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Review of Probability Theory, Random Variables, 
and Random Fields 

Gordon A, Fenton* and D.V. Griffithgt 
* Department of Engineering Mathematics. Dalhousie University. Canada 

' Division of Engineering. Colorado School of Mines. U.S.A. 

Abstract Regulatory bodies are increasingly asking geotechnical engineers to 
provide rational risk assessments to accompany their designs. In order to provide 
these assessments, practicing geotechnical engineers need a good understanding 
of both basic probability theory and the more sophisticated, but realistic^ ran
dom field soil models. This chapter lays the groundwork for this understanding. 
Starting with the basics of probability, the reader is lead through the theory of 
random variables and random fields and how they can be used to realistically 
model spatially variable soils. 

1 Event Probabilities 

The probability of an event A. denoted by P [A], is a number satisfying 

0<P[A]<1 

Also, we assume that 
P [0] - 0, P [5] - 1. 

Probabilities can sometimes be obtained using the counting rules discussed in the previous 
section. For example, if an experiment can result in any one of N different but equally 
likely outcomes, and if exactly m of these outcomes correspond to event A. then the 
probability of event ^ is P [A] — m/N. 

1.1 Additive Rules 
Often we must compute the probability of some event which is expressed in terms of 
other events. For example, if A is the event that the company A requests your services 
and B is the event that company B requests your services, then the event that at least 
one of the two companies request your services is ^ U B. The probability of this is given 
by the following relationship; 

If A and B are any two events, then 

V[A U B]^F[A]+F[B]-F[A n B] (1) 

This relationship can be illustrated by the following Venn diagram. The desired 
quantity, P [^ U -B], is the area of ^ U -B which is shaded. If the shaded area is computed 
as the sum of the area of ^ , P [^], plus the area of B, P [-B], then the intersection area, 
P [^ n B]. has been added twice. It must then be removed once to obtain the correct 
probability. 
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Figure 1. Venn diagram illustrating the union A U B. 
Also, 

If A and B are mutually exclusive, i.e. are disjoint and have no overlap, then 

V[A U B]^7[A]+V [B] (2) 

If Ai,A2,...,An are mutually exclusive, then 

P [A, U ... U yl„] - P [A,] + ... + P [A„]. (3) 

Definition: We say that Ai.A^.—.An is apartitionof the sample space 5 if ^1 , ^2 , -—.An 
are mutually exclusive and collectively exhaustive. Collectively exhaus
tive means that ^1 U ^2 U ... U An = S. 
If A1.A2..... An is a partition of the sample space 5, then 

P [^1 U ... U yl„] - P [^1] + ... + P [An] - P [5] - 1 (4) 

The above ideas can be extended to the union of more than two events. For example. 
For any three events A, B, and C, we have 

P [^ U B U C] - P [^] + P [B] + P [C] 

-v[A n B]-v[A n CP\-v[B n C] 
+ v[A n B n C\ (5) 

This can be seen by drawing a Venn diagram and keeping track of the areas which must 
be added and removed in order to get P [yl U B U C]. 

For the complementary events A and A'^, F[A] +¥ [A'^] — 1. This is often used to 
compute P[yl"] = 1-F[A]. 

2 Conditional Probability 
The probability of an event is often affected by the occurrence of other events and/or 
the knowledge of information relevant to the event. Given two events, A and B, of an 
experiment, P [B | ^] is called the conditional probability of B given that A has already 
occurred. It is defined by 

n n i A . . ^ ^ (6, 
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That is, if we are given that event A has occurred, then A becomes our sample space. 
The probability that B has also occurred within this new sample space will be the ratio 
of the "area" of B within A to the "area" of A. 

Sometimes we know P [B | ^] and wish to compute P [^ H B]. If the events A and 
B can both occur, then 

P [^ n B]^F[B\A]F [A] (7) 

2.1 Total Probability 

Sometimes we know the probability of an event in terms of the occurrence of other events 
and want to compute the unconditional probability of the event. For example, when we 
want to compute the total probability of failure of a bridge, we can start by computing 
a series of simpler problems such as 

1) the probability of bridge failure given a maximum static load, 
2) the probability of bridge failure given a maximum dynamic traffic load, 
3) the probability of bridge failure given an earthquake, 
4) the probability of bridge failure given a flood, 

etc. The Total Probability Theorem can be used to combine the above probabilities into 
the unconditional probability of network failure. We need to know the above conditional 
probabilities along with the probabilities that the 'conditions' occur (e.g. the probability 
that the maximum static load will occur during the design life, etc.). 

The Total Probability Theorem is stated generally as follows; 
Total Probability Theorem: 

If the events Bi,B'2,...,Bf^ constitute a partition of the sample space S (i.e. are 
disjoint but collectively exhaustive) then for any event A in S, 

k k 

^[A=Y.^[Bi n A]=Y.^[A\Bi]V[Bi] (8) 

2.2 Bayes' Theorem 

Sometimes we want to improve an estimate of a probability in light of additional informa
tion. Bayes' Theorem allows us to do this. It arises from the observation that P [yl n B] 
can be written in two ways; 

P [^ n B]^V[A\B]-V[B] 

^V[B\A]-V[A] (9) 

w hich implies that P [B | yl] • P [yl] ^ P [yl | B] • P [B], or 

p[Bi,4i = ^ M a _ m ,10, 

Bayes' Theorem is stated formally as follows. 
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Bayes' Theorem: 
If the events Bi-Bi-.-.-Bk constitute a partition of the sample space S (i.e. are 
disjoint and collectively exhaustive) then for any event A of S, such that P [A] / 0, 

P[B,\A]^ 
PJBj nA] 

E t i P [Bi n A] 
P[A\B,]P[B,] _P[A\B,]P[B,] 

T.i=i'P{MBi]P{Bi\ P[^] 

for any j — 1, 2,.... k. 
Bayes' Theorem is useful for revising or updating probabilities as more data and infor
mation becomes available. In the previous example on piezocones, there was an initial 
probability that a piezocone would have been manufactured at plant A: P [A] — 0.5. This 
probability is referred to as the prior probability of A. That is, in the absence of any 
other information, a piezocone chosen at random has a probability of having been man
ufactured at plant A of 0.5. However, if a piezocone, chosen at random, is found to be 
defective (so that there is now more information on the piezocone), then its probability 
that it was manufactured at plant A reduces from 0.5 to 0.294. This latter probability 
is referred to as the posterior probability of A. Bayesian updating of probabilities is 
a very powerful tool in engineering reliability-based design. 

For problems involving conditional probabilities, event trees are usually the easiest 
way to proceed. However, event trees are not always easy to draw, and the purely 
mathematical approach is sometimes necessary. As an example of a tree which is not 
quite straightforward, see if you can draw the event tree and answer the questions in the 
following Exercise. Remember that you must set up the tree in such a way that you can 
fill in most of the probabilities on the branches. If you are left with too many empty 
branches and no other given information, you are likely to have confused the order of the 
events - try reorganizing your tree. 

2.3 Problem-Solving Methodology 
Solving real-life problems (i.e. 'word problems') is not always easy. It is often not 
perfectly clear what is meant by a worded question. Two things improve one's chances of 
successfully solving problems which are expressed using words: (a) a systematic approach, 
and (b) practice. It is practice that allows you to identify those aspects of the question 
that need further clarification, if any. Below, a few basic recommendations are outlined. 

1) Solving a word problem generally involves the computation of some quantity. Clearly 
identify this quantity at the beginning of the problem solution. Before starting any 
computations, it is good practice to write out your concluding sentence first. This 
forces you to concentrate on the essentials. 

2) In any problem involving the probability of events, you should 
a) clearly define your events. Use the following guidelines: 

i) Keep events as simple as possible. 
ii) if your event definition includes the words "and", "or", "given", "if, 

"when", etc., then it is NOT a good event definition. Break your 
event into two (or more, if required) events and use " H ", " U ", or air. 
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operators to express what you had originally intended. The complement is 
also a helpful operator, see (iii). 

iii) You do not need to define separate events for. for example, "an accident 
occurs" and "an accident does not occur". In fact, this will often lead to 
confusion. Simply define A to be one of the events and use A'^ when you 
want to refer to the other. This may also give you some hints as to how to 
proceed since you know that P [A'^] = 1 — P [^]. 

b) Once your events are defined, you need to go through the worded problem 
to extract the given numerical information. Write this information down in 
the form of probabilities of the events that you defined above. For example, 
P [A] ^ 0.23, P [-B I ^] ^ 0.6, etc. Note that the conditional probabilities, are 
often difficult to unravel. Phrases such as 

'if ... occurs, the probability of ... doubles...' 
'In the event that ... occurs, the probability of ... becomes 0.6' 
'When ... occurs, the probability of ... becomes 0.43' 
'Given that ... occurs, the probability of ... is 0.3"' 

all translate into a probability statement of the form P [^ | _B]. In this case, you 
will likely be using one of the conditional probability relationship (P [yl H -B] = 
P [-B I ^] P [^]), the Total Probability Theorem, or Bayes' Theorem. 

c) Now review the worded problem again and write down the probability that 
the question is asking for in terms of the events defined above. Although the 
question may be in worded form, you should be writing down something like 
P [^ n B] or P [B I yl], etc. Make sure that you can express the desired proba
bility in terms of the events you defined above. If you can't, then you need to 
revise your original event definitions. 

d) Finally, use the rules of combining probabilities (e.g. probabilities of unions, 
intersections, Bayes' Theorem, etc) to compute the desired probability. 

3 Random Variables and Probability Distributions 
Although probability theory is based on the idea of events and associated set theory, it 
becomes very unwieldy to treat random events like 'time to failure' using explicit event 
definitions. One would conceivably have to define a separate event for each possible time 
of failure and so would soon run out of symbols for the various events. For this reason, 
and also because they allow the use of a wealth of mathematical tools, random variables 
are used to represent a suite of possible events. In addition, since most engineering 
problems are expressed in terms of numerical quantities, random variables are particularly 
appropriate. 
Definition: Consider a sample space S consisting of a set of outcomes {si, s a , . . . ] . If 

X is a function that assigns a real number X{s) to every outcome s G S, 
then X is a random variable. Random variables will be denoted with 
upper case letters. 

Now what does this mean in plain English? Essentially a random variable is a means 
of identifying events in numerical terms. For example, if the outcome Si means that 
an apple was selected and sa means that an orange was selected, then X(si) could be 
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set equal to 1 and J^(s2) could be set equal to 0. X > 0 then means that an apple 
was selected. Now mathematics can be used on X, ie. if the fruit picking experiment is 
repeated n times and xi — A'i(s) is the outcome of the first experiment, X2 — ^2(s) the 
outcome of the second, etc., then the total number of apples picked is Yl7=i ^i- ^o^e 
that mathematics could not be used on the actual outcomes themselves, e.g. picking an 
apple is a real event which knows nothing about mathematics nor can it be used in a 
mathematical expression without first mapping the event to a number. 

For each outcome s, there is exactly one value oi x — X{s). but different values of s 
may lead to the same x. 

The above discussion illustrates in a rather simple way one of the primary motivation 
for the use of random variables - simply so that mathematics can be used. One other 
thing might be noticed in the previous paragraph. After the 'experiment' has taken place 
and the outcome is known, it is referred to using the lower case, Xi. That is Xi has a 
known fixed value while X is unknown. In other words x is a realization of the random 
variable X. This is a rather subtle distinction, but it is important to remember that X is 
unknown. The most that we can say about X is to specify what its likelihoods of taking 
on certain values are - we cannot say exactly what the value of X is. 

3.1 Discrete Random Variables 

Discrete random variables are those that take on only discrete values {x\ .x^-- • •}• ie. have 
a countable number of outcomes. Note that countable just means that the outcomes can 
be numbered 1,2,..., however there could still be an infinite number of them. For 
example, our experiment might be to count the number of soil tests performed before 
one yields a cohesion of 200 MPa. This is a discrete random variable since we outcome is 
one of 0 , 1 , . . . , but the number may be very large or even (in concept) infinite (implying 
that a soil sample with cohesion 200 MPa was never found). 
Discrete Probability Distributions 

As mentioned previously, we can never know for certain what the value of a random 
variable is (if we do measure it, it becomes a realization - presumably the next mea
surement is again uncertain until it is measured, and so on). The most that we can say 
about a random variable is what its probability is of assuming each of its possible values. 
The set of probabilities assigned to each possible value of X is called a probability 
distribution. The sum of these probabilities, over all possible values, must be 1.0. 
Definition: The set of ordered pairs {x,fx{x)) is the probability distribution of the 

discrete random variable X if, for each possible outcome x, 
l ) 0 < / , ( x ) < l , 

2) $ ] / . ( a : ) - l , 

3) P[X^x]^fAx) 
fx{x) is called the probability mass function of X. The subscript is used 
to indicate what random variable is being governed by the distribution. 
We shall see when we consider continuous random variables why we call 
this a probability 'mass' function. 
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Discrete Cumulative Distributions 

An equivalent description of a random variable is the cumulative distribution function 

(CDF), which is defined as follows; 

Definition: The cumulative distribution function, Fx (x) of a discrete random variable 

X. with probability mass function fx{x). is defined by 

Fx{x)^V[X<x]^Y.^-^'^) (12) 
t<x 

We say that this is equivalent to the probability mass function because one can be 

obtained from the other, 

fx{xi)^Fx{xi)-Fx{xi-i) (13) 

3.2 Continuous Random Variables 

Continuous random variables can take on an infinite number of possible outcomes -

generally X takes values from the real line 5R. To illustrate the changes involved when 

we go from the discrete to the continuous case, consider the probability that a grain 

silo experiences a bearing capacity failure at exactly 4.3673458212... years from when 

it is installed. Clearly the probability that it fails at exactly that instant in time is 

essentially zero. In general the probability that it fails at any one instant in time is 

vanishingly small. In order to characterize probabilities for continuous random variables, 

we can't use probabilities directly (since they are all essentially zero) - we must use 

relative likelihoods. That is, we say that the probability that X lies in the small interval 

between x and x + dx \s fx{x) dx. or 

V[x<X <x + dx]= fx{x)dx (14) 

where fx{x) is now called the probability density function (pdf) of the random variable 

X. The word density is used because "density" must be multiplied by a length measure in 

order to get a "mass". Note that the above probability is vanishingly small because dx is 

vanishingly small. The function fx{x) is now the relative likelihood that X lies in a very 

small interval near x. Roughly speaking, we can think of this as P [X — 2:] = fx{x)dx. 
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Figure 2. Cumulative distribution function for the exponential distribu
tion. 

Continuous Probability Distributions 

Definition: The function fx{x) is a probability density function for the continuous 

random variable X, defined over the set of real numbers, if 

1) 0 < fx{x) < oc, for all —oc < x < +oc, 

/

oo 
fx{x)dx = 1 (i.e. the area under the pdf is 1.0), 

-oc 
rb 

3) P[a<X <b]^ / fx{x)dx (i.e. the area under fx{x) between a 
J a 

and b). 
NOTE: it is important to recognize that, in the continuous case, fx{x) is no longer a 

probability. It has units of probability per unit length. In order to get probabilities, we 

have to find areas under the pdf, i.e. sum up values of fx{x)dx. 

Continuous Cumulative Distribution 

The cumulative distribution function (cdf), for a continuous random variable is basically 

defined in the same way as it is for a discrete distribution. 
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Definition: The cumulative distribution function, Fx{x). of a continuous random 
variable X having probability density function fx{x)., is defined by the 
area under the density function to the left of x 

Fx{x) ^F[X<x]^ r Mt)dt (15) 

As in the discrete case, the cdf is equivalent to the pdf, in that one can be obtained from 
the other. It is simply another way of expressing the probabilities associcated with a 
random variable. Since the cdf is an integral of the pdf. the pdf can be obtained from 
the cdf as a derivative, ie. 

A ( . ) ^ ^ (.0, 

4 Measures of Central Tendency, Variability, and Association 
A random variable is completely described, as well as can be. if its probability distri
bution is specified. However, we will never know the precise distribution of any natural 
phenomenon. Nature cares not at all about our mathematical models and the 'truth' 
is usually far more complex than we are able to represent. So we very often have to 
describe a random variable using less complete, but more easily estimated, measures. 
The most important of these measures are central tendency and variability. Even if the 
complete probability distribution is known, these quantities remain useful because they 
convey information about the properties of the random variable that are of first impor
tance in practical applications. Also, the parameters of the distribution are often derived 
as functions of these quantities, or they may be the parameters themselves. 

The most common measures of central tendency and variability are the mean and 
the variance, respectively. In engineering, the variability of a random quantity is of
ten expressed using the dimensionless coefficient of variation which is the ratio of the 
standard deviation over the mean. Also, when one has two random variables, X and Y, 
it is frequently of interest to measure how strongly they are related (or associated) to 
one another. A typical measure of the strength of the relationship between two random 
variables is their covariance. As we shall see, covariance depends on the units of the 
random variables involved and their individual variabilities, and so a more intuitive mea
sure of the strength of the relationship between two random variables is the correlation 
coefficient, which is both dimensionless and bounded. All of these characteristics will be 
covered in this section. 

4.1 Mean 
The mean is the most important characteristic of a random variable, in that it tells us 
about its central tendency. It is defined mathematically as follows; 
Definition: Let X be a random variable with probability density function f{x). The 

mean or expected value of X, denoted fix-, is defined by 

lix ^E[X]^Y]xf{x) if X is discrete (17a) 
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/

oo 

xf{x)dx if X is continuous. (l^S) 

-oc 

where the subscript on fi. when present, denotes what yu is the mean of. 
Expectation 
The notation E [X\ refers to a mathematical operation called expectation. The expecta
tion of any random variable is a sum of all possible values of the random variable weighted 
by the probability of each value occurring. For example, if X is a random variable with 
probability (mass or density) function, fx{x)., then the expected value of the random 
variable g{X), where g is any function of X, is 

Hg^x) = E [giX]] = ^g{x)fx{x) if X is discrete 

f^9(X) 
/

oc 

g{x)fx{x)dx if X is continuous. (18) 

-oc 

If we have a sample of observations , xi.X2;.-.;Xn. of some population X. then the 
population mean, fix-, is estimated by the sample mean. x. defined as 

Sample Mean: x = — \^ Xi 
n •̂ —' n 

2 = 1 

4.2 Median 
The median is another measure of central tendency. We shall denote the median as jl. 
It is the point which divides the distribution into two equal halves. Most commonly, jl 
is found by solving 

Fx{fi)^V[X< 11] ^0.5 

for jl. For example, if fx{x) — Ae^"^ ,̂ then Fx{x) = 1 — e^'^^, and we get 

l _ , - . = 0 . 5 ^ . ^ _ l n ( a 5 ) = 0 ^ 

While the mean is strongly affected by extremes in the distribution, the median is largely 
unaffected. 

In general the mean and the median are not the same. If the distribution is positively 
skewed (or skewed right, which means a longer tail to the right than to the left), as are 
most soil properties, then the mean will be to the right of the median. Conversely, if 
the distribution is skewed left, then the mean will be to the left of the median. If the 
distribution is symmetric, then the mean and the median will coincide. 
NOTE: the median is the point which divides the distribution in half. 
If we have a sample of observations , xi,X2,... ,Xn, of some population X, then the 
population median, jlx, is estimated by the sample median, x. To define x, we must first 
order the observations from smallest to largest, â ĵ̂  < X(2) < • • • < x^„y When we have 
done so, the sample median is defined as 

. _ f 2:((n+i)/2) if n is odd 
^ ^ I i (^(n/2) + X{(n-\-i)/2)) if " is even 

Sample Median 
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4.3 Variance 

The mean (expected value) or median of the random variable X tells where the prob

ability distribution is "centered". The next most important characteristic of a random 

variable is whether the distribution is "wide", "narrow", or somewhere in between. This 

distribution "variability" is commonly measured by a quantity call the variance of X. 

Definition: Let X be a random variable with probability (mass or density) function 

fx{x) and mean fix- The variance, CT^, oi X is defined by 

al - Var [X] ^E[{X- fi^f] - ^^(a^ - fixffx{x) (19a) 
X 

/

oc 

{x-nxffx{x)dx (19&) 
-oc 

for the discrete and continous cases, respectively. 

The variance of the random variable X is sometimes more easily computed as 

al^E[X']-E'[X]^E[X']-t^l (20) 

The variance, cr^, has units of X^. The square root of the variance, GX, is called the 

standard deviation of X. Since the standard deviation has the same units as X. it is 

often preferable to report the standard deviation as a measure of variability. 

Even though the standard deviation has the same units as the mean, it is often still 

not particularly informative. For example, a standard deviation of 1.0 may indicate sig

nificant variability when the mean is 1.0, but indicates virtually deterministic behaviour 

when the mean is one million. For example, an error of 1 m on a 1 m survey would be 

considered unacceptable, whereas an error of 1 m on a one thousand km survey might 

be considered quite accurate. A measure of variability which is both non-dimensional 

and delivers a relative sense of the magnitude of variability is the coefficient of variation, 

defined as 

Note that the coefficient of variation becomes undefined if the mean of X is zero. It 

is, however, quite popular as a way of expressing variability in engineering, particularly 

for material property and load variability, which generally have non-zero means. 
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Figure 3. Two distributions illustrating how the position and shape changes 
with changes in mean and variance. 

4.4 CovariancG 

Often one must consider more than one random variable at a time. For example, the 
two components of a drained soil's shear strength, tan((/)') and c', will vary randomly 
from location to location in a soil. These two quantities can be modeled by two random 
variables, and since they may influence one another (or they may be jointly influenced 
by some other factor), they are characterized by a bivariate distribution. 
Properties of the Bivariate Distribution: 
Discrete: fxY{x,y) -VlX - x n Y - y] 

0<fxy{x,y)<l 

all X all y 
Continuous: fxyi^,y)dxdy — F[x < X < x + dx H y <Y < y + dy] 

fxY{x,y) > 0 for all {x,y) e K^ 

/

CX3 POC 

/ fxv{,x,y)dxdy 

rV2 rxi 
P [xi < X < X2 n yi < Y < ya] = / fxY (x, y) dx dy 

J y\ J xi 
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Figure 4. Example bivariate probability density function, fxY^x.y). 

Definition: Let X and Y be random variables with joint probability distribution 

fxY{x.y). The covariance between X and Y is defined by 

CoY[X.Y]^E[{X-f,x){Y-f,Y)] (22) 

^ ^^{x- fj-xKy - fj'Y)fxY{x,y), 
X y 

/

OO /-OO 

/ {x-l^x){y-I^Y)fxY{x,y)dxdy, 

for the discrete and continuous cases, respectively. 
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The covariance between two random variables X and Y, having means fix and fiy, 
respectively, may also be computed as 

Cov [X, Y] - E [XY] - E [X] E [Y] - E [XY] - II^I^Y (23) 

Although the covariance between two random variables does give information regarding 
the nature of the relationship, the magnitude of Cov [X, Y] does not indicate anything re
garding the strength of the relationship. This is because Cov [X, Y] depends on the units 
and variability of X and Y. A quantity which is both normalized and non-dimensional 
is the correlation coefficient, to be discussed next. 

4.5 Correlation Coefflcient 
Definition: Let X and Y be random variables with joint probability distribution 

fxv{x.y). The correlation coefflcient between X and Y is defined to 

P„ = ^^5?JM. (24) 
OXOY 

Figure 5 illustrates the effect that the correlation coefficient has on the shape of a bivariate 
probability density function, in this case for X and Y jointly normal. If pxY = 0, then 
the contours form ovals with axes aligned with the cartesian axes (if the variances of X 
and Y are equal, then the ovals are circles). When pxv > 0, the ovals become stretched 
and the major axis has a positive slope. What this means is that when Y is large, X 
will also tend to be large. For example, when pxv ~ 0.6, as shown on the right plot of 
Figure 5, then when Y = 8. the most likely value X will take is around 7, since this is 
the peak of the distribution along the line Y = S. Similarly, if pxY < 0, then the ovals 
will be oriented so that the major axis has a negative slope. In this case, large values of 
Y will tend to give small values of X. 

Figure 5. Effect of correlation coefficient, Pxv, on contours of a bivariate 
probability density function, fxY{x,y)., having px — PY — 5 
and (7x — 1-5 and cry — 2.0. 



Review of Probability Theory, Random Variables, and Random Fields 15 

We can show that — 1 < p^Y < 1 as follows: Consider two random variables X and Y 
having variances a^. and (jy, respectively, and correlation coefficient pxv • Then 

Var 
X Y 

0 " Y CTV + 
ol ^ ,Cov[xy] 

> 0 

which implies that pxv > — 1- Similarly, 

Var 
X 

Ox 

Y 

OY 

al , al ^Cov[X,Y] 
- 2 

OXOY 

![l-p.y] 
> 0 

which implies that pxY < 1- Taken together, these imply that —1 < pxY < 1-
The correlation coefficient is a direct measure of the degree of linear dependence 

between X and Y. When the two variables are perfectly linearly related, pxv will be 
either +1 or -1 (+1 if Y increases with X and —1 if Y decreases when X increases). 
When \PXY\ is less that 1, the dependence between X and Y is not completely linear; 
however, there could still be a strong nonlinear dependence. If two random variables 
X and Y are independent, then their correlation coefficient will be 0. If the correlation 
coefficient between two random variables X and Y is 0, it does not mean that they are 
independent, only that they are uncorrelated. Independence is a much stronger statement 
than is pxY — 0; since the latter only implies linear independence. For example, Y — X 
may be linearly independent of X (this depends on the range of X) , but clearly Y and 
X are completely (non-linearly) dependent. 

5 Common Discrete Probability Distributions 
Many engineered systems have the same statistical behaviour - we generally only need a 
handful of probability distributions to characterize most naturally occurring phenomena. 
In this section, the most common discrete distribution will be reviewed (the next section 
looks at the most comment continous distributions). These are the Bernoulli family of 
distributions, since they all derive from the first, 

1) Bernoulli 
2) Binomial 
3) Geometric 
4) Negative Binomial 
5) Poisson 
6) Exponential 
7) Gamma 

The Poisson, Exponential, and Gamma are the continuous-time analogs of the Binomial, 
Geometric, and Negative Binomial, respectively, arising when each instant in time is 
viewed as an independent Bernoulli trial. In this section we consider the discrete members 
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of the Bernoulli family, which are the first five members listed above, looking briefly at 
the main characteristics of each of these distributions and describing how they are most 
commonly used in practice. 

For a more complete description of these distributions, the interested reader should 
consult an introductory textbook on probability and statistics, such as Law and Kelton 
(2000) or Devore (2003). 

5.1 Bernoulli Trials 
All of the discrete distributions considered in this section (and the first two in the next 
section) are derived from the idea of Bernoulli Trials. A Bernoulli trial is an experiment 
which has only two possible outcomes, success or failure (or [1,0], or [true, false], or 
[< 5, > 5], etc). If a sequence of Bernoulli trials are mutually independent with constant 
(stationary) probability, p. of success, then the sequence is called a Bernoulli Process. 
There are many examples of Bernoulli processes: one might model the failures of earth 
dams using a Bernoulli process. The success or failure of each of a sequence of bids 
made by a company might be a Bernoulli process. The failure of piles to support the 
load applied on them might be a Bernoulli process if it can be assumed that the piles 
fail (or survive) independently and with constant probability. However, if the failure of 
one pile is dependent on the failure of adjacent piles, as might be the case if the soil 
structures are similar and load transfer takes place, the Bernoulli model may not be 
appropriate and a more complex, 'dependent', model may be required, e.g. random field 
modeling of the soil and finite element analysis of the structural response within a Monte 
Carlo simulation. Evidently, when we depait from satisfying the assumptions underlying 
the simple models, such as those required for the Bernoulli model, the required models 
rapidly become very much more complicated. In some cases, applying the simple model 
to the more complex problem will yield a ballpark estimate, or at least a bound on the 
probability, and so it may be appropriate to proceed with a Bernoulli model taking care 
to treat the results as approximate. The degree of approximation depends very much 
on the degree of dependence between 'trials' and the 'stationarity' of the probability of 
'success', p. 

If we let 
y _ J 1 if the j * ' ' trial results in a success, /r,r\ 

•̂  \ 0 if the j * ' ' trial results in a failure 

then the Bernoulli distribution, or probability mass function, is given by 

P[X,^l]^p (26) 

F[X,^0]^l-p^q 

for all j — 1,2, Note that we commonly denote 1 — p as q for simplicity. 
For a single Bernoulli trial the following results hold 

E [^,] - E ^ • P [^J ='^= 0(1 - r t + l(rt = P (27a) 

1 

E [^]] ^Y.'^-P{Xj^i\^ 0^(1 - P ) + l '(rt - P 
i=0 
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Var [Xj] - E [X]] - E'^[X^] ̂ p-p'^^pq (27&) 

For a sequence of trials, the assumption of independence between the trials means that 

P [ X i =Xi n X2=X2 n •••X„ = Xn\=P[Xi ^ X i ] P [ X 2 =X2\---P[Xn = X„] (28) 

The Maximum Likelihood Estimate of p is just the average of the set of observations, 
Xi,X2., • • • -Xn. o f X. 

P = 
1 

(29) 
i=l 

Notice that we use a hat to indicate that this is just an estimate of the true parameter 
p. Since the next set of observations will likely give a different value for p, we see that p 
is actually a random variable itself, rather than the true population parameter, which is 
non-random. The mean and variance of the sequence of p can be found by considering 
the random P. 

1 " 

p^-Y^Xi (30) 
i=l 

obtained prior to observing the results of our Bernoulli trials. We get 

E M ^ E Y^x, 

-{np) 
i=\ 

= P (31) 

which means that the estimator given by Eq. (29) is unbiased (that is, the estimator is 
'aimed' at its desired target on average). 

The estimator variance is 

Var P Var 
1 E '̂ 

i = l 

1 " 1 
-^ V Var [Xi] ^ - ^ {npq) 

n 

pq (32) 

where we made use of the fact that the variance of a sum is the sum of the variances 
if the random variables are uncorrelated. We are assuming that, since this is a 
Bernoulli process, not only are the random variables uncorrelated, they are completely 
independent (the probability of one occurring is not affected by the probability of other 
occurrences). 
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Note that the estimator variance depends on the true value of p on the right-hand-side 
of Eq. (32). Since we are estimating p. we obviously don't know the true value. The 
solution is to use our estimate of p to estimate its variance, so that 

a , ^ - (33) 

Once we have determined the estimator variance, we can compute its standard error. 
which is commonly taken to be equal to the standard deviation and which gives an 
indication of how accurate our estimate is. 

(34) 

For example, if p — 0.01, then we would prefer ap to be quite a bit smaller than 0.01 
and we can adjust the number of observations, n, to achieve this goal. 

Later in this book, we will be estimating the probability of failure, pf, of various clas
sic geotechnical problems using a technique called Monte Carlo simulation. The standard 
error given by Eq. (34) will allow us to estimate the accuracy of our failure probabil
ity estimates, assuming that each 'simulation' results in an independent failure/success 
'trial'. 
Applications 
The classic Bernoulli trial is the toss of a coin, but many other experiments can lead to 
Bernoulli trials under the above conditions. Consider the following examples; 

1) Soil anchors at a particular site have a 1% probability of pulling out. When an 
anchor is examined, it is classified as a success if it has not pulled out, or a failure if 
it has. This is a Bernoulli trial with p — 0.99 if the anchors fail independently and 
if the probability of success remains constant from trial to trial. 

2) Suppose that each sample of soil at a site has a 10% chance of containing significant 
amounts of chromium. A sample is analyzed and classified as a success if it does not 
contain significant amounts of chromium, and a tailure if it does. This is a Bernoulli 
trial with p — 0.90 if the samples are independent and if the probability of success 
remains constant from trial to trial. 

3) A highway through a certain mountain range passes below a series of steep rock 
slopes. It is estimated that each rock slope has a 2% probability of failure (resulting 
in some amount of rock blocking the highway) over the next 10 year. If we define 
each rock slope as a trial which is a success if it does not fail in the next 10 years, 
then this can be modeled as a Bernoulli trial with p — 0.98 (assuming rock slopes 
fail independently - which might not be a good assumption if they generally fail due 
to earthquakes...). 

5.2 Binomial Distribution 
Let Nn be the number of successes in n Bernoulli trials, each with probability of success 
p. Then N„ follows a binomial distribution where 

P [ i V „ - f e ] - ( ' " ' ) P * Q " - * , fe-0,l,2,...,n (35) 
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The quantity p'^q'"-'^ is the probability of obtaining k successes and n — k failures in n 

trials and (") is the number of possible ways of arranging the k successes over the n 

trials. 

For example, consider 8 trials, which can be represented as a series of 8 dashes: 

One possible realization of 3 successes in 8 trials might be: 

F S F F S S F F 

where successes are shown as S and failures as F. Another possible realization might be 

S F F S F F F S 

and so on. Clearly these involve 3 successes, which have probability p^, and 5 failures, 

which have probability q^. Combining these two probabilities with the fact that 3 suc

cesses in 8 trials can be arranged in (g) different ways leads to 

P [ i V 8 - 3 ] - Q p V - ^ 

which generalizes to the binomial distribution, for n trials and k successes, given above. 

Figure 6. Binomial distribution for n — 10 and p — 0.4. 
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Properties: 
In the following proofs, we make use of the binomial theorem, which states that 

i-Q ^ ^ i=0 '̂  '' 

The expected number of successes in n trials can be found directly from the definition of 
the discrete case expectation. 

7 Tl — 7 

•^1 (i - l ) ! ( n - «)! ^ i ! ( (n - 1) - «)! 

— np{p + q)"^^ 

- np (37) 

since p + q — 1. 
Alternatively, we could write 

E[N„]^E[Xi+X2 + --- + X„] 

= np 

where Xi is a Bernoulli random variable, having expectation p. 
To find the variance of N^. we first need to find 

p^^n-^ 

n - l 

fl! 1 ^^ 

= np{{n — \)p+ 1} 

= npq + n^p^ 

where for the first sum. we made use of the result given by Eq. 37. The variance is thus. 

Var [N^] = E [N^] - E'^[N„] = npq + n^j? - n'^pp = npq (38) 
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The same result could have been obtained much more easily by considering the vari

ance of a sum of independent random variables, since in this case, the variance of a sum 

is the sum of the variances: 

Var [N„] ^ Var — y j VarXi — npq 
i=l 

5.3 Geometric Distribution 

Consider a Bernoulli process in which Ti is the number of trials required to achieve the 

first success. Thus, if Ti — 3, then we must have had 2 failures followed by a success 

(the value of Ti fully prescribes the sequence of trials). This has probability 

P [Ti — 3] = P [{failure, failure, success}] — q^p 

In general 

P[Ti^k]^q''-^p., k^l.,2,... (39) 

Note that this is a valid probability mass function since 

k=l k=0 ^ 

where we used the fact that for any \alpha\ < 1 (see, e.g., Gradshteyn and Ryzhik, 1980), 

oc I 

fe=0 

As an example, in terms of the actual sequence of trials, the event that the first 
th 

success occurs on the 8 trial appears as 

That is, the single success always occurs on the last trial. If Ti — 8, then we have had 7 

failures, having probability q'. and 1 success, having probability p. Thus 

P [Ti - 8] - q'^p 

Generalizing this for Ti — k leads to the geometric distribution shown above. 



22 G. A. Fenton and D. V. Griffiths 

Figure 7. Geometric distribution for p — 0.4. 

Because trials are assumed independent, the geometric distribution also models the num
ber of trials between successes in a Bernoulli process. That is, suppose we observe the 
result of the Bernoulli process at trial number 1032. We will observe either a success or 
failure, but whichever is observed, it is now known. We can then ask a question such as: 
What is the probability that the next success occurs on trial 1040? To determine this, 
we start with trial 1032. Because we have observed it there is no uncertainty associated 
with trial 1032, so it does not enter into the probability problem. However, trials 1033, 
1034, . . . , 1040 are unknown. We are asking for the probability that trial 1040 is the first 
success after 1032. In order for this event to occur, trials 1033 to 1039 must be failures. 
Thus, the 8 trials, 1033 to 1040, must involve seven failures (q^) followed by one success 
(p). The required probability is just the product 

P [Ti - 8] - q'p 

What this means is that the geometric distribution, by virtue of the independence 
between trials, is memoryless. It doesn't matter when you start looking at a Bernoulli 
process, the number of trials to the next 'success' is given by the geometric distribution 
(and is independent of the trial number). 
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Properties: 
The mean of Ti, which is also sometimes refered to as the return period or the mean 
recurrence time, is determined as follows: 

OC OC 1 OC J / 

k=l k=l ^ k=l ^ ^ ^ 

= P 

1 

P 
(41) 

where we used Eq. 40 to evaluate the final sum above. We will use the second to last 
sum in the following proof. 

The variance of Tj is obtained from Var [Tj] ^ E [T^] - E^[Ti] as follows; 

E[Tf]^5]^W-^-pE^V-^-P;fE^^' 

thus 

k=l 

d 
dq 

1 
- + 
P 

Vai 

( 
1 ( 1 
2? 
P" 

'[Ti] 

k=l 

^ ^ 
-Q)y 

- E [Tf ] -

^1 + h. 
P P^ 
Q 

•E2[TI] 

1 

oo 

dq 
k=l 

(42) 

Aside: In engineering problems, we often reverse the meaning of 'success' and 'failure'. 
and use the geometric distribution to model 'time' to failure, where 'time' is measured 
in discrete steps (trials). 

5.4 Negative Binomial Distribution 
Suppose we wish to know the number of trials ('time') in a Bernoulli process until the 
nrr success. Letting T^ be the number of trials until the nrr success, then 

F[T^^k]^ ('^~^\"'q''-"' for fe-m.m + 1.... (43) 
\m — \J ' ' 

which is the negative binomial distribution. Whereas a binomial distributed random 
variable is the number of successes in a fixed number of trials, a negative binomial 
distributed random variable is the number of trials for a fixed number of successes. 



24 G. A. Fenton and D. V. Griffiths 

We note that the negative binomial is also often used to model the number of failures 
before the rrr success, which results in a somewhat different distribution. We prefer 
the interpretation that the negative binomial distribution governs the number of trials 

th 
until the m success because it is a natural generalization of the geometric distribution 
and because it is then a discrete analog of the Gamma distribution considered in Section 
1.6.2. 

The name of the negative binomial distribution arises from the negative binomial 
series 

(44) 
k—m 

which converges for \q\ < 1. This series can be used to show that the negative binomial 
distribution is a valid distribution, since 

PC PC / , I X PC ^ , I X 

(45) 
as expected. 

Figure 8. Negative binomial distribution for Tg (ie. m — 3) and p — 0.4. 
We see that the Geometric distribution is a special case of the Negative Binomial dis
tribution with m — 1. The negative binomial distribution is often used to model 'time 
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tVi to the m failure', where 'time' is measured in discrete steps, or trials. Consider one 
possible realization which has the 3rd success on the 8th trial; 

J L _ S _ _ S _ J L J L J L J L _ S _ 
Another possible realization might be 

F F F S F S F S 
In both cases, the number of successes is 3, having probability p^, and the number of 
failures is 5, having probability q^. In terms of ordering, if T3 — 8, then the 3rd success 
must occur on the 8'th trial (as shown above). Thus, the only other uncertainty is the 
ordering of the other two successes. This can occur in (2) ways. The probability that 
the 3rd success occurs on the 8th trial is therefore given by 

Generalizing this for m successes and k trials leads to the negative binomial distribution 
shown above. 
Properties: 
Mean: 

m j—m 

j=m j=m j=m 
00 

mp 

mp'" 
(1 - Q)™+I 

m 

P 

m\{j — m) 
r,J-™ 

^ , ^. (m + 2)(m + l) 2 (m + 3)(m + 2)(m + l) , 
1 + (m + 1)Q + ^ ^̂  '-q^ + ^ g, -q^ 

(46) 

which is just m times the mean of a single geometrically distributed random variable, 
Ti, as expected since the number of trials between successes follows a geometric dis
tribution. In fact, this observation leads to the following alternative representation 
ofT™, 

Tm - Ti,i + Ti,2 + • • • + Ti,^ (47) 

where Ti^i is the number of trials until the first success, Tî 2 is the number of trials 
after the first success until the second success, and so on. That is, the Ti^j terms 
are just the 'times' between successes. Since all trials are independent, each of 
the Tî j terms will be independent geometrically distributed random variables, all 
having common probability of success, p. This leads to the following much simpler 
computation, 

m 
E [Tm] = E [Ti,i] + E [Ti,2] + • • • + E [Ti,™] = - (48) 
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since E [Tî ,] — 1/p for alH — 1,2,.. . , m. The mean in Figure 8 is 3/0.4 — 7.5. 
Variance: 

To get the variance, Var[Tm], we'll again use Eq. 47. Due to independence of the 
Tî j terms, the variance of the sum is the sum of the variances. 

Var [T„] - Var [Ti,i] + Var [Ti,2] + • • • + Var [Ti,„] 

— mVar [Ti] 

- ^ (49) 
P 

which is just m times the variance of a single geometrically distributed random 
variable, Ti, as expected. 

5.5 Poisson Distribution 

The Poisson distribution governs many 'rate' dependent processes - for example, arrivals 
of vehicles at an intersection or number of points where a soil's cohesion exceeds some 
high threshold in a region. The Poisson is yet another distribution arising from the 
Bernoulli family and can be derived directly from the binomial distribution by letting 
each instant in time (or space) become an independent Bernoulli trial. For simplicity, 
we will talk about Poisson processes in time, but recognize that they can be equivalently 
applied over space, simply by replacing t with a distance (or area, volume, etc) measure. 

For any non-zero time interval we have an infinite number of Bernoulli trials, since 
any time interval is made up of an infinite number of instants. Thus, the probability 
of success, p, in any one instant must go to zero - otherwise we would have an infinite 
number of successes in each time interval {np ^ ex: as n ^ ex:). This means that we 
must abandon the probability of success, p, in favour of a mean rate of success, X, which 
quantifies the mean number of successes per unit time. 

The basic assumption on which the Poisson distribution rests is that each instant in 
time is a Bernoulli trial, with mean success (arrival) rate given by the parameter A. This 
basic assumption leads to the following statements (which also define A); 

1) successes occur at random and at any point in time (or space), 
2) the occurrence of a success in a given time (or space) interval is independent of 

successes occurring in all other disjoint intervals, 
3) the probability of a success occurring in a small interval, At.is proportional to the 

size of At, ie., is XAt, where A is the mean rate of occurrence. 
4) for At -^ 0, the probability of two or more successes in At is negligible (e.g. a 

Bernoulli trial can only have one success). 
Now define Nt to be the number of successes ('arrivals' or 'occurrences') occurring in 

time t. If the above assumptions hold, then Nt is governed by the following distribution, 

P [ i V f - f e ] - - ^ e - ^ * , A ; - 0 , 1 , 2 , . . . (50) 

where A is the mean rate of occurrence (A has units of 1/time). 
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Figure 9. Poisson distribution for t = 4.5 and A — 0.9. 
Properties 
Mean: 

(Xt) (Af)-'-i 
n^^]=Tr-^e-^^^Xte--Y.ff^_ 

j = o to-

^Xte-^'Y. 
j = o 

{Xiy 

- A t (51) 

The mean of the distribution shown in Figure 9 is E [iV4.g] — 0.9(4.5) — 4.05. 
Variance: 

E [N?] - E f ^ e-'^ = Ate- '̂ Y^U + 1 
j=o 

Xte -\t t.'^^t 
j = o r- J=0 

J=0 

{xty_ 

(Ai)2 + {Xt) 
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thus 
Var [Nt] = E [N^] - E''[Nt] = Xt (52) 

That is, the mean and variance of a Poisson process are the same. 
Derivation from the Binomial Distribution 
The Poisson distribution is often used to model 'arrival' processes. We shall see later 
that it is also useful to model so called 'excursion' processes (e.g. the number of times 
that a soil's property falls below some low threshold in a region). For the time being, 
however, we will consider a simple example of arrivals of customers at a bank, which 
should appeal to anyone who has had to line up for service in a bank. 

Suppose that a financial engineer is monitoring customer arrivals at a bank and verifies 
that an average of 60 customers enter the bank per hour. What is the probability that 
10 customers will arrive in the next 10-minute interval? 

Solution: 
In an attempt to model this using the binomial distribution, lets first divide time up 

into a series of intervals within each of which a customer can either arrive (success) or 
not (failure). As a starting point, let us assume that at most one customer can arrive in 
any 30 second interval. We make this assumption because a Bernoulli trial can only have 
two outcomes. If we wish to be able to count the number of customers, we must make 
these two possible outcomes that either 1 customer arrives (success) or 0 customers arrive 
(failure). If our 'trials' are 30 seconds in duration, then we have 120 trials per hour and 
the probability of a 'success' in each trial is the rate per hour divided by the number of 
trials per hour: p — 60/120 — 0.5. In our ten minute interval, we have n — 600/30 — 20 
trials, so the probability we are looking for is 

2 0 \ ,„ -^lO/n r^20-lo P [10 customers in 10 minutes] - ( . „ 1 (0.5)i"(0.5)^"-i" ^ 0.176 

Of course, we know that two or more customers could easily arrive within 30 seconds 
(the bank would approve of this). An improved solution is obtained by using a shorter 
'trial' interval. If 10-second intervals were to be used then the probability of arrival of a 
customer in any interval becomes p — 60/360 — | and the number of trials in 10 minutes 
(600 seconds) becomes n — 600/10 — 60 

P [10 customers in 10 minutes] ~ (-,p ) ( |)^°(|)^° ^ 0.137 

In general, if time interval t is divided into n intervals then p — — and 

where Xt is the mean number of arrivals occurring in the time t. Now if arrivals pass 
through the bank's door 'instantaneously' and can arrive at any instant in time then 

n\ I Xt\ / Xt\ 
p[^*-fc]-ji-g(-j [^--) 
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lim 
n—>oc 

n n — 1 
n n 

n — k + ^}^(- 1 - Xt 

but since 

lim < 
72—^OC I 

n n — 1 n — k • 

n n n - } 
lim ( 1 

n->oc \ n 

lim ( 1 
n->oc \ n 

-At 

then our distribution simplifies to 

P [ ^ ' - ^ ] - ^ ^ " \t 

which is the Poisson distribution. In other words, the Poisson distribution is a limiting 
case of the Binomial distribution, obtained when the number of 'trials' goes to infinity, 
one for each instant in time, and p is replaced by the mean rate A. 

For our problem A — 1 arrival/minute and i — 10 minutes so that, using the Poisson 
distribution 

(10)10 
P [TVio - 10] - -10 

10! 
^0.125. 

and we see that the binomial model using 10-second trial intervals gives a reasonably 
close result (with a relative error of less than 10%). We should also note that the Poisson 
model, in this case, is perhaps a bit too 'precise' since it is unlikely that any of us can 
pass through a door instantaneously, try as we might. Thus, the true probability will 
likely lie somewhere between 0.125 and 0.137. 

6 Common Continuous Probability Distributions 
Many naturally occurring, and continuous, random phenomena can be well modeled by 
a relatively small number of distributions. The following six continuous distributions are 
particularly common in engineering applications; 

1) Exponential 
2) Gamma 
3) Uniform 
4) Weibull 
5) Rayleigh 
6) Normal 
7) Lognormal 

As mentioned in the previous section, the Exponential and Gamma distributions are 
members of the Bernoulli family, deriving from the idea that each instant in time con
stitutes an independent Bernoulli trial. These are the continuous time analogs of the 
Geometric and Negative Binomial distributions. 
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Aside from the above list, there are certainly other continuous distributions which 
may be considered. Distributions which involve more than two parameters are generally 
difficult to justify because we rarely have enough data to estimate even two parameters 
with much accuracy. From a practical point of view what this means is that even if a 
geotechnical researcher has large volumes of data at a particular site, and can accurately 
estimate, for example, a modified six parameter Beta distribution, it is unlikely that 
anyone else will be able to do so at other sites. Thus, complex distributions, such as a 
six parameter Beta distribution, are of questionable at any site other than the site at 
which it was estimated. 

As with the common discrete distributions, this section looks briefly at the main 
characteristics of each of these continous distributions and describes how they are most 
commonly used in practice. For a more complete description of these distributions, the 
interested reader should consult an introductory textbook on probability and statistics, 
such as Law and Kelton (2000) or Devore (2003). 

6.1 Exponential Distribution 

The exponential distribution is yet another distribution derived from the Bernoulli family 
- it is the continuous analog of the geometric distribution. Recall that the geometric 
distribution governs the number of trials until the first 'success' (or to the next success). 
If we imagine that each instant in time is now an independent trial, then the time until 
the first success is given by the exponential distribution (the mathematics associated with 
this transition from the geometric distribution involving 'discrete' trials to a 'continuous' 
sequence of trials is similar to that shown above for the transition from the binomial to 
the Poisson distribution and will not be repeated here). 

As with the geometric distribution, the exponential distribution is often used to de
scribe 'time-to-failure' type problems. It also governs the time between 'arrivals' of a 
Poisson process. If Ti is the time to the occurrence (or failure) in question and Ti is 
exponentially distributed, then its probability density function is 

/ x , ( t ) - A e - ^ * t>0 (53) 

where A is the mean rate of occurrence (or failure). Its cumulative distribution function 
is 

F-r, (t) ^ P [Ti < t] - 1 - g-^* t > 0 (54) 

Properties: 

E [Ti] - J (55a) 

V a r [ T i ] - ^ (55&) 

That is, the mean and standard deviation of an exponentially distributed random variable 
are equal. 
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Figure 10. Exponential distribution for A — 1. 
Memoryless Property: 
We will illustrate this property with an example: Let Ti denote the time between arrivals 
of a customer at a bank. Assume that Ti has an exponential distribution with a mean 
of 4 minutes. Thus, Ti has mean 'arrival' rate of A — 1/4 — 0.25 per minute. The 
probability that a customer arrives within the next 30 seconds is 

P [Ti < 30 sec] - P [Ti < 0.5 min] = 1 - g-o-^xo-ss ^ 0.1175 

Now, suppose that the bank is empty at 11:00 am and 8 minutes pass without a customer 
arriving. What is the probability that a customer will arrive in the next 30 seconds? 
Because 8 minutes have gone by without an arrival, you might feel that an arrival is 
overdue and therefore more likely. That is, that the probability of an arrival in the next 
30 seconds should be greater than 0.1175. However, for the exponential distribution, this 
is not the case, which is one of the features of the exponential distribution - the past is 
ignored. Each instant in time constitutes a trial which is independent of all other trials. 
In fact, 

P [Ti < 8.5 I Ti > 8] - p [r^ ^ g] e-8xo.25 ^ O-^^S 

Thus, after 8 minutes without an arrival, the probability of an arrival in the next 30 
seconds is the same as the probability of an arrival in any 30 second interval. We found 
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this same property existed in the Poisson process - indeed the times between arrivals in 
the Poisson process are exponentially distributed. 

More generally, if Ti is exponentially distributed with mean rate A then 

P [Ti > / + s I Ti > i] 
P [Ti > t + s n Ti > i] _ P [Ti > i + s] o-A(i+s) 

P [Ti >t] P [Ti > t] e-^< 

- P [Ti > s] (56) 

g-As 

Link to Poisson: 
It was mentioned above that the exponential distribution governs the time between the 
occurrences of a Poisson process. This can be clearly seen through the following argu
ment. 

Let Nt be a Poisson distributed random variable with mean arrival rate A. We wish 
to know the distribution of the time until the first 'arrival'. Let Ti be the time to the 
first arrival. Then, 

P [Ti > t] - P [Nt - 0] - ^ e ^ ' - e-^\ 

and so. 
P[T,<t\=F^,{t) = l-e-'''. 

But 1—e~̂ * is the cumulative distribution for the exponential probability density function 
Aê "̂ *. Consequently, Ti must follow an exponential distribution with mean rate A, ie. 
the time to the first occurrence in a Poisson process follows an exponential distribution 
with parameter A which is equal to the Poisson rate A. The same holds for the time 
between any occurrences of a Poisson process. 

The link between all of Bernoulli Family distributions (binomial, geometric, negative 
binomial, Poisson, exponential, and Gamma) goes back to the idea of Bernoulli trials, 
where each trial is assumed to be independent. In the case of the Poisson, exponential, 
and Gamma (next subsection) distributions we are dealing with an infinite number of 
independent trials, one at each instant in time. The independence between trials means 
that it doesn't matter when we start looking - even if no one has arrived at our bank 
for 3 hours, the probability governing the time of the next arrival remains indifferent to 
the past. This makes sense if we assume that people go about their business entirely 
independently - that is, people don't (normally) plan their arrival at the bank around 
the banking plans of everyone else in the city. 

6.2 Gamma Distribution 
We consider here a particular form of the Gamma distribution, which is the continuous 
time analog of the negative binomial distribution. Specifically, if Tf. is defined as the sum 
of k independent exponentially distributed random variables, E^, each with parameter 
A, that is Tjt — Ei + E^ + •••Ei-, then Ti- has the following Gamma probability density 
function 

/ x . W - ^ ^ ^ ^ e - ^ ' t>0 (57) 
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This form of the Gamma distribution is also refered to as the k-Erlang distribution. Note 
that k = 1 gives the exponential distribution, as expected. (The above distribution can be 
generalized to non-integer fc if (fc — 1)! is replaced by V{k). which is the Gamma function 
- see Law and Kelton. 2000, for more information on the general Gamma distribution.) 

To derive the cumulative distribution function, we integrate the above probability 
density function (by parts) to obtain, for integer k. 

{\ty F,,{t) ^ P [T < i] ^ 1 - e-^' Y. ^ (58) 

The Gamma distribution, as defined here for integer k, is a member of the Bernoulli 
Family. That is, it derives from an infinite sequence of Bernoulli trials, one at each 
instant in time, with mean rate of success A, and governs the time between every fe'th 
occurrence of a 'success' in a Poisson process. 

Figure 11. Gamma probability density function for A — 1 and fe — 3 

Properties: 

k 
E [ T , ] - - (-feE[Ei]) (59a) 

Var [Y] = ^ (= kVav [Ei]j (59&) 
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The Gamma distribution presented above is speciahzed to the sum of k independent and 
identically exponentially distributed random variables. It can be extended to other types 
of problems, so long as k is (at least approximately) a positive integer. 

Although the Gamma distribution is not limited to integer values of k, the interpre
tation of the Gamma PDF as the distribution of a sum of independent, identically, and 
exponentially distributed random variables is lost if k is not an integer. The more general 
Gamma distribution has the form 

/x(:^)-^^^|Pe-^^ ^>0 (60) 

which is valid for any k > 0 and A > 0. The Gamma Function, T{k), for fe > 0, is defined 
by the integral 

/•OC 

T{k)= / x''-'^e-''dx (61) 

Tabulations of the Gamma Function can be found in Abramowitz and Stegun (1970), for 
example. However, when k is an integer, T{k) — {k — 1)!. 

6.3 Uniform Distribution 

The continuous uniform distribution is the simplest of all continuous distribution since 
its density function is constant (over a range). Its general definition is 

f{x) = — ^ a<x</3 
p — a 

and its cumulative distribution is 

F{x) =P[X <x] = 1 ^ ^ a < X < /3 (62) 
p — a 

The uniform distribution is useful in representing random variables which have known 
upper and lower bounds and which have equal likelihood of occurring anywhere between 
these bounds. Another way of looking at the uniform distribution is that it is non-
informative or non-presumptive. That is, if you know nothing else about the relative 
likelihood of a random variable, aside from its upper and lower bounds, then the uniform 
distribution is appropriate - it makes no assumptions regarding preferential likelihood of 
the random variable since all possible values are equilikely. 
Properties: 

E [^] - / # ^ - ^ ^ (this is the midpoint) (63a) 
Ja P - a 2 

Var 
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Figure 12. Uniform distribution for a — 3 and /3 — 7. 

6.4 WeibuU Distribution 

Often, engineers are concerned with the strength properties of materials and the lifetimes 
of manufactured devices. The Weibull distribution has become very popular in describing 
these types of problems. One of the attractive features of the Weibull distribution is that 
its cumulative distribution function is quite simple. 

