that very small Stress reductions do not always mean that
all points remain essentially fixed in further iterations. We therefore recommend to
always clearly change these default values to allow the program to work longer.
Instead of a maximum of 50 one can easily require 1,000 or more iterations. The
convergence criterion, in turn, could be set to 0.000001 or smaller, i.e., to a very
small value indeed.

7.3 Using the Wrong Initial Configuration

All MDS programs automatically generate their own initial configuration if the
user does not provide an external starting configuration. It is a common fallacy
to assume that internally generated starting configurations will always lead to opti-
mal MDS solutions. For example, we have found in many tests that the default
starting configuration used in Proxscal (called “Simplex”) is often not optimal.
We recommend using the option Initial=Torgerson instead. Yet, no starting
configuration—rational or user-provided—always guarantees the best-possible final
solution, and so the user should test some sensible alternatives before accepting a
particular MDS solution all too early as the final solution.

Random starting configurations can also be useful in MDS. Indeed,many random
configurations can easily be used without much effort. For example, for the solution
in Fig. 1.4 we used Proxscal with the option Random=1000; i.e., we asked the
program to repeat the scaling with 1,000 different random starting configurations
and then report the solution with the lowest Stress value. That only took seconds
with this small data set.

The same method can also be used with mds() in smacof. However, mds()
generates only 1 random configuration when setting the argument init="random"
in mds(). Thus, we have to program a loop to find the best solution or use the function
random.multistart() below (which here calls an ordinal MDS and 500 random
starts):

1 diss <- sim2diss(wish, method=7)
2 set.seed(123)
3 random.multistart <- function(diss, type="ordinal", nrep=100) { s1 <- 1
4 for (i in 1:nrep) { out <- mds(diss, type=type, init="random")
5 if (out$stress < s1) { object <- out; s1 <- out$stress }}
6 return(object) }
7 result <- random.multistart(diss, type="ordinal", nrep=500)
8 result

Running the above commands leads to a result$stress of .185 for the country
similarity data from Sect. 2.2. Repeating this analysis with different seeds leads to
the same minimum Stress value in each case. So, .185 seems to be the best-possible
Stress for ordinal MDS of these data.
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Sometimes there exist several different solutions that all have almost the same
small Stress value. In that case, the user can pick the solution that is most convincing
in termsof interpretation. Theproblem is that allMDScomputer programsonly report
the best solution they found, where “best” obviously only says that it has the smallest
Stress. No program can consider a configuration’s meaning as an additional criterion.
To help finding possible solutions that have both an acceptable Stress but differ in
their substantive meaningfulness, Borg and Mair (2017) suggest a strategy where all
MDS solutions that result from many different initial configurations are stored and
then comparedwith respect to their structural similarity. This strategy is implemented
in the icExplore() function. It generates a large set ofMDS solutions using random
initial configurations, matches them all by Procrustean fittings, computes the inter-
correlations of their point coordinates, and finally runs an (interval) MDS of these
inter-correlations.

1 diss <- sim2diss(wish, method=7)
2 set.seed(3)
3 solutions <- icExplore(diss, type="ordinal", nrep=75)
4 solutions
5 plot(solutions)

The result of this analysis for the country similarity data using 75 random ini-
tial configurations is shown in Fig. 7.1. The numbers in the plot represent the MDS
configurations, and the size of the numbers corresponds to the Stress of the solu-
tion (solution #64, thus, has a poor fit to the data). The distances among the points
represent the similarities of the configurations. The plot thus shows that there are
many different local minima solutions when random initial configurations are used.
Many of these solutions have a poor fit, but there are two clusters of highly similar
configurations on the right-hand side that all have relatively low Stress. The user
can take a look at, say, #9 (in the upper cluster on the right-hand side of Fig. 7.1)
and #25 (in the cluster underneath ) to see how they differ and which one is better
interpretable (see discussion in Sect. 7.8). One can plot #9, say, by simply calling
plot(solutions[[9]]). The Stress is printed by solutions[[9]].

The user can also follow another strategy. Compute a Stress-optimal MDS solu-
tion first, study its interpretability, and then possibly move some points “by hand”
to theoretically more pleasing positions. These hand movements can be translated
into changes of the coordinates of these points. The modified coordinate matrix can
subsequently be used as the initial configuration in Stress0(). This function com-
putes the Stress of the modified solution (without any iterations). Alternatively, one
may set niter=1000, for example, and hope that the program will find an optimal
solution with an acceptably small Stress that lies in the vicinity of the modified
configuration.
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Fig. 7.1 Similarity structure ofMDSsolutions basedon75 random initial configurations for country
similarity data; number represents solution; size of number represents Stress of solution

Finally, a theory-generated initial configuration (if it can be derived) is always a
choice that should at least be tested. Consider, for example, the data on the similarity
of rectangles and the data on personal values discussed in Chap. 2. In both cases,
there were clear hypotheses about the expected MDS structure of the data. These
predictions can easily be translated into coordinate matrices that then serve to define
initial configurations. For example, for the rectangle data, one can simply read off
the coordinates from Fig. 2.4 or call data(rect_constr); S <- rect_constr

and then tell the MDS program to use S as an initial configuration.
There is usually no need to formulate the initial configuration as precisely as in

case of matrix S above, nor does the theory always allow such precise predictions.
This is certainly true for the personal values data, where the theory predicts a circle
with points ordered as PO - AC - HE - ST - SD - UN - BE - TR - CO - SE - PO.
No prediction can be derived for the distances among the points on the circle and so
one could spread them out evenly, for example. It suffices to plot this configuration
on a piece of paper, co-ordinatize its points by a simple grid, and then coarsely read
off these coordinates to generate a matrix like S above. Of course, one could also
do this on the computer screen, then plot the coordinate matrix to visually check it,
and possibly adjust the point coordinates repeatedly until the configuration seems
right.
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7.4 Doing Nothing to Avoid Suboptimal Local Minima

MDS always tries to find the local minimum solution with the smallest possible
Stress, i.e., the global minimum. MDS users can do their share to help find this
global minimum by keeping an eye on the following issues:

• A good initial configuration is the best way to avoid suboptimal local minima. If
you have a theory, then a user-defined configuration is what you should always
use. If you do not have a theory, you must leave it to the MDS program to define
its own starting configuration. In that case, we recommend using the solution of
classical MDS (also known as the Torgerson solution) as a start which is indeed
the default initial configuration of mds() in the smacof package.

• Another precaution against suboptimal local minima is using multiple random
starts. As modern MDS programs are extremely fast, one can easily require the
program to repeat the scaling with a very large number of different random starts
(e.g., with 1,000 or more).

• City-block distances increase the risk to end up in suboptimal local minima. Gen-
eral MDS programs are particularly sensitive in this regard. There exist MDS
programs that are optimized for city-block distances, but they are hard to obtain
and typically require expert support for using them.

• The greater the dimensionality of the MDS space, the smaller the risk for subopti-
mal local minima. The main problem in low-dimensional spaces (1d, in particular)
is that swapping points in space by iteratively repeating small movements is dif-
ficult, because such movements may first increase the Stress before it goes down.
Hence, even if you want, say, a two-dimensional MDS solution, using the first two
principal components of a three-dimensional MDS solution may serve as a good
initial configuration.

• Suboptimal local minima are particularly likely in case of one-dimensional MDS.
Standard programs almost never find the global minimum. If you must do one-
dimensionalMDS, you should provide an external starting configuration computed
with 2d MDS (see above), or use an MDS program for the 1d case. Special 1d
MDS programs are based on permutation algorithms which are computationally
demanding. An example is uniscale() in the smacof package: It finds the per-
mutation of the points with the smallest Stress, but always assumes that the data
are on a ratio scale. Yet, one may use its solution as an initial configuration in
ordinal and interval MDS.

7.5 Not Recognizing Degenerate Solutions

Of all MDS models, ordinal MDS is the model that has been used most often. It
allows any rescaling of the data that preserves their order, but it nevertheless produces
stable metric solutions. However, ordinal MDS can run into a special problem that
the user should keep an eye on; i.e., it can lead to degenerate solutions. Consider
the following example. Table7.1 exhibits the inter-correlations of eight test items of
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Table 7.1 Correlations (lower half) of some test items of the KIPT and their ranks (upper half).

np lvp svp ccp nr slp ccr ilr

Nonsense word production (np) – 9 4 1 6 19 10 12

Long vowel production (lvp) .78 – 1 7 5 21 20 22

Short vowel production (svp) .87 .94 – 3 2 17 16 23

Consonant cluster production (ccp) .94 .83 .90 – 7 14 11 16

Nonsense word recognition (nr) .84 .85 .91 .83 – 17 15 18

Single letter production (slp) .53 .47 .56 .60 .56 – 13 16

Consonant cluster recognition(ccr) .72 .48 .57 .69 .59 .62 – 8

Initial letter recognition (ilr) .66 .45 .44 .57 .55 .57 .82 –
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Fig. 7.2 Ordinal and interval MDS representations for data of Table7.1

the Kennedy Institute Phonics Test (KIPT), a test for reading skills (Guthrie 1973).
If we scale these data by ordinal MDS using mds() (see commands below1), we
obtain the configuration in Fig. 7.2 (left panel). Its Stress value is zero, so this MDS
solution is formally perfect. Yet, the Shepard diagram of this solution (see left panel
of Fig. 7.3) reveals a peculiar relation of data and distances: Although the data scatter
evenly over the interval from .44 to .94, they are not represented by distances with a
similar distribution, but rather by two clearly distinct classes of distances so that the
regression line makes just one big step.

1 diss <- sim2diss(KIPT)
2 fit1 <- mds(diss, type="ordinal", eps=1e-11)
3 fit2 <- mds(diss, type="interval")
4 fit3 <- mds(diss, type="ratio")

1Note that we set the argument eps to an extra-small value here to make the program iterate on and
on until it reaches such an exotically small raw Stress value if it can be reached in itmax=3333
iterations. Without this argument, mds() will use the default value eps=1e-06 which causes it
to stop earlier.
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Fig. 7.3 Shepard diagrams for ordinal MDS, interval MDS, and ratio MDS of the correlations of
Table7.1 (converted into dissimilarities)

The MDS configuration shows three clusters that form an equilateral triangle.
This configuration represents all large correlations (r ≥ .78) by distances close to
zero and all smaller correlations (r < .72) by the same large distance. This solution
correctly displays a few data relations, but loses whatever else there is in the data.
The perfect Stress value is, therefore, deceptive. The large and the small distances,
respectively, can be reordered arbitrarily as long as all similarities within the blocks
marked in Table7.1 remain greater than all between-block similarities. Any such
reordering will have no effect on the Stress value.

