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Preface

This volume is based on the talks and lectures given by the participants of the
3-month seminar program “Topology in Condensed Matter,” which was held
in the MPIPKS Dresden, 8 May-31 July 2002 under the scientific direction
of Professors M. Kleman, S. Novikov, and myself.

The aim of this program was to discuss recent applications of topology to
several areas in condensed matter physics and related fields like biology. The
last 30 years of the development of modern physics affirmed two important
ideas. The first is the efficient applications of topology in physics. One should
mention applications in condensed matter, such as classification of defects
and textures in liquid crystals and superfluid liquids, the role of entangibility
in polymer physics and DNA structures. The second tendency is also very
prevalent. Some important discoveries in particle physics and condensed mat-
ter led to new and unpredictable questions in pure mathematics. We refer
to the invention of monopoles and instantons in quantum field theory, qua-
sicrystals fluid membranes of high genus, fullerenes (Cgg, Coo, etc.), and so on
in condensed matter. The number of such applications in the last years has
increased substantially.

The papers presented in this volume and the next one “Topology in Bi-
ology” reflect the spectrum of topics discussed. Besides original papers, a
mini-course in topology for physicists and biologists was organized. These
lectures will be published in the second volume. By the common opinion of
participants the seminar was very successful. The organizers and participants
are grateful to the MPIPKS for the generous sponsorship of the seminar with
such an unusual spectrum of interest. Special thanks go to the director of
MPIPKS P. Fulde, the head of the visitors program S. Flach, and the secre-
taries K. Lantch, M. Lochar, and C. Poenish. We acknowledge our gratitude
to the entire staff of the Institute for their help in organizing the seminar and
for making sure it ran smoothly. We express our gratitude to Dr. Aschcroft,
who suggested publishing these lectures in Springer Verlag and assisted in
the preparation of these volumes. We hope that such programs that bring
together mathematicians, physicists, and biologists will be continued.

Moscow and Dresden
October 2005 Michael Monastyrsky



Contents

Introduction
M. Monastyrsky . ...

1 Topology in the Electron Theory of Metals
A M. KOSEUICRh. ..o oo e
1.1 Introduction ....... ...
1.2 Dynamics of Conductivity Electrons and the Fermi Surface ........
1.3 Geometry of the Fermi Surface in Crystal .......................
1.4 Quantum Magnetic Oscillations and the Shape of the Fermi Surface
1.5 Magnetic Breakdown ......... ... ... ... . i
1.6 Band Electrons in the Electric Field and Bloch Oscillations . .......
1.7 Topology of the Fermi Surfaces and Low-Temperature
Magnetoresistivity of Metals ......... ... .. ... .. . ... .. ... ...,
1.8 Berry’s Phase and the Topology of the Electron Trajectories in the
Magnetic Field .. ... ...
References . ... ...

2 Topology, Quasiperiodic Functions, and the Transport
Phenomena
A.Ya. Maltsev and S.P. Novikov . .......... ..
2.1 Introduction ... ...... ...
2.1.1 Galvanomagnetic Phenomena in Normal Metals: Classical
Results, GSMF Limit ......... .. . . i,
2.1.2 Modern Ideas: The GSMF Limit, Topology, and Dynamical
SYSEEINS .« ottt
2.1.3 Transport in 2D Electron Gas and Topology of Quasiperiodic
Functions . ... ...
2.2 The Classification of Fermi Surfaces and the “Topological Quantum
Numbers” ...



VIII Contents

2.3 Quasiperiodic Modulations of 2D Electron Gas and the Generalized
Novikov Problem . ... ... . 49
References . ... ... 58

3 The Role of Topology in Growth and Agglomeration

R, Kerner. . ..o 61
3.1 Introduction . ...... ... 61
3.2 Topology and Geometry of Polygon Tilings and Networks ......... 62
3.3 Dynamical Model of Polygon Agglomeration in Two Dimensions ... 69
3.4 Application: How the Fullerene Molecules are Formed . ............ 74
3.5 Onion Fullerenes and Carbon Tubes ............................ 79
3.6 Rigidity and Local Structure in Covalent Glasses ................. 85
References .. ... ... 90

4 Topological Defects in Carbon Nanocrystals

VIA Osipov. . ..o 93
4.1 Introduction . ........ . 93
4.2 Geometry and Topology of Carbon Nanoparticles................. 94
4.3 Electronic Properties ........ ... ... . 98
4.3.1 Theory: Basic Assumptions ................ciiiuiieaen. . 99
4.4 Spherical Molecules . ... 102
4.4.1The Model . ... ... 102
4.4.2 Extended Electron States .. .......... ... . .. . ... ... ... 104
4.4.3 Numerical Results ......... ... . ... . . . . . . . . . . ... 105
4.4.4 Zero-Energy Modes . ....... .. i 106
4.5 NaNOCONES . . . .ottt e e 107
4.5.1The Model . ...... ... . 107
4.5.2 Electron States .. ....... .. 108
4.5.3 Numerical Results ......... ... ... . . . . . . . . . . 110
4.6 Hyperboloid Geometry . ... 110
4.6.1 The Model . ... ... . 110
4.6.2 Electron States . ... ... 111
4.6.3 Numerical Results ......... ... ... ... ... . . . . . 113
4.7 Conclusions. . . ... .. 114
References .. ... .. .. . 115

5 Physics from Topology and Structures

Jo Yo 117
5.1 Introduction .. ... ... e 117
5.2 Quantum Hall Effect. .. .. ... ... .. .. .. ... . . . 118
5.3 Shapiro Steps in Josephson Junctions ........................... 122
5.4 Charge Density Waves .......... .. .. 126
5.5 Quantum Phases . ....... . .. . 129

5.6 Carbon Nanotubes . .......... ... it 132



Contents IX

5.7 ConCIUSIONS . . .\t ottt 136
References . ... ..o 136
6 Phason Dynamics in Aperiodic Crystals
T. JANMSEN . o oo 139
6.1 Introduction ... ... ... .. 139
6.1.1 Quasiperiodic Crystals ........ ... .. i 139
6.1.2 Examples of Quasiperiodic Crystals .......... ... ... ... ... 140
6.1.3 SYMIMEITY . oottt 141
6.2 Embedding in Superspace ............. .. 143
6.3 Simple Models for Incommensurate Structures ................... 145
6.3.1 Displacively Modulated Phases ............. ... .. .. .. ... 145
6.3.2 The Double-Chain Model for Incommensurate Composites . . .. 147
6.3.3 The Ground State of the DCM ............................ 147
6.4 Phonons and Phasons......... ... .. ... .. .. . . i 148
6.4.1 Phonons in Aperiodic Crystals ........ ... ... .. ... ... .... 148
6.4.2 Phason Excitations ......... .. .. . .. .. . i 151
6.4.3 The Phason Content of Phonons........................... 153
6.5 Nonlinear Phason Dynamics ............ .. .. ... .. .. .. .. .... 154
6.5.1 Modulated Phases ............. .. .. i 154
6.5.2 Incommensurate Composites ............. ... ... .. .. .. ... 155
6.6 Sliding on a Quasiperiodic Substrate .............. ... ... ... .... 160
6.6.1 A Model. ... ..o 160
6.6.2 Nonlinear Dynamics and Friction .......................... 162
6.7 COnCIUSIONS . . .ot ottt e 162
References .. ... ... 163
7 Hamiltonian Monodromy as Lattice Defect
B. Zhilinskii. .. .. oo 165
7.1 Introduction . ...... ... 165
7.2 Integrable Classical Singular Fibrations and Monodromy .......... 165
7.3 Quantum Monodromy .......... ... 167
7.4 Elementary Defects of Lattices ........... ... .. ... ... .. ... ... 168
7.4.1 Vacations and Linear Dislocations ......................... 169
7.4.2 Angular Dislocations as Elementary Monodromy Defect . ... .. 170
7.4.3 About the Sign of the Elementary Monodromy Defect ........ 171
7.4.4 Rational Cuts and Rational Line Defects ................... 172
7.5 Defects with Arbitrary Monodromy . ............ ... .. ... .. ..... 175
7.5.1 Topological Description of Unimodular Matrices ............. 175
7.5.2 Classes of Conjugated Elements and “Normal Form” of
SL(2,Z) MatriCes ... .....uuuuuuuii .. 177
7.5.3 Several Elementary Monodromy Defects .................... 177
7.5.4 Several Rational Line Defects ............................. 181

