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Preface

Compositional data are nowadays widely accepted as multivariate observations
carrying relative information: those following the principle of scale invariance,
typically being represented in proportions and percentages, but also in other units
like mg/kg and mg/l that reflect their relative nature. In other words, for compo-
sitional data the relevant information is contained in the (log-)ratios between the
components (parts). In 2006, 20 years after the seminal book of John Aitchison, The
statistical analysis of compositional data, has been published, we met compositional
data and the logratio methodology for the first time—to be honest, not as something
highly appealing, but originally for the reason to get a research paper finally
accepted for publication, after a tedious reviewing process. We were not fully con-
vinced that this approach would be so important for practical applications, because
at that time the methodology was presented more from a theoretical perspective,
and the applications were partially even based on invented data. On the other hand,
it was clear that the logratio methodology formed a consistent approach to deal
with this type of data, and further interesting directions were proposed: the paper on
orthonormal coordinates for compositional data [Egozcue, J.J., Pawlowsky-Glahn,
V., Mateu-Figueras, G., Barceló-Vidal, C. Isometric logratio transformation for
compositional data analysis in Mathematical Geology] was published just 3 years
before, and also the principle of working in coordinates was just born.

When working more and more in this area, we felt at some point that there could
be a need for a practical guide to compositional data analysis—not just for people
from applications, but also for our own curiosity, to understand which value added
the logratio methodology could yield when processing compositional data. How do
the results differ when simply taking a log-transformation, compared to working
in an appropriate geometry? And are the results (more) reasonable and justified?
In the last ten or more years, we did quite an effort in this direction, by touching
systematically almost all popular multivariate statistical methods and those fields
that are of primary importance for practical data analysis (robust statistics, outlier
detection, and dealing with missing and zero values).

This book provides a summary of our efforts. We wrote it in a great freedom
from what should be followed or mentioned from historical or any other reasons.
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viii Preface

The focus is on a proper orthonormal coordinate representation of compositional
data that indeed provides a useful way for a reasonable processing of multivariate
observations. The central point are so-called pivot coordinates that aim to extract all
relative information about one of the parts in a composition. These coordinates have
proven their advances in a number of applications and provoked many discussions.
We present the pivot coordinates in a form that shows their flexibility in various
data processing contexts and their strength for the interpretation of the results. Nev-
ertheless, we admit that also other representations, like more general orthonormal
coordinates, balances, but also centered logratio coefficients, or pairwise logratios,
are useful in concrete contexts.

The book can be taken as a concise, self-contained manual on how to apply the
logratio methodology for compositional data analysis in everyday practice, using
the statistical software environment R and the package robCompositions. We
tried to illustrate the theoretical parts with several examples from applications with
general understandability, like those from official statistics, economics, geology,
or chemometrics. As a minimum prerequisite for accessing the book, just a basic
course on probability and statistics is required, although additional experience with
multivariate statistics and statistical computing might be advisable. On the other
hand, the book can also be considered as a source of inspiration for those who
are familiar enough with standard knowledge on compositional data analysis, as
presented in the book by V. Pawlowsky-Glahn, J.J. Egozcue, and R. Tolosana-
Delgado, Modeling and analysis of compositional data. According to these aims,
after providing the geometrical reasoning for a relevant (not exclusively statistical)
processing of compositional data, many popular statistical methods, like principal
component analysis, cluster analysis, classification and regression analysis, are
adapted for dealing with data carrying relative information. Moreover, exploratory
and preprocessing issues are discussed: visualization, outlier detection, and dealing
with missing values and particularly with zeros that form a touchstone of the
logratio analysis. Last but not least, also emerging fields like analyzing high-
dimensional compositional data and compositional tables, with great potential
for future developments, are discussed. This clearly illustrates that not a closed
methodological framework but rather just a state of the art of an intensively
developing research field is presented.

Finally, the structure of the book can also be used for a one-semester course
on applied compositional data analysis. The interactive form of the book enables
students to practice theoretical knowledge directly with data sets coming from
different fields of their possible future expertise. Our sincere wish is to contribute
to the education of a new generation of people for which statistical analysis of
compositional data is a matter of creative thinking.

Vienna, Austria Peter Filzmoser
Olomouc, Czech Republic Karel Hron
Winterthur, Switzerland Matthias Templ
August 25, 2018
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Chapter 1
Compositional Data as a Methodological
Concept

Abstract Compositional data were defined traditionally as constrained data, like
proportions or percentages, with a fixed constant sum constraint (1 or 100,
respectively). Nevertheless, from a practical perspective it is much more intuitive
to consider them as observations carrying relative information, where proportions
stand just for one possible representation. Equivalently, all relevant information in
compositional data is contained in ratios between components (parts). According
to this broader definition, the decision whether the data at hand are compositional
or not depends primarily on the purpose of the analysis, i.e. if the relative
structure of the compositional parts is of interest or not. As a consequence,
the use of standard statistical methods for the analysis of compositional data
that obey specific geometrical properties leads inevitably to biased results. A
reasonable way out is to set up an algebraic-geometrical structure that follows the
principles of compositional data analysis (scale invariance, permutation invariance,
and subcompositional coherence). Nowadays, this is called the Aitchison geometry
and it enables to express compositional data in interpretable real coordinates, where
standard statistical procedures can directly be applied. These coordinates are formed
by logratios of pairs of compositional parts and their aggregations: the logratio
methodology was born.

1.1 What Are Compositional Data?

People who already have a rough idea about compositional data will probably
not have any doubts to answer the above question. Sure, compositional data
consist of multivariate observations with positive values that sum up to a constant!
Well, examples are proportional data or percentages, for which the values of an
observation sum up to 1 or 100. However, does this still hold if one variable of these
multivariate data is not available or has not been measured? Or what if rounding
errors are present in one variable such that the sum does not exactly meet the
prescribed constraint? Or what happens if the sum is not constant at all, but very
different for different observations in the data set, although the units clearly indicate
their “compositional” character?

© Springer Nature Switzerland AG 2018
P. Filzmoser et al., Applied Compositional Data Analysis, Springer Series
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The aim of this book is not to introduce compositional data as such observations,
characterized by any constraint on the sum of components that either naturally
occurs or is set more or less artificially. Rather, throughout the book, compositional
data are treated as multivariate observations where relative rather than absolute
information is relevant for the analysis. A decision of the analyst whether one deals
with compositional data or not might be based on the units in which the samples are
measured, but also on the purpose of the analysis and on the goals of the study.

Absolute information: refers to data where the difference (in the sense of “minus”)
makes sense, i.e. data which can be analyzed using usual operations in real
Euclidean space. In other words, using the operations we learned in school. By
any rescaling of the original raw data from their given units, such as counts,
monetary units, weight, height, to any other units, like to percentages, their
informative value would be affected, or even lost.

Relative information: refers to a representation of quantitatively described
contributions on a whole. Information about the total amount itself is irrelevant.
The data units are typically proportions or percentages. Nevertheless, from the
essence of the problem also concentrations of chemical elements in parts per
million (ppm), mg/kg or mg/l, as well as household expenditures to commodities
like foodstuff, housing, transport and communications in EUR are candidates for
observations carrying relative information. Note that in cases of proportional and
percentage representations or units like ppm and mg/kg a constant sum constraint
is implicitly imposed, though it must not necessarily be fulfilled in practice.
This happens frequently for units like mg/kg, if not all chemical elements are
measured–but also then the components clearly express relative contributions
on a whole. In case of mg/l, a prescribed sum constraint is even not present,
yet the relative structure of the components is clearly indicated. Considering
relative information in the household expenditures case indicates that not wealth
of households (given by concrete amounts of EUR spent on commodities), but
rather the distribution of the total income into the given categories is of primary
interest.

If relative information is being analyzed, it is irrelevant whether raw data,
proportions, or percentage data are used as input for the analysis: the ratios between
the components remain unaltered. Therefore, also the sum of these multivariate
observations, which can even vary within the data set, is irrelevant.

As indicated above, a better question in this context thus might be: “Which type
of information are you interested in?” Thinking about geochemical data, it might
be interesting to look also at the absolute values of element concentrations in order
to identify locations that exceed a certain threshold or action level. On the other
hand, chemical processes might be better characterized by analyzing the relative
information of the composition.

In that sense, data sets may be compositional or not at the same time–depending
on the underlying question to be answered. However, for many data sets, the
measurement units already indicate the relative nature of the data. Units like mg/kg,
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ppm, mg/l, etc., refer to a “whole” which is used as a reference, and the values are
reported with respect to this reference.

Compositional data thus quantitatively express relative contributions of vari-
ables under consideration of a certain whole, which carry relative information
between the components (Egozcue 2009). Or, a more recent definition from
Pawlowsky-Glahn et al. (2015) states that compositional data are vectors with
strictly positive components that carry relative information. Equivalently, the
relevant information is contained in ratios between the components. To be honest, in
the previous definitions “exclusively/only relative information” was stated originally.
Nevertheless, practical experiences show that this must not necessarily be the case:
as it was presented above, even with compositional data one might be interested in
absolute values of components, but they naturally contain also relative information.

This leads to the question in which cases it is preferable to analyze the relative
information conveyed by compositional data. The following example gives a more
closer look using an artificial data set, representing selected monthly household
expenditures in EUR (Table 1.1). These data contain only some specific expenditure
groups, and other possible expenditures are not reported. Variables like health or
clothing which can form significant monthly expenditures as well are not available.
So, expressing these data in terms of the total expenditures is not possible. One can,
however, express the data relative to the sum of the four reported expenditures. This
gives the percentage data, which in this case are identical for the three observations.
Both the original values and their percentage representations stand for contributions
of single items to the overall expenses of these four components. However, the
data reported in EUR show a clear difference in the amount of expenditures of the
three observations, while the percentage data are the same. Relative information
could now be represented by the percentage data, resulting in four numbers. On the
other hand, relative information may refer to the ratios between the components. For
example, one gets for the ratio housing/transport of the three observations the value
1710/570 = 540/180 = 900/300 = 3, i.e., all three households spend three times
as much for foodstuff than for transport. Computing these ratios from the percentage
data gives exactly the same value, and reporting the data for the observations in
different currencies would also not alter the ratios. Overall, there are

(4
2

) = 6 ratios,
up to their reciprocals, which form this representation of relative information. One
can see that ratios contain much more detailed information than just percentages

Table 1.1 Artificial data set: household expenditures for three observations, expressed in EUR
and in percentages (which are the same for all three observations)

Type Observation Housing Foodstuff Transport Communications Sum

Absolute 1 1710 950 570 570 3800

information 2 540 300 180 180 1200

in EUR 3 900 500 300 300 2000

Information 1 45 25 15 15 100

expressed 2 45 25 15 15 100

in % 3 45 25 15 15 100
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to the total, and they remain the same if the data are rescaled. Ratios will thus
form the representation of relative information that is considered in compositional
data analysis.

Note that from another perspective, the absolute information might be preferable
if, for instance, the goal of the analysis is an investigation of the wealth level in
households, resulting in higher expenditures on the mentioned items. Finally, one
might be interested also in a combination of the previous two settings, i.e., in the
relative structure of the household expenditures by considering the total (sum of
the variables) simultaneously. Therefore, it fully depends on the analyst, what kind
of information should be extracted from the measurements. In line with that, the
sample space of observations, as well as its structure, need to be specified, so that
the different analyses are compatible.

Considering all pairwise ratios between the available variables as the basic input
information for a new methodology might still not be the final best option. The
reason is the asymmetric behavior of the ratios. Any ratio can take a value from the
interval (0,+∞), where 1 means a perfect balance between both compositional
variables, like for transport and communications in Table 1.1. Thus, the whole
interval (1,+∞) corresponds to a variable that “dominates” another one. For the
interval (0, 1) the variable in the denominator is dominating, like the case of
transport/housing = 1/3. In order to symmetrize the interpretation of ratios, the
first choice is to use logarithms for the following reasons. The range of logratios
(=logarithm of ratios) is the real line from −∞ to +∞, where the balance is
represented by 0. For both possibilities, when one variable dominates the other
one, a half line, (−∞, 0) and (0,+∞), is reserved. Logratios and their reciprocals
differ just up to the sign. Logratios are also easier to handle from a mathematical
point of view, because the logratio of two variables can be expressed as difference
between their logarithms. When all logratios between components are known, any
representation of the original compositional variables can be derived and vice versa.
Such representations are further discussed in Chap. 3.

The use of logratios to characterize compositional data has several direct and
indirect implications. The foremost important one is that zero values in components
lead to problems since a logratio with a zero in the denominator is infinity and a
zero in the numerator will result in minus infinity (by considering the extended real
line). This is the reason that compositional data were defined as positive vectors
and any zero components are subject to a special treatment as discussed further in
Chap. 13. Although excluding zeros from the definition of compositions seems to
be quite a serious handicap and indeed results in some complications when dealing
with real world compositional data, it is compensated by a number of advantages
that logratios provide to a statistical processing of compositions.

Applying standard statistical methods to compositions can lead to several prob-
lems, resulting from ignoring their underlying sample space. Since compositional
data are strictly positive, a resulting negative value is not a valid solution. Even
stronger, if the data are expressed as proportions, the results need to keep the range
(0, 1). In particular, confidence intervals computed with the proportional data could
easily lead to intervals exceeding the range (0, 1). But even if this is not the case, the
results could be biased and lead to wrong conclusions. One should also not forget
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that the results of any reasonable statistical processing should be invariant to an
arbitrary rescaling of the original observations. Some initial problems are introduced
in the next section.

The beginning of a systematic interest in compositional data analysis dates back
to the end of the nineteenth century, namely to a famous paper by Pearson (1897).
In this paper on spurious correlations he pointed out problems with correlation
analysis of relative data, i.e. when ratios form the source of relevant information.
Almost during the whole twentieth century, the developments in compositional
data analysis were devoted either to building specific statistical models to analyze
proportional data, i.e., a particular representation of compositions with constant
sum equal to 1, or to cope with restrictions resulting from their direct statistical
processing, particularly in the field of geosciences (Chayes 1960). Eventually, in
the early 1980s, the Scottish mathematician John Aitchison introduced the logratio
methodology to the statistical analysis of compositional data (Aitchison 1986). The
aim was to define a family of logratio transformations, formed by pairwise logratios
or their proper aggregation into new variables, to move compositional data from
their original sample space to an unrestricted real space, where standard statistical
methods can be applied for their further analysis. Hereafter, also a specific wording
was introduced, like parts instead of variables or components, which will also be
used in this book. It is worth to note that J. Aitchison identified compositional data
in the above sense with proportional data, where the aim was to keep the prescribed
sum constraint. During the following years, by a number of discussions in journals
like Mathematical Geology, J. Aitchison and the research group formed around him
realized that this methodology is capable to extend the definition of compositional
data so that the constant sum constraint does not play any role for the analysis itself
and can be stored purely for the purpose of interpretation. These thoughts were
closely related to the introduction of the vector space structure of compositional
data (Billheimer et al. 2001; Pawlowsky-Glahn and Egozcue 2001), named as the
Aitchison geometry. This algebraic-geometrical structure of compositions made
it possible to consider logratio transformations as coordinates with respect to
a basis, or a generating system, that ease further theoretical developments and
enhance interpretation of the results. This approach, followed in recent books on
compositional data (Buccianti et al. 2011; van den Boogaart and Tolosana-Delgado
2013; Pawlowsky-Glahn et al. 2015), is applied also here. Its consequences are
thoroughly discussed in the following chapters.

1.2 Introductory Problems

1.2.1 PhD Students Example

Table 1.2 shows a table of absolute numbers of PhD students in several countries of
Europe, Japan, and the US. The data are available from Eurostat, http://ec.europa.
eu/eurostat/. The student numbers are reported for different study groups.

http://ec.europa.eu/eurostat/
http://ec.europa.eu/eurostat/
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Table 1.2 PhD students in Europe, Japan, and the US based on the standard classification system,
split by different kinds of studies

Total Male Female Technical Soc-eco-law Human Health Agriculture

BE 7500 59.0 41.0 3462 1469 997 1041 532

BG 5200 49.7 50.3 2064 1102 1170 666 198

CZ 22,600 62.1 37.9 10,668 3748 3518 3633 1035

DK 4800 54.2 45.8 1886 614 696 1210 394

EE 2000 46.5 53.5 847 424 420 196 112

IE 5100 52.1 47.9 2633 787 1124 450 107

GR 22,500 55.6 44.4 12,590 3941 5090 495 383

ES 77,100 49.0 51.0 19,751 20,704 18,885 16026 1733

FR 69,800 53.9 46.1 27,152 21,429 18,846 2303 70

IT 38,300 48.3 51.7 16,403 7621 5803 6035 2437

LV 1800 39.6 60.4 542 603 434 182 40

LT 2900 43.4 56.6 1183 916 400 293 107

HU 8000 53.0 47.0 2576 1648 1992 1304 480

AT 16,800 54.3 45.7 4978 6374 4103 790 555

PL 32,700 50.7 49.3 10,202 7881 9974 3008 1635

PT 20,500 44.0 56.0 6027 6191 4879 3034 369

RO 21,700 51.7 48.3 6864 3801 3323 6017 1694

SI 1100 53.5 46.5 526 174 189 168 43

SK 10,700 57.1 42.9 4220 2121 1971 2024 364

FI 22,100 48.4 51.6 8875 4990 5365 2406 464

SE 21,400 51.3 48.7 8872 2651 2694 6756 428

UK 94,200 55.4 44.6 38,266 19,747 20,408 14,456 1323

CR 1300 53.3 46.7 601 94 286 235 84

TK 32,600 60.6 39.4 10,888 7922 7335 3814 2641

NO 5000 53.6 46.4 2055 870 635 1220 220

CH 17,200 59.7 40.3 6849 4537 2691 2640 483

JP 75,000 70.3 29.7 25,255 10,102 10,408 24,796 4439

US 388,700 48.2 51.8 117,658 104,456 94,748 68,731 3106

Source: Eurostat, http://ec.europa.eu/eurostat/, © European Union, 1995–2018

A scatterplot of two variables of Table 1.2—the absolute number of PhD students
in natural and technical sciences and the absolute number of PhD students in health
and life sciences—is displayed in Fig. 1.1a. A classical correlation measure would
report high positive correlation, especially because of the large absolute values for
USA. This “outlier” will very likely also dominate other statistical methods and lead
to biased results. For this reason, a first attempt could be the use of a logarithmic
scale for both variables, as shown in Fig. 1.1b. The joint data distribution now seems
to be close to a bivariate normal distribution, and still a positive relationship between
the variables is visible.

One could also convert this information to percentages, i.e. divide the values
regarding the five studies in Table 1.2 by their sum and multiply by 100. The result

http://ec.europa.eu/eurostat/
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Fig. 1.1 PhD students in Europe, Japan, and the US; natural and technical sciences versus health
and life sciences. (a) Absolute values. (b) Log-transformed data. (c) Percentages considering all
variables. (d) Percentages* without socio-economic and law sciences

for the two considered variables is shown in Fig. 1.1c, and the strong relationship
observed before is no longer visible here. The negative bias of correlation with
percentage data becomes visible when one variable, for example socio-economic
or law studies, is not considered. Assume this variable is not measured or it is
not of interest for the analyst. Then percentages would be calculated based on the
remaining four variables. Figure 1.1d shows the result and now the percentages of
PhD students in natural and technical sciences seem to have a negative correlation
with the percentages of PhD students in health and life sciences. For now it is not
clear how to deal with such different results (the correlation becomes “spurious”
(Pearson 1897)). We come back to this issue and introduce new concepts based on



8 1 Compositional Data as a Methodological Concept

logratios in Chaps. 4 and 8. It will become clear that logratios are a key to analyze
data where the relative information is important. For example, logratios provide
the same results independent if they are calculated from absolute values or from
percentages.

1.2.2 Beer Data Example

As a further example, a data set with 86 different beers is considered, where the
concentration for 15 chemical compounds is available. The study was conducted and
presented in Varmuza et al. (2002) and the composition of chemical compounds of
beers was analyzed using non-compositional methods. The beers originate from two
groups: fresh beers and “old” beers. It can be assumed that the chemical composition
of the two groups is different and distinguishable.

The data set is investigated in the following by principal component analysis
(PCA). This important multivariate statistical method will be treated in detail in
Chap. 7 from a compositional data analysis point of view. Here, PCA is applied to
different kinds of preprocessed data, and the results are presented in biplots for the
first and second principal component. Figure 1.2a shows the biplot for the raw data.
Since the concentrations for the compound “Furfural” are very dominating, the data
have been scaled to unit variance. The arrows represent the chemical compounds,
and the symbols “o” and “f” stand for “old” and “fresh,” respectively. The two
groups show a clear overlap, one observation “f” is outlying, and the variables are
arranged in a half-plane.

A further attempt is to log-transform the data. As common with concentration
data, they are skewed to the right, and a log-transformation leads to better symmetry.
The resulting biplot is shown in Fig. 1.2b. The outlier disappeared, and the groups
are quite well separated. Only the variables are still arranged in a half-plane, which
should somehow worry an experienced data analyst.

A final step is to create “closure,” which means that the concentrations are
divided by the sum of the values of each observation. Some people would say
that only now we have compositional data since they sum up to one—see previous
remarks in this chapter. The proportional data are then used for PCA, and Fig. 1.2c
presents the resulting biplot. This biplot is clearly dominated by two variables,
which in fact have high proportions. Therefore, Fig. 1.2d shows the biplots for the
scaled proportional data by subtracting the respective mean and dividing the result
by the standard deviation for each variable. The picture is not so “nice” as Fig. 1.2b,
but there are certainly similarities. The arrangement of the variables in a half-plane
is still present.

One can conclude from these biplots that it matters whether data are analyzed
as raw data, as transformed data, or as data expressed in proportions. Moreover,
the results change if PCA is based on the scaled input data or not. In any case,
the configuration of the variables in the biplot seems to be spoiled due to the
arrangement in a half-plane.
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(d)

Fig. 1.2 Principal component analysis of concentrations of chemical compounds in beer. Two
groups are visible, the fresh (“f”) and the old (“o”) beers. (a) Scores and loadings (biplot) resulting
from principal component analysis on scaled raw absolute concentrations. (b) Scores and loadings
(biplot) resulting from principal component analysis on scaled log-transformed concentrations.
(c) Scores and loadings (biplot) resulting from principal component analysis on concentrations
expressed as proportional data. (d) Scores and loadings (biplot) resulting from principal component
analysis on concentrations of beers expressed as scaled proportional data

All these shortcomings will be addressed in Chap. 7 where PCA is treated
from the perspective of compositional data analysis. A change of scale (units) of
the variables will not affect the outcome. Also, there is no need to think about
different transformations or representations of the data, because the information to
be exploited for PCA will be logarithms of ratios between the compositional parts.
Of course, there will be no guarantee that the old and fresh beers form separate
clusters in the scores space, since this is not a feature of the methodology.
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1.2.3 Geochemical Data Example

The GEMAS project was a large-scale geochemical mapping project carried out in
most European countries. Concentrations of chemical elements in agricultural soils,
as well as several other parameters have been measured (Reimann et al. 2012).
As an example, Fig. 1.3 shows a 3D-scatterplot of the absolute concentrations of
Aluminium (Al), Sodium (Na), and Silica (Si). The data are reported in mg/kg, and
one can see that both Si and Al have high concentrations in most soil samples with
almost 500,000 mg/kg. In other words, the remaining chemical elements, like Na,
are constrained by the natural boundary of one million mg/kg, and this is visible
in the plot. This artifact of the constraint is also called “closure effect,” and it
would certainly have implications on the statistical analysis if it were applied on
the raw concentration data. A compositional data analysis methodology would use
the information contained in the ratios of the chemical elements.

An even more extreme example, also borrowed from the GEMAS project, is
shown in Fig. 1.4a, where the percentages of sand, silt, and clay in the soils are
visualized in a 3D-scatterplot. Up to rounding errors, they sum up to 100%, and
thus all points are on the plane going through the values 100% in each coordinate.
Thus, if the percentages for two variables are provided, the percentage for the third
variable is automatically determined. The data are thus said to be constrained or

Fig. 1.3 Absolute
concentrations (in mg/kg) for
Aluminium, Sodium, and
Silica for the agricultural soil
sample survey in Europe
(GEMAS data)
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Fig. 1.4 Sand, silt, and clay from the agricultural soil sample survey of Europe (GEMAS data).
These three variables sum up to 100%. (a) Due to the constraint, all data points are arranged on a
plane. (b) The correlation between sand and silt is forced to a negative one

closed to 100%. If the interest is now only in the relation between two of the
variables, e.g. between sand and silt, one needs to be aware of this constrained space.
Figure 1.4b shows a scatterplot of both variables, and due to the constraints, all data
points need to be inside the dark triangle. It is clear that computing the correlation
between the two variables would be inappropriate, since it will be automatically
forced to a negative one. The point is that even for unconstrained compositional data,
correlations can be spoiled, and thus there is a need for another more appropriate
approach.

1.3 Principles of Compositional Data Analysis

The intrinsic properties of compositional data as introduced in Sect. 1.1 can be
formally summarized into three principles that should be followed by any reasonable
method for their (not exclusively statistical) analysis. Just to remind, a composi-
tional vector, or simply a composition, x = (x1, . . . , xD)′ with D parts (arranged
into a column vector) is by definition a positive real vector with D components,
describing quantitatively the parts of some whole, which carry relative information
between the parts. According to Egozcue (2009), compositional data analysis should
respect the following principles:

Scale invariance: The information in a composition does not depend on the partic-
ular units in which the composition is expressed. Proportional positive vectors
represent the same composition. Any sensible characteristic of a composition
should be invariant under a change of scale. This principle thus corresponds to
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the fact that a multiplication of a compositional vector by an arbitrary positive
number does not alter the ratios between compositional parts.

Permutation invariance: Permutation of parts of a composition does not alter the
information conveyed by the compositional vector, similarly as in standard
multivariate statistics.

Subcompositional coherence: Information conveyed by a composition of D parts
should not be in contradiction with that coming from a subcomposition (i.e., a
subvector of the original compositional vector) containing d parts, d < D. This
principle can be formulated more precisely as

• Subcompositional dominance: If Δp(x, y) is any distance between composi-
tions of p parts, then

ΔD(x, y) ≥ Δd(xd, yd),

where x, y are compositions with D parts and xd, yd are subcompositions of
the previous ones with d parts, d < D.

• Ratio preserving: Any relevant characteristic expressed as a function of the
parts of a composition is exclusively a function of the ratios of its parts.
In a subcomposition, these characteristics depend only on the ratios of the
selected parts and not on the discarded parts of the parent composition. Scale
invariance applies to the subcomposition.

While the principles of permutation invariance and subcompositional dominance
should be fulfilled by any reasonable statistical analysis, aware of the corresponding
geometrical consequences (Eaton 1983), scale invariance is a specific principle
resulting directly from the definition of compositional data. In particular, scale
invariance means that the relevant information, conveyed by ratios, remains the same
by an arbitrary rescaling of the input observations. An important consequence is
that one does not “generate” compositional data by expressing them in proportions,
percentages or any similar well-established representation. It is the purpose of
the analysis (absolute versus relative) that induces whether already the original
observations are compositional or not. It is also important to understand properly
what subcompositional coherence says, supported by examples from the previous
section: it can be highly misleading to apply standard statistical methods to
compositional data directly, because an arbitrary rescaling of the input can change
the results completely. This is closely linked to the fact that the Euclidean geometry,
on which most standard statistical methods rely (Eaton 1983), is not appropriate for
compositional data.

Subcompositional dominance induces that the distance computed between two
compositions cannot be less than the distance between the corresponding subcom-
positions. For standard real observations, this is illustrated in Fig. 1.5, where a planar
graph with two observations, A and B, is displayed. By projecting them to the x-
axis and to the y-axis, respectively, it can be observed that their distance (between
a1, b1 and a2, b2, respectively) is less than the distance between the original data.
Therefore, it is logical to expect that a similar property should be fulfilled also
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x

y

a1

b2 B = [b1, b2]

A= [a1,a2]a2

b1

Fig. 1.5 Euclidean distance for two observations A and B, and their projections on the x- and
y-axes

for compositions. Consider two compositions x = (0.55, 0.40, 0.05)′ and y =
(0.10, 0.80, 0.10)′, expressed in proportional representation. Their Euclidean dis-
tance is d(x, y) =

√
(0.55 − 0.10)2 + (0.40 − 0.80)2 + (0.05 − 0.10)2 = 0.604.

When computing the Euclidean distance between the vectors consisting of the first
two components,

√
(0.55 − 0.10)2 + (0.40 − 0.80)2 = 0.602, everything seems

to work well. But the point is that such a property should be fulfilled for any
representation of these subcompositions. If the subcompositions are expressed as
proportions, i.e. 0.55/(0.55 + 0.40), etc., resulting in xs = (0.579, 0.421)′ and
ys = (0.111, 0.889)′, their Euclidean distance is 0.661, what clearly contradicts the
assumption of subcompositional dominance.

Another natural principle of compositional data that should be addressed,
though it is not directly included in the above listing, concerns relative scale of
compositional data. Its basic idea is that for expressing the dissimilarity between
two compositions, the ratio between the values of a component should be considered
instead of taking the difference between them. Consider a simple example where the
number of votes in a village for a political party in a particular year is 200, while the
corresponding number in the previous election was 300. It is natural to conclude that
this party has lost one third of the votes, rather than talking about a loss of 100 votes.
The reason is comparability: If in another village the number of votes for this party
in the considered year is 2900, while it was 3000 in the previous elections, the loss
is only 3.3%, while the absolute is again the same with 100 votes. Consequently, the
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relative scale effect applies mostly for components with lower values, e.g., for trace
elements in geochemistry. Of course, any compositional part does not stay alone,
it is always linked through logratios also to other parts in the actual composition.
This fact should be considered when any reasonable distance, respecting the relative
scale, is developed.

Although these principles just help to formalize the concept of compositional
data together with some obvious geometrical requirements, they caused a number
of misunderstandings and controversy outside as well as inside the “compositional
community.” The principal misunderstanding results from the attempts to apply
them consistently to proportional data, identified with the above broader definition
of compositional data, as recently done, e.g., in Cortés (2009) and Scealy and
Welsch (2014). Without accepting scale invariance as the generic principle that
drives also the remaining two principles, particularly the subcompositional coher-
ence principle might become quite misleading. Accordingly, Scealy and Welsch
(2014) have even “proved” that the logratio methodology itself is not subcom-
positionally coherent. But the problem is a different one. The misunderstanding
comes from the fact that proportional data assume a fixed whole, to which single
proportions relate, and absolute values of proportions are considered informative.
On the other hand, from the perspective of the logratio methodology, proportions
stand just for a concrete representation of the compositional vector. It is nowhere
stated that such a concept of “absolute proportions” cannot be useful in particular
situations, especially when a clearly stated whole is provided. But one should be
aware that both scale invariance and relative scale of compositions, together with
further geometrical implications (see subcompositional coherence), are obviously
linked closely to the broader definition of compositional data.

1.4 Steps to a Concise Methodology

The fact that scale invariance forms the generic principle of compositional data
analysis should be reflected by any reasonable geometrical representation of
compositional data. Without any doubts, (log)ratios between parts will play an
important role there, since they contain the essential information of compositional
data. Such a geometry needs to be set up by an appropriate algebraic-geometrical
structure, represented by the properties of the Euclidean vector space (Eaton 1983).
Among other possibilities, it is exclusively the Aitchison geometry as introduced
in Pawlowsky-Glahn and Egozcue (2001) that follows all the above requirements.
Although it would also be possible to analyze compositions directly in this
geometry, it would require an inadequate effort with an uncertain output. The reason
is that most standard statistical methods are designed for the Euclidean geometry in
real space. Therefore, it is preferable to construct a family of “transformations” from
the original sample space of compositional data to the real space, where standard
multivariate methods can be applied for their statistical processing. It turns out that
this goal can be achieved by the construction of interpretable logratio coordinates
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with respect to a basis, or a generating system in the Aitchison geometry. As the
coordinates will be formed by pairwise logratios or their aggregation, particular
interest will be devoted to interpretation: To which extent can the coordinates
be identified with the original compositional parts, and which implications for
the implementation and interpretation of statistical methods are to be expected?
By construction of the logratio coordinates, it will also turn out that for object
oriented methods (like cluster or discriminant analysis), any reasonable coordinate
representation can be chosen without altering the outputs. Although is it just a matter
of terminology, in the sequel it will be systematically referred to coordinates instead
of transformations. This corresponds to the “staying-in-the-simplex approach,” as it
is followed also in other recent books in this field (van den Boogaart and Tolosana-
Delgado 2013; Pawlowsky-Glahn et al. 2015).

The book is organized as follows. In the next chapter, the statistical software
environment R (R Development Core Team 2017) is introduced in the context
of compositional data analysis. This software environment will accompany the
rest of the book and provide routines in order to apply most of the presented
methods. Chapter 3 is devoted to the Aitchison geometry of compositional data
together with various logratio coordinate representations, which are crucial for
the statistical processing with common multivariate statistical methods. Specific
features of compositions and the interpretation of logratio coordinates imply certain
peculiarities when visualizing compositional data—this is treated in Chap. 4. Chap-
ter 5 concludes the general part of the book by providing further methodological
contributions for analyzing compositional data, in particular in the direction of
parametric statistical inference and robust methods. Starting with Chap. 6, where
exploratory analysis is introduced, the core methodological part of the book follows,
containing many popular multivariate statistical methods (cluster analysis, principal
component analysis, correlation analysis, discriminant analysis, and regression),
adapted to deal with compositional data in logratio coordinates. Chapter 11 extends
the basic data setting to high-dimensional compositions, for which special methods
like partial least squares regression are required. Chapter 12 develops another
specific data structure that allows to link two factors through a compositional table.
Finally, Chap. 13 deals with practical issues present in many real world data sets,
namely with missing and zero values, and proposes several methods how these
effects can be successfully overcome in order to continue with further statistical
processing using the logratio methodology.
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Chapter 2
Analyzing Compositional Data Using R

Abstract The theoretical concepts explained in the book are illustrated by exam-
ples which make use of the statistical software environment R. In this chapter, a
brief introduction to some functionalities of R is given. This introduction does not
replace a general introduction to R, but it provides the background that is necessary
to understand the examples and the R code in the book.

The methods explained in this book are exclusively available in the R package
robCompositions. The package includes methods for the analysis of compositional
data including robust methods, algorithms for the imputation of missing values,
methods to replace rounded zeros, outlier detection for compositional data, (robust)
principal component analysis for compositional data, (robust) discriminant analysis
for compositional data (Fisher rule), robust regression with compositional predic-
tors, (robust) Anderson-Darling normality tests for compositional data, as well as
functions to express compositional data in coordinates.

2.1 Brief Overview on Packages Related to Compositional
Data Analysis

The implementation of methods in software is essential to apply compositional
data analysis methods in practice. A variety of software tools have been written
for compositional data analysis, starting with Basic routines from John Aitchison,
grouped under the name CODA. Later, these programs have been reimplemented
under the name NEWCODA in Matlab. Also Savazzi and Reyment (1999)
presented some routines in C++ and FORTRAN 90, and Reynolds and Billheimer
(2005) implemented basic transformations and plots in SPLUS/R. Almost at the
same time, the software tool CoDaPack was developed (Thió-Henestrosa et al.
2003, 2005) using Visual Basic and Excel (the acronym CoDaPack comes from
Compositional Data Package). This software is now available in version 2 (Comas-
Cufí and Thió-Henestrosa 2011) based on a new implementation in Java. Also in
2005, the first version of the R package compositions (van den Boogaart et al.
2014) was available on CRAN. In 2009, the R package robCompositions (Templ
et al. 2011a,b) has been developed, currently available in version 2.0. The package
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ggtern (Hamilton 2016) for plotting ternary diagrams is available since 2013. The
package zCompositions (Palarea-Albaladejo and Martín-Fernández 2015) provides
several functionalities for the imputation of zeros and non-detects in compositional
data. In the following, some of the packages are briefly described. The package
robCompositions is discussed in more detail since it is the basis for this book.

2.1.1 compositions

The philosophy of the implementation of the CRAN R package compositions
(van den Boogaart et al. 2014) is to consider different multivariate scales, namely

rplus: the data are supposed to be non-compositional.
rcomp: the data are supposed to be of compositional nature, but the analysis is

done in the original scale.
acomp: the data are supposed to be of compositional nature, and the analysis is

done in the relative geometry.
aplus: the total amount is meaningful, and the data are analyzed in the relative

geometry.

The rplus approach is thus equivalent to a classical non-compositional analysis of
non-compositional data. The rcomp approach might just be used for comparison
reasons, and aplus is mainly used internally in the package. Thus acomp is the inter-
esting supported class of the package compositions for analyzing compositional
data. The function acomp applied on compositional data produces an object of
class acomp. Methods are defined for this class, ranging from plotting methods like
ternary diagrams to tests over outlier detection, multivariate statistical methods such
as cluster and discriminant analysis, principal component analysis and regression
methods.

2.1.2 robCompositions

The CRAN R package robCompositions includes methods for the analysis of
compositional data including robust methods, algorithms for imputation, methods
to replace rounded zeros, outlier detection for compositional data, classical and
robust multivariate methods for compositional data, such as principal component
analysis and discriminant analysis for compositional data, robust regression with
compositional predictors, and Anderson-Darling normality tests for compositional
data. Several options to express compositions in coordinates or coefficients are
available, together with the corresponding inverse mappings. In addition, visual-
ization and diagnostic tools are implemented as well as high- and low-level plot
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functions for the ternary diagram. The examples in this book are based on the
package robCompositions.

Table 2.1 presents the most important functions of the R package robComposi-
tions.

Table 2.1 Most important functions of the R package robCompostions for compositional data
analysis

Function Aim References

addLR and
addLRinv

Additive logratio coordinates and inverse
mapping

Aitchison (1986)

aDist Aitchison distance between two
compositions or pairwise between two
data sets

Aitchison (1986)

adtest Anderson-Darling normality test Anderson and Darling
(1952)

cenLR and
cenLRinv

Centered logratio coefficients and inverse
mapping

Aitchison (1986)

compareMahal Compares Mahalanobis distances from
two approaches

constSum Closure operation

daFisher Discriminant analysis by Fisher’s rule Filzmoser et al. (2012)

gm Geometric mean

impCoda Robust imputation of missing values (EM
algorithm)

Hron et al. (2010)

impKNNa Imputation of missing values (k nearest
neighbor approach)

Hron et al. (2010)

imputeBDLs Imputation of rounded zeros Martín-Fernández et al.
(2012), Templ et al.
(2016, for
high-dimensional
methods)

pivotCoord and
pivotCoordInv

Pivot coordinates as a special choice of
isometric logratio coordinates and inverse
mapping

Egozcue et al. (2003),
Fišerová and Hron (2011)

lmCoDaX Regression with compositional
explanatory variables

Hron et al. (2012)

missPatterns
and
zeroPatterns

Missing values and zeros pattern structure

outCoDa Outlier detection Filzmoser and Hron
(2008)

pcaCoDa Robust principal component analysis Filzmoser et al. (2009)

ternaryDiag Ternary diagram Aitchison (1986)

variation Variation matrix Aitchison (1986)
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Additionally, a number of different kinds of data sets are included in the package,
listed below.

data(package = "robCompositions")

Data sets in package ‘robCompositions’:

ageCatWorld child, middle and eldery population
alcohol alcohol consumptions by country and type of alcohol
alcoholreg regional alcohol consumption by WHO region
arcticLake Arctic lake sediment data
cancer Hospital discharges on cancer and distribution of age
cancerMN Malignant neoplasms cancer
chorizonDL C-horizon of the Kola data with rounded zeros
coffee coffee data set
economy economic indicators
educFM education level of father (F) and mother (M)
election election data
electionATbp Austrian presidential election data
employment employment in different countries by gender and status
employment_df employment in different countries by gender and status
expenditures synthetic household expenditures toy data set
expendituresEU mean consumption expenditures data
GDPsatis GDP satisfaction
gemas GEMAS geochemical data set
govexp government spending
haplogroups haplogroups data
instw value added, output and input for different ISIC codes
isic32 ISIC codes by name
laborForce labour force by status in employment
lifeExpGdp life expectancy and GDP (2008) for EU-countries
machineOperators machine operators
mcad metabolomics MCAD data set
mortality mortality and life expectancy in the EU
mortality_tab mortality table
nutrients nutrient contents
nutrients_branded nutrient contents (branded)
payments special payments
phd PhD students in the EU
precipitation table containing counts for 24-hour precipitation
production production split by nationality on enterprise level
rcodes codes for UNIDO tables
skyeLavas aphyric Skye lavas data
socExp social expenditures
teachingStuff teaching stuff
trondelagC regional geochemical survey of soil C in Norway
trondelagO regional geochemical survey of soil O in Norway
unemployed unemployment of young people
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Most of these data sets are used for illustrating the theoretical concepts presented in
this book.

2.1.3 ggtern

The CRAN R package ggtern (Hamilton 2016) is an extension to ggplot2 (Wick-
ham 2009) for plotting ternary diagrams. It is possible to put a great variety of
symbols, error bars, lines, and ellipses into ternary diagrams. For examples and
documentation, see the ggtern website (http://www.ggtern.com/).

2.1.4 zCompositions

The CRAN R package zCompositions (Palarea-Albaladejo and Martín-Fernández
2015) offers several possibilities for the imputation of left-censored data by
considering the compositional data approach. Methods for imputation are treated
in Chap. 13, where also references to the implemented methods will be made.

2.1.5 mvoutlier, StatDA

The CRAN R package mvoutlier (Filzmoser and Gschwandtner 2017) includes
programs for multivariate outlier detection for compositional data, as well as tools
for visualizing the outliers. This package also contains data sets from geochemistry,
and there are several more geochemical data sets available in the R package StatDA
(Filzmoser 2015).

2.1.6 CoDaPack

The freeware package CoDaPack can be downloaded from the web site
http://ima.udg.edu/CoDaPack. This point and click user interface relies on the
Java Virtual Machine. It includes the basic logratio coordinate systems, ternary
plots, biplots, summaries, and the basic mathematical operations such as powering
and perturbation.

http://www.ggtern.com/
http://ima.udg.edu/CoDaPack
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2.1.7 compositionsGUI

Also the package compositionsGUI (Eichler et al. 2014) represents a point and
click user interface and includes basic plots, logratio coordinates, and multivariate
methods that are called from the package robCompositions or compositions. It is
not further developed and archived on CRAN.

2.2 The Statistics Environment R

R (R Development Core Team 2018) was founded by Ross Ihaka and Robert
Gentlemen in 1995. It is based on S, a programming language developed by
John Chambers (Bell Laboratories) and Scheme. Since 1997 it is internationally
developed and distributed from Vienna over the ComprehensiveR Archive Network
(CRAN, cran.r-project.org). R nowadays belongs to the most popular and most
used software environments in the statistics world. In addition, R is free and open-
source (under the GPL2). R is not only a software for doing statistics, it is an
environment for interactive computing with data supporting facilities to produce
high-quality graphics. The exchange of code with others is easy since everybody
may download R. This might also be one reason why modern methods are often
exclusively developed in R. R is an object-oriented programming language and has
interfaces to many other software products such as C, C++, Java, and interfaces to
databases.

Useful information can be found at:

• Homepage: http://www.r-project.org/ and CRAN http://cran.r-project.org for
download

• Lists with frequently asked questions (FAQ) on CRAN
• Manuals and contributed manuals
• Task-views on CRAN

The basic installation of R is extendable with approximately 10,000 add-on
packages.

For R programming it is advisable to write the code in a well-developed
editor. An editor should allow syntax highlighting, code completion, and interactive
communication with R. For beginners but also for advanced users, R-Studio (http://
www.rstudio.org/) is one choice. Experts might also use the combination of Eclipse
+ its add-on STATET (https://marketplace.eclipse.org/content/statet-r).

2.3 Basics in R

R can be used as an overgrown calculator. All operations of a calculator can be
very easily used also in R. For instance, addition is done with +, subtraction

http://cran.r-project.org
http://www.r-project.org/
http://cran.r-project.org
http://www.rstudio.org/
http://www.rstudio.org/
http://www.rstudio.org/
https://marketplace.eclipse.org/content/statet-r
https://marketplace.eclipse.org/content/statet-r
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with -, division with /, exponential with exp(), logarithm with log(), square-
root using sqrt(), sinus with sin(), etc. All operations work as expected. As
an example, the following expression is parsed by R, inner brackets are solved
first, multiplication and division operators have precedence over the addition and
subtraction operators, etc.

0.5 + 0.2 * log(0.15^2)

## [1] -0.258848

R is a function and object-oriented language. Functions can be applied to objects.
The syntax is as shown in the following example, where the add-on package
robCompositions (Templ et al. 2011a,b) is loaded first.

library("robCompositions")
gm(runif(10, 0, 1))

## [1] 0.4132139

With the function runif, 10 numbers are randomly drawn from a uniform
distribution, in our case values in the interval [0,1]. Afterwards, the geometric mean
using the function gm is calculated for these 10 numbers. Functions typically have
function arguments that can be set. The syntax for calling a function has the general
structure:

res1 <- name_of_function(v1) # one input argument
res2 <- name_of_function(v1, v2) # two input arguments
res3 <- name_of_function(v1, v2, v3) # three input arguments
# ...

Functions often have additional function arguments with default values. It is
possible to get access to all function arguments with args().

args(gm)

## function (x)
## NULL

args(runif)

## function (n, min = 0, max = 1)
## NULL

Allocations to objects are made by <- or =, and the generated object can be
printed with object name, followed by typing ENTER.

x <- runif(10, 0, 1)
x

## [1] 0.829134482 0.858681638 0.057063767 0.005798472
## [5] 0.316049618 0.158100595 0.497237901 0.342189933
## [9] 0.075772098 0.980245832

Note that R is case sensitive.
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2.3.1 Installation of R and Updates

If R is already installed on the computer, ensure that it is the current version. If
the software is not installed, go to http://cran.r-project.org/bin/ and choose your
platform. For Windows, just download the executable file and follow the on-screen
instructions.

2.3.2 Install robCompositions

Open R on your computer and type:

install.packages("robCompositions")

This command installs the package robCompositions from the CRAN server,
provided that the computer has access to the Internet. Installation is needed only
once.

Typing update.packages() into R searches for possible updates and
installs new versions of packages if those are available.

If your organization uses a proxy server to connect to the internet, automatic
access of R is usually restricted, but users can access the necessary internet
connection from within R. If you have a proxy server, the following command,
typed into the R-console, might help:

setInternet2(TRUE)

This may allow you to install the packages. Otherwise, contact your IT depart-
ment for the permission so that R can connect to the CRAN servers.

The previous information was about to install the stable CRAN version of the
packages. However, latest changes are only available in the development version
of the package. This is hosted on https://github.com/matthias-da/robCompositions
and includes test batteries to ensure that the package keeps stable when mod-
ifying parts of the package. From time to time, a new version is uploaded to
CRAN.

To install the latest development version, the installation of the package devtools
(Wickham and Chang 2015) is needed. After calling the devtools package, the
development version can be installed via install_github().

http://cran.r-project.org/bin/
https://github.com/matthias-da/robCompositions
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## if not installed, install package devtools:
if(!require(devtools)){

install.packages("devtools")
}
## load the devtools package
library("devtools")
## install package from github
install_github("matthias-da/robCompositions")

2.3.3 Help

It is crucial to have basic knowledge about getting help. With

help.start()

your browser opens, and the help pages (and more) get available.
The browsable help index of the package can be accessed by typing the following

command into R:

help(package = robCompositions)

To find specific help for a function, say name, one can use help(name) or
?name. As an example, we look at the help file of the function outCoDa, which is
included in the package robCompositions:

?outCoDa

Data in the package can be loaded via the data() function, e.g. in case of the
phd data set from the package robCompositions:

data("phd")

help.search() can be used to find functions for which the exact name is not
known by heart. For instance,

help.search("pca coda")

will search your local R installation for functions approximately matching the
character string "pca coda" in the (file) name, alias, title, concept or keyword
entries. With the function apropos one can find and list objects by (partial) name.
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For example, to list all objects with partial name match coda:

apropos("coda")

## [1] "clustCoDa" "clustCoDa_qmode"
## [3] "CoDaDendrogram" "corCoDa"
## [5] "daCoDa" "impCoda"
## [7] "lmCoDaX" "mvoutlier.CoDa"
## [9] "outCoDa" "pcaCoDa"
## [11] "plot.mvoutlierCoDa"

It can be seen that several functions are listed that may be helpful in the context of
compositional data analysis.

To search help pages, vignettes or task views, using the search engine at
http://search.r-project.org and to view them in your web browser, you can use

RSiteSearch("isometric logratio")

which reports all search results for the character string "isometric
logratio".

2.3.4 The R Workspace and the Working Directory

Created objects are available in the workspace of R and loaded in the memory of
your computer. The collection of all created objects is called workspace. To list the
objects in the workspace, type:

ls()

## character(0)

When importing or exporting data, the working directory must be defined. To
show the current working directory, the function getwd can be used:

getwd()

## [1] "/home/filz/latex/papers/hron/buch/ver12/codabook/book"

To change the working directory, the function setwd is the choice:

# paste creates a string
p <- paste(getwd(), "/data", sep = "")
p

## [1] "/home/filz/latex/papers/hron/buch/ver12/codabook/book/data"

# now change the working directory
setwd(p)

http://search.r-project.org
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2.3.5 Data Types

The most important data types in R are:

• vectors/factors
• lists
• data frames
• special data types: missing values, NULL-objects, NaN, -/+ Inf

Vectors are the simplest data structure in R. A vector is a sequence of elements
of the same type such as numerical vectors, character vectors, or logical vectors.
Vectors are often created with the function c(), e.g.:

v.num <- c(0.1, 0.3, 0.5, 0.9, 0.7)
v.num

## [1] 0.1 0.3 0.5 0.9 0.7

is.numeric(v.num)

## [1] TRUE

The command is.numeric checks if the vector is of class numeric. Note that
characters are written with parenthesis.

Logical vectors are often created indirectly from numerical/character vectors:

v.num > 0.3

## [1] FALSE FALSE TRUE TRUE TRUE

Many operations on vectors are performed element-wise, e.g. logical compar-
isons or arithmetic operations with vectors. A common error source is when the
lengths of the vectors differ. Then the shorter one is repeated (recycling):

v1 <- c(0.1, 0.2, 0.3)
v2 <- c(0.4, 0.5)
v1 + v2

## [1] 0.5 0.7 0.7

One should also be aware that R coerces internally to meaningful data types
automatically. For example:

v2 <- c (100, TRUE, "A", FALSE)
v2

## [1] "100" "TRUE" "A" "FALSE"

is.numeric (v2)

## [1] FALSE
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Here, the lowest common data type is a string and therefore all entries of the vector
are coerced to character. Note, to create vectors, the functions seq and rep are
very useful.

Often it is necessary to subset vectors. The selection is made using the []
operator. A selection can be done in three ways:

positive: a vector of positive integers that specifies the position of the desired
elements,

negative: a vector with negative integers indicating the position of the non-required
elements,

logical: a logic vector with selected (TRUE) and not selected (FALSE) elements.

data("gemas")
# extract a subset of the variable sand from the gemas data
sand <- gemas[1:10, "sand"]
sand

## [1] 69.7 47.4 69.4 61.4 83.3 26.9 43.2 50.0 50.5 60.5

# positive indexing:
sand[c(3, 6, 7)]

## [1] 69.4 26.9 43.2

# negative indexing:
sand[-c(1, 2, 4, 5, 8:10)]

## [1] 69.4 26.9 43.2

# logical indexing:
sand < 30

## [1] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
## [10] FALSE

# a logical expression can be written directly in []
sand[sand < 30]

## [1] 26.9

A list in R is an ordered collection of objects whereas each object is part of the
list and where the data types of the individual list elements can be different (vectors,
matrices, data frames, lists, etc.). The dimension of each list item can be different.
Lists can be used to group and summarize various different objects in a new object.
There are (at least) three ways to access elements of a list: the []-operator, the
operator [[]], the $-operator and the name of a list item. With str(), you can
view the structure of a list, with names() you get the names of the list elements.
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## compute clr coefficients
clr <- cenLR(gemas[, 12:29])
## result is a list
class(clr)

## [1] "clr"

str(clr)

## List of 2
## $ x.clr:’data.frame’: 2108 obs. of 18 variables:
## ..$ Al: num [1:2108] 3.62 4.23 3.91 3.85 3.79 ...
## ..$ Ba: num [1:2108] -0.694 -0.303 -0.583 -0.666 -0.852 ...
## ..$ Ca: num [1:2108] 1.57 1.47 2.13 2.11 2.81 ...
## ..$ Cr: num [1:2108] -3.01 -3.88 -3.7 -3.37 -3.8 ...
## ..$ Fe: num [1:2108] 2.4 3.05 2.71 2.71 2.74 ...
## ..$ K : num [1:2108] 2.96 2.92 3.28 3.26 2.43 ...
## ..$ Mg: num [1:2108] 0.581 1.682 1.332 1.479 1.607 ...
## ..$ Mn: num [1:2108] -0.847 -0.632 -0.78 -1.045 -0.714 ...
## ..$ Na: num [1:2108] 1.77 2.6 2.44 1.79 2.67 ...
## ..$ Nb: num [1:2108] -4.15 -4.66 -4.75 -4.29 -4.69 ...
## ..$ P : num [1:2108] 0.1512 -0.3154 0.0521 -0.297 -0.0861 ...
## ..$ Si: num [1:2108] 6.71 5.57 6.1 6.26 5.65 ...
## ..$ Sr: num [1:2108] -2.38 -1.43 -1.99 -2.3 -1.37 ...
## ..$ Ti: num [1:2108] 1.287 1.256 0.727 1.182 0.999 ...
## ..$ V : num [1:2108] -3.05 -2.84 -3.3 -3.19 -3.28 ...
## ..$ Y : num [1:2108] -3.66 -4.42 -3.65 -3.59 -3.59 ...
## ..$ Zn: num [1:2108] -2.83 -2.86 -2.62 -3.09 -3.17 ...
## ..$ Zr: num [1:2108] -0.446 -1.423 -1.296 -0.794 -1.141 ...
## $ gm : num [1:2108] 506 1167 812 728 980 ...
## - attr(*, "class")= chr "clr"

names(clr)

## [1] "x.clr" "gm"

## access elements from the named list with the dollar sign
summary(clr$gm)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 117.8 815.3 1113.0 1069.0 1336.0 2441.0

Factors in R are of special importance. They are used to represent nominal
or ordinal data. More precisely, unordered factors for nominally scaled data and
ordered factors for ordinally scaled data. Factors can be seen as special vectors. They
are internally coded integers from 1 to n (# of occurrences) which are all associated
with a name (label). So why should or can numeric or character variables be used as
factors? Basically, factors have to be used for categorical information in order to get
the correct number of degrees of freedom and correct design matrices in statistical
modeling. In addition, the implementation of graphics for factors versus numerical
or character vectors differs. Also, factors are more efficient for storing character
vectors. However, factors have a more complex data structure, since factors include
a numerically coded data vector and labels for each level/category.
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class(gemas$soilclass)

## [1] "factor"

levels(gemas$soilclass)

## [1] "" "l" "ll" "m" "s" "ss"

summary(gemas$soilclass)

## l ll m s ss
## 5 583 415 766 329 10

We note that the output of summary is different for factors. Internally, R applies
a method dispatch for generic functions like summary, searching in our case
if a function summary.factor exists. If yes, this function is applied; if not,
summary.default is used.

Data frames (in R data.frame) are the most important data type. This corre-
sponds to the rectangle data format, well-known from other software packages, with
rows corresponding to observation units and columns to variables. A data.frame
is like a list whereas all list elements are vectors/factors but with the restriction
that all list elements have the same number of elements (equal length). For example,
data from external sources to be read are often stored as data frames, i.e. data frames
are usually created by reading data but they can also be constructed with the function
data.frame().

A lot of opportunities exist to subset a data frame; one possibility is to use [ index
rows, index columns ]. Again, positive, negative, and logical indexing is possible
and the type of indexing may be different for row index and column index. The
access to individual columns is possible by the $-operator (like lists).

## select a subset of observations:
w <- gemas$soilclass == "ss" & gemas$MeanTemp < 14
dim(gemas[w, ])

## [1] 3 30

## select a subset of variables
cn <- colnames(gemas) %in% c("COUNTRY", "longitude", "latitude")
gemas[w, cn]

## COUNTRY longitude latitude
## 732 CRO 17.5772 45.1733
## 783 ITA 11.6917 42.9817
## 1044 SPA -2.6106 40.2847

A few helpful functions that can be used in conjunction with data frames are
dim(), reporting the dimension (number of rows and columns), head(), the first
(default 6) rows of a data frame, colnames(), the columns/variable names.

Missing values are frequently present in the data. The default representation of a
missing value in R is the symbol NA. A very useful function to check if data values
are missing is is.na. It returns a logical vector or data frame, depending on if the
input is a vector or data frame indicating missingness. To calculate the number of
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missing values, one could sum up the TRUE’s (interpreted as 1, while FALSE is
interpreted as 0).

sum(is.na(gemas))

## [1] 75

All in all, 75 values are missing.
To analyze the structure of missing values, the R package VIM (Templ

et al. 2012) can be used. In the package robCompositions, a useful function is
missPatterns that shows the structure of missing values.

m <- missPatterns(gemas)
names(m)

## [1] "groups" "cn" "tabcomb" "tabcombPlus"
## [5] "rsum" "rindex"

## patterns of missingness:
m$tabcombPlus

## X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
## 1 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## 2 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
## X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22 X23
## 1 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## 2 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## X24 X25 X26 X27 X28 X29 X30 csum
## 1 TRUE TRUE TRUE TRUE TRUE TRUE TRUE 2083
## 2 TRUE TRUE TRUE TRUE TRUE TRUE TRUE 25

## observations with missings:
which(is.na(gemas$sand), arr.ind = TRUE)

## [1] 84 191 306 308 445 521 568 592 693 735 916
## [12] 937 1044 1052 1060 1241 1448 1452 1547 1559 1565 1631
## [23] 1661 1741 2089

## e.g.
gemas[2089,]

## COUNTRY longitude latitude Xcoord Ycoord MeanTemp
## 2089 HUN 19.3569 46.5875 5036660 2653419 10.9
## AnnPrec soilclass sand silt clay Al Ba Ca Cr Fe
## 2089 547 ll NA NA NA 22440 199 17567 18 7974
## K Mg Mn Na Nb P Si Sr Ti V Y Zn Zr LOI
## 2089 9273 3256 294 6083 4 498 399894 91 1343 18 13 34 85 3.6

It can be seen that 25 missing values occur in the variable sand; the same holds
for the variables silt and clay. A similar function (zeroPatterns()) exists
to check for zeros in the data set.
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2.3.6 Generic Functions, Methods and Classes

R has different class systems, the most important ones are S3 and S4 classes.
Programming with S3 classes is lazy living, it is much easier than S4. However,
S4 is more clean and the use of S4 can make packages very user-friendly.

In any case, in R each object is assigned to a class (attribute class). Classes
allow object-oriented programming and overloading of generic functions. Generic
functions produce different output for objects from different classes if methods are
written for such classes. This sounds complex, but with the following example it
should get clearer.

As an example of a generic function, we use the function summary. This is a
generic function used to produce result summaries. The function invokes particular
methods which depend on the class of the first argument.

## how often "summary" exists for methods summarizing certain classes
length(methods(summary))

## [1] 199

class(gemas$soilclass)

## [1] "factor"

summary(gemas$soilclass)

## l ll m s ss
## 5 583 415 766 329 10

## just to see the difference, convert to class character:
summary(as.character(gemas$soilclass))

## Length Class Mode
## 2108 character character

From this previous example one can see that the summary is different, depending
on the class of the object. R internally looks if a method is implemented for
the given class of the object. If yes, this function is used, if not, the function
summary.default is used. This procedure is called method dispatch.

In the previous example, last line, R looks if a function summary.factor is
available, which was true.

Note that–even not touched in this introduction–one can easily write own generic
functions, and define print, summary, and plot functions for objects of certain
classes.

The package robCompositions is used and applied in the example sections of
the following chapters.
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Chapter 3
Geometrical Properties of Compositional
Data

Abstract For an appropriate statistical processing it is essential to consider the
inherent geometrical properties of the sample space of observations. In case of
compositional data, this space is represented by equivalence classes of proportional
vectors, possibly represented on the simplex, endowed with the Aitchison geometry.
Its Euclidean vector space structure enables to construct coordinates with respect
to a basis, eventually coefficients of a generating system. Here, isometric logratio
coordinates, real coordinates with respect to an orthonormal basis in the Aitchison
geometry, are preferable. As their name indicates, they are isometric with the
Aitchison geometry, which makes it possible to proceed with standard statistical
analyses in a meaningful way. For interpretation purposes, pivot coordinates that
extract relative information about a compositional part in just one coordinate are
taken as first option. In addition, also other alternatives are considered: symmetric
pivot coordinates, which are suitable for a bivariate analysis, and particularly
balance coordinates, which are interpretable in the sense of balances between groups
of compositional parts. They can be intuitively constructed using sequential binary
partitioning, and they form a family of general isometric logratio coordinates; also
the preferable pivot coordinates can be taken as a special case.

3.1 Motivation

A frequent argument for the necessity of a special treatment of compositional data
is that this kind of data is not coherent with the usual Euclidean geometry. Rather,
compositional data follow the so-called Aitchison geometry on the simplex, see
Sect. 3.2. But how is the “usual” Euclidean geometry defined, and what is the
simplex?

In analytical geometry, a Euclidean space is associated with a vector space.
Starting from an origin in the Euclidean space, one can reach a specific point by a
vector in terms of an arrow, connecting the origin with this point. It is then possible
to measure distances and angles in the Euclidean space with the help of the lengths
of the arrows and the angles between them. This generates a vector space with a
scalar product.
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Consider two vectors x = (x1, . . . , xp)′ and y = (y1, . . . , yp)′ ∈ R
p. Formally,

it is necessary first to define the addition of two vectors

x + y = (x1 + y1, . . . , xp + yp)′

and the multiplication of a vector by a real number α

αx = (αx1, . . . , αxp)′.

Accordingly, the difference between two vectors results in

x − y = x + (−1) · y = (x1 − y1, . . . , xp − yp)′.

Both operations of addition and multiplication are geometrically very intuitive.
Addition can be easily obtained using the well-known triangle rule: the tail of the
second arrow is positioned on the head of the first. Their sum has the tail of the first
as its tail and the head of the second as its head. Multiplication by a scalar can be
interpreted in terms of stretching/shrinkage of the arrow.

The (Euclidean) inner product between x and y is defined as

〈x, y〉 = √
x′y =

√√√
√

p∑

i=1

xiyi.