If a continuous random variable X has a Weibull distribution, then it has probability 
density function 

X 

having parameters A > 0 and /3 > 0. The Weibull has a particularly simple cumulative 
distribution function 

fix) ^ '-{Xxfe-^^''^'', for X > 0 (64) 

F{x) ^ 1 - e-(^^)^ if a: > 0 (65) 

Note that the exponential distribution is a special case of the Weibull distribution (simply 
set 13 — 1). While the exponential distribution has constant, memoryless, failure rate, 
the Weibull allows for a failure rate that decreases with time (/3 < 1) or a failure rate 
that increases with time (/3 > 1). This gives increased flexibility for modeling lifetimes 
of systems that improve with time (e.g. a good red wine might have /3 < 1) or degrade 
with time (e.g. reinforced concrete bridge decks subjected to salt might have j3 > 1). 
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Figure 13. The Weibull distribution. 
The mean and variance of a Weibull distributed random variable are 

^-i]-G 1 K^)] 
(66a) 

(66&) 

where T is the Gamma function, which is commonly tabulated in math tables. 

6.5 Rayleigh Distribution 
The Rayleigh distribution is a non-negative distribution which finds application in the 
simulation of normally distributed random processes. In particular, consider the two 
orthogonal components, TI and T2, of the vector T in two-dimensional space. If the two 
components are independent and identically normally distributed random variables with 
zero means and common variance s^, then the vector length, |T| — \/T\ + TJ , will be 
Rayleigh distributed with probability density function 

/ ( ^ ) - ^ e x p {-IJ}^ a; > 0 

and cumulative distribution function 

if x > 0 

(67) 

(68) 
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which is actually a special case of the Weibull distribution (/3 — 2 and A — -^ ] 
The mean and variance of a Rayleigh distributed random variable are 

6.6 Normal Distribution 

The normal distribution is probably the single most important distribution in use today. 

This is largely because sums of random variables tend to a normal distribution, as was 

proven by the central limit theorem - a theorem to be discussed shortly. Many natural 

'additive' type phenomena, or phenomena involving many accumulating factors, therefore 

tend to have a normal distribution. For example, the cohesive strength of a soil is 

due to the sum of a very large number of electro-chemical interactions taking place at 

the molecular level - thus, the normal distribution has been widely used to represent 

the distribution of cohesion (its main competitor as a representative distribution is the 

lognormal distribution, discussed next). 

A random variable X follows a normal (or Gaussian) distribution if its probability 

density function has the form 

fix) — — ^ e 2I a J on —cc < X < cc. (69) 

The notation X ~ N{fj.,a^) will be used to mean that X follows a normal distribution 

with mean fi and variance CT^. 

Properties: 

1) the distribution is symmetric about the mean fi (which means that fi is also equal 

to the median), 

2) the maximum point, or mode, of the distribution occurs at fi, 

3) the inflection points of f{x) occur at x — fi^iza. 

Characteristics: 

E [X] - /. 

Var [X] ^ o^ 
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Figure 14. Normal distribution with fi — 5 and a — 2. 

The Standard Normal 

Unfortunately, no closed form solution exists for the integral of the normal probability 

density function. Probabilities associated with the normal distribution must be obtained 

by numerical integration. Traditionally, this has meant that normal probabilities have 

had to be obtained by consulting tables presented in manuals and textbooks. Of course, 

no book is big enough to contain the complete set of tables necessary for all possible 

values of fi and a, so some way of encapsulating the tables is necessary. As it turns 

out, if the random variable X is transformed by subtracting its mean and dividing by its 

standard deviation, 

Z = ^ ^ (70) 
a 

then the resulting random variable, Z, has mean zero and unit variance. If a probability 

table is developed for Z. which is called the standard normal variate. then probabilities for 

all other normally distributed random variables can be obtained by performing the above 

normalizing transformation. That is, probabilities for any normally distributed random 

variable can be obtained by performing the above transformation and then consulting 

the single standard normal probability table. 
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Figure 15. The standard normal distribution. 

The distribution of the standard normal, Z. is given the special symbol (^{z) 
f{z), because of its importance in probability modeling and is defined by 

1 
2TT 

on -OC < JZ < OC. 

rather than 

(71) 

The cumulative distribution function of the standard normal also has a special symbol, 
^{z), rather than F{z), again because of its importance. Tables of ^{z) are commonly 
included in textbooks. Computing probabilities for any normally distributed random 
variables proceeds by standardization, that is by subtracting the mean and dividing by 
the standard deviation on both sides of the inequality in the following; 

= $ 

X — jJL X — jJL 

z < 

a a 
X- ^i\ 

o 

X — jl 

$ (2 ) (72) 

At which point, a standard normal table of probabilities can be consulted, with z 
{x — n)/cj, to obtain the desired probability. 
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6.6.1 The Central Limit Theorem par 

„ are independent random variables having arbitrary distributions, then 
the random variable 

y - Xi + Xa + • • • + X„ (73) 

has a normal distribution as n ^ oc if all the X's have about the same mean and variance 
(ie. none is dominant). See Papoulis (1991) for a proof of this theorem. In addition, if 
the X's are all normally distributed then Y is normally distributed for any n. 

Specifically we will find the following result useful. If 

1 " 

n -̂ —^ n 
7=1 

where Xi,X2;. •••,X^ are independent samples taken from population X having mean fi 
and variance a-^ (any distribution), then 

lim P 
n—>oc 

< X 
(j/\/n 

^{x) (74) 

Implications: 
1) the sum of normal variates is normal (for any n) as mentioned above. 
2) if the distributions of the X's are well-behaved (almost normal), then n> 4 gives a 

good approximation to the normal distribution, 
3) if the distributions of the X's are uniform (or almost so), then n > 6 yields a 

reasonably good approximation to the normal distribution (out to at least about 3 
standard deviations from the mean), 

4) for poorly-behaved distributions, you may need n > 100 before the distribution 
begins to look reasonably normal. This happens, for example, with distributions 
whose tails fall off very slowly. 

Thus for n sufficiently large and Xi, X g , . . . , X^ independent and identically dis
tributed (iid), then 

Y^Xi+X2 + --- + X„ 

is approximately normally distributed with 

liy ^E [Y] - nE [Xi] (75a) 

a'i ^ Var [Y] ^ nVar [Xi] (75&) 

If the X's are not identically distributed, but are still independent, then 

n 

f,^^J2^[Xi] (76a) 
i=l 

n 

4^5]Var[Xi] (76&) 
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6.6.2 Mul t ivar ia te N o r m a l D i s t r i b u t i o n par 

The normal distribution is also popular as a distribution governing multiple random 
variables because it is simply defined knowing only the mean and variance of each random 
variable and the covariances acting between them. Consider two random variables, X 
and Y: these follow a bivariate normal distribution if their joint distribution has the form 

fxY(x..y) = exp 2 w . a v v / r ^ p ^ n 2 ( l - p 2 
- 1 X- n^ 

•2p 
X- n^ y - IJ-y y- tiy-

(77) 
for — oc < x.y < oc, where p is the correlation coefficient between X and Y and fix-, l^y, 
and Ox; OY are the means and s tandard deviations of X and Y. respectively. Figures 4 
and 5 illustrate the bivariate normal distribution. 

If X and Y follow a bivariate normal distribution, then their marginal probability 
density functions, defined as 

/

oc 
fxy{x,y)dy 

-oc 
/ o c 

fxv{,x,y)dx 
-oc 

(78a) 

(78&) 

are also normal distributions. For example, the marginal distribution of X is a normal 
distribution with mean fix and s tandard deviation Ox-, and similarly for the marginal 
distribution of Y. Tha t is. 

Ox\/^ 

1 

exp 
\ (x- fix 

'2 

^W^'''n-2 
1 fy-i^y 

(79a) 

(79&) 

Recall tha t the conditional probability of A given B is 

P[A n B] 
V[A\B]^ 

F[B] 

From this, we get the following result for conditional distributions 

fxY^x.y) 
fx Y{x\y) -

lAy) 
(80) 

In particular, if X and Y follow a bivariate normal distribution, then it can be shown 
tha t 

^"^"l̂ ^%.0-pV2vr^^H4 
X - jlx - P{y - llY)Oxl(^y 

(^x \ / l - P^ 
(81) 
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It can be seen from this that the conditional distribution of X for a given Y — y also 
follows a normal distribution with mean and standard deviation 

f^X Y 

Ox Y 

fJ-X + p{y - HY)0 X I Oy 

Ox V ^ 

(82a) 

(82&) 

To extend the multivariate normal distribution to more than two random variables, 
it is useful to use vector-matrix notation. Define 

/^2 

t^-\ 

to be the vector of mean of the sequence of n random variables, X — {X^.X^., 
and 

C i i Ci2 • • • Cin 

C21 C22 • • • C2n 

C 

(83) 

•.X„} 

O j j l Wj n2 C-n 

(84) 

to be the matrix of covariances between Xi and Xj. i — 1.2.....n and j = 1. 2. 
Each element of the covariance matrix is defined as 

Cij = Cov[Xi,Xj] ^ PijOiOj iii^ j 

^Yai [Xi]^a^ iii^j 

Note that if the X^'s are uncorrelated. then the covariance matrix is diagonal 

0 • • 

c = 

o\ 

0 0% 

0 

0 

0 0 • • • ol 

Using these definitions, the joint normal distribution oi X = \X\,Xi, ,X„} is 

h{x) 
1 

{1•KYI^^^J\C\ 
exp { —i(g; —/ i )^^ ^{x — p)\ (85) 
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where \C\ is the determinant of C and superscript T means the transpose. 
As in the bivariate case, all marginal distributions are also normally distributed; 

Jxj \Xi 
1 

^:7i^^^p -2 
1 (Xi- II, 

Oi 
(86) 

The conditional distributions may be obtained by partitioning the vector X into two 
parts (Vanmarcke, 1984): X^ and X;, of size Ua and ni. where ria+rib = n, that is 

X i 

X=< 
Xfla-

l Xn 

Xa 

X, 
(87) 

having mean vectors 

/ ^ „ - < ^ 

/^i 

} : /^. - <̂  

/^rio+l 

(88) 

Using this partition, the covariance matrix can be split up into four submatrices; 

C Qaa Qab 

Qba Qbb 
(89) 

where Cfta = C7a6- Using these partitions, the conditional mean of the vector X^ given 
the vector X^ can be obtained from 

lia b^f^a + Q^bQbbi^b-t^t) 

Similarly, the conditional covariance matrix is 

~ a 6 — Waa ~ ^ab^bb kab 

With these results, the conditional distribution oi X^ given Xj, is 

1 

(90) 

(91) 

Jx x^y-Sa I 3}b) 
(27 r ) "» /2^ C 

= exp{-l(^,-/.^ ,fC-\{x,-f^^ )̂} (92) 
a b\ 
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6.7 Lognormal Distribution 

From the point of view of modeling material properties and loads in engineering, which are 
generally non-negative, the normal distribution suffers from the disadvantage of allowing 
negative values. For example, if a soil's elastic modulus were to be modeled using a 
normal distribution, then there would be a non-zero probability of obtaining a negative 
elastic modulus. Since a negative elastic modulus does not occur in practice, the normal 
cannot be its true distribution. 

As an approximation, the normal is nevertheless often used to represent material 
properties. The error incurred may be slight when the coefficient of variation, v. is small. 
For example, if n < 0.3, then P [X < 0] < 0.0004, which may be fine unless it is at 
these extremes that failure is initiated. A simple way to avoid such problems is to fit a 
non-negative distribution to the population in question, and one such candidate is the 
lognormal distribution. The lognormal distribution arises from the normal distribution 
through a simple, albeit non-linear, transformation. In particular, if G is a normally 
distributed random variable, having range —oc < g < +oc, then X — exp{G} will 
have range 0 < x < ex;. We say that the resulting random variable, X, is lognormally 
distributed - note that its natural logarithm is normally distributed. 

Figure 16. Two lognormal distributions illustrating the effect of changing 
variance. 
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The random variable X is lognormally distributed if ln(X) is normally distributed. If 
this is true, then X has probability density function 

/ ( ^ ) -
1 

Xa\n: 

f _ 1 /lna:-/xin_ 
0 < a:; < ex: (93) 

Note that this distribution is strictly non-negative and so is popular as a distribution 
of non-negative engineering properties, such as cohesion, elastic modulus, the tangent of 
the friction angle, and so on. (Aside, I suppose that it is possible to have a negative 
cohesion, but the authors have never heard of a soil possessing this property.) The two 
parameters of the distribution 

fiinx - E p n X ] 

al,=Vav[lnX] 

are the mean and variance of the underlying normally distributed random variable, \nX. 
Computing Probabilities 
In order to compute probabilities from the lognormal distribution, we must make use of 
the fact that In(A') is normally distributed so that we can use the standard normal table. 
That is, in a probability expression, we take logarithms on both sides of the inequality, 
then standardize by subtracting the mean and dividing by the standard deviation of In X, 

P[X<a]^F []n{X) < ln(a)] - P 

In (a) - / i ]„ 

\n{X) - /ill, X ln(Q) • y ^ l n : 

Z < 
(7]n: 

$ 

0"ln X 0"ln J 

ln(Q) - ll]„, 
(94) 

where, as before, Z is the standard normal random variate. 
Mean and Variance 
The mean and variance of X are obtained by transforming the two parameters of the 
lognormal distribution. 

fi^ =E[X] ^ e « " ^ + 5'̂ 'nx 

al^Yar[X]^f^i{e'^?^--l) 

(95a) 

(95&) 

Alternatively, if you are given fix and a'^, you can obtain the parameters fi}„ x and af^ , 
as follows: 

In 1 f^ ta j 

fJ-inx =MfJ'x) - -^o'L_ 

(96a) 

(96&) 
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Characteristics and Moments 

mode^e" ' "^- ' " ' "^ (97a) 

median ^ e " ' " ^ (97&) 

mean ^ e'"" * + s "̂ S. x (g7c) 

Note that the mode < median < mean, and thus the lognormal distribution has positive 
skew. A distribution is skewed if one of its tails is longer than the other, and, by tradition, 
the sign of the skew indicates the direction of the longer tail. 

Figure 17. Location of mode, median, and mean in a lognormal distribu
tion for jjix — 10 and Ox — 5. 

Figure 17 illustrates the relative locations of the mode, median, and mean for the non-
symmetric lognormal distribution. Because of the positive skewed, or 'skewed right', 
shape of the distribution, with the long distribution tail to the right, realizations from 
the lognormal distribution will have very large values every now and then. This results 
in the mean being drawn to the right (for example, the arithmetic average is affected 
by very large values in the sum). Often, for the lognormal distribution, the median 
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is actually viewed as the primary characteristic of the distribution, since it divides the 
distribution into equal halves. 

It is worth digressing slightly at this point and consider the median of a lognormal dis
tribution in a bit more detail, especially with respect to its estimation. Suppose that we 
have taken several observations, of a lognormally distributed random vari
able, X. An estimate of the mean of In(A') is just the average of ln(a:i),ln(a:;2),... ,ln(a;„), 

J E!"(:.,) (98) 
2 = 1 

where the 'hat' denotes that this is an estimate of ji^nx- From this, an estimate of the 
median, x. is 

x = eyiY){(i\nx}=eyipl-^S^\n{xi)\ (99) jigM.,)} 
Alternatively, the geometric average, Xg. of a sequence of non-negative numbers is 

defined as the n'th root of the product of the n observations. 

Xg = {XiX2---X„)^''" 

- exp | l n na;ia:;2 • • • x„)^'^"J j 

exp <̂  - > ln(a^,) ^ (100) 

which is identical to the equation for x. so we see that the geometric average is an 
estimate of the median of a lognormally distributed random variable. This also means 
that the median of a lognormal distribution is preserved under geometric averaging. 
Multiplicative Property 
li X = YiY^-'-Yji and each Yi are (positive) independent random variables of any 
distribution having about the same 'weight', then 

InX ^ I n Y i + l n y 2 + - - - + l n y „ (101) 

and by the central limit theorem In X tends to a normal distribution with 

fJ^\nx ~ fJ-luYi + fJ-lny-z + ^ WnY„ (102a 
2 

1 r i "I" ^lnY2 < x^<Yr+ < . . + • • • + < r „ (102&) 

Thus X tends to a lognormal distribution with parameters /i]n x and O]^ ^. This is a useful 
property since it can be used to approximate the distribution of many multiplicative 
functions. 

In particular, if X is any multiplicative function, say 

AB 
X = -— ^ \x\X = \nA + \nB-\nC (103) 
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and A, B. and C are independent and lognormally distributed, then X is also lognormally 
distributed with 

/^In X ^ /^In A ' /^In B /^In c 

2 2 2 2 
0"ln JC — 0"ln ^ + f^ln B + 0"ln c 

Recall that for variances, the coefficient of —1 appearing before the last term in Eq. 103 
is squared, so that, in the case of independence, the variance of a sum is literally the sum 
of the variances. (If A. B. and C were correlated, then the covariance terms which would 
have to be added in to find o"^^^ would have sign dependendent on the signs appearing 
in the original sum.) 

Consider again the geometric average, this time for random observations (i.e.. before 
we have observed them), 

X, = (X1X2 • • • X^f'^ = Xl'^ X Xl'" X • • • X X V " 

which is a product of n random variables. By the central limit theorem, Xg will tend to 
a lognormal distribution so that 

1 " 
ln(X,) - l n ( ( X i X 2 - - - X „ ) i / " ) - - $ ] l n ( X , 

n . 

is normally distributed. As mentioned above, Xg is an estimate of the median of X. if 
X is lognormally distributed. However, even if X is not lognormally distributed, Xg. 
will tend to have a lognormal distribution, by the central limit theorem, if the Xi's are 
non-negative. This suggests that in a variety of cases, the lognormal distribution is a 
natural distribution for soil properties according to the central limit theorem. 

6.7.1 Bivariate Lognormal Distribution par 

Generally, the multivariate lognormal distribution is handled by directly considering the 
underlying multivariate normal distribution. That is, rather than considering the joint 
distribution between the lognormally distributed variated Xi. X^., •••• we consider the 
joint distribution between In Xi , In Xg, . . . , since these are all normally distributed and 
the results presented in the previous section can be used. However, we sometimes need to 
consider the lognormally distributed variates directly. Here we will present some results 
for two lognormally distributed random variables, X\ and X^. 

If Xi and X2 are jointly lognormally distributed, then their bivariate distribution is 

-̂---(--'̂ ^ - 2.o,.Z..x.r.y'A-^^ [̂ f - 2p.„,2̂ ,̂ 2 + î] } , . > 0, .>0 
(104) 

where * i = (Inx - yuinxi/CTtaxi, *2 = (In^y -/iinj^J/ajiuf^, r"^ = l-Pi^ma, and p]ni2 is 
the correlation coefficient between InXi and \nX-2. 

In general, the parameters yuinxi; crinxi can be obtained using the transformation 
equations given in the previous subsection from the parameters yUjtj, Ox^- and so on. If 

file:///nX-2
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we happen to have an estimate for the correlation coefficient, pi2, acting between Xi and 
X-i, we can get pinia from 

- In(l + pi2«xi^xj , . 

v/ln(l+«|Jln(l n2 

where Hjt; = OxJlJ-xi is the coefficient of variation of Xi. We can also invert this 
relationship to obtain an expression for pi2, 

exp{pinl2CrinJCiCTlnJC2] — 1 /1nc^ 
Pl2 - , (iUbJ 

(exp{a2„^ J - l ) (expja^^^J - l ) 

7 Random Fields 
We turn our attention in this section to random fields, X{t). which consist of a sequence 
of continuous random variables at each point t. As an example of a one-dimensional 
random field, the following figure illustrates the tip resistance measured during a cone 
penetration test (CPT). 

Figure 18. Tip resistance, qdz), measured over depth 2 by a cone pen
etrometer 
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Aside from soil disturbance, measurement errors and problems with extracting engineer
ing properties from CPT data. Figure 18 presumably gives a reasonably good idea about 
the soil properties at the location at which the CPT was taken. However, what can be 
said about the soil properties 1 or 5 metres away? The data presented in Figure 18 
should be used to characterize the randomness (uncertainty) at locations which have not 
been sampled. But how do we characterize such a process? Some considerations involved 
in characterizing spatial variability are; 

1) variability at a point: pick a specific position, t*. At this point the process has 
a random value X{t*) — X* which is governed by a probability density function, 
fx'{x). If we picked another position, say t', then X{t') — X' would have another, 
possibly different PDF, fx'{x). That is, the PDF's could evolve with position. In 
practice, evolving PDF's become quite difficult to estimate for anything beyond a 
simple trend in the mean or variance. An example where the point, or marginal, dis
tribution evolves with time is earthquake ground motion where the motion variance 
increases drastically during the strong motion portion of the record. 

2) spatial dependence: Consider again two positions, t* and t' separated by distance 
T — t' —t*. Presumably, the two random variables, X{t') and X{t*) will exhibit 
some dependence on each other. For example, if X is cohesion, then we would 
expect X{t') and X{t*) to be quite similar (highly dependent) when T is small 
(e.g. a few centimetres) and possibly quite dissimilar when T is large (e.g. tens 
or hundreds of metres). If X{t*) and X{t') are independent for any two positions 
with separation T = t' — t* 7̂  0, then the process would be infinitely rough - points 
separated by vanishingly small lags could have quite different values. This is not 
physically realistic for most natural phenomena. Thus, X{t*) and X{t') generally 
have some sort of dependence, that often decreases with separation distance. This 
interdependence results in a smoothing of the random process. That is, for small T, 
nearby states oiX are preferential - the random field is constrained by its neighbors. 
We characterize the interdependence with the joint distribution fx-x'{x*.x'). If we 
extend this idea to the consideration of any three, or four, or five, .... points then 
the complete probabilistic description of a random process is the infinite dimensional 
probability density function 

fx^x^.-ixi^xi.,...) 

Again, such a PDF is difficult to use in practice, not only mathematically, but also 
in that it is difficult to estimate from real data. 

To simplify the characterization problem, we introduce a number of assumptions which 
are commonly made; 

1) Gaussian process: the joint PDF is a multivariate normally distributed random pro
cess. Such a process is also commonly refered to as a Gaussian process after Gauss, 
the father of the normal distribution. The great advantage to the multivariate nor
mal distribution is that the complete distribution can be specified by just the mean 
vector and the covariance matrix. As we say earlier, the multivariate normal PDF 
has the form 

fx,x2...,xAxi,X2.,....,Xk) - T — ^ — — ^ e x p { - i ( a : - / i ) ^ g - ^ ( 2 : - / i ) } 
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where // is the vector of mean values, one for each X^, C is the covariance matrix 
between the X's, and \C\ is its determinant. Specifically, 

C - E [ ( X - / x ) ( X - / x f ] 

where the superscript T means the transpose. The covariance matrix, C, is a k x k 
symmetric, positive definite, matrix. For a continuous random field, the dimensions 
of fi and C are still infinite, since the random field is composed of an infinite number 
of X's, one for each point. However, we often quantify fi and C using continuous 
functions of space. For example, in a one-dimensional random field (or random 
process), the mean may vary linearly; 

li{t) — a + bt 

and the covariance matrix can be expressed in terms of the standard deviations, 
which may vary with t, and the correlation function, p, as in 

C{ti.,t2) ^ (7{tl)(7{t2)p{ti.,t2) 

which specifies the covariance between X{ti) and ^( ia)- It the random field is 
stationary, then fj.{t) — yu is constant. Again, such a PDF is difficult to use in 
practice, not only mathematically, but also to estimate from real data. 

2) stationarity or statistical homogeneity: the joint PDF is independent of spatial po
sition, that is it depends just on relative positions of the points. This assumption 
implies that the mean, covariance, and higher order moments are constant in time 
(or space) and thus that the marginal, or point, PDF is also constant in time (or 
space). So called weak stationarity or second order stationarity just implies that the 
mean and variance aie constant in space. 

3) isotropy: in two and higher dimensional random fields, isotropy implies that the 
joint PDF is invariant under rotation. This condition implies stationarity. Isotropy 
just means that the correlation between two points only depends on the distance 
between the two points, not on their orientation relative to one another. 

In this book, we will largely restrict ourselves to stationary Gaussian random fields, 
and to fields derived through simple transformations from Gaussian random fields (e.g. 
lognormally distributed random fields). Gaussian random fields are completely specified 
by their mean and covaiiance structure, ie. their first two moments. In practice, we are 
sometimes able to reasonably accurately estimate the mean, and sometimes a mean trend, 
of a soil property at a site. Estimating the variance and covariance requires considerably 
more data - we often need to resort to information provided by the literature in order 
to specify the variance and covariance structure. Because of this uncertainty in the 
basic parameters of even the covariance, there is often little point in adopting other joint 
distributions, which are more complicated and depend on higher moments, to govern 
the random fields representing soil properties, unless these distributions are suggested by 
mechanical or physical theory. 

Under the simplifying assumptions that the random field is Gaussian and stationary, 
we need to know three things in order to characterize the field; 
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1) the field mean, Hx-
2) the field variance, o\. 
3) how rapidly the field varies in space 

The last is characterized by the second moment of the field's joint distribution, which 
is captured equivalently by the covariance function, the spectral density function, or the 
variance function. These functions are discussed in the next few sections. 

8 The Covariance Function 
The second moment nature of a Gaussian random field can be expressed by the covariance 
function. 

Cit'.t) = Coy [Xit'),Xit*)] = E [(X(f') - /^x( t ' ) ) {Xit*)-,,xit*))] 

^E[Xit')Xit*)]- fixit')fiAt*) (107) 

where fix it) is the mean of X at the position t. Since the magnitude of the covariance 
depends on the size of the variance of X(t') and Xit*), it tells us little about the degree of 
linear dependence between Xit') and Xit*). A more meaningful measure, in this sense, 
is the correlation function, 

p(t'-n-^^,j!:fl. (108) 
axit')(Txit*) 

where OxH) is the standard deviation of X at the position t. As seen in Section 1.4.5, 
— 1 < pit',t*) < 1, and when pit',t*) = 0 we say that A'(f') and Xit*) are uncorrelated. 
When X is Gaussian, being uncorrelated also implies independence. If pit',t*) = ± 1 , 
then Xit') and Xit*) are perfectly linearly correlated, that is Xit') can be expressed in 
terms of A(i*) as 

Xit') ^a±bXit*) 
Furthermore, if X(i ') and Xit*) are perfectly correlated and the random field is station
ary, then Xit') — ±A(t*). The sign to use is the same as the sign of pit',t*). 

For stationary random fields, the mean and covariance are independent of position, 
so that 

Cit'.t*) - Cit' -t*) = C ( T ) - Gov [Xit),Xit + T)] - Gov [A(0), A ( T ) ] 

^E[XiO)XiT)]-pl (109) 

and the correlation function becomes 

C ( T ) _ C(r) 
P{r) C(0) 

Because Cit',t*) — Cit*,t'), we must have C ( T ) — C(—T), when the field is stationary, 
and similarly P(T) — p(—r). 

Another property of the covariance function is that it is positive definite. To illustrate 
this property consider a linear combination of n of the random variables in the process 
Xit), say Xi — Xiti) for any sequence of times, ti,t'2,... ,tn, 

n 

Y — a\Xi + aiXi H + anX^ — y j a^Xj 
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where ai . 02 , . . . , a„ are any set of coefRcients. The variance of a linear combination is 

n n 
Var [Y]^^Y^ QifljCov [Xi, Xj] 

i=i j = i 

Since Var [Y] is also defined as E [{Y — yUy)̂ ] it cannot be negative. This means that the 
covariances Jaetween the X's must satisfy the following inequality for any â  

y j y j aiGjCoM [Xi-Xj] > 0 (110) 
=1 j = i 

which is the statement of positive definiteness. In the case of a stationary process where 
Cov [Xj,Xj] = a\p{ti —tj)— a\pij. we see that the correlation function is also positive 
definite 

Y^^a-ia-iPij > 0 (111) 
=1 j = i 

since oj^ > 0. 
One of the points of Eq. 110 and 111 is that not just any covariance and correlation 

function can be used to characterize the second moment of a random field. In particular, 
the following properties of the covariance function must be satisfied; 

1) |Cov [Xj,Xj] I < axiCfxj, which ensures that —1 < pij < 1, 
2) Cov [Xj,Xj] - Cov [Xj,Xj], and 
3) E"=i E"=i aiajCov [Xj,Xj] > 0. 

If two covariance functions, Ci (Xj, Xj) 
then their sum C(Xj,Xj) ^ Ci(Xj,Xj) 
and be a valid covariance function. 

If the set of covariances Cov [Xj,Xj] is viewed as a matrix C — [Cjj], with elements 
Cjj — Cov[Xj,Xj], then one of the results of positive definiteness is that the square root 
of C will be real. The square root will be defined here as the lower triangular matrix, L, 
such that LL^ — C. where the superscript T denotes the matrix transpose. The lower 
triangular matrix L has the form 

and C2(Xj, Xj), each satisfy the above conditions, 
-C2(Xj, Xj) will also satisfy the above conditions 

in 

hi 

4 i 

0 

111 

h2 

0 • • 

0 • • 

4 3 • • 

• 0 

• 0 

• 0 

C j j l C; n2 tn3 

(112) 

We shall see how this matrix can be used to simulate a random field in Chapter 2. 
A positive definite covariance matrix can also be decomposed into a matrix of eigen

vectors Q and positive eigenvalues ^ such that 

C - Q'^^Q (113) 
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where 3* is a diagonal matrix whose elements are the eigenvalues, ^ i , ^2 ! - • •;ipn-, of the 
covariance matrix C. 

The eigenvectors composing each column of the matrix Q make up an orthonormal 
basis, which is a set of unit vectors which are mutually perpendicular. A property of 
orthonormal vectors is that Q — Q^ . If we premultiply and postmultiply Eq, 113 by 

Q and Q^. respectively, we get 

QCQ' * 

>h 
0 

0 

0 

tp2 

0 

0 • • 

0 • • 

1p3 • • 

• 0 

• 0 

• 0 

0 0 0 i'n 

(114) 

Now let us define the vector X = {Xi.X^... ..Xn\^ which contains the sequence of 
X{t) values discussed above, having covariance matrix C* — E \{X — iix){X — /ij^)^]. If 
we let 

Z^QX (115) 

be a sequence of random variables obtained by rotating the vector X by the orthonor
mal basis, Q. then Z is composed of uncorrelated random variables having variance 
^1,^2; ••-j^n- We can show this by computing the covariance matrix of Z. For this 
we will assume, without loss of generality and merely for simplicity, that E[A'(t)] = 0 
so that E [Z] — 0. (The end result for a non-zero mean is exactly the same, just more 
complicated - try it.) The covariance matrix of Z, in this case, is given by 

C^ - E [ZZ^] - E [{QX){QXf] - E [QXX^Q^] 

= QE [XX^] Q^ 

so that the matrix of eigenvectors, Q. can be viewed as a rotation matrix which transforms 
the set of correlated random variables Xi,X'2,.. -.Xn into a set of uncorrelated random 
variables Z = Zi, Z2 , . . . , Z„ having variance ^ 1 , ^2: • • •; ̂ n; respectively. 

8.1 Conditional Probabilities 
We are often interested in conditional probabilities of the form; given that X{t) has been 
observed to have some value x at time i. what is the probability distribution oiX{t + s)1 
If X{t) is a stationary Gaussian process, then the conditional distribution of X{i + s) 
given X{t) = x is also normally distributed with mean and variance 

E [X{t + s) I X{t) =x]=^l^ + {x- fi^)p{s) 

\ai[X{t + s)\X{t) ^x] ^al{l-p^{s)) 

(116a) 

(1166) 
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where p{s) is the correlation coefficient between X{t + s) and X{t). 

9 The Spectral Density Function 
We now turn our attention to an equivalent 2nd-moment description of a stationary 
random process, namely its spectral representation. We say 'equivalent' because the 
spectral representation, in the form of a spectral density function, contains the same 
information as the covariance function, just expressed in a different way. As we shall see, 
the spectral density function can be obtained from the covariance function and vice-versa. 
The two forms are merely transforms of one another. 

Priestley (f98f) shows that if X{t) is a stationary random process, with P(T) contin
uous at T — 0, then it can be expressed as a sum of sinusoids with mutually independent 
random amplitudes and phase angles, 

N 

X{t)=n^+ Y, CkCos{LOkt + ^k) (117) 
k=-N 

N 
k=-N 

N 

k=-N 

where fix is the process mean, C/. is a random amplitude, and ̂ /t is a random phase 
angle. The equivalent form involving A/, and B/. is obtained by setting A/, — C/. cos{^i.) 
and Bk — —Ck sm{^k)- H the random amplitudes Ak and Bk are normally distributed 
with zero means, then X{t) will also be normally distributed with mean fix- For this 
to be true, Ck must be Raleigh distributed and ̂ k must be uniformly distributed on 
the interval [0, 27r]. Note that X{t) will tend to a normal distribution anyhow, by virtue 
of the central limit theorem, for wide-band processes, so we will assume that X{t) is 
normally distributed. 

Consider the fe*'' component of X{t), and ignore fix for the time being, 

Xk{t)^CkCos{uJkt + <i>k) (118) 

If Ck is independent oi ̂ k, then Xi.{t) has mean 

E [Xk{t)] = E [Ck cos(aj^f + $^)] = E [Ck] E [cos(wftt + $^)] = 0 

due to independence and the fact that for any t, E[cos{u}kt + ^k)] ~ 0 since ^k is 
uniformly distributed on [0,27r]. The variance oi Xk{t) is thus 

Var [X,{t)] ^ E [Xl{t)] ^ E [C^] E [cos=(a;,i + $,)] - ^E [C|] (119) 

Note that E [cos'^{u}kt + ^k)] — 1; which again uses the fact that $jt is uniformly dis
tributed between 0 and 2- .̂ 

Priestley also shows that the component sinusoids are independent of one another, 
that is that Xi.{t) is independent oi Xj{t), for all k j^ j . Using this property, we can put 
the components back together to find the mean and variance of X{t), 

N 

E[X{t)]^fix+ Y. ^[Xk{t)]^fix (120a) 
k=-N 
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N N 

\aT[X{t)]^ Y, Var[X,(i)]^ J ] iE [C^] (120&) 
k=-N k=-N 

In other words, the prescribed mean of X{t) is preserved by the spectral representation 
and the variance of the sum is the sum of the variances of each component frequency, 
since the component sinusoids are independent. The amount that each component fre
quency contributes to the overall variance of X{t) depends on the 'power' in the sinusoid 
amplitude, | E [Cf]. 

Now define the two-sided spectral density function, 5(w), such that 

S{cok)Aco - Var [Xk{t)] - E [Xfit]] - ^E [Cf] (121) 

then the variance of X{t) can be written as 

N 

Vsii[X{t)]^ ^ S{u}k)Au} (122) 
k--N 

In the limit as Aw -^ 0 and TV ^ oc, we get 

/

oo 

S{UJ)CILU (123) 

-oc 

which is to say, the variance of X{t) is just the area under the two-sided spectral density 
function. 

Figure 19. Two-sided spectral density function, 5(w). 

9.1 Wiener-Khinchine Relations 

We can use the spectral representation to express the covariance function, C ( T ) . Assum
ing that fix ~ 0 for the time being to simplify the algebra (this is not a restriction, the 
end results are the same even if fix 7̂  0); we have 

C ( T ) = Cov [X{0),X{T)] , (due to stationarity) 
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-E 5]X,(0)5]X,(r) 
k j 

k j 

= ^ E [Xk{0)Xk(T)] , (due to independence) 
k 

Now, since Xi.{0) — Ck cos(<i'/t) and Xkij) = Ck cos{u)kT + (^k) we get 

C{T) - 5 ] E [Cl] E [cos($,) cos(cd,T + $ , ) ] 

k 
^ I Z E [Cl] E [\{cOs{uOkT + 2^k) + COs(w;tT)]] 

A; 

- 5 ] i E [C^] cos(^,r) 
A; 

— y j 5(ajjt) cos(wjtT)Aoj 
A; 

which, in the limit as Am —> 0 gives 

/

oc 
5(w) COS(WT) dw (124) 

-oc 
Thus, the covariance function C ( T ) is the Fourier transform of the spectral density func
tion, S{uS). The inverse transform can be applied to find S{uS) in terms of C ( T ) , 

1 f^ 
S{oj) = TT- / C{T) COS(WT) dT (125) 

SO tha t knowing either C ( T ) or 5(0;) allows the other to be found (and hence these are 
'equivalent' in terms of information). Also, since C{T) — C{—T), ie. t ha t the covariance 
between one point and another is the same regardless of which point you consider first, 
and since cos(x) — cos(—a;), we see tha t 

S{u}) - 5 ( - w ) (126) 

In other words, the two-sided spectral density function is an even function (see Figure 
19). The fact tha t 5(w) is symmetric about u) — 0 means tha t we need only know the 
positive half in order to know the entire function. This motivates the introduction of the 
one-sided spectral density function, G(aj) defined as 

G{u}) ^ 2S{u}), w > 0 (127) 

The factor of two is included to preserve the total variance when only positive frequencies 
are considered. Now the Wiener-Khinchine relations become 

/•OO 

/ G( C{T) - / G{LO) cos(ajT) (ko (128a) 
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G{u)) = - j C{T) COS{U)T) dr (1286) 
Ti" J - o o 

2 r°° 
- - / C ( T ) cos(ajT) (IT (128C) 

Ti" Jo 

and the variance of A'(t) is the area under G'(w) (set T = 0 in Eq. 128a to see this), 

/•OO 

al ^ C(0) - / G(tj) dtj (129) 
Jo 

Figure 20. One-sided spectral density function. G{uj) — 2S{u)) correspond
ing to Figure 19. 

The spectral representation of a stationary Gaussian process is primarily used in 
situations where the frequency domain is an integral part of the problem being considered. 
For example, earthquake ground motions are often represented using the spectral density 
function because the motions are largely sinusoidal with frequency content dictated by 
resonance in the soil or rock through which the earthquake waves are traveling. In 
addition, the response of structures to earthquake motion is often performed using Fourier 
response 'modes', each having its own resonance frequency. Thus, if a structure has a 1 
Hz primary response mode (single mass-and-spring oscillation), then it is of interest to 
see what 'power' the input ground motion has at 1 Hz. This is given by G{uJk)Au} at 
ujk ~ 1 Hz. 

In addition, the spectral representation provides a means to simulate a stationary 
Gaussian process, namely to simulate independent realizations of Ck and $jt, for k — 
0 , 1 , . . . , iV, and then recombine using the spectral representation. We shall see more of 
this in Chapter 2. 

10 The Variance Function 
Virtually all engineering properties are actually properties of a local average of some 
sort. For example, the hydraulic conductivity of a soil is rarely measured at a point 
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since, at the point level, we are either in a void having infinite conductivity, or in a 
solid, having negligible conductivity. Just as we rarely model soils at the microscopic, 
or particle, level for use in designs at the macroscopic level, the hydraulic conductivity 
is generally estimated using a laboratory sample of some volume, supplying a water 
pressure, and measuring the quantity of water which passes through the sample in some 
time interval. The paths that the water takes to migrate through the sample are not 
considered individually, rather it is the sum of these paths that are measured. This is a 
'local average' over the laboratory sample. (As we shall see later there is more than one 
possible type of average to take, but for now we shall concentrate on the more common 
arithmetic average.) 

Similarly, when the compressive strength of a material is determined, a load is applied 
to a finite sized sample until failure occurs. Failure takes place when the shear/tensile 
resistance of a large number of bonds are broken - the failure load is then a function of 
the average bond strength throughout the failure region. 

Thus, it is of considerable engineering interest to investigate how averages of random 
fields behave. Consider the local average defined as 

1 ft+T/i 
X,{t) = - X{i)d^ (130) 

-̂  Jt-Tl1 

which is a 'moving' local average. That is, X^if) is the local average of X(f) over a 
window of width T centered at t. As this window is moved along in time, the local 
average X^ (t) changes more slowly. 

For example, consider the 'boat in the water' example: if the motion of a piece of 
sawdust on the surface of the ocean is tracked, it is seen to have considerable variability 
in its elevation. In fact, it will have as much variability as the waves themselves. Now, 
replace the sawdust with an ocean liner. The liner does not bounce around with every 
wave, but rather it 'averages' out the wave motion over the area of the liner. It's vertical 
variability is drastically reduced. 

In this example, it is also worth thinking about the spectral representation of the 
ocean waves. The piece of sawdust sees all of the waves, big and small, whereas the local 
averaging taking place over the ocean liner damps out the high frequency components 
leaving just the long wavelength components (wavelengths of the order of the size of the 
ship and longer). Thus, local averaging is a low-pass filter. If the ocean waves on the day 
that the sawdust and ocean liner are being observed are composed of just long wavelength 
swells, then the variability of the sawdust and liner will be the same. Conversely, if the 
ocean surface is just choppy without any swells, then the ocean liner may hardly move 
up and down at all. Both the sawdust and the ocean liner will have the same mean 
elevation in all cases. 
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Figure 21. Illustration of the effect of local averaging on variance. T is the 
moving window length over which the top plot is averaged to 
get the lower plot. 

The two main effects of local averaging are to reduce the variance and to damp the 
contribution from the high frequency components. The amount of variance reduction 
increases with increasing high-frequency content in the random field. An increased high-
frequency content corresponds to increasing independence in the random field, so that 
another way of putting this is that variance reduction increases when the random field 
consists of more 'independence'. This is illustrated in Figure 21. A random process is 
shown in the upper plot which is then averaged within a moving window of width T to 
obtain the lower plot. Notice that averaging both smooths the process and reduces its 
variance. 

Let us look in more detail at the moments of Xrit). Its mean is 

E[X^{t)]^E 
1 / -H - - ! /^ 

^ Jt-T/1 

1 rt+TI'2 

^ Ji-TII -Tjl 
- E [ X ] (131) 

for stationary Xif). That is. local averaging preserves the mean of the random field (the 
mean of an arithmetic average is just the mean of the process). Consider the variance, 

Var \X,{t)\ - E \{X,{t) - [i.^f] (132) 
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where, since ^XT ~ f^x-. 

->• Jt-T/2 

rt-\-T/i 

-T/2 TL 
SO that (due to stationarity, the bounds of the integral can be changed to any domain of 
length T without changing the expectation; we will use the domain [0, T] for simplicity), 

Yai[X.r{t)] - E fj [X{0-f^x]d^-^l [X{7])-fix]dr) 

JQ JQ 

= ^j j Px{^-n)didn 

= oll(T) (133) 

w here Cxij) is the covariance function of X{t). and Pxij) is the correlation function of 
X{t). such that Cxij) — o^pxij). In the final expression, 7(T) is the so-called variance 
function, which gives the amount that the variance is reduced when X{t) is averaged 
over the length T. The variance function has value 1.0 when T = Q. which is to say that 
X^it) — X{t) when T — 0 and so the variance is not at all reduced. As T increases, the 
variance function decreases towards zero. It has mathematical definition 

'y(T)^^l I Px{^-7l)d^d7] (134) 

The variance function can be seen, in Eq. (134), to be an average of the correlation 
coefficient between every pair of points on the interval [0,T]. If the correlation function 
falls off rapidly, so that the correlation between pairs of points becomes rapidly smaller 
with separation distance, then 7(T) will be small. On the other hand, if all points on the 
interval [0;T] are perfectly correlated, having P{T) — 1 for all T, then 7(T) will be 1.0. 
Such a field displays no variance reduction under local averaging. (In fact, if the field is 
stationary, all points will have the same random value, X{t) — X.) 

The integral, in Eq. 134, is over the square region [0, T] x [0, T] in (^, rj) space. Evi
dently, px{^ — 7]) is constant along diagonal lines where ^ — i] — constant. The length of 
the main diagonal, where ^ = rj, is \/2T, and the other diagonal lines decrease linearly 
in length to zero in the corners. The double integral can be collapsed to a single integral 
by integrating in a direction perpendicular to the diagonals; each diagonal differential 
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area has length \ /2(T— | T | ) , width d r /x /S , and 'height' equal to Px{^ — 'n) 
integral can therefore be written as follows 

Px{r). The 

7(T) ^ / / P{^-V)d4dri 
Jo Jo 

1 

ya 

fO . rT 
j ^ x / 2 ( T - I r i l M n ) - ^ + y ^ x / 2 ( T - |T2 | )P(T2; 

T\)Px{T)dT 

dT2 

72 
1 /-^ 

(135) 

Furthermore, since y3jc(T) = PX{—T). the integrand is even which results in the further 
simplification 

7(T) rp2 f {T-r)px{r)dr 
JQ 

(136) 

The variance function is another 'equivalent' second-moment description of a random 
field, since it can be obtained through knowledge of the correlation function, which in 
tu rn can be obtained from the spectral density function. The inverse relationship between 
7 ( r ) and P ( T ) is obtained by differentiation; 

Pir) 
2dT^^ 

Hr)] (137) 

The variance function can also be obtained from the spectral density function (Vanmar-
cke, 1984) 

^0 f^x 

sin(wT/2) 

LdT/2 
did (138) 

11 The Scale of Fluctuation 
A convenient measure of the variability of a random field is the scale of fluctuation, 0, 
also sometimes refered to as the correlation length. Loosely speaking 9 is the distance 
beyond which points are largely uncorrelated. Conversely, two points separated by a 
distance less than 9 will be significantly correlated. Mathematically, 6 is defined here as 
the area under the correlation function (Vanmarcke, 1984), 

/ 
6^ P{T) dT^2 P{T) dr 

/ 
(139) 

The correlation length is sometimes defined without the factor of two showing on the 
right-hand-side of Eq. 139 (see, for example, Journel and Huijbregts, 1978) 

Eq. 139 implies tha t if 6 is to be finite then P ( T ) must decrease sufficiently quickly to 
zero as T increases. Not all correlation functions will satisfy this criteria, and for such 
random processes, 6 — oc. An example of a process with infinite scale of fiuctuation is a 
fractal process. 
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In addition, the scale of fluctuation is really only meaningful for strictly non-negative 
correlation functions. Since — 1 < p < 1. one could conceivably have an oscillatory 
correlation function whose area is zero but which has significant correlations (positive or 
negative) over significant distances. An example of such a correlation function might be 
that governing wave heights in a body of water. 

The scale of fluctuation can also be defined in terms of the spectral density function, 

G(w) ^ / P(T) COS(WT) dr (140) 
TT J o 

since, when ui — 0. 

which means that 

2fT2 /•«= fj2 
G(0) = / P{T) dr = —6 (141) 

•^ Jo TT 

. ^ ^ (142) 

What this means is that if the spectral density function is finite at the origin, then 6 will 
also be finite. In practice G(0) is quite difficult to estimate, since it requires data over 
an infinite distance (w = 0 corresponds to an infinite wavelength). Thus, Eq. 142 is of 
limited value in estimating the scale of fluctuation from real data. 

The scale of fluctuation can also be deflned in terms of the variance function as a 
limit (Vanmarcke. 1984); 

9^ lim T7(T) (143) 
T->oc 

This implies that if the scale of fluctuation is finite, then the variance function has the 
following limiting form as the averaging region grows very large; 

lim 7(T) - I (144) 

which, in turn, means that d/T can be used as an approximation for 7(T) when T » 6. 
A more extensive approximation for 7(T), useful when the precise correlation structure 
of a random field is unknown, but for which 6 is known (or estimated) is 

7(T) ^ ^ ^ (145) 

which has the correct limiting form for T > > 6 and which has value 1.0 when T — 0, as 
expected. The correlation function corresponding to Eq. 145 is. 

(O + r) Pi^) ^ TTT^W (146) 
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Figure 22. Variance function corresponding to three different correlation 
models. 

The next figure shows two random field realizations. The field on the left has a small 
scale of fluctuation {6 — 0.04) and can be seen to be quite rough. The field on the right 
has a large scale of fluctuation {6 — 2) and can be seen to be more slowly varying. 

Figure 23. Sample realizations of X{t) for two different scales of fluctua
tion. 

12 Random Fields in Higher Dimensions 
Figure 1.24 illustrates a two-dimensional random field, X{t\,t-2); where X varies ran
domly in two directions, rather than just along a line. The elevation of a soil's surface. 
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or the thickness of a soil layer, at any point on the plan area of a site are examples 
of two-dimensional random fields. The cohesion of the soil at plan location (ti.t^) and 
depth ta is an example of a three-dimensional random field, X{ti,t'2.,t3). The coordinate 
labels i i , t'2; and is are often replaced by the more common Cartesian coordinates x. y. 
and z. We shall keep the current notation to remain consistent with that developed in 
the one-dimensional case. 

Figure 24. A realization of a two-dimensional random field. 
In this section, we will concentrate predominately on two-dimensional random fields, the 
three-dimensional case generally just involving adding another coordinate. As in the 
one-dimensional case, a random field is characterized by 

1) its first moment, or mean, ^{ti.t^); which may vary in space. If the random field is 
stationary, then the mean does not change with position; fiitiAi) — fJ-
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2) its second moment, or covariance structure, C{t'^,tl,t'2;t2), which gives the covari-
ance between two points in the field, ^ ( i i , ig) and X{t*,t^). If the field is stationary, 
then the covariance structure remains the same regardless of where the axes origin 
is located, that is, the covariance function becomes a function of just the difference, 
ii' -t*),\.e. C{t{-tt.,ti2-4). 

3) its higher-order moments. If the field is Gaussian, it is completely characterized by 
its first two moments. 

We will restrict our attention to just the first two moments of a random field. For 
simplicity, we will sometimes concentrate on stationary random fields since any random 
field, X', can be converted to a random field which is stationary in its mean and variance, 
X. (with zero mean and unit variance) through the transformation 

xit) = ^ a i ^ ,„,) 

where i is a vector denoting spatial position (in two-dimensions, t has components ti 
and fa) and fJ.'{t) and (j'{t) are the mean and standard deviation of X' at the spatial 
location t. 

In the following subsections we investigate various ways that the second moment 
characteristics of a random field can be expressed. 

12.1 The Covariance Function in Higher Dimensions 
The covariance function gives the covariance between two points in the field, X' — X{t') 
and X* — X{t*). Since the covariance between X' and X* is the same as the covariance 
between X* and X' (that is, it doesn't matter which way you look at the pair) then 
C{t[,t*,t'2.t2) — C{t'2-t2-t'i;t*)- If the random field is stationary, this translates into 
the requirement that C ( T ) — C{—T), where T ~ t' — t* is the spatial lag vector having 
components TI — t[ — t\. T2 = t'^ — t^- For example, for a two-dimensional stationary 
random field C{t'^ -t^.ti^-t^) ^ C(i^ - i;,i^ - i ^ , or C(TI ,T2) - C ( - T I , - T 2 ) . 

In two dimensions, the correlation function is defined as 

.(..,.,) = ^^^? i ^ = % ^ (148) 
(j'a* a'a* 

where a' and a* are the standard deviations of X' — X(t') and X* — X(t*), respec
tively. Since we are assuming the random field is stationary, then a' — a* — a, and the 
correlation function becomes 

P{rur.) = ^ ^ (149) 

An example two-dimensional correlation function is the separable model 

P ( T I , T 2 ) ^ e x p | - - ( | T i | + |T2 | ) | 

which is Markovian in each coordinate direction. Note that even if the directional corre
lation lengths, Q\ and Q2: are equal, this function is not isotropic. 
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12.2 The Spectral Density Function in Higher Dimensions 
In two dimensions, the spectral representation of a stationary random field. X{ti.t'2); is 
the double sum 

X{ti,h)^Hx+ 5Z $Z Cij cos{u)i,ti + u)2,h + ^ij) (151) 
i=-Ni j=-N2 

where, as in the one-dimensional case, Cij is a random amplitude and ^ij a random 
phase angle. The variance oi X{ti,t'2) is obtained by assuming the random variables Cij 
and $jj are all mutually independent 

Ni N2 

al=E[{X{t^.M)-f^.?]= E E |E[C|,] (152) 
i=-Ni j=-N2 

We define the two-dimensional spectral density function, S{u}i,u}2); such that 

5(wi,,W2,)AwiAt^2 - 5E [Cfj\ (153) 

Note that if the correlation function is separable, as is Eq. 150, then both the spectral 
density and the variance functions will also be of separable form (although in the case 
of the spectral density function the variance does not appear more than once in the 
product). The spectral density function corresponding to Eq. 150 is 

G{iOi,L02) =—r ^4v^ ^ (154) 

^[l + (^) ] [l+(^) ] 
In the limit as both Acji and Awj go to zero, we can express the variance of X as 

the volume under the spectral density function 

/

OO POC 

I S{iOi.u)2)du)id^2 (155) 

oc J — oc 

In the two-dimensional case, the Wiener-Khinchine relationships become 

/

oc /-oc 

/ S{u)i.i02)cos{LL)iTi+u)2T2)du)idu)2 (156a) 

-oc </ —oc 
-I /-oc /-oc 

S{u}i,U}2) - ,„ .0 / C{n,T2)cOs{u}iTi +UJ2T2)dTidT2 (156&) 

If we express the components of spatial lag and frequency using vectors, T — JTi.Ta}"^ 
and y — {^1,^2}"^; where superscript T denotes transpose, then the Wiener-Khinchine 
relationships can be written for n dimensions succinctly as 

/

•oc 
S{u)) cos(y • T) du) (157a) 

-oc 
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5 M - ^ y ^ C ( T ) c o s ( y r ) d r (157&) 

where it is understood that we have a double integral for two dimensions, a triple integral 
for three dimensions, and so forth. The centered dot denotes the vector dot product, for 
example oj • T — UJITI + U)2T2. 

12.3 The Variance Function in Higher Dimensions 

In two dimensions, we can define the moving local average of a random field, X{ti,t2); 
over an area of dimension yl — Ti x T2 to be 

X,{tuti) = -, / X{^,.Xi)dS,id^i (158) 

To determine the statistics of X^, we will first assume that the random field X{€} is 
stationary, so that we can choose to find the mean and variance of XA ~ XA{TI/2,T2/2) 
as representative, 

^^^•jf\f ^ X{U,h)dhdti (159) 

The mean of X^ is 

/^x^ - ^ / ' / ' E [X{ti.M)] dt2 dti = 11^ 

Assuming that the random field X{ti.t2) has 'point' mean Hx ~G and variance Ox- then 
the variance of XA is 

T"! T"! rji rj-i 

\ar[XA]=al=E[XJ] =^ ± f ' f ' f ' f ' E[X{tuh)X{^i,^-,)] d^^dhd^^dti 

rri r-fi rr\ rr\ 

= ^ j ' j ' j ' j ' CoY[X{t,,h)..X{^,,^2)] d^^dhd^^dti 

= ^j J J J p{ti-^i.M-^2)d^2dhd4idU 

The same result would have been obtained even if fix 9^ 0 (at the expense of somewhat 
more complicated algebra). 

Making use of the fact that, for stationary random fields, p is constant along diagonal 
lines where ti — ̂ 1 and 2̂ — 2̂ are constant, we can reduce the four-fold integral to a 
double integral (see Eq. 135), so that 

V a r [ X j - ^ / ' / ' ( |Ti| - | T I | ) ( | T 2 | - |T2|)y3(Ti,T2) dT2dTi 
^ J-Ti J-T2 
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where, since A — T1T2, the variance function is defined by 

7(Ti,T2) - i / ' / ' (|Tl| - InDdTsI - |T2|)p(Ti,r2)dT2dTi (160) 

Some additional simplification is possible if P(TI,T2) — p(—TI,T2) — P(TI,—T2) — p(—TI,—T2) 
(this is called quadrant symmetry, which will be discussed shortly) in which case 

7(Ti,T2) = - ^ f ' / ' ( |T i | -Ti ) ( |T2 | - r2)p( r i ,T2)dr2dr i (161) 

Although 7(Ti.T2) is perhaps questionably defined when Ti or T2 are negative, we shall 
assume that an averaging area of size — 2 x 3 is the same as an averaging area of size 2 x 3 , 
the sign only arising because Ti is measured in opposite directions. By this assumption, 
7(Ti,T2) is automatically quadrant symmetric. 