7.6 Is There Mutual Interest in Defect — Monodromy Correspondence? . 183
References . ... ..o e 185



X Contents

8 Two-Qubit and Three-Qubit Geometry and Hopf Fibrations

R MOSSCTT v vt 187
8.1 Introduction ....... ... . 187
8.2 From the S® Hypersphere to the Bloch Sphere Representation . .. .. 188
8.3 Two Qubits, Entanglement, and the S7 Hopf Fibration............ 190
8.3.1 The Two-Qubit Hilbert Space . ............. ... ... ........ 190
8.3.2 The S7 Hopf Fibration ............. ... ... .. 190
8.3.3 Generalized Bloch Sphere for the Two-Qubit Case ........... 192
8.4 Three Qubits and the S Hopf Fibration ....................... 197
8.4.1 Three Qubits. .. ... i e 197
8.4.2 The S'® Hopf Fibration ................ccoviiieiiiieini... 197
8.4.3 DiSCUSSION . .\ oottt 198
8.5 Conclusions. .. ... 200
References .. ... ... i 203

9 Defects, Surface Anchoring, and Three-Dimensional
Director Fields in the Lamellar Structure of Cholesteric
Liquid Crystals as Studied by Fluorescence Confocal
Polarizing Microscopy

LI Smalyukh and O.D. Lavrentovich ........... ... i, 205
9.1 Introduction . ...... ... . 205
9.2 Experimental Methods and Materials ........................... 207
9.2.1 Materials and Cell Preparation .............. ... ... ....... 207
9.2.2 Fluorescence Confocal Polarizing Microscopy . ............... 208
9.3 Directors and Defects in Cholesteric Liquid Crystals .............. 209
9.4 Elastic and Surface Properties of Cholesterics .................... 210
9.4.1 Elasticity of Cholesteric Liquid Crystals .................... 211
9.4.2 Surface Anchoring Energy ......... ... ... ... ... . ... 213
9.5 Dislocation—Interface Interaction and Three-Dimensional Director
Structures in the Weakly Anchored Cholesterics ......... 216
9.5.1 Anchoring-Mediated Dislocation—Interface Interaction ........ 216
9.5.2 Layers Profiles of Isolated Edge Dislocations ................ 220
9.6 The Equilibrium Defects and Structures in Strongly Anchored
Cholesteric Wedges . .. ..ottt e e 222
9.6.1 Experimental Observations. ............ .. ..., 223
9.6.2 Far-Field Energy of an Isolated Dislocation ................. 226
9.6.3 Dislocation Core Energy .. ...... .. .. .. ... i ... 227
9.6.4 Effect of Confinement on the Dislocation Energy............. 228
9.6.5 Equilibrium Lattice of Dislocation in a Cholesteric Wedge. . . . . 228
9.7 Metastable Structures, Oily Streaks, Turns and Nodes of Defects ... 230
9.7.1 Metastable Structures and Oily Streaks.................. ... 230
9.7.2 Dislocation Turns .. ........... i 234
9.7.3 Nodes of Line Defects ......... . . i i .. 235

9.8 Dynamics of Defects, Glide and Climb of Dislocations, and Their
Kinks ..o 237



Contents XI

9.8.1 Peach and Koehler Force ........... .. ... .. ... .. ... ....... 238
0.82CHMD ... 238
0.8 3 GHAE. .ot 239
9.8.4 Experimental Observations .............. ... ... ... ..., 240
9.8.5 Peierls—Nabarro Friction ............ ... ... ... ... ... ... .... 244
9.8.6 Kink Structure Versus Peierls—Nabarro Energy Barrier ....... 246
9.9 ConcClusions. . ... ... 247
References .. ... ... . 249



List of Contributors

T. Jannsen

Institute for Theoretical Physics
University of Nijmegen Toernooiveld
6525 ED Nijmegen, The Netherlands
ted@sci.kun.nl

R. Kerner

Laboratoire de Physique Théorique
des Liquides (LPTL)

Université Pierre et Marie Curie
CNRS URMR 7600 Tour 22

4-eme étage, Boite 142 4 Place
Jussieu 75005 Paris, France
textttrk@ccr.jussieu.fr

A.M. Kosevich

B.I. Verkin Institute for Low
Temperature Physics and
Engineering of National Academy of
Sciences of Ukraine,Ukraine
kosevich@ilt.kharkov.ua

O.D. Lavrentovich

Chemical Physics Interdisciplinary
Program and Liquid Crystal
Institute

Kent State University

Kent, OH 44242, USA
01d@lci.kent.edu

A.Ya. Maltsev

L.D. Landau Institute for
Theoretical Physics

ul. Kosygina 2 Moscow, Russian
Federation

maltsev@itp.ac.ru

R. Mosseri

Groupe de Physique des Solides
CNRS UMR 7588

Université Pierre et Marie Curie
Paris 6 et Denis Diderot Paris 7, 2
place Jussieu 75251 Paris cedex 05,
France

mosseri@ccr. jussieu.fr

S.P. Novikov

Institute for Physical Science and
Technology (IPST)

University of Maryland

College Park, MD 20742-2431, USA

novikov@ipst.umd.edu

V.A. Osipov

Bogoliubov Laboratory of
Theoretical Physics

Joint Institute for Nuclear Research
141980 Dubna, Moscow region,
Russian Federation
osipov@thsunl. jinr.ru



XIV List of Contributors

I.I. Smalyukh

Chemical Physics Interdisciplinary
Program and Liquid Crystal
Institute

Kent State University

Kent, OH 44242, USA
smalyukh@lci.kent.edu

J.Yi

Institute flir Theoretische Physik
Universitdt Regensburg

93040 Regensburg, Germany
juyeon.yi@physik-regensburg.de

B. Zhilinskii

Université du Littoral
UMR du CNRS 8101
59140 Dunkerque, France
zhilin@univ-littoral.fr



Introduction

M. Monastyrsky

Articles presented in this volume can be divided into several parts.

The first part consists of papers by A.M. Kosevich “Topology in the Elec-
tron Theory of Metals” and A.Ya. Maltsev and S.P. Novikov “Topology,
Quasiperiodic Functions, and the Transport Phenomena.” The authors study
problems in the electron theory of metals, including the topology of Fermi sur-
faces, magnetic oscillations, and magnetoresistivity. These problems, important
from a physical point of view, lead to new and interesting fields of investiga-
tions in two-dimensional and three-dimensional topology.

The second part consists of three papers: R. Kerner’s “The Role of Topol-
ogy in the Growth and Agglomeration,” V. Osipov’s “Topological Defects in
Carbon Nanocrystals,” and J. Yi’s “Physics from Topology and Structures.”
These authors consider from different views the role of topology in such “hot”
topics as the growth of atomic structures (like fullerenes, glasses, and so on),
defects in carbon nanotubes, and instability in one-dimensional conductors.
Most of the famous discoveries of the last few decades like quantum Hall effect,
Aharonov—Bohm'’s effect, and Josephson junctions have a common topological
background.

