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Preface

This volume is based on the talks and lectures given by the participants of the
3-month seminar program “Topology in Condensed Matter,” which was held
in the MPIPKS Dresden, 8 May–31 July 2002 under the scientific direction
of Professors M. Kleman, S. Novikov, and myself.

The aim of this program was to discuss recent applications of topology to
several areas in condensed matter physics and related fields like biology. The
last 30 years of the development of modern physics affirmed two important
ideas. The first is the efficient applications of topology in physics. One should
mention applications in condensed matter, such as classification of defects
and textures in liquid crystals and superfluid liquids, the role of entangibility
in polymer physics and DNA structures. The second tendency is also very
prevalent. Some important discoveries in particle physics and condensed mat-
ter led to new and unpredictable questions in pure mathematics. We refer
to the invention of monopoles and instantons in quantum field theory, qua-
sicrystals fluid membranes of high genus, fullerenes (C60, C90, etc.), and so on
in condensed matter. The number of such applications in the last years has
increased substantially.

The papers presented in this volume and the next one “Topology in Bi-
ology” reflect the spectrum of topics discussed. Besides original papers, a
mini-course in topology for physicists and biologists was organized. These
lectures will be published in the second volume. By the common opinion of
participants the seminar was very successful. The organizers and participants
are grateful to the MPIPKS for the generous sponsorship of the seminar with
such an unusual spectrum of interest. Special thanks go to the director of
MPIPKS P. Fulde, the head of the visitors program S. Flach, and the secre-
taries K. Lantch, M. Lochar, and C. Poenish. We acknowledge our gratitude
to the entire staff of the Institute for their help in organizing the seminar and
for making sure it ran smoothly. We express our gratitude to Dr. Aschcroft,
who suggested publishing these lectures in Springer Verlag and assisted in
the preparation of these volumes. We hope that such programs that bring
together mathematicians, physicists, and biologists will be continued.

Moscow and Dresden
October 2005 Michael Monastyrsky
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des Liquides (LPTL)
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Introduction

M. Monastyrsky

Articles presented in this volume can be divided into several parts.
The first part consists of papers by A.M. Kosevich “Topology in the Elec-

tron Theory of Metals” and A.Ya. Maltsev and S.P. Novikov “Topology,
Quasiperiodic Functions, and the Transport Phenomena.” The authors study
problems in the electron theory of metals, including the topology of Fermi sur-
faces, magnetic oscillations, and magnetoresistivity. These problems, important
from a physical point of view, lead to new and interesting fields of investiga-
tions in two-dimensional and three-dimensional topology.

The second part consists of three papers: R. Kerner’s “The Role of Topol-
ogy in the Growth and Agglomeration,” V. Osipov’s “Topological Defects in
Carbon Nanocrystals,” and J. Yi’s “Physics from Topology and Structures.”
These authors consider from different views the role of topology in such “hot”
topics as the growth of atomic structures (like fullerenes, glasses, and so on),
defects in carbon nanotubes, and instability in one-dimensional conductors.
Most of the famous discoveries of the last few decades like quantum Hall effect,
Aharonov–Bohm’s effect, and Josephson junctions have a common topological
background.

In the third part we included two papers: T. Jannsen’s “Phason Dynamics
in aperiodic Crystals” and B. Zhilinskii’s “Hamiltonian Monodromy as Lattice
Defect.” These authors studied the lattices of defects in different systems like
quasicrystals and crystals. T. Jannsen has studied dynamical properties of
quasicrystals. B. Zhilinskii has found interesting similarities between different
problems like defects in periodic lattices and quantum spectra in quantum
many-particle systems.

The paper by R. Mosseri “Two-Qubit and Three-Qubit Geometry and
Hopf Fibrations” belongs to a new and fast-developing field of quantum
information. It is amusing that such a keystone of topology as Hopf fibra-
tion appears in this fresh field of investigation.

The final part of the volume is the paper by I. Smalyukh and O.D. Lavren-
tovich “Defects and Three-Dimensional Director Fields in Cholesteric



2 M. Monastyrsky

Lamellae” considers defects in cholesteric liquid crystals. The authors give a
detailed picture, including some experimental results for textures and defects
in three-dimensional patterns. This field promises very interesting applications
of three-dimensional geometry and topology.



1

Topology in the Electron Theory of Metals

A.M. Kosevich

Summary. Topological aspect of the dynamics of electrons in crystals (band elec-
trons) is discussed. The main peculiarities of such electrons are connected with the
form of their isoenergy surfaces, which is different from those of the free electrons.
It is shown that the behavior of the band electrons in metals at low temperatures
under the influence of external electric and magnetic fields depends strongly on
the topology of the Fermi surfaces (the isoenergetic surfaces for the Fermi energy).
Various examples of such a dependence are described.

1.1 Introduction

A quantitative description of the processes and physical phenomena under
investigation is impossible without using various mathematical methods. To
examine the physical processes closely, physicists apply more and more refined
mathematical techniques. However there are branches of mathematics that
help to understand not only the details of the physical phenomena but also
some general regularity connecting physical behavior in a large number of
different experiments. Topology is one such branch, which links physics as a
rather old science and topology as a newer one. This is the subject of the
present book.

Topological methods are especially useful when equations of physical fields
have a complicated mathematical structure and do not allow to arrive at
simple general solutions. A description of general topological conclusions in
the theory of fields, phase transitions, and the superfluid phase of 3He and
nonlinear dynamics can be found in books [1, 2]. Concerning the physics of
condensed matter, only two aspects are usually discussed: first, the topology of
the order parameter in systems subjected to the phase transition, and second,
the classification of possible forms of nonlinear objects like solitons, vortices,
dislocations, and so on.

This book has the goal of attracting attention to the topology of charac-
teristic lines and surfaces in the theory of crystals (metals first). Isoenergetic
surfaces are well-known examples of such surfaces in the dynamics of elec-
trons or other elementary excitations in the crystals. The Fermi surface is
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often described as the isoenergetic surface in k-space. The Fermi surfaces and
the electron trajectories in the magnetic field are geometrical objects whose
topological properties are discussed from various points of view. Many results
discussed in this chapter were developed by Lifshitz and his scientific school,
and this fact is reflected in the list of references.

1.2 Dynamics of Conductivity Electrons
and the Fermi Surface

According to the Drude–Sommerfeld model [4] the charge carriers in metals
represent the degenerated gas of free (noninteracting) electrons. The founda-
tion of the understanding of electron properties of metals is the band the-
ory and Fermi–Dirac statistics based on the assumption that the interaction
among conductivity electrons is weak. A justification for such a model assump-
tion is the fact that at low temperatures only a small portion of electrons with
energies close to the Fermi energy takes part in the heat motion and kinetics.

Thus we agree to consider electrons with energies close to the Fermi energy
as an ideal gas of the Fermi particles. The main dynamical variable of a free
particle is its momentum p. In the semiclassical approximation the spatial
position of an electron is determined by its coordinate x. The coordinate x
and the momentum p are a pair of canonically conjugated variables giving an
instantaneous state of a particle in the classical mechanics. In the absence of
external fields, the electron energy ε depends only on p [ε = ε(p)], and this
dependence is called the dispersion relation or dispersion law. For the free
electron, ε = p2/(2m0), where m0 is the electron mass, and then we discuss
the quadratic dispersion relation. The geometrical image of the dispersion
relation is associated with a surface of equal energies (isoenergetic surface).
The isoenergetic surface is a surface in the p-space, defined with the condition:

ε(p) = ε = const. (1.1)

This is a sphere of the radius p =
√

2m0 for the free electron. The Fermi
surface is an isoenergetic surface for the Fermi energy εF. This is the sphere
of the radius pF =

√
2m0εF for the free electron gas. At T = 0 all the states

inside the Fermi surface are occupied. Therefore the volume inside the Fermi
surface and the Fermi energy are unambiguously connected with the fixed
number of electrons:

N = 2
V Ω(εF)
(2π�)3

=
8πV p3

F

3(2π�)3
=

π(2m0)3/2

3(2π�)3
ε
3/2
F , (1.2)

where Ω(εF) is the volume in the p-space inside the Fermi sphere and the
factor 2 is included to take into account two possible electron spin orientations.
As a result

p3
F = 3π2 N

V
�3. (1.3)
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If one writes N/V = 1/a3 using the average interelectron distance a, then
(1.3) can be replaced by the following good approximation:

pF = �(π/a). (1.4)

Note that estimation (4) does not include any parameter from the disper-
sion relation. This is a very important observation for the question whether the
calculation in (1.2), based on the concept of an ideal gas of the particles with
the quadratic dispersion relation, can be used for the electrons in a crystal
lattice. The momentum p is not a convenient dynamic variable in a periodic
structure; instead we have the quasimomentum and the energy of an elemen-
tary excitation becomes a periodic function with the period of the reciprocal
lattice. Therefore, the dispersion relation for the electron in a metal should
be complicated and an anisotropic function of the quasimomentum, and the
Fermi surface takes a shape different from the sphere. Nevertheless the char-
acteristic radius of the Fermi surface (4) is estimated correctly. As a matter of
fact, in calculating (1.2) we are interested only in the number of states occu-
pied by the electrons and determined by the number of degrees of the freedom
of all the electrons. When we distribute these states all over the phase space
“cells,” we fill in some phase space, the volume invariant with respect to the
choice of the description of one-particle states.

We put aside the question of what determines the shape of the Fermi sur-
face for the electrons in the crystal and instead discuss possible manifestations
of the shape of isoenergetic surfaces in the electron dynamics. The electron
motion in a magnetic field turns out to be most sensitive to the shape men-
tioned.

Consider the motion of an electron with the dispersion relation ε = ε(p)
in a homogeneous magnetic field in a homogeneous magnetic field B. A pair
of the electron dynamics has the form

dp

dt
=

e

c
[vB], v ≡ dx

dt
=

∂ε

∂p
. (1.5)

If the magnetic field B is directed along the z-axis, the following set of
equations of motion is arrived at

dpx

dt
=

eB

c
vy,

dpy

dt
= −eB

c
vx,

dpz

dt
= 0. (1.6)

Equation (1.6) possesses two integrals of motion,

ε(p) = const. pz = const. (1.7)

Equation (1.7) determines the electron trajectory in the p-space. It is a curve
of the cut of the surface ε(p) = const. by the plane pz = const. (Fig. 1.1). As
follows from (1.6) the projection of the electron trajectory in the x-space is
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pz

py

px

pz=const.

0

e (p) = e

Fig. 1.1. The curve of the cut of the surface ε(p) = constant by the plane pz =
constant

similar to the trajectory in (1.7). To see the latter, we rewrite (1.7) as:

dpx

dt
=

eB

c

dy

dt
,

dpy

dt
= −eB

c

dx

dt
. (1.8)

Actually the projection of the trajectory in the x-space onto the plane
xOy is similar to the trajectory in the p-space, but turned 90◦ with respect
to the coordinate axes Ox and Oy (Fig. 1.2). The coordinate directions of the
velocity vector are shown in Fig. 1.2 as well.

Analysis of (1.6) and Fig. 1.2 leads us to the conclusion that the electron
accomplishes a cyclic motion in the magnetic field rotating along a closed

y

x

(b)

V

(a)

V

O

py

px

Fig. 1.2. The projection of the trajectory in the p-space (a) and x-space (b)
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trajectory (it is the motion along the cycle for the free electron). It is easy
to calculate the frequency of such a motion. Using (1.6) one can obtain the
velocity of the electron along the trajectory in the p-space

dpl

dt
=

eB

c
v⊥, (1.9)

where v⊥ is the projection of the electron velocity onto the plane perpen-
dicular to the magnetic field B. Equation (9) creates the following chain of
equalities

dt =
c

eB

dpl

v⊥
, t =

c

eB

∫
dpl

v⊥
, ∆t =

c

eB

∮
dpl

v⊥
, (1.10)

where the integrals are calculated along the electron trajectory, ∆t is the
period of cyclic electron motion, and the last integral is calculated along the
total closed trajectory. To know ∆t, one can determine the cyclic frequency of
the electron as ωc = 2π/∆t. This is the frequency of the cyclotron resonance
in the magnetic field for the electron in a crystal. However such a frequency
is usually presented in the form ωc = eB/mc, where m is the electron mass.
Therefore the electron cyclotron mass in the crystal depends on its trajectory
and is a function of the electron state, but not a constant quantity. Let us
find the geometric meaning of this electron characteristic. Let us calculate
the change of the area on the plane pz = const. surrounded with the electron
trajectory when the electron energy increases by δε:

δS =
∮

δp⊥dpl =
∮

dpl

v⊥
δε. (1.11)

The integral is calculated along the closed trajectory. Comparing ∆t in
(1.10) with (1.11) one obtains

∆t =
c

eB

∂S

∂ε
, (1.12)

where the function S = S(ε, pz) is the above-mentioned area on the plane
pz = const. Thus the effective cyclotron mass of the electron is given by
expression [3]

mc = mc(ε, pz) =
1
2π

∂S

∂ε
. (1.13)

Equation (13) for the electrons in a metal changes to ε = εF on the Fermi
surface. This means that the area of the cross-section of the Fermi surface
with the plane pz = const. has a direct physical sense and its derivative (13)
is the quantity measured experimentally.
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1.3 Geometry of the Fermi Surface in Crystal

The fact that the shape of an isoenergetic surface for the electron in met-
als differs from the spherical shape was understood simultaneous with the
formulation of the principal statements of the band theory. In the mono-
graph by Sommerfeld and Bethe [4] published in 1933, it has already been
shown that the Fermi surface can pass through the entire reciprocal lattice
intersecting the boundaries of the first Brillouin zone. Though there exists a
great number of shapes of the Fermi surface (some of them are described in
book [3]), one could not predict a shape of the Fermi surface in the metal
considered. Harrison [5] was the first to propose a simple explanation of two
aspects: (1) the appearance of the expected shape of the Fermi surface, and
(2) the possibility of the coexistence of several Fermi surfaces in one metal
(to be precise, several cavities or sheets of one not singly connected Fermi
surface).

To illustrate Harrison’s method, we consider a simple cubic lattice with
the lattice constant a and use the cross-section of the reciprocal lattice by the
plane pz = 0. The center of the elementary cell coincides usually with the point
p = 0 (the main square in Fig. 1.3a and the square in Fig. 1.3b). However it
can be located in another point (the dashed square in Fig. 1.3c). Start from the
free-electron model when the Fermi surface is a sphere of the radius (4). The
Fermi momentum has a magnitude of the order of the size of the Brillouin zone
if the number of the free electrons equals the number of atoms. Draw a circle
of such a radius around the point p = 0. This is the cross-section of the Fermi
surface. Taking into account that the electron energy is a periodic function in
the p-space, one ought to draw such circles around each of translation vectors
of the reciprocal lattice. The Fermi surfaces intersect the boundaries of the
Brillouin zones and each other. Every point of the intersection of the circles in
Fig. 1.3a is a point of a degeneration. It is understood that the degeneration
points appeared by the force of the primitive model used for consideration,
and the circle form of the isoenergetic surfaces should be considered as a result
of the zero approximation. Taking into account any physical circumstance in
the next approximation, one removes the degeneration, and the intercrosses
of the Fermi surfaces disappear. Instead several closed lines on the plane of
the reciprocal lattice appear. It is convenient to situate a part of them in
the elementary cells either of the first or the second type. Usually one refers
them to as different (the first, second, third, and so on) Brillouin zones and
considers them as various cavities or sheets of one Fermi surface.

A set of the Fermi surfaces in a strongly anisotropic crystal can differ from
that drawn in Fig. 1.3a. In such a case new types of lines can appear; these are
the so-called open Fermi surfaces (Fig. 1.4). Thus there are two topologically
different types of the Fermi surfaces, namely, closed and open surfaces.

If the plane in Fig. 1.4 is perpendicular to the external magnetic field,
the two types of sections of the Fermi surfaces are associated with the two
types of electron trajectories in the magnetic field: closed (typical for the free
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(A)
(A)

(B)

(D)

(b)

(d)(c)

(a)

(C)

(B)

(D)(C)

Fig. 1.3. The cross-sections of the Fermi surfaces

electron) and open (passing through the whole p-space). The latter possibility
means that the electron makes an infinite motion in the usual x-space and
can go on to infinity. It is clear that such a situation is possible only for the
band electron in a crystal and manifests peculiarities of the electron dynamics
caused by the topology of the Fermi surface.

Naturally only closed cross-sections can appear on the closed Fermi sur-
face and therefore the electrons always move along cyclic trajectories in the

2 p h
a

1

1

2

-

Fig. 1.4. Open Fermi surface
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a

1

2 0

2 p h-

py

px

Fig. 1.5. Different cross-sections for the Fermi surface in the form of a corrugated
cylinder

magnetic field. The open Fermi surface can create both closed and open
sections. Different cross-sections are shown in Fig. 1.5 for the Fermi surface
in the form of a corrugated cylinder. The direction of the “openness” of the
cylinder is chosen along the axis px and the magnetic field is directed along the
axis z. Lines of the two types determine the trajectories of the electron with
different magnitudes of pz. The trajectory lines of the first type are the open
trajectories corresponding to the infinite motion of the electron. The lines of
type 2 are the closed trajectories. Two types of the trajectories are separated
with the open trajectory (separatrice) passing through a saddle point on the
Fermi surface. The separatrice is characterized by the self-intersection points
on the boundaries of the Brillouin zones. These points are singular because
the group velocity in them changes into 0. The electron ought to stop at such a
point, but it approaches the saddle point only asymptotically (at t → ∞). The
stop at the saddle point means that the electron mass turns into infinity. Thus
the trajectory passing through the saddle point possesses a singular mass.

It has been shown earlier that the effective electron mass in the magnetic
field is determined by (1.13) where S is the area of the cross-section of an
isoenergetic surface considered as a function of ε. If one shifts the Fermi energy
εF to the energy ε = εF + ∆ε exceeding the first on the magnitude ∆ε, the
singular trajectory is replaced by a closed trajectory near it. The trajectories
of different types near the saddle point are shown in Fig. 1.6a. The peculiarity
of the trajectory of the second type is entirely connected with the existence
of the saddle point near it, and therefore such a peculiarity is determined by
the energy dependence of the part of the area ∆S lying in the vicinity of the
saddle point. In the main approximation, the part of the trajectory under
discussion can be considered as an hyperbola:

p2
x

2m1
−

p2
y

2m2
= ∆ε, (1.14)

where the values m1,m2 > 0 characterize the curvature of the Fermi surface.
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(a) (b)

o
0

Q

py

px

p0

Fig. 1.6. The different trajectories near the saddle point (a); the vicinity with the
hyperbola asymptotes (b)

It is clear that the trajectory passing through the saddle point can be
replaced in this vicinity with the hyperbola asymptotes. The magnitude ∆S
is calculated as the area bounded with the hyperbola and the straight line
pz = Q = const., where Q is chosen on the small (but finite) distance from
the saddle point (see Fig. 1.6b). Then

∆S = 2m2

∫ Q

p0

(
p2

x

2m1
− ∆ε

)2

dpx = 4
√

m1m2∆ε

∫ x(∆ε)

1

√
x2 − 1 dx,

(1.15)
where p0 =

√
2m1∆ε and x(∆ε) = Q/

√
2m1∆ε. In the main approximation,

the cyclotron mass of the electron on the trajectory close to the singular one
is equal to

m =
(m1m2)1/2

π
ln

ε(Q)
∆ε

, (1.16)

where ε(Q) = Q2/(2m1). Thus when the electron approaches the saddle point
its effective mass grows logarithmically. Hence the electron cyclotron period
grows to infinity, and the electron motion along the singular trajectory be-
comes similar to the motion along an open trajectory in the sense that the
electron spends infinite time passing the trajectory.

1.4 Quantum Magnetic Oscillations and the Shape
of the Fermi Surface

The problem of the shape of the Fermi surface concerns first of all with the
de Haas–van Alphen effect. The de Haas–van Alphen effect is one of the most
interesting macroscopic quantum phenomena. Its nature consists in an oscil-
latory dependence of the magnetization of a metal in the magnetic field. The
effect was discovered in 1930 by Leiden physicists after whom it has been
called so. Detailed description of the history and investigations of the effect
over several decades, and the estimation of the role of the effect in the exper-
imental study of the electron spectrum of metals can be found in Shoenberg’s
monograph [6]. The most important point for us is the fact that this is a purely
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quantum phenomenon caused by the quantization of the electron motion in
the magnetic field.

Let us perform a semiclassical quantization of the electron motion along
the closed trajectory. It is known that the magnetic flux Φ through the area
of the closed electron orbit is quantized as:

Φ = φ0n; n = 0, 1, 2, ..., φ0 =
2πc�

e
, (1.17)

where φ0 is the magnetic flux quant.
If A is the area of the projection of the closed electron orbit on the plane

xOy perpendicular to the magnetic field, one can write Φ = BA. According
to (1.8) the area A is proportional to the area of the cross-section of the
isoenergetic surface ε(p) = ε = const. by the plane pz = const.:

A =
( c

eB

)2

S(ε, pz).

Then the following rule of the quantization appears

S(ε, pz) =
2π�eH

c
(n + γ), n = 0, 1, 2, ..., (1.18)

where γ is a parameter of the order of magnitude of the unit. Onsager [7] was
the first to obtain the quantization rule in such a form. Formula (18) gives a
dependence of the electron energy on the quantum quantities n and pz.

Special consideration is needed in the case of quantization of the electron
motion along the trajectories close to the separatrice in Fig. 1.4, which is
actually close to the trajectory with a cross-section. If the magnetic field is
slightly inclined to the z-axis in Fig. 1.4, the separatrice can transform into
a closed line separating small closed trajectories of different sizes. Similar
cross-sections of the Fermi surface are shown as diagonal lines in Fig. 1.7.
The semiclassical quantization in such a case was studied by Azbel [8]. If
trajectories 1 and 2 in Fig. 1.7 are close to each other, then the effective value
γ depends strongly on the number n, and near the points of self-intersection
the distance between the energy levels oscillates in the magnetic field.

Using (1.18), Lifshitz and Kosevich [9] calculated magnetization at low
temperatures of the electron gas with arbitrary dispersion relation ε(p). They
obtained the oscillatory part of the magnetization of the metal and their result
can be presented schematically in the form:

∆Mosc = M0(B, T ) cos
(

c�Sm(εF)
eB

− γ

)
cos

(
πg

2
mc

m0

)
, (1.19)

where M0 is the oscillation amplitude depending smoothly on B, Sm(εF)
is the area of the extremal cross-section of the Fermi surface by the plane
pz = const., mc is the effective electron mass in the metal, m0 is the mass of
the free electron, and g is the gyromagnetic relation determining the electron
spin magneton (g =2 for free electrons).
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1
2

kx

ky

Fig. 1.7. Cross-section of the Fermi surface

The main characteristic of the de Haas–van Alphen effect is the period of
the oscillations. The period in the reciprocal magnetic field is equal to

∆

(
1
B

)
=

2π | e | �

cSm
. (1.20)

This period is independent of the magnetic field and temperature, and in
the direct magnetic field it equals

∆(B) =
2πe�

cSm
B2 (1.21)

and is proportional to the squared magnetic field (Fig. 1.8).

0 2

1

2

4 6 8
H, kG

DM

Fig. 1.8. The main characteristics of the de Haas–van Alphen effect, see (1.21)
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0

B

max

min

pz

py

px

Fig. 1.9. The convex and nonconvex cross-sections of the Fermi surface

If the Fermi surface is convex there is only one extremal (maximal) cross-
section, while there are several extremal cross-sections if it is nonconvex
(Fig. 1.9). In the latter case the diagram of the dependence of Mosc on the
magnetic field has the form of a sum of several oscillatory curves.

A number of cross-sections appear when the Fermi surface has the form of
a corrugated cylinder. If the magnetic field B is directed along the cylinder
axis, there are two types of extremal cross-sections (maximal and minimal).
If the vector B forms an angle θ with respect to the direction of the cylinder
axis (Fig. 1.10), there is a set of cross-sections depending continuously on the
angle θ. It is easy to understand that the areas of the extremal cross-sections
increase proportional to tan θ (0 < θ < π/2), and this leads to the inversion
dependence of the oscillation periods (20) on tan θ. At θ = π/2 the cross-
section passing through the entire p-space appears and its contour is an open
trajectory of type 1 in Fig. 1.5. Then the corresponding quantum oscillations
disappear.

The temperature dependence of the oscillation amplitude has a simple
form at not very low temperatures T > �ωc when

M0 ∼ exp
(
−2π2T

�ωc

)
, (1.22)

where ωc = eB/(mcc) is the cyclotron frequency. As a result, the three fac-
tors in (1.19) give a possibility of measuring experimentally the three most
important characteristics of the electron system: (a) the oscillation peri-
ods allow us to obtain the extremal cross-sections of the Fermi surface at
different directions of the magnetic field, (b) the temperature dependence
(22) gives a possibility to determine the effective electron masses on the ex-
tremal orbits, and last (c) the third factor in (1.19) allows us to estimate the
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q

Bpx

Fig. 1.10. The vector B forms an angle θ with respect to the direction of the
cylinder axis

gyromagnetic relation for the electron in a metal. All the mentioned possi-
bilities have been used with great success in many experiments, and formula
(19) has been highly estimated by investigators of the electron properties
of metals. Shoenberg called (1.19) the Lifshitz–Kosevich formula (LK for-
mula), and this can be found in many papers and reviews, including the
book [10].

From the geometrical point of view, point (a) is most interesting since it
allows us to formulate a rigorous problem of reconstruction of the Fermi sur-
face from experimental data for the oscillation periods measured for various
directions of the magnetic field. Such a question was formulated as a math-
ematical inversion problem and was solved by Lifshitz and Pogorelov [11]. It
was proved that knowledge of all central cross-sections of the convex Fermi
surface defines the shape of the Fermi surface uniquely.

Besides the de Haas–van Alphen effect, there are other physical phenom-
ena for the quantum magnetic oscillations and the Shubnikov–de Haas effect
stands first among them. The Shubnikov–de Haas effect is the oscillatory
dependence of the magnetoresistance of a metal in the magnetic field. The
physical nature of the Shubnikov–de Haas oscillations is the same as in the case
of de Haas–van Alphen effect, and corresponding measurements give the same
periods of the oscillations [12]. It turns out that the magnetoresistance oscil-
lations can be observed in organic conductors as well.
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1.5 Magnetic Breakdown

When discussing the periods of the quantum magnetic oscillations in the case
of the complicated Fermi surface, we assumed the electron motion along any
trajectory independent of the fact that the other trajectories could lie close
to the one under consideration. However, if the Fermi surface is nonconvex,
there is always a whole domain of magnetic field orientations for which the
semiclassical trajectories turn out to be close to each other. Then the quantum
tunneling between the close trajectories becomes possible. The phenomenon
caused by such a tunneling in the strong magnetic field is called magnetic
breakdown [13].

The semiclassical nature of the magnetic breakdown can be easily ex-
plained using Figs. 1.4 and 1.11. Let the electron move along the small closed
orbit of type 2 in Fig. 1.4 near the open orbit of type 1 at times. If the mag-
netic field exceeds some limiting magnitude B0, the electron first “jumps”
onto trajectory 1 and then on to the second orbit, and as a result moves along
the closed trajectory of a large radius (both the small and the large closed
trajectories are shown in Fig. 1.11).

It is possible to give another interpretation of this phenomenon. The elec-
tron that moves initially along the open trajectory of type 1 in Fig. 1.4 begins
to move along the closed trajectory under the influence of a strong magnetic
field. Therefore, the strong magnetic field can change both the sizes and the
topology of the electron trajectories.

It is clear that the magnetic breakdown is a physical phenomenon devi-
ating from the framework of the classical dynamics of the particle with a
definite trajectory. Transitions among the various trajectories are character-
ized by some quantum probability. And the magnetic breakdown is a rather
complicated quantum process, which can make a reconstruction of the elec-
tron spectrum of a metal. Detailed description of the magnetic breakdown can
be found in book [3] and review [14].

Fig. 1.11. The magnetic breakdown of the Fermi surface
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Concerning oscillatory effects, the magnetic breakdown manifests itself
either in jumps of the periods of oscillations, when the magnetic field grows
up to the limiting breakdown magnitude and the electrons change the close
orbits jumping from one to another, or in a disappearance of the oscillations,
when the latter orbit has such a great area that the periods and amplitudes
become too small for the experimental observation.

1.6 Band Electrons in the Electric Field
and Bloch Oscillations

A number of shapes of the Fermi surfaces are caused by the periodic depen-
dence of the electron energy on the momentum. Such a dependence leads to
some peculiarities of the electron dynamics in E.

In semiclassical approximation, the electron dynamics is governed by the
equation:

dp

dt
= eE (1.23)

with the usual definition of the velocity

v =
∂ε

∂p
, (1.24)

where ε = ε(p) = ε(p + G), and G is the vector of the reciprocal lattice in
the p-space.

Assume that the vector E is directed along the z-axis and restrict ourselves
to the simplest relation ε = ε(px):

ε = ε0 sin
apx

�
, v =

aε0

�
cos

apx

�
. (1.25)

Then (1.23) gives px = eEt and determines the periodic dependence of the
electron velocity on time [15]:

vx = v0(t) ≡
aε0

�
cos(ωBt). (1.26)

The frequency ωB = eEa/� is called Bloch frequency.
At reasonable values of the electric field, the frequency of the Bloch os-

cillations of the electron in a metal is many orders of magnitude lower than
the collision frequency of the electron even in extremely pure metals (in other
words, the oscillation period is much greater than the relaxation time τ in the
metal, and the amplitude of the Bloch oscillations is much greater than the
electron mean free path). Therefore, in calculating the resistivity of conductors
and in other similar cases, the periodic character of the electron motion need
not be taken into account, and the electron motion over short path lengths
can be assumed translational. It was assumed for a long time that the Bloch
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oscillations are an extremely curious physical phenomenon but are of interest
only from a theoretical standpoint.

The situation was fundamentally altered by the development of technology
for fabricating extremely perfect semiconductor superlattices with structural
periods much greater than the lattice constant. In such structures, the pe-
riod of the reciprocal lattice is greatly diminished, and the electron energy
spectrum separates into narrow sub-bands, with the result that the Bloch
oscillations corresponding to them have rather high frequencies (the obvious
condition ωτ � 1 becomes attainable); thus it becomes realistic to produce
such oscillations and observe them experimentally.

Esaki and Tsu [16] were the first who attracted the attention of scien-
tists to the fact that the periodic dependence of the electron energy on the
quasimomentum could be observed in the semiconductor superlattice. Their
idea can be easily formulated in the τ -approximation. If the relaxation is not
taken into consideration, the dependence of the electron velocity on time is
determined with (1.26) where a is the period of the superlattice now. If the
relaxation is taken into account, the real change of the electron velocity can
be written as

dvx = exp(−t/τ)dv0. (1.27)

It follows from (1.27) that

vx(t) =
∫

exp(−t/τ)dv0(t) =
∫ t

0

dv0

dt
exp(−t′/τ)dt′. (1.28)

Thus

vx(t) = eE

∫ t

0

∂2ε

∂p2
x

exp(−t′/τ)dt′ =
eE

m(0)

∫ t

0

cos(ωBz) exp(−z′/τ)dz′,

(1.29)
where m(0)−1 = ∂2ε/∂p2

x is the reciprocal effective mass of the electron at
px = 0.

For a large time (t � τ), one can put t = ∞ at the upper limit of the
integral in (1.29). Then the well-known Esaki and Tsu formula appears for
the steady average velocity of the electron in the semiconductor superlattice
as:

〈v〉 = vx(∞) =
ωBτ

1 + (ωBτ)2
aε0

�
. (1.30)

In the weak fields (under the condition ωBτ 	 1), the standard linear depen-
dence of the average electron velocity on the electric field appears as

〈v〉 =
eτ

m(0)
E. (1.31)

Equation (1.31) explains the conductivity in the weak electric fields. In the
strong electric fields (ωBτ � 1), which are possible in semiconductor mate-
rials, (1.30) gives the dependence of the average velocity on E, which is not
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possible in metals: the average electron velocity decreases when the electric
field increases:

〈v〉 =
ε0

eτ

1
E

. (1.32)

Equation (32) leads to a negative differential electroconductivity of the semi-
conductor superlattice.

The electrodynamics of semiconductor superlattices turns out now into an
independent part of physics [17] and its general contents concern the topic of
our discussion only slightly.

1.7 Topology of the Fermi Surfaces
and Low-Temperature Magnetoresistivity of Metals

The quantum oscillations in metals are undoubtedly a very good demonstra-
tion of the quantum nature of magnetism, and their various manifestations
confirm the complicated forms of the Fermi surfaces. However, only the closed
electron trajectories contribute to the measured quantum oscillations. Dynam-
ics of electrons moving along the open trajectories are studied by investigation
of other phenomena. Among them, low-temperature galvano-magnetic phe-
nomena occupy a notable place. The galvano-magnetic phenomena are very
sensitive to the form of the electron energy spectrum and have been used
as a simple and reliable spectroscopic method for the reconstruction of the
topology of the Fermi surfaces. In recent years, the topological aspect of the
galvano-magnetic phenomena has been subjected to thorough mathematical
examination [18].

However, we are interested not in the details of the mathematical analy-
sis but in the physical results connecting experimental observations with the
geometry of the Fermi surfaces. The excellent review [19] exhausts the topic
of the present section, and hence only general qualitative remarks are made
here. It is only worthwhile to note that both the review [19] and the book [3]
give a total account of the theory of the low-temperature galvano-magnetic
properties of metals in strong magnetic fields when the topological peculiari-
ties of the Fermi surfaces are displayed fully. This theory has been called LAK
theory after the first letters of the names of its creators, Lifshitz, Azbel, and
Kaganov.

If the magnetic field is strong enough, the cyclotron frequency is so large
that at low temperatures (when the mean free path is rather long) the electron
passes many times around any closed trajectory inside the Brillouin zone and,
consequently, can intersect many elementary cells in the p-space moving along
the open trajectory. The latter explains the possibility of the manifestation of
open trajectories in macroscopic properties of metals.

The electric field in a metal is very weak, and the dynamics of electrons
is determined in the main approximation by the shape of its trajectory in the
magnetic field. The electric field can be taken into account as a small pertur-
bation. A detailed description of different situations and various possibilities
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associated with the electron dynamics on the open Fermi surfaces is given in
paper [20] and analyzed later in Abrikosov’s monograph [22].

Let us examine the galvano-magnetic phenomena in a metal with the Fermi
surface in the form of a corrugated cylinder with the direction of “openness”
along the axis px in the magnetic field B=B(cos θ, 0, sin θ) (see Fig. 1.10 or
Fig. 1.12). A model dispersion relation corresponding to such a Fermi surface
has the form:

ε(p) = ∆sin2 pxb

2
+

p2
y + p2

z

2m
(1.33)

supposing εF > ∆. The direction of the magnetic field is close to the z-axis.
The cross-sections of a weakly corrugated cylinder by the planes pB =

pB/B = const. are shown in Fig. 1.12. When θ is other than π/2 all the cross-
sections are closed. As θ approaches π/2 the closed orbits become strongly
elongated orbits and their lengths can exceed the period of the reciprocal
lattice 2π/b. The period of motion along such an orbit increases infinitely

q

Æ

H
h / a

px px

Fig. 1.12. Fermi surface in the form of a corrugated cylinder
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0 q

pxx

Fig. 1.13. Dependence of the magnetoresistivity on the orientation of magnetic
field

when θ → π/2, and if θ = π/2 the strongly elongated orbit “breaks” into two
open orbits.

If the length of a long closed trajectory in the x-space exceeds the mean
free pass of the electron, such a trajectory contributes to kinetics as an open
one. It is easy to estimate a limiting angle θ when the value 2π�c/aeBθ be-
comes equal to the mean free pass. Inside the interval of angles estimated
by such a way, the elongated orbits belong to electrons that cannot realize
their cyclotron motion. These electrons have 〈vx〉 = 0 and 〈vy〉 
= 0. Thus a
narrow maximum has to be expected for the dependence of the magnetore-
sistivity on the value and the orientation of the strong magnetic field, when
B is perpendicular to the axis of the cylinder (Fig. 1.13). If the Fermi sur-
face is more complicated than the corrugated cylinder (for example, similar to
those shown in Fig. 1.14), then orientations of topological peculiarities can be
presented using the stereographic projection of the magnetic field directions
for which open trajectories are possible (Fig. 1.15). The center of the circle
corresponds to the normal in Fig. 1.14, while the boundary of the circle to
θ = π/2. The hatched regions show where open trajectories can exist. The
straight lines from the center to the boundary and the circle θ = π/2 corre-
spond to the open trajectories. The dashed lines close to the boundary circle
separate regions where closed orbits are strongly elongated ones.
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Hn q

Fig. 1.14. Fermi surface

Additional information on details of the Fermi surface and effective masses
of the electrons can be collected by analyzing the Azbel–Kaner cyclotron
resonance [23, 24]. However, this effect is connected with high-frequency
properties of metals and can be described in a separate publication. Despite
understanding the great importance of the Azbel–Kaner effect in the electron
theory of metals, only a mention of the theory is made here.

Fig. 1.15. The stereographic projection of the magnetic field directions
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1.8 Berry’s Phase and the Topology of the Electron
Trajectories in the Magnetic Field

In the final part of the discussion of problems connected with the topology of
electron orbits in the magnetic field, let us discuss the pure quantum effect
of a geometrical Berry’s phase [25] the question concerns the parameter γ in
(1.18) influencing the phase of the oscillatory part of the magnetization (see
(1.19)). A calculation of the parameter γ by the WKB method was made in
papers [26] for the first time. Later it was performed strictly in [27] for the
one-band electron spectrum. Paper [27] confirmed a specific contribution into
γ of the electron trajectories with a self-intersection (like the separatrice in
Fig. 1.5) described earlier by Azbel [8].

We describe in a few lines the physical circumstances that need to be
taken into account when discussing Berry’s phase. It is known that while a
local value of a phase of the quantum wave function is not measured, only its
gradients and a time derivative can be measured. Write the phase of the wave
function in the form

ψ(x, t) = |ψ| exp(iϕ(x, t)).

Suppose that ψ(x, t) is a single-valued function of coordinates and time.
Though the phase ϕ(x, t) is not to be single-valued, its change along any
closed circuit must be multiples of 2π. In the case of the electron motion in
the magnetic field directed along the z-axis, the dependence of the phase on
xy is important:

ϕ =
pz − εt

�
+ ϕ0(x, y),

where pz = const., ε = const. The condition mentioned here has the form:∮
∂ϕ0

∂xα
dxα = 2πn, n = 0, 1, 2, ..., (α = 1, 2), (1.34)

where the integration is performed along any closed circuit on the plane (x, y).
The phase of the semiclassical wave function is determined with a classical

action S for the system under consideration ϕ = (1/�)S. The action in the
magnetic field acquires the addition

δS0 =
e

c

∫ x

0

A dx, (1.35)

where A is the vector-potential. Consequently a closed electron trajectory Γ
has to satisfy condition (34):

e

�c

∮
Γ

A dl = 2πn, n = 0, 1, 2, ... (1.36)
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Equation (36) is equivalent to the semiclassical quantization of the mag-
netic flux (17). This relation is the physical basis of the Aharonov–Bohm ef-
fect [17] and explains the quantization of electron orbits in a singular field of
the vector-potential [29]. The latter phenomenon has the following realization.
An infinitely thin straight-line solenoid creates the magnetic flux localized
along the z-axis and the vector-potential A in the surroundings. The vector-
potential A has only one angle component Aθ = Φ0/(2πr), where r2 = x2+y2.
Such a vector-potential does not create any magnetic field in the surround-
ings (rotA = 0, r 
= 0). However the electron forced to move along the closed
trajectory “feels” the existence of the magnetic flux if the trajectory encloses
the z-axis.

This is a nonlocal topological effect. Any physical field of the magnetic
origin does not exist at all points r 
= 0 and does not act on the electron. Only
entire closed trajectory realizes the effect. A singularity of the trajectory Γ
consists in the fact that the forced motion of the electron occurs on the two
connected planes (x, y); its single connection is broken by the existence of
the localized magnetic flux “perforating” the plane in the point x = y = 0.
The Aharonov–Bohm effect was the first physical realization of a phenomenon
associated with manifestation of Berry’s phase.

Berry [25] made a very important observation that has led to the discovery
with great consequences. Let the Hamiltonian and the action of the system
depend on some set of continuous parameters, which can be called the space
of parameters called the space of parameters R. Then the wave function of
parameters as well. If one speaks of the electron in a crystal, the Brillouin zone
in the k-space can serve as the space of parameters [30]. When the parameters
R are slowly altered with increasing time and are returned to their original
values at the moment t = T , the excursion of the system between times t = 0
and t = T can be pictured as transport around a closed path in parameter
space, with Hamiltonian H(R(t)) and such that R(T ) = R(0). Then the
Hamiltonian is returned to its initial form and the system is returned to its
initial state, apart from the phase of the wave function. The phase acquires
the addition δβ not being connected with the classical action. The addition
δβ was called geometrical phase; that is just Berry’s phase.

The total phase change around any closed circuit in the space of parameters
obeys a condition of the type of (1.34)

δϕ ≡ 1
�

δS0 + δβ = 2πn, n = 0, 1, 2, ... (1.37)

It is not difficult to obtain a formal expression for Berry’s phase. Let
H(R(t)) be Hamiltonian and |ψ(t)〉 be the wave function or the vector of
state of the system (we follow the original paper [25] and use the notations of
Dirac). The evolution of the function |ψ(t)〉 is described by the Schroedinger
equation:

i�
∣∣∣∣∂ψ(t)

∂t

〉
= H(p(t)) |ψ(t)〉 . (1.38)



1 Topology in the Electron Theory of Metals 25

At any moment, the natural basis consists of the eigenstates |n(R)〉 (assumed
discrete and not degenerated) of H for R, which satisfy

En(R)|n(R)〉 = H(R)|n(R)〉 (1.39)

with energies En(R).
Adiabatically, a system prepared in one such state |n(R(0))〉 will evolve

with H and so will be in the state |n(R(t))〉 at t. Thus |ψ(t)〉 can be written
as [31]:

|ψ(t)〉 = exp
(−i

�

∫ t

0

En(R(t))dt′
)

exp(iβn(t))|n(R(t))〉, (1.40)

where the first exponential is the familiar dynamical phase factor. The last
exponential is single-valued in a parameter domain that includes the circuit
in the parameter space. The object of attention should be the second expo-
nential. The crucial point will be that its phase βn(t) is nonintegrable, cannot
be written as a function of R, and in particular is not single-valued under
continuation around a circuit, i.e., βn(t) 
= βn(0).

Direct substitution of (1.40) into (1.38) leads to the equation for βn(t):

dβn(t)
dt

= i
〈

n(R(t))
∣∣∣∣∂n(R(t))

∂t

〉
. (1.41)

Calculate the total addition βn around a closed circuit C:

βn(T ) = i
∮

C

〈
n(R)

∣∣∣∣∂n(R)
∂R

〉
dR. (1.42)

Since the functions |n〉 are normalized (〈n|n〉 = 1), the value
〈
n
∣∣ ∂n

∂t

〉
is

imaginary, which guarantees that βn(t) is real. If βn(0) = 0 then (1.42) defines
the geometrical phase, i.e., Berry’s phase.

Consider the geometrical phase of the band electron moving along some
closed circuit Γ in the p-space. The Brillouin zone in this case plays the role
of the space of parameters and R=k. Let the electron have at the moment t
the Bloch wave function in band s (we return to usual notations of the wave
functions):

|s〉 = usk(x) exp(ikx), (1.43)

where usk(x) is the periodic in the x-space function and k is the wave vector.
Bloch wave (43) and the energy εs(k) are the eigenfunction and the eigenvalue
of Eq. (1.39) at the moment t. The quasiwave vector k is included in this equa-
tion as a parameter. For example, in the magnetic field k(t) = k−(e/�c)A(t).
Therefore, when the physical conditions change adiabatically, one can write

|s, t〉 = usk(t) exp(ikx) (1.44)

supposing that the quasiwave vector in the exponent exp(ikx) is independent
of time. A slow dependence on time is contained in the Bloch amplitude and
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energy εs(k(t)). Taking into account the last fact, substitute (1.44) in (1.42):

βn(T ) = i
∮

Γ

dk

∫
u∗

nk(x)
∂unk(x)

∂x
d3x. (1.45)

This is just the geometric phase of the electron doing a cyclic motion in the
magnetic field. It is interesting to note [27] that the integral

Ω(k) = i
∫

u∗
sk(x)

∂usk(x)
∂k

d3x (1.46)

coincides with the diagonal element of the following matrix

Ωss′(k) = i
∫

u∗
sk(x)∇kusk(x)d3x, (1.47)

which determines a so-called periodic part of the coordinate operator (in the
k representation) responsible for interband transitions (see [32]):

r̂ = i
∂

∂k
+ Ω̂(k). (1.48)

Thus it turns out that Berry’s phase has attracted attention to the second
term in the coordinate operator (48) in a space with periodic medium.

Now let us come back to the quantization conditions (37) and the discus-
sion of the parameter γ in (1.18). If the orbit under study does not come close
to any other trajectory with the same kz, and its shape differs noticeably from
an intersecting one, according to Zilberman [26] the parameter γ always has
the value

γ =
1
2
. (1.49)

It is this value that is commonly used in describing the oscillation phe-
nomena in metals [6]. Therefore the quantization of the electron motion under
conditions mentioned earlier should use the following value for δS0 in (1.37)

δS0 = 2π
(

n +
1
2

)
�. (1.50)

Thus the parameter γ in (1.18) equals

γ =
1
2
− 1

2π
∆β, (1.51)

where ∆β = β(T ) − β(0) is the total addition to the geometric phase during
the cyclic electron motion along a closed trajectory in the magnetic field.

Applications of (1.51) and conclusions connected with it are discussed in
paper [34]. The difference of Berry’s phase from 0 is usually due to degen-
eracy of electron states. There are two types of the degeneration connected
with band contact and intersections of the isoenergetic surfaces. It is common
knowledge that the contact of the bands in a metal can occur at symmetry
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(b)

3
2

4

1

(a)

(c)

Fig. 1.16. Some examples of the Fermi surfaces in various metals

points and along the symmetry axis of the Brillouin zones. Besides, as shown
by Herring [35], there are lines of accidental contact between the the bands
in crystals. Analysis of the geometry of the Fermi surfaces in metals shows
that lines of symmetry degeneration and accidental contacts would exist in
many metals. In Fig. 1.16 examples of the Fermi surfaces in various metals are
shown, which possess peculiarities discussed earlier.

To calculate the value γ it is convenient to use the result obtained as early
as 1962 [33]. It has been found if the contour Γ encloses a line of the contact
between the bands, and the energies of the bands separate linearly in k in the
vicinity of the line, then

∆β = ±π, (1.52)

where the sign on the right-hand side is determined by the direction of the
integration. The conditions demanded are satisfied if the line of the degen-
eration coincides with that of the accidental contact or with the threefold
symmetry axis (lines 3 and 4 in Fig. 1.16). For the trajectories mentioned

γ = 0 (1.53)

(γ = 1 and γ = 0 are equivalent). If in the vicinity of the band-contact line
the energy splitting of electron states is quadratic in the distance of the point
k from the line, then

∆β = 0. (1.54)

Therefore in such a case and for the trajectories not enclosing lines of degen-
eration

γ =
1
2
. (1.55)
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The results described depend neither on the form of ε(k) nor on the shape
and size of the electron trajectory and are topological in nature. It is due to
the fact that the electron orbit links to the band-contact line, which is the
line of singularities of the Bloch wave functions. If the linking is absent, the
convenient result, γ = 1/2, holds. Measurements of the phase shift of the
quantum oscillations in metals can provide a possibility of detecting band-
contact lines.
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Topology, Quasiperiodic Functions,
and the Transport Phenomena

A.Ya. Maltsev and S.P. Novikov

Summary. In this chapter we give the basic concept of the “topological numbers”
in the theory of quasiperiodic functions. Attention is especially paid to appearance
of such quantities in transport phenomena, including galvanomagnetic phenomena
in normal metals (Sect. 2.1) and the modulations of 2D electron gas (Sect. 2.3). We
give a detailed introduction to both these areas and explain in a simple way the
appearance of the “integral characteristics” in both these problems. Though this
chapter cannot be considered a detailed survey in the area, it explains the main
basic features of the corresponding phenomena.

2.1 Introduction

2.1.1 Galvanomagnetic Phenomena in Normal Metals: Classical
Results, GSMF Limit

We first consider the transport phenomena connected with the geometry of
quasiclassical electron trajectories in the magnetic field B.

Let us start with the most fundamental case where this kind of phenom-
ena appears in the conductivity of normal metals having complicated Fermi
surfaces in the presence of a rather strong magnetic field. This classical part of
the solid state physics was started by the Kharkov school of I.M. Lifshitz (Lif-
shitz, Azbel, Kaganov, Peschansky) in the 1950s and has become an essential
part of conductivity theory in normal metals. In particular, they introduced
the idea of the geometric strong magnetic field (GSMF) limit. Let us give here
some small insight into this area. We start with the classical work of I.M. Lif-
shitz, M.Ya. Azbel and M.I. Kaganov [1], where the importance of topology
of the Fermi surface for the conductivity was established. Namely, the dif-
ference between the “simple” Fermi surface (topological “sphere”) (Fig. 2.1a)
and more complicated surfaces where the nonclosed quasiclassical electron
trajectories can arise was shown. In particular, detailed consideration of the
“simple” Fermi surface and surfaces like “warped cylinder” (Fig. 2.1b) for the
different directions of B was made.
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B

B

(b)(a)

Fig. 2.1. The “simple” Fermi surface having the form of a sphere in the Brillouin
zone and the periodic “warped cylinder” extending through an infinite number of
Brillouin zones. The quasiclassical electron orbits in p-space are also shown for a
given direction of B

Figure 2.1 represents the forms of the Fermi surfaces in p-space and it
should be remembered that only one Brillouin zone should be taken into
account to get the right phase space volume for the electron states. The values
of p which are different from any reciprocal lattice vector n1a1 +n2a2 +n3a3

(where ni are integers), are physically equivalent to each other and represent
the same electron state. The Brillouin zone can then be considered as the
parallelogram in the p-space with the identified opposite sides on the boundary
(Fig. 2.2).

Also the Fermi surfaces SF will then be periodic in p-space with periods
a1, a2, a3.

Remark. From a topological point of view, we consider the Brillouin zone
as the compact three-dimensional torus T3. The corresponding Fermi surfaces
will then also be compact surfaces of finite size embedded in T3.

Identified sides

Identified sides

Identified sides

Fig. 2.2. The Brillouin zone in the quasimomentum (p) space with the identified
sides on the boundary
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The presence of the homogeneous magnetic field B generates the evolution
of electron states in the p-space, which can be described by the dynamical
system

ṗ =
e

c
[vgr(p) × B] =

e

c
[∇ε(p) × B] , (2.1)

where ε(p) is the dependence of energy on the quasimomentum (dispersion re-
lation) and vgr(p) = ∇ε(p) is the group velocity at the state p. Both functions
ε(p) and vgr(p) are also periodic functions in p-space and can be considered
as one-valued functions in T3.

System (2.1) has two conservative integrals that are the electron energy
and the component of p along the magnetic field. The electron trajectories
can then be represented as the intersections of the constant energy surfaces
ε(p) = const. with the planes orthogonal to B and only the Fermi level
ε(p) = εF is actually important for the conductivity. It easy to see then that
global geometry of the “essential” electron trajectories will depend strongly
on the form of Fermi surface in p-space.

Coming back to the Fig. 2.1 we can see that the form of electron trajectories
can be quite different for the Fermi surfaces similar to the Fermi surface
shown in Fig. 2.1b, we can have periodic nonclosed electron trajectories (if
B is orthogonal to vertical axis), while for the surface on Fig. 2.1a all the
trajectories are just closed curves lying in one Brillouin zone for all directions
of B.

We now share that this global geometry plays the main role in the electron
motion in the coordinate space also (despite the factorization in p-space).
Thus the electron wave-packet motion in x-space (x = (x, y, z)) can be found
from the additional system

ẋ = vgr(p(t)) = ∇ε(p(t))

for any trajectory in p-space after the integration of system (2.1). The struc-
ture of system (2.1) permits to claim for example that the xy-projection of
“electron motion” in x-space has the same form as the trajectory in p-space
rotated by π/2. We can see then that the electron drift in x-space in magnetic
field is also very different for the trajectories shown in Fig. 2.3a, b due to the
action of the crystal lattice.

The effect of this “geometrical drift” can be measured experimentally in
the rather pure metallic monocrystals if the mean free electron motion time
is big enough (such that the electron packet “feels” the geometric features of
trajectory between the two scattering acts). The geometric picture requires
then that the time between the two scatterings is much longer than the “pass-
ing time” through one Brillouin zone for the periodic trajectory and much
longer than the “inverse cyclotron frequency” for closed trajectories.1 For the

1 This criterion can be actually more complicated for trajectories of more compli-
cated form.
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(a) (b)

Fig. 2.3. Electron trajectories in p-space given by the intersections of planes orthog-
onal to B for the Fermi surfaces shown in Fig. 2.1a, b for B orthogonal to vertical
axis

approximation of effective mass m∗ in crystal this condition can be roughly
expressed as ωBτ � 1, where ωB = eB/m∗c is the formal cyclotron frequency
and τ is the mean free electron motion time. Let us note that this require-
ment is satisfied better for big values of B and we consider the formal limit
B → ∞ in this chapter. We call this situation GSMF limit and consider the
asymptotic of conductivity tensor for this case.2

We give here the asymptotic form of conductivity tensor obtained in [1]
for the case of trajectories shown in Fig. 2.3a, b. Let us take the z-axis in the
x-space along the magnetic field B. The axes x and y can be chosen arbitrarily
for the case of Fig. 2.3a and we take the y-axis along the mean electron drift
direction in x-space for the case of Fig. 2.3b. (It is obvious that the x-axis will
then be directed along the mean electron drift in p-space in this situation).
The asymptotic forms of the conductivity tensor can then be written as:

Case 1 (closed trajectories, Fig. 2.3a):

σik � ne2τ

m∗

⎛⎝ (ωBτ)−2 (ωBτ)−1 (ωBτ)−1

(ωBτ)−1 (ωBτ)−2 (ωBτ)−1

(ωBτ)−1 (ωBτ)−1 ∗

⎞⎠ , ωBτ � 1 (2.2)

2 Formally another condition �ωB � εF should also be imposed on the magnetic
field B. However, this condition is always satisfied for the real metals and all
experimentally available magnetic fields (the upper limit is B ∼ 103−104 T). So
we do not pay special attention to this second restriction and assume that the limit
B → ∞ is considered in the “experimental sense,” where the second condition is
satisfied.
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Fig. 2.4. The picture from [2] representing the “thin spatial net” and the corre-
sponding directions of B on the unit sphere where the nonclosed electron trajectories
exist

Case 2 (open periodic trajectories, Fig. 2.3b):

σik � ne2τ

m∗

⎛⎝ (ωBτ)−2 (ωBτ)−1 (ωBτ)−1

(ωBτ)−1 ∗ ∗
(ωBτ)−1 ∗ ∗

⎞⎠ , ωBτ � 1, (2.3)

where ∗ indicates some dimensionless constants of the order of 1.

We can see that conductivity reveals the strong anisotropy in the plane
orthogonal to B in the second case, and the mean direction of the electron
trajectory in p-space (not in x) can be measured experimentally as the zero
eigen-direction of σik for B → ∞.

More general types of open electron trajectories are considered in [2, 3].
For example, the open trajectories that are not periodic are found in [2] for
the “thin spatial net” (Fig. 2.4a). The open trajectories exist here only for
the directions of B close to main crystallographic axes (1, 0, 0), (0, 1, 0), and
(0, 0, 1) (Fig. 2.4b). It was shown in [2] that the open trajectories lie in this
case in the straight strips of finite width in the plane orthogonal to B and pass
through them. The mean direction of open trajectories is given here by the
intersections of plane orthogonal to B with the main crystallographic planes
(xy), (yz), and (xz).

The form of conductivity tensor for this kind of trajectories used in [2]
coincides with (2.3).

Some analytical dispersion relations are also considered in [3].3 Let us men-
tion here also the works [4–11] where different experimental (and theoretical)
investigations for some real metals were made. Detailed consideration of these
results can also be found in the survey articles [12,13] and the book [14] (see
also [15]).

3 Actually this work contains some conceptual mistakes but it also gives some
correct features concerning the existence of some open trajectories for these dis-
persion relations.
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2.1.2 Modern Ideas: The GSMF Limit, Topology,
and Dynamical Systems

From the physical point of view the problem arising here can be divided into
two parts:

(1) The investigation of topology and dynamics of electron trajectories on
the Fermi surface. Based on works [16–20] we call this Novikov problem.

(2) The problem of the relation of this dynamics with the physical prop-
erties of electric conductivity in the strong magnetic fields (GSMF limit)
formulated essentially in the works of Lifshitz group [1–3,12–14]).

The result of the Lifshitz group is based on the investigation of kinetic
equation for the corresponding quasiparticles given in work [1] for the concrete
examples. We had to generalize these results, which led us to the formulation
of the GSMF limit in the following form: all essential properties of electrical
conductivity (under certain restrictions) are determined by the geometry of
the dynamical system on the Fermi surface for the limit of large values of B.

It is worth noting that this part of investigation, including the GSMF-
limit principle, was never mathematically rigorously investigated unlike the
first part (the Novikov problem) where the investigation was made by the
rigorous methods of differential topology. It appeared then that in the case of
general position the electron trajectories have the integer topological invari-
ants stable with respect to the small rotations of the magnetic field. These
“topological quantum numbers” coincide for different trajectories (i.e., pos-
sess the “topological resonance” property). Due to this fact the “Topological
quantum numbers” become macroscopic observable quantities. We state that
there also exist very interesting cases of the so-called “chaotic trajectories”.
This type of trajectories is not yet completely investigated and it seems that
new physical phenomena arise there.

Let us now describe in more detail the topological approach to the prob-
lem of general classification of all possible electron trajectories regardless the
concrete features of the dispersion relation ε(p) given by Novikov [16] (see
also [21–23]). We formulate the Novikov problem here.