As a special case, the inner product of x is defined as

‖x‖ = √
x′x =

√√
√
√

p∑

i=1

x2
i .

The expression ‖x‖ is also called the Euclidean norm of x, which in fact is the
length of the vector x.

The Euclidean distance between x and y is defined as

d(x, y) = ‖x − y‖ =
√√
√
√

p∑

i=1

(xi − yi)2.

The inner product function together with addition of two vectors and multiplication
of a vector by a real number is sufficient to define the Euclidean geometry. In
simple words, this Euclidean geometry corresponds to the geometrical space of our
intuition. The most usual statistical methods are designed for this space, i.e., they
rely on definitions of norm and distance following the Euclidean geometry (Eaton
1983).
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Fig. 3.1 1-standard simplex in R
2 (left), and 2-standard simplex in R

3 (right), shown by the
dashed lines

In order to define the Aitchison geometry on the simplex, the meaning of a
simplex needs to be explained. A simplex can be seen as a generalization of the
notion of a triangle or a tetrahedron to higher dimensions. Consider a very specific
simplex, the so-called (D − 1)-standard simplex, a subset of RD , which is defined
by

{

x = (x1, . . . , xD)′ ∈ R
D | xi ≥ 0,

D∑

i=1

xi = 1

}

. (3.1)

The D vertices of this simplex are the unit vectors e1 = (1, 0, . . . , 0)′, e2 =
(0, 1, 0, . . . , 0)′, . . . , eD = (0, 0, . . . , 0, 1)′, which are vectors in R

D . The (D − 1)-
standard simplex then forms a (D − 1)-dimensional subset of RD .

The 1-standard simplex in R
2 is visualized in Fig. 3.1 (left), and the 2-standard

simplex in R
3 is shown in Fig. 3.1 (right). Both representations are frequently used

to illustrate the concepts of compositional data. Particularly, the 2-standard simplex
leads to the ternary diagram, a very useful plot in this context—see Chap. 4.

The simplex is of particular interest for compositional data analysis, because it is
widely referred to be the sample space of compositional data. Think about election
data, where the votes for the different parties are expressed as proportions for a
specific region. Then the numbers have to be non-negative, and they sum up to one.
Geometrically, this observation is then located in a standard simplex.

This definition of the sample space would still be too narrow, since compositional
data do not necessarily sum up to one, as thoroughly discussed in Chap. 1: The
votes could as well be reported in absolute numbers, or simply some parts from
the proportional representation could have been omitted. For this reason a more
thorough definition of the sample space of compositions needs to be provided.

Consider a composition with D parts, say x = (x1, . . . , xD)′. For example, if the
concentrations of D = 10 chemical elements in soil samples are measured, then x
contains the concentrations of these compounds in a specific sample. If the data are
expressed in mg/kg, the sum of the concentrations will typically not be one million
mg/kg, since not all existing elements could be measured. Moreover, the sum for
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another soil sample can be very different. Denote the sum of the concentrations of
sample x by κ , so

∑D
i=1 xi = κ , where κ can be any arbitrary positive real number,

here treated as a constant value. Then the D-part simplex SD is defined as

SD =
{

x = (x1, . . . , xD)′ ∈ R
D | xi > 0,

D∑

i=1

xi = κ

}

. (3.2)

This space would thus cover all observations x, the parts of which sum up to κ . For a
practical data set, this might only be valid for one particular observation—the other
observations will be characterized by other sums.

Note that there are some important differences to the definition in (3.1).
Definition (3.1) assumes that the components of the observations, the compositional
parts, sum up to one, while the definition in (3.2) is more general. The reason for that
will be discussed below. Furthermore, in (3.1) the parts are non-negative, meaning
that they can also be zero, while in (3.2) the compositional parts must be strictly
positive. This is for sure a limitation, but it does not imply that compositional
data analysis cannot deal with zeros—this problem will be treated in Chap. 13.
The definition with strictly positive values is rather a convenience for a standard
methodological treatment based on logratios, where zeros would lead to ill-defined
values.

One might ask now why the sum κ is relevant here. In fact, as it will be shown
in the following, the sum constraint κ is irrelevant, as a consequence of scale
invariance, described in Chap. 1. It is always possible to rescale compositional
data by multiplication of the parts with a positive constant without changing the
information for the compositional analysis, contained in the logratios between the
parts. In that sense, expressing compositional data with a constant sum constraint
is just a matter of convenience. As an example, when plotting compositional data
in the ternary diagram, see Chap. 4, the observations are often rescaled to have sum
one. This allows for a comparison in the plot. There are some peculiarities resulting
from the Aitchison geometry and relative nature of compositions, discussed in
Chap. 4. Nevertheless, the important point is that this rescaling does not change
the information contents for compositional data analysis, as it will be shown later.

Rescaling of compositions can be formalized by the so-called closure operator
C. Consider a composition x = (x1, . . . , xD)′ ∈ R

D+ , where R
D+ denotes the D-

dimensional real space with strictly positive elements, so xi > 0 for i = 1, . . . ,D.
The closure of x to any positive number κ is defined as

Cκ(x) =
(

κ · x1
∑D

i=1 xi

, . . . ,
κ · xD
∑D

i=1 xi

)′
. (3.3)

Thus, applying the closure operation to the composition x leads to a new composi-
tional vector with the same number of elements. The parts of this new vector sum
up to κ , the desired constant which has been selected to rescale x. By setting κ = 1,
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Fig. 3.2 Two-part (left) and three-part (right) compositions; the compositions x, x1, and x2, as
well as the compositions y, y1, and y2, are compositionally equivalent, since they are located on
one and the same ray. The projection of the vectors on the simplex, indicated by dashed lines,
results in the compositions x and y

it is now straightforward to rescale a composition x with any arbitrary sum of parts
to a composition C1(x) with component sum equal to one.

Consider two compositions x and y, i.e. vectors in R
D+ that have any (possibly

different) sum of compositional parts. Rescaling them with the same constant κ

leads to the compositions Cκ(x) and Cκ(y), which now both have component sum
κ . In general, the new composition Cκ(x) will be different from the composition
Cκ(y). However, if Cκ(x) = Cκ(y), then the original compositions x and y are
“equal” and differ only by a constant (scale factor). In that case, x and y are called
compositionally equivalent.

The concept of compositional equivalence is illustrated in Fig. 3.2. The left
picture shows two-part compositions, while the right picture explains the concept
with three-part compositions. In both representations, the compositions denoted
with “x” are compositionally equivalent, and the same is true for those compositions
denoted with “y”. So, C1(x1) = C1(x2) = x and C1(y1) = C1(y2) = y.
Accordingly, the sum of the parts of the compositions x and y is one. Compositional
equivalence refers to any composition which is located on one ray through the
origin. The projection of the rays onto the simplex defined by the unit vectors
leads to the compositions x and y with sum one, and they can be viewed as proper
representations of the corresponding equivalent compositions. Clearly, x and y are
different from each other—just their sum of parts is the same. The projection onto
the simplex makes it easier to compare the compositions, either on the line segment
(Fig. 3.2, left) or in the triangle (Fig. 3.2, right) forming the ternary diagram.

Using the index κ with the closure operator C should emphasize the chosen
representation with the constant κ . Note that the same could be done even for
the D-part simplex SD , see Eq. (3.2), where κ plays the role of a parameter as
well. In subsequent sections it will turn out that the particular choice of κ is
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irrelevant, and for this reason the operator is usually used without index in the
literature. In fact, an emphasis on the constant sum constraint may sometimes
even lead to confusion among practitioners, since this gives the impression that all
concepts for compositional data analysis are just valid in case of constant sum of
the compositional parts. Formally, this can be avoided by re-defining the sample
space of compositions. Instead of the definition in (3.2) of the D-part simplex SD as
sample space of representations of compositions with a prescribed sum constraint
κ , a new definition is given by

S̃D =
{
x = (x1, . . . , xD)′ ∈ R

D+ | xi > 0, ∀κ > 0 ∃!λ > 0 : x = λCκ (x)
}

.

(3.4)

Interpreting Equation (3.4) in terms of Fig. 3.2 means that the sample space of a
composition consists of the set of all complete rays from the origin, such that the
parts are strictly positive. For example, x ∈ S̃D refers to x1, to x2 and to x in
Fig. 3.2—they are indistinguishable from a compositional point of view. The con-
stant κ does not matter at all. In other words, the space S̃D refers to R

D+ , decomposed
according to equivalence classes of compositionally equivalent vectors. This con-
cept will also be used in the following, which allows to avoid the closure operator.

3.2 Aitchison Geometry on the Simplex

It was argued in the previous section that compositional data do not follow the
usual Euclidean geometry. The sample space of compositions is the simplex (in
the sense of Eq. (3.4)), and thus an appropriate geometrical concept needs to be
developed. In the pioneering work of Aitchison (1986) the geometrical perspective
of compositional data analysis was not considered. This book follows Pawlowsky-
Glahn and Egozcue (2001) and Egozcue et al. (2003), for which the geometrical
structure of compositions is referred to as the Aitchison geometry. The aim is to
define a vector space structure of the simplex, and for that some basic operations are
needed. These correspond to the addition of two vectors, i.e. the shifting operation,
and multiplication of a vector by a real number in the Euclidean geometry. In
order to underline the difference between both geometries, also a special notation is
applied.

• Perturbation: Consider two compositions x and y from the simplex sample
space S̃D . Then the perturbation of x by y is a composition defined as

x ⊕ y = (x1y1, x2y2, . . . , xDyD)′. (3.5)

• Powering: The power transformation of a composition x ∈ S̃D by a constant
α ∈ R is defined as

α  x = (xα
1 , xα

2 , . . . , xα
D)′. (3.6)
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These operations are indeed sufficient to obtain a vector space, and the usual
properties (commutative, associative, distributive) hold, see, e.g., Pawlowsky-Glahn
et al. (2015). Particularly, a composition with identical parts forms the neutral
element in S̃D , denoted as n in the following. As a consequence, n has all pairwise
logratios equal to zero and corresponds to the zero vector in the Euclidean geometry.

By applying both perturbation and powering, it is also possible to define the
perturbation difference as

x � y = x ⊕ [(−1)  y] = (x1/y1, x2/y2, . . . , xD/yD)′.

It follows that the difference between the same composition results in the neutral
element, i.e.

x � x = (x1/x1, x2/x2, . . . , xD/xD)′ = (1, 1, . . . , 1)′ = n.

A Euclidean vector space structure can be obtained by defining norm, inner
product, and distance in the Aitchison sense:

• Aitchison inner product: The inner product of two compositions x =
(x1, . . . , xD)′ and y = (y1, . . . , yD)′ from S̃D is defined as

〈x, y〉A = 1

2D

D∑

i=1

D∑

j=1

ln
xi

xj

ln
yi

yj

. (3.7)

• Aitchison norm: The norm of a composition x = (x1, . . . , xD)′ ∈ S̃D is defined
via the inner product of x with itself,

‖x‖A = √〈x, x〉A =

√√
√
√√

1

2D

D∑

i=1

D∑

j=1

(
ln

xi

xj

)2

. (3.8)

• Aitchison distance: The distance between x and y ∈ S̃D is defined as

dA(x, y) =

√√
√
√
√

1

2D

D∑

i=1

D∑

j=1

(
ln

xi

xj

− ln
yi

yj

)2

. (3.9)

These definitions lead to a Euclidean linear vector space structure, and in the
literature this is simply denoted by the Aitchison geometry. The definitions are based
on logarithms of ratios (logratios) between the compositional parts, and thus one
refers to the logratio methodology for compositional data analysis. It is interesting
to compare the definitions of Euclidean inner product, norm and distance, see
Sect. 3.1, with the counterparts from the Aitchison geometry: in the former geometry
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the original variables are used in the definitions, while in the latter case pairwise
logratios are employed.

A further consequence of using logratios is that indeed the sum of the com-
positional parts is irrelevant: The compositions x = (x1, . . . , xD)′ and xλ =
(λx1, . . . , λxD)′, for any λ > 0, lead to the same logratios, and thus 〈x, xλ〉A =
〈x, x〉A = ‖x‖2

A, and dA(x, xλ) = dA(x, x) = 0. Similar to the metrical concepts,
also the results of perturbation and powering do not depend, up to constant sum
representation, on the initial scaling of the input compositions x and y.

It was already mentioned in Sect. 1.1 that using logratios instead of ratios
themselves simplifies the interpretation and mathematical treatment. Using the
property ln xi

xj
= ln(xi) − ln(xj ), the Aitchison distance (3.9) can be rewritten as

dA(x, y) =

√√
√
√
√

1

2D

D∑

i=1

D∑

j=1

(
ln

xi

yi

− ln
xj

yj

)2

, (3.10)

which supports the concept of relative scale. Accordingly, the sources of difference
between the compositions x and y are contained in the logratios between the
corresponding parts. Together with (3.9) it is also visible that any such difference
between the parts automatically influences the relations between the other parts
through logratios within single compositions.

The next example motivates a further important point: the dimensionality of
compositions.

Example Consider a composition with three parts, say x = (1, 2, 10)′. This could
correspond to a recipe of a fresh drink, with 1 “unit” lemon, 2 “units” sugar,
and 10 “units” cold water. The composition determines the taste of the drink, but
not the absolute amount or the size of the “units”. In that sense, the sum of the
compositional parts does not matter for the taste. What matters is the proportions
between the compositional parts, i.e. the ratio lemon to sugar (1/2), the ratio lemon
to water (1/10), and the ratio sugar to water (2/10). The latter ratio is already
determined by the first two ratios, since lemon/sugar divided by lemon/water is
equal to water/sugar. In other words, without any loss of information it is possible
to express information of 3 parts by only 2 ratios—in the Aitchison geometry these
will not be ratios but logratios.

In general, for a D-part composition x there exist D(D − 1) combinations of
nonzero logratios. Since ln xi

xj
= − ln

xj

xi
, this number can be reduced to D(D−1)/2

different (up to sign) combinations of logratios. However, it is always possible to
find D − 1 logratios such that all the remaining logratios can be expressed, using
the relation

ln
xi

xk

= ln
xi

xj

+ ln
xj

xk

, for i, j, k = 1, . . . ,D.
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An important example to define these D − 1 logratios is

ln
x1

xD

, ln
x2

xD

, . . . , ln
xD−1

xD

,

which is used in the next section in the context of logratio coordinates. Another
example is

ln
x1

x2
, ln

x2

x3
, . . . , ln

xD−1

xD

.

This feature can also intuitively explain why the sum of D(D−1) nonzero logratios
in the Aitchison inner product (norm, distance) is divided by D: the total outcome is
simply “penalized” by redundant information. Moreover, there are also geometrical
implications: the D-part simplex SD demonstrates that D-part compositions can
always be represented within a (D − 1)-dimensional subspace, without any loss of
information.

Summarizing, in case of D-part compositions, the Aitchison geometry has
dimension D − 1 (Pawlowsky-Glahn et al. 2015), i.e., any basis formed by the
compositions contains D − 1 elements. This fact turns out to be crucial for the
next section: D-part compositions will be expressed as coordinates in a (D − 1)-
dimensional real space.

3.3 Coordinate Representations of Compositions

Compositional data analysis is frequently associated with applying an appropriate
transformation first, and then employing the standard statistical methodology as
usual. Although from a practical point of view this is true in many cases, the
difficulty with this kind of thinking is the interpretation of the results. After applying
a transformation, one does no longer work with the original compositions but with
transformations thereof, and the interpretation of the results has to be adapted
accordingly. For this purpose, however, one needs to understand the meaning and
the purpose of the transformation.

A transformation can also be viewed as expressing the compositions in a
coordinate system with respect to the Aitchison geometry. This geometrical view
helps a lot to understand the interpretation and limitations of various coordinate
systems. It forms also a principal difference to other classes of transformations, like
those mentioned in Aitchison (1986) and those which have been presented recently
in the literature (Scealy and Welsh 2011, 2015; Stewart and Field 2011). Note that
even in Aitchison (1986) the coordinate-based approach has not yet been discussed
as it was not possible until the Aitchison geometry has been introduced.

Accordingly, the goal of this section is to explain transformations in terms of
coordinate representations. Here the focus is on the so-called logratio coordinates
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that express compositional data, driven by the Aitchison geometry, in the usual
Euclidean geometry of the real space. Due to the close link of the logratio
coordinates to the Aitchison geometry, the principles of compositional data analysis
(Sect. 1.3) are automatically fulfilled. Though, one should be aware, as the name of
the coordinates indicates, that the new variables will contain exclusively logratios
of the original compositional parts. It forms a source of certain peculiarities,
thoroughly discussed in the following.

In this approach, not just pairwise logratios, as considered up to now, are used,
but also aggregations. For example, by summing up the logratios ln x1

x3
and ln x2

x4
, one

gets a new variable z1 = ln x1x2
x3x4

. The sum of ln x1
x2

, ln x1
x3

, and ln x1
x4

results in z2 =
ln

x3
1

x2x3x4
. Both z1 and z2 represent special cases of a logcontrast (Aitchison 1986),

which is a linear combination
∑D

i=1 ci ln xi of log-transformed compositional parts
such that c1 +c2 + . . .+cD = 0. For z1, the coefficients are c1 = c2 = 1, c3 = c4 =
−1, while in the case of z2 they are c1 = 3, c2 = c3 = c4 = −1. Accordingly, any
of the following coordinate representations can be expressed in terms of logcontrasts
as well. Nevertheless, in order to keep the practical focus of the book, this idea will
not be further developed.

For historical reasons, the overview of different choices of coordinates starts with
additive logratio coordinates and centered logratio coefficients, introduced already
in Aitchison (1982, 1983) and summarized in Aitchison (1986). Nevertheless, the
main focus will be devoted to isometric logratio coordinates that will be used for
most methods presented in the book.

3.3.1 Additive Logratio (alr) Coordinates

This is a mapping from S̃D to R
D−1, and the result for an observation x ∈ S̃D are

coordinates x(j) ∈ R
D−1 with

x(j) = alrj (x) = (x
(j)

1 , . . . , x
(j)

D−1)
′ =

(
ln

x1

xj

, . . . , ln
xj−1

xj

, ln
xj+1

xj

, . . . , ln
xD

xj

)′
.

(3.11)

If an n × D matrix X of compositional data is given, with the compositions x′
i =

(xi1, . . . , xiD) in the rows of X, for i = 1, . . . , n, then the matrix of alr coordinates
is formed by the rows

(
x(j)
i

)′ = (
alrj (xi )

)′ =
(

ln
xi1

xij

, . . . , ln
xi,j−1

xij

, ln
xi,j+1

xij

, . . . , ln
xiD

xij

)
.

(3.12)

The index j ∈ {1, . . . ,D} refers to the variable that is chosen as ratioing
variable in the coordinates. This choice usually depends on the context, but also
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on the suitability of the results for visualization and data exploration. The main
practical disadvantages of alr coordinates are the subjectivity of the choice of
the ratioing variable, and the fact that alr leads to a non-orthogonal coordinate
system (Pawlowsky-Glahn et al. 2015). Accordingly, although alr coordinates move
the operations of perturbation and powering to the standard vector addition and
multiplication,

alrj (x ⊕ y) = alrj (x) + alrj (y), alrj (c  x) = c · alrj (x)

for x, y ∈ S̃D , c ∈ R and any j ∈ {1, . . . ,D}, this is in general not fulfilled for
the Aitchison inner product, norm and distance, e.g., 〈x, y〉A �= 〈alrj (x), alrj (y)〉.
Moreover, the interpretation of alr coordinates would be misleading if they were
interpreted in terms of the original parts. For example, the first component of x(j) is
ln x1

xj
, and it contains relative information of x1 only to the j -th part, but not to all the

other parts. From another perspective, x(j) contains the relative information of part
xj to all remaining parts (note that ln xi

xj
= − ln

xj

xi
). This information, however,

is distributed among all components of x(j) and not devoted to just one coordinate,
and thus the interpretation of a particular coordinate cannot be made in terms of one
part.

Since the alr coordinates form a one-to-one mapping from S̃D to R
D−1, it is also

possible to get back to the original compositional data as

xi = exp
(
x

(j)

i

)
for i = 1, . . . ,D, i �= j,

(3.13)

xj = 1 for j ∈ {1, . . . ,D}.

Note that the sum of the back-transformed parts x1 + . . .+xD will in general not be
equal to the sum of the original parts, neither will it be 1. However, since the sum
does not matter from a compositional data analysis point of view, scaling is omitted
in Eq. (3.13).

As already indicated, alr coordinates are mentioned here rather for historical
reasons and for completeness. They will not be in focus in the subsequent chapters.

3.3.2 Centered Logratio (clr) Coefficients

A composition x ∈ S̃D is expressed by a vector y ∈ R
D , with

y = clr(x) = (y1, . . . , yD)′ =
⎛

⎝ln
x1

D

√∏D
k=1 xk

, . . . , ln
xD

D

√∏D
k=1 xk

⎞

⎠

′
. (3.14)
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For an n × D matrix X of compositional data, with the compositions x′
i =

(xi1, . . . , xiD) in the rows of X, for i = 1, . . . , n, the matrix of clr coefficients
Y is formed by the rows

y′
i = (clr(xi ))

′ =
⎛

⎝ln
xi1

D

√∏D
k=1 xik

, . . . , ln
xiD

D

√∏D
k=1 xik

⎞

⎠ . (3.15)

The denominator used in (3.14) is called the geometric mean,

gm(x) = D

√√
√
√

D∏

k=1

xk = exp

(
1

D

D∑

k=1

ln xk

)

. (3.16)

In the sample formulation (3.15), the geometric mean used in the denominator is
calculated for each individual observation.

At first glance, the difference between alr and clr is that clr avoids the subjectivity
of the choice of the denominator by using the geometric mean, which treats the
components symmetrically. Further, clr ends up with D components instead of only
D − 1 for alr. However, these D components sum up to zero, since

D∑

j=1

yj =
D∑

j=1

ln
xj

exp
(

1
D

∑D
k=1 ln xk

) =
D∑

j=1

(

ln xj − 1

D

D∑

k=1

ln xk

)

=
D∑

j=1

ln xj − 1

D
D

D∑

k=1

ln xk = 0.

In order to emphasize this peculiarity, we refer to clr coefficients (instead of
coordinates). From a geometrical point of view, there is one more composition than
necessary to form the basis in the Aitchison geometry, being just of dimension D−1.
Therefore, y represents coefficients with respect to a generating system (instead of
a basis). For details see, e.g., Pawlowsky-Glahn et al. (2015). This means that there
is not a unique possibility how to form coefficients with respect to the same system
of compositions. This feature has one important consequence: it is not possible to
consider just one of the clr coefficients for the analysis without taking also the others
into account. This is a serious limitation, e.g. for univariate data analysis, that can
be overcome by using coordinates with respect to an orthonormal basis.

A practical implication of the zero sum of clr coefficients is that when using them
one ends up with constrained data. Thinking about a data matrix of compositions,
then after expressing each observation in clr coefficients, the resulting matrix has
not full rank in the columns and the corresponding covariance matrix is singular.
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Looking more closely at the resulting clr coefficients, one can see that logratios
to all parts are involved. For example, coefficient y1 can be written as

y1 = ln
x1

D

√∏D
i=1 xi

= ln
x1

x
1
D

1 x
1
D

2 · · · x
1
D

D

= ln
x

1
D

1

x
1
D

1

+ ln
x

1
D

1

x
1
D

2

+ . . . + ln
x

1
D

1

x
1
D

D

= 1

D

(
ln

x1

x2
+ . . . + ln

x1

xD

)
.

Thus, the logratios of part x1 to all other parts are involved in terms of an
average, with a “scaling factor” 1/D. Accordingly, each logratio contributes with
the same weight to the first coefficient y1—similarly for the other components.
Among different coefficients, however, there is “overlap”: For example, part x1
is not exclusively associated with y1, but there is also logratio information with
x1 in y2, y3, . . . , yD . In other words, although all relative information about one
compositional part within a given composition can be exclusively devoted to one
particular clr coefficient (as it will be seen later on), one cannot interpret y1, . . . , yD

in terms of the compositional parts x1, . . . , xD simultaneously. This is a frequent
mistake made in practice! As a prominent example, the analysis of the correlation
structure of clr coefficients might become completely misleading. This will be
made clearer when introducing special isometric logratio coordinates, called pivot
coordinates (see next subsection).

There is another interesting view of the clr coefficients: The first coefficient y1,
for instance, can be represented as

y1 = ln
x1

gm(x)
= ln x1 − ln gm(x) = ln x1 − 1

D

D∑

i=k

ln xk.

Thus, one obtains essentially a log transformation (by ln), but the resulting
observation is centered. Thinking about a compositional data matrix X with the
compositions in the rows, then the clr coefficients are essentially ln(X), with
subsequent row-centering. This might be an interesting aspect for communities like
geochemistry, where the log transformation is frequently applied to symmetrize the
right-skewed data distributions.

Also the clr coefficients represent a one-to-one mapping, and thus it is possible
to come back again to the original parts—up to a scaling factor,

xj = exp(yj ) for j = 1, . . . ,D. (3.17)
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The link between log transformation and clr coefficients has been outlined above.
One can formalize this differently. Consider the matrix

W =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 · · · 0

0 1
...

...
. . .

0 0 · · · 1

⎞

⎟
⎟
⎟
⎟
⎠

− 1

D

⎛

⎜
⎜
⎜
⎝

1 1 · · · 1
1 1 · · · 1
...

...
...

1 1 · · · 1

⎞

⎟
⎟
⎟
⎠

= ID − 1

D
1D1′

D, (3.18)

where ID is the identity matrix of dimension D, and 1D = (1, . . . , 1)′ a vector of
length D with entries of 1. It can be proven (Aitchison 1986) that the relation

y = clr(x) = W · ln(x)

holds.
The clr coefficients also fulfill further important properties (Egozcue et al. 2003).

For two compositions x1 and x2 ∈ S̃D and c ∈ R it holds that

(1) clr(x1 ⊕ x2) = clr(x1) + clr(x2), clr(c  x1) = c · clr(x1);

(2) 〈x1, x2〉A = 〈clr(x1), clr(x2)〉, ‖x1‖A = ‖clr(x1)‖;

(3) dA(x1, x2) = d(clr(x1), clr(x2)).

While property (1), representing the linearity of the mapping, was fulfilled already
with the alr coordinates, now also other important features are valid. Property (2)
refers to the Aitchison inner product between the two compositions, see Eq. (3.7),
which is the same as the usual inner product of the clr-quantities (similarly also for
the Aitchison norm). Property (3) says that the Aitchison distance, see Eq. (3.9),
between the two compositions is the same as the Euclidean distance between the
compositions in clr coefficients. These two properties are important since they show
that the clr coefficients represent an isometry: all metric concepts in the simplex are
maintained after taking the clr coefficients.

3.3.3 Isometric Logratio (ilr) and Pivot Coordinates

While the clr coefficients map a composition x from S̃D to a (D − 1)-dimensional
hyperplane inRD , the class of isometric logratio (ilr) coordinates aims at building an
orthonormal basis in this hyperplane and expressing the composition therein. The
resulting vector z is in R

D−1, and the practical implication is that one avoids the
singularity issue that occurred with clr coefficients. In other words, ilr coordinates
set up an orthonormal basis in the hyperplane formed by clr coefficients, and there
are infinitely many possibilities to define such an orthonormal basis system. For this
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reason, ilr is considered as a class of coordinates and it is also common to refer to
orthonormal (logratio) coordinates. One particular choice of a basis leads to

ilr(x) = z = (z1, . . . , zD−1)
′

with

zj =
√

D − j

D − j + 1
ln

xj

D−j

√∏D
k=j+1 xk

for j = 1, . . . ,D − 1. (3.19)

(Fišerová and Hron 2011). From now on, these ilr coordinates will be referred to
as pivot (logratio) coordinates. The reason for such a notation is intuitive: one part
(here x1) is set to be a pivot, it is contained just in the first coordinate. As it becomes
clear soon, such a choice has also a primary importance for the coordinate system
as a whole.

For an n × D matrix X of compositional data, with the compositions x′
i =

(xi1, . . . , xiD) in the rows of X, for i = 1, . . . , n, the n × (D − 1) matrix of pivot
coordinates Z is formed by the elements with index (i, j )

zij =
√

D − j

D − j + 1
ln

xij

D−j

√∏D
k=j+1 xik

. (3.20)

Throughout the rest of the book, the notation ilr(x) and the letter “z” for the resulting
coordinates refer to the pivot coordinates as defined in (3.19), or—depending on the
context—also to general ilr (orthonormal) coordinates.

The definition of pivot coordinates (3.19) can be made more explicit,

z1 =
√

D − 1

D
ln

x1

D−1
√∏D

k=2 xk

z2 =
√

D − 2

D − 1
ln

x2

D−2
√∏D

k=3 xk

...

zD−2 =
√

2

3
ln

xD−2√
xD−1xD

zD−1 =
√

1

2
ln

xD−1

xD

.
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As mentioned above, the pivot coordinates have the feature that part x1 only appears
in coordinate z1. This is not the case for other parts; x2, for example, appears in z1
and in z2. Isolating one part into one coordinate is appealing, since z1 summarizes
now all relative information (logratios) about x1,

z1 =
√

D − 1

D
ln

x1

D−1
√∏D

k=2 xk

=
√

1

D(D − 1)

(
ln

x1

x2
+ ln

x1

x3
+ . . . + ln

x1

xD

)
,

(3.21)

and can thus be interpreted as the relative dominance of x1 within the given com-
position. In other words, by considering the resulting form of z1 with the geometric
mean in the denominator, this coordinate expresses the level of dominance of part
x1 with respect to the other parts “on average.” Accordingly, for positive values of
z1, the first part dominates in the composition with respect to an “average part”
(formed by the geometric mean) and vice versa for z1 < 0. Finally, z1 = 0 indicates
a balanced state between x1 and an average behavior of the other parts in the given
composition.

No other part can be interpreted in such a manner, and thus the definition of pivot
coordinates in (3.19) is specifically designed in favor of an interpretation for the
first part. The scaling constants in (3.19) guarantee orthonormality of the resulting
coordinate system.

Note that the first pivot coordinate z1, see (3.21), and the first clr coefficient y1,
see (3.14), are proportional up to a scaling factor depending just on the dimension
D, i.e.

z1 =
√

D

D − 1
y1.

Thus, also y1 can be interpreted like z1 in terms of the relative dominance of x1 in
the composition. Note, however, that z = (z1, z2, . . . , zD−1)

′ are coordinates of an
orthonormal basis, which is not the case for the coefficients y = (y1, y2, . . . , yD)′.
Moreover, the part x1 is not contained exclusively in y1, but also in the other clr
coefficients. This leads to an overlap of the relative information conveyed by the
clr variables, and intuitively also to the mentioned singularity of their covariance
matrix. For this reason, by considering y1 separately, an important feature, formed
by the zero sum constraint of the clr coefficients, is omitted. This is not the case for
z1 as variable in an orthonormal coordinate system. Therefore, although the relation
between z1 and y1 might seem to be just a matter of scaling, this feature has also
important consequences for further methodological developments.
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Like for clr coefficients, also pivot coordinates represent a one-to-one mapping.
It is thus possible to come back to the original parts by

x1 = exp

(√
D − 1√

D
z1

)

,

xj = exp

⎛

⎝−
j−1∑

k=1

1√
(D − k + 1)(D − k)

zk +
√

D − j√
D − j + 1

zj

⎞

⎠ , j = 2, . . . ,D − 1,

xD = exp

(

−
D−1∑

k=1

1√
(D − k + 1)(D − k)

zk

)

, (3.22)

up to a scaling factor.
As mentioned previously, clr coefficients map a composition x ∈ S̃D to a

hyperplaneH : y1 + . . .+yD = 0, i.e., to a subspace of RD , and the ilr coordinates
are formed by coefficients expressing x in an orthonormal basis of this hyperplane.
The orthonormal basis vectors corresponding to the pivot coordinates defined in
Eq. (3.19) are

v.j =
√

D − j

D − j + 1

(
0, . . . , 0, 1,− 1

D − j
, . . . ,− 1

D − j

)′
(3.23)

for j = 1, . . . ,D − 1, with j − 1 zero entries. These vectors, collected as columns
in a D × (D − 1) matrix V = (v.1, . . . , v.D−1), are formed by clr coefficients of the
original compositional basis. Then one immediately gets the relations between clr
coefficients and pivot coordinates as

y = Vz and z = V′y, (3.24)

see Egozcue et al. (2003). Of course, such a linear relation holds in general also for
any ilr coordinates, not just for the pivot ones.

Like clr coefficients, also ilr coordinates represent an isometry (Egozcue et al.
2003). For two compositions x1 and x2 ∈ S̃D and c ∈ R it holds that

1. ilr(x1 ⊕ x2) = ilr(x1) + ilr(x2), ilr(c  x1) = c · ilr(x1);

2. 〈x1, x2〉A = 〈ilr(x1), ilr(x2)〉, ‖x1‖A = ‖ilr(x1)‖;

3. dA(x1, x2) = d(ilr(x1), ilr(x2)).

Thus, all metric concepts in the simplex are maintained after taking the ilr
coordinates.
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3.3.4 Special Coordinate Systems: Generalization of Pivot
Coordinates

The pivot coordinates introduced in Sect. 3.3.3 support an interpretation especially
of the first compositional part x1, because the first coordinate exclusively describes
all relative information about x1. This special role of the first part is not necessarily
given in a practical data set. However, it can still be of interest to obtain a specific
interpretation for a single part within a given composition which is not the first part.
In that case, one can simply permute the compositional parts in a way that the part of
interest is placed at the first position, and the pivot coordinates (3.19) are constructed
for the permuted composition.

Suppose that the interest for the interpretation is in part xl , where l ∈ {1, . . . ,D}.
Then the original composition x = (x1, . . . , xD)′ is replaced by the permuted
composition

x(l) = (xl, x1, . . . , xl−1, xl+1, . . . , xD)′ =: (x
(l)
1 , x

(l)
2 , . . . , x

(l)
l , x

(l)
l+1, . . . , x

(l)
D )′.

The pivot coordinates corresponding to Eq. (3.19) for the permuted composition are

z
(l)
j =

√
D − j

D − j + 1
ln

x
(l)
j

D−j

√∏D
k=j+1 x

(l)
k

for j = 1, . . . ,D − 1, (3.25)

defining the coordinates z(l) = (z
(l)
1 , . . . , z

(l)
D−1)

′. From the Definition (3.19) it is

clear that z
(1)
j = zj , for j = 1, . . . ,D − 1. Note that here only part xl is put to the

first position, and the order of the remaining parts is unchanged. In fact, this order
of the remaining parts is irrelevant, since the focus here is on z

(l)
1 , which explains all

relative information about part xl .
Similar as before, also for the (generalized) pivot coordinates their sample

version can be presented. For an n × D matrix X of compositional data, with the
compositions x′

i = (xi1, . . . , xiD) in the rows of X, for i = 1, . . . , n, the n×(D−1)

matrix of pivot coordinates Z(l) with emphasis on part xl, l = 1, . . . ,D, is formed
by the elements with index (i, j ),

z
(l)
ij =

√
D − j

D − j + 1
ln

x
(l)
ij

D−j

√∏D
k=j+1 x

(l)
ik

, (3.26)

where x
(l)
ij is the element with index (i, j ) of the i-th row of the permuted data

matrix,

(xil, xi1, . . . , xi,l−1, xi,l+1, . . . , xiD) =: (x
(l)
i1 , x

(l)
i2 , . . . , x

(l)
il , x

(l)
i,l+1, . . . , x

(l)
iD).
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The above permutation can be obtained via a permutation matrix P(l), which is a
D × D matrix with entries of 0/1. For example, if the composition x = (x1, x2, x3)

′
is considered, and the interest of interpretation is in part x3, then the permuted
composition x(3) = (x3, x1, x2)

′ is obtained by

x(3) =
⎛

⎝
x3

x1

x2

⎞

⎠ = P(3)x =
⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠

⎛

⎝
x1

x2

x3

⎞

⎠ .

With this permutation matrix it is possible to define the new basis for the pivot
coordinates z(l). The orthonormal basis for the unpermuted composition was defined
in (3.23), and the basis for the permuted composition is

V(l) = P(l)V. (3.27)

Thus, the rows of V are permuted in the same way as the parts. Consider the matrix

Q(l) = (V(l))′V; (3.28)

this is an orthonormal matrix, (Q(l))′Q(l) = Q(l)(Q(l))′ = ID−1 (Egozcue et al.
2003). Then the coordinates for the permuted composition are

z(l) = Q(l)z = V′(P(l))′Vz. (3.29)

Equation (3.29) shows an elegant way how the basis can be changed to express
compositions in a different orthonormal basis system that allows for a concise
interpretation of the l-th compositional part. This will be used in the methodological
chapters, when the interest is in the interpretation of single parts within a given
composition. Moreover, Eq. (3.29) demonstrates that another choice of the pivot
coordinate system is just a rotation of the original one. This important property
holds also in general for any two ilr coordinate systems.

Similar as in the previous section for the special case of z1, also the relation
between z

(l)
1 and clr coordinates yl can be generalized as

z
(l)
1 =

√
D

D − 1
yl. (3.30)

It “supports” another temptation that frequently occurs in practice, namely to
analyze the relation between different clr coefficients, e.g., in terms of correlations.
This should be avoided as one deals with coefficients with respect to a generating
system. Accordingly, the covariance structure of clr coefficients is driven by the zero
sum constraint,

cov(yl, y1) + . . . + cov(yl, yl−1) + cov(yl, yl+1) + . . . + cov(yl, yD) = −var(yl),
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for l = 1, . . . ,D (Aitchison 1986). This leads to the so-called negative bias
(overabundance of negative covariances/correlations), similar as for proportional or
any other constrained data. Additionally, the coordinates z

(l)
1 , for l = 1, . . . ,D,

come from different coordinate systems, indicating clearly that analyzing relations
between clr coordinates definitely cannot be recommended. An alternative is
proposed in the next subsection.

3.3.5 Special Coordinate Systems: Symmetric Pivot
Coordinates

If one is interested in the relation between two compositional parts, a possible
alternative is to construct such coordinates that would treat the dominance of both
parts in a given composition. This can be achieved by constructing two pivot
coordinate systems (3.25), but in a symmetric manner. Without loss of generality, we
are interested in identifying the relation between the parts x1 and x2. Accordingly,
two pivot coordinate systems z(1) and z(2) resulting from the permutation of the
parts in (3.19) are taken and the focus is on the role of x1 and x2, respectively. It
is obvious that the first two coordinates from each system, (3.31) and (3.32), fully
describe the subcomposition (x1, x2)

′ within the given composition:

z
(1)
1 =

√
D − 1

D
ln

x1

D−1
√∏D

i=2 xi

, z
(1)
2 =

√
D − 2

D − 1
ln

x2

D−2
√∏D

i=3 xi

, (3.31)

z
(2)
1 =

√
D − 1

D
ln

x2

D−1
√

x1
∏D

i=3 xi

, z
(2)
2 =

√
D − 2

D − 1
ln

x1

D−2
√∏D

i=3 xi

. (3.32)

On the other hand, neither (3.31) nor (3.32) can be considered as treating x1 and
x2 in a symmetric manner. Coordinates (3.31) clearly highlight the role of x1,
because in the second coordinate the dominance of x2 over the aggregated remaining
components without x1 is expressed. A similar interpretation can be derived for the
coordinates (3.32) and for part x2. A natural idea is thus to “average” both couples
of coordinates, just by taking care about orthonormality of the resulting coordinates
(Kynčlová et al. 2017). These considerations lead to

z
(1,2)
1 =

√
D − 1 + √

D(D − 2)

2D
ln

x1

x

1
D−1+√

D(D−2)

2

(
x3x4 · · · xD

) √
D−2+√

D√
D−2(D−1+√

D(D−2))

(3.33)
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and

z
(1,2)
2 =

√
D − 1 + √

D(D − 2)

2D
ln

x2

x

1
D−1+√

D(D−2)

1

(
x3x4 · · · xD

) √
D−2+√

D√
D−2(D−1+√

D(D−2))

.

(3.34)

The construction of the above coordinates guarantees that z
(1,2)
1 , z

(1,2)
2 , z

(1)
3 , . . . ,

z
(1)
D−1, or alternatively z

(1,2)
1 , z

(1,2)
2 , z

(2)
3 , . . . , z

(2)
D−1, form orthonormal coordinates

of the composition x (Kynčlová et al. 2017). In the sequel, any of such choices
are referred to as symmetric pivot coordinates. Of course, for practical purposes
mostly just the first two coordinates are needed. The interpretation of the resulting
symmetric pivot coordinates (by considering now just the first two coordinates
out of the whole coordinate system) is indeed as expected: they both capture
the dominance of x1 and x2, respectively, with respect to the other components
in a symmetric manner. Although the coefficients in the denominator of (3.33)
and (3.34) seem to be quite complicated, one does not need to take care about
them in practice, because they are just resulting from the normalization required to
achieve orthonormality of the coordinates. More important is the weighting of x2 in
z
(1,2)
1 (and x1 in z

(1,2)
2 ) that is different from the remaining parts, which reflects the

compromise resulting from symmetrizing the input coordinates (3.31) and (3.32).
Nevertheless, it is easy to see that the ratio of both weights,

1
D−1+√

D(D−2)√
D−2+√

D√
D−2(D−1+√

D(D−2))

=
√

D − 2√
D − 2 + √

D
,

is stabilized quite soon with an increasing number of parts to approximately one
half in favor of the remaining parts (Kynčlová et al. 2017).

In the next step, symmetric pivot coordinates can be generalized to any couple of
parts xk and xl , for k �= l; particularly,

z
(k,l)
1 = C · ln

xk

x

1
D−1+√

D(D−2)

l

(
x1 · · · xk−1xk+1 · · · xD

) √
D−2+√

D√
D−2(D−1+√

D(D−2))

(3.35)

and

z
(k,l)
2 = C · ln

xl

x

1
D−1+√

D(D−2)

k

(
x1 · · · xl−1xl+1 · · · xD

) √
D−2+√

D√
D−2(D−1+√

D(D−2))

(3.36)

with C =
√

D−1+√
D(D−2)

2D
. Similarly, also their sample versions could be intro-

duced. It can be seen that now the first two symmetric pivot coordinates can be
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taken for a bivariate analysis, highlighting the relative roles of xk and xl within a
given composition without the danger of negative bias, as it was the case for clr
coefficients.

Symmetric pivot coordinates are used in the following chapter for bivariate
plotting, and particularly in Chap. 8 in the context of correlation analysis.

3.3.6 Special Coordinate Systems: Balances

In practice it is not only of interest to interpret the relative dominance of single
parts, but also the behavior of (non-overlapping) groups of compositional parts
within the composition. Suppose that the major effects within a composition are
caused by two groups of parts. Then one is interested in constructing coordinates
that allow for an interpretation of the two groups in terms of relative information.
Such coordinates are called balances, since they refer to the balance between the
groups. The procedure for their construction is called sequential binary partitioning
(SBP) (Egozcue and Pawlowsky-Glahn 2005). As this name indicates, not only
the balance between two groups is investigated with such a procedure, but the
relative dominance of groups of parts is considered in a sequential manner. The
balances for groups of parts are sequentially constructed as follows (Egozcue and
Pawlowsky-Glahn 2005). For the k-th step of the procedure, denote the indices of
the compositional parts of one group by i1, i2, . . . , ipk , coded by “+”, and those of
the second group by j1, j2, . . . , jmk , coded by “−”. Thus, the first group consists
of pk parts, and the second group has mk parts. In the first step of the procedure,
pk + mk = D, but in subsequent steps not all parts are involved because the initial
groups will be split up into smaller groups. The parts which are not involved are
coded by “0”. The corresponding balance is defined as

z̃k =
√

pkmk

pk + mk

ln

(
xi1xi2 · · · xipk

)1/pk

(
xj1xj2 · · · xjmk

)1/mk
. (3.37)

The total number of steps required is D − 1, and the resulting coordinates
z̃1, . . . , z̃D−1 correspond to an orthonormal basis in S̃D . Similar to Eq. (3.23), the
basis vector corresponding to the coordinate of Eq. (3.37) is ṽ.k = (ṽ1k, . . . , ṽDk)

′,
the k-th column of Ṽ, and it is given by

ṽlk = 1

pk

√
pkmk

pk + mk

for l ∈ {i1, i2, . . . , ipk }

ṽlk = − 1

mk

√
pkmk

pk + mk

for l ∈ {j1, j2, . . . , jmk }

ṽlk = 0 for all remaining indices.
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With this basis vector one can see that the coordinate z̃k can also be expressed as log-
contrast, see earlier in this section, since one gets linear combinations

∑D
l=1 ṽlk ln xl

of log-transformed compositional parts such that ṽ1k + ṽ2k + . . . + ṽDk = 0. Note
that the result of sequential binary partitioning of a compositional data set can be
displayed also graphically together with basic descriptive characteristics using the
so-called CoDa-dendrogram, see, e.g., Pawlowsky-Glahn and Egozcue (2011) for
details.

As an example, consider a five-part composition x = (x1, x2, x3, x4, x5)
′, which

should be split into the groups x1, x2, x3 and x4, x5, because from the contents it
is clear that the parts forming both groups are belonging together in some sense.
One can imagine that such a composition corresponds to household expenditures,
consisting of components foodstuff (x1), housing (x2), clothing (x3), recreation (x4),
and restaurants (x5). The first three parts can be considered as basic expenditures,
while the remaining two as complementary ones. The primary interest is to evaluate
the dominance of the first group of parts (represented by their geometric mean) with
respect to an “average” behavior of the complementary components. The sequential
binary partitioning can be done as indicated in Table 3.1.

The matrix Ṽ corresponding to the partition of Table 3.1 has the structure

Ṽ = (ṽ.1, ṽ.2, ṽ.3, ṽ.4) =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

1
3

√
6
5

√
2
3 0 0

1
3

√
6
5 − 1

2

√
2
3

√
1
2 0

1
3

√
6
5 − 1

2

√
2
3 −

√
1
2 0

− 1
2

√
6
5 0 0

√
1
2

− 1
2

√
6
5 0 0 −

√
1
2

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

.

It can be observed that the sums of the columns of Ṽ are indeed zero. The
coordinates are then obtained in analogy to Eq. (3.24) as

z̃ = (z̃1, z̃2, z̃3, z̃4)
′ = Ṽ′y = Ṽ′clr(x),

Table 3.1 Sequential binary
partitioning of a five-part
composition into the two
groups x1, x2, x3 and x4, x5

k =
1 2 3 4

x1 + + 0 0

x2 + − + 0

x3 + − − 0

x4 − 0 0 +
x5 − 0 0 −
pk 3 1 1 1

mk 2 2 1 1
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Table 3.2 Sequential binary
partitioning corresponding to
the ilr basis of pivot
coordinates defined in
Eq. (3.19)

k =
1 2 3 . . . D − 1

x1 + 0 0 . . . 0

x2 − + 0 . . . 0

x3 − − + . . . 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

xD−1 − − − . . . +
xD − − − . . . −
pk 1 1 1 . . . 1

mk D − 1 D − 2 D − 3 . . . 1

explicitly as

z̃1 =
√

6

5
ln

√
x1x2x3
3
√

x4x5
, z̃2 =

√
2

3
ln

x1√
x2x3

, z̃3 =
√

1

2
ln

x2

x3
, z̃4 =

√
1

2
ln

x4

x5
.

According to the construction, z̃1 is the balance between the two groups of parts
x1, x2, x3 and x4, x5. The coordinates z̃2 and z̃3 describe all relative information
of the first group, and they could have been constructed also in a different order.
Coordinate z̃4 describes all relative information of the second group, here involving
just the logratio between the parts x4 and x5.

The pivot coordinates defined in Eq. (3.19) are constructed in a way that z1
describes all relative information about part x1. Thus, z1 can also be seen as a
balance between the “groups” x1 and x2, . . . , xD . Accordingly, one could even
alternatively refer to pivot balances. Moreover, with sequential binary partitioning
it is immediate to construct the corresponding orthonormal basis, see Table 3.2. The
above procedure for the construction of the basis vectors results exactly in the matrix
V defined in Eq. (3.23).

Remark 1 One should be aware that the value of the pivot coordinate z1,
constructed to extract the relative information about x1, strongly depends on the
other parts of the actual composition. For example, while x = (4, 2, 3, 40)′ results

in z1 =
√

3
4 ln 4

3√2·3·40
= −0.382, for its three-part subcomposition x∗ = (4, 2, 3)′

the corresponding coordinate yields z∗
1 =

√
2
3 ln 4√

2·3 = 0.400. Thus, while the first

part dominates on average in the original composition, just the opposite conclusion
can be made for the subcomposition. Consequently, this result might lead to the
temptation to denote the above effect as to violate subcompositional coherence,
introduced in Sect. 1.3. However, this would be a principal misunderstanding of the
concept. Subcompositional coherence refers to parts of the original composition,
and particularly to its underlying geometrical properties that are valid when passing
from the parent composition to its subcomposition. On the other hand, here one
deals purely with logratios, where for the construction of z1 all those logratios
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containing x1 were aggregated. It is logical that removing one or more parts leads to
a change of the input information for this coordinate. Therefore, it is recommended
to consider a knowledge-driven selection of the parts whenever possible that helps
to prevent irresponsible (and even misleading) results of the analysis.

Remark 2 It might be confusing to the reader, why the natural logarithm “ln” is
permanently used to construct the coordinates, and not, for example, the logarithm
to the base 10, i.e. log10. Note that for a general basis “b”, there is the relation
logb x = ln x

ln b
, and thus the relation between “ln” and log10 is

log10x = ln x

ln 10
≈ 0.4343 · ln x.

Thus, log10 could be used as well for the construction of the coordinates; this just
refers to rescaling compared to the natural logarithm. In case of ilr coordinates,
they would still refer to an orthonormal basis. log10 is probably easier for the
interpretation. For example, if log10

x1
x2

= 1, then x1 dominates x2 by a factor of

101 = 10; if log10
x1
x2

= 2, then x1 dominates 102 = 100 times the part x2, etc.

3.4 Examples

Some of the theoretical concepts presented in this chapter are illustrated in the
following using the R package robCompositions.

An important concept of the logratio approach is that the row sums must not be
equal for the compositions; even more: the analysis of compositional data does not
rely on the constant sum constraint. Consider again the phd data from Table 1.2 of
Sect. 1.2, and restrict only to the study groups, forming the parts of the composition.
These data are stored in the R object “phd_totals”. The number of students for
the listed countries is very different (these numbers slightly changed because the
percentage data were re-expressed as absolute numbers of students):

data("phd_totals")
rowSums(phd_totals)

## BE BG CZ DK EE IE GR ES
## 7501 5200 22602 4800 1999 5101 22499 77099
## FR IT LV LT HU AT PL PT
## 69800 38299 1801 2899 8000 16800 32700 20500
## RO SI SK FI SE UK CR TK
## 21699 1100 10700 22100 21401 94200 1300 32600
## NO CH JP US
## 5000 17200 75000 388699
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For instance, the ratios between the parts human and health are:

phd_totals$human / phd_totals$health

## [1] 0.9577329 1.7567568 0.9683457 0.5752066 2.1428571
## [6] 2.4977778 10.2828283 1.1783976 8.1832393 0.9615576
## [11] 2.3846154 1.3651877 1.5276074 5.1936709 3.3158245
## [16] 1.6081081 0.5522686 1.1250000 0.9738142 2.2298421
## [21] 0.3987567 1.4117322 1.2170213 1.9231778 0.5204918
## [26] 1.0193182 0.4197451 1.3785337

The compositions can now be represented with constant sum one, using the function
constSum of the package robCompositions:

phd_totals1 <- constSum(phd_totals, const = 1)
all(rowSums(phd_totals1) == 1) # OK

## [1] TRUE

Now consider the same ratio as above, for the new object “phd_totals1”:

phd_totals1$human / phd_totals1$health

## [1] 0.9577329 1.7567568 0.9683457 0.5752066 2.1428571
## [6] 2.4977778 10.2828283 1.1783976 8.1832393 0.9615576
## [11] 2.3846154 1.3651877 1.5276074 5.1936709 3.3158245
## [16] 1.6081081 0.5522686 1.1250000 0.9738142 2.2298421
## [21] 0.3987567 1.4117322 1.2170213 1.9231778 0.5204918
## [26] 1.0193182 0.4197451 1.3785337

It can be seen that the ratios do not change even if each observation is multiplied by
a different constant. In this case, the constant for multiplication led to the constant
sum one for all observations. The values are in the interval from zero to infinity,
and taking the logarithm symmetrizes the data around zero, theoretically into the
interval from minus to plus infinity:

log(phd_totals1$human / phd_totals1$health)

## [1] -0.04318630 0.56346936 -0.03216611 -0.55302598
## [5] 0.76214005 0.91540145 2.33047535 0.16415555
## [9] 2.10208807 -0.03920083 0.86903785 0.31129194
## [13] 0.42370270 1.64744075 1.19870630 0.47505840
## [17] -0.59372081 0.11778304 -0.02653472 0.80193076
## [21] -0.91940392 0.34481743 0.19640630 0.65397890
## [25] -0.65298114 0.01913395 -0.86810761 0.32102040

Scale invariance is also valid for the Aitchison distance. Computing the Aitchison
distances between the first four observations of the object “phd_totals” is done with
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the function aDist, and results in:

aDist(phd_totals[1:4, ])

## BE BG CZ
## BG 0.8289179
## CZ 0.5007665 0.5580570
## DK 0.7620140 1.2034696 0.7714111

The distance matrix is represented as lower diagonal matrix, and it is the same
as computing the Aitchison distances between the observations represented by
constant sum 1:

aDist(phd_totals1[1:4, ])

## BE BG CZ
## BG 0.8289179
## CZ 0.5007665 0.5580570
## DK 0.7620140 1.2034696 0.7714111

On the other hand, the Euclidean distances are not scale invariant:

dist(phd_totals[1:4, ])

## BE BG CZ
## BG 1539.8711
## CZ 8393.2825 9800.3517
## DK 1831.1218 910.4153 10059.3724

dist(phd_totals1[1:4, ])

## BE BG CZ
## BG 0.11877222
## CZ 0.05138784 0.11703089
## DK 0.14976808 0.17546305 0.13215412

As a next step, the compositions are expressed in alr coordinates. The corre-
sponding function in the package robCompositions is addLR (and addLRinv for
its inverse to get back to the original compositions). Figure 3.3 shows a plot of the
first two alr coordinates, if (a) the third part is used as the “ratioing” variable, and if
(b) the fourth part is used in the denominator of Eq. (3.11).

The first two alr coordinates shown in Fig. 3.3 reveal that the results depend
quite a lot on the choice of the ratioing variable. While in Fig. 3.3b the relation
between the variables seems to be positive, this is no longer true for Fig. 3.3a. Thus
note that the coordinate system is not symmetrical in the components, and the main
problem with the additive logratio coordinates is the non-isometric character of this
coordinate system. This is also seen when computing distances. For an isometric
mapping, the Euclidean distances between the alr coordinates should be equal to
the Aitchison distances between the compositional parts. For the two different alr
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a1 <- addLR(phd_totals, ivar = 3)
ggplot(a1$x.alr[, 1:2],

aes(x=technical,
y = socio.economic.law)) +

geom_point(size = 2) +
xlab("log(technical / human)") +
ylab("log(socio economic law /

human)")
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a2 <- addLR(phd_totals, ivar = 4)
ggplot(a2$x.alr[, 1:2],

aes(x=technical,
y = socio.economic.law)) +

geom_point(size = 2) +
xlab("log(technical / health)") +
ylab("log(socio economic law /

health)")
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Fig. 3.3 Additive logratio coordinates. (a) human as ratioing variable. (b) health as ratioing
variable

coordinate systems one obtains:

dist(a1$x.alr[1:4, ])

## BE BG CZ
## BG 1.5315528
## CZ 0.6914512 0.9844924
## DK 0.7668354 1.7009175 0.8648189

dist(a2$x.alr[1:4, ])

## BE BG CZ
## BG 0.8317580
## CZ 0.6746951 0.7633451
## DK 1.4434255 1.7675542 1.0925844

So, in both cases different results are obtained, and they differ from the Aitchison
distances shown earlier. As a conclusion, alr coordinates are still frequently used in
many applications, but they should be taken with caution, last but not least due to
their lack of isometry (see also Pawlowsky-Glahn et al. 2015).

A better choice is to use the centered logratio coefficients or isometric logratio
coordinates, which both are isometric mappings. Both are implemented in the
package robCompositions as functions named cenLR and pivotCoord, with
their corresponding inverse functions cenLRinv and pivotCoordinv. In fact,
the function pivotCoord corresponds to specific isometric logratio coordinates,
namely to the pivot coordinates defined in Eq. (3.19).
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## centered logratio coefficients
c1 <- cenLR(phd_totals)$x.clr
ggplot(c1, aes(x = technical,

y = socio.economic.law)) +
geom_point(size = 2) +
xlab("technical (clr)") +
ylab("socio economic law (clr)")
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## isometric logratio coordinates
i1 <- pivotCoord(phd_totals)
names(i1) <- paste0("z", 1:ncol(i1))
ggplot(i1, aes(x = z1, y = z2)) +

geom_point(size = 2) +
xlab("technical / rest") +
ylab("socio economic law / rest

(excluding technical)")
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Fig. 3.4 Scatterplot of the first two coefficients (coordinates). (a) Centered logratio coefficients.
(b) Isometric logratio coordinates

It can be seen from Fig. 3.4 that both plots are very similar—up to scaling
in the x-coordinate and taking into account that this is no more the case for
the y-coordinate, since the part “technical” is no more contained in the second
pivot coordinate. Both coordinate representations are isometric, which can be
seen by computing Euclidean distances of the clr coefficients and ilr coordinates,
respectively, here just for the first four observations:

dist(c1[1:4, ])

## BE BG CZ
## BG 0.8289179
## CZ 0.5007665 0.5580570
## DK 0.7620140 1.2034696 0.7714111

dist(i1[1:4, ])

## 1 2 3
## 2 0.8289179
## 3 0.5007665 0.5580570
## 4 0.7620140 1.2034696 0.7714111

The results match with the Aitchison distances shown earlier, computed for the
original compositions.
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The centered logratio coefficients, saved in the object c1, and the isometric
logratio coordinates, saved as i1, are linked by an orthonormal matrix V, see
Eq. (3.24). This matrix can be obtained using the function orthbasis.

V <- orthbasis(ncol(phd_totals))

The outcome is:

V

## $V
## [,1] [,2] [,3] [,4]
## [1,] 0.8944272 0.0000000 0.0000000 0.0000000
## [2,] -0.2236068 0.8660254 0.0000000 0.0000000
## [3,] -0.2236068 -0.2886751 0.8164966 0.0000000
## [4,] -0.2236068 -0.2886751 -0.4082483 0.7071068
## [5,] -0.2236068 -0.2886751 -0.4082483 -0.7071068
##
## $basisv
## [,1] [,2] [,3] [,4]
## [1,] 1 0 0 0
## [2,] -1 1 0 0
## [3,] -1 -1 1 0
## [4,] -1 -1 -1 1
## [5,] -1 -1 -1 -1

The list element $V contains the matrix with orthonormal columns, and $basisv
represents the sequential binary partitioning for this ilr representation, see Table 3.2.
This matrix supports the interpretation of the pivot coordinates: the first coordinate
describes all relative information about the first compositional part, the second
coordinate includes all relative information of the second part to the parts 3–5, etc.

The centered logratio coefficients can be multiplied with the matrix V and
compared with the outcome from object i1:

i1b <- as.matrix(c1) %*% V$V
head(i1b, 2)

## [,1] [,2] [,3] [,4]
## BE 1.157554 0.5045118 0.2387930 0.4746762
## BG 1.044335 0.6236336 0.9552852 0.8577365

head(i1, 2)

## z1 z2 z3 z4
## 1 1.157554 0.5045118 0.2387930 0.4746762
## 2 1.044335 0.6236336 0.9552852 0.8577365

It can be seen that exactly the same results are obtained, see also Eq. (3.24).
Now the compositional parts are reordered as follows:

phd_totals3 <- phd_totals[, c(3,4,5,1,2)]
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and (generalized) pivot coordinates are constructed, where the focus is on the third
part.

i3 <- pivotCoord(phd_totals3)

Thus, the first coordinate of i3 contains all relative information of the third part to
the other parts in the composition, see Eq. (3.25). In the next step, the permutation
matrix is constructed in order to obtain the basis for the permuted composition, see
Eq. (3.27).

P5 <- cbind(c(0,0,1,0,0), c(0,0,0,1,0), c(0,0,0,0,1),
c(1,0,0,0,0), c(0,1,0,0,0))

print(P5)

## [,1] [,2] [,3] [,4] [,5]
## [1,] 0 0 0 1 0
## [2,] 0 0 0 0 1
## [3,] 1 0 0 0 0
## [4,] 0 1 0 0 0
## [5,] 0 0 1 0 0

V3 <- t(P5) %*% V$V

Then the matrix Q(3) is obtained, as in Eq. (3.28).

Q3 <- t(V3) %*% V$V

This matrix is orthogonal, and it can be used to switch from a particular ilr
representation to another one, as shown in Eq. (3.29), but here for the sample
version.

i3b <- as.matrix(i1) %*% Q3
head(i3b, 2)

## [,1] [,2] [,3] [,4]
## [1,] -0.2342318 -0.2525247 -1.179287 0.6061776
## [2,] 0.4096915 -0.1217289 -1.657794 0.4437230

head(i3, 2)

## human_he-ag-te-so health_ag-te-so agriculture_te-so
## 1 -0.2342318 -0.2525247 -1.179287
## 2 0.4096915 -0.1217289 -1.657794
## technical_so
## 1 0.6061776
## 2 0.4437230

It can be seen that the new pivot coordinates of i3 can indeed be obtained
through the original pivot coordinates of i1. This works not only between different
(generalized) pivot coordinate systems, but for any ilr representation.

In a next step, the use of symmetric pivot coordinates is illustrated. The PhD data
set is employed again, and the interest is in the relation between the study subjects
“technical” and “health” (as always in this context throughout the book, both parts
are mentioned in the sense of their dominance to the other parts in the given com-
position). The first two symmetric pivot coordinates are computed using Eqs. (3.33)
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s1 <- pivotCoord(phd_totals[c(1,4,2,3,5)], method = "symm")
s1 <- data.frame(s1)
names(s1) <- c("technical","health")
ggplot(s1, aes(x = technical, y = health, label = coun)) + geom_text() +

xlab("technical (symm. balance)") + ylab("health (symm. balance)")
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Fig. 3.5 Symmetric balances for the subjects “technical” and “health”

and (3.34). Since “technical” and “health” do not form the first two columns of
the data set, the order has to be rearranged, or one could also use the generalized
Eqs. (3.35) and (3.36). Note that when using the parameter method = "symm" in
the function pivotCoord, just the first two coordinates are obtained, but it would
not be difficult to compute a whole (symmetric pivot) coordinate representation.