In the third part we included two papers: T. Jannsen’s “Phason Dynamics
in aperiodic Crystals” and B. Zhilinskii’s “Hamiltonian Monodromy as Lattice
Defect.” These authors studied the lattices of defects in different systems like
quasicrystals and crystals. T. Jannsen has studied dynamical properties of
quasicrystals. B. Zhilinskii has found interesting similarities between different
problems like defects in periodic lattices and quantum spectra in quantum
many-particle systems.

The paper by R. Mosseri “Two-Qubit and Three-Qubit Geometry and
Hopf Fibrations” belongs to a new and fast-developing field of quantum
information. It is amusing that such a keystone of topology as Hopf fibra-
tion appears in this fresh field of investigation.

The final part of the volume is the paper by I. Smalyukh and O.D. Lavren-
tovich “Defects and Three-Dimensional Director Fields in Cholesteric
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Lamellae” considers defects in cholesteric liquid crystals. The authors give a
detailed picture, including some experimental results for textures and defects
in three-dimensional patterns. This field promises very interesting applications
of three-dimensional geometry and topology.



1

Topology in the Electron Theory of Metals

A .M. Kosevich

Summary. Topological aspect of the dynamics of electrons in crystals (band elec-
trons) is discussed. The main peculiarities of such electrons are connected with the
form of their isoenergy surfaces, which is different from those of the free electrons.
It is shown that the behavior of the band electrons in metals at low temperatures
under the influence of external electric and magnetic fields depends strongly on
the topology of the Fermi surfaces (the isoenergetic surfaces for the Fermi energy).
Various examples of such a dependence are described.

1.1 Introduction

A quantitative description of the processes and physical phenomena under
investigation is impossible without using various mathematical methods. To
examine the physical processes closely, physicists apply more and more refined
mathematical techniques. However there are branches of mathematics that
help to understand not only the details of the physical phenomena but also
some general regularity connecting physical behavior in a large number of
different experiments. Topology is one such branch, which links physics as a
rather old science and topology as a newer one. This is the subject of the
present book.

Topological methods are especially useful when equations of physical fields
have a complicated mathematical structure and do not allow to arrive at
simple general solutions. A description of general topological conclusions in
the theory of fields, phase transitions, and the superfluid phase of *He and
nonlinear dynamics can be found in books [1,2]. Concerning the physics of
condensed matter, only two aspects are usually discussed: first, the topology of
the order parameter in systems subjected to the phase transition, and second,
the classification of possible forms of nonlinear objects like solitons, vortices,
dislocations, and so on.

This book has the goal of attracting attention to the topology of charac-
teristic lines and surfaces in the theory of crystals (metals first). Isoenergetic
surfaces are well-known examples of such surfaces in the dynamics of elec-
trons or other elementary excitations in the crystals. The Fermi surface is
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often described as the isoenergetic surface in k-space. The Fermi surfaces and
the electron trajectories in the magnetic field are geometrical objects whose
topological properties are discussed from various points of view. Many results
discussed in this chapter were developed by Lifshitz and his scientific school,
and this fact is reflected in the list of references.

1.2 Dynamics of Conductivity Electrons
and the Fermi Surface

According to the Drude-Sommerfeld model [4] the charge carriers in metals
represent the degenerated gas of free (noninteracting) electrons. The founda-
tion of the understanding of electron properties of metals is the band the-
ory and Fermi-Dirac statistics based on the assumption that the interaction
among conductivity electrons is weak. A justification for such a model assump-
tion is the fact that at low temperatures only a small portion of electrons with
energies close to the Fermi energy takes part in the heat motion and kinetics.

Thus we agree to consider electrons with energies close to the Fermi energy
as an ideal gas of the Fermi particles. The main dynamical variable of a free
particle is its momentum p. In the semiclassical approximation the spatial
position of an electron is determined by its coordinate @. The coordinate x
and the momentum p are a pair of canonically conjugated variables giving an
instantaneous state of a particle in the classical mechanics. In the absence of
external fields, the electron energy e depends only on p [¢ = £(p)], and this
dependence is called the dispersion relation or dispersion law. For the free
electron, ¢ = p?/(2my), where my is the electron mass, and then we discuss
the quadratic dispersion relation. The geometrical image of the dispersion
relation is associated with a surface of equal energies (isoenergetic surface).
The isoenergetic surface is a surface in the p-space, defined with the condition:

g(p) = € = const. (1.1)

This is a sphere of the radius p = +/2mg for the free electron. The Fermi
surface is an isoenergetic surface for the Fermi energy ep. This is the sphere
of the radius pr = v/2moer for the free electron gas. At T = 0 all the states
inside the Fermi surface are occupied. Therefore the volume inside the Fermi
surface and the Fermi energy are unambiguously connected with the fixed
number of electrons:

V2(er) _ 8wV pd _ 7r(2mo)3/253/2
(2wh)3  3(27h)3 3(2rh)3 F

N=2 (1.2)
where 2(eg) is the volume in the p-space inside the Fermi sphere and the
factor 2 is included to take into account two possible electron spin orientations.
As a result

N ..

3 24V 23
=3 I 1.3
Pr e (1.3)
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If one writes N/V = 1/a® using the average interelectron distance a, then
(1.3) can be replaced by the following good approximation:

pr = h(m/a). (1.4)

Note that estimation (4) does not include any parameter from the disper-
sion relation. This is a very important observation for the question whether the
calculation in (1.2), based on the concept of an ideal gas of the particles with
the quadratic dispersion relation, can be used for the electrons in a crystal
lattice. The momentum p is not a convenient dynamic variable in a periodic
structure; instead we have the quasimomentum and the energy of an elemen-
tary excitation becomes a periodic function with the period of the reciprocal
lattice. Therefore, the dispersion relation for the electron in a metal should
be complicated and an anisotropic function of the quasimomentum, and the
Fermi surface takes a shape different from the sphere. Nevertheless the char-
acteristic radius of the Fermi surface (4) is estimated correctly. As a matter of
fact, in calculating (1.2) we are interested only in the number of states occu-
pied by the electrons and determined by the number of degrees of the freedom
of all the electrons. When we distribute these states all over the phase space
“cells,” we fill in some phase space, the volume invariant with respect to the
choice of the description of one-particle states.

We put aside the question of what determines the shape of the Fermi sur-
face for the electrons in the crystal and instead discuss possible manifestations
of the shape of isoenergetic surfaces in the electron dynamics. The electron
motion in a magnetic field turns out to be most sensitive to the shape men-
tioned.

Consider the motion of an electron with the dispersion relation € = ¢(p)
in a homogeneous magnetic field in a homogeneous magnetic field B. A pair
of the electron dynamics has the form

dipieB dx e

If the magnetic field B is directed along the z-axis, the following set of
equations of motion is arrived at

dp, eB dpy eB dp.
P — s —_— —— s = 0. ]..6
a - e dt ¢’ dt (1.6)
Equation (1.6) possesses two integrals of motion,
g(p) = const. p, = const. (1.7)

Equation (1.7) determines the electron trajectory in the p-space. It is a curve
of the cut of the surface (p) = const. by the plane p, = const. (Fig.1.1). As
follows from (1.6) the projection of the electron trajectory in the ax-space is
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AP,

Fig. 1.1. The curve of the cut of the surface £(p)=constant by the plane p, =
constant

similar to the trajectory in (1.7). To see the latter, we rewrite (1.7) as:

A, _eBdy  dp, __eBdr 18
dt ¢ dt’ dt e dt’ ’

Actually the projection of the trajectory in the x-space onto the plane
2Oy is similar to the trajectory in the p-space, but turned 90° with respect
to the coordinate axes Ox and Oy (Fig. 1.2). The coordinate directions of the
velocity vector are shown in Fig. 1.2 as well.