Novikov Problem

Let any smooth 3-periodic function ε(p) be given in the three-dimensional
space R3 (with arbitrary lattice of periods). Fix any nondegenerate energy
level ε(p) = const (i.e., ∇ε(p) 
= 0 on this level) and consider the intersections
of the corresponding smooth 3-periodic surface by any set of parallel planes in
R3. Describe the global geometry of all possible nonsingular (open) trajectories
that can arise in the intersections.

The term “the global geometry” means here first the asymptotic behavior
of the trajectory when t → ±∞ in the sense of dynamical systems. Let us
also formulate here the Novikov conjecture about the generic nonsingular
trajectories, which was proved later by his pupils.



2 Topology, Quasiperiodic Functions,and the Transport Phenomena 37

Novikov Conjecture

The generic nonsingular open trajectories lie in the straight strips of finite
width (in the plane orthogonal to B) and pass through them.

In the process of proving of Novikov conjecture, the deeper properties of
the generic open trajectories were actually revealed. They appeared to be
stable with respect to the (small) rotations of the direction of B. Moreover,
it appeared that all the generic open orbits lie on some “warped planes”
the quasimomenta space. All these “warped planes” have the integral mean
direction (i.e., generated by two reciprocal lattice vectors) and are parallel
on average to each other for a given direction of B. These integral mean
directions of “warped planes” appear to be rigid for small rotations of the
direction of B and represent the “Topological quantum numbers” mentioned
earlier.

Let us also emphasize that Novikov conjecture is connected with the
generic open trajectories and cannot be valid in the special degenerate cases
(Tsarev, Dynnikov) as we will see later.

There is also the natural question of what the generic case means in this
situation. According to the Novikov conjecture the Hausdorff dimension of
the set of directions of B on the unit sphere where the “nongeneric” open
trajectories arise is strictly less than 1 for the generic Fermi surfaces (for
some nongeneric Fermi surfaces this dimension can be greater than 1 as for
example in the case of the surface cos x + cos y + cos z = 0 (see [24,25])).

Let us now give some historical review on the consideration of the Novikov
problem in the topological school (Zorich, Dynnikov, Tsarev), where the basic
theorems about the nonclosed trajectories were obtained. We provide here
the main breakthroughs in this problem made in [17] (A.V. Zorich) and [20]
(Dynnikov).

We first note that even for the rather complicated periodic Fermi sur-
face, the electron trajectories will be quite simple if the direction of B is
purely rational (with respect to reciprocal lattice), i.e., if the plane Π(B)
orthogonal to B contains two linearly independent reciprocal lattice vectors.
This property can also be formulated in the form where the magnetic fluxes
through the faces of elementary cell in the x-space are proportional to each
other with rational coefficients. In this situation the picture arising in Π(B)
is purely periodic and all open electron trajectories can also be just the
periodic curves corresponding precisely to the case (2.3). However, the condi-
tion of rationality is completely unstable with respect to any small rotations
of B such that the rational directions give just a set of measure 0 among all
the directions of B.

The remarkable fact proved by Zorich is that the open trajectories reveal
the “topologically regular” properties even after the small rotations of the ini-
tial purely rational direction. That is, they lie in straight strips of finite width
in accordance with the Novikov conjecture (but are not periodic anymore).
Let us formulate this in a more precise form.
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Fig. 2.5. The open region Ω around the purely rational direction B0/B0 on the
unit sphere and the general open trajectory lying in the straight strip of finite width
in the plane orthogonal to B for B/B ∈ Ω

Theorem 1 (Zorich [17]). Consider an arbitrary smooth Fermi surface and
the rational direction of magnetic field B0 such that no singular trajectory
connects two different (not equivalent modulo the reciprocal lattice) singular
(stagnation) points of the system (2.1). Then there exists a small open region
Ω on the unit sphere around direction B0 such that all open trajectories (if
they exist) lie in straight strips of finite width in the plane orthogonal to B if
B/B ∈ Ω (Fig. 2.5).

It was also proved by Dynnikov that any trajectory of this kind passes
through the corresponding strip and does not come back ([18,19]).

Let us also mention that the additional topological condition in Theo-
rem 1 has a generic form and generically does not impose anything on the
direction B0.

In his theorem, of Zorich actually claims that all the rational directions of
B can be extended to some “small open spots” on the unit sphere (parame-
terizing directions of B) where we cannot have a situation more complicated
than that represented in Fig. 2.5. This set already has the finite measure on
the unit sphere and moreover we can conclude that any stable open trajec-
tory can have only the form shown in Fig. 2.5 since the rational directions
are dense everywhere on the unit sphere. The Zorich theorem, however, does
not permit to state that this situation is the only possible one since the sizes
of the “spots” become smaller and smaller for big rational numbers and we
cannot claim that they cover all the unit spheres in a general situation.

The next important result was obtained by Dynnikov [20] who proved that
the trajectories shown in Fig. 2.5 can be the only stable ones with respect to
the small variation of the Fermi energy εF for a given dispersion relation ε(p).
We provide the exact form of the Dynnikov theorem in Sect. 2.2 where we
will consider this aspect in more detail. We just state here that the methods
developed in [20] permitted to prove later that all the cases of open trajectories
different from those shown in Fig. 2.5 can appear only “with probability zero”
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(i.e., for the directions of B from the set of measure zero on the unit sphere)
for generic Fermi surfaces SF : ε(p) = εF ( [24,26]), which gave the final proof
of Novikov conjecture for generic open trajectories.

The methods of proving Zorich and Dynnikov theorems gave the basis
for the invention of the “topological quantum numbers” introduced in [28]
by the present authors (see also the survey articles [29–31]) for conductivity
in normal metals. Let us also state that another important property, called
the “Topological Resonance,” played a crucial role for physical phenomena
in [28]. The main point of this property can be formulated as follows: all the
trajectories having the form shown in Fig. 2.5 have the same mean direction
in all the planes orthogonal to B for the generic directions of B (actually
for any not purely rational direction of B) and give the same form (2.3)
of contribution to conductivity tensor in the same coordinate system. This
important fact makes experimentally observable the integer-valued topological
characteristics of the Fermi surface having the form of the integral planes of
reciprocal lattice and corresponding “stability zones” on the unit sphere. We
describe in detail these quantities in Sect. 2.2 of our paper. Our goal here is to
give the main features of the corresponding picture, so we do not give all the
details of the classification of all open trajectories for general Fermi surfaces.
However, the picture we will describe serves as the “basic description” of
conductivity phenomena and all the other possibilities can be considered as
special additional features for the nongeneric directions of B. Let us also state
here that the final classification of open trajectories for generic Fermi surfaces
was completed in general by Dynnikov in [27], which solves primarily the
Novikov problem. The physical phenomena connected with different types of
open trajectories can be found in detail in the survey articles [30,31].

2.1.3 Transport in 2D Electron Gas and Topology
of Quasiperiodic Functions

Let us now mention a few words about the so-called generalized Novikov
problem in connection with the quasiperiodic functions on the plane with N
quasiperiods. According to the standard definition the quasiperiodic function
in Rm with N quasiperiods (N ≥ m) is a restriction of a periodic function in
RN (with N periods) to any plane Rm ⊂ RN of dimension m linearly embed-
ded in RN . In our situation we will always have m = 2 and the quasiperiodic
functions on the plane will be the restrictions of the periodic functions in RN

to some 2D plane.

Generalized Novikov Problem

Describe the global geometry of open level curves of quasiperiodic function
f(r) on the plane with N quasiperiods.

It is easy to see that the generalized Novikov problem gives the Novikov
problem for the electron trajectories if we put N = 3. Indeed, all the
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trajectories in the planes orthogonal to B can be considered as the level curves
of quasiperiodic functions ε(p)|Π(B) with three quasiperiods. As mentioned
earlier, the general Novikov problem is solved primarily for N = 3. However,
the case N > 3 becomes very complicated from the topological point of view
and no general classification in this case exists at the moment. The only topo-
logical result existing now for the general Novikov problem is the analog of
Zorich theorem (Theorem 1) for the case N = 4 [32] and the general situation
is still under investigation.

In Section 2.3 we consider the applications of generalized Novikov problem
connected with the “superlattice potentials” for the two-dimensional electron
gas in the presence of orthogonal magnetic field. This kind of potentials is
connected with modern techniques of “handmade” modulations of 2D electron
gas such as the holographic illumination, “gate modulation”, piezoelectric
effect, etc. All such modulations are usually periodic in the plane and in many
situations the level curves play an important role for the transport phenomena
in such systems. The most important thing for us will be the conductivity
phenomena in these 2D structures in the presence of orthogonal magnetic
field B. According to the quasiclassical approach the cyclotron electron orbits
drift along the level curves of modulation potential in the magnetic field,
which gives the “drift contribution” to conductivity in the plane. Among the
works devoted to this approach we would like to mention here the article [33],
where this method was introduced for the explanation of “commensurability
oscillations” of conductivity in potential modulated just in one direction, and
[34] where the same approach was used for the explanation of suppression of
these oscillations by the second orthogonal modulation in the periodic case.
Let us add that all these phenomena correspond to the long free electron
motion time, which will now play the role of the “geometric limit” (not B →
∞) in the second situation.

We will show that the generalized Novikov problem can also arise naturally
in these structures if we consider the independent superposition of different
periodic modulations. It can be proved that in this case we always obtain
the quasiperiodic functions where the number of quasiperiods depends on the
complexity of total modulation. The results in Novikov problem can then
help to predict the form of the “drift conductivity” in the limit of long free
electron motion time. In Sect. 2.3 we give the main features of the situation
of superposition of several “1D modulations” where the potentials with a
small number of quasiperiods can arise. The detailed consideration of this
situation can be found in [35]. However, the Novikov problem also arises in a
much more general case of arbitrary superpositions of more complicated (but
periodic) structures.

Finally, we would like to mention that the quasiperiodic functions with
a large number of quasiperiods can be a model for the random potentials
on the plane. The corresponding Novikov problem arises in the percolation
theory for such potentials. We will also discuss this situation at the end of
Sect. 2.3.
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(c)(a) (b)

Fig. 2.6. The abstract surfaces (a), (b), and (c) with genuses 0, 1, and 2,
respectively

2.2 The Classification of Fermi Surfaces
and the “Topological Quantum Numbers”

Let us start with the definitions of genus and topological rank of the Fermi
surface.

Definition 1. Let us consider the phase space T3 = R3/L introduced earlier.
After the identification, every component of the Fermi surface becomes the
smooth orientable two-dimensional surface embedded in T3. We can then intro-
duce the standard genus of every component of the Fermi surface g = 0, 1, 2, ...
according to standard topological classification depending on whether this com-
ponent is a topological sphere, torus, sphere with two holes, etc. (Fig. 2.6).

Definition 2. Let us introduce the topological rank r as the characteristic of
the embedding of the Fermi surface in T3. It is much more convenient in this
case to come back to the total p-space and consider the connected components
of the three-periodic surface in R3.

(1) The Fermi surface has Rank 0 if each of its connected component can
be bounded by a sphere of finite radius.

(2) The Fermi surface has Rank 1 if each of its connected component can
be bounded by the periodic cylinder of finite radius and there are components
that cannot be bounded by the sphere.

(3) The Fermi surface has Rank 2 if each of its connected component that
can be bounded by two parallel (integral) planes in R3 and there are components
that cannot be bounded by a cylinder.

(4) The Fermi surface has Rank 3 if it contains components that cannot
be bounded by two parallel planes in R3.

Figure 2.7a, b, c, d represents the pieces of the Fermi surfaces in R3 with
the topological ranks 0, 1, 2, and 3, respectively. As can be seen the genuses
of the surfaces represented in Fig. 2.7a, b, c, d are also equal to 0, 1, 2, and 3,
respectively. However, the genus and the Topological Rank are not necessary
equal to each other in the general situation.

Let us discuss briefly the connection between the genus and the topological
rank since this will play a crucial role in further consideration.

It is easy to see that the topological rank of the sphere can be only 0 and
the Fermi surface consists in this case of the infinite set of the periodically
repeated spheres S2 in R3.
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(a)

(c) (d)

(b)

Fig. 2.7. The Fermi surfaces (a), (b), (c), (d) with topological ranks 0, 1, 2, and
3, respectively

The topological rank of the torus T2 can take three values r = 0, 1, 2.
Indeed, it is easy to see that all three cases of periodically repeated tori T2

in R3 (Rank 0), periodically repeated “warped” integral cylinders (Rank 1),
and the periodically repeated “warped” integral planes (Rank 2) give the
topological two-dimensional tori T2 in T3 after the factorization (see Fig. 2.8).

It is not difficult to prove that these are the only possibilities that we can
have for embedding of the two-dimensional torus T2 in T3. We note here that
the mean direction of the “warped periodic cylinder” (embedding of Rank 1)
can coincide with any reciprocal lattice vector n1a1 +n2a2 +n3a3 in R3. Also
the “directions” of the corresponding “warped planes” (embedding of Rank 2)

(a) (c)(b)

Fig. 2.8. The periodically repeated tori T2, periodically repeated “warped” integral
cylinders, and the periodically repeated “warped” integral planes in R3
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are always generated by two (linearly independent) reciprocal lattice vectors
m

(1)
1 a1+m

(1)
2 a2+m

(1)
3 a3 and m

(2)
1 a1+m

(2)
2 a2+m

(2)
3 a3. We can thus see that

both the embeddings of Rank 1 and Rank 2 of T2 in T3 are characterized by
some integer numbers connected with the reciprocal lattice. Let us also make
one more remark about the surfaces of Ranks 0, 1, and 2 in this case. Namely,
the case r = 2 actually shows one difference from the cases r = 0 and 1, which
is that the plane in R3 is not homologous to 0 in T3 (i.e., it does not restrict
any domain of “lower energies”) after the factorization. We can conclude that
if these planes appear as the connected components of the physical Fermi
surface (which is always homologous to 0), they should always come in pairs,
Π+ and Π−, which are parallel to each other in R3. The factorization of Π+

and Π− gives then the two tori T2
+, T2

− with the opposite homologous classes
in T3.

It can be shown that the topological rank of any Fermi surface of genus
2 cannot exceed 2 also. The example of the corresponding embedding of such
a component with maximal rank is shown in Fig. 2.7c and represents the two
parallel planes connected by cylinders. We will not give the proof of this
theorem here but just mention that this fact plays an important role in the
classification of nonclosed electron trajectories on the Fermi surface of genus
2. Namely, it can be proved that the open trajectories on the Fermi surface
of genus 2 cannot be actually more complicated than the trajectories on the
surface of genus 1. In particular they always have the “topologically regular
form” in the same way as on the Fermi surface of genus 1 (see Sect. 2.2). Also
the same integral characteristics in the cases when this surface has Rank 1 or
2 as in the case of genus 1 can be introduced for genus 2 (actually for any
genus if rank is equal to 1 or 2).

Finally we would like to mention that the topological rank of the compo-
nents with genus g ≥ 3 can take any value r = 0, 1, 2, 3.

Definition 3. We call the open trajectory topologically regular (corresponding
to “topologically integrable” case) if it lies within the straight line of finite
width in Π(B) and passes through it from −∞ to ∞. We call all other open
trajectories chaotic.

Let us now discuss the connection between the geometry of the nonsingular
electron orbits and the topological properties of the Fermi surface. We briefly
consider here the simple cases of Fermi surfaces of Rank 0, 1, and 2 and then
come to our basic case of general Fermi surfaces having the maximal rank
r = 3. We then have the following situations:

(1) The Fermi surface has topological rank 0.
It is easy to note that in this simplest case all the components of the Fermi

surface are compact (Figs. 2.7a, 2.8a) in R3 and there are no open trajectories
at all.

(2) The Fermi surface has topological rank 1.
In this case we can have both open and compact electron trajectories. How-

ever the open trajectories (if they exist) should be quite simple in this case.
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They can arise only if the magnetic field is orthogonal to the mean direction
of one of the components of Rank 1 (periodic cylinder) and are periodic with
the same integer mean direction (Figs. 2.7b, 2.8b). The corresponding sets of
the directions B/B are just the one-dimensional curves and there cannot be
open regions on the unit sphere for which we can find the open trajectories
on the Fermi surface.

(3) The Fermi surface has topological rank 2.
It can be easily seen that this case gives much more possibilities for the

existence of open orbits for different directions of the magnetic field. In par-
ticular, this is the first case where the open orbits can exist for the generic
directions of B. So, in this case we can have the whole regions on the unit
sphere such that the open orbits present for any direction of B belong to the
corresponding region. It is easy to see, however, that the open orbits also have
quite a simple description in this case. Namely, any open orbit (if it exists) lies
in the straight strip of the finite width for any direction of B not orthogonal to
the integral planes given by the components of Rank 2. The boundaries of the
corresponding strips in the planes Π(B) (orthogonal to B) will be given by
the intersection of Π(B) with the pairs of integral planes bounding the corre-
sponding components of Rank 2. It can also be shown [18,19] that every open
orbit passes through the strip from −∞ to +∞ and cannot turn back. We can
then see that all the trajectories are “topologically regular” in this case also.

Based on the remarks given earlier, the contribution to the conductivity
given by every family of orbits with the same mean direction reveals the strong
anisotropy when ωBτ → ∞ and coincides with the main order with formula
(2.3) for the open periodic trajectories.

Trajectories of this type already have all the features of the general topo-
logically integrable situation.

We start now with the most general and complicated case of arbitrary
Fermi surface of topological rank 3.

We first describe a convenient procedure [26, 27] of reconstruction of the
constant energy surface when the direction of B is fixed.

We will assume that the system (2.1) has generically only the nondegene-
rate singularities having the form of the nondegenerate poles or nondegenerate
saddle points. The singular trajectories passing through the critical points
(and the critical points themselves) divide the set of trajectories into different
parts corresponding to different types of trajectories on the Fermi surface. We
are not interested here in the geometry of compact electron trajectories in
the “geometric limit” ωBτ → ∞. It is not difficult to show that the pieces of
the Fermi surface carrying the compact orbits can be either infinite or finite
cylinders in R3 bounded by the singular trajectories (some of them may be just
points of minimum or maximum) at the bottom and at the top (see Fig. 2.9).

Let us now remove all the parts containing the nonsingular compact tra-
jectories from the Fermi surface. The remaining part,

SF/(compact nonsingular trajectories) = ∪j Sj ,
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B

Fig. 2.9. The cylinder of compact trajectories bounded by the singular orbits (the
simplest case of just one critical point on the singular trajectory)

is a union of the two manifolds Sj with boundaries ∂Sj , which are the compact
singular trajectories. The generic type in this case is a separatrix orbit with
just one critical point like in Fig. 2.9.

It is obvious that the open orbit will not be affected at all by the con-
struction described here and the rest of the Fermi surface gives the same
open orbits as all possible intersections with different planes orthogonal
to B.

Definition 4. We call every piece Sj the “Carrier of open trajectories.”

Let us fill in the holes by topological 2D discs lying in the planes orthogonal
to B and get the closed surfaces (see Fig. 2.10)

S̄j = Sj ∪ (2D discs).

This procedure again gives the periodic surface Sε after the reconstruction
and we can define the “compactified carriers of open trajectories” both in R3

and T3.
It is obvious that the reconstructed surface can be used instead of the

original Fermi surface for the determination of open trajectories. Let us ask a
question: can the reconstructed surface be simpler than the original one?

The answer is positive and moreover it can be proved that “generically” the
reconstructed surface consists of components of genus 1 only. This remarkable
fact gives the very powerful instrument for the consideration of open trajec-
tories on the arbitrary Fermi surface.

In fact, the proof of Theorem 1 was based on the statement that the genus
of every compactified carrier of open orbits Sj is equal to 1 in this case.

Let us now formulate the theorem of Dynnikov [20], which made the second
main breakthrough in the Novikov problem.
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2D discs

B

       orbits
Singular closed

Piece consisting of 
     open orbits

Open orbits

Critical points

Fig. 2.10. The reconstructed constant energy surface with removed compact tra-
jectories and the two-dimensional discs attached to the singular trajectories in the
generic case of just one critical point on every singular trajectory

Theorem 2 (Dynnikov [20]). Let a generic dispersion relation

ε(p) : T3 → R

be given such that for level ε(p) = ε0 the genus g of some carrier of open
trajectories Si is greater than 1. Then there exists an open interval (ε1, ε2)
containing ε0 such that for all ε 
= ε0 in this interval the genus of the carrier
of open trajectories is less than g.

Theorem 2 claims that only the “topologically integrable case” can be
stable with respect to the small variations of energy level also.

The formulated theorems permit us to reduce the consideration of open
orbits in any stable situation to the case of the surfaces of genus 1 where the
Fermi surface can have topological rank 0, 1, or 2 only. It is easy to see that the
Rank 0 cannot appear just by definition of the reconstructed surface S̄ε since
it can contain only the compact trajectories. Rank 1 is possible in S̄ε only
for special directions of B. Indeed, the component of Rank 1 has the mean
integral direction in R3 and can contain the open (periodic) trajectories only
if B is orthogonal to this integral vector in p-space. The corresponding open
trajectories are thus not absolutely stable with respect to the small rotations
of B and cannot exist for the open region on the unit sphere.

We can then claim that the only generic situation for Sε is a set of com-
ponents of Rank 2, which are the periodic warped planes in this case. The
corresponding electron trajectories can then belong just to “Topologically
integrable” case being the intersections of planes orthogonal to B with the
periodically deformed planes in the p-space.
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An important property of the compactified components of genus 1 arising
for the generic directions of B is the following: they are all parallel on average
to R3 and do not intersect each other. This property mentioned in [28] and
called later the “topological resonance” plays an important role in the physical
phenomena connected with geometry of open trajectories. In particular, all
the stable topologically regular open trajectories in all planes orthogonal to
B have the same mean direction and give the same form (2.3) of contribution
to conductivity in the appropriate coordinate system common for all of them.
This fact gives the experimental possibility of measuring the mean direction
of noncompact topologically regular orbits both in x and p spaces from the
anisotropy of conductivity tensor σik.

We reiterate that the surface Sε is the abstract construction depending on
the direction of B and does not exist a priori in the Fermi surface SεF . The
important fact, however, is the stability of the surface Sε with respect to the
small rotations of B. This means in particular that the common direction of
the components of Rank 2 is locally stable with respect to the small rotations
of B, which can then be found from the conductivity experiments. From the
physical point of view, all the regions on the unit sphere where the stable open
orbits exist can be represented as the “stability zones” Ωα such that each zone
corresponds to some integral plane Γα common to all the points of stability
zone Ωα. The plane Γα is then the integral plane in reciprocal lattice, which
defines the mean directions of open orbits in p-space for any direction of B
belonging to Ωα just as the intersection with the plane orthogonal to B. As
can be easily seen from the form of (2.3), this direction always coincides with
the unique direction in R3 corresponding to the decrease of conductivity as
ωBτ → ∞.

The corresponding integral planes Γα can then be given by three integer
numbers (n1

α, n2
α, n3

α) (up to the common multiplier) from the equation

n1
α[x]1 + n2

α[x]2 + n3
α[x]3 = 0,

where [x]i are the coordinates on the basis {a1,a2,a3} of the reciprocal lat-
tice, or equivalently

n1
α(x, l1) + n2

α(x, l2) + n3
α(x, l3) = 0,

where {l1, l2, l3} is the basis of the initial lattice in the coordinate space.
We see then that the direction of conductivity decreasing η̂ = (η1, η2, η3)

satisfies the relation

n1
α(η̂, l1) + n2

α(η̂, l2) + n3
α(η̂, l3) = 0

for all the points of stability zone Ωα, which makes possible the experimental
observation of numbers (n1

α, n2
α, n3

α).
The numbers (n1

α, n2
α, n3

α) are called in [28] the “topological quantum num-
bers” of a dispersion relation in metal.

We can now consider the result of [2] about the “thin spatial net” as
a particular case of this general theorem where the integer planes take the
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simplest possibility of being the main planes xy, yz, xz. If we now introduce
the “topological quantum numbers” for this situation, we will have only the
triples (±1, 0, 0), (0,±1, 0), and (0, 0,±1) for this Fermi surface.

In general, we can state that the unit sphere should be divided into (open)
parts where the open orbits are absent on the Fermi level for given directions
of B and “stability zones” Ωα where the open orbits exist on the Fermi level
and have “topologically regular” form. Each stability zone corresponds to
the triple of “topological quantum numbers” giving the integral direction of
periodically deformed two-dimensional planes in S̄εF(B), which are swept by
the zero eigen-vector of σik for B ∈ Ωα.

We now state that the “topologically regular” trajectories are generic open
trajectories, nonetheless they are not ideal for rather complicated Fermi sur-
faces. Namely, for rather complicated Fermi surfaces and the special directions
of B, the chaotic cases can also arise (Tsarev, Dynnikov).

It was first shown by Tsarev [36] that the more complicated chaotic open
orbits can still exist on rather complicated Fermi surfaces SF. An example
of an open trajectory that does not lie in any finite strip of finite width was
constructed. However, the trajectory had in this case the asymptotic direc-
tion of not even being restricted by any straight strip of finite width in the
plane orthogonal to B. The corresponding asymptotic behavior of conductiv-
ity should also reveal the strong anisotropy properties in the plane orthogonal
to B although the exact form of σik will be slightly different from (2.3) for
this type of trajectories. For the same reason, the asymptotic direction of orbit
can be measured experimentally in this case.

The more complicated examples of chaotic open orbits were constructed
in [26] for the Fermi surface having genus 3. These types of open orbits do
not have any asymptotic direction in the planes orthogonal to B and have a
rather complicated form of “walking everywhere” in these planes.

The corresponding contribution to σik is also very different for this kind of
trajectories [37]. In particular, it appears that this contribution becomes 0 in
all the directions including the direction of B for B → ∞. The total conductiv-
ity tensor σik has then only the contribution of compact electron trajectories
in the conductivity along B, which does not disappear when B → ∞. The
corresponding effect can be observed experimentally as the local minima of
the longitudinal (i.e., parallel to B) conductivity for the points of the unit
sphere where this kind of trajectories can appear. A more detailed description
of σik in this case can be found in [37].

Let us add that Dynnikov proved recently that the measure of chaotic cases
on the unit sphere is 0 for generic Fermi surfaces [26, 27]. The systematic
investigation of the open orbits was completed in general after the works
[17, 20, 26, 28] in [27]. In particular the total picture of different types of the
open orbits for generic dispersion relations was presented. Let us formulate
here the main results of [27] in the form of a Theorem.
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Theorem 3 (Dynnikov [27]). Let us fix the dispersion relation ε = ε(p)
and the direction of B of irrationality 3 and consider all the energy levels for
εmin ≤ ε ≤ εmax. Then:

(1) The open electron trajectories exist for all the energy values ε belong-
ing to the closed connected energy interval ε1(B) ≤ ε ≤ ε2(B), which can
degenerate to just one energy level ε1(B) = ε2(B) = ε0(B).

(2) For the case of the nontrivial energy interval the set of compactified
carriers of open trajectories Sε is always a disjoint union of two-dimensional
tori T2 in T3 for all ε1(B) ≤ ε ≤ ε2(B). All the tori T2 for all the energy
levels do not intersect each other and have the same (up to the sign) indivisible
homology class c ∈ H2(T3, Z), c 
= 0. The number of tori T2 is even for
every fixed energy level and the corresponding covering Sε in R3 is a locally
stable family of parallel (“warped”) integral planes Π2

i ⊂ R3 with common
direction given by c. The form of Sε described here is locally stable with the
same homology class c ∈ H2(T3) under small rotations of B. All the open
electron trajectories at all the energy levels lie in the strips of finite width
with the same direction and pass through them. The mean direction of the
trajectories is given by the intersections of planes Π(B) with the integral
family Π2

i for the corresponding “stability zone” on the unit sphere.
(3) The functions ε1(B), ε2(B) defined for the directions of B of irra-

tionality 3 can be continued on the unit sphere S2 as the piecewise smooth
functions such that ε1(B) ≥ ε2(B) everywhere on the unit sphere.

(4) For the case of trivial energy interval ε1 = ε2 = ε0 the corresponding
open trajectories may be chaotic. The carrier of the chaotic open trajectory is
homologous to 0 in H2(T3, Z) and has genus ≥ 3. For the generic energy level
ε = ε0 the corresponding directions of magnetic fields belong to the countable
union of the codimension 1 subsets. Therefore a measure of this set is equal
to 0 on S2.

We give here the results connected with generic directions of B and do
not consider the special cases when B is purely or “partly” rational. The
corresponding effects are actually simpler than formulated earlier and can be
easily added to this general picture. Survey articles [27,29–31] provide all the
details (both from mathematical and physical point of view).

2.3 Quasiperiodic Modulations of 2D Electron Gas
and the Generalized Novikov Problem

In this section we provide a general description about the quasiperiodic mod-
ulations of 2D electron gas and the main topological aspects for the special
class of such structures. Let us first discuss about different modern modulation
techniques and the quasiclassical electron behavior in such systems.
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We first point here the holographic illumination of high-mobility 2D elec-
tron structures (AlGaA–GaAs heterojunctions) at temperatures T ≤ 4.2 K
(see, for example, [38]). In these experiments the expanded laser beam was
split into two parts, which gave an interference picture with the period a on
the 2D sample. The illumination caused the additional ionization of atoms
near the 2D junction, which remained for a rather long period of time after
the illumination. During this relaxation time, the additional periodic poten-
tial V (r) = V (x), V (x) = V (x + a) arose in the plane and the electron
behavior was determined by the orthogonal magnetic field B and the poten-
tial V (x).

The quasiclassical consideration for the case |V (x)| 	 εF was first consid-
ered by Beenakker [33] for the explanation of “commensurability oscillations”
in such structures found in [38]. According to this approach the quasiclassical
electrons near the Fermi level move around the cyclotron orbits in the mag-
netic field and drift due to potential V (x) in the plane. Since only the electrons
near Fermi level εF play the main role in conductivity, we can introduce the
characteristic cyclotron radius rB = m∗vF/eB for the Fermi velocity vF. The
corresponding drift of the electron orbits near the Fermi level will then be
determined by the averaged effective potential V eff

B (x) given by the averaging
of V (r) = V (x) over the cyclotron orbit with radius rB centered at the point
r (Fig. 2.11).

The potential V eff
B (x) is different from V (x) but has the same symmetry

and also depends only on x. The drift of the cyclotron orbits is along the
level curves of V eff

B (x), which are very simple in this case (just the straight
lines along the y-axis) and the corresponding velocity vdrift is proportional
to the absolute value of gradient |V eff

B (x)| at each level curve. The analytic
dependence of |V eff

B (x)| on the value of B (based on the commensurability of
2rB with the (integer number)× a) was used in [33] for the explanation of the
oscillations of conductivity along the fringes with the value of B.

rBr
V(x)

B

Fig. 2.11. The averaging of the the potential V (x) over the cyclotron orbit with
radius rB centered at the point r
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In article [34] the situation with the double-modulated potentials made
by the superposition of two interference pictures was also considered. The
corresponding potential V (r) is double periodic in R2 in this case and the same
is true for potentials V eff

B (r). The consideration used the same quasiclassical
approach for the potential V eff

B (r) based on the analysis of its level curves.
It was then shown in [34] that the second modulation should suppress the
commensurability oscillations in this case, which disappear completely for the
equal intensities of two (orthogonal) interference pictures.

It is also obvious that all the open drift trajectories can be only periodic
in the case of periodic V eff

B (r).
It seems that the situation with the quasiperiodic modulations of 2D elec-

tron gas did not appear in experiments. However, we think that this situation
is also very natural for the technique described earlier and can be considered
from the point of view of the generalized Novikov problem. The correspond-
ing approach was developed in [35] for the special cases of superpositions of
several (three and four) interference pictures on the plane. Nonetheless, as we
already mentioned, the Novikov problem also arises actually for any picture
given by superposition of several periodic pictures in the plane. The corre-
sponding potentials can have many quasiperiods in this case and the Novikov
problem can then reveal much more complicated (chaotic) properties than
described in [35].

We next describe here just the main points of “topologically regular” be-
havior in the case of the superpositions of three and four interference pictures,
which give the quasiperiodic potentials V (r) and V eff

B (r) with three and four
quasiperiods on the plane. Unlike the previous works we do not pay much at-
tention to the analytic dependence on B and investigate mainly the geometric
properties of conductivity in this situation.

Before we start the geometric consideration, we wish to also state that the
holographic illumination is not a unique way of producing the superlattice
potentials for the two-dimensional electron gas. Let us mention here the works
[39–49] where the different techniques using the biasing of the specially made
metallic gates and the piezoelectric effect were considered. Both 1D and 2D
modulated potentials as well as more general periodic potentials with square
and hexagonal geometry appeared in this situation. Actually these techniques
give much more possibilities to produce the potentials of different types with
the quasiperiodic properties.

Let us now have three independent interference pictures on the plane with
three different generic directions of fringes η1, η2, η3 and periods a1, a2, a3 (see
Fig. 2.12).

The total intensity I(r) will be the sum of intensities

I(r) = I1(r) + I2(r) + I3(r)

of the independent interference pictures.
We assume that there are at least two noncoinciding directions (say η1, η2)

among the set (η1, η2, η3).
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Fig. 2.12. The schematic sketch of the three independent interference pictures on
the plane with different periods and intensities

It can be shown that the potentials V (r) and V eff
B (r) can be represented

in this situation as the quasiperiodic functions with three quasiperiods in the
plane.

Let us now introduce the important definition of the “quasiperiodic group”
acting on the potentials described earlier.

Definition 5. Let us fix the directions η1, η2, η3 and periods a1, a2, a3 of the
interference fringes in Fig. 2.12 and consider all independent parallel shifts of
positions of different interference pictures in R2. All the potentials V ′(r) (and
the corresponding V eff ′

B (r)) made in this way are related by the transforma-
tions of a quasiperiodic group.

According to the definition the quasiperiodic group is a three-parametric
Abelian group isomorphic to the three-dimensional torus T3 due to the peri-
odicity of every interference picture.4

We state that potential V (r) is generic if it has no periods in R2, is periodic
if it has two linearly independent periods in R2, and is “partly periodic” if it
has just one (up to the integer multiplier) period in R2.

It can also be shown that the quasiperiodic group does not change the
“periodicity” of potentials V (r), V eff

B (r).
The results for the Novikov problem can also be applied in this situation.

We formulate here the main results for the generic potentials V (r) (the special
additional features can be found in [35]). Let us formulate here the theorem
from [35] about the drift trajectories for the generic potentials of this kind
based on the topological theorems for Novikov problem in 3-dimensional case
(formulated earlier).

4 It is obvious that the quasiperiodic group contains the ordinary translations as
the algebraic subgroup.
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Theorem 4 [35]. Let us fix the value of B and consider the generic quasi-
periodic potential V eff

B (r) made by three interference pictures and taking the
values in some interval εmin(B) ≤ V eff

B (r) ≤ εmax(B). Then:
(1) Open quasiclassical trajectories V eff

B (r) = c always exist either in the
connected energy interval

ε1(B) ≤ c ≤ ε2(B)

(εmin(B) < ε1(B) < ε2(B) < εmax(B)) or just at one energy value c = ε0(B).
(2) For the case of the finite interval (ε1(B) < ε2(B)) all the nonsingular

open trajectories correspond to topologically regular case, i.e., lie in the straight
strips of the finite width and pass through them. All the strips have the same
mean directions for all the energy levels c ∈ [ε1(B), ε2(B)] such that all the
open trajectories are on average parallel to each other for all values of c.

(3) The values ε1(B), ε2(B), or ε0(B) are the same for all the generic
potentials connected by the “quasiperiodic group.”

(4) For the case of the finite energy interval (ε1(B) < ε2(B)) all the non-
singular open trajectories also have the same mean direction for all the generic
potentials connected by the “quasiperiodic group” transformations.

We again see that the “topologically regular” open trajectories are also
generic for this situation as seen earlier.

Let us now consider the asymptotic behavior of conductivity tensor when
τ → ∞ (mean free electron motion time). We consider here only the “topo-
logically regular” case. Let us point out that the full conductivity tensor can
be represented as the sum of two terms

σik
0 (B) = σik

0 (B) + ∆σik(B).

In the approximation of the drifting cyclotron orbits, the parts σik
0 (B) and

∆σik(B) can be interpreted as caused by the (infinitesimally small) difference
in the electron distribution function on the same cyclotron orbit (weak angular
dependence) and the (infinitesimally small) difference in the occupation of
different trajectories by the centers of cyclotron orbits at different points of
R2 (on the same energy level) as the linear response to the (infinitesimally)
small external field E, respectively.

The first part σik
0 (B) has the standard asymptotic form:

σik
0 (B) ∼ ne2τ

meff

(
(ωBτ)−2 (ωBτ)−1

(ωBτ)−1 (ωBτ)−2

)
for ωBτ � 1 due to the weak angular dependence (∼ 1/ωBτ) of the distribu-
tion function on the same cyclotron orbit. We then have that the correspond-
ing longitudinal conductivity decreases for τ → ∞ in all the directions in R2

and the corresponding condition is just ωBτ � 1 in this case.
For the part ∆σik(B) the limit τ → ∞ should, however, be considered

as the condition that every trajectory is passed for a rather long time by the



54 A.Ya. Maltsev and S.P. Novikov

drifting cyclotron orbits to reveal its global geometry. Thus another parameter
τ/τ0, where τ0 is the characteristic time of completion of close trajectories,
should be used in this case and we should put the condition τ/τ0 � 1 to have
the asymptotic regime for ∆σik(B). In this situation the difference between
the open and closed trajectories plays the main role, and the asymptotic
behavior of conductivity can be calculated in the form analogous to that used
in [1–3] for the case of normal metals. That is:

∆σik(B) ∼ ne2τ

meff

(
(τ0/τ)2 τ0/τ
τ0/τ (τ0/τ)2

)
in the case of closed trajectories and

∆σik(B) ∼ ne2τ

meff

(
∗ τ0/τ

τ0/τ (τ0/τ)2

)
(∗ ∼ 1) for the case of open topologically regular trajectories if the x-axis
coincides with the mean direction of trajectories.

The condition τ/τ0 � 1 is much stronger than ωBτ � 1 in the situation
described here according to the definition of the slow drift of the cyclotron
orbits. We can keep then just this condition in our further considerations and
assume that the main part of conductivity is given by ∆σik(B) in this limit.
It is also obvious that the magnetic field B should not be “very strong” in
this case.

Based on these remarks, we can now write the main part of the conduc-
tivity tensor σik(B) in the limit τ → ∞ for the case of topologically regular
open orbits. Let us take the x-axis along the mean direction of open orbits
and the y-axis orthogonal to x. The asymptotic form of σik, i, k = 1, 2 can
then be written as:

σik ∼ ne2τ

meff

(
∗ τ0/τ

τ0/τ (τ0/τ)2

)
, τ0/τ → 0, (2.4)

where ∗ is some value of the order of 1 (constant as τ0/τ → 0).
The asymptotic form of σik makes possible the experimental observation

of the mean direction of topologically regular open trajectories if the value
τ/τ0 is rather big.

Let us now introduce the “topological numbers” characterizing the regular
open trajectories analogous to those introduced in [28] for the case of normal
metals. We will first give the topological definition of these numbers using the
action of the “quasiperiodic group” on the quasiperiodic potentials [35].

We assume that we have the “topologically integrable” situation where
the topologically regular open trajectories exist in some finite energy interval
ε1(B) ≤ c ≤ ε2(B). According to Theorem 4 the values ε1(B), ε2(B) and
the mean directions of open trajectories are the same for all the potentials
constructed from our potential with the aid of the “quasiperiodic group.”
It also follows from the topological picture that all the topologically regular
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trajectories are absolutely stable under the action of the “quasiperiodic group”
for the generic V eff ′

B (r) and can just “crawl” in the plane for the continuous
action of such transformations.

We take the first interference picture (η1, a1) and shift continuously the
interference fringes in the direction orthogonal to η1 to the distance a1 keeping
two other pictures unchanged. At the end we will have the same potentials
V (x, y) and V eff

B (x, y) due to the periodicity of the first interference picture
with period a1. Let us fix now some energy level c ∈ (ε1(B), ε2(B)) and look at
the evolution of nonsingular open trajectories (for V eff

B (x, y)) while making our
transformation. We know that we should have the parallel open trajectories
in the plane each time and the initial picture should coincide with the final
according to the construction. The form of trajectories can change during the
process but their mean direction will be the same according to Theorem 4
(“topological resonance”).

We can then claim that every open trajectory will be “shifted” to another
open trajectory of the same picture by our continuous transformation. It is
not difficult to prove that all the trajectories will then be shifted by the same
number of positions n1 (positive or negative), which depends on the potential
V eff

B (x, y) (Fig. 2.13).
The number n1 is always even since all the trajectories appear by pairs

with the opposite drift directions.
Let us now do the same with the second and the third sets of the inter-

ference fringes and get an integer triple (n1, n2, n3), which is a topological
characteristic of potential V eff

B (x, y) (the “positive” direction of the numera-
tion of trajectories should be the same for all these transformations).

The triple (n1, n2, n3) can be represented as:

(n1, n2, n3) = M (m1,m2,m3),

where M ∈ Z and (m1,m2,m3) is the indivisible integer triple.

n1

n1

n1

n1

-

-

-

-
-

-

-
-

+ +

+

+
+

+

Fig. 2.13. The shift of “topologically regular” trajectories by a continuous trans-
formation generated by the special path in the “quasiperiodic group”
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Fig. 2.14. The functions X(r), Y (r), and Z(r) on the plane

The numbers (m1,m2,m3) (defined up to the common sign) play now
the role of “topological numbers” for this situation. For direct experimental
observation of these numbers, the connection between these numbers and
the mean direction of the “topologically regular” trajectories can play an
important role. This connection is described as follows.

Let us draw three straight lines q1, q2, q3 with the directions η1, η2, η3

(Fig. 2.12) and choose the “positive” and “negative” half-planes for every line
qi on the plane. Let us now consider three linear functions X(r), Y (r), Z(r)
on the plane that are the distances from the point r to the lines q1, q2, q3 with
the signs “+” or “−” depending on the half-plane for the corresponding line
qi (Fig. 2.14). Let us choose here the signs “+” or “−” such that the gradients
of X(r), Y (r), Z(r) coincide with directions of shifts of the corresponding
interference pictures in the definition of (m1,m2,m3).

Theorem 5 [35]. Consider the functions

X ′(r) = X(r)/a1, Y ′(r) = Y (r)/a2, Z ′(r) = Z(r)/a3

in R2. The mean direction of the regular open trajectories is given by the linear
equation:

m1X
′(x, y) + m2Y

′(x, y) + m3Z
′(x, y) = 0, (2.5)

where (m1,m2,m3) is the indivisible integer triple introduced earlier.

Let us now describe the situation with four independent sets of interference
fringes in the plane (see also [35]). In general we get here the quasiperiodic
potentials V (r), V eff

B (r) with four quasiperiods. The situation in this case is
more complicated than in the case N = 3 and no general classification of
open trajectories exists at the time. At the moment only the theorem anal-
ogous to Zorich result can be formulated in this situation [32]. According to
the Novikov theorem we can claim that the “small perturbations” of purely
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periodic potentials having four quasiperiods have the “topologically regular”
level curves like in the previous case.

The purely periodic potentials V (r) give the same dense set in the space
of parameters η1, η2, η3, η4, a1, a2, a3, a4 and can be found in any small open
region of this space. The Novikov theorem claims then that every potential
of this kind can be surrounded by the “small open ball” in the space of pa-
rameters η1, η2, η3, η4, a1, a2, a3, a4 where the open level curves will always
demonstrate the “topologically regular” behavior. The set of potentials thus
obtained has finite measure among all potentials and the “topologically reg-
ular” open trajectories can be found with finite probability also in this case.
However, we do not claim here that the chaotic behavior has measure 0 for
four quasiperiods and moreover we also expect the nonzero probability for the
chaotic trajectories in this more complicated case.

The topologically regular cases demonstrate here the same “regularity
properties” as in the previous case including the “Topological numbers.” Thus,
we can introduce in the same way the action of the quasiperiodic group on the
space of potentials with four quasiperiods and define in the same way the four
tuples (m1,m2,m3,m4) of integer numbers characterizing the topologically
regular cases in this situation.

Also, the analogous theorem about mean directions of the regular trajec-
tories can be formulated in this case. Namely, if we introduce the functions
X(r), Y (r), Z(r), W (r) in the same way as for the case of three quasiperiods
(above) and the corresponding functions

X ′(r) = X(r)/a1, . . . ,W ′(r) = W (r)/a4,

we can write the equation for the mean direction of open trajectories on the
plane in the form:

m1X
′(r) + m2Y

′(r) + m3Z
′(r) + m4W

′(r) = 0.

The numbers (m1,m2,m3,m4) are stable with respect to the small vari-
ations of η1, η2, η3, η4, a1, a2, a3, a4 (and the intensities of the interference
pictures I1, I2, I3, I4) and correspond again to some “stability zones” in this
space of parameters.

A brief mention is now made about the limit of Novikov problem for large
values of N . The following problem can be formulated as:

Give a description of global geometry of the open level curves of quasiperi-
odic function V (r) in the limit of large numbers of quasiperiods.

We can claim that the open level curves should exist here also in the con-
nected energy interval [ε1, ε2] on the energy scale, which can degenerate just
to one point ε0.5 We expect that the “topologically regular” open trajecto-
ries can also exist in this case. However the probability of “chaotic behavior”
should increase for the cases of large N , which is closer now to random po-
tential situation. The corresponding behavior can be considered then as the
5 The proof given in [24] for the case of 3 quasiperiods works actually for any N .
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“percolation problem” in special models of random potentials given by quasi-
periodic approximations. Certainly, this model can be quite different from the
others. Nevertheless, we expect a similar behavior of the chaotic trajectories
for rather big N also in this rather special model. This area, however, is still
under investigation.
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3

The Role of Topology in Growth
and Agglomeration

R. Kerner

Summary. We describe several models of growth of atomic structures, mostly by
agglomeration from gas or from liquid. In many physical situations, like the forma-
tion of fullerenes, carbon nanotubes and onions, as well as in growth of quasicrystals
or glass formation, a very important role is played by topology of local configura-
tions. This chapter shows how some physical properties of certain forms of condensed
matter can be derived from simple topological and geometrical considerations con-
cerning the structure of local configuration space of atoms and molecules.

3.1 Introduction

The role of topology in physics of condensed matter has been steadily growing
since the second half of the twentieth century. It is often essential in the
analysis of geometrical structures, which enables us to derive subsequently
many physical properties of various systems. Like in classical problems of
mechanics, the analysis is divided into two fundamental parts: first kinematics,
which defines the space of possible nonredundant motions of the system under
investigation, second dynamics, which defines the relationships between the
forces and the motions they provoke. In the case of crystalline lattices, the
task is greatly simplified, because the kinematical part is largely constrained:
once the lattice structure is settled, each atom has a well-defined phase space
in which it can move, and its motions can be described by harmonic (or
anharmonic) oscillator regime. Also the number of closest and next-to-the
closest neighbors is strictly the same for the same atoms (it may vary from
one kind of atom to another in many-component lattices, but the complication
is not very great). This enables one to analyze mutual forces and interactions
between the neighbors, and many excellent models, with the Ising model and
its derivatives as best examples, have been constructed and have brought a
very good understanding of various physical phenomena in solids.

The situation is radically different in amorphous solids and glasses. Here
the number of neighbors is never well defined – only the averages can be taken
as reliable parameters, whereas local situations of single atoms represent an



62 R. Kerner

infinitely rich variety. Moreover, in order to foresee the local configuration that
will represent (a local) free energy minimum, we must know an approximate
expression for free energy there; but in order to define it, we should know with
how many neighbors the given atom interacts, thus making the whole problem
hopelessly intricate. The situation has some similarity to general relativity, in
which the behavior of matter defines the geometry of the space time, but in
order to describe the behavior of matter correctly (i.e., in order to solve the
equations of motion), one has to know first what is the underlying geometry
of space time. It is well known that except for very special cases, one can
get only approximate solutions, starting from simplified situations in which
one imposes the geometry first, then solves the (approximate) equations of
motion, then modifies the geometry solving Einstein field equations with the
matter source behavior obtained in previous stage, and so on.

As in any situation when a direct solution is not at hand, we must content
ourselves with some sort of approximations. In the case of amorphous networks
this means that we should abandon the exact description in terms of well-
defined positions of individual atoms, introducing statistical description in
terms of average values of the most important data characterizing typical
local situations in which atoms can be found. The probabilities of finding
particular short-range and medium-range configurations should depend on
the energy stored in bonds and atoms involved, and also on the temperature
in which the growth is occurs, through corresponding Boltzmann factors.

In this chapter we present several examples of this approach, leading to
fairly good physical predictions concerning fullerenes and structural glasses.
We start by recalling simple and powerful topological laws ruling two-
dimensional networks. Euler’s theorem which relates between them the num-
bers of summits, edges, and faces in convex polyhedra, provides a very strong
constraint on any networks, in the plane, or on a sphere. The connection with
local curvature gives a hint of the energy barriers resulting from purely topo-
logical properties of local configurations in networks. Applying these simple
ideas, and generalizing them to three-dimensional cases, we are able to set
forth several models of stochastic agglomeration and growth of random or
self-organized networks leading to fairly good physical predictions concern-
ing, among others, fullerenes and structural glasses.

3.2 Topology and Geometry of Polygon Tilings
and Networks

Among all possible tilings of the Euclidean plane, we consider only the very
simple case of three-coordinate networks with constant edge length. These
tilings are formed exclusively of equilateral polygons; at each vertex, three
polygons meet. It results from Euler’s formula that the average number of
sides of a polygon it this network must be equal to 6:

1
〈Nc〉

+
1

〈Nf 〉
=

1
2
. (3.1)
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This simple and important result is derived as a limiting case of Euler’s for-
mula relating the number of summits, edges, and faces of any convex polyhe-
dron topologically equivalent to a sphere:

S − E + F = 2, (3.2)

where S is the number of summits, E the number of edges, and F the number
of faces. The right-hand side of this equation is called Euler’s characteristic
of a sphere. The same number for a torus is 0, and for a “pretzel” with two
holes, it would be −2.

The proof of Euler’s formula is well known and based on induction. More
complicated polyhedra can always be produced from simpler ones by per-
forming several elementary operations, like slicing one of the summits, thus
creating a new face and new edges and summits, or adding a new summit or
an edge by dividing one of the faces into two. In each of these cases the result
of formula (3.2) remains exactly the same. For example, if we divide one of
the faces into two, joining with a straight line (new edge) two of its summits,
then the number of summits remains unchanged (S → S, the number of edges
E grows by 1, but so does the number of faces F , and S − E + F remains
constant). If we slice one of the summits at which M edges meet, we create a
new face with M new summits (so the number of summits grows by M − 1,
because the original one has disappeared), and the number of faces has grown
by 1; finally, the number of edges has grown by M , all the M edges of the
newly created face. Again, the expression S − E + F remains equal to 2, as
before.

In general, a two-dimensional sphere can be approached by a polyhedron
inscribed in it, containing a certain number of k-sided faces Fk, with k =
3, 4, ...Nmax

f , (Nmax
f denoting the faces (polygons) of maximal number of sides;

in common cases Nmax
f is rarely higher than 8); with Sm the number of m-

coordinate summits (vertices), also with m = 3, 4, ...Nmax
c . The total number

of faces F and the total number of summits S is given by

F =
Nmax

f∑
k=3

Fk , S =
Nmax

c∑
m=3

Sm. (3.3)

Let us define the average coordinate number and the average coordination
number as follows:

〈Nf 〉 =
1
F

Nmax
f∑

k=3

k Fk , 〈Nc〉 =
1
S

Nmax
c∑

m=3

mSm. (3.4)

The number of edges can be computed in two different ways: either we
count m times all the m-coordinate summits (vertices),

∑
Sm, and each edge

will be counted twice, because it always belongs simultaneously to two sum-
mits; or we can count k times all the k-sided faces, and again, each edge will
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be counted twice, because it is always shared by two adjacent faces. Therefore
we get:

2E =
∑

kFk =
∑

mSm (3.5)

and we can write
F 〈Nf 〉 = S 〈Nc〉 = 2E. (3.6)

This relation enables us to express Euler’s formula in terms of only one vari-
able, say F , substituting

S =
〈Nf 〉
〈Nc〉

F , E =
1
2
〈Nf 〉F,

thus obtaining

S − E + F =
[ 〈Nf 〉
〈Nc〉

− 1
2
〈Nf 〉 + 1

]
F = X, (3.7)

where X is the Euler–Poincaré characteristic determining the topology of the
underlying surface, 2 for a sphere, 0 for a torus, −2 for a “pretzel” with two
holes, etc.; in general, X = 2 − h, with h equal to the number of holes. A
more symmetric form of formula (3.7) can be obtained dividing its both sides
by 〈Nf 〉F :

1
〈Nc〉

+
1

〈Nf 〉
=

1
2

+
X

〈Nf 〉F
(3.8)

or, by virtue of the identity (3.6),

1
〈Nf 〉

+
1

〈Nc〉
=

1
2

+
X

〈Nc〉S
. (3.9)

We have changed the order of the right-hand side expression on purpose: now
it is clear that both formulae prove the existence of duality between the faces
(F ) and summits (S). Any solution of (3.8) generates a solution of (3.9) by
interchanging the numbers F and S, and correspondingly, 〈Nf 〉 with 〈Nc〉.
The two corresponding solutions are called dual tilings of the sphere. In the
case of homogeneous tilings, with all summits, edges, and faces identical, one
can replace the averages by exact numbers, which become all integers. The
solutions have been known since antiquity and are called platonic regular
polyhedra (Fig. 3.1). These are the following integer solutions of (3.8) (with
X = 2):

1
Nc

+
1

Nf
=

1
2

+
2

Nf F
(3.10)

Nc = 3, Nf = 3, F = 4 the tetrahedron,

Nc = 3, Nf = 4, F = 6 the cube,



3 The Role of Topology in Growth and Agglomeration 65

Hexahedron

Dodecahedron

IcosahedronOctahedron

Tetrahedron

Fig. 3.1. The five Platonic polyhedra

Nc = 4, Nf = 3, F = 8 the octahedron,

Nc = 3, Nf = 5, F = 12 the dodecahedron,

Nc = 5, Nf = 3, F = 20 the icosahedron.

According to this definition, the cube and the octahedron are dual to each
other, as is the dodecahedron with the icosahedron; the tetrahedron is dual to
itself. Of course, by admitting more than one kind of faces and more than one
kind of summits (vortices), one can create infinitely many convex polyhedra,
respecting Euler’s formula [1].

A similar homogeneous tiling of a torus with regular identical polygons
should verify relation (3.10) with X = 0. Here are the only three possible
solutions:

Nc = 3, Nf = 6, three-coordinate hexagonal lattice,

Nc = 6, Nf = 3, six-coordinate triangular lattice,

Nc = 4, Nf = 4, four-coordinate square lattice.

It is worthwhile to note at this point that when the number of faces be-
comes very large, i.e., when F → ∞, be it on a sphere or on another surface
with more complicated topology, formula (3.10) will lead to the same solution
as for the torus, because the last term on the right-hand side becomes neg-
ligible. Therefore the homogeneous regular tilings of the torus are the same
as those of any manifold topologically equivalent with the Euclidean plane.
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On the torus, the number of faces F does not appear in the formula, and is
therefore arbitrary; on the Euclidean plane F is simply infinite.

This result is of a purely topological character; however, it also remains
valid for metric (Euclidean) geometry. The important corollary to the last
result can be drawn from the assumption that all polygons are equilateral
and equiangular. Then we see that the only infinite homogeneous tilings of
the plane must be composed of perfect squares, triangles, or hexagons, and
all are three coordinate. By the same token we prove another important re-
sult, namely that the only angles that can be found in crystalline lattices are
60o, 90o , and 120o. What is amazing is that this result remains valid also
in three dimensions, although there is a new free parameter, the number of
faces meeting at one edge (which in two dimensions is fixed and always equal
to 2) [2].

Combining topology with simple properties of Euclidean geometry enables
one to find all possible homogeneous plane tilings made of perfect (i.e., equi-
lateral and equiangular) polygons. A network is called homogeneous if all its
vertices are identical; but now different equilateral polygons may meet at each
of the vertices [3].

Let us start with three-coordinate lattices. At each vertex, three perfect
polygons meet; if their number of sides is k1, k2 , and k3, the sum of their re-
spective angles must be equal to 2π. The angles being that of perfect polygons,
this condition leads to the equation

(k1 − 2) π
k1

+
(k2 − 2) π

k2
+

(k3 − 2) π
k3

= 2 π. (3.11)

This equation has only four solutions in integers k1, k2, k3:

(6, 6, 6), (4, 8, 8), (3, 12, 12), (4, 6, 12).

Similarly, one can easily find that there exist only four homogeneous perfect
polygon tilings with coordination number Nc = 4. They satisfy the condition

(k1 − 2) π
k1

+
(k2 − 2) π

k2
+

(k3 − 2) π
k3

+
(k4 − 2)

k4
= 2 π. (3.12)

The corresponding tilings are displayed in Fig. 3.2. It is remarkable that de-
spite the variety of polygon types and their relative display, the overall symme-
try of resulting lattices always falls into the well-known crystalline symmetries:
cubic, hexagonal, or rhombohedric.