The outcome is shown in Fig. 3.5, where no clear relation between the two
subjects is visible. However, some atypical observations can be seen: Greece (GR),
for instance, is quite dominant in technical studies (with respect to the remaining
study areas in the composition), but shows very low dominance for studies related
to health.

As a final exercise, a specific balance will be constructed. Suppose that the
interest is in separating the relative information of the more technical studies
(technical, agriculture) from the remaining studies (soc-eco-law, human, health), see
Table 1.2. This refers to a balance of the first and last part versus the three remaining
studies. With sequential binary partitioning one needs to define the following matrix,
see also Table 3.1.

Y <- data.frame(c(1,-1,-1,-1,1), c(1,0,0,0,-1),
c(0,1,-1,-1,0), c(0,0,1,-1,0))

names(Y) <- paste0("e", 1:4)
print(Y)
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Fig. 3.6 First balance distinguishing relative information of the technical from the non-technical
study subjects

## e1 e2 e3 e4
## 1 1 1 0 0
## 2 -1 0 1 0
## 3 -1 0 -1 1
## 4 -1 0 -1 -1
## 5 1 -1 0 0

Figure 3.6 presents a plot of the first balance (first column of the object ib). Positive
values refer to countries with a dominance of the technical study subjects.
The first column defines the balance between the study groups, while the remaining
columns describing the relative information within the groups could also be defined
differently. The orthonormal basis can be defined with the function balances,
and the corresponding matrix needs to be multiplied with the clr coefficients to
obtain the corresponding ilr coordinates, or get them directly from the list element
$balances.

b <- balances(phd_totals, Y)
ib <- as.matrix(c1) %*% b$V

References

J. Aitchison, The statistical analysis of compositional data (with discussion). J. R. Stat. Soc. Ser. B
(Stat Methodol.) 44(2), 139–177 (1982)

J. Aitchison, Principal component analysis of compositional data. Biometrika 70(1), 57–65 (1983)
J. Aitchison, The Statistical Analysis of Compositional Data (Chapman & Hall, London, 1986).

Reprinted in 2003 with additional material by The Blackburn Press
M.L. Eaton, Multivariate Statistics. A Vector Space Approach (Wiley, New York, 1983)



68 3 Geometrical Properties of Compositional Data

J.J. Egozcue, V. Pawlowsky-Glahn, Groups of parts and their balances in compositional data
analysis. Math. Geol. 37(7), 795–828 (2005)

J.J. Egozcue, V. Pawlowsky-Glahn, G. Mateu-Figueras, C. Barceló-Vidal, Isometric logratio
transformations for compositional data analysis. Math. Geol. 35(3), 279–300 (2003)

E. Fišerová, K. Hron, On interpretation of orthonormal coordinates for compositional data. Math.
Geosci. 43(4), 455–468 (2011)
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Chapter 4
Exploratory Data Analysis
and Visualization

Abstract Standard descriptive characteristics like arithmetic mean, variance, or
covariance are not appropriate for compositional data since they cannot cope with
their scale invariance principle. Instead, geometric mean (center) and variation
matrix, containing the variances of all pairwise logratios, are considered. The scale
invariance of compositions has also serious implications for graphical visualization.
Univariate plotting of single parts is no longer possible, and reasonable alternatives
are plots of knowledge driven logratios, pairwise logratios, first pivot coordinates,
or data driven logratio coordinates. For bivariate plotting, when considering a pair
of parts of the original composition, either a univariate pairwise logratio plot or
symmetric pivot coordinates representing the dominance of the pair with respect to
the remaining parts are recommendable. Three-part compositions can be displayed
with the traditional ternary diagram. One just needs to be aware that the data to
be visualized are driven by the Aitchison geometry, and thus there is the danger of
misleading conclusions from this graphical tool. The overall preferred option is to
display compositional data in any interpretable orthonormal (ilr) coordinates, free of
possible caveats resulting from an inappropriate treatment of observations carrying
relative information.

4.1 Descriptive Statistics of Compositional Data

In standard descriptive statistics, one is interested in summarizing information
about the given data set. Characteristics like arithmetic mean and variance/standard
deviation for one variable, or covariance matrix in the multivariate case, are
prominent tools to capture information on location and covariance of the data set.
Nevertheless, their use in the case of compositional data is limited to logratio
coordinates, where the Euclidean geometry applies. Attempts to apply them for
the original compositions that obey the Aitchison geometry is rather problematic.
Therefore, if any such descriptive characteristics should be interpretable directly in
terms of compositional parts, alternative approaches are necessary.

To illustrate one possible caveat, caused by an inappropriate use of the standard
characteristics, consider a simple example of two two-part compositions, x1=(1, 3)′
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and x2 = (5, 3)′. Applying the arithmetic mean, one would get x = (x1 + x2)/2 =
(3, 3)′, where the ratio of the parts equals to one. Due to scale invariance of
compositions, also for proportional representations of the resulting arithmetic mean,
C1(x), this key information remains unaltered. Naturally, it is expected that by any
other representation of the input data the same result (up to a scaling constant) will
be obtained. Nevertheless, by considering C1(x1) = (0.25, 0.75)′ and C1(x2) =
(0.625, 0.375)′ the result x∗ = (0.438, 0.562) is obtained. The arithmetic mean
fails in preserving the ratio between the parts, because 0.438/0.562 = 0.779.

According to Pawlowsky-Glahn and Egozcue (2002), the proper alternative to
the arithmetic mean as a characteristic of location with respect to the Aitchison
geometry is represented by the component-wise geometric mean. In this context it
is also called center, because it characterizes the center of the distribution of the
sample at hand. Formally, it is defined for an n × D compositional data matrix
X = (xij ) as a composition

gx = (g1, . . . , gD)′, (4.1)

where gj = (
∏n

i=1 xij )
1/n. The center follows the principles of compositional data

analysis including the mentioned scale invariance. This feature can be demonstrated
directly using the above example, where the center results for both representations
of the input compositions in

C1(gx) = C1(
√

1 · 5,
√

3 · 3) = C1(
√

0.25 · 0.625,
√

0.75 · 0.375) = (0.427, 0.573),

expressed in proportions for the sake of comparison. The ratio 0.427/0.573 = 0.745
differs from both previous ratios, produced by the arithmetic mean.

Centering of the data can be performed directly with the original compositional
data. For any composition xi = (xi1, . . . , xiD)′, forming the i-th row of the matrix
X, its centered counterpart is given as xc

i = xi � gx. Due to the properties of
the coordinate systems in Sects. 3.3.1–3.3.4, this indeed corresponds to standard
mean-centering in logratio coordinates. For example, the center of the centered
compositions is the neutral element n. As a consequence, centering of the original
compositions can also suppress the effect of relative scale. This effect is stronger
close to the border of the simplex, and less relevant in the center, i.e. around
the neutral element. This fact is frequently used for visualization purposes, like
for three-part compositions in the ternary diagram (see Sect. 4.4), to reveal the
compositional data structure masked near the border of the simplex (von Eynatten
et al. 2002). Nevertheless, one should be aware that the real data structure can hardly
be recognized without expressing the compositions in orthonormal coordinates.

As a measure of variability of compositional data there is no such counterpart as
in case of the center that could be constructed directly for the original compositions.
Instead, the attention is traditionally directed to source information in a composition,
to pairwise logratios. This results in the co-called variation matrix (Aitchison 1986),
which is formed by the variances of all pairwise logratios. Concretely, for the
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compositional data matrix X = (xij ), the variation matrix is defined as

T =

⎛

⎜
⎜
⎜
⎝

t11 t12 . . . t1D

t21 t22 . . . t2D

...
...

. . .
...

tD1 tD2 . . . tDD

⎞

⎟
⎟
⎟
⎠

, (4.2)

where tjk, j, k = 1, . . . ,D, are sample variances of pairwise logratios between xj

and xk , i.e.

tjk = 1

n − 1

n∑

i=1

(zi
jk − zjk)

2

with

{zi
jk = ln

xij

xik

, i = 1, . . . , n}

and

zjk = 1

n

n∑

i=1

zi
jk.

Alternatively, by adding a normalizing constant 1√
2

to the above logratios one gets,

up to sign, the only coordinate for the respective two-part composition. In this case,
it is denoted as normalized variation matrix

T∗ = (t∗jk) = 1

2
T

(Pawlowsky-Glahn et al. 2015b). Both matrices T and T∗ are by construction
symmetric with diagonal elements of zero. The elements of the variation matrix
can be interpreted in terms of variability of the ratio between the corresponding
parts. Namely, for values tjk (t∗jk) close to zero the ratios between xj and xk in
a given sample are almost constant, so that nearly a perfect proportionality of
these parts is achieved. Consequently, instead of the rather problematic correlation
coefficient computed for the original compositions, the variability of the respective
pairwise logratio was adopted as a measure of strength of association between
two compositional parts. In order to enhance interpretability, the elements of the
variation matrix can be normed to the range (0, 1] as

τjk = exp(−var(t∗jk)) for 1 ≤ j, k ≤ D, j �= k
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(Buccianti and Pawlowsky-Glahn 2005; Filzmoser et al. 2010). High variability
of the logratio then tends to a result approaching zero and, conversely, small
variability is reflected by values of τjk close to one with the limiting case of
perfect proportionality. Other possibilities for a better interpretation of the variation
matrix elements are discussed in Egozcue et al. (2013) and Pawlowsky-Glahn et al.
(2015b).

Nevertheless, the concept of variation matrix as a tool to reveal associations
between compositional parts is not completely free of controversy. It results from
the fact that interpretability in the sense of positive and negative association, known
from the correlation coefficient, is lost. Moreover, the coefficients τjk exhibit a non-
linear behavior because of the use of the exponential function. As a consequence,
it is not very clear, which values are high (low) in comparison to the correlation
coefficient. Unfortunately, statistical inference like hypotheses testing, that could
help for this purpose, is problematic and can be performed only indirectly (Egozcue
et al. 2013). One possible way out is to use symmetric pivot balances (3.35)
and (3.36) which treat the dominances of xj and xk with respect to the other parts
in a given composition in a symmetric manner, and to perform bivariate analysis
(including the computation of the correlation coefficient) there. This issue will be
further developed in Sect. 4.3, where bivariate plots are discussed, and particularly
in Chap. 8 on correlation analysis in logratio coordinates.

Finally, for theoretical purposes it is important to make sure that the total
variability of a compositional data set does not depend on a particular coordinate
representation. It is not a big surprise that the measure of total variability, the total
variance (Pawlowsky-Glahn and Egozcue 2001) is defined as a (scaled) sum of all
elements of the variation matrix,

totvar(X) = 1

2D

D∑

j=1

D∑

k=1

tjk = 1

D

D∑

j=1

D∑

k=1

t∗jk.

Indeed, it can be shown using Pawlowsky-Glahn and Egozcue (2001) and the
relation between clr coefficients and ilr coordinates (3.24) that totvar(X) equals also
to the sum of the diagonal elements of the covariance matrix of any orthonormal
coordinate representation or clr coefficients. Moreover, the total variance itself
induces interesting properties like asymptotic normality (Hron and Kubáček 2011)
that can be used for further theoretical developments.

Finally, powering a (centered) composition with totvar(X)−1/2 can serve as a
counterpart to standardization (scaling) of real variables by a standard deviation
(Pawlowsky-Glahn et al. 2015b). Accordingly, a data set with unit total variance
is obtained. Because all parts share the same units (unlike the usual case with
real multivariate data), their relative contribution to the total variation is a rich
information that an individual standardization of each part would remove, apart
from the fact that the ratios between the parts would be altered. However, this kind
of standardization is rather of theoretical importance and is rarely used in practical
data processing.
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4.2 Univariate Graphics

After all the reasoning from previous chapters that refers to the purely multivariate
character of compositional data, it might seem inconsistent to talk now about
univariate visualization. Nevertheless, as univariate plotting of single compositional
parts is of high interest in practice, one cannot simply omit this topic without
providing a reasonable alternative. In natural sciences, like in geochemistry or
chemometrics, it is common that compositional data are log-transformed prior
to further statistical processing with the idea that the closure problem (basically
negative bias of the covariances resulting as an undesired effect of the constant
sum of parts) was removed. Although the log-transformation is definitely easy to
handle and interpret, it tells just a part of the story. According to Mateu-Figueras
and Pawlowsky-Glahn (2008) and Tolosana-Delgado and Pawlowsky-Glahn (2007)
it removes just the effect of relative scale—this is necessary to proceed with
processing of absolute-valued information using standard multivariate statistics.
On the other hand, the log-transformation violates the scale invariance principle,
because this transformation is inherently linked to a given sum of components
(Pawlowsky-Glahn et al. 2015a). There are definitely situations in practice, where
such treatment seems to be fully satisfactory, because the nature of the data is
apparently not purely compositional. One example are geochemical data, where
also the absolute abundance of elements may yield important information (Reimann
et al. 2012). Nevertheless, even in such cases, taking just relative contributions
of elemental concentrations into account can reveal further interesting features
(Filzmoser et al. 2009; Reimann et al. 2012; McKinley et al. 2016). From a
mathematical perspective, any univariate analysis of compositional data should be
performed in coordinates, preferably in those with respect to a basis rather than
to a generating system that brings ambiguity to the coordinate representation of
compositions. Consequently, clr coordinates are not recommended for the purpose
of univariate analysis (see also discussion in Sect. 3.3.2).

For this reason, even the univariate information in compositional data should be
conveyed exclusively in terms of logratios. In McKinley et al. (2016) several options
were discussed that honor this requirement: knowledge driven logratios, pairwise
logratios, pivot coordinates z

(l)
1 , l = 1, . . . ,D from (3.25) capturing relative

information on a compositional part within one orthonormal coordinate system, and
data driven logratio coordinates. Although these options were developed for the
particular case of geochemical mapping, they have also universal validity.

Knowledge driven logratios benefit from the expertise in a given field sug-
gesting that it may be useful to analyze a simple logratio, or a certain balance
related to a concrete question of interest. For example, the ratio between expen-
ditures on food and services indicates the living standard of a household. Balance
(
√

2/
√

3) ln(MN/
√

MM · NN), formed by the MN,MM,NN genotypes in the
MN system of blood groups, helps to reveal a genetic (Hardy-Weinberg) equilibrium
(Graffelman and Egozcue 2011). For soils and sediments that have been weathered
or mixed/diluted with other material, no element shows the same percentages as
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in the background or source rock, but the ratios of elements unaffected by the
mixing (or by pollution or weathering) are preserved (McKinley et al. 2016). Just
pairwise logratios between components are easy to handle and interpret, as long as
information in terms of the original compositional parts is not of primary interest. In
this case, single pairwise logratios provide too much elemental information for the
purpose. If one is interested in all pairwise logratios to one specific part, it would be
necessary to consider D−1 such logratios in case of a D-part composition, and draw
conclusions out of this information. Note that there are, up to sign, D(D−1)/2 such
logratios in the composition: it means six of them for a four-part composition, but
already 45 for a composition with 10 parts and 4950 for data, where 100 components
are considered! For many chemometric applications this is still a lower bound of the
number of parts to be analyzed.

The simplest solution thus seems to aggregate all pairwise logratios with the part
of interest, leading (after proper scaling) to pivot coordinates z

(l)
1 , l = 1, . . . ,D

from (3.25). Nevertheless, in line with Remark 1 at the end of Sect. 3.3.4, one should
be aware that some of these logratios can be dominant and affect substantially
the resulting coordinate values. This happens particularly when parts with small
values are involved. Unfortunately, just these parts are frequently burdened by
measurement errors, thus one should carefully consider whether to involve them into
the input composition, or not. This can be decided on a knowledge-based level (as
proposed in Sect. 3.3.4), but also in a data-driven manner. In the latter case, elements
of the variation matrix, introduced in Sect. 4.1, can serve as a rule of thumb, which
remaining components should be considered. As an example, suppose that the part
x1 is of primary interest, represented through the respective coordinate z

(l)
1 . The

idea is that parts with weak relations to x1 bring rather no valuable input, when the
dominance of the first component to the rest of the parts is under consideration (Hron
et al. 2017). Practically, after proper permutation of the parts in (3.25), this would
mean that not the first coordinate, but any of the others, showing dominance of x1
to the reduced rest of the components, would be taken instead. The pre-selection
of the remaining parts also prevents from the case of including components with
data quality problems, for which weaker relations to x1 are typical. This situation
often happens in geochemistry or in chemometrics, where measurement devices
tend to produce erroneous values around detection limits of variables. Based on a
discussion concerning the variation matrix in Pawlowsky-Glahn et al. (2015b), one
possible rule is to exclude elements, for which t1j > 2·totvar(X)

D−1 , j = 2, . . . ,D.
This means that the logratio between x1 and xj contributes to the total variance
with a share larger than the average logratio—in other words that the strength of
the relation between x1 and xj is weaker than the average one. On the other hand,

with increasing number of parts, the geometric mean in coordinates z
(l)
1 gets quickly

robust enough against possible data quality problems or systematic patterns arising
from one or more compositional parts (Mert et al. 2016). Thus it is recommended
to always check first, whether the intended reduction of parts to be involved for the
univariate analysis of xl using z

(l)
1 , l = 1, . . . ,D, respectively, would indeed lead to

significantly different results.
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Data driven logratio coordinates profit from the possibility of defining natural
non-overlapping groups of parts in a data driven manner, used further to define a
sequential binary partition and interpretable balances. One option is to apply Q-
mode clustering of compositional parts, discussed in detail in Sect. 6.6. The resulting
coordinates can be analyzed either univariately, or in a multivariate context.

Finally, it is important to note that some of the compositions seem to be univariate
already from their definition. A typical example is the unemployment rate in given
regions of a country—seemingly just one component is available. On the other
hand, for compositional data analysis there must be always at least two parts in
a composition. For this reason it is necessary to form the “rest” part, represented by
the complement to the whole. If the unemployment rate is denoted by x, the rest
component is clearly 1 − x. In general, instead of 1, any positive constant κ can
be considered, like κ = 100 (percentages) or κ = 106 (mg/kg). Even in such a
case of “univariate” compositions, it is necessary to express them in the respective
coordinate, here

z = 1√
2

ln
x

κ − x
(4.3)

(Filzmoser et al. 2009), prior to further visualization. Note that (4.3) corresponds,
up to a scaling constant, to the well-known logit transformation. The resulting
exploratory tools (boxplot, histogram, etc.) can even be expressed in terms of the
original scale (for a given κ) as

x = κ · exp(
√

2z)

1 + exp(
√

2z)
. (4.4)

On the other hand, it would be very dangerous to get inspired by the simple
interpretability of (4.3) and to perform such “univariate analysis” for each part of
a D-part composition separately, by merging (amalgamating) all remaining parts
together or forming simply an artificial complementary part. This approach can be
used exclusively when information about the other parts in a composition is not
available, like in the mentioned example with the unemployment rate. Namely, by
performing any of the above operations, the variability arising from the aggregation
of pairwise logratios in (3.21), that provides additional information about relations
of the part of interest to the remaining components, would be irreversibly lost.
An additional argument is that summing up compositional parts (amalgamation
(Aitchison 1986)) is not consistent with the Aitchison geometry (Egozcue and
Pawlowsky-Glahn 2005).

Example Consider the PhD student data from Table 1.2 of Sect. 1.2. We are
interested in the percentages of male PhD students, and study the data distribution of
this variable by a histogram and a QQ-plot. Figure 4.1 presents the raw percentage
data. With the exception of one upper outlier, the distribution seems to be rather
symmetric, and probably even close to normality.
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ggplot(phd, aes(x=male)) +
geom_histogram(bins = 10)
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Fig. 4.1 Percentages of male PhD students: original data

ggplot(phd, aes(x = z)) +
geom_histogram(bins = 10)
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Fig. 4.2 Percentages of male PhD students: coordinate representation

Figure 4.2 shows the data expressed by a coordinate according to Equation (4.3).
This coordinate is added to the phd data set in the following.

phd$z <- 1 / sqrt(2) * phd$male / (100 - phd$male)

Comparing Fig. 4.2 with Fig. 4.1, a different impression is obtained. Although the
changes are rather small, it can be observed that the distribution is more skewed and
also some additional observations deviating from the normality assumption were
revealed by the QQ-plot. Note that, in general, both the histogram and the QQ-plot
rely on the Euclidean geometry, and thus only the coordinate representation gives
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the appropriate picture. Also the values of this coordinate can be interpreted: a value
of 0 means equal proportion of females and males, values bigger than zero refer to
dominance of the males, and values smaller than zero refer to dominance of females
among the PhD students.

4.3 Bivariate Plotting

In general, for bivariate analysis any two ilr coordinates can be used. Here, bivariate
plotting refers to visualizations that can be interpreted in the sense of a couple of the
original compositional parts, either themselves or in terms of their dominance with
respect to the rest of the components.

Getting inspired by the variation matrix (4.2), the simplest bivariate plotting
is to consider univariate plots of pairwise logratios. Accordingly, the level of
proportionality between two compositional parts can be checked, together with
possible occurrences of deviating values leading to higher variability, reflected by
the respective element of the variation matrix.

As already indicated in Sect. 4.1, it is desirable in many applications to get
an interpretation in terms of positive and negative association, which is not
possible with the variation matrix approach (Filzmoser et al. 2010). Therefore,
as an alternative symmetric pivot coordinates (3.35) and (3.36) can be employed.
Although one should take into account that not the parts themselves, but just
their dominances with respect to the averaged rest of components are displayed,
the visualization of symmetric pivot coordinates provides a clear value added by
considering it as a counterpart to the pairwise logratio plot. Note that bivariate plots
with symmetric pivot coordinates for each couple of parts in a composition can also
be displayed in form of a matrix plot; each of those plots corresponds to an own
coordinate system.

If the original data are not clearly driven by a constant sum representation,
like in cases of proportions or percentages, so that also absolute information
might be relevant, a bivariate plot of log-transformed parts can be considered as
a complementary tool. It accounts for the relative scale of compositions, but the
scale invariance principle is violated. Therefore, it is definitely not recommended to
use log-transformed data as a sole tool for bivariate plotting of compositional parts.

Example Along a transect of 120 km length crossing the city Oslo, nine different
plant materials have been collected and analyzed for the geochemical concentration
of various chemical elements. For each plant material, 40 samples are available, and
the composition consists of 25 parts. The data have been used, for example, in Templ
et al. (2008) for cluster analysis, and they are available in the R package rrcov as
data set “OsloTransect”. First, various elements are extracted and rows with missing
values are excluded (see Chap. 13 for the procedure to handle missing values and
values below detection limit).
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data("OsloTransect")
X <- OsloTransect[, c(18,28,14:17,19:27,29:38)] # 18 is Ca, 28 is Mg
isna <- missPatterns(X)$rindex # rows with missing values

Next, the first two symmetric pivot coordinates are calculated using the function
pivotCoord with method “symm”. The new coordinates are stored in the Oslo
data set.

symm <- pivotCoord(X[!isna, ], method = "symm") # symm. coord. for Ca, Mg
colnames(symm) <- c("Ca_symm", "Mg_symm")
OsloTransect <- cbind(OsloTransect[!isna, ], symm)

In Fig. 4.3, the focus is on a visualization of the bivariate information of the
elements Calcium (Ca) and Magnesium (Mg). The left plot shows the concentrations
of these elements in log-scale, where the different colors and symbols refer to the
nine plant materials, see also the legend. Some of the plant materials are clearly
different concerning the concentrations, and the plants show clear clusters. The
plot on the right shows the two symmetric pivot coordinates constructed for the
elements Ca and Mg. A positive correlation is visible, but somewhat lower than a
correlation of the log-transformed elements, where it is mainly induced by the big
concentration differences of the groups. Note that for constructing the symmetric

g1 <- ggplot(OsloTransect, aes(x = Ca, y = Mg, colour = X.MAT,
shape = X.MAT)) + geom_point() + coord_trans(x = "log", y = "log")

g2 <- ggplot(OsloTransect, aes(x = Ca_symm, y = Mg_symm, colour = X.MAT,
shape = X.MAT)) + geom_point()

grid.arrange(g1, g2, ncol = 2)
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Fig. 4.3 Log-transformation (left) and symmetric pivot coordinates (right) of the elements Ca and
Mg
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pivot coordinates, information from all pairwise logratios of Ca and Mg to all other
parts of the composition are considered. Smaller differences in logratios with Ca and
Mg for different plant materials may be the reason for less pronounced grouping
structure than it was the case for the absolute concentrations. On the other hand,
there are interesting details visible: the observations from some plant materials are
subdivided into smaller groups (e.g., FER and MOS). Such subgroups are not visible
when inspecting the log-transformed concentrations. Moreover, groups like BBA
show even better separation now.

It can be concluded that both plots in Fig. 4.3 contain valuable information. It
might be interesting for the geochemist that some plant materials clearly differ in
the concentration level of Ca and Mg, and even the actual concentrations (absolute
values) may be of interest. One should, however, not draw conclusions from this
plot concerning the correlation between the two elements. On the other hand, the
plot of the symmetric pivot coordinates takes into account also the logratios to
the remaining elements, and thus contains much more information. This leads to
additional insight like further subgroups. The correlation between dominance of Ca
and Mg within the given composition could be derived from this plot, but one could
ask if a correlation at the basis of different plant materials is informative at all.

4.4 Multivariate Visualization

A widely known tool for plotting three-part compositions is the ternary diagram,
introduced already in Sect. 3.1 (Fig. 3.1, right). It results from representing the input
compositional data with a constant sum constraint. In other words, the plot shows a
graphical visualization of the three-part simplex

S3 =
{
x = (x1, x2, x3)

′ ∈ R
3 | x1 > 0, x2 > 0, x3 > 0, x1 + x2 + x3 = κ

}

for a given constant κ , usually taken as 1 or 100 for the cases of proportions
or percentages, respectively. The ternary diagram thus corresponds to a two-
dimensional projection of three-part compositions. This can be used to illustrate the
reduced dimensionality of compositional data, resulting from their scale invariance.
From its construction, the ternary diagram is an equilateral triangle X1X2X3 such
that a composition x = (x1, x2, x3)

′ is plotted at a distance x1 from the opposite side
of vertex X1, at a distance x2 from the opposite side of vertex X2, and at a distance
x3 from the opposite side of vertex X3. The sum of the distances remains constant
for any choice of the parts of x. The borders of the ternary diagram correspond to
a value of zero of the part on the opposite vertex, the vertices themselves represent
compositions with one part equal to κ (the whole is contained just in that part) and
two zero parts. Nevertheless, both these cases fall out of S3.

Example Within the GEMAS project, also the proportions of sand, silt, and clay
have been measured in the samples. Figure 4.4 shows a ternary diagram of this
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data("gemas")
isna <- missPatterns(gemas[, 9:11])$rindex # look for NAs
sc <- gemas$soilclass[!isna] # soil class
ternaryDiag(gemas[!isna, 9:11], col = sc, pch = as.numeric(sc))
legend("topleft", c("l","ll","m","s","ss"), col = 1:5, pch = 1:5)
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Fig. 4.4 Ternary diagram of the composition sand-silt-clay of the samples from the GEMAS
project, distinguished according to different soil classes

composition. The grouping information corresponds to the soil class, as it has been
defined in this project. The samples of soil class “m” have a very low proportion on
clay, and some of them also consist of a low silt proportion and thus are composed
almost exclusively of sand.

The ternary diagram is frequently used as a didactic instrument to explain the
peculiarities of the Aitchison geometry. As the whole sample space needs to be
contained in the triangle, its borders stand for infinity. This is a natural consequence
of the relative scale property of compositions. The closer some observations are
placed near the border, the closer are the values of one or two parts to zero, and
the ratios between the corresponding parts explode by approaching infinity (by
considering logratios instead, also minus infinity could be reached). On the contrary,
for observations near to equilibrium of the triangle, represented by the neutral
element n with all parts being the same, the scale of the compositions approaches the
absolute one. It is also interesting to see how geometric figures like lines, circles, or
ellipses look like in the projected sample space of compositional data. Such figures
result simply from back-transforming the standard figures from any ilr coordinate
representation to the original space. Consequently, the previous considerations are
supported by the fact that circles and ellipses are minimally distorted near to the
barycenter (neutral element), while close to the borders their expected shape is
completely deformed. An interesting result is obtained, when two parallel lines are
displayed. They intersect in infinity (vertices of the triangle), a very natural output
from the perspective of projective geometry.
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data("coffee")
x <- coffee[, 2:4] # select 3 parts
x.ilr <- pivotCoord(x) # construct pivot coordinates
SEQ <- seq(-10, 10, length = 1000) # sequence for prediction
library("oreg")
res.oreg <- oregMM(x.ilr) # orthogonal regression
co <- res.oreg$coefficients
o <- co[1] + co[2] * SEQ # expected values
oo <- cbind(SEQ, o)
par(mfrow = c(1,2))
ternaryDiag(x, grid = FALSE,

name = c("acetic acid","methylpyrazine","furfural"))
ternaryDiagEllipse(x, tolerance = 0.975, locscatt = "MCD")
ternaryDiagPoints(pivotCoordInv(oo), type="l", col="blue")

cv <- robustbase::covMcd(x.ilr) # robust estimation of center/covariance
chemometrics::drawMahal(x.ilr, cv$center, cv$cov, quantile = 0.975,

xlab = expression(z[1]), ylab = expression(z[2]))
lines(oo, col = "blue")
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Fig. 4.5 Ternary diagram for three compounds of the coffee data set (left), and representation in
ilr coordinates (right). The ellipse and the straight line are constructed in coordinates, and they are
also shown in the ternary diagram

Example The package robCompositions contains data from 30 commercially
available coffee samples of different origins. Here we look at the values of 3 chem-
ical compounds. The ternary diagram in Fig. 4.5 left reveals three atypical coffees,
with very low concentrations of acetic acid (sort “robusta”). This subcomposition is
shown in ilr (pivot) coordinates on the right plot. Coordinate z1 presents all relative
information of acetic acid to the rest, and z2 is proportional to the logratio of the
remaining parts. In this plot, an ellipse is constructed based on the MCD estimator,
yielding robust estimates of location and covariance, see Chap. 5. The points outside
the ellipse would in fact represent outliers. The ellipse is also shown in the ternary
diagram, where its shape looks very different. Moreover, a straight line is defined in
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coordinates; this line is a robust orthogonal regression line, see Chap. 10. The same
line is projected into the ternary diagram, where it gets the form of a curve, and
reaches infinity at the vertices of the triangle.

The ternary diagram can provide a rough image about the data distribution,
but it might also be misleading just due to the relative scale that pronounces near
the border of the simplex. This effect can be suppressed by centering the original
compositions (von Eynatten et al. 2002), but still it needs to be taken into account.
The main problem is that the human brain is used to think in terms of the Euclidean
distance, and not in the Aitchison distance that needs to be considered when looking
at data in the ternary diagram. The only way out is to express the data in interpretable
orthonormal coordinates, where the common thinking in terms of the absolute scale,
provided by the Euclidean geometry, can be applied. Therefore, throughout this
book, the ternary diagram will be used for didactic or illustrative purposes, but not
to draw direct conclusions from an analysis. For readers who like to make use of this
graphical tool, more details and possible extensions of ternary diagrams to matrix
plots are provided in van den Boogaart and Tolosana-Delgado (2013).

Note that it is possible to visualize also four-part compositional data by a
solid, regular tetrahedron, being a direct generalization of the three-part simplex.
Accordingly, observations are displayed within a geometrical object with four
vertices (corresponding to three zero parts), six edges (combinations of two zero
parts), and four triangular faces (zero of the opposite vertex part). Visualization in
the tetrahedron generalizes the properties of the ternary diagram, but the necessity
to display and interpret the data in two dimensions makes this tool rather rarely used
in practice.

Both the ternary diagram and the tetrahedron represent possibilities how to
display the (projected) original compositional data. Therefore, by considering that
compositions are driven by the Aitchison geometry, such graphical tools must
necessarily have some limitations. On the other hand, they can still be used to get a
raw impression about the data structure. In the following chapters, other possibilities
of graphical displays of compositions are introduced, mainly those that result from
a multivariate statistical technique. One prominent tool in exploratory data analysis
is the biplot, showing loadings and scores from principal component analysis,
see Sect. 7.3. All these statistical methods are performed in logratio coordinates,
preferably in an ilr coordinate representation. Accordingly, it is also possible to
add any further (non-compositional) variables in a consistent way to supplement
information provided by the composition.

References

J. Aitchison, The Statistical Analysis of Compositional Data (Chapman & Hall, London, 1986).
Reprinted in 2003 with additional material by The Blackburn Press

A. Buccianti, V. Pawlowsky-Glahn, New perspectives on water chemistry and compositional data
analysis. Math. Geol. 37(7), 703–727 (2005)



References 83

J.J. Egozcue, V. Pawlowsky-Glahn, Groups of parts and their balances in compositional data
analysis. Math. Geol. 37(7), 795–828 (2005)

J.J. Egozcue, D. Lovell, V. Pawlowsky-Glahn, Testing compositional association, in Proceedings
of the 5th International Workshop on Compositional Data Analysis, Vorau, ed. by K. Hron,
P. Filzmoser, M. Templ (2013)

P. Filzmoser, K. Hron, C. Reimann, Univariate statistical analysis of environmental (compositional)
data: problems and possibilities. Sci. Total Environ. 407, 6100–6108 (2009)

P. Filzmoser, K. Hron, C. Reimann, The bivariate statistical analysis of enviromental (composi-
tional) data. Sci. Total Environ. 408(19), 4230–4238 (2010)

J. Graffelman, J.J. Egozcue, Hardy-Weinberg equilibrium: a non-parametric compositional
approach, in Compositional Data Analysis: Theory and Applications, ed. by V. Pawlowsky-
Glahn, A. Buccianti (Wiley, Chichester, 2011), pp. 207–215
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Chapter 5
First Steps for a Statistical Analysis

Abstract Following consistently the principles of compositional data analysis has
serious impacts for distributional modeling and statistical processing in general.
Particularly, due to the lack of scale invariance, the known Dirichlet distribution
is no longer the “must” as the underlying distribution of compositions. It is rather
preferred to make use of the concept of normal distribution on the simplex, because
the appropriateness of the distribution can be verified by using a standard normality
test in coordinates, and the parameters are easy to interpret. Consequently, it can
be utilized as the underlying distribution for a wide range of popular methods
and tests, including Hotelling tests and MANOVA models in any orthonormal
coordinate representation. Because compositional data frequently contain outliers,
data inconsistencies, rounding effects, dependencies among the observations, etc.,
it is recommendable to apply robust counterparts to classical methods in practice.
Either univariate or multivariate robust statistical processing can be performed,
based on such logratio coordinate representation that serves the purpose of the
analysis. Even the classical estimators of location and scale, the sample mean and
the sample covariance matrix, are highly sensitive to outliers. As robust alternatives,
affine equivariant estimators (like the MCD estimator) are preferred as they can be
computed in any coordinate representation. Robust estimators of location and scale
can then be used to compute Mahalanobis distances in order to identify multivariate
outliers.

5.1 Distributions and Statistical Inference

Before the logratio methodology was introduced, a standard approach for modeling
compositional data was based on the Dirichlet distribution, defined for their
proportional representation through the corresponding density function as

f (x; α1, . . . , αD) = Γ (α1 + . . . + αD)

Γ (α1) · . . . · Γ (αD)
x

α1−1
1 x

α2−1
2 . . . x

αD−1
D , (5.1)
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for x ∈ SD and zero otherwise (Aitchison 1986). Here, Γ (·) denotes the Euler
gamma function and α = (α1, . . . , αD)′ are positive parameters. The latter are
used to derive, among others, the expectation and mode of the Dirichlet random
vector. The Dirichlet distribution has many advantageous theoretical properties,
like that marginal distributions are again Dirichlet distributions. Moreover, the
Dirichlet distribution is widely applied, e.g., in Bayesian statistics, where it serves
as prior and posterior distribution. Finally, the fixed proportional representation
also allows to work with zero values in the composition. This seems like a great
advantage for analyzing compositional data in practice. However, there is also a
severe shortcoming: The approach based on the Dirichlet distribution is not scale
invariant, a major principle in compositional data analysis, and this also implies that
other important principles from Sect. 1.3 are violated. Scale invariance would mean
that rescaling of the compositional parts results in rescaling of the parameters α, and
in invariance of the derived estimates. An example for the lack of invariance is the
mode of the Dirichlet distribution, which is defined as

mode(x; α) =
(

α1 − 1
∑D

i=1 αi − D
, . . . ,

αD − 1
∑D

i=1 αi − D

)′
.

Suppose that D = 3, and α1 = (1, 3, 4)′. Then the mode is mode(x; α1) =
(0, 0.4, 0.6)′. Multiplication of α1 by two leads to α2 = (2, 6, 8)′, which results in
mode(x; α1) = (0.077, 0.385, 0.538)′. Note also that (5.1) gives a density function
only if the compositional parts sum up to one. All these intrinsic features of the
Dirichlet distribution cannot be overcome even by re-defining it with respect to the
Aitchison geometry (Monti et al. 2011; Pawlowsky-Glahn et al. 2015).

The case of the Dirichlet distribution shows that one needs to be careful when
using seemingly established tools for modeling compositional data in their broader
definition, where principles of scale and permutation invariance, respectively, and
subcompositional coherence play a crucial role. And even further, it seems to be
questionable, to which extent it is meaningful to develop distributions directly
for the raw compositions, endowed with the Aitchison geometry, when it is
possible to represent and analyze the compositions also in coordinates. Namely, any
probability distribution of compositional data can be defined directly in (preferably)
orthonormal coordinates, and when necessary, re-expressed for the original data. A
prominent case is the normal distribution on the simplex (Mateu-Figueras and
Pawlowsky-Glahn 2008) that is followed by a D-part random composition x, if
the random vector of its orthonormal coordinates follows a multivariate normal
distribution on R

D−1. Accordingly, the density for a given coordinate representation
z of x is obtained as

f (z; μz,Σz) = 1

(2π)(D−1)/2|Σz|1/2 · exp

[
−1

2
(z − μz)

′Σ−1(z − μz)

]
, (5.2)

where |Σz| denotes the determinant of Σz.
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As indicated, the parameters μz and Σz, mean and covariance matrix of the
random vector z, depend on the concrete coordinate representation, defined through
the matrix V of the basis compositions in clr coefficients as z = V′y. For another
choice of coordinates z̃ = Ṽ′y and the relation z̃ = Qz through an orthogonal
matrix Q = Ṽ′V (see Sect. 3.3.3) one gets also normally distributed coordinates,
whose parameters transform accordingly as

μz̃ = Qμz, Σ z̃ = QΣzQ′.

Consequently, if compositions in any ilr coordinate representation fulfill the
assumption of normality, then it is preserved for any other choice of orthonormal
coordinates. Any mean value parameter μz in coordinates can also be expressed
using an inverse ilr mapping, like (3.22) for the case of pivot coordinates, as
parameter μ that stands for the (theoretical) compositional center (see Sect. 4.1).

It should be emphasized that the goal of a coordinate representation of compo-
sitional data is not to achieve any concrete distribution, like it is frequently done in
practice, for example, by the log- or Box-Cox transformations, to obtain normality.
The aim is purely to represent compositions in an appropriate sample space without
any preliminary distributional assumptions. Depending on the resulting data matrix
(and on the output of some statistical test on the data distribution) one should decide
whether the assumption of a certain distribution can be used, or not.

5.1.1 Normality Testing

In case of normality, it turned out to be difficult to construct an overall “acceptable”
test for multivariate normality in more than two dimensions because of the large
number of things that can go wrong (Johnson and Wichern 2007). Therefore, the
focus is usually on the behavior of the observations in one or two dimensions
(e.g., marginal distributions and scatter plots) in addition to testing the input
multivariate data. Although one cannot have a guarantee that some features were
not missed that could be revealed only in higher dimensions, for many types
of non-normality the focus on univariate and bivariate testing is fully sufficient.
Since different orthonormal coordinates are mutual rotations of each other, the
results of such univariate and bivariate tests will strongly depend on the actual
data configuration. Therefore, it is desirable to find a testing procedure that would
produce unambiguous results for any choice of ilr coordinates.

In Aitchison et al. (2004) a battery of tests based on singular value decomposition
(SVD) of the n × (D − 1) matrix Z of (any) mean-centered ilr coordinates is
proposed. For a given number of components p ≤ min{D − 1, n}, the SVD
decomposes Z into three parts,

Z = UDW′, (5.3)
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where U is an n × p orthogonal matrix containing the left singular vectors, D is
a diagonal matrix (p × p) containing the positive singular values, and W is a
(D − 1) × p orthogonal matrix containing the right singular vectors. Note that
the SVD decomposition of Z is also closely connected with principal component
analysis of compositional data, see Chap. 7. As a consequence, UD forms again a
matrix of ilr coordinates whose variables are uncorrelated. When considering just
the matrix U = ZWD−1, uncorrelated and normed (nonzero) ilr coordinates are
obtained. Under the assumption of normality of Z, U thus follows a (D − 1)-variate
standard normal distribution with independent components. The mentioned battery
of tests then consists of two basic levels:

1. Univariate tests for marginal normality are performed for the columns of
the matrix U. For this purpose, the Anderson-Darling test can be employed
(Aitchison 1986), but also any common normality test including graphical
evaluations (Q-Q plot) can be applied here.

2. Under the assumption of normality, the squared norm of the rows of U consist of
D − 1 independent squared standard normal variables, and should thus follow a
χ2 distribution with D − 1 degrees of freedom. Similar as before, any standard
distributional test (like the Kolmogorov-Smirnov test, or again the Q-Q plot) can
be performed.

As originally proposed by Aitchison et al. (2004), also a series of bivariate normality
tests can be applied to the columns of U. Nevertheless, because the variables are
uncorrelated, these tests seem to be rather redundant here.

5.1.2 Statistical Inference in Coordinates

As it is common in statistics, one initially starts with a random sample of
compositions x1, . . . , xn from a certain distribution and the aim is to deduce
properties of the underlying distribution by analyzing this sample. Previous sections
claimed that instead of analyzing the original compositions, their proper coordinate
representations are preferred. Then the common tools for statistical inference, which
are available in the statistical literature, covering estimation, hypotheses testing, etc.,
can be applied (see, e.g., Anderson 2003). The purpose of this book is not to list
these methods here, but just to point out some specificities of their use, mostly linked
to the interpretation of ilr coordinates.

Fortunately, almost no peculiarities can be expected when performing statistical
inference for compositional data in orthonormal coordinates. This is due to the fact
that most multivariate tests are invariant under rotation of the observations, i.e., their
result does not depend on the particular choice of orthonormal coordinates.

As an example, this feature is demonstrated for the well-known one-sample
Hotelling test, which aims at testing a hypothetic value of the mean vector under
the assumption of normality. The null hypothesis can be formulated directly in
compositional terms as H0 : μ = μ0, with a hypothetic value of the center μ0,
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against the alternative HA : μ �= μ0. The composition μ0 can also be equal to
the neutral element n, especially when pure random effects are of primary interest.
After expressing the compositional sample in orthonormal coordinates, z1, . . . , zn,
the null and alternative hypotheses are reformulated accordingly, H0 : μz = μz0
against HA : μz �= μz0. Hereat, μz0 = ilr(μ0) is simply any (ilr) coordinate
representation of the original hypothetic center μ0. Then the testing procedure can
proceed as usual, i.e., sample mean and covariance matrix are computed,

z = 1

n

n∑

i=1

zi , Sz = 1

n − 1

n∑

i=1

(zi − z)(zi − z)′,

and the final test statistic under the null hypothesis

F = n[n − (D − 1)]
(D − 1)(n − 1)

(z − μz)
′S−1

z (z − μz) ∼ FD−1,n−D+1. (5.4)

An important point is whether the test statistic would give the same result for
a different coordinate representation of the compositions. In order to check the
invariance of F it is sufficient to show that for any other coordinate representation
z∗ = Qz the following relation holds

(z∗ − μ∗
z)

′S−1
z∗ (z∗ − μz∗) = (Qz − Qμz)

′QS−1
z Q′(Qz − Qμz) =

(z − μz)
′Q′QS−1

z Q′Q(z − μz) = (z − μz)
′S−1

z (z − μz).

By doing that, two features were utilized. The first refers to the orthogonality
of the matrix Q, Q′Q = QQ′ = ID−1, the latter comes from the orthogonal
equivariance of the sample mean and covariance matrix. In simple terms, this
means that there is no privileged direction in the (D − 1)-dimensional space that
would allow one to bias the estimators in some specific directions. Formally, a
location estimator t and a covariance estimator C share the property of orthogonal
equivariance, if for any orthogonal matrix Q of full rank the conditions

t(Qz1, . . . ,Qz) = Qt(z1, . . . , zn),

C(Qz1, . . . ,Qzn) = QC(z1, . . . , zn)Q′ (5.5)

are fulfilled. Accordingly, the sample mean and sample covariance matrix estimators
follow the usual properties of the expectation and (theoretical) covariance matrix,
respectively. Note that orthogonal equivariance is a special case of affine equiv-
ariance (see Sect. 5.2.3), typically applied when arbitrary (also non-orthonormal)
logratio coordinates are considered (Filzmoser and Hron 2008; Filzmoser et al.
2012b).

The case of the Hotelling test has demonstrated that statistical inference is
straightforward if the data are expressed in coordinates. This is similar for many
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other statistical methods and tests. In particular, for those methods which are object-
oriented, like MANOVA, cluster analysis, or discriminant analysis, the choice of
the orthonormal coordinates usually does not matter. This is no more the case, e.g.,
in regression analysis, if the explanatory variables come from a composition, and
if tests on the regression parameters are required. Then more specific coordinate
representations are needed that allow for an appropriate interpretation of the
outcome. Details will be discussed in the following chapters.

5.2 Classical and Robust Statistical Analysis

Compositional data, like any other statistical data, can contain outliers, data
inconsistencies, rounding effects, dependencies among the observations, etc. Many
classical statistical methods rely on strict model assumptions, like independence
or (multivariate) normal distribution, and violations of the assumptions can lead
to biased results. Robust statistics offers a methodological approach that tolerates
certain deviations from strict model assumptions (Hampel et al. 1986). The basic
idea behind robust statistical methods is to fit a statistical model to the data majority,
and not to satisfy every single data point with one and the same model. A prominent
example are outliers in simple linear regression analysis, which can completely spoil
the regression line for least-squares estimation, while a robust regression line fits
those data points which form the majority and show a linear trend. Robust methods
assign appropriate weights to the data points, usually in the range [0, 1], where
weights close to one refer to observations that fully support the model, and outliers
that are deviating from the model obtain small weights (Maronna et al. 2006).

Various measures of robustness have been proposed in the literature. One
important tool is the influence function of an estimator (Hampel et al. 1986), which
investigates the behavior of the estimator under small (infinitesimal) amounts of
contamination. In general, it is desirable that a robust estimator does not change
arbitrarily in presence of contamination. For example, the arithmetic mean can go
towards infinity if one observation is moved arbitrarily far away, while the median
remains more or less stable.

Another concept is the breakdown point of an estimator, which measures the
degree of robustness with respect to larger amounts of contamination. Loosely
speaking, the breakdown point of an estimator corresponds to the minimal fraction
of arbitrary contamination that drives the estimator beyond all bounds. For the
arithmetic mean it is sufficient to move only one observation (out of n) arbitrarily far
away in order to cause “break down.” In the limit, for n −→ ∞, this corresponds to
a breakdown point of zero. On the other hand, the median gives non-sense if at least
half of the observations are replaced by arbitrary numbers, and thus the breakdown
point of the median is 50%, the highest possible value.

There are still other features of a robust estimator, like Fisher consistency, that
are important. Moreover, like in classical statistics, a good robust estimator should
also achieve high efficiency (Maronna et al. 2006).
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Robust estimators as a complement to classical ones will be mentioned through-
out the book. These estimators are defined in the following. Note that the listed
estimators are by far not exhaustive, and thus interested readers are referred to the
literature on robust statistics (Maronna et al. 2006). It is important to note that the
robust estimators used here are exclusively applied in logratio coordinates, and not
in the original sample space of compositions.

5.2.1 Univariate Location

Although compositional data are by definition multivariate data, univariate estima-
tion is important in some cases, for example when considering a single pairwise
logratio, or an interpretable orthonormal coordinate. The classical estimator of the
location parameter of a normal distribution is the arithmetic mean. In presence of
outliers, leading to deviations from normality, a robust alternative is the median,
the innermost value of the sorted data. The median has good robustness properties,
but low efficiency—under normality one would need about one third more data to
achieve the same efficiency (precision) as for the arithmetic mean. Increasing the
efficiency requires using more of the available data information, i.e. more than just
the order of the values in case of the median. The trimmed mean is a compromise,
where a tuning parameter α ∈ (0, 0.5) regulates the amount of trimming. Another
compromise are M-estimators of location, that combine good robustness properties
with high efficiency (Maronna et al. 2006).

5.2.2 Univariate Scale

Consider a normal distribution N(μ, σ 2), then scale estimators considered here
estimate the parameter σ . The classical scale estimator for given data x1, . . . , xn

(not the original compositional data!) is the empirical standard deviation

s =
√√√
√ 1

n − 1

n∑

i=1

(xi − x̄)2,

where x̄ = 1
n

∑n
i=1 xi is the arithmetic mean.

A robust counterpart is the median absolute deviation,

sMAD = 1.4826 · mediani |xi − x̃|,

where x̃ denotes the median of the sample. The factor 1.4826 makes sMAD a
consistent estimator for σ , which means that due to this correction factor one indeed
obtains an estimator for the parameter σ .
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Another popular robust scale estimator is the interquartile range,

sIQR = 0.7413 · (Q0.75 − Q0.25),

where Qk denotes the k-quantile. Similar as before, the normalizing constant serves
for the purpose of consistency of the estimator.

5.2.3 Multivariate Location and Covariance

Consider multivariate non-compositional observations x1, . . . , xn ∈ R
p, which

form the rows of the n×p data matrix X. In subsequent chapters, these observations
will typically be the compositions, expressed in coordinates. The classical estima-
tors for location and covariance are the arithmetic mean vector x̄ and the sample
covariance matrix Sx, defined as

x̄ = 1

n

n∑

i=1

xi , Sx = 1

n − 1

n∑

i=1

(xi − x̄)(xi − x̄)′.

Both estimators are highly sensitive to outliers—their breakdown point is zero
(Maronna et al. 2006). However, they transform properly under affine transforma-
tions. An affine transformation of the data X is given by a non-singular p×p matrix
A and a vector b of length p as

Y = XA + 1nb′,

where the outcome is denoted as Y. So, Y can be any shifted, rotated, and rescaled
version of X. Accordingly, estimators of location t (in this context exceptionally as
a row vector) and covariance C are called affine equivariant if they satisfy

t(Y) = t(X)A + b,

C(Y) = A′C(X)A,

where the matrices in brackets refer to the data sets the estimators are applied to. For
the special case of considering just rotation of the initial data, the affine equivariance
reduces to orthogonal equivariance, introduced in the previous section in the context
of statistical inference in coordinates (5.5). Affine equivariant estimators enable to
consider theoretically also coordinate representations different from orthonormal
ones (like alr coordinates) for their computation. The definitions of arithmetic
mean and sample covariance matrix reveal that these classical estimators share the
equivariance property.

Nowadays, several robust counterparts are available. One popular estimator of
multivariate location and covariance is the minimum covariance determinant
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(MCD) estimator (Rousseeuw 1985; Rousseeuw and Van Driessen 1999). It is
defined by that subset {xi1, . . . , xih} of h observations whose sample covariance
matrix has the smallest determinant among all possible subsets of size h. The MCD
location estimator tMCD is given by the arithmetic mean of the h observations, and
the MCD covariance estimator CMCD by their sample covariance, multiplied by a
factor cMCD for consistency under normality,

tMCD = 1

h

h∑

j=1

xij ,

CMCD = cMCD · 1

h − 1

h∑

j=1

(xij − tMCD)(xij − tMCD)′.

The number h has to refer to the data majority; it can be taken as an integer in the
interval [(n + p + 1)/2, n]. The highest breakdown point of about 50% is achieved
for the smallest value of h, but this also leads to low efficiency. A compromise in
practice is to take h ≈ 0.75 · n. The MCD estimators tMCD and CMCD are affine
equivariant (Rousseeuw 1985).

The MCD estimator became popular because of the availability of a fast
algorithm for its computation (Rousseeuw and Van Driessen 1999). However, there
are also limitations, like low efficiency at normal models, which can be overcome
by a reweighting step, see Maronna et al. (2006). Another limitation is that the
MCD estimator does not work for data sets with more variables than observations,
because the determinant of the covariance matrix of any subset would always yield
zero, and for the same reason also in clr coefficients. This is an issue especially
for high-dimensional low sample size data. A robust estimator for this situation
is the orthogonalized Gnanadesikan-Kettenring (OGK) estimator (Maronna and
Zamar 2002), which is based on a robust pairwise estimation of the covariances, but
ensures that the resulting covariance matrix is positive definite. The OGK estimator,
however, is not affine equivariant.

5.2.4 Center and Variation Matrix

The variation matrix was introduced in Eq. (4.2) as the matrix consisting of the
sample variances of all pairwise logratios. Theoretically, for a composition x =
(x1, . . . , xD)′, here in terms of random variables, the element (j, k) of the variation
matrix is defined as var(ln(xj /xk)), where “var” denotes the variance, and j, k ∈
{1, . . . ,D}. This can be written as

var

(
ln

xj

xk

)
= var(ln xj − ln xk) = var(ln xj ) + var(ln xk) − 2cov(ln xj , ln xk),

(5.6)
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where “cov” denotes the covariance. On the other hand, consider clr coefficients
y = (y1, . . . , yD)′, with yj = ln xj − ln gm(x), see (3.14), for j = 1, . . . ,D. Then

var(ln yj ) + var(ln yk) − 2cov(ln yj , ln yk) = var(ln xj − ln gm(x))

+ var(ln xk − ln gm(x)) − 2cov(ln xj − ln gm(x), ln xk − ln gm(x)),

which is equal to (5.6). This equality can be written in matrix notation. Denote T as
the (theoretical) variation matrix and Cov(y) as the clr covariance matrix. Then the
following relation is obtained,

T = Jdiag(Cov(y)) + diag(Cov(y))J − 2Cov(y), (5.7)

where J denotes a D × D matrix of ones.
With this relation it is straightforward to robustly estimate the variation matrix.

One simply has to plug-in a robust estimate of the covariance matrix in (5.7), but
this needs to be done in coordinates. With the findings in the previous section, a
robust covariance estimation, e.g., in pivot coordinates (3.19), is obtained as CMCD
by the MCD estimator, which yields a robust estimation of the variation matrix

TMCD = Jdiag(VCMCDV′) + diag(VCMCDV′)J − 2VCMCDV′, (5.8)

where the D × (D − 1) matrix V is defined in (3.23).
For the center, a robust counterpart is obtained simply by taking the resulting

subset of h original observations for computing the geometric mean gMCD using
Eq. (4.1) for this subset.

5.3 Outlier Detection

In Sect. 5.2 it was argued that data outliers can spoil classical estimators, and there-
fore robust counterparts are usually preferable. Outliers are widely present in real
data sets (Barnett and Lewis 1994). In robust statistics, outliers are downweighted
in order to reduce their effect on the estimation. The outlier weight is a result of
the robust estimation procedure; depending on the procedure, the weight can be
either zero (outlier) or one (regular data point), but it can also be a real number in
the interval [0, 1]. There is a frequent misunderstanding: downweighting outlying
data points does not imply that this observation is non-informative and should thus
be discarded from the data. On the contrary, outliers are often the most interesting
observations, because some atypical phenomenon is responsible for their presence;
they are solely downweighted in order to get a model fit which accommodates the
data majority. A subsequent inspection of the observations with small weight is an
important step in the analysis.
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The focus in this section is on identifying observations that deviate from an
underlying model distribution. Here only the (multivariate) normal distribution is
considered, which serves as an important model distribution for many statistical
methods.

5.3.1 Univariate Outliers

It is assumed that the underlying univariate data follow a normal distribution with
certain parameters. Possible outliers, however, come from a different distribution;
either not from a normal distribution or from a normal distribution but with different
mean and/or variance. The data analyst observes the joint data and thus the joint
distribution, and depending on the position of the outliers, it will be difficult to
identify them.

Note that the “univariate data” under consideration will not be compositional
data, since compositions are by definition multivariate. Univariate data could be
non-compositional variables, they could refer to a logratio, or to a coordinate, like
the first pivot coordinate z1 defined in Eq. (3.19) referring to all relative information
about the first part x1 within the composition considered.

A standard procedure to identify univariate outliers under the assumption of
normality is the following. Assume that the regular observations are generated from
the normal distribution N(μ, σ 2), where mean μ and variance σ 2 are unknown.
From the normal theory it is known that the interval

[μ − 1.96 · σ,μ + 1.96 · σ ] (5.9)

contains the “inner” 95% of the distribution, because the left boundary corresponds
to quantile Q0.025 and the right one to Q0.975 of the distribution N(μ, σ 2).
Accordingly, if a data point falls outside this interval, which will happen in the
limit in 5% of the cases, this observation is “unusual” and could be treated as
an outlier. Following the above thoughts, it would be unclear if this outlier was
indeed generated by a different distribution, or if it is located just in the extremes
of the same distribution. In practice this is hard or even impossible to distinguish
(Filzmoser et al. 2005).

For a sample x1, x2, . . . , xn, the interval boundaries in (5.9) need to be estimated
appropriately. Since it is believed that outliers are present in the sample, they would
potentially have an effect on the classical estimators x̄ and s of μ and σ , respectively.
This can be prevented by using robust counterparts as proposed in Sects. 5.2.1
and 5.2.2. So, if x̃ denotes the median of the sample, robust alternatives to (5.9)
are

[x̃ − 1.96 · sMAD, x̃ + 1.96 · sMAD] or [x̃ − 1.96 · sIQR, x̃ + 1.96 · sIQR]. (5.10)
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Note that for a normally distributed sample with very large n, hence data without
any outliers, the resulting intervals would be essentially identical with the interval
based on classical estimators, [x̄ − 1.96 · s, x̄ + 1.96 · s]. This will in general be
different for small samples.

A further possibility for identifying univariate outliers is the Tukey boxplot
(Tukey 1977). This boxplot uses the quantiles Q0.25, Q0.5 = median, and Q0.75
for its construction. Outliers are those data points which are outside the interval

[Q0.25 − 1.5 · IQR,Q0.75 + 1.5 · IQR],

with the interquartile range IQR = Q0.75 − Q0.25. A comparison of the behavior
with the previously mentioned methods is shown, e.g., in Filzmoser et al. (2005).

Example The Austrian presidential election 2016 received quite some attention
because the second round with the candidates Hofer and Van der Bellen had to
be repeated, see:

https://en.wikipedia.org/wiki/Austrian_presidential_election,_2016

Finally, Van der Bellen was elected as the president, with 2,472,892 votes, while
Hofer received 2,124,661 votes. The raw data of the votes in the Austrian commu-
nities are available as data set electionATbp in the package robCompositions.
The data are first restructured.

data("electionATbp")
d <- electionATbp # short
bp <- data.frame("Votes" = c(d[, 8], d[, 10]),

"Percentages" = c(d[, 9], d[, 11]),
"candidate" = rep(c("Hofer", "Van der Bellen"),

each = nrow(d)))
head(bp, 3) # first three observations

## Votes Percentages candidate
## 1 3753 45.86 Hofer
## 2 681 56.89 Hofer
## 3 580 55.34 Hofer

The numbers of votes for the two candidates in the communities are shown
as boxplots in Fig. 5.1 (left). The distributions are right-skewed because of the
cities (we used a log-scale). The medians thus do not correctly reflect the election
result (but the mean does!), because it refers to the ordered absolute values in the
communities, and Van der Bellen received more votes in the cities than Hofer.
Figure 5.1 (right) shows the percentage data which are more symmetric. Again,
the median does not reflect the election result, since it only expresses that Hofer had
the majority in more than 50% of the communities.

If the interest is in the relative information, one can construct a coordinate
according to (3.19) as z = ln(x1/x2)/

√
2, where x1 and x2 are either the votes or the

percentage for the two candidates—both lead to the same result. Here x1 represents
the votes for Hofer, and x2 those for Van der Bellen, and thus positive values of z

correspond to a “dominance” of the votes for Hofer.
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ggplot(bp, aes(x = candidate,
y = Votes)) + geom_boxplot() +
coord_trans(y = "log10")
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ggplot(bp, aes(x = candidate,
y = Percentages)) + geom_boxplot()
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Fig. 5.1 Numbers (log-scale) of votes in the Austrian communities for the two presidential
candidates (left), and resulting percentages (right). (a) Absolute values. (b) Log-transformed data

data("electionATbp")
z <- as.matrix(pivotCoord(electionATbp[, c(8,10)]))
# gives the same as
# z <- 1/sqrt(2)*log(x1/x2)
# Identify univariate outliers by:
outup <- median(z) + 1.96 * mad(z)
outlow <- median(z) - 1.96 * mad(z)
outindex <- which(z < outlow | z > outup) # index of outliers

Figure 5.2 shows this coordinate (vertical axis) against the index of the obser-
vations (horizontal axis), which in fact corresponds to the identity numbers of the
communities, and these are sorted. The colors are according to the nine Austrian
districts (see also legend below the plot). The bigger symbols are for communities
where the number of valid votes was at least 20,000. Outlier rule (5.10) has been
applied—the median is the dashed line, and the outlier boundaries are the dashed-
dotted lines. It can be seen that several districts of Vienna (W), points on the
very right hand-side of the plot, are lower outliers. These are districts with an
exceptionally high percentage of votes for Van der Bellen. The most extreme lower
outlier is located in Tyrol (T). This is in fact the community Kaunertal, the home
village of Van der Bellen. A further quite unusual observation is in the lower range
of the values from Carinthia (K). This is the community Zell, where almost 90% of
the inhabitants are of Carinthian Slovenian descent. This is the highest percentage
of all municipalities in the state of Carinthia.
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Fig. 5.2 Coordinate representation of the votes; positive values for z correspond to a higher
proportion of votes for Hofer, negative values to a higher proportion of votes for Van der Bellen.
The points show the communities in the different Austrian districts (color). The dashed-dotted
horizontal lines are outlier cut-off values

5.3.2 Multivariate Outliers

Multivariate outliers are in general much harder to find than univariate outliers,
because one can no longer rely on graphical inspection. Moreover, multivariate
outliers are not necessarily extreme along one coordinate, but they could be located
anywhere in the multivariate space.

In this section it is assumed that the multivariate data are compositions. Rather
than identifying the outliers directly in the original space, it is common to first
express the compositions in logratio coordinates, and then to apply the usual
methods for multivariate outlier detection.