The reason for such a degenerate solution is that the data have a peculiar structure.
They form three subgroups, with high within- and low between-correlations. With
ordinalMDS, such data can always be scaledwith zero Stress.Of course, the data here
are particularly selected to demonstrate degeneracy. In practice, one should rarely
find such cases, but the problem becomes more likely if the number of variables is
small (n ≤ 8).

If the Shepard diagram suggests that the MDS solution is degenerate, then the
natural next step for the user is testing a stronger MDS model and comparing the
solutions. Using interval MDS with the above data yields the solution in the right
panel of Fig. 7.2. It too shows the three clusters of test items, but it does not collapse
them. Its Shepard diagram (see the middle panel of Fig. 7.3) makes clear that the
interval solution preserves a linear relationship of the data inTable7.1 to the distances
in Fig. 7.2.2

2Note that if you plot the correlations of Table7.1 rather than the dissimilarities
on the Y -axis of the Shepard diagram of the interval MDS—using plot(aus1,
plot.type="Shepard", shepard.x=kipt)—the regression line is slightly curved. This
is so because transforming the correlations into dissimilarities via δi j = √

1 − ri j—which is what
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An even stronger model is ratio MDS. For these data, however, it is too strong.
The Shepard diagram (right panel of Fig. 7.3) shows that it not only drives up the
Stress, but it does so causing a systematic error: Small distances are almost all too
small, and very large distances are too large (see the scatter of the points about the
regression line in the Shepard diagram). These errors are the consequence of insisting
that the regression line must run through the origin (0.00, 0.00).

7.6 Meaningless Comparisons of Different MDS Solutions

A frequent issue in MDS applications is comparing two or more MDS solutions.
Consider a study by Borg and Braun (1996). They were interested in the difference
between East Germans andWest Germans in their work values shortly after Germany
reunited in 1990. The items asked the respondents to rate 13 aspects of their work life
(such as “high income” or “good chances for advancement”) on a scale from “not
important” to “very important” to them personally. Scaling the inter-correlations
of the two samples leads to two-dimensional MDS solutions, but even though they
have just 13 points each, they are difficult to compare, because one must ignore
meaningless differences that are due to different orientations of the plots. It is like
comparing two maps of different size, and one is upside down, for example. When
comparing MDS plots, one can eliminate such meaningless differences optimally
by Procrustean transformations. If configuration X is taken as the target, the other
configuration Y is rotated, reflected, translated, and adjusted in its size to optimally
match X. All these transformations are similarity transformations that do not change
the structure of the MDS configurations. Differences between two configurations3

that can be eliminated by similarity transformations cannot possibly be meaningful,
because they are not caused by the data. We do apply this method for the East and
West German MDS configurations using these commands:

1 labels.short <- c("interesting","independent","responsibility","meaningful",
2 "advancement","recognition","help others","useful","social","secure job",
3 "income", "spare time", "healthy")
4 attr(EW_eng$west, "Labels") <- attr(EW_eng$east, "Labels") <- labels.short
5 res.west <- mds(sim2diss(EW_eng$west, method="corr"), type="ordinal")
6 res.east <- mds(sim2diss(EW_eng$east, method="corr"), type="ordinal",
7 init=res.west$conf) ## note the initial configuration here
8 fit2 <- Procrustes(res.west$conf, res.east$conf)
9 plot(fit2)

10 ## compute overall similarity measures: r and c
11 r <- cor(as.vector(res.west$conf), as.vector(fit2$Yhat))
12 c <- fit2$congcoef ## congruence coefficient on distances

diss <- sim2diss(kipt, method="corr") is doing—is a slightly nonlinear function.
This is irrelevant for ordinal MDS, but it shows up in interval MDS.
3Procrustean fittings can also be used for configurations that differ in the number of points and in
their dimensionalities. For example, the configuration in Fig. 2.13 was fitted to the configuration in
Fig. 2.12 to make comparisons easier. The target X was derived from Fig. 2.12 by roughly reading
off the X - and Y -coordinates of the centroids of the various value groups. In case of different
dimensionalities, one can simply add column vectors with only zeroes to X or to Y.
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Fig. 7.4 Overlay plot ofWest German (squares) and East German (dots) work value configurations,
optimally matched, with partition based on the ERG theory

The plot in Fig. 7.4 shows the East and the West German results, optimally fitted
to each other in one overlay plot. To measure the similarity of the configurations, one
can compute the congruence coefficient of corresponding distances (c = .964) or
the correlation of the coordinates of corresponding points (after Procrustean fitting:
r = .914).These coefficients canbe evaluated against thefit of randomconfigurations
(see R script below which yields benchmark values of .88 and .62 for the c- and the
r-coefficients, respectively). Hence, the similarity of the observed configurations is
much higher than can reasonably be expected by chance.

1 Procrustes.test <- function(n,m,nrep=500) { set.seed(333); c <- vector()
2 r <- vector(); X <- matrix(runif(n*m, -1, 1), nrow=n,ncol=m)
3 X <- scale(X, scale=FALSE)
4 for (i in 1:nrep) { Y <- matrix(runif(n*m, -1, 1), nrow=n, ncol=m)
5 fit <- Procrustes(X, Y); c[i] <- fit$congcoef
6 r[i] <- cor(c(X), c(fit$Yhat))}
7 cr <- list("c"=c, "r"=r) }; z <- Procrustes.test(13,2) ## 13 points in 2d
8 z99 <- quantile(z$c, .99); r99 <- quantile(z$r, .99) ## 99% quantiles
9 cat("c(99%)=", round(z99,2), " r(99%)=", round(r99,2), sep = ’’)

Apart from their significant point-to-point similarity, one here notes that both con-
figurations can be partitioned in the same way by Alderfer’s E(xistence), R(elations),
and G(rowth) theory (Alderfer 1972a). This is a higher-order form of similarity, and
it may hold even if the point-wise correspondence is not that high.

7.7 Evaluating Stress Blindly

A frequent mistake ofMDS users is that they are often too quick in rejecting anMDS
solution because its Stress seems too high. The Stress value is, however, merely a
technical index, a target criterion for an optimization algorithm. An MDS solution
can be robust and replicable, even if its Stress value is high. Stress, moreover, is
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substantively blind; i.e., it says nothing about the compatibility of a content theory
with the MDS configuration, or about its interpretability.

Stress is a summative index for all proximities. It does not inform the user how
well a particular proximity value is represented in the given MDS space. This was
discussed in detail in Chap. 3. The least one can do is to take a look at the Stress-per-
point values. Unfortunately, not all MDS programs compute SPP values (or similar
point-fit measures). However, most programs allow saving the configuration’s dis-
tances so that one can compute appropriate point-fit measures with standard data
analysis programs (e.g., the correlation between the proximities and the correspond-
ing MDS distances).

A simple way to deal with ill-fitting points is to eliminate them from the analysis.
This popular approach is based on the rationale that such points have a special relation
to the other points that needs additional considerations.Another solution is to increase
the dimensionality of the space so that these points can move into the extra space
and form new distances. The rationale in this case is that the proximity of the objects
represented by these points to the other points is based on additional dimensions that
are not relevant in other comparisons. Experience shows, though, that SPP values
are often quite unstable. For example, SPP plots change a lot under different MDS
models so that “special” points cannot always be identified with confidence.

In any case, accepting or rejecting an MDS representation on the basis of overall
Stress can be too simple. This is easy to see from an example. Consider the West
German MDS configuration in Fig. 7.4. If we increase the dimensionality of this
solution to m = 3, the Stress goes down from 0.17 to 0.09. If we proceed in the
same way in case of Fig. 2.2, we get the same reduction in Stress. However, in the
former case, the reduction in Stress is caused by essentially two points only. That is,
“healthy working conditions” and, in particular, “(much) spare time” clearly move
out of the plane in Fig. 7.4 into the third dimension. In case of the country similarity
data, all points jitter (some more, some less) about the plane, which looks as if the
third dimension is capturing essentially only noise.

For data with large noise components, therefore, low-dimensional MDS solutions
can have high Stress values, but they may still be better in terms of theory and
replicability than higher-dimensional solutions with lower Stress values. In that case,
a low-dimensional solution may be an effective data smoother that brings out the
true structure of the data more clearly than an over-fitted high-dimensional MDS
representation.

7.8 Always Interpreting Principal Axes Dimensions

Interpreting an MDS solution can be understood as projecting given or conjectured
content knowledge onto the MDS configuration. The country similarity example of
Sect. 2.2 demonstrates how this is typically done:What one interprets are dimensions.
MDS users often automatically ask for the meaning of “the” dimensions, by which
they often mean the axes of the plot that the MDS program delivers. These axes are
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almost always the principal axes of the solution space. Yet, this dimension system
can be arbitrarily rotated and reflected, and oblique dimensions would also span the
plane. Hence, users do not have to interpret the dimensions offered by the MDS
program, but they could look for m dimensions (in m-dimensional space) that are
more meaningful.

There is, however, no natural law that guarantees that dimensions are meaningful
at all. Thus, one should be open for other ways of interpreting MDS solutions. One
possibility is to look formeaningful directions rather than for dimensions. A direction
corresponds to a simple line that runs through the MDS plot. When projecting the
points of the configuration onto such a line, it becomes an internal scale. One can plot
such internal scales through a common point such as the centroid of the configuration.
Points to the left of this anchor point are given negative scale values; those to the
right of it receive positive values. To interpret the internal scale, one studies the point
distribution with a focus on content questions such as these: What points lie at the
extremes of the scale? How do they differ in terms of content? What is the attribute
where they differ most? Why are the points i, j, . . . so close together? What do they
have in common? Answering such questions gives meaning to the scale.