The separable two-dimensional variance function corresponding to Eq. 150, is 

7 m , T 2 ) . ^ [ ^ + e x p | - ^ | - l J [ ^ + e x p | - ^ | - l (162) 
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Tools and Strategies for Dealing with Uncertainty in Geotechnics  

Farrokh Nadim 1

1  International Centre for Geohazards / Norwegian Geotechnical Institute, Oslo, Norway 

Abstract. Working with uncertainty is an essential aspect of engineering – the larger the 
uncertainty and the closer to critical, the greater the need for evaluating its effect(s) on the 
results.  To characterize the uncertainties in soil and/or rock properties, the engineer needs 
to combine, in addition to actual data, knowledge about the quality of the data, knowledge 
on the geology and, most importantly, engineering judgment. Once the uncertainty in input 
parameters and model(s) for solving a particular problem are quantified, the engineer has a 
variety of tools at his disposal to evaluate the uncertainty in the output. The most common 
practical tools are Monte Carlo simulation techniques, first-order, second moment (FOSM) 
approach, first- and second-order reliability methods (FORM and SORM), and event tree 
analysis. Each has its advantages and shortcomings. The more complicated methods often 
provide more useful information about the possible outcomes of a problem. These methods 
are described and their applications are demonstrated through example problems. Many 
geotechnical problems involve several possible failure modes, which may or may not be 
correlated. These problems should be treated as systems. Component reliability vs. system 
reliability are discussed, and example calculations are presented. 

1 Introduction 

Most of the parameters used in geotechnical analyses, in particular the mechanical soil properties, 
are uncertain. Working with uncertainty is therefore an essential aspect of geotechnical engineer-
ing – the larger the uncertainty and the closer to critical, the greater the need for evaluating its 
effect(s) on the results. The geotechnical engineer tries to deal with the uncertainties by choosing 
reasonably conservative parameters for the deterministic stability evaluation. This approach, 
however, fails to address the problem of properly and consistently dealing with uncertainties. 

In recent years, new and creative solutions have been developed for geotechnical design, and 
calculation methods have been improved.  Yet the characterization and reduction of uncertainties 
still is an area where only few researchers were working until a few years ago, even though as 
early as 1982 Einstein and Baecher stated the following words of wisdom: 

“In thinking about sources of uncertainty in engineering geology, one is left with the fact 
that uncertainty is inevitable. One attempts to reduce it as much as possible, but it must ul-
timately be faced. It is a well recognized part of life for the engineer. The question is not 
whether to deal with uncertainty, but how?”

This chapter presents the different methods and approaches for doing probabilistic geotechni-
cal analysis. To characterize the uncertainties in soil and/or rock properties, the engineer needs to 
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combine, in addition to actual data, knowledge about the quality of the data, knowledge on the 
geology and, most importantly, engineering judgment. Once the uncertainty in input parameters 
and model(s) for solving a particular problem are quantified, the engineer has a variety of tools at 
his disposal to evaluate the uncertainty in the output. The most common practical tools are Monte 
Carlo simulation techniques; first-order, second moment (FOSM) approach; and first- and sec-
ond-order reliability methods (FORM and SORM). Each has its advantages and shortcomings, 
and the more complicated methods often provide more useful information about the possible 
outcomes of a problem. The application of these methods are demonstrated through example 
problems.  

2 Sources and types of uncertainty 

Uncertainty modelling of the variables entering an analysis, whether probabilistic or determinis-
tic, requires collection of data, evaluation of the data set(s), selection of a “model” to represent the 
data, estimation of the uncertainty in the selected model and its significant characteristics, and a 
verification of the assumptions made.  The evaluation of the data set(s) needs recognition of the 
type of uncertainties, whether the variables are dependent or independent, whether the observa-
tions are independent and whether the uncertainties noted are the result of a combination of 
uncertainties in underlying parameters and processes. 

The uncertainties associated with a geotechnical problem can be divided into two categories: 
aleatory and epistemic. Human errors and omissions, which are not covered herein, would fall 
into a third category. Within a nominally uniform geological layer, the soil properties can be 
affected by both aleatory and epistemic uncertainties: 

Aleatory uncertainty represents the natural randomness of a variable. Examples of alea-
tory uncertainty are the spatial variation of a soil parameter within a nominally uniform 
geological layer, the variation in the peak acceleration of a design earthquake with a 
given return period, the variation in the ocean wave height or wind force, and so on. The 
aleatory uncertainty is also called the inherent uncertainty. Aleatory uncertainty cannot 
be reduced or eliminated. 
Epistemic uncertainty represents the uncertainty due to lack of knowledge on a variable. 
Epistemic uncertainty includes measurement uncertainty, statistical uncertainty (due to 
limited information), and model uncertainty. Statistical uncertainty is due to limited in-
formation such as limited number of observations.  Measurement uncertainty is due to 
for example imperfections of an instrument or of a method to register a quantity. Model 
uncertainty is due to idealizations made in the physical formulation of the problem. Epis-
temic uncertainty can be reduced, and perhaps eliminated, by collecting more data and 
information, improving the measurement method(s) or improving the calculation 
method(s).   

Statistical uncertainty is present because the parameters are estimated from a limited set of 
data, and is affected by the type of estimation technique used.  Measurement uncertainty is de-
scribed in terms of accuracy and is affected by bias (systematic error) and by precision (random 
error).  It can be evaluated from data provided by the manufacturer, laboratory tests and/or scaled 
tests. Model uncertainty is defined as the ratio of the actual quantity to the quantity predicted by a 
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model.  A mean value different from 1.0 expresses a bias in the model, while the standard devia-
tion expresses the variability in the predictions by the model.  

Uncertain soil properties and model uncertainty are best defined as random variables de-
scribed by their mean, standard deviation (or coefficient of variation) and probability distribution 
function. Figure 1a compares a soil property described deterministically and a soil property de-
scribed with its uncertainty. In practice, no experienced geotechnical engineer ever determines a 
deterministic (punctual) value for a soil property.  Armed with engineering judgment, we select 
an appropriate characteristic value, on the basis of the available data, the expected range of values 
for this property, the type of problem to be analyzed and our experience. Mentally we establish a 
possible range of values, and select either a most probable value or a somewhat conservative 
value. 

Figure 1. Deterministic and statistical description of soil property. 

Figure 1b shows typical probability distribution functions used in geotechnical problems. The 
normal and lognormal are the most common; the lognormal is often used to characterize variables 
that do not take negative values. A uniform distribution may also be adequate for an equally likely 
range of values. These distributions are simple and require little work except the use of standard 
statistical tables. 

Reliability analyses (e.g. Lacasse and Nadim, 1996) show that uncertainties on different soil 
properties affect differently the reliability of geotechnical analyses. It is therefore important that 
the uncertainties in analysis parameters be adequately quantified and their effect carefully evalu-
ated. Unfortunately it is not possible to establish a set of guidelines for the evaluation of the 
uncertainty in soil and rock properties that are valid for all sites. The first rule, when determining 
the uncertainties related to a soil property and using statistical methods, is to ensure that consis-
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tent data populations are used. Major uncertainties have been introduced in the past because of 
inconsistent data sets (Lacasse and Nadim, 1996). The inconsistency can originate from different 
soils, different stress conditions, different test methods, stress history, different codes of practice, 
testing errors or imprecision that are not reported, different interpretations of the data, sampling 
disturbance, etc. 

It can be useful to establish data banks for different types of parameters or geographical loca-
tions, or to review the literature and compare one’s values to values used by others. These 
estimates can be biased by the beliefs of the designer. The probabilistic analysis will, however, 
single out the importance of the hypotheses on the results. 

A review was made on test results in the files of Norwegian Geotechnical Institute and data 
available from the literature. Suspicious data were eliminated. The variability, in terms of coeffi-
cient of variation (CoV) and the probability distribution functions are listed in Table 1 (Lacasse 
and Nadim, 1996). 

Table 1. Typical coefficient of variation and distribution of soil properties. 

Soil  property Soil type Prob. distr. function CoV 
Cone resistance Sand 

Clay
LN

N/LN
Varies greatly 

from site to site 

Undrained shear strength, 
su

*
Clay (triax) 

Clay (index su)
Clayey silt 

LN
LN
N

5 - 20% 
10 - 35% 
10 - 30% 

Ratio su / ’vo Clay N/LN  5 - 15% 
Plastic limit Clay N  3 - 20% 
Liquid limit Clay N  3 - 20% 
Submerged unit weight All soils N  0 - 10% 
Friction angle Sand N 2 - 5% 
Void ratio, porosity, 
initial void ratio 

All soils N  7 - 30% 

Overconsolidation ratio Clay N/LN 10 - 35% 
 N/LN: Normal and lognormal distributions 

* su estimated from index tests 

3 Model uncertainty 

One of the main reasons to place focus on model uncertainty is that it is generally large, and in 
some cases it can be reduced. Model uncertainty is due to errors introduced by mathematical 
approximations and simplifications. In probabilistic analysis, model uncertainty is often repre-
sented by a parameter (error function) with a normal or lognormal distribution. Model uncertainty 
is difficult to assess and should be evaluated on the basis of: 

Comparisons of relevant model tests with deterministic calculations 
Expert opinions 
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Relevant case studies of “prototypes” 
Information from the literature 

To make a reliable estimate of model uncertainty, all relevant mechanisms should be identi-
fied and included in the probabilistic models. An important aspect of model uncertainty is the 
form it takes in the equilibrium function. Model uncertainty is best included in one of three ways: 

Factor on each random variable in the analysis 
Factor on specific components 
Global factor on the limit state function 

A general discussion on model uncertainty in geotechnical engineering is provided in Phoon 
& Kulhawy (2003).  

Uncertainty that can arise from the choice of a calculation model is illustrated in Figure 2. 
Current axial capacity calculation methods used for offshore piles have been derived predomi-
nantly from load tests on small piles. Penetration depth, pile length, pile diameter and ultimate 
load for the largest piles in the reference database are much smaller for the test piles than for those 
currently used. The uncertainty due to the calculation model is therefore large because the refer-
ence database of pile load tests applies to different pile and load conditions than used in design. 
The linear extrapolation implied when using the calculation models has by no means been veri-
fied. The uncertainty due to this extrapolation needs to be included in the estimation of the 
possibility of a failure. 

Figure 2. Extrapolation implied by calculation model for pile capacity 

Model uncertainty is defined with a mean and a coefficient of variation, and usually a normal or 
log-normal distribution. Model uncertainty is best included in one of three ways: (1) factor on 
each random variable in the analysis, (2) factor on friction (each layer) and end bearing compo-
nents and (3) global factor on the equation describing failure. 

Model uncertainty can be evaluated from comparisons between model tests and deterministic 
calculations, pooling of expert opinions, case studies of prototypes or other model tests, results 
from the literature, and naturally engineering judgment. To estimate model uncertainty, the rele-
vant mechanisms should first be  identified.  For example, pooling  of 30 international  experts  on  



76 F. Nadim 

6

Table 2. Comparisons of calculated and measured bearing capacities* 

Structure Type of loading Bias: calculated/measured failure loads 

Shallow  
foundation 

Static failure, test 1 
Cyclic failure, test 2 
Cyclic failure, test 3 
Cyclic failure, test 4 

0.98-1.01
0.99-1.15
1.16-1.17
1.06-1.23

Tension 
leg 

platform 

Static failure, test 1 
Cyclic failure, test 2 
Cyclic failure, test 3 
Cyclic failure, test 4 

1.00
1.06
1.06
1.02

* (From Dyvik et al, 1989; Andersen et al, 1989; Andersen et al, 1992; Dyvik et al, 1993; 
Andersen et al, 1993; summarized in Lacasse and Nadim, 1996) 

Table 3.  Factors affecting model uncertainty 

Property/calculations Factors of influence 

Undrained shear 
strength 
(clay) 

sampling disturbance 
test method and scale of laboratory/in situ tests 
spatial variability, anisotropy 
rate of loading 

Friction angle (sand) reconstitution of test specimen 
density, test method and scale of laboratory test 

Pile capacity skin friction assumption 
limiting values for skin friction and end bearing 
subdivision in soil layers 
pile installation, residual stresses and plug condition 
reconsolidation, rate of loading, cyclic loading, 
scour
stiffness of pile, pile length, single pile vs pile group 
extrapolation from reference database to prototype 

Shallow foundations position of critical slip surface 
modelling of static and cyclic load history 
strain-softening and/or progressive failure 
testing procedures in reference tests 
scale effect, rate of shear and stress conditions 
redistribution of stresses and anisotropy 
plane strain versus 3-D model, stiffness of structure 
model of soil profile and drainage assumptions 



Tools and Strategies for Dealing with Uncertainty in Geotechnics 77

7

pile design gave the consensus that the currently most used pile design method [API RP2A 
method (API, 1993)] is conservative in medium dense to very dense sand (Lacasse and Goulois, 
1989). In dense sands, uncertainties (coefficients of variation of 25% or more) were associated 
with most of the empirical design factors entering the calculation formulas. 

On the other hand, when calculation models have been checked with repeated model tests un-
der different modes of failure and give bias as those shown in Table 2, the model uncertainty is 
quite small. The key factors affecting the model uncertainty are listed in Table 3. 

4 Probabilistic analysis tools 

Probability theory and reliability analyses provide a rational framework for dealing with uncer-
tainties and decision making under uncertainty. Depending on the level of sophistication, the 
analyses provide one or more of the following outputs: 

Probability of failure (or probability of unsatisfactory performance) 
Reliability index 
The most probable combination of parameters leading to failure 
Sensitivity of result to any change in parameters 

In his review of slope stability assessment methods, Duncan (2000) pointed out that:  
“Through regulation or tradition, the same value of safety factor is often applied to condi-
tions that involve widely varying degrees of uncertainty. This is not logical.”  

A low safety factor does not necessarily correspond to a high probability of failure and vice 
versa. The relationship between the factor of safety and probability of failure depends on the 
uncertainties in load and resistance. Christian et al. (1994) illustrated comparative probabilities for 
three heights of dikes for the James Bay project: 6, 12, and 23 m. The first two were single stage 
dikes; the last, a composite dike built in stages. Table 4 gives the estimated factors of safety and 
probabilities of failure for the three designs. Although the factors of safety are similar (F = 1.5), 
the probabilities of failure are quite different. The 23-m high dike has significantly lower prob-
ability of failure, which is not reflected in the factor of safety. 

Table 4. Probabilities of failure for James Bay dikes (Christian et al., 1994) 

Case Factor of safety, 
F

Probability of failure, 
Pf

H = 6 m, single stage 1.58 2.5 10 2

H = 12 m, single stage 1.53 4.7 10 3

H = 23 m, stage-
construction 

1.50 7.1 10 4

Christian (2004) discussed the pros and cons of deterministic and probabilistic safety formats 
for the evaluation of the stability of existing slopes. The deterministic approach requires that a 
number of issues be addressed, including what is meant by the conventional factor of safety and 
how close is the slope to failure. Idealized examples and actual case studies show that slopes with 
high calculated factors of safety are not necessarily the safest.
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Well-established reliability methods, such as FOSM, FORM/SORM and Monte Carlo simula-
tion, which are discussed below, are useful techniques for determining the reliability of 
geotechnical designs for estimating the probability of failure. The reliability methods also reveal 
which parameters contribute most to the uncertainty and probability of failure. A simple prescrip-
tion of a factor of safety to be achieved in all instances is not realistic and may lead to over-design 
or unsafe situations. 

4.1 First-Order, Second-moment Approach 
The First-Order, Second-Moment (FOSM) approach (Ang & Tang 1984) provides analytical 
approximations for the mean and standard deviation of a parameter of interest as a function of the 
mean and standard deviations of the various input factors, and their correlations.  

Consider Y to be a function of random variables x1, x2, …, xn; that is 

Y = f (x1, x2, …, xn)                                 (1) 

In the general case, x1, x2, …, xn are correlated with covariance matrix [C], i.e. [C] = [ ][R][ ], 
where [ ] is a diagonal matrix of standard deviations and [R] is the (positive-definite and sym-
metric) correlation matrix with diagonal elements Rii = 1 and non-diagonal elements Rij = ij ( ij is 
the correlation coefficient between variables i and j). In scalar notation, Cij = i jRij .

Obviously to evaluate the mean and standard deviation of Y, the joint probability density func-
tion of x1, x2, …, xn is needed. However, in many practical applications the available information 
about the random variables is limited to their mean and variance. The approximate mean and 
variance of the function Y may still be estimated by a Taylor series expansion of the function 
about the mean values of the random variables and neglecting the higher order terms (Ang and 
Tang, 1984). If the Taylor series is truncated at its linear terms, the following first-order estimates 
of mean and variance are obtained: 

),......,,(
21 nxxxY f                               (2) 

bCb T
Y
2                                   (3) 

where the vector {b} denotes ixY /  evaluated at the mean values of xi, i.e.: 

x
n

T xYxYxYb /,........,/,/ 21

If there is no correlation among the variables, Equation 3 can be written as: 

2

1

2

2
i

ix

x

n

i i
Y x

Y                               (4) 

Equations 2 and 3 or 4 are referred to as the first-order, second-moment (FOSM) approxima-
tions of mean and variance of Y. 

The FOSM approximation only provides estimates of the mean and standard deviation, which 
are not sufficient by themselves for evaluating the failure probability. To estimate the failure prob-
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ability, one must assume the distribution function for the safety margin or the safety factor be-
forehand. The first step in estimation of failure probability using any probabilistic method is to 
decide on what constitutes unsatisfactory performance or failure. Mathematically, this is achieved 
by defining a performance function G(X), such that G(X)  0 means satisfactory performance and 
G(X) < 0 means unsatisfactory performance or “failure”. X is a vector of basic random variables 
including resistance parameters, load effects, geometry parameters and model uncertainty. 

Example 1 
Consider 3 springs in series with the following stiffness parameters: 

Parameter Mean 
value 

Standard devia-
tion 

K1 (kN/m) 20 2.5 
K2 (kN/m) 15 3 
K3 (kN/m) 30 4 

Estimate the mean value of the equivalent stiffness Keq , and its standard deviation. 

321

1111
KKKKeq 323121

321

KKKKKK
KKKKeq

Keq  (15 20 30) / (15 20 + 20 30 + 15 30) = 6.67 kN/m 

xi ieq xK /
ix

ieq xK / 22)/(
ixieq xK

K1
2

323121

32 )(
KKKKKK

KK
0.1111 0.0772

K2
2

323121

31 )(
KKKKKK

KK
0.1975 0.3512

K3
2

323121

21 )(
KKKKKK

KK
0.0494 0.0390

2
eqK = ( ieq xK / )2 2

ix
0.4674

eqK = 4674.0  0.68 

Example 2 
Consider a structural element with resistance R, subjected to dead load D and live load 
L. The safety margin (performance function) for this element is defined as: 

  G = R – D – L  

Given the information below, estimate the mean and coefficient of variation (CoV = 
/ ) of G with and without correlation among the parameters. 

Mean values:       R = 2.8  D = 1  L = 0.75 
Standard deviations:    R = 0.3  D = 0.1     L = 0.2 



80 F. Nadim 

10

Correlation coefficients:  R,D = 0.8  D,L = 0.3 

FOSM approximation: 
G = 2.8 – 1 – 0.75 = 1.05 

LGDGRGb T /,/,/  = {1  -1  -1} 

No correlation:  

04.0
01.0

09.0

2.0
1.0

3.0

1
1

1

2.0
1.0

3.0
C

1
1

1

04.0
01.0

09.0
1112

G = 0.14 

G = 0.374, CoV = 0.374/1.05 = 35.6 % 

With correlation:  

04.0006.00
006.001.0024.0
0024.009.0

2.0
1.0

3.0

13.0
3.018.0

8.01

2.0
1.0

3.0
C

1
1

1

04.0006.00
006.001.0024.0
0024.009.0

1112
G = 0.104 

G = 0.323, CoV = 0.323/1.05 = 30.7 % 

The “reliability index”, defined as 

G

G                                       (5) 

in which G and G  are respectively the mean and standard deviation of the performance func-
tion, is often used as an alternative performance measure to the factor of safety (Li & Lumb 1987, 
Christian et al. 1994, Duncan 2000).

The reliability index provides more information about the reliability of a geotechnical design 
or a geotechnical structure than is obtained from the factor of safety alone. It is directly related to 
the probability of failure and the computational procedures used to evaluate the reliability index 
reveal which parameters contribute most to the uncertainty in the factor of safety. This is useful 
information that can guide the engineer in further investigations. However, the reliability index 
estimated using the FOSM approach is not “invariant”. Table 5 shows the reliability indices for 
different formats of the performance function using the FOSM method. R and S in the table repre-
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sent respectively the total resisting force and the driving force acting on the slope. CoVR and CoVS
in the table denote the coefficients of variation of the resisting and the loading forces respectively 
and F = R / S.

Table 5.  Performance function format and FOSM reliability index  (Li & Lumb 1987). 

G(X) 

R – S 222

1

SR CoVCoVF

F

1
S
R

22

1

SR CoVCoVF

F

S
Rln

22

ln

SR CoVCoV

F

4.2 First- and second-order reliability methods (FORM and SORM) 
Hasofer & Lind (1974) proposed an invariant definition for the reliability index. The approach is 
referred to as the first-order reliability method (FORM). As mentioned earlier, the starting point 
for FORM is the definition of the performance function G(X), where X is the vector of basic 
random variables. If the joint probability density function of all random variables Fx(X) is known, 
then the probability of failure Pf is given by 

Pf  = 
L

x dXXF )(                                   (6) 

where L is the domain of X where G(X) < 0. 
In general, the above integral cannot be solved analytically. In the FORM approximation, the 

vector of random variables X is transformed to the standard normal space U, where U is a vector 
of independent Gaussian variables with zero mean and unit standard deviation, and where G(U) is 
a linear function. The probability of failure Pf is then (P[…] means probability that …):  

 Pf  = P [G(U) < 0]  P [
n

i 1
iUi –  < 0] =  (- )                   (7) 

where i is the direction cosine of random variable Ui,  is the distance between the origin and the 
hyperplane G(U) = 0, n is the number of basic random variables X, and  is the standard normal 
distribution function. 

The vector of the direction cosines of the random variables ( i) is called the vector of sensitiv-
ity factors, and the distance  is the reliability index. The probability of failure (Pf) can be 
estimated from the reliability index  using the established equation Pf = 1 ( ) = ( ),
where  is the cumulative distribution (CDF) of the standard normal variate. The relationship is 
exact when the limit state surface is planar and the parameters follow normal distributions, and 
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approximate otherwise. The relationship between the reliability index and probability of failure 
defined by Equation (7) is shown in Figure 3. 

Figure 3. Relationship between reliability index , and probability of failure Pf .

The square of the direction cosines or sensitivity factors ( i
2), whose sum is equal to unity, 

quantifies in a relative manner the contribution of the uncertainty in each random variable Xi to 
the total uncertainty. 

Example 3 
Consider an infinite frictional soil slope with thickness H in the vertical direction, soil 
friction angle ', slope angle , unit weight , and pore pressure u at depth H. With the 
following parameters and probability distribution functions, evaluate the probability of 
slope failure and its reliability index. 

Parameter Probability distribu-
tion

H (m) 10.0 1.0 Lognormal 
' (degrees) 35.0 2.0 Normal 
 (degrees) 20.0 1.5 Lognormal 
 (kN/m3) 18.0 0.5 Normal 

u (kPa) 20.0 7.0 Beta, between 0 and 40 
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The equation for the safety factor of the slope is: 

       F = 
)(cos

1
)tan(
)'tan(

2H
u

A simple limit state function for the performance of the slope is: 

G = F – 1 

i.e. the slope is stable when the factor of safety is greater than 1, and it fails when the 
factor of safety is less than 1. 

Using the software STRUREL (RCP, 1999), the following results are obtained: 

Probability of failure: Pf =  3.9 10-5

FORM reliability index: = 3.95 

The sensitivity factors for the variables are shown on the figure below. The pie chart 
shows the squares of the sensitivity factors 2

i .
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In summary the FORM approximation involves:  
1. transforming a general random vector into a standard Gaussian vector,  
2. locating the point of maximum probability density (most likely failure point, design 

point, or simply -point) within the failure domain, and  
3. estimating the probability of failure as Pf (- ), in which ( ) is the standard Gaus-

sian cumulative distribution function.  

Figure 4. The FORM approximation (right) and definition of  and design point. 

An illustration of the design point and graphical representation of  is given in Figure 4. 

Low (2003) presented a method for finding the reliability index in the original space. His ap-
proach is based on the matrix formulation of the Hasofer-Lind reliability index  (Veneziano, 
1974; Ditlevsen, 1981): 

XCX T 1min   for 0)(: XGX                  (8) 

or, equivalently: 

i

ii
T

i

ii xRx 1min  for 0)(: XGX               (9) 

in which nxxxX ,...,, 21 ,  = mean vector of X, C = covariance matrix of X, and R = correla-
tion matrix of X.

Low and Tang (1997) used Equation 9 in preference to Equation 8 because the correlation 
matrix R is easier to set up, and conveys the correlation structure more explicitly than the covari-
ance matrix C. Geometrically, for a two-variable problem, Equations 8 and 9 can be interpreted as 
finding the smallest ellipsoid (of the probability distribution of the variables) tangent to the limit 
state surface, see Figure 5. The key advantage of this formulation is that it can be implemented 
using built-in functions in EXCEL without programming and EXCEL is widely available on PCs 
(Phoon and Nadim, 2004). 
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In the second-order reliability method (SORM), the limit state function is defined as in 
FORM, but the resulting limit state function is approximated by a second order function (Breitung 
1984). However, for geo-problems the probabilities of failure obtained with SORM analyses have 
been very close to the values obtained with FORM (Lacasse and Nadim, 1999). 

Figure 5. Illustration of  in the plane of original variables (Low, 2003). 

4.3 Monte-Carlo simulation 
A Monte-Carlo simulation is a procedure, which seeks to simulate stochastic processes by ran-
dom selection of input values to an analysis model in proportion to their joint probability density 
function. It is a powerful technique that is applicable to both linear and non-linear problems, but 
can require a large number of simulations to provide a reliable distribution of the response. 

The Monte Carlo simulation technique is implemented in some commercial slope stability 
analysis packages (e.g. Geo-Slope, 2003). However, when the probability of failure is very small, 
the number of simulations required to obtain an accurate result directly is so large that, except for 
very simple (or simplified) problems, it renders the application impractical. In these situations the 
conditional probability of failure can be determined for various low probability scenarios, and 
then combined, considering the scenario probabilities. Monte Carlo simulation can be optimized 
by stratified sampling techniques, for example Latin Hypercube sampling (Iman & Cono-
ver 1982). These “organized” sampling techniques considerably reduce the number of simulations 
required for a reliable distribution of the response. 
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Example 4 
El-Ramly et al. (2003) performed probabilistic slope analysis using Monte Carlo simula-
tion to evaluate the stability of a section of the Syncrude Tailings Dyke in Fort 
McMurray, Canada, Figure 4.1. The dyke was approximately 44m high. The perform-
ance of the dyke was governed by uncertainties about material properties and pore-water 
pressures, in particular in the disturbed clay-shale (Kca) layer, and the sandy till at toe of 
the dyke. 

Figure 4.1. Dyke profile and stratigraphy of the Syncrude Tailings Dyke. 

Figure 4.2. Profile of pore pressure ratio in the Kca layer along dyke cross-section, 
March 1994.



Tools and Strategies for Dealing with Uncertainty in Geotechnics 87

17

Figure 4.3. Histogram and probability distribution function of the factor of safety -
number of simulation iterations equals 34000 (El-Ramly et al. 2003). 

The residual shear strength of this material was evaluated from shear box tests on 80 
specimens. Based on the histogram of the results obtained from the tests, and spatial 
averaging to the appropriate scale, the residual friction angle was assumed to have a 
lognormal probability density function with a mean of 7.5 and a standard deviation of 
2.1 in the Monte Carlo simulations. 

Substantial amounts of pore pressure data were available from numerous pneumatic 
and standpipe piezometers along the dyke. Figure 4.2 shows a plot of the pore pressure 
ratio ru, defined as the ratio of excess pore pressure to effective vertical stress for hydro-
static conditions, at a section along the dyke profile in March of 1994. The 
measurements are scattered. It seems that the pore pressure ratio tends to decrease to-
wards the dyke toe. A linear trend fitted to the data using the method of least squares is 
shown on the plot. The standard deviation of the pore pressure ratio around the mean 
trend is calculated to be 0.12. 

The measured peak friction angles of the sandy till layer belonged to different statis-
tical populations and grouping them together increased the estimate of uncertainty. 
When all measurements were combined for an approximate statistical assessment, the 
measured values ranged between 33.3 and 39.2. The mean and standard deviation of 
the peak friction angle were calculated to be 35.7 and 2, respectively. 

The pore water pressure in the sandy till layer was assessed from data from 14 pie-
zometers at different depths and locations along Section 53+000E. The pore pressure 
ratio varied between 0.1 and 0.46 with a mean of 0.30. Due to a large increase in pore 
pressure ratio towards the dyke toe, the data were divided into two subgroups and the 
pore pressure ratio modeled by two random variables representing the middle portion of 
the slope and the toe area respectively.
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Figure 4.4. Histogram of the probability of unsatisfactory performance (El-Ramly et 
al. 2003). 

A model of dyke geometry, soil stratigraphy and properties, and pore water pressures 
was developed in an Excel spreadsheet. The Bishop method of slices was used in the 
model with the limit equilibrium equations rearranged to account for the noncircular 
portion of the slip surface. Five input parameters are considered variables: the residual 
friction angle of Kca clay-shale, the peak friction angle of the sandy till, the residual 
pore pressure ratio in the Kca clay-shale and the pore pressure ratios at the middle and at 
the toe of the slope in the sandy till. Monte Carlo simulation was performed using 
@Risk and the prepared spreadsheet model. Figure 4.3 shows the histogram of results 
and the inferred probability distribution function of the factor of safety. Figure 4.4 shows 
the probability of unsatisfactory performance, based on the results of 25 repetitions of 
the 34,000 realizations (e.g. total of 25  34,000 realizations). The mean probability of 
unsatisfactory performance, Pu, is estimated to be 1.6 10-3, with the 95% confidence 
interval around the mean ranging between 1.5 10-3 and 1.7 10-3.

In fact, the standard deviation of the estimated probability of failure can be computed 
analytically as Pu = {Pu(1 – Pu)/34000}0.5  = 0.0002, which is what is seen in Figure 4.4. 

4.4 Event tree analysis 
For a complex system, the conditions that could lead to any of the potential modes of failure may 
be quite involved and an event tree analysis is often the optimum way to quantify hazard and risk. 
Given a number of possible consequences resulting from an initiating event, the sequence of 
following events need to be identified and their probability of occurrence needs to be quantified. 
This can be done systematically and effectively through the use of an event tree diagram. The 
approach is widely used for dams, but is also useful for slopes with complex history, e.g. a rock 
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slope with possibly different volumes sliding over time followed by a tsunami. Ang and Tang 
(1984) and Whitman (1984) presented several application examples for the method. Figure 6 
illustrates event tree analysis. 

Figure 6. Event tree model and example for the analysis of a slope 

A general event tree is shown in Figure 6 with an initiating event, E, and a number of possible 
consequences, Cij. . . k. It can be observed that a particular consequence depends on the subse-
quent events following the initiating event; in other word, for a given consequence to occur, a 
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sequence of subsequent events, or path in the event tree, must occur. Given an initiating event, 
there may be several "first subsequent events" that will follow. Obviously, these subsequent 
events are mutually exclusive. If we assume a particular first subsequent event, a mutually exclu-
sive set of "second subsequent events" is possible. Each path in the event tree, therefore, 
represents a specific sequence of (subsequent) events, resulting in a particular consequence. The 
probability associated with the occurrence of a specific path is simply the product of the (condi-
tional) probabilities of all the events on that path. 

Each event in the event tree is associated with a probability of occurrence. The probabilities 
can be obtained by first assigning a verbal descriptor as given below. The sum of the probabilities 
at any node is always unity, if all possible events have been included. The estimates rely heavily 
on engineering judgment. Observations are also very useful in assisting judgment. Each outcome 
in the event tree ends up as failure or no failure. The total probability of failure is the summation 
of the probabilities of each outcome leading to failure. If data are available, component events 
should be treated statistically, for example the 100-year and 1000-year rainfall or flood, based on 
historic data, the earthquake frequency and response spectrum. In practice, the results of an event 
tree analysis prove even more useful when done for several slopes and compared.  

To achieve consistency in the evaluation of the probabilities from one dam to another, con-
ventions have been established to anchor the probabilities. An example of descriptors of 
uncertainty used in the dam profession goes as follows: 

Verbal description of uncertainty  Event probability
Virtually impossible          0.001 
Very unlikely             0.01 
Unlikely               0.10 
Completely uncertain         0.50 
Likely                0.90 
Very likely              0.99 
Virtually certain           0.999 

Virtually impossible: event due to known physical conditions or processes that can be de-
scribed and specified with almost complete confidence. 
Very unlikely: the possibility cannot be ruled out on the basis of physical or other reasons. 
Unlikely: event is unlikely, but it could happen
Completely uncertain: there is no reason to believe that one outcome is any more or less likely 
than the other to occur. 
Likely: event is likely, but it may not happen 
Very likely: event that is not completely certain. 
Virtually certain: event due to known physical conditions or processes that can be described 
and specified with almost complete confidence. 

5 System reliability 

A system, for example a complex geotechnical structure, consists of many components or ele-
ments, whose individual or combined failure can lead to collapse. A simple gravity retaining wall 
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would fail if the lateral forces on the wall exceed the base shear resistance (sliding mode of fail-
ure), if the weight of the wall and vertical forces acting on the wall exceed the bearing capacity at 
the base (bearing capacity mode of failure) or if the driving moment from the external loads ex-
ceeds the resisting moment from the weight of the wall (rotational mode of failure). The wall 
could therefore be thought of as a system that comprises three components whose individual 
failure would constitute the failure of the wall.  

The methods and examples discussed in the previous section generally characterize the per-
formance and reliability of a single component of a complete system. The failure event of a 
system, in a reliability sense, is defined as the union, or intersection, or combinations thereof, of 
component failure events. In a graphical representation of a system, the components are repre-
sented by boxes that are connected together by lines to form the system. Input and output are 
marked by arrows (see Figure 7).  

It is useful to distinguish between two basic types of systems depending on the logical struc-
ture of the components, namely series and parallel systems. In a series system the individual 
components are connected in series with regard to their function (Figure 7a). A series system will 
fail if any of its components fail, i.e. the system failure event is the union of all the component 
failure events. As a simple example, consider a chain consisting of many links. If the weakest link 
breaks, the chain fails. That is, the least reliable link determines the reliability of the system. If a 
series system is composed on “n” statistically independent components, then the probability of 
system failure can be computed from the probability of failure of individual components by the 
following equation: 

 Pf,system = 
n

i

n

i
ifif PP

1 1
,, )1(1                         (10) 

The summation approximation is valid for very small probabilities of failure Pf,i.

Obviously the probability of failure of a series system increases with the number of elements and 
is largely governed by the probability of failure of its most unreliable element. If all elements of a 
series system are perfectly correlated, then: 

 Pf,system = max[Pf,i]                                 (11) 

Thus the probability of failure of a series system lies within the following bounds: 

 max[Pf,i]   Pf,system

n

i
ifP

1
, )1(1                         (12) 
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E1 E2 E3

E1

E2

E3

(a) Series system (b) Parallel system 

Figure 7.  Schematic representation of series and parallel systems. 

In a parallel system, the elements of the system are connected in parallel with regard to their func-
tion (Figure 7b). This means that a parallel system will fail if all its components fail, i.e. the 
system failure event the intersection of the component failure events. 

If a parallel system is composed on “n” statistically independent components, then the prob-
ability of system failure can be computed from the probability of failure of individual components 
by the following equation: 

 Pf,system = Pf,1 Pf,2 …. Pf,n =
n

i
ifP

1
,                           (13) 

If all elements of a parallel system are perfectly correlated, then: 

 Pf,system = min[Pf,i]                                 (14) 

That is, the probability of failure of a parallel system is never greater than probability of fail-
ure of its most unreliable element. The probability of failure of a parallel system, therefore, lies 
within the following bounds: 

n

i
ifP

1
,   Pf,system  min[Pf,i]                             (15) 

In constructed facilities, true parallel systems are rare. Consider, for example, a foundation 
slab supported by six piles. This foundation system, on the first sight, might well be considered a 
parallel system consisting of six components, as all six piles must fail in order for the foundation 
to fail. However, the carrying capacities of the piles are strongly correlated. Furthermore, the 
question of ductile versus brittle failure of the components in the system is of prime importance. 
While a ductile component may continue to carry load until the other elements of the system 
yield, a brittle component stops carrying its share of load, leaving the remaining components with 
even more load. 
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Example 5 
A system, represented by the minimal cut-set below, operates only if there is a path of 
functional units from A to B. 

Under a severe event, the following failure probabilities for different components are 
estimated: 

Pf,1 = 0.1  
Pf,2 = 0.05  
Pf,3 = 0.2  
Pf,4 = 0.15  
Pf,5 = 0.12  
Pf,6 = 0.06  
Pf,7 = 0.12 

Evaluate the failure probability and reliability index of each of the 3 subsystems 
assuming that all units operate and fail independently. 

Subsystem 1: Pf,S1 = Pf,1 Pf,2 = 0.1 0.05 = 0.005  
S1 = -1(1 – Pf,S1) = -1(0.995) = 2.58 

Subsystem 2: Pf,S2 = Pf,3 Pf,4 Pf,5 = 0.2 0.15 0.12  = 0.0036 
S2 = -1(1 – Pf,S2) = -1(0.9964) = 2.69 

Subsystem 3: Pf,S3 = Pf,6 Pf,7 = 0.06 0.12 = 0.0072 
S3 = -1(1 – Pf,S3) = -1(0.9928) = 2.44 

Evaluate the system reliability index and the system probability of failure. 
Pf, System = 1 – (1 – Pf,S1) (1 – Pf,S2) (1 – Pf,S3) = 0.0157
(Approximate estimate for small probabilities: Pf, System  Pf,S1 + Pf,S2 + Pf,S3 =
0.0158)

System = -1(1 – Pf,System) = -1(0.9843) = 2.15 

Most real life systems are mixed systems that could be represented as a series connection of 
subsystems, where each subsystem comprises parallel components. Some commercial software 
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for computation of system reliability (e.g. STRUREL) require that the system is represented is 
terms of minimal unions of intersections, also denoted as minimal cut-set.  
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Abstract. A procedure for combining a point estimate method (PEM) and deterministic fi-
nite element methods for geotechnical analysis is presented. A brief description of the 
theoretical background is given and an illustrative example analysing a sheet pile wall sup-
porting an excavation is presented to demonstrate the general applicability of the proposed 
approach. Finally the application to numerical analyses of tunnel excavation is discussed in 
some detail. A NATM tunnel construction is considered and the results obtained from the 
suggested approach are compared to the ones obtained from conventional finite element 
analyses. The results clearly reveal the applicability of the proposed concept for solving 
practical problems and it is argued that the validity of finite element analyses is extended 
by introducing stochastic properties of input parameters. 

1 Introduction 

When using finite element codes in reliability analysis there are some advantages as compared to 
limit equilibrium methods or other similar methods because with one calculation more than one 
system-parameter can be obtained. These parameters are the basis for the performance function 
which will be evaluated with the numerical procedure described in this paper. On the other hand, 
some difficulties have to be overcome by using finite elements for reliability calculations. The 
accuracy of the results obtained by finite element codes may vary significantly depending on the 
solution procedure and the convergence criteria adopted and therefore very tight specifications 
have to be enforced. 

Due to the arguments given above attempts to combine probabilistic concepts and numerical 
modelling published in the literature are somewhat limited. The approach suggested in this paper 
involves the application of point estimate methods (PEM) in combination with deterministic finite 
elements.  

First a brief description of the theoretical background of the probabilistic concepts employed 
will be given before the suggested procedure will be demonstrated by solving a simplified geo-
technical problem. The developed methodology will be applied for the analysis of a tunnel 
excavation according to the principles of the New Austrian Tunnelling Method (NATM) describ-
ing the determination of variables, their influence on a specific result and the evaluation of the 
chosen limit state function. A general discussion on the merits of probabilistic analysis is not 
given here at it is presented in other chapters of this book.  
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2 Point Estimate Methods 

It is well established that input parameters for geotechnical calculations are associated with uncer-
tainties. This holds for material properties as well as for model parameters which have to be 
introduced when building a geomechanical model, which itself represents only an approximation 
to the actual situation in situ.  

In order to arrive at a probability of "failure", whereas the term "failure" has a very general 
meaning here as it may indicate collapse of a structure or in a very general form define the loss of 
serviceability, a limit state function or performance function G(X) of the following form can be 
defined  

)()()( XXX SRG                                    (1) 

R(X) is the “resistance”, S(X) is the “action”, and X is the collection of random input parameters. 
For G(X)<0 failure is implied, while G(X)>0 means stable behaviour. The boundary defined by 
G(X)=0 separating the stable and unstable state is called the limit state boundary. The probability 
of failure pf is defined as: 

0)(

)(]0)([
X

XX
G

f dxfGPp                          (2) 

where f(X) is the common probability density function of the vector formed by the variables X.
A number of different approaches have been suggested in the literature to integrate Eq. 2 (see, 

e.g., Benjamin and Cornell, 1970, Li, 1992). In this work the approach proposed by Zhou and 
Nowak (1988) is used. It is a numerical procedure for computing the statistical parameters of a 
function G(X) of multiple random variables. The sample of basic variables is obtained by trans-
forming a priori the selected points from the standard normal space to the basic variable space. 
The method is similar to other point estimates, except that points and weights are predetermined 
in the standard normal space. If the basic variables are standard normal distributed the perform-
ance function in Eq.1 can be written as:  
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The exact kth moment of G, E[Gk(Z)], may be obtained by evaluating the integral:  
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where (z) is the cumulative distribution function of standard normal variable Z. The integration 

is performed numerically (Eq.5) 
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where m is the number of points considered, wj are the weights and zj are the typical normal 
points. The numerical operations required are not repeated here in detail but can be summarized 
as follows: 

– Definition of correlation matrix C.
– Transformation of C into C0, which represents the correlation matrix in the correlated nor-

mal space Y using a Nataf-transformation. C0 contains the correlation coefficients 0, ij.
– By means of a Cholesky decomposition of C0  one obtains the lower triangular matrix L0.
– L0 enables a mapping of the uncorrelated standard normal space Z, where the integration 

points are predefined by the integration rule, to the correlated normal space Y.

ZLY 0                                        (6) 

– Mapping of the correlated standard normal space Y to the correlated non-normal space X by 
using 

)]([1 ZLFX 0                                  (7) 

Thus above operation denotes an approximate method of relating correlated variables from a 
normal space to an uncorrelated standard normal space, which is necessary in order to be able to 
perform the required mathematical operations. 

With the operations above Eq.5 can be written as 
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whereas (x1j,x2j,.....,xnj) is obtained using Eq.6 and Eq.7 

nj

j

nn

ii

nj

j

z

z

L

L

L

y

y

.

.

.

.....0

.....

....

.....

0.....

.

.

.
1111

                           (9) 

)]([

.

.

.

)]([

.

.

.

1

1
1

1

1

1

njx

jx

nj

j

yF

yF

x

x

n

                                  (10) 



100 H. F. Schweiger and R. Thurner

The first subscript i denotes the ith variable and the second subscript j denotes the jth point; wj

and (z1j,.....,znj) are the predetermined values given by Zhou and Nowak (1988). The integration 
rule adopted in this work is 2n2+1, which means in term of finite elements that 2n2+1 determinis-
tic calculations have to be performed. Other integration rules have been investigated but the 
above proved to be an optimum compromise between accuracy and computational effort 
(Thurner, 2000). 

3 General Description of Procedure for Practical Application 

In the previous section the theoretical basis for performing a probability analysis in geotechnics 
utilizing a particular point estimate method has been briefly described. So far no assumptions on 
the calculation model have been made, i.e. the method is very general and can be applied in the 
context of e.g. simple limit equilibrium analyses as well as in combination with more advanced 
computational models. In this paper finite element models are chosen as calculation models be-
cause the authors believe that numerical modelling is the only feasible way of getting a deeper 
insight into the behaviour of complex geotechnical structures. In order to achieve a user friendly 
environment for introducing probabilistic concepts into finite element modelling pre- and post-
processing routines have been developed in order to facilitate the additional input and output 
operations. These routines have been connected to the finite element code PLAXIS (Brinkgreve, 
2000), which is used for all calculations presented in the following, but can be easily modified to 
accommodate other codes. By doing so, the required parameter sets, which are determined by the 
Point Estimate Method (PEM) chosen, and the subsequent generation of the data sets in a form 
suitable for input into the PLAXIS code are automatically generated (Thurner, 2000). 

In summary the following steps have to be performed: 
Step 1: Choice of calculation model (limit equilibrium method, numerical model, ..). In the fol-
lowing a finite model is employed. 
Step 2: Decision which of the input parameters are to be taken into account with  stochastic prop-
erties (number n) in the analysis. 
Step 3: Determination of mean value and standard deviation for all variables and definition of the 
statistic distribution of the parameters. 
Step 4: Sensitivity study by performing a Taylor-Series-Finite-Difference-Analysis (TSFD) to 
identify these parameters which have the most significant influence on certain results. Only these 
are treated as stochastic parameters for further calculations. This step is optional.    
Step 5: Calculation of integration points; i.e. the mathematically defined parameter combinations 
depending on the chosen integration method and preparation of the relevant data files for the 
finite element calculations. This step is performed with the program PEM_1 (Thurner, 2000) and 
additional preprocessing tools developed for this purpose. 2n2+1 input files for the finite element 
code PLAXIS are automatically prepared.   
Step 6: Finite element calculations and determination of results such as displacements, stresses, 
strains and internal forces in structural elements. 
Step 7: Definition of suitable performance functions. Critical deformations (e.g. surface settle-
ments) and/or maximum stresses (e.g. in the shotcrete or concrete lining of a tunnel) can be 
defined.  
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Step 8: With the results from the finite element calculations the first two moments of the evalu-
ated system parameters can be calculated. For these variables a statistical distribution has to be 
assumed. In the last step the performance function can be evaluated. The mean value ( G) and 
standard deviation ( G) as well as the safety index HL (Hasofer and Lind, 1974) can be calcu-
lated. The integral of the curve G(X) < 0 indicates the probability of "failure". The evaluation of 
the performance function can be done by means of Monte-Carlo simulations or a "FORM analy-
sis" with appropriate computer programmes. 

4 Example Sheet Pile Wall   

As a first example, an excavation supported by a cantilever sheet pile wall will be considered. 
Two aspects will be discussed: firstly, the probability of failure and secondly the probability of 
exceeding a predefined horizontal displacement of the top of the wall. The example is taken from 
Gutjahr (2000), who analysed the problem using a hypoplastic constitutive model. The calcula-
tions are performed using the so-called Hardening-Soil Model implemented into PLAXIS. It 
accounts for shear and volumetric hardening, includes a stress dependent stiffness distinguishing 
between primary loading (governed by the parameter E50

ref) and unloading/reloading (governed 
by the parameter Eur

ref) and incorporates the Mohr Coulomb failure criterion. The geometry, the 
finite element mesh and the boundary conditions follow from Figure 1. The material parameters 
are summarized in Table 1 and it can be seen that only the angle of internal friction ( ) and the 
reference stiffness (E50

ref) are treated as stochastic variables (with a lognormal distribution) for 
this illustrative case. This leads to 9 calculations to be performed according to the point estimate 
method with a 2n2+1 integration rule (Zhou and Nowak, 1988). The resulting input values for the 
finite element calculations are given in Table 2.  

Figure 1. Geometry and finite element mesh for excavation problem. 
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The analysis has been performed as follows: excavation is simulated in 0.5 m intervals, and for 
each excavation depth, calculations have been made with the parameters given in Table 2. After 
reaching equilibrium, a so-called -c-reduction has been executed whereas the strength parame-
ters are reduced until no equilibrium can be found. By comparing these strength parameters with 
the actual ones a factor of safety (termed Msf) is obtained. Thus the limit state function can be 
written as  

1)( FEMsfXG                                    (11) 

where MsfFE are the values obtained from the finite element analyses as described above. 

Table 1. Material parameters for excavation problem.

Material Parameter 5%-Fractile

 [kN/m³] 17 - - 17.9

 [°] 42.1 0.04 1.68 39.4

c [kN/m²] 0 - - 0

 [-] 0.2 - - 0.226

E50
ref

=Eoed
ref

 [kN/m²] 60000 0.2 12000 42480

Eur
ref

=3.E50
ref

Table 2. Input values for calculations with 2n2+1 integration rule for excavation problem. 

E50
ref

[kN/m²] [°]

1 58209 42.07

2 95247 42.07

3 35573 42.07

4 58209 45.57

5 58209 38.83

6 82454 44.51

7 82454 39.75

8 41092 44.51

9 41092 39.75

Parameter 
set
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Following the procedure described in section 3 a mean and standard deviation of the Msf-value is 
obtained for each excavation depth and by assumption of a lognormal distribution of Msf the 
probability of failure or the reliability index can be obtained. Figure 2 reveals that the variation of 
the probability index with excavation depth is roughly linear which in turn means a progressive 
increase of probability of failure (e.g. from pf = 9.3E-09 for an excavation depth of 6.5 m to pf = 
2.6E-04 for an excavation depth of 7.0 m).  

Figure 2. Reliability index vs excavation depth. 

In a similar way, a limit state function can be specified with respect to the displacement of the top 
of the wall thus representing a criterion for the serviceability of the structure. If e.g. 3.5cm are 
defined as limiting displacement (here chosen arbitrarily) the performance function is 

FExuXG ,035.0)(                                  (12) 

ux,FE being the displacement obtained from the finite element analyses. Figure 3 compares ux

obtained from various analyses: mean value and standard deviation from the probability analysis 
and results with different deterministic parameters. The probability of exceeding 3.5cm is approx. 
0.25 % at a depth of 5.6m and increases rapidly to approx. 55% at 6.1m excavation depth. Of 
course the 5%-fractile value yields the lowest depth where the displacement of ux = 3.5cm is 
reached (5.6m), the design value after Schneider (1999) results in a depth of 6.1m. 

It should be mentioned at this point that the results, displacements as well as bending moments, 
compare well with the ones obtained by Gutjahr (2000). This agreement shows that the proposed 
approach yields results which are consistent with other methods and experience; it is argued how-
ever that the stochastic nature of soils is accounted for in more rational way within the framework 
presented here.  
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Figure 3. Horizontal displacements vs excavation depth. 

5 Application to Numerical Simulation of Tunnel Excavation 

In this section, the application of the developed framework to the analysis of tunnel excavation 
will be shown. The problem considered is closely related to an actual tunnel construction. How-
ever, some minor simplifications have been introduced, as it is the intention here to demonstrate 
the potential of the proposed approach and not to give a full analysis of a real case history. At 
first, mean and standard deviation of input variables are determined, using different sources of 
information employing Bayes' theorem. In the second step, the influence of each individual pa-
rameter on a particular result is evaluated by means of the TSFD-Method. Finally, the probability 
of exceeding the admissible stress in the lining is evaluated by the point estimate method de-
scribed in section 2. 

5.1 Geometry and subsoil conditions

The geometry of the shallow tunnel analysed is given in Figure 4 including the assumed, simpli-
fied, ground conditions. The tunnel is situated in a limestone formation ("rock"), with a soil layer 
of an average thickness of approximately 5m on top ("soil").    

The tunnel is excavated according to the principles of the New Austrian Tunnelling Method 
(NATM) thus a shotcrete lining with rock bolts provides the support during construction stages 
whereas a cast concrete shell serves as final lining. The final lining however will not be dealt with 
in this paper. Excavation modelling is made in sections and prerelaxation factors of 25 % (for 
each section) according to the load reduction method have been assumed to account for 3D ef-
fects in the 2D plane strain analysis (Schweiger et al., 1997). The shotcrete lining is modelled 
with elastic beam elements. It is distinguished between the "young" and "old" shotcrete to incor-
porate the aging effect for the stiffness in an approximate way. The goal of this analysis is a 
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comparison of results obtained by using design values and from probability analysis. In addition 
the probability of failure during construction is determined. 

Figure 4. Geometry for tunnel example. 

5.2 Determination of input variables 

Unfortunately it is a fact that even for large projects site investigation and laboratory data avail-
able are rarely sufficient for stochastic modelling. However by utilizing tools such as the Bayes' 
theorem information obtained from different sources, with different degrees of confidence, can be 
combined to arrive at the required input parameters. As an example the determination of mean 
and standard deviation of the cohesion of the rock layer is shown in the following. The following 
sources of information are utilized: 

Laboratory test data 
Results from a limited number of uniaxial compression, triaxial and direct shear tests have been 
available. These yielded a mean value of 90.8 kN/m² and a standard deviation of 30.2 kN/m². 

Experience from projects under similar geological conditions 
Employing the "3 -rule" a mean and standard deviation of 80 and 20 kN/m² are obtained respec-
tively.   

Rock Mass Rating System (Bieniawski, 1989) 
Based on the geological report the mean is 110 kN/m² with a standard deviation of 25 kN/m². 
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Hoek-Brown Criterion (Hoek, 2000) 
The Hoek-Brown criterion is well established in rock engineering and a number of extensions 
have been proposed since the publication of the basic model including the introduction of a so-
called Geological Strength Index (GSI). If GSI, the uniaxial compressive strength and the mate-
rial parameter mi are defined with mean values and standard deviation the Mohr Coulomb 
strength parameters  and c can be determined (Thurner, 2000). Although this procedure is not 
recommended as a standard way of determining strength parameters it is included here for dem-
onstration purposes. Doing so the mean value for the cohesion is obtained as 150 kN/m² and the 
standard deviation as 50 kN/m². 

If these sources of information are combined utilizing an appropriate program whereas a 
weighting is introduced taking into account the degree of confidence one associates to each 
source, the following is obtained: 

  mean value for cohesion of rock layer:  100 kN/m² 
  standard deviation:              30 kN/m² 

Obviously an equivalent procedure can be adopted for all other parameters and, if available, val-
ues taken from the literature may also be included in the same way. 

5.3 Taylor Series Finite Difference-Method and Matrix of Influence 

For the given geology, 12 significant parameters were identified from experience and treated as 
basic variables as shown in Table 3. For soil and rock, the angle of internal friction, the cohesion, 
the coefficient of lateral earth pressure and the elastic modulus at a reference stress level are vari-
ables. MStage1 is an expression used in PLAXIS defining the prerelaxation factor for the top 
heading and Mstage2 for the bench respectively. Uncertainties in thickness and normal stiffness 
of the shotcrete lining are included in the values for the shear moduli (Gyoung and Gold), which are 
treated as variables.
Using the  TSFD-Method (U.S. Army Corps of Engineers, 1992) the influence of each variable 
on a certain limit state function can be quantified. For the 12 variables shown in Table 3, 25 cal-
culations (2n+1) are required to get an estimation of mean and standard deviation for each limit 
state function. In this case, the settlement of the crown (uy) and the relation between admissible 
and calculated normal force (Nall) in the shotcrete lining at the end of construction is evaluated. 
For the admissible normal force a definition after Schikora and Ostermeier (1988) is used. To 
include some measure for the mobilisation of the shear strength of the rock mass, the maximum 
shear strain (gam_s) after the excavation of the top heading is considered. To quantify this effect 
for each variable separately, a relation between the obtained standard deviation based on all calcu-
lations and the standard deviation caused by a single variable is used. This is similar to the 
sensitivity index , which can be obtained using a FORM-approach. Doing this with all variables 
the influence of each variable on the respective result can be assessed and shown in a matrix of 
influence (Table 4). It can be seen that roughly half of the variables have a significant influence. 
At this stage a decision can be made, which variables should be used in further calculations and 
which one can be treated as deterministic values as their influence on the result is not significant. 
The defined threshold value depends on engineering judgment and should be used carefully (Ein-
stein, 2000). It has been chosen here as approximately 4 %. 
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Table 3.  Basic variables for design value calculations and Taylor Series analysis for tunnel example. 