The validity of Euler’s formula for the plane (3.1) can also be checked
by another method—introducing a very useful concept of relative frequencies
of polygons of a given number of sides. Consider an arbitrary planar net-
work formed with polygons of various types, not necessarily equiangular (in
fact, they may also be nonequilateral). Let Nmax

f be the maximal number of
faces in polygons encountered in the network, and let Pk denote the relative



3 The Role of Topology in Growth and Agglomeration 67

(a) (b)

(d)(c)

Fig. 3.2. Four three-coordinate homogeneous perfect planar tilings

frequency of occurence of k-sided polygons in the network. By definition,

Nmax
f∑

k=3

Pk = 1. (3.13)

With the variables Pk denoting the probabilities of finding a k-sided polygon
among all the polygons in the network, the normalization condition (3.13)
leaves only Nmax

f −1 independent variables. In infinite planar networks, these
are still subjected to another constraint resulting from Euler’s formula:

Nmax
f∑

k=3

k Pk = 1 = 〈Nf 〉 =
2 〈Nc〉

〈Nc〉 − 2
, (3.14)

which is just another form of relationship (3.1). Looking at Figs. 3.3 and 3.4,
we can easily compute the probabilities and check formula (3.14), in which
〈Nc〉 can be replaced by Nc because we consider homogeneous tilings. The
case of pure hexagonal lattice is obvious, because 〈Nf 〉 = Nf = 6, P6 = 1 ,
Nc = 3, and the formula is obviously satisfied. For more complicated networks,
we have for the three-coordinate polygon tiling (4, 8, 8), P4 = 1

2 and P8 = 1
2 ;

again, 〈Nf 〉 = 4P4 + 8P8 = 4
2 + 8

2 = 6. For the tiling with vertices (4, 6, 12)
we have P4 = 1

2 , P6 = 1
3 , and P12 = 1

6 ; again, as it easy to check 〈Nf 〉 = 6.
If a three-coordinate lattice on a plane is formed exclusively with three

types of polygons—pentagons, hexagons, and heptagons—then the statistics
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of these polygons obeys one simple rule, which states that P5 = P7, whereas
P6 remains as the only free parameter. The proof is obvious: as we know, in
an infinite planar lattice, when Nc = 3, we must have 〈Nf 〉 = 6. In the case
considered here, this means that

5P5 + 6P6 + 7P7 = 6. (3.15)

But here P6 = 1 − P5 − P7, which after substitution leads directly to P7 −
P5 = 0.

One can arrive at the same conclusion in a more qualitative manner. We
already know that a three-coordinate lattice formed exclusively by perfect
hexagons is an admissible infinite tiling of Euclidean plane. A pentagon or
a heptagon may be inserted in such a lattice, with their angles departing
from the perfect ones (and with a slight deformation of angles of the adjacent
hexagons). The sum of the angles in a pentagon is equal to 3π = 540o, and
divided by 5 gives the average of 3π

5 = 108o, the angle of perfect pentagon. This
is 12o less than the 120o of a perfect hexagon. When found in a common vertex
in which three polygons of the network meet, it creates an angular deficit of
12o, which can be geometrically interpreted as local positive curvature. Of
course on a plane it is impossible, and the angles cannot keep their “perfect”
values—the polygons have to adapt themselves in order to make the sum of
three angles be equal to 2π. In a heptagon, the sum of the angles is equal to
5π = 900o, thus creating an angular excess at each of the seven angles equal
to 7π

5 − 2π
3 , equivalent with creating negative local curvature in a vertex where

a heptagon meets two hexagons. Each heptagon contributes to seven vertices,
whereas each pentagon is shared by five vertices. It is easy to see that the sums
of local angular excesses and angular deficits created by these two polygons
mutually cancel themselves:

7 ×
(

5π
7

− 4π
6

)
+ 5 ×

(
3π
5

− 4π
6

)
= 0. (3.16)

It can be said that inserting an equal amount of pentagons and heptagons
into a regular hexagonal lattice, which can also be viewed as creating local
defects in a perfect tiling, does not alter globally the “flat” topology of the
plane. This means that a plane can be covered not only by hexagons form-
ing a well-known regular pattern, but also with pentagons and heptagons,
provided that their numbers are strictly equal. It can be done in an ordered
manner, thus creating one of the admitted crystalline symmetries, or in a
chaotic way, leading to an amorphous (aperiodic) structure, like shown in
Fig. 3.3.

In what follows, we use these topological and geometrical effects in a model
describing actual growth and formation of real atomic structures.
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(a) (b)

(c)

Fig. 3.3. Three possible planar lattices made of five-sided and seven-sided equilat-
eral polygons: (a) and (b) display crystalline symmetry, (c) is a random lattice.

3.3 Dynamical Model of Polygon Agglomeration
in Two Dimensions

An important category of crystalline or amorphous atomic structures have a
pronounced one-dimensional or two-dimensional character. Physical proper-
ties of many polymers and liquid crystals (especially the so-called nematics)
can be explained successfully with the well-known one-dimensional models, of
which the Ising model is most celebrated. Two-dimensional structures are also
common in many physical systems, in particular in high-temperature supra-
conductivity. Monoatomic and monomolecular layers play a growing role in
modern technology. They are often obtained by special growth and agglomer-
ation techniques, and the knowledge of the geometry of local configurations as
well as the energy landscape resulting from the interactions between the clos-
est and next-to-closest neighbors is essential for understanding the resulting
structures [4].

The effects certain combinations of polygons provoke by creating local cur-
vature, positive or negative, must have an important influence on the energy
stored in the network. One may express the same idea by stating that cre-
ating local curvature must cost some extra effort as compared with totally
flat lattice tiling a plane. The energy costs would be different, of course, if
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the support on which the network is created were no more flat: then it might
happen that a locally curved two-dimensional network is better adapted and
costs less energy than a flat one.

Let us consider the simplest case in two dimensions, with a three-coordinate
network consisting exclusively of five-sided, six-sided, and seven-sided equilat-
eral polygons. As we know, on the Euclidean plane tri-coordinate and purely
hexagonal lattice displays perfect translational symmetry and can be extended
to infinity. In contrast, pentagons and heptagons found in such a lattice rep-
resent local defects; it is therefore logical to assume that their presence in the
otherwise hexagonal lattice creates local stress equivalent to certain energy
cost. Whatever its value, we know that in order to be able to produce an
infinite tiling of a plane, the total number of pentagons must be equal to that
of heptagons.

Now, if someone wishes to produce a tiling of the plane using completely at
random these three types of equilateral polygons, the numbers of pentagons
and heptagons would asymptotically tend to the same limit, with certain
(arbitrary) amount of hexagons, the only relevant global characterization of
this random network. However, if one wishes to analyze the network in more
detail, one should look for correlations between the closest polygons. As can
be easily seen in Fig. 3.3, with the same global probabilities P5 = P7 = 1

2 one
can produce quite different results. The difference can be immediately felt if
one considers the statistics of doublets, i.e., pairs of edge-sharing polygons.
One finds easily that in the lattice (a) one has P55 = 8.33%, P57 = 66%, 67%,
and P77 = 25%, whereas in the lattice (b) one has P55 = 25%, P57 = 45%,
and P77 = 30% . Of course, in this particular example there are no doublets
containing a hexagon, because here P6 = 0. In a completely random lattice
the six probabilities of doublets would behave as the corresponding binomial
distribution:

(P5 + P6 + P7)2 = (P 2
5 + 2P5P6 + 2P5P7 + P 2

6 + 2P6P7 + P 2
7 ) = 1, (3.17)

which can be interpreted as a doublet frequency distribution:

P55 = P 2
5 , P56 = 2P5P6, P57 = 2P5P7,

P66 = P 2
6 , P67 = 2P6P7, P77 = P 2

7 . (3.18)

By construction, these probabilities are normalized to 1.
But if the real energy barriers exist for creation of such pairs, they will

alter this ideally random distribution of doublets. Let us evaluate such a
distribution, assuming that a real network is produced at finite temperature
T. Following [5], let us consider the simplest linear approximation, in which the
energy cost of creating a defect is the same for a pentagon as for a heptagon,
denoted by ∆E in standard units kT , where k is Boltzmann’s constant and
T the absolute temperature in K (kelvin). We also assume that these energies
add up following the curvature effect created by two neighboring defects. This
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means that two edge-sharing pentagons must cost the energy 2∆E, two edge-
sharing heptagons also cost 2∆E, but a pentagon sharing an edge with a
heptagon cancels its curvatures, and the corresponding energy is roughly the
same as for two hexagons, i.e., 0 as compared with the “ideal” hexagonal
lattice, as for any two edge-sharing hexagons.

If a random three-coordinate network is created by agglomeration at given
constant temperature T , the probability distribution of five-sided, six-sided
and seven-sided polygons will be affected by the energy barriers related to
the local curvature effect they produce. Let us suppose that the probability
of creation of a single polygon of given type is determined by chemical com-
position, temperature, etc.; let us consider these probabilities as the input of
our model of agglomeration of polygons, and let us denote them by

P
(0)
5 , P

(0)
6 , and P

(0)
7 .

By definition, P
(0)
5 + P

(0)
6 + P

(0)
7 = 1, so that there are only two independent

parameters, e.g., P5 and P6 whose domain of variation is the triangle (simplex)
on the P5, P7 plane. The extremal points of the triangle correspond to “pure”
configurations with P5 = 1, P6 = P7 = 0, or P7 = 1, P5 = P6 = 0, or P6 =
1, P5 = P7 = 0. Forming pairs of edge-sharing polygons may be considered
as a first step toward agglomeration; this is why we denote the resulting
probability distribution of doublets by P

(1)
ik with i, k = 5, 6, 7 .

Let us incorporate the energy barriers resulting from the corresponding
stresses provoked by local (positive or negative) curvatures into the probabli-
ties of the corresponding doublets. We assume that the probability of a 5− 6
couple, which represents one standard departure from flatness, should contain
a Boltzmann factor e−

∆E
kBT ; the same should be true for the probability of the

doublet P
(1)
67 . The doublets 55 and 77 should be affected by Boltzmann factor

e−
2∆E
kBT , because they represent two standard deviations from flatness; finally,

the doublets 66 and 57 should be considered as representing zero-energy cost,
therefore the corresponding Boltzmann factor reduces to 1. Let us introduce
the shortened notation: ∆E

kBT = α . With Boltzmann factors incorporated, the
probabilities must be normalized to 1, so that now they should be computed
as follows:

P
(1)
55 =

1
Q

(P (0)
5 )2 e−2α , P

(1)
56 =

2
Q

P
(0)
5 P

(0)
6 e−α , P

(1)
57 =

2
Q

P
(0)
5 P

(0)
7 ,

P
(1)
66 =

1
Q

(P (0)
6 )2 , P

(1)
67 =

2
Q

P
(0)
6 P

(0)
7 e−α , P

(1)
77 =

1
Q

(P (0)
7 )2 e−2α , (3.19)

where the normalizing factor Q is given by:

Q = (P (0)
5 )2 e−2α + 2P

(0)
5 P

(0)
6 e−α + 2P

(0)
5 P

(0)
7 + (P (0)

6 )2+

+ 2P
(0)
6 P

(0)
7 e−α + (P (0)

7 )2 e−2α . (3.20)
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Now we can calculate the distribution of five-sided, six-sided and seven-sided
polygons in all spontaneously agglomerated doublets. The corresponding set
of probabilities is denoted by P

(1)
k and is computed as follows:

P
(1)
5 =

1
2

(2P
(1)
55 + P

(1)
56 + P

(1)
57 ) ; P

(1)
7 =

1
2

(P (1)
57 + P

(1)
67 + 2P

(1)
77 ); (3.21)

and obviously,

P
(1)
6 =

1
2

(P (1)
56 + 2P

(1)
66 + P

(1)
67 = 1 − P

(1)
5 − P

(1)
7 ) .

In a real agglomeration process, at least at its initial stage, one can observe a
mixture of single polygons and freshly created doublets; later on also triplets,
quadruplets of agglomerated polygons are created, too, but at the beginning,
only single polygons (“singlets”) and edge-sharing pairs (“doublets”) domi-
nate. Suppose that at a certain initial stage of agglomeration one has, in a unit
volume, N −m singlets and m doublets. The average probability of finding a
k-sided polygon in such sample will be

Pk(s) = (1 − s)P
(0)
k + s P

(1)
k , (3.22)

where s = m/N is a natural parameter describing the progress of agglom-
eration process at its initial stage (reduced to doublet creation only). The
derivative of Pk(s) is therefore

dPk

ds
= P

(1)
k − P

(0)
k (3.23)

and is independent of s in this approximation. Of course, only two out of these
three differential equations are independent.

The above differential system, reduced to two ordinary differential equa-
tions, can be written explicitly as follows (we shall replace P

(0)
k by Pk for the

sake of simplicity):

dP5

ds
=

1
2Q

[
2P

(1)
55 + P

(1)
56 + P

(1)
57

]
− P5,

dP7

ds
=

1
2Q

[
2P

(1)
77 + P

(1)
57 + P

(1)
67

]
− P7. (3.24)

The third equation is linearly dependent, because P6 = 1 − P5 − P7, so
that dP6/ds = −dP5/ds − dP7/ds.

The differential equations can be written in a more explicit manner, with
clear dependence on two independent variable P5 and P6:

dP5

ds
=

1
2Q

[
2P 2

5 e−2α + 2P5(1 − P5 − P7)e−α + 2P5P7 − 2P5Q

]
,

dP7

ds
=

1
2Q

[
2P 2

7 e−2α + 2P7(1 − P5 − P7)e−α + 2P5P7 − 2P5Q

]
(3.25)
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with

Q = P 2
5 e−2α + 2P5P6e−α + 2P5P7 + P 2

6 + 2P6P7e−α + P 2
7 e−2α,

where P6 = 1 − P5 − P7.
Finally, simplifying by 2 and putting forward common factors, we get:

dP5

ds
=

P5

Q

[
P5e−2α + (1 − P5 − P7)e−α + P7 − Q

]
,

dP7

ds
=

P7

Q

[
P7e−2α + (1 − P5 − P7)e−α + P5 − Q

]
. (3.26)

Now it is quite easy to perform the analysis of phase trajectories of this
differential system displayed in Fig. 3.4.

First of all, we find out the position of singular points, corresponding to
constant solutions at which the two derivatives vanish simultaneously. There
are five such solutions, three of which are found at the summits of the simplex
of probabilities:

A : P7 = 1, P5 = 0, (P6 = 0); B : P6 = 1 (P5 = P7 = 0);
C : P5 = 1, P7 = 0, (P6 = 0);

while the two remaining ones are:

D : P5 = P7 =
1
2

(P6 = 0),

and the fifth one inside the triangle:

E : P5 =
1

3 − e−α
, P7 =

1
3 − e−α

, P6 = 1 − P5 − P7 =
1 − e−α

3 − e−α
.

P5
P5

P7
P6

P6

= 1

= 1
= 1

D

C

B
A

1
2

P5
P5

P7
P6

P6

= 1

= 1= 1

D

C

B
A

1
2

(a) (b)

Fig. 3.4. Two phase portaits of probability trajectories describing the agglomeration
process of five-sided, six-sided, and seven-sided polygons
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It is easy to check by linearization of (3.26) that A and C are repulsive singular
points, B and D are attractive singular points, while E is a saddle point. ( There
is another saddle point at infinity, the fact resulting also from Euler’s formula
for a sphere, but for the probabilities it has no physical meaning, of course.)

The points A, B, C, D keep their position steady independent of the value
of parameter α (therefore, independent of temperature, too), whereas the po-
sition of the saddle point E depends on the value of the parameter α, falling on
the attractive point D when α → 0. Typical phase trajectories are displayed
in Fig. 3.4. It is worthwhile to note that the two attractive points and the
saddle point are found on the line P5 = P7, which satisfies Euler’s constraint
for three-coordinate lattices (3.1). The separatrix curve AEC divides the sim-
plex into two regions: on the right, the system is driven toward crystallization
(P6 = 1), whereas if the initial conditions happen to be on the left, the system
will prefer another attractive singular point corresponding to an amorphous
mixture of only pentagons and heptagons. Besides, in a more realistic model
taking into account second-order effects, the system can remain infinite time
in the vicinity of the metastable saddle point E.

This method has been developed and generalized to three dimensions
in [6–8]. It describes quite well the process of glass formation and enables
to compute certain interesting parameters of covalent network glasses, mostly
the chalcogenide glasses like GexSe(1−x) , AsxSe(1−x), or alkali–boroxol glasses
(B2O3)(1−x)(Na2O)x [9, 10]. in particular, the dependence of glass transition
temperature Tg on the average coordination number of the network, and in-
directly, on its chemical composition [11, 12]. Here we demonstrate an appli-
cation of this stochastic method for modeling of nucleation and growth of
fullerenes.

3.4 Application: How the Fullerene Molecules
are Formed

Fullerenes are a new form of pure carbon, first predicted, then discovered in
early 1980s of the last century (cf. [13,14]. The fullerene molecule is composed
of 60 carbon atoms, forming a perfect Archimedean polyhedron composed of
12 pentagon and 20 hexagon rings. Each pentagon is surrounded by hexagons,
while each hexagon shares three of its sides with pentagons, alternating with
three other sides adjacent to hexagons. It is easy to check how Euler’s formula
is satisfied in this case: we have 60 summits (i.e., carbon atoms), 30 edges (the
entire network is three coordinate, so that each atom is bonded with other
three, and each bond is shared by two atoms, so that the total number of
bonds (edges) is (3 × 60)/2 = 90, and the number of faces is 12 + 20 = 32).
Equation (3.1) then becomes 60−90+32 = 2, as it should be. Modern soccer
balls are made of leather polygons following this scheme, with pentagons often
painted in black, and hexagons painted in white. We show a few examples of
these fancy carbon molecules in Fig. 3.5.
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(a) C60

(d) SWNT

(b) C70 (c) La@C82

(e) MWNT

Fig. 3.5. Examples of fullerene molecules: the C60, C70, a nested fullerene C60 (with
an La atom captured inside), and tubular fullerenes

Because these 32 polygons represent a simple covering of an Euclidean two-
dimensional sphere embedded in three-dimensional Euclidean space, the total
solid angle covered is equal to 4π = 720o. We know that the Euclidean plane
can be tiled entirely by a three-coordinate hexagonal lattice, with Nc = 3
and Nf = 6. Each pentagon creates an angular deficit of 5 × 12o = 60o.
This is so because in a regular pentagon the angle is equal to 108o instead of
120o in a regular hexagon. Three hexagons meeting at one vortex give exactly
3× 120o = 360o, like it should be on the plane. If we replace one of the three
hexagons by a pentagon, either the pentagon must undergo a deformation, or
else, if it is supposed to keep its perfect form, the whole structure will become
curved and will be possible only in three dimensions, out of the plane. The
measure of this local curvature is the deficit in angle, which with one angle of
the pentagon is equal to 12o; but each pentagon creates such a deficit in five
different vertices.

Now, if the total curvature has to attain 4π = 720o, it is easy to see
that 12 pentagons have to be inserted in a homogeneous hexagon lattice
in order to form a structure topologically equivalent to a sphere. The num-
ber of hexagons is in principle arbitrary. When there are no hexagons at all,
12 pentagons form one of the Platonic polyhedra, the perfect dodecahedron,
with 12 faces, 20 summits, and 30 edges (again, 20 − 30 + 12 = 2!). Its
dual polyhedron, with the same number of edges, but with N

′
c = Nf and

N
′
f = Nc is the regular icosahedron, with 20 triangular faces and 12 five-

coordinate summits. The next regular structure with 12 polygons and extra
hexagons can be obtained from the icosahedron by slicing, in a very symmetric
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manner, all the summits, which will give rise to 12 pentagons, and transform
all the equilateral triangles into smaller hexagons. Such a polyhedron is called
an Archimedean regular body, and in this case coincides with the fullerene
structure.

The existence of C60 molecules representing a new form of pure carbon
has been first conjectured by astronomers investigating the infrared spectra
of red giant stars. Later on, these molecules were obtained by synthesis from
carbon evaporating in a very hot electric arc between two graphite electrodes,
in closed space filled with helium under the pressure of 400 mbar, thus im-
itating the conditions in the outer atmosphere of an average red giant. The
soot that gathered at the bottom of the recipient contained as much as 10% of
fullerene molecules, which could be separated from the rest of carbon precip-
itate because they could be easily solved in benzene, and later on recovered
after its evaporation.

These ideas have been quite successfully applied to explain the growth of
fullerene molecules [14–16] in a model proposed recently in the series of papers
coauthored by Bennemann [17, 18]. The model of nucleation and growth of
the fullerene C60 molecules follows strictly the ideas of self-similarity and
converging algorithms exposed earlier.

We propose the following model of agglomeration processes leading to the
formation of fullerene molecules. These molecules are found in great abun-
dance in the soot falling from the electric arc discharge between two graphite
electrodes, at the temperature about 2, 800◦C, in helium atmosphere (acting
as a moderator) under the pressure of 0.4 atm. Each fullerene C60-molecule
contains 60 carbon atoms disposed of in rings, with 20 hexagons and 12 pen-
tagons arranged like in a soccer ball. Each pentagon is surrounded by hexagons
only, while each hexagon is surrounded alternatively by three pentagons and
three hexagons.

In the hot flame surrounding the electric arc one finds many carbon clus-
ters, the acetylene groups C2, the molecules C3, C4, etc. up to C6 benzene
rings, C10 naphthalene double rings, and even the C12 molecules built up from
three rings, two hexagons, and one pentagon (see Fig. 3.6).

In an achieved fullerene molecule all the vertices are of the same type,
in which two hexagons and one pentagon meet together. Two pentagons can
never share an edge, nor can three hexagons share a common vertex. That is
why when a new ring is formed in one of the cavities of a C12 molecule by the
addition of a C2 or a C3 molecule abundant in the hot gas, out of four possible
stable configurations (excluding the formation of unstable seven-sided rings),
only two are appropriate for the consecutive fullerene formation, the other
two containing wrong combinations of polygons.

The same is true at each consecutive step of agglomeration, consisting in
the creation of a new polygon. Each time we get only half of configurations
that are proper for the fullerene building, the other half being lost because
it contains the wrong configurations, such as two neighboring pentagons, or
three hexagons sharing a common vortex. An example of two new polygons
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Fig. 3.6. Formation of a new polygon in a (6,5)-type cavity

formed in a cavity, one of which leading to a configuration that can lead to
formation of a fullerene molecule, another one leading to a prohibited (two
edge-sharing pentagons) configuration, is shown in Fig. 3.6.

Starting from the stage of 3-ring molecule C12, we need still 29 more rings
in order to complete a fullerene molecule with the total of 32 rings; but in
order to build all the remaining 29 rings, it is sufficient to complete only
about 22 or 23 polygons. It is obvious that when in such a closed structure
we already have 31 or 30 correct polygons in place, the remaining one or two
rings are also there; one can safely assume that this reasoning is still true at
the level of 26 or 27 completed rings, when only no more than 5 or 6 polygons
are missing.

This means that if at the beginning about 25% of carbon available in
the hot gas is contained in the C12, C2, and C3 molecules, the final yield of
fullerenes is given by the geometric progression with the ratio 1:2, which gives
the estimate

25% × (0.5)23 ∼ 10−8.

This is more than seven orders of magnitude below the observed 10% yield.
Maintaining the idea that on average the yield of the fullerene-like molecules
at the subsequent agglomeration stages behaves as a geometric progression,
we can easily evaluate the ratio q that leads to the observed final yield:

25% × q23 � 10% = 0.1 =⇒ q � 0.961. (3.27)

In order to explain the experimental facts, we must assume that at each
agglomeration step the “proper,” i.e., fullerene-like configurations, are highly
preferred to the “wrong” ones. Their pure combinatorial factors being the
same, the only reasonable explanation could be given by the difference of
energies related to the respective polygon construction; these energies should
be contained in the corresponding Boltzmann factors as follows:

e−ε : for a pentagon created between two hexagons;
e−β : for a pentagon created between a pentagon and a hexagon;
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e−α : for a hexagon created between two hexagons;
e−η : for a hexagon created between a pentagon and a hexagon.

It is easy to compute the normalized probabilities of producing the “good”
clusters that are proper for the subsequent construction of C60 after each
agglomeration step.

For example, at the stage of construction when the four-polygon molecules
are being formed, out of which only two are proper for fullerene formation,
their total probability is easily found to be

e−ε + 2 e−η

e−ε + 2 e−η + e−α + 2 e−β
.

This rational expression depends only on the ratios of the Boltzmann factors
involved; let us denote y = e−(η−ε), z = e−(α−ε), and t = e−(β−ε); then the
above expression can be written as

F4 =
1 + 2y

1 + 2y + 2t + z
.

Another interesting feature related to the self-similarity is the average ratio
of pentagons among all rings in the fullerene-like clusters. At the stage of
four-polygon clusters it is computed as follows:

G4 =
1
2

e−ε

e−ε + 2 e−η
+

1
4

2 e−η

e−ε + 2 e−η
=

e−ε + e−η

e−ε + 2 e−η
=

1 + y

1 + 2 y
.

We were able to compute these characteristic expressions up to the tenth
step of agglomeration, when the clusters made up from 11 polygons containing
28–30 carbon atoms, by obtaining two series of functions of three variables,
y, z, and t, denoted by Fn and Gn.

We need three independent equations in order to solve for (y, z, t). These
equations can be easily produced if we suppose that on average the yield at
each step is constant, and close to the evaluation we made shortly before, i.e.,
if we set

Fn+1/Fn � 0.961.

But with the help of the second set of functions we can be more ambitious
and try to find the numerical value from the first principles. The functions Fn

should behave as a geometrical sequence; so we require that

Fn+2/Fn+1 = Fn+1/Fn.

The functions Gn give the average ratio of pentagons in all fullerene-like
clusters containing n polygons. It is reasonable to suppose that at the very
early stages of agglomeration this ratio is very close to the ultimate limit, and
that the convergence is also very rapid, i.e., exponential.



3 The Role of Topology in Growth and Agglomeration 79

In the final product — a C60 molecule — this ratio is equal to 3/8 =
0.375. It seems therefore reasonable to suppose that functions Gn obey the
exponential law:

Gn = Gend ( 1 − eλ n).

Here too, we can eliminate the unknown characteristic exponent λ and
the final value Gend = 0.375 by comparing several expressions with different
values of n, arriving at the following law of self-similarity:

Gn+2 − Gn+1

Gn+1 − Gn
=

Gn+1 − Gn

Gn − Gn−1
.

With two equations for Fn and one for Gn constructed with n = 8, 9, 10,
and 11 we have solved for y, z, and t:

y = 0.691, z = 0.122, and t = 0.032

This leads to the constant average ratio Fn+1/Fn = 0.957, which is very
close to what has been anticipated, and gives the final yield of about 9.5%,
which is also satisfactory.

For the obtained values of the parameters y, z, and t the characteristic
exponent λ is equal to 0.635, and the rates defined by Gns are:

G7 = 0.370, G8 = 0.372, G9 = 0.373, G10 = 0.3736,

which is fairly rapid, taking into account that without discriminating
Boltzmann factors the same ratios would behave as:

G6 = 0.3417, G7 = 0.3444, G8 = 0.3467, G9 = 0.3492, G10 = 0.3512, etc.

It is interesting to note that all the numerical values (the final yield of
C60 molecules, the ratio of pentagons in the final product, and the values
of the Boltzmann factors) are obtained here by applying exclusively the self-
similarity principle — quite a remarkable result.

Finally, knowing that the temperature around the arc at which the process
takes place is about 3, 000 K, we find the energy differences:

E2 − E1 = 0.104 eV, E3 − E1 = 0.588 eV, E4 − E1 = 0.965 eV,

which suits reasonably well our ideas about the forces needed to bend the
graphite network creating local curvature around one of the carbon atoms.

3.5 Onion Fullerenes and Carbon Tubes

Since the discovery of fullerenes, an impressive amount of new structures
made of pure carbon have been put into evidence and studied by many ex-
perimentalists [19, 20] and theorists [20, 21]. These structures are supposed
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to give rise to many new materials with exciting physical properties that are
now intensely studied. Apparently, the most common structures besides the
fullerenes proper are carbon nanotubules and the so-called onion fullerenes,
which are composed of multiple layers forming most probably around a C60

fullerene nucleus.
Whatever the size of the subsequent layer, it must be composed of carbon

polygons, as the smallest C60 fullerene molecule. If it contained exclusively
hexagons and pentagons, the number of the latter must always be 12, as
it follows from Euler’s theorem. It is quite easy to form bigger and bigger
symmetric molecules containing 12 pentagons and an appropriate number of
hexagons. These giant molecules will possess an icosahedral form, because they
can be formed out of 20 triangular flat structures made of certain number of
hexagons and three pentagons at the three summits. Some of them are shown
in Fig. 3.7.

When the triangles containing pieces of pure hexagonal lattice grow bigger,
they are closer and closer to flat surface. Therefore, big shells built with a
great number of hexagons and 12 pentagons, become more and more like
perfect icosahedrons. However, pictures obtained with electronic microscopy
show clearly that great onion fullerenes look like almost perfect spheres. This
means that their local curvature is almost constant, and close to the value
1/R, with R denoting the radius of spherical fullerene shell. The same is true
for the spherical caps of giant carbon tubes, which apparently do not display
any tendency to become like halves of corresponding icosahedrons [19].

But this is possible only if the structures contain not only hexagons and
pentagons, but heptagons as well. As we have shown earlier, even a flat tiling
can be achieved exclusively with a mix of pentagons, and heptagons, pro-
vided they are in equal number, or with a mix of hexagons, pentagons and

Fig. 3.7. Some possible triangular configurations containing three pentagons
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heptagons, provided that P5 = P7. Topological and geometrical constraints
provide equations that enable us to determine the structure of giant molecules
topologically equivalent to a sphere. For example, it is easy to determine the
total number of atoms if we assume that only vertices at which two hexagons
and one pentagon meet are present. Let the total number of vertices (i.e., car-
bon atoms) be NA. At each vertex, the angular deficit is equal to (3π/5−4π/6).
As the total angular deficit to cover a sphere must be −4π, we must have

NA

(
3π
5

− 4π
6

)
= −4π

and the solution is, of course, NA = 60, which corresponds to the fullerene
molecule.

It is also quite easy to evaluate the number of atoms and polygons in the
icosahedral structures made of 20 triangles represented in Fig. 3.7. Any such
triangular face can be parametrised, following Coxeter [1], by two integers
(p, q). The prescription is then as follows: in a perfect planar hexagonal lat-
tice choose a hexagon and replace it by a pentagon. Go p steps (i.e., skip p
hexagons) along a straight row; then turn at the angle 120− and go q steps
along this new direction. Place a new pentagon; start over again, but at the
direction, which makes 120− with respect to the last one; again, p steps, and
q steps along the direction at the angle of 120−. The third operation will
lead back to the place we started from, and the construction is complete.The
triangles displayed in Fig. 3.7 correspond to the labels (2, 2), (3, 0), and (4, 2).

The number of carbon atoms in the icosahedral molecule made of triangles
of the type (p, q) is equal to

N = 20 (p2 + pq + q2).

With number of pentagons always equal to N5 = 12, it is easy to evaluate the
number of remaining hexagonal rings: it is equal to

N6 = 10 (p2 + pq + q2 − 1).

The first few icosahedral structures following after the fullerene C60 are the:
C80, corresponding to p = 2, q = 0; C140, corresponding to p = 2, q = 1; C180,
with p = 3, q = 0; C240, with p = 2, q = 2, and so on [22,23].

It is also easy to evaluate the sizes of pure carbon icosahedrons that could
be built as a next layer on a smaller one, so that the distance between layers is
no lesser than the standard distance between layers in the graphite structure,
which is of the order of d = 3.2×10−8 cm, about twice more than the standard
distance between the closest neighbors in the same layer, i.e., the side of a
hexagon, which is a = 1.42 × 10−8 cm. For example, the average radius of
a C60 fullerene ball is about 3.45 × 10−8 cm; the average radius of the next
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Table 3.1. Icosahedral structures of growing size and their radii (in Ångstroms)

Type (p, q) Number of C atoms 〈r〉 rmin

(1,1) C60 3.45 3.42

(2,0) C80 3.85 3.79

(2,1) C140 5.44 5.32

(3,0) C180 5.84 5.67

(2,2) C240 6.89 6.67

(3,1) C260 7.39 7.20

(4,0) C320 7.83 7.54

(4,1) C420 9.24 8.94

(5,0) C500 9.82 9.40

(3,3) C540 10.35 9.94

regular ball, C80, is equal to 3.85×10−8 cm, clearly too close in order to serve
as a next layer.

It follows from the Table 3.1 that if multilayer icosahedral structures made
of pure carbon could be observed, the first structure that could grow on a C60

fullerene ball would be a C240 or a C260 icosahedron, and the third could then
be a C540 structure, and so on. Similarly, if the first structure serving as a
“core” were a C80 ball, then the second layer should be a C320, the third one
a C620, etc.

But the electron microscope pictures of onion fullerenes show almost per-
fect spherical shapes, which could not be observed with the above icosahedral
structures. In spite of this theoretical possibility, Nature apparently chooses
another way to create closed bottoms of nanotubes: they are apparently as
close as possible to hemispheres [19].

Also the nanotubes of various sizes can close with similar icosahedral
structures, which can be regarded as halves of carbon icosahedrons, centered
around one of the pentagons, and continued with five-fold symmetry as five al-
most flat triangular sides made exclusively with hexagons, up to a layer when
five new pentagons are added, thus creating solid angle of 2π; then a locally
flat tubular structure made of hexagons may continue as a regular cylindric
nanotube.

As a matter of fact it is not difficult to find out how such spheroidal
structures can be produced with a three-coordinate lattice composed only
of five-sided, six-sided and seven-sided carbon rings. In order to do this, let
us analyze local curvature around each carbon atom surrounded by three
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Table 3.2. Ten possible vertices and corresponding angular deficits (in radians and
degrees)

Vertex type Angular deficit (rad) Angular deficit (deg)

(555) − π
5

−36

(556) − 2π
15

−24

(557) − 3π
35

−15.43

(566) − π
15

−12

(567) − 2π
105

−3.43

(666) 0 0

(577) + π
35

+5.14

(667) + π
21

+8.57

(677) + 2π
21

+17.14

(777) + 3π
21

+25.71

polygons. The angular deficit (or angular excess) of each triplet is given in
Table 3.2.

We see that the first five triplets display positive local curvature, the triplet
(666) is flat, and four remaining ones contribute to negative local curvature. In
view of this, we shall suppose that giant onion fullerenes contain exclusively
convex triplets. To avoid too strong local curvatures, we exclude the triplets
containing two 5-fold rings at once; and to avoid the formation of locally flat
surfaces, like in the icosahedral molecules discussed earlier, we also exclude the
(666) triplets. This leaves us with only two kinds of vertices: (566) and (567),
whose angular deficits are − π

15 = −12◦ and − 2π
105 = −3.43◦, respectively. But

it is easy to see that if we start surrounding a heptagon with (567) vertices,
we must also produce at least one (667) vertex.

Now we are ready to form the equations that will enable us to determine
the admissible configurations of giant onion fullerenes. The following seven
numbers are to be found: NA, the total number of atoms; N5, N6, and N7,
the numbers of five-sided, six-sided, seven-sided polygons; finally, the exact
numbers of (566), (567), and (667) vertices. It is easy to establish six linear
relations between these variables.

As the total angular deficit of a sphere must be −4π, taking the values of
angular deficits of (566) and (567) vertices from Table 3.2, we must have

− π
15

N566 −
2π
105

N567 +
π
21

= −4π, (3.28)
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from which we get

7N566 + 2N567 − 5N667 = 420. (3.29)

The above equation remains valid even in the presence of (666) vertices, which
are flat and do not contribute to angular deficit or excess. From Euler’s theo-
rem we also know that in a tri-coordinate lattice covering a sphere exclusively
with five-sided, six-sided, and seven-sided polygons, we must have

N5 = N7 + 12, (3.30)

the number of hexagons N6 being arbitrary.
Next, any atom belongs to one type of vertex exclusively; therefore the

total number of atoms is equal to the sum of numbers of these vertices:

N566 + N567 + N666 + N667 = NA, (3.31)

where we also counted the triplets (666) for a more general case. The total
number of carbon atoms (vertices) can also be obtained by counting individual
polygons weighted by their respective numbers of sides (vertices) — this will
count each atom three times, because the network is three coordinate:

5N5 + 6N6 + 7N7 = 3NA. (3.32)

Finally, supposing that only one (667) triplet can be found around a hep-
tagon, we must have the following two relations:

N667 = N7 , N567 = 6N7. (3.33)

We shall choose the number of heptagons N7 as free parameter. Then the
set of equations can be reduced and represented as follows:

N566 = 60 − N7 , N5 = 12 + N7,

6N6 + 12N7 = 3NA − 60, N566 + N666 = NA − 7N7. (3.34)

Now we can find many solutions corresponding to different choices of N7

and N666. Not all of them are physically acceptable though. In order to main-
tain sphericity, we should not break the symmetry too strongly (as suggested,
e.g., in [23]. For example, a good choice seems to be N7 = 20, decorating all
potential faces of an icosahedron; let us also choose N666 = 0. Then we get

N7 = 20 , N5 = 32 , N6 = 40 , NA = 180,
N566 = 40 , N567 = 120 , N667 = 20.

In view of (3.34), N7 should not exceed 60, in which case there are no more
(566) vertices in the giant onion fullerene. If we suppose that no “flat” (666)
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vertices are present, we get the following solution:

N7 = 60 , N5 = 72 , N6 = 80 , NA = 420, N566 = 0 ,

N567 = 360 , N667 = 60.

These are only two possible solutions: the number and distribution of
vertices reflects the mean curvature of the giant fullerene sphere, which is
obviously higher in the first case, and lower in the second case. A rough
estimate of the mean curvature can be obtained via inverse square law, 〈R〉 �
(NA)−2; this law supposes that the average density of carbon atoms on the
surfaces of subsequent fullerene onions is very much the same, as are the sides
of the polygons. Therefore the average radii of the C180 and C420 onions are
about 5.92 and 9.06 Å, respectively.

3.6 Rigidity and Local Structure in Covalent Glasses

Most of the glasses, especially the so-called covalent glasses, are formed by the
elements from the third, fourth, and fifth groups of the periodic table, their ox-
ides, or in combination with chalcogenides like sulfur or selenium. They form
a very homogeneous and, at first glance, totally random network. However,
local structures are not random at all: every atom has a well-defined valence,
i.e., coordination number, the chemical bonds between given kinds of atoms
are essentially of the same length, and even the angles between the bonds are
quite rigid, with the exception of oxygen or chalcogenide bridges. This meek-
ness of angular constraints is responsible for the breakdown of geometrical
order on the medium-range (several bond lengths) scale, which in turn en-
hances crystalline growth. For a long time however, it remained quite unclear
why certain compounds do not crystallize and prefer to keep the amorphous
structure of an overcooled liquid, whereas many other covalent substances
prefer to crystallize.

In 1979, Phillips [24] had formulated a very simple criterion in order to de-
cide those chemical compounds that covalent networks would belong a priori
to the species of good glass formers. It consisted in stating that the best glass
formers, when looked upon as random networks of solid bars (symbolizing the
covalent chemical bonds) and massive balls (atoms), are those, that are closest
to isostatic networks. This means that the number of mechanical constraints
per atom should be exactly equal to 3, whenever possible, because 3 is the
natural number of degrees of freedom of a point-like mass in three dimensions.
The theory has been developed further by Thorpe [25] and applied very suc-
cessfully to the experimental analysis of many glasses by Boolchand [26–28].

A single atom is maintained in its position by bonds stretching towards
its closest neighbors (from now on, “a neighbor” is synonymous with another
atom with which a given atom is linked via real chemical bond, and not
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just geometrically close). As seen from a given point-like atom, the bonds
stretching toward its neighbors form a star-like figure, with the number of rays
corresponding to the central atom’s valence. Let us call this number Nc, the
coordination number. The mechanical constraints that these Nc bonds impose
on the system are of two types. First, their constant length represents clearly
a mathematical (thus also mechanical) constraint, one equation corresponding
to one bond; but each bond contributing to two atoms found at its extremities,
the number of constraints (called the bond-stretching constraints) per atom is
clearly Nc/2. But the star-like structure is still not rigid if only the lengths of
bonds are kept constant. In order to ensure the rigidity of the structure, the
angles between the bonds should also be fixed at given values. The number of
these angular constraints is very easy to compute: once a specific direction is
given to one of the bonds, which corresponds to a choice of the basis in vector
space E3, the direction of a second bond stemming from the same atom is
fixed with respect to the first vector by the choice of just one angle between
them. The second angle corresponds just to the choice of the reference frame
in E3. If we wish to fix a third unit vector with respect to the former two, we
have to fix two new angles with respect to the former construction serving as
the reference frame, as for any unit vector in three dimensions, and so forth.
The simple formula for the total number of angular constraints belonging to
an atom is then 2Nc − 3, so that the total number of mechanical constraints
per atom with coordination number Nc is

rc =
Nc

2
+ 2Nc − 3. (3.35)

If the average number of constraints per atom is higher than 3, the corre-
sponding network will be overconstrained; if it is lower than 3, the network
will be underconstrained, thus making possible local motions characteristic
for liquid state; finally, when rc = 3, the network is isostatic, which has been
proposed as an important criterion for glass-forming tendency.

When generalized to an arbitrary random network, i.e., replacing Nc by
its average value 〈Nc〉, it leads to an obvious condition

〈rc〉 =
〈Nc〉

2
+ 2 〈Nc〉 − 3 = 3

wherefrom 〈Nc〉 =
12
5

= 2.4. (3.36)

In many glasses (mainly the so-called chalcogenide glasses, GexSe(1−x),
AsxSe(1−x) , SixSe(1−x), one can observe the change of behavior of many
parameters, in particular the glass transition temperature and the specific
heat Cp, near the threshold of rc = 2.4. The best results have been obtained
for simple two-component chalcogenide glasses, like GexSe(1−x), AsxSe(1−x),
GexS(1−x), in which single atoms of selenium, germanium, or arsenic can be
viewed as elementary building blocks with well-defined coordination number
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equal to their chemical valence: 2 for selenium and sulfur, 4 for germanium,
and 3 for arsenic. Then the average coordination number 〈rc〉 is given by
simple formula, 〈rc〉 = 4x + 2 (1−x) for GexSe(1−x), or 〈rc〉 = 3x + 2 (1− x)
for AsxSe(1−x), and so on.

Recently in [29] this “magic” rule has also been successfully applied to more
common oxide glasses, and in the first place, to the silicate-based window
glass, whose local geometry is much more complicated than that of binary
chalcogenide glasses.

The composition of window glass, also used for the production of bottles
and light bulbs, does not vary very much since its introduction by Italian
masters in the fourteenth century in Venice. Besides some small amount of
special modifiers (usually below 1.5%) intended to give the glass the desired
color or to improve its mechanical resistance, the basic composition is as
follows: 75% of SiO2, 15% of Na2O, and 10% of CaO. In a more compact
notation, one can express it in a formula,

(SiO2)1−x−y (Na2O)x (CaO)y with x = 10%, y = 15% .

It is clear that in order to fix the values of x and y one needs two independent
equations. One of them is readily provided by the rigidity criterion, which
indicates that the best glass-forming tendency will be observed when the av-
erage coordination number 〈rc〉 is equal to 2.4. Let us express this condition as
an algebraic equation. In order to compute 〈rc〉, let us take one mole of win-
dow glass, then sum up all coordination numbers multiplied by their relative
weights, and divide the result by the total number of atoms in the sample. We
have only 1 (Na), 2 (Ca,O) and 4 (Si) valenced atoms in our network. The
total number of bonds stemming from these atoms (per unit of mass) is then:
4 (1−x−y) taking into account the 4-valenced Si atoms, plus 2×2 (1−x−y)
from the O-atoms in the SiO2 molecules, plus 2 × 2 y from the Ca and O
atoms in the CaO molecules, plus 2 x from the O atoms in Na2O molecules,
finally 1 × 2x from the one-valenced Na atoms in the Na2O molecules. The
total number of bonds per unit of mass is therefore

4x + 4 y + 8 (1 − x − y) = 8 − 4x − 4y.

The total number of atoms per unit mass is also easily evaluated: there are
three atoms in a SiO2 molecule, three atoms in a Na2O molecule, and two
atoms in a CaO molecule, which leads to the simple formula

3 (1 − x − y) + 3x + 2 y = 3 − y.

The equation defining the rigidity threshold now becomes:

8 − 4x − 4y

3 − y
=

12
5

= 2.4. (3.37)

We need another independent relation between x and y in order to determine
their values. Such a relation should be imposed by an independent physical
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Fig. 3.8. The effect of Na+ and Ca++ cations on local ring structure in the SiO2

random lattice

or geometrical principle. Hopefully, another simple condition may be imposed
if we want the network to be as homogeneous as possible, from a structural
point of view. To this end, let us consider the effect of Na2O and CaO mole-
cules on the structure of initial amorphous SiO2 network. If all the bonds are
saturated, there are always six minimal rings starting with pairs of oxygen
bonds stemming from each silicon atom, as shown in Fig. 3.8C. A minimal
ring is defined as a circular loop made of oxygen bonds, such that there is
no shorter way to start from the given bond and come back through another
chosen bond. There are six different couples of bonds that can be chosen from
four different bonds coming out from each Si atom, as simple combinatorics
shows, the number of choices being C4

2 = 4!(4−2)!
2! .

When one Na2O molecule is added to the network, each of its sodium
atoms breaks one of the oxygen bonds of the SiO2 network in halves, the
extra O atom completing one of the two broken oxygen bonds. This creates two
local structures with three minimal rings only, as shown in Fig. 3.8. Therefore,
each Na2O molecule removes six rings from the network, creating voids that
enhance homogeneity of the network.

On the contrary, when one CaO molecule is added to the network, it also
breaks an oxygen bond, but being two valent, it zips together two neighboring
Si-centered tetrahedra, thus creating a compact local unit with as many as six
oxygen bonds pointing out, as shown in Fig. 3.8. The corresponding number
of minimal rings surrounding this new building block is 15, which is nine more
rings than before. Summarizing up we see that whereas each Na2O molecule
suppresses six rings in the network, each CaO molecule creates nine new rings.
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To keep the balance, i.e., to compensate the loss of rings due to Na2O, one
must add two CaO molecules for three Na2O molecules, which gives us the
new relationship we were looking for:

2x = 3 y.

With these two equations the solution is immediately found to be:

x =
3
19

= 15.79% , y =
2
19

= 10.52% , 1 − x − y = 73.69% , 00, (3.38)

which is almost exactly the average usual composition of window and bottle
silicate glass.

Some amount of Al2O3 is present in most of industrial glasses, except for
those whose chemical purity is specially supervised. The amount of Al2O3 is
usually not higher than 1.5%. Our simple method enables us to evaluate the
“ideal” composition also in presence of the aluminum oxide. A new variable
must be introduced, denoting the relative amount of Al2O3; let us name it z.
Then the new glass composition will be

(SiO2)1−x−y−z (Na2O)x (CaO)y (Al2O3)z .

We have only two basic equations at our disposal, and we would not like to
introduce a new principle each time a small amount of new modifier is added.
Supposing that the amount of Al2O3 is rather small as compared with other
components, we can solve the problem by successive approximation method.
This means that we take the highest rate obtained in the previous example of
ternary (SiO2)1−x−y (Na2O)x (CaO)y glass as a starting point and solve the
remaining two equations with two unknowns only. Therefore, we shall suppose
that the amount of SiO2 remains close to 75%, which enables us to write an
extra equation

1 − x − y − z = 0.75 or 4x + 4y + 4z = 1. (3.39)

The average coordination number is computed as the ratio of all valencies per
mole to all atoms per mole, which gives readily the next equation:

8(1 − x − y − z) + 4x + 4y + 12z
3(1 − x − y − z) + 3x + 2y + 5z

=
12
5

,

leading to the following linear equation:

5x + 2y + z = 1. (3.40)

Finally, we follow the principle of maximal homogeneity of ring structure.
We already know that each Na2O molecule suppresses six rings in the SiO2

network; the CaO molecules, zipping together silicon-centered tetrahedra add
nine extra rings to the structure. The Al2O3 molecules also act as “zipping”
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agents, but each Al atom is three valenced, so it creates a cluster with three
silicon-centered tetrahedra attached together, which leaves nine free valencies
on which the rings can be constructed. Simple combinatorics leads to the
conclusion that the number of new rings around each such cluster will be
(9 × 8)/2 = 36, which means an excess of three rings per one Al atom, or 60
rings per one Al2O3 molecule. In order for all these rings to compensate to
the average, we must have

−6x + 9y + 60z = 0, (3.41)

which completes the set of equations to solve. The result is as follows:

x =
31
184

� 16, 33% , y =
14
184

� 7, 61% , z =
1

184
� 0.6% .

and of course, 1 − x − y − z = 75%.
This method has its limitations too. For example, it is difficult to ex-

plain the composition of Pyrex glass (80.6%SiO2, 13.0%B2O3 , 4.1% Na2O,
2.3%Al2O3), partly because pure B2O3 itself ideally satisfies the isostatic cri-
terion: 3× 2

5 +2× 3
5 = 12

5 . In quaternary composition (SiO2)1−x−y−z (Na2O)x

(B2 O3)y, (Al203)z the average coordination number is readily found as

〈rc〉 =
8(1 − x − y − z) + 4x + 12y + 12z
3(1 − x − y − z) + 3x + 5y + 5z

=
8 − 4x + 4y + 4z

3 + 2y + 2z
.

When we fix the value of 〈rc〉 at 12/5 = 2.4, we get the equation y = 1−5x−z,
which is far from being satisfied by the pyrex glass composition. The ring
structure is dominated by silicate rings, and it is not at all clear if borons can
form typical flat boroxol rings, their percentage being too low to ensure fre-
quent clustering of three borons at once. This means that the rigidity counting
must be more sophisticated, and taking into account certain local rigid struc-
tures, and others with some of the angular constraints relaxed. Also, other
parameters may turn out to be more important: chemical and mechanical
resistance, low thermal expansion coefficient, and others as well. Since time
immemorial, good glass has always been a compromise among these multiple
factors [29].
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Topological Defects in Carbon Nanocrystals

V.A. Osipov

Summary. The modern status of the problem of topological defects in graphitic
nanocrystals is discussed. The gauge theory and topology are proved to be powerful
methods in analyzing the electronic structure of variously shaped carbon nanoparti-
cles. Both the eigenfunctions and the local density of states (DOS) near the pentag-
onal defects are calculated for three geometries: sphere, cone, and hyperboloid. It is
found that the low-energy DOS has a cusp, which drops to 0 at the Fermi energy
for any number of pentagons at the tip except 3. For three pentagons, the nonzero
DOS across the Fermi level is formed.

4.1 Introduction

Topology and geometry have many applications in modern condensed matter
physics (see, e.g., the books [1, 2]). The purpose of this brief review is to
present some bright examples of using topology and geometry in a study
of a new interesting class of carbon materials—carbon nanoparticles. The
discovery of these cage-like molecules has attracted considerable attention of
both experimentalists and theorists due to unique physical properties that are
directly related to their exotic geometry. Moreover, there is reason to believe
that an infinite variety of both carbon-based and some other materials with
particular nanoscale shapes and forms can be produced, therefore increasing
the significance of geometrical methods [3] in theoretical studies.

An additional interest in carbon nanoparticles originates from the fact
that the exotic geometry is accompanied by topological defects. Note that
topologically nontrivial objects play an important role in various physically
interesting systems. It will suffice to mention the ’t Hooft–Polyakov mono-
pole in the non-Abelian Higgs model, instantons in quantum chromodynam-
ics, solitons in the Skyrme model, Nielsen–Olesen magnetic vortices in the
Abelian Higgs model, etc. (see, e.g., [4]). Note that similar objects are known
in condensed matter physics as well. For instance, vortices in liquids and liq-
uid crystals, solitons in low-dimensional systems (e.g., in magnetics, linear
polymers, and organic molecules), as well as the famous Abrikosov magnetic
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vortices in superconductors are a matter of common knowledge. Mathemati-
cally, all these objects appear in the framework of nonlinear models as partial
solutions of strongly nonlinear equations. An important point is that all the
solutions are topologically stable and belong to nontrivial homotopic sectors.

It should be noted that elastic media also leave room for topological defects
known as dislocations and disclinations. Disclinations in liquid crystals are one
of the best-studied cases. In particular, the known exact “hedgehog” solution
has been obtained within the continuum model of nematics. It is interesting
that a hedgehog-like solution was also found for a point 4π disclination within
the framework of the gauge model [5]. An important advantage of the gauge
model follows from the fact that it is similar to the known field theory models,
first of all to the non-Abelian and Abelian Higgs models, where topological
objects are studied well. Taking into account this similarity, two exact static
solutions for linear disclinations have been found [6–8].

It is now well understood that the modern problems of condensed matter
physics call for using new theoretical methods. As we show here, a theoretical
description of variously shaped carbon nanocrystals requires involving differ-
ential geometry, topology, and gauge theory. These methods are not typical
for condensed matter theory though they are widely used in the field theory
and gravity.

4.2 Geometry and Topology of Carbon Nanoparticles

The high flexibility of carbon allows producing variously shaped carbon nanos-
tructures: fullerenes, nanotubes, nanohorns, cones, toroids, graphitic onions,
etc. In some sense, the carbon nanoparticles mediate between the molecular
and bulk phases and can be considered as a third form of carbon along with di-
amond and graphite. Historically, fullerenes C60 (nicknamed also as Buckmin-
sterfullerene or “bucky ball”) were first discovered in 1985 [9]. They are tiny
molecular cages of carbon having 60 atoms and making up the mathematical
shape called truncated icosahedron (12 pentagons and 20 hexagons). Although
the amount of C60 actually produced in the experiment was very small, these
curious molecules right away attracted the attention of theorists. In 1990, the
adaptation of arc technique for carbon rods gave a possibility of making C60

in gram quantities [10]. Since then, in the process of graphite vaporization var-
iously shaped fullerene molecules have been produced. The more spherical of
them are the C60 molecule and its generalizations like C240 and C540 molecules.
Others are either slightly (like the C70 (see Fig. 4.1)) or remarkably deformed.

Soon after the fullerenes, other interesting carbon structures were discov-
ered. First of all, carbon nanotubes of different diameters and helicity [11] were
produced. It turns out that single-walled carbon nanotubes can be twisted,
flattened, or bent around to form sharp corners. These distortions do not
cause them to break (see Fig. 4.2). The mechanical, magnetic, and especially
electronic properties of carbon nanotubes are found to be very specific (see,
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Fig. 4.1. The fullerene C60 (left) and C70 molecules (right)

Fig. 4.2. Carbon nanotubes

e.g., [12]). For example, the nanotube can be either metallic or semiconducting
depending on its diameter and helicity (see discussion later).

Carbon “onions” have also been found and they can be considered as
carbon cages one inside the other [13]. The tubes and onions are likely to be
composed of hexagonal and pentagonal carbon rings just like the fullerenes.
However, structures having heptagonal rings are also possible. There has been
much progress in recent years in producing toroids [14], cones [15, 16] (see
Figs. 4.3,4.4), nanohorns [17], boxes [18], and helically coiled graphite [19].

One can expect that even more exotic configurations can be produced
in experiments (see, e.g., Fig. 4.5). Indeed, theoretically the closed (without
dangling bonds) fullerenes and nanotubes exhibiting high topologies (from
genus 5 to genus 21) were suggested in [20]. This follows from the known
Euler’s theorem that relates the number of vertices, edges, and faces of an

Fig. 4.3. Torus
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Fig. 4.4. Nanocones containing one (left) and two (right) pentagons at the apex

Fig. 4.5. Exotic configurations

object. For the hexagonal carbon lattice it can be written in the form [20]

· · · 2n4 + n5 − n7 − 2n8 · · · =
∑

(6 − x)nx = χ = 12(1 − g), (4.1)

where nx is the number of polygons having x sides, χ is the Euler characteris-
tic, which is a geometrical invariant related to the topology of the structure,
and g is the genus or a number of handles of an arrangement. So, for a sphere
g = 0, a torus has g = 1 while for two “sticked” torii in Fig. 4.5 one has
g = 2. According to (4.1) there is no contribution to the Gaussian curvature
for x = 6. This means that 2D carbon lattice consisting only of hexagons is
flat. On the contrary, to obtain a nontrivial shape one has to introduce some
additional polygons. For example, in order to make a fullerene with genus 0 we
need additionally 12 pentagons. In general, Euler’s theorem allows to deter-
mine all the possible graphitic structures. As mentioned in [20], in accordance
with (4.1) the complex structures with no pentagons (no positive Gaussian
curvature) can be constructed if the genus is increased. In particular, an ex-
istence of the new stable family of fullerene-like structures (holey-balls and
holey-tubes), which have high genus and no pentagonal rings, was predicted
in [20].

By their nature, pentagons (as well as other polygons with x 
= 6) in
a graphite sheet are topological defects. In particular, fivefold coordinated
particles are orientational 60◦ disclination defects in the otherwise sixfold
coordinated triangular lattice. This can be understood by realizing that a
pentagon can be inserted in the hexagonal lattice by a cut-and-glue procedure
typical for disclination defects. Namely, one has to cut out a 60◦ sector from a
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graphene (a single layer of graphite) sheet and then glue together the two cut
sides of the sheet. Moreover, if the departure from the flat surface is allowed,
a cone whose apex angle is directly related to the disclination angle will be
generated. Pentagonal defects in cones can therefore be considered as apical
disclinations, and the opening angle is directly connected to the Frank index
of the disclination. A cone’s apex may consist of a combination of ring defects.
Because of the symmetry of the graphite sheet, only five types of cones can
be created from a continuous sheet of graphite. The total disclinations of
all these cones are multiples of 60◦, corresponding to the presence of a given
number (n) of pentagons at the apices. It is important to mention that carbon
nanocones with the cone angles of 19◦, 39◦, 60◦, 85◦, and 113◦ have been
observed in a carbon sample [16]. Note that these angles might correspond to
300◦, 240◦, 180◦, 120◦, and 60◦ disclinations in graphite, respectively. Disks
(n = 0) and one-open-end nanotubes (n = 6) have also been observed in the
same sample [16]. This case was theoretically studied in [21–23]. At the same
time, cones with apex angles of 30◦, 50◦, and 70◦ have also been found [20,24].
These angles are forbidden within this scenario. In [24, 25] the appearance of
such cones was explained in terms of an open cone model. Another possibility
gives a creation of partial disclinations. As is known, a finite graphite sheet
with disclinations will be buckled to screen its energy [26]. In this case, one
of the allowed geometries is the hyperboloid.

It should be noted that the presence of topological defects in the elastic
medium changes the topology of space, a simple connected region becomes
multiply connected whenever there are defects. As a result, the physical char-
acteristics of quantum particles moving in defect medium can be modified in
comparison with the defect-free case. Indeed, the Aharonov–Bohm-like (AB-
like) effect in dislocated crystals (called “phase-dismatching”) was predicted
in [27]. It was found that the Schrödinger equation for a tight-binding electron
is reduced to the AB-like equation in the presence of a screw dislocation (see
also [28, 29]). In experiments, the effects of Berry’s geometrical phase were
established by analyzing the high-energy electron diffraction from a screw
dislocation [30].