Additional data can be helpful in such interpretations. We show this for the coun-
try similarity example. Table 2.1 exhibits the coordinates of the MDS solution in
Fig. 2.2 and the countries’ values on two external scales, economic development,
and number of inhabitants. These scales can be fitted into theMDS space by using the
mdsbiplot() function as follows, yielding Fig. 7.5. The fit of the external scales in
thisMDS configuration is given by the correlation of these scales with the projections
of the points onto straight lines through the arrows that represent them. We here get
r = .94 for economic development and r = .46 for the number of inhabitants. (The
length of the two arrows represents, approximately, the relative fit of the external
scales.) This suggests to interpret this solution in terms of a rotated set of dimensions
that correspond to the two arrows representing economic development and number
of inhabitants.

1 diss <- sim2diss(wish, method=7)
2 res <- mds(diss, type="ordinal")
3 ecdev <- c(3,1,3,3,8,3,7,9,4,7,10,6)
4 inhabs <- c(87,17,8,30,51,500,3,100,750,235,201,20)
5 labs <- attr(wish, "Labels")
6 fitbi <- biplotmds(res, cbind(ecdev, inhabs))
7 plot(fitbi, main="", xlab="", ylab="", cex=1.3,
8 label.conf=list(cex=1.2, pos=ifelse(labs!="RUSSIA", 3, 1)),
9 vecscale=0.5, vec.conf=list(cex=1.2, col="red", cex=1.2, length=0.1))

External scales can also help in choosing among different MDS solutions with
almost the same Stress. For the country similarity data, ordinal MDS starting with
different random configurations leads to a set of different solutions (see Fig. 7.1).
Many of them have unacceptably high Stress, but there are different solutions (e.g.,
#1 and #13) with the same minimal Stress of .185. Figure7.6 shows these solutions
next to each other. In each solution, the two external scales were fitted into the
configurations by multiple regression (as in Fig. 2.16, for example).
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The two solutions are rather similar (after Procrustean fitting) but differ in two
important details: In the left configuration, the positions of Japan and Israel are
swapped in comparison with where they are in the right configuration; moreover,
in the left configuration, India is positioned more in the center of the configuration.
This means that in the configuration on the left, the very large countries are closer
together on the line “inhabitants.” So, this internal scale correlates with the external
scale “number of inhabitants” (see Table 2.1) with r = .46 in the left configuration,
but only with r = .30 in the right configuration. At the same time, the fitted external
scales correlate with r = .93 in both plots. Hence, the configuration on the left is
the somewhat more meaningful MDS solution if one wants to followWish (1971) in
interpreting the configuration in terms of these dimensions. However, this solution
may not be the one that is reported by the MDS program as the final solution, but
you can find it if you use a proper initial configuration identified by icExplore().
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7.9 Always Interpreting Dimensions or Directions

Dimensions and, more generally, directions are but special cases of regions. Regions
are subsets of points of an MDS space that are connected (i.e., each pair of points
in a region can be joined by a curve whose points lie completely within this region),
non-overlapping, and exhaustive (i.e., each point lies in exactly one region). When
interpretingMDSsolutions,we ask towhat extent certain classifications of the objects
on the basis of content facets correspond to regions of theMDS space. Expressed dif-
ferently, we askwhether theMDS configuration can be partitioned into substantively
meaningful regions and, if so, how these regions can be described.

An example for such a partitioning is shown in Fig. 7.4. Here, the different objects
(“work values”) were first classified into three categories on the basis of a theory by
Alderfer (1972b): Work values related to outcomes that satisfy existential-material
needs (E), social-relational needs (R), or cognitive-growth needs (G). This ERG
typology surfaces in MDS space in certain neighborhoods that can be separated
from each other by cutting the plane in a wedge-like fashion. The same type of
partitioning is possible both in the West German and also in the East German MDS
plane. Hence, the two solutions are equivalent in the ERG sense (Borg and Braun
1996).

Partitioning anMDS space is done facet by facet. For each facet Fi , one generates
a facet diagram. This is simply a copy of the MDS configuration where each point
is replaced by the code that indicates to which category of Fi the respective point
belongs. One then checks to what extent and in which way this facet diagram can be
partitioned into regions that contain only codes of one particular type. The emerging
regions should be as simple as possible, e.g. with straight partitioning lines. This
is desirable because simple partitions can also be characterized by simple laws of
formation that promise to be more robust and more replicable than complicated
patterns that are fitted too closely to the particular data and its noise.

Although there exist computer programs that yield partitions for facet diagrams
that are optimal in some sense (Borg and Shye 1995), it is typically more fruitful for
the user to work with pencil and eraser on a printout of the facet diagram. This way,
partitioning lines can be drawn, redrawn, and simplified in an open-eyed fashion,
paying attention to content and substantive theory. One may decide, for example, to
admit some placements of points in “wrong” regions, because simple overall patterns
with some errors are better than perfect partitions with overly complicated partitions.

Three prototypical regionalities that often arise in practice are shown in Fig. 7.7:
axial, modular, and polar partitions. Axial and modular partitions are either based
on ordered facets, or they suggest ordered facets. Polar partitions, in contrast, are
typically related to unordered (nominal) facets. Of course, if the sectors in a polar
partition are arranged similarly in many replications, then one should think about
reasons for this order.

Regionalizations—simple ones, in particular—become unlikely to result by
chance if the number of points goes up. That is easy to see from a thought experiment.
Assume you take a set of n ping-pong balls and label some of them with “a”, others
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Fig. 7.7 Prototypical partitioning of MDS configurations by three facets, each one with three
categories (a, b, c)

with “b”, and still others with “c”. Then, throw them all into a bucket, mix them
thoroughly, and pour the bucket onto the floor. After the balls come to their parking
positions, try to partition the resulting configuration into a-, b-, and c-regions. This
will be difficult or even impossible if you want simple regions as in Fig. 7.7. It is even
less likely that the regionality that you find in one case can be replicated when the
experiment is repeated. A simple regional pattern, therefore, suggests a lawful rela-
tionship in the sense that the facet structures the observations. This notion becomes
even more powerful if an MDS configuration can be partitioned by more than one
facet so that the different organizational patterns can be stacked on top of each other
as, for example, in the radex in Fig. 2.8.

An MDS solution can be partitioned, in principle, by as many facets as the user
can think of. There is no fixed relation between the number of facets and the dimen-
sionality of the space. This is different for dimensions: In an m-dimensional space,
one always seeks to interpret exactly m dimensions. A dimensional interpretation
corresponds to a combination of m axial facets (see Fig. 7.7, left panel), each gener-
ating an ordered set of (infinitely) narrow bands with linear boundary lines so that a
grid-like mesh (as, e.g., in Fig. 6.3) is generated.

Regions are sometimes confused with clusters. Clusters, however, are but special
cases of regions. They are often defined as lumps (or chains) of points surrounded
by empty space so that each point in a cluster is always closer to at least one point in
the cluster than to any point not in the cluster. Clustering in that sense is not required
for perfect regions. Regions are like countries that cut a continent like Europe into
pieces.Malmö/Sweden, for example, ismuch closer to Copenhagen/Denmark—both
are connected by a bridge—than to any other Swedish city, so the Swedish cities do
not form a cluster on the European map, but they are all in the same region.

Clusters, moreover, are formal constructs, while regions are based on substan-
tive thinking that is often expressed via facets. Nevertheless, one can always cluster
proximities and then check how the resulting clusters organize the points of an MDS
solution. Cluster analysis is, however, not particularly robust: Different amalgama-
tion criteria can lead to vastly different clusters. Cluster analysis, therefore, is not a
method for “validating” an MDS solution or interpretation, as some writers argue.
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Rather, cluster analysis typically just leads to groupings of points that tend to surface
similarly in MDS solutions.

7.10 Poorly Dealing with Disturbing Points

A frequent problem in MDS applications is what to do with points that do not fit
into an interpretation. A typical case is a configuration that cannot be partitioned in a
theoretically pleasing way because of one or a few “misplaced” points. In such cases,
onemay decide to construct (slightly) overlapping regions, or stick to the partitioning
notion and generate curvy partitioning lines (as, e.g., in Fig. 6.2). A third solution is
to draw a best-possible partitioning system where some points remain in regions to
which they do not belong. A fourth, and often rather dubious solution, is to eliminate
such points from the MDS configuration by “explaining them away” in substantive
terms.

A completely different way to deal with disturbing points is asking how much the
Stress goes up if one shifts these points in space such that simple partitioning becomes
possible. The easiest way to answer this question is the following. Assume you use
res <- mds(diss, type="interval"). Now, replace the coordinates of disturb-
ing points in res$conf with “should” coordinates (i.e., coordinates that put these
points into positions where they are not disturbing anymore). Let us call this modified
coordinate matrix X.mod. Then, compute the Stress of X.mod using the stress0()

function: stress0(diss, init=X.mod, type="interval"). Finally, compare
the Stress value of the optimal solution res$conf with the Stress of X.mod. If the
Stress increment is small, then one would probably prefer the solution that allows a
simple interpretation over the optimal-Stress solution. The rationale is that it promises
to be better replicable, being based on a substantive law of formation, than the solu-
tion that represents the one given set of data with minimal Stress.

A formally better solution is using confirmatory MDS. However, confirmatory
MDSwith regional restrictions can be difficult to formulate and to implement. Hence,
before trying this, a simple shift-and-see approach yields a quick answer that is often
sufficient. Note, though, that replications are absolutely essential in any case. If
certain disturbing points come out similarly in replications, one must take a closer
look at what exactly is being measured by them and how this is related to the rest
of the variables. A small increment in global Stress when shifting a few points can
also be deceptive, in particular if only one or two points are moved and the rest of a
large configuration is not changed. A vivid example is the case of the Morse signals
in Fig. 6.3, where only one point (the signal for “1”) is substantially shifted out of a
total of 36 points. This one-point movement cannot affect the Stress very much and
so this one signal remains suspicious.
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7.11 Scaling Almost-Equal Proximities

Proximity data cannot always be represented in a low-dimensional space. This is true,
for example, if the data have a large error component or if they are simply random
data. A second instance is data that are essentially constant. Buja et al. (1994) have
shown that if all data are exactly equal, 2d ratio MDS leads to points that all lie on
concentric circles; moreover, the points can all be interchanged without affecting the
Stress. Users should therefore keep an eye on the case of almost-equal proximities
or disparities. In particular, they must look closely at the units of the Y -axis of the
Shepard diagram: If most of these values are almost equal, then caution is needed.
Most computer programs choose an origin for the Y axis that magnifies the range
of the observed values. If the origin of Y in a Shepard plot is zero, then the almost-
equal problem becomes obvious immediately. Also, investigate the distribution of
the proximities or disparities, preferably in a histogram. If the histogram shows that
the disparities are all close together and are much different from zero, then one can
expect the 2d solution of concentric circles.