Analysis of (1.6) and Fig. 1.2 leads us to the conclusion that the electron
accomplishes a cyclic motion in the magnetic field rotating along a closed

p.V
y
b TN
1
%4
(a) (b)

Fig. 1.2. The projection of the trajectory in the p-space (a) and x-space (b)
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trajectory (it is the motion along the cycle for the free electron). It is easy
to calculate the frequency of such a motion. Using (1.6) one can obtain the
velocity of the electron along the trajectory in the p-space

dp eB
_ = 1.9
dt e L (1.9)

where v, is the projection of the electron velocity onto the plane perpen-
dicular to the magnetic field B. Equation (9) creates the following chain of
equalities

cdn e [dn _ . 4im

dt = At (1.10)

eBuv,’ " eBJ v’ T eBJ v’
where the integrals are calculated along the electron trajectory, At is the
period of cyclic electron motion, and the last integral is calculated along the
total closed trajectory. To know At, one can determine the cyclic frequency of
the electron as w, = 2w /At. This is the frequency of the cyclotron resonance
in the magnetic field for the electron in a crystal. However such a frequency
is usually presented in the form w. = eB/mc, where m is the electron mass.
Therefore the electron cyclotron mass in the crystal depends on its trajectory
and is a function of the electron state, but not a constant quantity. Let us
find the geometric meaning of this electron characteristic. Let us calculate
the change of the area on the plane p, = const. surrounded with the electron
trajectory when the electron energy increases by Oc:

dS = j{SpLdpl = %%86 (1.11)

v

The integral is calculated along the closed trajectory. Comparing At in
(1.10) with (1.11) one obtains

c 08

At = — — 1.12

eB o¢’ ( )

where the function S = S(e,p.) is the above-mentioned area on the plane

p. = const. Thus the effective cyclotron mass of the electron is given by

expression [3]
1 08

fr— pr— —_— 1.13

me = me(e,p2) 5 3 (1.13)

Equation (13) for the electrons in a metal changes to € = ep on the Fermi

surface. This means that the area of the cross-section of the Fermi surface

with the plane p, = const. has a direct physical sense and its derivative (13)
is the quantity measured experimentally.
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1.3 Geometry of the Fermi Surface in Crystal

The fact that the shape of an isoenergetic surface for the electron in met-
als differs from the spherical shape was understood simultaneous with the
formulation of the principal statements of the band theory. In the mono-
graph by Sommerfeld and Bethe [4] published in 1933, it has already been
shown that the Fermi surface can pass through the entire reciprocal lattice
intersecting the boundaries of the first Brillouin zone. Though there exists a
great number of shapes of the Fermi surface (some of them are described in
book [3]), one could not predict a shape of the Fermi surface in the metal
considered. Harrison [5] was the first to propose a simple explanation of two
aspects: (1) the appearance of the expected shape of the Fermi surface, and
(2) the possibility of the coexistence of several Fermi surfaces in one metal
(to be precise, several cavities or sheets of one not singly connected Fermi
surface).

To illustrate Harrison’s method, we consider a simple cubic lattice with
the lattice constant a and use the cross-section of the reciprocal lattice by the
plane p, = 0. The center of the elementary cell coincides usually with the point
p = 0 (the main square in Fig. 1.3a and the square in Fig. 1.3b). However it
can be located in another point (the dashed square in Fig. 1.3¢). Start from the
free-electron model when the Fermi surface is a sphere of the radius (4). The
Fermi momentum has a magnitude of the order of the size of the Brillouin zone
if the number of the free electrons equals the number of atoms. Draw a circle
of such a radius around the point p = 0. This is the cross-section of the Fermi
surface. Taking into account that the electron energy is a periodic function in
the p-space, one ought to draw such circles around each of translation vectors
of the reciprocal lattice. The Fermi surfaces intersect the boundaries of the
Brillouin zones and each other. Every point of the intersection of the circles in
Fig.1.3a is a point of a degeneration. It is understood that the degeneration
points appeared by the force of the primitive model used for consideration,
and the circle form of the isoenergetic surfaces should be considered as a result
of the zero approximation. Taking into account any physical circumstance in
the next approximation, one removes the degeneration, and the intercrosses
of the Fermi surfaces disappear. Instead several closed lines on the plane of
the reciprocal lattice appear. It is convenient to situate a part of them in
the elementary cells either of the first or the second type. Usually one refers
them to as different (the first, second, third, and so on) Brillouin zones and
considers them as various cavities or sheets of one Fermi surface.

A set of the Fermi surfaces in a strongly anisotropic crystal can differ from
that drawn in Fig. 1.3a. In such a case new types of lines can appear; these are
the so-called open Fermi surfaces (Fig.1.4). Thus there are two topologically
different types of the Fermi surfaces, namely, closed and open surfaces.

If the plane in Fig.1.4 is perpendicular to the external magnetic field,
the two types of sections of the Fermi surfaces are associated with the two
types of electron trajectories in the magnetic field: closed (typical for the free
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Fig. 1.3. The cross-sections of the Fermi surfaces

electron) and open (passing through the whole p-space). The latter possibility
means that the electron makes an infinite motion in the usual x-space and
can go on to infinity. It is clear that such a situation is possible only for the
band electron in a crystal and manifests peculiarities of the electron dynamics
caused by the topology of the Fermi surface.

Naturally only closed cross-sections can appear on the closed Fermi sur-
face and therefore the electrons always move along cyclic trajectories in the

2nh

Fig. 1.4. Open Fermi surface
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2nh I
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Fig. 1.5. Different cross-sections for the Fermi surface in the form of a corrugated
cylinder

magnetic field. The open Fermi surface can create both closed and open
sections. Different cross-sections are shown in Fig. 1.5 for the Fermi surface
in the form of a corrugated cylinder. The direction of the “openness” of the
cylinder is chosen along the axis p,, and the magnetic field is directed along the
axis z. Lines of the two types determine the trajectories of the electron with
different magnitudes of p,. The trajectory lines of the first type are the open
trajectories corresponding to the infinite motion of the electron. The lines of
type 2 are the closed trajectories. Two types of the trajectories are separated
with the open trajectory (separatrice) passing through a saddle point on the
Fermi surface. The separatrice is characterized by the self-intersection points
on the boundaries of the Brillouin zones. These points are singular because
the group velocity in them changes into 0. The electron ought to stop at such a
point, but it approaches the saddle point only asymptotically (at ¢ — o0). The
stop at the saddle point means that the electron mass turns into infinity. Thus
the trajectory passing through the saddle point possesses a singular mass.