Among other effects it is necessary to note the prediction of the AB-like
electron scattering due to disclinations [6, 31], an electron localization near
topological defects [32, 33] as well as a formation of the polaron-type states
near dislocations [34]. Note that a possibility of the solid state realization of
the AB effect was suggested earlier in metals [35, 36] and in dielectrics [37].
It has been shown that the AB effect results in oscillations of physical char-
acteristics (transport properties, magnetic susceptibility) with a certain fun-
damental period Φ0 = hc/ne, where n = 1 for pure metals and n = 2 for
disordered metals and dielectrics.

One would expect some new physical phenomena arising from nontrivial
topology of carbon nanoparticles. It is interesting to note in this connection
that an important role of topology has been recently discovered in experiments
with niobium and selenium. In particular, a Möbius strip (see Fig. 4.6) of
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Fig. 4.6. Möbius stripe (left) and a more exotic configuration (right)

single microcrystals NbSe3 has been produced by twisting a ribbon of mate-
rial through 180◦ and joining its two ends, resulting in a distinct one-sided
topology [38]. In a sense, these crystals can be considered as global disclina-
tions. It was established that the electronic properties of the Möbius crystals
are modified in comparison with the ring configuration. Namely, the temper-
ature of charge-density-wave phase transition was observed to be 4 K lower
than this in the ring. There is reason to believe that this effect is pure topo-
logical in origin. Evidently, topologically nontrivial crystal forms offer a new
route to study topological effects in solid state physics.

4.3 Electronic Properties

Among the most unique features of carbon nanoparticles are their electronic
properties. Electronic states in nanotubes, fullerenes, nanocones, nanohorns,
as well as in other carbon configurations are the subject of an increasing
number of experimental and theoretical studies. They already find use in
the development of modern nanoscale electronic devices: flat panel displays,
nanoswitches, molecular memory devices, transistors, electron field emitters,
etc. It has been predicted and later observed in experiments that bending or
stretching a nanotube changes its band structure, therefore changing the elec-
trical properties: stretched nanotubes become either more or less conductive.
Moreover, a nanotube’s chiral angle (the angle between the axis of its hexag-
onal pattern and that of the tube) determines whether the tube is metallic or
semiconducting (see, e.g., [12]). This finding could allow to build nanotube-
based transducers sensitive to tiny forces.

Interesting changes in the electronic properties arise from topological de-
fects. The peculiar electronic states due to topological defects have been
observed in different kinds of carbon nanoparticles by scanning tunneling
microscopy (STM). For example, STM images with five-fold symmetry (due
to pentagons in the hexagonal graphitic network) have been obtained in the
C60 fullerene molecule [39]. The peculiar electronic properties at the ends of
carbon nanotubes (which include several pentagons) have been probed exper-
imentally in [40,41]. Recently, the electronic structure of a single disclination
has been revealed on an atomic scale by STM [42], where the enhanced charge



4 Topological Defects in Carbon Nanocrystals 99

density at the disclination, which was located at the apex of the conical pro-
tuberance of the graphitic particle, has been experimentally clarified.

The problem of peculiar electronic states near the pentagons in curved
graphite nanoparticles was the subject of intensive theoretical studies in
fullerenes [43, 44], nanotubes [45], nanohorns [46], and cones [21, 47]. In
particular, analysis within the effective-mass theory has shown that a spe-
cific

√
3 ×

√
3 superstructure induced by pentagon defects can appear in

nanocones [48]. This prediction has been experimentally verified in [42].
A recent study [23] within both tight-binding and ab initio calculations shows
the presence of sharp resonant states in the region close to the Fermi energy.
The strength and the position of these states with respect to the Fermi level
were found to depend sensitively on the number and the relative positions
of the pentagons constituting the conical tip. In particular, a prominent peak
that appears just above the Fermi level was found for the nanocone with three
symmetrical pentagons (which corresponds to a 60◦ opening angle or, equiv-
alently, to 180◦ disclination). A similar result has been recently obtained in
the framework of the gauge-theory approach [47]. Note also that localized cap
states in nanotubes have been recently studied in [49].

It is interesting to note that the problem of specific electronic states at the
Fermi level due to disclinations is similar to that of the fermion zero modes
for planar systems in a magnetic field. Generally, zero modes for fermions in
topologically nontrivial manifolds have been of current interest both in the
field theory and condensed matter physics. As was revealed, they play a major
role in getting some insight into understanding anomalies [50] and charge
fractionalization that results in unconventional charge–spin relations (e.g., the
paramagnetism of charged fermions) [51] with some important implications for
physics of superfluid helium (see, e.g., review [52]). Three-dimensional space-
time Dirac equation for massless fermions in the presence of the magnetic field
was found to yield N − 1 zero modes in the N -vortex background field [53].
As shown in [44], the problem of the local electronic structure of fullerene
is closely related to Jackiw’s analysis [53]. The importance of the fermion
zero modes was also discussed in the context of the high-temperature chiral
superconductors [54–56].

4.3.1 Theory: Basic Assumptions

Investigation of the electronic structure requires formulating a theoretical
model describing electrons on arbitrary curved surfaces with disclinations
taken into account. An important ingredient of this model can be provided
by the self-consistent effective-mass theory describing the electron dynamics
in the vicinity of an impurity in graphite intercalation compounds [57]. The
most important fact found in [57] is that the electronic spectrum of a single
graphite plane linearized around the corners of the hexagonal Brillouin zone
coincides with that of the Dirac equation in (2+1) dimensions. This find-
ing stimulated formulation of some field-theory models for Dirac fermions on
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hexatic surfaces to describe electronic structure of variously shaped carbon
materials: fullerenes [44], nanotubes [45,49], and cones [21,22].

The effective-mass theory for a 2D graphite lattice is equivalent to the k ·p
expansion of the graphite energy bands about the K point in the Brillouin
zone when the intercalant potential is equal to 0. In fact, there are two kinds
of sublattice points in a unit cell (two degenerate Bloch eigenstates at K) and
the electron wave function can therefore be approximated by

Ψ(k, r) = f1(κ)eiκrΨS
1 (K, r) + f2(κ)eiκrΨS

2 (K, r),

where k = K + κ. Keeping the terms of the order of κ in the Schrödinger
equation results in a secular equation for the amplitudes f1,2(κ), which after
diagonalization finally yields the 2D Dirac equation (see, for details, Ref. [57])

iγµ∂µψ(r) = Eψ(r). (4.2)

Here γµ are the Dirac matrices that in 2D reduce to the conventional Pauli
matrices, the energy E is measured relative to the Fermi energy, and the two-
component wave function ψ represents two graphite sublattices. As mentioned
in [57], the k · p approximation essentially amounts to replacing the graphite
bands by conical dispersions at the Fermi energy.

For our purpose, we need a generalization of (4.2) incorporating both a
disclination field and a nontrivial background geometry. A possible descrip-
tion of disclinations on arbitrary 2D elastic surfaces is offered by the gauge
approach [58]. In accordance with the basic assumption of this approach,
disclinations can be incorporated in the elasticity theory Lagrangian by intro-
ducing a compensating U(1) gauge fields Wµ. It is important that the gauge
model admits exact vortex-like solutions for wedge disclinations [58], thus rep-
resenting a disclination as a vortex of elastic medium. The physical meaning of
the gauge field is that the elastic flux due to rotational defect (which is directly
connected with the Frank vector (see Sect. 4.1)) is completely determined by
the circulation of the Wµ field around the disclination line. In the gauge theory
context, the disclination field can be straightforwardly incorporated in (4.2)
by the standard substitution ∂µ = ∂µ − iWµ.

Within the linear approximation to gauge theory of disclinations (which
amounts to the conventional elasticity theory with linear defects), the basic
field equation that describes the U(1) gauge field in a curved background is
given by

DµFµk = 0, Fµk = ∂µW k − ∂kWµ, (4.3)

where covariant derivative Dµ := ∂µ + Γµ involves the Levi-Civita (torsion-
free, metric compatible) connection

Γ k
µλ := (Γµ)k

λ =
1
2
gkl

(
∂glλ

∂xµ
+

∂gµl

∂xλ
− ∂gµλ

∂xl

)
(4.4)

with gµk being the metric tensor on a Riemannian surface Σ with local coor-
dinates xµ = (x1, x2). For a single disclination on an arbitrary elastic surface,
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a singular solution to (4.3) is found to be [58]

W k = −νεkλDλG(x, y), (4.5)

where
DµDµG(x1, x2) = 2πδ2(x1, x2)/

√
g, (4.6)

with εµk =
√

gεµk being the fully antisymmetric tensor on Σ, ε12 = −ε21 = 1.
It should be mentioned that (4.3)–(4.6) self-consistently describe a defect lo-
cated on an arbitrary surface [58].

To describe fermions in a curved background, we need a set of orthonormal
frames {eα}, which yield the same metric, gµν , related to each other by the
local SO(2) rotation,

eα → e′α = Λβ
αeβ , Λβ

α ∈ SO(2).

It then follows that gµν = eα
µeβ

ν δαβ , where eµ
α is the zweibein, with the ortho-

normal frame indices being α, β = {1, 2}, and coordinate indices µ, ν = {1, 2}.
As usual, to ensure that physical observables are independent of a particular
choice of the zweinbein fields, a local SO(2) valued gauge field ωµ must be
introduced. The gauge field of the local Lorentz group is known as the spin
connection. For the theory to be self-consistent, the zweibein fields must be
chosen to be covariantly constant [59]:

Dµeα
ν := ∂µeα

ν − Γλ
µνeα

λ + (ωµ)α
βeβ

ν = 0,

which determines the spin connection coefficients explicitly

(ωµ)αβ = eα
ν Dµeβν . (4.7)

Finally, the Dirac equation (4.2) on a surface Σ in the presence of the U(1)
external gauge field Wµ is written as

iγαe µ
α (∇µ − iWµ)ψ = Eψ, (4.8)

where ∇µ = ∂µ + Ωµ with

Ωµ =
1
8
ωα β

µ [γα, γβ ] (4.9)

being the spin connection term in the spinor representation.
Note that the general analytical solution to (4.8) is known only for chosen

geometries. One of them is the cone [21, 22]. For the sphere and the hyper-
boloid, which are of interest here, some approximations were used. In par-
ticular, asymptotic solutions at small r (which allow us to study electronic
states near the disclination line) were considered in [47]. For this reason, the
numerical calculations for all three geometries were performed in [60]. The
results of both analytical and numerical studies are presented in Sects. 4.2
and 4.3.
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4.4 Spherical Molecules

4.4.1 The Model

To describe a sphere, we employ the polar projective coordinates x1 = r,
x2 = ϕ; 0 ≤ r < ∞, 0 ≤ ϕ < 2π with R being the radius of the sphere. In
these coordinates, the metric tensor becomes

grr = 4R4/(R2 + r2)2, gϕϕ = 4R4r2/(R2 + r2)2, grϕ = gϕr = 0, (4.10)

so that √
g :=

√
det ||gµν || = 4R4r/(R2 + r2)2.

Nonvanishing connection coefficients (4.4) take the form

Γ r
rr = − 2r

R2 + r2
, Γ r

ϕϕ = −r
R2 − r2

R2 + r2
, Γϕ

rϕ =
1
r

R2 − r2

R2 + r2
,

and the general representation for the zweibeins is found to be

e1
r = e2

ϕ = 2R2 cos ϕ/(R2 + r2), e1
ϕ = −e2

r = −2R2 sin ϕ/(R2 + r2),

which in view of (4.7) gives

ω12
r = ω21

r = 0, ω12
ϕ = −ω21

ϕ = 2r2/(R2 + r2) =: 2ω. (4.11)

The following solution to (4.5) and (4.6) can be easily found

G = log r; Wr = 0, Wϕ = ν, r 
= 0.

Locally, it describes a topological vortex on the Euclidean plane, which con-
firms the observation that disclinations can be viewed as vortices in elastic
media. Note that the elastic flux is actually characterized by the Frank vector
ω, |ω| = 2πν with ν being the Frank index. The elastic flow through a surface
on the sphere is given by the circular integral

1
2π

∮
Wdr = ν.

Generally, there are no restrictions on the value of the winding number ν
apart from ν > −1 for topological reasons. This means that the elastic flux
is “classical” in its origin; i.e., there is no quantization (in contrast to the
magnetic vortex). However, if we take into account the symmetry group of
the underlying crystal lattice, the possible values of ν become “quantized”
in accordance with the group structure (e.g., ν = 1/6, 1/3, 1/2, ... for the
hexagonal lattice). It is interesting to note that in some physically interesting
applications vortices with the fractional winding number have already been
considered (see, e.g., the discussion in [54]). Note also that a detailed theory
of magnetic vortices on a sphere has been presented in [61].
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In 2D, the Dirac matrices can be chosen as the Pauli matrices: γ1 = −σ2,
γ2 = σ1 and (4.9) reduces to

Ωϕ = iωσ3. (4.12)

As a result, the Dirac operator D̂ := iγαe µ
α (∇µ + iWµ) on the two-sphere

becomes

D̂ = D̂† =
r2 + R2

2R2

[
0 e−iϕ(−∂r + i∂ϕ+ν

r + ω
r )

eiϕ(∂r + i∂ϕ+ν
r − ω

r ) 0

]
. (4.13)

For massless fermions σ3 serves as a conjugation matrix, and the energy
eigenmodes are symmetric with respect to E = 0 (σ3ψE = ψ−E). The gener-
ator of the local Lorentz transformations Λβ

α ∈ SO(2) takes the form −i∂ϕ,
whereas that of the Dirac spinor transformations ρ(Λ) is

Σ12 =
i
4
[γ1, γ2] =

1
2
σ3.

The total angular momentum of the 2D Dirac system is therefore given by

Lz = −i∂ϕ +
1
2
σ3,

which commutes with the operator (4.13). Consequently, the eigenfunctions
are classified with respect to the eigenvalues of Jz = j+1/2, j = 0,±1,±2, ...,
and are to be taken in the form

ψ =
(

u(r)eiϕj

v(r)eiϕ(j+1)

)
. (4.14)

As follows from (4.13) the spin connection term can be taken into account
by redefining the wave function as

ψ = ψ̃
√

R2 + r2, (4.15)

which reduces eigenvalue problem (4.8) to

∂rũ − (j − ν)
r

ũ = Ẽṽ,

−∂rṽ − (j + 1 − ν)
r

ṽ = Ẽũ, (4.16)

where Ẽ = 2R2E/(R2 + r2).
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4.4.2 Extended Electron States

Let us consider an approximate solution to (4.16). The point is that, because
we are mainly interested in electronic states near the disclination line, we can
restrict our consideration to the case of small r. In this case, a solution to
(4.16) (with (4.15) taken into account) is found to be(u

v

)
= A

(
Jη(2Er)
±Jη̄(2Er)

)
, (4.17)

where η = ±(j − ν), η̄ = ±(j − ν + 1), and A is a normalization factor.
Therefore, there are two independent solutions with η(η̄) > 0 and η(η̄) < 0.
Note that respective signs ± in (4.17) correspond to states with E > 0 and
E < 0. As noted already, σ3 serves as the conjugation matrix for massless
fermions, and the energy eigenmodes are symmetric with respect to E = 0.
One can therefore consider either case, for instance, E > 0.

The important restrictions come from the normalization condition∫
(|u|2 + |v|2)√g dx1 dx2 = 1. (4.18)

From (4.17), it follows that A2 ∼ E. On the other hand, the integrand in (4.18)
must be nonsingular at small Er. This imposes a restriction on possible values
of j. Namely, for η, η̄ > 0 one obtains j − ν > −1/2, and for η, η̄ < 0 one has
j − ν < −1/2. As seen here, possible values of j do not overlap at any ν.

In the vicinity of a pentagon, the electron wave function reads(u

v

)
∼
(

E1/2+ηrη,

E1/2+η̄rη̄

)
. (4.19)

In particular, in the leading order, one obtains Ψ ∼
√

E, Ψ ∼ E1/3r−1/6, and
Ψ ∼ E1/6r−1/3 for ν = 0,1/6,1/3, respectively. Because the local density of
states diverges as r → 0, it is more appropriate to consider the total density of
states (DOS) on a patch 0 < r ≤ δ for small δ, rather than the local quantities.
For this, the electron density should be integrated over a small disk |r| < δ
(recall that r, ϕ are stereographically projected coordinates on the sphere).
The result is

D(E, δ) ∝

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(Eδ)δ, ν = 0;

(Eδ)2/3δ, ν = 1/6, 5/6;

(Eδ)1/3δ, ν = 1/3, 2/3;

δ, ν = 1/2.

(4.20)

For the defect-free case (ν = 0) we obtain the well-known behavior of the
DOS in the δ disk given by D(E, δ) ∼ Eδ2 (in accordance with the previous
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analysis [57]). For ν = 1/6, 1/3, 2/3, 5/6, the low-energy total DOS has a cusp
that drops to 0 at the Fermi energy. Most intriguing is the case where ν = 1/2
and a region of a nonzero DOS across the Fermi level is formed. This implies
local metallization of graphite in the presence of 180◦ disclination. In the
fullerene molecule, however, there are twelve 60◦ disclinations, and therefore,
the case ν = 1/6 is actually realized.

4.4.3 Numerical Results

The numerical calculations for the case of sphere a are presented in a recent
paper [60]. As a starting point, the analytical asymptotic solutions found in
Sect. 4.2 are considered. The initial value of the parameter r is defined as
r = 10−4. It is worth noting that the choice of the boundary conditions does
not influence the behavior of the calculated wave functions and only the start-
ing point depends on it. A dimensionless substitution x = Er is used. The
normalized numerical solutions to (4.16) are given in Fig. 4.7. The parameters
are chosen to be E = 0.01 and R = 1. Note that here we present the solutions
for dotted values v′(= ṽ) and u′′(= ũ). The local DOS is shown schematically
in Figs. 4.8 and 4.9 for different n. Note that Fig. 4.9 also describes the de-
pendence of the local DOS on a position of the maximum value of integrand
in (4.18)(which actually characterizes the numerically calculated localization
point of an electron).

Here and below δ = 0.1. Note that in fact the choice of the value of δ
does not influence the characteristic behavior of LDOS. As seen earlier, the
DOS has a cusp that drops to 0 at the Fermi energy. The case n = 3 becomes
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distinguished. Let us emphasize once more that in the fullerene molecule there
are twelve 60◦ disclinations, so that the case n = 1 is actually realized.

4.4.4 Zero-Energy Modes

An interesting issue to be addressed is the existence of zero-energy modes.
For the two sphere, this problem can be solved exactly (see [44,53]). Namely,
for E = 0, (4.16) reduces to

∂rũ0 −
(j − ν)

r
ũ0 = 0,

−∂rṽ0 −
(j + 1 − ν)

r
ṽ0 = 0. (4.21)

One can construct self-conjugate solutions
(
ũ0
0

)
and

(
0
ṽ0

)
where

ũ0 = Arj−ν , ṽ0 = Ar−(j−ν+1). (4.22)

The normalization condition∫
|ψ0|2

√
g dr dϕ = 1 (4.23)

yields

2πA2

∫ ∞

0

4R4r2l

R2 + r2
r dr = 1, (4.24)

where l = j − ν for u0 and l = −(j − ν + 1) for v0. Finally, A2 =
sin πη̄/4π2R2(1+η̄) for u0 and A2 = − sin πη/4π2R2(1−η) for v0, respectively.
Note that the restriction −1 < j − ν < 0 serves to avoid divergence in (4.23).
In the defect-free case (ν = 0), this yields no zero modes on a sphere. Note
that this agrees with a general observation that the Dirac operator can have
no zero modes on a manifold with an everywhere positive Ricci scalar curva-
ture R. Indeed, one easily obtains D̂2 = ∆+R/4, where the Laplace–Beltrami
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operator ∆ has non-negative eigenvalues. For the two-sphere R = 1/R2, and
therefore, D̂2 > 0.

For ν = 1/6, which is of our interest here, the only possible value of
j is j = 0, so that u0 ∼ r−1/6 and v0 ∼ r−5/6 near the disclination line.
Thus, our analysis shows that two normalizable zero modes can exist on a
sphere in the presence of a disclination vortex. Let us note that this conclusion
agrees with [43] (where different continuum model was formulated) and differs
from [44,53] where either u0 or v0 was found to be normalizable. The reason
is that in [44, 53] the external gauge field was assumed to be well behaved at
the origin whereas here singular solutions are also admitted.

The total DOS on a patch 0 < r ≤ δ becomes

D(δ) ∝

⎧⎪⎪⎨⎪⎪⎩
δ1/3, ν = 1/6, 5/6;

δ2/3, ν = 1/3, 2/3;

δ, ν = 1/2.

(4.25)

As seen here, this behavior differs from (4.20) thus allowing to recognize the
zero-eigenvalue states in experiments.

4.5 Nanocones

4.5.1 The Model

In the polar coordinates (r, ϕ) ∈ R2 a cone can be regarded as an embedding

(r, ϕ) → (ar cos ϕ, ar sin ϕ, cr), 0 < r < 1, 0 ≤ ϕ < 2π,

with a and c being the cone parameters. From this, the components of the
induced metric can be easily read:

grr = a2 + c2, gϕϕ = a2r2, grϕ = gϕr = 0. (4.26)

The opening angle of a cone, θ, is determined by sin(θ/2) = a/
√

a2 + c2.
Because the cone itself appears when one or more sectors are removed from
graphene, all possible angles are divisible by π/3. Therefore, the Frank index
of the apical disclination can be specified by ν = 1 − sin(θ/2). At ν = 0 one
gets a flat graphene sheet (θ = π). For convenience, we introduce a parameter
ξ = 1 + c2/a2, so that sin(θ/2) = 1/

√
ξ and 1/

√
ξ = 1 − ν.

Nonvanishing connection coefficients (4.4) are now given by

Γ r
ϕϕ = −r/ξ, Γϕ

rϕ = Γϕ
ϕr = 1/r.

The general representation for the zweibeins is found to be

e1
r = a

√
ξ cos ϕ, e1

ϕ = −ar sin ϕ, e2
r = a

√
ξ sin ϕ, e2

ϕ = ar cos ϕ,
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which in view of (4.7) gives

ω12
r = ω21

r = 0, ω12
ϕ = −ω21

ϕ = 1 − 1/
√

ξ =: 2ω. (4.27)

The external gauge potential is then found to be Wr = 0, Wϕ = ν, and the
Dirac operator on the cone takes the form

D̂ =

⎡⎣ 0 e−iϕ
(
− ∂r√

a2+c2 + 1
ar (i∂ϕ + ν + ω)

)
eiϕ

(
∂r√

a2+c2 + 1
ar (i∂ϕ + ν − ω)

)
0

⎤⎦ .

Making the substitution

ψ = ψ̃rα, α =
√

ξω,

one reduces the eigenvalue problem (4.8) to

∂rũ −
√

ξ

r
(j − ν)ũ = Ẽṽ,

−∂rṽ −
√

ξ

r
(j + 1 − ν)ṽ = Ẽũ, (4.28)

where Ẽ =
√

ξaE.

4.5.2 Electron States

Unlike the previous case of the two sphere, the cone is essentially a flat man-
ifold (the scalar curvature R = 0 everywhere on the cone, except for the
origin), and as a result, (4.28) allows an exact solution. Namely, the general
solution to (4.28) is found to be [22](

ũ

ṽ

)
= Ar−α

(
Jη(Ẽr)
±Jη̄(Ẽr)

)
, (4.29)

where η = ±(
√

ξ(j − ν + 1/2) − 1/2), and η̄ = ±(
√

ξ(j − ν + 1/2) + 1/2).
As earlier, we consider the case where E > 0. Normalization condition (4.18)
takes the form

2π
√

ξa2A2

∫ 1

0

(J2
η (Ẽr) + J2

η̄ (Ẽr))r dr = 1. (4.30)

The normalization factor can be extracted from the asymptotic formula for
Bessel functions at large arguments. Indeed, in our case, η̄ − η = 1 so that
J2

η + J2
η̄ → 2/πẼr for Ẽr � 1. Substituting this in (4.30) yields A2 = E/4a.

Clearly, (4.30) must be nonsingular at small r. This imposes a restriction on
possible values of j. Namely, for η, η̄ > 0 one gets j > −1 (i.e., j = 0, 1, 2, ...)
while for η, η̄ < 0 one has j < −2ν (j = −1,−2, ... at ν < 1/2).
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We are interested in the electron states near the apex of a cone. As it
follows directly from (4.29), for small r the wave functions behave as(u

v

)
∼
(

E1/2+ηrη

E1/2+η̄rη̄

)
. (4.31)

In the leading order, one obtains

Ψ̃ ∼ E(1−2ν)/2(1−ν)r−ν/(1−ν).

In particular, we obtain Ψ̃ ∼
√

E, Ψ̃ ∼ E2/5r−1/5, and Ψ̃ ∼ E1/4r−1/2 for
ν = 0, 1/6, 1/3, respectively.

Finally, the total DOS on the patch 0 < r ≤ δ is found to be

D(E, δ) ∝
{

E(1+2ν)/(1−ν)δ(ν+2)/(1−ν), η, η̄ > 0;
E(1−2ν)/(1−ν)δ(2−3ν)/(1−ν), η, η̄ < 0.

(4.32)

It should be stressed that, according to (4.32), a specific behavior of
D(E, δ) occurs only for ν = 1/2 where D ∼ E0δ. This agrees with the finding
in [23], where the prominent peak just above the Fermi level was found for the
nanocone with three symmetric pentagons (180◦ disclination). In the leading
order, it follows from (4.32) that

D(E, δ) ∝

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Eδ2, ν = 0;

E4/5δ9/5, ν = 1/6;

E1/2δ3/2, ν = 1/3;

δ, ν = 1/2.

(4.33)

As seen here, the extended states with a nonzero DOS at EF appear only at
ν = 1/2.

To examine the electron states at the Fermi energy, one has to return to
(4.28) and set E = 0. The solution reads

u0 = Ar−
1
2+j̃

√
ξ, v0 = Br−

1
2−j̃

√
ξ, (4.34)

where j̃ = j − ν + 1/2. A simple analysis shows that for j = 0 both u0 and v0

are normalizable on the cone of a finite size. Both solutions are singular. For
ν = 1/6 one gets |u0|2 ∼ r−1/5/a2 and |v0|2 ∼ r−9/5/a2. For any other j, either
u0 or v0 is found to be normalizable and the solutions become nonsingular.
As before, for singular states one can consider the total DOS. It is easy to
find that D ∼ δ1/5 for u0 and D ∼ δ9/5 for v0. This result differs from [48]
where, although in a different framework, the states on a finite cone with
a single-pentagon defect have been found at the Fermi energy (these states
decay away from the apex as |ψ|2 ∼ r−2/5). At the same time, our study
confirms the principal conclusion in [48,62] that the states contributing to the
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Fig. 4.11. Schematic densities of states near the Fermi energy in the case of cone

nonzero DOS at the Fermi energy exhibit a power-law behavior for a single-
pentagon defect. Note also that in a monolayer graphite of infinite length
(a → ∞) there are no zero-energy electronic states on a single disclination. It
should be emphasized that this conclusion agrees with the results of numerical
calculations [62] where the local DOS at the Fermi level was found to be 0 for
five-membered rings (pentagons). Note also that for ν = 1/2, D ∼ δ for both
u0 and v0.

4.5.3 Numerical Results

It is interesting to present the results of numerical calculations [60]. The nor-
malized numerical solutions to (4.28) for different n are shown in Fig. 4.10.
The parameters are chosen to be E = 0.01, a = 1, and c = 1. The “total”
DOS near the Fermi energy for the case of the cone is illustrated schematically
in Fig. 4.11.

One can see that the “total” DOS has a cusp that drops to 0 at the Fermi
energy. It should be stressed that a specific behavior takes place only for n = 3
where a nonzero DOS near the Fermi energy is found.

4.6 The Geometry of Hyperboloid

4.6.1 The Model

The upper half of a hyperboloid can be regarded as the embedding

(χ,ϕ) → (a sinh χ cos ϕ, a sinh χ sin ϕ, c cosh χ), 0 ≤ χ < ∞, 0 ≤ ϕ < 2π,
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From these, the components of the induced metric can be obtained as

gχχ = a2 cosh2 χ + c2 sinh2 χ, gϕϕ = a2 sinh2 χ, gϕχ = gχϕ = 0, (4.35)

which, for the nonvanishing connection coefficients, yields

Γχ
χχ =

(a2 + c2) sinh 2χ
2gχχ

, Γχ
ϕϕ = −a2 sinh 2χ

2gχχ
, Γϕ

ϕχ = Γϕ
χϕ = coth χ.

(4.36)

In a rotating SO(2) frame, the zweibeins become

e1
χ =

√
gχχ cos ϕ, e2

χ =
√

gχχ sin ϕ, e1
ϕ = −a sinhχ sin ϕ, e2

ϕ = a sinhχ cos ϕ,
(4.37)

which in view of (4.7) gives the spin connection coefficients

ω12
χ = ω21

χ = 0, ω12
ϕ = −ω21

ϕ =
1
2

[
1 − a cosh χ

√
gχχ

]
=: ω, (4.38)

and therefore,
Ωϕ = iωσ3. (4.39)

The external gauge potential in this case is found to be Wχ = 0, Wϕ = ν,
and the Dirac operator on the hyperboloid takes the form

D̂ =

⎡⎣ 0 e−iϕ
(
− ∂χ√

gχχ
+ 1

a sinh χ (i∂ϕ + ν + ω)
)

eiϕ
(

∂χ√
gχχ

+ 1
a sinh χ (i∂ϕ + ν − ω)

)
0

⎤⎦ .

It can be verified that D̂ = D̂†.
The substitution

ψ̃ = ψ
√

sinhχ

reduces the eigenvalue problem (4.8) to

∂χũ −
√

coth2 χ + b2 j̃ũ = Ẽṽ,

−∂χṽ −
√

coth2 χ + b2 j̃ṽ = Ẽũ, (4.40)

where Ẽ = √
gχχ E, b = c/a, and j̃ = j − ν + 1/2.

4.6.2 Electron States

To study electronic states on the hyperboloid one has to analyze (4.40). As for
the sphere, let us consider the behavior of the electron states near the apex,
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which is the case of small χ. One obtains

∂χũ − j̃

χ
ũ = Eaṽ,

−∂χṽ − j̃

χ
ṽ = Eaũ (4.41)

with the obvious solution

ũ = A
√

EaχJ|j−ν|(Eaχ), ṽ = A
√

EaχJ|j−ν+1|(Eaχ).

As seen here, this is exactly the case of a sphere, which should not be sur-
prising, because these two manifolds are locally diffeomorphic. Evidently, the
“total” (on the disk |r| < δ) DOS is the same as on the sphere. However, for
hyperboloid the problem is more intricate due to the requirement to fulfill the
normalization condition (see the numerical calculations given later).

An interesting situation arises for the zero-energy solution. Let us consider
the zero-energy modes setting E = 0 in (4.41). The general solution is found
to be

ũ(χ) = A

[
(k cosh χ + ∆)2k ∆ − cosh χ

∆ + cosh χ

] j̃
2

,

ṽ(χ) = A

[
(k cosh χ + ∆)2k ∆ − cosh χ

∆ + cosh χ

]− j̃
2

, (4.42)

where k =
√

1 + b2, ∆ =
√

1 + k2 sinh2 χ. An important restriction comes
from the normalization condition, which on a finite hyperboloid yields j̃ >
−1/2 for u(χ) and j̃ < 1/2 for v(χ). One can see that for −1/2 < j̃ < 1/2 both
u(χ) and v(χ) are normalizable simultaneously. For the zero-energy mode, the
total DOS on a finite hyperboloid is found to be the same as on the sphere
(see (4.25)).

Although the local electronic structures are similar on the hyperboloid
and the sphere, there is a principal global distinction. In proving this, let
us consider an unbounded hyperboloid (full locus). In this case, one has to
take into account additional restrictions at the upper limit of the integral in
(4.18). One obtains −1/2 < j̃ < −1/2k for u(χ) and 1/2k < j̃ < 1/2 for v(χ).
Thus, either u(χ) or v(χ) becomes normalizable on the hyperboloid of infinite
volume. One can see that as (c/a) → 0 a normalizable solution does not
exist. In fact, under this condition the hyperboloid changes over to a plane.
Consequently, our results are in accordance with the planar case. The total
DOS on an infinite hyperboloid for a variety of defects is as follows:

D(δ) ∝
{

δ1/3, ν = 1/6, 5/6; c/a >
√

5/2,

δ2/3, ν = 1/3, 2/3; c/a > 2
√

2.
(4.43)
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Note that normalizable zero-energy states do not exist for the defect with
ν = 1/2 or for the defect-free case ν = 0. The most important conclusion
from our consideration is that there is a possibility for the true zero-mode
fermion state on the hyperboloid. As we have shown, the normalized zero-
mode states on both the sphere and the cone exist only for a finite system
size and disappear in the infinite-size limit. For an infinite hyperboloid, a
normalized zero-energy electron state can exist in the presence of a disclination
flux.

4.6.3 Numerical Results

A more clear difference comes from the numerical study. The results of the
numerical calculations are shown in Fig. 4.12 where the parameters are chosen
to be E = 0.01, a = 1, and c = 1. Note that the starting point in this case
was chosen to be y = 0.01. As can be seen, for the hyperboloid the electron
eigenfunctions behave similar to the sphere near the disclination line and
differ remarkably at large distances. In addition, there is a problem with the
normalization of the solution for hyperboloid. Actually, the integrand is found
to be constantly growing with increasing parameter y. Due to this problem
(coming from the hyperboloid geometry itself) it is impossible to perform
numerical calculations of the DOS.

To compare the behavior of the solutions u(u′) for every kind of the geome-
tries the combined pictures are shown in Fig. 4.13 for n = 1, 2. It can be seen
that the solutions for the sphere and the hyperboloid have a similar behavior
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near the disclination line at small x(y), as already discussed. Let us note that
the solution for u(u′) is found to be of the decisive importance in the final
results for all three geometries, which is consistent with the previous analyti-
cal results. The choice of the parameters (R, c, a) does not influence the main
characteristics of the calculated wave functions.

In summary, the numerical calculations confirm the finding that the pen-
tagonal defects in graphite nanoparticles markedly modify the low-energy elec-
tronic structure. This is evident from both the exact form of wave functions
and the local density of electron states. As seen from Fig. 4.9, in the case of
the sphere the local DOS increases with a distance from the disclination line
for defects with n = 1, 2. The low-energy total DOS has a characteristic cusp
at the Fermi energy for any number of pentagons except n = 3, where the
enhanced charge density at the Fermi energy is found.

4.7 Conclusions

There are many interesting applications of geometrical and topological meth-
ods to actual problems of modern condensed matter physics. As shown earlier,
the physics of carbon nanoparticles is one of the striking examples. The geom-
etry and topology is found to influence the main physical characteristics of
graphite nanoparticles, first of all, their electronic properties. The topological
defects (disclinations) appear as generic defects in closed carbon structures.
For 180◦ disclination (three pentagons), the electronic DOS is found to be re-
markably increased. Physically this means local metallization, thus suggesting
some important applications of nanocone-based structures in microelectronic
devices. First of all, such a remarkable increase of the DOS must provoke
the corresponding enhancement of the field emission current, thereby decreas-
ing the threshold voltage for emitted electrons. It should be noted that this
conclusion agrees well with the results in [23], where the prominent peak ap-
pearing just above the Fermi level was established in a nanocone with three
pentagons at the apex. It was proposed that such peculiar nanocones are good
candidates for nanoprobes in scanning probe microscopy and excellent can-
didates for field-emission devices. As mentioned in [23], the nanocones with
free pentagons at the tip have the highest probability of nucleation and are
frequently observed [16]. It is expected that localized states at the Fermi level
may give rise to materials with novel electronic and magnetic properties.

It should be emphasized that a large variety of closed graphitic structures
is generally expected to be produced. Therefore, the theoretical study of vari-
ous topologically nontrivial objects as well as of topological defects in graphite
and other materials is of great importance. There is reason to believe that ap-
plication of geometrical and topological methods to condensed matter physics
will result in considerable progress in the near future.
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Physics from Topology and Structures

J. Yi

Summary. This chapter reviews physical properties resulting from topology, taking
representative systems whose space of topological origin is presented. In addition,
we review Josephson junction and one-dimensional conductors described by the
collective degrees of freedom, that is, phase variables defined on a compact interval.
Then the Shapiro steps in Josephson junctions and the Aharonov–Bohm effects
by instanton tunneling are discussed. Various quantum phases defined on a closed
path in real space are introduced, and as their well-known demonstration, persistent
currents are discussed. Finally, we introduce carbon nanotubes where genuine lattice
structures together with the topology define their electric properties.

5.1 Introduction

In condensed matter physics, one can easily note that the main stream runs
with, so to say, a dirty spinnaker—randomness, disorder, frustration, and
chaos. Whereas one may think of high-energy terminology, unification, charm,
beauty, and supersymmetry (we are often interested even in symmetry break-
ing!), dirty systems could rather discourage a freshman in graduate school
from choosing her or his major in condensed matter physics. Yet, here is a
fact that we should not overlook : the best precision comes from dirty systems.
In the presence of strong magnetic fields, Hall resistance has been observed
to be quantized in units of h/2e2 with an accuracy in a few parts per million.
The accuracy of the quantum Hall effect (QHE) is indeed so impressive that it
is used as a resistance standard. One may ask “why so accurate?” Instead of
a detailed discussion (that is presented in Sect. 5.2), we merely answer that it
is a consequence of nontrivial topology robust to any external perturbations,
unlike symmetry that is easily broken.

To appreciate what nontrivial topology stands for, we draw attention to
the question: how many Ts in TOPOLOGY? At first glance, one can answer
1, which is, of course, not the right answer in the view of topology—often
called rubber geometry. Allowing deformation of the characters, we have four
Ts by spreading the two upper branches of Y to form a π-angle, unfolding the
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arc of G, and stretching the tiny head decoration of L, for example. On the
other hand, O or P cannot fall into the “T” group, and nor, be deformed into
a single point via continuous transformation. Such noncontractible geometries
are referred to as nontrivial (or nonsimply connected) topology.

This chapter addresses representative systems having characteristic prop-
erties resulting from topology. We organize this chapter according to the space
embedding the topology; (i) momentum space; (ii) phase space; and (iii) real
space. For (i), QHE and its topological origin are presented in Sect. 5.2. For
(ii), Sects. 5.3 and 5.4 review Josephson junction (JJ) and one-dimensional
conductors described by the collective degrees of freedom, respectively, that
is, phase variables defined on a compact interval. For an introduction to topo-
logical aspects, the Shapiro steps in JJs and the Aharonov–Bohm (AB) effects
by instanton tunneling are discussed. Section 5.5 is devoted to introducing
various quantum phases defined on a closed path in real space. Quantum
phases that can alter the ground state properties of small-scaled conductors,
whereby currents can flow eternally (if without dissipation), namely the per-
sistent currents, in the system are also discussed. In Sect. 5.6, we introduce
carbon nanotubes where a genuine lattice structure together with the topol-
ogy defines the electric properties. We also study how a tiny change in the
windings of hexagons along the tube can transform the tube metallic into
a large-gap semiconductor. Furthermore, an even more transparent view of
the role of topology can be made in transport properties through a carbon
nanotube torus.

5.2 Quantum Hall Effect

One of the most significant discoveries in the 1980s was QHE [1]. Normally
in solid state experiments, scattering processes introduce enough uncertainty,
so that most results have error bars of several percentages. For example, the
conductance of a ballistic conductor has been shown to be quantized in units
of h/2e2. However, this is true as long as we are not bothered by deviations
of a few percentages since real conductance is usually not truly ballistic. On
the other hand, in the presence of strong magnetic fields, the Hall resistance
has been observed to be quantized in units of h/2e2 with an accuracy in a few
parts per million.

This impressive accuracy arises from the nearly complete suppression of
momentum relaxation processes in the quantum Hall regime, resulting in a
truly ballistic conductor. This is achieved because at high magnetic fields the
electronic states carrying current in one direction are localized on one side of
the sample, while those carrying current in other direction are localized on the
other side. Due to the formation of this divided highway, there is hardly any
overlap between the two groups of states and hence back scattering cannot
take place even though impurities are present in the system. In this section
we give a general discussion of the two-dimensional electron gas (2DEG) in
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a magnetic field, including the integer quantum Hall effect (IQHE) and its
topological origin.

We consider noninteracting electrons moving on a (x − y) plane in the
presence of magnetic field B = Bẑ. We take the vector potential of the form
A = Byx̂ so that the time-independent Schrödinger equation can be written
as [

1
2m

(
px +

eB

c
y

)2

+
p2

y

2m

]
Ψ(x, y) = EΨ(x, y). (5.1)

Note that the choice of the vector potential is not unique for the given mag-
netic field: for instance, we could choose Ax = 0 and Ay = −Bx. The solution
would then look very different although the physics must remain the same.
With the translational invariance along x-direction in (5.1), we can express the
solution in the form of plane waves, Ψ(x, y) = e−ikxχ(y), where the transverse
function satisfies the equation[

− �2

2m

∂2

∂y2
+

1
2
mω2

c (y − yk)2
]

χ(y) = Eχ(y). (5.2)

Here we have defined the cyclotron frequency ωc ≡ |e|B/mc and yk ≡
c�k/|e|B. In fact, (5.2) is simply a one-dimensional Schrödinger equation of a
harmonic oscillator centered at yk. So, it is easy to get the well-known eigenen-
ergies and eigenfunctions: En = (n+1/2)�ωc and χn,k = e(q−qk)2/2Hn(q−qk),
with Hn(q) being the nth Hermite polynomial, and q ≡

√
mωc/�y. These

energy levels En with different values of n are referred to as the Landau
levels. Although the eigenfunctions have the form of plane waves, these
waves have no group velocity because the energy is independent of k. If
we were to construct a wavepacket out of these localized states, it would
not move. This keeps parallel with what we would expect from classical dy-
namics, which predicts that an electron in a magnetic field is described by
the closed orbit not moving in any particular direction. Further, the spatial
extent of each eigenfunction in the y-direction is approximately

√
�/mωc,

which is equal to the radius of the classical orbit if the energy of the electron
is �ωc/2.

One question that often comes up is: how many electrons can fit into one
Landau level? We can obtain the answer to the question by noting that the
allowed values of k are spaced by 2π/Lx with Lx being the length of the plane
in the x-direction, which means that the corresponding wavefunctions are
spaced by ∆yk = 2π�c/|e|BLx along the y-direction with the spatial extent
Ly. Hence the total number of states is given by N = 2Ly/∆yk = |e|BS/π�c,
where factor 2 accounts for the spin states and S is the sample area (S =
LxLy).

After these preliminaries we now turn to the Hall effect by starting with
a brief account of its conventional (classical) theory. Consider a slab of con-
ducting material in crossed electric and magnetic fields, E = Eŷ and B = Bẑ,
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where voltage is induced in the direction orthogonal to the crossed fields,
as manifested by an induced current flowing in that direction, i.e., the Hall
current. If E = 0, the electrons move in circular orbits. The effect of the non-
vanishing E can be boosted by performing a Lorentz boost along the x-axis
with the boost velocity vD = cE/B (as E 	 B in typical experiments, so
vD 	 c). Therefore the resulting trajectories become the superpositions of the
circular and the uniform drift motions. The net current (with n being the 2D
carrier density)

JH = envD =
(enc

B

)
E,

defines the Hall conductivity σH = enc/B. In two dimensions, the ratio e2/h
has the dimension of the conductivity, and nhc/eB = ν is defined as the filling
factor of the system. We thus obtain (h/e2)σH = ν. The main features of IQHE
are the plateaus of integer values (in units of e2/h) in the Hall conductivity,
centered around the integer fillings.

The system, in which QHE shows up, may be disordered. In a perfectly
pure sample, the density of states is composed of a series of ∆-functions cen-
tered at the position of the Landau levels. On the other hand, in the presence
of impurities each Landau level is broadened into a band. In general, the local-
ized states exist near the band edge. As long as the Fermi level lies within the
tail of the localized states, there are no electron states available for contribut-
ing to conduction. On the contrary, conductivity is expected to rise sharply
when the Fermi level sweeps the new set of the extended states. This pic-
ture for the density of states explains the plateau, but it does not explain the
integer values of the Hall conductance.

Let us now have a rather detailed look at the Hall conductance obtained
through the use of the Kubo formula, which is given for an individual eigen-
states |n〉

σH,n =
i�e2

A

∑
m �=n

(vx)nm(vy)mn − (vy)nm(vx)mn

(En − Em)2
,

where A is the sample area and vnm is defined as

vnm ≡ 〈n|v|m〉

=
〈

un|
1
m

(
p + �k +

e

c
A
)
|um

〉
.

Here the Bloch function un(x) has been defined according to ψn(x) =
eik·xun(x), which leads to the expression for the x-component of vnm

(vx)nm =
En − Em

�

〈
∂un

∂kx
|um

〉
.

We thus obtain the Hall conductivity in the compact form:

σH,n =
ie2

�

∫
d2

(2π)2

[〈
∂un

∂kx
|∂un

∂ky

〉
−
〈

∂un

∂ky
|∂un

∂kx

〉]
,
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where the integration is taken over by the Brillouin zone (kx, ky) = (−π, π).
With the definition of σH,n ≡ (e2/h)C1, one can write

C1 ≡
∫

d2k

(2π)2

(
∂An

y

∂kx
− ∂An

x

∂ky

)
=

1
2π

∮
dk · An, (5.3)

where C1 is the first Chern number and An
x(y) ≡ i〈un|∂un/∂kx(y)〉 is called

Berry’s connection. The equation appears suggestive for nonsimply connected
geometry in momentum space to give nonzero values of C1: when A is a
single-valued function, C1 = 0 and thus σH = 0. Recalling that the momen-
tum space is periodically defined in the Brillouin zone, we can easily notice
that the space spanned by k is defined on a torus. In this case, C1 measures
winding numbers of the A-trajectory, where the paths can start and end at the
same point but have different windings. For a better understanding, let us lift
the (nonsimply-connected) torus to its (simply-connected) universal covering
space. Any curve on the universal covering space can be characterized by an
element (nx, ny) of the fundamental group of the torus. Here nx(y) measures
the total number of boundary crossings between the squares in the horizontal
and vertical directions, respectively.

We now discuss the effect of lattice potential, which is periodic in x
and y and takes the form V (x, y) = V1 cos(2πx/a) + V2 cos(2πy/a). In the
weak-potential limit (V 	 �ωc), the band structure deformed by the lattice
potential can be obtained within a perturbative scheme. The Schrödinger
equation can be expanded in the unperturbed basis as (E − En)Ψk =∑

k′〈n, k|V |n, k′〉Ψk′ , where Ψk is the amplitude corresponding to the state
|n, k〉 of the eigenstates of the perturbed system: Ψ〉 =

∑
k Ψk|n, k〉. For sim-

plicity, we consider the lowest Landau level (n = 0), where the matrix elements
of the periodic potential can be computed easily by using H0(x) = 1:

〈k|V (x)|k′〉 =
V1

2
e−π/2f∆k,k′

〈k|V (y)|k′〉 =
V2

2
e−π/2f (∆k,k′+2π/a + ∆k,k′−2π/a),

with f being the magnetic flux per lattice cell in units of flux quantum. Thus
we obtain the Harper equation:

Ψk−2π/a + Ψk+2π/a + V cos(2πf−1m + θ)Ψk = εΨk,

where we set k − 2πm/a ≡ fθ/a, 2V1/V2 ≡ V, and ε ≡ E − E0. The Harper
equation has been studied by a number of authors [2]. When f−1 is given
by a rational number p/q, with p and q being the relative prime integer, the
energy spectra are known to consist of q bands together with q − 1 gaps in
between. Note here that the original Brillouin zone has been reduced such that
−π/q ≤ k ≤ π/q, which reflects the formation of the superlattice consisting
of q original cells. This reduction of the Brillouin zone can be viewed as the
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. .
 .

. . .

x

y

Fig. 5.1. A trajectory defined on a torus, having three turns along the small radius
and a single turn along the large radius. The trajectory is equivalently mapped onto
the universal covering space, whereby there are three crossings in the horizontal
direction and one crossing in the vertical direction

torus perimeter along k-direction becoming π/q. When the path in (5.3) is
completed over the original Brillouin zone, the winding number becomes q (see
Fig. 5.1). This provides a topological picture of the quantized conductivity
steps whose heights vary according to the magnetic fields.

5.3 Shapiro Steps in Josephson Junctions

In this section, we give an introduction to the Josephson effect [3], a repre-
sentative macroscopic quantum system [4]. Traditionally, macroscopic systems
have been considered to behave classically. In general, a macroscopic system is
described by a few collective degrees of freedom, where a number of remaining
microscopic degrees of freedom may be regarded as the environment. Here the
coupling between the collective degree of freedom and the environmental de-
grees of freedom leads to dissipation in the system [5]. Accordingly, quantum
coherence is not usually maintained in the macroscopic system, which makes
it difficult to observe macroscopic quantum effects. Nevertheless, there do ex-
ist macroscopic quantum systems, where the coupling is too weak to destroy
quantum coherence; one of the pronounced examples being the JJ system.

JJ is a heterostructure in which a normal metal or an insulator is sand-
wiched between superconductors (SCs). As is well known, many-particle wave-
function in the SC can be written as ψ(x) = |ψ(x)|eiθ(x), where |ψ(x)|2
corresponds to the number density of Cooper pairs at x, and the phase co-
herence over the whole sample guarantees superconductivity. This makes it
possible to take ψ(x) as the superconducting order parameter in the Ginzburg–
Landau (GL) theory of superconductivity [6]. The postulate of the GL theory
is that for ψ small and varying slowly in space the free energy density F can
be expanded in the form

F = α|ψ|2 +
β

2
|ψ|4 +

1
2m∗

∣∣∣∣(�

i
− e∗

c
A
)

ψ

∣∣∣∣2 +
h2

8π2
(5.4)
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with appropriate constants α and β, where A is the vector potential corre-
sponding to the magnetic field h. The order parameter adjusts itself to mini-
mize the overall free energy given by the volume integral of (5.4), which leads
to the GL differential equation,

β|ψ|2ψ +
1

2m

(
�

i
− e∗

c
A
)2

ψ = −αψ. (5.5)

Note that this is analogous to the Schrödinger equation for a free particle, but
with the nonlinear term. The corresponding equation for the supercurrent of
the system is given as

Js =
c

2π
∇× h =

e∗�
2m∗i

(ψ∗∇ψ − ψ∇ψ∗) − e∗2

m∗c
ψ∗ψA, (5.6)

which is also the same as the usual quantum mechanical current expression
for particle of charge e∗ and mass m∗. In the theory of Bardeen, Cooper, and
Shrieffer (BCS) [7], and Gor’kov [8], it has been shown that m∗ = 2m and
e∗ = −2e, where m and −e are the mass and the charge of an electron.

We first simplify the situation by considering the case where the magnetic
fields are absent. Then we can take ψ to be real since the differential equa-
tion (5.5) has only real coefficients. If a normalized wavefunction ψ̃ ≡ ψ/ψ∞
is introduced, where ψ2

∞ = −α/β with negative α, the equation becomes, in
1D,

�2

2m∗|α|
∂2ψ̃

∂x2
+ ψ̃ − ψ̃2 = 0, (5.7)

which can yield a zero-voltage supercurrent flowing between two supercon-
ducting electrodes separated by an insulating barrier. We assume two massive
electrodes for which |ψ̃| = 1, with different phases allowed. Since the ab-
solute phase is undefined, without loss of generality we can take the phase
at each electrode to be 0 and ∆θ, respectively; here ∆θ can be regarded as
the phase difference between the two electrodes. The appropriate solution of
(5.7) in the insulating barrier matches the boundary conditions ψ̃ = 1 at
x = 0 and ψ̃ = ei∆θ at x = L with L being the barrier width. As long as
L 	 ξ(≡�2/2m∗α), the first term in (5.7) dominates the other two terms for
any nonzero ∆θ [9]. In this limit, applying the boundary conditions leads to
the solution

ψ̃ = (1 − x/L) + (x/L)ei∆θ, (5.8)

where the first term represents the spread of the order parameter from the
left superconducting electrode with phase 0, and the second represents the
spread from the right one with phase ∆θ. Inserting ψ̃ given by (5.8) into the
supercurrent expression, we obtain

Is = Ic sin ∆θ,
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where the critical current is given by Ic = (2e�ψ2
∞/m∗)(A/L) with A being

the cross-sectional area of the insulating barrier.
The previous discussion had been carried out without taking magnetic

flux into consideration. However, it is important to work out the effects of an
applied field on the supercurrent. Since ∆θ is not a gauge-invariant quantity,
it is appropriate to introduce the gauge-invariant phase difference φ defined by

φ = ∆θ − (2π/Φ0)
∫

A · dl,

leading to the general form of the supercurrent Is = Ic sin φ, which can also be
obtained had we used the full gauge-invariant term [−i�∇−e∗A/c] throughout
the preceding evaluation of the current.

Armed with this gauge-invariant form of the current, we now evaluate
the maximum current of dc-SQUID (superconducting quantum interference
devices). To avoid sensitivity to the gauge choice of the vector potential, results
would rather be obtained in terms of the magnetic flux Φ through a specified
contour: since B = ∇ × A, the line integral of A along the path passing
through both links (denoted 1,2) and the supercurrent electrodes (denoted
A,B) in Fig. 5.2 gives the enclosed flux Φ. The integration contour, taken
in the interior of the electrodes, is assumed to be thick enough where the
supercurrent density vanishes. Therefore, the enclosed flux is given by

Φ =
∮

A · dl = (Φ0/2π)
∫

electrodes

∇θ · dl +
∫

links

A · dl.

The single-valuedness of the phase θ allows us to replace the integration taken
in the region of the electrodes by the sum of finite phase difference φi at each
link related through

φ1 − φ2 = 2π
Φ

Φ0
(mod2π).

F

A B

2

1

Fig. 5.2. Schematic diagram showing geometry for quantum interference of Joseph-
son tunneling in the presence of the magnetic flux Φ
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This relation implies that φ1 and φ2 cannot simultaneously take the value
π/2, as it would be regarded to give the greatest total supercurrent, unless Φ

is an integral multiple of Φ0. In fact, if I
(1)
c = I

(2)
c = Ic, then the maximum

supercurrent can be shown by a simple trigonometric argument to be

Imax = 2Ic| cos(πΦ/Φ0)|,

which is the basis of the dc-SQUID magnetometer
Here we have a simple and interesting feature revealed in a junction with

combined dc and ac voltage bias V = Vdc + Vac cos Ωt. According to the
Josephson relation φ̇ = 2eV/�, the phase difference across the junction is
given by

φ(t) = φ0 + ωt + (2eVac/�Ω) sin Ωt

with an integration constant φ0 and ω ≡ 2eVdc/�. The resulting supercurrent
can be expressed in terms of the Bessel functions

Is = Ic

∞∑
n=−∞

(−1)nJn(2eVac/�Ω) sin(φ0 + ωt − nΩt),

which displays that the dc voltage satisfying ω = nΩ gives a contribution
toward the nonvanishing time-averaged current. In consequence, when Vdc =
n�Ω/2e, the total direct current including the normal current can take any
value in the range

Vn/R − IcJn(2eVac/�Ω) ≤ I ≤ Vn/R + IcJn(2eVac/�Ω)

with R shunting resistance, which gives rise to the Shapiro steps in the
current–voltage characteristics [10].

This discussion has been made possible by solving the equation of motion
for phase. A more complete description based on topological argument is made
in the following. The Hamiltonian of JJ is given by

H =
(Q − Qext)2

2C
− EJ cos φ.

The first term is responsible for the charging energy, where external current
(or voltage) bias is incorporated with the gauge charge Qext = İext = CVext,
and the second term is Josephson energy with EJ = (�/2e)Ic. Here the
charge variable Q and the phase variable φ are conjugate to each other via
[�φ/2e,Q] = i�. Thus, we can consider �θ/2e as a coordinate x and Q as
a momentum p = (−i�)∂/∂x. It is of interest to note that the problem can
also be mapped onto one-dimensional electron moving on a periodic potential.
Writing the Schrödinger equation Hψ = Eψ, we have the external charge part
gauged away via transformation ψ′(x) = eiθ0xψ(x) with �θ0 = Qext.

Now we recall that the coordinate x is, in fact, a phase variable defined
on a compact interval 2ex/� ≡ φ = (0, 2π], and we have a definite closed
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path defined in the phase space. Let us now examine what the physical con-
sequence is. For example, when Qext = qd + qa cos(Ωt) and the system has no
degeneracy, the wavefunction should be periodic after one frequency evolution
of the periodic driving: ψ(x, t + τ) = ψ(x, t) with τ ≡ 2π/Ω. Such boundary
conditions can then be guaranteed only by

φ(t + τ) − φ(t) = 2πnw

with integer nw. Using the Josephson relation, the time-averaged voltage
across the junction is given by

〈V 〉 =
1
τ

∫ τ

0

�φ̇

2e
= nw

�Ω

2e
,

which is precisely the same as the voltage quantization obtained previously.
Interestingly, we can also predict fractional quantization resulting from the
system degeneracy. For instance, let us consider the ground state having q-fold
degeneracy whose the wavefunction can be written as ψ(α) (α = 1, 2, . . . , q).
Thus the average over the q degenerate ground states should be taken in
calculating the properties. The αth ground states exhibits its phase change
φ(α)(t+ τ)−φ(α)(t) = 2πn(α), and the average change rate of phase difference
is given by

〈φ̇〉 =
1
q

q∑
α=1

φ̇(α) =
n

q

with n ≡∑
α n(α), leading to the fractional Shapiro steps.

5.4 Charge Density Waves

A characteristic property of a one-dimensional electron system is its instability
against the potential having the wave number 2kF with kF being the Fermi
momentum: the amplitude of the electron density wave coupled to a periodic
potential increases divergently when the wave number approaches 2kF. This
Peierls instability gives rise to a collective state of electrons called the charge
density wave (CDW) and causes a metal-insulator transition known as the
Peierls transition [11].