Nevertheless, before doing that it is important to realize, what are the sources of
outlyingness in compositional data. In contrast to standard multivariate observations
that rely on the absolute values of the components, deviating compositions arise
due to aberrant (pairwise) logratios between their parts. As pairwise logratios
are typically merged into logratio coordinates, preferably orthonormal ones, their
appropriate choice can help to reveal, which parts are predominantly responsible for
obtaining deviating logratios. On the other hand, for detecting multivariate outliers
it is important to have such methods that are able to reveal deviating observations
irrespective of the choice of the coordinate system. Another aspect is that due to
the relative scale of the compositions, parts with low concentrations will in general
tend to produce outliers more likely than dominating components. This feature is
often accompanied with approaching the detection limit of measurement devices,
leading to lower precision of the output values. Consequently, the resulting outliers
can be even more “dangerous” than in the standard case. Graphical inspection of the
raw compositional data is thus even more unreliable for the purpose of multivariate
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outlier detection than for traditional multivariate data. The above thoughts will be
further developed, directly or indirectly, in the whole sequel of the book.

Suppose that a compositional data set X is available, with n observations (rows)
and D compositional parts (columns). Expressing X in coordinates, e.g. by applying
Eq. (3.20) results in the n × (D − 1) matrix Z, with the observations z1, . . . , zn.

Standard multivariate outlier detection procedures assume that the majority of
the observations of Z are generated by a multivariate normal distribution with mean
vector μ and covariance matrix Σ . For a location estimator t and a covariance
estimator C, the squared Mahalanobis distances between the observations expressed
in coordinates and the respective location estimator t,

MD(zi )
2 = (zi − t)′C−1(zi − t), for i = 1, . . . , n, (5.11)

are approximately following a χ2 distribution with D − 1 degrees of freedom,
χ2

D−1. Similar to the univariate case, a certain quantile of this distribution, like the
quantile 0.975, χ2

D−1;0.975, is used as a cut-off value to identify multivariate outliers
as observations

zi with MD(zi )
2 > χ2

D−1;0.975; (5.12)

the remaining observations are considered as regular data points.
It is clear that the classical arithmetic mean (vector) and the sample covariance

matrix are inappropriate as estimators t and C in Eq. (5.11), since they could be
spoiled themselves by the outliers, which would make outlier detection unreliable.
Thus, t andC should be robust estimators, like the MCD estimators tMCD andCMCD,
defined in Sect. 5.2.3.

Example The Austrian presidential election example from the previous section is
continued. In addition to the number of eligible votes for the two candidates, also
the number of nonvoters in the different communities is considered as a third
composition. The relative information is shown in a ternary diagram in Fig. 5.3
(right).

The left graphic shows the plot of the resulting two pivot coordinates. For
these coordinates, mean and covariance matrix are estimated, once with classical
arithmetic mean and sample covariance matrix, and once with the MCD estimator.
The outlier cut-off value is χ2

2;0.975 = 7.378. If z denotes any point in this plane, the
squared Mahalanobis distance in (5.11) can be set equal to this cut-off value, and
then the results of this equation define an ellipse. This ellipse is also called 97.5%
tolerance ellipse, since in case of bivariate normal distribution it will contain the
innermost 97.5% of the data. The ellipses shown in the plot are constructed with
the classical (red dashed line) and the robust (green solid line) estimators. All data
points outside the (green) ellipse can be considered as multivariate outliers. One
can see that the red ellipse differs slightly from the green one, and the reason are
the outliers which inflated the classical covariance estimation. Using the inverse
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par(mfrow = c(1,2))
Z <- pivotCoord(X)
plot(Z, col = "#0066FFFF")
library("ellipse")
mdclass <- ellipse::ellipse(cov(Z),

centre = apply(Z, 2, mean), level = 0.975)
library("robustbase")
Z.mcd <- covMcd(Z)
mdrob <- ellipse::ellipse(Z.mcd$cov, centre = Z.mcd$center, level = 0.975)
lines(mdclass, col = 2, lty = 2, lwd = 2)
lines(mdrob, col = 3, lwd = 2)
mdclassinv <- pivotCoordInv(mdclass)
mdrobinv <- pivotCoordInv(mdrob)
ternaryDiag(X, col = "#0066FFFF")
ternaryDiagPoints(mdclassinv, col = 2, lty = 2, type = "l", lwd = 2)
ternaryDiagPoints(mdrobinv, col = 3, type = "l", lwd = 2)
legend("topleft", legend = c("Classical","Robust"),

lty = c(2,1), col = c(2,3))
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Fig. 5.3 Coordinate representation of the presidential election data (votes for the two candidates
and nonvoters) with tolerance ellipses (left), and ternary diagram with tolerance ellipses (right)

mapping (3.22), both ellipses can be presented in the ternary diagram. Here it is
easier to interpret the outliers. For example, the outlier in the upper part of the
ternary diagram is Kaunertal. Several outliers with high proportion on nonvoters
are visible.

Another composition of the presidential election data is used for Fig. 5.4: the
number of votes for the two candidates, and the number of invalid votes. Here,
all Austrian communities are taken, and the same symbols as in Fig. 5.2 are used.
There is no big difference for the classical and robust estimators. As in the previous
example, one could argue if the χ2 distribution for the outlier cut-off is appropriate,
because the data do not seem to be normally distributed. Still, the cut-off gives some
impression about unusual observations, which are here several districts of Vienna
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Fig. 5.4 Outlier detection for the valid and invalid presidential votes. The symbols are according
to Fig. 5.2

(W) and many communities of Tyrol (T) and Vorarlberg (V). It is interesting to see
that also for the proportion of invalid votes clear regional patterns are visible.

5.3.3 Interpretation of Multivariate Outliers

From the coordinate representation in Fig. 5.4 (left) it becomes clear that it is not so
straightforward to interpret the plot, and in particular the reason for the outlyingness
of some observations. Only when showing the data in the ternary diagram, this
interpretation gets easier (Fig. 5.4, right). In the general case, however, one deals
with more than three-part compositions, and graphical representations in terms of
ternary diagrams are no longer possible. Therefore, Filzmoser et al. (2012a) have
proposed some plots that support the interpretation of the reason for multivariate
outlyingness.

The basic principle is to show all different pivot coordinates, specifically, the
first coordinates from each of the D pivot coordinate systems, and using special
symbols. The symbols have been proposed in Filzmoser et al. (2005), and their
choice is explained by an artificial data set in Fig. 5.5. The ternary diagram (right
plot) shows the three-part compositions. The coloring of the symbols is from blue
in the center of the ternary diagram, where the proportions on the parts are very
similar, to red on the boundary of the simplex, where the proportions get high on
average. The left plot presents this information in terms of ilr coordinates. Similar as
in the previous section, multivariate outlier detection is carried out, and the 97.5%
tolerance ellipse is included. Points outside this ellipse are multivariate outliers, and
the symbol is taken as a big +. The more the data points come to the center of the
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Fig. 5.5 Artificial data set with three-part compositions to explain the choice of color and symbol
type for the interpretation of multivariate outliers (see text)

ellipse, the smaller are the Mahalanobis distances, with corresponding changes of
the symbols. Now color and symbol type is defined, and this should be helpful for
the interpretation. Going back again to the ternary diagram, the tolerance ellipse is
presented, and it can be seen that most multivariate outliers have very low values for
part x3.

Color and symbol type, as well as robust Mahalanobis distances are computed as
follows:

library(mvoutlier)
res <- mvoutlier.CoDa(X)

The resulting object res contains all this information, which can be visualized
in different ways. Figure 5.6 shows two possibilities: The left plot shows pivot
coordinates z

(l)
1 , l = 1, 2, 3 according to (3.25) for the single compositional parts

as parallel vertical axes; along the horizontal direction, random scattering is done to
make the observations better visible. It can be seen that most multivariate outliers
have high values in pairwise log-ratios with the original parts, aggregated into the
respective coordinates (red symbol). This can be seen in the pivot coordinates for x1
and x2, but for x3 the outliers are in the very low range. The plot on the right-hand
side shows the pivot coordinates as parallel coordinates. The axes are again arranged
vertically in parallel, but the values are normed now to the interval [0, 1], and the
individual observations are shown by individual lines. One can see that in particular
the lines for the multivariate outliers follow a very different pattern than the data
majority.
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plot(res, which = "uni",
onlyout = FALSE, cex.main = 2)
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Fig. 5.6 Parallel pivot coordinate plots as scatter plots (left) and parallel coordinate plot (right),
with the symbols and colors as defined in Fig. 5.5

5.4 Example

The R package StatDA contains data from the so-called Kola project, a multi-media
geochemical mapping project carried out from 1993-1998 in the peninsula Kola
by the Geological Surveys of Finland (GTK), Norway (NGU), and Central Kola
Expedition (CKE) in Russia, see Reimann et al. (1998). More than 600 soil samples
in five different layers were analyzed for the concentration of several chemical
elements. The project area, which is located on the boundary of Norway, Finland
and Russia, is interesting for geochemical mapping because it contains big smelters
in Russia, as well as very pristine areas in Norway and in the Finish part.

Here the focus is on the organic surface soil (O-horizon), and in particular on the
element concentrations of As, Cd, Co, Cu, Mg, Pb, and Zn. With the exception of
Mg and Zn, these elements are in the emission spectrum of the Ni-smelters in the
Russian cities Nikel/Zapolyarnij and Monchegorsk.

Multivariate outliers according to the definition in Eq. (5.12) can be flagged via
the function outCoDa in the package robCompositions, see also the correspond-
ing graphical output in Fig. 5.7, where robust Mahalanobis distances together with
the cut-off line are plotted.

library("StatDA")
data("ohorizon")
X <- ohorizon[, c("As","Cd","Co","Cu","Mg","Pb","Zn")]
out <- outCoDa(X)
out

##
## --------------------
## [1] "104 out of 617 observations are detected as outliers."
##
## --------------------
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plot(out) # to produce Fig 5.7.
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Fig. 5.7 Robust Mahalanobis distances for the selected variables of the O-horizon Kola data

res <- mvoutlier.CoDa(X)
plot(res, which = "map", coord = ohorizon[, 2:3], onlyout = FALSE)
pkb(add.plot = TRUE)
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Fig. 5.8 Multivariate outlier plot for the Kola O-horizon data, here represented in the map of the
project area

The methods in the package mvoutlier (Filzmoser and Gschwandtner 2017)
give a more detailed view on the outliers and extend the outlier detection methods
available in robCompositions. Figure 5.8 shows a map of the project area,
together with the locations of the samples, already plotted by the corresponding
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plot(res, which = "uni", onlyout = FALSE)

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●
●

●
●

●

●

●

●●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

● ●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●
● ●

●●
●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●● ●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

ilr(As)

● ●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●●

●

●

●

●●

●
●

●
●

●
●

●

● ●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●
●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

● ●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

ilr(Cd)

●

●

● ●

●
●

●

●●

●

●

●

●

●
● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●●

●
●

●

●●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

−
4

−
3

−
2

−
1

0

ilr(Co)

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●●

●

●
● ●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●
● ●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

● ●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

● ●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●●

●

● ●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●●

ilr(Cu)

●● ●

●

●
●

● ●
●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●
●

●

●
●

●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●
●
●

●
●

●

●

●

●

● ●

●
●

●

●
●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

ilr(Mg)

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●●

●

●
● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●●

●

●
●
●
●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●
●

●

●

●
●●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●●

● ●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●●●

●

●

● ●

● ●

●
●

●
●

●

●

●

●

●

●

●●●●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

−
3.

5
−

3.
0

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5

−
5.

5
−

5.
0

−
4.

5
−

4.
0

−
3.

5
−

3.
0

−
2.

5

−
1

0
1

2
3

4

2
3

4
5

6
7

−
1

0
1

2
3

4
5

ilr(Pb)

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●●

●

●

● ●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

−
1

0
1

2

ilr(Zn)

Fig. 5.9 Univariate scatter plots for pivot coordinates of the considered Kola data, with symbols
and colors according to outlyingness

plot(res, which = "parallel", onlyout = TRUE)

ilr(As) ilr(Cd) ilr(Co) ilr(Cu) ilr(Mg) ilr(Pb) ilr(Zn)

Fig. 5.10 Parallel coordinate plots for pivot coordinates of the considered Kola data, with symbols
and colors according to outlyingness. Here only the multivariate outliers are shown

colors and symbols as explained in Fig. 5.5. Most multivariate outliers are located
at the Ni-smelters, with high concentration values.

Figures 5.9 and 5.10 show more details about the outliers, and try to support
their interpretation by showing pivot coordinates for the single compositional parts.
These plots show that most multivariate outliers have high dominance of As, Co
and Cu, but low dominance for Mg, Pb, and Zn. This characterizes the emission
spectrum of the Ni-smelters. There is one outlier with a very high proportion on
Pb. This observation is located on the coast in Norway, and the reason for this
exceptional value is unclear (see Filzmoser et al. 2012a).
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Chapter 6
Cluster Analysis

Abstract Cluster analysis is an exploratory statistical technique to group obser-
vations or variables in data sets. The main goal of cluster analysis is to achieve
highly homogeneous clusters, i.e. the observations (or compositional parts—in Q-
mode clustering) within a cluster should be very similar to each other. On the
other hand, different clusters should be dissimilar, because otherwise they should
have been merged into one cluster. With cluster analysis one typically aims to find
elliptically shaped partitions in the data, but also more special structures in the
data are sometimes of interest. Cluster analysis again needs to be adapted in the
context of compositional data. The use of the Aitchison distance or the clustering
after representing the data in ilr coordinates is crucial. Moreover, for clustering of
compositional parts in Q-mode clustering the variation matrix, either classically
or robustly estimated, is taken. For clustering observations (compositions), no
particular methodological peculiarities occur; basically, any orthonormal logratio
coordinates serve well for this purpose. In this chapter, some of the most popular
methods are described in more detail: hierarchical clustering with different linkage
methods, the k-means algorithm, model-based clustering as well as fuzzy clustering.
Finally, also some cluster validity measures for evaluating the quality of the
clustering result are presented.

6.1 Distance Measures and Dissimilarities

The input of a clustering procedure is typically not the raw data set but dissimilari-
ties: a distance matrix when clustering compositions and, for example, the variation
matrix when clustering variables.

Let the i-th composition be denoted by xi = (xi1, . . . , xiD)′ for i = 1, . . . , n,
with D the number of parts and n the number of observations of a compositional
data set X.

In case of clustering compositions, the dissimilarity/distance matrix D is of
dimension n × n, expressing the distance from each composition to any other
composition. For latter use, let d(i, j) be the distance between the i-th and the
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j -th composition. It is crucial how to define distances between compositions or
their parts.

In statistical analysis of data carrying absolute information, the most popular
distance measure for continuous variables is the Euclidean distance, but also
many other distance measures are available such as the Manhattan distance. For
binary and nominal variables, other distances are typically chosen, e.g. the Jaccard
distance. A generalized distance that considers different kinds of variables is the
Gower distance. However, for compositional data—typically positive continuous
multivariate data—another kind of distance needs to be chosen. The Aitchison
distance defined in Eq. (3.9) is appropriate for this purpose because it considers
the special nature of compositional data. Alternatively, the compositional data can
first be represented in orthonormal coordinates, and then standard distance measures
including the Euclidean distance can be used.

First a very small data set is introduced that is suitable to explain how distances
are calculated and how observations are combined using an agglomerative clustering
approach.

data("alcoholreg")
alcoholreg

## region year recorded unrecorded
## 1 Africa 2010 4.2 1.8
## 2 Americas 2010 7.2 1.2
## 3 South-East Asia 2010 1.8 1.6
## 4 Europe 2010 9.0 1.9
## 5 Eastern Mediterranean 2010 0.3 0.4
## 6 Western Pacific 2010 5.1 1.7

These data describe the recorded and unrecorded alcohol consumption per capita
(age 15+, in liters of pure alcohol), depending on the WHO region, and in this
case for the year 2010. If this two-dimensional data set (recorded versus unrecorded
consumption) is plotted, it can be seen that the distance between observations 1 and
6 is the smallest out of all pairwise distances, if the standard Euclidean distance is
chosen as a distance measure, see Fig. 6.1.

This changes when considering logratios, and thus the Aitchison distance. Let
dA(xi, xj ) be the Aitchison distance between the i-th and j -th composition, defined
in Eq. (3.9). The Aitchison distances between all pairs of observations can be
computed with the function aDist.

x <- alcoholreg[, c("recorded", "unrecorded")]
aDist(x)

## 1 2 3 4 5
## 2 0.6678352
## 3 0.5158449 1.1836801
## 4 0.5006831 0.1671521 1.0165280
## 5 0.8025520 1.4703872 0.2867071 1.3032351
## 6 0.1777061 0.4901291 0.6935510 0.3229770 0.9802581

Using the Aitchison distance, the observations 2 and 4 have the smallest distance
among all distances, which was not to be expected from Fig. 6.1. In the next
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Fig. 6.1 Recorded and
unrecorded alcohol
consumption (in liters of pure
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step these two observations are joined and new distances are calculated. Here the
geometric mean is used to join the observations, and the distances are computed as
before. However, several other choices exist to compute distances between joined
observations or clusters, which will be defined later on.

z <- apply(x[c(2,4), ], 2, gm)
y <- rbind(z, x[c(1,3,5:6), ])
rownames(y) <- c("2-4", "1", "3", "5", "6")
aDist(y)

## 2-4 1 3 5
## 1 0.5842592
## 3 1.1001040 0.5158449
## 5 1.3868112 0.8025520 0.2867071
## 6 0.4065530 0.1777061 0.6935510 0.9802581

In a further step, the observations 1 and 6 could be merged, since they have the
smallest Aitchison distance. Proceeding in this way leads to a whole tree of clusters,
which is the basic idea of hierarchical clustering. Since the algorithm started to build
this hierarchy with single observations, the clusters get larger and larger, until all
observations are finally merged into a single big cluster. This procedure is denoted
as agglomerative; the reverse procedure would be called divisive, but it is not very
commonly applied. This topic continues in the next section.

Distances can also be computed between variables (Q-mode clustering). This is
useful if one is interested in clustering compositional parts rather than observations.
One way to define distances between parts is to calculate a measure of association
between the parts. Note that when absolute information in data is under considera-
tion this could be the Pearson correlation coefficient (see Sect. 8.1). Typically such
measures of association are normalized and a high value means strong relationship
while a value around 0 means no dependency between the variables.
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In the context of compositional data, the variation between the parts is suitable to
express the association between the parts. Low values express a high association,
and all ratios in a sample are nearly perfectly proportional to each other, while
large values express that the ratios between the parts are very different from each
other. The dissimilarities used as an input for a clustering method (typically for
agglomerative clustering methods) are given by tjk , which defines the variation
matrix elements between the j -th and the k-th part, see Eq. (4.2).

6.2 Hierarchical Clustering Methods

The result of a hierarchical clustering procedure is composed of a sequence of
clustering partitions. This sequence can visually be displayed by a clustering tree
which is called dendrogram.

6.2.1 Agglomerative Clustering Algorithms

At the beginning, each object forms an own class, leading to n different clusters.
At each step of the algorithm, the number of clusters is reduced by one, where the
most similar classes are combined. The “similarity” of the combined pair can be
measured, and a “height” is associated with this newly formed class. At the end of
the process there is only one single cluster left.

Consider the classes Ci and Cj , which consist of indexes representing the
observations of the i-th and j -th cluster, respectively. The similarity between these
classes is expressed by a distance d(Ci, Cj ). If the classes Ci and Cj are combined
(linked), a general scheme of evaluating the similarity between Ci ∪ Cj and some
other class Ck can be defined as (Lance and Williams 1966)

d(Ci ∪ Cj ,Ck) = αid(Ci, Ck) + αjd(Cj , Ck) + βd(Ci, Cj )

+γ |d(Ci, Ck) − d(Cj , Ck)|, (6.1)

where the parameters αi, αj , β, and γ are in general real numbers. Table 6.1
presents the most commonly used parameters. The methods for three of these
choices of the parameters will be discussed below in detail.

In the first step of the algorithm, the cluster Ci consists only of object i and
cluster Cj only of object j . The distances d(Ci, Cj ) for single element classes can
be selected using the so-called linkage criteria (see also Table 6.1).
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Table 6.1 Hierarchical
clustering linkage strategies

Clustering criterion αi , αj β γ

Single linkage 1
2 0 − 1

2

Complete linkage 1
2 0 1

2

Average linkage 1
2 0 0

Centroid linkage ni

ni+nj

ninj

(ni+nj )2 0

Ward’s method ni+nk

ni+nj +nk

−nk

ni+nj +nk
0

Parameters with respect to Eq. (6.1)
nl is the number of observations in class Cl (l =
i, j, k)

6.2.1.1 Single Linkage

In the first step, the two closest objects are combined. Hence, the combined objects
generate a new group, say Ci ∪ Cj . Equation (6.1) is used with the coefficients for
single linkage (Table 6.1). Then this formula can be simplified to

d(Ci ∪ Cj ,Ck) = min{d(Ci, Ck), d(Cj , Ck)}. (6.2)

Thus, the minimum distance between the observations of a combined cluster to
another object Ck is chosen. This can be further generalized. In case of already three
formed clusters, the minimal distance between them (single linkage) is indicated
with a black thick(er) solid line in Fig. 6.2, while all other distances from a cluster
to another are in grey. Note that these data are already presented in orthonormal
coordinates and thus dA(x, y) = d(ilr(x), ilr(y)) applies, the latter being the
Euclidean distance.

Single linkage tends to be unbalanced in the sense that big clusters are quickly
combined. This procedure tends to produce many small groups and few large
groups. Single linkage is also suitable to detect outliers.

As a simple illustration, the alcohol consumption data set, introduced at the
beginning of this section, is used. The unrecorded and recorded alcohol con-
sumptions are first expressed by an ilr coordinate with (3.20), then Euclidean
distances (being here simply absolute differences between the coordinate values) are
computed, and finally single linkage clustering is performed. The result is plotted
and presented as a dendrogram in Fig. 6.3, where the “height” on the vertical axis
corresponds to the level where the clusters are merged.

res <- hclust(dist(pivotCoord(x)), method = "single")
plot(res) # produces Figure 6.3
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Fig. 6.2 Single linkage
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complete linkage (dashed
line) for three given clusters
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Fig. 6.3 Dendrogram from
single linkage clustering of
the recorded and unrecorded
alcohol consumption data
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6.2.1.2 Complete Linkage

Complete linkage clustering proceeds in much the same manner as single linkage
clustering, with one important exception: not the smallest distances are considered
but the biggest ones. So, the criterion for merging clusters is

d(Ci ∪ Cj ,Ck) = max{d(Ci, Ck), d(Cj , Ck)}. (6.3)

The complete linkage algorithm tends to produce a balanced dendrogram. This
procedure is also illustrated in Fig. 6.2 (black dashed line). The maximum distance
from the observations from one cluster to any other observation from any other
cluster is considered, where the minimum over these distances is selected for the
complete linkage criterion.
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6.2.1.3 Average Linkage

The average linkage criterion was designed to take a middle road between single
linkage and complete linkage and by far surpasses them in the sensitivity with
respect to single objects. This method treats the distance between two clusters as the
average distance between all pairs of objects where one member of a pair belongs
to each cluster. If z(ij) denotes an object (composition in orthonormal coordinates)
from Ci ∪ Cj , and zk an object from Ck , then the average distance can be expressed
as

d(Ci ∪ Cj ,Ck) =
∑

(ij)

∑
k d(z(ij), zk)

n(ij)nk

, (6.4)

where n(ij) is the number of objects in Ci ∪ Cj .

6.2.1.4 Ward’s Method

Ward clustering can be implemented in a similar way as the methods mentioned
before, but with the appropriate coefficients listed in Table 6.1. This can also be seen
as a method, where at each step in the analysis, the union of every possible cluster
pair is considered and the two clusters whose fusion results in a minimum increase
of information loss are combined. In this context the error sum of squares (ESS) is
often used; it can be expressed as sum of squared differences between the observed
values and their predictions from a model, mostly represented by the sample mean
of the samples within a given cluster. Accordingly, the criterion minimizes the total
within-cluster variance.

As a simple example, consider univariate data with 10 observations (2, 6, 5,

2, 2, 2, 2, 0, 0, 0) with arithmetic mean 2.5. In this case, the original two-part
compositions are already expressed by one coordinate. For ESS the sum of squared
differences to the arithmetic mean is taken,

ESSunclustered : (2 − 2.5)2 + (6 − 2.5)2 + . . . + (0 − 2.5)2 = 50.5.
Now let the following four groups be formed, {0, 0, 0},{2, 2, 2, 2},{5},{6, 6}.

Then ESS4 clusters = ESS1 + ESS2 + ESS3 + ESS4 = 0, i.e. no information
loss occurred by joining them into these four clusters.

6.2.2 Tree Cutting

In hierarchical clustering, the clusters are defined as branches of a cluster tree. The
partition into clusters itself is done by cutting the corresponding tree, represented
as dendrogram. One can cut a tree into several groups either by specifying
the desired number of groups or the cut height. Both variants correspond to a
constant height cut-off value in the dendrogram. Naturally, this method exhibits
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suboptimal performance on complicated dendrograms. Note that the R package
dynamicTreeCut can be used for dynamic branch cutting depending on the shape of
the dendrogram to better identify nested clusters. However, the authors’ experience
is that these methods often do not give good results or need a lot of work for
parameter adjustment. Therefore, dynamic tree cutting is not further considered in
the following.

6.3 Partitioning Methods

The probably most famous algorithm for clustering observations into groups is
the k-means algorithm. It turns out that this algorithm is just a variant of the EM
algorithm.

Given a compositional data set X with n objects, characterized by D parts. The
aim is to partition the observations into nc clusters {C1, C2, . . . , Cnc } such that
cluster Ck has n(k) members and each observation is assigned to one distinct cluster.

For simplicity the method is not described based on the original compositional
data, but already for the data expressed in (any) ilr coordinates. Thus, denote the
corresponding observations, expressed in D − 1 coordinates, by z1, . . . , zn, and the
resulting data matrix with n rows and D − 1 columns by Z.

The mean vector (center, prototype), vk, of a cluster Ck is defined as the centroid
of the cluster, and the components of the mean vector can be calculated by

vk(∈ R
D−1) =

(
1

n(k)

n(k)∑

i=1

z
(k)
i1 , . . . ,

1

n(k)

n(k)∑

i=1

z
(k)
i,D−1

)′
, (6.5)

where z(k)
i = (z

(k)
i1 , . . . , z

(k)
i,D−1)

′ is the i-th observation belonging to cluster Ck .
For each cluster C1, . . . , Cnc the corresponding cluster means v1, . . . , vnc are
calculated.

At the beginning, the number of clusters nc of the output partition needs to be
determined. Starting from a given initial location of the nc cluster centroids, the
algorithm uses the data points to iteratively relocate the centroids and reallocate
points to the closest centroid. The process is composed of the following steps:

1. Select an initial partition with nc clusters.
2. E-step: (re)compute the cluster centers using the current cluster memberships.
3. M-step: assign each object to the closest cluster center → new memberships.
4. Go to step 2 until the cluster memberships and thus the cluster centroids do not

change beyond a specified bound.

Accordingly, k-means clustering optimizes the objective function

J (Z,V,U) =
nc∑

k=1

n∑

i=1

uikd
2(zi , vk), (6.6)
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where V = (v1, . . . , vnc) is the matrix of cluster centers (prototypes) of dimension
(D−1)×nc and U = (uik) is an n×nc matrix with the membership coefficients uik

for observation zi to a cluster Ck . The Euclidean distance d measures the distance
between the observations and the cluster centers.

The k-means algorithm can be implemented as follows. Fix nc, 2 ≤ nc < n,
and choose the termination tolerance δ > 0, e.g., 0.001. Initialize U(0), usually
randomly.

REPEAT for r = 1, 2, . . .

1. E-step: Calculate the centers of the clusters:

v(r)
k =

∑n
i=1 u

(r−1)
ik · zi

∑n
i=1 u

(r−1)
ik

, 1 ≤ k ≤ nc (6.7)

2. M-step: Update U(r): Reallocate cluster memberships:

u
(r)
ij = 1 if d(zi , v

(r)
j ) = min

1≤l≤nc

d(zi , v
(r)
l ), or u

(r)
ij = 0 otherwise

UNTIL the Frobenius matrix norm ‖U(r) − U(r−1)‖F < δ, where

‖U(r) − U(r−1)‖F =
√√
√
√

n∑

i=1

nc∑

k=1

(
u

(r)
ik − u

(r−1)
ik

)2
.

It is easy to see that in k-means clustering the E-step is the fitting step and the
M-step is the assignment step. Iterating between the E- and M-step improves the
solution, which means that J (Z,V,U) gets smaller in each iteration. The procedure
is stopped when the cluster assignments stabilize.

Consider for illustration an artificial compositional data set, which is already
expressed in ilr coordinates. The original data consist of three parts, and thus the
coordinate representation is two-dimensional, see Fig. 6.4 (upper left).

In the following the results of the algorithm after iteration 1, 2, and after
convergence are plotted. Instead of the presented simplified implementation of the
k-means algorithm, the default k-means implementation of R is chosen. There
exist some variants of k-means, where the algorithm of MacQueen is chosen, but
only for reasons of exploring the algorithm (the default method, Hartigan-Wong
is converging too fast to show the steps of the algorithm). Note that the k-means
algorithm starts with randomly chosen cluster centers. Thus it is necessary to set a
seed to ensure the same starts in each call of the k-means algorithm.

set.seed(123456)
cl1 <- kmeans(Z, centers = 4, iter.max = 1, algorithm = "MacQueen")
set.seed(123456)
cl2 <- kmeans(Z, centers = 4, iter.max = 2, algorithm = "MacQueen")
set.seed(123456)
cl3 <- kmeans(Z, centers = 4, iter.max = 3, algorithm = "MacQueen")
set.seed(123456)
cl4 <- kmeans(Z, centers = 4, algorithm = "MacQueen")
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Fig. 6.4 Solutions of the k-means algorithm. Top left: initial centers, the solution of the E-step in
iteration 1. Top right: first assignment of points to estimated centers, the solution of the M-step in
iteration 1. Middle left: new centers at iteration 2. Middle right: new assignment. Bottom left: final
solution of the centers. Bottom right: final assignment of observations to cluster centers

Then the results after the E-step and after the M-step for the first two iterations,
but also for the final solution are plotted. This can be easily done by accessing the
cluster centers from the k-means results, e.g. for the first solution after one iteration
with:

cl1$centers

## Z1 Z2
## 1 4.787137 4.65547187
## 2 2.555571 2.20578465
## 3 -1.590451 4.32789868
## 4 7.997304 -0.08258293
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The calculated centers (E-step) and the allocation of the observation to their
nearest cluster (M-step) are shown in detail in Fig. 6.4.

Note that the k-means algorithm only takes the centers into account and works
with a distance function to calculate the distance from the observations to the cluster
centers. A limitation of k-means clustering is that the resulting clusters tend to be
spherically symmetric. An alternative approach is to incorporate also the shape of
the clusters. This is implemented in the model-based clustering framework (Fraley
and Raftery 2002). The model-based procedures usually give better clustering
results (Templ et al. 2008) but they are computationally more complex since in each
E-step also the covariance of each cluster needs to be estimated.

6.4 Model-Based Clustering

As the name indicates, model-based clustering makes use of a statistical model for
the shape of the clusters. The standard “model” is multivariate normal distribution,
i.e., the distribution of a compositional cluster is assumed to have the density of
a multivariate normal distribution on the simplex (5.2), with a specific location
and covariance. Considering this, it is clear that compositional data first need to
be expressed in ilr coordinates before model-based clustering can be applied.

A detailed description of model-based clustering can be found in Fraley and
Raftery (2002), and in many other sources of these authors. Here the focus is
rather on practical aspects. Assume that the data consist of nc clusters, generated
by multivariate normal densities with expectation μj and covariance Σj , for
j = 1, . . . , nc. Further, the class probabilities are given by the so-called mixing
coefficients π1, . . . , πnc , where π1 + . . . + πnc = 1. All these parameters are
unknown, and they are estimated using the EM algorithm. In case of D-part
compositions, the covariance matrices of the data expressed in coordinates are of
dimension (D − 1) × (D − 1). Thus, if D gets larger, many parameters need to be
estimated from the available data, which can lead to instability. For this reason,
the cluster “models” can be simplified, by imposing restrictions on the cluster
covariance structures.

The simplest possibility for such restrictions is Σj = σ 2I, for j = 1, . . . , nc,
where I is the identity matrix and σ 2 is a parameter for the variance. This would
imply that all clusters are spherical, with the same radius. The estimation of the
covariances thus reduces to estimating only one parameter, the variance σ 2. A
less restricted covariance structure is Σj = σ 2

j I, for j = 1, . . . , nc. In this case,
the clusters are still spherical, but their size can be different according to their
variance σ 2

j , which needs to be estimated. Figure 6.5 illustrates different covariance
structures.

In R, the package mclust can be used to apply model-based clustering by
finite Gaussian mixture modelling fitted via an EM-algorithm. An optimal model
(according to a BIC criterion (Schwarz 1978)) can be chosen using the function
Mclust. Figure 6.6 shows the outcome of using Mclust for the data set from
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(a) (b) (c)

Fig. 6.5 Different covariances for three clusters: (a) Σ1 = Σ2 = Σ3 = σ 2I; (b) Σ j = σ 2
j I, for

j = 1, 2, 3; (c) all Σj different and of no special structure

Fig. 6.6 Result of model-based clustering: Left: the choice of the optimal cluster model based on
the BIC criterion; right: the resulting cluster assignments

the previous section, compare Fig. 6.4. The left plot shows the BIC values (vertical
axis) for different numbers of clusters (horizontal axis). Different cluster models
are used, corresponding to the structure of the covariance matrices. The maximum
BIC value points at the optimal model, which is a model with four clusters, and
covariance structure “VVV,” meaning that all covariances are different from each
other. The right plot presents the assignments of the observations to the different
clusters, and also the shapes of the covariance structures together with the estimated
group centers. The mixing coefficients correspond to the proportion of observations
in the different clusters.

library("mclust")
res <- Mclust(Z, G = 3:9, verbose = FALSE) # 3 to 9 mixture components
plot(res, what = "BIC")
plot(res, what = "classification")
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There is an interesting difference to the results from k-means clustering: While
for k-means some observations from other clusters have been assigned to the long-
shaped cluster, see Fig. 6.4 (bottom right), this is not the case for model-based
clustering. k-means solutions are typically spherically symmetric, while model-
based clustering is more flexible and not limited to spherical symmetry.

6.5 Fuzzy Clustering

Fuzzy clustering has been described in various papers and monographs (see, e.g.,
Kaufman and Rousseeuw 1990), and therefore only the essential ideas are outlined.
The basic difference to partitioning methods is that an observation is not assigned to
only one cluster, but there is a proportional assignment to all clusters. Accordingly,
a membership coefficient uik is introduced, assigning the i-th observation to the k-th
cluster (i = 1, . . . , n; k = 1, . . . , nc), with uik ≥ 0 and ui1+. . .+uinc = 1, for all i.

For a fixed number of clusters nc, the fuzzy cluster solution can be found by
minimizing the objective function (6.6). For this purpose, the compositions first need
to be expressed in orthonormal coordinates. Note that in case of k-means clustering,
the values of uik in (6.6) were restricted to 0 and 1 (“hard” clustering), while in case
of fuzzy clustering they are in the whole interval [0, 1].

An implementation of fuzzy clustering is available in the R package e1071 as
function cmeans. The four-cluster solution leads to the estimated membership
coefficients which are shown in grey scale in Fig. 6.7. Note that, similar to k-
means, also this algorithm works with a random initialization, and thus the results
could differ when computed again. Further, note that as a result of minimizing the
objective function (6.6), also here the procedure ends up with clusters which tend to
be spherically shaped.

library("e1071")
groups <- 4
res <- cmeans(Z, groups)
for(i in seq_along(1:groups)){

plot(Z, col = gray(1 - res$membership[, i])) # produces Fig. 6.7
}

6.6 Clustering Parts: Q-Mode Clustering

While previously the main interest was in grouping the observations (R-mode
clustering), now the aim is to group the variables or compositional parts (Q-
mode clustering). The key ingredients for cluster analysis are the distances or
dissimilarities, and as already mentioned in Sect. 6.1, an appropriate way to measure
the relatedness between parts is the variation matrix, see Eq. (4.2). The basic idea is
described in more detail in the following.
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Fig. 6.7 Result of fuzzy clustering: The four plots show the resulting membership coefficients for
each of the four clusters in grey scale; dark means high value, light means low value

Consider a compositional data matrix X with D parts and n observations xi =
(xi1, . . . , xiD)′, for i = 1, . . . , n. Remind that the variation matrixT is of dimension
D × D, and its elements tjk are defined as

tjk = var

[
ln

(
x1j

x1k

)
, ln

(
x2j

x2k

)
, . . . , ln

(
xnj

xnk

)]
, (6.8)

where j, k = 1, . . . ,D, and “var” denotes the variance. The elements of the
variation matrix report the variability of the logratio of a pair of parts (pairwise
logratio). The smaller the value of tjk is, the more the logratio tends to be constant.
In this case, the corresponding parts can be considered as being proportional. The
variation matrix is symmetric and the diagonal elements are zero, and thus the
elements of the matrix can be directly used as dissimilarity measure for clustering
(van den Boogaart and Tolosana-Delgado 2013; McKinley et al. 2016). Note,
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however, that the variation matrix does not possess the properties of a distance
matrix, see Fačevicová et al. (2016).

An open issue is which estimator for the variance “var” should be used. The
standard choice would be the sample variance, but also more robust variance
estimators could be considered, like that resulting from the MCD estimator through
the relation (5.8). The latter is the default in the function variation of the
package robCompositions, while the sample variance is only used with the option
robust=FALSE. Once this dissimilarity measure is defined and computed, it is
straightforward to apply a clustering method, like hierarchical clustering.

As an illustration the data set expendituresEU from robCompositions is
used, reporting the average expenditures in different countries of the European
Union on various commodity groups. Both types of estimating the variation matrix
are compared in hierarchical clustering, using the Ward’s method (of course, also
any other linkage method could be applied).

data("expendituresEU")
v.cla <- as.dist(variation(expendituresEU, robust = FALSE))
v.rob <- as.dist(variation(expendituresEU))
plot(hclust(v.cla, method = "ward.D")) # produces Fig. 6.8 left
plot(hclust(v.rob, method = "ward.D")) # produces Fig. 6.8 right

The resulting dendrograms are presented in Fig. 6.8. These solutions differ quite
a lot, and it seems that the variable education contains outliers, which have been
downweighted in the robust version. Overall, the solution for the robust version
seems to be more logical, but more detailed diagnostics is recommended before
drawing more general conclusions.
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Fig. 6.8 Resulting dendrograms of Q-mode clustering for the expenditures data. Left is the
solution for the classical estimation of the variation matrix elements, right the dendrogram for
robust estimation
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6.7 Evaluation

The difficulty with cluster analysis is not only that there are various different pro-
cedures how to perform the clustering (hierarchical, partitioning, fuzzy clustering,
etc.), but that for each procedure there exist several different algorithms. Moreover,
several cluster algorithms require input parameters, like the number of clusters, and
depending on this choice, the results can differ quite a lot. Consequently, there is
a need for comparing the outcomes, and this is done by using the so-called cluster
validity measures.

The main goal of cluster analysis is to achieve highly homogeneous clusters,
i.e. the observations (or variables, in Q-mode clustering) within a cluster should be
very similar to each other. On the other hand, different clusters should be dissimilar,
because otherwise they should have been merged into one cluster. In other words,
heterogeneity between different clusters should be achieved. Heterogeneity can be
measured by

Bnc =
nc∑

k=1

‖vk − v̄‖2, (6.9)

where ‖·‖ denotes the Euclidean norm, vk is the k-th cluster center (k = 1, . . . , nc),
and

v̄ = 1

nc

nc∑

k=1

vk

is the overall mean of the cluster centers. Note that the cluster centers have to
be computed from the observations expressed in orthonormal coordinates, see
Eq. (6.5). This term is also called the between cluster sum of squares. Homogeneity
within the clusters can be defined by

Wnc =
nc∑

k=1

∑

i∈Ck

‖zi − vk‖2, (6.10)

where zi , i = 1, . . . , n, are the observations expressed in coordinates. This term
is called the within cluster sum of squares, since it considers squared Euclidean
distances from the observations to their own cluster center.

While Bnc should be large, Wnc should be small. However, both measures depend
on the number nc of clusters, and thus this needs to be considered in a validity
measure. Two prominent measures are the Calinski-Harabasz index

CHnc = Bnc/(nc − 1)

Wnc/(n − nc)
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and the Hartigan index

Hnc = ln
Bnc

Wnc

.

Practically, one considers a range of values for the possible number of clusters and
computes the validity measure(s) for each cluster solution. The largest value of the
index determines the optimal number of clusters.

Another prominent validity measure is the average silhouette width (Kaufman
and Rousseeuw 1990). Before computing this value, some definitions have to be
provided first. The average dissimilarity of an observation zi belonging to cluster
Ck to all other observations of the same cluster is given by

di,Ck = 1

n(k) − 1

∑

i,j∈Ck,i �=j

d2(zi , zj ),

where n(k) is the number of observations in cluster Ck . The average dissimilarity of
zi to observations from another cluster Cl is given by

di,Cl = 1

n(l)

∑

j∈Cl

d2(zi , zj ).

The smallest of these values is

di,C = min
l

di,Cl ,

and it corresponds to the smallest dissimilarity of the i-th observation to its “closest”
cluster. The silhouette value is defined as

si = di,C − di,Ck

max(di,Ck , di,C)
.

The values of si are within the interval [−1, 1]. If the value of si is close to 1,
the observation is well classified, a value of zero means that the observation is in
between two clusters, and a value of −1 refers to a poor classification. Observations
with negative silhouette values are probably assigned to a wrong cluster. The
average silhouette width is

1

n

n∑

i=1

si ,

and the higher this value, the better the classification.
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6.8 Examples

The data from the Kola project (Reimann et al. 1998) are again considered, but
this time the interest is in the moss data set, which is available in the R package
StatDA as data(moss). Only a selection of the available variables is used: the
concentration of the elements Cu, Ni, and Co, which are severely increased by
the emissions of the smelters in Russia; the elements Al, Fe, V, because their
concentrations will be strongly influenced by the input of dust to the moss; K, S,
P, which might characterize biological processes in the mosses.

library("StatDA")
sel <- c("Cu","Ni","Co","Al","Fe","V","K","S","P")
X <- moss[, sel]
dim(X)

## [1] 598 9

The selected data set has 594 observations and 9 variables. Q-mode clustering
is applied to see if indeed the selected variable groups form separate clusters.
The dendrogram in Fig. 6.9 confirms this. With these clusters of variables, the
practitioner may be able to identify processes in the region which are characterized
by the groups of variables. In our case, the meaning of the groups is clear since
the variables have just been selected according to some characteristics. Here, the
function clustCoDa_qmode from the package robCompositions is used. The
default method is Ward clustering, which is applied to the variation matrix (robustly
estimated).

library("robCompositions")
cl <- clustCoDa_qmode(X)
plot(cl)

In a next step the observations are clustered. The number of clusters is unclear,
and therefore hierarchical clustering is used first, with the complete linkage method.
This method is applied to the Euclidean distances computed from the ilr coordinates.
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Fig. 6.9 Q-mode clustering result for the selected Kola moss data
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Fig. 6.10 Hierarchical clustering with complete linkage for the selected Kola moss data

Figure 6.10 shows the resulting dendrogram. The observation indexes are overplot-
ted on the bottom of the dendrogram, but the main interest is in identifying a useful
number of clusters.

X.ilr <- pivotCoord(X) # coordinates
res.hclust <- hclust(dist(X.ilr)) # dist computes Euclidean distances
plot(res.hclust)

It can be clearly seen that the dendrogram of Fig. 6.10 indicates grouping
structure, and the results are inspected now by using seven clusters. This can be
done by cutting the dendrogram at a level (height) which leads to seven clusters, i.e.,
by applying the function cutree() to the result object, with the desired number
of clusters. Figure 6.11 (upper left) shows the results in form of the map of the Kola
region, where the colors represent the different clusters for the coordinates of the
sample locations.

Figure 6.11 also compares with the results from other cluster methods: with
k-means clustering (upper right), model-based clustering (lower left), and fuzzy
clustering (lower right). For better comparability, the number of clusters was always
set to seven. In case of fuzzy clustering, a hard assignment of the observations to
the clusters has been carried out, according to the largest value of the membership
coefficients for each observation. The following code is used to make the compari-
son.

# to reproduce exactly the same result
set.seed(123)
# store the cluster memberships
moss$hclust <- cutree(res.hclust, 7)
moss$kmeans <- kmeans(X.ilr, 7)$cluster
moss$mclust <- Mclust(X.ilr, 7, verbose = FALSE)$class
moss$fuzzy <- cmeans(X.ilr, 7)$cluster
# make data tidy
dfl <- reshape2::melt(moss, id.vars = 2:3, measure.vars = 35:38)
dfl$value <- factor(dfl$value)
colnames(dfl)[4] <- "cluster"
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Fig. 6.11 Results of different cluster methods with 7 clusters for the selected Kola moss data

Figure 6.11 can now be easily produced with (code without background map):

ggplot(dfl, aes(x = XCOO, y = YCOO, color = cluster)) + geom_point() +
facet_wrap(~variable) # produces Fig. 6.11.

Note that the sequence of the clusters, determining the color in the plots, can be
arbitrary.

The clustering outcomes shown in Fig. 6.11 differ to some extent, although one
can see similar patterns. For instance, all methods identify clusters around the
Russian smelters Nikel/Zapolyarnij (about 2.5 longitude units left from Murmansk)
and Monchegorsk (about one latitude unit below Murmansk; these locations are the
outlier locations in Fig. 5.8).

For a better interpretation of the clusters it can be desirable to look at the
dominance of each element in the composition of the cluster. This means that
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Fig. 6.12 Dominance of each element in each cluster for model-based clustering. The different
colors of the lines are the same as those used to show the clusters in the map, see Fig. 6.11, lower
left plot

for each compositional part a pivot coordinate is constructed—for each cluster
separately. The results are shown in Fig. 6.12 for model-based clustering (Fig. 6.11,
lower left plot). The colors of the lines are the same as the colors representing the
clusters. The green cluster is just around the Russian smelters. Indeed, the elements
Cu, Ni, and Co are dominant in this cluster, which confirms that these elements are
typical emission elements. The dust elements Al, Fe, and V are dominant in the blue
cluster, which in the map often follows some lines. For example, the blue cluster on
the coast in the east is at the harbor of Murmansk. Finally, the black and pink cluster
have dominance of the elements K, S, and P, and thus these refer to regions with
biological processes in the mosses.

res.mclust <- Mclust(X.ilr, 7, verbose = FALSE)
cnter <- matrix(NA, nrow = 7, ncol = 9)
for (i in 1:7){ cnter[i,] <- apply(X[res.mclust$class==i, ], 2, gm) }
dom <- matrix(NA, nrow = 9, ncol = 7) # variables in rows
for (i in 1:nrow(dom)){

Xi.ilr <- pivotCoord(cbind(X[,i], X[,-i]))
for (j in 1:ncol(dom)){

dom[i,j] <- mean(Xi.ilr[res.mclust$class == j, 1])
}

}
matplot(dom, type = "l", lty = 1, xaxt = "n",

ylab = "Dominance in cluster", col = 1:7)
mtext(sel, at = 1:9, side = 1)

The package robCompositions contains a convenient function called
clustCoDa() which allows to call various clustering methods and different
algorithms, and returns a unified output. As an illustration, hierarchical
clustering with complete linkage is applied, as it has been done previously, see
Fig. 6.10:
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# Note that the input is X (selected moss variables in original scale.
# The function constructs coordinates by default.
res2.hclust <- clustCoDa(X, k = 7, method = "complete",

scale = "none", verbose = FALSE)
table(cutree(res.hclust, 7), res2.hclust$cluster) # comp. with res2.hclust

##
## 1 2 3 4 5 6 7
## 1 140 0 0 0 0 0 0
## 2 0 155 0 0 0 0 0
## 3 0 0 213 0 0 0 0
## 4 0 0 0 12 0 0 0
## 5 0 0 0 0 39 0 0
## 6 0 0 0 0 0 35 0
## 7 0 0 0 0 0 0 4

One can see that the cluster results are identical. For practitioners it might be
convenient to use this function clustCoDa(), because this avoids to search for
packages which implement the clustering algorithm one is interested in.

One issue that has not been discussed earlier is scaling. In the non-compositional
case it is crucial for most cluster algorithms to first scale the variables in the data
set to mean zero and variance one. This makes the variables comparable for their
use with distance measures like the Euclidean distance. Is scaling necessary for
compositional data? Obviously, the raw compositional data should not be scaled,
because cluster analysis is applied in coordinates. So, the question is whether
the coordinates should be scaled or not. The answer is immediate, since a basic
requirement of a statistical analysis is invariance of the results with respect to the
order of the input variables. If the sequence of the compositional parts in the data
is changed—this corresponds to a rotation of the ilr coordinates given by the same
formula, like for pivot coordinates (3.25)—the results from cluster analysis should
be the same:

X3.ilr <- pivotCoord(X[, c(4:9,1:3)]) # change order of parts
res3.hclust <- hclust(dist(X3.ilr))
all.equal(res3.hclust$height, res.hclust$height)

## [1] TRUE

Indeed, the dendrogram information, stored in $height, is the same for the
modified and the original sequence of the compositional parts. Now for scaled parts:

res4.hclust <- hclust(dist(scale(X3.ilr)))
res5.hclust <- hclust(dist(scale(X.ilr)))
all.equal(res4.hclust$height, res5.hclust$height)

## [1] "Mean relative difference: 0.2146178"

Here, the sequence of the variables makes a difference. Therefore, scaling should
be strictly avoided.

In a final example the use of the silhouette value, introduced as validity criterion
in Sect. 6.7, is illustrated. For this purpose the (selected) Oslo data set from Sect. 4.3
is used, which consists of element concentrations in nine different plant materials. It
would be natural to find these plant materials as clusters in a cluster analysis. Plots
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Silhouette width si

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of pam(x = X.ilr, k = 9)

Average silhouette width :  0.33

n = 350 9 clusters Cj

j :  nj | avei Cj si

1 :   42  |  0.20

2 :   39  |  0.37

3 :   42  |  0.46

4 :   47  |  0.27

5 :   32  |  0.22

6 :   33  |  0.43

7 :   38  |  0.42

8 :   38  |  0.26

9 :   39  |  0.35



Fig. 6.13 Silhouette plot for the selected Oslo transect data, with horizontal dashed lines for the
true groups (plant materials)

of these silhouette values are implemented in the package cluster. The algorithm
pam() is used—it can be considered as a variant of k-means clustering which is
more robust against data outliers, see Kaufman and Rousseeuw (1990) for details.

Figure 6.13 shows the resulting silhouette plot. The input data X.ilr are the
same as used in the example of Sect. 4.3, and also the group information grp
is as before. The plot presents all silhouette values as gray bars, and they are
vertically arranged in the same order as the observations in the data set. Therefore,
one can compare with the groups representing the different plant materials, using
the information in grp: Observations of each group are arranged in blocks of the
data matrix, and whenever the group label changes, a horizontal dashed line is
added to the silhouette plot. Of course, it is not a must that groups and clusters are
identical, but one would expect a close relation. Indeed, this is true for most groups,
and only rarely some observations would have been better placed in other clusters
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(negative silhouette value). The average silhouette width indicates the quality of the
clustering, and this value could be compared with other cluster methods.

library("cluster")
res.pam <- pam(X.ilr, 9)
plot(res.pam, which.plots = 2)
abline(h = which(abs(diff(grp)) > 0), col = "blue", lty = 2)
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Chapter 7
Principal Component Analysis

Abstract Principal component analysis is a key tool in exploratory data processing
to get an impression about the multivariate data structure. Its goal is to reduce
dimensionality of the input data set by constructing new coordinates, called
principal components, that seek for the highest possible explained variability.
They can be derived by either using a singular value decomposition of the
data matrix, or by an eigenvalue decomposition of the covariance matrix to get
loadings (basis coefficients) and scores (coordinates) of the principal components.
In case of compositional data these computations need to be done in orthonormal
coordinates, preferably either in balances or pivot coordinate systems. The latter are
closely related to clr coefficients that are historically preferred in case of principal
component analysis. When the effect of outliers in any given orthonormal coordinate
representation of the compositions needs to be suppressed, a robust covariance
estimation can be used to get robust loadings and scores. Loadings and scores of
the first two principal components are often visualized together using a planar graph
called biplot that has a specific interpretation in case of clr coefficients.

7.1 Introductory Remarks

Principal component analysis (PCA) is one of the most popular and important
multivariate statistical methods. Its goal is to reduce dimensionality of the input
data set by constructing new coordinates, called principal components, which are
used to capture the complex multivariate data structure. The dimension of the data
set is reduced to the chosen number of principal components that are used either
for a visual presentation of the information or for a subsequent statistical analysis.
The principal components themselves are formed as linear combinations of the
original variables with the aim to achieve maximum variability, with the constraint
of mutual uncorrelatedness. Consequently, although standard algorithms for PCA
extract all principal components, corresponding to the dimensionality of the data,
just few of them are relevant for the subsequent analysis, namely those with the
largest variance.
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It is not the goal of this section to describe PCA in every detail. There are many
publications for this purpose (see, e.g., Johnson and Wichern 2007). Instead, the
focus is on compositional aspects of PCA which may be of primary importance for
readers of this book. One aspect is very intuitive: principal components, constructed
in any orthonormal coordinate system, result in uncorrelated ilr coordinates.
Moreover, for the purpose of PCA it is meaningful to also consider the respective
orthonormal basis vectors, because their coefficients indicate which part, or group
of parts, contributed (in the relative sense) most to the construction of the respective
principal components.

Throughout the book, the analysis of compositional data is done with orthonor-
mal coordinates, because they form the most natural way for a representation
with respect to the Aitchison geometry. Traditionally, PCA is an exception with
this respect in compositional data analysis, because clr coefficients are commonly
applied instead. This dates back already to the work of Aitchison (1983). Here,
a compromise is chosen: Although, due to methodological reasons, PCA will be
developed in orthonormal coordinates, also the advantages of its computation and
interpretation directly in clr coefficients will be shown. Namely, the latter approach
turns out to be computationally much simpler and can thus be advantageously
applied in practice.

7.2 Estimation of Principal Components

It frequently occurs in practice that due to a high initial number of compositional
parts in the data set, it gets too complex to achieve an overview and an interpretation
of the relations between the observations and/or compositional parts. In order to
simplify the analysis, it is thus worth to investigate whether the initial components
could be replaced by a smaller number of other, possibly artificial (latent) variables,
that summarize the information about the original parts by accepting a minimum
loss of information. Accordingly, PCA defines new variables, consisting of linear
combinations of the original ones, in such a way that the first axis is in the direction
containing most variation. Every subsequent new variable is orthogonal to the
previous variables, but again in the direction containing most of the remaining
variation. The new variables are termed principal components. From a practical
perspective, PCA thus provides a direct mapping of the original, possibly high-
dimensional data, into a lower-dimensional space capturing most of the information
contained in the original data.

7.2.1 Estimation by SVD

Although there are several approaches to estimate principal components, the
possibly most instructive one is based on singular value decomposition (Puntanen
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et al. 2011). Assume that the compositional data set is given by the n × D data
matrix X. This information can be expressed in arbitrary interpretable orthonormal
coordinates, for instance using Eq. (3.20). Denote the mean-centered coordinate data
matrix by Z. Mean-centering is essential here, because otherwise one would not
obtain the directions maximizing the variance. To remind (see Sect. 5.1.1), SVD
decomposes the n × (D − 1) matrix Z into three parts,

Z = UDW′, (7.1)

where U is an n × p orthogonal matrix containing the left singular vectors, D is
a diagonal matrix of order p containing the (positive) singular values d1, . . . , dp,
and W is a (D − 1) × p orthogonal matrix containing the right singular vectors.
Here, p = min(n,D − 1) indicates the maximum number of principal components
to be considered, and it is the minimum of the number of rows and columns of the
data matrix Z. Assume that the left and right singular vectors are sorted according
to a decreasing order of the singular values, i.e. d1 ≥ d2 ≥ . . . ≥ dp > 0.
Rearranging (7.1) into

Z = (UD)W′ = Z∗W′, (7.2)

indicates the resulting PCA transformation. The coordinates of the samples in the
new space, called scores, are contained in the matrix Z∗ = (z∗

ij ). Note that due
to orthogonal equivariance of PCA, the scores do not depend on the initial choice
of orthonormal coordinates in Z. The columns in U give the same scores in a
normalized form: they have unit variances, whereas the variances of the columns
in Z∗ correspond to those of each particular principal component. These variances
λi , for i = 1, . . . , p, are proportional to the squares of the diagonal elements in the
matrix D,

λi = d2
i /(n − 1). (7.3)

The sum of variances of the principal components is equal to the total variability of
the compositional data set, i.e.,

∑p

i=1 λi = totvar(X) for n ≥ D − 1. Accordingly,
the proportion of variance expressed by the i-th principal component is given by

Pi = λi∑p

i=1 λi

.

There are many options how to set up the relevant number of principal com-
ponents to be taken for the analysis. One popular choice is to examine the plot of
λi against i, the so-called scree plot (scree diagram, Cattell (1966)). The number of
components to be selected is the value of i corresponding to an “elbow” in the curve,
i.e., a change of slope from “steep” to “shallow.” The first point on the approximately
straight line is then taken as the last component to be retained. Call this index i = p̃,
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which now denotes the number of principal components one is interested in for the
further analysis.

The columns of the matrix W (the right singular vectors) are called loadings,
and W is called the loading matrix. Geometrically, the loadings form basis vectors
of the principal components, or, even more specifically, orthonormal compositions
(with respect to the Aitchison geometry), represented in the initial ilr coordinates,
e.g., (3.20). From a practical perspective, the loadings can be seen as weights of
the original ilr variables to determine the principal components. Therefore, from
the perspective of the loadings it is crucial already how the initial coordinates
are chosen. By using (3.20), the first element of the loading vector refers to the
contribution of the relative dominance of x1 in the composition for the construction
of the given principal component. Similarly, by a permutation of the parts in the
original composition, also the role of any other part in the construction of the
principal components can be highlighted by using pivot coordinates (3.26), with
the resulting loading matrix W(l).

Finally, with the selected number p̃ of principal components, the input coordinate
data matrix Z can be approximated by the n × (D − 1) matrix Z̃ = (z̃ij ) as

Z̃ = Z∗
p̃W

′
p̃, (7.4)

where the matrices Z∗
p̃

and Wp̃ contain just the first p̃ columns of Z∗ and W,
respectively. The approximation is considered in the least squares sense, which
means that the Frobenius matrix norm

||Z − Z̃||F =

√√
√
√
√

n∑

i=1

D−1∑

j=1

(zij − z̃ij )2

is minimal.
If an interpretable choice of orthonormal coordinates, like some expert knowl-

edge based balances, is considered for PCA, a comprehensive information about
groups of the original compositional parts is contained just in one coordinate system.
Nevertheless, if an interpretability in the sense of single parts is preferable, one
needs to compose the PCA output from D pivot coordinate systems. Particularly,
for high-dimensional compositions, this is not always the best option due to a
higher computational effort, and different alternatives have been proposed (Mert
et al. 2015) with the aim to use just one interpretable coordinate system for the
construction of principal components. An intuitive option is to take clr coefficients
for PCA of compositional data. According to (3.30), there is a relation between the
clr coefficients yl and the first coordinates z

(l)
1 from (3.25), for l = 1, . . . ,D. By

considering the singular value decomposition of the clr data matrix Y,

Y = UyDyW′
y = Y∗W′

y, (7.5)
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it follows directly from (3.24) that the D × p clr loading matrix is equal to Wy =
V(l)W(l). Specifically, (3.30) induces that the l-th row of Wy is equivalent to the first

row of W(l), differing only by the constant
√

D
D−1 (Kynčlová et al. 2016). Since the

matrix of clr coefficients does not have full column rank, there is always at least one
zero singular value in Dy for n ≥ D, the other values coincide with those from D.
Because ilr coordinates form an orthonormal basis in the hyperplane induced by clr
coefficients, the scores that correspond to the nonzero singular values are the same
in both matrices Y∗ and Z∗.

These properties of PCA in clr coefficients are of particular practical importance.
Namely, they refer to the fact that it is sufficient to proceed with PCA in
clr coefficients, the score and loading information can be easily derived there.
Particularly, the relative contributions of the original compositional parts (in the
sense of clr variables, or equivalently, in the sense of the first pivot coordinates
in (3.25)) to principal components can be analyzed directly from the clr loadings.
Further peculiarities of the clr coefficients will be demonstrated in the context
of compositional biplots for a graphical visualization of loadings and scores,
introduced in Sect. 7.3. Nevertheless, it is worth to note that the relation between
clr coefficients and orthonormal coordinates in the context of PCA is important
also in the reverse direction. Using ilr coordinates for the construction of principal
components justifies theoretically the possibility of including non-compositional
variables into PCA, which is not straightforward for coefficients with respect to
a generating system (Kynčlová et al. 2016).

7.2.2 Estimation by Decomposing the Covariance Matrix

An alternative algorithm to SVD for computing principal components is based on an
estimation of the covariance matrix. Assume, like in the previous section, a mean-
centered ilr coordinate data matrix Z. Then the sample covariance matrix of Z is

Sz = 1

n − 1
Z′Z. (7.6)

Using the SVD decomposition of (7.1) results in

Sz = 1

n − 1
WDU′UDW′ = 1

n − 1
WD2W′, (7.7)

due to the orthonormality of the columns in U. The diagonal matrix D2 contains
the squared singular values d2

1 , . . . , d2
p in its diagonal. Equation (7.7) shows that

the columns of W are just the eigenvectors of Sz to the eigenvalues d2
i /(n − 1),

which are the variances of the principal components, see Eq. (7.3). In other words,
an eigenvalue decomposition of the sample covariance matrix of the centered matrix
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of ilr coordinates leads to the same solution as an SVD applied to these data. The
loading matrix W is exactly the same in both approaches, and with the help of
Eq. (7.2), one obtains the same matrix of scores, since

ZW = UDW′W = UD = Z∗. (7.8)

One could ask now, what is the advantage of this algorithm to obtain the PCA
solution? While in the above approach the sample covariance matrix was used, see
Eq. (7.6), one could also make use of a robustly estimated covariance, and proceed
with the eigenvalue decomposition as explained above. A popular estimator for this
purpose is the MCD estimator, mentioned already in Sect. 5.2.3. This estimator is
applied to the uncentered coordinates, and yields robust estimates of the location
tMCD and covariance CMCD. As mentioned in Sect. 5.2.3, the MCD estimator is
affine equivariant, and thus the specific choice of the ilr coordinates will not alter
the resulting principal components.