Parameter Distribution Unit

lognormal 21 2 [°]

c lognormal 24 8 [kN/m²]

E lognormal 24000 8000 [kN/m²]

Ko normal 0.65 0.1 [-]

lognormal 37 2.5 [°]

c lognormal 100 18.75 [kN/m²]

E lognormal 200000 31250 [kN/m²]

Ko normal 0.7 0.1 [-]

Mstage1 normal 0.25 0.03 [-]

Mstage2 normal 0.25 0.02 [-]

Gyoung lognormal 2000000 500000 [kN/m²]

Gold lognormal 6000000 1500000 [kN/m²]

Soil

Rock

MStage

Shotcrete

Table 4. Matrix of influence for tunnel example. 

Nall uy gam_s Total sum

-Soil 0 0 1 1

c-Soil 0 0 1 2

E-Soil 1 2 2 5

Ko-Soil 0 0 1 1

-Rock 3 4 9 16

c-Rock 4 3 6 13

E-Rock 1 5 4 10

Ko-Rock 4 9 6 19

MStage 1 2 2 4 7

MStage 2 0 0 1 1

Gyoung 12 9 2 22

Gold 1 0 0 2
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5.4 Evaluation of Limit State Function 

Based on the results of the previous section 7 parameters, which are above the defined threshold 
value (see Table 4), are treated as variables for further investigations with the PEM after Zhou 
and Nowak (1988), i.e. 99 calculations are required (2n2 +1). As an example the allowable normal 
force for the shotcrete lining will be assessed. According to the results obtained from the design 
value calculation 15 cm shotcrete thickness is required. The deterministic factor of safety for this 
case would be FOS = 1.6. Following the formula of Schikora & Ostermeier (1988) the limit state 
function reads 
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21(                             (13) 

with 
R  ................ uniaxial strength of shotcrete 

Fs   ................ factor of safety 
ea   ................ eccentricity 
d   ................ thickness of lining 
M   ................ bending moment 
N   ................ normal force 
Nzul ................ admissible normal force 

Figure 5 shows the evaluation of Eq. 13 by means of a Monte-Carlo simulation. The probability 
of exceeding the admissible force in the lining is pf = 1.5E-6. If a thickness of 20 cm is chosen it 
results in pf = 1.3E-7 and a FOS = 2.1. For a thickness of 10 cm the FOS is below 1.0 and the 
obtained pf = 2E-4. 

Figure 5. Evaluation of limit state function for normal force in shotcrete lining. 
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5.5 Comparison for Results Obtained from Probabilistic Analysis and Design Values 

In this section the results of the PEM-calculations will be compared with deterministic analyses 
making different assumptions for design values. The choice of design parameters is often based 
on personal experience rather than on a sound theoretical basis. In the following some possible 
assumptions for deterministic analysis will be investigated here, namely  
- mean values  
- characteristic design values: the mean value reduced by half of the standard deviation is used 
(approx. 35%-fractile; Schneider, 1999) 
- 5%-fractile: for the rock and soil parameters 5%-fractile value are used; for the shotcrete stiff-
ness the 95%-fractile is used > very conservative 
- 95%-fractile: for the rock and soil parameters 95%-fractile value are used; for the shotcrete 
stiffness the 5%-fractile is used. 

Figure 6. Density distribution for the settlement of the crown for all construction stages. 

Table 5. Comparison of input-fractiles of parameters for deterministic analysis and corresponding fractiles 
from stochastic analysis. 

 Deterministic

 calculation value Top heading Bench Top heading Bench

 5%-Fractile 0.02 0.001 0.001 0.0001

 Design value 22 18.6 23.4 23.6

 Mean 81.2 87.1 29.6 27.6

 95%-Fractile 99.42 99.79 99.999 99.999

Normal force Settlement of crown u  

     Fractiles obtained from stochastic model [%]

y
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From the 99 calculations mean value and standard deviation for a particular result, e.g. the crown 
settlement, can be determined. By assuming a normal distribution the probability of obtaining a 
result above or below the corresponding deterministic analysis can be evaluated. A graphical 
view of this comparison for the settlement of the crown is given in Figure 6 for all construction 
stages. In Table 5 input-fractiles and result-fractiles from the stochastic model are summarized for 
all assumptions given above. It follows that using a of 5% fractile for the input parameters results 
in a calculated settlement which represents only the 0.02% fractile value from the stochastic 
analysis, i.e. only 0.02% of the stochastic results yield higher settlements and thus the assumption 
is more conservative than anticipated. The difference is even higher for the normal force in the 
lining. If the design value is assumed to be approximately the 35%-fractile, which is sometimes 
assumed in practice, the result is an approximately 20%-fractile. With an input value representing 
a 95%-fractile the result is a fractile-value of over 99% for displacements and 99.9% for the nor-
mal forces. The latter assumption however is of no practical significance, but it illustrates nicely 
the fact that a certain input fractile may result in a significantly different fractile for the output, a 
result which is of course not surprising from a theoretical point of view but often not appreciated 
in practice. 

It follows from this exercise that probabilistic concepts provide a more rational way of intro-
ducing the uncertainties in material parameters into numerical calculations than assuming a single 
design value which is based on assumptions without a sound theoretical background. 

6 Conclusion

A framework for introducing probabilistic concepts employing point estimate methods into finite 
element calculations has been proposed. The theoretical background has been briefly described 
but more emphasize has been put in this paper in illustrating how the proposed approach can be 
used in practice. This has been done by means of examples, namely an excavation supported by a 
sheet pile wall and a tunnel excavation. In the latter example the Bayes' theorem has been em-
ployed to arrive at input parameters based on information from different sources, the TSFD 
Method has been used to identify the parameters having the most pronounced influence on the 
results and finally a point estimate method has been utilized to evaluate the probability of failure. 
Comparison with deterministic analyses has been made.  

It can be concluded that due to the achievements made in the development of hardware and 
software it has become feasible to perform probabilistic analyses with high level numerical mod-
elling. It is argued that the uncertainties associated with material and model parameters inevitably 
inherent in any analysis in geotechnics are covered in a rational and theoretically sound way by a 
probabilistic approach thus increasing the validity of numerical calculations. The additional com-
plexity introduced seems to be acceptable also from a practical point of view because only a few 
additional steps (see Figure 7) are required provided the appropriate computational tools are read-
ily available.  
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Figure 7. Scheme of typical deterministic analysis with probabilistic extensions. 
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Abstract. This paper presents a possible framework for dealing with uncertainties in geo-
technical engineering based on more recently introduced mathematical theories. Random 
sets are employed to describe the variability of material parameters and geometrical data. 
After a brief introduction of the basics of the proposed approach application to a boundary 
value problem, namely a deep excavation analysis, is presented. Comparison with in situ 
measurements is provided and it is shown that the calculated most likely range of dis-
placements compares well with measurements. Furthermore an assessment of the 
probability of damage of a building, situated adjacent to the excavation, is in line with ob-
served behaviour. 

1 Introduction 

Uncertainties in determination of the in situ soil profile and material parameters for individual soil 
layers are one of the important problems geotechnical engineers have to cope with. It is important 
to realise that different sources of uncertainty exist, material parameters varying in a certain - but 
known - range may be one of them but simply the lack of knowledge may be the more pro-
nounced one. A rigorous mathematical treatment of all aspects of uncertainties is not 
straightforward and thus is commonly replaced in practice by engineering judgement. Recent 
theoretical developments and advances made in computational modelling allow for a more formal 
consideration of uncertainties and it can be expected that theories and models taking uncertainty 
into account in the design of geotechnical structures will be more appreciated in near future.

The full scope of uncertainty and its dual nature can be described with the following definitions 
from Helton (1997): 
Aleatory Uncertainty – the type of uncertainty which results from the fact that a parameter can 
behave in random ways (stochastic, objective uncertainty also known as variability). 
Epistemic Uncertainty – the type of uncertainty which results from the lack of knowledge about a 
parameter (state of knowledge, subjective uncertainty or ignorance). 
Aleatory uncertainty is associated with variability in known (or observable) populations and is 
irreducible, whereas epistemic uncertainties change with the state of knowledge and is therefore 
reducible. Up to now probability theory has been used to characterise both types of uncertainty, 
although it is well recognised that it is the aleatory uncertainty which is best dealt by classical 
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probability theory but it can be argued that it is not capable of capturing epistemic uncertainty 
(e.g., Sentz and Ferson, 2002).  

Although some general information on probabilistic parameters can be found in the literature 
(e.g., Rackwitz, 2000), geotechnical parameters for particular soils, used e.g. in the analysis of 
practical boundary value problems, are given as intervals in most cases, with no information 
about the probability distribution across the interval and therefore a formal framework is required 
in order to encode uncertainty in geotechnical systems. In this paper random sets are proposed to 
represent uncertainty in finite element reliability analysis.  

2 Random Set Theory   

Random set theory provides a general framework for dealing with set-based information and 
discrete probability distributions. It yields the same result as interval analysis, when only range 
information is available and the same result as Monte-Carlo simulations when the information is 
abundant. 

Basic concepts 
Let X be a non-empty set containing all the possible values of a variable x. Dubois and Prade 

(1990, 1991) defined a random set on X as a pair ( ,m) where  = {Ai : i = 1,…,n} and m is a 
mapping, [0,1], so that m(Ø) = 0 and 

A

Am .1)(
                                    (1) 

 is called the support of the random set, the sets Ai are the focal elements (Ai X) and m is called 
the basic probability assignment. Each set, A , contains some possible values of the variable, x,
and m(A) can be viewed as the probability that A is the range of x. Because of the imprecise na-
ture of this formulation it is not possible to calculate the 'precise' probability Pro of a generic x X
or of a generic subset E X, but only lower and upper bounds on this probability: Bel(E) Pro(E)

Pl(E). Figure 1 shows possible 'precise' probabilities (Pro) bounded by Pl and Bel. In the limit-
ing case, when  is composed of single values only (singletons), then Bel(E) = Pro(E) = Pl(E)
and m is a probability distribution function. 

Following Dempster (1967) and Shafer (1976) the lower bound Bel and the upper bound Pl of 
its probability measure are defined, for every subset E X, by (Tonon et al., 2000a): 
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where the belief function, Bel, of a subset E is a set-valued function obtained through summation 
of basic probability assignments of subsets Ai included in E and the plausibility function, Pl, of 
subset E is a set-valued function obtained through summation of basic probability assignments of 
subsets Ai having a non-zero intersection with E. They are envelopes of all possible cumulative 
distribution functions compatible with the data. 

Figure 1. Upper bound (Pl) and lower bound (Bel) on 'precise' probability (Pro).

Finding the bounds on the system response 
Random set theory provides an appropriate mathematical framework for combining probabilistic 
as well as set-based information in which the extension of random sets through a functional rela-
tion is straightforward (Tonon et al., 2000a). Let f be a mapping X1x…xXN Y and x1,…,xN be 
variables whose values are incompletely known. The incomplete knowledge about x = (x1,…,xN)
can be expressed as a random relation R, which is a random set ( ,m) on the Cartesian product 
X1x…xXN. The random set ( , ), which is the image of ( ,m) through f is given by (Tonon et al., 
2000b): 

iiiij AfAfAAfR xx),()(;),(          (4) 
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If A1,...,An are sets on X1x…xXN respectively and x1,…,xN are random set independent (Ferson et 
al., 2004; Fetz and Oberguggenberger, 2004), then the joint basic probability assignment is the 
product measure given by 
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If the focal set Ai is a closed interval of real numbers: Ai = {x | x  [li,ui]}, then the lower and 
upper cumulative probability distribution functions, F*(x) and F*(x) respectively, at some point x
can be obtained as follows: 
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Figure 2 illustrates schematically an example of constructing a random set from multiple sources 
of information given as intervals (focal elements A1,...,A4 and basic probability assignments 
m1,...,m4).

Figure 2. Random set: (a) construction, (b) upper and lower discrete cumulative distribution function. 

To obtain the left envelope (Figure 2(a) and 2(b) each contain a left and a right envelope), the 
distribution of the probability mass of each interval in the calculation matrix is assumed to be 
concentrated at the lower bound of each source of information given as interval (the low bounds 
are sorted from smallest to greatest, and the cumulative distribution curve is stepped upward at 
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each value of the horizontal axis representing an interval low bound, by the amount of the basic 
probability assignment concentrated at that low bound). This envelope is referred to here as the 
left envelope rather than the upper envelope to reduce ambiguity in terminology. On the other 
hand, to construct the right envelope, the probability mass for each interval is assumed to be con-
centrated at the upper bound of the interval. 

In the absence of any further information, a random relation, so-called calculation matrix, can 
be constructed by assuming random set independence between marginal random sets (Equation 
6). A calculation matrix implies bounds on a corresponding discrete cumulative distribution func-
tion (CDF). The basic step is the calculation by means of Equation 4 and 5 of the image of a focal 
element through function f. The requirement for optimisation to locate the extreme elements of 
each set Rj  (Equation 4) can be avoided if it can be shown that the function f(Ai) is continuous 
in all Ai  and also no extreme points exist in this region, except at the vertices, in which case 
the Vertex method (Dong and Shah, 1987) applies. This is generally the case for the type of prob-
lems considered here. Furthermore, the sensitivity analysis discussed later will reveal if this 
condition does not hold true. Assume each focal element Ai is a N-dimensional box, whose 2N

vertices are indicated as vk, k = 1,…,2N. If the vertex method applies then the lower and upper 
bounds Rj* and Rj

* on each element Rj  will be located at one of the vertices: 
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Thus function f(Ai) which represents in this framework a numerical model has to be evaluated 2N

times for each focal element Ai. The number of all calculations, nc, required for finding the 
bounds on the system response is 
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where N is the number of basic variables and n the number of information sources available for 
each variable. The computational effort involved seems to be very high, but can be reduced if 
f(Ai) is continuous and a strictly monotonic function with respect to each parameter x1,…,xN,
which is, as mentioned previously, a valid assumption for all analyses discussed in this paper. In 
this case the vertices where the lower and upper bounds (Equation 9 and 10) on the random set 
are located can be identified merely by consideration of the direction of increase of f(Ai) which 
can be done by means of a sensitivity analysis (Peschl, 2004). Thus f(Ai) has to be calculated only 
twice for each focal element Ai (Tonon et al., 2000b). 
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Combination of random sets 
An appropriate procedure is required if more than one source of information is available for one 
particular parameter in order to combine these sources. Suppose there are n alternative random 
sets describing some variable x, each one corresponding to an independent source of information. 
Then for each focal element A X

n
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i Am

n
Am

1

)(
1
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          (12) 

Alternative combination procedures have been proposed depending on different beliefs about the 
truth of the various information sources (e.g., Sentz and Ferson, 2002; Hall and Lawry, 2004) but 
these will not be discussed here. 

Formulation of the reliability problem 
Basically, reliability analysis calculates pf, the probability of failure of a system characterised by a 
vector x = (x1,…,xN) of basic variables on X. The resistance r of the system can be expressed as r
= gr(x) and the action s as s = gs(x). The probability of failure pf is the probability p of (r s) or in 
general 
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where g is called the ‘limit state function’, fX the joint probability density function over the basic 
variables and pf is identical to the probability of limit state violation. The resistance r and action s
are generally implicit in x. Utilising random set theory the reliability problem is reduced to evalu-
ate the bounds on pf = p(g(x)  0) subject to the available knowledge restricting the allowed 
values of x. If the set of failed states is labelled F X, the upper and lower bound on the probabil-
ity of failure are the Plausibility Pl(F) and Belief Bel(F) respectively: Bel(F) pf Pl(F) where 
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3 Application to Deep Excavation Problem 

In this section some results from a back analysis of a practical example, namely a deep excavation 
(Breymann et al., 2003) on a thick layer of post-glacial soft lacustrine deposit (clayey silt) are 
presented to demonstrate the applicability of the proposed method. An underground car park has 
been constructed as open pit excavation with a 24m deep anchored concrete diaphragm wall as 
retaining construction. Figure 3 plots the cross section of the system and the soil profile. In this 
analysis particular attention is given to the risk of damage to the existing structures and the reli-
ability of the system by assessing the angular distortion of the building respectively. 

Figure 3. Geometry and subsoil conditions for deep excavation example. 

Subsoil conditions and material parameters 
The behaviour of the subsoil is characterised by soil parameters established from a number of 
laboratory and in situ tests. In order to assess the applicability of the proposed approach in practi-
cal design situations only data available before the excavation started has been used. Of particular 
significance for the deformation behaviour of the soft-plastic clayey silt is the deformation 
modulus Es (denoted as Eoed in the following), gained from one-dimensional compression tests on 
undisturbed soil samples after pre-loading with the in situ stress of the relevant depth. The full set 
of parameters used in the analysis performed with the finite element code PLAXIS V8 (Brink-
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greve, 2000) and the so-called Hardening-Soil model (HS) is not given here (see Peschl, 2004), 
only the basic variables used in the random set model are presented in the following. 

Basic variables for the random set model 
The material parameters for the soil layers which were treated as basic variables are summarised 
in Table 1. The parameters were established not only from laboratory and in situ tests (geotechni-
cal report) but also from previous experience of finite element analyses under similar conditions 
(expert knowledge). The table highlights the wide range of certain parameters which in itself to 
some degree contain engineering judgement of people involved, e.g. a significant capillary cohe-
sion has been assigned to the sandy, silty gravel in the geotechnical report. Due to the fact that the 
expert knowledge is based on a number of similar projects, the geotechnical report however 
forms the basis for design, both sources have been equally weighted in this particular case. 

Table 1. Basic variables for material parameters (input values). 

Soil               c         '           Es

Information source       kN/m2        °          MN/m2

Sandy, silty gravel
Geotechnical report      0 - 50.0     35.0 - 37.0       20.0 - 35.0
Expert knowledge       0 - 5.0      34.0 - 36.0       30.0 - 50.0

Clayey silt 1
Geotechnical report      0 - 20.0     22.0 - 30.0       5.0 - 25.0
Expert knowledge      10.0 - 30.0     24.0 - 28.0       20.0 - 40.0

Clayey silt 2
Geotechnical report      0 - 20.0     22.0 - 29.0       20.0 - 30.0
Expert knowledge         10.0 - 30.0     24.0 - 28.0       30.0 - 40.0

Two published sources of information were available and these interval estimates were combined 
using the averaging procedure in Equation 12. As an example the random sets for the effective 
friction angle ' and the stiffness Eoed of the gravel layer are depicted in Figure 4. Spatial correla-
tion is taken into account in a simplified manner in qualitatively the same way as proposed by 
Vanmarcke (1983). It reduces the aleatory type of uncertainty of a specific parameter but does not 
affect the epistemic uncertainty (Peschl, 2004). Most values for the vertical spatial correlation 
length  for sandy gravel materials and clayey silt deposits recorded in the literature are in the 
range of about 0.5 up to 5.0m. Generally speaking the uncertainty of the spatial correlation length 
should also be modelled as a random set but this has not been done here for the sake of simplicity 
and a value of 2.5m has been assumed. The characteristic length, L, has been taken as 55m, which 
is based on analyses investigating potential failure mechanisms for this problem.  
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Figure 4. Random sets of input parameters of the gravel layer: (a) friction angle and (b) stiffness parameter 
for HS model. 

Construction steps modelled 
The analyses performed were calculated as 2D plane strain problems and do not consider 3D-
effects. It could be reasonably assumed that consolidation effects do not play a significant role for 
the excavation-induced movements and therefore an undrained analysis in terms of effective 
stresses was performed for the clayey silt layers. The computational steps have been defined as 
follows (according to the real construction process):
1. Initial stresses  
2. Activation of buildings, reset displacements after this step 
3. Construction of the diaphragm wall 
4. First excavation step to level 417.5m (level of ground surface is 421.0m) 
5. Pre-stress of first anchor row with 300kN/m 
6. Lowering of the groundwater table to level 413.0m  
7. Second excavation step to level 413.0m 
8. Pre-stress of second anchor row with 300kN/m 
9. Lowering of the groundwater table to level 410.0m 
10.Centre excavation to level 410.0m, leaving berm in front of the wall and replace material 

of the berm 
11.Final excavation removing berm and construction of the foundation slab 
12. /c-reduction in order to obtain a factor of safety for the final excavation 

Calculation Results 
Before the random set analysis as described previously is performed a sensitivity analysis quanti-
fying the influence of each variable on certain results can be made (Peschl, 2004). For the 9 
variables shown in Table 1, 37 calculations are required to obtain a sensitivity score for each 
variable. In this case the horizontal displacement of the top of the diaphragm wall, ux, the angular 
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distortion, /l, of the adjacent building at each construction step and the safety factor, determined 
by means of the so-called /c-reduction technique (e.g., Griffiths, 1980), at the final construction 
step is evaluated.
 Figure 5 shows the total relative sensitivity and it can be seen that just three of the variables (c
and Es of the gravel layer and Es of the upper clayey silt layer) have a significant influence on the 
evaluated results. At this point a decision can be made which variables should be used in further 
calculations and which can be treated as deterministic values as their influence on the result is not 
significant. The defined threshold value has been chosen in this case as approximately 5%. Based 
on the results of the sensitivity analysis the following parameters were considered in the random 
set model: cohesion for the sandy, silty gravel layer and the stiffness parameters Eoed, E50 and Eur

(but these are correlated) for the sandy, silty gravel and the upper clayey silt layer, i.e. 64 calcula-
tions are required (Equation 11). These stiffness parameters are required as input for the 
Hardening-Soil model. Eoed is a tangent modulus from one-dimensional compression tests, E50 a 
secant modulus from triaxial compression and Eur is the unloading/reloading modulus. 

Figure 5. Total relative sensitivity for the deep excavation problem. 

Serviceability limit state 
The angular distortion /l of a structure, with  being the differential settlement and l the corre-
sponding length, is often used as measure to assess the likelihood of damage. The value tolerated 
depends on a number of factors such as the structure of the building, the mode of deformation and 
of course the purpose the building has to serve. A ratio of about 1:600 is used here as a limiting 
value for the evaluation of the limit state function in order to obtain the reliability in terms of 
serviceability. Figure 6 depicts the calculated cumulative distribution functions (CDF) of the 
angular distortion /l after prestressing of the first anchor row (Fig. 6(a)) and after the second 
excavation step (Fig. 6(b)). These discrete CDF’s were fitted using best-fit methods in order to 
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achieve a continuous function (dotted line in Fig. 6). It is acknowledged that this fitting procedure 
can be questioned but it is required for the evaluation of the limit state function by means of 
Monte-Carlo simulations. However, if results are used qualitatively rather than quantitatively 
valuable information can be extracted despite the simplifications involved. For example the prob-
abilities of exceeding a limiting value of angular distortion are obtained as given in Table 2 for all 
construction steps. In this particular case the calculated probabilities clearly indicate that damages 
of the adjacent building can be expected already during the second excavation step by showing a 
significant jump in the probability of failure (the accuracy of the actual value is of no relevance) 
and continues to be critical throughout the following construction steps. This is well in line with 
the observed behaviour where indeed cracks occurred during the second excavation phase. 

Figure 6. Range of angular distortion /l after: (a) first anchor row and (b) second excavation step. 

Table 2. Range of probability that /l  1/600. 

Construction step                          Fitted distribution               max pf   min pf 
              Upper bound  Lower bound     -      - 
Excavation 1           Beta     Gamma       0      0 
Anchor 1             Gamma      Beta      3.0E-5    0 
Excavation 2            Triangular     Beta      1.3E-1    0 
Anchor 2             Gamma      Beta      2.2E-1    0 
Excavation 3          Exponential    Beta      7.2E-1    0 
Excavation 4           Beta      Beta      9.7E-1    0 

In general, the most likely values are defined as values with the highest probability of occurrence, 
i.e. where the slope of the corresponding cumulative distribution function is steepest. For the 
purpose of illustration, it is assumed that the most likely values have a probability of 50% as 
shown in Figure 7, but of course other definitions are possible.
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Figure 7. Range of most likely values and spread of distribution. 

Figure 8. Horizontal displacements of the top of the diaphragm wall (most likely values and spread of 
distributions).

In situ measurements have been performed in order to control the displacements of the top of the 
wall. Figure 8 plots these measurements together with calculated values for all construction steps 
and it can be seen, that measured values compare well to the results of the numerical prediction 
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presented as most likely values including the spread of distributions as defined above. At this 
stage two conclusions can be made: firstly it follows very clearly from Figure 8 that an analysis 
with very ‘cautious’ estimates for soil parameters, represented by the upper limit in Figure 8, 
grossly overestimates deformations under working load conditions. Secondly, such an analysis 
can be used to determine the level of soil investigations required in order to arrive at a bandwidth 
of results which is acceptable. Additional information will usually change the random set, i.e. the 
Bel and Pl functions move closer together and therefore the most likely range of results also be-
comes narrower. 

4 Conclusion

Reliability analysis in engineering conventionally represents the uncertainty of the system state 
variables as precise probability distributions and applies probability theory to generate precise 
estimates of e.g. the probability of failure or the reliability. However, it has been recognised that 
traditional probability theory may not capture the full scope of uncertainty (inherent variability 
and lack of knowledge). Random set theory offers an alternative to traditional probabilistic theory 
to overcome these shortcomings. The significant innovation of the proposed framework is that it 
allows for the allocation of a probability mass to sets or intervals and provides a consistent 
framework for dealing with uncertainties throughout the design and construction of a project, 
because the model can be refined by adding more information when available depending on the 
project status (feasibility stage, preliminary design, detailed design, construction) without chang-
ing the underlying concept of analysis. It can be used for defining the level of information 
required on model parameters by specifying acceptable ranges of key results.

As a side effect worst case assumptions in terms of unfavourable parameter combinations have 
not to be estimated from experience but are automatically generated. The argument that engineer-
ing judgement will do the same much faster is not entirely true because in complex non-linear 
analyses, which become more and more common in practical geotechnical engineering, the pa-
rameter set for a highly advanced constitutive model leading to the most unfavourable result in 
terms of serviceability and ultimate limit state for all construction stages is not easy to define. 
From a practical point of view the concept of dealing with ‘ranges’ seems to be more appealing 
for engineers than working in density distribution functions. 
 The applicability of the proposed method for solving practical boundary value problems has 
been shown by analysing the excavation sequence for a deep excavation in soft soil presenting 
comparison with field measurements. 
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On Some Aspects of Reliability Computations in Bearing
Capacity of Shallow Foundations 

Wojciech Pu a

Institute of Geotechnics and Hydrotechnics, Wroc aw University of Technology, Wroc aw, Poland 

Abstract. The chapter deals with bearing capacity of spread foundations in the context of 
reliability computations. In the first part evaluations base on the recommendations given 
by Polish Standard PN-81/B-03020 (1981). Consequently some most important ideas 
concerning bearing capacity suggested by this standard are presented and compared with 
analogical statements of Eurocode EC7 (1997). Next some reliability computations are 
carried out under an assumption that each individual soil property is modelled by a single 
random variable throughout the earth body considered. But such approach seems to be too 
simple. In order to evaluate credible reliability indices when bearing capacity of a shallow 
foundation is considered it is reasonable to describe soil strength properties in terms of 
random field’s theory. As a next step the selected random field can be spatially averaged 
by means of a procedure introduced by Vanmarcke (1977). Earlier experiences have 
proved that, without applying spatial averaging procedure, reliability computations car-
ried out in the context of foundation’s bearing capacity had given significantly small 
values of reliability indices (large values of failure’s probability) even for foundations 
which were considered as relatively safe. On the other hand the volume of the area under 
averaging strongly affects results of reliability computations. Hence the selection of the 
averaged area constitutes a vital problem and has to be dependent on the failure mecha-
nism under consideration. In the present study local averages associated with 
kinematically admissible mechanism of failure proposed by Prandtl (1920) are consid-
ered. Soil strength parameters are assumed to constitute anisotropic random fields with 
different values of vertical and horizontal fluctuation scales. These fields are subjected to 
averaging along potential slip lines within the mechanism under consideration. Next ex-
amples of equations for variances of random variables resulting from averaging procedure 
are shown. By numerical examples it is demonstrated that for reasonable proportions 
(from practical viewpoint) between horizontal and vertical fluctuation scales the reliabil-
ity indices resulting in two-dimensional case only slightly differs from resulting that 
obtained in one-dimensional. This means that the simpler one-dimensional approach can 
be usually utilised when reliability measures of shallow strip foundation are carried out.  

1 Basic Assumptions and Explanations  

Within this chapter the focus will be oriented towards spread foundations. In this case the 
assumption that the ground resistance on the sides of the foundation does not contribute sig-
nificantly to the bearing capacity resistance will be accepted. Moreover only the case of 
drained resistance will be considered. On the beginning some examples basing on the Polish 
Standard PN-81/B-03020. Foundation bases. Static computations and design will be pre-
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sented. Therefore some equations proposed by this Standard are firstly presented. For compari-
son some analogical equations suggested by Eurocode EC7 are shown. 

The bearing capacity can be evaluated by means of the following formula, which appears 
both in the PN-81/B-03020 (1981) and the Eurocode EC7 (1997): 

(1)

where Nq, Nc, and N are the bearing capacity factors defined by EC and PN as: 

24
tantanexp 2

qN               (2) 

(3)

EC7:                  PN:                  (4) 

Equation (1) utilizes effective dimensions of the foundation, namely 
                    and                       (5) 

with eB and eL eccentricity with respect the width B and the length L, respectively. The shape 
coefficients (in the case of rectangular shape of foundation) sq, s , sc differs significantly in the 
EC7 and the PN, namely: 

EC7:                                          (6) 

PN:                                           (7) 

Finally the load inclination coefficients iq, i , ic are, due to correction suggested by Orr and 
Farrel (1999), take the form as in the German standard DIN 4017 (1979) 

              ,               ,            ,   (8) 

where m1 takes the value 

                        ,                   (9) 
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                                            (10) 

when H acts in the direction of L. In the case of Polish Standard PN-81/B-03020 (1981) load 
inclination coefficients are not given in the closed form and they should be determined with 
the help of nomograms. However, in practical cases resulting values are not far from that given 
by equations (8).  

2 Assumptions Concerning Reliability Computations 

Structural reliability problems are usually described by the so-called limit state function g(x).
The argument x of the function g is a random vector X= (X1,X2,...,Xn) consisting of basic random 
variables defining loads, material properties, geometrical quantities, etc. as well as some other 
properties considered as deterministic. The function g(x) is defined in the following way: 

structuretheofstatefailurethefor
structuretheofstatesafethefor

g
0
0

)(x           (11)

The hypersurface g(x) = 0 is called the limit state surface. Within this chapter the limit state 
function will be evaluated in the form of 

                          ,                 (12) 

Where m is the model uncertainty factor, which characterized goodness of  fit between the model 
and reality. It can be assumed as a random variable or as a constant parameter. 

As a reliability measure the probability of failure is used 

0x
X xx

g
F dfp

                  (13)

As a equivalent measure the reliability index  will be applied. Both measures are related each 
other by the equation 

)(0Fp     ,               (14) 

provided that 5.0Fp , where 0 is the standard normal one-dimensional distribution function. 
In the framework of this chapter as a computational tool to evaluate the probability of failure as 
well as the reliability index the SORM method (see e.g., Hohenbichler et al, 1987 or Ditlevsen 
and Madsen, 1995).  
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In order to evaluate the influence of individual parameters on the reliability index , some 
sensitivity parameters i can be defined as follows: 

**
1

yyy i
i y

  ,               (15) 

where y* is so called “design point”, which determines the index  in the FORM method (see e.g. 
Ditlevsen and Madsen, 1995). 

3 Examples of  Reliability Assessments of Shallow Strip Foundation 

Consider a shallow strip foundation as presented in Figure 1. Some soil properties as well as loads 
have been assumed as random variables. These are specified in the Table 1. The bearing capacity 
has been evaluated according to equation (1). For the case of strip foundation it can be accepted 
that the shape coefficients sq, s , sc are all equal to one. The inclination coefficients have been 
assumed in the form given by equation (8). Other coefficient in Equation (1) took the form ac-
cording to the PN-81/B-03020 (1981) as well as the model uncertainty factor m = 0.9. 

Figure 1. Scheme of shallow strip foundation considered in the example.

Reliability computations were carried out by means of the SORM method. Resulting reliability 
indices, for several dimensions of the base width, are shown in the Table 2. 

It turned out that that minimal width necessary to carry the acting load is B = 2.3 m (with 
the tolerance of 0.05 m). This width corresponds to the value of reliability index    = 1.63, 
which seems to be rather small. At same time the ISO 2394 (1998) code suggests beta values
equal to  = 3.1 for small,  = 3.8 for moderate and  = 4.3 for large failure consequences. 
Thus, the value obtained in our example is significantly smaller than any of the recommended 
values. On the other hand, long practice in applying the PN-81/B-03020 (1981) code shows 
that that foundations designed according to them can be considered as very safe. Note that in 
the above example each soil property was modelled by a single random variable without spa-
tial averaging. 

Next sensitivity of the reliability index was examined with respect to soil friction angle 
coefficient of variation as well as its type of probability distribution. Obtained values of the 
index  versus the foundation width B for several values of coefficient of variation of the soil 
friction angle are shown in Figure 2. 

medium sand water level 
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Table 1. Probabilistic characteristic of soil and loads parameters. 

Soil property Mean 
value 

Standard 
Deviation X

Probability 
distribution 

Sensitivity 
Parameters 

Soil friction angle  32° 4.6o lognormal 0.973 
Soil Unit weight  18.2 

kN/m3
1.092 kN/m3 normal 0.008 

Concrete floor unit weight 
p

23.0
kN/m3

1.38 kN/m3 normal 0.001 

Soil Unit weight under 
water level ’

9.8 kN/m3 0.588 normal 0.024 

Unit weight of foundation 
material b

24.0
kN/m3

- nonrandom  

Ground water level h 1.00 m 0.06 m uniform 0,021 
Axial load normal to the 

base N
300 kN 45.0 kN lognormal -0.205 

Load tangent to the base T 20.0 kN/m 3.0 kN/m lognormal -0.055 
Moment  M 15,0 

kNm/m 
2.25 kNm/m lognormal -0.012 

Table 2. Selected values of reliability measures obtained in the example. 

Width of foundation B 
[m] 

Reliability index  Probability of failure 
pF

1.8 1.01 0.15720 
2.2 1.51 0.06514 
2.3 1.63 0.05147 
2.4 1.75 0.04049 
2.8 2.17 0.01493 
3.2 2.56 0.00523 
3.6 2.92 0.00176 
4.0 3.25 0.00058 

The effect of various probability distributions illustrates Figure 3. The vital role of the friction 
angle variability for -index values can be recognised by observing the sensitivity parame-
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ters in the last column of the Table 1.Figure 1 show that the appropriate selection of the coeffi-
cient of variation of  can be essential for the bearing capacity reliability computations. On the 
other hand selection of probability distribution type is a less important factor, provided not 
large foundation width.

Figure 2. Reliability index  versus width of the foundation B and variation coefficient of .

Figure 3. Index  versus width of the foundation B for three different probability distribution of .

An effect of mutual correlation between soil properties: the friction angle  and the unit 
weight is demonstrated in Figure 4. It can be seen that the positive correlation can be almost 
negligible.  

On the other hand a correlation effect can be important when a we deal with a cohesive soil. A 
cohesive soil strength parameters (friction angle  and cohesion c) are usually treated as nega-
tively correlated. In this case the value of the correlation coefficient gives remarkable influence 
on the reliability index . An example of results obtained for a shallow strip foundation resting on 
clay is shown in Figure 5. 

B [m]

cov{ } = 0,05 
 cov{ } = 0,10 
cov{ } = 0,15 
cov{ } = 0,20 
cov{ } = 0,25 

BB [m] 

Rectangular
Lognormal
Normal
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Figure 4. Reliability index  versus width of the foundation B for three different correlation coefficients of 
 and . Both random variables  and  are lognormally distributed with expected values E{ } = 18o and 

E{c} = 31 kPa for  and ,  respectively, and coefficients of variations 0,15 in both cases. 

4 Spatial averaging application 

Note that in the above example each soil property was modelled by a single random variable 
without spatial averaging. Consider now again the above example (with characteristics given in 
Figure 1 and Table 1) but assume additionally that the random field of the internal friction angle 
of soil under the base of foundation is subject of one-dimensional (with depth) spatial averaging. 

Figure 5. Reliability index  versus width of the foundation B for four different correlation coefficients of 
 and c in clay.   

The spatial averaging, proposed by Vanmarcke (1977), introduces a new random field (moving 
average random field) defined by the following equation: 

L
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where (z) is the random function, which describes random variability of the friction angle 
with the depth z and L is the volume (length) of averaging. The function (z) is assumed to be 
stationary with constant mean value m and constant point variance 2. The variance of L

can be computed as: 
22VAR LLL , (17)

where (L) is the variance function. Let us assume now the following form of the variance 
function: 

            
2

2

3

exp1erf

L

LLL

L                (18) 

where
t

dxxt
0

2exp2erf  .                   (19) 

The variance function given by (18) corresponds to the Gaussian correlation function of the 
random field, namely 

2

exp zz ,                   (20)

which widely spread in many application of random fields (Rackwitz 2000). The parameter 
is a fluctuation scale (correlation length) and is assumed as  = 0.8 m. The size of averaging L
is now a subject of parameter study and is selected as equal to double width of the foundation 
(L = 2B). Results of computations of  reliability indices   are shown in Figure 6.  
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Figure 6. Reliability indices computed without spatial averaging and with the spatial averaging. 
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Comparing curves in Figure 2 one finds a great influence of the spatial averaging on   index 
values. For example for the above mentioned width B = 2.3 m    index increases from  = 
1.63 to  = 3.83. The last value satisfies first two of three threshold values specified by  ISO 
2394 (1998) and mentioned in the section 3. The above example demonstrates that effect of 
inadequate  index values can be reduced by applying spatial averaging of fields of soil 
strength parameters.  

However, the area of averaging L , which is in fact the argument of the variance function, 
was selected arbitrarily as equal to the double width of foundation 2B. The selection could be 
justified that changes in subsoil leading to the failure are mainly located to the depth 2B under 
the base of foundation. Let us observe now what will happen if we replace the size of averag-
ing L = 2B by L = B. The results are demonstrated in Table 3. 

It is evident that size decreasing of averaging significantly reduces reliability indices. 
This is also confirmed by the graphs in Figure 7, presenting values of reliability index as a 
function of fluctuation scale   for three types of variance function: 3(L) – given by eqn. (18), 

1(L)
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Table 3. Selected values of reliability indices obtained with the averaging and without averaging for two 
different sizes of averaging area 

Width of foun-
dation b [m] 

Reliability index 
without averaging 

Reliability index 
averaging L = B

Reliability index 
averaging L = 2B

1.8 1.01 1.71 2.24 
2.2 1.51 2.71 3.51 
2.3 1.63 2.96 3.83 
2.4 1.75 3.20 4.13 
2.8 2.17 4.17 5.31 
3.2 2.56 5.11 6.43 
3.6 2.92 6.00 7.48 
4.0 3.25 6.86 8.47 



136 W. Puła

Figure 7. Reliability index  as a function of fluctuation scale values for three different variance func-
tions. Figure a) shows results with spatial averaging of averaging size L = 2B. Figure b) shows results 

with spatial averaging of averaging size L = B.

Due to its definition the variance function depends both on scale of fluctuation  and the aver-
aging area L. The fluctuation scale   can be considered as soil parameter and can be 
determined by field and can be determined by field and testing. Opposite to  , none testing 
could gives the size of L. Consequently to avoid the loss of uniqueness  in reliability computa-
tions the L must be carefully selected and precisely defined among assumptions for a problem 
under consideration. 

It seems that to get proper values of variance reduction in bearing capacity problems it is nec-
essary to carry out the spatial averaging along potential slip surfaces associated with a mechanism 
of failure. Below a kinematically admissible Prandtl´s mechanism (Prandtl 1920) for shallow strip 
foundation is considered.   

5 Averaging Along Potential Slip Surfaces 

Assume that strength parameters,  (angle of internal friction) and c (cohesion), constitute two-
dimensional log-normal random field with the following covariance function (Gaussian):  
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2 exp, xzzxR X  ,                           (23)

where the parameters 1  and 2  are proportional to the fluctuation scales, viz. 

hv
21  ,                         (24) 

and v , h denote the fluctuation scale in the vertical and horizontal direction, respectively. For 
distinct values of 1  and 2  the fields are no longer isotropic. Consider now a shallow strip 

3

2

1

3

2

1

[m ]

a) b)

[m]



On Some Aspects of Reliability Computations in Bearing Capacity 137

foundation and a kinematically admissible Prandtl´s mechanism (Prandtl, 1920) as shown in Fig-
ure 8. In further consideration the foundation width will be denoted by b.

Figure 8. Schematic presentation of the Prandtl mechanism. 

In the case discussed here, the averaging has to be carried out along potential slip lines of soil 
masses. By assuming a parametric representation of the slip line in the form 

li: ],[
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   , i = 1,2,3                              (25) 

(index i denotes the i-th line), the following equation for the covariances is obtained (see 
Rackwitz 2000, Pu a 2002) 
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In the particular case, when i = j the representation (26) corresponds to the variance of 
VAR(

ilX ). Referring to the equation (26), there is CDlBClABl 321 ,, .

In order to evaluate the probability of failure, or equivalent reliability index, it is necessary to 
derive equations for the variances and covariances of random variables which result from the 
averaging process. The averaging is performed separately along each segment of the potential slip 
line, namely AB, BC, CD. The final expressions are provided below. Note that all these equations 
have been derived starting from equation (26), utilising the covariance function (23), and employ-
ing parametric equations of each segments AB, BC, CD. In order to avoid complex mathematical 
transformations and details, only final formulae are presented here (for details see Pu a 2004).

The variance of XAB:
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It is easy to see that 
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in which case eqn. (27) reduces to the solution obtained for one-dimensional case (see Pu a
2002).

The variance of XCD . The variance of the random variable XCD can be obtained by means 
of the equation (10), by substituting  hC for hB and C0  for B0  in accordance to the follow-
ing equations 
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where a is the same as in the eqn. (28). As before, the following asymptotic formula holds 
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Again, one can expect now that for large values of 2 the reduction of variance could be very 
similar that that obtained in one-dimensional case. 

The variance of XBC. In the case of log-spiral, the following equation is obtained in a polar 
coordinate system: 
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The integral in the equation (32) can not be expressed in any closed form, hence it has to be 
evaluated numerically. 

In the same way similar, however more complex, expressions for covariances XAB and XBC,
XBC and XCD and XAB and XCD can be established (Pu a 2004). 

6 The Limit State Function 

To carry out reliability computations, it is always necessary to define a limit state function f,
which specifies the conditions at failure, as it was indicated in section 2 Here the limit state 
function is defined as: 

PQf f ,                        (34)

where P denotes the axial force imposed on the foundation and fQ is the bearing capacity. The 
bearing capacity is a sum of three components: an effect of weightless cohesive soil (Q1); an 
effect of loading in the vicinity of foundation (Q2); an effect of the self-weight of the soil (Q3).
To make the local averaging procedure possible, it is necessary to consider strength parameters 
of the soil along each slip line AB, BC and CD (see Figure 1). Denoting by 1, c1, 2, c2, 3, c3
the values of these parameters along AB, BC and CD, respectively, and comparing the work of 
external load to the total dissipation of internal energy, the value of the limit load (bearing 
capacity) can be established. Final equations are as follows (Pu a 2004): 
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In the expressions above,  denotes unit weight of soil, q is the overburden pressure, b is the 
foundation width and D is the depth. Further computations of failure probabilities and equiva-
lent reliability indices were carried out by SORM method.  

7 Numerical Examples 

The numerical analysis pertains to a shallow strip foundation resting on a cohesionless soil. 
Computations examine the influence of the foundation width b, on the results of reliability 
study. The simulations were carried out assuming that the vertical scale of fluctuation is con-
stant and equal to v = 0.8 m. . For horizontal fluctuation scale h three different values are 
established vh 3 , vh 10  and vh 30 , which corresponds to the follow-
ing dependences between parameters of the correlation function 2 = 3 1, 2 = 10 1 and 2
= 30 1 , respectively. This assumption reflects the phenomenon that the scale of fluctuation in 
the case of soil properties is significantly larger in the horizontal than in vertical direction, 
which is reported in the literature (Cherubini 1997, 2000). For comparison a one-dimensional 
averaging is considered employing the vertical fluctuation scale only. The slip surfaces in the 
Prandtl’s mechanism have been determined for mean value of the friction angle 1. They were 
trrated as non-random during the reliability computations. The main parameters of the example 
are provided in Table 4, while the results are given in Tables 5 through 7 and Figures 9, 10 
below.  

Table 4. Probabilistic characteristic of parameters 

Soil property Mean value Standard 
Deviation X

Probability dis-
tribution 

Friction angle  32° 4.6o lognormal 
Unit weight of the soil  18.2 kN/m3 1.092 kN/m3 normal 

Axial force P 300 kN 45 kN lognormal 
Unit weight of concrete 24.0 kN/m3 - nonrandom 

Overburden pressure q 23.0 kN/m3 - nonrandom 
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Table 5. Reliability indices. One-dimensional case 

One-dimensional case Width of the 
foundation b [m] 5 6 7 8

1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8

0.91
1.33
1.72
2.09
2.44
2.77
3.09
3.40
3.69
3.97
4.24
4.50
4.75
5.00

1.25
1.81
2.33
2.81
3.27
3.70
4.10
4.49
4.86
5.21
5.55
5.88
6.19
6.49

1.49
2.21
2.91
3.59
4.25
4.88
5.49
6.08
6.65
7.19
7.72
8.23
8.72
9.20

1.43
2.13
2.83
3.50
4.15
4.77
5.38
5.97
6.53
7.08
7.61
8.12
8.61
9.09

It is noted that the reliability indices, , given in Tables 5,6,7 as well as Figures 5 and 6, have 
been computed under a set of distinct assumptions, which are listed below: 

5: the friction angle is modelled by a single random variable without spatial averaging; 6: the 
friction angle is modelled by three independent random variables 1, 2, 3 as described in 
section 6, but spatial averaging is not incorporated; 7: three independent random variables 
involved 1, 2, 3 with one-dimensional spatial averaging; 8: three correlated random vari-
ables 1, 2, 3 incorporated with one-dimensional spatial averaging.  

Figure 9. Reliability indices. One-dimensional case. Graphs corresponds to results in Table 5. 
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Table 6. Reliability indices. two-dimensional case, uncorrelated random variables. 

Width of the 
foundation b [m]

Two-dimensional case 

9 10 11 12

1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8

1.50
2.24
2.95
3.63
4.29
4.93
5.55
6.14
6.71
7.26
7.80
8.31
8.81
9.29

1.50
2.22
2.92
3.60
4.26
4.89
5.50
6.09
6.66
7.21
7.74
8.25
8.74
9.22

1.49
2.22
2.92
3.60
4.25
4.88
5.49
6.08
6.65
7.20
7.73
8.24
8.73
9.21

1.49
2.21
2.91
3.59
4.25
4.88
5.49
6.08
6.65
7.19
7.72
8.23
8.72
9.20

9: three independent random variables 1, 2, 3 employed with two-dimensional spatial aver-
aging, where 2 = 3 1; 10: three independent random variables 1, 2, 3 involved, with two-
dimensional spatial averaging, where 2 = 10 1; 11: three independent random variables 1,

2, 3 with two-dimensional spatial averaging, where 2 = 30 1; 12   = 7: three independent 
random variables 1, 2, 3 with one-dimensional spatial averaging; 13: three correlated ran-
dom variables 1, 2, 3 with two-dimensional spatial averaging, where 2 = 3 1; 14: three 
correlated random variables 1, 2, 3 with two-dimensional spatial averaging, where 2 = 
10 1; 15: three correlated random variables 1, 2, 3 with two-dimensional spatial averaging, 
where 2 = 30 1; 16   = 8: three correlated random variables 1, 2, 3 incorporated with one-
dimensional spatial averaging.

The results of reliability indices computations for one-dimensional case, as presented in Table 
5 and Figure 9, demonstrate the importance of the spatial averaging. There is 60% to 85% in-
crease in the value of reliability indices due to spatial averaging. It is worth mentioning that 
modelling friction angle by three random variables (each one corresponding to one of segments of 
the slip line; 6) instead of one ( 5), increases reliability indices significantly. On the other hand, 
the effect of correlation between averaged random variables seems to be very small. 

In the case of two-dimensional averaging, for all three values of the horizontal fluctuation 
scale (even for 2 = 3 1 ), reliability indices only slightly differ from those obtained for one-
dimensional case – curves in Figure 10 (left hand  and right hand part) coincide. For large 
horizontal fluctuation scale ( 2 = 30 1) they are almost the same ( 1211  and 1615 ).
On the other hand, comparing the left hand side graph and the right hand side graph in Figure 
10, one finds that the effect of correlation could be neglected. 

Some more details as well as many other examples concerning both cohesive and cohe-
sionless soils one finds in the author’s book (Pu a 2004). 
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Table 7. Reliability indices; Two-dimensional case. Correlated random variables. 

Width of the foun-
dation b [m] 

13  14 15 16

1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8

1.49
2.22
2.92
3.61
4.27
4.91
5.53
6.13
6.70
7.26
7.79
8.30
8.80
9.28

1.46
2.18
2.89
3.57
4.23
4.86
5.47
6.07
6.64
7.19
7.72
8.23
8.72
9.20

1.44
2.15
2.84
3.52
4.18
4.81
5.42
6.02
6.59
7.14
7.68
8.19
8.69
9.17

1.43
2.13
2.83
3.50
4.15
4.77
5.38
5.97
6.53
7.08
7.61
8.12
8.61
9.09

Figure 10. Reliability indices; uncorrelated (left hand side) and correlated (right hand side) case.
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8 Closing Remarks 

The chapter demonstrates a reliability approach to the bearing capacity computations of shal-
low strip foundations. The examples on the first part base on approach given by the Polish 
Standard PN-81/B-03020. However it is demonstrated that the general approach as well as 
applied equations are not very far from that suggested by Eurocode EC7.

It is demonstrated that appropriate selection of the friction angle coefficient of variation 
plays vital role for values of the safety measures. It is usually more important than the effect of 
the probability distribution selection for this quantity. 

In the case of cohesive soils the effect of mutual correlation between strength parameters 
and c is significant and should be taken into account. 

The example considered shows that the stochastic modelling basing on assigning each in-
dividual soil property single random variable can be insufficient for obtaining adequate safety 
measures to well-design foundations. Usually it is necessary to it is reasonable to describe soil 
strength properties in terms of random field’s theory. Next the selected random field should be 
spatially averaged by means of a procedure introduced by Vanmarcke (1997).

In order to avoid the loss of uniqueness in reliability computations the averaging area must 
be carefully selected and precisely defined among assumptions for a problem under considera-
tion. It seems that to get proper values of variance reduction in bearing capacity problems it is 
necessary to carry out the spatial averaging along potential slip surfaces associated with a 
mechanism of failure. Here a kinematically admissible Prandtl´s mechanism (Prandtl 1920) for 
shallow strip foundation is considered. 

The numerical studies have shown that by incorporating spatial averaging one can signifi-
cantly reduce standard deviations of soil strength parameters, which leads to a significant 
increase in reliability indices (decrease in failure probabilities). This is a step forward in mak-
ing reliability measures more realistic in the context of well-designed (according to standards) 
foundations.  

The results of numerical computations have also demonstrated that for reasonable, from 
practical point of view, values of horizontal scale of fluctuation (about 10 to 20 times greater 
than values of vertical fluctuation scale), the reliability measures obtained from two-
dimensional averaging are almost the same as those corresponding to one-dimensional averag-
ing. This means that in the case of shallow strip foundations one-dimensional (along the depth) 
averaging can be sufficient, which simplifies computations and requires a smaller amount of 
statistical data (vertical fluctuation scale instead of both vertical and horizontal scales).  
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Abstract. The response surface method can be applied to numerous fields of knowledge. In 
general, this method consists in approximation an unknown function by known function 
chosen appropriately. It can be successively utilised in reliability measures computations 
when the failure criterion does not depend on random variables explicitly. Within this 
study an application of the response surface method in dealing with random settlement in 
geotechnical engineering is discussed. In practical applications, an explicit closed form of 
settlement function U(X) is only rarely known. Most often, if program of the finite element 
method is available, we are able to determine the function values for assumed material 
properties, loads and geometrical constants of the FEM computation model. In order to ob-
tain the limit state function in the form appropriate for reliability computations, one can 
model a closed form of U(X) by means of non-linear regression. To simplify the reliability 
computations, rather simple functions, e.g. polynomials of the second degree are in use. 
The approximation in the vicinity of a design point (known from preliminary FORM com-
putations) is especially convenient in computing the probability of failure, because the 
neighbourhood of this point affects most strongly the value of a failure probability. In order 
to make computational algorithm more efficient the application of neural network with a 
hyperbolical activation function is suggested. If U(X) is a continuous function then the 
three-layered neural network with one hidden layered containing necessary number of neu-
rones could give a satisfactory result. Neural networks allow approximation in cases of 
large variability intervals of independent variables preserving sufficient accuracy. Further-
more they make possible to overcome some numerical drawbacks of second order 
approximation known as “false branches problem”.

1 Response Surface Method 

The response surface method applied to numerous fields of knowledge is exhaustively described 
in a number of monographs (eg. Myers 1971, Box and Draper 1996). In general, this method con-
sists in approximating an unknown function by the known function chosen appropriately. This 
approximation can be based on the results of experiments and also on the results of numerical 
computations, e.g. results obtained by means of the finite element method. In the case of numeri-
cal computations, a relationship between the model parameters x1, x2, ...xn, which are introduced 
as input data, and the values obtained as output data  y = f (x1, x2, ...xn) is defined. Roughly estab-
lishing such a relationship allows us to replace a troublesome numerical procedure with a simple 
analytical relationship, which helps to forecast a response of the model being analysed in the 
input set. 
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The response surface method was adapted to the reliability analyses of engineering structures 
in eighties (eg. Rackwitz 1982, Wong 1985, Faravelli 1989). However, in order to simplify reli-
ability computations, rather simple functions such as polynomials of the second degree are often 
used (Bucher and Bourgund 1990). Methods of approximation are diverse, depending on the aim 
of this operation. In any case algorithms based on regression models may be used (compare next 
section). The approximation in the vicinity of a design point, which is found in the framework of 
the FORM method (see e.g. Ditlevsen and Madsen 1996) is especially convenient in computing 
both the probability of failure or the reliability index, because the neighbourhood of this point 
affects most strongly the value of a failure probability (Rackwitz 1982, Engelund and Rackwitz 
1992).

2 Non-linear Regression Method in Response Surface Modelling for Settlement Analysis 
Purpose

Examining the serviceability limit state of shallow foundations, one finds it convenient to know 
the function describing their settlement, depending on such variables as loads, geometric quanti-
ties and material constants, which may be considered as random variables. This function 
expressed as U(X) enables one to introduce the limit state function (c.f. section 3 in chapter 12) 
for further reliability computations. In practical applications, an explicit closed form of settlement 
function U(X)  is only rarely known. Most often, whenever program of the finite element method 
is available, we are able to determine the function values for the assumed material properties, 
loads and geometrical constants of the FEM computation model. In order to obtain the limit state 
function in the form appropriate for reliability computations, one can model a closed form of 
U(X) by means of a non-linear regression. Generally speaking, the form of the function U can be 
described by the following non-linear regression model. 

errfU BX,E                  (1) 

where E (U) is an expected value of  U, X is a vector of m independent variables, B is a vector of 
k unknown parameters of regression model f  and err is a random variable describing the error of 
estimation of  function U. The components of vector B are determined by the process of minimis-
ing the sum of the squares of differences between given quantities Ui and predicted quantities  iÛ

n

i
ii UU

2ˆ                    (2) 

for the set of n data: (Ui, Xil), i = 1, 2,..., n, l = 1, 2,..., m. Random variable err of the estimation 
error takes the zero expected value and its standard deviation is equal to: 

kn
serr

min     .               (3) 

There exist two classic methods of finding the minimum of function , namely the linearisa-
tion method and the steepest gradient method (Marquardt 1963). However, in computations 
they exhibit a slow convergence because of the frequently found shape of function  in the 
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p

space of parameters Bi. This space has the form of an elongated, tortuous canyon with steep 
sides and a slight slope at its bottom. In such cases, the directions of regression parameter 
changes obtained using both methods are almost perpendicular to one another. Therefore in 
our computations we used program NLIN2, which is based on Marquardt’s compromise 
(Marquardt 1966). This allowed select an indirect, optimal direction for the increment of pa-
rameter vector, thus rapidly accelerating the iteration convergence.