Let us have a brief look at the origin of the instability. The potential Vq

oscillating spatially with the wave number q causes the spatial modulation ρq

of the electron density. For sufficiently small Vq, the linear response, i.e., ρq

proportional to Vq is dominant, and we thus introduce the response function
χq, which relates ρq and Vq according to ρq = χqVq [12]. The standard linear
response theory gives the expression

χq =
1

Ne

∑
k

fk+q − fk

Ek − Ek+q
, (5.9)
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known as the Lindhard function, where fk is the Fermi distribution function.
For simplicity, let us consider the zero-temperature case. Each term in (5.9)
has a nonvanishing contribution only when either Ek < EF and Ek+q > EF

or Ek+q < EF and Ek > EF. In the former case we have fk = 1 and fk+q = 0,
whereas in the latter fk = 0 and fk+q = 1. Replacing the summation by
integration, we obtain

χq =
2m

π�2nq
ln
∣∣∣∣q + 2kF

q − 2kF

∣∣∣∣ ,
where the free-electron energy Ek = �2k2/2m has been used, and n is the
number density of electrons.

The Lindhard function in (5.9) can also be evaluated in two dimensions
and three dimensions. While in 1D the response function diverges at q = 2kF,
in higher dimensions it does not diverge, and instead its derivative has jump
discontinuity or divergence at 2kF. The origin of the singularity in χq at 2kF

can be understood in the following way. In 1D only the term with k±kF of 5.9
can give a divergent contribution at q = ±2kF. Other terms do not contribute
to the divergence even when Ek = Ek+q, because numerator fk+q − fk also
becomes exactly equal to 0. In higher dimensions, the situation is not different
with regard to the singularity of the terms |k| = kF. However, from the 1D
and 2D Fermi surfaces shown in Fig. 5.3, it can be seen that the number of
diverging terms for given q is of the order 1/kF in 1D but only of the order
1/k2

F in 2D. Similar conclusions can be reached for the 3D case. Thus we
can qualitatively understand why the singularity at q = 2kF weakens with
increasing dimensionality, and in higher dimensions the singularity appears
only in the derivative of χq at q = 2kF.

This instability gives rise to the CDW displaying periodic variations of
the charge density with the wave number 2kF [13]. In general, a CDW is de-
scribed by the modulated density of electrons ρ = ρ0 cos(2kFx + φ), where

k F

k x

k y

q q

-k
F

Fig. 5.3. Fermi surfaces of noninteracting electrons in one dimension (left) and in
two dimensions (right)
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the phase φ represents the location of the CDW. Here the temporal evo-
lution of φ corresponds to the sliding motion of the CDW, and hence, the
kinetic energy of the CDW is proportional to φ̇2. In the case of the Mth order
commensurability (2kF/G = N/M with relatively prime integers N and M ,
and G is the reciprocal lattice vector), the effective potential takes the form
of V = V0(1 − cos Mφ). Here, the coherent many-particle AB effect can be
expected through the collective motion of electrons described by the phase
variable φ. In the presence of the AB flux fAB, the effective Lagrangian can
be written in terms of the collective degree of freedom φ [14]:

L =
1
2
Mc

(
∂φ

∂t

)2

− fAB

(
∂φ

∂t

)
− V0(1 − cos Mφ)

from which we can calculate the density matrix and the partition function with
the help of the path integral method [15]. For that purpose, let us introduce
the imaginary time via τ ≡ it and the Euclidean action SE =

∫
LE dτ , where

the corresponding Euclidean Lagrangian takes the form

LE =
1
2
Mc

(
∂φ

∂τ

)2

− ifAB

(
∂φ

∂τ

)
− V0(1 − cos Mφ).

The classical solution satisfying ∆SE = 0 can be obtained from the following
equation of motion

Mc
∂2φ

∂τ2
− MV0 sin Mφ = 0,

which of this form is called the sine-Gordon equation. Trajectories on a cir-
cle, which is nonsimply connected, can be classified into homotopically non-
equivalent classes labeled by the winding number n. It represents the number
of rotations of the trajectories around the circle in the anticlockwise direction

φ(τ + β) − φ(τ) =
2πn

M
,

where β ≡ 1/kBT is the inverse temperature. Assuming that the temperature
is very low, one can get the solution corresponding to n = 1 given by [16]

φ(τ) =
4
M

tan−1[exp(±ωτ)],

where ω2 = MV0/Mc, and the positive (negative) sign represents an instanton
(anti-instanton). We can compute single-instanton contribution to the parti-
tion function, and then straightaway generalize it to contain the contributions
of n1 instantons and n2 anti-instantons by neglecting the interaction among
them, yielding

Z = e−ωβ/2
√

ω/π
∞∑

n=−∞
e−2πfABnIn(β∆E),
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where ∆E ≡ 8
√

V0ω/π exp(−8V0/ω), and In(x) is the nth modified Bessel
function. In the limit β∆E 	 1, we obtain

Z ∝ 1 + β∆E cos
(

2πfAB

M

)
.

The partition function is therefore periodic in the AB flux with the period M ,
resulting in the persistent current given by the derivative of the free energy
with respect to the flux. The periodicity of the current is different from that
in the free electron case, which reflects the effects of the commensurate po-
tential. Moreover, the amplitude of the current is finite but small due to the
exponential factor in ∆E. It is thus concluded that the (nonconventional) AB
effect in a Peierls insulator is still possible due to the collective states, which
provides a good example of a macroscopic quantum coherence.

5.5 Quantum Phases

It has been realized that electromagnetic fields affect the state of matter even
in the spatial regions where they do not exert any forces. The most prominent
example is the AB effect in the configuration, where charged particles move on
a field-free plane, which is pierced by a tube of magnetic flux [17]. Although
the classical motion of a particle in such a configuration is indistinguishable
from that of a free particle in quantum mechanics, the presence of the flux
tube gives a phase shift in the wave packet of the particle and changes the
interference pattern.

The Hamiltonian of the particle, for example, an electron with charge e,
and mass m subject to such a magnetic flux leads to the Schrödinger equation
for the wavefunction

i�
∂ψ

∂t
= − �2

2m

(
∇ +

ie
�c

A
)2

ψ.

Here the vector potential is associated with the magnetic flux in such a way
that ∇ × B = A. If we impose invariance of quantum mechanics under the
gauge transformation A′ = A+∇Λ, the corresponding transformed wavefunc-
tion acquires the quantum phase according to ψ′ = exp(ieΛ/�c)ψ. As a result,
the phase difference between the two paths due to the localized magnetic flux
is given by

e

�c

∫
path1

A · dl − e

�c

∫
path2

A · dl =
e

�c

∮
A · dl ≡ 2π

ΦAB

Φ0
,

where ΦAB ≡
∮

A · dl =
∫

B · da is the total magnetic flux enclosed by the
paths, and Φ0 is the flux quantum, Φ0 = hc/e = 4.135×10−7 Gauss cm2. The
probability for finding electrons in the screen depends on the phase difference,
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which results in the interference pattern oscillating with the period Φ0. This
genuine quantum effect has been observed in a series of experiments [18].

Subsequent developments have revealed that the appearance of the phase
shift of the AB-type is in fact rather ubiquitous in quantum mechanics. By
exchanging the roles of the flux tube and of the electric charge, for example,
Aharonov and Casher found that a neutral particle with a magnetic moment
µ = µẑ moving around a line of electric charges experiences a similar phase
shift 2πΦAC/Φ0, where ΦAC ≡ (µ/e)

∫
E×dl · ẑ is the Aharonov–Casher (AC)

flux [19]. Although in this case the particles move in the presence of an electric
field E, the resulting AC phase is indeed of the AB type, if the line charge
and the magnetic moment are aligned to be parallel so that the force acting
on the particle vanishes. The AC phase has been detected in an experiment
using a Bonse–Hart single-crystal neutron interferometer [20].

There also exists another quantum phase, which is dual to the AC phase:
a neutral particle with an electric dipole moment d moving in a magnetic
field B obtains a nontrivial phase φd = (1/�c)

∫
B × d · dl, again suggesting

the possible interference effects [21]. Here we would point out that the dual
phase has a relativistic theory origin in the following. Consider spin-1/2 (as
an example of a fermion) and spin-1 (as an example of a boson) particles. The
Dirac equation for a massive neutral spin-1/2 particle carrying an electric
dipole moment d is(

i�γµ∂µ − mc +
d

4c
εµναβσµνFαβ

)
ψ = 0,

where ψ is the Dirac spinor and the convention for the metric, γµ and εµναβ

follows [22]. Note that the interaction of the electric moment with the exter-
nal electromagnetic field takes the dual form of the interaction of a magnetic
moment. This terms breaks the CP invariance such that CP violation is gener-
ally expected in the standard model of fundamental interactions. Now suppose
that the external field is generated by a line of magnetic monopoles with a
uniform density. The corresponding magnetic field is two-dimensional such as
B = B1(x, y)x̂ + B2(x, y)ŷ. By denoting

√
cφ exp(−imc2t/�) to be the up-

per component of the spinor ψ, we can deduce the Dirac equation into the
Schrödinger equation

i�∂tφ = − �2

2m

((
∇x − is

d

�c
B2

)2

+
(
∇y + is

d

�c
B1

)2

+ ∇2
z − d

�c
∇ · B

)
φ,

(5.10)
in the nonrelativistic limit. Here s is twice the spin value of φ and thus takes
the value +1 for spin up and −1 and for spin down.

We now turn to the case of a spin-1 particle and consider a complex vector
field φ/mu satisfying the following equation:

�2∂µ(∂µφν − ∂νφµ) + m2c2φν + imdενµαβφµFαβ = 0, (5.11)
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where d again represents the magnitude of the electric dipole moment. In this
equation, φ0 is not a dynamical variable and can be solved formally as

φ0 =
�2

m2c2
(∇2φ0 + ∂0∇iφ

i − id
m

�

2
ε0ijkφiFjk).

To take the nonrelativistic limit, we set φi = exp(−imc2t/�)Φi/
√

2m and
obtain

φ0 ∼ −i� exp(−imc2t/�)(∇iΦi −
d

�c
εijkΦiFjk)/mc

√
2m,

which allows to reduce (5.11) into the Schrödinger equation

i�∂tΦ± = − �2

2m

(
∇x − is

d

�c
B2)2 + (∇y + is

d

�c
B1)2 + ∇2

z

)
Φ± + · · · (5.12)

and Φ± = (Φ1 ± Φ2)/
√

2. The subscript ± for Φ± corresponds to the spin of
the particle (±1) and the parameter s still takes the value 1 or −1 depending
on the spin of Φ±. The external magnetic field is given as in the case of the
spin-1/2 system considered earlier, and “ · · · ” stands for interactions between
Φ+ and Φ−, which are not important in the consideration of the phase. In
both cases ((5.10) and (5.12)), the Hamiltonian contains the term

− �2

2m
(∇ + s

i
�c

d × B)2

with d = dẑ. It is thus obvious that the above Hamiltonian yields the dual-AC
phase given by Φd = (1/e)

∮
(B × d) · dl.

In the following, we will see such quantum phases are a special case of
geometric phases [23]. Let us consider the dual AC phase where an electric
dipole d in a small box is located at R. In the absence of a magnetic field,
the (nonrelativistic) Hamiltonian of the electric dipole can be written in the
form: H0 = H(p, r − R), and the wavefunction takes the form ψn(r − R)
with the corresponding energy En independent of R. Now suppose that there
exists a magnetic field produced by a line of magnetic monopoles. The energy
eigenstates |n(R)〉, which satisfy the Schrödinger equation

H

(
p − 1

c
B × d, r − R

)
|n(R)〉 = En|n(R)〉,

can be written in the form

〈r|n(R)〉 = exp
{

i
�c

∫ r

R

dr′ · B(r′) × d
}

ψn(r − R).

We then transport the box around a closed loop Γ encircling the monopole
line. The geometric phase acquired by the wavefunction during this transport
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is given by [23]

γn(Γ ) = i
∮

Γ

〈n(R)|∇Rn(R)〉 · dR =
1
�c

∮
Γ

B × d · dR.

One of the most well-known demonstrations of quantum phase effects is the
persistent current in a mesoscopic ring threaded by AB flux. For simplicity, let
us consider free electrons in an ideal ring of radius R at zero temperature. In
the presence of the AB flux, the kinematic momentum of an electron, shifted
by the vector potential, can be chosen by A = (ΦAB/2πR)φ̂, which leads to
the Schrödinger equation

�2

2mR2

(
−i

∂

∂φ
+ f

)2

ψn = Enψn

with f ≡ ΦAB/Φ0. This yields the simultaneous eigenfunction ψn of the an-
gular momentum Lz = −i�∂/∂φ + f� and the energy ψn = einφ/

√
2π. The

corresponding energy levels of the system are given by

En =
�2

2mR2
(n + f)2.

These flux-dependent energy levels yield interesting ground-state proper-
ties. The current density of a quantum mechanical system is given by J =
Re[ψ∗vψ], where v is the velocity operator. In the system of interest here, the
corresponding current density can be written in the form

Jn =
1
m

Re
[
ψ∗

n

(
p +

e

c
A
)

ψn

]
=

R

�
Re

[
ψ∗

n

∂H

∂f
ψn

]
φ̂.

This yields the charge current carried in the nth level.

In = −e

∫
dxJn = − e

2π�

∂En

∂f
.

The total current of the system is then given by the summation over all the
occupied levels. Therefore, the flux dependence of the ground-state energy
implies that the current flows persistently around the ring, thus bearing the
name persistent current. Although only the persistent current driven by the
AB flux is mentioned, one can easily infer that persistent spin current [24]
and dipole current [25] are also present via AC phase and dual AC phase,
respectively.

5.6 Carbon Nanotubes

A carbon nanotube can be thought of as a layer of graphite sheet folded into
a cylinder [26]. Hence, understanding the basic properties can be made by
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Fig. 5.4. The lattice structure of graphite and the translational vectors T1 and T2

are shown in the left panel. The so-called armchair, zig-zag, and a general chiral
tube are shown in the center, and band structures are in the right panel

introducing lattice structures and energy bands of graphite. A graphite sheet
consists of many hexagons whose vertices are occupied by the carbon atoms,
each of which supplies one conduction electron. The electron can transfer
from site to site through tunneling. In this case, the following Hamiltonian
can describe the system:

H = ε0
∑

i

c†i ci −
∑
ij

γijc
†
i cj .

In fact, the simple tight-binding Hamiltonian has been revealed to yield re-
markably similar density of states to the measured values by using the tip of
a scanning tunneling microscope [27]. All the lattice sites shown in Fig. 5.4
can be defined through linear combinations of the translational vectors,

T1 =
√

3ax̂, T2 =
√

3a

2
x̂ +

3
2
aŷ.

Noting the translation symmetry, we can choose the Hilbert space spanned by
the Bloch basis. Further a bipartite lattice, which can be defined for neglect-
ing next-nearest-neighbor hopping, that is, to restrict γij with the nearest
neighboring i and j, can be separated into two disjoint sublattices A and B.
Thus, we have |ψk

A(B)〉 =
∑

i∈A(B) eik·ric†i |0〉. We construct a state vector that
is an eigenstate of the Hamiltonian as |ψk〉 = Ak|ψk

A〉+Bk|ψk
B〉. In the matrix

representation, the energy eigenvalue equation reads(
hAA hAB
hBA hBB

)(
Ak

Bk

)
= Ek

(
Ak

Bk

)
,

where hAA = hBB ≡ 〈ψk
A|H|ψk

A〉 = ε0, and

hAB ≡ 〈ψk
B|H|ψk

A〉 = −γeikya − 2γe−ikya/2 cos

(√
3a

2
kx

)
.
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Thus, the energy bands of a graphite are given by

E±(kx, ky) = ε0 ± γ

√√√√1 + 4 cos
(

3a

2
ky

)
cos

(√
3a

2
kx

)
+ 4 cos2

(√
3a

2
kx

)
.

How to roll up the graphite sheet into a cylinder is specified by a wrapping
vector

WN ,M = nT1 + mT2

with the two integers defining its electrical properties [27,28], which we show
in the following. Two often-cited examples among nanotubes are armchair
and zigzag types, characterized by (�, �) and (�, 0), respectively.

We first consider an (�, �)-armchair case. As shown in Fig. 5.4, starting
from the point 0, we make �-step in the vector direction T1 and again, another
in the direction T2. We then reach the point A. Cutting the sheet along the
line perpendicular to OA, and folding up the cut-out so that the two ends
coincide, we then have an �, �-armchair tube. Now, it is natural to impose
periodic boundary conditions according to the tube diameter L: kyL = 2πn.
Here the tube diameter is given by L = 3a�: there are 2� lattice spacings and
half of them are given by 2a and the other by a. Thus, feeding the boundary
condition into the graphite energy bands, we obtain

Ea
±(k, n) = ε0 ± γ

√√√√1 + 4 cos
(nπ

�

)
cos

(√
3a

2
kx

)
+ 4 cos2

(√
3a

2
kx

)
.

Here we have the first Brillouin zone defined by

− π√
3
≤ kxa ≤ − π√

3
− π ≤

√
3

2
kxa +

3
2
kya ≤ π,

leading to n = 1, 2, . . . , 2� and |ka| ≤ π/
√

3. This resulting one-dimensional
dispersion has a large degeneracy at the zone boundary where |ka| = π/

√
3,

in particular, for half-filling case where the Fermi energy lies in E = ε0. The
two subbands E+ and E− have degeneracy, indicating the absence of the band
gap, and thus, the armchair nanotube is metallic, as reflected in Fig. 5.4.

Similarly for (�, 0)-zigzag tube, being at the same point A, we make �-step
along T1 direction and then reach the point Z. The cut lines perpendicular to
AZ are attached, leading to the boundary conditions: kx

√
3a� = 2πn, where

every � lattice spacing is given by
√

3a for the configuration. Then, we have
the energy dispersion

Ez
±(k, n) = ε0 ± γ

√
1 + 4 cos

(
3a

2
ky

)
cos

(nπ
�

)
+ 4 cos2

(nπ
�

)
.

Here the Brillouin zone is defined as |k|a ≤ π/3 and n = 1, 2, . . . , 2�. Unlike
the armchair case, Ez

±(k, n) can have gapful bands, depending on �: when �
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is given by integer multiple of 3 there is no gap at the Fermi level, thus the
system becomes metallic. On the other hand, for example, zigzag tube with
� = 10 bears the band gap. Especially in the case where � is given by an even
number dispersionless bands exist for n = �/2 (see Fig. 5.4).

We can also manipulate the tubes according to arbitrary wrapping vectors,
which are called chiral tubes. The boundary condition can be obtained by a
symmetry translation operator T̂ :

T̂ (NT2 + MT2)|ψk〉 = |ψk〉,

leading to √
3

2
(2N + M)kxa +

3
2
Mkya = 2πn.

A detailed analysis of the energy dispersion given by the above boundary
condition leads to the classification, depending on N −M (i) a multiple of 3,
(ii) a multiple of 3C with C being the highest common divisor of M and N .
Carbon nanotubes can also be in the form of multiwalled cylinder where a few
single-walled tubes are concentrically arranged. Since the distance between
adjacent walls is larger than atomic spacing, the properties of multiwalled
tubes bear overall similarity to single-walled tubes.

Among other physical quantities, electron transport can be regarded as
a direct reflection of the system. With a ballistic transport to be kept in
mind, electrons appreciate mainly the geometry of the system that they travel
through. For the question on how to formulate electron transport, by referring
the readers to the monographs and surveys in [29], we would provide a quick
view on the transport through a carbon nanotube torus as fully topological
object; besides the noncontractible path along the tube diameter, bending
the cylinder into a torus introduces additional nonsimply connected path [30].
Figure 5.5 shows the linear transmission and its dependence on the position of
the second lead (see also the schematic of the set-up). The density plot is also
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Fig. 5.5. The left panel: A pure-carbon set-up. The two semi-infinite CNT leads
can scan the upper surface of the CNT ring. The right panel: Density plot of the
linear transmission as a function of the position n and of the gate voltage 1. In this
scale, white corresponds to 0 and black to 1
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configured by varying the gate voltage, which one can consider as the Fermi
level of electrons in the tube. Along the gate voltage axis (with fixed n), one
can clearly see the dark-and-bright pattern of the transmission, indicating off-
and-on resonance of the energy of an incident electron with the Fermi level.
Even more interestingly, at a fixed gate voltage, the transmission can also
vary with positional change of the second lead. For particular values of the
gate voltage, zeros in the transmission occur, as shown in the upper panel
blow-up of the region indicated by the arrows. If the readers were now to
view topologically, a surmise that a one-dimensional ring might lead similar
effects to that the nanotorus revealed can be readily made. Indeed, essential
properties such as “chessboard” pattern and transmission zeros are not the
exclusive possession of carbon nanotorus but are fairly shared in a community
of affine topology.

5.7 Conclusions

We had a retrospective study of topology revealed in condensed matter
physics. Although many important issues might be overlooked or barely
touched, this chapter covers the essence.

In this age where a huge body of numerics powered by superfast machinery
is regarded to be more convincing than an elegant and potent argument, a
word such as, topology may sound ancient (for a few, even a geologic “lan-
guage”). Latin is quite a suggestive example of this—once it was believed to be
the closest language to God but by new most of priests do not (cannot) speak
Latin. Nonetheless, our ambition is that one should fully recognize topology
not only as a fascinating object in mathematics but also as a powerful tool in
studying a physical system.
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6

Phason Dynamics in Aperiodic Crystals

T. Jannsen

Summary. Aperiodic crystals have a dynamical behavior that is different from that
of lattice periodic crystals. The properties are related to the possibility of describing
aperiodic crystals in a higher-dimensional space, for which the physical space is a
subspace. The special motions can be considered as motions in the additional space.
Such motions may have low or zero frequencies due to the existence of symmetries
that are special for aperiodic crystals. The ensuing large amplitude motions require
a treatment in the framework of nonlinear dynamics. Under certain conditions, the
low-frequency vibrations are related to friction. The phenomena are discussed for a
number of classes of aperiodic crystals.

6.1 Introduction

6.1.1 Quasiperiodic Crystals

The majority of crystal structures have lattice translation symmetry. This
means the existence of a unit cell and invariance under one of the 230 space
groups in three dimensions. The proof that a crystal is lattice periodic can
come from diffraction experiments, or, more indirectly, from morphology. The
diffraction peaks of a lattice periodic system are on a three-dimensional recip-
rocal lattice (k-space), and they can be labeled by three integer indices. The
reciprocal lattice is generated by vectors a∗

i and the system is invariant under
three independent lattice translations ai with

k =
3∑

i=1

hia
∗
i , a =

3∑
i=1

niai, a∗
i aj = 2πδij .

In the morphology facets are seen that can be labeled by the same reciprocal
lattice vectors.

However, there are many examples of materials that cannot be indexed
by n indices, but nevertheless show sharp Bragg peaks. These belong to what
can be seen as a generalization of the reciprocal lattice, the Fourier module.
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This module consists of all vectors of the set

k =
n∑

i=1

hia
∗
i ,

where n, which may be different from 3, is called the rank of the Fourier
module M∗. The material then has a density function

ρ(r) =
∑

k∈M∗
ρ̂(k) exp(ikr) . (6.1)

If n 
= 3 this function does not have three-dimensional translation symmetry,
although it may be periodic in one or two directions. A function of this type
is called quasiperiodic, even if n = 3. If n > 3 the structure is aperiodic.

Quasiperiodicity can also be seen macroscopically in the morphology. Crys-
tallites in the shape of a dodecahedron, or crystals with facets for the indexing
of which one needs more than three indices are usually quasiperiodic.

6.1.2 Examples of Quasiperiodic Crystals

Roughly speaking, there are three big classes of quasiperiodic (also called in-
commensurate if they are aperiodic) systems. First are the modulated crystal
structures, second the incommensurate composites, and third the quasicrys-
tals. This is not a strict division into classes. Some materials can be considered
to belong to two classes.

Incommensurate displacively modulated phases have a structure, which
can be described as a periodic deformation of a lattice periodic structure. The
positions of the atoms are

rnj = n + rj + (qn)f j , (6.2)

where n belongs to the three-dimensional lattice, rj is the average position of
the j-th atom in the unit cell, and f j is a periodic function with period 2π.
The function is called the modulation function. Because q is incommensurate
(i.e., has irrational indices) two atoms of type j in the unit cells n and n̂
only give the same argument in f j if their difference is perpendicular to q.
The diffraction pattern consists of main reflections belonging to the reciprocal
lattice of the basic structure, and satellites as a consequence of the periodic
modulation. If there is only one modulation wave the diffraction spots are
situated at

k = ha∗ + kb∗ + �c∗ + mq,

where h, k, and � are the usual indices for the main reflections.
Apart from this modulation in position, a composition wave may be

present. The probability of finding an atom A at position n + rj is pj(qn)
and the probability of finding another type B is equal to 1 − pj(qn).

A second class of aperiodic crystals is formed by incommensurate com-
posites [1]. Such composites consist of two or more subsystems, which are
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themselves incommensurately modulated. The subsystems labeled by ν have
periodic basic structures with lattice Λν . The position of the j-th atom in unit
cell nν of system ν is given by

xνnj = nν + rνj +
∑

k∈M∗
f
(
k(nν + rνj)

)
, (6.3)

where nν is a lattice vector of lattice Λ∗
ν , rνj a vector in the unit cell of

that lattice, whereas the modulation function has Fourier components in the
Fourier module. The modulations are caused by the interactions with the
other subsystems. That is the reason why the modulation wave vectors are
combinations of reciprocal lattice vectors of the other subsystems. The vector
module is spanned by the basis vectors a∗

νi of the reciprocal lattice vectors.
If the subsystems are mutually incommensurate, the full system is aperiodic
and the positions of the Bragg peaks are given by

k =
∑
νi

mνia
∗
νi =

n∑
i=1

hia
∗
i , (6.4)

where the vectors a∗
i are linear combinations of the vectors a∗

νi such that they
are a minimal set of vectors spanning the Fourier module. In principle, addi-
tional satellites might be present due to other mechanisms, not belonging to
the span of the various reciprocal lattices Λ∗

ν , but we shall neglect this possi-
bility here. Special cases of incommensurate composites are misfit structures,
intercalation compounds, and adsorbed monolayers on a crystal surface.

A third class of aperiodic crystals is the quasicrystals [2, 3]. They have
a rank higher than 3. A precise definition is lacking, but most of them can
be considered as tilings or have a (possibly broken) point group symmetry,
which is noncrystallographic in three dimensions. An example is the alloy
i-Alx Mny Pdz in a certain composition range. It has the noncrystallographic
symmetry group of the icosahedron as point group.

Quasicrystals often contain Al, and most of them, but not all, are ternary
or quaternary alloys. Building blocks often found are Mackay and Bergman
clusters with icosahedral symmetry. In general, these clusters overlap. There
are families with icosahedral, decagonal, dodecagonal, or octagonal symme-
try. However, such noncrystallographic three-dimensional point groups are not
essential. There are often periodic, structurally related compounds, called ap-
proximants. These have strictly speaking only one of the 32 three-dimensional
crystallographic point groups as symmetry.

6.1.3 Symmetry

The diffraction pattern of a quasiperiodic crystal has intensities

I(k) =
∑

kB∈M∗
a(kB)δ(k − kB) . (6.5)
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If the orthogonal transformation R leaves these intensities invariant (I(Rk) =
I(k) for all k ∈ M∗), then RM∗ = M∗ and in particular

Ra∗
i =

n∑
i=1

Γ (R)jia
∗
j , (6.6)

where the integer n×n matrices Γ (R) form a representation of the finite sym-
metry group K of the diffraction pattern. A well-known theorem in group-
theory then states that this representation is equivalent with an orthogonal
transformation. If one then chooses three basis vectors, the space spanned
by them (the physical space) is left invariant. So, the n-dimensional represen-
tation is reducible. This implies that there is a basis transformation such that
the operations are represented by orthogonal matrices of the form(

RE 0
0 RI

)
∼ Γ (R) . (6.7)

The orthogonal matrices RE and RI are three and (n−3)-dimensional, respec-
tively. The n×n matrices form the symmetry group of the diffraction pattern.
It is a finite point group, but not necessarily one of the 32 three-dimensional
crystallographic point groups. For example, the symmetry group of the dif-
fraction of the icosahedral AlMnPd quasicrystal is the icosahedral group of
order 120. The three-dimensional noncrystallographic point group 5̄3̄m leav-
ing the diffraction pattern invariant has generators, which are integer matrices
on the basis of the Fourier module:⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 1 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , −

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Apart from this symmetry, quasiperiodic crystals may show symmetries
that are important for the dynamics. We show this in one dimension. For a
modulated phase the positions of the atoms are given by

xn = x0 + na + f(qna) , (6.8)

where the function f has periodicity 2π. A change in position xn → x′
n = xn+δ

does not change the mutual distances, and leaves, for that reason, the potential
energy invariant. The consequence of this symmetry is that the momentum is
conserved. A second symmetry is actually only a pseudo-symmetry. A change
in position

xn → x′
n = xn+p − pa = x0 + na + f

(
q(na + pa)

)
≈ xn + εf ′(qna) (6.9)
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if an integer p is chosen in such a way that ε = paq mod (2π) is (arbitrarily)
small. Then the displaced atoms with a renumbering have the same mutual
distances as before with arbitrary position.

For incommensurate composites the same symmetries are present. We con-
sider a model consisting of two chains. The positions of the atoms in the two
chains are

xn = x0 + na + f(na), f(x) = f(x + b)
ym = y0 + mb + g(mb), g(y) = g(y + a) .

The displacement of all atoms in both chains by δ leaves again the potential
energy invariant. The pseudosymmetry is seen by choosing a small number
ε = pa − qb and displacing the atoms as

xn → xn+p − pa = x0 + na + f(na + pa) ≈ xn + εf ′(na)
ym → ym−q + qb = y0 + mb + g(mb − qb) ≈ ym + εg′(mb) .

These symmetries will have consequences for the dynamics.

6.2 Embedding in Superspace

By definition a quasiperiodic structure has a density function ρ(r) with Fourier
decomposition

ρ(r) =
∑

k∈M∗
ρ̂(k) exp(ikr) , (6.10)

where the Fourier module M∗ is the set of vectors

k =
n∑

i=1

mia
∗
i . (6.11)

Because there are no three independent vectors k such that the inner product
with any vector from the Fourier module is a multiple of 2π, there is no
lattice periodicity. The function ρ(r), however, is a section of a lattice periodic
structure in n dimensions and a three-dimensional physical space. The crucial
observation is that the basis a∗

i of the module is the projection of a (reciprocal)
lattice Σ∗ in n dimensions with basis (a∗

i , b
∗
i ). Then each vector (k,kI) in the

lattice spanned by this basis is the unique vector that projects on the vector
k of the Fourier module. The atom positions in the physical space are taken
modulo the n-dimensional lattice Σ, for which Σ∗ is the reciprocal lattice.
The periodic function on the n-dimensional space is

ρs(r, rI) =
∑

ks∈Σ∗
ρ̂(k) exp

(
i(kr + kIrI)

)
. (6.12)

Typical examples of embeddings of quasiperiodic systems belonging to the
various classes are given in Fig. 6.1. Modulated crystals are embedded as ar-
rays of (n−3)-dimensional hypersurfaces in n dimensions. These are called the
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Fig. 6.1. Embeddings into higher-dimensional space of two quasiperiodic structures.
Left: sinusoidally modulated chain (dashed: lattice), right: IC composite (dashed:
system 1, solid: system 2)

atomic surfaces. When the modulation functions are continuous the atomic
surfaces stretch out until infinity. For incommensurate composites there are
periodic arrays of atomic surfaces for each of the subsystems. For quasicrys-
tals, the atomic surfaces are bounded, generally, although it is possible to
construct three-dimensional quasiperiodic patterns that could be considered
as quasicrystals from a periodic array of unbounded atomic surfaces.

For modulated phases the additional coordinate can be seen from the
embedding:

xn = na + f(qna) → (na + f(nqa + t), t) −∞ < t < ∞ . (6.13)

This is a periodic pattern with translation symmetry generated by (a,−qa)
and (0, 2π). The variable t is just the phase of the modulation function. t is
the phase variable. Certain excitations in such system may be considered to
be phase oscillations, for which the term phason was introduced.

For incommensurate composites we consider an example with two subsys-
tems and with rank 4. Suppose that the lattice constants in x- and y-direction
are the same, but incommensurate in the z-direction. Suppose furthermore,
for simplicity, that there is only atom per unit cell in each subsystem. Then
the positions n + f(q1n) and m + g(q2m) can be embedded as

(n + f(q1n + t) + Z1t, t),

(m + g(q2m + t) − Z2t, t) .
(6.14)

Here the vector functions f and g have periodicity b (=lattice constant in
the z-direction of system 2) and a (=lattice constant in the z-direction of
system 1). The vectors qi are parallel to the z-axis. The system has a four-
dimensional lattice periodicity. The internal degree of freedom here is not
only the phase of the modulation function, but also the relative positions
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of the centers of mass of the two subsystems. There is a dense set of shifts
in the internal coordinate for which the potential energy does not change.
Therefore, these are dynamic symmetries. The Goldstone mode associated
with this symmetry is a (dynamical) shift in internal space, which for smooth
embeddings may have zero frequency. These motions are called phasons.

The excitations in quasicrystals have certain aspects in common with this.
There are jumps that can be seen as jumps in superspace, and here also the
term phason was used. Very often phenomena involving the additional space
(for quasicrystals usually called perpendicular space) get a name with the term
phason. For example, a strain in a quasicrystal can be divided into “phonon
strain” and “phason strain.”

6.3 Simple Models for Incommensurate Structures

6.3.1 Displacively Modulated Phases

The structure and vibrational excitations of incommensurate modulated
phases may be exemplified on simple model systems. A very simple model
is one dimensional. It is a linear chain with particles with one degree of free-
dom, for example the deviation of its position from that in an equidistant
array. The potential is a non linear function of the deviations and there is an
interaction between a particle and its first and second neighbors. The Hamil-
tonian then is given by

H =
∑

n

(
p2

n

2
+ V1(xn) + V2(xn − xn−1) + V3(xn − xn−2)

)
. (6.15)

An example is

H =
∑

n

(
p2

n

2
+

Ax2
n

2
+

x4
n

4
+ Bxnxn−1 + Cxnxn−2

)
. (6.16)

The on-site potential is here a fourth-order polynomial. The terms with B and
C may favor different ground states, which leads to frustration. Therefore, the
model is called the discrete frustrated φ4 (DIFFOUR) model (Fig. 6.2) [4, 5].

The ground state of (6.16) for T = 0 is given by the coupled nonlinear
equations

Axn + x3
n + B(xn+1 + xn−1) + C(xn+2 + xn−2) = 0 . (6.17)

Periodic solutions with period N can be found by the solution of a finite set
of coupled equations. Aperiodic solutions with wave vector 2πqi can be found
as the limit of periodic solutions with q = L/N when N tends to infinity such
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Fig. 6.2. The modulation function for the ground state of the DIFFOUR model
determined for three different values of the parameters

that q tends to the irrational value qi. The ground state is found as the lowest
energy solution for all wave vectors q.

If A is sufficiently high the ground state is an undeformed, periodic chain
(xn = 0). For a critical value of A this state becomes unstable, and the insta-
bility is a wave with a critical wave vector qi. Below the critical value of A the
ground state is a displacively modulated chain. If qi is irrational, the ground
state is quasiperiodic. Close to Ai the modulation function is sinusoidal, but
for lower values there are higher harmonics, leading to a squaring up. Gener-
ally, the modulation function remains smooth down to a value Ad. Below Ad

the modulation is still incommensurate but the modulation function is discon-
tinuous. The typical situation is that below Ac < Ad, the ground state is mod-
ulated with a modulation vector that locks in at a commensurate value. Then
the chain is again periodic, generally with a larger unit cell than for A > Ai.

The phase diagram can be constructed from the determination of the
ground state for given values of the parameters. In the A/C versus B/C plane
incommensurate phases are concentrated around the origin. For high values
of A/C the solution xn = 0 (the paraphase) is the ground state. For large
absolute values of B/C the ground state is ferroic (period 1 different from
the paraphase) or antiferroic (period 2). For low values of A/C ground states
are commensurate. Around the origin the wave vector is incommensurate or
commensurate and the phase diagram is complicated. This means that for
comparable values of A/C and B/C the ground state may be quasiperiodic
and the ground state is degenerate.
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If xn is considered as the displacement of particle n, the positions of the
particles are

rn = na + xn = na + f(qna).

The modulation function f is obtained numerically, from a solution of (6.17),
which minimizes the potential energy, as f(qna) = xn, where q is twice the
number of nodes divided by the periodicity of the solution. With this mod-
ulation function the solution can be embedded in a two-dimensional space
according to (6.13). This means that for Ad < A < Ai the atomic surfaces
are unbounded and smooth, whereas for Ac < A < Ad they are disjoint and
bounded.

6.3.2 The Double-Chain Model for Incommensurate Composites

For aperiodic composites we study a system consisting of two one-dimensional
chains, one with atoms at positions xn, and the other with atoms at ym. The
potential energy is given by

V =
∑

n

V1(xn − xn−1) +
∑
m

V2(ym − ym−1) +
∑
nm

W (xn − ym) . (6.18)

The intrachain couplings are either harmonic (V1(x) = α(x − a)2/2, V2(y) =
β(y − b)2/2) or they are Lennard-Jones potentials with minima for x = a
and y = b, respectively [6, 7]. For the interchain coupling a Lennard-Jones
potential has been chosen:

W (r) = λ

((σ

r

)12

− 2
(σ

r

)6
)

,

where r2 = (x − y)2 + d2, if d is the interchain distance.
The model is in fact a generalization of a model introduced by Dehlinger,

and which was studied by Frenkel and Kontorova and by Frank and Van
der Merwe [8]. It consists of a linear chain on a fixed substrate, with the
Hamiltonian

H =
∑

n

(
p2

n

2
+

α(xn − xn−1 − a)2

2
+ λ cos(2πxn/b + φ)

)
. (6.19)

Usually it is called the Frenkel–Kontorova model, also when the lattice con-
stant a is incommensurate with the periodicity b of the substrate potential.
In the DCM also the substrate is deformable.

6.3.3 The Ground State of the DCM

The ground state is obtained as the configuration that minimizes the poten-
tial energy. This is done numerically for commensurate approximants. If a
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and b are the lattice constants of the two chains, solutions for xn and ym

are obtained with the condition La = Mb for integers L and M such that
L/M approximates the irrational value a/b for the incommensurate chain.
In general, the solutions can be written as

xn = x0 + na + f(x0 + na), f(x) = f(x + b), (6.20)

ym = y0 + mb + g(y0 + mb), g(y) = g(y + a). (6.21)

The modulation functions can be determined from

f(na mod b) = xn − na, g(mb mod a) = ym − mb,

when xn, ym are found numerically. For small interaction parameter λ the
functions f and g are continuous, for larger values of λ they become simul-
taneously discontinuous. In the latter region the modulation functions are
approximately piecewise linear. This means that locally the lattice parameter
of each chain is changed. Because the density of the particles is fixed, the dis-
continuities provide an overall incommensurability. In this sense the transition
from smooth to discontinuous can be called a discommensuration transition
as well.

Using the modulation functions f and g the solution can be embedded in
a higher-dimensional space according to (6.14). For values of the parameter
λ smaller than the critical value the atomic surfaces extend to infinity. For
values exceeding this value the atomic surfaces are bounded or form even
fractal structures.

A line in the plane of the relevant parameters (λ/α and λ/β) forms the
transition from smooth modulation functions to discontinuous modulation
functions. This has been obtained by keeping λ/α fixed and varying λ/β
monitoring the value of the discontinuity. In the real calculations, which were
based on approximants, this means that the largest gap exceeds a threshold
value. If one increases the size of the approximant the transition becomes more
pronounced (Fig. 6.3).

6.4 Phonons and Phasons

6.4.1 Phonons in Aperiodic Crystals

Phonons are collective dynamical excitations in solids describing oscillations
of the atomic positions around the equilibrium positions. When the displace-
ments of the atoms from their equilibrium positions are denoted by un the
potential energy may be written as V (u1, . . . , uN ). A development in a series
gives, up to second order in the displacements:

V (u1, . . . , uN ) =
1
2

∑
nαmβ

U(nm)αβunαumβ + · · · .
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Fig. 6.3. The modulation function for one of the chains in the ground state of the
DCM. There is a transition from smooth to discontinuous functions

Here unα is the Cartesian α-coordinate of the displacement of particle n. The
equation of motions

mnünα = −
∑
mβ

U(nm)αβumβ

can be reduced to a problem in 3s dimensions (s is the number of atoms
per unit cell) if the crystal is periodic. Then the position of the j-th atom in
the unit cell n has coordinates x(nj)α and displacement u(nj)α. The second
derivative of the potential energy with respect to the positions is a tensor

U(n − m, ij)αβ .

The eigenvectors of the Fourier transform of this tensor

D(ij|q)αβ =
∑

n

U(n, ij)αβ(mimj)−1/2 exp(−iqn)

are e(qν|jα), have eigenvalues ω2
qν , and specify the phonons

u(nj)α =
∑
qν

Qqνe(qν|jα) exp(iqn) + c.c.

The modes are characterized by a wave vector q and a branch label ν.
For aperiodic crystals there is nither such a unit cell nor a Brillouin zone.

For periodic approximants the number of branches, labeled by ν, increases
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with the size of the unit cell of the approximant, and becomes infinite for the
aperiodic structure. Nevertheless, it is possible to consider pseudo-Brillouin
zones and a function that can be measured with inelastic neutron scatter-
ing, the function S(q, ω). A Brillouin zone boundary occurs in those places
in reciprocal space where two plane waves with wave vectors differing by a
reciprocal lattice vector are degenerate. For example, in one dimension elas-
tic waves with wave vectors k and −k are degenerate and a gap originates
if k = −k + 2π/a, at the Brillouin zone boundary k = π/a. For aperiodic
crystals the wave vectors of the structure form a dense set, but the coupling
between two degenerate waves k1 and k2 is only strong when the structure
has strong Fourier components K = k1−k2. From the diffraction pattern it is
clear that the strong peaks are not dense. Therefore, there is a discrete set of
surfaces where a substantial gap may occur. These are the pseudo-Brillouin
zone boundaries.

The inelastic neutron scattering is described by the differential cross sec-
tion, which for s atoms at positions rj is determined by the function

S(q, ω) =
∑
qν

∣∣∣∣∣
s∑

j=1

eiqrj qe(kν|j)
∣∣∣∣∣
2

δ(ω − ωkν)∆(q − k) ,

where the sum is over all phonons and where ∆(q) =
∑

K δ(q − k) is a sum
over all vectors of the Fourier module. The latter is an infinite sum, but the
inner product of the eigenvector and the wave vector will be of importance
only in certain cases. The function would give for a periodic structure a sharp
maximum along the lines of the dispersion curves (ωq, q). For aperiodic crys-
tals this remains the case for lower frequencies. There most of the vibrations
propagate plane waves like sound waves. For higher frequencies the maxima
become broader because the eigenvectors tend to be more localized, which
implies that in their Fourier decomposition more wave vectors are involved.
These wave vectors form a quasicontinuum around the dispersion curve.

The latter shows that the character of the excitations may be different
from that for periodic crystals. For periodic crystals the excitations in various
unit cells differ only by a phase factor, due to Bloch’s theorem. This means
that phonons in periodic crystals are extended. Localized phonons only occur
due to defects. For aperiodic crystals they may also exist in ideal systems.
In one dimension it has been proven that the behavior in many systems is
neither extended nor (exponentially) localized. The displacements of a mode
may fall off algebraically or be self-similar. Such states are called critical.

The phonons in aperiodic crystals can be numerically calculated by ap-
proximating the aperiodic structure by a series of periodic structures. The
results for the aperiodic crystal then are supposed to be the limit of
the results for the series. As an example consider the vibrations in a Fibonacci
chain. It can be considered to be a modulated structure with discontinuous
modulation function and wave vector q = τ = (

√
5 − 1)/2. This value is the



6 Phason Dynamics in Aperiodic Crystals 151

limit of a series of truncated continued fraction expansions:

τ = lim
n→∞

Fn

Fn+1
, Fn+1 = Fn + Fn−1, F0 = F1 = 1 . (6.22)

(This means τ can be approximated by 1/2, 2/3, 3/5, 5/8, 8/13, . . .).
Replacing τ by an approximant gives a periodic structure with Fn atoms
per unit cell and Fn phonon branches. From the eigenvalues and eigenvectors
the function S(q, ω) is easily determined.

6.4.2 Phason Excitations

Very often a structural phase transition from a periodic to an incommensurate
modulated structure goes via an instability of the periodic system, where the
frequency of a mode tends to 0 as a function of temperature or of the system
parameters. For the DIFFOUR model the dispersion curves for the chain with
xn = 0, when the system is lattice periodic, are given by

ω(q)2 = A + 2B cos(q) + 2C cos(2q), − π < q ≤ π . (6.23)

The minimum of the curve is at qc with cos(qc)=−B/4C, if |B/4C| ≤ 1
(Otherwise at q = 0 or q = π). The frequency goes to 0 if A decreases to
Ai = 2C + B2/4C. This is called a soft mode. For A < Ai the structure
with xn = 0 is unstable. The ground state just below A = Ai is a modulated
structure with modulation wave vector qc. The two degenerate modes at ±qc

are coupled by the modulation. Actually the mode frequency changes with the
parameters. In a mean field treatment the equations of motion are effectively
the same, but the parameters A,B, and C depend on temperature. Then the
critical value of A corresponds to a critical temperature Ti.

In the neighborhood of ±qc the dispersion curves are linear:

ω(qc + k)2 =
[
4C − B2/4C

]
k2 (6.24)

for A = Ai. The coupled modes give new modes that are the symmetric
and anti-symmetric combinations of the original modes. One is proportional
to the sinusoidal modulation function, the other differs by a phase of π/2
and corresponds to the derivative of the modulation function. This means
that the first changes the amplitude, the other the phase of the modulation.
These modes are called the amplitude and phase modes, or amplitudon and
phason, respectively. The branch starting from this zero frequency mode is
called the phason branch. Because the phase of the modulation corresponds to
the internal coordinate in superspace, when one embeds the aperiodic chain in
higher dimensions, a phason may be described as an oscillation in superspace
with a polarization pointing out of the physical space.

Because the potential energy of the crystal is invariant under a phase shift
of the modulation, it is to be expected that the phason with k = 0 (q = qc)
has frequency 0, also for A < Ai. Numerical calculations of the dispersion
curves in the modulated phase show that this is true in the neighborhood of
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A = Ai, but not generally for any value of A. The typical situation is that
the frequency remains 0 in the interval Ad < A < Ai for some value of Ad

that is larger than the value Ac of A for which the ground state becomes
commensurate. Below Ad the frequency of the lowest phason is nonzero, a
phason gap opens. A careful analysis shows that at the transition point the
modulation function is no longer smooth, but shows discontinuities. It is the
discommensuration transition, also found in similar systems under the name
“transition by breaking of analyticity” [9].

Excitations with 0 or low frequency and with eigenvectors, which corre-
spond to motions that can be interpreted as motions in the additional space
(and therefore can be called phasons), have been found in the DIFFOUR
model, in the DCM, and in the Frenkel–Kontorova model (see Sect. 6.6). In a
certain parameter or temperature range the minimal frequency of these modes
is zero. Let us summarize the results for the three models at zero tempera-
ture, as a function of the parameters. Fixing B/C in the DIFFOUR model,
there is a zero frequency phason mode in the range from Ad/C to Ai/C.
Above Ai/C the paraphase is stable, and there is no phason. Below Ad/C
there is a phason gap. For the DCM there is a line in the (λ/α, λ/β)-plane
separating the region with zero frequency phason from that with a phason
gap. This happens both for the Gaussian and for the Lennard-Jones poten-
tial. In the Frenkel–Kontorova model, another model for composites that is
discussed in Sect. 6.6, there is a critical value of the chain-substrate inter-
action λ above which there is a phason gap, and below which the gap is
0 (Fig. 6.4).

In all these cases the character of the modulation functions has been stud-
ied. The line (or point) in parameter space where the phason gap opens coin-
cides always exactly with the appearance of discontinuities in the modulation

0

1

2

0 1 2

k1

k 2

Fig. 6.4. The parameter space k1 = λ/α, k2 = λ/β with the lines indicating the
opening of the phason gap, and the discommensuration transition [7]
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function. Therefore, the conclusion is that the discommensuration transition
is connected to the softening of the phason. If the modulation functions are
smooth, the phason gap is 0.

For a zero frequency acoustic phonon (a displacement of the crystal) in-
creasing the amplitude does not change the distances between the particles.
For a phason that is different. A phason is a harmonic oscillation only for
small amplitudes. Because of the zero frequency the amplitudes may become
large and nonlinear terms have to be taken into account. In the following we
study the nonlinear dynamics related to the phason motion.

6.4.3 The Phason Content of Phonons

In principle, phonons may be described fully in physical space. Then the
displacements are parallel to this physical space. Sometimes, a phonon can be
described as an oscillation in the phase variable, and the displacements then
have components in internal space.

Consider a simple modulated chain, embedded as (na + f(qna − t), t).
A shift in superspace ε(cos θ, sin θ) gives a displacement field

un = ε cos θ + ε sin θf ′(qna) .

Then U1 =
∑

n un/N = ε cos θ and U2f
′(qna) = un − U1. The internal

polarization is defined by tan θ = U2/U1 and ε =
√

U2
1 + U2

2 . The phason
content increases with higher values of θ.

Consider the two chains in the double chain model. The equilibrium po-
sitions are x̄n for one chain, and ȳm for the other. The oscillations around
these positions then are given by displacements un(t) and vm(t). We consider
the case of eigenmodes with a frequency ω. Then xn(t + 2π/ω) = un(t) and
vm(t + 2π/ω) = vm(t). In an eigenmode the average displacements of the two
chains are

∆1 =
1

N1

∑
n

un, ∆2 =
1

N2

∑
m

vm . (6.25)

A translation in two-dimensional superspace of the chains in the direction
ε(cos θ, sin θ) would give displacements of the centers of mass according to

∆1 = ε(cos θ + Z1 sin θ), ∆2 = ε(cos θ − Z2 sin θ) . (6.26)

This means that for an eigenmode (un, vm) an internal polarization can be
defined by the values of ε and θ.

tan θ =
a
∑

n un − b
∑

m vm

aZ2

∑
n un + bZ1

∑
m vm

,

ε =
1

Z1 + Z2

(
(∆1 − ∆2) sin θ + (Z2∆1 + Z1∆2) cos θ

)
.

(6.27)

Therefore, the displacements in physical space determine the phason character
of a phonon mode. For a pure homogeneous acoustic mode un = vm = c, and
θ = 0, and for a phason with un = Z1c and vm = −Z2c one has θ = π/2,
because aN1 = bN2.
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6.5 Nonlinear Phason Dynamics

6.5.1 Modulated Phases

The eigenmodes of a (periodic or aperiodic) crystal are solutions of the lin-
earized dynamical problem. Among them are the phasons in modulated phases
that are phonons with a character that can be described as a shift of the modu-
lation function. The frequency of the homogeneous shift, the pure phason with
wave vector zero, is 0 if the modulation function is smooth, due to the degen-
eracy of the potential energy. The latter argument can be used to show that
also an arbitrary shift will not cost energy. However, in this case nonlinear
terms will come in. In principle, these could give rise to a coupling between
phasons and other phonons.

We consider this question in the frame of the DIFFOUR model. We first
introduce a new parametrization of the model such that the Hamiltonian is
given by

H =
∑

n

(
ẋ2

n

2
− bx2

n

2
+

x4
n

4
+ (xn − xn−1)2 + d(xn − xn−2)2

)
. (6.28)

Note that the parameter change from A,B, and C to b and d is such that
A and b have different signs. If the ground state is given by the modula-
tion function xn = f(kna) a shift of the modulation function gives xn(t) =
f(k(na − vt)) or an initial speed

ẋn(0) = −kvf ′(kna) = εun,
∑

n

|un|2 = 1.

For a sinusoidal modulation xn = U cos(kna) the speed is given by v =
ε
√

2a/L/kU , where L is the length of the normalization domain. The speed
should be compared with the phason velocity, the slope of the phason branch,
which is equal to vph =

√
1/2d − 8d.

We look for solitary wave solutions of the equations of motion of the form

xn(t) = f(na − vt) (6.29)

and start with a continuum approximation. The Lagrange function has the
form

L =
∑

n

(
ẋ2

n

2
+

bx2
n

2
− x4

n

4
− (xn − xn−1)2 − d(xn − xn−2)2

)
. (6.30)

The solution f(z) is periodic with period p just as the modulation function.
Then the Lagrangian function in the continuum approximation is an integral
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over the unit cell p.

L =
N

p

∫ p

0

(
mv2f ′(z)2

2
− f(z)4

2
+

bf(z)2

2

−
(
f(z) − f(z + a)

)2 − d
(
f(z) − f(z + 2a)

)2) dz . (6.31)

Here N is the number of particles.
For v = 0 the action is extremal. Here it is a maximum. The function f ,

which depends still on v, should maximize the Lagrangian. For a trial function
f(z) = f0 sin kz this means that(

mk2v2

4
+

b

4
− 2 sin(ka/2)2 − 2 sin(ka)2

)
A2 − 3

16
A4

is maximal, which is an equation for k. This transcendental equation has
nontrivial solutions provided

mv2 < −8d − 2 . (6.32)

If v satisfies this condition and k0 maximizes the Lagrangian, then the equa-
tion for A has a nontrivial solution if

mk2
0v

2

4
+

b

4
− 2 sin(k0a/2)2 − 2 sin(k0a)2 > 0.

Under these conditions a solitary wave solution exists if it is nearly sinusoidal.
For speeds higher than

√
(−8d − 2)/m the solution is unstable. This leads to

the conjecture that if the modulation function is smooth (which is required for
using the continuum approximation) there is a solitary wave solution moving
through the crystal without energy loss provided its speed remains below the
threshold value. In the discrete system there will nevertheless be some energy
loss due to the coupling to phonons, but it may be expected to be small.

To check these expectations the equations of motion were numerically
solved for the DIFFOUR model with as initial positions the positions of the
ground state configurations, and as initial velocities a factor ε times the eigen-
vector coordinates of the phason, i.e., proportional to the derivative of the
modulation function. After many iteration steps the shape of the modulation
function did not change for small initial speed v = 0.03. The speed itself re-
mains practically constant. There is only a very small energy loss to internal
vibrations because of the discreteness of the system. However, for an initial
speed v = 0.07 the speed decreases immediately and goes to 0. The energy
then is completely transferred to the phonons (Fig. 6.5).

6.5.2 Incommensurate Composites

The vibrations around the equilibrium positions considered in Sect. 6.4, de-
scribed in terms of phonons, are harmonic. The harmonic approximation is
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Fig. 6.5. The speed of a nonlinear excitation in the DIFFOUR model. For the lower
speed the motion is almost dissipation-less

valid only for small displacements. For larger displacements the equations
become nonlinear. They are

m1ẍn =−V ′
1(xn − xn−1) − V ′

1(xn − xn+1) − λ
∑
m

W ′(xn − ym), (6.33)

m2ÿm =−V ′
2(ym−ym−1)−V ′

2(ym−ym+1)+λ
∑

n

W ′(xn−ym) . (6.34)

We suppose that the displacements un and vm remain small in the moving
frame

V ′
1(xn − xn−1) + V ′

1(xn − xn+1) = α(2un − un−1 − un+1)

and a similar expression for V ′
2 . The phonons then are nonlinearly coupled by

the W terms.
The solutions xm(t) and ym(t) also determine the motion of the centre of

mass, and the motion of the internal coordinate Z. The latter is determined
by (choose Z1 = 0, then Z = Z2)

tZ =
1
L

∑
m

ym → (6.35)

Z̈ =
1
L

∑
m

ÿm = −β

L

∑
m

(2ym − ym−1 − ym+1) +
λ

L

∑
nm

W ′(xn − ym) .

The relative motion of the two chains may be described as a motion in internal
space.
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The change in the internal coordinate Z is obtained from the two displacive
modes in the two chains:

Q
(1)
0 =

1
N

∑
n

un, Q
(2)
0 = vt +

1
L

∑
m

vm . (6.36)

The equations of motion for these variables are

Q̈
(1)
0 = − λ

m1

∑
nm

W ′(xn − ym) ,

Q̈
(2)
0 =

λ

m2

∑
nm

W ′(xn − ym) .

(6.37)

The right-hand sides can be developed in powers of the normal coordinates
Q

(j)
k according to∑

nm

W ′(xn − ym) =
∑
nm

∑
j

1
j!

W (j+1)(na − vt − mb)(un − vm)j . (6.38)

The first-order terms are given by∑
nm

W ′′(na − vt − mb)un =
∑
K2s

f̂K2sQ
(1)
K2

exp(−isΩ1t)∑
nm

W ′′(na − vt − mb)vm =
∑
K1s

ĝK1sQ
(2)
K1

exp(−isΩ2t),

where K1 is a multiple of 2π/a and K2 is a multiple of 2π/b, Ω1 = 2πv/b
and Ω2 = 2πv/a. The latter frequencies correspond to the frequencies with
which the particles of one chain move over the particles of the other chain.
Furthermore, f̂ks and ĝks are the Fourier transforms of

∑
m W ′(na−vt−mb)

and
∑

n W ′(na − vt − mb), respectively.
By the expressions in terms of the normal coordinates the modes with

wave vector k in chain one are coupled to modes at k + K2 in the same, and
to modes at k + K1 in the other chain, and vice versa. The center of mass
motions are in first approximation coupled to modes with wave vectors in one
of the two reciprocal lattices. Then the equations of motion become

Q̈
(1)
0 = − λ

m1

[∑
K2

f̂K21Q
(1)
K2

exp(−iΩ1t) +
∑
K1

ĝK11Q
(2)
K1

exp(−iΩ2t)

]
,

Q̈
(2)
0 =

λ

m2

[∑
K2

f̂K21Q
(1)
K2

exp(−iΩ1t) +
∑
K1

ĝK11Q
(2)
K1

exp(−iΩ2t)

]
,

Q̈1
K2

= −ω1K2Q
(1)
K2

,

Q̈2
K1

= −ω2K1Q
(2)
K1

.
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The solutions give for the change in the internal coordinate

Z1 − Z2 ≈ vt + A exp(−iΩ1t ± iω1K2t) + B exp(−iΩ2t ± iω2K1t) . (6.39)

The result is a quasiperiodic oscillation of the internal coordinate around a
mean value v. Through the coupling to other modes energy flows from this
center of mass motion to the phonon bath. The flow is most important in
the regions where one of the frequencies sΩi becomes equal to a frequency
ω1K2 or ω2K1 . The effect is even more pronounced at frequencies where the
participation of the chains is comparable in size (i.e., approximately 0.5).