The procedure to get principal components based on the MCD estimator (for the
case n ≥ D−1) is as follows (Filzmoser et al. 2009). The loading matrix is obtained
by an eigenvalue decomposition of the MCD covariance matrix,

CMCD = WMCDDMCDW′
MCD,

with the matrix of eigenvectorsWMCD, which is the loading matrix, and the diagonal
matrix DMCD, containing the eigenvalues in its diagonal. These eigenvalues are the
(robust) variances of the principal components. The principal component scores are
obtained by first centering the coordinates matrix column-wise with the elements
of tMCD. Denote these robustly centered coordinates by ZMCD. Then, following
Eq. (7.8), the PCA scores are

Z∗
MCD = ZMCDWMCD.

The resulting principal components are robust against outliers (Croux and Haes-
broeck 2000). Practically, this means that the first most important principal com-
ponents summarize the information described by the joint distribution of the data
majority. For non-robust PCA it could happen that single outliers attract the first
principal component directions, because these outliers lead to a large (non-robust)
variance of those principal components. This is not desirable, since the purpose of
PCA is not to identify outliers (PCA would also be unreliable for this purpose),
but rather to summarize the information contained in the data majority in lower
dimension.

As it was mentioned in Sect. 5.2.3, the computation of the MCD estimator is not
possible if the determinant of the covariance matrix is zero, i.e. if the input matrix
for PCA does not have full column rank. This is the case for clr coefficients. If a
representation of PCA loadings and scores is preferred there, the MCD estimates
of location and covariance need to be computed in any ilr coordinates and then
expressed in the clr space in terms of loading and score matrices (Filzmoser et al.
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2009). Because scores that correspond to nonzero singular values are the same
for both clr and ilr representations, no further transformation of Z∗

MCD is needed.
For computing the loadings, the linear relation from Eq. (3.24) is used, where the
columns of the matrix V are defined as in (3.23) for the pivot coordinates (3.20).
Accordingly, the MCD estimate of the loading matrix in clr coordinates is given as

Wy,MCD = WMCDV′. (7.9)

7.3 Compositional Biplot

The biplot is a two-dimensional graphical display of both objects (observations) and
variables in one plot (Gabriel 1971). The term “bi” is not connected to the dimension
two, but to the fact that both observations and variables are represented together.
For our purpose, biplots are closely connected to the idea of PCA and singular
value decomposition, although biplots can also be constructed for other methods
(multidimensional scaling, correspondence analysis, nonlinear biplots, etc.), see
Gower and Hand (1996). Obviously, two-dimensional plots are transparent and
easy to handle. On the other hand, the projection of the data to two dimensions
results from the assumption that the data set has approximately rank two, so that
two dimensions explain the majority of the data variability. For a data matrix with a
higher rank, the first two principal components should represent the data information
sufficiently well.

Let the n × (D − 1) matrix Z of mean-centered compositional data in ilr
coordinates be decomposed as in (7.1) as Z = UDW′. A rank-two approximation of
Z in the least squares sense, Z(2), is obtained by taking the first two singular values
d11, d22 and the first two columns of U = (u1, . . . ,up) and W = (w1, . . . ,wp),

Z ≈ Z(2) = (u1,u2)

(
d11 0
0 d22

)(
w′

1
w′

2

)
. (7.10)

The matrix Z(2) can also be expressed in the form

Z(2) = GH′ (7.11)

with

G = (u1,u2)

(
d11 0
0 d22

)1−c
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and

H = (w1,w2)

(
d11 0
0 d22

)c

for c ∈ [0, 1]. Depending on the choice of c, the first two singular values are
“distributed” between the matrices G and H, representing the observations and
variables, respectively. The biplot is now formed just from the rows of the matrices
G and H, i.e. from n + D − 1 two-dimensional vectors. The rows of the matrix G
define coordinates of the different observations, and they are shown as points in the
biplot. The rows of H represent the variables and these points are the arrows-heads
in the biplot, starting from the origin.

For the choice c = 0.5, the vectors for observations and variables would have
the same scaling. With c = 0, the PCA transformation (7.2) for p = 2 components
would be obtained. In such a case it is common to refer to the form biplot which
favors the display of individuals (in terms of scores of principal components).
Nevertheless, in practice the most common choice corresponds to c = 1, leading to
the covariance biplot, which favors the display of the variables; this option will be
discussed in the following. The principal component scores are now normed and the
variability of the principal components is assigned to the loading vectors. Rescaling
the matrices G and H leads to new matrices (though with the same notation),

G = √
n − 1(u1,u2), H = 1√

n − 1
(w1,w2)

(
d11 0
0 d22

)
, (7.12)

and to an intuitive interpretation of the biplot. Specifically, the inner product
between the rows ofH, namely the matrixH′H, approximates the sample covariance
matrix Sz. Consequently, the length of the arrows approximates the standard
deviation of the corresponding coordinates, and the cosine of the angle between
two arrows indicates the correlation coefficient between the respective variables. It
follows directly from the interpretation of the principal component loadings that
the points in the direction of single arrows correspond to observations with high
abundance of the respective variables. Finally, the Euclidean distance between the
rows of G approximates the Mahalanobis distance between the observations. Thus,
the distance of the point in the biplot from the origin (note that the data are centered)
indicates the Mahalanobis distance of the data point from the mean, the result that
can be useful also for outlier detection purposes.

Because biplots of compositional data cannot be constructed for the original
observations and both individuals and variables are of mutual interest, the choice
of interpretable coordinates is a key point to deliver a reasonable output of the
biplot analysis. The first natural choice is to consider an interpretable SBP and
proceed with the above interpretation of the biplot. In cases where such a coordinate
system is not available, an alternative possibility is to take the set of pivot coordinate
systems (3.25). Due to rotational invariance of SVD, the matrices U and D are
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always the same. The only difference thus is in the loading matrices W(l) =
(w(l)

1 , . . . ,w(l)
p ), l = 1, . . . ,D, where only the first two columns are used here.

The first row of W(l), or directly of the respective matrix

H(l) = 1√
n − 1

(w(l)
1 ,w(l)

2 )

(
d11 0
0 d22

)
,

contains the loading coefficients of z
(l)
1 . Accordingly, the resulting arrows stand for

the relative dominance of single parts within the composition. Of course, taking D

biplots and considering always just one arrow there would not be very useful in
practice. By following the case of PCA, the way out is to merge the arrows together
into one biplot with the same score values (Kynčlová et al. 2016). Obviously, it
would not be reasonable to consider correlations between the coordinates z

(l)
1 , l =

1, . . . ,D, as they come from different coordinate systems. Moreover, due to the
relation between clr coefficients and coordinates z

(l)
1 (3.30), one would also need to

cope with the distorted covariance structure of clr variables. On the other hand, by
considering orthonormal coordinates for the biplot construction it is straightforward
to include also other compositional and non-compositional variables (the former in
an appropriate coordinate representation), including correlation analysis with the
newcoming variables.

The above considerations lead to a possibility to construct the biplot of com-
positional data directly in clr coefficients (Aitchison and Greenacre 2002), similar
as for the case of PCA. In fact, this is still considered to be the default approach
in the literature (van den Boogaart and Tolosana-Delgado 2013; Pawlowsky-
Glahn et al. 2015), so it is frequently referred to as the compositional biplot.
Because coefficients with respect to a generating system are employed there, certain
limitations concerning the interpretation when compared to the standard biplot
need to be taken into account. The lack of the possibility of correlation analysis
between clr coefficients (in terms of angles between the arrows) is replaced by links
between the vertices of rays corresponding to the clr variables yj and yk , j, k ∈
{1, . . . ,D}, j �= k. The link approximates the variance of the pairwise logratio
between the original compositional parts xj and xk, i.e. an element of the variation
matrix (see Sect. 4.1). Accordingly, if two vertices coincide, or nearly so, the
respective parts are proportional, or nearly so. Although also other interpretational
tools for compositional biplots are available (Aitchison and Greenacre 2002), they
are rather rarely used in practice. The only exception is the angle between two
links, whose cosine approximates the correlation coefficient between two pairwise
logratios. Accordingly, two uncorrelated logratios provide orthogonal rays; see, e.g.,
van den Boogaart and Tolosana-Delgado (2013) for details.
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7.4 Examples

Principal component analysis can be carried out in R by the function prcomp
(SVD-based, see Sect. 7.2.1) or by princomp (eigen-decomposition of the covari-
ance matrix, see Sect. 7.2.2). The function pcaCoDa from the package robCom-
positions for PCA for compositional data uses internally the function princomp.
This function works as described above: it represents the data in orthonormal
coordinates before PCA is applied. For reasons of interpretation using the biplot,
the results are then internally projected to clr coefficients. The function pcaCoDa
has four important function arguments,

args(pcaCoDa)

## function (x, method = "robust", mult_comp = NULL, external = NULL)
## NULL

where x should be a compositional data set (as an object of class data.frame),
method can be used to select alternatively a non-robust method (default is MCD-
based robust PCA). The parameter mult_comp is required when the data consist
of more than one composition which need to be analyzed jointly. Here, each
composition is independently represented in orthonormal coordinates before PCA is
applied. The function argumentexternal is needed when data should be analyzed
that consist of compositional parts and non-compositional variables. The function
returns scores, loadings, eigenvalues, and a princomp object.

7.4.1 Representation of Principal Components in a Ternary
Diagram

The first example shows the first principal component as a line in a ternary
diagram, when the loadings (providing the direction) computed in ilr coordinates
are re-expressed in the original sample space of the compositions, see Fig. 7.1.
For this purpose, the data set arcticLake is used that consists of 39 three-part
compositions on sand, silt, and clay in an Arctic lake, see Aitchison (1986). It is
an example to use principal component analysis as a modeling tool to describe
relationships between the variables and the trend in a data set if no response variable
is available on which the variables might depend.

7.4.2 Example: Household Expenditures at EU Level

Principal component analysis is primarily a tool for dimension reduction. In the
following, the expendituresEU data set is used which represents the mean
consumption of 12 categories of expenditures of households at EU level for 27
countries, see also Sect. 6.6.
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data("arcticLake")
ternaryDiag(arcticLake, line = "pca")
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Fig. 7.1 First principal component direction represented in the original data space of the
compositions

PCA for compositional data is carried out, and the non-robust approach is
compared with the robust one.

data("expendituresEU")
## compositional PCA, non-robust
p_comp <- pcaCoDa(expendituresEU, method = "classical")
## compositional PCA, robust
set.seed(234) # to reproduce the result exactly
p_comp_rob <- pcaCoDa(expendituresEU, method = "robust")

The results are presented in Fig. 7.2 by compositional biplots. The non-robust and
robust versions lead to slightly different results (note that the PCA results are unique
up to the orientation of the axes). For instance, the variable Health, represented by
the respective clr coefficient, has a different relation to the other variables in the
robust analysis; in the non-robust case it is along the direction of relative dominance
of Food, Communications and Alcohol within the given composition. The reason
might be the effect of outliers like Sweden (S). Therefore, the robust analysis will be
more reliable for the interpretation. One can see mainly former Eastern-European
countries on the left-hand side of the plot, where the proportion of expenditures
of Food is dominating. Cyprus (CY) has a high dominance of expenditures in
Education, whereas for Sweden one can see a very low value.

The proportion of explained variance is also of interest. For the robust composi-
tional PCA this can be seen by:

summary(p_comp_rob)

## Importance of components:
## Comp.1 Comp.2 Comp.3
## Standard deviation 1.3953487 0.8208709 0.55903864
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par(mfrow=c(1,2), mar = c(4,4,2,2))
biplot(p_comp, xlabs = rownames(expendituresEU))
biplot(p_comp_rob, xlabs = rownames(expendituresEU))
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Fig. 7.2 Compositional biplot for non-robust (left) and robust (right) PCA

## Proportion of Variance 0.5596182 0.1936761 0.08982763
## Cumulative Proportion 0.5596182 0.7532943 0.84312191
## Comp.4 Comp.5 Comp.6
## Standard deviation 0.45989315 0.3301670 0.28497390
## Proportion of Variance 0.06079113 0.0313324 0.02334191
## Cumulative Proportion 0.90391303 0.9352454 0.95858735
## Comp.7 Comp.8 Comp.9
## Standard deviation 0.24635168 0.22835496 0.125850770
## Proportion of Variance 0.01744365 0.01498812 0.004552375
## Cumulative Proportion 0.97603100 0.99101912 0.995571496
## Comp.10 Comp.11
## Standard deviation 0.120623494 0.0292817685
## Proportion of Variance 0.004182059 0.0002464455
## Cumulative Proportion 0.999753554 1.0000000000

Note that the principal components are constructed in ilr coordinates, thus just
11 new variables are considered in the above list. After their transformation into clr
coefficients the cumulative proportions would remain unchanged plus an additional
component with zero standard deviation would be obtained.

The first two robust principal components explain about 75% of the total vari-
ance, and thus the biplot in Fig. 7.2 (right) is already meaningful. This information
of explained variance can also be visualized in the scree plot, see Fig. 7.3. Indeed,
the first two components seem to summarize the information contained in the data
sufficiently well.
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plot(p_comp_rob, type = "l")
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Fig. 7.3 Scree plot for robust compositional PCA of the expenditures data

res <- pcaCoDa(Beer, method = "classical")
par(mfrow = c(1,2), mar = c(4,4,2,2))
biplot(res, xlabs = Beer.age, xlim = c(-0.3,0.2))
biplot(res, xlabs = Beer.origin, xlim = c(-0.3,0.2))
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Fig. 7.4 Biplots for the beer data set. Left: observation are labeled according to the age of the
beer (f-fresh, o-old); right: observation are labeled according to the producer

7.4.3 Example: Beer Data

In Sect. 1.2.2, some variants of PCA to a data set describing the composition of old
and fresh beers have been presented. Here, the data set is treated as compositional
data set, and the appropriate methodology is applied. Figure 7.4 shows the biplots
resulting from non-robust compositional PCA. Because of the many variables, the
biplots look a bit messy. The difference between the left and the right plot is
only in the labels for the observations: The left biplot shows symbols “f” (fresh)
and “o” (old) for the age of the beers, while the right biplot shows the numbers
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of the different producers. Dominance in the variable Furfural, a toxic organic
compound, seems to be a good indicator for old beer. However, producer 9 seems
to produce a very different beer composition, with dominance, for instance, for
variable 2Ac5MeFu.

7.4.4 Example with Two Different Compositions

The Gemas data set (Reimann et al. 2012) is again considered, as it is available in
data(gemas) of the package robCompositions. In fact, there are two different
compositions available, measured on the same locations: the proportion of sand,
silt, and clay in the soils, forming the first composition, and the concentration of
various chemical elements, forming the second composition. Of course, the two
compositions are related to each other, and these relations are investigated with
PCA.

The function pcaCoDa has an argument mult_comp, which allows to provide a
list with the column indexes of the different compositions. Then these compositions
are extracted independently from the data, are expressed in coordinates, and are
jointly treated in a PCA. Finally, the loadings are expressed in clr coefficients for
the respective compositions in order to obtain an interpretation in the compositional
(clr) biplot. Figure 7.5 shows the resulting biplot. High scores on the first principal
component (PC1) refer to clay-dominant soils, which are also characterized by a
dominance of Fe, V, and Cr, for instance. On the other hand, high values for PC2
are dominated by sand, also related to a dominance of Na and Sr. The scores are
visualized in Fig. 7.6 in the European map, using symbols that result from a split
of the distribution of the scores at the quantiles q0.05, q0.25, q0.75, and q0.95. The
scores show clear regional patterns: Generally speaking, southern European soils
are dominated by clay, while northern European soils are dominated by sand, with
the corresponding chemical compositions.

7.4.5 Example for PCA Including External Non-compositional
Variables

The article Kynčlová et al. (2016) has demonstrated how a biplot can be constructed
if, in addition to a composition, external non-compositional variables are available.
This is also implemented in the function pcaCoDa, where the external variables
can be provided through the argument external.

As an illustration, data from the German federal election 2013 are used, where
the election data in the different federal states are considered. The compositional
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data("gemas")
# Index of rows with NA s (25 NA s in summary)
isna <- missPatterns(gemas)$rindex
# Index of rows with zeros (4 zeros in summary)
iszero <- zeroPatterns(gemas)$rindex
# exclude those
gemas <- gemas[!isna & !iszero, ]
# pca
res <- pcaCoDa(gemas, mult_comp = list(c(9:11), c(12:29)))
biplot(res, xlabs = rep(".", nrow(gemas))) # obs. as dots
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Fig. 7.5 Biplot for the two compositions in the data set gemas: the sand/silt/clay composition,
and the composition with the element concentrations

parts are the parties CDU/CSU (Christian Democratic Union and Christian Social
Union of Bavaria), SDP (Social Democratic Party), DIE LINKE (The Left), GRÜNE
(Alliance ’90/The Greens), FDP (Free Democratic Party) and other parties, forming
the rest of the parties which participated in the elections. The votes are reported
in absolute numbers of valid votes. In addition to this composition, for the same
federal states the unemployment rate and the average monthly income in Euros
are considered as external variables. The data are available as data(election)
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library("StatDA")
par(mfrow = c(1,2), mar = c(0.1,0.1,0.1,0.1))
xc <- gemas[, 2] # longitude
yc <- gemas[, 3] # latitude
plot(xc, yc,

type = "n", xaxt = "n", yaxt = "n", xlim = c(-11,37), ylim = c(33,72))
SymbLegend(xc, yc, res$sco[, 1],

leg.position = "topleft", leg.title = "PC1 scores")
plot(xc, yc,

type = "n", xaxt = "n", yaxt = "n", xlim = c(-11,37), ylim = c(33,72))
SymbLegend(xc, yc, res$sco[, 2],

leg.position = "topleft", leg.title = "PC2 scores")
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PC1 scores
> 2.40 − 4.29
> 0.91 − 2.40
> −0.85 − 0.91
> −2.51 − −0.85
   −4.46 − −2.51
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Fig. 7.6 Plots of the PC1 and PC2 scores from Fig. 7.5 in the European map

from the package robCompositions. After some transformation/scaling of the
external variables, the output from robust PCA is obtained:

data("election")
# transform external variables
ue <- election$unemployment / 100
ue.tr <- log((ue) / (1 - ue)) # logit transformation
inc <- scale(election$income) # scale the Euro values
ext <- data.frame(Unemployment = ue.tr, Income = inc)
dimnames(ext)[[1]] <- dimnames(election)[[1]]
## PCA
res <- pcaCoDa(election[, 1:6], method = "robust", external = ext)
summary(res)

## Importance of components:
## Comp.1 Comp.2 Comp.3
## Standard deviation 2.0614949 0.66280436 0.38814335
## Proportion of Variance 0.8533327 0.08821137 0.03025089
## Cumulative Proportion 0.8533327 0.94154408 0.97179497
## Comp.4 Comp.5 Comp.6
## Standard deviation 0.30986292 0.174155774 0.117763961
## Proportion of Variance 0.01927938 0.006090173 0.002784702
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## Cumulative Proportion 0.99107435 0.997164521 0.999949223
## Comp.7
## Standard deviation 1.590219e-02
## Proportion of Variance 5.077708e-05
## Cumulative Proportion 1.000000e+00

Accordingly, the first two principal components explain much more than 90% of
the total variance, and thus a biplot of these components will be very informative,
see Fig. 7.7. A cluster of very similar observations for small values on PC1 gets
immediately visible; these are the federal states Brandenburg (BB), Mecklenburg-
Vorpommern (MV), Saxony (SN), Saxony-Anhalt (ST), and Thuringia (TH), which
(with the exception of East Berlin) constitute the former East Germany. Not only the
voting behavior is different in these states, but also the distribution on the external
variables is different (e.g., lower income). It is also interesting to see the relation
between the external variables and the votes.

biplot(res, scale = 0) # produces Fig. 7.7
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Chapter 8
Correlation Analysis

Abstract The goal of correlation analysis is to quantify the strength of the
relationship between a pair of variables or between groups of variables. In case
of compositional data, it might be particularly misleading to compute correlation
coefficients for the original data: due to scale invariance of the compositions,
any correlation values could be obtained, depending on the representation of
the compositional data in the respective equivalence classes. Therefore, a proper
coordinate representation of compositions is again a must. A default setting are
balance coordinates, for which either the standard Pearson correlation coefficient as
a measure of strength of the linear association between the two balances or robust
correlations can be computed. If an interpretation of the correlations in terms of a
pair of parts is required, symmetric pivot coordinates capturing the dominance of
these parts within the given composition are recommendable. Correlation analysis
between two coordinates can also be extended to correlations between one coordi-
nate and a set of coordinates, or to group correlations summarizing the relationships
between balance representations of groups of compositional parts.

8.1 Correlation Measures

Since compositional data are expressed in orthonormal coordinates, like in balances
z̃1, . . . , z̃D−1 (3.37), any of the established correlation measures can be used
to evaluate their association. For measuring the strength and direction of the
linear relationship between two coordinates, the well-known Pearson correlation
coefficient is widely used, defined as

ρz̃i ,z̃j
= cov(z̃i , z̃j )√

var(z̃i ) var(z̃j )
, i, j = 1, . . . ,D − 1. (8.1)

This measure is normed to the interval [−1, 1], with 0 indicating no linear relation,
and 1 (-1) for perfect positive (negative) linear relation. It is possible to express the
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squared correlation coefficient as

ρ2
z̃i ,z̃j

= 1 − |Σ|
var(z̃i) var(z̃j )

with Σ =
(

var(z̃i ) cov(z̃i , z̃j )

cov(z̃j , z̃i) var(z̃j )

)
, (8.2)

where |Σ | denotes the determinant of Σ .
Equation (8.1) refers to random variables z̃i and z̃j , and to the theoretical

covariance “cov” and theoretical variance “var”. When a sample of n balance
coordinates (3.37) is available, the covariance and variances are replaced by their
sample counterparts. Either the classical estimators can be used or in presence of
data outliers robust counterparts can be taken, e.g. based on the MCD estimator, see
Sect. 5.2.3 for details. Correlation coefficients of coordinates z̃1, . . . , z̃D−1 can be
arranged in the correlation matrix R = (ρz̃i ,z̃j

) of order D − 1. By construction this
is a symmetric, positive definite matrix with ones forming the main diagonal.

The interpretation of the correlation coefficient should acknowledge the fact
that not the original compositional parts, but two balances are considered. In
other words, as the coordinates (3.37) express balances between two groups of
compositional parts, a positive value of the coefficient indicates that with increasing
dominance of the group of parts in the numerator of z̃i over the parts in its
denominator, also the dominance of the parts in the numerator of z̃j increases,
and vice versa for negative correlation. This interpretation could be a bit tricky,
if sequential binary partitioning is not defined according to a deeper knowledge of
the inherent data processes. As an alternative, symmetric pivot coordinates (3.35)
and (3.36) can be used, where the roles of the single compositional parts are
highlighted. This case is briefly discussed in the next section. Note that clr
coefficients are not recommended for the purpose of correlation analysis because
of a negative bias of the covariance (correlation) structure (Sect. 3.3.4).

The Pearson correlation coefficient is definitely not the only option for measuring
statistical relationships between two or more random variables or the observed data
values. For example, an important class are rank correlations that aim to study the
association between the ranks of different variables or different rankings of the same
variable. Here one can use:

• Spearman’s rank correlation coefficient, a measure of how well the relationship
between two variables can be described by a monotonic function;

• Kendall’s tau correlation coefficient, a measure of the portion of ranks that match
between two variables;

• Goodman and Kruskal’s gamma, a measure of the strength of association of the
cross tabulated data when both variables are measured at the ordinal level.

Rank correlation is particularly recommendable in cases when the distribution of
both variables is strongly deviating from normality. It is just important to note that
even for these measures, when applied to compositional data, a proper coordinate
representation is needed. On the other hand, rank correlation measures do not utilize
the whole information contained in the data, resulting from ordering the coordinate
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values. Therefore, throughout this book just classical and robust Pearson correlation
is applied.

8.2 Relating Two Compositional Parts

The efforts to perform correlation analysis between the original compositional parts
of a D-part composition x = (x1, . . . , xD)′ led to some confusion in the past
(Pearson 1897; Chayes 1960). One reason is the negative bias of the covariance
structure, when the proportional representation of compositional data is considered,
namely

cov(xl, x1) + . . . + cov(xl, xl−1) + cov(xl, xl+1) + . . . + cov(xl, xD) = −var(xl),

for l = 1, . . . ,D. Similar as for clr coordinates, there is a tendency to negative
covariances, and thus the correlations lose their predicative value. Moreover, the
correlation structure of compositional data is not scale invariant: using arbitrary
(generally different) representations with sum κ of the parts in (3.4) for each com-
position in the sample would lead to arbitrary values of the correlation coefficients.
Therefore, a proper coordinate representation of compositions is a must.

It was advocated in the previous section that for measuring association of two
compositional parts in terms of correlation analysis, symmetric pivot coordinates
z
(i,j)

1 (3.35) and z
(i,j)

2 (3.36) are preferred. Nevertheless, also here one must be
careful with the interpretation of the resulting correlation coefficient. Concretely,
both symmetric pivot coordinates can be interpreted in terms of a dominance of
both parts to the average behavior of the rest (Kynčlová et al. 2017). Hence, the
remaining parts can influence the value of the correlation coefficient as well, which
fully corresponds to the relative nature of compositional data. As a consequence,
a positive correlation coefficient would mean that the dominances of the two
amounts over the respective “average representatives” of the other parts increase
simultaneously and vice versa for negative correlation. A zero coefficient would
mean that the dominances of these two amounts are controlled by uncorrelated
processes. Of course, part x1 is contained in z

(i,j)

2 and, conversely, x2 in z
(i,j)

1 .
Accordingly, it is interesting to see what happens if ratios with x1 uniformly increase
by a constant behavior of the other parts (and their ratios). By construction of
both coordinates, while z

(i,j)

1 increases, z
(i,j)

2 slightly decreases (x1 is contained
with reduced power in its denominator), resulting in negative correlation. This
reminds to the case of correlation between two original parts in a proportional
representation, but now in a geometrically reasonable manner with orthonormal
coordinates. Moreover, it is also a kind of logical result: if the dominance of one part
(here x1) increases, the dominance of another part (x2) must necessarily decrease.
However, the effect for the latter part cannot be the same: x1 is just one out of D −1
parts to which the dominance of x2 is related.
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By summarizing all corresponding correlation coefficients between z
(i,j)

1 and

z
(i,j)

2 into one matrix, the pivot correlation matrix RP (x) of order D is obtained
(Kynčlová et al. 2017). It is symmetric with unit diagonal as the standard correlation
matrix. Moreover, any scaling and shifting in the compositional sense, i.e. by
perturbing x with a non-random composition b = (b1, . . . , bD)′ and powering with
a real constant a in order to get a composition a  x ⊕ b = (xa

1 b1, . . . , x
a
DbD)′,

yields the same result, RP (a  x ⊕ b) = RP (x). Although experiments with data
sets indicated some further interesting properties (like positive definiteness), it is
crucial to realize that the elements of RP (x) are formed by using D(D − 1)/2
different coordinate systems that prevents from processing it simply as a whole,
e.g. by computing principal components.

8.3 Multiple Correlation

The expression (8.2) of the squared correlation coefficient opens a possibility to
consider more general correlation measures, appropriate in case of compositional
data (Filzmoser and Hron 2009). A measure of linear relationship between a balance
z̃i and a group of balances z̃k is the multiple correlation coefficient ρz̃i ,z̃k . This
measure returns a value in the interval [0, 1], where 0 indicates no linear relationship
and 1 perfect linear relation. The square of the multiple correlation coefficient is
defined as

ρ2
z̃i ,z̃k

= cov(z̃i , z̃k)Σ
−1
k cov(z̃k, z̃i )

var(z̃i )
, (8.3)

where Σk = cov(z̃k),

cov(z̃i , z̃k) = (cov(z̃i , z̃1), . . . , cov(z̃i , z̃i−1), cov(z̃i , z̃i+1), cov(z̃i , z̃D−1))

and cov(z̃k, z̃i ) = [cov(z̃i , z̃k)]′. An equivalent formulation is

ρ2
z̃i ,z̃k

= 1 − |Σ |
|Σk| var(z̃i)

with Σ =
(

var(z̃i ) cov(z̃i , z̃k)

cov(z̃k, z̃i ) cov(z̃k)

)
.

Similar as for the Pearson correlation coefficient, the sample multiple correlation
coefficient can be computed either classically using the sample covariance matrix
or robustly by employing the MCD estimator, for instance.

Typically, instead of computing (8.3) with general balances (3.37), pivot coordi-
nates (3.25) are utilized; z

(l)
1 is taken in place of zi , and for zk the remaining pivot

balances z
(l)
2 , . . . , z

(l)
D−1 are considered. Accordingly, the resulting multiple correla-

tion coefficient is a measure of strength of the linear relationship between relative
information on xl and the rest of the composition. Small values of the coefficient
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indicate an exceptional behavior of dominance of the part xl with respect to the other
compositional parts. Finally, a large difference between the classical and robust
versions of the coefficient indicates that the possible relation is driven by outliers.

Alternatively, the multiple correlation coefficient can also be used to measure
the strength of the linear relationship between a non-compositional variable and a
composition, expressed in (any) ilr coordinates. For affine equivariant estimators of
location and covariance (classical, or robust) the resulting value is always the same.

8.4 Correlation Between Groups of Compositional Parts

It is possible to go even one step further and define the group correlation coefficient
ρz̃k,z̃l for two vectors z̃k and z̃l of balance coordinates, representing usually two non-
overlapping groups of compositional parts of one composition, or two compositions.
Its square is defined as

ρ2
z̃k ,z̃l

= 1 − |Σ∗|
|Σk| |Σ l | with Σ∗ =

(
cov(z̃k) cov(z̃k, z̃l )

cov(z̃l , z̃k) cov(z̃l)

)
,

where Σk = cov(z̃k), Σ l = cov(z̃l ) and cov(z̃k, z̃l ) = [cov(z̃l , z̃k)]′ stands for a
matrix of covariances between coordinates from z̃k and z̃l , see Anderson (2003).
Similar as for the multiple correlation coefficient, this measure yields a value in the
interval [0, 1], where 0 indicates no linear relationship and 1 perfect linear relation
between the groups of compositional parts.

This straightforward extension is less known, but there is a link to the more
frequently used canonical correlation analysis. This method not only measures
the linear relationship between two multivariate data sets, but searches for latent
variables—so-called canonical variates—in each of the data groups such that the
scores on the latent variables have maximal correlation (see, e.g., Johnson and Wich-
ern 2007). Nevertheless, these new variables must not necessarily be representative
(in terms of explained variance) within the multivariate data structure of balance
groups, e.g., like principal components. Therefore, the use of canonical correlation
analysis is rather limited to more specific problems; an example of their use with
compositional data in geochemistry is presented in Filzmoser and Hron (2009).

A natural question which might arise is, which values of the above coefficients
are already high enough to represent a strong association between the coordinates or
their groups. One possibility would be to apply statistical inference like hypotheses
testing. However, it maybe more useful to state that this varies strongly depending on
the concrete data and problem setting. While in natural sciences in general stronger
associations are requested, it is frequently not the case with data coming from
economics or social sciences, or for omics data containing many erroneous parts.
Therefore, it is rather relevant to compare the values of the correlation coefficients
mutually to see, which relationship is relatively stronger than the others.
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8.5 Examples

8.5.1 Example for Correlation Between Single
Compositional Parts

Consider the data set data(phd) from the package robCompositions, see also
Table 1.2, with the numbers of PhD students in different subject areas. This data
set has also been used in the examples of Chap. 3; Fig. 3.5 already presented
symmetric pivot coordinates for the two subject areas “technical” and “health.” This
is the appropriate representation for computing the correlation between these two
parts, because these orthonormal coordinates represent symmetrically all relative
information of these parts of interest to the rest. Moreover, since these coordinates
represent the information in the usual Euclidean geometry, standard correlation
measures can be employed which rely on this geometry.

Figure 8.1 shows a scatterplot matrix, where for each plot in this matrix
symmetric pivot coordinates were constructed and the first two of them were taken
for the parts representing the axes. In other words, for each plot symmetric pivot
coordinates need to be constructed individually, but there is of course symmetry
around the main diagonal of the plot. Within the loop generating the plots, also the
Pearson correlation and Spearman’s rank correlation coefficient is computed.

The correlations can also be computed using the function corCoDa from the
package robCompositions. The code is as follows:

Rp1 <- corCoDa(phdred)
Rs1 <- corCoDa(phdred,method="spearman")

The resulting objects Rp1 and Rs1 are identical with Rp and Rs, respectively,
from the code in Fig. 8.1.

Figure 8.1 reveals several outliers, most visibly France (FR) where the pro-
portions of PhD students are quite different to those for most other countries.
Such outliers may affect the Pearson correlation, but they are less influential to
a Spearman rank correlation since this measure is just based on the ranks of the
observations, and not directly on their values of the symmetric pivot coordinates.
One could also compute robust correlations using the MCD estimator. In that case,
the R code to compute the (i, j)-th element of this matrix would be as follows:

Rr[i, j] <- covMcd(Z[, 1:2], cor = TRUE)$cor[1, 2]

The information contained in the pivot correlation matrix can be visually
displayed in heatmaps, where the correlation coefficients in the interval [−1, 1] are
simply color coded, symmetrically around zero. In this way it is easy to compare
the outcomes of different correlation estimators. This is shown in Fig. 8.2 for the
Pearson (left) and the Spearman rank (right) correlation. One can see quite some
changes in the correlation coefficients, and the reason are the outliers which have
strong influence on the classical Pearson correlation. The highest positive correla-
tion is between the symmetric coordinates for socio-economic and law studies and



8.5 Examples 155

D <- ncol(phdred)
par(mfrow = c(D, D), mar = c(0.1,0.1,0.1,0.1))
Rp <- Rs <- matrix(NA, ncol = D, nrow = D)
nam <- substr(names(phdred), 1, 5) # shorter variable names
dimnames(Rp) <- dimnames(Rs) <- list(nam, nam)
diag(Rp) <- diag(Rs) <- rep(1, D)
for (i in 1:D){

for (j in 1:D){
if (i==j){

plot(0, 0, type = "n", xaxt = "n", yaxt = "n")
text(0, 0, names(phdred[i]))

}
else{

Z <- pivotCoord(phdred[, c(i, j, (1:D)[-c(i, j)])], method = "symm")
plot(Z[, 1:2],

xaxt = "n", yaxt = "n", xlab = "", ylab = "", type = "n")
text(Z[, 1], Z[, 2], coun, cex = 0.7)
Rp[i,j] <- cor(Z[, 1:2])[1, 2] # Pearson correlation
Rs[i,j] <- cor(Z[, 1:2], method = "spearman")[1, 2] # Spearman corr.

}
}

}
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Fig. 8.1 Scatterplot matrix of the PhD data using symmetric pivot coordinates for each single
plot
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library("gplots")
rgbcol <- colorRampPalette(c("blue4","turquoise","white","orange","red4"),

space = "rgb")
heatmap.2(as.matrix(Rp), Rowv = FALSE, symm = TRUE, col = rgbcol(256),

key = TRUE, trace = "none", main = "Pearson correlation",
margins = c(4, 4), cexRow = 1.2, cexCol = 1.2)

heatmap.2(as.matrix(Rs), Rowv = FALSE, symm = TRUE, col = rgbcol(256),
key = TRUE, trace = "none", main = "Spearman correlation",
margins = c(4, 4), cexRow = 1.2, cexCol = 1.2)
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Fig. 8.2 Heatmaps for the Pearson and Spearman rank correlation for the PhD data using
symmetric pivot coordinates

human science studies. This means that with respect to the average behavior of
the remaining parts in the composition, the dominances in “socio-economic-law”
and “human” increase simultaneously. On the contrary, for a negative correlation
as between “human” and “agriculture,” the respective dominances show a reverse
behavior: while it increases for some countries in “human,” it decreases for those
countries in “agriculture,” and vice versa (always with respect to the average
behavior of the remaining parts in the composition).

Finally, by ignoring potential effects caused by the spatial dependence between
the observations, it is also possible to test for uncorrelatedness. Consider the
symmetric pivot coordinates constructed for the parts technical studies and socio-
economic and law studies, which are the first two variables in the compositional
data set.

Z <- pivotCoord(phdred[, c(1,2,3:5)], method = "symm")

The null hypothesis is that the relative information of these parts with respect
to the remaining parts in the composition is uncorrelated. One can use the classical
Pearson correlation for the test, or Spearman’s rank correlation. In the first case
the null hypothesis would be rejected because of the very small p-value, while
in the second case it cannot be rejected. Looking again at Fig. 8.1 (upper left)
gives the answer to the different conclusions: France (FR) and probably some
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other countries deviate from the otherwise unstructured point cloud, which results
in a significantly positive Pearson correlation. The more robust Spearman rank
correlation downweights the effect of the outliers.

# Test for uncorrelatedness, based on Pearson correlation
cor.test(Z[, 1], Z[, 2], method = "pearson")

##
## Pearson’s product-moment correlation
##
## data: Z[, 1] and Z[, 2]
## t = 2.7292, df = 26, p-value = 0.01124
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1199266 0.7184781
## sample estimates:
## cor
## 0.4718903

# Test for uncorrelatedness, based on Spearman rank correlation
cor.test(Z[, 1], Z[, 2], method = "spearman")

##
## Spearman’s rank correlation rho
##
## data: Z[, 1] and Z[, 2]
## S = 2904, p-value = 0.2934
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.2052545

8.5.2 Example for Multiple Correlation

The data set data(gemas) from the package robCompositions is again consid-
ered, and the interest is in associating the annual precipitation with the chemical
composition in the agricultural soils. It can be assumed that precipitation has
some effect on this composition, although this effect might not be too strong.
Note that the variable “annual precipitation” is not a compositional part, and
thus it is not necessary to compute any coordinate. However, since this variable
is characterized by relative scale, its log-transformed version is used (Mateu-
Figueras and Pawlowsky-Glahn 2008). The composition with the chemical element
concentrations is treated as usual. This information needs to be expressed in ilr
coordinates, but the choice of the orthonormal coordinates is not essential in the
sense that it would not alter the resulting correlation coefficient.

The following code shows how the squared multiple correlation coefficient is
computed, compare with Eq. (8.3).

data("gemas")
x <- log(gemas$AnnPrec) # log-transformed annual precipitation
X <- gemas[, 12:29] # composition of element concentrations
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Z <- pivotCoord(X) # choose orthonormal coordinates
xZ <- cbind(x, Z) # joint matrix
xZ.cov <- cov(xZ) # classical covariance estimation
# compute squared multiple correlation coefficient:
1 - det(xZ.cov) / (det(xZ.cov[-1, -1]) * xZ.cov[1, 1])

## [1] 0.254522

The result shows that there seems to be some association between precipitation
and “chemistry,” but this association is rather weak. From this coefficient alone
one cannot say anything about the form of this linear relationship, i.e. how the
composition would change with a low or high level of precipitation.

In a next step, the interest is in the robustness of this correlation against data
outliers. Since it is difficult to get an overview of the data by means of visualization,
it is hard to say if there are outliers or not. In any case, the above coefficient is based
on classical estimates of the covariance, and those might be affected by outliers. In
the following code the MCD estimator is used to robustly estimate the covariance,
and thus the result is a robust squared multiple correlation coefficient.

library("robustbase")
xZ.cov <- covMcd(xZ)$cov
# compute squared multiple correlation coefficient:
1 - det(xZ.cov) / (det(xZ.cov[-1, -1]) * xZ.cov[1, 1])

## [1] 0.3644017

It can be seen that the robust coefficient is considerably higher than the classical
one, which confirms that outliers had a certain effect on the classical estimator.

8.5.3 Example for Correlation Between Groups
of Compositional Parts

The data set data(laborForce) from the package robCompositions is used,
which reports for 124 countries the percentages of female and male employees,
employers, and own-account workers. Thus, the data contain two compositions, one
for females and one for males. With correlation analysis, the interest can be in the
similarity of both compositions.

data("laborForce")
Xf <- laborForce[, c(5,7,3)] # female data
Xm <- laborForce[, c(6,8,4)] # male data

The compositions are shown in ternary diagrams in Fig. 8.3. Each number
corresponds to a certain country. One can see that the proportion of employers is
very low in both cases, with the exception of few countries: Sierra Leone (98),
Anguilla (3), South Africa (102). However, there are doubts if these data are really
correct. A closer look at the data reveals that for African and Asian countries, the
proportion of own-account workers is generally much higher than for countries
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par(mfrow = c(1,2), mar = c(1,4,1,2))
ternaryDiag(Xf, type = "n", grid = FALSE)

x <- Xf / rowSums(Xf)
xp <- x[, 2] + x[, 3] / 2
yp <- x[, 3] * sqrt(3) / 2
text(xp, yp, 1:nrow(x))

ternaryDiag(Xm, type = "n", grid = FALSE)
x <- Xm / rowSums(Xm)
xp <- x[, 2] + x[, 3] / 2
yp <- x[, 3] * sqrt(3) / 2
text(xp, yp, 1:nrow(x))
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Fig. 8.3 Ternary diagrams for the labor force data; left: compositions for females, right:
compositions for males

from other continents. Overall, the data structure for females (left) and males (right)
seems to be quite similar.

One may argue that the compositions in both groups are close to the border of the
simplex with a substantial effect of relative scale, and thus conclusions made from
the ternary diagrams might be misleading, see discussion in Sect. 4.1. Accordingly,
the observations were centered (with respect to the Aitchison geometry) to bring
them closer to the neutral element and provide a more realistic picture, see
Fig. 8.4. Note that the centering can easily be carried out in ilr coordinates, here in
pivot coordinates (3.20), although this could also directly be done in the original
sample space using the functions perturbation and powering from the
robCompositions package. From Fig. 8.4, some minor differences are now clearly
visible; particularly a slightly higher proportional representation of the employers
in the male group together with possible outliers deviating from the main data cloud
due to low proportions in the same part, e.g., Sao Tome and Principe (94) and
Suriname (105) in both groups. On the other hand, as the classical (non-robust)
center was used for the purpose of centering, some further outliers might still be
masked. A definitively true picture of the data structure (in the Euclidean sense)
would be obtained only if the data were expressed in orthonormal coordinates.
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par(mfrow = c(1,2), mar = c(1,4,1,2))
ternaryDiag(Xf, type = "n", grid = FALSE)
#centering
Xfc <- pivotCoordInv(scale(pivotCoord(Xf), scale=FALSE))
x <- Xfc / rowSums(Xfc)
xp <- x[, 2] + x[, 3] / 2
yp <- x[, 3] * sqrt(3) / 2
text(xp, yp, 1:nrow(x))
ternaryDiag(Xm, type = "n", grid = FALSE)
#centering
Xmc <- pivotCoordInv(scale(pivotCoord(Xm), scale=FALSE))
x <- Xmc / rowSums(Xmc)
xp <- x[, 2] + x[, 3] / 2
yp <- x[, 3] * sqrt(3) / 2
text(xp, yp, 1:nrow(x))
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Fig. 8.4 Ternary diagrams for the centered labor force data; left: compositions for females, right:
compositions for males

Now the group correlation between the compositions is computed, see Sect. 8.4.
Here the classical sample covariance matrix is used to estimate the covariance, but
one could also take robust counterparts.

Zf <- pivotCoord(Xf)
Zm <- pivotCoord(Xm)
Z <- cbind(Zf, Zm)
Z.cov <- cov(Z)
# compute group correlation coefficient:
1 - det(Z.cov) / (det(Z.cov[1:2, 1:2]) * det(Z.cov[3:4, 3:4]))

## [1] 0.9711786
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cvx1 <- as.matrix(Zf) %*% res$xcoef[,1]
cvy1 <- as.matrix(Zm) %*% res$ycoef[,1]
plot(cvx1, cvy1, type = "n", xlab = "Canonical variate 1 (female)",

ylab = "Canonical variate 1 (male)")
text(cvx1, cvy1, 1:nrow(Z))
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Fig. 8.5 Plot of the first canonical variates for the female and male labor force data. A strong
linear trend is visible, resulting in a first canonical correlation coefficient of about 0.95

The resulting group correlation coefficient is 0.97, which is very close to 1, and
thus it indicates high linear association between the two compositions.

As mentioned in Sect. 8.4, one could also use canonical correlation analysis to
associate both compositions. This can be done as follows:

res <- cancor(Zf, Zm)
res$cor # canonical correlation coefficients

## [1] 0.9467533 0.8496806

Not only the first but also the second canonical correlation coefficient are very
high, which confirms the strong linear association. The first canonical variates can
also be shown visually, see Fig. 8.5, and their correlation is in fact equal to the first
canonical correlation. One can see the strong linear trend for most observations. An
exception is observation number 2 (American Samoa), where again the data might
not be fully reliable.
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Chapter 9
Discriminant Analysis

Abstract In the setting of discriminant analysis it is assumed that the so-called
training data belong to certain groups. The goal is to find classification rules that
allow to assign new test data to one of the groups. Different discriminant methods
have been introduced, such as linear discriminant analysis (LDA), with Fisher’s
method as a specific approach, and quadratic discriminant analysis (QDA). Both
LDA and QDA utilize the information on prior class probabilities and heavily use
the assumption of normality in ilr coordinates (normal distribution on the simplex)
to represent group distributions. While for QDA individual group covariance
matrices are assumed, a joint covariance matrix is computed for the case of LDA.
These methods result in classification rules that allow to assign a new test set
observation to one of the groups by taking the prior information on class pertinence
into account. The Fisher discriminant rule aims for the same goal, but now no
underlying distributions of the samples in the groups are assumed and the idea is
to search for projection directions which allow for a maximum separation of the
group means with respect to the spread of the projected data. As a consequence, also
discriminant scores can be derived that are used to visualize relevant information
for the group separation. All described procedures are invariant with respect to the
choice of the orthonormal coordinates, and this also holds for the robust counterparts
of the covariance-based methods if an affine equivariant location and covariance
estimator (like the MCD estimator) is taken.

9.1 Introductory Remarks

Discriminant analysis goes back to the work of Fisher (1936), and it can be
considered as one of the traditional methods for classification. Classification—in
contrast to clustering—assumes prior knowledge of class memberships in addition
to the multivariate data. Typically, this information is available for a training data
set, and only the multivariate information without class membership information is
available for a test data set. The task of discriminant analysis is to predict the class
memberships for the test set observations. The prediction is based on a discriminant
rule which is obtained through the training data. There are various ways to establish
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a rule; the most prominent rules are the Bayes and the Fisher rule (see, e.g., Johnson
and Wichern 2007). These rules build on different assumptions; while the Bayes rule
requires a specification of the distribution underlying the data, this is not explicitly
required for the Fisher rule. However, only under certain assumptions one will
obtain “optimality” of the rule in the sense of a minimal misclassification error
(for the training data). An observation is misclassified if the true group label and the
predicted group label are not identical.

Suppose that n observations are given from a training data set; these are
compositions with D compositional parts. Moreover, the n observations originate
from g ≥ 2 different groups, and the sample sizes of the groups are n1, . . . , ng ,
clearly with n1 + . . . + ng = n. In order to distinguish the observations from the
different groups, the notation xij will be used, which is the column vector of the
compositional information of the ith observation, where i = 1, . . . , nj , for the j th
group, with j = 1, . . . , g.

Assume that the g groups originate from g underlying populations π1, . . . , πg .
For example, the groups could refer to different kinds of plants where the samples
have been taken from. It is further assumed that the j th population has a certain
prior probability pj , with p1 + . . .+pg = 1. Thus, pj would be the probability that
an observation comes from population πj . If the training data reflect the structure
of the populations, it is expected that nj/n is close to pj , for all groups.

Since the underlying data are compositions, they first need to be expressed in
ilr coordinates, because the discriminant analysis methods are based on the usual
Euclidean geometry. Accordingly, the vector of length D for the ith observation
from the j th group, xij = (x

[j ]
i1 , x

[j ]
i2 , . . . , x

[j ]
iD )′, is expressed in pivot coordinates as

shown in Eq. (3.20), by

z
[j ]
il =

√
D − l

D − l + 1
ln

x
[j ]
il

D−l

√∏D
k=l+1 x

[j ]
ik

for l = 1, . . . ,D − 1, (9.1)

which results in the column vector zij = (z
[j ]
i1 , . . . , z

[j ]
i,D−1)

′.
A further assumption that is usual in discriminant analysis is that the j th

population πj can be characterized by an underlying density function fj , for
j = 1, . . . , g, which is usually assumed to be a multivariate normal density with
expectation μj and covariance Σj . In this context, these assumptions are made for
the coordinate representation (referring to normal distribution on the simplex, see
Sect. 5.1); thus, μj is a vector of length D − 1, and Σj is a matrix of dimension
(D − 1) × (D − 1). Later on, these population quantities need to be estimated from
the samples of the training data.
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9.2 Bayes Discriminant Rule

The classification problem is considered as follows: Given an observation z, already
expressed in ilr coordinates, and the goal is to predict the class label, using a
predictor G(z). The result is a number from the discrete set {1, . . . , g}. The above
definitions imply that the class probability of the kth group is P(G = k) = pk , for
k = 1, . . . , g. Now the interest is in the conditional probability that G = k, given
the information of observation z. This posterior probability is, according to Bayes’
theorem, given by

P(G = k|z) = fk(z)pk∑g

j=1 fj (z)pj

. (9.2)

The decision boundary between the kth and the lth group is defined by P(G =
k|z) = P(G = l|z). Plugging in for the density fj the multivariate normal density
with the parameters μj and Σj , for j = 1, . . . , g, leads to the following equality,

ln
P(G = k|z)
P (G = l|z) = δ

QDA
k (z) − δ

QDA
l (z), (9.3)

where

δ
QDA
k (z) = −1

2
ln |Σk| − 1

2
(z − μk)

′Σ−1
k (z − μk) + ln pk (9.4)

is called the kth quadratic discriminant function, for k = 1, . . . , g. Thus, at the
decision boundary it holds that δ

QDA
k (z) = δ

QDA
l (z). On the other hand, z would

be assigned to population πk whenever δ
QDA
k (z) > δ

QDA
l (z). More generally, z is

assigned to that group for which δ
QDA
j (z) is the largest, for j = 1 . . . , g.

Indeed, δ
QDA
k (z) is quadratic in z which is the reason for the naming. Using this

decision rule, one also talks about quadratic discriminant analysis, or simply QDA.
An important simplification of the QDA rule can be made if the assumption Σ :=

Σ1 = . . . = Σg holds. In that case, some terms in Eq. (9.4) can be simplified, and
one obtains

δLDA
k (z) = z′Σ−1μk − 1

2
μ′

kΣ
−1μk + ln pk, (9.5)

called the kth linear discriminant function, for k = 1, . . . , g. The functions are
linear in z, and the resulting rule leads to the name linear discriminant analysis, or
LDA. Similar as before, z is assigned to that group for which δLDA

j (z) is the largest,
for j = 1 . . . , g.

In practice it will be difficult to know if the group covariance matrices can be
assumed to be equal. On the other hand, all population quantities, the parameters of
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the normal distribution, need to be estimated from the training data. With QDA one
ends up with many more parameters to estimate (the individual group covariances)
than with LDA (the joint covariance matrix). From this point of view, QDA rather
tends to overfitting, while LDA might have a tendency to underfitting. It will thus be
important to evaluate the classification rule, e.g. by estimating the misclassification
error. This can be done by computing the misclassification error directly for the
training observations, when they are classified according to the established rules. A
more realistic (and less optimistic) estimation is obtained in a resampling scheme,
e.g. by using some cross-validation procedure (see, e.g., Hastie et al. 2009).

The population parameters can be estimated by the group means and empirical
covariances of the groups. More precisely, the compositional observations are
expressed in ilr coordinates, and μj is estimated by

z̄j = 1

nj

nj∑

i=1

zij , (9.6)

and Σ j by

Sj = 1

nj − 1

nj∑

i=1

(zij − z̄j )(zij − z̄j )
′, (9.7)

for j = 1, . . . , g. One can plug in these estimates directly into (9.4) to obtain a
decision rule based on the sample level. As mentioned above, pk can be estimated
by nk/n.

Alternatives to the classical estimators (9.6) and (9.7) are robust estimators,
like the minimum covariance determinant (MCD) estimator (Rousseeuw 1985;
Rousseeuw and Van Driessen 1999), see Sect. 5.2.3. The impact of outliers on the
decision rule will be reduced, leading to a robust decision rule.

In case of LDA, the joint covariance matrix Σ needs to be estimated. This can be
done by centering the observations first with their group center, and then estimate
the joint covariance. A classical estimator is

S = 1

n − g

g∑

j=1

nj∑

i=1

(zij − z̄j )(zij − z̄j )
′ = 1

n − g

g∑

j=1

(nj − 1)Sj ; (9.8)

for robust estimation there are different options (see, e.g., Todorov and Filzmoser
2009).

There are some important details, reported in Filzmoser et al. (2012), where it has
been shown that the discriminant rules for LDA and QDA are invariant to the choice
of the orthonormal coordinates, and that this also holds for the robust counterparts if
affine equivariant location and covariance estimators are taken. The MCD estimator
fulfills these properties, see Sect. 5.2.3.
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9.3 Fisher Discriminant Rule

The discriminant rule of Fisher (1936), and its extension to the multi-group case by
Rao (1948), uses the idea of searching for projection directions which allow for a
maximum separation of the group means with respect to the spread of the projected
data. This has an interesting practical consequence, since the grouping structure can
then be visually investigated in the projection. In the two-group case (g = 2), one
considers a projection direction a ∈ R

D−1, with a �= 0. The idea is to project the
D-part composition x, expressed by D − 1 coordinates as z, to a univariate quantity
y = a′z.

If the group means (expectations) are μ1 and μ2, then the projected group means
are denoted as μ1,y = a′μ1 and μ2,y = a′μ2. An overall group mean, weighted by
the prior probabilities, can also be projected to obtain

μy := p1μ1,y + p2μ2,y = a′(p1μ1 + p2μ2). (9.9)

It is not difficult to see that

p1(μ1,y − μy)
2 + p2(μ2,y − μy)2 = p1p2(μ1,y − μ2,y)

2

holds. The projection direction a is then taken in such a way that the expression

p1p2(μ1,y − μ2,y)
2

σ 2
y

(9.10)

is maximized, where σ 2
y = a′Σa, and Σ denotes the joint group covariance matrix.

The direction a maximizing (9.10) is given by

a = 1√
p1p2

Σ−1(μ1 − μ2). (9.11)

The term
√

p1p2 is not important here since a is only unique up to scaling.
A new observation z would then be assigned to the first group if

y = (μ1 − μ2)
′Σ−1z ≥ μy = (μ1 − μ2)

′Σ−1(p1μ1 + p2μ2) + ln
p2

p1
.

The last term was added here in order to adjust the rule for differences in the prior
probabilities. One obtains a rule that is closely related (but not identical) to the LDA
rule (9.5). In case of equal prior probabilities p1 = p2 = 1/2, the rules are identical.

It is now straightforward to extend the ideas of the two-group case to multiple
groups. The goal is to maximize the expression

∑g
j=1 pj (μj,y − μy)2

σ 2
y

, (9.12)



168 9 Discriminant Analysis

with μj,y = a′μj , for j = 1, . . . , g. The solution is given as follows. Define the
overall mean as

μ =
g∑

j=1

pjμj , (9.13)

and

B =
g∑

j=1

pj (μj − μ)(μj − μ)′ (9.14)

as the matrix describing the variation between the groups. Further, define

W =
g∑

j=1

pjΣj (9.15)

as the within groups covariance matrix. Maximization problem (9.12) can be
expressed as

a′Ba
a′Wa

for a ∈ R
D−1, a �= 0. (9.16)

The solution of this maximization problem is given by the eigenvectors a1, . . . , al

of the matrix W−1B, which are scaled according to aj ′Waj = 1 for j = 1, . . . , l.
The number l of strictly positive associated eigenvalues is l ≤ min{g − 1,D − 1}.

The Fisher discriminant functions can now be defined as

yj = a′
jz for j = 1, . . . , l, (9.17)

and they show projections of a new observation z along the directions aj . It will be
of particular interest to investigate the projections along a1 and a2, since bivariate
views are easy to inspect, and since the first two directions contain the most relevant
information for the group separation. Note that for a three-group problem (g = 3),
the number of projection directions is at most two, since l ≤ min{g − 1,D − 1}.

For obtaining a classification rule it is useful to compute the Fisher discriminant
score for each group. For a new observation z, this score is defined for the kth group
as

δF
k (z) =

l∑

j=1

(yj − μk,yj )
2 − 2 ln pk =

l∑

j=1

(a′
j (z − μk))

2 − 2 ln pk, (9.18)

for k = 1, . . . , g. Here, μk,yj = a′
jμk , and thus one obtains a measure of deviation

of z from the kth group center in the discriminant space. A new observation z is
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therefore assigned to population πk if δF
k (z) is the smallest among all discriminant

scores δF
1 (z), . . . , δF

g (z).
The eigenvectors a1, . . . , al can be collected as columns in the matrix A. Then

the scores (9.18) can be written as

δF
k (z) = (z − μk)

′AA′(z − μk) − 2 ln pk, (9.19)

which corresponds to a squared Mahalanobis distance in the original space of the
coordinates. Note that in the space of the discriminants, which is the space to
visualize the problem, one simply works with squared Euclidean distances.

Finally, note that the adjustment with the prior probability (−2 ln pk) brings
the rule closer to the Bayes rule (9.5) that minimizes the total probability of
misclassifications. It can be shown that

δF
k (z) = z′Σ−1z − 2δLDA

k (z), (9.20)

see Johnson and Wichern (2007).
For a practical application of the Fisher rule, the population parameters need

to be estimated. Similar to the Bayes rule, one can use the classical estimators,
i.e. the arithmetic group means to estimate μj , and the group sample covariances to
estimate Σ j , for j = 1, . . . , g. This allows to estimate the matrices B from (9.14)
and W from (9.15). For robust estimation one can use the MCD estimator, as it has
been done for the Bayes rule, but there are also several other options. For details,
see Filzmoser et al. (2006).

Note that, like for the Bayes rule, also the Fisher rule is invariant with respect
to the choice of orthonormal coordinates. Moreover, also a robustified Fisher rule
is invariant if affine equivariant estimators for location and covariance are used, see
Filzmoser et al. (2012).

9.4 Examples

9.4.1 Example for LDA and QDA

The R package rrcov contains the data set fish with different body measurements of
159 fish, which are classified into seven different species: Bream (1), Whitewish (2),
Roach (3), Parkki (4), Smelt (5), Pike (6), Perch (7). For illustrative purposes, only
three variables are used: length from the nose to the beginning of the tail, length
from the nose to the notch of the tail, and length from the nose to the end of the tail.
When considering these data as compositional, one is only interested in analyzing
the logratios between the variables. In the following, the data are prepared and pivot
coordinates are computed.
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plot(Z, col = fish$Species, pch = fish$Species,
xlab = expression(z[1]), ylab = expression(z[2]))

legend("topleft", legend = 1:7, col = 1:7, pch = 1:7)
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Fig. 9.1 Body measurements from different fish species. The species are shown in this coordinate
presentation by different colors

library("rrcov")
data("fish")
fish <- fish[-14, ] # remove observation with missing value
Z <- pivotCoord(fish[, 2:4]) # pivot coordinates for selected 3 variables
table(fish$Species) # grouping variable

##
## 1 2 3 4 5 6 7
## 34 6 20 11 14 17 56

Since only three compositional parts are considered, one obtains two coordinates,
which are represented in Fig. 9.1. The observations from the different groups are
visualized by different colors.

The data in the different groups look quite heterogeneous, and it is questionable
whether the assumption of equal group covariances is valid. Nevertheless, in a first
attempt LDA is applied. The functionLdaClassic from the package rrcov is used,
but there are also other options, such as the function lda from the package MASS.

library("rrcov")
resLDA <- LdaClassic(Z, fish$Species)
predict(resLDA)

##
## Apparent error rate 0.2342
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##
## Classification table
## Predicted
## Actual 1 2 3 4 5 6 7
## 1 32 0 1 1 0 0 0
## 2 0 4 0 0 0 2 0
## 3 1 0 17 2 0 0 0
## 4 0 0 11 0 0 0 0
## 5 0 0 0 0 11 0 3
## 6 0 0 2 0 0 3 12
## 7 0 0 0 0 0 2 54
##
## Confusion matrix
## Predicted
## Actual 1 2 3 4 5 6 7
## 1 0.941 0.000 0.029 0.029 0.000 0.000 0.000
## 2 0.000 0.667 0.000 0.000 0.000 0.333 0.000
## 3 0.050 0.000 0.850 0.100 0.000 0.000 0.000
## 4 0.000 0.000 1.000 0.000 0.000 0.000 0.000
## 5 0.000 0.000 0.000 0.000 0.786 0.000 0.214
## 6 0.000 0.000 0.118 0.000 0.000 0.176 0.706
## 7 0.000 0.000 0.000 0.000 0.000 0.036 0.964

The function LdaClassic calculates the LDA rules for the data set, while the
predict command computes the error rate for the same data. Therefore, this error
rate is called “apparent error rate,” and because the data were not split into training
and test data, this estimate of the error rate is usually too optimistic. The underlying
classification table and the confusion matrix, where absolute frequencies from the
classification table are replaced by relative ones, compare the true class membership
(rows) with the predicted classes (columns). For some groups, the discrimination
works well, for other groups not. Figure 9.2 shows the outcome of the resulting
LDA rules by differently colored dots. Basically, each dot could be considered as
a new test set observation, and the color indicates the predicted class membership.
Naturally, the decision boundaries are linear, and here it is immediate for which
groups the classification works well, while other groups contain outliers or show
some overlap.

Now turn to the case of QDA, which is appropriate if the assumption of
equal group covariances cannot be made. Note, however, that multivariate normal
distribution of the different groups is still assumed. QDA from the package rrcov is
performed as follows:

library("rrcov")
resQDA <- QdaClassic(Z, fish$Species)
predict(resQDA)

##
## Apparent error rate 0.1139
##
## Classification table
## Predicted
## Actual 1 2 3 4 5 6 7
## 1 32 0 2 0 0 0 0
## 2 0 5 0 0 0 1 0
## 3 1 0 18 1 0 0 0
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## 4 0 0 1 10 0 0 0
## 5 0 0 0 0 11 0 3
## 6 0 0 2 0 0 13 2
## 7 0 0 0 0 0 5 51
##
## Confusion matrix
## Predicted
## Actual 1 2 3 4 5 6 7
## 1 0.941 0.000 0.059 0.000 0.000 0.000 0.000
## 2 0.000 0.833 0.000 0.000 0.000 0.167 0.000
## 3 0.050 0.000 0.900 0.050 0.000 0.000 0.000
## 4 0.000 0.000 0.091 0.909 0.000 0.000 0.000
## 5 0.000 0.000 0.000 0.000 0.786 0.000 0.214
## 6 0.000 0.000 0.118 0.000 0.000 0.765 0.118
## 7 0.000 0.000 0.000 0.000 0.000 0.089 0.911

The resulting apparent error rate is much lower than for LDA. Note, however, that
this is again evaluated for the same data which are used to compute the classification
rules, and thus possibly too optimistic. For a more realistic evaluation, one should
consult some form of cross-validation.