Another way to diagnose peculiarities in the data is scaling them with different
MDS models. In case of almost-equal proximities, ordinal MDS preserving ties
(secondary approach) and interval MDS yield almost the same results. However, if
ordinal MDS is used with the primary approach to ties—which allows to untie ties
in the distances—a radically different solution is obtained, where most of the points
cluster in one point, and a few points scatter about this cluster. The Stress, moreover,
is much smaller than for the other MDS representations. If different MDS models
yield such vastly different results, then something is almost always wrong. With
well-structured data, different MDS models yield solutions that do not differ much.

7.12 Summary

Some mistakes are frequently made in MDS. One example is not specifying the
proper polarity of proximities so that the MDS program uses similarity data as dis-
similarity data, or vice versa. Another simple mistake is making MDS programs
terminate their iterations too early, or not studying the effects of using different
starting configurations. Once aware of these mistakes, they can be easily avoided.
Another mistake is overlooking degenerate solutions in ordinal MDS. They can be
avoided by using stronger MDS models. A rather frequent mistake is automatically
asking for the meaning of “the” dimensions: Dimensions are but a special case of
regions, and other meaningful patterns may also exist in an MDS configuration.
Simply discarding disturbing points from an MDS solution is also too mechanical:
Sometimes, such points can be shifted without affecting the Stress very much. Then,
when comparing different MDS solutions, one should first get rid of meaningless
differences via Procrustean transformations. Finally, data that are almost all equal
can lead to meaningless MDS solutions.
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Chapter 8
Unfolding

Abstract Unfolding is discussed again in a realistic and more complex application
that requires a 3d solution with a special rotation. For mixed samples, multidimen-
sional unfolding can sometimes be replaced by multiple low-dimensional unfolding.
One must also clarify whether the data are unconditionally comparable. The stability
of unfolding solutions is discussed, and some special unfolding models such as the
vector model and circular unfolding are introduced.

Keywords Unfolding · External unfolding · Internal unfolding
Conditionalities · Vector model unfolding · Circular unfolding

8.1 Unfolding in Three-Dimensional Space

To discuss the various issues involved in three-dimensional (3d) unfolding, we use
the PVQ40 data set, but now we scale value indexes based on the observed (“raw”)
ratings, not on centered ratings. To turn the preference indexes into dissimilarity
indexes, we first subtract the observed importance ratings from the maximum rating
value. This leads to a dissimilarity value of zero for those persons who fully endorse
a value. The dissimilarities are then scaled using the unfolding() function of the
smacof package (see R script below1).

The 3d ratio scale unfolding solution is shown in Fig. 8.1. It has a Stress of 0.205,
indicating a good fit of the 151 × 10 datamatrix to the corresponding 1,510 distances
in unfolding space. The permutation test of unfolding() finds that this Stress value
has a p-value smaller than 0.01. Hence, the solution is “significant.”

1Note that you can use this script and hold the s2 matrix of the initial configuration fixed if you
want to do external unfolding with a theory-derived configuration of value points. To do this, you
add the argument fix = "columns" to the unfolding() call.

© The Author(s) 2018
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Fig. 8.1 Unfolding configuration of importance ratings on personal values (reversed, subtracted
from max scale value); person points unlabeled; value points marked as PO, AC, ... , SE and
connected in the order of the Schwartz value circle

The configuration in Fig. 8.1 has been rotated to an orientation where the first two
dimensions coincide with the first two principal axes of the points representing the
ten basic values. This is accomplished as follows. Let X be the coordinate matrix of
the value points andY the coordinates of the person points. We compute the singular
value decomposition X = PDQ′ and then use Q to rotate X and Y to XQ and YQ,
respectively. XQ yields a principal axes orientation of X, because XQ = PD has
orthogonal columns of maximal norm (Borg and Groenen 2005, p. 162).

Scaling solutions in 3d space are difficult to interpret. Most programs offer graph-
ical output in the form of three planes, i.e., the planes spanned by the configuration’s
principal axes. Inspecting these planes does not always guarantee seeing the substan-
tive meaning of the configuration. In the given case, the principal axes orientation
of the 3d unfolding configuration is substantively inaccessible. In such a case, it can
be helpful to use interactive graphics that allow rotating the configuration in space
to orientations that are more revealing. For example, in the R environment, one
can interactively study the configuration of the points representing the personal val-
ues with coordinate matrix X by using library(rgl); plot3d(X, size = 10);

text3d(X, text = colnames(PVQ40agg), adj = 1.2) and save the plot2 with
rgl.postscript("myplot.pdf", fmt = "pdf").

2For more information, see http://www.sthda.com/english/wiki/a-complete-guide-to-3d-
visualization-device-system-in-r-r-software-and-data-visualization.

http://www.sthda.com/english/wiki/a-complete-guide-to-3d-visualization-device-system-in-r-r-software-and-data-visualization
http://www.sthda.com/english/wiki/a-complete-guide-to-3d-visualization-device-system-in-r-r-software-and-data-visualization
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1 nobs <- dim(PVQ40agg)[1]
2 set.seed(33) ## sets a seed for the random number generator
3 ## Initial configuration of personal values (based on TUV theory)
4 tuv <- matrix(c(.50,-.87,.71,-.71,.87,-.50,.87,.50,.50,.87,-.50,.87,
5 -.71,.71,-.87,.50,-.87,-.50,-.50,-.87), nrow=10, ncol=2, byrow=TRUE)
6 s2 <- cbind(tuv, matrix(0, nrow=10, ncol=1)) ## Add column of zeros for 3d
7 ## Initial configuration of persons (random)
8 s1 <- matrix(runif(3*nobs, min=0, max=1), nrow=nobs, ncol=3)
9 pref <- max(PVQ40agg) - PVQ40agg ## Preferences into dissimilarities

10 result <- unfolding(delta=pref, ndim=3, itmax=6000, init=list(s1, s2))
11 result; permtest(result)
12 e <- svd(result$conf.col)
13 X <- result$conf.col %*% e$v # Rotation to principal axes
14 eV <- sum(X[, 1:2]^2) / sum(X^2) # expl.var. in value plane
15 Y <- result$conf.row %*% e$v # Rotation to principal axes
16 ## plot 3d unfolding solution --------------------------------------------
17 require(scatterplot3d)
18 lim1 <- c(-3,+3)
19 s3d <- scatterplot3d(X, type="h", xlab="Dimension 1", ylab="Dimension 2",
20 zlab="Dimension 3", xlim=lim1, ylim=lim1, zlim=lim1,
21 cex.symbols=2,color="red", pch=21, bg="red", asp=1)
22 text(s3d$xyz.convert(X), labels=colnames(raw), pos=3 )
23 s3d$points3d(rbind(X, X[1, ]), type="l", col="blue", lty=2, lwd=2)
24 s3d$points3d(Y, pch=21, bg=grey(0.1, alpha=.4),
25 col=grey(0.1, alpha=.6), xlab="", ylab="")
26 plot(result, plot.type="stressplot") ## plot SPPs persons/values

Unfolding in only two dimensions generates a solution that is uninterpretable.
The value circle, in particular, does not emerge at all in this solution. For the 3d con-
figuration in Fig. 8.1, one finds that the value points are almost fully contained in the
1–2 plane of the rotated configuration: The plane captures 97.4% of the value points’
variance in the 3d unfolding space. One also notes in Fig. 8.1 that the value points
are almost perfectly ordered as predicted by Schwartz (1992). This becomes even
clearer when looking at this space from above along the third dimension (Fig. 8.2).

The configuration of the value points in the 1–2 plane is also quite similar to the
configuration of the value points in the 2d unfolding solution for centered ratings
shown in Fig. 2.14: After Procrustean fitting, the corresponding point coordinates
correlate with r = 0.96. Moreover, the perpendicular distances of the person points
from the 1–2 plane of the value points correlate with the corresponding mean ratings
of the persons with r = −0.84. Thus, persons with high mean value ratings are close
to the plane of the value circle, and persons with low mean ratings are far away from
this plane.

Figure8.3 gives the SPP distributions of the various persons and the 10 value
points, respectively. In the plot on the left-hand side, one notes that person #21 has
the worst fit in the unfolding space. This person has scores of 6.0 for AC and CO;
4.0 for TR; 3.5 for PO; 2.7 for UN; 2.0 for SE; 1.5 for ST; and 1.0 for HE, SD, and
BE. Hence, he/she should be located close to AC and CO in unfolding space, but
this would automatically put him/her very close to PO and close to SE (see Fig. 8.2),
and that would not represent his/her importance ratings so well. On the other hand,
if this person is located somewhere in this neighborhood, then his/her distances to
the points BE, HE, and SD are large, and this expresses his/her ratings properly.
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Fig. 8.3 SPP values for persons (left) and for personal values (right) in unfolding solution in Fig. 8.1

Hence, even this person fits reasonably well into the unfolding solution. The best
compromise position found by unfolding for person #21 is shown in Fig. 8.2.

8.2 Multidimensional Versus Multiple Unfolding

Assume thatwe have a data set of preferences of various persons for different political
parties. A typical way to think about such data is to assume that these persons all
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perceive the parties similarly in terms of their left-to-right orientation. That is, the
Communist party is on the far left, theNationalists on the far right. The persons differ,
however, in their political preferences. This is the classical unfolding scenario: The
closer a party to the ideal point of a person, the stronger this person’s preference
for this party. Hence, unfolding the observed ratings or rankings should lead to a
one-dimensional solution of person and party points. It may, therefore, come as a
surprise that Norpoth (1979) reports that representative data sets of potential voters
rank-ordering major political parties in Germany cannot be scaled in one dimension.
Rather, the solution spaces are two-dimensional.