It has been shown earlier that the effective electron mass in the magnetic
field is determined by (1.13) where S is the area of the cross-section of an
isoenergetic surface considered as a function of €. If one shifts the Fermi energy
er to the energy ¢ = ep + Ae exceeding the first on the magnitude Aeg, the
singular trajectory is replaced by a closed trajectory near it. The trajectories
of different types near the saddle point are shown in Fig. 1.6a. The peculiarity
of the trajectory of the second type is entirely connected with the existence
of the saddle point near it, and therefore such a peculiarity is determined by
the energy dependence of the part of the area AS lying in the vicinity of the
saddle point. In the main approximation, the part of the trajectory under
discussion can be considered as an hyperbola:

P2 Py

———=A 1.14
2m1 2m2 = ( )

where the values mq, ms > 0 characterize the curvature of the Fermi surface.
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Py

(a) (b)

Fig. 1.6. The different trajectories near the saddle point (a); the vicinity with the
hyperbola asymptotes (b)

It is clear that the trajectory passing through the saddle point can be
replaced in this vicinity with the hyperbola asymptotes. The magnitude AS
is calculated as the area bounded with the hyperbola and the straight line
p. = @ = const., where @ is chosen on the small (but finite) distance from
the saddle point (see Fig. 1.6b). Then

Q 2 2 z(Aeg)
AS = 2m2/ ( Po  _ AE) dp, = 4\/m1m2A5/ Va2 —1dz,
1

Po le
(1.15)
where pg = v/2m1Ace and z(Ae) = Q/+/2mqAc. In the main approximation,
the cyclotron mass of the electron on the trajectory close to the singular one

is equal to
_ (m1m2)1/2 1 £(Q)
= n s
T Ae

where £(Q) = Q?/(2m;). Thus when the electron approaches the saddle point
its effective mass grows logarithmically. Hence the electron cyclotron period
grows to infinity, and the electron motion along the singular trajectory be-
comes similar to the motion along an open trajectory in the sense that the
electron spends infinite time passing the trajectory.

(1.16)

1.4 Quantum Magnetic Oscillations and the Shape
of the Fermi Surface

The problem of the shape of the Fermi surface concerns first of all with the
de Haas—van Alphen effect. The de Haas—van Alphen effect is one of the most
interesting macroscopic quantum phenomena. Its nature consists in an oscil-
latory dependence of the magnetization of a metal in the magnetic field. The
effect was discovered in 1930 by Leiden physicists after whom it has been
called so. Detailed description of the history and investigations of the effect
over several decades, and the estimation of the role of the effect in the exper-
imental study of the electron spectrum of metals can be found in Shoenberg’s
monograph [6]. The most important point for us is the fact that this is a purely



12 A.M. Kosevich

quantum phenomenon caused by the quantization of the electron motion in
the magnetic field.

Let us perform a semiclassical quantization of the electron motion along
the closed trajectory. It is known that the magnetic flux @ through the area
of the closed electron orbit is quantized as:

2mch

b = ¢on; n=20,1,2, .., oo — (1.17)

where ¢ is the magnetic flux quant.

If A is the area of the projection of the closed electron orbit on the plane
20y perpendicular to the magnetic field, one can write ® = BA. According
to (1.8) the area A is proportional to the area of the cross-section of the
isoenergetic surface (p) = € = const. by the plane p, = const.:

A= (i)2 S(e,p2)-

eB
Then the following rule of the quantization appears
2nheH
SEp) = T (n+y), =012, (118)
c

where 7 is a parameter of the order of magnitude of the unit. Onsager [7] was
the first to obtain the quantization rule in such a form. Formula (18) gives a
dependence of the electron energy on the quantum quantities n and p,.

Special consideration is needed in the case of quantization of the electron
motion along the trajectories close to the separatrice in Fig. 1.4, which is
actually close to the trajectory with a cross-section. If the magnetic field is
slightly inclined to the z-axis in Fig. 1.4, the separatrice can transform into
a closed line separating small closed trajectories of different sizes. Similar
cross-sections of the Fermi surface are shown as diagonal lines in Fig. 1.7.
The semiclassical quantization in such a case was studied by Azbel [8]. If
trajectories 1 and 2 in Fig. 1.7 are close to each other, then the effective value
v depends strongly on the number n, and near the points of self-intersection
the distance between the energy levels oscillates in the magnetic field.

Using (1.18), Lifshitz and Kosevich [9] calculated magnetization at low
temperatures of the electron gas with arbitrary dispersion relation e(p). They
obtained the oscillatory part of the magnetization of the metal and their result
can be presented schematically in the form:

o ChSm(eF) ™G Me
AMyse = Mo(B,T) cos (eB — ) cos 2 ) (1.19)

where My is the oscillation amplitude depending smoothly on B, S, (ef)
is the area of the extremal cross-section of the Fermi surface by the plane
p, = const., m, is the effective electron mass in the metal, mg is the mass of
the free electron, and ¢ is the gyromagnetic relation determining the electron
spin magneton (g =2 for free electrons).
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Fig. 1.7. Cross-section of the Fermi surface

The main characteristic of the de Haas—van Alphen effect is the period of
the oscillations. The period in the reciprocal magnetic field is equal to

1\ 2mlel|h

This period is independent of the magnetic field and temperature, and in
the direct magnetic field it equals

2mweh
cSm,

A(B) = B? (1.21)

and is proportional to the squared magnetic field (Fig.1.8).

H, kG

Fig. 1.8. The main characteristics of the de Haas—van Alphen effect, see (1.21)
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Py

Fig. 1.9. The convex and nonconvex cross-sections of the Fermi surface

If the Fermi surface is convex there is only one extremal (maximal) cross-
section, while there are several extremal cross-sections if it is nonconvex
(Fig.1.9). In the latter case the diagram of the dependence of My on the
magnetic field has the form of a sum of several oscillatory curves.

A number of cross-sections appear when the Fermi surface has the form of
a corrugated cylinder. If the magnetic field B is directed along the cylinder
axis, there are two types of extremal cross-sections (maximal and minimal).
If the vector B forms an angle 6 with respect to the direction of the cylinder
axis (Fig. 1.10), there is a set of cross-sections depending continuously on the
angle 6. It is easy to understand that the areas of the extremal cross-sections
increase proportional to tané (0 < 6 < 7/2), and this leads to the inversion
dependence of the oscillation periods (20) on tanf. At § = /2 the cross-
section passing through the entire p-space appears and its contour is an open
trajectory of type 1 in Fig. 1.5. Then the corresponding quantum oscillations
disappear.

The temperature dependence of the oscillation amplitude has a simple
form at not very low temperatures 7' > hw. when

22T
My ~ exp (— ;iTw ) , (1.22)

where w. = eB/(mcc) is the cyclotron frequency. As a result, the three fac-
tors in (1.19) give a possibility of measuring experimentally the three most
important characteristics of the electron system: (a) the oscillation peri-
ods allow us to obtain the extremal cross-sections of the Fermi surface at
different directions of the magnetic field, (b) the temperature dependence
(22) gives a possibility to determine the effective electron masses on the ex-
tremal orbits, and last (c) the third factor in (1.19) allows us to estimate the
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Fig. 1.10. The vector B forms an angle 6 with respect to the direction of the
cylinder axis

gyromagnetic relation for the electron in a metal. All the mentioned possi-
bilities have been used with great success in many experiments, and formula
(19) has been highly estimated by investigators of the electron properties
of metals. Shoenberg called (1.19) the Lifshitz—Kosevich formula (LK for-
mula), and this can be found in many papers and reviews, including the
book [10].

From the geometrical point of view, point (a) is most interesting since it
allows us to formulate a rigorous problem of reconstruction of the Fermi sur-
face from experimental data for the oscillation periods measured for various
directions of the magnetic field. Such a question was formulated as a math-
ematical inversion problem and was solved by Lifshitz and Pogorelov [11]. Tt
was proved that knowledge of all central cross-sections of the convex Fermi
surface defines the shape of the Fermi surface uniquely.