Figure 9.3 shows the decision boundaries, which are no longer linear. It could
well be that these decision boundaries are too much adjusted to the data at hand,
and not necessarily suitable for new test set observations. It can again be seen that
some of the training set observations are assigned to the wrong group.
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Fig. 9.2 Linear decision boundaries from LDA for the fish data set
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Fig. 9.3 Nonlinear decision boundaries from QDA for the fish data set

It is straightforward to apply robust versions of LDA and QDA, using the package
rrcov:

library("rrcov")
resrLDA <- Linda(Z, fish$Species) # robust LDA
predict(resrLDA)@ct # show classification table

## Predicted
## Actual 1 2 3 4 5 6 7
## 1 32 0 1 1 0 0 0
## 2 0 6 0 0 0 0 0
## 3 3 0 16 1 0 0 0
## 4 0 0 11 0 0 0 0
## 5 0 0 0 0 11 1 2
## 6 0 0 2 0 0 13 2
## 7 0 0 0 0 0 4 52

resrQDA <- QdaCov(Z, fish$Species) # robust QDA
predict(resrQDA)@ct # show classification table

## Predicted
## Actual 1 2 3 4 5 6 7
## 1 32 0 2 0 0 0 0
## 2 0 4 2 0 0 0 0
## 3 1 0 17 2 0 0 0
## 4 0 0 1 10 0 0 0
## 5 0 0 0 0 11 0 3
## 6 0 0 2 0 1 10 4
## 7 0 0 0 0 0 3 53
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Similar as before, robust QDA works better than robust LDA and there seems not
to be a big difference to the performance of the non-robust counterparts.

9.4.2 Example for Fisher Discriminant Analysis

Consider the data set from Oslo with the chemical concentrations in nine different
plant species, see also Sect. 4.3. Only a subset of the variables is used, containing
those elements which are plant nutrients. For each observation, the knowledge
of the corresponding plant species is used as the group membership to construct
the discriminant rules. In the following, robust Fisher’s LDA for the multi-group
case is employed. This will also allow for a visualization of the problem in lower
dimension.

Figure 9.4 shows the visualization of the first two Fisher scores, i.e., only the
first two eigenvectors a1 and a2 are taken to compute the scores in (9.19). This
visualization is the two-dimensional plot that best shows the group separation in
terms of separation of the group centers. Note that this plot could also be directly
generated as an outcome of the routine daFisher:

res <- daFisher(X, grp, method = "robust", plotScore = TRUE)

However, in Fig. 9.4 it is also shown which observations from which groups
are misclassified, using filled symbols with the appropriate color. Only very few
misclassifications can be seen. However, again the training data for establishing the
discriminant rule have been used, and the rules have been employed to classify the
same data, thus resulting in a possibly too optimistic misclassification rate.

9.4.3 Example with Appropriate Evaluation of the Error Rate

Only in rare cases it is possible to get training data to build the discriminant rules,
and afterwards to collect independent test data to evaluate the rules. Rather, it is
common that one data set is available, and it needs to be split into training and test
data randomly. In the following, fivefold cross-validation (CV) is employed using
stratified sampling. This means that the observations of each group are randomly
split into five folds of about equal size, the rule is established on four folds, and
evaluated of the fifth fold. This is done in turn, until each fold has been used as test
set. In addition, the whole process is replicated 100 times by splitting the data always
randomly into five folds. This procedure is implemented in the package HiDimDA.

As an illustration, data from the package classifly are used, namely the concen-
trations of fatty acids of olive oils, originating from three different areas in Italy:
southern Italy (1), Sardinia (2), and northern Italy (3). As usual, the compositional
data are expressed in ilr coordinates. However, some observations contain zeros in
some of the variables, and thus, in a first step, these observations are omitted. In
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X <- OsloTransect[, c("Cu","K","Mg","Mn","P","Sr","Zn")]
grp <- rep(1:9, table(OsloTransect$X.MAT)) # plant materials
isna <- (apply(is.na(X), 1, sum) > 0) # which observations contain NAs
X <- X[!isna, ]
grp <- grp[!isna]
table(grp) # number of observations in the groups

## grp
## 1 2 3 4 5 6 7 8 9
## 40 40 39 33 38 40 40 40 40

res <- daFisher(X, grp, method = "robust") # robust Fisher LDA

## Direct agreement: 9 of 9 pairs
## Cases in matched pairs: 97.71 %

res$mcrate # misclassification rate

## [1] 0.02285714

colv <- rainbow(9) # generate 9 colors
par(mar = c(4,4,0.1,0.1), cex.lab = 1.4)
plot(res$fdiscr[,1:2], col = colv[grp], pch = grp, xlim = c(-12,13.5),

xlab = "First Fisher scores", ylab = "Second Fisher scores")
legend("topleft", levels(OsloTransect$X.MAT), pch = unique(grp), col = colv)
points(res$fdiscr[res$grppred != grp, 1:2], pch = 20,

col = colv[res$grppred][res$grppred != grp]) # misclassified
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Fig. 9.4 Robust Fisher LDA for the selected data set from Oslo
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cases like here, where not many zeros occur, this does not lead to a serious loss of
information, contained in nonzero parts of the observations. On the other hand, this
is definitely not a systematic approach. Moreover, here the zeros represent a value
below the detection limit of the measurement device rather than a pure absence of
the property (fatty acid). In such cases it is reasonable to impute each zero by a small
nonzero value, being still below the detection limit. This is referred to as rounded
zeros. Such methods will be discussed in detail in Sect. 13.3.

data("olives", package = "classifly")
X <- olives[, -c(1:2)] # fatty acids
grp <- as.factor(olives[, 1]) # grouping variable
table(grp)

## grp
## 1 2 3
## 323 98 151

notzero <- apply(X == 0, 1, sum) == 0 # to omit zeros
Z1 <- pivotCoord(X[notzero, ])
grp1 <- grp[notzero]
table(grp1)

## grp1
## 1 2 3
## 323 98 114

The zeros appear only in the third group. Next, LDA is applied with repeated CV,
i.e., five-fold cross-validation is repeated 100 times by using random splits.

library("HiDimDA")
set.seed(1234)
res1 <- DACrossVal(Z1, grp1, TrainAlg = lda, kfold = 5, CVrep = 100)
summary(res1[, , "Clerr"])

## 1 2 3
## Min. :0 Min. :0 Min. :0.00000
## 1st Qu.:0 1st Qu.:0 1st Qu.:0.00000
## Median :0 Median :0 Median :0.00000
## Mean :0 Mean :0 Mean :0.00798
## 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0.00000
## Max. :0 Max. :0 Max. :0.17391

The error rates resulting in the different folds and replications are summarized
separately for the three groups. The error for the first two groups is zero, and that
for the third group is at most 17%.

Now the zeros are imputed by assuming that these are values under the
detection limit, using a model-based imputation algorithm, see Sect. 13.3. Only the
observations from the third group are used for the imputation.

X[X == 0] <- NA
X2 <- impCoda(X[grp == 3, ], method = "lm")$xImp
Z2 <- pivotCoord(rbind(X[grp != 3, ], X2))



9.4 Examples 177

Finally, LDA is applied again with the above scheme for the evaluation.

set.seed(1234)
res2 <- DACrossVal(Z2, grp, TrainAlg = lda, kfold = 5, CVrep = 100)
summary(res2[, , "Clerr"])

## 1 2 3
## Min. :0 Min. :0 Min. :0.00000
## 1st Qu.:0 1st Qu.:0 1st Qu.:0.00000
## Median :0 Median :0 Median :0.03226
## Mean :0 Mean :0 Mean :0.02851
## 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0.03333
## Max. :0 Max. :0 Max. :0.20000

The error rates of the first two groups are still zero, while that for the third
group slightly increased. However, at this point one cannot say if this is due to
the imputation, or if the observations with zeros are more difficult to classify.

The three groups in the olive oil data contain subgroups: group 1 consists of sam-
ples from North and South Apulia, Calabria, and Sicily, group 2 has observations
from inland and costal Sardinia, and group 3 is subdivided into Umbria, East and
West Liguria. With these nine groups, LDA with repeated CV is again performed.

grp3 <- as.factor(olives[, 2])
table(grp3)

## grp3
## Calabria Coast-Sardinia East-Liguria
## 56 33 50
## Inland-Sardinia North-Apulia Sicily
## 65 25 36
## South-Apulia Umbria West-Liguria
## 206 51 50

set.seed(1234)
res3 <- DACrossVal(Z2, grp3, TrainAlg = lda, kfold = 5, CVrep = 100)
summary(res3[, , "Clerr"])[4, ]

## Calabria Coast-Sardinia East-Liguria
## "Mean :0.07355 " "Mean :0.09571 " "Mean :0.1038 "
## Inland-Sardinia North-Apulia Sicily
## "Mean :0.01400 " "Mean :0.0752 " "Mean :0.5446 "
## South-Apulia Umbria West-Liguria
## "Mean :0.01530 " "Mean :0.07987 " "Mean :0.022 "

The average group misclassifications are up to about 10%, with the exception of
Sicily, where it is more than 50%. One can now compare with the apparent error
rates from LDA.

res4 <- LdaClassic(Z2, grp3)
1 - diag(predict(res4)@ct) / table(grp3)

## grp3
## Calabria Coast-Sardinia East-Liguria
## 0.05357143 0.09090909 0.10000000
## Inland-Sardinia North-Apulia Sicily
## 0.00000000 0.08000000 0.47222222
## South-Apulia Umbria West-Liguria
## 0.01456311 0.05882353 0.02000000
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par(mar = c(5,7,0.1,0.1), cex.lab = 1.3)
boxplot(res3[, , "Clerr"], xlab = "Error rate", horizontal = TRUE, las = 1)
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Fig. 9.5 Boxplots of the LDA error rates from repeated CV for the nine groups of the olive oil
data

In this case, the error rates resulting from the training data are quite comparable
and obviously not too optimistic. However, this is not necessarily always the case.
On the other hand, repeated CV does not only give an average error rate, but one
can look at all resulting errors in the folds by a boxplot, see Fig. 9.5. Thus one can
also get an idea about the distribution of the error rates. Indeed, for Sicily one can
see a big variation, and the error rates increase even up to 100%.

Note that almost all zeros are in the group West-Liguria, and none in group Sicily:

table(notzero, grp3)

## grp3
## notzero Calabria Coast-Sardinia East-Liguria Inland-Sardinia
## FALSE 0 0 3 0
## TRUE 56 33 47 65
## grp3
## notzero North-Apulia Sicily South-Apulia Umbria West-Liguria
## FALSE 0 0 0 0 34
## TRUE 25 36 206 51 16
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Chapter 10
Regression Analysis

Abstract Regression analysis is used to model the relationship between a response
variable and one or more explanatory variables (covariates). In the compositional
case, the proper choice of logratio coordinates matters, both due to the interpretation
of the regression parameters and because of the properties of the regression
models. And again, orthonormal coordinates, particularly in their pivot version, are
preferable. Moreover, in case of regression with compositional response and real
covariates, ilr coordinates enable to decompose the multivariate regression model
into single multiple regressions. The coordinate representation of compositions is
essential also for statistical inference like hypotheses testing, which is frequently
of interest in the regression context. In this chapter, all basic regression cases
are contained: the mentioned regression with compositional response and real
covariates, the case of real response and compositional explanatory variables,
regression between two compositions, and finally also regression between the parts
within one composition. A further important task is considered: variable selection of
relevant covariates by forward and backward selection. Robustness issues are also
of particular importance in the regression context—outliers in the response or in the
covariates will have limited effect for robust regression estimates.

10.1 Introductory Remarks

The aim of regression modeling is to analyze the functional relationship between
the independent (explanatory) variable(s), also called covariate(s), and the response
(dependent) variable(s) (Johnson and Wichern 2007). The results are primarily used
for the following purposes:

• To quantify the change of the response with changes in each of the covariates.
• To forecast or predict the value of the response based on the values of the

covariates.
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In the context of compositional data, one can distinguish four main cases:

• The dependent variables are compositional and the covariates are real (non-
compositional) values. This case also includes categorical explanatory variables
that lead to analysis of variance (ANOVA) models.

• The response consists of real variable(s), and the explanatory variables are
compositional.

• Both the response and the covariates are of compositional nature.
• Regression analysis has to be performed between compositional parts, or

between two groups of variables within one composition.

Although the above regression models might be developed directly for the original
compositions with respect to the Aitchison geometry, the main interest will be
devoted to their ilr coordinate representations that allows to employ standard tools
of regression analysis. Consequently, regression with both compositional response
and covariates is an immediate result of the previous cases and does not need to be
built from scratch. A further important task is variable selection, i.e. the selection of
covariates which are relevant for the explanation of the response(s); this is briefly
discussed in Sect. 10.5.

It is popular in regression analysis to assume that the explanatory variables are
non-random, while the response is supposed to contain random effects. Although
this assumption is kept in the following, the authors of the book are aware that
in many practical situations it might become too restrictive. A proper alternative
in such cases would be to employ orthogonal regression (Fuller 1987) that deals
with errors in both dependent and independent variables. On the other hand,
the accompanying statistical inference (hypothesis testing, confidence intervals)
in orthogonal regression is just asymptotic unlike for the standard least-squares
(LS) method, and it is usually performed indirectly through bootstrap methods.
Therefore, this approach is applied only for regression within a composition, where
it is simply inevitable.

10.2 Regression with Compositional Response

The case of regression with compositional response models situations, when relative
information, carried by a composition x = (x1, . . . , xD)′, is influenced by one
or more real (non-compositional) variables t = (t0, t1, t2, . . . , tr )

′ (Egozcue et al.
2012). Suppose that n samples are available, where the ith record is made of a
compositional response xi = (xi1, xi2, . . . , xiD)′ and the values of r covariates
are arranged in a vector ti = (ti0, ti1, ti2, . . . , tir )

′, where ti0 = 1 is equal for
each record. The multiple regression model within the framework of the Aitchison
geometry can be defined as follows:

xi = b0 ⊕
r⊕

k=1

(tik  bk) ⊕ ei , i = 1, . . . , n , (10.1)
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where the D-part compositions ei form an additive-perturbation error. Moreover,
the covariate ti0 = 1 provides a constant term of the regression model used for
the intercept. Similar as in standard regression analysis, the task is to estimate the
regression parameters (D-part compositions) bk, k = 0, . . . , r in an optimal sense.
This is traditionally represented by the least-squares method, where the problem
is to find estimates b̂k minimizing the sum of square-norms of the perturbation-
difference between the observed and the predicted values of the response (residual
sum of squares, RSS),

RSS =
n∑

i=1

‖ei‖2
A =

n∑

i=1

‖xi � [b0 ⊕
r⊕

k=0

(tik  bk)]‖2
A . (10.2)

It is worth to note that for the case of a regression model consisting of the absolute
term covariate only, the center as a measure of location in compositional data (see
Sect. 4.1) would be obtained.

The least-squares problem can be efficiently solved by expressing the composi-
tional responses in orthonormal coordinates, preferably directly in proper balances
(3.37). If the coordinate representation of compositions involved in (10.1) is denoted
with a tilde (as in (3.37)), the transformed model is

x̃i = b̃0 +
r∑

k=1

(tik · b̃k) + ẽi , i = 1, . . . , n, (10.3)

and

RSS =
n∑

i=1

‖ẽi‖2 =
n∑

i=1

D−1∑

j=1

(ẽij )
2. (10.4)

Equation (10.4) is a consequence of the isometric character of ilr coordinates: the
Aitchison norm of a composition is equal to the ordinary real Euclidean norm of
its coordinates. In the expression of RSS (10.4), the order of the sums can be
inverted and, being all terms non-negative, the minimization of RSS in coordinates
is equivalent to the separate minimization of the D − 1 terms

RSSj =
n∑

i=1

ẽ2
ij =

n∑

i=1

(

x̃ij −
r∑

k=0

tikb̃kj

)2

, j = 1, . . . ,D − 1, (10.5)

where b̃kj is the j th coordinate of the compositional coefficient bk . Comparing
(10.4) and (10.5), the Pythagorean decomposition

∑D−1
j=1 RSSj = RSS is easily

obtained. For the j th coordinate, (10.5) implies the ordinary least-squares solution
of the real regression model

x̃ij =
r∑

k=0

tikb̃kj + ẽij , i = 1, 2, . . . , n , (10.6)
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where ẽij is the j th coordinate of the compositional error ei . The interpretation of
the regression parameters b̃kj , k = 1, . . . , r , follows the case of standard multiple
regression and corresponds to a change in the response based on a one-unit change
in the corresponding explanatory variable keeping all other variables fixed.

Also the usual statistical inference on the regression parameters can be performed
without any further restrictions. This also holds for the popular T - and F -statistics
that are used for significance testing of single parameters and the whole parameter
vector (except of the intercept term), respectively.

Equations (10.4) and (10.5) imply that the original compositional least-squares
regression problem (10.1), (10.2) is equivalent to D − 1 ordinary least-squares
problems in orthonormal coordinates. Remarkably, the least-squares problems for
the coordinates can be solved independently. Moreover, the prediction capabilities
of the regression model are independent of the concrete coordinate representation:
although the coordinates of the estimated coefficients b̂k and the residuals ri =
xi � x̂i , where

x̂i = b̂0 ⊕
r⊕

k=1

(tik  b̂k), (10.7)

depend on the selected basis, the back-transformed compositional coefficients and
residuals do not (Egozcue et al. 2012). For this purpose, e.g., pivot coordinates
(3.19) and the respective inverse mapping (3.22) can be used.

Expressing the results of the regression modeling in coordinates back by
means of the original compositions might be useful for interpretational purposes
by considering the peculiarities of the Aitchison geometry. Nevertheless, any
statistical inference concerning the regression parameters needs to be performed
in coordinates. Here, the choice of interpretable balances for the compositional
response becomes of primary importance. For example, by taking pivot coordinates
(3.25), it is possible to aggregate pairwise logratios with a part of interest into one
single coordinate z

(l)
1 , l = 1, . . . ,D.

Along with the above developments, it is possible to consider D regression
models, where the response is formed by the respective coordinate z

(l)
1 . The lth

model can be formulated as follows:

z
(l)
i1 = b

(l)
0 + ti1b

(l)
1 + · · · + tirb

(l)
r + e

(l)
i , i = 1, . . . , n. (10.8)

The situation differs from the above case, when one multivariate regression model
was decomposed into D − 1 simple multiple regressions. Now from each such
decomposition, based on pivot coordinates in their sample version (3.26), always
only one of the models is taken for the further considerations.

In this case, the interpretation of the regression parameters gets linked to the
single original compositional parts. For example, if t2, . . . , tr are fixed, then for each
change of one unit in t1, the response z

(l)
1 changes by b

(l)
1 units on average (by fixed

values of the other covariates). Nevertheless, as the orthonormal coordinates (3.25)
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have to be interpreted in terms of scaled logratios under the natural logarithm, the
interpretation of these “units” and thus also of the values of the regression param-
eters might still get rather complex for practical purposes. For this reason, Müller
et al. (2018) proposed to switch to easier interpretable orthogonal coordinates. In
other words, the aim is to suppress the scaling of the coordinates and replace the
rather strange natural logarithm by another base (such as the decadic or binary
logarithm) that is easier to handle for the application at hand, see also Remark 2
in Sect. 3.3.4. By doing so, nothing from the above properties of the regression
modeling in coordinates is lost, while at the same time a substantial simplification
for the interpretation of the parameters is gained. In particular, the values of the T -
and F -statistics under the assumption of normality of the errors remain unchanged,
as well as the decomposition features of regression with compositional response
(Egozcue et al. 2012). Following (3.25), these considerations lead to orthogonal
(pivot) coordinates

z
(l)∗
i = log2

x
(l)
i

D−i

√∏D
j=i+1 x

(l)
j

, i = 1, . . . ,D − 1, (10.9)

for l = 1, . . . ,D, where the normalizing constants are omitted and the original
natural logarithm is replaced by the binary one. This results in regression models

z
(l)∗
i1 = b

(l)∗
0 + ti1b

(l)∗
1 + · · · + tirb

(l)∗
r + e

(l)∗
i , i = 1, . . . , n, (10.10)

for l = 1, . . . ,D. From the properties of LS estimation and the relation between
logarithms of different bases it is possible to get a straightforward relation between
the regression parameters of the models (10.8) and (10.10),

b
(l)∗
j = log2(e)

√
D

D − 1
b

(l)
j , j = 0, . . . , r.

Accordingly, b
(l)∗
j is the additive increment of the logratio response z

(l)∗
1 when

adding one to an explanatory variable tj , j = 1, . . . , r, (at constant values of the
other covariates)

b
(l)∗
j = Δz

(l)∗
1 = log2

x
(l)
1

D−1
√∏D

i=2 x
(l)
i

δ − log2
x

(l)
1

D−1
√∏D

i=2 x
(l)
i

= log2 δ,

where δ = 2b
(l)∗
j is the multiplicative increase in the relative dominance of the

original compositional response xl . So, for a unit additive change in tj , the ratio

of x
(l)
1 to the “average representative” of the other compositional responses grows

δ = 2b
(l)∗
j times.
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10.3 Regression with Compositional Covariates

For regression with compositional response it was very instructive to introduce
the model in terms of the Aitchison geometry, because this helped to reveal the
necessity of taking orthonormal coordinates in order to decompose the multivariate
model into simple multiple regressions. In the case of regression with compositional
explanatory variables, just the coordinate representation seems to be fully sufficient
for the practical purpose, although the model might also be expressed for the original
compositions together with a corresponding interpretation (Tolosana-Delgado and
van den Boogaart 2011; van den Boogaart and Tolosana-Delgado 2013). Regression
with compositional covariates corresponds to the well-known experiments with
mixtures (Scheffé 1958), where the fixed-sum representations of compositions
were considered, thus ignoring the scale invariance property of compositional data
(Aitchison 1986).

10.3.1 Real Response

Accordingly, when a D-part composition x = (x1, . . . , xD)′ is expressed in balances
(3.37), or even more specifically, in one of D coordinate systems (3.25), it is possible
to form a standard multiple regression model that can be used for further estimations
by the least-squares method. Some robust alternatives for parameter estimation are
discussed in Sect. 10.6. When n measurements of the covariates are taken together
with those of the real response variable Y , the resulting models can be written as
follows:

Yi = b
(l)
0 +b

(l)
1 z

(l)
i1 +· · ·+b

(l)
D−1z

(l)
i,D−1+εi, i = 1, . . . , n; l = 1, . . . ,D. (10.11)

Using orthogonal transformations between pivot coordinate systems (3.29), it can be
shown (Hron et al. 2012) that LS estimates of the parameters b

(l)
0 ≡ b0 are the same

for all l = 1, . . . ,D. The same holds for the prediction of the response variable and
for further model characteristics. The list includes RSS, given as sum of squared
differences between observed and predicted values of the response, the well-known
coefficient of determination

R2 = 1 − RSS
∑n

i=1(Yi − Y )2
∈ [0, 1]

(Y being the arithmetic mean of Yi, i = 1, . . . , n) indicating the proportion of the
variance in the dependent variable that is predictable from the covariates, and the
F -statistic

F = R2

1 − R2

n − D

D − 1
. (10.12)
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The statistic (10.12) follows a Fisher F distribution with D − 1 and n − D degrees
of freedom under the assumption of normality and independence of the errors εi ,
common for all models from (10.11). The reason for such nice properties is again
based on a rotation between the orthonormal coordinate systems. In addition to the
absolute term parameter, also the parameters b

(l)
1 are of particular interest due to the

interpretation of the first coordinates in (3.25). Because the remaining coordinates
z
(l)
2 , . . . , z

(l)
D−1 fully represent the remaining parts x

(l)
2 , . . . , x

(l)
D , they cannot be

omitted from the model, although the corresponding regression parameters are
rather rarely taken for interpretation purposes.

The estimates of the parameters b0, b
(1)
1 , . . . , b

(D)
1 together with their further

characteristics (standard errors, values of the T -statistics and the respective p-
values) are usually jointly presented in a table, as they all would result from
one regression model. However, it is important to realize that the outputs come
from D regression models, therefore, attempts like to construct the F-statistics
for all parameters b

(1)
1 , . . . , b

(D)
1 simultaneously would not be reasonable. Note

that it would be possible to consider also just one common model instead of D

regressions by taking centered logratio coefficients of the explanatory composition
x (Bruno et al. 2015); the regression coefficients would differ only by a constant
multiple between the respective coordinates (3.30). Though, such a model cannot
be considered in general as a way out of the above problem with joint consideration
of the parameters b

(1)
1 , . . . , b

(D)
1 . Since the covariates sum up to the constant zero,

the LS estimates cannot vary freely, which also affects the interpretability of the
model itself (Rao and Mitra 1971; Fišerová et al. 2007).

Particularly for explanatory compositions with a higher number of parts, the
computation of the parameter estimates and the corresponding statistical inference
in D regression models might become computationally intensive. Then it is possible
to use the orthogonal transformation matrix from Eq. (3.29), adapted to the general
case describing the relation between two pivot coordinate systems from (3.25). For
z(l) = (z

(l)
1 , . . . , z

(l)
D−1)

′ and z(k) = (z
(k)
1 , . . . , z

(k)
D−1)

′, k �= l, one gets

z(l) = Q(lk)z(k) = (V(l))′V(k)z(k).

Consequently, when the respective regression coefficients in (10.11) are written
in vector form, b(l) = (b

(l)
1 , . . . , b

(l)
D−1)

′ and b(k) = (b
(k)
1 , . . . , b

(k)
D−1)

′, they are
related as

b(l) = Q(lk)b(k). (10.13)

Such a strategy will be particularly useful in Chap. 11, when high-dimensional
compositions will be analyzed in the context of partial least-squares regression.
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Finally, in order to enhance the interpretability of the regression parameters
using pivot coordinates (3.25), it is possible to employ orthogonal coordinates
z
(l)∗
1 , . . . , z

(l)∗
D−1 (10.9). Accordingly, the model (10.11) is adjusted to

Yi = b
(l)∗
0 + b

(l)∗
1 z

(l)∗
i1 + · · · + b

(l)∗
D−1z

(l)∗
i,D−1 + εi, i = 1, . . . , n (10.14)

for l = 1, . . . ,D. The regression parameters between both models follow the
relations

b∗
0 = b0, b

(l)∗
1 = ln(2)

√
D − 1

D
b

(l)
1 ,

generally

b
(l)∗
i = ln(2)

√
D − i

D − i + 1
b

(l)
i , i = 1, . . . ,D − 1,

and similarly for their estimates and the respective standard errors. The interpre-
tation of the parameters gets simpler now: b

(l)∗
1 stands for an additive increase

in the response Y that corresponds to increasing z
(l)∗
1 by one (i.e., increasing

the dominance of xl with respect to the other components twice), while keeping
everything else fixed.

10.3.2 Compositional Response

In the previous case of regression with a real response and compositional covariates,
as well as for regression with compositional response and real covariates, discussed
in Sect. 10.2, the key point was to express the compositional variables in proper
orthonormal/orthogonal coordinates before starting with regression modeling. The
same strategy can be chosen now, when both the response and the covariates
are of compositional nature. Specifically, if pivot coordinates (3.25) are taken for
this purpose, only the first coordinates that correspond to both compositions with
D1 and D2 parts are interpretable. Accordingly, although the full multivariate
model is formed with D1 − 1 coordinates z

1(k)
1 , . . . , z

1(k)
D1−1, k = 1, . . . ,D1, for

the response and D2 − 1 coordinates z
2(l)
1 , . . . , z

2(l)
D2−1, l = 1, . . . ,D2, for the

explanatory composition (plus possibly a parameter for the absolute term), just
the regression parameter that corresponds to z

1(k)
1 and z

2(l)
1 is considered. In line

with the interpretation of (3.25), these relate the dominance of the kth and lth parts
within the respective compositions. Together, D1 ·D2 multiple regression models are
necessary to cover all possible combinations of the response and explanatory parts
(Chen et al. 2017). Particularly for compositions with a higher number of parts this
can lead to quite a computational effort. Therefore, alternatively the relation (10.13)
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can be used to get the parameter estimates for each of the response coordinates
within one regression model.

10.4 Regression Within a Composition

In addition to cases where the composition plays the role of the response, the
covariates, or both, also such situations occur where the interest is to find a
relation between the parts of a composition. If two groups of parts are considered,
it is possible to assign balances to both of them using SBP and then proceed
with the regression analysis. However, it seems to be a peculiar problem using
the logratio methodology to build up a regression model, if one of the parts is
explained by the remaining parts in the composition. The reason is that now at
least two parts, the response and the explanatory ones, are of simultaneous interest
within the composition. Due to scale invariance it is not possible to fix a concrete
representation, say the proportional one, and express simply the response part by
subtracting the others from 1. Moreover, the positions of the parts are not equivalent,
like in correlation analysis (see Chap. 8) because one of them is explained by the
other(s). Regression within a composition is not an exceptional case in practice as it
might seem at a glance. For example, in a household survey it might be interesting to
see, how relative contributions of services to the overall expenditures are influenced
by aliquots of foodstuff, housing and clothing.

For two-part compositions, all relative information is contained in the respective
pairwise logratio, the regression problem thus gets trivial here. In the general case of
D ≥ 3, one has to rethink the pivot coordinates (3.25) once again. For this purpose,
an additional upper index is introduced,

z
(lk)
i =

√
D − i

D − i + 1
ln

x
(lk)
i

D−i

√∏D
j=i+1 x

(lk)
j

, i = 1, . . . ,D − 1. (10.15)

Here, (x(lk)
1 , . . . , x

(lk)
D )′ stands for a permutation of the parts (x1, . . . , xD)′, such that

always the lth compositional part fills the first position and the kth part the second
one, (xl, xk, x1, . . . , xi, . . . , xD)′, i /∈ {l, k}. In such a configuration, the first pivot
coordinate z

(lk)
1 explains, as usual, all the relative information (logratios) about

the original compositional part xl , the coordinates z
(lk)
2 , . . . , z

(lk)
D−1 then explain the

remaining logratios in the composition.
Assume that xl stands for the response and the remaining parts in the actual com-

position form the explanatory variables. Then the response part is well represented
by the coordinate z

(lk)
1 . Further, an appropriate coordinate representation for the

explanatory subcomposition (x1, . . . , xl−1, xl+1, . . . , xD)′ needs to be identified. In
the above notation, e.g., z(lk)

2 , . . . , z
(lk)
D−1 can serve for this purpose. Like in Sect. 10.3

the problem arises, whether it is possible to treat D − 1 compositional covariates
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simultaneously, represented by the respective coordinates. Unfortunately, this is not
the case. The reason is that there would be an overlap of information, conveyed by
pairwise logratios, used to construct the resulting coordinates. To see this, a pair of
covariates xk and xm is considered and the respective pairwise logratios from the
explanatory subcomposition are aggregated like in (3.21). Obviously, up to the sign,
both of the resulting first pivot coordinates contain ln(xk/xm), so it would not be
possible to construct orthonormal coordinates out of that, required for a meaningful
and interpretable statistical processing. For a single particular part xk , however, one
can continue to use coordinates (10.15), and the constructed z

(lk)
2 would exactly fit

for the aim of the analysis. It is just not possible to consider both xk and xm (or even
all covariates) simultaneously in one regression model.

Consequently, in order to analyze the influence of single explanatory parts (or,
more precisely, their dominance within the given composition in terms of the respec-
tive logratios) to the response, D − 1 multiple regression models according to the
coordinate representations (10.15) need to be constructed. In each of such models,
the response is represented by the coordinate z

(lk)
1 to capture the relative information

about xl . Note that this coordinate is the same for any k ∈ {1, . . . ,D}, k �= l. To
each of the explanatory parts xk, k �= l, the coordinates z

(lk)
2 , . . . , z

(lk)
D−1 are assigned

according to the reordered subcomposition (xk, x1, . . . , xi, . . . , xD)′, i /∈ {k, l},
k ∈ {1, . . . ,D}. Similar as before, the coordinate z

(lk)
2 explains all the relative

information about part xk in the resulting subcomposition. Considering the range
of k, finally D − 1 regression models are obtained (Hrůzová et al. 2016),

z
(lk)
i1 = b

(lk)
1 + b

(lk)
2 z

(lk)
i2 + . . . + b

(lk)
D−1z

(lk)
i,D−1 + εi, i = 1, . . . , n, (10.16)

for l, k ∈ {1, . . . ,D}, l �= k (εi stands for the error term resulting from n

observations of the response); these models are assigned to single explanatory
compositional parts. The interpretation of the above regression models results from
the interpretability of pivot coordinates, i.e., in each model just the absolute term
parameter and the parameter corresponding to the coordinate z

(lk)
2 are used for

further interpretation and for statistical inference (confidence intervals, hypothesis
testing).

Since both the response and the explanatory variables originate from one
composition, it cannot be assumed that the covariates represent errorless variables
like in the case of a real valued response (Hron et al. 2012). Consequently, the
use of an ordinary multiple regression model is inappropriate and can even lead
to biased results. Therefore, an orthogonal regression model (or, equivalently, a
total least-squares (TLS) model) is applied for this purpose, which is a specific
type of errors-in-variable (EIV) model (Fuller 1987). According to Markovsky
and Van Huffel (2007), the regression estimates in a total least-squares model
(10.16) are obtained using singular value decomposition of a joint matrix of the
mean-centered response (i.e., its respective coordinate) and the coordinates of the
explanatory composition. For n realizations of both the response and covariates, the
joint matrix is given as [Z(lk), z(lk)

1 ], with z(lk)
1 being the vector of length n that stands
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for the corresponding coordinate, and Z(lk) an n × (D − 2) matrix of coordinates
z
(lk)
2 , . . . , z

(lk)
D−1. Due to mutual orthogonality of the coordinates (10.15), the SVD

of [Z(lk), z(lk)
1 ] is given as (5.3),

[Z(lk), z(lk)
1 ] = UD(W(lk))′. (10.17)

The choice of the coordinates is reflected just in the matrix of the right singular
vectors. Further, define the partitions

W(lk) =
[
W(lk)

11 w(lk)
12

w(lk)
21 w

(lk)
22

]

, D =
[
D1 0
0 dD−1

]
, (10.18)

where the matrices W(lk)
11 and D1 = diag(d1, . . . , dD−2) are of dimension (D−2)×

(D − 2). Then a TLS solution exists iff w
(lk)
22 is non-zero; moreover, it is unique iff

dD−2 �= dD−1. In this case it is given by

b̂(lk) = (̂b
(lk)
2 , . . . , b̂

(lk)
D−1)

′ = −w(lk)
12 /w

(lk)
22 (10.19)

and the corresponding TLS error matrix equals to −Udiag(0, dD−1)(W(lk))′
(Markovsky and Van Huffel 2007), with 0 being a vector with D − 2 zeros. Thus,
when a unique solution b̂(lk) exists, it is computed from the scaled right singular
vector corresponding to the smallest singular value. The absolute term parameter
b

(lk)
1 , that equals to zero for mean-centered data, is estimated as

b̂
(lk)
1 = (t(lk))′[(w(lk)

12 )′, w(lk)
22 ]′

w
(lk)
22

,

where t(lk) stands for means of sampled coordinates z
(lk)
2 , . . . , z

(lk)
D−1, z

(lk)
1 . Note

that due to the close relation between SVD and principal component analysis, also
an interpretation of the regression estimates in terms of the latter method can be
considered (Hrůzová et al. 2016).

The regression analysis using models (10.16) naturally continues with an infer-
ence on the regression parameters in order to support the information obtained from
their estimates. Particularly, significance testing including the respective p-values
and confidence intervals on single regression parameters is frequently of interest in
practice. Unfortunately, in case of orthogonal regression, this statistical inference is
only possible with strict distributional assumptions, except for the case of three-part
compositional data, where an alternative approach using a special linear regression
model can be utilized (Fišerová and Hron 2012). Therefore, if those assumptions
are not fulfilled, a better strategy is to apply resampling methods. In order to relax
the assumptions about the distribution of the input data, in Hrůzová et al. (2016) the
nonparametric bootstrap (Davison and Hinkley 1997) was chosen for this purpose.
Generally, bootstrapping is based on building a sampling distribution for a statistic
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by resampling from the data at hand. Consequently, the nonparametric bootstrap
allows to estimate the sampling distribution of a statistic empirically without making
assumptions about the distribution of the population, and without deriving the
sampling distribution explicitly. The basic idea is that, after drawing a sample
of size n from S = {z(lk)

1 , . . . , z(lk)
n }, z(lk)

i = (z
(lk)
i1 , . . . , z

(lk)
i,D−1)

′, i = 1, . . . , n

with replacement, the sample is considered as a representative sample of the whole
population. This means that each element zi of S is selected with probability 1/n

to mimic the original sample S. This procedure is repeated R times, where R is
a large number, to obtain a sufficient number of bootstrap samples. For bootstrap
confidence intervals, several approaches are available in the literature; in Hrůzová
et al. (2016), the simplest percentile intervals and their bias-corrected version with
acceleration constant were considered.

Finally, also for regression within a composition, the orthogonal coordinates
(10.9) with the notation adjusted according to (10.15) as

z
(lk)∗
i = log2

x
(lk)
i

D−i

√∏D
j=i+1 x

(lk)
j

, i = 1, . . . ,D − 1 (10.20)

can be applied to simplify the interpretation of the regression parameters. Their
properties with respect to regression models (10.16) themselves and their parameters
result as combination of the cases of regression with compositional response
and compositional covariates, respectively. Accordingly, a twofold multiplicative
increase in the relative dominance of xk (or equivalently, a unit additive increment
in coordinate z

(lk)∗
2 ) leads to an increase in the relative dominance of the response xl

of δ = 2b
(l)∗
2 . Note that the proportionality coefficient δ stays the same irrespective

of the base to which the logarithm was taken, as the factor 2 in the expression now
stands for a twofold increase in dominance, and not for the logarithmic base (Müller
et al. 2018).

10.5 Variable Selection

Variable selection is intended to select the “best” subset of covariates (predictors).
This is a frequent task in applications, where many “candidate” predictors could be
included in the regression model. Nevertheless, including them without any deeper
consideration could lead to one of the following challenges:

• The aim is to explain the response in the simplest way—redundant predictors
should be removed. The principle of Occam’s Razor states that among several
plausible explanations of a phenomenon, the simplest is the best. Applied to
regression analysis, this implies that the smallest model that fits the data is
preferable.

• Unnecessary predictors will add noise to the estimation of other quantities of
interest.
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• Collinearity, i.e. (almost) linear dependence between the covariates, which is
caused by having too many variables trying to do the same job. This can distort
the inference statistics.

• Cost: if the model is to be used for prediction, one can save time and/or money
by not measuring redundant covariates.

Usually, no prior information on which variables to choose is available and thus, a
model selection method in order to find a subset of the compositional/real covariates
for the regression model under consideration is needed. This might be the case for
any of the models introduced in Sects. 10.2–10.4, those from the latter two sections
are considered already in a pivot coordinate representation (3.25).

A very intuitive method for finding good models in the set of possible submodels
is stepwise variable selection. Here, the common Backward Stepwise (BS) and
Forward Stepwise (FS) algorithms are considered. FS starts with a small model,
for example with a model containing only a constant, and adds one covariate in
each step of the procedure. BS starts with a large model, for example with the full
model, and in each step one covariate is removed (see, e.g., Varmuza and Filzmoser
2009).

One possible criterion to select good from bad models is the Akaike Information
Criterion—AIC (Akaike 1973), which is frequently used for model selection
(Heritier et al. 2009). Given a collection of models for the data, the AIC estimates the
prediction quality of each model, relative to each of the other models; the preferred
model is the one with the minimum AIC value. The AIC value does not depend on a
rotation of either the response or the covariates, and thus any choice of orthonormal
coordinates for the representation of the corresponding compositions leads to the
same conclusion.

Accordingly, in each step of the BS algorithm such a variable is removed, for
which the resulting model has the lowest AIC value. In case of compositional
covariates this is done by removing the coordinate z

(l)
1 for any xl from the actual step

because the other coordinates represent the resulting subcomposition. The algorithm
stops when either the AIC value is no longer decreasing, or the minimum of one
real covariate (or two explanatory compositional parts, resulting into one pivot
coordinate) is reached.

Conversely, in the FS algorithm an explanatory variable is added if this leads to
a lower AIC value; in this case such an explanatory variable is added, for which the
resulting (richer) model has the lowest AIC value. In the compositional case, this is
again done by using the “first” pivot coordinate z

(l)
1 which stands for a dominance

of the newcoming part to the explanatory composition from the current step. The
algorithm terminates either when the AIC value no longer decreases, or if the
maximum of possible covariates (say D for compositional predictors) is reached. As
an initial step, single real covariates are taken, or two-part compositions, resulting
again into one real coordinate. Nevertheless, for the compositional case thus

(
D
2

)

models have to be considered, which can lead to computational difficulties when D

is large. Therefore, the FS algorithm is recommendable in general rather just for a
regression with compositional response and real covariates.
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10.6 Robustness Issues

Independent of the regression model considered so far, the regression coefficients
need to be estimated using some criterion. The most widely used criterion consid-
ered in this context is the least-squares (LS) criterion. Consider in the following
the model (10.11), where specific observations y1, . . . , yn are given for the (real)
response variable, and the explanatory composition is expressed in a specific ilr
coordinate system, leading to a vector zi = (1, zi1, . . . , zi,D−1)

′, for i = 1, . . . , n.
The constant 1 is added here for the intercept term. The linear regression model is
given by

yi = z′
ib + εi for i = 1, . . . , n, (10.21)

where b = (b0, b1, . . . , bD−1)
′ is the vector of regression coefficients, and εi

represents the error term.
For a given regression estimator b̂, the ith residual is

ri = ri (̂b) = yi − z′
i b̂.

Regression estimators typically minimize the size of the residuals. The estimated
regression coefficients according to the LS criterion are given by

b̂LS = argmin
b

n∑

i=1

(ri (b))2 , (10.22)

where “argmin” refers to minimizing the argument (sum of squared residuals).
Outliers can have a strong effect on the minimization of (10.22), because they
can yield large (squared) residuals which will dominate the sum. Consequently, the
solution b̂LS can change, and from a robustness point of view this is not desirable.

Generally, there are two types of outliers in the regression context: outliers in
the response, so-called vertical outliers, and outliers in the explanatory variables,
so-called leverage points (Maronna et al. 2006). Robust regression should protect
against both types.

A formal approach to robust regression started with the M-estimator for regres-
sion, defined as

b̂M = argmin
b

n∑

i=1

ρ

(
ri (b)

σ̂ (b)

)
, (10.23)

where ρ(·) is an appropriate function, which might be squared around zero, but
bounded for large (absolute) values (Huber 1981). Further, σ̂ (b) is the estimated
residual scale which depends on the unknown regression coefficients. Here one can
already see the difficulty: The regression coefficients can only be estimated if the
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residual scale is given, but the residual scale can only be estimated if the regression
coefficients are known. The problem can be solved by an iterative algorithm,
where it is essential to estimate the residual scale robustly, and to initialize the
algorithm with robust starting values. This leads to the so-called MM-estimator
which, depending on the tuning parameters, is highly robust and achieves high
efficiency (Maronna et al. 2006). This estimator can be computed with the function
lmrob from the R package robustbase.

Also other robust regression estimators are available, such as the LTS (least
trimmed sum-of-squares) estimator, implemented as function ltsReg from the
package robustbase. This estimator minimizes a trimmed sum of squared residuals,
where the largest values of the squared residuals are trimmed (Rousseeuw 1984).
The trimming proportion determines the robustness of the estimator, but also its
efficiency. Generally, the LTS regression estimator has a (much) lower efficiency
than the MM-estimator (Maronna et al. 2006).

Finally, the MM-estimator is also used to robustify orthogonal regression from
Sect. 10.5. Here the link to PCA is employed instead of taking any robust version
of SVD; robust PCA is obtained through a robust estimation (MM-estimation) of
the covariance matrix (Rousseeuw and Hubert 2013). This has implications also for
the statistical inference. Although bootstrap is a very useful tool, in case of robust
estimators there are two problems: computational complexity of robust estimators,
and the possible instability of the bootstrap in case of many outliers in some of
the bootstrap samples. Therefore, for robust orthogonal regression, fast and robust
bootstrap (Salibian-Barrera et al. 2006; Van Aelst and Willems 2013) is used which
is based on the fact that the robust estimators (specifically the MM-estimator) can
be represented by smooth fixed-point equations which allow to calculate a fast
approximation of the estimates in each bootstrap sample.

10.7 Examples

In the following, the regression models introduced in Sects. 10.2–10.4 are illustrated
with data from applications. Because for an interpretation of the results, concrete
values of the regression parameters were mostly not needed, all computations
were performed in orthonormal coordinates. Alternatively, of course, also their
orthogonal counterparts could be utilized if a more detailed analysis would be
preferable. We leave it as an option for an interested reader.

10.7.1 Example for Regression with Compositional Response

In the following, a data set referring to the European Union countries and to some
other European countries is used to illustrate the case where the response is a
composition and the explanatory variable(s) not. The explanatory variable (only
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one) is the GDP per capita from the year 2012. The response composition refers
to the financial situation of the households in these countries, where proportions in
the categories “Very bad,” “Bad,” “Moderately bad,” “Moderately good,” “Good,”
and “Very good” are reported. This is also how the data in the composition are
arranged. The data are available from Eurostat, http://ec.europa.eu/eurostat/.

library("robCompositions")
data("GDPsatis")
y <- GDPsatis[, 3:ncol(GDPsatis)] # compositional parts of the response
x <- GDPsatis[, "gdp"] # GDP as explanatory variable

The response composition is represented using pivot coordinates—but according
to Eq. (10.8), this needs to be done for each of the D compositional parts separately.
So, D regression models need to be computed. This can be done as follows:

# initialize empty list to collect results
allres <- vector("list", ncol(y))
# loop over all compositional parts
for (j in 1:ncol(y)){

zj <- pivotCoord(y, pivotvar = j)
# use only first coordinate
res <- lm(zj[,1] ~ x)
# result for the first coordinate
allres[[j]] <- summary(res)

}

The object allres collects all the results of the summary statistics, but only
for the first response pivot coordinate from each multivariate model. One option is
to use the R package broom, which includes methods (e.g., the functions tidy
and glance) to extract information from statistical models in an elegant way, and
the package data.table which provides by far the fastest implementation (function
rbindlist) to combine list elements.

library("broom")
library("data.table")
res <- rbindlist(lapply(allres, tidy))
res[, c(1:3, 5)] # selection of estimates

## term estimate std.error p.value
## 1: (Intercept) -1.047990520 0.231916371 9.638559e-05
## 2: x -0.002085140 0.002070134 3.221461e-01
## 3: (Intercept) -0.022588977 0.125233365 8.581127e-01
## 4: x -0.003046581 0.001117859 1.077482e-02
## 5: (Intercept) 0.794525260 0.147754683 8.890763e-06
## 6: x -0.004229546 0.001318889 3.260439e-03
## 7: (Intercept) 1.494218165 0.138160419 1.083406e-11
## 8: x -0.001599755 0.001233249 2.047919e-01
## 9: (Intercept) 0.547543470 0.174592964 3.904451e-03
## 10: x 0.003486685 0.001558453 3.311901e-02
## 11: (Intercept) -1.765707399 0.279875365 6.849721e-07
## 12: x 0.007474337 0.002498226 5.611997e-03

http://ec.europa.eu/eurostat/
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The intercept terms are not relevant here for the interpretation, but the signs
of the slope parameters are of interest. For example, the first model refers to
all relative information about the part “very bad,” and the GDP is assigned a
negative coefficient. This means that in countries with smaller GDP there is a
“very bad” financial household situation. However, the p-value is around 0.3,
and thus GDP is not significant in the model. Significance (at the level 0.05) is
obtained only for models 2 (“bad”), 3 (“moderately bad”), 5 (“good”), and 6 (“very
good”). The coefficients in the first two cases are negative, those in the last two
cases are positive, which also corresponds to the intuition. Note that by using the
orthogonal coordinates (see Sect. 10.2) one could further analyze concrete values of
the regression coefficients.

One can also have a look at the R2 measure and at the adjusted R2, which
penalizes for the size of the model, confirming the previous significance results:

rbindlist(lapply(allres, glance))[, 1:2]

## r.squared adj.r.squared
## 1: 0.03380195 0.0004847734
## 2: 0.20390143 0.1764497593
## 3: 0.26178993 0.2363344133
## 4: 0.05484189 0.0222502360
## 5: 0.14719407 0.1177869683
## 6: 0.23586110 0.2095114822

10.7.2 Example for Regression with Compositional Covariates
and Real Response

The R package UsingR contains the data set fat with several body measurements
that can be used to predict the response variable “body.fat”. A prediction model
could offer an easy alternative to an underwater weighing technique. Note that there
are also other variables like age available, but here only the body measurements
are used for modeling. These can be regarded as composition because the “size”
of the body is not relevant, only the relations (ratios) between the different body
measurements contain the important information.

data("fat", package = "UsingR")
fat <- fat[-182, ] # removing a suspicious observation
sel <- c("neck","chest","abdomen","hip","thigh","knee","ankle","bicep",

"forearm","wrist")
x <- fat[, sel] # explanatory composition

The response variable reports the percentage of body fat measured for the males.
In order to turn the relative scale into an absolute one, this variable is logit-
transformed.

y <- log(fat$body.fat / (100 - fat$body.fat)) # logit of fat-%
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According to Eq. (10.11), D models need to be computed, where D is the
number of compositional parts. Since pivot coordinates are used to represent the
compositions, only the first coefficient in each model is of interest, together with
the corresponding inference statistic. There is a convenient function lmCoDaX
available in the package robCompositions which collects all these first coefficients
and the results from the statistical tests in one inference table.

rescl <- lmCoDaX(y, x, method = "classical")$ilr
rescl

##
## Call:
## lm(formula = y ~ ., data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.48737 -0.19401 0.00627 0.23868 0.75495
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.7762 0.9007 -5.303 2.58e-07 ***
## X.neck -1.9774 0.6599 -2.996 0.00302 **
## X.chest -1.2722 0.7318 -1.738 0.08343 .
## X.abdomen 7.2994 0.5041 14.480 < 2e-16 ***
## X.hip -3.7571 0.9326 -4.029 7.52e-05 ***
## X.thigh 1.0910 0.6395 1.706 0.08932 .
## X.knee -0.3395 0.7087 -0.479 0.63231
## X.ankle -0.2015 0.4438 -0.454 0.65015
## X.bicep 0.7868 0.4253 1.850 0.06552 .
## X.forearm 0.3568 0.4397 0.812 0.41785
## X.wrist -1.9862 0.6993 -2.840 0.00489 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.3285 on 240 degrees of freedom
## Multiple R-squared: 0.6835,Adjusted R-squared: 0.6717
## F-statistic: 57.84 on 9 and 241 DF, p-value: < 2.2e-16

In this analysis, classical least-squares regression was used. This function also
provides an option to perform robust regression. In order to reproduce the same
result, a random seed is fixed.

set.seed(123)
res <- lmCoDaX(y, x, method = "robust")$ilr
res

##
## Call:
## ltsReg.formula(formula = y ~ ., data = d)
##
## Residuals (from reweighted LS):
## Min 1Q Median 3Q Max
## -0.6339 -0.1630 0.0000 0.2050 0.6215
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## Intercept -4.9016 0.7797 -6.286 1.60e-09 ***
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## X.neck -1.9235 0.5682 -3.385 0.000836 ***
## X.chest -1.1487 0.6383 -1.800 0.073223 .
## X.abdomen 7.1643 0.4480 15.993 < 2e-16 ***
## X.hip -3.5483 0.8046 -4.410 1.58e-05 ***
## X.thigh 1.3323 0.5618 2.371 0.018540 *
## X.knee -0.3408 0.6456 -0.528 0.598046
## X.ankle -1.2502 0.4682 -2.670 0.008111 **
## X.bicep 0.2747 0.3718 0.739 0.460675
## X.forearm 0.9389 0.3818 2.459 0.014676 *
## X.wrist -1.6173 0.6046 -2.675 0.008001 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.2803 on 234 degrees of freedom
## Multiple R-Squared: 0.7423,Adjusted R-squared: 0.7323
## F-statistic: 74.26 on 9 and 232 DF, p-value: < 2.2e-16

When comparing the results of the inference statistics from classical and robust
regression, some differences can be seen: thigh, ankle, and forearm are also
significant in the robust version, which seems to be logical in this context. Moreover,
the R2 measure has slightly increased in the robust case, indicating a slightly better
model fit of the robust model (to the data majority).

One could inspect various diagnostic plots, but here only the scaled residuals
from both approaches are compared, see Fig. 10.1. Only for the classical fit, some

qplot(res$residuals / res$sigma, rescl$residuals / rescl$sigma,
xlab = "scaled residuals (robust fit)",
ylab = "scaled residuals (classical fit)") +
geom_abline(intercept = 0, slope = 1)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

−2.5

0.0

2.5

−2 −1 0 1 2
scaled residuals (robust fit)

sc
al

ed
 re

si
du

al
s 

(c
la

ss
ic

al
 fi

t)

Fig. 10.1 Comparison of the scaled residuals from the classical and robust fit. The line indicates
equal values on both axes
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very large scaled residuals appear, indicating outliers for this approach. Surprisingly,
these observations fit very well to the robust model, and thus one can conclude that
classical LS-regression was influenced by them.

10.7.3 Example for Regression with Compositional Covariates
and Compositional Response

One question relevant for the European Commission is whether the likelihood of
poverty is inherited. Various databases exist to define indicators and instruments
related to this question. One such database refers to the education level of father
(F) and mother (M). Here, the percentages of low (l), medium (m), and high (h)
education levels of father and mother are investigated. The data are available from
Eurostat, http://ec.europa.eu/eurostat/, and included as data set educFM in the
package robCompositions. The particular interest is in identifying relationships
between the education level of the mother and of the father. This means that two
three-part compositions are available and the relationships between them are of
interest.

Figure 10.2 shows ternary diagrams of the two compositions. Their structure
seems to be similar, but it is not immediate to identify any relationships.

data("educFM")
father <- educFM[,2:4]
mother <- educFM[,5:7]
par(mfrow = c(1,2), mar = c(0.1,2,0.1,2))
ternaryDiag(father, text = educFM$country)
ternaryDiag(mother, text = educFM$country)
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Fig. 10.2 Ternary diagrams of education levels for father (F) and mother (M) in European
countries; for father (left plot): low (F.l), medium (F.m), high (F.h); for mother (right plot): low
(M.l), medium (M.m), high (M.h)

http://ec.europa.eu/eurostat/
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In order to identify all pairwise relationships, pivot coordinates are constructed
for both compositions separately, and LS-regression is performed. Note that because
of the orthogonality of the pivot coordinates, multiple regressions instead of a
multivariate regression can be carried out. Here the fathers are predicted from the
mothers.

D <- 3
pval <- coef <- matrix(NA, ncol = D , nrow = D)
dimnames(pval) <- dimnames(coef) <- list(names(father), names(mother))
for (i in 1:D){

for (j in 1:D){
zfath <- as.matrix(pivotCoord(cbind(father[, i], father[, -i])))
zmoth <- as.matrix(pivotCoord(cbind(mother[, j], mother[, -j])))
res <- summary(lm(zfath[,1] ~ zmoth))$coefficients
pval[i,j] <- res[2, 4] # entry of the p-value in the matrix
coef[i,j] <- res[2, 1] # entry of the coefficient in the matrix

}
}

The p-values and regression coefficients are summarized below:

round(pval, 3) # all p-values

## M.l M.m M.h
## F.l 0 0.000 0.045
## F.m 0 0.000 0.001
## F.h 0 0.058 0.000

round(coef, 3) # all regression coefficients

## M.l M.m M.h
## F.l 0.936 -0.671 -0.265
## F.m -0.525 0.862 -0.337
## F.h -0.411 -0.191 0.602

Almost all p-values are below 0.05, only the combination F.h–M.m is slightly
above. This means that a medium education level of the mother (relative to the other
education levels) is only weakly related to high education levels of father (relative to
the rest). Also the regression coefficients are shown above. The diagonal of the table
relates the same education levels of fathers and mothers, and since all coefficients
are positive, there is a positive relation. So, if the mother has a certain education
level, it is likely that the father has the same level of education. All other coefficients
have negative sign, with a different interpretation. For example, for countries with a
dominance of a medium education level of the mother (M.m), there is a deficiency
of a low education level of the father (F.l). In other words and simplified, couples
with different education levels are more unlikely.

10.7.4 Example for Regression Within a Composition

Coming back to the example from Sect. 10.7.2, one can be interested in the relation
between some body measurements. The data set which has been used there contains
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such measurements, and the interest here is in the relationship between the variable
“abdomen” with the variables “chest,” “wrist,” and “forearm.” It is quite obvious
that there will be a relation between “abdomen” and “chest,” but other relations are
not so clear. Since only one composition is considered here, orthogonal regression
needs to be applied for the purpose.

data("fat", package = "UsingR")
fat <- fat[-182, ] # removing a suspicious observation
sel <- c("abdomen", "chest", "wrist", "forearm")
x <- fat[, sel] # considered composition

Classical as well as robust orthogonal regression has been implemented in the
package oreg. Also an appropriate presentation in pivot coordinates is available
there. In the following analysis, the part “abdomen” takes the role of the response
part, and the remaining parts will be represented by other coordinates, where the
second coordinate refers to all relative information of “chest” to the rest (without
“abdomen”), and the third coordinate represents the logratio of “wrist” to “forearm.”

library("oreg")
z1 <- do.ilr(x, ilr.type = "1") # second coordinate represents chest
oo1cl <- oregClassic(z1)
oo1rob <- oregMM(z1)

Both the classical and a robust version of orthogonal regression have been
computed above, and instead of the usual summary(), only the most important
results are collected and compared:

cbind(estimates = oo1cl$coefficients, oo1cl$coefCIperc, oo1cl$coef.Pval)

## estimates 95% lower 95% higher
## Intercept 1.0841019 0.8536210 1.4105092 0.000
## Z2 1.4810664 1.3325681 1.7124898 0.000
## Z3 -0.2205848 -0.4629028 0.2163116 0.216

cbind(estimates = oo1rob$coefficients, oo1rob$coefCIperc, oo1rob$coef.Pval)

## estimates 95% lower 95% higher
## Intercept 1.12646792 0.8415581 1.4721163 0.000
## Z2 1.58322726 1.3617387 1.8666929 0.000
## Z3 0.02771638 -0.6159734 0.7615994 0.992

The row “Z2” refers to the coordinate describing the relative information of
“chest,” and the regression coefficient is positive in both cases, implying a positive
relationship to (all relative information of) “abdomen.” The last column is the p-
value, and in both cases significance is derived. This is also seen by the bootstrap
confidence intervals. “Z3,” the logratio of “wrist” to “forearm,” is not significant for
“abdomen,” as it was expected.

Figure 10.3 shows some plots related to the robust solution. The left plot
illustrates the problem: Since only four parts have been used, the problem can
be visualized by the three resulting coordinates. Coordinate “Z1” represents the
response, all relative information about “abdomen,” “Z2” stands for the relative
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par(mfrow = c(1,2), mar = c(.1,.1,.1,.1))
oreg::plot3d(oo1rob)

## [1] "Z2" "Z3" "Z1"

par(mar = c(4,4,2,2))
plot(z1[,3], oo1rob$fitted.values,

xlab = "Measured Z1", ylab = "Estimated Z1")
abline(c(0,1))
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Fig. 10.3 Left: 3D plot of the orthogonal regression fit and the residuals (positive in red, negative
in green); right: measured versus estimated variable “Z1”

information about “chest” (except of “abdomen”), and “Z3” contains the infor-
mation of “wrist” versus “forearm.” The regression plane shows the fit, and the
residuals are visualized by the red (positive) and green (negative) points with
orthogonal lines to the plane. The right plot compares the values of “Z1” and the
fitted values, reflecting not an excellent but a moderate fit.

The explanatory variables can be represented in different coordinate systems. In
particular, one can use pivot coordinates, where the second coordinate (here denoted
by “Z2”) represents all relative information about one of the explanatory variables.
In the following, this role of “Z2” takes the part “wrist.”

z2 <- do.ilr(x, ilr.type = "2") # second coordinate represents wrist
oo2rob <- oregMM(z2)
cbind(estimates = oo2rob$coefficients, oo2rob$coefCIperc, oo2rob$coef.Pval)

## estimates 95% lower 95% higher
## Intercept 1.1264679 0.8470024 1.4777993 0.002
## Z2 -0.7676105 -1.3144261 -0.1240528 0.036
## Z3 1.3849732 0.9526535 1.8941613 0.002

The relative information about “wrist” is still significant in the model, but the
coefficient is negative. Thus, for males where the part “abdomen” is more dominant,
“wrist” gets less dominant.
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A similar conclusion is obtained below, where the role of “Z2” is taken by the
part “forearm.”

z3 <- do.ilr(x, ilr.type = "3") # second coordinate represents forearm
oo3rob <- oregMM(z3)
cbind(estimates = oo3rob$coefficients, oo3rob$coefCIperc, oo3rob$coef.Pval)

## estimates 95% lower 95% higher
## Intercept 1.1264679 0.8390529 1.4702319 0.00
## Z2 -0.8156167 -1.6292089 -0.2401641 0.02
## Z3 1.3572568 0.9721390 1.7135905 0.00
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Chapter 11
Methods for High-Dimensional
Compositional Data

Abstract With increasing dimensionality of compositional data much more care
needs to be devoted to a reasonable coordinate representation and selection of
methods to be used for their statistical processing. This situation frequently occurs
with chemometric data, particularly when dealing with observations from “omics”-
fields (genomics, proteomics, or metabolomics). In principle, all methods that are
popular in the context of high-dimensional data, like principal component analysis
and partial least squares regression, can also be used for compositional data with
far more parts than observations. On the other hand, while pivot coordinates are
still useful in terms of interpretation also in the high-dimensional context, this is
not so clear for other types of balances: defining an interpretable sequential binary
partition for compositions with hundreds or thousands of parts, where many of them
may just be related to noise, is nearly impossible. Accordingly, it is meaningful
here to consider even the elemental information, contained in pairwise logratios,
to build up a relevant method for marker identification or for the detection of cell-
wise outliers. The latter one can be used to reveal which observations are deviating
from the majority in order to identify possible measurement errors or other artifacts.
Moreover, it may be possible with these methods to identify parts or groups of parts
that show a different behavior in all or in subsets of the observations.