As a psychological model of preference, the unfolding model rests on a rather
strong assumption: All persons share the same perception of the objects. What if this
assumption iswrong?Reanalyzing the above voter preferences, Borg and Staufenbiel
(2007) showed that some voters located the German Liberals to the right of the
Conservatives, while other voters swapped the order of these parties. If the two
groups of voters are thrown into one single unfolding analysis, a hard-to-interpret
two-dimensional solution is needed to represent these data. If, however, the two
groups are analyzed separately (multiple unfolding), unfolding leads to a 1d solution
for each group, where the Liberals are to the left of the Conservatives in one data set,
and to the right in the other. Thus, the multidimensional unfolding representation for
the total sample appears to be an aggregation artifact that does not properly represent
the preferential space of normal voters.

Another feature of the unfolding model is that the preference strength of each
person should drop monotonically as a function of the distance from his/her ideal
point. Now consider the case where persons are asked to rank-order different samples
of tea that differ in their temperature, from steaming hot to ice cold. One can assume
here that the persons will produce preference ratings that cannot be unfolded in one
dimension. Yet, multidimensionality would be the wrong way out in this case too.
Rather, what we have here are two essentially incomparable types of objects, hot tea
and iced tea, and the ratings for each of them should be scaled separately in 1d space.

8.3 Conditionalities in Unfolding

In unfolding, one should consider whether one really wants to assume that the data
are comparable across rows. In our example on preferences for personal values,
one may doubt that an importance rating of “4”, say, of person i is truly equal to
the “4” given by person j . Some persons use high scores throughout, others shy
away from extreme scores. Social desirability, acquiescence, and other response
style artifacts may also affect the ratings. This is why such data are often centered,
person by person. But even then, the cautious researcher may not want to compare
the data across individuals. This means, he/she wants to split the data matrix by rows
and use a person-specific regression for each single row of the data matrix. Thus,
for example, in ratio unfolding, this row-conditional treatment of the data allows a
specific multiplicative constant for each individual. This would lead to a Shepard
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diagramwith as many regression lines as there are persons. In the matrix-conditional
case in Fig. 3.4, we have only one regression line—the same for all persons.

Such conditionalities may be desirable for theoretical reasons. However, they
further reduce what is already scarce in unfolding, i.e., the constraints that the data
exert onto the distances of the solution. For row-conditional unfolding, one should,
therefore, have “plenty” of data (rule of thumb: at least 15 persons, all with different
preference profiles).

In general, we do not recommend beginning an unfolding analysis of preference
data with weak models (e.g., ordinal unfolding with row conditionality). Rather,
begin with the opposite as in the example above in Sect. 8.1, i.e., a strong model such
as ratio unconditional unfolding. This takes the data seriously, allowing no admissible
transformations but mapping each observed score directly into a model distance. A
weaker model should only be tested if the stronger model cannot be salvaged.

8.4 Stability of Unfolding Solutions

From a geometric point of view, unfolding can easily lead to unstable solutions. This
is so because the model rests on data that constrain only a subset of the distances,
namely the distances between ideal points and object points, but not the distances
among ideal points and also not the distances among object points (see Table1.2b).

Moreover, with real data, object points and ideal points are often not thoroughly
mixed. That is, many preference orders that are theoretically possible do not appear
at all, because most persons prefer or reject the same objects. This can lead to
major indeterminacies of the unfolding solution, where single points can be moved
around arbitrarily in ample solution regions without affecting the Stress (see Borg
and Groenen 2005).

You can test the stability of unfolding by choosing different seeds in the R com-
mands above. Simply replace the 33 in set.seed(33) by 1, 47, or any other number.
These seeds lead to different random components in the initial configuration, and
this can lead to different solutions. For applied research, this means that you would
hope to eventually find a solution that is theoretically convincing and that has an
acceptable Stress value (if it exists). It sometimes pays to test different starting con-
figurations and then pick the solution with the most desirable properties (see also p.
78f.).

8.5 Degenerate Unfolding Solutions

Amajor problem in unfolding is the risk to obtain degenerate solutions, in particular
when using weak unfolding models. The solutions, then, show peculiar patterns
where all distances between ideal points and object points are essentially equal.
Such undesirable solutions are sometimes easily recognized, for example, if the
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person points are all located on a circular arc, while the object points are lumped
together in the center of the circle. To avoid this problem, most unfolding programs
use slightlymodified target functionswhen searching for an optimal solution, but they
are often not successful. A systematic approach that avoids degenerate solutions was
proposed by Busing et al. (2005) and implemented in the Prefscalmodule of Spss
and in unfolding() in smacof. It penalizes the loss function whenever the MDS
configuration tends to be modified in the optimization process into the direction of
equal distances. We, therefore, recommend using these programs in case of interval
and ordinal unfolding.

Another issue is weighting the rows of the data matrix. In case of the PVQ40
ratings of importance of personal values, some persons generate highly different rat-
ings, others rate all values the same. The latter data are easy to represent in unfolding
in a quasi-degenerate solution with the person points densely clustered in the center
of a circle of points representing the personal values. So, if you have a large propor-
tion of persons with almost constant ratings, unfolding becomes almost trivial. To
counteract this tendency toward a trivial solution, one can weight the data somehow
by their variance. Assume that pref are the preferences converted to dissimilarities
(as on p. 97), then these commands are one possibility in smacof:

1 pref <- max(PVQ40agg) - PVQ40agg; nper <- dim(pref)[1]
2 var.per.row <- apply(pref, 1, var)
3 W <- matrix(var.per.row, nrow = nper, ncol = ncol(pref))
4 W[W==0] <- min( W[W!=min(W)] ) ## if var=0, use smallest non-zero variance
5 out <- unfolding(pref, weightmat = W)

8.6 Special Unfolding Models

Three special unfolding models are worth mentioning. One is weighted unfolding. It
assumes that all persons share a common perception of the choice objects, but now
each person can also take the common space and stretch it differentially along its
dimensions (or along idiosyncratically rotated dimensions) before placing an ideal
point into this space.An evenmore generalmodel admits negative dimensionweights
and anti-ideal points (Carroll, 1980). Practical applications show, however, that little
is gained by going beyond the simple unfolding model. Moreover, some of these
(extremely complicated) models turn out to have obscure properties when looking
more closely. Hence, weighted unfolding is not recommended for the applied user.

Another case is the vectormodel of unfolding. It represents the persons by directed
lines running through the origin, not by ideal points. Each such line is oriented in
space such that the projections of the points representing the choice objects onto this
line correspond optimally to the observed preference scores of a person. Expressed
differently, each person’s preference scores are explained by a weighted sum of the
dimensions of the objects. For example, person p may weight Dimension 1 by 60%



102 8 Unfolding

Fig. 8.4 Vector model
unfolding of basic value
index scores of 151 persons;
each arrow represents a
person; person 133 marked
by a line; arrow shows
direction and strength of
persons’ strivings in value
space
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and Dimension 2 by 40% and give both a positive sign (more=better). This defines
the orientation of p’s preference vector: It runs into the 2:00 o’clock direction.3

Figure8.4 shows a 2d solution of a linear version of thismodel for the PVQ40 data.
Each arrow in the plot represents a different person. An arrow shows the direction
and the resultant strength of a person’s striving in value space. Computationally, we
get this plot from the following R script:

1 vmu <- function (P, ndim=2, center=TRUE, scale=FALSE) {
2 m <- dim(P)[2]; S <- svd(t(scale(t(P), center=center, scale=scale)))
3 X <- m^(1/2)*S$v; Y <- m^(-1/2)*S$u %*% diag(S$d) ## X=objects, Y=persons
4 row.names(X) <- colnames(P); row.names(Y) <- rownames(P)
5 return(list(X=X[,1:ndim], Y=Y[,1:ndim], VAF=sum(S$d[1:ndim]^2)/sum(S$d^2),
6 d=S$d)) }
7 res <- vmu(PVQ40agg) ## calling function vmu with PVQ40agg data
8 plot(1.2*res$X[,1], 1.2*res$X[,2], type="n", asp=1, xlab="", ylab="")
9 abline(0, res$Y[133,2]/res$Y[133,1], col="gray"); abline(h=0, v=0, lty=2)

10 zero <- rep(0,nrow(res$Y))
11 arrows(zero, zero, res$Y[,1], res$Y[,2], col="red", length=0.1) ## persons
12 text(res$X[,1], res$X[,2], rownames(res$X), cex=1.5) ## objects
13 text(res$Y[133,1], res$Y[133,2], labels="133")
14 round(PVQ40agg[133,],2); round(PVQ40agg[133,]-mean(PVQ40agg[133,]),2)
15 round(t(res$X %*% res$Y[133,]), 2) ## reconstructed values of person 133
16 round(t(res$X %*% res$Y[133,]/(sum(res$Y[133,]^2)^.5)),2) ## projected values

Overall, the solution accounts for 66% of the variance. The arrow representing
person #133 is marked by a solid line running from the upper left-hand side of the
plot to the lower right-hand side. It explains this person’s data quite well, except for

3The vector model cannot represent cases where a person’s preference strengths keep going up
until a certain point is reached and then drop monotonically as one continues moving further on
the person’s vector. If, however, all ideal points move far outside the configuration of the choice
objects, the vector model approximates the ideal-point model as a special case (Coombs, 1975).
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some discrepancies on HE and AC. The (centered) ratings of person #133 correlate
with the his/her reconstructed4 scores with r = 0.947:

SE CO TR BE UN SD ST HE AC PO
value ratings -1.77 -1.77 -1.77 -1.77 -1.10 0.23 1.73 0.73 3.23 2.23
reconstructed -1.64 -1.66 -1.81 -1.46 -1.13 -0.53 2.00 1.84 2.07 2.31

The unfolding solution shows that most persons in this sample lean toward self-
enhancement, not toward self-transcendence. We also note once more that the object
points form a roughly circular configuration, similar to the ideal-point solution in
Figs. 3.4 and 1.11.

The third special model is circular unfolding. This model is the same as regular
ideal-point unfolding, except that it imposes a particular restriction onto the object
points (or the person points): They must all lie on a circle. An application of this
model is the case of importance ratings for personal values. Figure 1.11 shows the
solution of unrestricted unfolding for ten (centered) value indexes and 146 persons
(PVQ40 data). It also shows a circle that was fitted to the configuration of points
that represent the personal values. In circular unfolding, we search for an unfolding
solution where all value points (formally: “column points”) are strictly on a circle. To
compute this solution, the user only needs to set one additional argument when call-
ing the unfolding function:result <- unfolding(pref, circle = "column").
This generates a perfect-circle solution with a Stress of .175. Without the circle con-
straint, we get Fig. 1.11, with a Stress of .167. Obviously, the additional constraint
made almost no difference in terms of the overall model fit, and so this is an attractive
unfolding model, because it suggests a simple law of formation.