Besides the de Haas—van Alphen effect, there are other physical phenom-
ena for the quantum magnetic oscillations and the Shubnikov—de Haas effect
stands first among them. The Shubnikov-de Haas effect is the oscillatory
dependence of the magnetoresistance of a metal in the magnetic field. The
physical nature of the Shubnikov—de Haas oscillations is the same as in the case
of de Haas—van Alphen effect, and corresponding measurements give the same
periods of the oscillations [12]. It turns out that the magnetoresistance oscil-
lations can be observed in organic conductors as well.
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1.5 Magnetic Breakdown

When discussing the periods of the quantum magnetic oscillations in the case
of the complicated Fermi surface, we assumed the electron motion along any
trajectory independent of the fact that the other trajectories could lie close
to the one under consideration. However, if the Fermi surface is nonconvex,
there is always a whole domain of magnetic field orientations for which the
semiclassical trajectories turn out to be close to each other. Then the quantum
tunneling between the close trajectories becomes possible. The phenomenon
caused by such a tunneling in the strong magnetic field is called magnetic
breakdown [13].

The semiclassical nature of the magnetic breakdown can be easily ex-
plained using Figs. 1.4 and 1.11. Let the electron move along the small closed
orbit of type 2 in Fig. 1.4 near the open orbit of type 1 at times. If the mag-
netic field exceeds some limiting magnitude By, the electron first “jumps”
onto trajectory 1 and then on to the second orbit, and as a result moves along
the closed trajectory of a large radius (both the small and the large closed
trajectories are shown in Fig. 1.11).

It is possible to give another interpretation of this phenomenon. The elec-
tron that moves initially along the open trajectory of type 1 in Fig. 1.4 begins
to move along the closed trajectory under the influence of a strong magnetic
field. Therefore, the strong magnetic field can change both the sizes and the
topology of the electron trajectories.

It is clear that the magnetic breakdown is a physical phenomenon devi-
ating from the framework of the classical dynamics of the particle with a
definite trajectory. Transitions among the various trajectories are character-
ized by some quantum probability. And the magnetic breakdown is a rather
complicated quantum process, which can make a reconstruction of the elec-
tron spectrum of a metal. Detailed description of the magnetic breakdown can
be found in book [3] and review [14].

Fig. 1.11. The magnetic breakdown of the Fermi surface
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Concerning oscillatory effects, the magnetic breakdown manifests itself
either in jumps of the periods of oscillations, when the magnetic field grows
up to the limiting breakdown magnitude and the electrons change the close
orbits jumping from one to another, or in a disappearance of the oscillations,
when the latter orbit has such a great area that the periods and amplitudes
become too small for the experimental observation.

1.6 Band Electrons in the Electric Field
and Bloch Oscillations

A number of shapes of the Fermi surfaces are caused by the periodic depen-
dence of the electron energy on the momentum. Such a dependence leads to
some peculiarities of the electron dynamics in E.

In semiclassical approximation, the electron dynamics is governed by the
equation:

dp
X _¢E 1.23
il (1.23)
with the usual definition of the velocity
Oe
= — 1.24
v (124

where € = ¢(p) = e(p+ G), and G is the vector of the reciprocal lattice in
the p-space.

Assume that the vector E is directed along the z-axis and restrict ourselves
to the simplest relation & = &(p,):

. Gy agqo APy
g =¢psSIM——, V= — —_.

N 5 08— (1.25)

Then (1.23) gives p, = eEt and determines the periodic dependence of the
electron velocity on time [15]:

Vg = vo(t) cos(wpt). (1.26)

aggo
h
The frequency wp = eFEa/h is called Bloch frequency.

At reasonable values of the electric field, the frequency of the Bloch os-
cillations of the electron in a metal is many orders of magnitude lower than
the collision frequency of the electron even in extremely pure metals (in other
words, the oscillation period is much greater than the relaxation time 7 in the
metal, and the amplitude of the Bloch oscillations is much greater than the
electron mean free path). Therefore, in calculating the resistivity of conductors
and in other similar cases, the periodic character of the electron motion need
not be taken into account, and the electron motion over short path lengths
can be assumed translational. It was assumed for a long time that the Bloch
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oscillations are an extremely curious physical phenomenon but are of interest
only from a theoretical standpoint.

The situation was fundamentally altered by the development of technology
for fabricating extremely perfect semiconductor superlattices with structural
periods much greater than the lattice constant. In such structures, the pe-
riod of the reciprocal lattice is greatly diminished, and the electron energy
spectrum separates into narrow sub-bands, with the result that the Bloch
oscillations corresponding to them have rather high frequencies (the obvious
condition w7 > 1 becomes attainable); thus it becomes realistic to produce
such oscillations and observe them experimentally.

Esaki and Tsu [16] were the first who attracted the attention of scien-
tists to the fact that the periodic dependence of the electron energy on the
quasimomentum could be observed in the semiconductor superlattice. Their
idea can be easily formulated in the 7-approximation. If the relaxation is not
taken into consideration, the dependence of the electron velocity on time is
determined with (1.26) where a is the period of the superlattice now. If the
relaxation is taken into account, the real change of the electron velocity can
be written as

dv, = exp(—t/7)dvg. (1.27)
It follows from (1.27) that

¢ d’Uo

v (t) = [ exp(—t/7)dvo(t) = ; Eexp(—t’/ﬂdt’. (1.28)

Thus

t

—— | cos(wpz)exp(—2'/T)d7,
w0 )

(1.29)

where m(0)”" = 9%¢/0p2 is the reciprocal effective mass of the electron at

For a large time (¢ > 7), one can put ¢ = oo at the upper limit of the

integral in (1.29). Then the well-known Esaki and Tsu formula appears for

the steady average velocity of the electron in the semiconductor superlattice
as:

£ 9%
v (t) = eE/O Tl exp(—t'/7)dt’ =

< > ( ) WBT ago
V) = vg(0) = ————=——.

* 14+ (wp7)? h
In the weak fields (under the condition wpT < 1), the standard linear depen-
dence of the average electron velocity on the electric field appears as

(v) =

(1.30)

€T

0] (1.31)

Equation (1.31) explains the conductivity in the weak electric fields. In the
strong electric fields (wpT > 1), which are possible in semiconductor mate-
rials, (1.30) gives the dependence of the average velocity on F, which is not
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possible in metals: the average electron velocity decreases when the electric

field increases: e 1
0
(v) = o1 (1.32)
Equation (32) leads to a negative differential electroconductivity of the semi-
conductor superlattice.
The electrodynamics of semiconductor superlattices turns out now into an
independent part of physics [17] and its general contents concern the topic of

our discussion only slightly.

1.7 Topology of the Fermi Surfaces
and Low-Temperature Magnetoresistivity of Metals

The quantum oscillations in metals are undoubtedly a very good demonstra-
tion of the quantum nature of magnetism, and their various manifestations
confirm the complicated forms of the Fermi surfaces. However, only the closed
electron trajectories contribute to the measured quantum oscillations. Dynam-
ics of electrons moving along the open trajectories are studied by investigation
of other phenomena. Among them, low-temperature galvano-magnetic phe-
nomena occupy a notable place. The galvano-magnetic phenomena are very
sensitive to the form of the electron energy spectrum and have been used
as a simple and reliable spectroscopic method for the reconstruction of the
topology of the Fermi surfaces. In recent years, the topological aspect of the
galvano-magnetic phenomena has been subjected to thorough mathematical
examination [18].

However, we are interested not in the details of the mathematical analy-
sis but in the physical results connecting experimental observations with the
geometry of the Fermi surfaces. The excellent review [19] exhausts the topic
of the present section, and hence only general qualitative remarks are made
here. Tt is only worthwhile to note that both the review [19] and the book [3]
give a total account of the theory of the low-temperature galvano-magnetic
properties of metals in strong magnetic fields when the topological peculiari-
ties of the Fermi surfaces are displayed fully. This theory has been called LAK
theory after the first letters of the names of its creators, Lifshitz, Azbel, and
Kaganov.