The analysis given earlier may be illustrated by numerical calculations [10].
This allows to explore the region that is not accessible to analytical treatment.
We consider the DCM with truncated Lennard-Jones potentials:

Vi(x) =
(
(ai/x)12 − 2(ai/x)6

)
exp(−rx2) .

Chain lengths up to N = 89 and L = 144 were considered, with periodic
boundary conditions. The equations of motion were integrated with a four-
step Runge–Kutta procedure. For various values of the lengths L and N the
equations were integrated with the equilibrium positions as positional initial
conditions, zero velocity for the particles of chain 1, and a uniform initial ve-
locity of the particles of chain 2. The monitored properties were the momenta
of the two chains, and their kinetic energies as function of time.

In the first simulations the interchain coupling was taken to be so small
that the modulation functions were smooth. In Fig. 6.6 the momentum of
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Fig. 6.7. Time dependence of the kinetic energies of the two chains in the DCM,
for initial speed v = 1.5

chain 2 is plotted as function of time for a number of initial velocities. For
smaller than a critical value v = 1.1 it remains practically constant for a very
long time. For v ≈ 0.65 the coupling becomes stronger, the energy is lost
faster, and there are stronger oscillations due to resonance of Ω1 and ω1K2 .
The resonance disappears for higher values of v. Above the critical value the
energy loss is much stronger. There is no longer a sliding mode. If the relative
motion vanishes the momentum of the second chain goes to L/(L + N) of its
original value because of conservation of total momentum. Figure 6.7 shows
the kinetic energy in both chains as a function of time, when there is a strong
dissipation (v = 1.5). Chain 2 loses quickly its kinetic energy to chain 1, until
the point where the energy is evenly distributed over the modes of both chains.
The cross-over from almost dissipation-less to strong dissipative behavior is
very similar to that in the Frenkel–Kontorova model for weak coupling [11].
The calculations show that for low velocities the energy loss, and therefore
also the damping of harmonic modes, is very small. In experiments the phason
and sliding modes have been found usually as strongly damped. This would
then not be an intrinsic property of the dynamics of incommensurate phases,
but probably due to other effects, such as the coupling to defects and pin-
ning. In [12] the dynamics of incommensurate phases has been studied with
a phenomenological approach to the damping.

When the coupling between the chains becomes stronger the modulation
functions are no longer continuous, and the analysis in terms of normal coor-
dinates of the two chains is no longer valid. The two chains are still mutually
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incommensurate, which means that the ground state remains infinitely de-
generate. However, in this case there are barriers between the various ground
states involving finite jumps of the particles. Therefore, the displacements
are no longer harmonic. A numerical integration of the equations of motion
gives another cross-over behavior. For low relative momenta the kinetic en-
ergy is not sufficient to cause the particles to move over the barriers. Then
the kinetic energy is exchanged between the two subsystems and the center
of mass oscillates. For higher momenta the two chains may slide over each
other, and the kinetic energy is quickly transferred to the phonon degrees of
freedom.

6.6 Sliding on a Quasiperiodic Substrate

6.6.1 A Model

As discussed in Sect. 6.2 the embedding of the usual quasicrystals in super-
space consists of disjoint atomic surfaces. Although there is phason dynamics
in such systems its character resembles that of other aperiodic crystals with
discontinuous modulation functions. Therefore, it is not to be expected that
there are propagating phason modes with a very low dissipation. However,
for quasicrystals one may have smooth modulation functions for the case of
a crystal sliding over a quasicrystalline surface. In this section sliding of a
periodic crystal over a quasiperiodic substrate is considered.

An often used model for surface phenomena is the one originally intro-
duced by Dehlinger, but usually called after Frenkel and Kontorova. It is a
quasi-one-dimensional model with a rigid periodic substrate potential in which
a harmonic chain is situated. For the case where the lattice constant is incom-
mensurate with the substrate periodicity, the model was first studied by Frank
and Van der Merwe. The model Hamiltonian is

H =
∑

n

(
p2

n

2
+

1
2
(xn − xn−1 − a)2 + V (xn)

)
, V (x) = λ cos(2πx/b) .

(6.40)
For an incommensurate situation a/b is an irrational number. A generaliza-
tion of this model is obtained by replacing the periodic potential by a quasi-
periodic one. A further generalization is a two-dimensional periodic crystal
moving over a quasiperiodic two-dimensional substrate.

Suppose a periodic crystal moves over the surface of a quasicrystal. Mo-
tions in the quasicrystal corresponding with a polarization in the perpendic-
ular direction are phason jumps, which cost energy. At the surface one might
have sliding if the situation can be compared to that in the DCM or the GFK
model. We consider a tenfold symmetric substrate potential in which a square
lattice moves (Fig. 6.8). The Hamiltonian is given by
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H =
∑

n

(
p2

n

2
+
∑
m

αnm

2
(xn − xm − dnm)2 + λV (xn)

)
(6.41)

with V (x) =
5∑

j=1

cos(kjx), kj =
(
cos(2πj/5), sin(2πj/5)

)
.
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Here n,m belong to a square lattice, dnm is the equilibrium distance between
the lattice points n and m, and αnm is only different from 0 for first and
second neighbors.

The ground state is a modulated structure of rank 6 (the dimension of
the lattice is 2, and there are four independent vectors in the potential). The
phenomenon of the discommensuration transition is the same. For weak in-
teractions between crystal and substrate the modulation is a smooth function
of four variables. The quasiperiodic substrate can be embedded in four di-
mensions as a periodic function. For small values of λ the unit cell of this
four-dimensional lattice is uniformly covered by the positions of the atoms in
the ground state. For higher values of λ the modulation function has discon-
tinuities and the unit cell of the periodic function has avoided regions.

6.6.2 Nonlinear Dynamics and Friction

The equations of motion are the Hamilton equations for the Hamilton function
H. Under the assumption that the distance between two points n and m
remains bounded, the solutions can be written as

xn = x0
n +

∑
kν

Qk,ν(t)ε(kν) exp(ikn) ,

where ν labels the two branches, k is in the two-dimensional Brillouin zone, the
normal coordinates Qkν(t) are bounded in time, except Q0 which corresponds
to the motion of the center of mass. Two phonons of the crystal are strongly
coupled if they have the same frequency ωkν (Fig. 6.8) and k vectors differing
by one of the five vectors kj .

Integration of the equations of motion yields the time dependence of Q0(t).
Briefly formulated, the behavior is similar to that of the DCM. There is a
zero frequency sliding mode for such small values of λ where the modula-
tion function is smooth. Above the critical value, the modulation function is
discontinuous and a phason gap opens.

Given an initial value of the vector Q0(t) for values of λ below the critical
value the value of Q0(t) decreases slowly. The friction is very low under the
condition that Q0(0) is small. The friction increases strongly as soon as the
initial speed exceeds the phason speed. The direction of Q0(t), however, does
not stay the same. Very soon a change of direction occurs, and that does not
change strongly afterward.

The system can be embedded in six dimensions. Then the shift of the
crystal with respect to the substrate is a phason motion. The transfer of
energy from the phason to the other phonons is interpreted as friction.

6.7 Conclusions

There are various dynamical and static phenomena in quasiperiodic systems
related to the motion in internal (or perpendicular) space. In the harmonic
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approximation these dynamical excitations are special phonons called pha-
sons. Beyond the harmonic approximation these phasons may nonlinearly be
coupled to other phonons.

In some models phason modes originate from a soft mode, a mode of the
undeformed crystal becoming unstable at the transition to the modulated
phase.

In aperiodic crystal models often a transition is observed from a state with
smooth modulation functions to a state with discontinuous modulation func-
tions. It is called the discommensuration transition. This transition coincides
with the opening of a phason gap.

In incommensurate structures static and dynamic excitations occur in the
form of solitary waves. These phase excitations move through the system
almost without energy loss if the modulation functions are smooth and the
speed is sufficiently low. A dynamic transition takes place from a practically
dissipation-less motion to a dissipative motion if the speed exceeds a critical
value.

This dynamic transition has been found both in the sliding of subsystems
in an aperiodic composite (internal friction) and in the sliding of one crystal
on top of another (normal friction).
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ulescu, Alexei Rubtsov, and Han Slot.
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7

Hamiltonian Monodromy as Lattice Defect

B. Zhilinskii

Summary. The analogy between monodromy in dynamical (Hamiltonian) systems
and defect in crystal lattices is used in order to formulate some general conjec-
tures about possible types of qualitative features of quantum systems that can be
interpreted as a manifestation of classical monodromy in quantum finite particle
(molecular) problems.

7.1 Introduction

The purpose of this chapter is to demonstrate amazing similarity between
apparently different subjects: defects of regular periodic lattices, monodromy
of classical Hamiltonian integrable dynamical systems, and qualitative fea-
tures of joint quantum spectra of several commuting observables for quantum
finite-particle systems. First of all we recall why regular lattices and lattices
with defects appear naturally for classical integrable Hamiltonian systems and
for their quantum analogs. Then we describe several “elementary dynamical”
defects using tools and language developed in the theory of crystal defects.
Comparison between defects arising in dynamical systems and crystal defects
leads to many interesting questions about possibility of realization of certain
defects in Hamiltonian dynamics and in crystals.

7.2 Integrable Classical Singular Fibrations
and Monodromy

Let us start with the example of Liouville integrable classical Hamiltonian
system with N degrees of freedom [1]. This means that there exists a set
F = {F1, . . . , Fn} of functions defined on 2n-dimensional symplectic mani-
fold M , which are functionally independent and mutually in involution. The
Hamiltonian H can be locally represented as a function H = f(dF1, . . . ,dFn).
The mapping F :M → Rn defines the integrable fibration. We call it a general-
ized energy–momentum map. Each fiber is the union of connected component
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F2

F
1

F2

F
1

F2

F
1

Fig. 7.1. Examples of images of the energy–momentum maps for singular toric
fibrations

Fig. 7.2. Singular fibers. Pinched torus (left). Curled torus (center). Pinched curled
torus (right)

of inverse images F−1(f) of points f ∈ Rn. If the differentials {dF1, . . . ,dFn}
of functions from F are linearly independent in each point the fibration
is called regular. If moreover all fibers are compact, the fibration is toric.
We are interested in integrable toric fibrations with singularities of some very
simple type.

Let us restrict ourselves to systems with two degrees of freedom. Typ-
ical examples of images of singular energy–momentum maps are shown in
Fig. 7.1. The isolated critical value of the map F (see Fig. 7.1, left), also known
as focus–focus singularity [2, 3], appears, for example, for such problems as
spherical pendulum [4–6], champagne bottle [7, 8], coupling of two angular
momenta [9], etc. The singular fiber in this case is a pinched torus (Fig. 7.2,
left) with one isolated critical point of rank 0.

The presence of a half-line of critical values, together with end point, is
typical for nonlinear 1:(−k) resonant oscillator [10]. Each point on the singular
half-line corresponds to a singular “curled torus” (Fig. 7.2, center, shows a
curled torus for the case k = 2) [10, 11], which differs from an ordinary torus
due to the presence of one circular trajectory that covers itself k-times. This
particular circular trajectory is formed by critical points of rank 1 of the map
F . The end point (see Fig. 7.1, center) corresponds to the pinched curled torus
with a multiple circle shrinking to a point. This fiber has one critical point of
rank 0 and is topologically equivalent to pinched torus but its immersion into
4D-space is different. A pinched curled torus for k = 2 is shown in Fig. 7.2,
right.

A more general situation with two singular rays starting at one singular
point (as shown in Fig. 7.2, right) corresponds to k:(−l) resonant nonlinear
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oscillator. An example of the integrable fibration corresponding to all shown
in Fig. 7.1 of the energy–momentum maps with two integrals (F1, F2) in invo-
lution can be written as [10]

F1 = m1
1
2 (p2

1 + q2
1) − m2

1
2 (p2

2 + q2
2), (7.1)

F2 = Im
[
(q1 +ip1)m2(q2+ip2)m1

]
+
(
m1

1
2 (p2

1+q2
1)+m2

1
2 (p2

2+q2
2)
)s

, (7.2)

with s > (m1 + m2)/2, and m1,m2 positive integers.
All regular fibers are two-dimensional tori. Their fundamental groups are

abelian groups Z2 with two generators, corresponding to two basic cycles on a
torus. The fundamental groups for different regular tori are isomorphic among
themselves and to Z2 integer lattice. We can establish the correspondence
between basic cycles defined on different tori by choosing a continuous path
in the 4D-space, which is transversal to fibers and by deforming basic cycles
continuously along this path. In particular, for a closed path passing only
through regular tori we get the automorphism of the fundamental group of a
chosen regular torus. The corresponding map of basic cycles is the monodromy
map. It is the same for all homotopy equivalent closed paths. If the path
crosses singular lines similar to those taking place for integrable fibration of the
(7.1,7.2) resonance oscillators only a subgroup of chains can be continuously
deformed along the path and the monodromy map in such a case can be
defined only for a subgroup of fundamental groups [12]. Nevertheless this
map can be linearly extended to a whole group. In this case the extended
monodromy map is represented by a matrix with fractional entries, while in
the case of isolated critical values the monodromy map is given by integer
matrix µ ∈ SL(2, Z).

7.3 Quantum Monodromy

In order to study the manifestation of classical monodromy in associated quan-
tum problems we first need to recall the existence of local action-angle vari-
ables [1,13] and to introduce the elementary cell in the space of actions I1, I2,
which is defined by ∆I1,∆I2. Such a cell corresponds locally to the lattice of
quantum states associated with integer values of local actions. If we choose
basic vectors of such lattice as

(
e1
e2

)
=
(

∆I1
∆I2

)
then under the transformation

from one local action to another
(

I′
1

I′
2

)
= M

(
I1
I2

)
the basic of the cell varies like(

e′
1

e′
2

)
= (M−1)†

(
e1

e2

)
.

For quantum problems we are interested in the joint spectrum of commut-
ing operators, corresponding to classical integrals {F1, F2} [14–17]. The collec-
tion of joint eigenvalues superimposed on the image of the energy–momentum
map for classical problem reveals locally the presence of a regular lattice as-
sociated with integrality conditions imposed on local actions by quantum me-
chanics. The lattice of quantum states for quantum problem corresponding
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Fig. 7.3. Example of the lattice of quantum states with monodromy. Resonant
oscillators (7.1,7.2) with m1 = m2 = 1 (left) and m1 = 1, m2 = 2 (right)

to classical oscillators with 1:(−1) and 1:(−2) resonances is represented in
Fig. 7.3 [10].

Due to the existence of monodromy, the lattice of quantum states can-
not be regular globally. From Fig. 7.3 it is clearly seen that the transport of
elementary cell of the locally regular part of the lattice around the singular-
ity shows nontrivial monodromy for a noncontractible close path in the base
space (in the space of F1, F2 values). The presence of quantum monodromy
can be interpreted as a presence of defects of locally regular lattice of quantum
states [9]. In the case of isolated critical values of classical problem (Fig. 7.3,
left) the choice of elementary cell is arbitrary and the monodromy map is
integer. In the case of the presence of singular line in the image of the clas-
sical energy–momentum map, the dimension of the cell should be increased
(doubled in the case of 1:(−2) resonance) in order to ensure the unambigu-
ous crossing of the singular line [10]. In both cases the presence of singular
fibers in classical problem is reflected in the appearance of some specific de-
fects of the lattice of quantum states for corresponding quantum problem. We
wish now to describe these specific defects arising in the quantum theory of
Hamiltonian systems using methods and tools from defect theory of periodic
lattices [18–21].

7.4 Elementary Defects of Lattices

Let us play with analogy between the 2-D lattice of quantum numbers (or of
lattice formed by points with integer values of actions) and the 2-D lattice of a
regular solid with defects. More precisely the idea is to see the correspondence
between defects of periodic solids and monodromy, which is an obstruction to
the existence of global action-angle variables in Hamiltonian dynamics (for
integrable systems).

For a 2-D system each quantum state (or a site for a lattice formed by
points) is characterized by two numbers, say (n1, n2). The existence of local
order means that starting with some vertex (point of the lattice) one can
form two vectors, or equivalently the elementary cell of the lattice by defining
two vectors as joining (n1, n2) with (n1 + 1, n2) and with (n1, n2 + 1) respec-
tively. This corresponds to the choice of the elementary cell with four vertices
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{(n1, n2), (n1 + 1, n2), (n1, n2 + 1), (n1, n2 + 1)}. The choice of the elementary
cell (or equivalently the choice of the basis of the lattice) is not unique. It is
defined only up to arbitrary transformation with matrix M ∈ SL(2, Z). But
let us fix some choice for a moment. The existence of local actions in quantum-
state lattice language means that by elementary translations in two directions
we can label unambiguously all vertices by two numbers with the difference
in numbers along each edge being 1 for one number and 0 for another. This
means that there are no defects (in the local region studied).

Let us now analyze several different types of defects that can be imagined
for periodic lattices in order to find possible candidates to represent defects of
lattices of quantum numbers for quantum problems corresponding to classical
Hamiltonian systems with nontrivial (integer and fractional) monodromy.

7.4.1 Vacations and Linear Dislocations

The simplest point defect well known in solids is the absence of vertex (or
the presence of additional vertex). This defect does not distort the system
of edges not connected with the vacation. The lattice is not deformed even
slightly away from the point defect. The elementary cell after a circular trip
around the vacation has no modifications (see Fig. 7.4, left).

Linear dislocation can be easily imagined to be formed through the fol-
lowing formal procedure. Let us remove all vertices on the half-line started
at a given vertex and join the vertices through the gap (see Fig. 7.4, center).
Equally, after making a cut along a line of vertices we can introduce additional
(one or even several) half-lines. Now the circular path around this defect will
show us the existence of the defect. To observe this defect we should go around
it by doing the same number of steps in four directions (say, down, right, up,
and left). If the final point will not be the same as the initial point, there is
a defect. The vector from the initial point to the final point (Burgers vector
in solid state physics) characterizes the dislocation. Observe that the elemen-
tary cell after the round trip around the dislocation will return exactly to its
initial place (see Fig. 7.4, right) because Burgers vector does not depend on
the initial point and it is exactly the same for all four vertices of the cell.
This means that vacation and linear dislocations cannot be associated with
monodromy type defects of regular lattices.

Fig. 7.4. Lattice with vacation (left). Construction of linear dislocation (center).
Lattice with linear dislocation (right)
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7.4.2 Angular Dislocations as Elementary Monodromy Defect

Another general idea to form defect starting from the regular lattice is to
remove or to introduce “the solid angle” and to establish in some way the
regular correspondence between two boundaries everywhere except one central
point.

It is important to note that correspondence between two boundaries should
be imposed in order to reconstruct the lattice. We will look for different possi-
bilities but let us start with the simplest one: after removing (or introducing)
the solid angle, the reconstruction is done by the parallel shift of lattice points
in one chosen direction. The requirement for reconstructed lattice to be well
defined everywhere except singular point can be satisfied only for some special
values of removed or added angles. Namely we should impose that the number
of removed (added) points at each vertical line is integer and varies linearly
with distance from the vertex of the solid angle. Figure 7.5, left, shows exam-
ples of removed or added solid angles. Two different solid angles correspond
to removing (adding) of one or two additional points from vertical line respec-
tively, at each step in the horizontal direction. We can remove or add solid
angles in different ways. Figure 7.6 illustrates the construction of the removed
angle. We start with one chosen point O of the lattice and two basis vectors
corresponding to “horizontal” and “vertical” directions. We put the first cut
through the vertex A lying at the k-th vertical line counting from the vertex
O (k = 6 in Fig. 7.6). To construct the second cut we go from A in vertical

Fig. 7.5. Construction of the angular dislocation by removing or adding one of
the solid angles shown in the left picture. Reconstructed lattices after removing or
adding small or large sectors are shown together with transport of elementary cell
along a closed path around the defect on the reconstructed lattice. The identification
of boundaries after removing or adding solid angle is done by the parallel shift of
lattice points in vertical direction
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Fig. 7.6. Alternative constructions of the same defect
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direction up to k-th horizontal line. Two rays OA and OB show the sector to
be removed. Observe that with this construction s points are removed from
s-th vertical line.

Figure 7.5 shows graphically what happens with a lattice after removing
(or adding) solid angles. It is important to note that just by looking at the
deformation of elementary cell after the round trip on the reconstructed lattice
we can easily find how big was the solid angle removed (added) and what
transformation (removing or adding) was exactly done. The absolute value
of removed (added) solid angle can be read directly by comparing the form
of the initial and the final cell. It is sufficient to write the transformation of
two vectors forming elementary cell in matrix form. This matrix is directly
related with the monodromy matrix for actions M ↔ (M−1)† as explained in
Sect. 7.3. For two examples shown in Fig. 7.5 this monodromy matrix has the
form (1 p

0 1) or (1 0
p 1) with p = ±1 or p = ±2. One or another form of matrix and

the sign of p depends on the choice of the first and second basis vectors and
on the direction of the circular trip (clockwise or counterclockwise). At the
same time the absolute value of |p| is unambiguously related with the absolute
value of the removed (added) solid angle.

More subtle arguments are needed to distinguish between adding and re-
moving solid angle with the same |p|. We denote later defects obtained by
removing solid angle by (−) and by adding solid angle by (+).

7.4.3 About the Sign of the Elementary Monodromy Defect

The existence of the sign of Hamiltonian monodromy was conjectured by the
author on the basis of analogy between monodromy and (+) and (−) defects
of lattices. The proof was given by Cushman and Vu Ngoc [22]. We give here
the characterization of the sign of defect in terms of lattice transformation.

Let us first compare initial and final cells for the same reconstructed lattice
(with |p| = 1) obtained by removing the simplest solid angle but for both
kinds of circular paths (clockwise and counterclockwise, see Fig. 7.7, left).
The identification of the initial cell with the final one can be done only for

Fig. 7.7. Comparison of initial and final cells after the circular path around the sin-
gularity on the lattice reconstructed after removing [(−) defect, left ] or adding [(+)
defect, right ] elementary solid angle. Both counterclockwise and clockwise circular
paths are shown for each type of defects
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two vertices. We choose the identified pair being the back side of the cell in the
final position (with respect to the direction given by the sense of rotation). It
is clearly seen from Fig. 7.7, left, that in order to deform the initial cell for (−)
defect to the form of the final cell we need to move the front side of the cell in
the direction inside the surrounded singularity. This result remains unchanged
if we apply the same procedure to the clockwise or counterclockwise circular
path.

A similar analysis can be done for lattice reconstructed after adding solid
angle, i.e., for (+) defect, (see Fig. 7.7, right). It is clear from the figure that
the deformation of the initial cell after the round trip is now in the outside
direction with respect to the surrounded singularity. This result remains again
the same for both clockwise and counterclockwise directions of the circular
path.

Thus the simple geometrical analysis of the transformation of elementary
cell enables one to associate with elementary monodromy the specific defect of
the regular lattice. The defect obtained by removing solid angle with |p| = 1
is called the elementary monodromy defect. This defect appears exactly in
lattices of quantum states for Hamiltonian systems corresponding to classi-
cal Hamiltonian systems with focus–focus singularities. Observe that defects
with |p| > 1 appear naturally in Hamiltonian systems with symmetries. One
of the most interesting and physically important systems of this kind is the
integrable approximation for hydrogen atom in crossed electric and magnetic
fields [23]. In classical systems monodromy with |p| > 1 corresponds to the
presence of isolated singular fiber, which is |p|-times pinched torus [24]. Cush-
man and Vu Ngoc [22] have proved that only focus–focus singularities with
the same sign of monodromy can appear in a connected component of the im-
age of the generalized energy–momentum map of an integrable Hamiltonian
system. In non-Hamiltonian systems monodromy of both signs can appear
simultaneously [25].

7.4.4 Rational Cuts and Rational Line Defects

We have seen in Sect. 7.4.2 that only very special cuts together with matching
rules enables us to construct the point defects. Now we generalize the admis-
sible cuts but keep the matching rule. Let us start with the example of 1:2
rational cut, which is defined as follows (see Fig. 7.8).

We cut out half of the solid angle removed in the case of the elementary
monodromy defect. After removing this solid angle the two boundaries are
different. At one (lower boundary in Fig. 7.8) points are situated at each ver-
tical line of the lattice. At the upper boundary of the cut points are situated
only at each second vertical line. We keep the matching rules, i.e., identify
the boundaries by sliding points along the vertical lines. Naturally, the recon-
structed lattice is not homogeneous along the identified boundary. It is seen
from the fact that the number of removed points from vertical lines varies like
0, 0, 1, 1, 2, 2, 3, 3, . . . along the horizontal direction. (Note that the number
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Fig. 7.8. Construction of the 1:2 rational lattice defect starting from The regu-
lar square lattice. Ambiguity in the transfer of 1 × 1 cell through the cut (left).
Unambiguous transfer of double cell through the cut (right)

of removed points can be represented in the form of the sum of linear and
oscillatory functions.) This means that the reconstructed lattice has a line
defect.

If we try to pass the elementary cell of the lattice through the cut the
result depends on the place where the cell goes through the boundary line.
From Fig. 7.8, left, it is clear that when the right side of the cell goes through
the cut at even vertical line (supposing the vertical line going through the
vertex of the removed sector to be even) the form of the elementary cell
remains unchanged. In contrast, when the right side of the cell goes through
the cut at odd vertical line, the form of the cell changes. This ambiguity can
be avoided if instead of elementary 1 × 1 cell we use a larger cell. Namely,
we double the dimension of the cell in the horizontal direction. The double
cell passes through the cut at any place in a similar way. But the internal
structure of the cell changes after crossing the line defect. Cell transforms
from “face centered” to “body centered” in the crystallographic terminology.
But this modification is uniform along the cut. In some way, by increasing the
dimension of the cell we neglect the effects comparable with the dimension of
the cell. This enables us to define the transformation of lattice vectors after
a closed path around the origin of the removed sector. Putting eh and ev as
horizontal and vertical basis vectors of the square lattice shown in Fig. 7.8
and {edouble

h = 2eh, ev} as vectors forming the double cell, the transformation
of vectors forming the double cell after a close path around the origin of the
removed sector in the counterclockwise direction is(

(edouble
h )′

e′v

)
=
(

1 1
0 1

)(
edouble
h

ev

)
. (7.3)

If we extend linearly this transformation to lattice vectors themselves the
transformation matrix takes the form(

e′h
e′v

)
=
(

1 1/2
0 1

)(
eh

ev

)
. (7.4)

The matrix so obtained with fractional entry coincides with the inversed trans-
posed of the fractional monodromy matrix for actions in the case of 1:(−2)
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Fig. 7.9. Construction of the 1:3 and 2:3 rational lattice defects starting from the
regular square lattice

resonant classical oscillator and with quantum fractional monodromy for cor-
responding quantum cells [12].

Using the same principle we can construct, for example, line defects by
reconstructing a lattice after 1:3 or 2:3 rational cuts shown in Fig. 7.9. This
notation means that we remove the solid angle ϕ = tan−1(1/3) or tan−1(2/3),
respectively. We need to triple the dimension of cell in the horizontal direction
in order to get unambiguous transformation rules for the cell after crossing
the line defect on the reconstructed lattice. It is clear from Fig. 7.9 that the
monodromy matrices for 1:3 and 2:3 rational defects have the form

(
1 1/3

0 1

)
and

(
1 2/3

0 1

)
, respectively. Removing 2:3 rational solid angle is equivalent

to removing twice the 1:3 rational solid angle. Generalization to arbitrary
rational cut with the same type of matching rules for reconstruction of the
lattice is quite obvious and leads to half-line defect with fractional monodromy
matrix.

We can also suggest alternative matching rules after rational cuts with the
idea of obtaining reconstructed lattice with only point rather than the line
defect. Let us consider again as example the 1:3 rational cut but with different
matching rules for two boundaries (see Fig. 7.10).

It is clear that if we want to have on the reconstructed lattice only point
defect all vertices on two boundaries should be consecutively identified. This
identification imposes matching rule for one of the basis vectors of the lattice.
Another should be chosen in such a way that two new basis vectors form
an elementary cell of the same volume, i.e., they should be related one to
another with SL(2, Z) transformation. In fact this matrix is precisely the

. . . . . . . .

. . . . . . . . ...........
.

. . . . . . . ..........

Fig. 7.10. Matching rules for reconstruction of lattice after rational cut. Example
of 1:3 cut. The monodromy of the resulting defect is the Arnol’d cat map
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monodromy matrix of the point defect just by the construction. In the case
of 1:3 rational cut shown in Fig. 7.10 the resulting monodromy matrix has
the form

(
3 1

−1 0

)
. This matrix is known as Arnol’d cat map [26]. A lot of

different examples of point defects can be constructed in a similar way. But
we will take as elementary point defect only (−) defects corresponding to
elementary monodromy matrix. We demonstrate now that all other defects
can be considered as more complicated objects composed in some way from
several elementary ones.

7.5 Defects with Arbitrary Monodromy

We now turn to the description of defects that can be characterized by arbi-
trary monodromy matrices. As soon as the choice of the basis of the lattice
is ambiguous, the matrix representation of the monodromy transformation is
basis dependent. For example the monodromy matrix Ma =

(
1 1
0 1

)
after the

transformation to another basis through the similarity M ′
a = AMaA−1 with

A being arbitrary SL(2, Z) matrix takes the form

(
a b
c d

)(
1 1
0 1

)(
d −b
−c a

)
=
(

1 − ac a2

−c2 1 + ac

)
.

From this family of equivalent matrices it is immediately clear that matrices(
1 1
0 1

)
and

(
1 0
−1 1

)
are equivalent but they are written in different frames. In

contrast, matrix
(

1 −1
0 1

)
is equivalent to

(
1 0
1 1

)
but is not equivalent to

(
1 1
0 1

)
in spite of the fact that these two matrices are mutually inversed.
In order to formulate a precise statement about equivalence or in-equivalence

of different defects we should first establish equivalence of SL(2, Z) matrices
with respect to conjugation by elements of SL(2, Z), i.e., to describe classes
of conjugated elements of SL(2, Z) group.

It is well known that the trace and the determinant of the matrix are
invariant with respect to similarity transformation. But these invariants are
not sufficient to completely characterize classes of conjugated elements. Before
looking for SL(2, Z) matrices let us start with SL(2, R) ones.

7.5.1 Topological Description of Unimodular Matrices

Let us consider the subspace of SL(2, R) matrices M =
(

α β
γ δ

)
with Tr

M = K. This means that four matrix elements α, β, γ, and δ are related
by two equations

αδ − βγ = 1, α + δ = K. (7.5)
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Tr M>2 Tr M=2
2>Tr M>00<Tr M<2

Tr M=0

0>Tr M>2
Tr M<2

Tr M=2 2<Tr M<0

Tr M=0

eigen v(1,1)

eigen values
complex

complex
eigen values
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eigen values

eigen values
real eigen v(-1,-1)

Fig. 7.11. The topological structure of the space of 2 by 2 matrices with determi-
nant 1. The solid torus in 3-D space is foliated by levels corresponding to a given
value of the trace of matrix M

Eliminating one parameter (say α) we get the following relation between three
parameters β, γ, and δ

−1 + Kδ − δ2 − γβ = 0. (7.6)

We can interpret this relation as the geometrical description of all SL(2, R)
matrices with given trace in the three-dimensional space of parameters β, γ,
and δ. The geometrical form of the surface so obtained depends on the value
of K. Topologically there are three different situations.

If K = ±2 we have double cone with vertex corresponding to ±
(

1 0
0 1

)
matrix. If |K| > 2 we have a hyperboloid of one-sheet and if −2 < K < 2
we have two-sheeted hyperboloid. We can schematically represent the whole
family of SL(2, R) matrices by filling the solid torus in three-dimensional
space of parameters by surfaces corresponding to all possible values of traces.
This representation is given in Fig. 7.11.

The existence of two disjoint connected components for matrices with
−2 ≤ Tr M ≤ 2 implies the existence of additional invariant, which classifies
matrices with the same trace into smaller subclasses of conjugate elements.
We need such description but only for matrices in SL(2, Z). The important
difference between SL(2, R) and SL(2, Z) cases is due to the fact that there
are only a finite number of possible values of the trace in SL(2, Z), which
correspond to matrices with complex eigenvalues in SL(2, R). In physical lan-
guage this is the consequence of the fact that only axes of second, third, fourth,
and sixth orders are compatible with the existence of the lattice.

Formal proof: Characteristic polynomial for the SL(2, Z) matrix M has the
form λ2−(Tr M)λ+1 = 0. It has complex eigenvalues only if the discriminant
(Tr M)2 − 4 < 0. As soon as the trace is integer, it is only possible that
(Tr M) = 0,±1.

Now we can return to the study of SL(2, Z) case.
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7.5.2 Classes of Conjugated Elements and “Normal Form”
of SL(2, Z) Matrices

The matrices M ∈ SL(2, Z) are named parabolic, elliptic, or hyperbolic, de-
pending on their trace. Parabolic matrices have trace equal ±2 and their
eigenvalues are {+1,+1} or {−1,−1}. Elliptic matrices have trace ±1 or 0.
Their eigenvalues are complex numbers. Hyperbolic matrices have |Tr M | > 2.
Their eigenvalues are real irrational numbers. Identity matrix

(
1 0
0 1

)
and mi-

nus identity
(
−1 0
0 −1

)
commute with all elements from SL(2, Z) and each form

a proper class of conjugate elements consisting of one element. We consider
these classes separately. In Fig. 7.11 these matrices correspond to vertices of
double cones of matrices with trace ±2.

Within each class of conjugate elements we can choose one matrix to be
the “normal form.” All classes of conjugate elements together with normal
forms are listed in Table 7.1.

7.5.3 Several Elementary Monodromy Defects

We have defined the construction of elementary defects using one chosen lat-
tice basis. Both cuts and matching rules were precisely defined in that basis.
But the choice of the lattice basis is not unique. If there are two defects, both
characterized by elementary monodromy matrix but the choice of basis and
the orientation of cuts for these two defects are different, the global mon-
odromy, corresponding to transformation of elementary cell after a circular
path around both defects, depends on relative orientation of two removed
solid angles. Let us again start with some particular examples of systems with
several elementary defects.

Disclinations as a Composition of Elementary Monodromy Defects

Figure 7.12 shows regular square lattice with three defects corresponding to
elementary monodromy. For two removed angles (sectors around horizontal
lines) the reconstruction of lattice is done through sliding points in vertical

Table 7.1. Classes of conjugated elements of SL(2, Z) group together with normal
forms of matrices for each class

Trace K, (|K| > 2) ±2 ±1 0

Module − p = 0,±1, . . . ε = ±1 ε = ±1

Normal form

(
K 1
−1 0

) (
±1 p
0 ±1

) (
±(1 + ε)/2 ε

−ε ±(1 − ε)/2

) (
0 ε
−ε 0

)
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Fig. 7.12. Regular square lattice with three elementary monodromy defects (left).
Regular triangular lattice with two elementary monodromy defects (right)

directions. For the third removed angle the identification of boundaries is done
through the horizontal sliding of lattice points.

The cumulative effect of three elementary cuts is the rotation of the ele-
mentary cell by π/2. The direction of the rotation of the elementary cell is
defined by the direction of the circular path around singularities. Such a defect
is known in solid state physics as π/2 rotational disclination. It is easy to see
that the same effect takes place if the three cuts are distributed in another
way between vertical and horizontal directions (two vertical and one horizon-
tal). To see this it is just sufficient to look at the same figure after rotating it
by π/2.

Naturally, similar construction can be done with three singular points cor-
responding to adding the solid angle and reconnecting new boundaries through
horizontal or vertical shift. The resulting effect on the elementary cell is again
the π/2 rotation, but now the rotation of the elementary cell is in opposite
direction (as compared to the direction of the circular loop around the singu-
larity).

The global effect in both cases can be reproduced by removing (or adding)
the solid angle π/2 and by reconstructing lattice through identification of two
boundaries by rotating them as it is shown in Fig. 7.13 where π/2 solid angle
is removed. Naturally one can also remove π or 3π/2 solid angle (Fig. 7.14) or
to add π/2 or kπ/2 solid angle as it is shown in Fig. 7.15. This gives negative
or positive rotational disclinations.

The same construction made with triangular lattice and with two ele-
mentary monodromy defects rotated one with respect to another over 2π/3
gives the cumulative effect consisting in rotation of elementary cell over 2π/6
after a close path surrounding two elementary defects (see Fig. 7.12, right).
The cumulative effect of such two elementary monodromy defects is the π/3
rotational disclination. Its multiple, positive or negative analogs can be im-
mediately constructed.
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Fig. 7.13. Construction of the rotational disclination by removing solid angle π/2
shown on the left picture
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Fig. 7.14. Construction of the rotational disclination by removing solid angle
π (left) and 3π/2 (right). The reconstructed lattice after removing π solid angle
(center)
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Fig. 7.15. Construction of the rotational dislocation (disclination) by introducing
solid angle kπ/2. k = 1 (left) and k = 4 on the (right)

Rotational disclinations are well-known defects in the solid state physics.
From the point of view of defects of quantum state lattices and classical
Hamiltonian monodromy, the elementary monodromy defects seem to be more
fundamental. Any rotational disclination can be constructed as a global effect
in systems with several elementary monodromy defects.
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Fig. 7.16. Relation between local monodromy matrices for isolated defects and
global monodromy for the circular path around two defects

Multiple Defects with Trivial Global Monodromy

Let us now consider in a more general way the correspondence between lo-
cal and global monodromy for a system of elementary defects. Figure 7.16
illustrates this relation.

Suppose we have two defects c1 and c2 characterized by monodromy ma-
trices M1 and M2. These monodromy matrices are obtained by going around
the defect ci starting from point bi and using local basis associated with point
bi. If we are interested now in global monodromy that corresponds to a closed
loop going around two defects and starting at initial point b0 with its own lo-
cal basis we can calculate the global monodromy by going first from b0 to b1,
making closed loop around c1, returning back by the same way, and repeating
the same for the second defect. The global monodromy calculated in this way
should be the same by homotopy arguments. If the modification of the basis
between b0 and bi is described by matrices Ai the global monodromy M can
be expressed in terms of M1 and M2 as M = A1M1A

−1
1 A2M2A

−1
2 .

Naturally for an arbitrary system of elementary defects the global mon-
odromy matrix can always be represented in the form M =

∏
i AiMiA

−1
i .

As already noted the monodromy matrix is defined up to conjugation with
SL(2, Z) matrices, i.e., defects with different monodromy are in one-to-one
correspondence with classes of conjugate elements of SL(2, Z) matrices.

One can easily verify that arbitrary SL(2, Z) matrix can be represented
in the form of product of matrices, conjugate to elementary monodromy ma-
trices with one chosen sign [27]. In particular, the identity matrix can also
be represented in the form of product of matrices conjugate to elementary
monodromy matrix. It is obvious that four π/2 rotational disclinations (or six
π/6 rotational disclinations) give trivial global monodromy. In fact the ele-
mentary cell makes a 2π rotation when going along closed path surrounding
these defects and in spite of the fact that the monodromy is trivial the closed
path is not contractible and the defect exists. An easy consequence of this
statement: the monodromy matrix (defined up to conjugation with SL(2, Z)
matrices) is not sufficient to distinguish defects. Two defects with the same
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Trivial

+1 -1

Fig. 7.17. Lattice with two elementary monodromy defects of different sign

monodromy matrix can further be labeled by the number k of 2π rotations of
the elementary cell after a closed path around a defect. This additional num-
ber k can be arbitrary integer k = 0,±1,±2, . . .. Note that an elemenraty (−)
monodromy defect can be constructed as a cumulative effect of 11 elementary
(+) monodromy defects [27].

One can easily obtain trivial global monodromy for a closed path around
two defects with different signs. Figure 7.17 shows construction of two elemen-
tary monodromy defects with different signs. Signs plus and minus indicate
adding and removing of the same solid angle, respectively.

7.5.4 Several Rational Line Defects

Let us now discuss examples of lattices with multiple rational line defects. We
assume that all defects are of the same sign, i.e., obtained by removing solid
angle. We start with an example of two defects 1:2 and 1:3, which have similar
orientation (see Fig. 7.18, left). These two defects model the singularities of
integrable toric fibration for 2:− 3 resonant oscillator (7.1). Elementary 1× 1
cell cannot cross unambiguously both defect half-lines. The cell should be
doubled in horizontal direction in order to cross unambiguously the 1:2 defect.
In a similar way the cell should be tripled in the same direction in order to
cross the 1:3 defect. This means that only 1× 6 cell, which is six times larger
in the horizontal direction, can cross both defects. Using such a cell we can go

Fig. 7.18. Construction of a lattice with two rational defects, 1:2 and 1:3. Paral-
lel defects that correspond to singular one-dimensional strata for 2:(−3) resonance
oscillator (left). Two orthogonal defects (right)
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along a closed path surrounding the singular vertex. After linear extension to
elementary lattice vectors we get the fractional monodromy matrix

(
1 5/6
0 1

)
.

If two rational defects, 1:2 and 1:3, have different orientations the situa-
tion becomes quite different. Figure 7.18, right, shows these two defects with
orthogonal orientation. In order to pass through horizontal 1:2 defect the cell
should be doubled in horizontal direction. In order to pass through 1:3 vertical
defect the cell should be tripled in vertical direction. Moreover, one should
note that all vertices of the cell should lie on even vertical lines and on hori-
zontal lines having the same number modulo 3. This means that we need to
take at least 6×6 cell in order to cross unambiguously both rational cuts. The
resulting monodromy matrix for a counterclockwise path around two singular
points has the form

(
5/6 1/2
−1/3 1

)
. This is an elliptic SL(2, Q) matrix.

Rational Defect Line with Ends and Singular Points

It is quite easy to construct rational defect with two ends. It is sufficient to
start to cut solid angle as it was done for rational defect but at some another
point to change the slope and to continue with another slope related to inte-
ger monodromy defect. This situation is shown in Fig. 7.19 on three different
examples. Figure 7.19, left, shows 1:2 cut, which starts at point A but at
point B the angle of the cut changes. It becomes equal angle characteristic to
elementary monodromy defect. This means that the line 1:2 defect on recon-
structed lattice has two ends and the monodromy around each end is

(
1 1/2
0 1

)
.

At the same time the global monodromy for close path surrounding 1:2 de-
fect is

(
1 1
0 1

)
. In a similar way (see Fig. 7.19, center) we can start at point A

with 1:3 cut and change at point B the angle in order to get again on the re-
constructed lattice elementary monodromy for global close path. This means
that surrounding point A we get the monodromy

(
1 1/3
0 1

)
, while surrounding

A

B

A

B

A
B

C

1

1/21/2

1

1/32/3

1

1/31/2 1/6

Fig. 7.19. Construction of the line defects with ends and singular points. Defect
with equivalent ends (left). Defect with inequivalent ends (center). Defect with in-
equivalent ends and additional singular point splitting defect into two fragments
(right)
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Fig. 7.20. Lattice with two half-integer defects. Defect is an interval with two end
points. Elementary cell cannot cross unambiguously the defect line (left). Both ends
have the same (1/2) monodromy (center). Figure eight close path is not contractible
but the monodromy is trivial (right)

point B the monodromy becomes
(

1 2/3
0 1

)
. Two ends are not equivalent. Nat-

urally, we can change angle several times. This gives the line defect with
singular points on it. Each singular point corresponds to modification of value
of solid angle removed from the lattice. Figure 7.19, right, shows an example
with three singular points. Generalization to more complicated examples is
straightforward.

Figure 7.20 demonstrates geometrically modifications that occur with el-
ementary cell after going along different closed paths on the lattice with 1:2
defect with two ends. To find the global monodromy one can use elementary
1× 1 cell (Fig. 7.20, left), whereas it is not possible to cross the line with such
a cell because of ambiguity of cell modifications.

Taking 1 × 2 cell we can easily go around each singular point and see
(Fig. 7.20, center) that the result is exactly the same for both points, namely
half of the global modifications.

Figure 7.20 (right) shows the evolution of the double cell along the figure
eight close path, which goes around two centers but in opposite directions.
This close path results in trivial monodromy, the cell has no modifications
after returning to the initial point.

7.6 Is There Mutual Interest in Defect – Monodromy
Correspondence?

Stimulated by analogy between classical and quantum monodromy for Hamil-
tonian integrable systems from one side and defects of regular periodic lattices
from another we have suggested construction of “elementary integer and frac-
tional lattice defects” associated with elementary integer and fractional mon-
odromy. Then we have proposed how to generate more complicated defects of
lattices by combination of elementary ones. Among these more complicated
defects are those like disclinations, which are well known in solid state physics.
At the same time the author does not know simple examples of dynamical
Hamiltonian system with similar defects. Reciprocally, many examples of dy-
namical Hamiltonian systems with elementary monodromy are known but
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the “elementary monodromy defect” seems not to be individually detected
experimentally in periodic solids. These observations enable us to formulate
later a number of problems concerning Hamiltonian dynamical systems with
singularities and periodic lattices with defects. Some of these problems have
more or less intuitively evident answers but strict mathematical proofs are
still absent. In other cases even the formulation of the problem is not precise
and should be critically analyzed and corrected before looking for the answer.

• About the sign of elementary monodromy defect. How does one charac-
terize the class of dynamical systems (classical and quantum) possessing
only elementary monodromy defects of one sign? For Hamiltonian systems
focus–focus singularities correspond to elementary (−) defects. The tenta-
tive answer is to say that elementary (+) monodromy defects are generic
for PT -invariant dynamical systems with nonhermitian Hamiltonians and
real spectra [28,29].

• Correspondence between topology of singular fibers of integrable toric fibra-
tions and integer and fractional defects of lattices. Some simple examples
of such correspondence were given. Is it possible to establish more general
correspondence? In particular it seems natural that elementary (+) and
(−) monodromy defects correspond to pinched tori with different index of
transversal self-crossings [30].

• Constructive methods to design Hamiltonian classical and quantum sys-
tems with prescribed type of monodromy. A less ambitious task is to pro-
pose a list of concrete examples of classical and quantum systems that show
the manifestation of different elementary and nonelementary defects.

• Existence of a topological invariant separating different singularities (de-
fects) with the same monodromy but with different numbers of 2π-rotations
of elementary cell. The analogy between this problem and the Riemann
surfaces description [31] was pointed out to the author on several occa-
sions.

• Extension of the correspondence between singularities and defects from 2D
systems to higher dimensional systems. This is surely a very wide subject
and the author believes that the first steps in mathematical generalization
should be guided by natural physical examples.

• Global restrictions on the system of defects and on the system of singu-
larities of toric fibrations in the case of compact base space (lattices on
compact spaces). For example, singular toric fibration over S2 base space
should have 24 elementary focus–focus singularities [32] or equivalently
24 elementary (−) monodromy defects or 12 (π/3)-rotational disclinations
known as pentagonal defects [33]. This problem has obvious relation with
fullerene-like materials.

• The relation between the number of removed vertices for a defect and the
Duistermaat–Heckman measure for the reduced Hamiltonian system. Hint:
The slope of the function giving the number of removed vertices from
vertical line as a function of the number of a vertical line coincides with the
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Chern class of the integrable fibration used in the Duistermaat–Heckman
theorem [34,35].

• To find macroscopic/mesoscopic physical systems that manifest the pres-
ence of elementary (+/−) monodromy defects. Possible candidates besides
periodic solids or liquid crystals may be membranes [36], fullerenes and
curved carbon surfaces [37], viruses [38], colloidal structures [39], etc.

• Relation between internal structure of elementary cells and possible exis-
tence of isolated elementary integer and fractional monodromy defects in
real physical systems. In what kind of systems (materials) one the topo-
logical properties more important than geometric and steric effects and
enable one to see the manifestation of elementary monodromy defects?

• Physical consequences of sign conjecture. If one accepts the formulated
sign conjecture, i.e., presence of only (−) defects in generic families of
Hamiltonian systems depending on a small number of parameters, there is
a fundamental difference between (+) and (−) (or in other terms between
“right” and “left”) in both classical and quantum mechanics. How does one
formulate this conjecture in more precise terms and what kind of physical
consequences can be rigorously deduced?

The author hopes that Hamiltonian dynamics and periodic solids give
complementary points of view that are useful for both fields of scientific in-
terest. This chapter aims to stimulate mutual interest, better understanding,
and further cooperation among specialists working in these fields.
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Two-Qubit and Three-Qubit Geometry
and Hopf Fibrations

R. Mosseri

Summary. This chapter reviews recent attempts to describe the two-qubit and
three-qubit Hilbert space geometries with the help of Hopf fibrations. In both cases,
it is shown that the associated Hopf map is strongly sensitive to states entanglement
content. In the two-qubit case, a generalization of the one-qubit celebrated Bloch
sphere representation is described.

8.1 Introduction

Two-level quantum systems, denoted as qubits, have gained a renewed inter-
est in the past ten years, owing to the fascinating perspectives of quantum
information [1]. As an example, an ideal quantum computer is a large set
of qubits, which is subject to individual and collective operations. Having
in mind the different qubit manipulation protocols that are proposed in this
growing field, it is therefore of high interest to represent their quantum evo-
lution in a suitable representation space, in order to get some insight into
the subtleties of this complicated problem. For single two-level systems, a
well-known tool in quantum optics is the Bloch sphere representation, where
the simple qubit state is faithfully represented, up to a global phase, by a
point on a standard sphere S2, whose coordinates are expectation values of
physically interesting operators for the given quantum state. Guided by the
relation between the Bloch sphere and a geometric object called the Hopf fi-
bration of the S3 hypersphere [2], a generalization for a two-qubit system was
recently proposed [3], in the framework of the (high-dimensional) S7 sphere
Hopf fibration, and is recalled later. An interesting result is that the S7 Hopf
fibration is entanglement sensitive and therefore provides a kind of “strati-
fication” for the two qubit states space with respect to their entanglement
content. An extension of this description to a three-qubit system, using the
S15 Hopf fibration, is also presented here.

We first briefly recall known facts about the Bloch sphere representation
and its close relation to the S3 Hopf fibration. We then recall in some detail
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what had been recently done for the two-qubit case in terms of the S7 Hopf fi-
bration. The S15 Hopf fibration is then introduced, which helps describing the
three-qubit Hilbert space geometry. As far as computation is concerned, going
from the S3 to the S7 and then the S15 fibrations merely amounts to replac-
ing complex numbers by quaternions and then octonions. This is why a brief
introduction to quaternions and octonions is given in Appendix. Note that
using these two kinds of generalized numbers is not strictly necessary here,
but they provide an elegant way of putting the calculations into a compact
form, and have (by nature) a natural geometrical interpretation

8.2 From the S3 Hypersphere to the Bloch Sphere
Representation

A (single) qubit state reads

|Ψ〉 = α |0〉 + β |1〉 , α, β ∈ C, |α|2 + |β|2 = 1. (8.1)

In the spin 1/2 context, the orthonormal bases
{
|0〉 , |1〉

}
are the two eigenvec-

tors of the (say) σz (Pauli spin) operator. Viewed as pairs of real numbers, the
two normalized components α, β generate a unit radius sphere S3 embedded
in R4. To take into account the global phase freedom, one expects to find a
way to fill S3 with circles (the orbit of a global phase exp iω multiplying the
pair (α, β)), such that each state belongs to exactly one such circle. This task
is nicely fulfilled by the so-called S3 Hopf fibration [4].

A fibered space E is defined by a (many-to-one) map from E to the so-
called “base space,” all points of a given fiber F being mapped onto a single
base point. A fibration is said to be “trivial” if the base B can be embedded in
the fibered space E, the latter being faithfully described as the direct product
of the base and the fiber (think for instance of fibrations of R3 by parallel
lines R and base R2 or by parallel planes R2 and base R).

One the most famous examples of a nontrivial fibration is the Hopf fibra-
tion of S3 by great circles S1 and base space S2. For the qubit Hilbert space
purpose, the fiber represents the global phase degree of freedom, and the base
S2 is identified to the Bloch sphere. One standard notation for a fibered space

is that of a map E
F→ B, which reads here a S3 S1

→ S2. Its nontrivial charac-
ter implies S3 
= S2 × S1. This translates into the known failure in ascribing
consistently a definite phase to each representing point on the Bloch sphere.
To describe this fibration in an analytical form, we go back to the definition
of S3 as pairs of complex numbers (α, β), which satisfy |α|2 + |β|2 = 1. The
Hopf map is defined as the composition of a map h1 from S3 to R2 (+∞),
followed by an inverse stereographic map h2 from R2 to S2:

h1 : S3 −→ R2 ∪ {∞}, (α, β) �→ C = αβ−1, α, β ∈ C,

h2 : R2 ∪ {∞} −→ S2, C �→ M(X,Y, Z), X2 + Y 2 + Z2 = 1,
(8.2)
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where z is the complex conjugate of z). The first map h1 clearly shows that
the full S3 great circle, parametrized by (α exp iω, β exp iω), is mapped onto
the same single point with complex coordinate C. It is easy to show that, with
R2 cutting the unit radius S2 along the equator, and the north pole (along
the Z axis) as the stereographic projection pole, the S2 Hopf fibration base
coordinates coincide with the well-known S2 Bloch sphere coordinates:

X = 〈σx〉Ψ = 2Re(αβ), (8.3)
Y = 〈σy〉Ψ = 2 Im(αβ),

Z = 〈σz〉Ψ = |α|2 − |β|2).

This correspondence between Hopf map and Bloch sphere is not new [2], but
is poorly known in both communities (quantum optics and geometry). It is
striking that the simplest nontrivial object of quantum physics, the two-level
system, bears such an intimate relation with one of the simplest nontrivial
fibered space.

It is tempting to try to visualize the full (S3) Hilbert space with its fiber
structure. This can be achieved by doing a (direct) stereographic map from S3

to R3 (Fig. 8.1). Each S3 circular fiber is mapped onto a circle in R3, with an
exceptional straight line, image of the unique S3 great circle passing through
the projection pole.

Fig. 8.1. S3 Hopf fibration after a stereographic map onto R3. Circular S1 fibers
are mapped onto circles in R3, except the exceptional fiber through the projection
pole, which is mapped onto a vertical straight line. fibers can be grouped into a
continuous family of nested tori, three of which are shown here
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8.3 Two Qubits, Entanglement, and the S7 Hopf
Fibration

8.3.1 The Two-Qubit Hilbert Space

We now proceed one step further and investigate pure states for two qubits.
The Hilbert space E for the compound system is the tensor product of the
individual Hilbert spaces E1⊗ E2, with a direct product basis {|00〉, |01〉, |10〉,
|11〉}. A two-qubit state reads

|Ψ〉 = α |00〉 + β |01〉 + γ |10〉 + δ |11〉 (8.4)

with α, β, γ, δ ∈ C, and |α|2 + |β|2 + |γ|2 + |δ|2 = 1.
|Ψ〉 is said “separable” if it can be written as a simple product of individual

kets belonging to E1 and E2 separately, a definition that translates into the
well-known following condition: αδ = βγ. A generic state is not separable and
is said to be “entangled.” The |Ψ〉 normalization condition |α|2 + |β|2 + |γ|2 +
|δ|2 = 1 identifies E to the seven-dimensional sphere S7, embedded in R8.
It was therefore tempting to see whether the known S7 Hopf fibration (with
fibers S3 and base S4) can play any role in the Hilbert space description. This
is the case indeed, as we have shown recently [3]. Let us summarize the main
results, keeping in mind that some notations have been changed as compared
to this latter reference.

8.3.2 The S7 Hopf Fibration

One follows the same line as in the S3 case, but using quaternions instead of
complex numbers (see Appendix). We write

q1 = α + βj, q2 = γ + δj, q1,q2 ∈ Q, (8.5)

and a point (representing the state |Ψ〉) on the unit radius S7 as a pair of
quaternions (q1,q2) satisfying |q1|2 + |q2|2 = 1. The Hopf map from S7 to the
base S4 is the composition of a map h1 from S7 to R4 (+∞), followed by an
inverse stereographic map h2 from R4 to S4.

h1 :
S7 −→ R4 + {∞}

(q1, q2) −→ Q = q1q
−1
2

q1,q2 ∈ Q,

h2 :
R4 + {∞} −→ S4

Q −→ M(xl)

l=4∑
l=0

x2
l = 1. (8.6)

The base space S4 is not embedded in S7: the fibration is again not trivial.
The fiber is a unit S3 sphere as can be seen easily by stating that the S7 points
(q1,q2) and (q1q, q2q), with q a unit quaternion (geometrically an S3 sphere),
are mapped onto the same Q value.
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The h1 map leads to

Q = q1q
−1
2 =

1
sin2 (θ/2)

[
(α + βj) (γ − δj)

]
=

1
sin2 (θ/2)

(C1 + C2j) (8.7)

with sin (θ/2) = |q2| , C1 =
(
αγ + βδ

)
, C2 = (αδ − βγ) , and C1, C2 ∈ C.

We face here the first striking result: the Hopf map is entanglement sensi-
tive! Indeed, nonentangled states satisfy αδ = βγ and therefore map onto the
subset of pure complex numbers in the quaternion field (both completed by
∞ when the Q denominator vanishes). Geometrically, this means that nonen-
tangled states map from S7 onto a two-dimensional planar subspace of the
target space R4.

The second map h2 sends states onto points on S4, with coordinates xl,
with l running from 0 to 4. With the inverse stereographic pole located on the
S4 “north pole” (x0 = +1), and the target space R4 cutting S4 along the
equator, we get the following coordinate expressions

x0 = cos θ = |q1|2 − |q2|2 , (8.8)

x1 = sin θ S(Q′) = 2Re
(
αγ + βδ

)
,

x2 = sin θ Vi(Q′) = 2 Im
(
αγ + βδ

)
,

x3 = sin θ Vj(Q′) = 2Re (αδ − βγ) ,

x4 = sin θ Vk(Q′) = 2 Im (αδ − βγ) .