8.7 Summary

Unfolding in 3d space leads to special problems. The usual principal axes rotation
may not allow a meaningful interpretation. To rotate the unfolding space, one can
use interactive graphics or theory-driven analytic approaches. The user should know
that unfolding solutions can be too high-dimensional because the samples consist of
subgroups with different common spaces. This can lead to misinterpretations of the
unfolding solution. Also, in unfolding, the user needs to decide if his/her data should
be considered comparable across persons. If they are taken as row-conditionally
comparable only, the unfolding model is weakened, just as assuming ordinal or
interval scale levels. Degenerate solutions are almost certain to result in such cases,
unless special unfolding programs are used that systematically avoid such solutions.
If possible, strong unfolding models or even special unfolding models such as the
vector model or circular unfolding are, therefore, to be preferred.

4The reconstructed values are obtained by projecting each item onto the direction of the person
arrow multiplied by the length of the person arrow.
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Chapter 9
MDS Algorithms

Abstract Two types of solutions for MDS are discussed. If the proximities are
Euclidean distances, classical MDS yields an easy algebraic solution. In most MDS
applications, iterative methods are needed, because they admit many types of data
and distances. They use a two-phase optimization algorithm, moving the points in
MDS space in small steps while holding the data and their transforms fixed, and vice
versa, until convergence is reached.

Keywords Classical MDS · Iterative MDS algorithm · Disparity
Two-phase algorithm · Rational starting configuration · Majorization · smacof
For most MDS models, a best-possible solution X cannot be found by simply solv-
ing a system of equations. The conditions for MDS solutions are so complicated,
in general, that they are algebraically untractable. MDS solutions must, therefore,
be approximated iteratively, using intelligent search procedures (algorithms) that
reduce the Stress by repeatedly moving the points somewhat to new locations and
by successively rescaling the proximities until a Stress minimum is found.

Algorithms of this kind are not needed if one wants to assume or if one can prove
that the dissimilarity data δi j—possibly derived first from inverting similarity data—
are Euclidean distances. In this case, classical MDS can be used to find the MDS
solution X analytically.

9.1 Classical MDS

Classical MDS—also known as Torgerson scaling and as Torgerson-Gower scal-
ing—works as follows:

1. Square the n × n dissimilarity data: �(2).

© The Author(s) 2018
I. Borg et al., Applied Multidimensional Scaling and Unfolding,
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2. Convert the squared dissimilarities to scalar products through double centering1

of �(2): B� = − 1
2Z�(2)Z, where Z = I − n−1J, and where I is the identity

matrix (with all elements in the main diagonal equal to 1, and all others equal to
0), and J is a matrix of ones.

3. Compute the eigen-decomposition B� = Q�Q′.
4. Take the first m eigenvalues greater than 0 (=�+) and the corresponding first m

columns of Q (= Q+). The solution of classical MDS is X = Q+�
1/2
+ .

We demonstrate these steps with a small numerical example:

� =
⎡
⎢⎣

0 4.05 8.25 5.57
4.05 0 2.54 2.69
8.25 2.54 0 2.11
5.57 2.69 2.11 0

⎤
⎥⎦ , which leads to �(2) =

⎡
⎢⎣

0.00 16.40 68.06 31.02
16.40 0.00 6.45 7.24
68.06 6.45 0.00 4.45
31.02 7.24 4.45 0.00

⎤
⎥⎦ .

In the second step, we compute

B� = −1

2
Z�(2)Z

= −1

2

⎡
⎢⎣

3
4 − 1

4 − 1
4 − 1

4− 1
4

3
4 − 1

4 − 1
4− 1

4 − 1
4

3
4 − 1

4− 1
4 − 1

4 − 1
4

3
4

⎤
⎥⎦

⎡
⎢⎣

0.00 16.40 68.06 31.02
16.40 0.00 6.45 7.24
68.06 6.45 0.00 4.45
31.02 7.24 4.45 0.00

⎤
⎥⎦

⎡
⎢⎣

3
4 − 1

4 − 1
4 − 1

4− 1
4

3
4 − 1

4 − 1
4− 1

4 − 1
4

3
4 − 1

4− 1
4 − 1

4 − 1
4

3
4

⎤
⎥⎦

=
⎡
⎢⎣

20.52 1.64 −18.08 −4.09
1.64 −0.83 2.05 −2.87

−18.08 2.05 11.39 4.63
−4.09 −2.87 4.63 2.33

⎤
⎥⎦ .

In the third step, we compute the eigen-decomposition of B� = Q�Q′ with

Q =
⎡
⎢⎣

0.77 0.04 0.50 −0.39
0.01 −0.61 0.50 0.61

−0.61 −0.19 0.50 −0.59
−0.18 0.76 0.50 0.37

⎤
⎥⎦ and � =

⎡
⎢⎣

35.71 0.00 0.00 0.00
0.00 3.27 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 −5.57

⎤
⎥⎦ .

In the fourth step, this yields the MDS configuration

X = Q+�
1/2
+

=
⎡
⎢⎣

0.77 0.04
0.01 −0.61

−0.61 −0.19
−0.18 0.76

⎤
⎥⎦

[
5.98 0.00
0.00 1.81

]
=

⎡
⎢⎣

4.62 0.07
0.09 −1.11

−3.63 −0.34
−1.08 1.38

⎤
⎥⎦ .

1This means that the centroid of the MDS configuration becomes the origin. The coordinates of X,
thus, should sum to 0 in each column of X. This does not carry any consequences for the distances
of X; that is, any other point could also serve as the origin. However, one point must be picked as
an origin to compute scalar products.
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To check the goodness of this solution, we compare its distances with the given
dissimilarities, �. The distances are

D =
⎡
⎢⎣

0.00 4.68 8.26 3.60
4.68 0.00 5.85 2.75
8.26 5.85 0.00 3.08
3.80 2.75 3.08 0.00

⎤
⎥⎦ , so that � − D =

⎡
⎢⎣

0.00 −0.63 −0.01 1.97
−0.63 0.00 −3.31 −0.06
−0.01 −3.31 0.00 −0.97
1.77 −0.06 −0.97 0.00

⎤
⎥⎦ .

In this example, the distances among the points of the MDS configuration con-
structed by classical MDS are only approximately equal to the given dissimilarity
data. The reason for this result is that the dissimilarities in � are not Euclidean dis-
tances, as classical MDS assumes. Mathematicians would have noticed that in the
third step above, because if the dissimilarities are Euclidean distances, then all eigen-
values are non-negative. If negative eigenvalues occur, one may decide to “explain
them away” as caused by “error” in the dissimilarities, provided that these nega-
tive eigenvalues are relatively small. In the above example, however, this assumption
appears hard to justify, because the one negative eigenvalue (=−5.57) is rather large.

Why would one even want to assume that dissimilarity data are Euclidean dis-
tances (except for an error component)? The justificationmust come from theway the
data are generated or collected. If persons are asked directly for ratings on pairwise
dissimilarities, then it may be plausible to hypothesize that the observed numeri-
cal responses are at least distance-like values. Such data could, therefore, be scaled
directly using classical MDS. The procedure will show to what extent the data are
indeed Euclidean distances.

Correlations as in Table1.1, however, are definitely not Euclidean distances, but
rather scalar products by construction. Thus, in this case, one should skip steps
1 and 2 in the above, and begin directly with step 3. This amounts to running a
principal component analysis. An alternative approach is to first convert the scalar
products to distances. In case of correlations, this conversion is di j = √

2 − 2ri j (see
formula 4.1 on page 46).

In case of larger errors (as in the example above), classical MDS quickly reaches
its limits as a useful method. It generates a best-possible solution, but it does so
minimizing a criterion known as Strainwhich is not as easily interpretable as Stress.
Moreover, in most applications, the data are at best on an interval scale level. Hence,
one would not want to interpret the data directly as distances, but rather allow for an
optimal rescaling when mapping them into distances.

9.2 Iterative MDS Algorithms

Iterative MDS algorithms are more flexible than classical MDS. They find a Stress-
optimal MDS configuration and, in doing so, they rescale the data optimally within
the constraints of their scale level. However, iterative algorithms cannot guarantee to
always find the global optimum solution, because their small-step improvementsmay

http://dx.doi.org/10.1007/978-3-319-73471-2_1
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Fig. 9.1 Principles of an iterative MDS algorithm

get stuck in local minima. The user, therefore, should keep an eye on this possibility
(see p. 77f. for suggestions on how to avoid local minimum solutions).

Iterative MDS algorithms proceed in two phases (see Fig. 9.1). In each phase one
set of parameters (distances or disparities, respectively) is taken as fixed values, while
the other set of arguments is modified in such a way that Stress is reduced:

1. The disparities (i.e., the admissibly transformed proximities) are fixed; the points
inMDS space aremoved (i.e.,Xt is changed to becomeXt+1) so that the distances
of Xt+1 minimize the Stress function.

2. TheMDS configuration,X, is fixed; the disparities are rescaled within the bounds
of their scale level so that the Stress function is minimized (optimal scaling).

If, after t phases, this ping-pong process does not reduce the Stress value by more
than some fixed amount (e.g., 0.0005) or if the Stress value is even increasing, the
search algorithm is stopped, and Xt is taken as the optimal solution.

Phase 1 amounts to a difficult mathematical problem with n ·m unknown param-
eters, the values of X. To solve it, various optimization algorithms have been devel-
oped. The presently best algorithm is the smacof procedure (De Leeuw and Heiser
1980, Borg and Groenen 2005), because it guarantees that the iterations will con-
verge to at least a local Stress minimum.2 Other criteria can also be used to assess
the quality of MDS algorithms (Basalaj 2001).

Phase 2 poses a relatively easy problem. In interval MDS, one solves the prob-
lem via linear regression. It finds the additive and multiplicative coefficients that
linearly transform proximities into disparities such that the Stress is minimized for
the given distances. For other MDS models, appropriate regression procedures are
also available (e.g., monotone regression for ordinal MDS).