If the magnetic field is strong enough, the cyclotron frequency is so large
that at low temperatures (when the mean free path is rather long) the electron
passes many times around any closed trajectory inside the Brillouin zone and,
consequently, can intersect many elementary cells in the p-space moving along
the open trajectory. The latter explains the possibility of the manifestation of
open trajectories in macroscopic properties of metals.

The electric field in a metal is very weak, and the dynamics of electrons
is determined in the main approximation by the shape of its trajectory in the
magnetic field. The electric field can be taken into account as a small pertur-
bation. A detailed description of different situations and various possibilities
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associated with the electron dynamics on the open Fermi surfaces is given in
paper [20] and analyzed later in Abrikosov’s monograph [22].

Let us examine the galvano-magnetic phenomena in a metal with the Fermi
surface in the form of a corrugated cylinder with the direction of “openness”
along the axis p, in the magnetic field B=B(cos,0,sinf) (see Fig.1.10 or
Fig. 1.12). A model dispersion relation corresponding to such a Fermi surface
has the form:
pe+p?

2m

b
£(p) = Asin? % +

(1.33)
supposing eg > A. The direction of the magnetic field is close to the z-axis.

The cross-sections of a weakly corrugated cylinder by the planes pg =
pB/B = const. are shown in Fig. 1.12. When 6 is other than 1t/2 all the cross-
sections are closed. As 0 approaches /2 the closed orbits become strongly
elongated orbits and their lengths can exceed the period of the reciprocal
lattice 27/b. The period of motion along such an orbit increases infinitely

Fig. 1.12. Fermi surface in the form of a corrugated cylinder
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Fig. 1.13. Dependence of the magnetoresistivity on the orientation of magnetic
field

when 6 — 7/2, and if § = 7/2 the strongly elongated orbit “breaks” into two
open orbits.

If the length of a long closed trajectory in the x-space exceeds the mean
free pass of the electron, such a trajectory contributes to kinetics as an open
one. It is easy to estimate a limiting angle § when the value 27hic/ae B be-
comes equal to the mean free pass. Inside the interval of angles estimated
by such a way, the elongated orbits belong to electrons that cannot realize
their cyclotron motion. These electrons have (v,) = 0 and (v,) # 0. Thus a
narrow maximum has to be expected for the dependence of the magnetore-
sistivity on the value and the orientation of the strong magnetic field, when
B is perpendicular to the axis of the cylinder (Fig.1.13). If the Fermi sur-
face is more complicated than the corrugated cylinder (for example, similar to
those shown in Fig. 1.14), then orientations of topological peculiarities can be
presented using the stereographic projection of the magnetic field directions
for which open trajectories are possible (Fig.1.15). The center of the circle
corresponds to the normal in Fig.1.14, while the boundary of the circle to
6 = 7/2. The hatched regions show where open trajectories can exist. The
straight lines from the center to the boundary and the circle § = 7/2 corre-
spond to the open trajectories. The dashed lines close to the boundary circle
separate regions where closed orbits are strongly elongated ones.
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Fig. 1.14. Fermi surface

Additional information on details of the Fermi surface and effective masses
of the electrons can be collected by analyzing the Azbel-Kaner cyclotron
resonance [23, 24]. However, this effect is connected with high-frequency
properties of metals and can be described in a separate publication. Despite
understanding the great importance of the Azbel-Kaner effect in the electron
theory of metals, only a mention of the theory is made here.

Fig. 1.15. The stereographic projection of the magnetic field directions
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1.8 Berry’s Phase and the Topology of the Electron
Trajectories in the Magnetic Field

In the final part of the discussion of problems connected with the topology of
electron orbits in the magnetic field, let us discuss the pure quantum effect
of a geometrical Berry’s phase [25] the question concerns the parameter ~ in
(1.18) influencing the phase of the oscillatory part of the magnetization (see
(1.19)). A calculation of the parameter v by the WKB method was made in
papers [26] for the first time. Later it was performed strictly in [27] for the
one-band electron spectrum. Paper [27] confirmed a specific contribution into
~ of the electron trajectories with a self-intersection (like the separatrice in
Fig. 1.5) described earlier by Azbel [8].

We describe in a few lines the physical circumstances that need to be
taken into account when discussing Berry’s phase. It is known that while a
local value of a phase of the quantum wave function is not measured, only its
gradients and a time derivative can be measured. Write the phase of the wave
function in the form

Q/J(a:’ t) = |¢| exp(i<p(:v, t))

Suppose that i («x,t) is a single-valued function of coordinates and time.
Though the phase (x,t) is not to be single-valued, its change along any
closed circuit must be multiples of 2. In the case of the electron motion in
the magnetic field directed along the z-axis, the dependence of the phase on
2y is important:

Pz — et

p="—— wo(z,y),

where p, = const., € = const. The condition mentioned here has the form:

d
Mg =21n, n=0,1,2,.., (a=1,2), (1.34)

0%
where the integration is performed along any closed circuit on the plane (z, y).
The phase of the semiclassical wave function is determined with a classical

action S for the system under consideration ¢ = (1/k)S. The action in the
magnetic field acquires the addition

8, = g/ Adx, (1.35)
¢ Jo

where A is the vector-potential. Consequently a closed electron trajectory I’
has to satisfy condition (34):

%]{FAdl — 9,  n=0,1,2,.. (1.36)
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Equation (36) is equivalent to the semiclassical quantization of the mag-
netic flux (17). This relation is the physical basis of the Aharonov-Bohm ef-
fect [17] and explains the quantization of electron orbits in a singular field of
the vector-potential [29]. The latter phenomenon has the following realization.
An infinitely thin straight-line solenoid creates the magnetic flux localized
along the z-axis and the vector-potential A in the surroundings. The vector-
potential A has only one angle component Ay = @¢/(27r), where r? = 2% +y2.
Such a vector-potential does not create any magnetic field in the surround-
ings (rot A = 0,7 # 0). However the electron forced to move along the closed
trajectory “feels” the existence of the magnetic flux if the trajectory encloses
the z-axis.

This is a nonlocal topological effect. Any physical field of the magnetic
origin does not exist at all points r # 0 and does not act on the electron. Only
entire closed trajectory realizes the effect. A singularity of the trajectory I’
consists in the fact that the forced motion of the electron occurs on the two
connected planes (x,y); its single connection is broken by the existence of
the localized magnetic flux “perforating” the plane in the point x = y = 0.
The Aharonov—Bohm effect was the first physical realization of a phenomenon
associated with manifestation of Berry’s phase.

Berry [25] made a very important observation that has led to the discovery
with great consequences. Let the Hamiltonian and the action of the system
depend on some set of continuous parameters, which can be called the space
of parameters called the space of parameters R. Then the wave function of
parameters as well. If one speaks of the electron in a crystal, the Brillouin zone
in the k-space can serve as the space of parameters [30]. When the parameters
R are slowly altered with increasing time and are returned to their original
values at the moment ¢t = T, the excursion of the system between times ¢t = 0
and t = T can be pictured as transport around a closed path in parameter
space, with Hamiltonian H(R(t)) and such that R(T) = R(0). Then the
Hamiltonian is returned to its initial form and the system is returned to its
initial state, apart from the phase of the wave function. The phase acquires
the addition 83 not being connected with the classical action. The addition
80 was called geometrical phase; that is just Berry’s phase.