Q′ is the normalized image of the h1 map (Q′ = tan (θ/2) Q), S(Q′) and
Vi,j,k(Q′) being the scalar and vectorial parts of the quaternion Q′, respectively
(see Appendix). As for the standard Bloch sphere case, the xl coordinates are
also expectation values of simple operators in the two-qubit state. An obvious
one is x0, which corresponds to 〈σz ⊗ Id〉Ψ . The next two coordinates are also
easily recovered as

x1 = 2Re
(
αγ + βδ

)
= 〈σx ⊗ Id〉Ψ , (8.9)

x2 = 2 Im
(
αγ + βδ

)
= 〈σy ⊗ Id〉Ψ .

The remaining two coordinates, x3 and x4, are also expectation values of an
operator acting on E , but in a more subtle way. Define J as the (antilinear)
“conjugator,” an operator that takes the complex conjugate of all complex
numbers involved in an expression (here acting on the left in the scalar product
given later). Then form the antilinear operator E (for “entanglor”): E =
−J (σy ⊗ σy). One finds

x3 = Re 〈E〉Ψ ,

x4 = Im 〈E〉Ψ .

Note that 〈E〉Ψ vanishes for nonentangled states and takes its maximal
norm (equal to 1) for maximally entangled states. Such an operator, which
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is nothing but the time reversal operator for two spins 1
2entanglement [5],

through a quantity called the “concurrence” c, which corresponds here to
c = 2 |C2|.

8.3.3 Generalized Bloch Sphere for the Two-Qubit Case

Let us first inverse the Hopf map and get the general expression for the set
of states (an S3 sphere in S7), which is sent to Q by the h1 map. A generic
such state, noted ΨQ, reads (given as a pair of quaternions)

ΨQ = (cos (θ/2) q , sin (θ/2) Q′ q) (8.10)

with q a unit quaternion spanning the S3 fiber. Note that we could also
write ΨQ in a way that recalls the standard spinor notation (but here with
quaternionic instead of complex components):

ΨQ = (cos (θ/2) exp (−ϕt/2) q , sin (θ/2) exp (ϕt/2) q), (8.11)

where cos ϕ = x1/ sin θ = S(Q′), and t is the following unit pure imaginary
quaternion:

t = (Vi(Q′)i + Vj(Q′)j + Vk(Q′)k) / sin ϕ. (8.12)

In order to compare with the generic expression (8.4), we aim to write ΨQ as
a quadruplet of complex numbers. For that purpose, we express the two-unit
quaternions q and Q′ in terms of pairs of complex numbers, q = a + bj (with
|a|2 + |b|2 = 1), and Q′ = u + vj (with |u|2 + |v|2 = 1), and eventually get:

ΨQ = (cos (θ/2) a , cos (θ/2) b, sin (θ/2) (ua − vb), sin (θ/2) (ub + va)). (8.13)

In this above expression, θ, u, and v correspond to the base space part of the
fibration. Furthermore, we can relate u and v to already known quantities.
Indeed

u = (x1 + ix2)/ sin θ = 〈(σx + iσy) ⊗ Id〉Ψ / sin θ.

In addition, the state global phase indeterminacy allows to take v a real.
More precisely

v = c/ sin θ , where c is the above-mentioned concurrence.

Let us now describe the two extreme cases of separable and maximally
entangled states.
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Separable States

In the nonentangled case, we have seen earlier that Q is a complex number,
t = i, and therefore u = exp iϕ and v = 0. This expression simplifies to

ΨQ = (cos (θ/2) a, cos (θ/2) b, sin (θ/2) a exp iϕ, sin (θ/2) b exp iϕ). (8.14)

Up to a global rescaling by exp (−iϕ/2), one gets the following ket |ΨQ〉:

|ΨQ 〉 = (cos (θ/2) exp (−iϕ/2) |0 〉1
+ sin (θ/2) exp (iϕ/2) |1 〉1 ) ⊗ ( a |0 〉2 + b |1 〉2) . (8.15)

The projective Hilbert space for two nonentangled qubits is known to be
the product of two 2-dimensional spheres S2

1×S2
2 , each sphere being the Bloch

sphere associated with the given qubit. This property is clearly displayed here.
The unit S4 base space reduces to a unit S2 sphere (since x3 = x4 = 0), which
is nothing but the Bloch sphere for the first qubit. The second qubit Bloch
sphere is then recovered from the fiber, spanned by q = a+bj. Indeed, we can
iterate the fibration process on the S3 fiber itself and get the (Hopf fibration
base)–(Bloch sphere) coordinates for this two-level system. It is now easy to
show that this new S2 base is the second qubit Bloch sphere.

In summary, for nonentangled qubits, the S7 Hopf fibration, with base S4

and fiber S3, simplifies to the simple product of an S2 subsphere of the base
(the first qubit Bloch sphere) by a second S2 (the second qubit Bloch sphere)
obtained as the base of an S3 Hopf fibration applied to the fiber itself. Let
us stress that this last iterated fibration is necessary to take into account the
global phase of the two-qubit system.

The fact that these two S2 spheres play a symmetrical role (although one
is related to the base and the other to the fiber) can be understood in the
following way. We grouped together α and β on one hand, and γ and δ on the
other, to form the quaternions q1 and q2, and then define the Hopf map h1

as the ratio of these two quaternions (plus a complex conjugation). Had we
grouped α and γ, and β and δ, to form two new quaternions, and used the
same definition for the Hopf map, we would also get an S7 Hopf fibration, but
differently oriented. As an exercise we compute the base and fiber coordinates
in that case. The net effect is to interchange the role of the two qubits: the
second qubit Bloch sphere is now part of the S4 base, while the first qubit
Bloch sphere is obtained from the S3 fiber.

Maximally Entangled States

Let us now focus on maximally entangled states (MES). They correspond
to the complex number C2 having maximal norm 1/2 (unit concurrence).
This in turn implies that the Hopf map base reduces to a unit circle in the
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plane (x3, x4), parametrized by the unit complex number 2C2. The projective
Hilbert space for these MES is known to be S3/Z2, an S3 sphere with identi-
fied opposite points [6] (this is linked to the fact that all MES can be related
by a local operation on one subsystem, since S3/Z2 = SO(3)). In order to
recover this result in the present framework, one can follow the trajectory of a
representative point on the base and on the fiber while the state is multiplied
by an overall phase exp (iω). The expression for C2 (= αδ − βγ) shows that
the point on the base turns by twice the angle ω. Only when ω = π does the
corresponding state belong to the same fiber (e.g., maps onto the same value
on the base). The fact that the fiber is an S3 sphere, and this two-to-one
correspondence between the fiber and the base under a global phase change,
explains the S3/Z2 topology for the MES projective Hilbert space. Let us now
give a more explicit proof of that result.

MES correspond to θ = π/2 and maximal concurrence (c = 1), which leads
to u = 0 and v = 1. ΨMES therefore read, from expression (8.13):

ΨMES =
1√
2
(a, b ,−b, a). (8.16)

The latter expression (8.16) for maximally entangled states is rather inter-
esting in that it directly shows the S3/Z2 topology for the MES projective
Hilbert space. Indeed, the MES set corresponds to pairs (a, b), which as a
whole cover a unit radius S3 sphere. Now, looking at the quadruplet expres-
sion (8.16), opposite points (a, b) and (−a,−b) on S3 clearly correspond to the
same state ΨMES (up to a global phase). Opposite points on S3 have therefore
to be identified, leading to the S3/Z2 (≡ SO(3)) structure.

This one-to-one correspondence between MES and three-dimensional rota-
tion matrices has recently led to propose using the former in an “applied topol-
ogy” experiment [7]: to verify experimentally the well-known subtle topology
of the (two-fold connected) SO(3) group. The latter property is evidenced by
constructing the two inequivalent family of closed paths in the geometrical
manifold representing this group. This is done by choosing sequences of uni-
tary operations on the MES two-qubit states. The nonequivalence between
the two paths is manifested by a π topological phase shift, which should re-
sult from an adequate interference experiment (a twin photon experiment has
been proposed, but other two-qubit states could be used).

A Generalization of the Bloch Sphere Representation

We are now led to consider a generalization of the Bloch sphere for the two-
qubit projective Hilbert space. Clearly, the present Hopf fibration description
suggests a splitting of the representation space in a product of base and fibers
subspaces. Of the base space S4, we propose to keep only the first three
coordinates

(x0, x1, x2) =
(
〈σz ⊗ Id〉Ψ , 〈σx ⊗ Id〉Ψ , 〈σy ⊗ Id〉Ψ

)
. (8.17)
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All states map inside a standard ball B3 of radius 1, where the set of sep-
arable states forms the S2 boundary (the usual first qubit Bloch sphere), and
the center corresponds to maximally entangled states. Concentric spherical
shells around the center correspond to states of equal concurrence c (maxi-
mal at the center, zero on the surface), the radius of the spherical shell being
equal to

√
1 − c2. The idea of slicing the two-qubit Hilbert space into mani-

folds of equal concurrence is not new [6, 8]. What is nice here is that, under
the Hopf map (and a projection onto the three-dimensional subspace of the
base spanned by the first three coordinates), these manifolds transforms into
concentric S2 shells that fill the unit ball.

To each point (x0, x1, x2), it corresponds to an S3/Z2 manifold, spanned
by the couple (a, b), as seen clearly from relation (8.13), with an added identi-
fication of (a, b) and (−a,−b). The natural generalization of the Bloch sphere
for two qubits is therefore a product of two B3 balls. The first one, spanned by
the triple (x0, x1, x2), has just been described as containing the partial Bloch
sphere for one of the two qubits, with its set of concentric iso-concurrence
spheres. The second one corresponds to the standard representation of SO(3)

by a
←→
B3 ball of radius π, the double arrow sign recalling that opposite points

on the boundary S2 sphere have to be identified. This picture is valid for all
states except the separable ones, for which the fiber derived

←→
B3 space reduces

to an S2 sphere (the second qubit partial Bloch sphere).
Instead of mapping the continuous set of S2 spheres onto the filled ball B3

in the space spanned by (x0, x1, x2), this nice (but singular) foliation of the
two-qubit projective Hilbert space (here the complex projective space CP3)
can also be pictured as a concurrence segment (between 0 and 1) with the
corresponding submanifolds. The subspace of vanishing concurrence has an
S2 × S2 structure, while that of maximal (c = 1) concurrence corresponds to
SO(3). Submanifolds of intermediate concurrence have the structure of a direct
product S2 × SO(3), the sphere S2 having radius

√
1 − c2. This illustrated in

Fig. 8.2.

Examples Back to the B3 picture, let us for instance go through the states
along a simple B3 ray, from the point (0, 1, 0) , image of the states ΨS such
that 〈σx ⊗ Id〉Ψ = 1, to the B3 center (0, 0, 0), image the maximally entangled

c

S2
�S2 SO(3)S2

�SO(3)

0 1

Fig. 8.2. Foliation of the two-qubit Hilbert space with respect to state entanglement
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states ΨMES . Q′ reduces to a unit circle in the plane spanned by (x1, x3), and
these states are therefore parametrized by a single angle ε in the interval
[0, π/2],

Ψε =
1√
2
( q , exp (εj) q), (8.18)

or, written as a quadruplet of complex numbers,

Ψε =
1√
2
(a , b, a cos ε − b sin ε, b cos ε + a sin ε). (8.19)

For ε = 0, one gets

Ψε=0 = ΨS =
1√
2

(a, b, a, b) and therefore (8.20)

|ΨS〉 =
1√
2

(|0〉1 + |1〉1) ⊗ (a |0〉2 + b |1〉2) ,

as expected for the set of separable states, which are eigenstates of σx ⊗ Id
(with eigenvalue +1).

For ε= π/2, this set of maximally entangled states, as given by relation
(8.16), is recovered. Intermediate values of ε correspond to less entangled
states, whose concurrence read c= sin ε, as can be easily found from (8.19).
Expression (8.19) also proves that the set of such states describes an S3/Z2

manifold.
Similar analyses can be done for any path inside the B3 ball. A second

very simple example is provided by the path from (1, 0, 0) to (0, 0, 0). In that
case the states, again parametrized by an angle ε, read

Ψε =
(
cos

ε

2
a , cos

ε

2
b,− sin

ε

2
b, sin

ε

2
a
)

.

Relation with the Bloch ball representation for mixed states

The Bloch ball single qubit mixed state representation had been recalled ear-
lier. In that case, the center of the Bloch ball corresponds to maximally mixed
states. The reader should not be surprised to find here (in the two-qubit case)
a second unit radius ball, with maximally entangled states now at the center.
It corresponds to a known relation between partially traced two-qubit pure
states and one-qubit mixed state. Indeed the partially traced density matrix
ρ1 is simply written in terms of C1 and C2 derived from the S7 Hopf map:

ρ1 =
1
2

(
1 + x0 x1 − ix2

x1 + ix2 1 − x0

)
=
(
|q1|2 C1

C1 |q2|2
)

(8.21)

with unit trace and det ρ1 = |C2|2. The partial ρ1 represents a pure state
density matrix whenever C2 vanishes (the separable case) and allows for a
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unit Bloch sphere (that associated to the first qubit). It corresponds to a
mixed state density matrix as soon as |C2| > 0 (and an entangled state for
the two-qubit state). The other partially traced density matrix ρ2 is related
to the other S7 Hopf fibration that was discussed earlier.

8.4 Three Qubits and the S15 Hopf Fibration

8.4.1 Three Qubits

The Hilbert space E for the compound system is the tensor product of the
individual Hilbert spaces E1⊗ E2⊗ E3, with a direct product basis

{|000〉 , |001〉 , |010〉 , |011〉 , |100〉 , |101〉 , |110〉 , |111〉} ,

which can be written {|l〉 , l = 0, . . . , 7}. A three-qubit state reads

|Ψ〉 =
7∑

l=0

tl |l〉 with tl ∈ C, and
∑

|tl|2 = 1.

The |Ψ〉 normalization condition identifies E to the 15-dimensional sphere
S15, embedded in R16. This suggests looking at how far the third Hopf fibra-
tion (that of S15, with base S8 and fibres S7) can be helpful for describing
the three-qubit Hilbert space geometry.

8.4.2 The S15 Hopf Fibration

One proceeds along the same line as for the previous S3 and S7 cases, but
using now octonions (see Appendix). We write

a = a′ + a′′e, b = b′ + b′′e, a, b ∈ O, and a′, a′′, b′, b′′ ∈ Q, (8.23)

and a point (representing the state |Ψ〉) on the unit radius S15 as a pair of
octonions (a, b) satisfying |a|2 + |b|2 = 1. But to get a Hopf map of physical
interest, with coordinates simply related to interesting observable expectation
values, one needs to define a slightly tricky relation between |Ψ〉 and the
octonions pair (a, b), as follows:

a = (t0 + t1j,t2 + jt3) = (t0 + t1j,t2 + t3j) = (a′, a′′) , (8.24)
b = (t4 + t5j,t6 + jt7) = (t4 + t5j,t6 + t7j) = (b′, b′′) .

The Hopf map from S15 to the base S8 is the composition of a map h1

from S15 to R8 (+∞), followed by an inverse stereographic map h2 from
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R8 to S8

h1 :
S15 −→ R8 + {∞}

(a, b) −→ P = ab−1
a, b ∈ O,

h2 :
R8 + {∞} −→ S8

P −→ M(xl)

l=8∑
l=0

x2
l = 1. (8.25)

The base space S8 is not embedded in S15: the fibration is again not
trivial.

The fiber is a unit S7 sphere, the proof of which is more tricky (and not
given here) than in the lower dimension case. The h1 map leads to

P = ab−1 =
1

sin2 θ/2
(Q1 + Q2e) (8.26)

with sin θ/2 = |b| , Q1 = (b′a′ +a′b′′), Q2 = (−a′′b′ +b′′a′) and Q1, Q2 ∈ Q.

Athough this is not at first sight evident, the Hopf map is still entanglement
sensitive in that case. To show this, it is instructive to first express Q1 and
Q2 in terms of the tl components read out from (8.24)

Q1 =
(
t0t4 + t1t5 + t2t6 + t3t7) + (t0t5 − t1t4 + t2t7 − t3t6

)
j,

Q2 =
(
t0t6 + t2t4 + t3t5 − t1t7) + (t1t6 − t2t5 + t0t7 − t3t4

)
j.

Let us introduce the generalized complex concurrence terms Tij,kl = titj −
tktl. They allow to write in a synthetic form the coordinates on the base S8.
The second map h2 sends states onto points on S8, with coordinates xl, with
l running from 0 to 8. With the inverse stereographic pole located on the
S8 “north pole” (x0 = +1), and the target space R8 cutting S8 along the
equator, we get the following coordinate expressions:

x0 = cos θ = |a|2 − |b|2 = 〈σz ⊗ Id ⊗ Id〉Ψ , (8.27)

x1 + ix2 = 2
(
t0t4 + t1t5 + t2t6 + t3t7

)
=
〈
(σx + iσy)1 ⊗ Id ⊗ Id

〉
Ψ

,

x3 + ix4 = 2
(
T05,14 + T27,36

)
,

x5 + ix6 = 2
(
T06,24 + T35,17

)
,

x7 + ix8 = 2
(
T16,25 + T07,34

)
. (8.28)

A lengthy, but trivial, computation allows to verify that the base S8 has
unit radius.

8.4.3 Discussion

It is easy to show that three-qubit states such that the first qubit is separated
from the other two map onto a point such that xj = 0 for j = 4, 5, 6, 7, 8.
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One way to show this is to realize that, in a multiqubit state, a given
qubit is separated from the others when its partial Bloch sphere has a
unit radius. The first qubit partial Bloch sphere is spanned here by the
triplet (x0, x1, x2). A second proof consists in writing down the separabil-
ity algebraic conditions [9]. In the present case, the latter imply that the
above generalized concurrences vanish (in fact the six vanishing conditions
only rely on three independent conditions). Going back to the above de-
finition of the h1 map, this means that in this case, the Hopf map car-
ries an octonion couple onto a pure complex number P . Therefore, as for
two qubit and S7, the S15 Hopf fibration is also entanglement sensitive for
three qubits! This result has been independently derived by Bernevig and
Chen [10].

However, one should notice an important difference between the two-qubit
and three-qubit cases. In the two-qubit case, the S7 Hopf fibration has allowed
us to foliate the projective Hilbert space with respect to state entanglement,
the latter, measured by the concurrence, being simply related to the norm of
the restriction of the base point to the subspace spanned by the pair (x3, x4).
Since the base space S4 has unit radius, the entanglement is therefore simply
related to the radius the first qubit partial Bloch sphere, spanned by the triplet
(x0, x1, x2). The first-to-second qubit distinction (base-fiber in the fibration)
does not matter here (to define the foliation) since the two partial Bloch sphere
radii are equal.

The S15 Hopf fibration is clearly sensitive to the entanglement of one qubit
(the first qubit in the present case) with respect to the other two qubits:
the first qubit partial Bloch sphere radius is still read out from the norm
of the restriction of the base point to the subspace spanned by the triplet
(x0, x1, x2). However, the latter does not tell the whole story in terms of state
entanglement. Though one may know how far qubit 1 is entangled with the
remaining two, one does not yet know whether the second (or third) qubit is
or not separated. This prevents from building a foliation driven by a single
entanglement parameter. One possibility for such a foliation unique parameter
would be to use the 3-tangle [11]. But it does not distinguish among separable
and entangled W states. An alternative entanglement parameter has been
suggested by Bernevig and Chen [10] (see also [12] for a related measure): to
recover the symmetry between the three-qubit, an average over the three-qubit
partial Bloch sphere radii is used.

The solution to the foliation problem might be to use three (instead of
one) parameters, by considering three distinct S15 Hopf fibrations, such that
each of the three-qubit partial Bloch spheres is singled out by the first three
coordinates on the base. Said more simply, one may try to describe the Hilbert
space geometry in a space spanned by the three partial Bloch sphere radii
(r1, r2, r3). Since each radius belongs to the interval [0, 1] , the whole rep-
resentation lies inside a unit cube. When one radius equals 1, one qubit is
separated from the other two, and the other two radii are equal. We then
see that the set under consideration cuts three square faces of the cube (such
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that rj = 1), along a diagonal. These diagonals correspond to the product of a
sphere S2 (the Bloch sphere of the separated qubit), and a copy of this foliation
for the remaining two qubits. Note that the latter foliation was introduced
above with respect to state entanglement, as measured by the concurrence c,
instead of the partial Bloch sphere radius. To get a fully equivalent picture,
one should therefore transform the original coordinate system from c to r =√

1 − c2.

8.5 Conclusions

Our main goal in this chapter was to provide a geometrical representation
of the two-qubit and three-qubit Hilbert space pure states. We have shown
that, as for the one-qubit Bloch sphere relation to the S3 Hopf fibration, the
more complex S7 and S15 Hopf fibrations also play a natural role in that case.
Note that, as already mentioned in [3], in the three Hopf fibration sequence
(S15, S7, S3), the fiber in the larger dimensional space is the full space in next
case. This is illustrated in Fig. 8.3.

This offers the possibility of further nesting the fibrations, a possibility
that was already used in the present analysis of two-qubit separable case.
This also applies to the three-qubit case: whenever the first qubit is separated
from the other two, the base reduces to the first qubit Bloch sphere, and the
S7 fiber is precisely the Hilbert space of the remaining two qubits.

In the two-qubit case, this approach has in particular allowed for a com-
plete description of the pure state projective Hilbert space, in terms of an
entanglement driven foliation, with well-characterized leaves. This goal has
not yet been achieved in the three-qubit case, although a plausible track has
been proposed here.

S15

S7

S8

S4

S3 S2

S1

Fig. 8.3. Nesting of the three Hopf fibrations
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Appendix: Quaternions and Octonions

Quaternions

Quaternions are usually presented with the imaginary units i, j, and k in the
form:

q = x0+x1i+x2j+x3k, x0, x1, x2, x3 ∈ R with i2 = j2 = k2 = ijk = −1,

the latter “Hamilton” relations defining the quaternion multiplication rules
that are noncommutative. They can also be defined equivalently, using the
complex numbers c1 = x0 + x1i and c2 = x2 + x3i, in the form q = c1 + c2j,
or equivalently as an ordered pair of complex numbers satisfying

(c1, c2) + (d1, d2) = (c1 + d1, c2 + d2) ,

(c1, c2) (d1, d2) =
(
c1d1 − c2d2, c1d2 + c2d1

)
.

The conjugate of a quaternion q is q = x0 − x1i− x2j− x3k =c1 − c2j and
its squared norm reads N2

q = qq.
Another way in which q can be written is as a scalar part S(q) and a

vectorial part V(q):

q = S(q) + V(q), S(q) = x0, V(q) = x1i + x2j + x3k

with the relations

S(q) =
1
2
(q + q), V(q) =

1
2
(q − q).

A quaternion is said to be real if V(q) = 0, and pure imaginary if S(q) = 0.
We also write Vi,j,k(q) for the component of V(q) along i, j,k. Finally, and as
for complex numbers, a quaternion can be noted in an exponential form as

q = |q| exp ϕt = |q| (cos ϕ + sin ϕt) ,

where t is a unit pure imaginary quaternion. When t=i, usual complex num-
bers are recovered. Note that quaternion multiplication is non-commutative
so that

exp ϕt exp λu = exp(ϕt+λu)

only if t = u.

Octonions

An octonion a can be defined by introducing a new unit e (different from the
preceding unit quaternions i, j, and k, and such that e2 = −1), and pairs of
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quaternions a′, a′′:

a = a′ + a′′e
ab = (a′ + a′′e) (b′ + b′′e)

=
(
a′b′ − b′′a′′)+

(
b′′a′ + a′′b′

)
e.

It is helpful to write any octonion a as

a =
l=7∑
l=0

ulel, with e0 = 1, e1 = i, e2 = j, e3 = k, e4 = e, e5 = ie,

e6 = je, e7 = ke

with the following multiplication table:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e0 e1 e2 e3 e4 e5 e6 e7

e1 −e0 e3 −e2 e5 −e4 −e7 e6

e2 −e3 −e0 e1 e6 e7 −e4 −e5

e3 e2 −e1 −e0 e7 −e6 e5 −e4

e4 −e5 −e6 −e7 −e0 e1 e2 e3

e5 e4 −e7 e6 −e1 −e0 −e3 e2

e6 e7 e4 −e5 −e2 e3 −e0 −e1

e7 −e6 e5 e4 −e3 −e2 e1 −e0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that other multiplication tables could be defined (see [13]). In anal-
ogy with the quaternions scalar and vectorial parts, we can also write a as

a = S(a) + V(a) with S(a) = u0, V(a) =
l=7∑
l=1

ulel.

The conjugate of an octonion a is a = S(a)−V (a)=a′−a′′e and its squared
norm reads N2

a = aa.
A (very) important difference between quaternions and octonions is that

the latter, besides being noncommutative, are also nonassociative.
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Defects, Surface Anchoring,
and Three-Dimensional Director Fields
in the Lamellar Structure of Cholesteric
Liquid Crystals as Studied by Fluorescence
Confocal Polarizing Microscopy

I.I. Smalyukh and O.D. Lavrentovich

Summary. We study three-dimensional director patterns and defects in cholesteric
liquid crystals using fluorescence confocal polarizing microscopy for nondestructive
three-dimensional imaging. We establish the detailed director fields of dislocations,
their kinks, as well as the disclination nodes and oily streaks. Weak surface an-
choring of the director at the bounding plates causes attraction, while strong
anchoring causes repulsion between the edge dislocation and a boundary. We use a
coarse-grained models of cholesteric elasticity and surface anchoring potential to ex-
plain the experimental results. We study dynamics of defects, and glide and climb of
dislocations. We also consider the Peierls–Nabarro mechanisms hindering glide of dis-
locations across the cholesteric layers. The static and dynamic properties of defects
in cholesteric lamellae can be used as a model for understanding similar phenomena
in other lamellar systems, such as diblock copolymers and SmA liquid crystals.

9.1 Introduction

A variety of condensed matter systems, such as cholesteric and smectic A
(SmA) liquid crystals (LCs), lamellar phases of diblock copolymers, stripe
magnetic domains in ferrimagnetic thin films and ferrofluid stripes in applied
magnetic fields have common features of one-dimensional periodic modula-
tions in density or magnetization [1–5]. These media have layered structure
and one-dimensional positional order, which result in similarity of elastic and
surface properties, some common types and topology of defects.

Cholesteric liquid crystals (CLCs) have a twisted ground state with helical
configuration of the director n, which specifies the average local orientation
of molecules. External fields and surface interactions can easily deform the
ideal helicoidal configuration. When the spatial scale of distortions is much
larger than the cholesteric pitch p (corresponding to the director twist by
2π), elastic properties of CLCs are similar to the properties of smectic phases
with a one-dimensional periodic structure [1,6]. If a CLC is confined within a
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finite volume, the equilibrium structure is determined by bulk elasticity and
boundary effects, such as surface tension and surface anchoring. Very often,
the boundary conditions are satisfied by the appearance of large-scale defects
such as focal conic domains, curvature walls, dislocations, etc. [2–5].

Although the cholesteric lamellae are formally similar to the smectic lamel-
lae as long as the coarse-grained model [1, 6] is valid, one should keep in
mind the important difference in characteristic length scales, which are de-
termined by the layer spacing, usually d = p/2 ∼ (0.1− 10) µm in cholesterics
and d ∼ (1 − 10) nm in SmA. The spacing d defines the core size of elemen-
tary dislocations. The defects in cholesterics can be studied by optical means.
A related issue is that the difference in scales between cholesterics and smec-
tics leads to the difference in surface properties. In lamellar phases, the tilted
orientation of layers at the bounding plates usually requires a local “melting”
of the layers. The corresponding “intrinsic” contribution to the surface an-
choring energy is roughly ∼K1/d, where K1 is the splay elastic constant [7].
The surface anchoring energy measured for SmA ∼

(
10−2 − 10−3

)
J/m2 [7] is

therefore much larger than that for CLCs ∼
(
10−4 − 10−6

)
J/m2 with pitch

d = p/2 in the range (0.1 − 10) µm [8–10].
In this chapter we review our recent studies of the three-dimensional di-

rector fields and defects in cholesterics. Many of the discussed results, such as
interaction of a dislocation and a bounding surface, layers profile in the vicin-
ity of dislocation, glide and climb of the defects, are of universal importance
for the study of lamellar systems. CLC is a good model as its layer spacing
can be easily adjusted to be in the micron range and thus can be studied with
optical microscopy techniques, such as polarizing microscopy (PM) and fluo-
rescence confocal polarizing microscopy (FCPM) [11–13]. At the same time,
we also discuss the features of director fields and defects that might be unique
for CLCs, such as splitting of dislocation cores into disclinations with a non-
singular core, geometry of director patterns associated with dislocation kinks,
etc. The main distinctive features of the director structures and defects in
CLCs as compared to other lamellar systems reflect their “nematic-like” local
molecular arrangement. Therefore, it is useful to describe the elastic proper-
ties of CLCs with both the Frank–Oseen theory and the Lubensky–de Gennes
coarse-grained theory [1, 6].

Experiments are performed for well-equilibrated flat and wedge samples
and for transient textures. FCPM allows us to reconstruct three-dimensional
director structures associated with dislocations, their turns, nodes, and kinks.
The strength of anchoring at the bounding plates determines the structure of
samples, including the structure and behavior of edge dislocations. We use the
coarse-grained model of cholesteric anchoring [12] in order to explain the ex-
perimental results. We calculate the elastic energy of a dislocation away from
the core, estimate the energy of the core split into disclinations of different
types, study the effect of finite sample thickness on the dislocations energy,
and calculate the Peach–Koehler elastic forces that occur when a dislocation
is shifted from its equilibrium position. We determine the relative stability of
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dislocations with Burgers vectors b = p/2 and b = p, explain the difference in
the shape of kinks for these defects. Finally, we consider the Peierls–Nabarro
mechanisms hindering glide of dislocations across the cholesteric layers. We
show that because of the split disclination character of the core, glide is diffi-
cult as compared to climb, especially for b = p dislocations.

The review is organized as follows. In Sect. 9.2 we briefly describe the
experimental technique and materials that were used for nondestructive vi-
sualization of three-dimensional director fields and defects in this work. In
Sect. 9.3 we give an introduction to classification and some basic properties
of the directors and defects in CLCs. The elasticity and surface anchoring
properties of cholesteric lamellae are reviewed in Sect. 9.4. We discuss the
dislocation–interface interaction as well as describe the three-dimensional di-
rector structures and defects in the weakly-anchored CLCs in Sect. 9.5. Section
9.6 is devoted to the equilibrium structures and defects in the strongly an-
chored cholesteric wedge cells. The metastable structures, oily streaks, and
nodes of line defects are studied in Sect. 9.7. In Sect. 9.8 we discuss the issues
of dynamics of the defects, their glide and climb, dislocation kinks. Finally,
the results are summarized and the conclusions are drawn in Sect. 9.9.

9.2 Experimental Methods and Materials

9.2.1 Materials and Cell Preparation

To form a CLC, we mixed a nematic LC material with a chiral dopant CB15
(purchased from EM Industries). Depending on the need, we used either ne-
matic LC with positive (ZLI3412) or negative (ZLI2806) dielectric anisotropy.
Both the nematic hosts have small birefringence: ∆n ≈ 0.045 for ZLI2806
and ∆n ≈ 0.07 for ZLI3412. Low birefringence mitigates two problems that
one encounters in FCPM imaging of CLCs: (1) relative defocusing of extra-
ordinary versus ordinary modes [11], and (2) the Mauguin effect (polariza-
tion of light follows the twisted director) [13]. For the FCPM observations,
the cholesteric mixture is doped with a very small amount (0.01 wt%) of flu-
orescent dye n,n ′-bis(2,5-di-tert-butylphenyl)-3,4,9,10-perylenedicarboximide
(BTBP), purchased from Molecular Probes [11,13].

We used constant-thickness flat cells and wedge cells with a small dihedron
angle α < 2◦ and of maximum thickness 100 µm. The thickness h of cells was
measured by interference method. The dihedron angle α of wedge cells
was measured using reflected laser beam for empty cells. To minimize spheri-
cal aberrations in FCPM observations with immersion oil objectives, we used
glass substrates of thickness 0.15mm with the refractive index 1.52.

Two different types of surface treatment provided either strong or weak
anchoring. The strong planar alignment was set by a unidirectionally rubbed
polyimide PI-2555 (HD MicroSystems) film spin coated over the ITO layers.
The director is in the plane of the substrate with a possible small pretilt angle
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�1◦. The polar anchoring coefficient Wp that characterizes the work needed to
deviate n from its equilibrium surface orientation in the plane perpendicular
to the substrate was measured for ZLI3412/PI2555 interface by retardation
versus voltage technique [14] to be Wp = (4 ± 1)× 10−4J/m2. Wp is expected
to be of the order of 10−4J/m2 also for ZLI2806 as this is a typical value
measured for PI2555 in contact with a variety of nematic mixtures with a
positive dielectric anisotropy, see [14]. The azimuthal anchoring coefficient is
smaller, Wa ∼ 10−5J/m2 [15].

For weak anchoring, we used spin-coated films of polyisoprene, known to
produce memory-free tangentially degenerated alignment. The residual az-
imuthal anchoring is Wa ∼ 10−10J/m2 [16] and polar anchoring Wp = (0.7±
0.6) × 10−4J/m2 or less as determined for cells prealigned by a magnetic
field [12]. We stress here that both Wp and Wa refer to the untwisted, pure
nematic state. As we see later, the anchoring properties of the twisted nematic
state might be rather different from the untwisted one.

9.2.2 Fluorescence Confocal Polarizing Microscopy

The FCPM technique links the director orientation to the intensity of mea-
sured fluorescent signal [11, 13]. Compared to the well–known fluorescence
confocal microscopy (FCM), FCPM has two distinctive features: (a) the spec-
imen is stained with anisometric dye molecules (such as BTBP) that follow
the director orientation; (b) the excitation light is polarized, usually linearly.

The FCPM set up was assembled on the basis of Olympus Fluoview BX-50
reflective-mode confocal microscope. The excitation beam (488 nm, Ar laser)
is focused by an objective into a small (<1 µm3) volume within the CLC slab.
The fluorescent light from this volume is detected by a photomultiplier tube
in the spectral region 510–550 nm. A pinhole discriminates against the regions
above and below the selected volume. The pinhole size is adjusted according
to magnification and numerical aperture NA of the objective. The polarizer
P determines polarization of both the excitation beam Pe, and the detected
fluorescent light Pf : Pf‖Pe‖P. The beam power is small, <1mW, to avoid
light-induced reorientation of the dye-doped LC [11,13].

For BTBP dye, the fluorescence lifetime τF = (3.7− 3.9) ns [17] is smaller
than the characteristic time of rotational diffusion τD ∼ 10 ns, and dye orien-
tations during absorption and emission can be assumed to be close to each
other [13]. The FCPM signal, resulting from a sequence of absorption and
emission, strongly depends on the angle β between the transition dipole (par-
allel to the local director n in our system) and P: I ∼ cos4 β [11,13], as both
absorption and emission follow the dependency cos2 β. The strongest FCPM
signal corresponds to n‖P (β = 0), and sharply decreases when β becomes
nonzero [17]. Here I is the intensity of fluorescence signal in the FCPM tex-
tures of the director n.

The focused beam scans the sample at a fixed depth −h/2≤ z ≤h/2, creat-
ing a “horizontal” optical slice I (x, y). The scanning is repeated at different
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depths, to obtain a stack of optical slices, i.e., a three-dimensional pattern
I (x, y, z), related to the three-dimensional pattern n (x, y, z) through the de-
pendence I ∼ cos4 β. Note that the correspondence I (x, y, z) ←→ n (x, y, z)
is not unique when only one fixed direction of linear polarization P is used,
as the angular parameter β defines a cone of directions. To avoid ambiguity,
we use different directions of the linear polarization P (e.g., P = (P, 0, 0) and
P = (0, P, 0)) and also a circularly polarized light. In the latter case, only the
changes in the vertical component nz of the director are detected; nx and ny

are not discriminated against each other. Using the computer software, the
three-dimensional pattern I (x, y, z) can be cut by vertical planes such as (xz)
and (yz) to visualize n across the sample.

9.3 Directors and Defects in Cholesteric Liquid Crystals

Here we briefly review some basic properties and classification of line defects
in CLCs such as disclinations and dislocations that are studied in detail in
Sects. 9.4 and 9.5 of the chapter. For a more detailed account of the classifi-
cation of defects in cholesterics see [3].

Weak distortions (for which the degree of orientational order does not
change) in CLCs are described as spatial changes of three mutually orthogo-
nal directors. We use the nomenclature introduced by Kleman and Friedel [18],
which is based on the notation λ for the local director n, χ for the direction
of the helical axis, and τ = λ×χ. Correspondingly, the Kleman–Friedel clas-
sification distinguishes disclinations of the λ, τ , and χ-types. The λ and τ
disclinations of strength ±1/2 are shown in Fig. 9.1a–d. In the λ disclinations,
the material λ director field is nonsingular, while the immaterial τ and χ
director fields are singular, Fig. 9.1a,d. In the τ -disclinations, the τ director
field is nonsingular but λ and χ director fields are singular, Fig. 9.1b,c. In the
χ-disclinations, the singularities are found in λ and τ director fields but not
in the χ director field.

Elementary topological defects in the systems with broken translational
symmetry are dislocations. Both edge and screw dislocations can be present
in CLCs. The wedge χ-disclinations can also be treated as screw dislocations
with the Burgers vector b = −kp. The equivalency of the two approaches
in description of the defects is a result of the fact that the symmetry of
nπ-rotations around the χ-axis is the same as the symmetry of translations
n(p/2)χ [3].

The core of an edge dislocation splits into a pair of two ±1/2 disclinations
with π-rotations, Fig. 9.1e–h. Geometry implies the following different ways of
splitting [18]: a b = p/2 dislocation splits into a pair of τ and λ disclinations,
Fig. 9.1e,f; a b = p dislocation splits into a ττ or λλ pair of disclinations,
Fig. 9.1g,h. In principle, from the geometrical point of view, the b = p/2 dislo-
cation could split into a τ−1/2λ+1/2, Fig. 9.1e, or λ−1/2τ+1/2, Fig. 9.1f, pairs
of disclinations, whereas the b = p line could split into a τ−1/2τ+1/2, Fig. 9.1g,
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l-1/2

l-1/2

t -1/2 t +1/2 l+1/2

l+1/2t -1/2t +1/2l-1/2t +1/2t-1/2

b=p/2 b=p/2 b=p b=p

l+1/2

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9.1. Disclination lines of λ and τ type and splitting of the dislocation cores
into different pairs of these disclinations: (a) λ−1/2; (b) τ−1/2; (c) τ+1/2; (d) λ+1/2;
(e) b = p/2 dislocation with core split into the τ−1/2λ+1/2; (f) b = p/2 dislocation
with core split into the λ−1/2τ+1/2; (g) b = p dislocation with core split into the
τ−1/2τ+1/2; (h) b = p dislocation with core split into the λ−1/2λ+1/2 pair

pair or λ−1/2λ+1/2, Fig. 9.1h; the first symbol refers to the disclination in the
part of sample with smaller number of layers. However, the τ−1/2τ+1/2 con-
figuration is never observed as it implies a singular core for both disclinations.

The superscripts in notations such as τ−1/2 and λ+1/2 correspond to the
director winding number around the disclination. In terms of the Volterra
process “−” sign corresponds to adding material between the lips separated
by an angle π, while “+” sign to material removal. It is important to notice
that both edge dislocations and τ, λ-disclinations are parallel to the cholesteric
layers, except near the kinks, which change the level of the edge dislocations
along the helicoid axis [17,19].

9.4 Elastic and Surface Properties of Cholesterics

The equilibrium director structure in the cholesteric LC can be found by
minimizing the free energy functional F , which consists of elastic bulk energy
and the surface anchoring energy:

F =
∫

fel dv +
∫

fs dS. (9.1)
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Here fel is the elastic bulk energy density and fs is the surface anchoring
energy per unit area. In the case when the distortions occur on the scales
much larger than the cholesteric pitch, L � p, one uses the coarse-grained
models of elastic and anchoring energies (similar to the case of SmA). In
the opposite limit, when L � p, the nematic-like description of elasticity
and anchoring is more appropriate. However, in many situations of practical
interest, distortions in both scales are present. For example, the dislocations in
the cholesteric lamellae cause the layer displacements on the scales L � p as
well as the director distortions and disclination defects within the dislocation
core on the scales L � p [17]. In Sect. 9.4 we briefly review these different
approaches in the description of elasticity and surface anchoring properties of
CLCs.

9.4.1 Elasticity of Cholesteric Liquid Crystals

Frank–Oseen Theory

The elasticity of cholesterics with L � p can be effectively described by the
well-known Frank–Oseen functional [1] for the director n:

fFO
el =

K11

2
(div n)2 +

K22

2
(n·curln+q0)2

+
K33

2
(n×curln)2 − K24 div (n·div n + n×curln), (9.2)

where K11, K22, and K33 are the Frank elastic constants for splay, twist,
and bend deformations, respectively; q0 is a coefficient that describes chirality
and determines the equilibrium pitch p of CLC: q0 = 2π/p. The divergence
(saddle-splay) elastic K24 term has to be taken into account in the case of
finite anchoring, and when the topological defects are present.

Lubensky–de Gennes Coarse-Grained Elastic Theory

When the scales of the layer deformations or radii of curvature are much larger
than the cholesteric pitch, L � p, the elastic properties of CLCs are similar to
those of the SmA LCs. The free energy density of the deformations described
using the director χ can be written in the following form [4]:

fCG
el =

1
2
K1(div χ)2 +

1
2
K3(χ×curlχ)2

+K̄div (χdiv χ+χ × curlχ)+
1
2
Bγ2, (9.3)

where γ = (d − d0)/d0 is the relative difference of the actual d and the equi-
librium d0 = p/2 layer spacing. Note that here we use the constants K1 and
K3 with one-digit subscript to describe the deformations in the χ-director;
the elastic constants describing deformations of the n-director have two-digit
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subscripts, (9.2). Expression (9.3) includes the curvature K-terms associated
with the splay (K1), bend (K3), and saddle-splay (K̄) deformations of the nor-
mal χ to the layers and the B-contribution describing dilation/compressions
of the layers. Both the B-term and the K3-term in (9.3) describe deforma-
tions associated with layers compression and are of the same nature. Usu-
ally, the K3-term can be neglected since its contribution to fCG

el is negligi-
ble as compared to the B-term [4] (unless the scales of layers distortions or
radii of curvature are comparable to the layer spacing). For example, the
K3-term can be neglected when describing the bulk elastic properties of CLC
samples with thickness h � p. However, the contribution of the K3-term is
important when taking into account the surface anchoring effects as we see in
Sect. 9.4.2.

The splay constant K1 and the Young modulus B in (9.3) are related
to the Frank moduli of twist (K22) and bend (K33) of the director n by
Lubensky–de Gennes relationships [6]: K1 = 3K33/8; B = K22( 2π

p )2. The
bend (from the point of view of the director χ) constant K3 can be derived
from the Kats–Lebedev theory [20]: K3 = K11K33

2(K11+K33)
. The result is obtained

by collecting the terms with (χ × curlχ)2 , (div χ)2, etc., and neglecting the
divergence (surface-like) terms in (5.1.27, 33) of [20]. It is interesting to note

that the penetration length λ1 =
√

K1/B = p
2π

√
3K33
8K22

∼ p/6 is smaller than
p/2, the layer spacing.

When the K3-term in (9.3) can be neglected, (9.3) can be rewritten in
terms of the principal radii R1 and R2 characterizing the curvature of the
cholesteric lamellae:

fCG
el =

K1

2

(
1

R1
+

1
R2

)2

+
K̄

2
1

R1R2
+

1
2

Bγ2, (9.4)

as the splay ( 1
R1

+ 1
R2

) and the saddle-splay 1
R1R2

terms in (9.4) are related
to the derivatives of the director χ in the following way:

div χ = ±
(

1
R1

+
1

R2

)
; div (χdiv χ+χ × curlχ) =

2
R1R2

. (9.5)

The saddle-splay K̄-term plays no role in case the layers distortions have
two-dimensional character and therefore can be neglected in many situations
of practical interest discussed in this chapter.

The free energy functional in the form (9.3) or (9.4) is useful to describe
strong layers distortions [8]. When the layers departures from the ground flat
state are small, (9.3) can be rewritten in terms of the layers displacement field
u(x, y, z) [4]. The χ-director can be described in terms of the layer displace-
ment u(x, y, z) [4]:

χ = ±
{
−∂u

∂x

(
1 +

∂u

∂z

)
,−∂u

∂y

(
1 +

∂u

∂z

)
, 1 − 1

2

[(
∂u

∂x

)2

+
(

∂u

∂y

)2
]}

.

(9.6)
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The free energy density of layers displacements u(x, z) in the case of the
two-dimensional layer distortions is of the form

fnl =
1
2
K1

(
∂2u

∂x2

)2

+
1
2
B

[
∂u

∂z
− 1

2

(
∂u

∂x

)2
]2

. (9.7)

The contribution 1
2 ( ∂u

∂x )2 in the compressibility term in (9.7) makes the theory
nonlinear. In the linear approximation,

fl =
1
2
K1

(
∂2u

∂x2

)2

+
1
2
B

(
∂u

∂z

)2

. (9.8)

It is convenient to use the coarse-grained elastic theory to describe the
properties of layers patterns and the defects. However, the Frank–Oseen theory
should be used in order to calculate the core energy of dislocation, or any
director distortions at the scales smaller or comparable to cholesteric pitch.

Elasticity of Defect Structures

Using the nonlinear model, (9.7), Brener and Marchenko found the equilibrium
displacement field around a straight edge dislocation of Burgers vector b in
an infinite medium [21] (see also [22]):

unl(x, z) = 2λ1 ln
{

1 +
eb/4λ1 − 1

2

[
1 + erf(

x

2
√

λ1z
)
]}

, (9.9)

where erf (· · · ) is the error function, defined as erf (t) = 2√
π

t∫
0

exp
(
−v2

)
dv; x

and z are Cartesian coordinates in the plane perpendicular to the dislocation
centered at (0, 0). In the limit b 	 λ1, (9.9) reduces to the classical result of
the linear theory [2]:

ul(x, z) =
b

4

[
1 + erf

(
x

2
√

λ1z

)]
. (9.10)

In CLCs, even the smallest value of the Burgers vector, b = p/2, is larger
than the penetration length λ1 and the nonlinear theory is better suited to
describe the layers displacement [12,23] (see also Sect. 9.5).

9.4.2 Surface Anchoring Energy

Anchoring effects in CLCs are difficult to describe analytically, see, e.g., [24]:
near the substrate, the director field has to accommodate both the elastic
torques setting the helicoidal twist and surface interactions that keep n along
a specific “easy axis” (or axes) that corresponds to the minimum of surface
anchoring potential.
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Nematic-Like Rapini–Papoular Model

The surface anchoring energy W can be described as the work required to
deviate the director n at the surface from the easy axis e. The angular coor-
dinates of the easy axis e are ( π

2 −β, ϕe), where β is the so-called pretilt angle
between e and the projection of e onto the substrate; ϕe is the azimuthal
orientation of this projection. In a similar fashion, two angular coordinates(
γ = π

2 − θ, ϕ
)

specify the actual orientation of the director n (where γ is the
angle between n and normal to the cell substrates, θ is the angle between n
and the projection of n onto a substrate, and ϕ is the azimuthal orientation of
this projection). Deviations from the easy axis that keep ϕ = ϕe are described
in terms of the polar anchoring coefficient Wp. Deviations that change ϕ are
described with the azimuthal coefficient Wa. The definitions of the anchor-
ing coefficients are usually based on the Rapini–Papoular model [1]. For zero
pretilt angle β = 0, the surface anchoring energy per unit area reads [13]:

fs =
1
2

Wp sin2 θ +
1
2

Wa cos2θ sin2 (ϕ − ϕe) . (9.11)

Wp is usually 1–2 orders of magnitude stronger than Wa (as in the case of
PI2555 [14]). Moreover, for the case of alignment layers of polyisoprene, the
polar anchoring coefficient Wp is 5–6 orders of magnitude larger than Wa

and the contribution of the azimuthal anchoring to the surface energy can be
neglected: fs ≈ 1

2 Wp sin2 θ.

Coarse-Grained Cholesteric Anchoring

In the coarse-grained model of cholesteric anchoring [12] the CLC is considered
as a lamellar phase. The surface free energy is calculated per unit area for
cholesteric “layers” making a small angle θ (z) with the substrate located at
z = 0 [12]. We consider the case in which the azimuthal anchoring is vanishing,
but the polar anchoring is nonzero.

A semi-infinite CLC is bounded by a plate at z = 0 that sets the he-
licoid axis χ parallel to the normal ν to plate. An external torque sets a
nonzero angle 0 ≤ θ∞ ≤ π/2 between χ and ν far away from the boundary,
θ (z → −∞) = θ∞; as the layers approach the boundary, surface anchoring
modifies θ, Fig. 9.2. The dependence θ (z) is determined by the anchoring po-
tential experienced by χ at the surface and by the elastic energy of distortions
in the bulk, Fig. 9.2a. The free energy density of the bulk deformations is:

f =
1
2
K1(div χ)2 +

1
2
K3(χ×curlχ)2 +

1
2
B

(
d − d0

d0

)2

, (9.12)

since the saddle-splay term in (9.3) can be neglected for the two-dimensional
layers displacements.
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Fig. 9.2. The scheme (a) and the experimental FCPM texture (b) of the layer
profile at a plate with weak anchoring

With χ = (sin θ, 0, cos θ), the free energy per unit area of the boundary is

Wχ =
1
2

∫ ∞

0

[
K1 sin2 θ

(
∂θ

∂z

)2

+ K3 cos2 θ

(
∂θ

∂z

)2

+ B

(
sin θ

sin θ∞
− 1

)2
]

dz

+
1
4
Wp sin2 θ |z=0 . (9.13)

The last term is calculated as follows. Director deviations from the equilibrium
orientation n ⊥ ν are described by the Rapini–Papoular anchoring potential:
Wn = Wp (n · ν)2 /2. For CLC, Wn has to be averaged over director rotations,
which yields 〈Wn〉 = 1

4Wp sin2 θ |z=0. In the elastic part of Wχ, the term
K1 sin2 θ( ∂θ

∂z )2 can be neglected, as we assume θ	 1, so that (9.13) simplifies
to

Wχ =
1
2

∫ ∞

0

[
K3

(
∂χx

∂z

)2

+ B

(
χx

sin θ∞
− 1

)2
]

dz +
1
4
Wpχ2

x |z=0, (9.14)

where χx = sin θ. We minimize Wχ in order to obtain the layers profile χx (z)
near the boundary. The Euler–Lagrange equation reads:

∂2χx

∂z2
=

1
λ2

3 sin θ∞

(
χx

sin θ∞
− 1

)
. (9.15)
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where λ3 =
√

K3/B. The solution of this equation is:

χx (z) = sin θ∞

[
1 − C exp

(
− z

λ3 sin θ∞

)]
. (9.16)

By taking into account the boundary condition
[

∂χx

∂z − Wp
2K3

χx

]
z=0

= 0, we

find the constant C = Wp sin θ∞/(2Bλ3 + Wp sin θ∞). Thus, we obtain the
layers profile near the boundary and the coarse-grained anchoring potential
Wχ (θ∞) for χ:

sin θ (z) = sin θ∞

[
1 − Wp sin θ∞

2Bλ3 + Wp sin θ∞
exp

(
− z

λ3 sin θ∞

)]
, (9.17)

Wχ (θ∞) =
WpBλ3 sin2 θ∞

4Bλ3 + 2Wp sin θ∞
. (9.18)

The distortions decay exponentially within a subsurface slab of a small thick-
ness λ3 sin θ∞; outside it, θ ≈ θ∞, Fig. 9.2b. Depending on θ∞ and the ma-
terial parameters, Wχ (θ∞) might be approximated by either ∼ sin2 θ∞ or
∼ sin |θ∞|. The first form fits well to the experimental data on the layer un-
dulations immediately above the threshold for Helfrich–Hurault instability
[9], where θ∞ 	 1, while the second one is better suited for large |θ∞| and

Wp, as Wχ (θ∞) becomes proportional to the number of layers crossing the
boundary [8].

The coarse-grained model of CLC anchoring is valid for the interfaces with
tangentially degenerate boundary conditions when 0 < Wp < ∞ and Wa = 0.
However, the model allows one to also understand the results obtained in the
cells with weak azimuthal anchoring and the cells with strong uniaxial rubbing
giving strong both azimuthal and polar anchoring (see Sect. 9.5).

9.5 Dislocation–Interface Interaction
and Three-Dimensional Director Structures
in the Weakly Anchored Cholesterics

9.5.1 Anchoring-Mediated Dislocation–Interface Interaction

Interaction between a dislocation and a bounding surface is an important
problem in physics of soft matter systems, such as diblock copolymers, smec-
tic, lamellar and CLC [25,26]. However, there are no direct experimental stud-
ies that would allow one to probe this interaction, as imaging of dislocations
is difficult. We also study the dislocation–interface interaction employing the
capability of FCPM to nondestructively visualize the three-dimensional direc-
tor fields in the cholesteric lamellae. In our experiments the surface tension
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effect is excluded as the cholesteric sample is confined between rigid bound-
aries. This allows us to probe the anchoring-mediated dislocation–interface
interaction.

Experimental Observations

We used a wedge cell with a small dihedron angle α = 0.45◦. The CLC was
confined between two glass substrates, one of which was coated by polyiso-
prene in order to obtain weak surface anchoring and the other, by rubbed
layer of PI2555 for strong anchoring (see Sect. 9.2 for details). The FCPM of
cholesteric wedges reveals that as the thickness of the wedge increases, an ad-
ditional cholesteric twist by π is added simply by an insertion of an additional
layer near the substrate with a weak anchoring rather than by a bulk edge
dislocation, Figs. 9.3 and 9.4(d).

The edge dislocations can be found as transient features of, say, a filling
process or a rapid temperature quench from the isotropic phase, especially in
the thick part of the wedge, ∼4p and above. Their Burgers vector is always
b = p and never b = p/2, Fig. 9.4. The core of these transient dislocations b = p
is split into a λ−1/2λ+1/2 pair, Fig. 9.4e (see also Fig. 9.1h). Despite the fact
that the b = p dislocation by itself introduces a twist change by 2π, it always
separates two Grandjean zones that differ only by one π rotation of n. The
fit is achieved by a removal of one π twist at the boundary with weak anchor-
ing, Fig. 9.4. The dislocation slowly glides toward the softly anchored plate,

P y

z

x

(a)

(b)

a

10mm

Fig. 9.3. FCPM vertical cross-sections (a) and director field (b) of the thin part of
a cholesteric wedge cell (α = 0.45◦, local cell thickness ∼5 µm) with weak anchoring
at the top plate and strong anchoring at the bottom plate
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(d)(c)

(a) (b)

P10mm

(e)

l-1/2l+1/2

z

 y

Fig. 9.4. FCPM textures (a–d) of a dislocation gliding toward the top plate with
a weak anchoring and away from the bottom plate with a strong anchoring; local
cell thickness ∼30 µm; (e) reconstructed director field of the vertical cross-section
in part (a) showing a b = p dislocation with the core split into the λ−1/2λ+1/2 pair

Fig. 9.4a–c and coalesces with the deserted layer, producing a surface struc-
ture with a layer insertion, 2π − π = π, Fig. 9.4d. Dislocations do not glide as
straight lines: the motion involves formation and propagation of kinks and is
discussed in detail in Sect. 9.8. The experiments demonstrate that the inter-
action of an edge dislocation with interfaces is anchoring mediated and that
the direction of glide (toward or away from the boundary) is determined by
the strength of surface anchoring.

Theoretical Explanation

Recent theoretical models for an edge dislocation in a lamellar phase with a
free boundary predict either attraction or repulsion, depending on the sur-
face tension and elasticity of the lamellar phase, see review [26]. The existent
theories [26] describe the surface–dislocation interaction in terms of the sur-
face tension (the isotropic contribution to the surface energy) and neglecting
the anchoring part, associated with a variation of layers tilt at the boundary.
Qualitatively, a dislocation creates a step at the boundary thus increasing the
surface area and the surface energy. If this increase is smaller than the energy
of elastic distortions around the dislocation in bulk, the defect would be at-
tracted to the surface. Although such an approach is definitely valid for many
cases, including the free surfaces, generally, one also needs to consider the
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surface anchoring term. For a rigid boundary, the interaction is mediated pre-
cisely by the anchoring effects: a dislocation approaching the boundary does
not change the interfacial area but it does change the orientation of layers at
the boundary, Fig. 9.4.

The interaction between the dislocation and the surface is determined by
the free energy functional for the displacement field u (x, z) of the cholesteric
layers, written here in the linear approximation [26]:

F =
1
2

∫ [
K1(

∂2u

∂x2
)2 + B(

∂u

∂z
)2
]

dz + Wχ (θ∞) . (9.19)

Let us now estimate the changes in the elastic and anchoring energies as
an edge dislocation is transferred from the depth z = d′′ to d′ < d′′ in a
semi-infinite sample; d′ is larger than the typical core size of the dislocation
∼ p; the coarse-grained model is not applicable when d � p. We use the linear
approximation of the equilibrium displacement of layers around a dislocation
in an infinite sample given by (9.10). Integrating the elastic energy density
fel = K1( ∂2u

∂x2 )2 + B( ∂u
∂z )2 over −∞ < x < ∞; 0 < z < d′′ and subtracting

a similar quantity integrated over 0 < z < d′, one concludes that the elastic
energy (per unit length) decreases

Fel = − K1b
2

16
√

2πd′′λ3/2
1

(√
d′′

d′
− 1

)
. (9.20)

On the other hand, the layers tilt θ∞ ≈ ∂u/∂x ≈ b
4
√

πλ1d
exp

(
− x2

4λ1d

)
near

the plate with tangentially degenerate anchoring increases. The associated
total anchoring energy can be calculated as

Fsurf ≈
1
4
Wp

∫ ∞

−∞

(
θ2
∞ |d=d′ −θ2

∞ |d=d′′
)
dx . (9.21)

We find that the surface anchoring energy

Fsurf ≈
Wpb2

32
√

2πλ1d′′

(√
d′′

d′
− 1

)
(9.22)

increases when the dislocation is brought closer to the plate. Here we assume
Wpθ∞ 	 2Bλ3, i.e., Wχ (θ∞) ≈ 1

4Wpθ2
∞ in (9.18). As easily seen,

Fel + Fsurf ∝ (K1/λ1 − Wp/2)
(
1 −

√
d′′/d′

)
= 0

when Wp,crit = 2
√

K1B; the dislocation–plate interaction vanishes. We remind
the reader the definitions of two penetration lengths: λ1 =

√
K1/B and λ3 =√

K3/B. For Wp < 2
√

K1B, the dislocation is attracted to the plate, and for
Wp > 2

√
K1B it is repelled. The results for Wχ (θ∞) ≈ 1

4Wpθ2
∞ are similar

to those in the theory of surface-tension mediated interaction; in the latter
case the critical value of surface tension is

√
K1B [26]. For a more accurate
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Fig. 9.5. Cholesteric anchoring as a function of the layers tilt for different polar
anchoring coefficients Wp. The dependencies were calculated using (9.18) and elastic
constants of ZLI3412.

description, especially when the dislocation approaches the plate so that the
condition Wpθ∞ 	 2Bλ3 is no longer valid, one should use the complete form
of (9.18).