2smacof is an acronym for “Scaling by MAjorizing a COmplicated Function” (De Leeuw and
Heiser 1980). The optimization method used by smacof is called “Majorization” (De Leeuw 1977,
Groenen 1993). The basic idea of this method is that a complicated goal function (i.e., Stress within
the MDS context) is approximated in each iteration by a less complicated function which is easier
to optimize. For more details on how this method is used to solve MDS problems, see De Leeuw
and Mair (2009) or Borg and Groenen (2005).
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These issues are purely mathematical ones. Users of MDS need not be concerned
with them. They should simply useMDS programs like drivers use their cars: Drivers
have to know how to drive, but they do not have to understand the physics of com-
bustion engines. Drivers, however, should also know how to run a car (e.g., making
sure that it has enough gas), and MDS users must feed the programs properly and
set the right options to get where they want to go, i.e., arriving at mathematically
optimal and substantively meaningful solutions.

An important option is picking a good starting configuration. All MDS programs
offer a few alternatives that users can try out to see if they all lead to the same
solution. Proxscal, for example, allows its users to repeat the MDS process with
many different random starting configurations, or pick a particular rational starting
configuration (e.g., one that results from using classical MDS),3 or use an external
user-constructed starting configuration.

We recommend to always actively influence the choice of the starting config-
uration rather than leaving it to the MDS program to construct such a configura-
tion internally. A good choice is often using a starting configuration constructed on
substantive-theoretical grounds. One example is using the design configuration in
Fig. 2.4 as a starting configuration when scaling the rectangle similarity data. If such
an external configuration can be formulated, one should at least test it out in case the
MDS program does not arrive at the expected solution with its internal options.

Depending on the particularMDSprogram, various “technical” options are always
offered to MDS users. These options can strongly impact the final MDS solution,
because they often prevent the algorithm from terminating its iterations even though
the Stress can be further improved. In the GUI window of Systat’s MDS program
shown in Fig. 1.5, for example, the user can set the maximum number of iterations
and define a numerical criterion of convergence. For historical reasons (i.e., to save
time and costs), the default values for these parameters are universally set much
too defensively in all MDS programs so that the iterations are terminated too early.
Users should set these parameters such that the program can do as many iterations
as necessary to reduce Stress (see Sect. 7.2, p. 77). Computing time is not an issue
with modern MDS programs.

9.3 Summary

If the data are Euclidean distances (apart from error), classical MDS is a convenient
algebraic method to do MDS. It assumes that the dissimilarity data are Euclidean
distances, converts them to scalar products, and then finds the MDS configuration
by eigen-decomposition. Iterative algorithms are more flexible: They allow opti-
mal rescalings of the data, and different varieties of Minkowski distances, not just
Euclidean distances. Such programs begin by computing or using a starting con-

3Such options are sometimes called Kruskal, Guttman, Young or Torgerson, depending on
their respective inventors or authors (see also Fig. 1.5 and Fig. 10.4).

http://dx.doi.org/10.1007/978-3-319-73471-2_1
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figuration, and then modify it by small point movements reducing its Stress. The
distances of this configuration are then used as targets for optimally rescaling the
data (thereby generating disparities) within the bounds of the data’s scale level. This
process of modifying the MDS configuration (with fixed disparities) and rescaling
the disparities (with fixed distances) is repeated until it converges. The presently best
algorithm for moving the points is smacof; rescaling the data is done by regression.
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Chapter 10
MDS Software

Abstract Two modern programs for MDS are described: Proxscal, an Spssmod-
ule, and smacof, an R package. Commands and/or GUI menus are presented and
illustrated with practical applications.

Keywords Proxscal · PrefScal · smacof
In this chapter, we turn to software for MDS and unfolding. MDS programs are
contained in all major statistics packages. In Spss there are even two MDS modules,
plus an unfolding program. No single MDS program is generally superior to all
others, and none offers all MDSmodels discussed in this book. Most MDS programs
allow the user to do both ordinal MDS and also interval MDS. Some can also handle
the Indscal model or varieties of this model. Few offer confirmatory MDS that
allows the user to impose additional restrictions onto the MDS solution. Only one,
Permap, offers the possibility to directly interact with the program dynamically.

10.1 Proxscal

The MDS program that may be accessible to most users and that also offers many
MDS models together with technically up-to-date solution algorithms is Proxscal.
It is one of the two MDS modules in Spss. Proxscal contains all of the popu-
lar models (ratio MDS, interval MDS, ordinal MDS; Indscal and related models;
weights for each proximity; a variety of different starting configurations; numerous
options for output, plots, and saving results), but also some forms of confirmatory
MDS (using external scales, enforcing axial regions). However, all MDS models
in Proxscal offer only Euclidean distances; no Shepard plots are generated (only
related plots such as transformation plots); and unfolding is cumbersome to run.1

1For unfolding using Spss, we recommend a specialized program, called Prefscal .

© The Author(s) 2018
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Fig. 10.1 Starting menu of Proxscal Fig. 10.2 Cardinal GUI menu of Proxscal

The user can interact with Proxscal via graphical menus or via commands.
Menus are sufficient formost users.Moreover, theymaybe easier to use for beginners,
and they print out the commands for later usage when applications need to be more
fine-tuned and better documented.

The startingmenu of Proxscal (in Spss 19) is shown in Fig. 10.1 for the example
discussed in Sect. 2.2. The program assumes that the user already imported the data
into Spss. This file is to be analyzed with MDS. Hence, no proximities have to be
created by Proxscal. The user, therefore, checks the button in the upper left-hand
corner, informing the program that the data are proximities.

If one begins with the usual “person × variable” data matrix of a social scientist,
proximities must first be generated. Proxscal offers a few options for doing this
if one checks the button “Create...”. However, other modules in Spss are usually
better suited for computing proximities (e.g., inter-correlation routines). In this case,
one first stores the proximities in some file, and then opens this file for MDS with
Proxscal.

The remaining options in Fig. 10.1 are relevant only if one has more than just one
data set, e.g., in case of Indscalmodeling or if one has replicated proximities. If so,
one can bind the k proximity matrices row-wise so that a (k · n)× n matrix results.
In order to keep track of the data, an additional variable is needed that denotes the
different matrices. For example, this variable (“IDSource”, say) may contain all 1’s
for the first matrix, then all 2’s for the second, etc.

Figure10.2 shows the main menu of Proxscal. In the upper right-hand corner,
you find a set of buttons that call many options for running an MDS analysis of the
given proximities. The most important ones are subsumed under the Model button.
If you check this button, the menu in Fig. 10.3 appears.
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Fig. 10.3 Window with important model
specification and data definitions

Fig. 10.4 Important nondefault specifica-
tions

For the country similarity data2 used above in Sect. 2.2, we have to check in the
lower left-hand corner of the menu in Fig. 10.3 that the data are Similarities. (The
default setting is Dissimilarities. If you forget to set this properly, an MDS solution
is computed that makes no sense and that has a very high Stress! Sometimes, one
notices only then that something must have been misspecified.)

The menu, moreover, offers the user to specify the type of regression that the
MDS program should use. For our example data, we specify that we want ordinal
MDS, with the primary approach to ties (“untie”).

Then, in the lower right-hand corner, we specify the dimensionality of the MDS
solution(s). The default settings are “2”, so there is just one two-dimensional solution.
If you want higher dimensionalities as well, simply change Maximum to a higher
value (e.g., 6). Note that unidimensional scaling solutions tend to have many local
minima. Therefore, it is not recommended to set Maximum to 1 unless precautions
are taken against local minima such as multiple random starts.

In the Shape box, we inform the program about the format of the proximity
matrix. In publications, proximitymatrices are often shown as lower-triangularmatri-
ces, and such data forms can be used as input too. There is no need to first assemble
a full matrix.

The box in the upper left-hand corner of Fig. 10.3 is relevant only if you havemore
than 1 proximity matrix. If so, the option Weighted Euclidean yields an Indscal

2These data are available within smacof. You can export them from there into Excel, for
example, by calling data(wish); M <- as.matrix(wish); require(foreign);
write.xlsx(M, "WishData1.xlsx", row.names=FALSE) and then read the Excel
file with Spss.
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Fig. 10.5 External scales for confirmatory
MDS

Fig. 10.6 Reading an external starting con-
figuration into Proxscal

solution. In case of replicated data that are to be mapped into one distance each, you
choose Identity.

Finally, the options of the Proxscal algorithm should be changed, because their
defaults often lead to suboptimal MDS solutions. Fig. 10.4 shows how the options
need to be set. First, change the initial configuration to Torgerson, that is, the
classical scaling solution discussed in Sect. 9.1. Then, use stricter iteration criteria
by setting Stress convergence andMinimum stress to 0.0000001 or smaller and
Maximum iterations to at least 1000.

Leaving the rest of the buttons in this menu on their default settings, we can
return to the cardinal menu in Fig. 10.2 via the “Continue” button. There, we click
on “OK,” and Proxscal will generate an MDS solution.

We now show how to formulate external restrictions on the dimensions of anMDS
solution via the Proxscal menus. To demonstrate this, we use the rectangle data
of Sect. 2.3. In the cardinal menu in Fig. 10.2, we click on Model Model to get to
the menu that offers options on how the data should be transformed. In this menu
(see Fig. 10.3), we inform the program that the data are dissimilarities; that they are
stored in a lower triangular matrix; and that we want to run ordinal MDS with the
primary approach to ties. Continue brings us back to the cardinal menu.

In the cardinal menu, we click on Restrictions. This brings us to the menu in
Fig. 10.5. There, in the center of the window, we click on File and type the name
of the Spss file that contains the external scales into the space to the right of this
button. Then, in the box on the left-hand side, we pick the variables that should serve
as external scales, that is, “Width” and “Height.” Finally, we request in the lower
right-hand corner that these scales should be interpreted as ordinal scales and that
the secondary approach to ties (keep ties) is to be used by the program.
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We also want to use an external starting configuration for the MDS of the rectan-
gle data. The window in Fig. 10.6 shows how to read this into Proxscal. We check
Custom andwrite the name of the filewith the external starting configuration into the
window in the middle of the menu (here: “C:\Documents a..\rectangle_
design.sav”) that contains the coordinates of the design configuration of the
rectangles. Its values are the physical coordinates of the rectangles used in the exper-
iment. For the starting configuration, we select the variables “Width” and “Height”
for the X - and Y -coordinates.With these specifications, the program yields a solution
as in the right panel of Fig. 6.1.