11.1 Specific Problems of High-Dimensional Compositions

In applications from the field of chemometrics, and also in other related fields, it
is common that the number of compositional parts is substantially higher than the
number of observations available. While hundreds or even thousands of parts may
be available, only tens or, in the best case, hundreds of observations may have been
accessible. This is due to the fact that such samples often originate from measuring
biological material, such as plants, animals, or humans. In addition to financial
reasons, the sample size is thus limited also by ethical restrictions or by the rareness
of a disorder to be analyzed.
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On the other hand, most traditional statistical methods, including their adapta-
tions to compositional data, assume that the number of samples is higher than the
number of variables (Bühlmann and van de Geer 2011). For instance, this is essential
for the estimation of the covariance matrix: Although the theoretical covariance
matrix is positive definite, the regularity cannot be achieved by its estimation
from a sample where the number of observations is lower than the number of
variables (parts). Singularity of the covariance matrix is a serious problem for many
multivariate methods, where its inverse is required. This is the case for outlier
detection based on Mahalanobis distances, for classification using LDA/QDA, and
indirectly also for regression analysis with compositional response and/or covariates
as introduced in Sect. 10. Finally, traditional methods of robust statistics also cannot
deal with the high dimensionality of the observations. An example is the MCD
estimator, where the determinant of the sample covariance matrices, computed from
subsets of the whole data set, needs to be minimized (see Sect. 5.2.3); trivially,
these determinants are zero and the optimization problem is ill-defined. For this
reason, approaches that relax the assumption of a large sample size are preferred.
Among them, singular value decomposition belongs to the most popular ones. This
algorithm is used not just for the computation of principal components, but also for a
range of other popular methods in high-dimensional data analysis, including partial
least squares regression which is introduced below, and Parafac/Tucker3 models for
the analysis of three-way data (Kroonenberg 2008; Smilde et al. 2004) that were
adapted also for compositional data (Engle et al. 2014; Gallo 2015). Some popular
methods in the context of high-dimensional data (including, e.g., Lasso regression)
were discussed in Bühlmann and van de Geer (2011).

Specific problems with high-dimensional compositions have either computa-
tional origin, or they are related to the characteristics of the data themselves. The
first issue is mostly connected to the numerical instability resulting from computing
geometric means that occur in logratio coordinates. Note that a similar problem
can also arise by determining the center of the distribution (Sect. 4.1) directly
from the original compositions, when the absolute values of the parts are very
high. Consequently, by multiplying the parts in gm(x) it can easily happen that the
resulting product to be extracted exceeds the storage for the number representation
in the computer. As a way out, the geometric mean can be computed by expressing
the original compositional parts in log-scale (3.16), i.e.

gm(x) = exp

⎛

⎝ 1

D

D∑

j=1

ln xj

⎞

⎠ .

By doing so, the numerical stability is achieved even for compositions with very
high numbers of compositional parts.

The second problem deserves more attention. With high-dimensional data result-
ing from signal processing it frequently happens that some parts can be considered
as random noise. For example, if two patient groups should be classified according
to mass spectral measurements, there may be several parts that are not informative
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for the group classification and thus be considered as noise variables. If a statistical
method cannot filter such noise variables in an appropriate manner, the classifier
may have poor accuracy. This is even more severe in compositional data analysis,
where the construction of coordinates involves all or most of the parts (Walczak
and Filzmoser 2014). Since it is usually not clear at the beginning of the analysis
which are the uninformative noise parts, it is not possible to construct coordinates
that would exclude those parts. Thus, alternative methods need to be consulted, see
Sect. 11.3.

Another difficulty may arise from measurement problems, for example if the
measurements of some parts are close to the detection limit of the device. As before,
this may have severe consequences for such logratio coordinates where all or most
parts are aggregated, because the problem is reflected also in the aggregated form.
On the other hand, these effects are usually suppressed with an increasing number of
parts, because possible trends eliminate each other and in the geometric mean more
or less only pure noise remains (Mert et al. 2016; Gardlo et al. 2016), see Sect. 11.4.

Finally, also for high-dimensional compositions it is theoretically possible to
construct a specific sequential binary partition to obtain balance coordinates (3.37).
Nevertheless, due to the high number of compositional parts and the complexity of
the relations between them, this approach is rarely used.

11.2 Partial Least Squares for Regression and Classification

One of the most prominent statistical methods for high-dimensional data with a
range of applications in chemometrics and other fields is partial least squares (PLS)
regression (Wold et al. 2001). Basically, this is a method to relate a set of explanatory
variables to one or more responses by means of latent variables. It can be viewed
as a variant of principal component analysis and multiple regression. PLS is used
for both regression and classification tasks in practice, and it can be employed for
reducing the dimensionality of the data. The intrinsic assumption of all PLS methods
is that the observed data are generated by a system or process which is guided by a
small number of latent variables which cannot be directly observed or measured. In
the compositional context, PLS regression is used primarily instead of the standard
LS regression method for the case of regression with compositional explanatory
variables (Sect. 10.3), if the number of compositional parts (D) is higher than the
number of observations (n). Although PLS estimators cannot provide such nice
theoretical properties like those resulting from the LS regression estimation, they
represent a well-justified alternative when the standard approach necessarily fails.

For the purpose of PLS modeling, both the response and the covariates are
usually mean-centered. Similar as for the standard regression case, the resulting
orthonormal coordinates can be relaxed to orthogonal ones in order to enhance the
interpretation of the regression parameters. For a given l ∈ {1, . . . ,D} and pivot
coordinates (3.25), the sample values are recorded in the matrix Z(l) of dimension
n × (D − 1). Without loss of generality, l = 1 is assumed in the following, and
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the notation Z(1) is simplified to Z. In the matrix Y of size n × q the values of q

properties (response variables) for the same n objects are collected, where q can be
(much) bigger than n. In the classification case, denoted as PLS-DA (partial least
squares discriminant analysis), the matrix Y consists of binary variables describing
the different categories, e.g., zeroes and ones in the case of two categories (Pérez-
Enciso and Tenenhaus 2003). The number of dependent variables is equal to the
number of categories. The method is optimized for the balanced case, when the
same amount of members in each category is considered.

Partial least squares regression applied to the multivariate case (q > 1) is also
known under PLS2, whereas the case q = 1 is denoted by PLS1 (Varmuza and
Filzmoser 2009). The aim of PLS2 regression is to find a linear relationship between
the response and the explanatory variables, using a (D−1)×q matrixB of regression
coefficients, and an error matrix E,

Y = ZB + E. (11.1)

As mentioned above, the columns of Z and Y are assumed to be mean-centered.
Instead of directly estimating the regression coefficients in the relation (11.1), Z
and Y are modeled by linear latent variables according to the regression models

Z = TP′ + EZ

Y = UQ′ + EY ,

where EZ and EY are matrices of residuals. The matrices T and U represent score
matrices and the matrices P and Q are loading matrices, respectively. All these
matrices have a columns, where a ≤ min(D − 1, q, n) is the number of PLS
components, to be chosen by the user. The scores in T are linear combinations of the
explanatory variables and can be considered as good summaries of these variables.
The same relationship holds for the response variables and the matrix U.

Then the relationship between the scores becomes

U = TD + H, (11.2)

where D is a diagonal matrix with elements d1, . . . , da , and H is the residual matrix
(Varmuza and Filzmoser 2009). Since all quantities in (11.2) are unknown (latent
variable problem), the parameter estimation needs to be based on an additional
criterion. In case of PLS2, this criterion is the maximization of the covariance
between the scores, corresponding to explanatory and response variables. The
requirements of high (total) explained variance of Z and high correlation between Z
and Y are both included in this criterion. Note that for PLS1, simply the covariance
between the response, represented by the vector y of length n, and the scores of Z
is maximized. Consider a weight vector w for the explanatory variables, t = Zw,
and a weight vector c for the response variables, u = Yc. Then the maximization
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problem can be written as

max‖t‖=‖u‖=1
cov(t,u) = max‖Zw‖=‖Yc‖=1

cov(Zw,Yc). (11.3)

The solution of the maximization problem is formed by the first score vectors t1 and
u1, the columns of the corresponding score matrices (their unit length is required
for uniqueness of the solution). For the next score vectors, orthogonality constraints
to the previous score vectors are imposed, i.e., tTj tl = 0 and uT

j ul = 0 for 1 ≤ j <

l ≤ a. Finally, the score matrices T and U, together with the matrices formed by the
weight vectors w and c, are used for the estimation of the regression parameters B.

Unlike principal component analysis (Chap. 7), it is not possible to get both
uncorrelated scores and loadings simultaneously in PLS modeling. There are several
algorithms for solving the PLS problem by preserving uncorrelated scores, such
as Kernel PLS, NIPALS, SIMPLS, or O-PLS (Varmuza and Filzmoser 2009).
Since each additional score vector covers new variability, having uncorrelated
scores might be preferable for prediction purposes. On the other hand, from the
compositional perspective, it might be rather preferable to find uncorrelated loading
vectors. By considering just the space of compositional covariates, such loadings
form orthonormal basis vectors leading to coordinates that work in favor of the aim
of PLS regression. This goal is followed by the eigenvalue algorithm (Hoeskuldsson
1988). Here the idea is to compute all eigenvectors to the largest a eigenvalues,
where a is the desired number of PLS components. Specifically, p1, . . . ,pa are
orthogonal PLS loading vectors in the space of the covariates (logratio coordinates)
given by the eigenvectors to the a largest eigenvalues of Z′YY′X. Orthogonal PLS
loading vectors in the space spanned by the response variables, q1, . . . ,qa , are
the eigenvectors to the a largest eigenvalues of Y′ZZ′Y. The scores for both the
covariates and the response are found by projecting the data on the loading vectors,
i.e., tj = Zpj and uj = Yqj , respectively. Even though this approach does not
solve the initial maximization problem, this price is worth to be payed for the desired
orthogonality of the loadings.

For the estimation of the regression parameters, an analogous strategy concerning
the choice of ilr coordinates can be used as for the LS approach developed in
Sect. 10.3. It is recommended to use an orthogonal transformation matrix Q(lk) from
(10.13) in order to reduce the computation effort, necessary for obtaining scores
and loadings using the PLS algorithms (Kalivodová et al. 2015). Alternatively, it
is possible to replace the pivot coordinates by clr coefficients in the matrix Z. The
results in terms of a dominance of the single compositional parts with respect to the
averaged rest of components, extracted from the first coordinates (columns) of the
respective matrices Z(l), l = 1, . . . ,D, are the same up to a scaling constant (3.30).

Similar as for PCA, the loadings and scores of the covariates corresponding to
the first two PLS components can be jointly visualized in a biplot. In order to save
computational effort, they can be obtained in clr coefficients, analogously to the
case of Sect. 7.3. Consequently, the loadings can be assigned to the original parts in
terms of an interpretation of clr coefficients without the necessity of constructing
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D pivot coordinate systems. The interpretation of the PLS biplot follows only
roughly the usual compositional biplot due to the different origin of the score
and loading vectors from the PCA case. Nevertheless, the information about the
response variables, utilized by the construction of loadings and scores, can form
an important value added in applications. This holds particularly for PLS-DA that
utilizes the class pertinence of samples.

As mentioned above, the key idea of PLS to identify the latent variables is
covariance maximization, see Eq. (11.3). Traditionally, the sample covariance is
considered for this purpose, which is quick and easy to compute. In case of outliers
or heavy-tailed distributions, however, the resulting model may have poor prediction
performance because the classical covariance estimation is affected by these non-
ideal conditions. For this reason, several approaches exist with the aim of estimating
the PLS model in a more robust way. The approach by Serneels et al. (2005)
for PLS1 regression, called Partial Robust M-estimator (PRM), uses a weighted
covariance, with weights derived in the score space and from the residuals. This
estimator is highly robust and also quick to compute. A sparse version of this
estimator has been developed in Hoffmann et al. (2015), and thus in addition to
robustness one obtains variable selection according to the sparsity of the model.
Based on these ideas, a sparse robust PLS method for a two-group classification
problem (PLS-DA) has been developed in Hoffmann et al. (2016). All these robust
methods are implemented in the R package sprm.

11.3 Marker Identification Using Pairwise Logratios

One of the natural tasks in the classification problem with high-dimensional
compositions is significance testing. In the context of chemometrics, this is closely
connected to marker identification, i.e. which of the predictor variables can be
considered as typical (either because of its lack, or abundance) for a specific group
of samples, like for patients suffering from a disease, or which variable allows
to distinguish the groups or classes. In PLS-DA with compositional data, one
possibility is to use a jack-knife procedure (Kalivodová et al. 2015); nevertheless,
this is only recommendable for the balanced case of having about the same number
of samples in each group.

Moreover, as it was indicated in Sect. 11.1, using pivot balances (3.25) for
the marker identification might be a bit tricky, especially in high-dimensional
settings. They tend to lead to false positive results (Walczak and Filzmoser 2014),
which means that their “significance” is frequently just driven by several pairwise
logratios, aggregated into z

(l)
1 , for l = 1, . . . ,D. A possible way out is to give up

a coordinate representation and rely just on pairwise logratios. Of course, one must
be aware that there are D(D − 1)/2 different variable pairs, so their number can
explode quickly with increasing D. On the other hand, an appropriate treatment of
pairwise logratios can lead to convincing results.
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One such approach is proposed in Walach et al. (2017), where a method for
marker identification in the most common case of two groups of observations is
presented. It is based on the use of the variation matrix (4.2) that enables to reveal
the proportionality between compositional parts. Consider an n × D compositional
data matrixX, where the observations originate from two groups. Let X[1] denote the
sub-matrix with the n1 compositions in the rows from the first group, and X[2] the
corresponding matrix with n2 observations of the second group, where n1 +n2 = n.
The matrix elements of X[m] are denoted by x

[m]
ij , for i = 1, . . . , nm, j = 1, . . . ,D,

and m = 1, 2. Besides the variation matrix T = (tjk) of order D based on all
observations jointly, the individual group variation matrices are considered as well.
The symbol T(m) denotes the variation matrix of group m, for m = 1, 2, with its
elements defined as

t
[m]
jk = var

[

ln

(
x

[m]
1j

x
[m]
1k

)

, ln

(
x

[m]
2j

x
[m]
2k

)

, . . . , ln

(
x

[m]
nmj

x
[m]
nmk

)]

, (11.4)

for j, k = 1, . . . ,D. Thus, the variation matrices of the individual groups consider
only the observations from their own groups.

For marker identification, the following statistic Vj is proposed:

Vj =
D∑

k=1

(n1 + n2)
√

tjk

n1 ·
√

t
[1]
jk + n2 ·

√
t
[2]
jk

, for j = 1, . . . ,D. (11.5)

If the j th part is not a marker, the j th column (and row) of all three sources of
information T, T(1) and T(2) will have similar structure. For this reason, each term
of the sum in (11.5) will be approximately around one for all non-markers k. On the
other hand, if the j th part is a marker, t

(1)
jk and t

(2)
jk will be different, and tentatively

much smaller than tjk , for all k. The resulting Vj will then be considerably higher
than for non-markers. So, the higher the value of the statistic (11.5) is, the less
similar the groups are with respect to this j th variable. For a normalized version of
the statistic Vj ,

V ∗
j = Vj − V̄

sV
, for j = 1, . . . ,D, (11.6)

with the arithmetic mean

V̄ = 1

D

D∑

k=1

Vk
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and the empirical standard deviation

sV =
√√√
√ 1

D − 1

D∑

k=1

(Vk − V̄ )2,

standard normal distribution can be approximately assumed (Walach et al. 2017).
Accordingly, values of (11.6) higher than a cut-off value formed by the standard
normal quantile u0.975 ≈ 1.96 can be considered as markers.

In presence of outliers, the values of the above variation matrices with “var”
being represented by the sample variance can result in spoiled values of the statistics
Vj . As a consequence, marker identification based on V ∗

j would become unreliable.
Similar as in Sect. 6.6, a robust version of the classical variation matrix is thus
needed. Because the MCD estimator now necessarily fails, other alternatives are
required. One of them would be to apply the OGK estimator (Sect. 5.2.3) together
with Eq. (5.8) for this task. Nevertheless, as this estimator is not affine equivariant,
it is even preferable here to go for a univariate estimator of the single elements of
the variation matrix. One such possibility is to use the τ estimator of the variance
(Yohai and Zamar 1998; Maronna and Zamar 2002). This estimator is highly robust,
and it also attains a high efficiency, tunable with two constants c1 and c2. This is
particularly important when dealing with small sample sizes. The estimator uses
weights for the observations, defined for a univariate sample y = (y1, . . . , yn)

′ as

wi = ωc1

(
yi − median(y)

s0

)
for i = 1, . . . , n, (11.7)

with the weight function

ωc1(u) = max
(

0, (1 − (u/c1)
2)2

)
and s0 = MAD(y)

for the MAD estimator defined in Sect. 5.2.2. Then the τ estimator of variance is
defined as

σ 2
τ = s2

0

n

n∑

i=1

ρc2

(
yi − ȳw

s0

)
, (11.8)

where

ȳw =
∑n

i=1 wiyi∑n
i=1 wi

and ρc2(u) = min(c2
2, u

2).

In order to combine good robustness properties with high efficiency, the recom-
mended tuning parameters are c1 = 4.5 and c2 = 3. This leads to around 80%
efficiency at normal distributions, while keeping the breakdown point at 50%.
The resulting robust statistics V ∗

j have shown very good performance both with
simulated and real data compared to other possible approaches, even in unbalanced
settings (Walach et al. 2017).
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Moreover, the weights for the τ estimator, computed for all pairwise logratios in
the single groups of observations, can be used for cell-wise outlier detection. Thus
it is possible to reveal which observations are deviating from the majority in order
to identify possible measurement errors or other artifacts, and also some parts or
groups of parts that show different behavior in all or subsets of the observations
are detected. Since all variable pairs j, k = 1, . . . ,D are considered for estimating
the variation matrix, one can store all weights (11.7) in a three-way array W[m] =
(w

[m])
jki ) with D rows, D columns, and nm slices, m = 1, 2. Because the slices of

W[m] are symmetric, the weights can be averaged for each observation and each
involved part,

p
[m]
ij = 1

D

D∑

k=1

w
[m]
jki , (11.9)

for j = 1, . . . ,D, i = 1, . . . , nm, and m = 1, 2. This information is stored in the
nm × D matrix P[m], which can be represented graphically. All values are in the
interval [0, 1], where small values indicate outlying cells (Walach et al. 2017).

11.4 Principal Balances

While pivot coordinates (3.25) can still be useful in the high-dimensional context,
this is hardly the case for general balances (3.37): defining an interpretable
sequential binary partition for compositions with hundreds or thousands of parts
is nearly impossible. One way out is to define such (usually only few) balances
that account for most of the variability contained in the compositional data set.
The idea links to principal component analysis (see Sect. 7), which also inspired
the name principal balances for such orthonormal coordinates (Pawlowsky-Glahn
et al. 2011). In order to minimize computational costs and to enable for a direct
interpretation of the loading vectors in terms of logcontrast coefficients (Sect. 3.3),
principal component analysis is computed in clr coordinates. Three methods for the
construction of principal balances were proposed in Pawlowsky-Glahn et al. (2011):

AP (angular proximity to principal components): In the first step of this recursive
algorithm, all possible binary partitions of the full D-part composition are
created. The balancing element with the smallest geometric angle with one
of the principal components is stored and removed from the set of possible
directions. The procedure is then applied to each group of the previously
identified balance separately, where the geometric angle to one of the remaining
principal components is minimized. This can be repeated step-by-step, until
D − 1 balances are extracted, i.e., until a complete sequential binary partition
is achieved.
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HC (hierarchical clustering of components): The set of balances is constructed
by Q-mode clustering from Sect. 6.6. The variance of the balance between two
groups (3.37) is used as a criterion to link two clusters. It turns out that this
corresponds to the Ward’s method (Sect. 6.2.1.4) based on the variation matrix
(4.2).

MV (maximum explained variance hierarchical balances): This sequential algo-
rithm starts with the first principal component, and uses two groups with the
signs of the loadings for constructing a balance. Let r denote the number of
positive signs and s the number of negative signs. Then it is checked whether a
change of one positive sign to the other group increases the explained variance.
This check is also carried out for all combinations of 2, . . . , r − 1 positive signs.
The balance with the maximum explained variance is stored, a new principal
component analysis is performed with the larger group, and so on.

The computation time of AP and MV explodes quickly with increasing dimension
because of the exponentially growing number of possible combinations that are used
as candidates. Creating all possible combinations also leads to memory allocation
problems for larger D. The HC algorithm is just based on a D × D dissimilarity
matrix, which is unproblematic even for larger dimension (Mert et al. 2015).

Even if only few first principal balances accounting for a reasonable portion
of the total variability are used for the analysis, their interpretation is violated by
the presence of all parts in the first balance. Subsequently, also the other principal
balances contain always all parts of the subgroup for which the balance coordinate
is constructed. This feature can be suppressed by using sparse principal balances
(SPB) (Mert et al. 2015). This method allows for a tradeoff between maximizing
explained variance and sparsity, where the latter is referring to the number of
involved components r + s � D in each of the new coordinates. Accordingly,
an SPB should describe the information of only a few compositional parts with zero
contribution from the other (majority of) parts. This is similar to the aim of sparse
principal component analysis, where many of the entries of the loading matrix are
forced to be zero (Zou et al. 2006). Nevertheless, even in case of sparse principal
balances, a careful interpretation is needed, because with more balances derived, the
danger increases that also some marginal (erroneous) effects can be captured.

11.5 Examples

11.5.1 Example for PLS for Two-Group Classification

Consider the data set BrainSpectra from the package MetabolAnalyze with
NMR spectral data from brain tissue samples of rats. The NMR spectra consist
of 164 spectral bins, and they are measured in parts per million (ppm), which
already indicates the relative scale. It is known from which brain regions the samples
have been taken. Here the samples of only two out of four available brain regions
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are considered: region “Hippocampus” and region “Pre-frontal cortex,” and the
corresponding observations are coded with −1 and 1, respectively.

library("MetabolAnalyze")
data("BrainSpectra")
y <- BrainSpectra[[2]][17:33] # brain regions 3 and 4
y[y == 3] <- -1
y[y == 4] <- 1
table(y)

## y
## -1 1
## 8 9

X <- BrainSpectra[[1]][17:33, ] + 0.1 # NMR spectra, baseline corrected
dim(X)

## [1] 17 164

The goal is to find a model which allows to accurately classify tissue samples to
the two brain regions, and to identify which spectral bins are “significantly” different
in the two groups. In a first attempt, pivot coordinates are constructed for the NMR
spectra matrix, and PLS is applied to this two-group classification problem.

Z <- as.matrix(pivotCoord(X))
library(pls)
res.ilr <- mvr(y ~ Z, method = "simpls", validation = "LOO")

In this case, the algorithm “simpls” is used, and leave-one-out (LOO) cross-
validation is performed to estimate the prediction error, see Fig. 11.1. For this
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plot(res.ilr, "validation", val.type = "RMSEP", legendpos = "top")

Fig. 11.1 Prediction error (root mean squared error of prediction, RMSEP) for the brain spectral
data set with two groups, depending on the number of PLS components
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plot, the root-MSE is computed based on the cross-validated predictions for the
different numbers of PLS components. The root-MSE is the square-root of the
mean squared error (MSE), where MSE is the average of the squared differences
between the measured and the predicted response values. The plot also shows the
RMSE adjusted for the number of parameters. The conclusion is that a model with
two PLS components leads to the smallest prediction error. However, one should
be careful with this plot: As mentioned before, prediction errors are based on the
squared residuals (yi − ŷi)

2, where yi is the group label (here −1 or 1) and ŷi is
the predicted group label for the ith observation, i = 1, . . . , n. The predicted group
label is not necessarily a number in {−1, 1}, but in general it can be any real number,
since a linear combination of the x-variables is used to compute this prediction.
Therefore, it might be better to look at other criteria that are more appropriate in the
classification context, such as misclassification errors of predictive abilities.

Since pivot coordinates have been used to construct the PLS model, it would
also be difficult to draw conclusions concerning the “significance” of the variables
(compositional parts) for distinguishing the two groups. This would only be
appropriate for the first pivot coordinate which describes all relative information
of the first compositional part (spectral bin) to the remaining parts.

Rather than constructing pivot coordinates for each single compositional part, it
might be more convenient to compute the PLS model from clr coefficients and to
perform inference for those coefficients.

X.clr <- as.matrix(cenLR(X)$x.clr) # clr coefficients matrix
res.clr <- mvr(y ~ X.clr, method = "simpls",

validation = "LOO", jackknife = TRUE)

The option jackknife=TRUE causes that the variance of the PLS regression
coefficients is estimated by a jackknife prodedure. These estimates will be used
further below for statistical inference about the clr coefficients. Before doing that,
the “optimal” number of PLS components needs to be determined. This is done now
based on the predictive ability, which is defined as the average of the proportions of
correctly classified observations in the two groups (Varmuza and Filzmoser 2009).
The class predictions are derived from the cross-validation scheme, using a PLS
model with a certain number of PLS components.

Figure 11.2 shows that a PLS model with two components leads to the best
predictive ability of about 0.83. In other words, on average 83% of the observations
in the two groups are correctly classified with this model. Taking more or fewer PLS
components would lead to a much worse predictive ability. Note that this outcome
would be exactly the same for the PLS model based on pivot coordinates. Using
similar reasoning as in Sect. 7.3 about compositional biplots, the clr coefficients
can serve as workhorse for computational issues, but interpretation of results and,
particularly, possible inference is done by having the first pivot coordinates z

(l)
1 for

l, . . . ,D from (3.25) in mind instead. The point is that each of such coordinates is
assigned to its own orthonormal coordinate system, and thus enables to avoid an
interrelation of clr coefficients.
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pred <- drop(res.clr$validation$pred) # LOO-CV predictions
ncomp <- dim(pred)[2] # max number of components
Pabil <- matrix(NA, ncol = 2, nrow = ncomp) # Predictive abilities
for (i in 1:ncomp){

class1 <- pred[y == -1, i]<0 # predicted as class -1
class2 <- pred[y == 1, i] >= 0 # predicted as class 1
Pabil[i,1] <- sum(class1) / sum(y == -1) # predictive ability class -1
Pabil[i,2] <- sum(class2) / sum(y == 1) # predictive ability class 1

}
Pab <- apply(Pabil, 1, mean) # average predictive ability
par(mar = c(4,4,0.1,0.1), cex.lab = 1.3)
plot(1:ncomp, Pab, xlab = "Number of components",

ylab = "Predictive ability", type = "b")
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Fig. 11.2 Predictive ability for the brain spectral data set with two groups, depending on the
number of PLS components

Here the interest is in inference for the PLS regression coefficients for the two-
component model. These regression coefficients relate to the single clr coefficients,
which carry all relative information of a specific spectral bin to the geometric mean
of all bins. Using the variance estimates from the jackknife procedure, approximate
t-tests for the single regression coefficients can be performed. Figure 11.3 shows
the outcome of the test statistic for each coefficient. The boundaries at ±2 can be
considered as cut-off values: if a value of the test statistic exceeds this range [−2, 2],
the corresponding variable can be considered as significant in the model. This means
that these variables are important for distinguishing the two brain regions.

It is also easy to extract the indexes of the significant coefficients. One can
also distinguish between significant coefficients where the absolute value of the
test statistic is in the interval (2, 3], and highly significant coefficients with values
exceeding 3:

abst <- abs(drop(restest$tvalues)) # absolute value of test statistic
ind2 <- which(abst > 2 & abst <= 3) # significant
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restest <- jack.test(res.clr, ncomp = 2)
par(mar = c(4,4,0.1,0.1), cex.lab = 1.4)
plot(1:ncol(X.clr), drop(restest$tvalues), cex = 0.7,

xlab = "index of variable", ylab = "value of test statistic")
abline(h = 0)
abline(h = c(-2, 2), lty = "dashed")
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Fig. 11.3 Inference for the PLS regression coefficients for the brain spectral data set with two
groups, for a model with two PLS components

as.numeric(ind2)

## [1] 10 11 13 18 23 43 49 73 85 88 107 111 128 134
## [15] 140 143 144 150

ind3 <- which(abst > 3) # highly significant
as.numeric(ind3)

## [1] 97 98 99 119 129 130 131 132 151

Figure 11.4 shows the clr coefficients of the two groups, visualized in different
colors. The significant regression coefficients are indicated by the vertical lines in
yellow color, whereas orange is used for highly significant coefficients.

11.5.2 Example for Marker Identification

For reasons of comparability, the same data set as before is used. However, here
the interest is only in identifying those markers which allow to distinguish the
two groups, and not so much in a misclassification rate or a predictive ability of
a classification model. For this purpose, the method of Walach et al. (2017) is used
which is based on pairwise logratios, employing the variation matrix. In more detail,
the variation matrix elements of all observations jointly are compared with those
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par(mar = c(4,4,0.1,0.1), cex.lab = 1.4)
matplot(t(X.clr), col = y + 4, type = "l", lty = 1,

xlab = "Index of variable", ylab="clr coefficient")
abline(v = ind2, col = "yellow")
abline(v = ind3, col = "orange")
matlines(t(X.clr), col = y + 3, type = "l", lty = 1)
legend("topleft", legend = c("Group -1", "Group 1"),

col = c(2,4), bg = "white", lty = c(1,1))
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Fig. 11.4 Significance of the PLS regression coefficients for the brain spectral data set with two
groups, for a model with two PLS components

computed from the single groups only, and big differences indicate potential marker
variables. Big differences are expressed in terms of big values of the statistic V ∗

j

from Eq. (11.6).
The outcome will depend on the estimator of the variance “Var” for the variation

matrix elements, see (11.4). The function biomarker in robCompositions has
different options. First, the classical empirical variance is used, with the option
type="sd".

Figure 11.5 shows the outcome for the statistic V ∗
j for each variable. Values

that exceed the dotted horizontal line indicate potential biomarkers. These are the
variables with the following indexes:

ind.sd <- which(res.sd$biom.ident$biomarkers)
ind.sd

## [1] 10 49 86 88 98 99 119 129 131 143

This outcome can be compared to the significant variables identified with the PLS
approach, see Fig. 11.4, and there is a strong overlap. However, now fewer variables
are declared as potential biomarkers.

In a second approach, the robust τ estimator is used as estimator of the variance
for the variation matrix, see (11.8), leading to the outcome in Fig. 11.6 for the V ∗

j

statistic, and to the following indexes of the biomarkers:



222 11 Methods for High-Dimensional Compositional Data

res.sd <- biomarker(X, g1 = which(y == 1), g2 = which(y == -1),
type = "sd", diag = FALSE)

plot(res.sd)
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Fig. 11.5 Values of the statistic V ∗
j for each variable, based on the classical empirical variance as

estimator for the variation matrix elements

res.tau <- biomarker(X, g1 = which(y == 1), g2 = which(y == -1),
type = "tau")

plot(res.tau)
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Fig. 11.6 Values of the statistic V ∗
j for each variable, based on the robust τ estimator as estimator

for the variation matrix elements

res.tau <- biomarker(X, g1 = which(y == 1), g2 = which(y == -1),
type = "tau", diag = FALSE)

ind.tau <- which(res.tau$biom.ident$biomarkers)
ind.tau

## [1] 86 88 119 129 143 144
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plot(res.tau, type = "diag") # outlier diagnostics plot

Outlier diagnostics

Variables

O
bs

er
va

tio
ns

* * * * **

Fig. 11.7 Outlier diagnostics for the cells of the data matrix, based on the robust τ estimator as
estimator for the variation matrix elements. The darker the cell, the smaller the weight and the
more likely this cell is an outlier. Biomarkers are indicated with ∗

So, again fewer variables are identified as biomarkers, and the reason for the
different answer might be due to outliers in the data. Since weights are computed for
the τ estimator, these weights can be used to show a diagnostic plot for outlyingness
of the individual cells of the data matrix, see Fig. 11.7. Indeed, there are some cells
which seem to be inconsistent with the corresponding cells of the other observations
in the group.

In practice, one can also be interested in the classification accuracy of models
with the variable subsets corresponding to the identified biomarkers. However, for
this purpose it is necessary to compare the models in a unified manner. Here, this
comparison is made with PRM, a robust version of PLS, see Serneels et al. (2005),
used in a cross-validation scheme for classification. This procedure is implemented
in the package sprm as function prmdaCV. Compared are models based on all
clr coefficients, for the significant variables from the PLS approach, and for the
variation matrix approach using the significant variables based on the classical
variance and the τ estimator, respectively. First, the data are prepared accordingly by
calculating clr coefficients for the corresponding variable sets. Note that one could
also express the information in ilr coordinates, without any difference in the model
performance.

d.clr <- data.frame(y, X.clr) # use all clr coefficients
Xsel.pls <- as.matrix(cenLR(X[, c(ind2,ind3)])$x.clr)
d.pls <- data.frame(y, Xsel.pls) # use significant variables from PLS
Xsel.sd <- as.matrix(cenLR(X[, ind.sd])$x.clr)
d.sd <- data.frame(y, Xsel.sd) # classical variation matrix approach
Xsel.tau <- as.matrix(cenLR(X[, ind.tau])$x.clr)
d.tau <- data.frame(y, Xsel.tau) # robust variation matrix approach
library("sprm") # load package
set.seed(123) # set random seed for reproducibility
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rescv.clr <- prmdaCV(y ~ .,
data = d.clr, as = 1:3,
nfold = 5)
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rescv.pls <- prmdaCV(y~ . ,
data = d.pls, as = 1:3,
nfold = 5)
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(b)

rescv.sd <- prmdaCV(y ~ .,
data = d.sd, as = 1:3,
nfold = 5)
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(c)

rescv.tau <- prmdaCV(y~.,
data = d.tau, as = 1:3,
nfold = 5)
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Fig. 11.8 Cross-validated misclassification rates (vertical axes) for different numbers of PLS
components (horizontal axes), for the different variable (sub)sets. (a) Model based on all clr
coefficients. (b) Model based on the significant variables for the PLS approach. (c) Model using
the classical variation matrix approach. (d) Model using the robust variation matrix approach

Then, the procedure can be applied to the corresponding data sets, using fivefold
cross-validation and up to three PLS components. The resulting misclassification
rates (vertical axes) are shown in Fig. 11.8, depending on the number of PLS
components (horizontal axes). It can be seen that the misclassification rate is high
only if no variable selection is carried out. Otherwise, with models using two PLS
components, the misclassification error is even zero. So, any of the corresponding
variable subsets referring to potential biomarkers would lead to a perfect group
separation. Still, for practitioners it is important to get a reliable indication of
biomarkers, and because outliers seem to be present in certain data cells, the robust
variation matrix approach seems to give the most reliable answer.
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Chapter 12
Compositional Tables

Abstract Contingency and probability tables are well described in the literature,
but the compositional nature of such tables is often not considered. We discuss
compositional tables, a generalization of contingency tables that allow also for
continuous values in the cells under the requirement of scale invariance. Com-
positional tables carry relative information about the relationships within and
between row and column categories of the variables (factors). The assumption of the
Aitchison geometry enables to decompose a compositional table orthogonally into
independent and interactive parts. The independence table is formed by a product of
row and column geometric marginals and can be considered as a relevant alternative
to the independence case in a probability table. Consequently, the interaction
table captures relative information about the relationships between factors. In the
chapter primarily the special case of 2 × 2 compositional tables is discussed, being
dominant in practical applications. It turns out that for a coordinate representation of
compositional tables the sequential binary partitioning is in general not appropriate
as it does not respect the two-factor nature of compositional tables. The general case
of compositional tables reveals that balance coordinates are recommendable just for
the representation of the independence table. For the interaction table coordinates
the interpretation in terms of log odds ratios of parts and their groups (quaternary
coordinates) is required.

12.1 Motivation and Geometry

Up to now, the methods considered in this book were designed for compositional
data that can be expressed in terms of a vector with positive entries, referring
to one certain whole. A natural extension is to consider two (marginal) wholes
simultaneously, whose combinations form a new (joint) whole. In the two-way
case, one can also refer to two (row and column) factors that are represented by
the respective wholes and their parts.

This situation is well-known from the case of contingency tables (see, e.g.,
Agresti 2012), where two discrete distributions are analyzed jointly in form of
a table with counts corresponding to various combinations of these factors. A
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contingency table and probability tables are examples (representations) of composi-
tional tables (Egozcue et al. 2008), a generalization of contingency and probability
tables. A compositional table expresses quantitatively relative contributions of
factors to a common whole, i.e. also the important principle of scale invariance
applies here. The cells of a compositional table thus may also contain continuous
values rather than just counts.

Compositional tables, either in their continuous or discrete forms, arise in many
real-world problems. We show examples of two compositional tables that are
analyzed in Fačevicová et al. (2014). The first example shows the total intermediate
flow of economic activities decomposed by sector (industrial and non-industrial)
and by region (domestic and international). One aim was to study whether the
intermediate flow between industrial and non-industrial sectors differs by region
or not. All in all, 2 × 2 compositional tables of the 41 countries and regions are
analyzed in Fačevicová et al. (2014). One example table belonging to China is shown
in Table 12.1 (UNIDO 2009).

In the second example, the total number of employees in a country is decomposed
according to working time (full- and part-time) and gender of employee with the aim
to analyze relationships between these two factors (see Table 12.2 for the structure of
employment in Germany) as well as differences among the countries (the complete
data can be found in UNECE 2013).

The traditional analysis of contingency tables involves to analyze if two cat-
egorical response variables (two factors) are independent, i.e. to investigate the
assumption that independent classifications in contingency tables are built up by
multiplying the (standard) marginals, hereafter called arithmetic marginals. An
equivalent description is that all joint probabilities are equal to the product of
their respective marginal probabilities. It was shown in Egozcue et al. (2015)
that this formulation with arithmetic mean marginals is problematic and the table
cannot be decomposed orthogonally into its independent and interactive parts,
an intuitive and expected requirement. Another result of Egozcue et al. (2015)
is that the formulation of the well-known Pearson χ2 test of independence has
its limitations, and alternatives are formulated there. Similar as for contingency
tables, the relationships between the factors including their possible independence
belong to the main tasks of the analysis of compositional tables. Nevertheless,

Table 12.1 Distribution of intermediate flow between two sectors of China’s economy in 2009 in
million USD (left) and (as estimated probability table) in proportions (right) (UNIDO 2009)

China Domestic International Domestic International

Industrial 4,574,156 482,601 0.461 0.049

Non-industrial 4,321,198 555,852 0.435 0.056

Table 12.2 Distribution of
employment in Germany
(DEU) in 2011 in thousands
of persons

DEU Female Male

Part-time 8377 2200.4

Full-time 9956.9 19,202.7
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the assumption that independent classifications in contingency tables are built up
by multiplying the standard arithmetic marginals is replaced by using geometric
marginals. This makes it necessary to re-formulate the concept of independence of
factors.

Note that for the statistical analysis of contingency tables also log-linear
models (Agresti 2012) or correspondence analysis (Greenacre 2007) is frequently
employed. In the latter case also zero counts are allowed and even a link to
compositional data exists (Greenacre 2011) if the absolute values of counts are
irrelevant, but correspondence analysis does not utilize all possibilities resulting
from considering the Aitchison geometry of compositional tables. Moreover, similar
as for compositional data, it is natural to consider an ensemble of compositional
tables that can be analyzed with statistical tools described in Chaps. 4–10 (including
exploratory data analysis and visualization, principal component analysis, cluster-
ing, classification, regression analysis, etc.). This is a distinct difference to the case
of contingency tables, where such issues are usually not considered or are subject
to specific approaches, like using three-way contingency tables and the respective
log-linear models.

Generally, compositional tables are formed by I rows and J columns (Egozcue
et al. 2008, 2015; Fačevicová and Hron 2015; Fačevicová et al. 2016). Nevertheless,
the next section will focus first on the simplest case of 2 × 2 compositional tables
that seems to have the greatest practical potential (Fačevicová et al. 2014).

12.2 Independent and Interaction Parts of Compositional
Tables

This section follows closely Fačevicová et al. (2014) and also Fačevicová and Hron
(2015), where the case of 2 × 2 compositional tables was discussed in detail.
Accordingly, a 2 × 2 compositional table is given as

x =
(

x11 x12

x21 x22

)
,

see examples in Tables 12.1 and 12.2, which represents the relationship between the
row and column factors. Any such table can be vectorized row-wise into a four-part
composition vec(x) = (x11, x12, x21, x22)

′. This formulation will be useful to study
the geometrical properties of compositional tables in the sample space S̃4 (see (3.4)
for a general definition) without a necessity of introducing their own sample space.

In general, the Aitchison geometry can be easily extended to the case of
compositional tables. Perturbation and powering for 2 × 2 compositional tables
x and y and a real number α, respectively, result in

x ⊕ y =
(

x11y11 x12y12

x21y21 x22y22

)
, α  x =

(
xα

11 xα
12

xα
21 xα

22

)
.
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Note that

n =
(

1 1
1 1

)

denotes, as usual, the neutral element in S̃4 as sample space of vectorized com-
positional tables. It immediately follows that the dimension of S̃4 is three, which
also determines the number of orthonormal coordinates to be assigned to any 2 × 2
compositional table. The Aitchison inner product of two compositional tables x and
y is defined as 〈x, y〉A =

1

4

(
ln

x11

x12
ln

y11

y12
+ ln

x11

x21
ln

y11

y21
+ ln

x11

x22
ln

y11

y22
+ ln

x12

x21
ln

y12

y21
+ ln

x12

x22
ln

y12

y22
+ ln

x21

x22
ln

y21

y22

)
.

Similar as for standard compositional data,

‖x‖A = √〈x, x〉A and dA(x, y) = ‖x � y‖A

represent the Aitchison norm of a table x and the distance between two tables x and
y, respectively.

For the computation of the inner product, norm and distance, the R package
robCompositions can be used. For example, the Aitchison distance of the data
from Germany shown in Table 12.2 and the corresponding table on employment
in Austria can be calculated as follows:

germany <- c(8377, 2200.4, 9956.9, 19202.7)
austria <- c(833.3, 192.8, 1056.8, 1969.6)
names(germany) <- names(austria) <- c("part-time_female", "part-time_male",

"full-time_female", "full-time_male")
germany

## part-time_female part-time_male full-time_female
## 8377.0 2200.4 9956.9
## full-time_male
## 19202.7

austria

## part-time_female part-time_male full-time_female
## 833.3 192.8 1056.8
## full-time_male
## 1969.6

aDist(germany, austria)

## [1] 0.1448979
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12.2.1 Decomposition of 2× 2 Compositional Tables

For the purpose of a structural analysis, a 2 × 2 compositional table can be decom-
posed into two orthogonal tables, the independence table xind and the interaction
table xint . This idea of the independence table is inspired by probability tables
and the independence of random variables, where the corresponding independence
table is formed by a product of row and column marginals. In the compositional
case, the (arithmetic) marginals are replaced by the geometric ones, i.e., instead of
amalgamation of rows and columns, geometric means of them are computed. As a
result, two two-part compositions (for row and column marginals, respectively) are
obtained,

gr = (
√

x11x12,
√

x21x22)
′, gc = (

√
x11x21,

√
x12x22)

′,

instead of taking two arithmetic marginals of a probability table,

ar = (x11 + x12, x21 + x22)
′, ac = (x11 + x21, x12 + x22)

′.

For example, the arithmetic and the geometric marginals of Table 12.2 are:

germanytab <- matrix(germany, ncol=2)
rownames(germanytab) <- c("female", "male")
colnames(germanytab) <- c("part-time", "full-time")
addmargins(germanytab, FUN = mean)

## Margins computed over dimensions
## in the following order:
## 1:
## 2:
## part-time full-time mean
## female 8377.0 9956.9 9166.95
## male 2200.4 19202.7 10701.55
## mean 5288.7 14579.8 9934.25

addmargins(germanytab, FUN = gmean)

## Margins computed over dimensions
## in the following order:
## 1:
## 2:
## part-time full-time gmean
## female 8377.000 9956.90 9132.850
## male 2200.400 19202.70 6500.279
## gmean 4293.338 13827.49 7704.938

In addition to the fact that the resulting geometric marginals are scale invariant,
the geometric mean is a natural form of aggregation in compositional data analysis
in general (Pawlowsky-Glahn and Egozcue 2002; Egozcue et al. 2008). It is easy to
verify that xind can be explicitly expressed as

xind =
(

x11
√

x12x21 x12
√

x11x22

x21
√

x11x22 x22
√

x12x21

)
.
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From its construction, the independence table captures relative information between
the rows and columns of x, respectively, i.e. excluding relationships within them.
Consequently, the interaction table carries information about interactions between
both factors in x.

The independence and interaction tables result in the decomposition of the
compositional table x as

x = xind ⊕ xint (12.1)

(Egozcue et al. 2008; Fačevicová et al. 2014). The subspace of independence tables,
S̃4

ind , has dimension two, representing the row/column ratios. The independence
table would thus be sufficient to reconstruct the original 2 × 2 compositional table,
if the two corresponding row and column factors were independent in the above
sense.

Using Eq. (12.1), the interaction table is defined as

xint = x � xind =
(

1√
x12x21

1√
x11x22

1√
x11x22

1√
x12x21

)

=
(√

x11x22
√

x12x21√
x12x21

√
x11x22

)
;

by construction, tables xind and xint are orthogonal, i.e. 〈xind , xint 〉A = 0. It is
worth to note that in case of the independence table, both the geometric and the
arithmetic marginals coincide, up to proportional representation. For the interaction
table, gr and gc are neutral elements, but this is not fulfilled for arithmetic marginals
(Egozcue et al. 2015).

The independence and interaction tables can be obtained in R as follows:

ind2x2(germanytab)

## part-time full-time
## female 0.13841322 0.4457853
## male 0.09851519 0.3172863
## attr(,"class")
## [1] "ind2x2"

int2x2(germanytab)

## part-time full-time
## female 0.3652162 0.1347838
## male 0.1347838 0.3652162
## attr(,"class")
## [1] "int2x2"

Note that the functions ind2x2 and int2x2 are short versions of the more
general implementation of I × J tables in the functions indTab and intTab.

# results equivalent to previous calculations, thus output is suppressed
xind <- indTab(germanytab)
intTab(prop.table(germanytab), xind)
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12.2.2 Coordinate Representation of Compositional Tables

The decomposition of 2 × 2 compositional tables into independent and interactive
parts is now used to derive an orthonormal coordinate representation with respect
to the Aitchison geometry. The new coordinates follow the specific structure of
compositional tables and enable to visualize the coordinates in real space as well
as to perform further statistical processing.

The focus on a coordinate representation reflects the fact that the aim here is
primarily to analyze a sample of compositional tables. Thus, the interest is not only
in analyzing one compositional table as, for example, given in Table 12.2, but to
analyze a sample of compositional tables, e.g. factors of Table 12.2 given for several
countries. Note, however, that in special cases the analysis of compositional tables
can also be considered as an alternative to independence testing in contingency
tables (Egozcue et al. 2015; Fačevicová et al. 2014).

As already mentioned, it is possible to assign orthonormal coordinates,
like pivot coordinates (3.19), to a vectorized compositional table vec(x) =
(x11, x12, x21, x22)

′, or, more general, to apply a sequential binary partition that
leads to coordinates (3.37). However, this approach has some limitations for
compositional tables.

The aim of the analysis of compositional tables is to decompose the original
table into an independent and an interactive part, xind and xint , and to support a
simple interpretability of the results. Suppose that the original data which form the
basis of the 2 × 2 compositional table x are given. Then it is expected that also the
orthonormal coordinates z of these original data can be decomposed as

z = zind + zint , (12.2)

and that these parts (vectors) reflect the dimensionality of xind and xint . Concretely,
the numbers of nonzero coordinates in the three-component vectors zind and zint

should correspond to the dimensions of the respective subspaces. Unfortunately, this
cannot be achieved for coordinates (3.19). By taking the more general sequential
binary partitioning (3.37), the only possibility is given by the partitioning in
Table 12.3, resulting in coordinates

z̃1 = 1

2
ln

x11x22

x12x21
, z̃2 = 1√

2
ln

x12

x21
, z̃3 = 1√

2
ln

x11

x22
. (12.3)

Indeed, for zind = (0, z̃2, z̃3)
′ and zint = (z̃1, 0, 0)′ the relation (12.2) holds.

Unfortunately, these coordinates cannot be easily extended to the general case of
compositional tables with I rows and J columns (Fačevicová et al. 2014). This can
be achieved with coordinates

zint = 1

2
ln

x11x22

x12x21
, zind

1 = 1

2
ln

x11x12

x21x22
, zind

2 = 1

2
ln

x11x21

x12x22
(12.4)
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Table 12.3 Sequential
binary partitioning of a
vectorized 2 × 2
compositional table

k =
1 2 3

x11 + 0 +
x12 − + 0

x21 − − 0

x22 + 0 −
pk 2 1 1

mk 2 1 1

(see also Fačevicová and Hron 2015), which are consistent with the general
approach to a coordinate representation of compositional tables (Fačevicová et al.
2016, 2018). This representation is equivalent with the implementation in the
function ilr.2x2. The output in $z1 corresponds to the coordinates defined in
Eq. (12.3).

ilr.2x2(germanytab)$z1

## [1] 0.9968179 1.0674672 -0.5865882

Although all coordinates in Eq. (12.4) have the same structure as logratios
of two two-part groups of compositional parts, their interpretation should be
accommodated according to independence and interaction tables they represent.
While the coordinate zint , assigned to the interaction table and contained also in
(12.3), can be interpreted in terms of odds ratios (Agresti 2012), coordinates zind

1
and zind

2 of the independence table should be rather interpreted as balances. By
doing so, the latter coordinates represent relative information between rows and
columns of x, respectively, except for the interactions between them that are left
for coordinate zint . In this context, zint is called also quaternary coordinate, being
of primary interest in practice. For the case of independence between factors, the
quaternary coordinate would equal to zero. As a consequence, the further it deviates
from zero (in a positive or negative) in a sample of compositional tables, the stronger
the relation between both factors.

12.3 Extension to the General Case

For an I × J compositional table

x =
⎛

⎜
⎝

x11 · · · x1J

...
. . .

...

xI1 · · · xIJ

⎞

⎟
⎠

all concepts from Sect. 12.2 (geometrical properties, decomposition of the com-
positional table into independent and interactive parts) can be extended in a
straightforward manner (Egozcue et al. 2008, 2015). Particularly, the dimensionality
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of x now equals to IJ − 1, i.e. one less than the number of cells (parts) of the
table. The independence and interaction tables have dimensions I + J − 2 and
(I − 1)(J − 1), respectively, and sum up to the dimension of the original table.
For practical purposes, just the coordinate representation of general compositional
tables (Fačevicová et al. 2016, 2018) is briefly discussed in the following.

It was stated in Sect. 12.2.2 that an interpretation in terms of balances is in general
not suitable for compositional tables. Because their cells represent relationships
between two factors, only considering two groups of parts into a coordinate would
not take the two-factor nature of these observations into account. In fact, balances
are suitable for extracting information from the two factors individually, thus
dealing with the rows and columns of the table. To represent inter-factorial patterns,
coordinates in the form of (log) odds ratios between four groups of parts are
preferable, similar to the case of contingency tables (Agresti 2012).

For the construction of coordinates of an I×J independence table, first an SBP of
the entire rows (columns) of a compositional table x is considered, which is denoted
by SBPr (SBPc) in the following. This partition is in line with the nature of the
levels of row (column) factors, and follows a standard SBP. In each of the I − 1
(J −1) steps, the levels with some common properties are separated from the others.
The first I + J − 2 coordinates zr

i and zc
j of the I × J compositional table x are

given as

zr
i =

√
s · t · J

s + t
ln

[
g(xj1.) · · ·g(xjs .)

]1/s

[
g(xk1.) · · ·g(xkt .)

]1/t
, for i = 1, 2, . . . , I − 1 (12.5)

and

zc
j =

√
u · v · I

u + v
ln

[
g(x.l1) · · ·g(x.lu )

]1/u

[
g(x.m1) · · · g(x.mv )

]1/v
, for j = 1, 2, . . . , J−1, (12.6)

where s, t (u, v) are the numbers of rows (columns) involved in the ith (j th)
step of the SBP, the indices (j1., . . . , js.) and (k1., . . . , kt .), or (.l1, . . . , .lu) and
(.m1, . . . , .mv) specify the rows/columns, and g(.) stands for the geometric mean.

In addition to balance-like coordinates, also odds ratios for the interaction table
must be determined to obtain IJ −1 orthonormal coordinates. These coordinates are
called quaternary (logratio) coordinates. They are orthogonal to the first I + J − 2
variables, and represent a generalization of sequential binary partitioning (Fačevi-
cová et al. 2018). It is based on the partitioning of the parts of the compositional
table into four groups (blocks) in a systematic manner that results in coordinates in
form of a log odds ratio between these four groups (marked as A (upper left), B
(upper right), C (lower left) and D (lower right))

zOR =
√

a · d

a + b + c + d
ln

(
xi1 · · · xia

)1/a (
xl1 · · · xld

)1/d

(
xj1 · · · xjb

)1/b (
xk1 · · · xkc

)1/c
, (12.7)
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where a, b, c, d are the numbers of parts in groups A, B, C, and D, respectively and
i., j., k., l. are the indices of those parts. The construction of quaternary coordinates
(12.7) for the interaction table is done using a combination of row and column SBP.
For the first step of SBPr applied to the rows of the table, all J − 1 steps of SBPc
are performed. The first J − 1 coordinates are obtained in accordance with (12.7).
The next J − 1 coordinates are obtained by applying the second step of SBPr to the
rows and all of the steps of the SBPc to the columns, and so on, until all I − 1 steps
of the SBPr have been completed. All (I − 1)(J − 1) coordinates of zOR thus result
from a successive application of all steps of the SBPr combined with repeated use
of all steps of the SBPc, or conversely.

A specific choice of SBPr and SBPc according to pivot coordinates (3.19) leads
to (I − 1)(J − 1) pivot quaternary coordinates (Fačevicová et al. 2016),

zrc = 1√
r · c · (r − 1) · (c − 1)

ln

∏r−1
i=1

∏c−1
j=1

(
xij xrc

)

∏r−1
i=1

∏c−1
j=1

(
xicxrj

) . (12.8)

Here, one group of the odds ratio is always formed by a single pivot part xrc, r =
2, . . . , I and c = 2, . . . , J , which determines the lower right corner of a partial
table, represented by the respective coordinate. These coordinates can also be seen
as a scaled sum of log odds ratios according to some logical scheme, all containing
part xrc. This follows from (12.8).

It is natural that quaternary coordinates of the interaction table, revealing
relationships between both factors, are of primary interest in applications. For
concrete examples of their use in statistical processing, have a look at Fačevicová
et al. (2016, 2018).

The above coordinate representation can be practically applied using the function
coord in the R package robCompositions. Nevertheless, for a better understand-
ing, the coordinates will be defined directly in the R code of the following examples.

12.4 Examples

Compositional tables occur more frequently in practice than it might be expected. In
Egozcue et al. (2015) and Fačevicová et al. (2014, 2016, 2018) concrete examples
from official statistics, genetics, health and economics are discussed. Further typical
examples in this context are input–output tables. They describe the sale and purchase
relationships between producers and consumers within an economy, and the relative
structure is of primary interest. When more countries are considered simultaneously,
input–output tables provide important information about the international trade
structure (Timmer et al. 2015). Here two other examples from the OECD statistics
database (http://stats.oecd.org/) are taken. These data sets have been made available
in the robCompositions package.

http://stats.oecd.org/
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12.4.1 Gender Based Cancer Data

Many human disorders are directly related to the gender of the patients, either due to
genetic reasons or because of their prevalent life style. The aim is to analyze how the
role of gender (female, male) interacts with the relative structure of two main types
of malignant neoplasms within a population, affecting colon and lung, respectively.
For this purpose, data from 35 OECD countries were collected (OECD 2012). The
data are accessible in the R package robCompositions as data set cancerMN.

# load the cancerMN data set
data("cancerMN")
# first three observations
head(cancerMN, 3)

## country females-colon females-lung males-colon males-lung
## 1 AUS 0.2602574 0.1697059 0.3231618 0.2468750
## 2 AUT 0.2205291 0.1825397 0.2952381 0.3016931
## 3 BEL 0.2358439 0.1236269 0.2911331 0.3493961

For each country, the values can be arranged in a 2 × 2 table. Here, the rows of
the tables will be “female” and “male”, and the columns “colon” and “lung.” The
coordinate representation for the resulting 2 × 2 tables, see Eq. (12.4), is formed by
one coordinate zint for the interaction table and two coordinates zind

1 , zind
2 for the

independence table. The following R code can be used to calculate coordinates for
the interaction and independence tables.

# extend the data set cancerMN
cancerMN$Index <- 1:nrow(cancerMN)
# interaction coordinate
cancerMN$z_int <- 0.5 *

log((cancerMN$‘females-colon‘ * cancerMN$‘males-lung‘) /
(cancerMN$‘females-lung‘ * cancerMN$‘males-colon‘))

# independent coordinates
cancerMN$z_ind1 <- 0.5 *

log((cancerMN$‘females-colon‘ * cancerMN$‘females-lung‘) /
(cancerMN$‘males-colon‘ * cancerMN$‘males-lung‘))

cancerMN$z_ind2 <- 0.5 *
log((cancerMN$‘females-colon‘ * cancerMN$‘males-colon‘) /

(cancerMN$‘females-lung‘ * cancerMN$‘males-lung‘))

This provides information about the strength of the relationship between the
factors female/male and colon/lung, and the balances within the single factors.

In Fig. 12.1, the values of the interaction coordinate are displayed. Higher values
indicate departure from independence between both factors, and thus there would
be an effect of gender and/or of the type of cancer. Regional differences can
clearly be seen in this plot. For example, some Eastern European countries (Belarus,
Estonia and Latvia), but also some countries from Southern Europe (Greece, Turkey,
Spain, Portugal, Italy) have high values for this coordinate. On the other hand, the
lowest values for the coordinate zint occur for highly developed countries from
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Fig. 12.1 Values of the interaction table coordinate for the different countries from the
cancerMN data set using a special choice of coordinates, see Eq. (12.4)

Western and Northern Europe, accompanied by the USA, Canada, and Australia.
Some reasoning for that can be derived from displaying the coordinates of the
independence tables, see Fig. 12.2. Here, zind

1 represents the balance between female
and male contributions to the overall population of diseased by aggregating both
types of cancer, while zind

2 quantifies the balance between colon and lung malignant
neoplasms for aggregated information about gender. Negative values on the first
coordinate indicate that the departure from independence is caused by a dominance
of cancer occurrence by men, which is particularly the case for some Southern
European countries. Negative values on the second coordinate indicate that the
departure from independence is caused by a dominance of lung cancer, and this
happens for Greece and Turkey. On the other hand, in Spain and Portugal this is
caused by a dominance of colon cancer.
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Fig. 12.2 Coordinates of independence tables obtained from the cancerMN data set using a
special choice of coordinates, see Eq. (12.4)

12.4.2 Social Expenditures According to Funding Sources

In the second example, the social expenditures according to source (public, private)
and three important branches (health, old age, incapacity related) are studied (OECD
2010). Accordingly, 2 × 3 compositional tables have to be analyzed. Due to the fact
that not in all OECD countries both sources were considered (by law, or just by
not recording them), altogether just 20 tables were collected as data set socExp in
the robCompositions package. In order to get a coordinate representation of both
interaction and independence tables, row and column sequential binary partitions
(SBPr and SBPc, respectively) need to be considered first. Due to the definition of
the sequential binary partition (see Sect. 3.3.5), it is sufficient for SBPr to separate
public and private sources in one step. For SBPc two steps are needed. At first,
the health branch is separated from the latter two and in the next step, old age
and incapacity related branches are separated into one-part groups. As a result, the
following coordinates of the independence table,

zr =
√

3

2
ln

3
√

x11x12x13
3
√

x21x22x23
, zc

1 =
√

4

3
ln

x11x21√√
x12x22

√
x13x23

, zc
2 = ln

√
x12x22√
x13x23

,

(12.9)
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and quaternary coordinates (those of the interaction table)

zOR
1 = 1√

3
ln

x11
√

x22x23√
x12x13x21

, zOR
2 = 1

2
ln

x12x23

x13x22
(12.10)

are obtained. These can be computed in R as follows:

# load social expenditures data
data("socExp")
# first three observations
head(socExp, 3)

## country currency health-public old-public incap-public
## 1 AUT Euro 0.2884688 0.5210435 0.10395608
## 2 BEL Euro 0.3832669 0.3927777 0.13113643
## 3 CHL Chilean Peso 0.3421648 0.3031592 0.09110255
## health-private old-private incap-private
## 1 0.02100887 0.02846553 0.03705719
## 2 0.02072542 0.05181970 0.02027389
## 3 0.11654890 0.12243393 0.02459059

x <- socExp[, 3:8]
# interaction coordinates
socExp$z_int1 <- (1 / sqrt(3)) * log((x[,1] * sqrt(x[,5] * x[,6])) /

(x[,4] * sqrt(x[,2] * x[,3])))
socExp$z_int2 <- 0.5 * log((x[,2] * x[,6]) / (x[,3] * x[,5]))
# independent coordinates
socExp$z_r1 <- sqrt(3 / 2) * log(((x[,1] * x[,2] * x[,3])^(1/3)) /

((x[,4] * x[,5] * x[,6])^(1/3)))
socExp$z_c1 <- sqrt(4 / 3) * log(sqrt(x[,1] * x[,4]) /

sqrt(sqrt(x[,2] * x[,5]) * sqrt(x[,3] * x[,6])))
socExp$z_c2 <- log(sqrt(x[,2] * x[,5])/sqrt(x[,3] * x[,6]))

According to the construction of the coordinates, zr can be interpreted as balance
between public and private sources according to the aggregated branches. Further,
zc

1 captures the dominance of health expenditures to old age and incapacity related
ones conditional to aggregated sources. The third coordinate of the independence
table, zc

2, can be interpreted similarly, as the balance between old age and incapacity
related expenditures by aggregated sources. Nonzero values of the first quaternary
coordinate indicate a departure from the independence case related to health
expenditures (as zOR

1 is the only quaternary coordinate containing them), while zOR
2

does the same within the sub-table determined by the cells x12, x13, x22, x23.
Because of the dimensionality of the interaction table (two coordinates) and the

independence table (three coordinates), they both can still be displayed without
the necessity of using any dimension reduction method, e.g., principal component
analysis, see Chap. 7. From Fig. 12.3, where quaternary coordinates are displayed,
it is easy to see that in countries like Sweden, Czech Republic, and Great Britain the
relative expenditures in health (with respect to other branches) form an important
source of dependence between both factors. Similarly, by considering the coordinate
zOR

2 and the 2 × 2 subtable given by x12, x13, x22, x23, the dependence between
the factors can be observed also for France, Greece, and Portugal on the one hand
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Fig. 12.3 Coordinates of interaction tables for the social expenditures quaternary coordinate
representation based on Eq. (12.10)

(represented by high values of the coordinate), and for Denmark and Japan on the
other hand (low values). Finally, countries like the USA and Chile, with almost zero
values on both coordinates, approach independence between factors.