In this chapter a non-linear model with respect to independent variables and a linear model 
with respect to regression parameters were applied. The required accuracy of calculating pa-
rameters Bi was obtained in five iteration steps. 

3 FEM Assessment of Shallow Foundation Settlements   

Nowadays, one can find on the market various commercial programs that utilise the finite 
element method. We have taken advantage of the program PHASES (Hoek et al. 1992), which is 
a specialised program for plane state of strain. The problem of determining maximum settle-
ments of flexible shallow foundations resolves itself into a boundary problem of plane strain 
state of elasticity theory. If this problem, however, concerns the medium treated as an infinite 
or a half-infinite space it cannot be solved by means of the procedure most frequently used. 
According to this procedure one considers a sufficiently large area so that the effect of the 
assumed boundary constraints of this area on the parameters of interest are negligible. Unfor-
tunately, such a procedure in the case of determining displacement induced by the foundation 
load in the elastic half-plane leads to ambiguous results. The value of the determined settle-
ment tends to infinity if the discretised area enlarges to infinity. This is associated with a 
characteristic singularity of the solutions describing displacement in a plane state of strain 
induced by loads of non-zero resultants. For all such loads, displacement of each point of a 
half-plane tends theoretically to infinity. So, it is possible to determine explicitly the displace-
ments only in relation to the chosen reference point. In order to assure uniqueness of the 
solutions we have assume a recommendation given by the building code PN-81/B-03020 
(1981). According to this code, settlement of a foundation is determined by an elastic layer 
where stresses induced by the foundation exceed normal stresses caused by the dead weight of 
the soil by 30%. Utilising some results of the elasticity theory the thickness of this layer can be 
easily determined (Bauer and Pu a 2000) as a function of the foundation’s width, unit weight 
of the soil and the load applied. A computational model is presented in Figure 1.  

Figure 1. Boundary conditions of the subsoil and the strip foundation FEM model considered. 

      B
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The free surface is loaded with the load p = 0.4 MPa uniformly distributed on the segment 
whose length equals B = 2.5 m. The layer of 10.52 m thickness and 82.5 m width is fixed 
downward. The sides (edges) of this layer are entirely devoid of the freedom of horizontal 
displacements. In the neighbourhood of the imposed load, the number of finite elements is 
increased. The computational model of the FEM method comprises 1941 linear elements of 
triangular shape and has 2100 degrees of freedom. Taking advantage of this model the maxi-
mum displacements for the necessary values of Young’s modulus and Poisson’s ratio of soil 
were computed. 

4 Response Surface Models

In reliability calculations, it would be best to have an analytical form of the expression defin-
ing settlements of shallow foundations as a function of their dimensions, loads, geological 
subsoil conditions and material constants. Because of the non-existence of such a formula, we 
have been forced to obtain an approximate form of the necessary function of settlement. This 
may be done in various ways, e.g. by the use of recommendations given in building codes. 
However, if one makes use of the finite element method in order to obtain the set of settlement 
results, he may approximate these results, for example by substituting them with a polynomial 
of the second degree. The accuracy of computations can be improved by supplementing the 
polynomial of the second degree equation with an additional term whose form depends on the 
character of the problem under consideration. In the case of a foundation, it may be the term 
taking the form of an equation describing a sample settlement in the oedometer. 

The forms of settlement function depend on the parameters considered as random variables 
describing the foundation settlement in reliability calculations. In the present paper, material 
constants of soil, i.e. Young’s modulus and Poisson’s ratio, will be considered as random 
quantities. 

In the considerations presented below, we answer the question as to whether or not pro-
posed forms of approximate function describing shallow foundation settlement are suitable for 
reliability computations. 

4.1 Parabolic Response Surface
A polynomial of the second degree function is most commonly used in the response surface  
method applied to reliability problems. In the case of foundation settlements when only two 
random variables are assumed, we have: 

errXXBXBXBXBXBBXXU 216
2
25

2
142312121 ),(        (4)

where ),( 21 XXU   is settlement of the foundation at the point beneath the centre,  X1 and X2
represent Young’s modulus E and Poisson’s ratio , respectively, and err is the random vari-
able of the approximation error (zero-expectation random variable).  

The algorithm enabling one to determine the final values of the coefficients B is a modified 
procedure of non-linear regression which is based on the ideas reported in papers by Engelund 
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and Rackwitz (1992) and El Meligy et al (1997). In the case where a shallow foundation is 
considered it can be reduced to the following steps:  

given the expected values of  variables X1 and X2 , one may assume that an approximate 
interval of their variation is a double standard deviation of length with the expected value 
in the centre, for each variable
if  a  pair of values of material constants is chosen from the interval of their variation, a set 
of values for foundation settlement could be obtained. It should be stressed that the re-
sponse surface model (4) comprises a mixed term with coefficient B6. Because of the 
above, the rectangular variability domain of E and  should be covered uniformly in 
points whose respective values of settlement are determined. Computational points along 
the diagonal of a rectangle of the variation of material constants are not sufficient. Inser-
tion of the mixed term into Equation (4) may prove to be troublesome or pointless when 
the number of random variables in the problem exceeds two 
treating Equation (4) as a regression model, the initial values bi of parameters Bi are de-
termined by means of linear regression (compare Table 1) 
the surface ),...,,( 21 nXXXU  obtained in such a way is utilised to create a limit state 
function g(x) of the form: 

              nXXXUug ,...,,)( 21maxx               (5) 

 where umax  stands for a maximal allowable settlement 
next,  the design point on the limit state surface is found using the FORM method 
the above steps are repeated in the neighbourhood of a design point. Intervals of variabil-
ity are reduced, for example, to approximately half a standard deviation from the     values  

 determining a design point. This requires a new set of coefficients ib
Most often the design point coordinates defined in such a way are sufficiently accurate, 
which can be verified by MES computations. However, if this accuracy proves to be in-
adequate, the procedure described should be repeated with further reduction of variability 
ranges in neighbourhoods of design point coordinates. As before a new set of coefficients 

ib  must be determined by the regression procedure. 

Table 1. Parabolic regression coefficients versus Poisson's ratio mean values.

Successive regression 
coefficients

Poisson's ratio mean values 

 0.1 0.2 0.3 0.4 
B1 0.397839 0.410466 0.407413 0.436019 
B2 -0.030604 -0.032386 -0.031190 -0.043214 
B3 -0.060239 -0.080708 -0.057315 0.149711 
B4 0.000768 0.000832 0.000722 0.001025 
B5 -0.166729 -0.211499 -0.301765 -0.881754 
B6 0.004073 0.006113 0.007455 0.024773 

Standard deviation serr 0.000405 0.000458 0.001469 0.001812 
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For the last design point, respective reliability index  is determined and, next, failure prob-
ability according to the SORM procedure is assessed.

The above given approach to reliability computations involving response surface method-
ology may be hampered by the appearance of false design points. It should be noted that in the 
case of the limit state surface, whose left side is a polynomial of the second degree, more than 
one design point could exist. This results from the properties of a second degree polynomial 
surface. If on this surface a saddle point does not exist, then the intersection of the surface by a 
plane parallel to the plane of independent variables yields a close surface (line). The changing 
of physical independent variables into standard variables transforms this line into a closed 
contour with the origin of coordinates in its interior. This case could be troublesome in FORM 
and SORM computations.  

If a saddle point occurs on the surface, then its intersection by the plane parallel to the sur-
face of independent variables yields two branches along both of which the limit state condition 
of settlement function (4) is fulfilled (g(x) = 0). Such a phenomenon is shown in Figures  2, 3 
and 4.

Figure 2. Two branches of the limit state function in the „physical variable space”. 

Figure 3. Two branches of the limit state function in the standardised normal space. Random variables of 
the Young modulus and Poisson’s ratio have normal distributions. 
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Figure 2 presents fragments of the curves 0)(xg  in the system of „physical coordinates” 
(X1, X2), and Figs. 3 and 4 show these curves in the space being transformed  (Y1, Y2).   On 
each branch a design point can be found, i.e. the point of shortest distance from the origin of 
the coordinate system. Both points can yield intuitively satisfactory calculation values of par-
ticular physical parameters. In the examples presented, a false design point yields the lowest 
value of reliability index .

Figure 4. Two branches of the limit state function in the standardized normal space. The  random variable 
of Young’s modulus has a log-normal distribution and Poisson’s ratio is of a beta distribution. 

In order to check which design point represents a false solution, its „physical coordinates” 
should be applied as material constants to the FEM program, thus enabling an evaluation of the 
foundation settlement. If the settlement calculated in such a way is close to the limit settlement, 
the design point is the real one. When the false design point is positioned at the shortest dis-
tance from the origin of coordinate system then, defining the limit state function, some bounds 
for random variables ranges should be introduced to force the programme to find the local 
minimum distance from the origin. In some examples, in the course of reliability computations, 
design points with a too high coordinate value of Young’s modulus, about 23 MPa, were ob-
tained. However, earlier calculations, done by means a simplified method suggested by the 
code PN-81/B-03020,  displayed a value of about 11 MPa. In order to make the indication of 
“false  design point” impossible, the term ( X1 – 13)10 was inserted into the settlement function 
(4) for values of variable X1 exceeding 13 MPa. This insertion modified it in the following 
way: 

13)13(
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XforerrXXXBXBXBXBXBB

XforerrXXBXBXBXBXBB
U (6)

As a result of this constraint, the settlement function is smooth with its derivatives to the ninth 
order at line (hypersurface) X1 =13.

Such corrections can be made even after the preliminary series of computations has been 
completed. It should be noted that this trouble might appear not only in the case of settlement 
analysis, but also in each reliability problem, which is solved based on the response surface 
method involving a polynomial of the second degree as an approximation function. 
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4.2 Parabolic Approximation with Oedometric Term 
Parabolic approximation may appear to be sufficiently accurate only for narrow intervals of 
variation of Poisson’s ratio and Young’s modulus. Therefore in Table 1, as much as four ap-
proximations for four various expected values of Poisson’s ratio are presented. To arrive at 
sufficiently accurate approximations over a wide interval of random parameters, the second-
order polynomial response surface is improved by adding the “oedometric term”of the form  

                                            (7) 

This yields the following settlement function: 

err
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21      (8)

The results of approximation of the foundation settlements obtained using the above expres-
sion are presented in Table 2. 

Table 2. Regression coefficients for two ranges of the Young modulus. Parabolic regression models with an 
additional term  of the oedometric modulus. 

Successive regression coefficients Ranges of Young’s modulus 
 5 – 30 MPa 5 – 20 Mpa 

B1 0.237703 0.339195 
B2 -0.013756 -0.027901 
B3 -0.005953 -0.067943 
B4 0.000245 0.000700 
B5 -0.050773 -0.106475 
B6 -0.000066 0.004179 
B7 0.390865 0.448634 

Standard deviation serr 0.005668 0.003168 

The results presented are valid for the entire interval of variability of Poisson’s ratio from 0 to 0.5. 
In two columns, approximations over wide and narrow intervals of Young’s modulus are shown. 
Mean errors of estimation are exposed on the last line. The oedometric term enables a relatively 
accurate approximation over a wide interval of variability of random parameters of subsoil elas-
ticity.

The effect of two branches of the limit state function also appears in this case, which 
force us to impose restrictions on parameters variability in the limit state function, for example 
in the form presented in Equation (6).  
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5 Examples of Computation of Reliability Indexes 

5.1 Probabilistic modeling of subsoil characteristics   
The reliability computations were performed for the subsoil of a small elastic modulus (the 
expected value E(E) = 20 MPa), since in such subsoil random variability of compressibility 
characteristics is considerably greater than in the case of large moduli, the occurrence of which 
was proved by laboratory tests. Moreover, the settlements of such subsoil are more pronounced 
compared to the subsoil of a great elastic modulus, which can make the effects associated with 
random variability unnoticeable. In the examples presented, the compressibility characteristics 
of subsoil, in other words, Young’s modulus E and Poisson’s ratio , treated as an elastic me-
dium, are random variables.  The choice of proper probability distributions, and especially of 
variance (coefficients of variations), is highly important. Unfortunately, knowledge about 
statistical distributions of the values of parameters E and  for soils is very poor. Because the 
laboratory determination of those parameters in relation to soils is troublesome, high-number 
samples are determined very rarely, although they are essential in defining probability distribu-
tion or in estimating statistical moments. Literature (Meyerhof 1995, Becker 1996) 14provides 
only the information that the coefficients of Young’s modulus variability may reach great 
values. In the case of subsoil whose value of Young’s modulus E is low, the choice of log-
normal distribution seems reasonable, since for this probability distribution the value of E is 
not negative even at low expected values and great variance. This distribution was often used 
to describe the physical characteristics of soil, especially the strength parameters (e.g. El-
Meligy 1995, Brz ka a et al 1995).

It is worth mentioning that Poisson’s ratio changes within a relatively narrow interval. 
There is no available information about the random variation of this parameter in soils. Some 
authors accept the opinion that the randomness of Poisson’s ratio can be neglected in an analy-
sis of settlements taking place in the case of elastic subsoil (Brz ka a and Pu a 1996). In most 
examples analysed in this paper, we assumed for Poisson’s ratio a beta distribution symmetri-
cally distributed around the expected value. Beta distributions are of bounded supports. This 
fact corresponds with relatively narrow variation intervals of Poisson’s ratio. Plots represent-
ing probability density functions of these distributions are shown in Figure 5. In all cases 
shown in Figure 5, the coefficient of variation equalled 15%. For the expected value E( ) = 
0.4,  the variation interval [0.3, 0.5], and the 15% coefficient of variation, the plot of density 
changed its shape (see Figure 6). This shape was unacceptable because it provided increased 
values of probabilities at the ends of the variation interval. A decrease in the coefficient of 
variation at the same limits of the variation interval made this distribution similar to rectangu-
lar distribution (compare Figure 6). Finally, a rectangular distribution within interval [0.3, 0.5] 
was accepted. The coefficient of variation equals 14.5% in this case. It is evident that in order 
to keep the random variations of Poisson’s ratio in a reasonable interval of values, one has to 
assume that the coefficient of variation does not exceed 15%.

There is no information available dealing with the correlation between parameters E and .
The results reported by some researchers (Tsytowitch 1973) and the authors of the Polish 
building code PN-81/B-03020 (1981) may lead us to the conclusion that this correlation is 
negative; that is, the statistical decrease in the value of Poisson’s ratio corresponds to a statisti-
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cal increase in the value of Young’s modulus in soils. In order to make it possible to calculate 
failure probability when   

Figure 5. Poisson’s ratio probability density functions of a beta type. 

the correlation between random variables is taken into account, one has to determine the joint 
distribution of the random vector. If the random vector is not the normal one, this task can be 
difficult since it is necessary to have a large sample size for statistical verification in case of 
two- and multidimensional densities. Thus we made use of the so-called Nataf’s distributions 
(compare Liu and Der Kiureghian 1986). Following the Nataf procedure, one finds multidi-
mensional probability distribution, whose marginal distributions and the coefficients of 
correlation between them are assumed earlier. This allows us to search for failure probability, 
provided that one-dimensional distributions of particular random parameters and their mutual 
correlation relationships are known. Of course, one should be aware of the fact that such a 
procedure leads to certain approximations.    

5.2 Results of Numerical Computations
In numerical examples, exceeding the allowable settlement value of the point beneath the cen-
tre of a foundation is assumed as a failure criterion. This leads to the limit state surface defined 
by (5). Next, reliability index  and the equivalent probability of failure were evaluated ac-
cording to FORM and SORM procedures. In all examples presented, it was assumed that the 
distribution of Young’s modulus is a log-normal one with expected value E(E) = 20 MPa and 
standard deviation E = 3 MPa. The statistical moments yielded a 15% coefficient of variation. 
The threshold value of the settlement was umax = 0.12 m. All reliability computations were 
done using COMREL system (STRUREL 1995). Presentation of the results comprised only 
reliability indexes SORM computed by the SORM method. 

In the first series of examples, settlement computations were done using the finite element 
method and then the results were subjected to approximation by means of the parabolic re-
sponse surface method described in section 4.1. For each of four expected values of Poisson’s 
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ratio under consideration the approximating surface was different. Equations describing these 
surfaces are presented (as coefficients) in Table 1. 

 The assumptions accepted for the random variability of parameters were the same as speci-
fied above, but with one exception: for the mean value of coefficient E( ) = 0.4 additional 
computations were performed. Namely, it was assumed that the probability distribution of 
was normal, and that the coefficient of variation equals 15%.  It was assumed that random 
variables E and were stochastically independent. The results are gathered in Table 3. 

Figure 6. Modelling the p.d.f. for Poisson’s ratio ( E( ) = 0.4) 

Computations were done for four various expected values of Poisson’s ratio, whose probability 
distributions were described in section 6.1. Additionally, in the last column, one can find the 
values of settlement obtained for the design values of E and  computed by the finite element 
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method. The aim of such a computation was to check how accurate the approximation was of 
the limit state surface obtained when using the response surface method. According to assump-
tions of the SORM method, the design point occurs on the limit state surface; hence the 
settlement should be exactly 0.12 m at umax = 0.12 m. The results in the last column of Table 3 
prove that the accuracy of approximation can be considered satisfactory.

Table 3. Reliability calculations for parabolic response surfaces of  four Poisson’s ratio mean values. A 
constraint was introduced in the equations of response surfaces to prevent false design point evaluations. 

0.4*, 0.4** - respectively, normal and uniform distribution of Poisson’s ratio. 

Mean value 
of Poisson’s 

ratio 

Reliability 
indexes 

Design points Sensitivity factors Limit dis-
placements 

E [MPa] E FEM

0.1 2.43 13.78 0.099 0.999 0.030 0.12007 

0,2 2.73 13.24 0.188 0.990 0.138 0.12007 

0.3 3.20 12.49 0.258 0.964 0.256 0.12074 

0.4* 3.80 11.84 0.321 0.931 0.355 0.11846 

0.4** 3.80 11.77 0.325 0.951 0.297 0.11896 

E and  stochastically independent 

Reliability index  increases with the increase in the mean value of Poisson’s ratio, because the 
increase of the latter results in the decrease of soil settlements (for given value of the Young 
modulus E). The design values of Young’s modulus decrease with the increase in the mean 
value of Poisson’s ratio. It should be stressed that at small values of Poisson’s ratio (0.1 or 0.2) 
the random variability of this parameter is of minor significance when the reliability index is 
taken into account. This regularity is proved by small values of sensitivity factors  for 
mean values 0.1 and 0.2. The effect of randomness  on the value of index  heightens with 
the increase of the mean value of ratio . At the mean value of  equal to 0.4, the results ob-
tained are similar both for rectangular and normal distributions, although a stronger effect of 
the randomness of Poisson’s ratio on the reliability index yields a normal one. 

In order to have one response surface for the entire range of Poisson’s ratio as well as to 
increase the range of Young’s modulus variation, the computations were done by means of a 
response surface with the oedometric term (section 4.2, Equation (8). The computations com-
prise two cases, a broad (5-30 MPa) and narrow (5-20 MPa) interval of Young’s modulus. The 
coefficients appropriate for the surface described by Equation (8) are presented in Table 2. 

The results of reliability computations are gathered in Tables 4 and 5. The results in Table 
5 differ only slightly from those in Table 3 both in the reliability indexes and design values of 
the parameters. This statement is also valid when the effect of randomness on Poisson’s ratio is 
considered. Taking into account the fact that parabolic fittings were highly accurate (four sur-
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faces were dependent on the mean value of the value of Poisson’s ratio), we can recognise the 
approximation obtained by means of the surface (8) as equally useful. However, the surface (8) 
is advantageous since it contains practically the whole interval of Poisson’s ratio values. Also, 
the settlement values computed by means of the finite element method (the last column in 
Table 5) are very close to the threshold assumed (umax = 0.12 m). 

Table 4. Reliability calculations of parabolic response surfaces with an oedometric term. In the input data 
Young modulus has a 5-30 MPa range. 0.4*, 0.4** - respectively, normal and uniform distribution of Pois-

son’s ratio. 

Mean value of 
Poisson’s ratio 

Reliability indexes Design points Sensitivity factors Limit dis-
placements 

E [MPa] E FEM

0.1 2.25 14.35 0.099 0.955 0.024 0.11530 

0.2 2.48 13.94 0.193 0.951 0.094 0.11368 

0.3 2.84 13.40 0.268 0.930 0.218 0.11148 

0.4* 3.33 12.80 0.330 0.889 0.354 0.10866 

0.4** 3.35 12.77 0.333 0.906 0.302 0.10846 

E and  stochastically independent 

Table 5. Reliability calculations of parabolic response surfaces with an oedometric term. In the input data, 
the Young modulus has a smaller 5-20 MPa range. To carry out the necessary calculations there was a need 
to add a constraint to avoid false design points. 0.4*, 0.4** - respectively, normal and uniform distribution of 

Poisson’s ratio. 

Mean value of 
Poisson’s ratio 

Reliability 
indexes 

Design points Sensitivity 
factors

Limit dis-
placements 

E [MPa] E FEM
0.1 2.51 13.65 0.099 0.989 0.033 0.12121 

0.2 2.82 13.11 0.188 0.981 0.128 0.12126 

0.3 3.29 12.47 0.257 0.956 0.260 0.12104 

0.4* 3.83 11.88 0.307 0.902 0.411 0.12056 

0.4** 3.89 11.65 0.324 0.941 0.3234 0.12034 

 Cor(E, )=0
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On the other hand, the results in Table 4 differ from those in Tables 5 and 3. This means that 
when the range of values of Young’s modulus is increased, the fitting accuracy decreases de-
spite the repetition of the regression procedure. The results of settlement presented in the last 
column of Table 4 also confirm the poorer accuracy of the fitting, as they differ more signifi-
cantly from the threshold set (umax = 0.12 m) than do those in Table 5. On the other hand, if we 
assume that accuracy tolerance of the settlement computations is closer, being ca 0.5 cm, then 
the results in Table 4 may also prove to be satisfactory. Moreover, the values of reliability 
indexes  in Table 4 are smaller than those presented in Table 5, which suggests that computa-
tions were done with a certain safety margin. Comparison of the results in Tables 4 and 5 
allows one to acknowledge certain facts which are essential when the response method is con-
sidered in terms of reliability problems. Although the expected value of Young’s modulus E
equalled 20 MPa, the surface fitted the case of the modulus interval (5; 30) but fitted worse 
than it did in the case of the interval (5; 20). This proves that when  reliability problems are 
taken into account, the fitting of the response surface in the vicinity of a design point is much 
more essential than the same fitting in the neighbourhood of the values of the point composed 
of the expected values of random parameters.

In order to estimate the effect of correlation between parameters E and  on the reliability 
indexes, the computations of various values of the correlation coefficient were done. Some of 
the results are shown in the Tables below. In Table 6, one finds the results for positive values 
of correlation coefficient  = 0.3 and also the results obtained when it is assumed that Pois-
son’s ratio does not change randomly (constant value).   

Table 6.  The effect of the correlation coefficients between Young modulus and Poisson’s ratio on reliability 
calculation results. The parabolic response surfaces with an oedometric term and Young’s modulus in the 5-

20 MPa range was applied. 0.4*, 0.4** - respectively, normal and uniform distribution of Poisson’s  ratio.

Mean
value of 

Poisson’s
ratio 

Reliabil-
ity

indexes  
Sensitivity factors Design points 

Reliabil-
ity

indexes  
Design points 

E E [MPa] E [MPa] 

0.1 2.49 0.989 0.027 13.69 0.088 2.51 13.64 0.1 
0.2 2.73 0.986 0.096 13.26 0.167 2.83 13.02 0.2 
0.3 3.09 0.977 0.164 12.69 0.235 3.40 11.97 0.3 
0.4* 3.47 0.940 0.317 12.22 0.279 4.35 10.41 0.4 
0.4** 3.61 0.979 0.155 11.81 0.311  - deterministic 

 Cor(E, )=0.3

In Table 7, the results for negative values of correlation coefficient  equal to –0.2 and –0.6 
are shown. Comparison of the results in Tables 5, 6 and 7 leads to the conclusion that the reli-
ability index decreases with the increase of a positive correlation between the parameters E and 

 and increases when a negative correlation between E and  is higher. In the case of small 
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expected values of Poisson’s ratio, i.e. E( ) = 0.1 and E( ) = 0.2, the results for cases with 
zero-correlation and non-random (deterministic) parameter  are very similar, but they may be 
different when the expected value of Poisson’s ratio is greater.  

Table 7. The effect of the negative correlation coefficients on reliability calculation results. The parabolic 
response surfaces with an oedometric term and Young’s modulus in the 5-20 MPa range was 
applied. 0.4*, 0.4** - respectively, normal and uniform distribution of Poisson’s  ratio. 

Design points Sensitivity 
factors

Design points Sensitivity 
factors

E [MPa] E E [Mpa] E

0.1 2.53 13.65 0.106 0.989 0.034 2.57 13.54 0.122 0.989 0.031 
0.2 2.89 12.97 0.210 0.979 0.143 3.08 12.60 0.246 0.979 0.129 
0.3 3.48 12.27 0.276 0.934 0.327 4.08 11.29 0.351 0.906 0.385 
0.4* 4.17 11.61 0.328 0.867 0.477 5.47 10.89 0.378 0.741 0.646 
0.4** 4.19 11.51 0.334 0.893 0.427 5.51 11.19 0.360 0.710 0.680 

 cor(E, )=-0.2 cor(E, )=-0.6

If the assumption of a negative correlation in natural soil deposits is accepted and if there is an 
insufficient sample size to estimate the correlation coefficient statistically, then it would be 
safest to do computations assuming the stochastic independence of random variables E and .
Should, however, the correlation be positive (as in the case of some kinds of rocks), in the 
reliability computations the coefficient of correlation would have to be determined exactly in 
every case. Table 7 shows that the value of  reliability index  decreases when the correlation 
becomes higher, especially at greater values of the ratio . Taking into account the effect of 
probability distribution of Poisson’s ratio whose expected value E( ) equals 0.4 (uniform or 
Gaussian), we can arrive at the conclusion that this effect is not important. Smaller values of 
the reliability index and greater values of  sensitivity coefficient  are obtained for normal 
distributions. It seems, however, that a uniform distribution is better, because it guarantees 
that, from the theoretical viewpoint,  any unreal values of Poisson’s ratio do not occur. 

6 An application of neural network approximators to response surface model 

As it has been mentioned in the end of the section 4 the effect of two branches of the limit state 
function had appeared also in the case of parabolic response surface with the oedometric term. 
Difficulties caused by a false design point occurrence when the parabolic response surface is 
used in reliability computations are consequences of properties of the second degree polyno-
mial function as well as the necessity of rectification of variability intervals of independent 
random variables in the vicinity of investigated design point. To overcome this difficulties an 
application of  the neural network technique is proposed, namely the utilising of neural net-
work with a hyperbolical activation function. If a continuous function is approximated then the 
three-layered neural network with one hidden layered containing necessary number of neu-
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rones could give a satisfactory result. This is a consequence of the Kolmogorov theorem 
(Hecht-Nielson 1991). Neural networks allow approximation in cases of large variability inter-
vals of independent variables preserving sufficient accuracy. To get required accuracy, 
according theorem, the number of neurones in the hidden layer is increased. Hence, there is no 
need to enlarged accuracy of approximation in the vicinity of the design point and therefore 
avoiding of creation false design points is possible. In the example presented here a three-
layered neural network of two input neurones representing two independent variables, Young’s 
modulus E and Poisson’s ratio  , will be used. The hidden layer consists of two neurones with 
hyperbolic tangent as the activation function. The summation neurone with a bias is at exit. 
The architecture of the applied network is presented in Figure 7.  

Figure 7. The architecture of the neural network applied. The network consists of three layers. Two 
neurones are in the entrance layer. 

This network includes nine weights, that have to be found in the learning process. As the conse-
quence of the applied network the following response surface will be obtained: 

9726158322114 )tanh()tanh( BBXBXBBBXBXBBY              (9)

Instead of classical method of learning a network by the algorithm of backwards error propagation 
the nine weights B1 ...B9 were evaluated in a one iteration process of non-linear regression method 
based on Marquarth algorithm (Marquarth 1963). The  equation (9) has been applied to create the 
response surface for settlements in the example described in Section 5.1 (U = Y). Next the standard 
reliability computations were carried out. 

In Table 8 results of these computations are presented. It is worth mentioning that a single sur-
face was able with high accuracy to approximate settlements for entire variability area of Poisson’s 
ratio as well as wider area of Young modulus ( 5 - 30 Mpa). The obtained results are almost identi-
cal with those presented in Table3. This means that the response surface originated from neural 
networks can improve the fitness of approximation.  On the other hand neural network approxima-
tions allows to avoid false design points. This way the response surface originated from neural 
networks, despite of some computational troubles like saturation particular neurones, gives an 
efficient way for reliability computations concerning settlements of foundations. It seems to be the 
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best one among responses surfaces presented considered above.

Table 8. Results of reliability calculations for response surface originated from neural network. In the input 
data Young modulus and Poisson’s ratio have full their ranges. 0.4*, 0.4** - respectively, normal and uniform 

distribution of Poisson’s ratio. 

Poisson ratio 
mean values 

Indexes of 
reliability 

Design points  
Sensitivity factors 

Limit dis-
placements 

 E [Mpa] E FEM

0.1 2.49 13.66 0.099 0.997 0.039 0.12112 

0.2 2.79 13.11 0.190 0.991 0.115 0.12126 

0.3 3.22 12.52 0.260 0.968 0.260 0.12056 

0.4* 3.77 11.95 0.309 0.911 0.409 0.11985 

0.4** 3.82 11.75 0.324 0.947 0.317 0.11932 

 Cor(E, )=0

7 Single pile settlement

The purpose of this section is to demonstrate that utilising the neural network based response sur-
face allows to overcome difficulties in finding a design point when the FORM method is applied. 
The design point can be hardly obtain if the limit state surface is given by a close regular surface as, 
for example, a circle or an ellipse in two-dimensional case. This may happen when the response 
surface based on the polynomial of the second degree is applied. An example of single pile settle-
ment analysis will help to illustrate this phenomenon.   

   

Figure 8. Finite element model for pile settlement computations.Young’s moduli of upper and lower 
layers are lognormally distributed:(E1) 60 MPa; E 12 MPa; E(E2) 80 MPa, E 16 MPa. Poisson’s 

ratio for both layers: 0.25 (non-random). 
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Consider now a single pile embedded in a two-layered linear-elastic subsoil as it is pre-
sented in figure 3. Additionally it is assumed that: The thickness of the upper layer is h1=7.65,
pile’s length and diameter are L = 7.15 m and D 0.6 m, respectively. The pile is axially 
loaded by a force P 816 kN. As an allowable level of settlement umax 0.03 m  is assumed.
     

Figure 9. Limit state curves. The ellipse ori-ginates from second degree approximation. Dash line comes 
from neural network approximation. Dots represent FEM simulations. 

Two random variables, Young’s moduli E in both layers, were considered as stochastically 
independent. In order to obtain a response surface approximation a set of finite element simu-
lation, near allowable settlement level umax , were carried out. The mesh considered shown in 
figure 3. The pairs of moduli applied in finite element computations are marked by dots in 
figure 4. As a first attempt of finding the limit state surface by response surface method an 
approximation by a polynomial of the second degree was examined. This was done in accor-
dance with the eqn. (4), where X1 and X2 stand for moduli E1 and E2, respectively. The line 
obtained can be regarded as a good approximation of the limit state surface within the area 
marked by dots (area of FEM simulations). The other part of the curve is obtained automati-
cally as a result of applying equation (4). Checking coefficients (eqn. 4) by  well-known 
mathematical criterion it is easy to demonstrate that the curve is an ellipse in this case. In the 
figure 4 the gaps in ellipse are due to software drawbacks. Next the reliability computations, 
by means of the SORM method, in order to find measures pF and  were carried out. The shape 
of the curve and especially its image in the standard normal space (see Figures 9 and 10) pro-
duces false design point, which is marked as *

Fy  in Figure 10. This is caused by unjustified 
curvature produced by second degree approximation in the vicinity of the real design point, 
which is marked as *

Ty  in Figure 10. Finally the global minimum was found at the upper part 
of the curve instead of the local one. The coordinates of the point *

Fy  (in physical coordinates) 
were E1 65.66 MPa and E2 79.85 MPa. For these values the settlement was 0.0156 m that 
is far form the threshold umax 0.03 m (this part of the curve is far from the approximation 
region and does not reflect the settlement value). In Section 4.1 a method of inserting some 
constrains for random variables ranges in the limit state function was proposed. But applying 
constrains in the presented example did not lead to satisfactory results due to second order 
approximation drawbacks. 
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Figure 10. The solid line shows the image of the ellipse in the standard normal space. Only the false 
design point, denoted by *

Fy , could be foun in this curve. The true design point, *
Ty , was found in neural 

network curve (dash line). 

As a consequence in the next step the second degree approximation was replaced by a surface 
resulting from neural network approach, accordingly to equation (9). The resulting curve in 
“physical space” is marked in Figure 9 by a dash line. The field of approximation is the same 
as before (marked by dots in Figure 10). However, it was checked that the area of well fitness 
is far greater than in the case of second degree. The image of the curve in standard normal 
space is illustrated in Figure 10. Both curves in normal space and physical one show the lack 
of danger of obtaining any false design point. The “real” design point was obtained, which is 
marked as *

Ty  in Figure 10. This point has the following values of moduli E1 30.27 MPa
and E2 71.07 MPa and for them the settlement is 0.0307 m, which means that the design 
point belongs to the limit state surface (approximately). 

The above example demonstrates how the neural base response surface could help to over-
come difficulties in finding a design point in reliability oriented settlement computations.
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8 Concluding Remarks

Choosing the limit state function necessary for reliability calculations in its closed form is 
preferred. Unfortunately, the closed form often does not exist. The response surface method is 
chosen most often when the set of points of settlement being a function of variables considered 
as random variables is relatively large. Such a situation may arise if the number of field meas-
urements is large. However, the approximated form of the limit state function is most often 
determined by means of a certain numerical procedure, for example the finite element method. 
Using a polynomial of the second degree to approximate the set of data points is considered as 
a standard procedure. In order to reduce  labour consumption of reliability computations, it is 
advisable to modify this function. This allows for extending the area where it gives a satisfac-
tory approximation of the shape of the function being analysed. An additional term to the 
approximation by a polynomial of the second degree can be added. The form of this term de-
pends on the problem under consideration. In the case of shallow foundations (also raft 
foundations), it could be the oedometric term described in section 4.2. Inserting the oedometric 
term improves the quality of the fitting and enables the range of approximation to be extended. 

The examples analysed enable one to reach the conclusion that the response surface 
method is good enough to examine the reliability of the serviceability limit of foundations. 
However, it should be stressed that in these cases we are dealing only with two random vari-
ables. If the number of random variables increases the problem will become seriously 
complicated, because the amount of computations has to be increased substantially to estimate 
the coefficients of the assumed hypersurface. In such a case, the appropriate regression algo-
rithm, which affects significantly the fitting quality, is of vital importance. The algorithm 
based on Marquart’s compromise may be recognised as highly effective. The approximation 
efficiency can be improved by means of successive approximations, but in the steps following 
the first one the surface fitting takes place in the neighbourhood of the design point.

The characteristic feature of the response surface in the form of a polynomial of the second 
degree manifested itself as a possibility for obtaining the surface in the form of two branches. 
Both branches can have local minima which, in turn, may result in false design points. In order 
to avoid errors, we take advantage of the MES computations to verify the minima and then we 
introduce the appropriate constraints on the variation interval of random parameters. A more 
efficient way seems application the response surface originated from neural networks. It allows 
avoiding difficulties in finding “true” design point when the FORM and SORM methods are in 
use.

Results of the reliability computations done for shallow foundation settlement allows one 
to draw the following conclusions:

In the case of soils with small values of Poisson’s ratio (expected value E( )= 0.2, or  
smaller), the effect of random variability of this ratio on settlement variation is very poor and 
usually can be disregarded. 

Reliability index  corresponding to the probability of exceeding the settlement threshold 
increases with the augmentation of the negative correlation (its absolute value) between  pa-
rameters E and . Because there is no available information about the value of the correlation 
coefficient between these parameters, it seems safe to assume their stochastic independence. 
Scant information about this correlation in geotechnical literature constrains us to presume that 
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if there is a correlation between these parameters, it is negative. The possible existence of a 
positive correlation between the above parameters could complicate the problem, since the 
reliability index decreases with the increase of a positive correlation. 

The probability distribution of parameters E and v should be fitted in such a way that the 
appropriate random variables take the values admissible from a physical viewpoint. In the first 
place, it refers to Poisson’s ratio whose interval of possible values is usually considerably 
narrow, which also puts a constraint on the value of the coefficient of variation random vari-
able  . 

Probabilistic modelling of parameters E and  is difficult, because statistical data on these 
parameters for soils are sadly lacking. Such a modelling is of primary importance in reliability 
analyses of close accuracy.
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 Reliability of Laterally Loaded Rigid Piles

Wojciech Pu a1

Institute of Geotechnics and Hydrotechnics, Wroc aw University of Technology, Wroc aw, Poland

Abstract. Due to modernisation of main railway tracks in Poland there was a need to 
change the existing overhead electrical transmission lines together with their supports and 
foundations of the supports. One of possible way to construct a new foundation of such 
support is the direct connection of the support with a single pre-cast concrete pile embed-
ded in soil. The piles used are usually short, then in a certain soil conditions have to be 
treated as rigid piles and the ultimate soil lateral resistance has to be considered. Computa-
tions of rigid piles by Brinch Hansen method demonstrates high sensitivity of ultimate 
lateral loading to precise determination of the rotation centre of the pile under considera-
tion. The position of the centre is affected by some random factors, for example random 
variability of soil properties and loading applied. due to very complex nature of solution of 
equilibrium equations in the case of  Brinch Hansen method being in use any evaluation of 
safety measure constitutes rather difficult problem. Two alternative approaches are sug-
gested. one is an algorithm supported by some symbolic computations combined with some 
power series expansions. The second one bases on the response surface method and can be 
applied both for cohesive and non cohesive soils. Within the presentation some important 
numerical aspects will be discussed.  Additionally computational examples allow the study 
a relationship between “classical” safety factor versus reliability index as well as an effect 
of spatial averaging.  

1 Introduction 

Due to modernisation of main railway tracks in Poland there is a need to change the existing 
overhead electrical transmission lines together with their supports and foundations of the sup-
ports. One of possible way to construct a new foundation of such support is the direct connection 
of the support with a single pre-cast concrete pile embedded in soil (as presented in Figure 1). 
This kind of foundations was successfully applied in some important railway lines in Europe. A 
special equipment allows to install these piles in a fast way, which is important advantage (idle 
time reduction) in comparison with traditional block (massive) foundations. In the design of such 
pile foundations lateral forces and moments are of the vital importance. The piles used are usually 
short, then in a certain soil conditions have to be treated as  rigid piles and the ultimate soil resis-
tance must be considered. For rigid piles one of the most precise method to evaluate ultimate 
lateral resistance (Poulos and Davies, 1980) is the procedure recommended by Brinch Hansen 
(1961). In this procedure, the centre of rotation of a rigid pile has to be found. In can be demon-
strated that the value of the ultimate horizontal loading Hu , which can be applied in the head of 
the pile is extremely sensitive to a position of the rotation centre zr (Figure 1). Then the accuracy 

——————————
1 Co-author of the sections 3.3 and 3.4 is Adrian Ró a ski, Wroc aw University of Technology. 
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of determining the rotation centre is very important for a precise computation of an allowable 
horizontal force Ha . On the other hand the position of the centre is affected by some random 
factors. Among them the friction  

Figure 1. An example of overhead electrical transmission line support founded on a single pile (railway line 
near Wroc aw, Poland). 

angle of the subsoil as well as the uncertainty of geotechnical recognition ( the number of bore-
hols along the railway track can be not sufficient enough) are of the prime importance. Then an 
important problem is to investigate for such a value of the total safety factor which can guarantee 
a small probability that the applied load  Ha  exceed the ultimate loading Hu . This problem is a 
typical one within the framework of the structural reliability theory. However, due to the nature of 
the solution of the equilibrium equations, which could not be written in a closed analytical form, 
the existing structural reliability procedures could not be applied straightforward. The solution of 
the reliability problem will be demonstrated and discussed in the section 4 of this paper. 

2 General assumptions and the Brinch Hansen method 

The following general assumptions are imposed (see Figure 2): 

Figure 2. Laterally-loaded rigid pile. 
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A short rigid pile is considered with an unrestrained head. Any elastic deformations within the 
pile material are neglected. 
   In the state of failure the pile is assumed to rotate as a rigid body about a rotation centre  at 

the depth zr.
  The pile is subjected to a horizontal force Ha and the ultimate soil pressure at any depth z

below the soil surface is pu . 
  The limiting values Hu and Mu , to cause failure - that is, to mobilise the ultimate soil resis-

tance along the pile, may be obtained by considering equilibrium of horizontal forces and 
moments, and solving the following resulting simultaneous equations for the unknown 
depth of rotation zr , and the ultimate  horizontal load Hu :
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where L is the embedding of the pile in soil, D is its diameter or width and e is the eccentricity 
of loading. 

According to the Brinch Hansen approach (Brinch Hansen, 1961) the resultant (passive  mi-
nus active) ultimate lateral soil resistance (per unit area), based essentially on limit state and earth-
pressure theory, on an arbitrary depth z can be expressed by the following equation: 
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where )(zq is the effective vertical overburden pressure at the depth z
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and  , ‘ are unit weights above ground water table and below, respectively and c is the cohesion 
of the soil. The coefficients Kq(z), Kc(z) are the pressure coefficients which depend on the friction 
angle  of the soil, diameter of the pile and the depth z. They can be obtained by means of non-
linear interpolation formulae, where solutions for the ground level and solutions at great depth are 
utilised. Namely 
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The coefficients qK and cK are the coefficients for great depth. Namely: 
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Brinch Hansen has proposed the “total safety factor” as a measure of safety defined as the ratio of 
the ultimate lateral force Hu and the applied lateral force Ha            

a

u

H
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Now the equations (1) and (2) have to be solved with respect to unknown parameters zr and Hu
taking into account relationship defined by equations (3) – (15). It can be proved (Pu a 1997, 
2004) that the equation for the rotation centre zr can be written as follows: 
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where c denotes the cohesion of soil and ao, a’o, a1, a’1, a2, a’2, a3, a’3, b1, b’1, aq, ac are coeffi-
cients depending on soil properties, namely the  friction angle  and the unit weight , as well as 
load parameters like overburden pressure p and eccentricity e (see Figure 2). For example the 
coefficients ao takes the form 
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The complicated nature of the above dependencies produces significant difficulties in further 
reliability computations. By substitution of the equation (17) into (1) one gets (Pu a 2004)

rcrqrroou zaDcbzaDbzcaazcaacaaH lnln 11
2
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As before the coefficients in eqn. (19) are also functions of soil properties and load parameters. 

3 Random fluctuations and the reliability approach 

Applying the Brinch Hansen method in ultimate lateral resistance estimation it can be easily ob-
served a high sensitivity of the ultimate loading value Hu to a position of pile’s rotation centre zr.
Even small fluctuations in the position of the centre zr (of a range of 3.5 cm) can produce large 
variation in the value of the ultimate lateral force Hu (of a range of 5 kN to12 kN). This imposes 
that the coordinate zr  must be determined with  high precision by solving the equation (2). Of 
course it can be done with the help of a computer. On the other hand it is well known that random 
fluctuations of soil properties in natural deposits are usually significant and very important in the 
context of engineering computations. It is also follows from equations (1)-(15) that any random 
fluctuation of the angle of internal friction can caused substantial changes in the position zr of the 
rotation centre (strongly non-linear dependencies)  and hence in the value of the ultimate loading 
Hu. An example of such a phenomenon is presented in the Table 1. If some soil properties and 
loads are a subject of random variability then a natural question arises how reliable the total safety 
factor (eqn. (16)) is. An appropriate reliability problem can be formulated as follows: find the 
probability pF that the applied loading Ha exceeds the ultimate lateral loading Hu:
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Table 1. Changes of the ultimate lateral loading Hu  due to friction angle variability. 

Angle of 
internal friction  [o]

Position of 
the rotation centre zr [m]

Ultimate 
lateral loading Hu  [kN] 

26.4 2.106 13.30
27.5 2.110 14.61 
28.6 2.113 16.07 
29.8 2.117 17.67 
30.9 2.121 19.45 
32.1 2.125 21.43 
33.2 2.129 23.62 

The main difficulty in evaluating probability (17) is the lack of dependencies between the random 
soil parameters and the ultimate force Hu in an explicit form. As it can be seen from eqns (17) and 
(19) evaluation of Hu requires the expression for zr. Additionally relationships between basic 
random variables, like friction angle, and ultimate lateral force are of the complicated nature in-
volving many non-linear functions. In the framework of this chapter two ways of overcoming this 
difficulty will be suggested, namely: applying some symbolic computations and utilising the 
response surface method.  In both cases computations are supported by the SORM method (see 
e.g., Hohenbichler et al, 1987 or Ditlevsen and Madsen, 1995).

In the following instead of probability of failure pF the reliability index  is utilised, which 
is a measure more frequently used in structural reliability. Both measures are equivalent and 
correspond one to another by the relationship 

oFp  ,                (21) 

provided that 5.0Fp , where 0 is the standard normal one-dimensional distribution function. 
In order to evaluate reliability index corresponding to a given value of total safety factor 

F (eqn. (21)) the following computational steps should be applied: 
Select a value of the total safety factor F.
Assume that all random variables involved are constant and equal to their expected values. 

Applying these values evaluate the ultimate load Hu utilising equilibrium equations (1) and (2). 
For the value of F selected in step 1 find, by means of eqn. (16) value of the load Ha.
Assuming that Ha is a random variable with the expected value computed in step 3 and the 

friction angle is a random variable with characteristics given in Table 1 evaluate reliability 
index  corresponding to probability of failure pF given by (21). 

Repeat above steps for several values of total safety factor F.

3.1 Solution supported by symbolic computations 
The equation (17) can not be solved with respect to zr in the closed form. To obtain a closed for-
mula for zr  and consequently for Hu, the logarithmic terms in eqn. (17) can be expanded into a 
power series usually up to the term of degree three. This kind of approximation is easier in the 
case of cohesionless soils when only one logarithmic term appears in the equations (17), then   
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The substitution of the right-hand side of eqn. (22) into (17) allows to solve (17) with respect to 
zr. It is clear that the approximation point  is a function of the soil friction angle  as it is demon-
strated in the Figure 3. The suggested way of approximation can be efficient for probabilistic   

Figure 3. Approximation point  versus friction angle . The selected value is  = 1.97842

computations if one approximation point  can serve relatively wide interval of values of . In the 
Figure 3 there are two branches of the function ( ). The point selected for further examples has 
been marked in the central part of the lower branch. Having found the approximate equation for zr
one finds equation for the ultimate force Hu utilizing equation (19).  The resulting formula is very 
complex and long, however all transformations can be carried out  automatically by a computer 
systems doing symbolic computations, like Mathematica (2003) for example. Finally the resulting 
equation can be transferred to a code executing reliability computations according to FORM and 
SORM procedures. This way the probability (20) can be evaluated. It is necessary to mention, 
however, that in the case of cohesive soils the attempt to find an approximation point  serving 
relatively wide range of friction angle fluctuations has failed. 

3.2 Numerical example 
As an example consider a rigid pile embedded into cohesionless soil as presented in Figure 2. The 
input data for this example are given in the Table 2. The computations have been carried out by 
utilizing the procedure described above. This approach will be in the sequel called the “symbolic 
algorithm”. The reliability index  has been evaluated by means of the SORM method. Repeating 
the computations allows for investigations the reliability index  versus the “total safety factor” F.
The corresponding graph is presented in Figure 4. 
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Table 2. Parameters of the problem. 

Parameter Probability 
distribution 

Expected
value 

C.O.V.
(%) *

Friction angle  Lognormal 33.6 o 10;  15 
Applied load Ha Normal 8 – 25  kN 10; 15; 20 

Surface overburden p Normal 8.8  kNm-2 5 
Eccentricity e Normal 8.64  m 5 
Unit weight  Constant (nonrandom) 20.15  kNm-3

Pile’s diameter D Constant (nonrandom) 0.36  m  
Pile’s length L Constant (nonrandom) 2.9    m  

* C.O.V. =  coefficient of variation  = (standard deviation / expected value) 100% 

Figure 4. Reliability index  versus “total safety factor” F.

Sensitivity analysis has shown the friction angle random fluctuations are the most important 
among all parameters for the value of reliability index  ( = 0.88, provided that c.o.v.{ } = 10% 
and c.o.v.{Ha} = 10%  - the sensitivity coefficients  are defined in the Chapter 12). Another 
important random variable in the performed analysis appears the external lateral  load applied Ha
( H =     = -0.37 provided that c.o.v.{ } = 10% and c.o.v.{Ha} = 10%). 

It is easy to observe (Figure 4) that in the case of the friction angle variation coefficient of  
c.o.v.{ } = 15% the total safety factor F must be assumed at least  3 to guarantee the reliabil-
ity index on the level 3. For the value  of  c.o.v.{ } = 10%, total safety index of a range  
2.1-2.4  can be satisfactory to get level of  near 3. However it is worth mentioning that values 
less than 15% of c.o.v.{ } are rather not often observed in the case of inherent random vari-



Reliability of Laterally Loaded Rigid Piles 177

ability of friction angle. This shows the necessity of the use of high values of total safety fac-
tors F  when the Brinch Hansen method is applied in engineering computations. 

3.3 Solution basing on response surface method 
As a second solution of the problem considered the application of the response surface method 
is proposed. The response surface method has been described in the Chapter 13. In the case of 
numerical computations, relationships between the model parameters x1, x2,...xn, which are 
introduced as the input data (random parameters of the problem), and the values obtained as 
output data y = f(x1, x2,...xn) is defined. In the case considered within this study y = Hu.
The fitting of the function f is done by means of the non-linear regression analysis. Having the 
dependence Hu = f(x1, x2,...xn) the SORM method can be straightforward utilised. This way to 
each deterministically obtained (by substitution of mean values of random variables) value of 
the total safety factor F we are able to prescribed a certain  probability pF in accordance to (20) 
according to the algorithm specified in the beginning of the section3.

Let us now consider the example analysed in the section 3.2. In the beginning let us assume 
that the friction angle and the external lateral load Ha both of them having the same coeffi-
cients of variations c.o.v.{ } =  c.o.v.{Ha} = 15%. In order to determine the response surface  
y = Hu, a series of evaluations of the force Hu have been carried out for different values of  by 
means of equations (17) and (19). In this case for each value of  equation (17) has been 
solved numerically. Next by non-linear regression algorithm based on the Marquardt compro-
mise (Marquardt 1963) a dependence has been set of the following form 

                 dbaH
c

u                    (23) 

where the coefficients have been found as equal to a =  1.113,  b = - 0.1123,  c = - 4.208 and 
d = 0.5829. The above curve fits very well  - Hu dependence as it can be seen in Figure 5.  

         Figure 5. The response surface Pile length: L = 2.9 m 

Having the eqn. (23), reliability computations were carried out utilising two different approaches, 
namely the “symbolic algorithm” in conjunction with the SORM method and the response surface 
in conjunction  with the SORM method. The results in the form of reliability indices  are sum-
marised in Table 3. 
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Table 3. Reliability indices  corresponding to specified values of total safety factor F.

Total safety 
factor F

Expected value 
of the lateral 
force Ha [kN] 

Reliability index 
by „symbolic algo-

rithm” 

Reliability index 
by response surface 

1.2 21.92 0.37 0.38 
1.4 18.79 0.74 0.75 
1.6 16.44 1.08 1.09 
1.8 14.61 1.39 1.41 
2.0 13.15 1.69 1.70 
2.2 11.95 1.96 1.97 
2.4 10.96 2.21 2.22 
2.6 10.12 2.45 2.46 
2.8 9.39 2.68 2.69 
3.0 8.77 2.89 2.91 
3.2 8.22 3.10 3.12 

It is easy to see that  indices evaluated by support of the “symbolic algorithm” and the re-
sponse surface method, corresponding to the same value of total safety factor F only slightly 
differ one to another. Rounding results to one digit after point (which is quite reasonable in 
geotechnics) both indices (corresponding to the same value of F) are the same. This demon-
strates good quality of evaluation by applying response surface method. Note that in order to 
have the reliability index greater than 3 (the ISO 2394  standard requires 3.8 for moderate 
consequences of a failure) it is necessary to fix the total safety factor equal to 3.2. 

Results demonstrated in Table 3 are associated with the length of the pile equal to 
L = 2.9 m. In order to involve errors in precision of the pile embedding (imprecision of tech-
nology) response surfaces have been fitted to ultimate loading Hu in the case of different pile’s 
length, namely L = 2.4 m, L = 2.8 m, L = 3.0 m, L = 3.2 m and L = 3.4 m. This approach al-
lows to involve three random variables into the problem, namely the friction angle , the 
external lateral load Ha and the pile length L. After some numerical simulations a new response 
surface has been found in the following form: 

                  db
u caLH                   (24) 

As before, four unknown coefficients were determined by means of non-linear regression. It 
was found that: 

              411.9868.220 6.1411017.0 LHu              (25) 

The surface (25) fits computed values of Hu very well, as it is demonstrated in Figure 6. It is 
easy to see that the greatest values of the ultimate force Hu are obtained for the cases of large 
values both friction angle  and length of the pile L. In next steps the series of reliability com-
putations have been carried out. 
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Figure 6. The response surface obtained in two-dimensional case.  

Table 4 summarises the results. Evaluations have been made by the “symbolic algorithm” with 
the coefficient of variation of  length, c.o.v.{L} = 2% and by the response surface for two 
values of coefficient of variation: cov{L} = 2%  (5.8 cm) and c.o.v.{L} = 5% (14.5 cm). As in 
the case of  earlier computations the results of reliability indices almost coincide for both 
methods (regarding the same value of F). Comparing the results, presented in columns third 
and fourth of the Table 4, one can see rather small effect of length`s random variability, pro-
vided that the values of cov{L} are reasonable. 

Table 4. Reliability indices received from analysis with three random variables ( , L, Ha)

Reliability index 
by „symbolic algorithm” 

Reliability index 
by response surface 

Reliability index 
by response surface

Total safety 
factor F

cov {L} = 0.02 cov {L} = 0.02 cov {L} = 0.05 
1.2 0.36 0.37 0.35 
1.4 0.73 0.73 0.70 
1.6 1.07 1.07 1.01 
1.8 1.38 1.38 1.30 
2.0 1.66 1.67 1.56 
2.2 1.93 1.94 1.81 
2.4 2.18 2.19 2.04 
2.6 2.42 2.44 2.26 
2.8 2.64 2.67 2.46 
3.0 2.87 2.90 2.66 
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Finally it is worth mentioning that the numerical effort in the response surface method signifi-
cantly grows with increasing the number of random variables involved in the problem. 

3.4 Spatial averaging application  
By now reliability computations in the framework of this example have been performed with-
out any spatial averaging. On the other hand it is well-known that spatial averaging of soil 
properties random fields, proposed by Vanmarcke (1977), leads to more realistic values of 
reliability indices. Then in the next step the spatial averaging of the internal friction angle 
random field has been applied. According to this, a new random variable L  is defined as 
follows: 

L
L dzz

L
1 (26)

where (z) is the random function, which describes random variability of the friction angle 
with the depth z and L is the pile length (in cases where L is treated as random variable L  is 

understood as the expected value of L). The function (z) is assumed to be stationary with 
constant mean value m and constant point variance 2. The variance of L  can be computed 
as:

22VAR LLL (27)
In the present example the Gaussian autocorrelation function has been selected, which is con-
sidered as one of the most suitable for describing soil properties (Rackwitz 2000). The 
Gaussian autocorrelation function implies the following variance function 

2
2

2
2exp1erf

L

LLL
L ,   (28) 

where  is a fluctuation scale. Here, in the case of non-cohesive soils in vertical direction it 
was assumed as about 1 m or less (Cherubini 1997). Next computations were carried out for 
three different values of . Resulting values of the variance function are given in Table 5. Ta-
ble 6 shows resulting reliability indices. In the second column indices without spatial 
averaging are presented. This column is the same as the third column in Table 4. 