The considerations given here are consistent with numerical analysis of
(9.18), which also shows that the critical value is close to Wp,crit = 2

√
K1B.

We compare Wχ (θ∞) to W0 (θ∞) = σθ2
∞/2 with σ =

√
K1B; W0 (θ∞) corre-

sponds to a “neutral” case of the theory [26], when the dislocation–boundary
interaction vanishes. For strong anchoring, the interaction is repulsive, as
Wχ (θ∞) calculated with Wp = 4×10−4J/m2 runs above W0 (θ∞), at least for
θ∞ < 0.4, Fig. 9.5. In contrast, for weak anchoring, say, Wp = 0.3×10−4J/m2,
the calculated curve Wχ (θ∞) is below the curve W0 (θ∞), although very close
to it, meaning that the interaction is weakly attractive. For Wp larger than
0.3 × 10−4J/m2, the Wχ (θ∞) curve can cross W0 (θ∞).

Glide of the edge dislocation in Fig. 9.4 is assisted by repulsion from the
substrate with strong anchoring and attraction to the weakly anchored inter-
face (nearly zero interaction or weak repulsion is also possible at the top plate
when Wp > 0.3 × 10−4J/m2, at least for some values of θ∞). The theoretical
considerations provided here are in good agreement with the experimental
results, see Fig. 9.4 and also Sect. 9.6.

9.5.2 Layers Profiles of Isolated Edge Dislocations

In flat cells with both substrates weakly anchored, transient dislocations are
accompanied by two layers that interrupt at the surface, Fig. 9.6a. Impor-
tantly, distortion of layers around the dislocation in this sample is well fitted
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Fig. 9.6. Experimental versus theoretical layers profile of an isolated dislocation:
a dislocation in a flat cholesteric cell with weak anchoring at both plates, cell thick-
ness ∼30 µm (a); nonlinear theory for an infinite medium (lines, (9.9)) fits the ex-
perimental profile (dots) well while the linear theory (dashed lines, (9.10)) does not
(b); layers displacements u(x, z) (thick lines) and their tilt ∂u/∂x (thin lines) for
a dislocation in an infinitely large lamellar system as calculated using (9.9) (c).
Parameters used in (b,c): K1 = 3K33/8 = 5.8 pN; B = K22(2π/p)2 = 10.6 N/m2;
p = 5 µm

by the nonlinear Brener–Marchenko elastic theory of an isolated edge dislo-
cation in an infinite medium [21, 23], Fig. 9.6b. The physical implication of
this experimental result is that the interaction between the dislocation and
the bounding substrates is close to 0 (neither attraction nor repulsion).

The basic feature of the experimental dislocation profile, Fig. 9.6a, is that
the inflection points and the majority of changes of the layers displacement
are in the region to the left from the dislocation, as predicted by the nonlinear
theory [21]. The apparent asymmetry of the experimental layers displacements
in the vicinity of the dislocation, Fig. 9.6a, resembles the asymmetry of the
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layers displacements obtained with (9.9), Fig. 9.6c. Evidently, the nonlinear
model of the dislocation profile, (9.9), fits the experimental profile much better
than the linear model, (9.10), (see Fig. 9.6b and also [10,23] in which the layers
profile of a dislocation was studied in the cholesteric finger texture). These
results are in a good agreement with [10, 23] and allow one to conclude that
the nonlinear elastic effects play an important role in determining of the layers
displacements of edge dislocations.

In the flat cholesteric cells with “hybrid” boundary conditions (strong pla-
nar anchoring, rubbed PI2555, on one substrate and tangentially degenerate
anchoring, polyisoprene, on another), the transient dislocations are also ac-
companied by two surface layers but both these layers are inserted in the same
interface, the one with weak anchoring, Fig. 9.7. The Burgers vector of these
defects is always b = p. In the flat cells with “hybrid” anchoring, in addition
to the asymmetry of the layers profile in plane of the cell, there is also strong
asymmetry of layers tilt above and below the dislocation. The layers at the
interfaces with strong planar anchoring run parallel to the interfaces, whereas
the tilt of layers at the interfaces with weak cholesteric anchoring is dictated
by the presence of a dislocation in the bulk of LC. This result is natural, as
the cholesteric anchoring Wχ at the two interfaces is almost an order of mag-
nitude different (see Sect. 9.4). Importantly, the dislocations in the flat cells
with strong, weak, and “hybrid” surface anchoring at the confining interfaces
are transient defects and with time relax to the uniform planar cholesteric
texture. In the flat cells with “hybrid” surface anchoring, the relaxation is al-
ways accomplished via dislocation glide to the substrate with weak anchoring.
The dislocations glide via kinks, as discussed in detail in Sect. 9.8.

The experimental FCPM textures in Figs. 9.6 and 9.7 demonstrate that the
layers profiles of the defects structures in cholesteric lamellae are determined
by nonlinear elasticity of the layered medium and by the strength of surface
anchoring at the confining interfaces. The same conclusion will follow from
the studies of CLCs confined between two interfaces with strong anchoring,
see Sect. 9.6.

9.6 The Equilibrium Defects and Structures in Strongly
Anchored Cholesteric Wedges

The properties of dislocations in a confined CLCs can be conveniently studied
in the cells with wedge geometry. As first observed by Grandjean [27] and
later by Cano [28], a lattice of defect lines forms parallel to the edge of a
cholesteric wedge cell. The lines separate different Grandjean zones, the re-
gions of sample with different number of layers. In the Grandjean–Cano wedge
with strong surface anchoring, the dislocations correspond to the equilibrium
state because the interfaces with strong anchoring repel the defects, which
are then stabilized in the LC bulk. The regular defect lattice is formed due
to (a) stresses caused by dihedron geometry, and (b) strong surface anchoring
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Fig. 9.7. FCPM textures of the layers profile in two different “hybrid” cells with
different strength of cholesteric anchoring Wχ at the confining interfaces: (a) strong
Wχ at the top interface (rubbed PI2555) and weak (polyisoprene) at the bottom
interface; (b) reversed situation, weak Wχ at the top interface and strong at the
bottom one

at the plates. Although there has been many studies on confined cholesteric
samples (see [1,2,17,19,28] and references therein), there are still problems to
explore, such as the detailed core structure of split dislocations, the structure
and elastic properties of kinks along the dislocations, the role of the bound-
ary conditions in the stability, and the location of dislocation lines within the
bounded sample, etc.

9.6.1 Experimental Observations

The whole three-dimensional director structure can be understood by com-
bining the regular PM textures, Fig. 9.8a, and the FCPM cross-sections in the
vertical plane xz that contains the thickness gradient direction, Fig. 9.9. The
thin part of the wedge contains thin dislocations parallel to the y-axis and
separated by distances l ≈ p/(2 tanα). For h > hc, one observes a lattice of
thick lines with a period 2l. The distance between the last thin and the first
thick line is 1.5l, Fig. 9.8a. The corresponding vertical cross-sections reveal
the basic features of the defects listed here.

The first line separating 0π and 1π Grandjean zones is a twist disclination,
Fig. 9.9a,e, typical of a nematic, as the director experiences a slight splay
remaining in the (xz) plane to the left of the core and twists by π around the
z-axis in the region to the right of the core.

The thin lines separating Grandjean zones in the thin part of the sample,
h < hc, (such as zones 2π and 3π, Fig. 9.9b; 13π and 14π, Fig. 9.9c) are all
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Fig. 9.8. Equilibrium defects and director structures in a Grandjean–Cano
cholesteric wedge: (a) PM texture (a wedge sample, p = 5 µm, α = 0.45◦); (b)
diagram of stability of the b = p/2 and b = p dislocations; schematic representation
of the cholesteric wedge with a lattice of (c) dislocations b = p/2 stable at h < hc

and (d) dislocations b = p stable at h > hc; (e) scheme of the dislocation core with
sizes ξx and ξz in two mutually orthogonal directions. The stability diagram of the
τ−1/2λ+1/2 and λ−1/2λ+1/2 pairs in (b) was determined by locations of dislocations
in wedge samples of different angle α. The squares denote the last τ−1/2λ+1/2 pair
met as one moves toward the thick part of the wedge; the circles mark the first
λ−1/2λ+1/2 pair. The solid line shows the theoretical dependence α (p/hc) obtained
by comparing the total energies of the two dislocation structures, using the following
parameters: C1 = 0.4, C2 = 1, rc = 6nm, K22 = 7.9 pN, K33 = 15.4 pN

separated by dislocations with the Burgers vector b =
(
0, 0, 1

2

)
p. Their core is

split into disclination pairs τ−1/2λ+1/2, Fig. 9.9f,g. Another possible splitting,
into λ−1/2τ+1/2 pairs, is observed in transient structures when the dislocation
b = p/2 forms a kink, i.e., a step that brings the dislocation to a different
z-level (see Sect. 9.8). Predominance of τ−1/2λ+1/2 pairs over λ−1/2τ+1/2 pairs
has been explained by Kleman [2]: the singular core in τ+1/2 line is less spread
and thus costs more energy as compared to τ−1/2 singular core.
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t -1/2l+1/2
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(e) (f) (g) (h)

y, x, rub
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z

P

10mm

Fig. 9.9. FCPM textures of vertical xz cross-sections of Grandjean–Cano wedge
with right-handed CLC, p =5 µm, strong planar anchoring: (a) twist disclination
separating 0π and 1π Grandjean zones; (b) b = p/2 dislocation with a core split into
a τ−1/2λ+1/2 disclination pair, separating 2π and 3π Grandjean zones; (c) the same,
between 13π and 14π zones; (d) b = p dislocation with a core split into a λ−1/2λ+1/2

disclination pair, 22π and 24π zones. The parts (e–h) visualize the director fields
corresponding to the FCPM textures in (a–d). Polarizer P is parallel to the y-axis.
Rubbing direction is along the x-axis. Bright regions corresponds to n||P, darker
regions and to n⊥P or bounding glass plates.

The thick lines at h > hc are dislocations of Burgers vector b = (0, 0, 1) p,
Fig. 9.9d, with the core split into a λ−1/2λ+1/2 pair with a continuous n,
Figs.1(h) and 9(h). Their singular counterparts, τ−1/2τ+1/2 pairs, Fig. 9.1g,
are never observed, as the singular core would carry an additional elastic
energy ∼K ln p

rc
, where K is an average Frank constant and rc 	 p is the

core size of the order of few molecular sizes [3].
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The critical thickness hc of the wedge at which the lattice of b = p/2
dislocations is replaced with b = p dislocations depends on the wedge dihedral
angle α. Experimentally, for the studied range 5 mrad< α < 20 mrad, k =
αhc/p ≈ 0.08, Fig. 9.8b.

In order to explain the stability of different latices of dislocations in thin
and thick parts of the strongly anchored wedges, we analyze the free energies
of director structures and defects. We then show in Sect. 9.6.5 that the equi-
librium types of defects are determined mainly by competition between core
energies and compression–dilation energies of different defects and structures.

9.6.2 Far-Field Energy of an Isolated Dislocation

The far-field energy Eff (describing the elastic energy cost due to the layer
displacements caused by a dislocation) depends on the size and model of the
dislocation core [17]. Generally, two different core sizes ξx and ξz along the
two orthogonal axes x and z, Fig. 9.8e, have to be considered [17]. The two
quantities ξx and ξz might be related in a nontrivial way, depending on λ1

and b; their values cannot be established on the basis of the coarse-grained
model. The far-field energy Eff can be written in two equivalent forms (see [17]
for details of calculations):

Eff =
K1b

2

8
√

2πξzλ
3/2
1

[√
2

πβ
exp(−2β) + erf

√
2β

]

≡ K1b
2

4πξxλ1

[
exp(−2β) +

√
πβ

2
erf

√
2β

]
, (9.23)

where β = ξ2
x

4λ1ξz
. Note that the relationship between the two forms in

(9.23) is that of identity type and cannot be used to determine the core pa-
rameter β.

If one assumes ξ2
x = 4λ1ξz, following the idea that perturbation of length δx

along the layers propagates over the distance δz ∼ δ2
x/4λ1 along the z-axis,

then

Eff ≈ 1.06
K1b

2

8
√

2πξzλ
3/2
1

≈ K1b
2

3πξxλ1
. (9.24)

Furthermore, if ξ2
x >> 4λ1ξz, then

Eff =
K1b

2

8
√

2πξzλ
3/2
1

if ξ2
x << 4λ1ξz, then Eff = K1b2

4πξxλ1
. Note that the leading term

Eff =
K1b

2

4πξxλ1
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in the far-field energy transforms into the result derived by Kleman [2], Eff =
K1b2

2ξxλ1
, with a rescaled cut-off radius 2πξx → ξx.

The function Eff(b), formally quadratic in (9.24), is in fact dependent
on the model of the dislocation core. As suggested by Kleman [2], if the
dislocation core is split into a pair of disclinations, then the horizontal cut-off
ξx scales as b; roughly, ξx ≈ b/2; at the same time ξz, being a distance along
the z-axis, at which the semiwidth x of the parabolae x2 = 4λ1z reaches p/2,
is taken as independent of b. With ξx ≈ b/2, the far-field energy

Eff ≈ K1b
2

3πξxλ1
≈ 2K1b

3πλ1

is a linear function of b; the result implies that dislocations with large Burgers
vector are stable against splitting into two or more dislocations with smaller bs.

In the range of b/λ1 = 1–8, the difference between the linear and non-
linear results is small, within 2% of Eff [17]; uncertainties in core energies
Ec are expected to be much larger. In the experiment, the largest value of
b/λ1 = p/λ1 is about 7. Therefore, one can use the linear approximation
for the analysis of far-field energy. The same conclusion follows from the
theoretical analysis of Santangelo and Kamien [22].

9.6.3 Dislocation Core Energy

The experiments, Fig. 9.9, clearly show that the dislocation cores are split into
pairs of disclinations. The core energy of the split dislocations is estimated as
Ec (b) = Epair (b) + E′

c [2], where Epair (b) is the energy of a pair of disclina-
tions separated by distance 2ξx ∼ b/2 and E′

c is the core energy of the disclina-
tion lines themselves. Ec (b) depends little on b, but is extremely sensitive to
whether the disclination is singular (large E′

c) or not (small E′
c). As compared

to the λ−1/2λ+1/2 pair, the core energy of the τ−1/2λ+1/2 pair should con-
tain an additional term ∼K ln(p/rc) that reflects the singular nature of τ−1/2

disclination with the core size rc of the order of 1 ÷ 10 molecular sizes [3].
For the τ−1/2λ+1/2 pair, integrating the typical distortion energy density,

1
2

K
r2 , between r = rc and r = b/2 = p/4, one obtains

Ec,τλ = Epair + E′
c ≈

π
2
K ln

(
p

4rc

)
+ C1K, (9.25)

where C1 is a number of the order of unity. E′
c should not differ much from

the estimate E′
c = C1K = π

8K suggested by Oswald and Pieranski [29] for
the singular core of a nematic disclination of winding number ±1/2, which
implies C1 = π/8 ≈ 0.4. For typical p ≈ 5 µm and rc ≈ 5 nm, the logarithmic
factor in (9.25) is relatively large, ln( p

4rc
) ≈ 6.

In the core of dislocation b = p split into a λ−1/2λ+1/2 pair, the twist
structure is distorted over the area ∼p2, and the core energy is roughly

Ec,λλ = C2K, (9.26)

where C2 is another number of the order of unity.
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One expects Ec,λλ to be about one order of magnitude smaller than Ec,τλ

when p ≈ 5 µm and rc ≈ 5 nm. Why do then b = p/2 dislocations with a very
large core energy appear in the thin part of sample? The answer is given in
Sect. 9.6.5 where we discuss the stability of b = p/2 versus b = p dislocations
considering also other contributions to the free energy of director structures
formed in a CLC wedge cell.

9.6.4 Effect of Confinement on the Dislocation Energy

In CLCs bounded by rigid glass plates, the surface anchoring can be suffi-
ciently strong to keep the dislocations in the bulk, as the experiments discussed
in Sect. 9.5 demonstrate. The bounding surfaces can dramatically change lay-
ers profiles and other properties of dislocations. The cholesteric layers adjacent
to the glass plates, Fig. 9.9, are practically (but not exactly) parallel to the
substrates z = ±h/2, i.e., one can assume ∂u

∂x |z=±h/2= 0. The layers dis-
placement around a dislocation centered at z = 0 can be modeled by placing
an infinite set of image dislocations of Burgers vector b outside the sample,
at z = ±mh, m = 1, 2, 3, ... [25]. To estimate the effects of confinement on
the dislocation energy, we consider only the first two images closest to the
substrates and use the linear model for the displacement field uconf(x, z) of a
confined dislocation. Now we can calculate Eh, the correction to the far-field
energy caused by confinement. In the limit ξz/h 	 1, the leading term of the
confinement correction is [17]:

Eh ≈ − K1b
2

4
√

2πhλ
3/2
1

. (9.27)

The correction is significant only for relatively thin samples, for example,
Eh ≈−0.4Eff for ξz/h = 0.1. As Eh ∼ b2, image forces in a strongly anchored
sample facilitate splitting of dislocations into defects with a smaller b. Finally,
one can neglect the effect of confinement on the core energy Ec of a dislocation
because as long as the dislocations are not very close to the boundaries, their
core structure s are h-independent, Figs. 9.4, 9.6, 9.7, and 9.9.

9.6.5 Equilibrium Lattice of Dislocation in a Cholesteric Wedge

In order to explain the stability of different dislocations described in Sect. 9.6.1,
we follow the approach of Nallet and Prost [30]. The energy of the wedge is rep-
resented as the sum of the independent compression/dilation energy EB and
the energy of dislocations. The strain field due to the presence of dislocation is
significant only within the parabola x2 = 4λ1|z|. In the wedge of small angle
α, the dislocations are separated by distances l� 2

√
4λ1h and practically do

not interact. Therefore, the free energy per unit length in y-direction can be
represented as a sum
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E = EB + Fff + Eh + Ecore, (9.28)

where Eff is the far-field energy due to the strain field inside the parabolae
(9.24), Eh is correction to the far-field energy that accounts for confinement
effects (9.27), and Ecore is the core energy (9.26) or (9.25). We compare the
energies of the two types of lattices: one with b = p/2, Fig. 9.8c, and another
with b = p, Fig. 9.8d. Calculations are performed for a trapezium of length
p/ tan α and height hN on the left side and hN +p on the right side, Fig. 9.8c,d.
The trapezium contains either two dislocations with b = p/2, Fig. 9.8c or one
with b = p, Fig. 9.8d.

The compression/dilation energy due to the wedge geometry for the lattice
composed of b = p dislocations is [17],

Ep
B ≈ Bp2

12 tan α

(
1
N

− 1
N2

)
. (9.29)

For the b = p/2 dislocations,

E
p/2
B ≈ Bp2

48 tan α

(
1
N

− 1
N2

)
. (9.30)

The far-field energy of dislocation with ξx = b/2 is

Eff ≈ 2K1b

3πλ1
, (9.24)

The confinement correction is roughly

Eh ≈ − K1b
2

4
√

2πhλ
3/2
1

≈ − K1b
2

4
√

πNpλ
3/2
1

, (9.27)

The core energies are: Ec,τλ ≈ π
2K ln( p

4rc
) + C1K, (9.25) or Ec,λλ = C2K,

(9.26), depending on the dislocation type. Using (9.28), we calculate the total
energies of the array of the b = p/2 and b = p dislocations, Ep/2 and Ep,
respectively. By equating the two energies, Ep/2 = Ep, one finds the critical
thickness hc of the wedge cell above which the lattice is composed of b = p
dislocations and below which the dislocations are of b = p/2 type (see [17] for
details of this calculation):

hc ≈
π2K22

3K33

[
π ln( p

4rc
) + 2C1 − C2

] · p

α
≈ k · p

α
. (9.31)

Experimentally, k = αhc/p = 0.08. Therefore, (9.31) predicts π ln( p
4rc

) +
2C1 − C2 ≈ 21. The latter estimate is in good agreement with the energies
expected by the model of the split dislocation core. Actually, according to
this model, (9.25) and (9.26), for typical p ≈ 5 µm and rc ≈ 5 nm, and for the
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expected C1 ≈ 0.4 and C2 ∼ 1, one obtains π ln( p
4rc

) + 2C1 − C2 ≈ 17, close
to the value 21 deduced from (9.31). The theoretical model is in good quanti-
tative agreement with experiment, Fig. 9.8b. Importantly, the ratio K22/K33

for small molecule LCs is usually in the range from one-third to one-half and,
therefore, k is not expected to depend much on the CLC material.

The leading contributions are produced by the B-terms (9.29), (9.30), and
the core energies (9.25), (9.26). Qualitatively, the equilibrium types of defects
and structures formed in the CLC wedge are determined mainly by the com-
petition between the core energies of the defects and the compression/dilation
term of free energy due to the wedge geometry. The core energy of the b = p dis-
locations is much smaller as compared to the core energy of the b = p defects.
However, inserting a slab of thickness b = p/2 into the wedge requires less
compression/dilation energy as compared to a slab of thickness b = p. Obvi-
ously, the difference is significant only when the number N of layers in the
wedge is small, and gradually decreases with an increase of N . Therefore,
dislocations b = p/2 are replaced by b = p dislocations at h > hc, Figs. 9.8
and 9.9.

9.7 Metastable Structures, Oily Streaks, Turns
and Nodes of Defects

The oily streaks and dislocations are the most commonly met defects in
cholesteric lamellae. The CLCs can also contain domains analog to the fo-
cal conic domains in smectics but they are not a subject of this study. In
this section we review some of the frequently observed transient structures
containing line defects such as dislocations and disclinations.

9.7.1 Metastable Structures and Oily Streaks

The oily streaks are complex aggregates of edge dislocations, which usually
have opposite signs of the Burgers vectors. The total Burgers vector of these
defects experimentally observed in planar cells is small, | b |≤ p. The oily
streaks and the multiple dislocations are metastable objects caused by the
material flow during the cell filling. These complex defect structures eventu-
ally relax to the equilibrium states such as a planar state in flat cells or the
equilibrium arrays of dislocations in the wedge cells.

Defects with b = p/2

The simplest example of a metastable structure in a CLC wedge cell is a
b = p/2 dislocation with its core split into a pair of the λ+1/2τ−1/2 disclina-
tions, Fig. 9.10a. The splitting of the b = p/2 dislocation into a pair of the
λ+1/2τ−1/2 disclinations is not observed in the well-equilibrated wedge sam-
ples (see Sect. 9.6), but often takes place in the vicinity of defect nodes as
discussed later and at the dislocation kinks (see Sect. 9.8).
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Fig. 9.10. FCPM vertical cross-sections of the metastable defect structures with
the Burgers vector b = p/2 composed of (a) λ−1/2τ+1/2 disclinations; (b) closely
located τ+1/2λ−1/2 and λ−1/2λ+1/2 pairs

l l-1/2t+1/2 +1/2
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y, x, rub
z

P10mm
2

Fig. 9.11. FCPM vertical cross-sections and corresponding director structures of
the metastable defect structures with the total Burgers vector b = p/2 composed of
λ+1/22λ−1/2τ+1/2 disclinations; (b) shows the director structure in (a)

The CLC wedges often contain transient structures of the total Burgers
vector b = p/2 that appear as “thick” lines in standard PM observations.
These configurations are in fact very different from the equilibrium pairs
λ−1/2λ+1/2 observed in the thick part of the sample, as their core is com-
posed of more than two disclinations. For example, Fig. 9.10b shows two close
dislocations with the Burgers vectors b1 = −p/2 (pair τ+1/2λ−1/2) and b2 = p
(pair λ−1/2λ+1/2), respectively. This structure quickly (few hours) relaxes into
the equilibrium single dislocation b = p/2 (pair τ−1/2λ+1/2), similar to the
one shown in Fig. 9.9c. Another example, Fig. 9.11a,b, is also a combination
of the four disclinations (one λ+1/2, two λ−1/2s, and one τ+1/2), topologically
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Fig. 9.12. FCPM vertical cross-sections and corresponding director structures of
defects with the total Burgers vector b = 0: (a,b) two dislocations of b1 = −b2 =
p dissociated into λ−1/2, λ+1/2 pairs; (c,d) Lehmann cluster consisting of four λ
disclinations

equivalent to a dislocation b = p/2. The structure relaxes to an equilibrium
pair τ−1/2λ+1/2 preserving the value b = p/2, similar to these in Fig. 9.9b,c.
Restructuring of the defect structures in Figs. 9.10, and 9.11 usually starts at
spacers or at the cell edges and propagates along the defect bundle.

Defects of Zero Burgers Vector b = 0

In the Grandjean–Cano wedge cells, one often finds thick lines that are perpen-
dicular to the equilibrium dislocations and parallel to the thickness gradient.
FCPM clearly shows that these thick lines are either pairs of dislocations with
opposite signs of the Burgers vector, Fig. 9.12a,b, or symmetric oily streaks
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that separate parts of the very same Grandjean zones, Fig. 9.12c,d. The sim-
ilar transient defects are also frequently found in flat cells in which they can
run at any angle with respect to the rubbing direction.

The oily streaks of b = 0 are most commonly “quadrupoles” compris-
ing two λ−1/2 and two λ+1/2 disclinations, sometimes called “Lehmann clus-
ters” [31], Fig. 9.12c. Another example of an oily streak in a cell with strong
anchoring is shown in Fig. 9.13a. The FCPM texture of vertical cross-section
in Fig. 9.13a confirms the basic model of an oily streak as a pair of par-
allel disclinations of strength +1/2 with a wall defect between them [2, 3].
The cholesteric layers either interrupt at this wall, or continuously reorient
by 180◦ around the cores of the two disclinations, Fig. 9.13a. One can think
about the defects structure in Fig. 9.13a,b as being composed of dislocations
of large Burgers vectors of opposite signs. The structure in Fig. 9.13b contains
two dislocations of | b |= 2p, that are displaced with respect to each other
both in plane of the cell and across the cell. The structure is also accompanied
by two deserted layers at the confining interfaces.

The role of the surface anchoring in the determining of the structure of
metastable defects is illustrated in Fig. 9.13b. In the cells with weak anchoring,
Fig. 9.13b, the layers structures and defects in the LC bulk are often accom-
panied by the insertion/removal of layers at the interfaces. The metastable
layers structures in the strongly anchored CLCs usually have their layers par-
allel to the interfaces and all defects and layers distortions occur mainly in
the bulk of the sample, see Figs. 9.10–9.13(a). These observations are in good
agreement with the considerations of the cholesteric anchoring effect on the
layers structures presented in Sect. 9.5.

(b)(a)

y,P
10mm

z
x

Fig. 9.13. FCPM textures and schematic director field of oily streaks in cholesteric
cells of thickness d∼ 30 µm with different boundary conditions: (a) strong surface
anchoring, substrates treated by rubbed PI2555; (b) weak surface anchoring, align-
ment layers of polyisoprene
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9.7.2 Dislocation Turns

So far we studied the line defects that have an appearance of straight lines
parallel to some particular direction in the plane of CLC lamellae. Generally,
the line defects can make turns, rings, closed loops, nodes, and many other
complex configurations [19]. Here we consider the change of direction of the
dislocation core, which we denote as a “turn.”

We use a CLC cell with strong anchoring. The dislocations of Burgers
vector b = p make 90◦ turns and combine to form a defect structure of to-
tal Burgers vector b = 0, Fig. 9.14. Acquiring FCPM textures in plane of
the cell (xy-plane, Fig. 9.14a) and in the vertical cross-sections at different
places of the dislocation turns, Fig. 9.14b–e, we establish that the dislocation
cores remain nonsingular during the turns. Note that the λ-disclinations in
Fig. 9.14e make angles ≈45◦ with the polarization direction P for this tex-
ture, P ‖x, whereas in Fig. 9.14d they run along P ‖x. This explains different
appearance of the dislocation cores in FCPM cross-sections in Fig. 9.14d and
e. FCPM imaging with different orientations of P allows us to establish that
the λ-disclinations in the defect cores follow the cholesteric structure and are

(a) (b) (c)

(d)

(e) (f)

y
x

z

50mm

d

b

b

d

e c

xz xzP

P

P
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l
l-1/2
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Fig. 9.14. Dislocation turns: FCPM textures in the plane of the cell (a) and in
its vertical cross-sections (b–e); general three-dimensional prospective of the n ≡ λ-
director field and traces of the λ-disclinations (f). The vertical cross-sections (b–e)
were obtained along the corresponding lines marked in part (a)



9 Defects, Surface Anchoring, and Three-Dimensional Director Fields 235

shifted for ±p/4 along the cell normal z during the ±90◦ turns, Fig. 9.14f.
While making the complex three-dimensional traces, the b = p dislocations
preserve their nonsingular cores composed of the λ-disclinations, which fol-
low the cholesteric helical structure, Fig. 9.14f. These experimental results are
natural as one can see from the considerations given here.

The quantities Ec,τλ, Ec,λλ and thus E considered in Sect. 9.6 are elastic
energies per unit length of the defect but not the line tensions of defects. The
line tension T , defined as the ratio of the variation of elastic energy δE = T δl
to the variation in its length δl, depends on the orientation of edge dislocation
in the cholesteric matrix,

T ≈
[
E (γ) +

∂2E (γ)
∂γ2

]
γ=0

,

where γ is the angular deviation of dislocation from the y-axis (see, e.g., [4],
Chs.8,9). If the dislocation would stay in the same xy plane, then reorientation
would imply a change in the core structure. The ±90◦ turns would transform
λ−1/2λ+1/2 into τ−1/2τ+1/2, with a corresponding energy increase. Estimating
the core energy increase under the transformation λ−1/2λ+1/2 → τ−1/2τ+1/2

as π
2K ln( p

2rc
), one finds the core contribution to the line tension of λ−1/2λ+1/2

pair curved in the same xy plane as Ec,λλ + πK ln( p
2rc

) >> Ec,λλ. A curved
dislocation line thus should experience a torque tending to deviate it from
the xy plane, i.e., to avoid the singular τ−1/2τ+1/2 core. As the λ−1/2λ+1/2

dislocations preserve their core structure upon deviations from the y-axis and
shift along the z-axis, their actual line tension is close to the energy per unit
length, i.e, Tp ≈ Eff (b = p) + Ec,λλ ≈ 2K1p

3πλ1
+ C2K or Tp ≈ 3K when C2 ≈ 1.

The structure of the kinks of the b = p dislocations (studied in Sect. 9.8) can
be explained using similar considerations.

For the b = p/2 dislocation, one of the disclinations in the core re-
mains always singular, thus, the rough estimate of its line tension is Tp/2 ≈
Eff (b = p/2)+Ec,τλ ≈ K1p

3πλ1
+ π

2K ln( p
4rc

)+C1K ≈ 10K. The core energy and
the line tension Tp/2 is not expected to change much with the τ−1/2λ+1/2 →
λ−1/2τ+1/2 transformation of the core. Therefore, one can expect that dur-
ing the turns of the b = p/2 defects both transformation of core and the
upward/downward shifts of the defects could be present. This is exactly the
case observed in the experiments; see Sect. 9.7.3 where we discuss the nodes
of defects.

9.7.3 Nodes of Line Defects

In the CLC cells of wedge geometry, the transient b = 0 lines parallel to the
thickness gradient can connect either b = p/2 dislocations, Fig. 9.15a, b = p
lines, Fig. 9.15b, or one b = p/2 and one b = p line, Fig. 9.15c. The dislocations
b = p/2 and b = p deviate from the y-axis near the node. Deviation of b = p
dislocation causes its tilt and a shift to a different z-level, which preserves the
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Fig. 9.15. PM textures of the Grandjean–Cano wedge with defects b = 0 connecting
(a) b = p/2; (b) b = p; (c) one b = p/2 and one b = p dislocations

nonsingular λ−1/2λ+1/2 geometry of the core, similar to the turns described in
Sect. 9.7.2. Deviations of the b = p/2 dislocations can be associated with shifts
to a different z-level as well as transformations of the defect cores, Fig. 9.16.
Close to the node, the τ−1/2λ+1/2 → λ−1/2τ+1/2 transformation of the core
is observed, Fig. 9.16c,d.

In mechanical equilibrium, the sum of line tensions of individual disloca-
tions Tis at the dislocation node is 0, ΣiTi = 0, see, e.g., [4]. The z-shift is
small (a fraction of p) as compared to the radius of curvature of the disloca-
tion, so that the z-components of Tis can be assumed to be much smaller than
the x, y-components. In this case, mechanical equilibrium dictates T0/Tp/2 =
2 cos φp/2, T0/Tp = 2 cos φp and Tp/Tp/2 = cos φp/2/ cos φp; the angles are
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Fig. 9.16. A node of b = p/2 dislocations and a b = 0 defect: FCPM cross-section
in the plane of cell (a) and in the vertical cross-sections (b–e) that were obtained
along the corresponding lines marked in (a)

defined in Fig. 9.15. Experimentally, T0/Tp/2 ≈ 0.7 ± 0.2; T0/Tp ≈ 1.7 ± 0.2;
and Tp/Tp/2 ≈ 0.4±0.2, in agreement with the theoretical considerations pre-
sented in Sect. 9.7.2. The inequality Tp < Tp/2 is directly related to the split
core structures of the defects.

9.8 Dynamics of Defects, Glide and Climb
of Dislocations, and Their Kinks

In this section we study dynamics of defects. We use CLC wedge cells that
allow us to obtain edge dislocations well separated from each other. We first
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consider the stresses and forces due to the confinement that determine well-
defined equilibrium location of the defects and may also cause their movement
if the dislocations are displaced from these equilibrium locations. We discuss
climb and glide as two different types of dislocation movement in the lamellar
system (in planes of the lamellae and across lamellae). We then describe the
experimentally observed movement of the defects and the mechanisms of this
movement. Finally, we show that the dislocation glide strongly depends on
the type of the defect core.

9.8.1 Peach and Koehler Force

Location of dislocations in a confined sample can be analyzed in terms of
configurational (Peach–Koehler) force [4],

FE
i = εijkblσ

E
ljtk, (9.32)

where εijk is the Levi–Chivita tensor, t is the unit vector along the dislocation
line, σE is the elastic stress tensor, related to the layers displacements caused
by stresses other than that of the dislocation under consideration. In the
linear approximation, the nonvanishing stress tensor components relevant to
the two-dimensional case u = u (x, z) are

σE
zz = B

∂u

∂z
, σE

zx = −K1
∂3u

∂x3
. (9.33)

For an edge dislocation with b =b (0, 0, 1) and t = (0, 1, 0),

FE
x = −σE

zzb = Bb
∂u

∂z
, FE

y = 0, FE
z = σE

zxb = −K1b
∂3u

∂x3
. (9.34)

Depending on the forces acting on the dislocation, it may glide or climb
toward the equilibrium position.

9.8.2 Climb

Dislocations at equilibrium separate the regions of compression and dilation of
layers. To find the equilibrium position of the dislocations (at which the stress
σE

zz vanishes), one can calculate the B-term in (9.8) in a part of the wedge of
length b/ tan α, and height hN on the left side and hN + b on the right side
(N refers to the number of cholesteric layers to the left of the dislocation, i.e.,
in the thinner part of the wedge). The energy is minimized when the dislo-
cation is in the equilibrium position. The same result follows from a direct
calculation of the Peach–Koehler force, FE

x = −Bb (∂u−/∂z + ∂u+/∂z) |xd

that vanishes in the equilibrium position of dislocation. Here, ∂u−/∂z =
x tan α/hN − 1 and ∂u+/∂z = x tan α/ (hN + b) − 1; xd denotes position
of the dislocation along the x-direction. The distance between two b = p/2
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neighboring dislocations at equilibrium is

lp/2 =
2 (N + 1)2 p

(2N + 1)(2N + 3) tan α
. (9.35)

The b = p dislocations are separated by distances that are calculated in a
similar way as

lp =
(N + 2)2 p

(N + 1)(N + 3) tan α
. (9.36)

The separation is a weak function of N ; both lp and lp/2 quickly approach
b/tan α when N increases; even for N as small as 5, the relative difference
between b/tan α and the exact separating distances in (9.35) and (9.36) are
negligible, less than 2%. In the well-equilibrated samples, dislocations are
indeed separated by distances close to the specified by (9.35) and (9.36).

A dislocation slightly shifted from its equilibrium position along the thick-
ness gradient (axis x) experiences the restoring force:

FE
x (δx) ≈ −Bbδx tan α

hN

2hN + b

2 (hN + b)
. (9.37)

This force causes a dislocation to climb back to the position of equilibrium.
Note here that climb parallel to the layers is easier than glide across the
layers (see Sect. 9.8.3), as it preserves the essential geometry of the core and
is associated with twist deformations near the core. Since the dislocation climb
is easily implemented, the dislocations are found in their equilibrium positions
in the planes of lamellae soon after the sample preparation, Fig. 9.8a.

9.8.3 Glide

Consider now a case when the dislocation is shifted along the vertical z-axis
from z = 0 to some δz 
= 0. In the case of the infinitely strong anchoring, the
boundary condition is ∂u

∂x |z=±h/2= 0, and the dislocation is repelled by the
boundary toward the midplane of cell. The corresponding Peach–Koehler
force FE

z (zd) = bσE
zx |z=δz

can be calculated by placing image dislocations
of the same Burgers vector b at both sides of the slab, z = −mh + (−1)mδz

and z = mh + (−1)mδz [25], where m = 1, 2, ...,∞. Then the repelling
force can be calculated using the superposition of the layers displacements
(in a linear approximation, (9.10)) due to the dislocation and its images:
FE

z (δz) = −bK1( ∂3uzi

∂x3 ) |z=δz ;x=0 [17]. The force vanishes for δz = 0, i.e., the
equilibrium position of the dislocation is in the middle plane of the cell. When
the displacements from the middle plane are small, δz 	 h, series expansion
and summation yield a simple formula for the force (see [17] for detailed
calculations):

FE
z (δz) ≈ −0.47K1b

2

λ
3/2
1 h3/2

δz

h
(9.38)
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and stress,

σE
zx(δz) ≈

0.47K1b

λ
3/2
1 h3/2

δz

h
. (9.39)

The force FE
z (δz) is always directed to drive the dislocation to the midplane

of a strongly anchored CLC; this force quickly decreases when the thickness
of the slab increases, FE

z ∼ h−5/2.
Peach–Koehler force is FE

z (δz) ∼ b2, i.e., for the same displacement δz

the force is four times larger for the b = p dislocations than for the b = p/2
defects. In contrast, the experiments demonstrate that the b = p dislocations
are often found away from the bisector plane, while b = p/2 dislocations are
close to it. The apparent discrepancy is explained by the fact that the glide of
dislocations is hindered by periodic structure of the cholesteric, as discussed
in Sect. 9.8.5. In Sect. 9.8.4 we experimentally study the mechanisms of the
dislocation glide.

9.8.4 Experimental Observations

We never observed glide of dislocations as a whole. Instead, the change in
z-coordinate of the dislocation occurs via kinks. The kinks have completely
different structure for the case of b = p/2 and b = p dislocations.

Kinks Along b = p/2 Dislocations

The b = p/2 dislocations accumulate in the bisector plane or not farther than
p/2 from it. Initial filling of the cell might form b = p/2 dislocations in other
locations, but they relatively quickly move to the middle plane. The lines
do not glide as the whole, but via kinks, Figs. 9.17, and 9.18. There are two
types of kinks: kinks of height ±p/4, Fig. 9.17, and kinks of height ±p/2,
Fig. 9.18. The ±p/4 kinks are more frequent. In the most common scenario of
dislocation glide, one ±p/4 kink moves along the dislocation line (along the y-
axis) thus changing its z-coordinate by p/4 and transforming τ−1/2λ+1/2 core
into λ−1/2τ+1/2 core, and then a second kink propagates in the same direction
to restore the τ−1/2λ+1/2 pair that is now shifted by p/2 with respect to the
original τ−1/2λ+1/2. The core structure of ±p/4 kink is intermediate between
that of pure τ−1/2λ+1/2 and λ−1/2τ+1/2 states, Fig. 9.17. The ±p/2 kinks,
twice as high as the ±p/4 kinks, can be seen near the nodes where b = p/2
dislocations join other line defects located at a different z-level in the sample,
e.g., b = 0 dislocations, Fig. 9.16. Such a ±p/2 kink can be stable for hours,
as the glide of defects with b 
= p/2 is very difficult. Figure 18(b) reveals the
core structure of a p/2 kink in the glide plane; the core structure changes
from τ−1/2λ+1/2 into λ−1/2τ+1/2 and then back to τ−1/2λ+1/2 state along
the y-axis, Fig. 9.18c–e.

There are two distinct features of both ±p/4 and ±p/2 kinks along the
b = p/2 dislocations as compared to the kinks along b = p dislocations. First,
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Fig. 9.17. FCPM textures of a kink of height p/4 along the dislocation b = p/2;
the core τ−1/2λ+1/2 (a) transforms into the λ−1/2τ+1/2 core (d). The parts (b,c)
show the intermediate director structures

the b = p/2 kinks make a very small angle with the y-axis; their characteristic
length w measured along the y-axis is thus large, about (5− 10) p, Figs. 9.17,
and 9.18. Second, the kinks are confined to the glide plane (yz) of the parent
b = p/2 dislocation, Fig. 9.18b.

Kinks Along b = p Dislocations

The glide of λ−1/2λ+1/2 pairs with b = p, Fig. 9.9d, is much more difficult
as compared to b = p/2 dislocations; these pairs can remain in the locations
away from the bisector plane for months. The kinks along b = p dislocations
were observed only in the samples with weak surface anchoring (unrubbed
polyisoprene coating) and with an applied electric field. When a voltage pulse
of amplitude V ≥Vc and duration ∼1 s is applied, a b = p kink is generated
(at the wedge of cell or at a spacer) and propagates along the edge dislocation,
shifting its position by a distance p toward the middle plane. The b = p kinks
are relatively short, have a cusp structure, and depart from the glide plane of
the parent dislocation, Figs. 9.19, and 9.20.

Figure 9.19 presents a series of vertical FCPM slices taken in the vicinity
of the kink. The vertical optical slices 1yz−9yz are parallel to the glide plane.
The orthogonal cross-sections 10xz and 11xz are normal to the dislocation and
demonstrate that the kink shifts the dislocation by p along the z-axis. The
plane 2yz contains the λ+1/2-disclination of the split core. The slices 2yz−8yz
show that near the kink, the dislocation deviates from the y-direction toward
the thinner part of the wedge, Fig. 9.19, thus forming a cusp first noticed by
Bouligand [19]. Using the principles described in Sect. 9.2, we reconstruct the



242 I.I. Smalyukh, O.D. Lavrentovich

10 mm

b=p/2

c

z

x y

d

Glide plane

e

p/2

P

P P P

(a)

(b)

(c) (d) (e)

Fig. 9.18. FCPM textures of a kink of height p/2 along the dislocation b = p/2;
(b) vertical cross-section along the glide plane; the kink is only slightly tilted with
respect to the parent dislocation, the horizontal arrows indicate the z-levels where
the kink ends; the vertical cross-sections (c–e) are perpendicular to the glide plane
and show how the core τ−1/2λ+1/2 (c) transforms first into the λ−1/2τ+1/2 core (d)
and then back into the τ−1/2λ+1/2 core (e)

three-dimensional director field near the kink, Fig. 9.20. The λ+1/2 and λ−1/2

lines are aligned on top of each other at the center of the cusp rather than
side by side as they are far from the cusped kink, Fig. 9.20.

At the kink, the λ-disclinations deviate from the y-axis by π/2 and align
along the x-axis, each forming a cusp. The director in the core of each λ
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Fig. 9.19. FCPM textures of a kink of height p/2 along the dislocation b = p, as
seen in the vertical planes 1yz − 9yz parallel to the plane ABCD 4yz. In the right
top corner, a horizontal slice xy demonstrates a cusp associated with the kink

disclination remains parallel to the disclination axis, and thus the π/2 rotation
of the disclination also means a shift of the core by p/4 along the z-axis,
Fig. 9.20. The shift preserves the nonsingularity of director field; without tilt,
λ−1/2λ+1/2 would transform into a singular τ−1/2τ+1/2 core. At the cusp,
the λ−1/2 disclination entering the kink from one side transforms into a λ+1/2

disclination leaving the kink on the other side, Fig. 9.20. The kink at b = p
dislocation, therefore, has a complex structure with a cusp and interchange of
the λ+1/2 and λ−1/2 disclinations; its size is of the order of p along all three
coordinate axes, Figs. 9.19, and 9.20.
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(a) (b)

P/2

P

Fig. 9.20. General three-dimensional perspective of the director field around and
at the core of λ−1/2, λ+1/2 disclinations in the kink shown in Fig. 9.19: pattern of
the three-dimensional director field (a) and traces of disclinations (b)

9.8.5 Peierls–Nabarro Friction

In order to explain the features of glide and kinks described earlier, we consider
the effect of split dislocation core and periodic cholesteric structure on the
dynamics of defects. In solid state physics, the phenomenon is known as the
Peierls–Nabarro friction [32, 33]. As the dislocation glides across the crystal
lattice, the core structure changes periodically; atomic reconstructions lead
to periodic changes of the potential energy of the crystal. The applied stress
needed to overcome the energy barriers is called the Peierls–Nabarro stress.
This stress is determined by the core structure and thus cannot be given by a
universal analytical expression. The original Peierls–Nabarro model assumes
a sinusoidal force between the atomic planes on the two sides of the slip plane.

When an edge dislocation with a split core moves as a whole in z-direction,
the structure of the two disclinations changes periodically. Upon a shift by
p/4, the pair λ−1/2λ+1/2 transforms into τ−1/2τ+1/2 and the pair τ−1/2λ+1/2

transforms into λ−1/2τ+1/2, Fig. 9.21. The main contribution to the energy
changes comes from the energy of the cores; the far-field energy can be as-
sumed constant. As discussed earlier, the core energy of the λ−1/2λ+1/2

pair is relatively small, Ec,λλ = C2K ∼ K, (9.26). The transformation
λ−1/2λ+1/2 → τ−1/2τ+1/2 implies a large increase in the core energy, of the
order of Ep

PN ≈ Ec,ττ −Ec,λλ ≈ K ln( p
rc

) >> Ec,λλ. In contrast, the minimum
core energy of the τ−1/2λ+1/2 pair is already large, Ec,τλ ≈ π

2K ln( p
4rc

)+C1K,
according to (9.25), see Fig. 9.21. The alternative λ−1/2τ+1/2 core apparently
corresponds to a local minimum in the potential energy as one does observe
kinks that transform τ−1/2λ+1/2 into λ−1/2τ+1/2 and back, Fig. 9.17. The
transformation τ−1/2λ+1/2 → λ−1/2τ+1/2 implies an increase in the core
energy by E

p/2
PN ≈ π

2K ln( rc
r′
c
) + (C ′

1 − C1) K ≈ cK, where primed values



9 Defects, Surface Anchoring, and Three-Dimensional Director Fields 245

t

t

t

l

- +

l

l

l

t- +

t t
-1/2 +1/2

l l
-1/2 +1/2

l l
-1/2 +1/2

t l
-1/2 +1/2

t l
-1/2 +1/2

l l
-1/2 +1/2

t l
-1/2 +1/2

l t
-1/2 +1/2

E
ff
[b=p]+E

E
ff
[b=p/2]+E

E
ff
[b=p/2]+E

E
ff
[b=p]+E

C,

C,

C,

C,

E

E

p
PN

E
p/2

p/40 p/2 Z

PN

Fig. 9.21. Potential energies of straight dislocations b = p/2 and dislocation b = p
with the split cores as the functions of their position along the z-axis; see text for
details

correspond to the pair λ−1/2τ+1/2; the numerical constant c is most prob-
ably less than 1 (see the estimates provided later).

The excess free energy as the function of dislocation displacement δz along
the helix axis can be written phenomenologically as

∆E(δz) ≈
EPN

2

(
1 − cos

4πb

p

δz

b

)
= EPN sin2 2πδz

p
, (9.40)

similar to the phenomenological model for solid crystals [32, 33]; EPN is the
Peierls–Nabarro energy, Fig. 9.21. Note that for the sake of simplicity we
approximate the two-minima potential for the τ−1/2λ+1/2 pair with a
single-minimum cosinusoidal function, shown by a thin line in Fig. 9.21. The
corresponding stress

1
b2

∂∆E (δz/b)
∂(δz/b)

=
2πEPN

pb
sin

4πδz

p

has the amplitude σPNcore = 2πEPN
pb , or, when written for the two types of

dislocations separately,

σp
PNcore ≈

2πK ln( p
rc

)
pb

, σ
p/2
PNcore ≈

2πcK

pb
; (9.41)
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For the λ−1/2λ+1/2 pair, with b = δz = p, λ1 = 0.2p, h = 10p, p ≈ 5 µm and
rc ≈ 5 nm, one finds σE

zx/σp
PNcore ≈ 4×106; therefore, the model predicts that

λ−1/2λ+1/2 pair cannot glide as a straight line. For the τ−1/2λ+1/2 pair, with
b = δz = p/2, λ1 = 0.2p, h = 10p, one finds σE

zx/σ
p/2
PNcore ≈ 4 × 105c; unless

c is anomalously small (as estimated below, c is of the order of 10−2), the
Peierls–Nabarro barrier is too high to allow the dislocation b = p/2 to glide
as well.

The model presented here is in good agreement with the experimental
data (see Sect. 9.8.4) as we never observed glide of dislocations as a whole.
This model explains the affinity of the b = p/2 dislocations to be located in
the equilibrium positions (middle plane of cell in the strongly anchored wedge
cells) as well as the wide distribution of positions of the b = p dislocations in
the vertical cross-section of LC cell. Section 9.8.6 illustrates that the Peierls–
Nabarro energy barrier also strongly influences the structure of the dislocation
kinks.

9.8.6 Kink Structure Versus Peierls–Nabarro Energy Barrier

The kinks along the b = p/2 dislocations are usually of height p/4 or p/2
each, Figs. 9.17,9.18. The length of the kink, measured along the y-axis, is
large, w ∼ (5 − 10) p, i.e., the angle ψ between the kink and the y-axis is
small. This experimental feature indicates that the Peierls–Nabarro energy
barrier is relatively small as compared to the line tension of the dislocation
itself. Imagine a dislocation connecting two points in the bulk of the sample, A
(xA, zA) and B (xB, zB). The smaller the Peierls–Nabarro energy as compared
to the line energy of the dislocation, the smaller is ψ: in the limiting case
EPN/E → 0, the kink is infinitely long, as the dislocation simply tilts as a
whole and preserves the form of a straight line to minimize its total length√

(xB − xA)2 + (zB − zA)2. When the Peierls–Nabarro energy associated with
the kink is larger than the line tension, then ψ is large and the kink tends to
be short; in the limit EPN/E → ∞, the kink is vertical, of the length |zB−zA|,
it connects two horizontal dislocation segments of total length |xB − xA|.

For small ψ, one can directly apply the kink model developed for solid
crystals [32,33], in which ψ is determined by the (constant) line tension of the
edge dislocation Ep/2 ≈ Ec,τλ ≈ π

2K ln( p
4rc

), (9.25), and the Peierls–Nabarro

energy E
p/2
PN ≈ cK, as ψ =

√
2E

p/2
PN /Ep/2. As ψ = p/(4w) for the p/4 kink, one

obtains w ≈ p
4

√
Ep/2

2E
p/2
PN

≈ p
4

√
π
4c ln( p

4rc
). Using the estimates p ≈ 5 µm and

rc ≈ 5 nm, and the experimental result w ∼ (5 − 10) p (Figs. 9.17, and 9.18),
one obtains c ∼ (0.3–1) × 10−2. In other words, the core energy variation for
the τ−1/2λ+1/2 pair along the kink is only a small fraction of the Frank elastic
constant K, which is a reasonable conclusion as the b = p/2 dislocation can
never get rid of the singular core.
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In contrast, for a kink along the b = p dislocation, the λ−1/2λ+1/2 pair
simply twists with the local cholesteric director to preserve the nonsingular
core, Fig. 9.20; the energy density of the kink is of the order of K and is not
very different from the line tension Ep ∼ K of the dislocation itself; therefore,
the kinks are expected to be short, w ∼ p, as confirmed by the experiments,
Figs. 9.19, and 9.20.

The total elastic energy U of the kinks in cholesterics with a micron-scale
pitch is expected to be much larger than the thermal energy (kBT ≈ 4×10−21J
at room temperature), which makes their thermal nucleation unlikely; the
situation is thus different from the typical SmA materials, in which the kinks
are mostly of molecular height. For the kinks along the cholesteric b = p
dislocation, the discussion given here leads to Up ∼

(
K/p2

)
p3 ∼ pK ∼ 5 ×

10−17J . For the “long” kinks along the b = p/2 dislocation, the energy is
Ub/2 ∼ Ep/2b

2/w, i.e., Ub/2 ∼ π
2Kp2 ln( p

4rc
)/ (4w) ∼ 10−17J. The observed

kinks can be introduced during the filling of the samples and by mechanical
inhomogeneities, including the edges of the cholesteric sample.

These considerations explain the experimentally observed strong differ-
ences between the structures of kinks at b = p/2 and b = p dislocations
(compare Figs. 9.17, and 9.18 with Figs. 9.19, and 9.20).

9.9 Conclusions

Using FCPM, we nondestructively visualized the director patterns in vertical
cross-sections of cholesteric wedge and flat cells with weak and strong an-
choring at confining substrates. Optical slicing in the vertical cross-sections
allowed us to reconstruct the detailed structure of dislocations and their kinks,
as well as the disclination nodes and oily streaks.

We established that strong surface anchoring at both plates stabilizes edge
dislocations in the bulk, while weak surface anchoring attracts them to the
surfaces where they either disappear (flat samples) or transform into inserted
surface layers (wedge samples). We proposed a model of surface anchoring
potential for the cholesteric phase in the coarse-grained approximation, which
qualitatively describes the phenomenon of anchoring-mediated interaction of
an edge dislocation with a bounding surface. We systematically studied static
and dynamic properties of dislocations confined in the cells with different
geometry and boundary conditions.

The dislocations in weakly anchored samples always have Burgers vector
b = p and never b = p/2. The dislocations in strongly anchored cholesterics
can contain dislocations of Burgers vector b = p as well as b = p/2, depending
on the geometry and thickness of the CLC slab. Weak anchoring causes at-
traction, while strong anchoring causes repulsion between the edge dislocation
and the boundary.

The FCPM technique allows to establish the fine details of the dislocation
structures. The dislocation of Burgers vector b = p/2 splits into τ−1/2λ+1/2
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disclination pair, while b = p splits into a λ−1/2λ+1/2 pair. Pairs of λ−1/2 and
τ+1/2 disclinations are observed when the b = p/2 dislocation forms a kink.
The type of dislocation core strongly influences the location of the defects
across the cell and its affinity to glide.

Kinks are responsible for glide of dislocations that never glide as straight
lines. Kinks are different for b = p/2 and b = p dislocations. The kinks along
the b = p/2 dislocations change the level of dislocations by ±p/4 and ±p/2.
In the b = p/2 case, the kink is only slightly tilted with respect to the dislo-
cation; it is confined to the glide plane and is relatively long, w ∼ (5 − 10) p,
as the core energy per unit length of τ−1/2λ+1/2 pair is large as compared to
the Peierls–Nabarro barrier associated with modifications of the τ−1/2λ+1/2

core into a λ−1/2τ+1/2 core. In the b = p case, the kinks are short, w ∼ p;
both λ disclinations deviate from the glide plane, to preserve a nonsingular
director structure. The kinks along the b = p dislocation are of a typical size
p and form cusps in the direction perpendicular to the glide plane. At the
cusp, λ−1/2 and λ+1/2 disclinations interchange ends. Thermal nucleation of
kinks in cholesteric samples with p in the micron range is unlikely; kinks can
be introduced by mechanical irregularities, at the edges of sample, and also
during the filling of the sample.

In contrast to glide, climb of dislocations occurs easily. In a Grandjean–
Cano wedge, a lattice of b = p/2 dislocations is stable at h < hc (where
hc is some critical thickness). At h > hc it is replaced by a lattice of b = p
dislocations. Since climb is easily implemented, the dislocations in equilibrium
are separated by well-defined distances along the thickness gradient in the cells
of wedge geometry.

We illustrated that the layers profile of an isolated edge dislocation is
well described by the nonlinear elastic theory, much better than by its linear
approximation. The layers structures of equilibrium and metastable defects
and structures can be strongly influenced by the confinement and surface
anchoring conditions at the confining interfaces.

We employed the coarse-grained linear elastic model of cholesteric phase as
well as the coarse-grained model of cholesteric anchoring in order to describe
the experimental results. We calculated (a) the energy of layer distortions
around the dislocations; (b) corrections to the energy caused by finite thick-
ness of the sample; (c) Peach–Koehler forces acting on a dislocation shifted
from its equilibrium positions and (d) the Peierls–Nabarro friction associated
with the split core of the cholesteric dislocations; and (e) critical thickness hc.
The calculations are in good agreement with the experimental results.
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