The coordinates of the independence table (Fig. 12.4) help to reveal possible
reasons for either dependence or independence tendencies. In Sweden and the Czech
Republic they are caused obviously by a dominance of expenditures on aggregated
old age and incapacity related branches with respect to health (low values of zc

1)
in combination with dominating state sources (high values of zr ). Dominating
state sources can also be observed for the countries Finland, Denmark, and Italy.
Exceptionally dominating state sources are also present in Japan, accompanied by a
remarkably high dominance of old age over incapacity related expenditures (zc

2) and
high overall health expenditures (zc

1). This might be related to the age structure of
the population in Japan. Another outlying observation is formed by the USA with
higher relative health expenditures, covered mainly from private sources (very low
value of zr ). However, here specific combinations of both factors do not influence
the relative structure of the table. As a final note, remind that for the interpretation
of the coordinates zr , zc

1 and zc
2 in the sense of one factor, the aggregated values of

the latter factor are assumed.
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Chapter 13
Preprocessing Issues

Abstract In practice, for many compositional data sets it will not be possible to
apply the outlined statistical methods immediately, and there will be a need for a
preprocessing. This is the case in presence of missing values in some compositional
parts, but also when zero values occur, which are basically excluded from the
definition of compositional data. According to the nature of zero values, rounded
and structural zeros need to be considered. Rounded zeros occur when either
small values of components are rounded to zeros, or a measurement device has
incorporated a detection limit (number) that automatically sets values below this
limit to zero. Therefore, their replacement by a small positive value is reasonable.
Count zeros are similar to rounded zeros. They result from insufficient sample size
from the underlying distribution (mostly from a multinomial distribution) that drives
compositions consisting of counts. For the imputation of missing values, rounded
and count zeros, model-based algorithms have been developed and are available in
R. In contrast, structural zeros are a result of a structural process, and thus imputing
them to obtain a full data set is not meaningful. There are several approaches how
compositional data with structural zeros can be (indirectly) processed using the
logratio methodology. One possibility is to impute structural zeros in an auxiliary
step to estimate the overall location and covariance, followed by a statistical analysis
in groups of subcompositions according to the zero patterns.

13.1 Specific Problems with Data Preprocessing
of Compositions

Your data set includes zeros and therefore you cannot apply logratio techniques,
since this would result in a division by zero? The measurement unit did not work
for all measured values and you have thus some non-measured values in your data
set that do not allow to apply compositional methods in a straightforward manner
(division by a non-available)? Concentrations of some chemical elements in some
samples were too low and could not be measured and you are not sure if you should
replace these concentrations with a positive constant? This chapter tries to give
answers to these questions.
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Compositional data, like any other multivariate observations, are not free from
imprecisions resulting from the measurement process. Though, due to their relative
nature, there are some peculiarities that are worth to be considered in advance.
Particularly, observations are rarely measured in terms of ratios, or any similar
way that would invoke their compositional nature. Instead, almost always the
absolute values are produced and it depends on the purpose of the analysis,
whether the input data are considered as compositional or not. For example, in
chemometrics it is usual to adjust measurements to an internal standard, provided in
absolute values, or add a certain positive value to avoid negative and/or zero values
resulting from calibration of the measurement device. Clearly, the latter adjust-
ment could completely destroy the source information, conveyed by (log)ratios
between the components. The influence can be particularly severe for small
(absolute) concentrations, resulting from the relative scale of the compositions. For
example,

ln
0.1

0.2
= −0.69, ln

0.1 + 0.1

0.2 + 0.1
= −0.41,

while for higher concentrations the distortion is not as big,

ln
1

2
= −0.69, ln

1 + 0.1

2 + 0.1
= −0.65.

Although such adaptations are often done with the aim to enable further processing
using the logratio techniques, they should be suppressed whenever possible. They
are definitely not needed in presence of zeros, because other (relevant) methods are
available to cope with the issue.

Also from another perspective, absolute information in compositional data
is relevant for preprocessing. For instance, for geochemical data or data from
chemometrics, the detection limit of measurement devices needs to be taken into
account. A detection limit is characterized as absolute number, and it may differ
among different variables and even among different samples (coming, e.g., from
different laboratories). Often, a value below the detection limit is simply set to zero,
to half of the value of the detection limit, or to the negative value of the detection
limit. Values below the detection limit are known under the name rounded zeros
(Aitchison 1986; Martín-Fernández et al. 2003), or more precisely as values below
the detection limit.

An example of data with rounded zeros is shown below. The moss layer of the
soil samples of the Kola data was already used in Sect. 5.4. Now the C-horizon
can be used, which represents the soil samples deeper under the surface. Some
rounded zeros are present in the data, e.g. in row 234, the values of As and S are
zero.
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library("robCompositions")
data("chorizonDL")
# select variables with zeros included
vars <- which(colSums(chorizonDL == 0) > 0)
# exclude variable ASP (not of interest here)
vars <- names(vars[-length(vars)])
compNA <- chorizonDL[, vars]
# example zeros
compNA[233:234, ]

## Ag As Bi Co_INAA K Nd_INAA S Sc
## 233 0.006 0.2 0.035 13 1100 13 22 2.2
## 234 0.015 0.0 0.032 8 300 11 0 1.2

# number of zeros for each variable
colSums(compNA == 0)

## Ag As Bi Co_INAA K Nd_INAA S
## 1 10 15 1 3 8 3
## Sc
## 1

# detection limit for these variables
attributes(chorizonDL)$DL[vars]

## Ag As Bi Co_INAA K Nd_INAA S
## 1e-03 1e-01 5e-03 1e+00 2e+02 5e+00 5e+00
## Sc
## 1e-01

Even though the detection limits are usually treated as compositional parts,
they implicitly include also absolute information (van den Boogaart and Tolosana-
Delgado 2013). Obviously, this is inconsistent with the Aitchison geometry that
assumes purely relative contributions of parts. One possibility would be to incorpo-
rate the absolute information into a model to impute rounded zeros by reasonable
values under the detection limit, like the one proposed in van den Boogaart et al.
(2015).

Preprocessing of multivariate data is often characterized by imputation, when
absent or improper values are replaced by some acceptable alternatives. With
compositional data, such imputation should produce values that reflect well the
multivariate compositional data structure, formed by the logratios between the parts.
For example, in the last code chunk there is a rounded zero value in row 234 of
variable As; the value is simply coded with 0, and the detection limit for As is 0.1.
After an appropriate imputation, the value should be in the interval (0, 0.1) for the
given representation of compositional data (here mg/kg), and the imputation should
consider information of all other compositional parts. Furthermore, any logratio
between other parts, like the logratio 0.015/0.032 between Ag and Bi, should
remain unchanged after imputation of the rounded zeros.

For other data sets and problems, the imputation may be context dependent,
i.e. other constraints might be important as well. One possible requirement is to
preserve a constant sum constraint of the components (like 1 or 100, or, for example,
the total consumption in household consumption data) even after the imputation step
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is performed. Once the imputed value is considered as a concrete absolute number,
it seems to be natural to adjust the other parts in the composition, preferably in
a multiplicative way (Martín-Fernández et al. 2003, 2011). In this book, another
philosophical perspective is followed, the imputed values are immediately consid-
ered as those carrying relative information, thus being subject to any representation
within the respective equivalence class of proportional positive vectors. Such an
approach simplifies further considerations and is inherently contained in all methods
that follow.

13.2 Missing Values

In practice it often happens that values of compositional parts are not reported
and the corresponding cells in the data matrix are empty, typically coded as
symbol NA (not available) in R. This can happen, e.g., in household expenditure
studies, where the respondents tend to omit controversial questions, like those on
expenditures on alcohol/tobacco. Another source of missing values is the failure of
a measurement device that erroneously did not report concentrations of element(s)
in a composition. The latter case corresponds to missings completely at random
(abbreviated as MCAR), where missing values do not depend on observed or
unobserved measurements (Little and Rubin 2002). In other words, under MCAR,
the analysis of only those units with complete data results in unbiased point
estimates, but the variances of the estimators are in any case underestimated,
because the sample size is smaller when only the complete cases are used.

The previous case of household expenditures corresponds rather to the case of
missings at random (MAR), where—given the observed data—the missingness
mechanism does not depend on the unobserved data. The particular case of MAR
can also be related to non-compositional parts in the data set or it can be related to
absolute information in compositions. For example, the combination of age, gender,
and region may result in higher probabilities of missingness in expenditures. For
example, in Austria the probability of missingness in income components of men
in the age between 35 and 45 living in Vienna as the capital city with many job
opportunities and high standard of living is higher than for elder people in the
rather less economically developed region of Burgenland. Even cases of MNAR
(missing not at random) can be present in data, for example when the probability of
missingness in a wage component is dependent on the absolute value of the wage
of a person. Here a possible solution could be to ask directly for relative values
in proportions or percentages, and thus to “hide” the absolute wages, but it is not
always feasible to influence the design of the study in advance.

Most statistical methods cannot be applied directly to compositional data con-
taining missing values. Moreover, expressing data in logratio coordinates would lead
to a further expansion of the missing information. At the same time, deleting such
observations from the data set would result in an unacceptable loss of information
and in biased estimates. Instead, the missing cells need to be imputed first and
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then one can continue with further statistical processing. As compositional data are
multivariate, it is not recommendable to replace missing values by the geometric
mean of each compositional part. Also if the replacement would be done with a
proper robust counterpart (see Sect. 5.2.4), this would possibly be useful only for
data sets with a very small amount of missing values, otherwise it would lead to
an artificial underestimation of the compositional variability. The more advisable
multivariate methods are based on similarities among the objects and/or variables.
Among them, a popular tool is distance-based k-nearest neighbor (knn) imputation,
where the information of the nearest k ≥ 1 complete observations is used to
estimate the missing values. Another well-known procedure is the EM (expectation
maximization) algorithm (Dempster et al. 1977), which uses the relations between
observations and variables for estimating the missing cells in a data matrix. Further
details, as well as methods based on multiple regression and principal component
analysis are described in Little and Rubin (2002) and Schafer (1997). Although
most of these methods can cope with both types of missing values (MCAR and
MAR), they ultimately need to be adapted for compositional data. Particularly, the
imputation of missing values (in terms of the original compositional parts) cannot
be done without considering logratios of the missing parts to other parts in the
composition.

An obvious peculiarity of imputation with compositional data is the necessity to
cope with imputed absolute values in a vector whose components represent relative
contributions on a whole. According to the previous section, once the compositional
parts are imputed, they are immediately considered as those carrying relative
information, possibly with any appropriate representation of this information. This
is principally different to Martín-Fernández et al. (2003), one of the rare references
that deals with missing values in compositional data. Here the estimation of missing
values in compositional data is done in the sense of the Aitchison geometry, but
with a prescribed constraint of a constant sum of the parts. In any case, the imputed
values need to be adapted according to the actual total of the observed parts, as
discussed for two methods (cf. Hron et al. 2010) that are introduced below. They
both use multivariate data information for imputation, though each of them from
another perspective.

13.2.1 k-Nearest Neighbor (knn) Imputation

The idea of the knn imputation method (Troyanskaya et al. 2001) is to use a
distance measure for finding the k most similar observations to a composition
containing missings, and to replace the missing values by using the available
variable information of the neighbors.

In the context of compositional data, the Aitchison distance (defined in Sect. 3.9)
seems to be the first choice for such a measure. When a composition contains
missing values in several cells, the imputation is done sequentially (one cell after
the other), by searching the k nearest neighbors among the observations where
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all information corresponding to the non-missing cells plus the information in the
variable to be imputed is available (Hron et al. 2010). This option is preferred
among possible alternatives, because it enables that the k observations can change
during the sequential imputation. In addition, more neighbors are considered for
imputation, and requesting more information per observation thus leads to a more
reliable imputation result. For imputing a missing part of a composition, the median
of the corresponding cells of the k nearest neighbors is used. Because ratios between
parts are the same for proportionally equivalent compositions, the cells first need to
be adjusted according to the overall size of the parts.

Specifically, for a compositional data set xi = (xi1, . . . , xiD)′, i = 1, . . . , n, let
Mi ⊂ {1, . . . ,D} denote the set of indexes referring to the missing cells of xi . Then
Oi = {1, . . . ,D}\Mi refers to the observed parts of xi . For imputing a missing
cell xij , for any j ∈ Mi , among all remaining compositions those are considered
which have non-missing parts at positions j and Oi , and the k nearest neighbors
xi1, . . . , xik to the composition xi using the Aitchison distance are computed. The
j th cell of all k nearest neighbors is of interest for imputation. First these cells have
to be adjusted by factors comparing the size of the parts in Oi . The adjustment
factors can be taken as

fiil =

∑

o∈Oi

xio

∑

o∈Oi

xilo

for l = 1, . . . , k. (13.1)

Using these factors as weights for the observations makes the k nearest neighbors
comparable. The imputed value replacing the missing cell xij is

x∗
ij = median{fii1xi1j , . . . , fiik xikj } . (13.2)

By taking the median, robustness to outliers in the j th parts of the k nearest
neighbors is obtained.

Although the choice of the adjustments in Eq. (13.1) is coherent with the
definition of compositional data, a more robust version could be preferable. This
can be achieved by using the adjustment factors

f ∗
iil

=
median

o∈Oi

xio

median
o∈Oi

xilo

for l = 1, . . . , k, (13.3)

which leads to more stable results for contaminated data.
knn imputation is numerically stable (no iterative scheme is required), but it

has also some limitations (Hron et al. 2010). Particularly, the optimal number k

of nearest neighbors has to be determined. This is usually done within a simulation,
by randomly setting observed cells to missing, estimating these missings based on
different choices for the number k, and measuring the error between the imputed
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and the originally observed values. The k producing the smallest error can be
considered as optimal. A further limitation concerns small sample sizes, where
the Aitchison distance can lead to nearest neighbors that contain much worse
information for estimating the missing values than data points being further away.
Therefore, whenever small sample sizes relative to the number of parts occur one
has to be aware of this problem with the knn approach. This is especially true in
case of high-dimensional data sets.

The implementation in functionimpKNNa (package robCompositions) matches
the description of the method in this section.

Example This function is applied on a governmental expenditure data set from
OECD, which is available in the package robCompositions or—originally—from
https://data.oecd.org/ (OECD 2015). The general government sector consists of
central, state and local governments, and the social security funds controlled by
these units. The data are based on the system of national accounts, a set of
internationally agreed concepts, definitions, classifications and rules for national
accounting. The classification of functions of government (COFOG) is used as
classification system. The COFOG expenditures are divided into the following
ten categories: general public services; defense; public order and safety; economic
affairs; environmental protection; housing and community amenities; health; recre-
ation, culture and religion; education; and social protection. The central government
spending by category is measured as a percentage of total expenditures.

The data are first loaded and restructured. The resulting data structure is indicated
by printing the first three lines of the original and restructured data.

data("govexp")
# first three observations (long/tidy data format)
head(govexp, 3)

## country category year value
## 1 AUS DEF 2007 5.77
## 2 AUS DEF 2008 5.49
## 3 AUS DEF 2009 5.56

library("dplyr"); library("reshape2")
# from long format to wide format and year 2014
gov14 <- govexp %>%

filter(year == 2014) %>%
select(-year) %>%
reshape2::dcast(country ~ category, mean)

head(gov14, 3)

## country DEF ECOAFF EDU ENVPROT GRALPUBSER HEALTH HOUCOMM
## 1 AUT 1.62 15.07 9.43 0.70 33.61 3.52 0.11
## 2 BEL 2.89 7.62 4.86 0.54 67.59 2.80 NA
## 3 CHE 7.37 20.76 9.90 1.67 25.53 0.45 0.04
## PUBORD RECULTREL SOCPROT
## 1 3.27 0.85 31.83
## 2 3.82 0.25 9.63
## 3 1.57 0.79 31.93

https://data.oecd.org/
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The data set includes two missing values, which can be seen below in detail.

library("VIM")
a <- aggr(gov14, plot = FALSE)
a

##
## Missings in variables:
## Variable Count
## ENVPROT 1
## HOUCOMM 1

# one (of the two) missing values is for USA in category
# environmental protection
w <- is.na(gov14$ENVPROT)
gov14[w, ]

## country DEF ECOAFF EDU ENVPROT GRALPUBSER HEALTH
## 32 USA 15.26 5.45 2.67 NA 13.64 27.4
## HOUCOMM PUBORD RECULTREL SOCPROT
## 32 1.7 1.4 0.13 32.34

The two missing values are imputed in the following using k-nearest neighbor
imputation. Note that the first variable contains information on the country of origin
and should be omitted before imputation (= it is not a part of the composition).

gov14imp <- impKNNa(gov14[, 2:ncol(gov14)])$xImp
# the imputed value for USA on environmental protection
gov14imp[w, ]

## DEF ECOAFF EDU ENVPROT GRALPUBSER
## 15.260000 5.450000 2.670000 0.902492 13.640000
## HEALTH HOUCOMM PUBORD RECULTREL SOCPROT
## 27.400000 1.700000 1.400000 0.130000 32.340000

It can be seen that the algorithm preserves also the ratios and values for all non-
missing cells.

13.2.2 Iterative Model-Based Imputation

An alternative to distance-based knn imputation is to use an imputation technique
that would be able to capture also the multivariate structure of compositional
data (Hron et al. 2010). One such option is to apply a regression-based iterative
imputation procedure, where in each step of the iteration, one variable is used as
a response variable and the remaining variables serve as the regressors. Thus, the
multivariate information is used for imputation in the response variable. In the
context of compositional data, the response variable is formed by the first pivot
coordinate from Eq. (3.26), which contains all relative information concerning the
lth part. A proper choice of these balances can also help to avoid a kind of error
propagation effect. Namely, such a permutation of parts in Eq. (3.26) is required
so that as few as possible coordinates are affected by the missing values. Because
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for initializing the algorithm, a full data matrix is needed, the missing values are
imputed first with knn imputation, as described above, with the hope that the
imputed values are further enhanced with the regression-based procedure. The
outline of the algorithm is below:

Step 1: Initialize the missing values using the knn algorithm based on Aitchison
distances, as described in the previous section.

Step 2: Sort the parts according to the amount of missing values. In order to
simplify the notation, it is assumed that the corresponding columns of the
compositional data matrix, x.1, . . . , x.D , are already sorted, i.e. M(x.1) ≥
M(x.2) ≥ . . . ≥ M(x.D), where M(x.j ) denotes the number of missing cells in
part xj .

Step 3: Set l = 1.
Step 4: Express compositional data in pivot coordinates (3.26) so that all pairwise

logratios with xl are aggregated in the first coordinate.
Step 5: Denote ml ⊂ {1, . . . , n} the indices of the observations that were originally

missing in column x.l , and ol = {1, . . . , n}\ml the indices corresponding to
the observed cells of x.l . Furthermore, zol

.1 and zml

.1 denote the first coordinate
(column) with the observed and missing parts, respectively, corresponding to the
part xl . Let Zol

−1 and Zml

−1 denote the matrices with the remaining coordinates
corresponding to the observed and missing cells of x.l , respectively. Additionally,
the first column of Zol

−1 and Zml

−1 consists of ones, taking care of an intercept term
in the linear regression model

zol

.1 = Zol

−1b + e (13.4)

with unknown regression coefficients b and an error term e.
Step 6: Estimate the regression coefficients b in (13.4), and use the estimated

regression coefficients b̂ to replace the missing parts zml

.1 by

ẑml

.1 = Zml

−1b̂. (13.5)

Step 7: Use the updated coordinates for expressing them back in the original space
using the sample version of (3.22)—initial reordering of parts according to (3.26)
is preserved. As a consequence, the values that were originally missing in the
cells ml in column x.l are updated. Note that also the non-missing cells are
updated, but the ratios between them do not change.

Step 8: Carry out Steps 4–7 in turn for each l = 2, . . . ,D.
Step 9: Repeat Steps 3–8 until the Frobenius norm of the difference between the

sample covariance matrices computed, e.g. from the pivot coordinates (3.20)
from the present and the previous iteration is smaller than a certain boundary.

Although there is no proof of convergence for this procedure, according to Hron
et al. (2010) it usually converges in a few iterations. The choice of pivot coordinates
(Eq. (3.26)) also guarantees that already for l = 1, the information of the column
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x.1 with the highest amount of missings is only contained on the left-hand side of
Eq. (13.4), but not in the explanatory variables on the-right hand side.

In order to suppress the influence of outlying observations, and simultaneously
also to protect against poorly initialized missing values, the classical least squares
regression can be replaced by a robust counterpart from Sect. 10.6. Another,
theoretically sound but computationally more intensive possibility would also be
to use classical and robust orthogonal regression, discussed in Sect. 10.4.

This regression-based imputation procedure can be easily adapted to the case of
rounded and count zeros, and even to high-dimensional compositions. Details are
provided in the following two sections.

Example (contd.) The function impCoda can be used to impute missing values
with the iterative model-based procedure described above.

gov14imp <- impCoda(gov14[, 2:ncol(gov14)])$xImp
# the imputed value for USA on environmental protection
gov14imp[w, ] * 100

## DEF ECOAFF EDU ENVPROT GRALPUBSER HEALTH
## 32 15.16102 5.41465 2.652682 0.6585555 13.55153 27.22228
## HOUCOMM PUBORD RECULTREL SOCPROT
## 32 1.688973 1.390919 0.1291568 32.13024

# ratios are preserved, see e.g.:
gov14[w,"DEF"] / gov14[w, "ECOAFF"]

## [1] 2.8

gov14imp[w,"DEF"] / gov14imp[w, "ECOAFF"]

## [1] 2.8

Note that diagnostics can be made to evaluate if the imputed values are reason-
able, by using the diagnostic plots of missing and imputed values implemented in
the package VIM (Templ et al. 2012).

13.3 Rounded and Count Zeros

From the definition of compositional data it follows that all relevant information is
contained in the (log)ratios between the parts. Accordingly, it is natural that zero
values are in conflict with this concept. Also purely from a numerical perspective,
the logarithm of a zero value is not valid. On the other hand, zero values frequently
occur in compositional data sets across all applications. In some fields, like in
official statistics or in omics data, they can even form the majority of the values
in the data set. The crucial question to be answered in the rest of this chapter is how
to cope with them without the danger that they would completely inhibit further
statistical processing of compositional data using the logratio methodology.
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Both rounded and count zeros cannot be considered as true zeros, but rather as
a result of imprecision/detection limit issues (rounded zeros) or insufficient sample
size (count zeros). In other words, it is fully meaningful to impute them with a
reasonable small value and continue with processing of a complete data set. In order
to guarantee imputation by a small value, an upper bound should be considered.
Any relevant imputation procedure should then impute with values below this upper
bound, usually denoted as detection limit (Martín-Fernández et al. 2003). This is
clearly an absolute number, though any imputed value should respect the relative
nature of compositions. It turns out that the regression-based iterative procedure,
introduced for the purpose of missing values imputation, is able to incorporate
detection limits into a sound imputation technique.

13.3.1 Rounded Zeros

Rounded zeros represent a prominent zero type in compositional data analysis. They
occur frequently in environmental and chemical data, whenever either small values
of components are rounded to zeros or a measurement device has incorporated a
detection limit (number) that automatically sets values below the limit to zero. As
mentioned already before, sometimes the values below the detection limit are stored
as negative values of the detection limits. However, the meaning remains the same:
the measurement unit cannot observe a value and thus we can consider it as a zero
before imputation. Rounded zeros are also known under the name censored values
in the literature (Helsel 2012; Millard et al. 2012), and here only the case of left-
censored data is discussed, referring to a lower detection limit (also upper detection
limits exist). Detection limits can differ among the parts, as it is possible that some
parts can be measured with higher precision than others. An additional complication
might occur when the detection limit of a component differs among samples, as a
result of processing in different laboratories.

The logratio methodology has its origin in the field of geochemistry, and thus
much interest was devoted to rounded zeros from the very beginning up to recent
developments (Aitchison 1986; Martín-Fernández et al. 2003; Palarea-Albaladejo
et al. 2007; Palarea-Albaladejo and Martín-Fernández 2008; Martín-Fernández et al.
2011, 2012; Palarea-Albaladejo and Martín-Fernández 2013; Palarea-Albaladejo
et al. 2014). If the proportion of zeros is not too high, say less than 10% of the
values in the data matrix, a non-parametric replacement strategy might be sufficient.
The simplest option is to impute zeros with 65% of the detection limit (DL) as this
minimizes the distortion of the covariance structure (Martín-Fernández et al. 2003,
2011). Obviously, for a higher proportion of replaced values this approach leads to
an underestimation of the compositional variability. Moreover, the concrete value to
be imputed across the data set (compositional part) is highly influential due to the
relative scale of compositional data. The variability issue (in a univariate sense) can
be overcome by replacing with values that are sampled from a uniform distribution
in (0,DL), or by using the assumption of lognormal distribution, truncated by
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the threshold (Palarea-Albaladejo and Martín-Fernández 2013; Palarea-Albaladejo
et al. 2014). Although the latter alternatives to the simplest replacement strategy
can cope with distortion of variability, the univariate character of these approaches
ignores the multivariate complexity of compositional data. They can be considered
as a “quick and dirty” solution, but recent simulations (Martín-Fernández et al.
2012; Palarea-Albaladejo et al. 2014) show that multivariate imputation methods
clearly outperform them.

Similar as for the imputation of missing values, a model-based algorithm can
be developed also in case of rounded zeros that uses censored regression in order
to guarantee that the imputed values do not exceed the threshold. By following the
previous developments using the modified EM algorithm in alr coordinates (Palarea-
Albaladejo et al. 2007; Palarea-Albaladejo and Martín-Fernández 2008), a recent
approach with ilr coordinates was introduced in Martín-Fernández et al. (2012).
Basically, this is an adapted algorithm from Sect. 13.2.2, just that the usual multiple
regression is replaced by a truncated counterpart. Because all computations are
performed in ilr coordinates, also the detection limit(s) need to be expressed there.
The detection limit can differ among the compositional parts (different precision
for measuring different parts), and even among the observations (effect of different
laboratories), thus the respective limit values dil, i = 1, . . . , n, l = 1, . . . ,D,
are in general different. Let d

(l)
i1 ≡ dil be the thresholds in the lth compositional

part of the original data set X, l = 1, . . . ,D, reordered according to pivot
coordinates (3.26). Then, the pivot coordinates Z(l) of the rounded zeros, when
x

(l)
i1 < d

(l)
i1 occurs, result in unknown values z

(l)
i1 with the property z

(l)
i1 < ψ

(l)
i1 ,

where

ψ
(l)
i1 =

√
D − 1

D
ln

d
(l)
i1

D−1
√∏D

j=2 x
(l)
ij

. (13.6)

For the sake of completeness, a detailed description of the algorithm (Martín-
Fernández et al. 2012) follows:

Step 1: Initialize the rounded zeros using 65% of the detection limit, or by any
alternative univariate method, e.g., from those listed above or in Palarea-
Albaladejo et al. (2014).

Step 2: Sort the parts according to the amount of zero values. In order to simplify
the notation, it is assumed that the corresponding columns of the compositional
data matrix, x.1, . . . , x.D , are already sorted, i.e. M(x.1) ≥ M(x.2) ≥ . . . ≥
M(x.D), where M(x.j ) denotes the number of zero cells in part xj .

Step 3: Set l = 1.
Step 4: Express the compositional data in pivot coordinates (3.26) so that all

pairwise logratios with xl are aggregated in the first coordinate. Particularly,
also the detection limit of the lth compositional part needs to be expressed in
coordinates using (13.6).
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Step 5: Denote ml ⊂ {1, . . . , n} the indices of the observations that were originally
zero in column x.l , and ol = {1, . . . , n}\ml the indices corresponding to
the non-zero cells of x.l . Furthermore, zol

.1 and zml

.1 denote the first coordinate
(column) with the non-zero and zero parts, respectively, corresponding to the
part xl . Let Zol−1 and Zml−1 denote the matrices with the remaining coordinates
corresponding to the observed and zero cells of x.l , respectively. Additionally,
the first column of Zol−1 and Zml−1 consists of ones, taking care of an intercept
term in the linear regression model

zol

.1 = Zol

−1b + e (13.7)

with unknown regression coefficients b and an error term e.
Step 6: Denote the ith row of Zml

−1 as zml

i,−1, being a column vector. Estimate the
regression coefficients b in (13.7), and use the estimated regression coefficients
b̂ to replace the (originally) zero parts zml

.1 by the conditional expected values

ẑ
ml

i1 = (zml

i,−1)
′̂b − σ̂

φ

(
ψ

(l)
i1 −(z

ml
i,−1)′ ·̂b

σ̂

)

Φ

(
ψ

(l)
i1 −(z

ml
i,−1)′ ·̂b

σ̂

) , (13.8)

for all i ∈ ml . Here, φ and Φ stand for the density and distribution function
of the standard normal distribution, respectively; σ̂ is the estimated conditional
standard deviation of the variable zol

.1.
Step 7: Use the updated coordinates for expressing them back in the original

space using the sample version of (3.22)—the initial reordering of the parts is
preserved. As a consequence, the values that were originally zeros in the cells ml

in column x.l are updated. Note that also the non-zero cells are updated, but the
ratios between them do not change.

Step 8: Carry out Steps 4–7 in turn for each l = 2, . . . ,D.
Step 9: Repeat Steps 3–8 until the Frobenius norm of the difference between the

sample covariance matrices computed, e.g. from the pivot coordinates (3.20)
from the present and the previous iteration is smaller than a certain boundary.

The concrete implementation of the algorithm in packages of the statistical software
R (Palarea-Albaladejo and Martín-Fernández 2015; Templ et al. 2011) might
slightly depart from the above description, particularly in terms of the adjust-
ment of the imputed zeros with respect to the actual scale of the composi-
tions.

Similar as for the imputation of missing values, also the final output of the
above algorithm may depend on the initialization in Step 1. Therefore, it is
recommended to use a method which is more sophisticated than just taking
65% of the detection limit. The estimation of the regression coefficients b in
(13.7) can be done either by taking the classical least squares estimation or
using an appropriate robust counterpart. The effect can be quite strong in case
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of rounded zero imputation, because small absolute values (relative to the other
values in the composition) tend to produce aberrant logratios, and consequently also
outlying observations. Suppressing their influence can thus considerably improve
the stability of the rounded zero imputation. Finally, note that the assumption
of normal distribution of the first coordinate in (13.8), used to guarantee an
estimation of zeros below the detection limit, is usually not restrictive in practice.
Even for moderate departures from normality, the algorithm still yields reasonable
values.

Example The data set chorizonDL was already used at the beginning of this
chapter.

data("chorizonDL", package = "robCompositions")
dl <- attributes(chorizonDL)$DL
exclude <- c("*ID", "XCOO", "YCOO", "*COUN", "*ASP", "TOPC", "LITO")
w <- colnames(chorizonDL) %in% exclude
ch <- chorizonDL[, !w]
# amount of zeros in each column
vars0 <- apply(ch, 2, function(x) any(x == 0))
colSums(ch[, vars0] == 0)

## Ag As Bi Co_INAA K Nd_INAA S
## 1 10 15 1 3 8 3
## Sc
## 1

# index of zeros in As
w <- which(ch$As == 0)
w

## [1] 64 164 224 231 234 293 361 372 386 388

# look at one zero in As (only few variables)
ch[w[1], 1:5]

## Ag Al Al_XRF As Ba
## 64 0.011 12200 8 0 55.7

In the following, the rounded zeros are imputed using the robust model-based
procedure described above.

chimp <- imputeBDLs(ch, method = "lmrob")
chimp
# look at one imputed zero in As
chimp$x[w[1], 1:5]

## Ag Al Al_XRF As Ba
## 64 0.011 12200 8 0.03333333 55.7

# note that the detection limit was
dl["As"]

## As
## 0.1
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13.3.2 Count Zeros

So far it has been implicitly assumed that compositional data contain values coming
from a continuous distribution, or at least that the possibly underlying discrete
distribution of compositions can be satisfactorily approximated by a continuous
one. It is common to do so in compositional data analysis. In practice, however,
the data generating process may be based on counts, and this is also referred to
as discrete (count) compositions in the literature (van den Boogaart and Tolosana-
Delgado 2013; Martín-Fernández et al. 2015). For example, although the structure
of the population according to dwelling type (detached house, semi-detached house,
flat, other), analyzed for different countries is purely of compositional nature, it
is based on counts in each of the categories. Similarly, the structure of votes for
political parties is again a composition, but the assumption of continuity of the
values in the parts is clearly violated. Yet another example: Geochemical data are
treated as continuous compositions, although the process how the concentrations
are measured is often a discrete one, depending on the measurement technique or
device.

One intuitive conclusion would be that discrete compositions can be modeled
with a multinomial distribution, where the counts xj in x = (x1, . . . , xD)′ are driven
by parameters p1, . . . , pD, p1 + · · · + pD = 1 and N being the total number of
counts (Hogg et al. 2005). In other words, it would be assumed that the parameters
of the underlying discrete model are continuous. Although this idea was further
developed in several directions (Martín-Fernández et al. 2015; Egozcue et al. 2015),
it refers to a model that is not scale invariant. In order to be consistent with the
previous methodology, it can be stated that vectors of counts are of compositional
nature if the total number of counts is irrelevant from the perspective of subsequent
statistical analysis, so that scale invariance can be taken as a relevant principle. If
this would not be the case, the total would matter when characterizing the variability
and uncertainty of the observations (with respect to a theoretical model). As a
consequence, in view of the authors of this book, the logratio methodology can
be recommended for count vectors with sufficiently high numbers of counts.

To give an example, the data sets election and electionATbp are based
on counts:

head(election, 3)

## CDU_CSU SDP GRUENE FDP DIE_LINKE other_parties
## SH 638756 513725 153137 91714 84177 146781
## HH 285927 288902 112826 42869 78296 82009
## NI 1825592 1470005 391901 185647 223935 348180
## unemployment income
## SH 6.9 3157
## HH 7.4 3835
## NI 6.6 3229
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Also the data set GDPsatis, or the data set laborForce, are originally
measured as counts, thus the percentages given in the data sets are somehow discrete
since they are calculated from counts (how many people are not satisfied, etc.). Such
a discrete nature of the data is very common in practice.

head(GDPsatis, 3)

## country gdp very.bad bad moderately.bad moderately.good
## 1 SE 126 0.030 0.063 0.089 0.284
## 2 DK 125 0.029 0.055 0.081 0.378
## 3 BE 120 0.032 0.077 0.104 0.307
## good very.good
## 1 0.388 0.146
## 2 0.329 0.128
## 3 0.388 0.092

Despite the above reasoning it can happen that some cells of the discrete
compositions contain zeros, denoted as count zeros (Martín-Fernández et al. 2011).
In view of the origin of the data, such zeros do not result from a pure absence of
compositional parts, but rather from insufficient sample sizes in single observations.
From this perspective, by considering an additional sampling, the zeros might be
replaced by non-zero values. Therefore, it is meaningful to perform zero imputation
using methods from the previous section. Obviously, the detection limit is at least 1,
if data are reported in original counts, or 1/Ni , if for a proportional representation
of each composition xi from the sample, i = 1, . . . , n, also the total number of
counts Ni is provided. Consequently, imputation techniques like the model-based
replacement algorithm from Sect. 13.3.1 can be utilized (Martín-Fernández et al.
2015). Clearly, the imputed values are no more counts, just positive, continuous
numbers below the detection limit. If the total number of counts is irrelevant,
as required, this is not a limitation for the further processing using the logratio
approach. Note that as an alternative also the Bayes-multiplicative treatment of
zeros can be considered (Martín-Fernández et al. 2015). Although it enables to
incorporate the imprecision resulting from low numbers of counts, it is based on
a Dirichlet model (see Sect. 5.1) that implies a violation of the scale invariance
principle. An additional feature of the Bayes-multiplicative treatment is that count
zeros are replaced for each composition separately, the information from other
observations in the data set is considered mostly within a Bayes prior. On the other
hand, the model-based approach utilizes directly the whole sample of compositions,
providing complete information on their multivariate structure.

13.4 Rounded Zeros in High-Dimensional Data

For data sets where the number of compositional parts is larger than the number of
observations, the model-based algorithm for imputation from Sect. 13.3.1 cannot
be used. The reason is the regression step of the algorithm (Step 6), because
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neither the classical nor robust regression is designed to deal with high-dimensional
covariates. A natural way out is to use partial least squares (PLS) regression
from Sect. 11.2 instead. PLS regression is also used for imputation purposes in
non-compositional contexts (Brás and Menezes 2006; Guyon and Pommeret 2011;
Nguyen et al. 2004) and it usually outperforms knn imputation in this context.
Its implementation to the model-based algorithm, that also preserves the detection
limit, is straightforward. For the performance of the imputation algorithm it is
necessary to estimate an appropriate number of latent variables (PLS components),
avoiding underfit as well as overfit. The respective procedure (Templ et al. 2016)
is based on bootstrapping, and it consists of the following steps (here for imputing
values in the first compositional part):

Step 1: Based on a compositional sample, coordinates with observations
(zi1, zi2, . . . , zi,D−1)

′, for i = 1, . . . , n are computed. Without loss of generality,
the pivot coordinates (3.20) are considered. R bootstrap data sets, each consisting
of n samples with replacement, are taken, and split into paired data sets
(z∗

.1,r ,Z
∗−1,r ), for r = 1, . . . , R.

Step 2: PLS regression is applied to each pair, using 1, . . . , k components. The
PRedicted Error Sum of Squares (PRESS) criterion is computed, using a ten-
fold cross-validation procedure (Filzmoser et al. 2009).

Step 3: For each number of components, the arithmetic mean of the PRESS values
over all bootstrap samples is calculated. The minimum of these arithmetic means
is chosen, and the standard error of the PRESS values is calculated for that
number of components determining this minimum. A threshold is fixed given
by this minimum plus one standard error.

Step 4: The final PLS model is determined with the smallest number of compo-
nents, for which the mean PRESS value is still below the threshold. This ensures
the selection of a parsimonious model that is not significantly worse than the
possibly larger model with the smallest cross-validation prediction error.

The estimation of the optimal number of PLS components is done just once,
for pivot coordinates where the response coordinate contains the part with the
highest number of zeros to be imputed (initialized with a proper univariate
method). As a result, a PLS model is obtained that is used further in the
iterative regression scheme. Due to the repeated use of PLS regression, the
algorithm itself can become quite time consuming for a high number of parts.
Therefore, an alternative that saves some computational effort is discussed in
Templ et al. (2016). The proposed algorithm makes use of the variation matrix
(Sect. 4.1) for selecting variables to reduce the dimension of the data. A slightly
modified algorithm is then used to replace rounded zeros. It is known that low
values in the variation matrix indicate strong association between the parts in
terms of their proportionality. When replacing rounded zeros in a particular
compositional part, an optimal prediction model with a subcomposition of the
remaining variables is identified, using a ranking from the variation matrix
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elements. The number of predictor variables in the model is kept low, and thus
the rounded zero imputation is based on ordinary least squares or robust (MM)
regression. Another approach is to pre-select predictors based on Q-mode clustering
(Sect. 6.6), see Chen et al. (2018). All three methods are available in the function
imputeBDLs.

Example For an illustration how to use the imputation function imputeBDLs for
high-dimensional compositional data, a data set from metabolomics is employed.
The aim of the experiment was to ascertain novel biomarkers of MCAD (medium
chain acyl-CoA dehydrogenase) deficiency. The data consist of 25 patients and 25
controls and the analysis was done by LC-MS; for details, see Najdekr et al. (2015).
The rows represent patients and controls, and the columns refer to the chemical
entities with their quantity. The columns are represented by m/z which is a chemical
characterization of individual chemical components on exact mass measurements.
All in all, the data set consists of 50 observations and 278 variables.

This data set does not contain rounded zeros, and thus, for demonstration reasons,
an artificial detection limit is set equal to the 0.05-quantile for every 20th variable.

data("mcad")
# one patient group
mcad <- orig <- mcad[26:50, 2:ncol(mcad)]
dim(mcad)

## [1] 25 278

# set detection limit artificially
dl <- rep(0, ncol(mcad))
dl <- apply(mcad, 2, quantile, 0.05)
for (i in seq(1, ncol(mcad), 20)){

mcad[mcad[,i] < dl[i], i] <- 0
}
system.time(

replaced_lm <- imputeBDLs(mcad, dl = dl, eps = 1,
method = "lm", verbose = FALSE,
R = 50, variation = TRUE)$x)

## user system elapsed
## 47.239 4.920 52.252

system.time(
replaced_plsfull <- imputeBDLs(mcad, dl = dl, eps = 1,

method = "pls", verbose = FALSE,
R = 50, variation = FALSE)$x)

## user system elapsed
## 162.736 8.068 171.358

The options method = "lm" and variation = TRUE use the ranking of
the variation matrix elements, and only few of the predictor variables, depending
on a cross-validated prediction error measure, are selected in order to perform least
squares regression. On the other hand, for the second imputation, PLS regression is
used with all available predictors. This explains why the PLS algorithm is slower.
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The quality of the imputation can be evaluated in several ways. One possibility
is to compute the compositional error distance, defined as a normalized Aitchison
distance between two data sets, the original data set and the imputed data set.
In this example, this measure can be calculated because the true values from our
experiment are known.

ced <- function(x, y, ni){ # also available in robComposition, see ?ced
return(aDist(x, y) / ni)

}
ni <- sum(mcad == 0)
ced(orig, replaced_lm, ni)

## [1] 0.3136315

ced(orig, replaced_plsfull, ni)

## [1] 0.3860194

It can be seen that for this data set, the ordinary least squares regression approach
outperforms the method based on PLS, but only in terms of this specific measure.
Further error measures and comparisons can be found in Templ et al. (2016). In
general, the PLS method leads to a better performance of the imputation.

13.5 Structural Zeros

Structural zeros, sometimes also called essential zeros, are definitely the most
challenging type of zero values from those listed up to now. As it was pointed out
in Aitchison and Kay (2003), “by an essential zero we mean a component which is
truly zero, not something recorded as zero simply because the experimental design
or the measuring instrument has not been sufficiently sensitive to detect a trace of
the component.” In other words, structural zeros are the result of a structural process
and imputing them to obtain a full data set for further processing would not be
meaningful. A common example of structural zeros are expenditures on alcohol and
tobacco in teetotal households, but also many other sources of structural zeros can be
considered: plant species that are not able to survive in a given soil type or climate,
a political party that has no candidates in a region, or retirement pension in income
budget of young employees.

From the essence of the problem, structural zeros cannot be analyzed directly
within the logratio methodology, the essential zero structure always needs to be
considered as a latent or external information. This is a principal difference to other
approaches to compositional data processing that frequently define themselves just
against this apparent lack of the logratio approach. This is the case, e.g., of the
square root and the hyperspherical transformations (Butler and Gladsbey 2008;
Scealy and Welsh 2011; Stewart and Field 2011; Wang et al. 2007), resulting from
considering a fixed constant sum constraint 1 of the compositional parts instead
of scale invariance as it is the case in the logratio methodology. Although these
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transformations represent the concepts of dealing with compositional data that allow
for zero parts, they fail (from the perspective of the logratio approach) in other
important features like incorporating the relative scale of the compositions, or their
subcompositional coherence (Egozcue 2009).

Several possibilities have been proposed to handle structural zeros in data.
Probably the simplest one is amalgamation that aims to aggregate (add) the values
of parts containing predominantly zero values to such part(s) that are thematically
related and free of this effect. Similarly, it is possible to sum up (amalgamate)
specific parts with related interpretation to one part. Examples are to amalgamate
the parts alcohol and tobacco to one part alcohol&tobacco in foodstuff expenditures
data, or merge single plant species to one part representing a more general class.

In the following example, the European Union Statistics on Income and Living
Conditions (EU-SILC) survey is used to give practical insights to the problem of
structural zeros. This is a very popular annual panel household survey conducted in
EU member states and in most other European countries, and it serves as data basis
for measuring risk-of-poverty and social cohesion in Europe, see EU-SILC (2009).
Here a synthetic version (Alfons et al. 2011) of the Austrian EU-SILC 2006 data set
is considered. The data set with 14,827 observations from 6000 households and 28
variables (household information and various income components) is available in
the R package laeken as data set eusilc.

library("laeken")
data("eusilc")
# every row (observation) contains at least one zero
sum(apply(eusilc[, 9:24], 1, function(x) any(x == 0, na.rm = TRUE)))

## [1] 14827

head(eusilc, 2)

## db030 hsize db040 rb030 age rb090 pl030 pb220a py010n
## 1 1 3 Tyrol 101 34 female 2 AT 9756.25
## 2 1 3 Tyrol 102 39 male 1 Other 12471.60
## py050n py090n py100n py110n py120n py130n py140n hy040n
## 1 0 0 0 0 0 0 0 4273.9
## 2 0 0 0 0 0 0 0 4273.9
## hy050n hy070n hy080n hy090n hy110n hy130n hy145n eqSS
## 1 2428.11 0 0 33.39 0 0 0 1.8
## 2 2428.11 0 0 33.39 0 0 0 1.8
## eqIncome db090 rb050
## 1 16090.69 504.5696 504.5696
## 2 16090.69 504.5696 504.5696

Since the income components contain (far too) many zeros, the parts are
amalgamated according to Table 13.1 to obtain the four compositional parts (see
also Templ et al. 2017) workinc (work income), capinc (capital income), transh
(household transfers), and transp (personal transfers).

From the code below it can be seen that still almost every row in the amalgamated
data set contains at least one zero, thus an analysis would only be possible in subsets
of the data.
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Table 13.1 Amalgamation of the income components from the eusilc data set

workinc = py010n + py050n

(employee cash or near
cash income)

(cash benefit or losses
from self-employment)

capinc = [hy040n + hy090n]/hhsize

(income from rental of a
property or land)

(interests, dividends,
profit from capital
investments in
unincorporated
business)

transh = [hy050n + hy110n + hy070n +

(family/ children related
allowances)

(income received by
people aged under 16)

(housing allowances)

+ hy080n – hy130n – hy145n]/hhsize

(inter-household cash
transfers received)

(inter-household cash
transfers paid)

(payments/receipts for
tax adjustments)

transp = py090n + py110n + py130n

(unemployment benefits) (survivor benefits) (disability benefits)

+ py100n + py120n + py140n

(old-age benefits) (sickness benefits) (education related
allowances)

attach(eusilc)
workinc <- py010n + py050n
capinc <- hy040n + hy090n
transh <- hy050n + hy070n + hy080n + hy110n - hy130n - hy145n
transp <- py090n + py100n + py110n + py120n + py130n + py140n
detach(eusilc)
silc <- data.frame("workinc" = workinc,

"transp" = transp,
"capinc" = capinc,
"transh" = transh)

head(silc, 2)

## workinc transp capinc transh
## 1 9756.25 0 4307.29 2428.11
## 2 12471.60 0 4307.29 2428.11

# all NA’s should be structural zeros
silc[is.na(silc)] <- 0
# number of observations including zeros:
sum(apply(silc, 1, function(x) any(x == 0, na.rm = TRUE)))

## [1] 14189

After amalgamation, only ratios between the amalgamated parts can be
computed—provided they do not contain any zeros. From such an analysis,
however, it is not possible to draw conclusions about the original parts before
amalgamation, and this may be an essential disadvantage of this procedure.
Moreover, amalgamation is a nonlinear operation with respect to the Aitchison
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geometry (Egozcue and Pawlowsky-Glahn 2005). Another approach, mentioned
already in Aitchison (1986) and discussed further in later studies (Aitchison and
Kay 2003; Bacon-Shone 2003; Martín-Fernández et al. 2011) was to interpret
structural zeros in a certain part as indicators of two different subgroups: one group
containing observations with a value of zero in the given component versus the
other with observations taking a positive value instead. This implicitly assumes
that the observations originate from two populations, with and without zero in the
specific component, with possibly different distributions of the non-zero parts. This
might well reflect practical situations: if a certain political party does not have a
candidate in a certain region, it might significantly affect the distribution of the votes
among the other parties. Consequently, both groups of observations are analyzed
separately. Nevertheless, such an approach might be successful only in cases with
very simple zero structures, like just mentioned. Nevertheless, this is rarely the case
in practice. Usually, the zero structure is much more complex, and it would lead
to far more than just the indicated two groups. If one would split the data set into
subgroups corresponding to all possible patterns of zeros in the data, an inevitable
consequence would be an insufficient sample size for the purpose of the statistical
processing of the single groups. Moreover, the argument of different distributions of
common non-zero parts for different zero patterns cannot be assumed as a general
rule (Aitchison and Kay 2003).

A natural step further would be to build up a model that is able to cope with both
the zero structure and the information contained in the non-zero parts. This idea is
followed in Aitchison and Kay (2003), where a two-stage model is proposed: the
first stage is used to determine where the zeros occur (using a binary matrix of zero
values) and in the second step it is estimated how the observations are distributed
within the non-zero parts. Technically, this strategy leads to a binomial conditional
logistic normal model, where the parameters of the normal distribution on the
simplex (one common distribution for all zero patterns is assumed) are estimated
using the maximum likelihood technique. However, due to the apparent complexity
of the likelihood function this model was never brought to wider practical use.

For this reason, Templ et al. (2017) propose another strategy. They use the
principal assumption that an imputation of structural zeros in data should not add
new information to the overall covariance structure. Of course, it would not be
meaningful to impute zero values and continue to work with complete data in
the usual way. However, it is reasonable to impute the zeros as an auxiliary step
(using, e.g., the model-based algorithm from Sect. 13.2.2), just to estimate the
overall location and covariance, and then proceed to an analysis in the groups
of the subcompositions defined by the zero patterns. Using the imputation step,
the problem with insufficient sample size by analyzing subcompositional groups
separately is avoided. As a next step, the zero patterns themselves are analyzed
through the respective binary matrix with methods designed for this specific type
of data.

The general procedure is applied in Templ et al. (2017) for the case of
outlier detection. At first, the overall covariance structure of the non-zero parts is
estimated using the imputation step. Subsequently, non-zero parts of observations
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are tested for outlyingness using Mahalanobis distances (Sect. 5.3.2). In order to see
whether the zero patterns might indicate different distributions of non-zero parts,
the resulting Mahalanobis distances can be compared with those resulting from
estimating the covariance structure in the single zero patterns separately. Finally,
possible outliers in the binary structure of the zero values are analyzed using PCA
for binary data (de Leeuw 2006).

Example (EU-SILC contd.) As a first step, the zero structure of the amalgamated
EU-SILC data is analyzed. The left plot in Fig. 13.1 shows the number of zeros
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par(mar = c(10,3,0,10))
silcNA <- silc
silcNA[silc == 0] <- NA
aggr(silcNA, numbers = TRUE, prop = FALSE)

Fig. 13.1 Zero structure of the Austrian EU-SILC data. Left: the number of zeros for work
income, capital income, household transfers and personal transfers. Right: combinations of zeros
belonging to these four parts
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in the four parts with barplots, and the right plot shows all combinations of zeros
sorted according to their frequency in the data. A red rectangle indicates zeros in
the corresponding parts, a blue rectangle represents non-zero data. These different
combinations correspond to the previously mentioned zero patterns. Note that when
using the packageVIM one has to code the zeros as missing values. The frequencies
of the different combinations are represented by a small bar plot and by numbers.
These plots are adapted from the methodology described in Templ et al. (2012) to
visualize missing values. For example, the bottom row in Fig. 13.1 (right) represents
compositions with only zeros in the part personal transfers (transp), in this case
the majority of the observations. Also, many compositions (observations) have zeros
in both parts, workinc and transp. The least frequent combination is displayed
in the top row: zeros that are present in the parts capinc and transh. These
findings can be further helpful when considering results of principal component
analysis of binary data.

Observations which only consist of zeros, or where only one non-zero value
is present, are excluded from further analysis, as well as a few observations with
negative income. This results in 10 different zero patterns which are further analyzed
below.

After imputation of the zeros with knn, the overall location and covariance
is estimated and Mahalanobis distances can be computed. These Mahalanobis
distances are compared with those resulting from each data subgroup corresponding
to a zero pattern. Figure 13.2 shows the results for the ten different zero patterns,
cf. text and graphics in Templ et al. (2017). The line in each graphic indicates equal
Mahalanobis distance with both approaches, using the overall data information, and
using only the information of the data defined by the corresponding zero pattern.
It turns out that for most zero patterns, the data structure is very similar to the
overall data structure. The largest deviations can be seen in the patterns “0xx0”
(zeros in workinc and transh) and “x0x0” (zeros in transp and transh)
but also these results reveal only slightly larger deviations for both methods. It
can be concluded that methods described in detail in Templ et al. (2017) can
be used for this data set, i.e. the analysis can be done not only strictly in each
subcomposition (zero pattern) separately, but it is possible to use approaches that
refer to an analysis of the whole data set. In case of outlier detection this means
that first the structural zeros are imputed, the overall location and covariance is
estimated, and the analysis can be done in the subcomposition by considering the
jointly estimated location and covariance matrix (Templ et al. 2017). The gain is less
uncertainty in parameter estimation due to larger sample size. This has been shown
here for the estimated covariance matrix, which plays also an essential role when
applying other multivariate statistical methods.

The distribution of the structural zeros may also contain valuable information.
Figure 13.3 presents the results of a binary PCA (de Leeuw 2006; Tang and Tao
2006; Lee et al. 2010) applied to the different zero patterns in form of score and
loading plots of the first two principal components. Since this analysis is not based
on logratios, all zero patterns identified in Fig. 13.1 (right) can be used. These plots
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silc <- silc[!silc$transh < 0, ]
v <- apply(silc, 1, function(x) sum(x == 0) %in% c(1,2))
silc <- silc[v, ]
mah <- compareMahal(silc, imp = "knn")
plot(mah)

Fig. 13.2 Comparing Mahalanobis distances obtained from the imputation approach and from the
estimation in subcompositions applied to the EU-SILC data, originally published in Templ et al.
(2017). Published with kind permission of © Taylor & Francis, United Kingdom 2016. All Rights
Reserved

can be jointly interpreted in the sense of the standard covariance biplot (Gabriel
1971). For example, the variable household transfer (transh) points to the upper
left corner of the (loadings) plot, which means that patterns with observed values
in this variable (indicated by x) are located in the upper left, and patterns with
zeros in transh are in the opposite direction. According to the configuration in the
loadings plot (Fig. 13.3, right), the patterns referring to transh and capital income
(capinc) show similar behavior, which is also visible in Fig. 13.1. In contrast,
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Fig. 13.3 Binary PCA plots for every zero pattern, originally published in Templ et al. (2017).
Published with kind permission of © Taylor & Francis, United Kingdom 2016. All Rights Reserved

transh and transp (personal transfer) point at very different directions in the
loadings plot, also the direction for capital income (capinc) is very different, and
thus the occurrence of zeros in these variables is rather independent from each other
(Templ et al. 2017).

There is no clear outlier visible in the scores plot (Fig. 13.3, left), i.e., none of
the zero patterns shows completely different behavior. There are just some atypical
patterns that tend to be located further from the origin. For example, the pattern
“x00x”—the pattern expressed by observed positive values in the first and fourth
variable, zeros in the second and third variable—is in the bottom right of the plot,
further away from the origin, and this is the pattern which occurs only 91 times, see
Fig. 13.1 and Templ et al. (2017).
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Additive perturbation error, 183
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Agglomerative methods, 110
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Aitchison geometry, 5, 14, 37, 40
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Aitchison norm, 41, 230
Akaike information criterion, 193
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Anderson-Darling normality test. see test
Average silhouette width, 123
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Balances. see logratio coordinates
balances(), 67
Basis. see logratio coordinates, basis
Bayes rule. see discriminant analysis
biomarker(), 221
Biplot, 137–139, 141, 144, 147

compositional, 139
Bootstrap, 191, 261

fast and robust, 195
nonparametric, 191

Boxplot, 96
Breakdown point, 90

C
Calinski-Harabasz index, 122
Canonical correlation analysis, 153
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Censored values, 255
Center, 70
Centering, 70
Closure operator, 38
Closure problem, 73
clustCoDa(), 127
compareMahal(), 268
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Compositional equivalent, 39
Compositional parts. see components
constSum(), 60
Contingency table, 227, 229
Coordinates. see logratio coordinates
Correlation coefficient

Goodman and Kruskal, 150
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Kendall, 150
multiple, 152
Pearson, 150
Spearman, 150

Correlation matrix, 150
pivot, 152

Correspondence analysis, 229

D
DACrossVal(), 177
daFisher(), 174
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chorizonDL, 247, 258
coffee, 80
educFM, 200
election, 146, 259
electionATbp, 96, 99, 259
eusilc, 264
expendituresEU, 121, 141
fat, 197
fish, 169, 173
GDPsatis, 196, 260
GEMAS, 10, 79, 144, 157
govexp, 251
laborForce, 158, 260
mcad, 262
moss, 124
ohorizon, 103
olives, 176
OsloTransect, 129
phd, 5, 59, 75, 77, 154
socExp, 240

Dendrogram, 110
Detection limit, 246, 255

values below, 246
Dirichlet distribution, 85
Discriminant analysis

Bayes rule, 165
Fisher discriminant functions, 168
Fisher discriminant score, 168
Fisher rule, 167
linear, 166
quadratic, 165

Dissimilarity matrix, 108
Distance. see Euclidean distance

E
Equivariance

affine, 92
orthogonal, 89, 92, 133

Error rate, 171
Error sum of squares, 113
τ estimator, 214
Euclidean distance, 36, 108, 138, 169
Euclidean geometry, 12, 35
Euclidean inner product, 36
Euclidean norm, 36

F
Fisher rule. see discriminant analysis
Frobenius matrix norm, 115, 134, 253, 257

G
Geometric mean. see center

gm(), 23

H
Hartigan index, 123
Hotelling test. see test

I
ilr.2x2(), 234
impCoda(), 176, 254
impKNNa(), 252
imputeBDLs(), 258, 262
ind2x2(), 232
Independence table, 231
indTab(), 232
Influence function, 90
Inner product. see Euclidean inner product
int2x2(), 232
Interaction table, 231
Interquartile range, 92
intTab(), 232
Invariance

permutation, 12
scale, 11, 60, 70, 86, 151, 186, 189, 228,

259, 263

K
k-means clustering, 115

L
LDA. see discriminant analysis
LdaClassic(), 170
Linda(), 173
Linkage

average linkage, 113
complete linkage, 112
single linkage, 111
tree cutting, 113
Ward method, 113

lmCoDa(), 198
Loadings, 134, 139
Log transformation, 47, 73
Logcontrast, 44
Logit transformation, 75, 146, 197
Logratio, 4
Logratio coordinates, 14, 43

additive, 44–45, 61
balances, 56, 66, 235

pivot, 58
basis, 49
centered, 44–48, 62, 135, 139
isometric, 48–51, 62
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orthogonal, 185
pivot, 185, 188, 192

orthonormal, 49, 233
pivot, 49, 52, 65, 81, 134, 189, 233
principal balances, 215

sparse, 216
quaternary, 234, 235

pivot, 236
symmetric pivot, 55, 65, 72, 77, 151

Logratio transformation, 5
LTS estimator, 195

M
Mahalanobis distance, 99, 138, 169, 267
Marginals

arithmetic, 228, 231
geometric, 229, 231

MCD estimator, 81, 93, 94, 101, 136, 152, 158,
166, 169

Mclust(), 118
Median absolute deviation, 91
M-estimator, 194
Misclassification error, 164, 224
missPatterns(), 31
MM-estimator, 195
mvoutlier.CoDa(), 102
mvr(), 217

N
Negative bias, 54, 73, 151
Norm. see Euclidean norm
Normal distribution on the simplex, 86

O
Odds ratio, 235
OGK estimator, 93, 214
oregClassic(), 202
oregMM(), 202
orthbasis(), 64
Orthogonal equivariance. see equivariance
Orthogonal regression, 190, 202

robust, 81, 195
Orthonormal basis, 58, 64, 67, 132, 135, 211
outCoDa(), 103

P
Pairwise logratios, 70, 74, 98
Parts. see components
pcaCoDa(), 140, 141, 144, 146

Permutation invariance. see invariance,
permutation

Permutation matrix, 52, 65
Perturbation, 40, 229
Perturbation difference, 41
Pivot balances. see logratio coordinates
pivotCoord(), 65, 100, 101, 128, 129,

154, 156, 159, 160, 169, 176, 196,
201, 217

pivotCoordInv(), 101, 102, 159
pkb(), 104
Powering, 40, 229
Principal balances. see logratio coordinates
Principal components, 132
prmdaCV(), 224
Proportional data, 5

Q
QDA. see discriminant analysis
QdaClassic(), 171
Q-mode clustering, 109, 119

R
Rank-two approximation, 137
Ratio, 4
Ratio preserving, 12
Ratioing variable, 44, 61
Relative information, 2
Residual sum of squares, 183

S
Sample space, 37
Scale invariance. see invariance
Scaling. see standardization
Scores, 133
Scree plot, 133, 142
Sequential binary partition, 56, 57, 64, 66, 233

column, 235, 239
row, 235, 239

Silhouette plot, 129
Silhouette value, 123, 128
Simplex, 37, 38
Singular value decomposition, 87, 132, 134,

139
Software

CODA, 17
CoDaPack, 17, 21
compositions, 17–18
compositionsGUI, 22
ggtern, 18, 21
mvoutlier, 21
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NEWCODA, 17
R, 22–32
robCompositions, 17–21
StatDA, 21
zCompositions, 18, 21

Spurious correlations, 5
Standard simplex, 37
Standardization, 72
Stepwise selection, 193
Subcompositional

coherence, 12
dominance, 12

T
Ternary diagram, 37, 79, 82, 100, 140, 158, 200

centered, 159
ternaryDiag(), 101, 140, 159, 200
ternaryDiagPoints(), 102
Test

Anderson-Darling, 88

Hotelling, 88
regression parameters, 184, 185, 187

Tetrahedron, 82
TLS regression. see orthogonal regression
Tolerance ellipse, 99
Total variance, 72
Transformation

hyperspherical, 263
square root, 263

V
Values below detection limit. see detection

limit
Variation matrix, 70, 77, 93, 110, 120, 213, 261

normalized, 71
robust, 94

Z
Zeros, 38
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