10.2 The R Package smacof

R is a programming language as well as a statistical software environment.3 R is
available for free on CRAN (Comprehensive R Archive Network). The base pack-
age implements basic statistical and mathematical methods and functions. It can be
extended by thousands of packages that offer additional methodologies.

To install the base distribution, the following steps need to be carried out:

• Go to http://CRAN.R-project.org

• Use the link “Download and Install R”
• Specify the operating system (OS) of your computer: R runs under MSWindows,
Mac OS, and various Linux distributions

• Then, follow the remaining download instructions and install R

R provides efficient handling of vectors and matrices. A key feature of R is that
outputs of statistical analyses are stored as R objects such as lists or matrices. The
user can access these objects for further processing (very useful, in particular, for
simulation studies). R also provides a powerful plot engine that allows for flexible
customization of graphical output in publication quality.R is Open Source and issued
under the GNU Public License (GPL), so the user has full access to the source code.

In order to work efficiently with R, an appropriate editor is required. We suggest
using RStudio; see http://rstudio.org and Verzani (2011).

There are several ways to import data intoR. If the data are stored in Excel, Spss,
Systat or similar formats, the foreign package can be considered which provides
various utility functions. For Excel files in particular, it is suggested to save the
spreadsheet as a csv file and then use the command read.csv() to import it into
R. This function uses several default settings which the user may have to change
depending on the Excel configuration. For instance, the following specification

read.csv(file, header=TRUE, sep=",", ...)

3As introductory books we suggest Venables and Smith (2002) (general introduction), Dalgaard
(2008) and Everitt and Hothorn (2009) (introductory statistics with R).
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implies that the first line contains the variable names and the variables are separated
by a comma.

An Spss file (here called XYZ.sav) can be imported directly using read.spss

("XYZ.sav") in the foreign package. If the file is not located in the R working
directory, the user can specify a path such as read.spss("c:/data/XYZ.sav").4

10.2.1 Functions in smacof

The Smacof package (De Leeuw and Mair, 2009) is available on CRAN. It imple-
ments a large variety of MDS models, many of them already covered in previous
chapters. After launching RStudio, the smacof package (as all other R packages
as well) can be installed as follows:

R> install.packages("smacof")

The package installation needs to be done only once, unless you update the R
version. Each time the R console is launched, the package needs to be loaded into
working memory.

R> library("smacof")

At this point all functions and data implemented in smacof are available to the
user. For a general package overview, the line

R> help(package="smacof")

opens the (HTML based) package documentation. The command

R> vignette("smacof")

opens the package vignette, a detailed description of the methodology including
several examples.

The most important MDS functions implemented in smacof are the following:

• mds(): Simple MDS computation on a symmetric input dissimilarity matrix (see
Chapters 1, 2, 3).

• indscal(), idioscal(): INDSCAL and IDIOSCAL models for individual dif-
ferences MDS (see Chapter 5).

• smacofConstraint(): Confirmatory MDS with external constraints (see
Chapter 6).

4For Windows user it is important to note that R always requires forward slashes when quoting a
path.
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• smacofSphere(): Spherical MDS (MDS with internal contraints: the points are
restricted to be on a circle/sphere; see Chapter 6).

• unfolding(): Unfolding models (see Chapter 1 and 8).

Apart from the input dissimilarity matrix, the most important arguments in these
functions are the following:

• ndim: number of dimensions of the MDS model (default: ndim=2).
• type: type of MDS model. The default is type="ratio" , other type options are

type="ordinal", type="interval", and type="mspline". For ordinal MDS,
the default way of handling ties is ties="primary", but it can be changed to
ties="secondary", or ties="tertiary".

• init: initial configuration. For mds(), the default is init="torgerson". It can
be set to init="random" (in this case it is suggested to set a random number seed
before the function call in order to get reproducible results), or a user-specified
starting configuration matrix can be provided. Note that in case of unfolding, you
have to specify a list with 2 initial configurations, one for the row points and one
for the column points; see p. 97 for an example.

Other arguments can be found in the corresponding help files (by typing e.g.
?mds).

Plotting is an important aspect in everyMDSanalysis. For eachMDSmodel, sma-
cof provides numerous plotting options (see ?plot.smacof. The most important
plotting argument is plot.type. The default is plot.type = "confplot" which
produces a configuration plot. For a Shepard plot the user needs to set plot.type
= "Shepard", for a bubble plot plot.type = "bubbleplot", and for a Stress
decomposition chart plot.type = "stressplot".

In addition to the core MDS functions presented above, smacof provides numer-
ous utility functions. One of these is sim2diss()which converts a similarity matrix
to a dissimilarity matrix. This is important since all the MDS functions in smacof
operate on input dissimilarities rather than input similarities. Details can be found in
the corresponding help files.

For Stress evaluation the package implements randomstress() to simulate ran-
dom Stress norms and permtest() to perform permutation tests (see Sects. 3.2 and
3.6). In order to examine the stability of a solution (see Sect. 3.7), jackknife and
bootmds() can be used for MDS jackknife and bootstrap strategies, respectively.
Procrustes() performs Procrustes transformations on two input configurations
where one of the two acts as the target configuration (see Sect. 7.6). MDS biplots,
where external variables are mapped into the configuration space, can be produced
using biplotmds().

The icExplore() function can be used to explore different random initial config-
urations as described in Sect. 7.3, and stress0 (see Sect. 7.10) computes the Stress
value for a zero-iterationMDS based on an initial configuration provided by the user.

Two more specialized models are asymmetric MDS (see Sect. 5.3) for which
smacof implements the drift vector model by means of driftVectors(), and
unidimensional scaling by means of the uniscale() function.
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Finally, many datasets are included in the smacof package. They are used in this
book (and in the package help files and the package vignette) to illustrate the various
MDS models and smacof functions.

10.2.2 A Simple MDS Example

The R mantra is: “Everything in R is an object.” Let us illustrate this concept (and
some of the functionalities presented above) by means of a simple example. We
use the Wish data, included in the package. They are provided as a similarity matrix.
Therefore, the first step is to convert them to dissimilarities by subtracting each value
from 7.5

R> wish.new <- sim2diss(wish, method=7) ## convert similarities
R> wish.new ## dissimilarities

BRAZIL CONGO CUBA EGYPT FRANCE INDIA ISRAEL JAPAN CHINA RUSSIA USA
CONGO 2.17
CUBA 1.72 2.44
EGYPT 3.56 2.00 1.83
FRANCE 2.28 3.00 2.89 2.22
INDIA 2.50 2.17 3.00 1.17 3.56
ISRAEL 3.17 3.67 3.39 2.33 3.00 2.89
JAPAN 3.50 3.61 4.06 3.17 2.78 2.50 2.17
CHINA 4.61 3.00 1.50 2.61 3.33 2.89 4.00 2.83
RUSSIA 3.94 3.61 1.56 2.61 1.94 2.50 2.83 2.39 1.28
USA 1.61 4.61 3.83 3.67 1.06 2.72 1.06 0.94 4.44 2.00
YUGOSLAV 3.83 3.50 1.89 2.72 2.28 3.00 2.56 2.72 1.94 0.33 3.44

This matrix of dissimilarities is assigned as an argument to the function mds()

R> res.wish <- mds(wish.new, type = "ordinal") ## do MDS

The results are stored in the object res.wish. Some basic information can be
accessed by just typing in the name of the object:

R> res.wish ## basic output

Call:
mds(delta=wish.new, type="ordinal")

Model: Symmetric SMACOF
Number of objects: 12
Stress-1 value: 0.185
Number of iterations: 129

5Note that in this section the R>means that we are typing an individual command directly into theR
console and then execute it by hitting the return key. Hence, you write a command,R responds, you
then write the next command,R responds, etc. Normally, you would write a whole set of commands
(“script”) in the editor window, edit it, save it, and then “source” (i.e., execute) it.
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All relevant smacof outputs are stored as single objects within the output list.
The names of the list elements can be obtained by the names() command.

R> names(res.wish)
[1] "delta" "dhat" "confdist" "iord" "conf" "stress" "spp" "ndim" "weightmat"
"resmat" "rss"

[2] "init" "model" "niter" "nobj" "type" "call"

The most important elements are:

• delta: Dissimilarity matrix.
• dhat: Optimally transformed dissimilarities (d-hats or disparities).
• confdist: Configuration distances computed from the MDS solution.
• conf: Configuration (coordinates) of the MDS solution (X).
• stress: Stress-1 value.
• spp: Stress per point.
• niter: Number of iterations needed to fit the model.

As always inR, such list outputs can be accessed using the $ operator. For example,
the matrix of the distances among the points of the MDS solution can be accessed
using

R> res.wish$confdist

or, rounded to two decimal digits, by

R> round(res.wish$confdist, 2)
BRAZIL CONGO CUBA EGYPT FRANCE INDIA ISRAEL JAPAN CHINA RUSSIA USA

CONGO 0.74
CUBA 1.02 0.50
EGYPT 1.09 0.78 0.34
FRANCE 0.61 1.03 1.01 0.88
INDIA 0.81 0.73 0.49 0.32 0.56
ISRAEL 1.08 1.45 1.31 1.06 0.47 0.81
JAPAN 1.37 1.61 1.36 1.05 0.76 0.90 0.36
CHINA 1.65 1.32 0.82 0.57 1.32 0.84 1.33 1.15
RUSSIA 1.38 1.35 0.97 0.63 0.89 0.64 0.75 0.55 0.61
USA 0.97 1.47 1.42 1.23 0.44 0.94 0.29 0.64 1.57 1.02
YUGOSLAV 1.40 1.34 0.94 0.60 0.92 0.64 0.80 0.60 0.55 0.05 1.07

This distance matrix is an R object that can be used for further computations, or to
produce plots.

A simple series of relevant plots can be produced as follows:

R> plot(res.wish)
R> plot(res.wish, plot.type = "Shepard")
R> plot(res.wish, plot.type = "bubbleplot")
R> plot(res.wish, plot.type = "stressplot")

Each of these plots can be customized using standard plotting arguments (and some
more specialized ones). Examples are given in the plot.smacof help file.
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