Table 5. Values of variance function for three different values of fluctuation scale 

Values of the fluctuation scale 
 = 0.6 [m]  = 0.8 [m]  = 1.0 [m] 

Averaging
length L  [m] 

Values of the variance function 
2.9 0.1933 0.2516 0.3070 
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Columns: third, fourth and fifth (in Table 6) demonstrate indices obtained when spatial averag-
ing has been applied. The results are also presented in graphical form in Figure 7. 

Table 6. The effect of spatial averaging on reliability indices (cov{L}=0.02)

Total 
safety

factor F

Reliability index 
 without spatial 

averaging

Reliability index 
 with spatial 
averaging

(  = 0.6 m) 

Reliability index 
 with spatial 
averaging

 (  = 0.8 m) 

Reliability index 
 with spatial 
averaging

(  = 1.0 m) 
1.2 0.37 0.76 0.70 0.65 
1.4 0.73 1.42 1.30 1.22 
1.6 1.07 2.01 1.85 1.73 
1.8 1.38 2.56 2.35 2.20 
2.0 1.67 3.06 2.82 2.64 
2.2 1.94 3.53 3.25 3.05 
2.4 2.19 3.96 3.66 3.43 
2.6 2.44 4.37 4.04 3.79 
2.8 2.67 4.77 4.40 4.13 
3.0 2.90 5.13 4.75 4.46 

Obtained results evidently demonstrate high influence of spatial averaging on reliability meas-
ures when safety of rigid piles is considered. Note that the total safety factor F of level 2.4 
gives relatively high values of reliability indices (greater than 3.4), if the averaging is applied. 

Figure 7. The influence of spatial averaging on  
the values of reliability indices 
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On the other hand it is worth mentioning that the effect of the value of fluctuation scale is 
remarkable. This means that the value of fluctuation scale has to be carefully selected and 
supported by laboratory testing.  

4 Concluding Comments

Random fluctuations of soil properties can caused significant changes in the value of ultimate 
lateral loading determined according to the Brinch Hansen method. Then reliability analysis can 
be an important tool indicating a save way in selecting parameters for design. The difficulties in 
applying commonly used structural reliability methods, due to complex nature of solution of 
equilibrium equations, can be overcame by applying the symbolic computations in conjunction 
with structural reliability FORM/SORM methods or by utilizing the response surface method 
associated with FORM/SORM. Both approaches can lead to practically identical results. It is 
necessary to remind that the “symbolic algorithm” produces significant numerical difficulties in 
the case of cohesive soil. This is caused that by the fact that the optimal approximation point for 
logarithm function expansion has not been obtained in this case. The response surface approach, 
however avoids some important numerical difficulties in “symbolic algorithm”. In the present 
study only non-cohesive soils are considered. But due to high “flexibility” of the response surface 
method generalisation for the case of cohesive soils can be obtained in the same manner as it is 
presented in section 3.3. On the other hand an important drawback of the response surface ap-
proach is the fact that numerical effort significantly grows with increasing the number of random 
variables involved in the problem. 

The effect of inherent variability of soil friction angle as well as uncertainty in the precise pile 
embedding have been considered within numerical examples. Comparison of the total safety 
factors versus reliability indices shows a vital role of spatial averaging as well as the importance 
of precise evaluation of the fluctuation scale value. Reliability computations in conjunction with 
spatial averaging give evident growth of reliability indices. In author’s opinion the spatial averag-
ing along the length of the pile should be incorporated into reliability computations of a pile 
foundation, provided a reasonable evaluation of the fluctuation scale is available. 
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Case history: Pile Foundations of a Large Gantry Crane
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Abstract. Direct motivation for the present study was the reconstruction of the existing 
gantry crane foundation situated in one of the major factories in the Northern part of Po-
land. The problem has been analysed in connection with the excessive settlement of the 
part of the track founded on the approximately 9-meter thick layer of non-compact em-
bankment. One of suggestions of repair works assumed the carrying out of the jet-grouting 
columns under the beam. It seemed that random fluctuations in flexibility or bearing capac-
ity of piles had resulted in large random fluctuations of bending moments of the beam. A 
static scheme as well as random model has been proposed. Then a procedure of evaluating 
random fluctuations of bending moments, based on Monte Carlo method, has been elabo-
rated. The procedure can serve the cases when piles work within the elastic range, as well 
as in the cases when some piles under the beam are over-loaded and the load has to be car-
ried by other piles. The computations have provided evidence for a considerable influence 
of the fluctuation of the pile bearing capacities on the bending moments. The extent of that 
effect, of course, depends, first of all, on the bearing capacity fluctuation range, measured 
by the coefficient of variation. It can be demonstrated that in the situation when the limit-
ing bearing capacities of the piles have been exceeded, the positive correlation causes a 
considerable increase of the absolute value of the bending moments. When accompanied 
by the high values of the reliability index, the values of bending moments obtained from 
the probabilistic analysis may considerably exceed the moments from the deterministic 
computations.

1 Introduction 

The estimation of the random variability of bending moments inside the beam of a pile foundation 
constitutes a very important problem from the point of view of civil engineering. The problem 
was firstly considered by Evangelista et al (1977). The case study of the reconstruction of the 
existing gantry crane foundation was the direct motivation for the present analysis.

Due to large subsoil deformations it was necessary to reinforce the existing foundation. One 
of suggestions of repair works assumed the carrying out of the jet-grouting columns under the 
beam. It seemed that random fluctuations in flexibility or bearing capacity of piles might result in 
large random fluctuations of bending moments of the beam. This effect can be especially impor-
tant in the case of long foundation beams supported by large numbers of piles. The procedure of 
evaluating random fluctuations of bending moments, based on Monte Carlo method, has been 
elaborated. As basic random variables the flexibilities and bearing capacities of individual piles 
were considered, while their random changes can be roughly evaluated by means of data collected 
from load testing. The procedure can serve the cases where piles work within the elastic range as 
well as in the cases where some piles under the beam are over-loaded and the load has to be car-
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ried by other piles. Thereafter, the computations concerning already mentioned case of gantry 
crane foundation have been carried out. These are commented largely within the present paper. It 
turned out that all piles have worked inside an elastic range. Therefore an additional example is 
considered to show some interesting features of random bending moments when the limiting 
bearing capacity of selected piles under the beam has been exceeded. 

2 The Foundation of the Gantry Crane 

As it has been already mentioned, the underpinning of the track foundation of a large gantry crane 
in one of major factories in the Northern part of Poland was the starting point for the further 
analysis. In this work the method of structural reliability analysis has been applied to test the 
correctness of the suggested improvement design. The reconstruction of the foundation has been 
analysed in connection with the excessive settlement of the part of the track founded on the ap-
proximately 9-meter thick layer of non-compact embankment. The fill was deposited in the place 
of an excavation left after the exploitation of sands. On the track section founded on the made 
ground occurred a distinct subsiding trough, corresponding in its extent, approximately, to the 
backfilled excavation, that is circa 80 m. The total length of the gantry crane track amounts to 120 
m and consists of six 20-meter shallow foundations. The beam had the T-section with the footing 
width of B = 1.4 m, the web width b = 0.5 m and the total height of h = 1.30 m. 

Geodesic measurements made revealed considerable differences in the settlement on particu-
lar track sections, maximally reaching about 100 mm. Such large settlements, increasing in time 
and impossible to be immediately rectified, precluded safe operating of the gantry crane and de-
manded undertaking of the repair work. Geotechnical conditions of the crane track foundation are 
basically not differentiated. The southern crane beam has been founded on the subsoil, whereas 
the northern beam has only partially been founded on the unconsolidated embankment. The
thickness of the embankment according to the geological documentation, however, amounts to 
9,3 m, starting from the level of the track beam foundation. Below the made ground there are 
non-cohesive subsoil: sands, gravels and run-of-mines with density factor ID=0.55. The suggested 
repair work design assumed the carrying out of the jet-grouting columns under the beam, on the 
section where considerable settlement occurred. The type of piles involved in this technology 
permits to transfer the load from the crane track to the subsoil deposited below the embankment 
(sands, gravels and run-of-mines), without the additional elements transferring the load from the 
crane track to the pile. 

The designed piles were supposed to be made under the track beam footing, through the 
holes bored in the beam flange. Under each of the three strengthened 20-meter track sections 
14 piles have been designed, with the spacing of 1.45 m (see Fig. 1). The technology of the 
piling demands the carrying out of the rebores with circa 150 mm diameter. That results in 
cutting of some of the reinforcement bars and thus the weakening of the section in the fulcrum. 
Therefore, it has been assumed that the key points of the beam, demanding a detailed analysis, 
are not the sections in which the maximal bending moments occur, but the sections weakened 
by the rebores. 

The loads are transferred from the gantry crane to the beam by eight wheels (from the two 
travelling crabs of the crane – see Figure 2) with the following wheel spaces: d1 = 0.85m, d2 = 
1.15m, d3 =0. 85m, d4 = 3.45m, d5 = 0.85m, d6 = 1.15m, d7 =0.85m. Particular wheels transfer the 
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following loads: R1 = 140.58 kN, R2 = 94.95 kN. The gantry crane may occur at any place of the 
beam. The diagram of the load has been shown in Figure 2. 

Figure 1. Positions of piles under the foundation beam. 

The computations have been carried out for all the sections above the piles and selected sections 
in between, in the process of shifting the crane wheels by 0.50 m. That permitted to mark the 
influence line for the average values of the bending moment at selected points of the beam and 
the influence line of the standard deviation of the bending moment.

Figure 2. An example of foundation loaded by the travelling crab.

The preliminary analyses have proved that the load quantity and the load-bearing capacity of the 
assumed piles provide evidence that the piles work in the elastic range, so the case has to be stud-
ied as a random stiffness problem. The probabilistic model for solving the problem of that type 
has been suggested below. 
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3 Deterministic Model  

3.1 Elastic Range
The static diagram of the continuous beam has been assumed, where the beam is founded 

on a pile series, which has been investigated according to the method of forces. Each pile is 
represented by the support loaded along the longer centre line of the beam, in accordance with 
the linear dependence of the load and the settlement, until the limiting bearing capacity has
been achieved. For the amount of piles larger than two, as it happens hereby, the structure
becomes statically indeterminable. In such cases the relevant determinable structure was used, 
replacing the actual one (see Figure 3). In the equivalent structure the left end of the beam has 
been restrained, and the piles – removed and replaced by the unknown reactions, thus creating 
a cantilever beam. 

The reactions in r1, r2, ..., rN piles, as well as the displacement y0 and the angle of rotation 
0 of the left end of the beam make for N+2 unknowns. According to the condition of the 

method of forces, when the relative displacement of the point connecting the beam to each pile 
must be equal to zero, one gets N canonical equations. The additional two equations, necessary 
for the solving of the structure, are obtained from the conditions of the static equilibrium con-
ditions. In that case, the sum of vertical forces and moments has to be equal to zero. The 
canonical equation can be written in the following way: 

r1 k,1+r2 k,2+...+ri k,i+...+rN k,N– y0– lk 0 – k,F = 0          (1)

where : k = 1,2,...,N, ri is the reaction in the i-th pile, y0 denotes vertical displacement of the 
left end of the beam of the pile structure, 0 is the angle of rotation of the left end of the beam 
of the pile structure, lk denotes the distance between the pile k and the left end of the beam, k,i
is relative displacement of the point of tangency of the k-pile with the beam, caused by the 
unitary reaction of the pile i, and k,F  denotes vertical displacement of the point of tangency of 
the pile k with the beam caused by all the actual vertical loads affecting the beam. Static equi-
librium equations have the following form (see Figure 3): 
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where: Fj is the concentrated load j affecting the foundation, n is the number of the forces, j
denotes the distance between the force Fj and the left end of the beam. For i = k the coeffi-
cients of the system of canonical equations are equal to k,k = yk,k + sk,k, where yk,k is the 
displacement of the point of tangency of the pile k and the beam, caused by the unitary reaction 
in the k-pile, and sk,k is the k-pile settlement under the influence of a unitary force. For the pile 
k (regardless of the influence of neighbouring piles) the following dependences hold: 
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Figure 3. The scheme of the pile system a) pile structure b) equivalent structure. 

kall
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ws                   (5) 

where w is the pile settlement, when its bearing reaction equals the allowable bearing capacity 
Pall-k (e.g. suggested in the design). When we take into account the influence of the neighbour-
ing pile settlement for i k, k,i = yk,i, then: 
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where EI is the stiffness of the pile capping beam. k,F is calculated in a similar way: 

n

j
jkjFk FV

EI 1
, 6

1                  (8) 



190 W. Puła and Jarosław Rybak

where:
jkjkj lllV 32     for     lk > lj                                  (9) 

kjkkj lllV 32     for     lk < lj                                  (10) 

In matrix formulation the system of equations can be written as follows: 

R =                                                               (11) 

where is the matrix of canonical equations coefficients 
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R and  are the following vectors: 

R = [ r1, r2, ..., rN, y0 , 0] T                                            (13) 
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3.2 Plastic range
The following procedure should be applied, if we take into consideration the exceeding of the 
limiting bearing capacity. If in formula (5) Pall-k  stands for a certain arbitrary value (allowable 
capacity), which will not be exceeded by the reaction rk, therefore pile k may be treated as an 
elastic support, and the parameter defined in formula (5) may be treated as its flexibility. 
Whereas, when the reaction rt in the pile t exceeds limiting bearing capacity of the pile Pgr-t,
the dependence of the pile load and its settlement is non-linear. If from the above-presented 
system of equations results that the reaction in pile t exceeds the value of Pgr-t, the equation 
(11) must be transformed. In the matrix of the system of equations coefficients, the row t and 
the column t are erased, as well as the row t in the vectors R and , whereas the indices of the 
matrix elements are reduced by 1 if they are larger than t.

Additionally, the right-hand side vector of eq. (11) is replaced by the vector ’:



Case History: Pile Foundations of a Large Gantry Crane 191
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Finally, a new system of equations is formulated: 

’R’ = ’               (16) 

with N+1 unknowns. If the above-presented system of equations does not indicate that any of 
the consequent pile load has exceeded its limiting bearing capacity Pgr-t, then the indices of the 
R -vector assume their original values, and the reaction rt equals Pgr-t. Otherwise, the equation 
(16) must still be modified. 

4 Stochastic Model 

In general case a vector of basic random variables is considered to be a vector of capacities of 
piles ),...,,(),...,,( 2121 nallallalln PPPPPP . If piles run solely in the elastic range, stiffness of
individual piles are considered as random variables. If, however, for any pile the elastic range is 
exceeded and a pile works in the plastic range, then the capacity of such pile is assumed as ran-
dom variable. When the plastic behaviour is considered, it is always necessary to define a 
criterion, which separates elastic and plastic behaviour. The criterion can be defined as a function 
of random capacity of pile. Within present study random bending moments ),...,,( 21 nPPPM in the 
foundation beam as function of random capacities (or flexibilities) are the subject of interest. 
Then the limit state function can be written as: 

),...,,(),...,,( 2121 nmaxn PPPMMPPPg                        (17) 

where Mmax denotes a threshold moment value, which is defined among assumptions of the 
problem. It can be, for example, the design value. The eq. (17) can be associated with several 
cross-section of the beam, namely these, which are most important form the design point of 
view. In the case of negative values of bending moments the limit state function takes the fol-
lowing form, 

minnn MPPPMPPPg ),...,,(),...,,( 2121                       (18) 

Hence probability of failure can be evaluated as   

       0),...,,(P 21 nmaxF PPPMMp   or 0),...,,(P 21 minnF MPPPMp             (19) 
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In this paper, however, the task will be rather formulated in the inverse form. Namely, for given 
value of probability of failure pF (or, equivalently, the reliability index Fp1

0 , where 0 is 
the standard normal distribution function) the threshold value Mmax (or Mmin) will be investigated. 
Such value should be assumed for the calculation of the reinforcement, which means the di-
mensioning for the pre-defined reliability level. The application of the efficient methods of 
structural reliability analysis, like FORM/SORM (Ditlevsen and Madsen 1996), is limited by 
the number of piles (the number of basic random variables) or by the possibility that the piles 
exceed the elastic range. In that case, the application of the Monte Carlo simulation method 
appears to be the optimal solution. 

 Let us now consider a foundation of the gantry crane described in the previous sections. Let 
],0[ Ly  denote the coordinate of an arbitrary selected cross-section on the foundation beam 

with respect of the beginning of the beam (the left end of the beam). The random bending 
moment in y-section will be described by the random function Q,, xFyM , where F(x) is a 
random variable of load exerted by the travelling crab wheel, depending on the location of the 
crab on the beam x, and Q = (Q1, ...,Qn) is the vector of random flexibilities of piles. Beneath, 
some preliminary assumptions are specified: 
1. The location of the eight crab wheels is a random variable with uniform distribution along 

the length of the beam, which means that any location on the beam is equally probable. 
That assumption corresponds with the conditions of the gantry crane operating.

2. The coordinate x is defined as the location of the first travelling crab wheel (the wheels 
may be located beyond the beam, and then they do not affect the its loading) 

3. For any value of the coordinate x the random variable F(x) is stochastically independent of 
the random vector Q = (Q1, ...,Qn).

Within this and the next section we confine ourselves to the assumption that for given value of 
coordinate y the value of loading F(x) is constant and non-random. The loading value F(x) is 
assumed as design load calculated in accordance with the Polish standards. The location of 
F(x) remains random according to the assumption 1. Let us consider two-dimensional random 
vector (My,X) at the point y, whose coordinates are random variables of the bending moment at 
the point y and the location of the crab. The variables My and X are not stochastically inde-
pendent. Let f(m,x) denote joint probability density function of vector (My,X). Then, the 
probability that the bending moment My exceeds certain threshold value M0, defined a priori, 
equals: 

b

a M
yF dmdxxmfMMPp

0

),(0                           (20) 

The joint density f(m,x) may be written as: 

)()(),( xrmfxmf x                    (21)

where )(mfx  is the conditional density of the bending moment M, on condition that the first 
wheel of the crab is located at the point x on the beam. Substituting (20) to (21) and bearing in 
mind assumption 1, one gets: 
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where a and b are, correspondingly, the coordinates of the two ends of the beam track. The condi-
tional density )(mfx  is computed by Monte Carlo simulation. However, in the situation when the 
time-invariant reliability analysis is carried out with all the crab locations on the beam are equally 
probable, it is indispensable to concentrate on finding such crab location which brings about the 
most unfavourable bending moment in the considered section y. In course of gantry crane opera-
tion the above-described crab location is a certain event, which generates the highest failure 
probability, then by applying eq. (22) one gets 
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xyF dmmfMMPp               (23) 

where x0 is the most unfavourable travelling crab location on the beam. That point can be deter-
mined by the analysis of the influence lines. 

5 Case Study   

In order to apply the previously presented procedure for selected beam sections, the influence 
lines for the expected value and the standard deviation of the bending moment were determined. 
Those lines allowed to identify the points x0 for the analysed sections (x0 is, of course, different 
for various sections). Figure 4 provides an example of influence lines at selected points of the 
beam, namely above the 5th and the 4th pile. Further computations have been carried out under the 
following assumptions: 
a.  Only elastic range of pile work has been considered. 
b.  Flexibilities of individual piles are assumed to be independent, lognormally distributed random 

variables. It could be demonstrated by examples (Pu a 2004) that in the case of solely linear 
pile work, the assumption of independence leads to more conservative evaluation of safety in-
dices.

c.  By analysis of reports from piles load testing (for example Gwizda a 1997, Rybak 1999) the 
coefficient of variation in each case of flexibility has been assumed as equal to 20%. This 
seems to be reasonable for the piles in jet-grouting technology. 

d.   The sample size in the simulation process was Nss = 10000   for each cross-section y.
The distributions of bending moments (with sample size of Nss=10000) for several cross-sections 
y have been obtained as results of such computation. These distributions were estimated by nor-
mal distributions by means of least squares method. Next, goodness of fit was confirmed by 
statistical testing (Kolmogorov-Smirnoff and Anderson-Darling). 

In case of the section above the pile no. 5 Gaussian distribution was obtained, with the pa-
rameters: E{M} = 510.3 kNm and  {M} = 32.0 kNm, when the wheels of the travelling crabs 
had the following positions: the first wheel was located at the distance of 5.5 m from the begin-
ning of the beam, whereas for the section above the pile no. 4 - E{M} = 508.7 kNm and  {M} = 
36.6  kNm when the first wheel of the crab was located at the distance of 3.5 m from the begin-
ning of the beam. 
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Figure 4. The influence lines of the bending moment mean value and the mean value increased by the 
doubled standard deviation above the 5th pile (Figure a) and 4th pile (Figure b). 

Additionally, above the pile no. 4 for negative values of bending moments when the first crab 
wheel was placed at the beginning of the beam, the estimated Gaussian distribution was charac-
terised by the parameters: E{M} = - 386.6 kNm and  {M} = 61.2 kNm. The threshold values of 
the bending moments for the existing foundation beam have been estimated on the basis of the 
accessible documentation. They equalled: Mmax= 540 kNm and for the negative values of bending 
moments Mmin= - 420 kNm. The corresponding reliability indices failure probabilities are for the 
pile no. 5: 

93.0177.0 1
0 FmaxF pMMPp

and for the pile no. 4: 

55.0292.0

86.0197.0
1

0

1
0

FminF

FmaxF

pMMPp

pMMPp

If we want to obtain the reliability indices at the satisfactory level of   = 3.0, the following 
threshold values must be presupposed: Mmax= 606.3 kNm above the pile no. 5, Mmax= 618.5 kNm 
above the pile no. 4 and Mmin= - 570.2 kNm in the case of pile no. 4. It becomes evident that the 
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above-mentioned values are considerably larger than the ones that have occurred in the design. 
The relation between the reliability index  and the section bending strength above the pile has 
also been analysed (Figure 5.). In the case of designing a “new” object such procedure allows for 
the dimensioning of the structure that leads to the identical reliability index for each bent section.
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Figure 5. The relation between the reliability index  and the section bending strength above the pile. 

The computations carried out with respect to flexibility of piles lead to the following conclusions: 
the previously presented computation of the failure probability permits to verify the tradi-
tional computation method 
random pile flexibility may result in a considerable bending moments increase 
the beam sections above the piles, which are additionally weakened by the rebores, may be 
especially subject to failure caused by bending 
although random pile bearing capacities were characterised by the coefficient of variation 
equal to 20%, the resulting coefficient of variation for the bending moments was circa 8%.

6 Remarks on plastic behaviour 

The case study presented in section 6 deals solely with the elastic behaviour of piles. It was a 
natural consequence of the bearing capacities and loads of the piles, assumed for the needs of the 
design. Therefore an additional example is considered to demonstrate features of random bending 
moments when the limiting bearing capacity of selected piles under the beam has been exceeded. 
As it has been already mentioned in section 4 it was always necessary to define a criterion which 
separates elastic and plastic behaviour, when the plastic behaviour is considered. Let us assume 
that 

ttgr PP 2                  (24) 

in which Pt is the random bearing capacity of the pile t, treated here as the limiting bearing 
capacity accepted for the purpose of the design. In the beneath considered example the follow-
ing assumptions have been accepted: 

The row of 11 identical piles covered by a capping beam transfers the load from 6 columns 
to the subsoil (Figure 6).  
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The value of axial force in each column equals Fi = 1800 kN, i = 1,2,…,6.
The bearing capacity of each pile is a random variable of the expected value 

4.683E tP kN and the coefficient of variation cov{Pt} = 0,15 (standard deviation 
5.102Pt  kN, t = 1,2,…,11). 

Constant stiffness of the capping beam along the whole length EI=653386 kNm2.

Figure 6. The considered design scheme (The dimensions have been given in meters).

The computations have been carried out for 4 different series of probabilistic data: 
Series 1. The bearing capacity of a single pile is a random variable of Gaussian distribution. 
The bearing capacities of each pile are independent random variables. 
Series 2. The bearing capacity of a single pile is a random variable of Gaussian distribution. 
The bearing capacities are, however, correlated in accordance with the following mutual rela-
tions: for the piles located at the distance of d = 1.3 m the correlation coefficient equals =
0.4; if d = 2.6 m then = 0.3; if d =3.9 m then = 0.2; if d = 5.2 m then = 0.1; for the larger 
distances, = 0. 
Series 3 The bearing capacity of a single pile is a random variable of lognormal distribution. 
The bearing capacities of each pile are independent random variables. 
Series 4. The bearing capacity of a single pile is a random variable of lognormal distribution.  
Assumptions concerning correlation structure are identical as in Series 2. 
The sample size in the simulation procedure was Nss = 15000. Such number is unlikely to be 
sufficient for the estimation of the failure probability of the order of pF = 0,001 (the required 
number is circa M = 1000000). Thus, the obtained histograms were further processed, after which 
relevant probability density functions were matched. For such hypothetical probability density 
functions, the threshold values of the bending moment were assigned. In course of computations, 
the results for particular series of probabilistic data were monitored in order to determine the 
frequency of exceeding the limiting bearing capacity of piles. Table 1 presents the number of tests 
in which the limiting bearing capacity of one pile, at the least, was exceeded. 

It is evident that, in the considered case, correlation between the bearing capacity of single 
piles has a larger impact than the type of distribution. The expected values and standard devia-
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tions of the bending moment in 11 capping beam sections, calculated on the basis of the simulated 
series of data, have been presented in Table 2. 

It must be noticed that standard deviations along the whole length of the capping beam 
vary insignificantly. The variability of the mean value effects in considerable fluctuation of the 
coefficient of variability. Moreover, the expected values of the bending moments depend on 
the correlation of the bearing capacity of the piles, to a larger extent than on the distribution 
type (Gaussian or lognormal). 

Table 1. The percentage of samples in which the limiting bearing capacity of one pile, at the least, was 
exceeded (15 000 series of considered data). 

 Gaussian 
distribution 

Lognormal 
distribution 

independent 5873 (39%) 6053 (40%) 

correlated 6798 (45%) 7043 (47%) 

The introduction of the correlation between the bearing capacity of piles increases the absolute 
value of the expected values of the negative bending moments. In the case of the positive 
bending moments – contrarily – the absolute value decreases when the correlation occurs. 
Moreover, correlation, on the one hand, triggers the increase of the standard deviation in the 
central part of the beam, and, on the other, it brings about the decrease of the same property at 
the both beam ends. The threshold values of the bending moments have been calculated ac-
cording to the formula 19 for the reliability index = 3.0, which corresponds to failure 
probability pF = (- ) = 1,35103. As it was previously mentioned, due to small probability 
values pF, the accuracy of threshold values calculation depends, to a large extent, on finding of 
the appropriate probability distribution functions. Those probability distribution functions are 
estimated according to the moment method. It has been verified that Gaussian distributions 
have been well fitted to these previously obtained by simulation. 

The threshold moments evaluated in this way, for earlier mentioned four series of calcula-
tions are presented in Figure 7. When we compare the threshold values for the four 
computation series demonstrated above, we mustn’t overlook the considerable increase of their 
absolute value in the central part of the beam after the correlation of the pile bearing capacities 
has been taken into account. Once the positive correlation has occurred, there’s a larger chance 
for the same phenomenon to take place in the neighbouring pile or even piles. It is interesting 
that this effect is much more visible when the Gaussian, and not lognormal, distribution is 
taken into account. 

When we compare the threshold values for the four computation series demonstrated 
above, we mustn’t overlook the considerable increase of their absolute value in the central part 
of the beam after the correlation of the pile bearing capacities has been taken into account. 
Once the positive correlation has occurred, there’s a larger chance for the same phenomenon to 
take place in the neighbouring pile or even piles. It is interesting that this effect is much more 
visible when the Gaussian, and not lognormal, distribution is taken into account. 
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Table 2. The expected values, standard deviations and the coefficient of variations (cov) of the bending 
moments in capping beam sections for 4 series. 

SectionSe-
ries

M
[kNm] 1 2 3 4 5 6 7 8 9 10 11
E{M} 0 -733.7 -76.5 -519.9 172.7 -368.3 173.9 -518.1 -75.1 -733.7 0 

M 0 150.2 194.3 177.8 144.4 125.3 142.0 174.3 191.5 149.4 0 1
cov{M} - 20% 254% 34% 84% 34% 82% 34% 255% 20% - 
E{M} 0 -742.4 -97.8 -551.0 135.9 -407.3 135.9 -551.0 -97.8 -743.5 0 

M 0 136.3 215.9 251.6 257.9 255.4 255.2 247.0 211.8 134.7 0 2
cov{M} - 18% 221% 46% 190% 63% 188% 45% 217% 18% - 
E{M} 0 -730.1 -70.4 -513.4 177.1 -365.1 177.0 -515.6 -70.7 -731.3 0 

M 0 137.4 172.7 155.4 124.5 109.1 124.6 154.5 173.3 138.6 0 3
cov{M} - 19% 245% 30% 70% 30% 70% 30% 245% 19% - 
E{M} 0 -740.0 -90.0 -537.4 153.9 -388.1 153.9 -537.0 -90.2 -740.8 0 

M 0 123.1 183.7 197.5 187.0 177.5 181.8 192.4 179.0 120.9 0 4
cov{M} - 17% 204% 37% 122% 46% 118% 36% 198% 16% - 
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Figure 7. Threshold bending moments corresponding to = 3.0 reliability index 

7 Concluding remarks 

The computations have provided evidence for a considerable influence of the fluctuation of the 
pile bearing capacities on the bending moments. The extent of that effect, of course, depends, 
first of all, on the bearing capacity fluctuation scale/range, measured by the coefficient of 
variation. The coefficient of variation, in turn, may be determined on the basis of trial loads, 
carried out each time in case of large pile foundation execution. The selection of the bearing 
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capacity distribution type does not affect the estimation of threshold values in any significant 
manner.  

It is noteworthy, however, what follows if the potential positive correlation between the 
bearing capacities of single piles is taken into account. The calculations have proved that in the 
situation when the limiting bearing capacities of the piles have been exceeded the positive 
correlation causes a considerable increase of the absolute value of the bending moments (in the 
sense of threshold values). It may be explained by the increase of chance for the situation in 
which the bearing capacities of two or three neighbouring piles are exceeded. If, nonetheless, 
we deal only with the piles working in the elastic range, the positive correlation results in the 
decrease of the absolute value of the bending moments. In that case, the positive correlation 
effects in the reduction of variation. 

It is also worth mentioning that the obtained standard deviations of the moments vary in a 
rather narrow range along the section of the beam. That permits to extrapolate the solution on 
the other sections, in which no a priori calculations have been carried out. When accompanied 
by the high values of the reliability index, the values of bending moments obtained from the 
probabilistic analysis may considerably exceed the moments from deterministic computations. 

References 

Evangelista A., Pellegrino A., Viggiani C. (1977): Variability among piles of the same foundation, Pro-
ceedings of International Conference on Soil Mechanics and Foundation Engineering, Tokyo, 
session 2, 493-500. 

Ditlevsen O., Madsen H.O. (1996). Structural Reliability Methods. John Wiley & Sons, Chichester. 
Pu a W. (2004): Applications of Structural Reliability Theory to Foundations Safety Evaluation (in Pol-

ish). Oficyna Wydawnicza Politechniki Wroc awskiej, Wroc aw.
Gwizda a K. (1997). Design by static load tests. In: ISSMFE European Regional Technical Committee 3 

(ERTC3), Brussels. 
Rybak Cz. (1999). Load tests of piles. Private communication.



Random Field Generation and the 
Local Average Subdivision Method 

Gordon A. Fenton* and D.V. GrifRthst 

* Department of Engineering Mathematics, Dalhousie University, Canada 
' Division of Engineering, Colorado School of Mines, U.S.A. 

Abs t r ac t The use of multi-dimensional random fields to model real soils is 
becoming ever more important, simply because soils are spatially random. Such 
random field models allow the rational quantification of the behaviour of spatially 
variable soils, which are inherently uncertain, and lead to reliability estimates, 
decision analysis, and, ultimately, optimal designs. Random models are commonly 
used either in analytical studies employing theoretical results or in Monte Carlo 
simulations. Since theoretical results do not exist for many problems of interest 
to geotechnical engineers, the Monte Carlo approach is often the practical choice. 

In that the accuracy of such models depends directly on the accuracy of the 
algorithm used to generate realizations of the representative random fields, there 
is a need to evaluate and compare various random field generators. To address 
this issue, three common random field generators are considered in this chapter: 
1) the FFT method, 2) the Turning Bands Method (TBM), and 3) the Local 
Average Subdivision (LAS) method. For each, an ensemble of realizations of a 
two-dimensional homogeneous Gauss-Markov process is generated and the field 
mean, variance, and covariance structures are checked for statistical accuracy. 
Concerns such as ease of use and efficiency are also considered. It is shown that 
all three methods have distinct advantages and disadvantages, and the choice of 
algorithm will depend on the particular application. A number of guidelines and 
suggestions are made to help avoid or minimize problems associated with each 
method. 

1 Introduction 
Random field models of complex engineering systems having spatially variable properties 
are becoming increasingly common. This t rend is motivated by the widespread accep
tance of reliability methods in engineering design and is made possible by the increasing 
power of personal computers. It is no longer sufficient to base designs on best estimate 
or mean values alone. Information quantifying uncertainty and variability in the sys
tem must also be incorporated to allow the calculation of failure probabilities associated 
with various limit state criteria. To accomplish this, a probabilistic model is required. 
In tha t most engineering systems involve loads and materials spread over some spatial 
extent, their properties are appropriately represented by random fields. For example, to 
estimate the failure probability of a highway bridge, a designer may represent both con
crete strength and input earthquake ground motion using independent random fields, the 
latter t ime varying. Subsequent analysis using a Monte Carlo approach and a dynamic 
finite element package would lead to the desired statistics. 
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In this chapter, a number of different algorithms which can be used to produce scalar 
multi-dimensional random fields are evaluated in light of their accuracy, efficiency, ease 
of implementation, and ease of use. Many different random field generator algorithms 
are available of which the following are perhaps the most common: 

1) Moving Average (MA) methods, 
2) Discrete Fourier Transform (DFT) method, 
3) Covariance Matrix Decomposition, 
4) Fast Fourier Transform (FFT) method, 
5) Turning Bands Method (TBM), 
6) Local Average Subdivision (LAS) method, 

In all of these methods, only the first two moments of the target field may be specified, 
namely the mean and covariance structure. Since this completely characterizes a Gaus
sian field, attention will be restricted in the following to such fields. (Non-Gaussian fields 
may be created through non-linear transformations of Gaussian fields, however some care 
must be taken since the mean and covariance structure will also be transformed.) In ad
dition, only weakly homogeneous fields, whose first two moments are independent of 
spatial position, will be considered in this chapter. 

Although potentially very accurate, both the Moving Average and the DFT methods 
tend to be computationally slow. At each point x in space, the MA technique constructs 
the random field Z{x) as a weighted average of a white noise process 

/

oc 

f{^-x)dW{0 (1) 
-oc 

where dW{^) is a mean zero incremental white noise process with variance d^ and / is a 
weighting function. In practice (1) is computed as a sum, its extent and resolution directly 
affecting the accuracy of the resulting field. Because the sum is computed separately at 
each point x, the moving average technique can be very computationally expensive. 
For reasonable sized fields in two and higher dimensions it can be orders of magnitude 
slower than some of the other methods to be discussed. This, along with the fact that 
the weighting function / can be difficult to find for an arbitrary covariance structure, 
renders the method unwieldy in practice and it will not be considered further. In a 
sequence of two papers, Mignolet and Spanos (1992) and Spanos and Mignolet (1992) 
discuss in considerable detail the moving average (MA), autoregressive (AR) and ARMA 
approaches to simulating two-dimensional random fields. In their examples, they obtain 
accurate results at the expense of running about 10 or more times slower than the fastest 
of the methods to be considered here. 

The Fourier Transform methods are based on the spectral representation of homoge
neous mean square continuous random fields, Z{x), which can be expressed as follows 
(Yaglom, 1962) 

/

OC 

e'^-'^W{duj) (2) 
-oc 

where W{duj) is an interval white noise process with mean zero and variance S{oj)duj. 
This representation is in terms of the physically meaningful spectral density function, 
S{CAJ), and so is intuitively attractive. In practice, the n-dimensional integral becomes an 
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n-dimensional sum. In the case of the Discrete Fourier Transform, the sum is evaluated 
separately at each point x which, although potentially accurate, is computationally slow 
for reasonable field sizes and typical spectral density functions - the DFT is generally 
about as efficient as the MA discussed above. Its major advantage over the MA approach 
is that the spectral density function is estimated in practice using standard techniques. 
However, because of its inefficiency, the DFT approach will not be considered further in 
this chapter. 

Covariance matrix decomposition is a direct method of producing a homogeneous 
random field with prescribed covariance structure B{x^ — Xj) — B{T^J), where x^, i — 
1, 2 , . . . . n are discrete points in the field and T^J is the lag vector between the points x^ 
and Xj. If B is a positive definite covariance matrix with elements Bij — B{T^J). then a 
mean zero discrete process Zj — Z{x^) can be produced (using vector notation) according 
to 

Z^LU (3) 

where i is a lower triangular matrix satisfying LL^ — B (typically obtained using 
Cholesky decomposition) and U \s & vector of n independent mean zero, unit variance 
Gaussian random variables. Although appealing in its simplicity and accuracy, this 
method is only useful for small fields. In two dimensions, the covariance matrix of a 
128 X 128 field would be of size 16,384 x 16,384 and the Cholesky decomposition of such 
a matrix would be both time consuming and prone to considerable round-off error. 

In the remainder of the chapter, attention will be focused on the last three methods 
mentioned above, namely the Fast Fourier Transform (FFT), the Turning Bands Method 
(TBM), and the Local Average Subdivision (LAS) algorithms. Some of the discussion 
will be based on observations of simulations, which in all cases will be of a homogeneous 
isotropic Gaussian random field with Gauss-Markov covariance structure 

where o"̂  is the variance of the process (in this case unity), and 9 is the scale of fluctuation. 
Reference will be made to the estimated mean and variance fields which are simply the 
mean and variance estimated at each field point over an ensemble of realizations. At each 
point in the field, the mean and variance are expected to follow that predicted by theory 
for random samples of a Gaussian process and the fields are inspected for the presence 
of patterns indicating errors and/or bias. 

The FFT, TBM and LAS methods are typically much more efficient than the first 
three methods discussed above. However, the gains in efficiency do not come without 
some loss in accuracy, as is typical in numerical methods. In the next few sections, 
the chapter proposes an implementation strategy for the FFT method and reviews the 
TBM and LAS methods. The types of errors associated with each method and ways to 
avoid them will be discussed in some detail. Finally the methods will be compared and 
guidelines as to their use suggested. 
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2 The Fast Fourier Transform Method 
In order to apply the Fast Fourier Transform method (see, for example. Cooley and 
Tukey, 1965) to compute Eq. (2), a number of additional assumptions are needed. First, 
the process Z{x) is assumed to be mean zero, real and discrete. For the purposes of this 
development, only the one-dimensional case will be considered and multi-dimensional 
results will be stated subsequently. For discrete Z{xj), j — 1,2,. ...N, Eq. (2) becomes 

Z{xj) - / e''=''^W{duj) 
J —7T 

K 

^ lim ^ e"^'^''VF(AajO 
k=-K 

— lim y^ •^^(Acjjt)cos(xjCJjt) + S(Acjjt)sin(xjCJjt) ? (5) 
k=-K 

where u)k = kirlK, Au)/. is an interval of length TT/K centered at oj/t, and the last 
step in (5) follows from the fact that Z is real. The functions A{Au}k) and B{Au}i.) 
are independent identically distributed random interval functions with mean zero and 
E [A{Au)k)A{Au)rn)] = E[B{Au)k)>3{Au)rn)] = 0 for all A; / m in the limit as Au) ^• 
0. At this point, the simulation involves generating realizations of Ak ~ A{Au}i.) and 
Bk ~ B{AuJi.) and evaluating (5). Since the process is real, 5(w) — S{—u}), and the 
variances of At and Bk can be expressed in terms of the one-sided spectral density 
function G(w) — 2S{(j), 6J > 0. This means that the sum in (5) can have lower bound 
fe — 0. Note that an equivalent way of writing (5) is 

K 

Z{xj) ='^CkCos{xjU}k + ^k); (6) 

where ^k is a random phase angle uniformly distributed on [0, 2TT] and Ck follows a 
Rayleigh distribution. Shinozuka and Jan (1972) take Ck = \/2G{(jJk)AL0 to be deter
ministic, an approach not followed here since it gives an upper bound on Z over the 
space of outcomes of Z < X!fc=o \/2G{uJk)Auj which may be an unrealistic restriction, 
particularly in reliability calculations. 

Next, the process Zj — Z{xj) is assumed to be periodic, Zj — ZK-\-J, with the same 
number of spatial and frequency discretization points {N — K). As will be shown later, 
the periodicity assumption leads to a symmetric covariance structure which is perhaps the 
major disadvantage to the FFT approach. If the physical length of the one-dimensional 
process under consideration is D and the space and frequency domains are discretized 
according to 

xj = jAx - j ^ (7) 

2Tij{K- 1) 
KD 

u^.^jAu.^ - ^ ^ - , ^> (8) 
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for j — 0,1... .,K — 1, then the Fourier transform 

k=0 

can be evaluated using the FFT algorithm. The Fourier coefficients. X/. — Ak — iBk-, 
have the following symmetries due to the fact that Z is real, 

Ak^^Y^^J cos27rf - Ax-k (10) 

K-l 

Bk^-Y.^^ sin27rf - -Bx-k (H) 

which means that Ak and Bk need only be generated randomly for fc = 0 , 1 , . . . , i<'/2 and 
that BQ = BK/2 — 0. Note that if the coefficients at ii' — fe are produced independently of 
the coefficients at k, the resulting field will display aliasing. Thus there is no advantage to 
taking Z to be complex, generating all the Fourier coefficients randomly, and attempting 
to produce two independent fields simultaneously (the real and imaginary parts), or in 
just ignoring the imaginary part. 

As far as the simulation is concerned, all that remains is to specify the statistics of At 
and Bk so that they can be generated randomly. If Z is a Gaussian mean zero process, 
then so are Ak and Bk- The variance of Ak can be computed in a consistent fashion 
(Fenton, 1990) by evaluating E \A?^ using (10) 

E [A] - ] ^ E E E [^. Zi] COS 27rf cos 27rf (12) 
j=0 i=o 

This result suggests using the covariance function directly to evaluate the variance of 
Ak- an approach that was investigated by Fenton (1990), however the implementation 
is complex and no particular advantage in accuracy was noticed. A simpler approach 
involves the discrete approximation to the Wiener-Khinchine relationship 

K-\ 

E [Zj Zi] ~ Aoj ^ G(u)m) cos 27r^^^^ (13) 

which when substituted into (12) leads to 

E [A] - ^ Y I l E G(̂ -) cos2n^^^Ck,Ckt 

. K-lK-lK-l 

j=0 l=Q •m=0 

. K-l K-l K-l 
Aw 

m=0 j=0 t=Q 
kt 
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. K-l K-1 K-1 

+ -JT^ 2 ^ G{^m) 2_^ SmjCkj 2__, SmlCkl, (14) 
m=0 j=0 1=0 

where Ckj ~ c o s 2 7 r ^ and 5^;^ — s i n 2 7 r ^ . 
To reduce (14) further, use is m a d e of the following two identit ies 

K-1 

1) ^ s i n 2 7 r ^ c o s 2 7 r f - 0 
k=0 

K-1 (0. iim^j 
2) Y^ cos 2 7 r ^ cos 27 r^ ^ S f ' H m ^ j oi K - j 

k=Q \^K. ifm — j — Qov^ 

By identity (1), the second term of (14) is zero. The first term is also zero, except when 
m — k or m — K — k, leading to the results 

r ^G{cok)^u]; if fc - 0 
E[Al] = \\{G{LOk)+G{uj^-k)}Auj., i f f c - l , . . . , f - 1 (15) 

[G{LOk)ALO, iik=f 

remembering that for k — 0 the frequency interval is ^Au. An entirely similar calculation 
leads to 

-pia-i^-i^' i f A ; ^ O o r f 
^ '^ " l i { G ( ^ 0 + G ( ^ K - . ) } A c . , i f ^ ^ l , . . . , f - l ^'^^ 

T h u s t he simulat ion process is as follows; 
1) genera te independent normal ly d is t r ibuted realizat ions of Ak and Bk having mean 

zero and variance given by (15) and (16) for fe — 0 , 1 , . . . , K/2 and set BQ ~ BKJI — 0; 
2) use the symmetry relationships, (10) and (11), to produce the remaining Fourier 

coefficients for fe ^ 1 + Kjl, ...,K-\ 
3) produce the field realization by Fast Fourier Transform using Eq. (9). 

In higher dimensions a similar approach can be taken. To compute the Fourier sum 
over non-negative frequencies only, the spectral density function 5(w) is assumed to be 
even in all components of tj (quadrant symmetric) so that the 'one-sided' spectral density 
function, G(uS) — 4S{u)) V Wj > 0, can be employed. Using L = K^ — L M = K^ — m. 
and N — K3 — n to denote the symmetric points in fields of size K^ x K^ in 2-D or 
Ki X KQ X K3 in 3-D, the Fourier coefficients yielding a real two-dimensional process 
must satisfy 

ALM = Aim; BLM = —Bim , , 

AIM ~ ALTTI; ^IM — —BLm 

for Lm = 0 , 1 , . . . , ^ where Ka is either K^ or K2 appropriately. Note that these 
relationships are applied modulo Ka-, so that .4x1-0,™ ^ -^o^m for example. In two 
dimensions, the Fourier coefficients must be generated over two adjacent quadrants of 
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the field, the rest of the coefficients obtained using the symmetry relations. In three 
dimensions, the symmetry relationships are 

•A.LMN — Almn; BhMN = —Blmn 

•AlMN — -ALmn; BtMN ~ —BLmn ,^^s 
(,18J 

•A.LmN — AlMn; BhmN = —BiMn 

•A.lmN — ALMUZ BlmN = —BLMTI 

for Lm.n — 0 , 1 , . . . , ^ . Again, only half the Fourier coefficients are to be generated 
randomly. 

The variances of the Fourier coefficients are found in a manner analogous to the 
one-dimensional case, resulting in 

E ML] - k^L^^ (GL + GU + Gi„ + GU^ (19) 

E [SL] - |<5|™Ay [ci^ + GU + Gi^ + GU^ (20) 

for two-dimensions and 

E [.4im«] ~ ig <5|„„Ay I Gi^„ + Gi^j^ + G^j^^ + Gi^^^ + G^MW + G^^jsi + Gj^]^„ + Gj^^j^ J (21) 

E [Blmn] ~ Te <5^mrjAy ( G^mn + Gi^N + G^Mn + Gj^^^ + Gij^j^ + Gj^^j^ + Gj^]^„ + Gj^j^j^ j (22) 

in three-dimensions, where for p dimensions, 

p 

Auj = Y[Au)i, (23) 
i=l 

1dr,.^ _ G ( w i , . . . , W p ) 
G'iv) - ' •:^y' ": (24) 

and d is the number of components of y = (wi, . . . .Wp) which are equal to zero. The 
factors 6f^^ and (5|^„ are given by 

^A ^ ( " 2 i f ^ ^ O o r = | i a n d m = O o r = ^ a n d n ^ O o r = | a 

otherwise 

^B ^ f o i f ^ ^ O o r = | i - a n d m = O o r = | a a n d n ^ O o r = | a 

otherwise 

(ignoring the index n in the case of two dimensions). Thus, in higher dimensions, the 
simulation procedure is almost identical to that followed in the 1-D case - the only 
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difference being that the coefficients are generated randomly over the half plane (2-D) or 

the half volume (3-D) rather than the half line of the 1-D formulation. 

It is appropriate at this time to investigate some of the shortcomings of the method. 

First of all it is easy to show that regardless of the desired target covariance function, the 

covariance function B^ = B{kAx) of the real FFT process is always symmetric about 

the midpoint of the field. In one-dimension, the covariance function is given by (using 

complex notation for the time being), 

I3k —E \ZtJ^k'Z't\ 

X : ' ^ . exp {̂  ( - i ^ ) } X : ' : ^ e x p {-i ( 2 ^ ) } E 
j=0 m=0 

K-\ 

- E E [ ^ . ^ . ] e x p { i ( 3 f ^ ) } , (27) 
j = o 

where use was made of the fact that E [XjX^'\ — 0 for j ^ m (overbar denotes the 

complex conjugate). Similarly one can derive 

B , _ , - 5 ] E [ A ' , A ^ ] e x p { - i ( ? f ^ ) } 

- ^ (28) 

since E [Xj Xj ] is real. The covariance function of a real process is also real in which 

case (28) becomes simply 

B^-k = Bk. (29) 

In one dimension, this symmetry is illustrated by Figure 1. Similar results are observed 

in higher dimensions. In general, this deficiency can be overcome by generating a field 

twice as long as required in each coordinate direction and keeping only the first quadrant 

of the field. Figure 1 also compares the covariance, mean, and variance fields of the LAS 

method to that of the FFT method (the TBM method is not defined in one dimension). 

The two methods give satisfactory performance with respect to the variance and mean 

fields, while the LAS method shows superior performance with respect to the covariance 

structure. 
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Figure 1. Mean, variance, and covariance of a 1-D 128 point Gauss-
Markov process estimated over an ensemble of 2000 realiza
tions. 

The second problem with the FFT method relates primarily to its ease of use. Because 
of the close relationship between the spatial and frequency discretization, considerable 
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care must be exercised when initially defining the spatial field and its discretization. 
First of all the physical length of the field D must be large enough that the frequency 
increment Aw = I-K^K — 1)/KD ~ 2Tr/D is sufficiently small. This is necessary if 
the sequence |G'(wo)Aw,G'(wi)Aw,... is to adequately approximate the target spectral 
density function. Figure 2 shows an example where the frequency discretization is overly 
coarse. Secondly, the physical resolution Ax must be selected so that the spectral density 
above the frequency ^-KJ Ax is negligible. Failure to do so will result in an underestimation 
of the total variance of the process. In fact the FFT formulation given above folds 
the power corresponding to frequencies between njAx and ^njAx into the power at 
frequencies below the Nyquist limit njAx. This results in the point variance of the 
simulation being more accurate than if the power above the Nyquist limit were ignored, 
however it leads to a non-uniqueness in that a family of spectral density functions, all 
having the same value of G(wjt) + G(ujK-k): yield the same process. In general it is best 
to choose Aa: so that the power above the Nyquist limit is negligible. The second term 
involving the symmetric frequency G(u}K-k) is included here because the point variance 
is the most important second-order characteristic. 

Figure 2 Example of overly coarse frequency discretization resulting in 
a poor estimation of point variance (i? — 5 and ^ = 4). 

Unfortunately, many applications dictate the size and discretization of the field a-
priori or the user may want to have the freedom to easily consider other geometries or 
spectral density functions. Without a good deal of careful thought and analysis, the FFT 
approach can easily yield highly erroneous results. 

A major advantage of the FFT method is that it can easily handle anisotropic fields 
with no sacrifice in efficiency. The field need not be square, although many implemen
tations of the FFT require the number of points in the field in any coordinate direction 
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to be a power of two. Regarding efRciency. it should be pointed out that the time to 
generate the first realization of the field is generally much longer than that required to 
generate subsequent realizations. This is because the statistics of the Fourier coefficients 
must be calculated only once (see Eq.'s 15 and 16). 

3 The Turning Bands Method 
The Turning Bands Method (TBM), as originally suggested by Matheron (1973), involves 
the simulation of random fields in two- or higher-dimensional space by using a sequence 
of one-dimensional processes along lines crossing the domain. With reference to Figure 
3, the algorithm can be described as follows, 

1) choose an arbitrary origin within or near the domain of the field to be generated, 
2) select a line i crossing the domain having a direction given by the unit vector u^ 

which may be chosen either randomly or from some fixed set. 
3) generate a realization of a one-dimensional process, Zi{S,i). along the line i having 

zero mean and covariance function B^iji) where £,i and T̂  are measured along line i. 
4) orthogonally project each field point Xf. onto the line i to define the coordinate $,ki 

i^ki ~ $k 'H-i ™ the case of a common origin) of the one-dimensional process value 
Zii^ki); 

5) add the component Zi{S,ki) to the field value Z{xf^) for each Xf^. 
6) return to step (2) and generate a new one-dimensional process along a subsequent 

line until L lines have been produced, 
7) normalize the field Z{Xf^) by dividing through by the factor \ / L . 

Essentially, the generating equation for the zero-mean discrete process Z{x) is given by 

1 ^ 

where if the origins of the lines and space are not common, the dot product must be 
replaced by some suitable transform. This formulation depends on knowledge of the 
one-dimensional covariance function, B^(T). Once this is known, the line processes can 
be produced using some efficient 1-D algorithm. 

The covariance function B^ij) is chosen such that the multi-dimensional covariance 
structure B„{T) in i?" is reflected over the ensemble. For two-dimensional isotropic 
processes, Mantoglou and Wilson (1981) give the following relationship between -Bad) 
and Bi{ri) for r = |T|. 

aw = ir^|5L.,, (31) 
^ Jo \Jr^ - rj2 

which is an integral equation to be solved for B^{r]). In three dimensions, the relationship 
between the isotropic -B3(r) and B^(r\) is particularly simple. 

^M) = ^^\r\BM)y (32) 

Mantoglou and Wilson supply explicit solutions for either the equivalent one-dimensional 
covariance function or the equivalent one-dimensional spectral density function for a 
variety of common multi-dimensional covariance structures. 
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Figure 3. The Turning Bands Method: contributions from the line pro
cess Zi{^i) at the closest points aie summed into the field pro
cess Z{x) at Xj^. 

In this implementation of the TBM, the line processes were constructed using a 1-D 
FFT algorithm as discussed in the previous section. The LAS method was not used for 
this purpose because the local averaging introduced by the method would complicate the 
resulting covariance function of (31). Line lengths were chosen to be twice that of the 
field diagonal to avoid the symmetric covariance problem inherent with the FFT method. 
To reduce errors arising due to overly coarse discretization of the lines, the ratio between 
the incremental distance along the lines. A^, and the minimum incremental distance in 
the field along any coordinate, Ax, was selected to be AS,/Ax = | . 

Figure 4 represents a realization of a 2-D process. The finite number of lines used, 
in this case 16, results in a streaked appearance of the realization. A number of origin 
locations were experimented with to mitigate the streaking, the best appearing to be 
the use of all four corners as illustrated in Figure 3 and as used in Figure 4. The 
corner selected as an origin depends on which quadrant the unit vector u^ points into. If 
one considers the spectral representation of the one-dimensional random processes along 
each line (see 2) it is apparent that the streaks are a result of constructive/destructive 
interference between randomly oriented traveling plane waves. The effect will be more 
pronounced for narrow band processes and for a small number of lines. For this particular 
covariance function (see 4), the streaks are still visible when 32 lines are used, but, as 
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shown in Figure 5, are negligible when using 64 lines (the use of number of lines which 
are powers of 2 is arbitrary). While the 16 line case runs at about the same speed as 
the 2-D LAS approach, the elimination of the streaks in the realization comes at a price 
of running about 4 times slower. The streaks are only evident in an average over the 
ensemble if non-random line orientations are used, although they still appear in individual 
realizations in either case. Thus, with respect to each realization, there is no particular 
advantage to using random versus non-random line orientations. 

Figure 4. Sample function of a 2-D field via TBM using 16 lines. 

Since the streaks are present in the field itself, this type of error is generally more serious 
than errors in the variance or covariance field. For example, if the field is being used to 
represent soil conductivity, then the streaks could represent paths of reduced resistance 
to flow, a feature which may not be desirable in a particular study. Crack propagation 
studies may also be very sensitive to such linear correlations in the field. For applications 
such as these, the Turning Bands method should only be used with a sufficiently large 
number of lines. This may require some preliminary investigation for arbitrary covariance 
functions. In addition, the minimum number of lines in 3 and higher dimensions is 
difficult to determine due to visualization problems. 
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Note that the Turning Bands Method does not suffer from the symmetric covari-
ance structure that is inherent in the FFT approach. The variance field and covariance 
structure are also well preserved. However, the necessity of finding an equivalent 1-D co-
variance or spectral density function through an integral equation along with the streaked 
appearance of the realization when an insufficient number of lines are used makes the 
method less attractive. Using a larger number of lines, TBM is probably the most ac
curate of the three methods considered, at the expense of decreased efficiency. TBM 
can be extended to anisotropic fields, although there is an additional efficiency penalty 
associated with such an extension since the 1-D process statistics must be recalculated 
for each new line orientation (see Mantaglou and Wilson, 1981, for details). 

Figure 5. Sample function of a 2-D field via TBM using 64 lines. 
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4 The Local Average Subdivision Method 

Of the three methods considered, the LAS method is probably the most difficult to 
implement. The details are given by Fenton and Vanmarcke (1990). The one- and two-
dimensional implementation of LAS used for this study differs slightly from that reported 
by Fenton and Vanmarcke in that an initial set of cells are generated directly from the 
associated covariance matrix according to Eq. 3. Specifically, in the 1-D case, a positive 
integer fei is found so that the total number of cells, TVi, desired in the final field can be 
expressed as 

iVi-fei(2™) (33) 

where m is the number of subdivisions to perform and fei is as large as possible with 
ki < 16. In one-dimension, this modification was implemented to reduce the variance 
field errors discussed later. In two dimensions, two positive integers fei and fc2 are found 
such that feifea < 256 and the field dimensions can be expressed as 

iVi-fei(2™) (34a) 

N2 - fe2(2™) (34&) 

from which the first fei x fc2 lattice of cell values are simulated directly using covariance 
matrix decomposition (3). Since the number of subdivisions, m, is common to the two 
parameters, one is not entirely free to choose Ni and N2 arbitrarily. It does, however, 
give a reasonable amount of discretion in generating non-square fields, as is also possible 
with both the FFT and TBM methods. 

Perhaps the major advantage of the LAS method is that it produces a field of local 
average cells whose statistics are consistent with the field resolution. As such, it is 
well suited to problems where the system is represented by a set of elements and average 
properties over each element are desired. Changing the element size automatically results 
in changes in the statistics of the element average, as dictated by random field theory. 
This is appealing since almost all measured engineering properties are based on local 
averages (concrete strength, for example, is based on a finite volume cylinder). 

To enable a discussion of some of the features and problems with the LAS method, 
a brief overview of the 2-D implementation will be repeated here. The 2-D LAS method 
involves a subdivision process in which a 'parent' cell is divided into 4 equal sized cells. 
In Figure 6, the parent cells are denoted Pj. i — 1.2.... and the subdivided, or child 
cells are denoted Qj, j — 1, 2,3,4. Although each parent cell is eventually subdivided in 
the LAS process, only Pg is subdivided in Figure 6 for simplicity. Using vector notation, 
the values of Q^ = {Qi-Qi-Qa-Qi} are obtained by adding a mean term to a random 
component. The mean term derives from a best linear unbiased estimate using a 3 x 3 
neighborhood of the parent values, in this case P — { P i , . . . , Pgj. 
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Figure 6. Local Average Subdivision in two-dimensions. 

Specifically 
Q = A'^P + CU (35) 

where U is a random vector with independent N{0.1) elements. This is essentially an 
ARMA model in which the 'past' is represented by the previous coarser resolution stages. 
Defining the covariance matrices 

R = E [PP'^] , (36a) 

S^E [PQ^] , and (36&) 

B^E [QQ'^] , (36c) 

then the matrix A is determined by 

A^R-^S (37) 

while the lower triangular matrix C satisfies 

CC'^ ^B- S'^A (38) 
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Note that the matrix on the right hand side of (38) is only rank 3, so that the 4 x 4 matrix 
C has a special form with columns summing to zero (thus C44 = 0). While this results 
from the fact that all the expectations used in Eq.'s (36) are derived using local average 
theory over the cell domains, the physical interpretation is that upwards averaging is 
preserved, ie. that Pg = \{Q\ + Q2 + Qs + Qi)- This means that one of the elements of 
Q is explicitly determined once the other three are known. 

Figure 7. Two-dimensional LAS variance field estimated over 200 real
izations. 

Although Figure 1 illustrates the superior performance of the LAS method over the 
FFT method in one dimension, a systematic bias in the variance field is observed in two 
dimensions. Figure 7 shows a grey scale image of the estimated cell variance in a two-
dimensional field obtained by averaging over the ensemble. There is a definite pattern 
in the variance field - the variance tends to be lower near the major cell divisions, that 
is at the 1/2, 1/4, 1/8, etc. points of the field. This is because the actual diagonal, or 
variance, terms of the 4 x 4 covariance matrix corresponding to a subdivided cell are 
affected by the truncation of the parent cell influence to a 3 x 3 neighborhood. The 
error in the variance is compounded at each subdivision stage and cells close to 'older' 
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cell divisions show more error than do 'interior' cells. The magnitude of this error varies 
with the number of subdivisions, the scale of fluctuation, and type of covariance function 
governing the process and can be obtained by evaluating the transfer function of Eq. 
(35). Such a quantitative analysis is yet to be performed. 

Figure 8 depicts the estimated variances along a line through the plane for both the 
LAS and TBM methods. Along this line, the pattern in the LAS estimated variance 
is not particularly noticeable and the values are about what would be expected for an 
estimate over the ensemble. Figure 9 compares the estimated covariance structure in the 
vertical and horizontal directions, again for the TBM (64 lines) and LAS methods. In 
this respect, both the LAS and the TBM methods are reasonably accurate. In addition, 
the LAS method yields good quality realizations and an accurate mean field. 

Figure 8. Variance along a horizontal line through the two-dirnensional 
LAS and TBM fields estimated over 200 realizations. 

The LAS method can be used to produce anisotropic random fields with no code ctiange 
and no loss in efficiency, however the anisotropic nature o£ such a field is due entirely 
to the initial production of a fei x hj field via covariance matrix decomposition. The 
subdivision algorithm itself is incapable of preserving anisotropy, the directional scales of 
fluctuation tending toward the minimum for the field. Thus, although the field maj' be 
globally anisotropic, small neighborhoods of cells at the final resolution tend to follow an 
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isotropic correlation structure. One notes that ellipsoidally anisotropic random fields can 
always be produced from isotropic random fields by suitably stretching the coordinate 
axes and so this error is not always a problem. 

It may be possible to improve the LAS covariance approximations by extending the 
size of the parent cell neighborhood. A 3 x 3 neighborhood is used in the current im
plementation of the 2-D LAS algorithm, as shown in Figure 6, but any odd sized neigh
borhood could be used to condition the statistics of the subdivided cells. Larger neigh
borhoods have not been tested in two and higher dimensions, although in one dimension 
increasing the neighborhood size to 5 cells resulted in a more accurate covariance function 
representation, as would be expected. 

The LAS method also depends on knowledge of the variance function which governs 
the variance reduction when a process is locally averaged. Although this function can 
be obtained through a direct, possibly numerical, integration of the covariance function, 
analytically exact variance functions can be difficult to find for some covariance functions 
in higher dimensions. Vanmarcke (1984) has derived the variance functions for a number 
of common random processes. 

Figure 9. Covariance structure of the LAS and TBM two-dimensional 
random fields estimated over 200 realizations. 
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5 Comparison and Conclusions 
The choice of a random field generator to be used for a particular problem or in general 
depends on many issues. Table 1 shows the relative run times of the three algorithms to 
produce identically sized fields. The times have been normalized with respect to the FFT 
method so that a value of 2 indicates that the method took twice as long. If efficiency 
alone were the selection criteria, then either the TBM with a small number of lines or the 
LAS methods would be selected, with probably the LAS a better choice if streaking is 
not desired. However, efficiency of the random field generator is often not an overriding 
concern - in many applications, the time taken to generate the field is dwarfed by the 
time taken to subsequently process or analyze the field. Substantial changes in generator 
efficiency may be hardly noticed by the user. 

Table 1. Comparison of run-times of the FFT, TBM and LAS algo
rithms in one and two-dimensions. 

Dimension 

1-D 
2-D 

FFT 

1.0 
1.0 

LAS 

0.70 
0.55 

TBM 
16 lines 

-
0.64 

64 lines 
-

2.6 

As a further comparison of the accuracy of the FFT, TBM, and LAS methods, a set 
of 200 realizations of a 128 x 128 random field were generated using the Gauss-Markov 
covariance function with a scale of fluctuation S — 2 and a physical field size of 5 x 5. The 
mean and variance fields were calculated by estimating these quantities at each point in 
the field (averaging over the ensemble) for each algorithm. The upper and lower 90% 
quantiles are listed in Table 2 along with those predicted by theory assuming a normal 
distribution. To obtain these numbers, the mean and variance fields were first estimated, 
then upper and lower bounds were found such that 5% of the field exceeded the bounds 
above and below, respectively. Thus 90% of the field is observed to lie between the 
bounds. It can be seen that all three methods yield very good results with respect to the 
expected mean and variance quantiles. The TBM results were obtained using 64 lines. 
Although these results are strictly only valid for the particular covariance function used, 
they are believed to be generally true over a wider variety of covariance functions and 
scales of fluctuation. 

Table 2. Upper and lower 90% quantiles of the estimated mean and 
variance flelds for the FFT, TBM, and LAS methods (200 re
alizations). 

Algorithm 
FFT 
TBM 
LAS 

Theory 

Mean 
(-0.06,0.12) 
(-0.11,0.06) 
(-0.12,0.09) 
(-0.12,0.12) 

Variance 
(0.87,1.19) 
(0.83,1.14) 
(0.82,1.13) 
(0.84,1.17) 
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Purely on the basis of accuracy in the mean, variance and covariance structures, the 
best algorithm of those consider here is probably the TBM method using a large number 
of lines. The TBM method is also one of the easiest to implement once an accurate 
1-D generator has been implemented. Unfortunately, there is no clear rule regarding the 
minimum number of lines to be used to avoid streaking. In two dimensions using the 
Gauss-Markov covariance function, it appears that at least 50 lines should be employed. 
However, as mentioned, narrow band processes may require more. In three dimensions, 
no such statements can be made due to the difficulty in studying the streaking phenomena 
off a plane. Presumably one could use a 'density' of lines similar to that used in the two-
dimensional case, perhaps subtending similar angles, as a guide. The TBM method is 
reasonably easy to use in practice as long as the equivalent 1-D covariance or spectral 
density function can be found. 

The FFT method suffers from symmetry in the covariance structure of the realizations. 
This can be overcome by generating fields twice as large as required in each coordinate 
direction and ignoring the surplus. This correction results in slower run times (a factor 
of 2 in 1-D, 4 in 2-D, etc.). The FFT method is also relatively easy to implement and 
the algorithm is similar in any dimension. Its ability to easily handle anisotropic fields 
makes it the best choice for such problems. Care must be taken when selecting the 
physical field dimension and discretization interval to ensure that the spectral density 
function is adequately approximated. This latter issue makes the method more difficult 
to use in practice. However, the fact that the FFT approach employs the spectral density 
function directly makes it an intuitively attractive method, particularly in time dependent 
applications. 

The LAS method has a systematic bias in the variance field, in two and higher di
mensions, which is not solvable without changing the algorithm. However, the error 
generally does not result in values of variance that lie outside what would be expected 
from theory - it is primaiily the pattern of the variance field which is of concern. Of 
the three methods considered, the LAS method is the most difficult to implement and it 
depends on the variance function representation of the field. It is, however, one of the 
easiest to use once coded since it requires no decisions regarding its parameters, and it 
is generally the most efficient. If the problem at hand requires or would benefit from a 
local average representation, then the LAS method is the logical choice. 
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Notat ion 

The following symbols are used in this chapter: 

Ak = Fourier coefficient (real part) 

Bk ~ Fourier coefficient (imaginary part) 

B{-) — covariance function 
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B — algorithmic covariance function 

B — covariance matrix 

Ck ~ random amplitude 

D — physical dimension of the field 

E [•] — expectation operator 

/ — weighting function 

G(-) — one-sided spectral density function 

i — square root of negative one 

K — number of frequency and spatial points 

L — lower triangular matrix 

N — number of spatial points 

P — vector of parent cell values (LAS) 

Q — vector of child cell values (LAS) 

5(-) — two-sided spectral density function 

U = vector of independent random numbers 

W — white noise process 

Xk ~ complex Fourier coefficient 

X — spatial coordinate 

Z — random field 

Z — vector of random field values at discrete points or cells 

^k ~ random phase angle 

6 — scale of fluctuation 

a — standard deviation 

T — lag vector 

uj — frequency 
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Abs t r ac t In order to control serviceability problems arising from excessive settle
ment of shallow footings, geotechnical design codes generally include specifications 
regarding maximum settlement which often govern the footing design. Once the 
footing has been designed and constructed, the actual settlement it experiences 
on a real three-dimensional soil mass can be quite different than expected, due to 
the soil's spatial variability. Because of this generally large variability (compared 
to other engineering materials such as concrete and steel) and because this partic
ular serviceability limit state often governs the design, it makes sense to consider 
a reliability-based approach to settlement design. This chapter looks in some 
detail at a Load and Resistance Factor Design (LRFD) approach to limiting foot
ing settlement. In particular, the resistance factors required to achieve a certain 
level of settlement reliability as a function of soil variability and site investigation 
intensity are determined analytically using random field theory. Simplified ap
proximate relationships are proposed and tested using simulation via the Random 
Finite Element Method. It is found that the simplified relationships are validated 
both by theory and simulation and so can be used to augment the calibration of 
geotechnical LRFD code provisions with respect to shallow foundation settlement. 

1 Reliability-Based Geotechnical Design Issues 
In an effort to harmonize with structural codes, geotechnical design codes around the 
world are beginning to migrate towards some form of reliability-based design (RED). Sig
nificant steps in this direction can be found in, for example, Eurocode 7, 2004, Australian 
Standard AS 4678, 2002, NCHRP Report 507, 2004, and the Canadian Foundation En
gineering Manual, 1992. These R E D provisions are most often presented in the form of 
a Limit States Design (LSD), to define critical failure states, combined with load and 
resistance factors calibrated to achieve the target reliabilities associated with the various 
limit states. The use of load and resistance factors is generally referred to as Load and 
Resistance Factor Design (LRFD). 

Ey and large, the random characteristics of loads, or "actions", in civil engineering 
projects, are fairly well known and so load factors are reasonably well established. On 
the resistance side, for most common structural materials representative tests can easily 
be performed, and have been, to establish material property distributions tha t apply 
with reasonable accuracy anywhere tha t the material is used. Thus, resistance factors 
for materials such as concrete, steel, and wood have been known for decades. 
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Unfortunately, the development of resistance factors for use in geotechnical engi
neering is much more difficult than for quality-controlled engineering materials, such as 
concrete, steel, or wood. For example, while the mean strength of a batch of 30 MPa 
concrete delivered to a site in one city, might differ by 5 to 10% from a batch delivered 
to a site in a second city, the soil strengths at the two sites may easily differ by orders 
of magnitude. A significant advantage of designing using quality-controlled materials is 
that the general form and, in particulai, the variance of the material property distri
bution is well enough accepted by the engineering profession that only a few samples 
of the material are deemed necessary to ensure design requirements are met. That is, 
engineers rely on an a priori estimate of the material variance which means that test
ing can be aimed at only ensuring that the mean material resistance is sufficiently high 
(the number of samples taken is usually far too few to accurately estimate the variance). 
This is essentially a hypothesis test on the mean with variance known. Using this test to 
ensure that design requirements are met, combined with the known distributions and re
sulting codified load and resistance factors, is sufficient to provide a reasonably accurate 
reliability-based design. 

Contrast the knowledge regarding the distribution of, say, concrete with that of soils. 
In analogy to the above discussion, it would be nice to have a reasonably accurate a 
priori estimate of soil property variance, so that only the mean soil property would 
have to be determined via a site investigation. Such an a priori estimate of variance 
would involve sampling many sites across the world - some in gravel, some in swamps, 
some in rock, some in clay, sand, and so on - and then estimating the variance across 
these samples. This a priori variance would be very large and this has two implications; 
first, more samples would be required to accurately estimate the mean at a site and 
secondly, and probably more importantly, the resulting reliability-based designs will often 
be overly conservative and expensive. That is. this 'worst case' a priori variance for soils 
would generally be much larger than the actual variance at a single site, which would 
typically lead to overdesign in order to achieve a certain reliability. Nevertheless, an 
a priori variance for soils would be of some value, particularly in situations where the 
site investigation is insufficient to estimate the variance, or for preliminary designs. In 
addition, it is better to start out on the safe side, and refine the design as sufficient 
information is gathered. 

The above argument suggests that in order to achieve efficient reliability-based geotech
nical designs, the site investigation must be intensive enough to allow the estimation of 
both the soil mean and variance - this level of site investigation intensity is typically 
what is aimed at in modern geotechnical codes, with varying degrees of success (for ex
ample, Australian Standard AS 4678, 2002, specifies three different investigation levels, 
associated with three different reliability levels). To date, however, little guidance is 
provided on how to determine "characteristic" design values for the soil on the basis of 
the gathered data, nor on how to use the estimated variance to adjust the design. 

Another complicating factor, which is more of a concern in soils than in other quality-
controlled materials, is that of spatial variability and its effect on design reliability. Soil 
properties often vary markedly from point to point and this variability can have quite 
different importance for different geotechnical issues. For example, footing settlement, 
which depends on an average property under the footing, is only moderately affected 
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by spatial variability, while slope stability, which involves the path of least resistance, 
is more strongly affected by spatial variability. In this chapter, spatial variability will 
be simply characterized by a parameter referred to here as the correlation length -
small correlation lengths imply more rapidly varying properties, and so on. In order 
to adequately characterize the probabilistic nature of a soil and arrive at reasonable 
reliability-based designs, then, three parameters need to be estimated at each site; the 
mean, variance, and correlation length. 

Fortunately, evidence compiled by the authors in the past indicates that a 'worst case' 
correlation length typically exists - this means that, in the absence of sufficient data, this 
worst case can be used in reliability calculations. It will generally be true that insufficient 
data are collected at a site to reasonably estimate the correlation length, so the worst 
case value is appropriate to use (despite the fact that this is somewhat analogous to using 
the worst case a priori variance discussed above). 

Once the random soil at a site has been characterized in some way, the question be
comes how should this information be used in a reliability-based design? In this chapter, 
a Limit State Design approach will be considered, where a square footing is placed on 
a three-dimensional soil mass and the task is to design the footing to have a sufficiently 
high reliability against excessive settlement. Thus, the limit state in question is a service
ability limit state. In structural design, serviceability limit states are investigated using 
unfactored loads and resistances. In keeping with this, both the Eurocode 7 (2004) and 
Australian Standard AS 2159 (1995) specify unit resistance factors for serviceability limit 
states. The Australian Standard AS 5100.3 (2004) states that "a geotechnical reduction 
factor need not be applied" for serviceability limit states. 

Due to the inherently large variability of soils, however, and because settlement often 
governs a design, it is the opinion of the authors that properly selected resistance factors 
should be used for both ultimate and serviceability limit states. The Australian Standard 
AS 4678 (2002), for example, agrees with this opinion and, in fact, distinguishes between 
resistance factors for ultimate limit states and serviceability limit states - the factors for 
the latter are closer to 1.0, reflecting the reduced reliability required for serviceability 
issues. Although the Canadian Foundation Engineering Manual (3rd Ed.,1992) suggests 
the use of a "performance factor" (foundation capacity reduction factor) of unity for 
settlement, it goes on to say "However, in view of the uncertainty and great variability 
in in situ soil-structure stiffnesses, Meyerhof (1982) has suggested that a performance 
factor of 0.7 should be used for an adequate reliability of serviceability estimates." 

If resistance factors are to be used, how should they be selected so as to achieve 
a certain reliability? Statistical methods suggest that the resistance factors should be 
adjusted until a sufficiently small fraction of possible realizations of the soil enter the 
limit state being designed against. Unfortunately, there is only one realization of each 
site and, since all sites are different, it is difficult to apply statistical methods to this 
problem. For this reason geotechnical reliability-based code development has largely been 
accomplished by calibration with past experience as captured in previous codes. This is 
quite acceptable, since design methodologies have evolved over many years to produce a 
socially acceptable reliability, and this encapsulated information is very valuable - see, 
for example. Vick's (2002) discussion of the value of judgement in engineering. 
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On the other hand, a reliability-based design code derived purely from deterministic 
codes cannot be expected to provide the additional economies that a true reliability-based 
design code could provide, eg. by allowing the specification of the target reliability (lower 
reliability for less important structures, etc.). or by improving the design as uncertainty 
is reduced, and so on. To attain this level of control in a reliability-based design code, 
probabilistic modeling and/or simulation of many possible soil regimes should also be 
employed to allow the investigation of the effect that certain design parameters have on 
system reliability. This is an important issue - it means that probabilistic modeling is 
necessary if reliability-based design codes are to evolve beyond being mirror images of 
the deterministic codes they derive from. The randomness of soils must be acknowledged 
and propertly accounted for. 

This chapter presents the results of a study in which a reliability-based settlement 
design approach is proposed and investigated via simulation using the Random Finite 
Element Method (RFEM). In particular, the effect of a soil's spatial variability and site 
investigation intensity on the resistance factors is quantified. The results of the chapter 
can and should be used to improve and generalize "calibrated" code provisions based 
purely on past experience. 

2 Random Finite Element Method (RFEM) 
A specific settlement design problem will be considered here in order to investigate the 
settlement probability distribution of footings designed against excessive settlement. The 
problem considered is that of a rigid rough square pad footing founded on the surface of a 
three-dimensional linearly elastic soil mass underlain by bedrock at depth H. Although 
only elastic settlement is specifically considered, the results can include consolidation 
settlement so long as the combined settlement can be adequately represented using an 
effective elastic modulus field. To the extent that the elastic modulus itself is a simpli
fied representation of a soil's inverse compressibility, which is strain level dependent, the 
extension of the approximation to include consolidation settlement is certainly reason
able, and is as recommended in the Canadian Highway Bridge Design Code Commentary 
(2000). 

The settlement of a rigid footing on a three-dimensional soil mass is estimated using 
a linear finite element analysis. The mesh selected is 64 elements by 64 elements in plan 
by 32 elements in depth. Eight-node hexahedral elements, each cubic with side length 
0.15 m are used (note that metric units are used in this chapter, rather than making it 
non-dimensional, since footing design will be based on a maximum tolerable settlement 
which is specified in m) yielding a soil domain of size 9.6 x 9.6 m in plan by 4.8 m in depth. 
Because the stiffness matrix corresponding to a mesh of size 64 x 64 x 32 occupies about 
4 Gbytes of memory, a preconditioned conjugate gradient iterative solver, which avoids 
the need to assemble the global stiffness matrix, is employed in the finite element code. 
A max-norm relative error tolerance of 0.005 is used to determine when the iterative 
solver has converged to a solution. 

The finite element model was tested (see also Griffiths and Fenton ) in the determin
istic case (uniform elastic soil properties) to validate its accuracy and was found to be 
about 20% stiffer (smaller settlements) than that derived analytically (see, eg, Milovic 
1992). Using other techniques such as selectively reduced integration, non-conforming el
ements, and 20-node elements did not significantly affect the discrepancy between these 
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results and Milovic's. The 'problem' is that the finite elements truncate the singular 
stresses that occur along the edge of a rigid footing, leading to smaller settlements than 
predicted by theory. In this respect, Seycek (1991) compares real settlements to those 
predicted by theory and concluded that predicted settlements are usually considerably 
higher than real settlements. This is because the true stresses measured in the soil near 
the footing edge aie finite and significantly less than the singular stresses predicted by 
theory. Seycek improves the settlement calculations by reducing the stresses below the 
footing. Thus, the finite element results included here are apparently closer to actual 
settlements than those derived analytically, although a detailed comparison to Seycek's 
has yet to be performed by the authors. However, it is not believed that these possible 
discrepancies will make a significant difference to the probabilistic results of this chap
ter since the probability of failure (excessive settlement) involves a comparison between 
deterministic and random predictions arising from the same finite element model, thus 
cancelling out possible bias. 

The rigid footing is assumed to have a rough interface with the underlying soil - no 
relative slip is permitted - and rotation of the footing is not permitted. Only square 
footings, of dimension B x B are considered, where the required footing width B is 
determined during the design phase, to be discussed in the next section. Once the 
required footing width has been found, the design footing width must be increased to 
the next larger element boundary - this is because the finite element mesh is fixed and 
footings must span an integer number of elements. For example, if the required footing 
width is 2.34 m, and elements have dimension Ax — Ay — 0.15 m square, then the design 
footing width must be increased to 2.4 m (since this corresponds to 16 elements, rather 
than the 15.6 elements that 2.34 m would entail). This corresponds roughly to common 
design practice, where element dimensions are increased to an easily measured quantity. 

Once the design footing width has been found, it must be checked to ensure that it 
is physically reasonable, both economically and within the finite element model. First of 
all, there will be some minimum footing size. In this study the footings cannot be less 
than 4 x 4 elements in size - for one thing loaded areas smaller than this tend to have 
significant finite element errors, for another, they tend to be too small to construct. For 
example, if an element size of 0.15 m is used, then the minimum footing size is 0.6 x 0.6 
m, which is not very big. French (1999) recommends a lower bound on footing size of 0.6 
m and an upper economical bound of 3.7 m. If the design footing width is less than the 
minimum footing width, it is set equal to the minimum footing width. Secondly, there 
will be some maximum footing size. A spread footing bigger than about 4 m square 
would likely be replaced by some other foundation system (piles, mat, or raft). In this 
program, the maximum footing size is taken to be equal to 2/3 of the finite element mesh 
width. This limit has been found to result in less than a 1% error relative to the same 
footing founded on a mesh twice as wide, so boundary conditions are not significantly 
influencing the results. If the design footing width exceeds the maximum footing width 
then the probabilistic interpretation becomes somewhat complicated, since a different 
design solution would presumably be implemented. From the point of view of assessing 
the reliability of the 'designed' spread footing, it is necessary to decide if this excessively 
large footing design would correspond to a success, or to a failure. It is assumed in this 
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study that the subsequent design of the alternative foundation would be a success, since 
it would have its own (high) reliability. 

In all the simulations performed in this study, the lower limit on the footing size was 
never encountered, implying that for the choices of parameters selected in this study, the 
probability of a design footing being less than 0.6 x 0.6 in dimension was very remote. 
Similarly, the maximum footing size was not exceeded in any but the most severe pa
rameter case considered (minimum sampling, lowest resistance factor, highest coefficient 
of variation), where it was only exceeded in 2% of the possible realizations. Thus, the 
authors were satisfied that the finite element analysis would give reasonably accurate 
settlement predictions over the entire study. 

The soil property of primary interest to settlement is elastic modulus, E, which is 
taken to be spatially random and may represent both the initial elastic and consolidation 
behaviour. Its distribution is assumed to be lognormal for two reasons: the first is that 
a geometric average tends to a lognormal distribution by the central limit theorem and 
the effective elastic modulus, as 'seen' by a footing, was found to be closely represented 
by a geometric average in Fenton and Griffiths (2002), and second is that the lognormal 
distribution is strictly non-negative which is physically reasonable for elastic modulus. 
The lognormal distribution has two parameters, II]„E and aine which can be estimated 
by the sample mean and sample standard deviation of observations of ln(ii;). They can 
also be obtained from the mean and standard deviation of E using the transformations 

al,^\n{l + V/) (la) 

where VE ~ OEI t^E is the coefficient of variation of the elastic modulus field. A Markovian 
spatial correlation function, which gives the correlation coefficient between log-elastic 
modulus values at points separated by the lag vector, T. is used in this study; 

P i n ^ d ) - e x p j - ^ ^ (2) 

in which T — x — x' is the vector between spatial points x and x'. and |T| is the absolute 
length of this vector (the lag distance). In this chapter, the word 'correlation' refers to 
the correlation coefficient. The results presented here are not particularly sensitive to 
the choice in functional form of the correlation - the Markov model is popular because 
of its simplicity. The correlation function decay rate is governed by the so-called corre
lation length, 9\nE: which, loosely speaking, is the distance over which log-elastic moduli 
are significantly correlated (when the separation distance \T\ is greater than OIHE-, the 
correlation between \nE{x) and ln_E(x') is less than 14%). The correlation structure is 
assumed to be isotropic in this study which is appropriate for investigating the funda
mental stochastic behaviour of settlement. Anisotropic studies are more appropriate for 
site-specific analyses and for refinements to this study. In any case, anisotropy is not 
expected to have a large influence on the results of this chapter due to the averaging 
effect of the rigid footing on the properties it 'sees' beneath it. 

Poisson's ratio, having only a relatively minor influence on settlement, is assumed to 
be deterministic and is set at 0.3 in this study. 
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Realizations of the random elastic modulus field are produced using the Local Average 
Subdivision (LAS) method (Fenton and Vanmarcke 1990). Specifically, LAS produces 
a discrete grid of local averages, G{x^), of a standard Gaussian random field, having 
correlation structure given by Eq. (2), where x^ are the coordinates of the centroid of the 
t̂h gj.jjj ĝ]]_ These local averages are then mapped to finite element properties according 

to 
E{Xi) ^ e x p {^in E + (7]n fiGfe)] (3) 

(which assumes that the centroids of the random field cells and the finite elements coin
cide, as they do in this study). 

Much discussion of the relative merits of various methods of representing random 
fields in finite element analysis has been carried out in recent years (see, for example, Li 
and Der Kiureghian, 1993). While the spatial averaging discretization of the random field 
used in this study is just one approach to the problem, it is appealing in the sense that 
it refiects the simplest idea of the finite element representation of a continuum as well as 
the way that soil samples are typically taken and tested in practice, ie. as local averages. 
Regarding the discretization of random fields for use in finite element analysis, Matthies 
et al. (1997) makes the comment that "One way of making sure that the stochastic field 
has the required structure is to assume that it is a local averaging process.", refering 
to the conversion of a nondiflerentiable to a diflerentiable (smooth) stochastic process. 
Matthie further goes on to say that the advantage of the local average representation of 
a random field is that it yields accurate results even for rather coarse meshes. 

Figure 1 illustrates the finite element mesh used in the study and Figure 2 shows a 
cross-section through the soil mass under the footing for a typical realization of the soil's 
elastic modulus field. Figure 2 also illustrates the boundary conditions. 

Figure 1. Finite element mesh with one square footing. 
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Figure 2. Cross-section through a realization of the random soil underlying the foot
ing. Lighter soils are softer, 

3 Reliability-Based Sett lement Design 
The goal of this chapter is to propose and investigate a reliability-based design methodol
ogy for the serviceability limit state of footing settlement. Footing settlement is predicted 
here using a modified Janbu (1956) relationship, and this is the basis of design used in 
this chapter; 

Sp = ui-^ (4) 

where 6p is the predicted footing settlement, q — P/B-^ is the estimated stress applied 
to the soil by the estimated load, P, acting over footing area B x B, E is the (possibly 
drained) estimate of elastic modulus underlying the footing, ui is an influence factor 
which includes the effect of Poisson's ratio {f — 0,3 in this study). The estimated load, 
P, is often a nominal load computed from the supported live and dead loads, while the 
estimated elastic modulus, E, is usually a cautious estimate of the mean elastic modulus 
under the footing obtained by taking laboratory samples or by in-situ tests, such as CPT. 
In terms of the footing load, P, the settlement predictor thus becomes 

P 
^p^ui—^ (5) 

BE 

The relationship above is somewhat modified from that given by Janbu (1956) and 
Christian and Carrier (1978) in that the influence factor, Ui. is calibrated specifically for 
a square rough rigid footing founded on the surface of an elastic soil using the same finite 
element model which is later used in the Monte Carlo simulations. This is done to remove 
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bias (model) errors and concentrate specifically on the effect of spatial soil variability on 
required resistance factors. In practice, this means that the resistance factors proposed 
in this chapter are upper bounds, appropriate for use when bias and measurement errors 
are known to be minimal. 

The calibration of Ui is done by computing the deterministic (non-random) settlement 
of an elastic soil with elastjc modulus E and Poisson's ratio f under a square rigid rough 
footing supporting load P using the finite element program. Once the settlement is 
obtained, Eq. (5) can be solved for m. Repeating this over a range of H/B ratios leads 
to the curve shown in Figure 3. (Note that this deterministic calibration was carried 
out over a larger range of mesh dimensions than indicated by Figure 1.) A very close 
approximation to the finite element results is given by the fitted relationship (obtained 
by consideration of the correct limiting form and by trial-and-error for the coefficients) 

n i - 0 . 6 l ( l - e - i - i « ^ / ^ ) (6) 

which is also shown on Figure 3. 

Figure 3. Calibration of Ui using finite element model. 

Using Eq. (6) in Eq. (5) gives the following settlement prediction 

p ^ 
< 5 ^ - 0 . 6 l ( l - e - i - i « ^ / ^ ) ( (7) BE 
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The reliability-based design goal is to determine the footing width, B, such that the 
probability of exceeding a specified tolerable settlement, S^ax-, is acceptably small. That 
is, to find B such that 

F[6> 6max] =Pf = Pmax (8) 

where 6 is the actual settlement of the footing as placed (which will be considered here 
to be the same as designed). Design failure is assumed to have occurred if the actual 
footing settlement, 6. exceeds the maximum tolerable settlement, S^ax- The probability 
of design failure is pf and Pmax is the maximum acceptable risk of design failure. 

A realization of the footing settlement, 8. is determined here using a finite element 
analysis of a realization of the random soil. For Ui calibrated to the finite element results, 
5 can also be computed from 

^ = ^ ^ 1 ^ (9) 

where P is the actual footing load and E^fj is the effective elastic modulus as seen by 
the footing (ie, the uniform value of elastic modulus which would produce a settlement 
identical to the actual footing settlement). Both P and E^ff are random variables. 

One way of achieving the desired design reliability is to introduce a load factor, Q > 1, 
and a resistance factor, (p < 1., and then finding B, a and (p which satisfy both Eq. (8) 
and Eq. (5) with S — Smax- In other words, find B and Q / 0 such that 

— Pmax \^^) 

and 
p f QP\ 

BE.ff \B4>E) 

From these two equations, at most two unknowns can be found uniquely. For service
ability limit states, a load factor of 1.0 is commonly used, and Q — 1 will be used here. 
(Note: only the ratio a/(f) need actually be determined for the settlement problem.) 

Given a/ff)- P- E, and H, Eq. (10) is relatively efficiently solved for B using 1-pt 
iteration; 

aP B „ = 0 . « ( l - e - . - . - / - . ) M ^ 02 
^max(pE ̂  

for i — 1,2,... until successive estimates of B are sufficiently similar. A reasonable 
starting guess is Bi — 0.4{aP)/{6max(j)E). 

In Eq. (11), the random variables ui and B are common to both sides of the inequality 
and so can be canceled. It will also be assumed that the footing load is lognormally 
distributed and that the estimated load, P. equals the (non-random) median load, that 
is 

P -exp{ / i ]np} (13) 

Setting the value of P to the median load considerably simplifies the theory in the sequel, 
but it should be noted that the definition of P will directly affect the magnitude of the 
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estimated resistance factors. The lognormal distribution was selected because it results 
in loads which are strictly non-negative (uplift problems should be dealt with separately, 
and not handled via the tail end of a normal distribution assumption). The results to 
follow should be similar for any reasonable load distribution (e.g. Gamma. Chi-Square. 
etc) having the same mean and variance. 

Collecting all remaining random quantities leads to the simplified design probability 

— Pmax \^'^) 

The estimated modulus, E, and the effective elastic modulus, E^ff, will also be 
assumed to be lognormally distributed. Under these assumptions, if W is defined as 

I V - P - ^ (15) 

then W is also lognormally distributed, so that 

\nW ^InP + lnE-lnEeff (16) 

is normally distributed with mean 

/^In w — /^tap + /^InE — f^inE^fj (17) 

It is assumed that the load distribution is known, so that ii]„ p and af^ p are known. The 
nature of the other two terms on the right hand side will now be investigated. 

Assume that E is estimated from a series of m soil samples that yield the observations 
E°. E§. .... E^. To investigate the nature of this estimate, it is constructive to first 
consider the effective elastic modulus, E^fj, as seen by the footing. Analogous to the 
estimate for E. it can be imagined that the soil volume under the footing is partitioned 
into a large number of soil 'samples' (although most of them, if not all, will remain 
unsampled), Ei, E^, .... En. Investigations by Fenton and Griffiths (2002) suggest 
that the effective elastic modulus, as seen by the footing, E^jf. is a geometric average of 
the soil properties in the block under the footing, that is 

If E is to be a good estimate of E^ff, which is desirable, then it should be similarly 
determined as a geometric average of the observed samples E°, E2, .... E° 

^ - Il^° -e-P<|^El"^°} (19) 
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since this estimate of Egff is unbiased in the median, ie. the median of E is equal to 
the median of E^ff. This is a fairly simple estimator, and no attempt is made here 
to account for the location of samples relative to the footing. Note that if the soil is 
layered horizontally and it is desired to specifically capture the layer information, then 
Eqs. 18 and 19 can be applied to each layer individually - the final E and E^jf values are 
then computed as harmonic averages of the layer values. Although the distribution of a 
harmonic average is not simply defined, a lognormal approximation is often reasonable. 

Under these definitions, the means of/i]n£ and /XIHE^^^ are identical, 

Wn £=// ^ E [In Eeff] ^ Hin E (20) 

y t̂aE ^ E [ i n i ; ^ HinE (21) 

where ŷ inE is the mean of the logarithm of elastic moduli of any sample. Thus, as long 
as Equations (18) and (19) hold, the mean of In W simplifies to 

Wnw = Mlnp (22) 

Now, attention can be turned to the variance of In TV. If the variability in the load P is 
independent of the soil's elastic modulus field then the variance of In W is 

^in w - ^in P + ^]n E + ^l E^fj " 2Cov [in E, In Eeff] (23) 

The variances of In E and In Eg ff can be expressed in terms of the variance of In E using 
two variance reduction functions, 7° and 7, defined as follows 

- . m m 

2=1 j = l 

i = i j = i 

where p°j is the correlation coefficient between In Ef and In E" and pij is the correlation 
coefficient between In Ei and In Ej. These functions can be computed numerically once 
the locations of all soil 'samples' are known. Both 7°(1) and 7(1) have value 1.0 when 
only 1 sample is used to specify E or E^ff, respectively (when samples are 'point' samples 
then 1 sample corresponds to zero volume - however, in this chapter, it is assumed that 
there is some representative sample volume from which the mean and variance of the 
elastic modulus field are estimated and this corresponds to the 'point' measure). As the 
number of samples increases the variance reduction function decreases towards zero at 
a rate inversely proportional to the total sample volume (see Vanmarcke 1984). If the 
volume of the soil under the footing is B x B x H then a reasonable approximation to 
7(n) is obtained by assuming a separable form; 

7(n) ~ 7i(2S/ft„E)7i(2BM„^)7i(21//ft„^) (25) 
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where 71(a) is the 1-D variance function corresponding to a Markov correlation; 

7 i ( a ) - ^ [ a + e - ' ' - l ] (26) 

As an aside, Fenton and Griffiths, 2002, suggest that the depth to the bedrock, H, be 
limited to no more than about lOB in the calculation of the soil volume under the footing. 
However, the effective strain zone is generally quite a bit shallower, so a maximum depth 
of 2B to 4B might be more appropriate as a limitation on H. 

An approximation to 7°(m) is somewhat complicated by the fact that samples for 
E are likely to be collected at separate locations. If the observations are sufficiently 
separated that they can be considered independent (eg. separated by more than 0]„E); 

then 7°(m) — 1/m. If they are collected from within a contiguous volume, V°, then 

7°(m) ~7i(2i?/ft„^)7i(2i?/ei„^)7i(2J//ei„^) (27) 

where the total plan area of soil sampled is i? x i? (for example, a CPT sounding can 
probably be assumed to be sampling an effective area equal to about 0.2 x 0.2 m^, so 
that R — 0.2 m). The true variance reduction function will be somewhere in between. In 
this chapter, the soil is sampled by examining one or more columns of the finite element 
model, and so for an individual column, R x R becomes replaced by, Ax x Ay, which 
are the plan dimensions of the finite elements and Eq. (27) can be used to obtain the 
variance reduction function for a single column. If more than one column is sampled, 
then 

., , ^. 7i(2Ax/gi„^)7i(2Ay/gi„^)7i(2gM„^) 
7 (m) ~ (IS) 

where rieff is the effective number of independent columns sampled. If the sampled 
columns are well separated (ie, by more than the correlation length), then they could be 
considered independent, and Ueff would be equal to the number of columns sampled. If 
the columns are closely clustered (relative to the correlation length), then rieff would 
decrease towards 1. The actual number is somewhere in between and can be estimated 
by judgement. 

With these results. 

The covariance term in Eq. (23) is computed from 

^ i n * - 7 ° ( m ) ^ i n . (29a) 

^ l n . . „ - 7 ( " ) ^ l n . (29&) 

Gov [in A ln£;, eff 
m n 

^ E E C o v [ l n i 5 ; , l n E , ] 
mn 

0 
1 m n 

-nn ^-^ ^-^ '-̂  ran 
J = l 2 = 1 

(30) 

_ 2 / 
^\TiE,Patje 
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where p̂ ^ is the correlation coefficient between In Ej and In E^ and p'^^^ is the average of 
all these correlations. If the estimate, In E, is to be at all useful in a design, the value of 
pjĵ g should be reasonably high. However, its magnitude depends on the degree of spatial 
correlation (measured by ^ H E ) and the distance between the observations E^ and the 
soil volume under the footing. The correlation function of Eq. (2) captures both of these 
effects. That is, there will exist an 'average' distance r̂ ^̂ ^ such that 

exp (31) 

and the problem is to find a reasonable approximation to T^^^ if the numerical calculation 
of Eq. (30) is to be avoided. The approximation considered in this study is that T^^^ 
is defined as the average absolute distance between the Ef samples and a vertical line 
below the center of the footing, with a sample taken anywhere under the footing to be 
considered to be taken at the footing corner (eg, at a distance B/\/2 from the centerline) 
- this latter restriction is taken to avoid a perfect correlation when a sample is taken 
directly at the footing centerline, which would be incorrect. In addition, a side study 
performed by the authors, which is not reported here, indicated that for all moderate 
correlation lengths (̂ in E of the order of the footing width) the true r^^g differed by less 
than about 10% from the approximation B/^/2 for any sample taken under the footing. 

Using these definitions, the variance of In W can be written 

„2 „2 

> a In-P 

„2 
C^InE [7°(m)+7W-Va^e] (32) 

The limitation af^^y > af^^ is introduced because it is possible, using the approximations 
suggested above, for the quantity inside the square brackets to become negative, which is 
physically inadmissable. It is assumed that if this happens that the sampling has reduced 
the uncertainty in the elastic modulus field essentially to zero. 

With these results in mind the design probability becomes 

E 

E. 
> a 

eff 
W> a 

- P [In VF > In Q - In </) + //In p] 

' - I n , 

~ Pmax 
CTln, 

(assuming a = 1) (33) 

from which the required resistance factor, (p, can be found as 

(34) 

where Zp^^^ is the point on the standard normal distribution having exceedance proba
bility Pmaa- For pn 0.05, which will be assumed in this chapter, Zp^ 1.645. 
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It is instructive at this point to consider a limiting case, namely where E is a perfect 
estimate of E^jf. In this case, E — E^ff, which implies that m — n and the observations 
E°.... coincide identically with the 'samples' Ei. In this case. 7° = 7 and p = 1, so 
that 

f ^ I n w ^ f ^ h i p (35) 

from which the required resistance factor can be calculated as 

0 = exp {-%„„^ • CTjn p} (36) 

For example, if Pmax — 0.05 and the coefficient of variation of the load is Vp — 0.1, 
then tj) — 0.85. Alternatively, for the same maximum acceptable failure probability, if 
Vp — 0.3, then (j) decreases to 0.62. 

One difficulty with the computation of af^ ̂  , that is apparent in the approximation 
of Eq. (25), is that it depends on the footing dimension B. From the point of view of 
the design probability, Eq. (14), this means that B does not entirely disappear, and the 
equation is still interpreted as the probability that a footing of a certain size will fail to 
stay within the serviceability limit state. The major implication of this interpretation is 
that if Eq. (14) is used conditionally to determine (p, then the design resistance factor, (p, 
will have some dependence on the footing size - this is not convenient for a design code 
(imagine designing a concrete beam if 0c varied with the beam dimension). Thus, as 
is, Eq. (14) should be used conditionally to determine the reliability of a footing against 
settlement failure once it has been designed. The determination of 4> must then proceed 
by using the total probability theorem; that is, find 0 such that 

PCX 

Pmax — / ^ 
Jo 

W >-P\B U{b)db (37) 

where /B is the probability distribution of the footing width B. The distribution of B 
is not easily obtained - it is a function of H, P. 6max; the parameters of E, and the 
load and resistance factors, a and (j). see Eq. (12) - and so the value of 0 is not easily 
determined using Eq. (37). One possible solution is to assume that changes in B do 
not have a great influence on the computed value of tj) and to take B — Bmed-, where 
Bmed is the (non-random) footing width required by the median elastic modulus using a 
moderate resistance factor of 0 — 0.5 in Eq. (12). This approach will be adopted in this 
chapter, and will be validated by the simulation to be discussed next. 

4 Design Simulations 
As mentioned above, the resistance factor 0 cannot be directly obtained by solving 
Eq. (14), for given B, simultaneously with Eq. (10) since this would result in a resis
tance factor which depends on the footing dimension. To find the value of (j) to be used 
for any footing size involves solving Eq. (37). Unfortunately, this is not feasible since the 
distribution of B is unknown (or, at least very difficult to compute). A simple solution 
is to use Monte Carlo simulation to estimate the probability on the right hand side of 
Eq. (37) and then use the simulation results to assess the validity of the simplifying as
sumption that -Bmed can be used to find (j) using Eq. (14). In this chapter, the Random 
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Finite Element Method (RFEM) will be employed within a design context to perform 
the desired simulation. The approach is described as follows; 

1) decide on a maximum tolerable settlement, 6max- In this chapter, 6max = 0.025 m. 
2) estimate the nominal footing load, P. to be the median load applied to the footing 

by the supported structure (it is assumed that the load distribution is known well 
enough to know its median, P — e'''"^). 

3) simulate an elastic modulus field, E{x). for the soil from a lognormal distribution 
with specified mean, fi^. variance, o%. and correlation structure (Eq. 2) with correla
tion length 6\nE- The field is simulated using the Local Average Subdivision (LAS) 
method (Fenton, 1990) whose local average values are assigned to corresponding 
finite elements. 

4) 'virtually' sample the soil to obtain an estimate, E. of its elastic modulus. In a real 
site investigation, the geotechnical engineer may estimate the soil's elastic modulus 
and depth to firm stratum by performing one or more CPT or SPT soundings. In 
this simulation, one or more vertical columns of the soil model are selected to yield 
the elastic modulus samples. That is, E is estimated using a geometric average, 
Eq. (19), where E° is the elastic modulus of the top element of a column, iSj is 
the elastic modulus of the 2nd to top element of the same column, and so on to 
the base of the column. One or more columns may be included in the estimate, as 
will be discussed shortly, and measurement and model errors are not included in the 
estimate - the measurements are assumed precise. 

5) lett ing 8p — ^max', <md for given factors ct and (j) solve Eq. (12) for P. This constitutes 
the footing design. Note that design widths are normally rounded up to the next 
most easily measured dimension (eg 1684 mm would probably be rounded up to 1700 
mm). In the same way, the design value of P is rounded up to the next larger element 
boundary, since the finite element model assumes footings are a whole number of 
elements wide. (The finite element model uses elements which are 0.15 m wide, so 
P is rounded up to the next larger multiple of 0.15 m.) 

6) simulate a lognormally distributed footing load. P. having median P and variance 
al. 

7) compute the 'actual' settlement, 6. of a footing of width P under load P on a random 
elastic modulus field using the finite element model. In this step, the virtually 
sampled random field generated in step (3) above is mapped to the finite element 
mesh, the footing of width P (suitably rounded up to a whole number of elements 
wide) is placed on the surface and the settlement computed by finite element analysis. 

8) if (5 > 
^max; the footing design is assumed to have failed. 

9) repeat from step (3) a large number of times (n — 1000, in this chapter), counting the 
number of footings, Uf. which experienced a design failure. The failure probability 
is then estimated as pf = njjn. 

By repeating the entire process over a range of possible values of 4> the resistance factor 
which leads to an acceptable probability of failure, p / — Vmax-, can be selected. This 
'optimal' resistance factor will also depend on; 

1) the number and locations of sampled columns (analogous to the number and loca
tions of CPT/SPT soundings), 

2) the coefficient of variation of the soil's elastic modulus, VE, 
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3) the correlation length, ftnE; 
and the simulation will be repeated over a range of values of these parameters to see how 
they affect cf). 

Five different sampling schemes will be considered in this study, as illustrated in 
Figure 4. The outer solid line denotes the edge of the soil model, and the interior dashed 
line the location of the footing. The small black squares show the plan locations where 
the site is virtually sampled. It is expected that the quality of the estimate of E^ff will 
improve for higher numbered sampling schemes. That is, the probability of design failure 
will decrease for higher numbered sampling schemes, everything else being held constant. 

(1) (2) (3) (4) (5) 

Figure 4. Sampling schemes considered in this study. 

Table 1 lists the other parameters, aside from sampling schemes, varied in this study. 
In total 300 RFEM runs, each involving 1000 realizations were performed. Based on 
1000 independent realizations, the estimated failure probability, pf. has standard error 
V'p/( l - :^ / ) /1000, which for a probability level of 5% is 0.7%. 
Table 1. Input parameters varied in the study while holding H — 4.8 Tn.D— 9.6 m. 

yup = 1200 kN , Vp ^ 0.25, ^lE = 20 MPa, and v = 0.3 constant. 

Parameter 

4> 

Values Considered 
0.1, 0.2, 0.5 
0.1, 1.0 10.0, 100.0 
0.4. 0.5. 0.6. 0.7. 0.8 

5 Simulation Results 
Figure 5 shows the effect of the correlation length on the probability of failure for sampling 
scheme # 1 (a single sampled column at the corner of site) and for VE ~ 0.5. The other 
sampling schemes and values of VE displayed similarly shaped curves. Of particular 
note in Figure 5 is the fact that the probability of failure reaches a maximum for an 
intermediate correlation length, in this case when ftn E — 10 m. This is as expected, since 
for stationary random fields the values of E and E^ff will coincide for both vanishingly 
small correlation lengths (where local averaging results in both becoming equal to the 
median) and for very large correlation lengths (where E and E^ff become perfectly 
correlated) and so the largest differences between E and -Ee// will occur at intermediate 
correlation lengths. The true maximum could lie somewhere between 9\nE ~ 1 m and 
^inE — 100 m in this particular study. 
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Figure 5. Effect of correlation length. 6]n ^. on probability of failure. Pf ~ P [S > S^ax]-

Where the maximum lies for arbitrary sampling patterns is still unknown, but the au

thors expect that it is probably safe to say that taking 6inE approximately equal to the 

average distance between sample locations and the footing center (but not less than ap

proximately the footing size) would yield suitably conservative failure probabilities. In 

this chapter, the GIUE — 10 m results will be concentrated on since these yielded the most 

conservative designs in this study. 

Figure 6 shows how the estimated probability of failure varies with resistance factor 

for the five sampling schemes considered with VE ~ 0.2 and 6inE ~ 10 m. This Figure 

can be used for design by drawing a horizontal line across at the target probability, 

Pmax ^ to illustrate this, a light line has been drawn across at Pmax — 0.05 - and then 

reading off the required resistance factor for a given sampling scheme. For Pmax — 0.05, 

it can be seen that cj) ~ 0.62 for the 'worst case' sampling scheme # 1 . For all the other 

sampling schemes considered, the required resistance factor is between about 0.67 and 

0.69. Because the standard error of the estimated pf values is 0.7% at this level, the 

relative positions of the lines tends to be somewhat erratic. What Figure 6 is saying, 

essentially, is that at low levels of variability, increasing the number of samples does not 

greatly affect the probability of failure. 



The Random Finite Element Method (RFEM) in Settlement Analyses 261 

Figure 6. Effect of resistance factor. 0. on probability of failure, pf — P[S > S^ax] 

for VE = 0.2 and OI^E = 10 m. 

When the coefficient of variation, VE, increases the distinction between sampling schemes 

becomes more pronounced. Figure 7 shows the failure probability for the various sampling 

schemes at VE — 0.5 and ftnE — 10 m. Improved sampling now makes a significant 

difference to the required value of <p, which ranges from 0 ~ 0.46 for sampling scheme 

^ 1 to (/) ~ 0.65 for sampling scheme ^ 5 , assuming a target probability of p^aa; — 

0.05. 

The implications of Figure 7 are that when soil variability is significant, considerable 

design/construction savings can be achieved when the sampling scheme is improved. 
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Figure 7. Effect of resistance factor, cj). on probability of failure, pf — P [(5 > 6max\ 
for VE = 0.5 and ftnE — 10 m. 

The approximation to the analytical expression for the failure probability can now be 
evaluated. For the case considered in Figure 7, VE = 0.5 and Vp = 0.25 so that 

CT]2„^-ln(l + y^2^-(j_2231 

^inp - l n ( l + yp^) -0.0606 

To compute the variance reduction function, 7(n), the footing width corresponding to 
the median elastic modulus is needed. For this calculation, an initial value of (̂  is also 
needed, and the moderate value of (/> = 0.5 is recommended. For JJLE = 20000 kPa, the 
median elastic modulus, E. is 

E ^ / - = /QQQQ = 17889 kPa 

vTTt? \/i + o.52 
and for fip = 1200 kN, the median footing load is 

P - - i ^ ^ - - i i e = - 1 1 6 4 . 2 kN 
^/l^v7 \ / l + 0.252 

Solving Eq. (12) iteratively gives -Bmed — 2.766 m. The corresponding variance reduction 
factors are 
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-» ( ^ ) = ask^ [°-̂ ^̂  + '"•"" -'] = "-^'^ 
which gives 

7(n) ~ (0.83852)2(0.74413) - 0.5232 

Now consider sampling scheme # 1 which involve a single vertical sample with R — 
Ax — 0.15 m and corresponding variance reduction factor, 

71 ( ^ ) = ^ , [0.03 + e-°-°^ - 1] ^ 0.99007 

7°(m) ~ (0.99007)2(0.74413) - 0.7294 

For sampling scheme # 1 , T'^^^ ~ \/2(9.6/2) — 6.79 m is the (approximate) distance 
from the sample point to the center of the footing. In this case, 

. ; . . = » p i - ? » U 0.2572 

which gives us, using Eq. (32), 

f̂ in w = 0.0606 + 0.2231 [0.7294 + 0.5232 - 2(0.2572)] = 0.2253 

so that CTinw — 0.4746. For ZQ.QQ — 1.645, the required resistance factor is determined by 
Eq. (34) to be 

(/> = exp{-1.645 (0.4746)} = 0.46 

The corresponding value on Figure 7 is also 0.46. Although this agreement is excellent, it 
must be remembered that this is an approximation, and the precise agreement may be due 
somewhat to mutually cancelling errors and to chance, since the simulation estimates are 
themselves somewhat random. For example, if the more precise formulas of Eq's (24a), 
(24b), and (30) are used then Y{m) ^ 0.7432, -f{n) ^ 0.6392, and p'^^, ^ 0.2498, which 
gives 

f̂ inw = 0-0606 + 0.2231 [0.7432 + 0.6392 - 2(0.2498)] = 0.2576 

so that the 'more precise' required resistance factor actually has poorer agreement with 
simulation; 

</> = exp{-1.645\/0.2576} = 0.43 

It is also to be remembered that the 'more precise' result above is still conditioned on 
B — B^ed and (f) — 0.5, whereas the simulation results are unconditional. Nevertheless, 
these results suggest that the approximations are insensitive to variations in B and (j). 
and are thus reasonably general. 

Sampling scheme #2 involves two sampled columns separated by more than 6i„E = 10 
m so that Ueff can be taken as 2. This means that 7°(m) ~ 0.7294/2 ^ 0.3647. The 
average distance from the footing centerline to the sampled columns is still about 6.79 
m, so that p'^^^ = 0.2572. Now 

(^'Lw ^ 0.0606 + 0.2231 [0.3647 + 0.5232 - 2(0.2572)] - 0.1439 
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and the required resistance factor is 

</> ^ exp{-1.645\/0.1439} - 0.54 

The corresponding value on Figure 7 is about 0.53. 
Sampling scheme # 3 involves four sampled columns, separated by somewhat less than 

(hiiE ~ 10 m. Due to the resulting correlation between columns, Ueff — 3 is selected (ie. 
somewhat less than the 'independent' value of 4). This gives 7°(m) ~ 0.7294/3 = 0.2431. 
Since the average distance from the footing centerline to the sample columns is still about 
6.79 m, 

f̂ in w ^ 0.0606 + 0.2231 [0.2431 + 0.5232 - 2(0.2572)] - 0.1268 

The required resistance factor is 

(j) - exp{-1.645\/0.1268} - 0.57 

The corresponding value on Figure 7 is about 0.56. 
Sampling scheme # 4 involves 5 sampled columns, also separated by somewhat less 

than 0\nE = Wm and rieff ~ 4 is selected to give 7°(m) ~ 0.7294/4 - 0.1824. One of the 
sampled columns lies below the footing, and so its 'distance' to the footing centerline is 
taken to be B^ed/V^ — 2.766/v^ — 1-96 m to avoid complete correlation. The average 
distance to sampling points is thus 

r^, , -^(6.79) + J (1.96)-5.82 

so that yojĵ g — 0.3120. This gives 

CTf„ VF ^ 0.0606 + 0.2231 [0.1824 + 0.5232 - 2(0.3120)] - 0.0788 

The required resistance factor is 

(j) - exp{-1.645\/0.0788} - 0.63 

The corresponding value on Figure 7 is about 0.62. 
For sampling scheme # 5 , the distance from the sample point to the center of the 

footing is zero, so r^^g is taken to equal the distance to the footing corner, r^^g — 
(2.766)/\/2 - 1.96 m. as recommended earlier. This gives p'. — 0.676 and 

a^„^ ^ 0.0606+0.2231 [0.7294 + 0.5232 - 2(0.676)] - 0.0606+0.2231 [-0.0994] ^ 0.0606 

where approximation errors led to a negative variance contribution from the elastic mod
ulus field which was ignored (ie. set to zero). In this case, the sampled information 
is deemed sufficient to render uncertainties in the elastic modulus negligible, so that 
E ~ Eeff and 

<p - exp{-1.645\/0.0606} - 0.67 
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The value of cj) read from Figure 7 is about 0.65. If the more precise formulas for 
the variance reduction functions and covariance terms are used, then 7°(m) — 0.7432, 
7(n) = 0.6392, and p'^^^ = 0.6748, which gives 

af„^ - 0.0606 + 0.2231 [0.7432 + 0.6392 - 2(0.6748)] - 0.0679 

Notice that this is very similar to the approximate result obtained above, which suggests 
that the assumption that samples taken below the footing largely eliminate uncertainty 
in the effective elastic modulus is reasonable. For this more accurate result, 

(j) - exp{-1.645\/0.0679} - 0.65 

which is the same as the simulation results. 
Perhaps surprisingly, sampling scheme # 5 outperforms, in terms of failure probability 

and resistance factor, sampling scheme #4, even though sampling scheme # 4 involves 
considerably more information. The reason for this is that the good information taken 
below the footing is diluted by poorer information taken from farther away. This implies 
that when a samiple is taken below the footing, other samples taken from farther away 
should be downweighted. 

The computations illustrated above for all five sampling schemes can be summarized 
as follows; 

1) Decide on an acceptable maximum settlement, Sf„ax- Since serviceability problems in 
a structure usually arise as a result of differential settlement, rather than settlement 
itself, the choice of an acceptable maximum settlement is usually made assuming that 
differential settlement will be less than the total settlement of any single footing (see, 
eg. D'Appolonia, 1968). 

2) Choose statistical parameters of the elastic modulus field, fiE, GE, and 6inE- The 
last can be the 'worst case' correlation length, suggested here to approximately equal 
the average distance between sample locations and the footing center, but not to 
be taken less than the median footing dimension. The values of /IE and OE can be 
estimated from site samples (although the effect of using estimated values of /IE and 
CTE in these computations has not been investigated) or from the literature. 

3) Use Eqs.(l) to compute the statistical parameters of \nE and then compute the 
median E — exp{yL(]nE}-

4) Choose statistical parameters for the load, fip and ap, and use these to compute the 
mean and variance of In P . Set P — exp{/i]i,p]. 

5) Using a moderate resistance factor, cj) — 0.5, and the median elastic modulus, E. 
compute the 'median' value of B using the 1-pt iteration of Eq. (12). Call this B^^ci-

6) Compute 7(n) using Eq. (25) (or Eq. 24b) with B - Bmed-
7) Compute 7°(m) using Eq. (28) (or Eq. 24a). 
8) Compute p'^^^ using Eq. (31) (or Eq. 30) after selecting a suitable value for r^^g as 

the average absolute distance between the sample columns and the footing center 
(where distances are taken to be no less than the distance to the footing corner, 
Bmed/V^)-

9) Compute crinw using Eq. (32). 
10) Compute the required resistance factor, (p, using Eq. (34). 
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6 Conclusions 
The chapter presents approximate relationships based on random field theory which can 
be used to estimate resistance factors for appropriate for the LRFD settlement design of 
shallow foundations. Some specific comments arising from this research are as follows; 

1) Two assumptions deemed to have the most infiuence on the resistance factors esti
mated in this study are 1) that the nominal load used for design. P. is the median 
load and 2) that the load factor, a. is equal to 1.0. Changes in a result in a linear 
change in the resistance factor, e.g. cj)' = acj). where (j) is the resistance factor found 
in this study and (f)' is the resistance factor corresponding to an a which is not equal 
to 1.0. Changes in P (for example, if P were taken as some other load exceedance 
percentile) would result in first order linear changes to (f). but further study would 
be required to specify the actual eflFect on the resistance factor. 

2) The resistance factors obtained in this study should be considered to be upper hounds 
since the additional uncertainties arising from measurement and model errors have 
not been considered. To some extent, these additional error sources can be accom
modated here simply by using a value of VE greater than would actually be true at a 
site. For example, if VE = 0.35 at a site, the effects of measurement and model error 
might be accommodated by using VE ~ 0.5 in the relationships presented here. This 
issue needs additional study, but Meyerhof's (1982) comment that a "performance 
factor of 0.7 should be used for adequate reliability of serviceability estimates" sug
gests that the results presented here are reasonable (possibly a little conservative at 
the VE = 0.5 level) for all sources of error. 

3) The use of a 'median' footing width, B^^d; derived using a median elastic modulus 
and moderate cj) = 0.5 value, rather than by using the full B distribution in the 
computation of 7(n) appears to be quite reasonable. This is validated by the agree
ment between the simulation results (where B varies with each realization) and the 
results obtained using the approximate relationships (see previous Section). 

4) The computation of a required resistance factor assumes that the uncertainty (eg, 
VE) is known. In fact, at a given site, all three parameters /^E, VE, and 9\nE will 
be unknown and only estimated to various levels of precision by sampled data. To 
establish a LRFD code, at least VE and Sine need to be known a priori. One of 
the significant results of this research is that a worst-case correlation length exists, 
which can be used in the development of a design code. While, the value of o% 
remains an outstanding issue, calibration with existing codes may very well allow 
its 'practical' estimation. 

5) At low uncertainty levels, that is when VE < 0.2 or so, there is not much advantage 
to be gained by taking more than two sampled columns (eg. SPT or CPT borings) 
in the vicinity of the footing, as seen in Figure 6. This statement assumes that 
the soil is stationary. The assumption of stationaiity implies that samples taken in 
one location are as good an estimator of the mean, variance, etc., as samples taken 
elsewhere. Since this is rarely true of soils, the qualifier "in the vicinity" was added 
to the above statement. 

6) Although sampling scheme # 4 involved five sampled columns and sampling scheme 
# 5 involved only one sampled column, sampling scheme # 5 outperformed #4 . This 
is because the distance to the samples was not considered in the calculation of E. 



The Random Finite Element Method (RFEM) in Settlement Analyses 267 

Thus, in sampling scheme # 4 the good estimate taken under the footing was diluted 
by four poorer estimates taken some distance away. Whenever a soil is sampled 
directly under a footing, the sample results should be given much higher precedence 
than soil samples taken elsewhere. That is, the concepts of Best Linear Unbiased 
Estimation (BLUE), which takes into account the correlation between estimate and 
observation, should be used. In this chapter a straightforward geometric average was 
used (arithmetic average of logarithms in log-space) for simplicity. Further work on 
the effect of the form of the estimator on the required resistance factor is needed. 

Notation 

The following symbols are used in this chapter: 

B= footing width, as designed 

Bmed~ footing width required on median elastic modulus using moderate 
resistance factor 

D— plan width of soil model (— 9.6 m in this study) 

E— elastic modulus 

E{x^)— elastic modulus at the spatial location x^ 

E= estimate of eflFective elastic modulus, derived from soil samples 

Egff— effective uniform elastic modulus that, if underlying the footing, 
would yield the same settlement as actually observed 

_Ej— one of n elastic modulus 'samples' forming a partition in the 
region under the footing 

E°= one of m elastic modulus soil samples actually observed 

JB— footing width probability density function 

G{x)— standard normal (Gaussian) random field 

H— overall depth of soil layer 

n— number of simulations 

nf— number of simulations resulting in failure {S > S^ax) 

n^ff— effective number of independent sampled soil columns 

P— actual applied footing load 

P— median applied footing load 

Pf- probability of failure {S > 

Pf— estimated probability of failure 

Pmax~ maximum acceptable probability of failure 

q— estimated soil stress applied by footing 

R— sample plan dimension 

-ui— settlement influence factor 

VE— elastic modulus coefficient of variation {HE/(^E) 
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Vp— load coefficient of variation {/ip/ap) 

W= PE/E,jf 
X— spatial coordinate or position 

y— horizontal component of spatial position 

z— vertical component of spatial position 

^Pinai~ point on standard normal distribution with exceedance 
probability p^ax 

Q— load factor 

7— variance reduction function (due to local averaging) 

7°— variance reduction function for observed samples 

71— l-dimensional variance reduction function for Markov correlation 

6= footing settlement, positive downwards 

6p= predicted footing settlement 

^max~ maximum acceptable footing settlement 

^inii— isotropic correlation length of the log-elastic modulus field 

HE— mean elastic modulus 

l^\nE~ mean of log-elastic modulus 

/^IHE— mean of the logarithm of the estimated effective elastic modulus 

f^inE^ff— mean of the logarithm of the effective elastic modulus underlying 
the footing 

fip— mean footing load 

Wn p — mean of the log-footing load 

ŷ in w — mean of In W 

$— standard normal cumulative distribution function 

(j)— resistance factor 

y— Poisson's ratio 

p— correlation coefficient 

Pij — correlation coefficient between In Ei and In Ej 

p^j — correlation coefficient between In E° and In E° 

p'^j — correlation coefficient between In E^ and In E° 

P'ave~ average correlation coefficient between InE, and lnE° 

OE— standard deviation of elastic modulus 

f̂ ins— standard deviation of log-elastic modulus 

f̂ infi— standard deviation of the logarithm of the estimated effective 
elastic modulus 

(J\TiK^fj~ standard deviation of the logarithm of the effective elastic 
modulus underlying the footing 
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f̂ inp— standard deviation of the log-footing load 

T— spatial lag vector 

T— lag distance, equal to |T| 

'^'ave~ average distance between the footing center and the sampled soil columns 
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The Random Finite Element Method (RFEM) 
in Bearing Capacity Analyses 

Gordon A. Fenton* and D.V. Griffiths'^ 

* Department of Engineering Mathematics. Dalhousie University. Canada 
' Division of Engineering. Colorado School of Mines. U.S.A. 

Abs t r ac t In this chapter, soils with spatially varying shear strengths are modeled 
using random field theory and elasto-plastic finite element analysis to evaluate 
the extent to which spatial variability and cross-correlation in soil properties (c 
and (j)) affect bearing capacity. The analysis is two dimensional, corresponding 
to a strip footing with infinite correlation length in the out-of-plane direction, 
and the soil is assumed to be weightless with footing placed on the soil surface. 
Theoretical predictions of the mean and standard deviation of bearing capacity, for 
the case where c and (/> are independent, are derived using a geometric averaging 
model and then verified via Monte Carlo simulation. The standard deviation 
prediction is found to be quite accurate, while the mean prediction is found to 
require some additional semi-empirical adjustment to give accurate results for 
'worst case' correlation lengths. Combined, the theory can be used to estimate 
the probability of bearing capacity failure, but also sheds light on the stochastic 
behaviour of foundation bearing failure. 

1 Introduction 
The design of a footing involves two limit states; a serviceability limit state, which 
generally translates into a maximum settlement or differential settlement, and an ult imate 
limit s tate . The latter is concerned with the maximum load which can be placed on the 
footing just prior to a bearing capacity failure. This chapter looks at the ul t imate bearing 
capacity of a smooth strip footing founded on a soil having spatially random properties. 

Most modern bearing capacity predictions involve a relationship of the form (Terzaghi, 
1943) 

Qf = cNc + qN, + tf^N^ (1) 

where qf is the ul t imate bearing stress, c is the cohesion, q is the overburden stress, 7 is 
the unit soil weight, B is the footing width, and A^c, Nq, and N^ are the bearing capacity 
factors. To simplify the analysis in this chapter, and to concentrate on the stochastic 
behaviour of the most important term (at least as far as spatial variation is concerned), 
the soil is assumed weightless. Under this assumption, the bearing capacity equation 
simplifies to 

qf - cN, (2) 

Bearing capacity predictions, involving specification of the Â  factors, are often based 
on plasticity theory (see, e.g., Prandt l , 1921, Terzaghi, 1943, and Sokolovski, 1965) of 
a rigid base punching into a softer material. These theories assume a homogeneous soil 
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underlying the footing - that is. the soil is assumed to have properties which are spatially 
constant. Under this assumption, most bearing capacity theories (e.g., Prandtl. f921. 
and Meyerhof, f95f, f963) assume that the failure slip surface takes on a logarithmic 
spiral shape to give 

Nc = - \ ^ (3) 
tan0 

This relationship has been found to give reasonable agreement with test results (Bowles, 
1996) under ideal conditions. In practice, however, it is well known that the actual failure 
conditions will be somewhat more complicated than a simple logarithmic spiral. Due to 
spatial variation in soil properties the failure surface under the footing will follow the 
weakest path through the soil, constrained by the stress field. For example, Figure 1 
illustrates the bearing failure of a realistic soil with spatially varying properties. It can 
be seen that the failure surface only approximately follows a log-spiral on the right side 
and is certainly not symmetric. In this plot lighter regions represent stronger soil and 
darker regions indicate weaker soil. The weak (dark) region near the ground surface to 
the right of the footing has triggered a non-symmetric failure mechanism that is typically 
at a lower bearing load than predicted by traditional homogeneous and symmetric failure 
analysis. 

Figure 1. Typical deformed mesh at failure, where the darker regions indicate weaker 
soil. 

The problem of finding the minimum strength failure slip surface through a soil mass 
is very similar in nature to the slope stability problem, and one which currently lacks 
a closed form stochastic solution, so far as the authors are aware. In this chapter the 
traditional relationships shown above will be used as a starting point to this problem. 

For a realistic soil, both c and <p are random, so that both quantities in the right 
hand side of Eq. (2) are random. This equation can be non-dimensionalized by dividing 
through by the cohesion mean, 

M, - ^ - -N, (4) 
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where ŷ c is the mean cohesion and M,. is the stochastic equivalent of TVc, ie., qf — 
fic^c- The stochastic problem is now boiled down to finding the distribution of Mf.. 
A theoretical model for the first two moments (mean and variance) of Mc, based on 
geometric averaging, are given in the next section. Monte Carlo simulations are then 
performed to assess the quality of the predictions and determine the approximate form 
of the distribution of Mf.. This is followed by an example illustrating how the results can 
be used to compute the probability of a bearing capacity failure. Finally, an overview of 
the results is given, including their limitations. 

2 The Random Soil Model 
In this study, the soil cohesion, c, is assumed to be lognormally distributed with mean yUc; 
standard deviation Ui-; and spatial correlation length 6\„ c- The lognormal distribution is 
selected because it is commonly used to represent non-negative soil properties and since 
it has a simple relationship with the normal. A lognormally distributed random field 
is obtained from a normally distributed random field, G]„c{3!): having zero mean, unit 
variance, and spatial correlation length 9\„ c through the transformation 

C{x) ^ exp{/ i ]nc + CTincGlncC?)} (5) 

where x is the spatial position at which c is desired. The parameters /*]„ c and CTin c are 
obtained from the specified cohesion mean and variance using the lognormal distribution 
transformations, 

^ h , c - l n ( ^ l + ^ ^ (6a) 

Wnc ^In/^c-^f^tac (6&) 

The correlation coefficient between the log-cohesion at a point x^ and a second point 
X.2 is specified by a correlation function, pjnc (''"); where r the absolute dis
tance between the two points. In this chapter, a simple exponentially decaying (Marko-
vian) correlation function will be assumed, having the form 

Pinc(T) ^ e x p ( - ^ — J (7) 

The spatial correlation length, 9inc: is loosely defined as the separation distance within 
which two values of Inc are significantly correlated. Mathematically, 6i„c is defined as 
the area under the correlation function, p]nc(''") (Vanmarcke, 1984). (Note that geo-
statisticians often define the correlation length as the area under the non-negative half 
of the correlation function so that there is a factor of two difference between the two 
lengths - under their definition, the factor of 2 appearing in Eq. (7) is absent. The more 
general definition is retained here since it can be used also in higher dimensions where 
the correlation function is not necessarily symmetric in all directions about the origin.) 

It should also be noted that the correlation function selected above acts between values 
of In c. This is because In c is normally distributed and a normally distributed random 
field is simply defined by its mean and covariance structure. In practice, the correlation 
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length 6inc can be estimated by evaluating spatial statistics of the log-cohesion data 
directly (see, e.g., Fenton, 1999). Unfortunately, such studies are scarce so that little is 
currently known about the spatial correlation structure of natural soils. For the problem 
considered here, it turns out that a worst case correlation length exists which should be 
assumed in the absence of improved information. 

The random field is also assumed here to be statistically isotropic (the same correlation 
length in any direction through the soil). Although the horizontal correlation length is 
often greater than the vertical, due to soil layering, taking this into account was deemed 
to be a refinement beyond the scope of this study. The main aspects of the stochastic 
behaviour of bearing capacity needs to be understood for the simplest case first and more 
complex variations on the theme, such as site specific anisotropy, left for later work. 

The friction angle, (j), is assumed to be bounded both above and below, so that neither 
normal nor lognormal distributions are appropriate. A beta distribution is often used for 
bounded random variables. Unfortunately, a beta distributed random field has a very 
complex joint distribution and simulation is cumbersome and numerically difficult. To 
keep things simple, a bounded distribution is selected which resembles a beta distribution 
but which arises as a simple transformation of a standard normal random field, G^{x), 
according to 

+ ^{<Pmax - 4>min) 1 1 + t a n h ^'^^^ j \ (8) 

where (f)min and (f)max are the minimum and maximum friction angles, respectively, and 
s is a scale factor which governs the friction angle variability between its two bounds. 
Figure 2 shows how the distribution of (f) (normalized to the interval [0,1]) changes as s 
changes, going from an almost uniform distribution at s — 5 to a very normal looking 
distribution for smaller s. In all cases, the distribution is symmetric so that the midpoint 
between (̂ mm and (l)max is the mean. Values of s greater than about 5 lead to a U-shaped 
distribution (higher at the boundaries), which is not deemed realistic. Thus, varying s 
between about 0.1 and 5.0 leads to a wide range in the stochastic behaviour of 0. 

Figure 2. Bounded distribution of friction angle normalized to the interval [0,1]. 
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The random field. G^{x). has zero mean and unit variance, as does G-[nc{x). Conceivably. 
G(j,{x) could also have its own correlation length 6^ distinct from 0\nc- However, it seems 
reasonable to assume that if the spatial correlation structure is caused by changes in the 
constitutive nature of the soil over space, then both cohesion and friction angle would 
have similar correlation lengths. Thus, 6^ is taken to be equal to ftn c in this study. Both 
lengths will be referred to generically from now on simply as 6. remembering that this 
length reflects correlation between points in the underlying normally distributed random 
flelds, G\nc{x) and G^{x), and not directly between points in the cohesion and friction 
flelds. As mentioned above, both lengths can be estimated from data sets obtained over 
some spatial domain by statistically analyzing the suitably transformed data (inverses 
of Eq's 5 and 8). After transforming to the c and (j) flelds, the transformed correla
tion lengths will no longer be the same, but since both transformations are monotonic 
(ie. larger values of Gjnc give larger values of c, etc.), the correlation lengths will be sim
ilar (for s — C.O.V. — 1.0, the difference is less than 15% from each other and from the 
original correlation length). In that all engineering soil properties are derived through 
various transformations of the physical soil behaviour (eg. cohesion is a complex func
tion of electrostatic forces between soil particles), the flnal correlation lengths between 
engineering properties cannot be expected to be identical, only similar. For the purposes 
of a generic non-site speciflc study, the above assumptions are believed reasonable. 

The question as to whether the two parameters c and tj) are correlated is still not 
clearly decided in the literature, and no doubt depends very much on the soil being 
studied. Cherubini (2000) quotes values of p ranging from —0.24 to —0.70, as does Wolff 
(1985) (see also Yuceman et al., 1973, Lumb, 1970, and Cherubini, 1997). As Wolff says 
(private correspondence, 2000), 

The practical meaning of this [negative correlation] is that we are more certain of 
the undrained strength at a certain confining pressure than the values of the two 
parameters we use to define it. 

This observation arises from the fact that the variance of the shear strength is reduced 
if there is a negative correlation between c and 0. 

In that the correlation between c and (f) is not certain, this chapter investigates the 
correlation extremes to determine if cross-correlation makes a signiflcant difference. As 
will be seen, under the given assumptions regarding the distributions of c (lognormal) 
and (f) (bounded), varying the cross-correlation p from —1 to +1 was found to have only 
a minor influence on the stochastic behaviour of the bearing capacity. 

3 Bearing Capacity Mean and Variance 
The determination of the flrst two moments of the bearing capacity (mean and variance) 
requires flrst a failure model. Equations 2 and 3 assume that the soil properties are 
spatially uniform. When the soil properties are spatially varying, the slip surface no 
longer follows a smooth log-spiral and the failure becomes unsymmetric. The problem 
of finding the constrained path having the lowest total shear strength through the soil is 
mathematically difficult, especially since the constraints are supplied by the stress field. 
A simpler approximate model will be considered here wherein geometric averages of c 
and (j). over some region under the footing, are used in Equations 2 and 3. The geometric 
average is proposed because it is dominated more by low strengths than is the arithmetic 
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average. This is deemed reasonable since the failure slip surface preferentially travels 
through lower strength areas. 

Consider a soil region of some size D discretized into a sequence of non-overlapping 
rectangles, each centered on x^. i = 1,2,.. . , n. The geometric average of the cohesion, 
c, over the domain D may then be defined as 

1 1 ^ ( 3 
l / n 

jsg-f-)} e x p < ^ - V l n c f e ) ^ (9) 

= e x p {/i]n c + CTln cGln c } 

where Gin c is the arithmetic average of Gin c over the domain D. Note that an assumption 
is made in the above concerning c{x^) being constant over each rectangle. In that cohesion 
is generally measured using some representative volume (eg. a lab sample), the values of 
c{x^) used above are deemed to be such measures. 

In a similar way, the exact expression for the geometric average of 0 over the domain 
D is 

^ - e x p ^ - V l n ^ f e ) ^ (10) { îjî ^fe)} 
where 0(Xj) is evaluated using Eq. (8). A close approximation to the above geometric 
average, accurate for s < 2.0, is 

4> - 4>'m.in + \{4>max " 4>mm) \ 1 + t a n h / — - ^ j \ (11) 

where G^ is the arithmetic average of G^ over the domain D. For (l)min — 5°; 4'max = 45°, 
this expression has relative error of less than 5% for n — 20 independent samples. While 
the relative error rises to about 12%, on average, for s = 5.0, this is an extreme case, 
corresponding to a uniformly distributed 4> between the minimum and maximum values, 
which is felt to be unlikely to occur very often in practice. Thus, the above approximation 
is believed reasonable in most cases. 

Using the latter result in Eq. (3) gives the 'effective' value of N^. N^ where the log-
spiral model is assumed to be valid using a geometric average of soil properties within 
the failed region, 

iV, ^ - \ 1 (12) 

tani^ 

so that, now 

M,^—N, (13) 

If c is lognormally distributed, an inspection of Eq. (9) indicates that c is also lognormally 
distributed. If we can assume that Nc is at least approximately lognormally distributed, 
then Mf. will also be at least approximately lognormally distributed (the Central Limit 
Theorem helps out somewhat here). In this case, taking logarithms of Eq. (13) gives 

InMc ^ I n c + lniVc-ln/ ic (14) 
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so that, under the given assumptions, In Mc is at least approximately normally dis
tributed. 

The task now is to find the mean and variance of In Mc- The mean is obtained by 
taking expectations of Eq. (14), 

vhere 

y l̂n c = E [/iin c + CTin cG\n c] 

= Min c + 0"]n cE [Gin c] 

(15) 

(16) 

In /ic - 5 In ( 1 
K 

which used the fact that since G\nc is normally distributed, its arithmetic average has 
the same mean as Ginc-. that is E [Gjnc] — E [Gjnc] — 0. The above result is as expected 
since the geometric average of a lognormally distributed random variable preserves the 
mean of the logarithm of the variable. Also Eq. (6b) was used to express the mean in 
terms of the prescribed statistics of c. 

A second order approximation to the mean of the logarithm of Eq. (12), /X]n jvc is 

fJ-iuN, - l n ^ c ( / ^ d -I 
(f]nNr 

'1^4, 
(17) 

where yû  is the mean of the geometric average of (p. Since G^ is an arithmetic average, 
its mean is equal to the mean of G,/,, which is zero. Thus, since the assumed distribution 
of 4> is symmetric about its mean, yui — yû  so that lniVc(yL(j) — lniVc(yL(0). 

A first order approximation to o-f is 

4TT 
{(pmax (pminJ^GA (18) 

where, from local averaging theory (Vanmarcke, 1984), the variance of a local average 
over the domain D is given by (recalling that G^ is normally distributed with zero mean 
and unit variance). 

4 , - 4 , 7 ( i 3 ) - 7 ( i 3 ) (19) 

where 7(i3) is the 'variance function' which reflects the amount that the variance is 
reduced due to local arithmetic averaging. It can be obtained directly from the correlation 
function (see Appendix I). 

The derivative in Eq. (17) is most easily obtained numerically using any reasonably 
accurate (iVc is quite smooth) approximation to the second derivative. See, for example. 
Press et. al. (1997). If fi^ — fi^ — 25° — 0.436 radians (note that in all mathematical 
expressions, (j) is assumed to be in radians), then 

(f\nN^ 
Mf 

^ 5.2984 (rad)" (20) 
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Using these results with (pmax ~ 45° and (pmin — 5° so that fi^ — 25° gives 

rti, jv, - ln(20.72) + 0.0164s27(D) (21) 

Some comments need to be made about this result: First of all it increases with 
increasing variability in (J) (increasing s). It seems doubtful that this increase would 
occur since increasing variability in tj) would likely lead to more lower strength paths 
through the soil mass for moderate 6. Aside from ignoring the weakest path issue, some 
other sources of error in the above analysis are 

1) the geometric average of (p given by Eq. (10) actually shows a slight decrease with s 
(about 12% less, relatively, when s = 5). Although the decrease is only slight, it at 
least is in the direction expected. 

2) an error analysis of the second order approximation in Eq. (17) and the first order 
approximation in Eq. (18) has not been carried out. Given the rather arbitrary 
nature of the assumed distribution on (p, and the fact that this chapter is primarily 
aimed at establishing the approximate stochastic behaviour, such refinements have 
been left for later work. 

In light of these observations, a first order approximation to /XĴ JY^ may actually be more 
accurate. Namely, 

ŷ taJV, - ln^c(y^^) - lniV,(/x^) (22) 

Finally, combining Equations (16) and (22) into Eq. (15) gives 

ŷ inM, - InNcifJ-̂ ) - 5 In ( 1 + H 

For independent c and (j). the variance of In Mc is 

(23) 

where 

and. to first order. 

f̂ In M, ^ f̂ In c + f t̂a JV, (^4) 

< -c - l{D)oi,, - 7(S) In ( 1 + ^ 1 (25) 

2 
2 2 ' ^ In iV^ 

d(t> lJ-4 

(26) 

The derivative appearing in Eq. (26), which will be denoted as /3(0), is 

In/ 
~d4) 

m . ^ . ^ (27) 

bd 

where a — tan(0). b — e""-. and d — tan ( j + | J. 

1 + a^ 
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The variance of In M^ is thus 

OIM^ ^ 1{D) { in ( l + ^ ) + [ ( ^ ) {4>ma. - 0 r « ™ ) / J W ) ] ' } (28) 

where (f) is measured in radians. 

4 Monte Carlo Simulation 
A finite element computer program was written to compute the bearing capacity of a 
smooth rigid strip footing (plane strain) founded on a weightless soil with shear strength 
parameters c and cf) represented by spatially varying and cross-correlated (point-wise) ran
dom fields, as discussed above. The bearing capacity analysis uses an elastic-perfectly 
plastic stress-strain law with a classical Mohr-Coulomb failure criterion. Plastic stress 
redistribution is accomplished using a viscoplastic algorithm. The program uses 8-node 
quadrilateral elements and reduced integration in both the stiflEness and stress redistri
bution parts of the algorithm. The theoretical basis of the method is described more 
fully in Chapter 6 of the text by Smith and Griffiths (1998). The finite element model 
incorporates five parameters; Young's modulus {E). Poisson's ratio {v). dilation angle 
{ip). shear strength (c). and friction angle (0). The program allows for random distribu
tions of all five parameters, however in the present study, E. v and -i/j are held constant 
(at 100000 kN/m^, 0.3, and 0, respectively) while c and cj) are randomized. The Young's 
modulus governs the initial elastic response of the soil, but does not affect bearing ca
pacity. Setting the dilation angle to zero means that there is no plastic dilation during 
yield of the soil. The finite element mesh consists of 1000 elements, 50 elements wide 
by 20 elements deep. Each element is a square of side length 0.1m and the strip footing 
occupies 10 elements, giving it a width of B — 1 m. 

The random fields used in this study are generated using the Local Average Sub
division (LAS) method (Fenton, 1994, Fenton and Vanmarcke 1990). Cross-correlation 
between the two soil property fields (c and 0) is implemented via Covariance Matrix 
Decomposition (Fenton, 1994). The algorithm is given in Appendix IL 

In the parametric studies that follow, the mean cohesion (ŷ c) and mean friction angle 
(/i^) have been held constant at 100 kN/m^ and 25° (with 0mm — 5° and (j)max = 45°), 
respectively, while the C.O.V. (— adfJ-c); spatial correlation length {6). and correlation 
coefficient, p. between Gjnc and G^ are varied systematically according to Table 1. 

Table 1. Random field parameters used in the study. 

e = 0.5 1.0 2.0 4.0 8.0 50. 
C.O.V. - 0.1 0.2 0.5 1.0 2.0 5.0 

p - -1 .0 0.0 1.0 
It will be noticed that C.O.V.'s up to 5.0 are considered in this study, which is 

an order of magnitude higher than generally reported in the literature (see, eg. Phoon 
and Kulhawy, 1999). There are two considerations which complicate the problem of 
defining typical C.O.V.'s for soils that have not yet been clearly considered in the lit
erature (although Fenton, 1999, does introduce these issues). The first has to do with 
the level of information known about a site. Prior to any site investigation, there will be 
plenty of uncertainty about soil properties, and an appropriate C.O.V. comes by using 
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a C.O.V. obtained from regional data over a much larger scale. Such a C.O.V. will typ
ically be much greater than that found when soil properties are estimated over a much 
smaller scale, such as a specific site. As investigation proceeds at the site of interest, the 
C.O.V. drops. For example, a single sample at the site will reduce the C.O.V. slightly, 
but as the investigation intensifies, the C.O.V. drops towards zero, reaching zero when 
the entire site has been sampled (which, of course, is clearly impractical). The second 
consideration, which is actually closely tied to the first, has to do with scale. If one 
were to take soil samples every 10 km over 5000 km (macroscale), one will find that the 
C.O.V. of those samples will be very large. A C.O.V. of 5.0 would not be unreason
able. Alternatively, suppose one were to concentrate one's attention on a single cubic 
metre of soil. If several 50 mm cubed samples were taken and sent to the laboratory, 
one would expect a fairly small C.O.V. On the other hand, if samples of size 0.1 yum 
cubed were taken and tested (assuming this was possible), the resulting C.O.V. could be 
very large since some samples might consist of very hard rock particles, others of water, 
and others just of air (ie. the sample location falls in a void). In such a situation, a 
C.O.V. of 5.0 could easily be on the low side. While the last scenario is only concep
tual, it does serve to illustrate that C.O.V. is highly dependent on the ratio between 
sample volume and sampling domain volume. This dependence is certainly pertinent 
to the study of bearing capacity since it is currently not known at what scale bearing 
capacity failure operates. Is the weakest path through a soil dependent on property 
variations at the micro-scale (having large C.O.V.), or does the weakest path 'smear' 
the small-scale variations and depend primarily on local average properties over, say, 
laboratory scales (small C.O.V.)? Since laboratory scales are merely convenient for us, 
it is unlikely that nature has selected that particular scale to accommodate us. From 
the point of view of reliability estimates, where the failure mechanism might depend on 
microscale variations for failure initiation, the small C.O.V.'s reported in the literature 
might very well be dangerously unconservative. Much work is still required to establish 
the relationship between C.O.V., site investigation intensity, and scale. In the meantime, 
this chapter considers C.O.V.'s over a fairly wide range, since it is entirely possible that 
the higher values more truly refiect failure variability. 

In addition, it is assumed that when the variability in the cohesion is large, the 
variability in the friction angle will also be large. Under this reasoning, the scale factor, 
s, used in Eq. (8) is set to s — odfJ-c = C.O.V.. This choice is arbitrary, but results in 
the friction angle varying from quite narrowly (when C.O.V. — 0.1 and s — 0.1) to very 
widely (when C.O.V. — 5.0 and s = h) between its lower and upper bounds, 5° and 45°, 
as illustrated in Figure 2. 

For each set of assumed statistical properties given by Table 1, Monte-Carlo simula
tions have been performed. These involve 1000 realizations of the soil property random 
fields and the subsequent finite element analysis of bearing capacity. Each realization, 
therefore, has a different value of the bearing capacity and, after normalization by the 
mean cohesion, a different value of the bearing capacity factor, 

^ 1000 

Mc,^—-. « - 1 , 2 , . . . , 1000, ^ WnM. - T ^ r ^ V l n A f , , (29) 
fj-c 1000 ^ 
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where /!]„ MC is the sample mean of In Mc estimated over the ensemble of realizations. 
Because of the non-linear nature of the analysis, the computations are quite intensive. 
One run of 1000 realizations typically takes about 2 days on a dedicated 800 MHz Pentium 
III computer (which, by the time of printing, is likely obsolete). For the 108 cases 
considered in Table 1, the total single CPU time required is about 220 days (run time 
varies with the number of iterations required to analyze various realizations). 

4.1 Simulation Results 
Figure 3(a) shows how the sample mean log-bearing capacity factor, taken as the average 
over the 1000 realizations of InMc;, and referred to as fitnM^ in the Figure, varies with 
correlation length, soil variability, and cross-correlation between c and (p. For small 
soil variability, jitnM^ tends towards the deterministic value of ln(20.72) — 3.03, which 
is found when the soil takes on its mean properties everywhere. For increasing soil 
variability, the mean bearing capacity factor becomes quite significantly reduced from 
the traditional case. What this implies from a design standpoint is that the bearing 
capacity of a spatially variable soil will, on average, be less than the Prandtl solution 
based on the mean values alone. The greatest reduction from the Prandtl solution is 
observed for perfectly correlated c and cj) {p — +1), the least reduction when c and (j) are 
negatively correlated (p — —1), and the independent case (p — 0) lies between these two 
extremes. However, the effect of cross-correlation is seen to be not particularly large. 
If the negative cross-correlation indicated by both Cherubini (2000) and Wolff (1985) is 
correct, then the independent, p — 0-, case is conservative, having mean bearing capacities 
consistently somewhat less than the p — —1 case. 

The cross-correlation between c and (p is seen to have minimal effect on the sample 
standard deviation, CTJUM,,; as shown in Figure 3(b). The sample standard deviation is 
most strongly affected by the correlation length and somewhat less so by the soil property 
variability. A decreasing correlation length results in a decreasing a]„ M^ • As suggested 
by Eq. (28), the function 7(1)) decays approximately with 6/D and so decreases with 
decreasing 6. This means that ai^M^ should decrease as the correlation length decreases, 
which is as seen in Figure 3(b). 

Figure 3. a) Sample mean of log-bearing capacity factor, In Mc, and b) its sample 
standard deviation. 
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Figure 3(a) also seems to show that the correlation length, 6. does not have a significant 
infiuence in that the 6 = Q.l and 6 = ?> curves for p — 0 are virtually identical. However, 
the 6 — 0.1 and 6 — ?> curves are significantly lower than that predicted by Eq. (23) 
implying that the plot is somewhat misleading with respect to the dependence on 6. For 
example, when the correlation length goes to infinity, the soil properties become spatially 
constant, albeit still random from realization to realization. In this case, because the soil 
properties are spatially constant, the weakest path returns to the log-spiral and HinM^ 
will rise towards that given by Eq. (23), namely H\nM^ — ln(20.72) — | l n ( l + cr^/yu^), 
which is also shown on the plot. This limiting value holds because fii„N^ ~ InNdfi^), as 
discussed for Eq. (22), where for spatially constant properties (j) — (j). 

Similarly, when ^ —> 0, the soil property field becomes infinitely "rough", in that all 
points in the field become independent. Any point at which the soil is weak will be 
surrounded by points where the soil is strong. A path through the weakest points in the 
soil might have very low average strength, but at the same time will become infinitely 
tortuous and thus infinitely long. This, combined with shear interlocking dictated by 
the stress field, implies that the weakest path should return to the traditional log-spiral 
with average shear strength along the spiral given by fi^ and the median of c which is 
exp{/iii,cj. Again, in this case, fi-inM^ should rise to that given by Eq. (23). 

The variation of yuinM,, with respect to 6 is more clearly seen in Figure 4. Over a range 
of values of adfJ-c-. the value of yuin M^ rises towards that predicted by Eq. (23) at both high 
and low correlation lengths. At intermediate correlation lengths, the weakest path issue 
is seen to result in fiinM^ being less than that predicted by Eq. (23) (see Figure 3a), the 
greatest reduction in fi^n M^ occurring when 6 is of the same order as the footing width, B. 
It is hypothesized that 6 ^ B leads to the greatest reduction in yuii, M^ because it allows 
enough spatial variability for a failure surface which deviates somewhat from the log-
spiral but which is not too long (as occurs when 6 is too small) yet has significantly lower 
average strength than the 6 ^ oc case. The apparent agreement between the 6 = Q.l 
and ^ = 8 curves in Figure 3(a) is only because they are approximately equispaced on 
either side of the minimum at 0 ~ 1. 

Figure 4. Sample mean of log-bearing capacity factor, In M^, versus normalized cor
relation length. 
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As noted above, in the case where c and tj) are independent (p — 0) the predicted 
mean, fiinM^-, given by Eq. (23) does not decrease as fast as observed in Figure 3(a) for 
intermediate correlation lengths. Nor does Eq. (23) account for changes in 6. Although 
an analytic prediction for the mean strength of the constrained weakest path through a 
spatially random soil has not yet been determined, Eq. (23) can be improved by making 
the following empirical corrections for the worst case {6 ^ B). 

WnM. ~ 0.921niV,(yu^) -0.71n (l + ^ (30) 

where the overall reduction with adfJ-c is assumed to follow the same form as predicted in 
Eq. (23). Some portion of the above correction may be due to finite element model error 
(for example, the finite element model slightly underestimates the deterministic value of 
Nc. giving Nc = 19.6 instead of 20.7, a 2% relative error in IniVc), but most is attributed 
to the weakest path issue and model errors arising by relating a spatial geometric average 
to a failure which is actually taking place along a curve through the 2-D soil mass. 

Figure 5 illustrates the agreement between the sample mean of In Mc and that pre
dicted by Eq. (30) and between the sample standard deviation of In M^. and Eq. (28) for 
yo — 0. The estimated mean is seen to be in quite good agreement with the sample mean 
for all 6 when odfJ-c < 2, and with the worst case {6 — B) for odfJ-c > 2. 

The predicted standard deviation was obtained by assuming a geometric average over 
a region under the footing of depth equal to the mean wedge zone depth, 

^ ^ i B t a n Q + ^ ) (31) 

and width of about 5wj. This is a rough approximation to the area of the failure region 
within the mean log-spiral curve on either side of the footing. Thus, D used in the 
variance function of Eq. (28) is a region of size bw x w. 

Figure 5. a) Sample and estimated mean (via Eq. 30) of In Mc, and b) its sample and 
estimated standard deviation (via Eq. 28). 
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Although Eq. (23) fails to reflect the effect of 6 on the the reduction in the mean log-
bearing capacity factor with increasing soil variability, the sample standard deviation 
is extremely well predicted by Eq. (28) - being only somewhat underpredicted for very 
small correlation lengths. To some extent the overall agreement in variance is as expected, 
since the variability along the weakest path will be similar to the variability along any 
nearby path through a statistically homogeneous medium. 

The Monte Carlo simulation also allows the estimation of the probability density 
function of M^. A Chi-Square goodness-of-fit test performed across all odl^c-, ^; and p 
parameter variations yields an average p-value of 33%. This is encouraging since large p-
values indicate good agreement between the hypothesized distribution (lognormal) and 
the data. However, approximately 30% of the simulations had p-values less than 5%, 
indicating that a fair proportion of the runs had distributions that deviated from the 
lognormal to some extent. Some 10% of runs had p-values less than 0.01%. Figure 6(a) 
illustrates one of the better fits, with a p-value of 43% (pdl^c — 0.1, 9 — 4:, and p = 0) 
while Figure 6(b) illustrates one of the poorer fits, with a p-value of 0.01% {adfJ-c = 5 
6 = 1. and p = 0). It can be seen that even when the p-value is as low as 0.01% 
the fit is still reasonable. There was no particular trend in degree of fit as far as the 
three parameters odPc-, 6. and p was concerned. It appears, then, that M^ at least 
approximately follows a lognormal distribution. Note that if M^ does indeed arise from 
a geometric average of the underlying soil properties, c and N^, then M^ will tend to a 
lognormal distribution by the Central Limit Theorem. It is also worth pointing out that 
this may be exactly why so many soil properties tend to follow a lognormal distribution. 

Figure 6. a) Fitted lognormal distribution for s = adPc — 0.1, Q = A, and yO — 0 
where the p-value is large (0.43) and b) fitted lognormal distribution for 
s — OCIPC — 5; ^ — 1; and p = G where the p-value is quite small (0.0001). 

5 Probabilistic Interpretation 
The results of the previous section indicated that Prandl's bearing capacity formula is 
still largely applicable in the case of spatially varying soil properties if geometrically 
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averaged soil properties are used in the formula. The theoretical results presented above 
combined with the empirical correction to the mean proposed in the last section allows the 
approximate computation of probabilities associated with bearing capacity of a smooth 
strip footing. To illustrate this, consider an example strip footing of width B — 2 m 
founded on a weightless soil having fic — 75 kPa, CTC — 50 kPa, and 6 = B = 2 n\ 
(assuming the worst case correlation length). Assume also that the friction angle (j) is 
independent of c (conservative assumption) and ranges from 5° to 35°. with mean 20° 
and s — 1. In this case, the deterministic value of Nc- based purely on fi^ is 

Nc{^lch) = — = 14.835 32 
^^^' tan/i0 ^ ' 

so that, by Eq. (30), 

y înM, ^ 0.921n(14.835) -0.71n M + ^ J - 2.2238 (33) 

For a footing width oi B = 2. the wedge zone depth is 

» = |i 'ta„(5 + f ) = t a „ ( j + ^ ) =1.428 (34) 

Averaging over depth w by width hw results in the variance reduction 

7(£)) =-f{hw,w) ^0.1987 

using the algorithm given in Appendix I for the Markov correlation function. 
The slope of IniVc at n^ ^ 20° is 3.62779 (rad'^), using Eq. (27). These results 

applied to Eq. (28) give 

- 0.1987 j ln (l + ^ ^ + [^{<Pmax - </>m™)/3(/x0]'| - 0.07762 (35) 2 

SO that CT]„M^ ̂ 0.2778. 
The probability that Mc is less than half the deterministic value of N^ based on fi^, 

is. then 

Mc< 
14.835 ^ $ / ln(14.835/2)-; . i„M. . ^ ^^_^_^^^ ^ ^^ IS (36) 

where $ is the cumulative distribution function for the standard normal and where Mf. is 
assumed lognormally distributed, as was found to be reasonable above. A simulation of 
the above problem yields P [MC < i^^^] — 0.2155. Although this amazing agreement 
seems too good to be true, this is, in fact, the first example problem that the authors 
considered. The caveat, however, is that predictions derived from the results of a finite 
element program are being compared to the results of the same finite element program, 
albeit at different parameter values. Nevertheless, the fact that the agreement here is so 
good is encouraging since it indicates that the theoretical results given above may have 
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some overall generality - namely that Prandtl's bearing capacity solution is applicable to 
spatially variable soils if the soil properties are taken from geometric averages, suitably 
modified to reflect weakest path issues. Inasmuch as the finite element method represents 
the actual soil behaviour, this observation seems reasonable. 

6 Concluding Remarks 
Most soil properties are local averages of some sort and are derived from measurements 
of properties over some finite volume. In the case of the shear resistance of a soil sample, 
tests involve determining the average shear resistance over some surface through the soil 
sample. Since this surface will tend to avoid the high strength areas in favour of low 
strength areas, the average will be less than a strictly arithmetic mean over a fiat plane. 
Of the various common types of averages - arithmetic, geometric, and harmonic - the 
one that generally shows the best agreement with 'block' soil properties is the geometric 
average. The geometric average favours low strength areas, although not as drastically 
as does a harmonic average, lying between the arithmetic and harmonic averages. 

The bearing capacity factor of Prandtl (1921) has been observed in practice to give 
reasonable agreement with test results, particularly under controlled conditions. When 
soil properties become spatially random, the failure surface migrates from the log-spiral 
surface to some nearby surface which is weaker. The results presented in this chapter 
indicate that the statistics of the resulting surface are well represented by geometrically 
averaging the soil properties over a domain of about the size of the plastically deformed 
bearing failure region (taken to he 5wxw in this study). That is, that Prandtl's formula 
can be used to predict the statistics of bearing capacity if the soil properties used in the 
formula are based on geometric averages, with some empirical adjustment for the mean. 

In this sense, the weakest path through the soil is what governs the stochastic bearing 
capacity behaviour. This means that the details of the distributions selected for c and 0 
are not particularly important, so long as they are physically reasonable, unimodal, and 
continuous. Although the lognormal distribution, for example, is mathematically con
venient when dealing with geometric averages, very similar bearing capacity results are 
expected using other distributions, such as the normal distribution (suitably truncated 
to avoid negative strengths). The distribution selected for the friction angle basically 
resembles a truncated normal distribution over most values of s. but, for example, it is 
believed that a beta distribution could also have been used here without significantly 
affecting the results. 

In the event that the soil is statistically anisotropic, that is that the correlation lengths 
differ in the vertical and horizontal directions, it is felt that the above results can still be 
used with some accuracy by using the algorithm of Appendex I with differing vertical and 
horizontal correlation lengths. However, some additional study is necessary to establish 
whether the mean bearing capacity in the anisotropic case is at least conservatively 
represented by Eq. (30). 

Some limitations to this study are noted as follows; 
1) The simulations were performed using a finite element analysis in which the values 

of the underlying normally distributed soil properties assigned to the elements are 
derived from arithmetic averages of the soil properties over each element domain. 
While this is believed to be a very realistic approach, intimately related to the 
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soil property measurement process, it is nevertheless an approach where geometric 
averaging is being performed at the element scale (at least for the cohesion - note 
that arithmetic averaging of a normally distributed field corresponds to geometric 
averaging of the associated lognormally distribution random field) in a method which 
is demonstrating that geometric averaging is applicable over the site scale. Although 
it is felt that the fine scale averaging assumptions should not significantly affect the 
large scale results through the finite element method, there is some possibility that 
there are effects that are not reflected in reality. 

2) Model error has been entirely neglected in this analysis. That is, the ability of the 
finite element method to refiect the actual behaviour of an ideal soil, and the ability 
of Eq. (3) to do likewise have not been considered. It has been assumed that the 
finite element method and Eq. (3) are sufficiently reasonable approximations to the 
behaviour of soils to allow the investigation of the major features of stochastic soil 
behaviour under loading from a smooth strip footing. Note that the model error 
associated with traditional usage of Eq. (3) may be due in large part precisely to 
spatial variation of soil properties, so that this study may effectively be reducing, 
or at least quantifying, model error (although whether this is really true or not will 
have to wait until sufficient experimental evidence has been gathered). 

The geometric averaging model has been shown to be a reasonable approach to estimating 
the statistics of bearing capacity. This is particularly true of the standard deviation. 
Some adjustment was required to the mean, since the geometric average was not able 
to completely account for the weakest path at intermediate correlation lengths. The 
proposed relationships for the mean and standard deviation, along with the simulation 
results indicating that the bearing capacity factor, Mc- is lognormally distributed, allow 
reasonably accurate calculations of probabilities associated with the bearing capacity. In 
the event that little is known about the cross-correlation of c and 0 at a particular site, 
assuming that these properties are independent is deemed to be conservative (as long as 
the actual correlation is negative). In any case, the cross-correlation was not found to be 
a significant factor in the stochastic behaviour of bearing capacity. 

Perhaps more importantly, since little is generally known about the correlation length 
at a site, the results of this study indicate that there exists a worst case correlation length 
of 6 ~ -B. Using this value, in the absence of improved information, allows conservative 
estimates of the probability of bearing failure. The estimate of the mean log-bearing 
capacity factor (Eq. 30) is based on this conservative case. 
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Notation 
The following symbols are used in this paper: 

a- tan 4> in Eq. (27) 
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b^ e^^'^'i' in Eq. (27) 
-B— footing width 
c— cohesion 
c— geometric average of cohesion field over domain D 
d^ tan(f + I) in Eq. (27) 

D= averaging domain (5ui x w) 
E— elastic modulus 

E[-]— expectation operator 
Gi{x)— standard normal random field 
G'2{x)— standard normal random field 

Gjnc— standard normal random field (log-cohesion) 
Gfj,— standard normal random field (underlying friction angle) 

Gjnc— arithmetic average of G\nc over domain D 
G^= arithmetic average of G^ over domain D 

L— lower triangular matrix, square root of covariance matrix 
Mc= stochastic equivalent of the Nc factor 

Mci — i*** realization of M^ 
Nc— N-fact or associated with cohesion 
Nc— cohesion N-factor based on a geometric average of cohesion 
Nq— N-factor associated with overburden 
Nry— N-factor associated with the base width and unit weight 
Qf— ultimate bearing stress 
q= overburden stress 
s= scale factor in distribution of 4> 
X— spatial coordinate, {x\.X2) in 2-D 

x^= spatial coordinate of the center of the i*'' element 
/3((/))— derivated of N^- with respect to (f). at (f) 

(j)— friction angle (radians unless otherwise stated) 
(j)— geometric average of tj) over domain D 

<t'min= minimum friction angle 
4'max= maximum friction angle 

$— standard normal cumulative distribution function 
"f{D)= variance function giving variance reduction due to averaging over domain D 

He— cohesion mean 
Mine— log-cohesion mean 

ŷ in Mc = mean of In M^ 
/fin Mc = sample mean of In M^. (from simulations) 

Min c— mean of the logarithm of c 
/̂ in Nc ~ mean of the logarithm of Nc 

jjifj,— mean friction angle 
jij— mean of (f) 

v= Poisson's ratio 
Q= correlation length of the random fields 

înc— correlation length of the log-cohesion field 
Qti>= correlation length of the G^ field 
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p— correlation coefficient 
p\nc{T)~ correlation function giving correlation between two points in the log-cohesion field 

p— correlation matrix 
Oc~ cohesion standard deviation 

CTinc— log-cohesion standard deviation 
<7]iic— standard deviation of Inc 

OM— standard deviation of (f) 
o"Ĝ — standard deviation of G^ (which is 1.0) 
(7(5 — standard deviation of Gcj, 

o"]n Mc — standard deviation of In M^ 
o'jn Mc — sample standard deviation of In M^ (from simulations) 

T— distance between two points in the soil domain 
'ip= dilation angle 
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Appendix I 
The variance reduction function 'y{D) gives the amount that the variance of a local 
average over the domain D is reduced from the point variance. If D is a rectangle of 
dimension X xY, then 7 is actually a function of X and Y and is defined as 

[Ai] ^{x,Y)^^^l I I I p{^i-riu^^-m)ci^idmd^idm 

where P(TI,T2) — pinc (v^rf + T | J (seeEq. 7). Since pis quandrant symmetric (P(TI,T2) — 

p(—Ti,T2) — P(TI,—T2) — p(—Ti,—T2)), the four-fold integration in Eq. (Al) can be re
duced to a two-fold integration, 

[A2] ^ ( X , Y ) - ^ ^ y I (X-T i ) ( Y - T 2) p ( r i , r 2 ) dT id r 2 

which can be numerically calculated accurately and efficiently using a 5-point Gauss 
integration scheme as follows. 

1 5 5 

[^3] ^{X,Y)^-Y,'^i{l-Zi)Y,M'^-^j)pi^i:Vj) 4 
i= i j = i 

where 

Y 

and the weights, Wi, and Gauss points, Zi, are as follows; 

i Wi Zi 

1 0.236926885056189 -0.906179845938664 
2 0.478628670499366 -0.538469310105683 
3 0.568888888888889 0.000000000000000 
4 0.478628670499366 0.538469310105683 
5 0.236926885056189 0.906179845938664 
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Appendix II 
The cross-correlated random c and 0 fields are obtained via Covariance Matrix Decom
position, as follows; 

1) specify the cross-correlation coefficient, p (—1 < p < 1), from statistical analyses. 
Three extreme cases are considered in this study: p = —1, 0 and 1, corresponding to 
completely negatively correlated, uncorrelated, and completely positively correlated, 
respectively. 

2) form the correlation matrix between G\TLC{3^) ^^"^ G,j,{x), assumed to be stationary, 
ie. the same at all points x in the field. 

P^ 
1.0 p 

p 1.0 

3) compute the Cholesky decomposition of p. That is, find a lower triangular matrix 
L such that LL^ — p. This is sometimes referred to as the square root of p. Note 
that when p — ±1. IT has the special form 

L^ 
1.0 0.0 

±1.0 0.0 

4) generate two independent standard normally distributed random fields, Gi{x) and 
G2{x), each having spatial correlation length 9 (see Eq. 7). 

5) at each spatial point, Xj, form the underlying point-wise correlated random fields 

GlnciXi) i l l 0.0 

X21 L'22 

6) use Eq's 5 and 8 to form the final c and (j) random fields which are then mapped to 
the finite element mesh to specify the properties of each element. 
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