The total phase change around any closed circuit in the space of parameters
obeys a condition of the type of (1.34)

1
dp = ﬁ550+5@: 27, n=20,1,2,.. (1.37)

It is not difficult to obtain a formal expression for Berry’s phase. Let
H(R(t)) be Hamiltonian and |¢(t)) be the wave function or the vector of
state of the system (we follow the original paper [25] and use the notations of
Dirac). The evolution of the function |i(t)) is described by the Schroedinger
equation:

in |50 ) = iwte) o). (1.33)
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At any moment, the natural basis consists of the eigenstates [n(R)) (assumed
discrete and not degenerated) of H for R, which satisfy

En(R)In(R)) = H(R)[n(R)) (1.39)

with energies E, (R).

Adiabatically, a system prepared in one such state |n(R(0))) will evolve
with H and so will be in the state [n(R(t))) at t. Thus |¢(¢)) can be written
as [31]:

o(t) =exp (5 [ B (RO ) espli@)nR). (140)

where the first exponential is the familiar dynamical phase factor. The last
exponential is single-valued in a parameter domain that includes the circuit
in the parameter space. The object of attention should be the second expo-
nential. The crucial point will be that its phase 8,,(t) is nonintegrable, cannot
be written as a function of R, and in particular is not single-valued under
continuation around a circuit, i.e., 5, (t) # 8,(0).

Direct substitution of (1.40) into (1.38) leads to the equation for 3, (t):

dﬁgt(t) i <n(R(t)) a”(g(t))> . (1.41)

Calculate the total addition (3, around a closed circuit C"
on(R
Bu(T) = 17{ <n(R) ‘ n( )> dR. (1.42)
C oR

Since the functions |n) are normalized ((n|n) = 1), the value (n|3%) is
imaginary, which guarantees that 3, (t) is real. If 5,,(0) = 0 then (1.42) defines
the geometrical phase, i.e., Berry’s phase.

Consider the geometrical phase of the band electron moving along some
closed circuit I" in the p-space. The Brillouin zone in this case plays the role
of the space of parameters and R=k. Let the electron have at the moment ¢
the Bloch wave function in band s (we return to usual notations of the wave
functions):

|s) = usp(x) exp(ikx), (1.43)
where ugg () is the periodic in the a-space function and k is the wave vector.
Bloch wave (43) and the energy €,(k) are the eigenfunction and the eigenvalue
of Eq. (1.39) at the moment ¢. The quasiwave vector k is included in this equa-
tion as a parameter. For example, in the magnetic field k(t) = k— (e/hc) A(t).
Therefore, when the physical conditions change adiabatically, one can write

|s, t) = usg(t) exp(ikx) (1.44)

supposing that the quasiwave vector in the exponent exp(ikx) is independent
of time. A slow dependence on time is contained in the Bloch amplitude and
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energy £, (k(t)). Taking into account the last fact, substitute (1.44) in (1.42):

j{dk/ wh(a a“"’“ Ounk(®) g5, (1.45)

This is just the geometric phase of the electron doing a cyclic motion in the
magnetic field. It is interesting to note [27] that the integral

k) =i / u;k(a:)%%kf‘”)d% (1.46)

coincides with the diagonal element of the following matrix
(k) =i / W (@) Vit (@) A, (1.47)

which determines a so-called periodic part of the coordinate operator (in the
k representation) responsible for interband transitions (see [32]):

f 0
r=ig + _Q(k:) (1.48)

Thus it turns out that Berry’s phase has attracted attention to the second
term in the coordinate operator (48) in a space with periodic medium.

Now let us come back to the quantization conditions (37) and the discus-
sion of the parameter v in (1.18). If the orbit under study does not come close
to any other trajectory with the same k., and its shape differs noticeably from
an intersecting one, according to Zilberman [26] the parameter v always has

the value 1
v = 3 (1.49)

It is this value that is commonly used in describing the oscillation phe-
nomena in metals [6]. Therefore the quantization of the electron motion under
conditions mentioned earlier should use the following value for 85y in (1.37)

85y = 27 (n + ;) h. (1.50)

Thus the parameter + in (1.18) equals

1 1
v=1-Lag, (1.51)
2

2

where A = 3(T') — 5(0) is the total addition to the geometric phase during
the cyclic electron motion along a closed trajectory in the magnetic field.

Applications of (1.51) and conclusions connected with it are discussed in
paper [34]. The difference of Berry’s phase from 0 is usually due to degen-
eracy of electron states. There are two types of the degeneration connected
with band contact and intersections of the isoenergetic surfaces. It is common
knowledge that the contact of the bands in a metal can occur at symmetry
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Fig. 1.16. Some examples of the Fermi surfaces in various metals

points and along the symmetry axis of the Brillouin zones. Besides, as shown
by Herring [35], there are lines of accidental contact between the the bands
in crystals. Analysis of the geometry of the Fermi surfaces in metals shows
that lines of symmetry degeneration and accidental contacts would exist in
many metals. In Fig. 1.16 examples of the Fermi surfaces in various metals are
shown, which possess peculiarities discussed earlier.

To calculate the value « it is convenient to use the result obtained as early
as 1962 [33]. It has been found if the contour I" encloses a line of the contact
between the bands, and the energies of the bands separate linearly in k in the
vicinity of the line, then

AB =+, (1.52)

where the sign on the right-hand side is determined by the direction of the
integration. The conditions demanded are satisfied if the line of the degen-
eration coincides with that of the accidental contact or with the threefold
symmetry axis (lines 3 and 4 in Fig. 1.16). For the trajectories mentioned

y=0 (1.53)

(y =1 and v = 0 are equivalent). If in the vicinity of the band-contact line
the energy splitting of electron states is quadratic in the distance of the point
k from the line, then

ApB =0. (1.54)

Therefore in such a case and for the trajectories not enclosing lines of degen-
eration

=5 (1.55)
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The results described depend neither on the form of (k) nor on the shape
and size of the electron trajectory and are topological in nature. It is due to
the fact that the electron orbit links to the band-contact line, which is the
line of singularities of the Bloch wave functions. If the linking is absent, the
convenient result, v = 1/2, holds. Measurements of the phase shift of the
quantum oscillations in metals can provide a possibility of detecting band-
contact lines.

Acknowledgments. The author is grateful to Oksana Charkina and Alexandr
Kotlyar for their assistance in preparing the manuscript and indebted to
Valentin Peschansky for useful discussions.
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2

Topology, Quasiperiodic Functions,
and the Transport Phenomena

A.Ya. Maltsev and S.P. Novikov

Summary. In this chapter we give the basic concept of the “topological numbers”
in the theory of quasiperiodic functions. Attention is especially paid to appearance
of such quantities in transport phenomena, including galvanomagnetic phenomena
in normal metals (Sect. 2.1) and the modulations of 2D electron gas (Sect. 2.3). We
give a detailed introduction to both these areas and explain in a simple way the
appearance of the “integral characteristics” in both these problems. Though this
chapter cannot be considered a detailed survey in the area, it explains the main
basic features of the corresponding phenomena.

2.1 Introduction

2.1.1 Galvanomagnetic Phenomena in Normal Metals: Classical
Results, GSMF Limit

We first consider the transport phenomena connected with the geometry of
quasiclassical electron trajectories in the magnetic field B.

Let us start with the most fundamental case where this kind of phenom-
ena appears in the conductivity of normal metals having complicated Fermi
surfaces in the presence of a rather strong magnetic field. This classical part of
the solid state physics was started by the Kharkov school of I.M. Lifshitz (Lif-
shitz, Azbel, Kaganov, Peschansky) in the 1950s and has become an essential
part of conductivity theory in normal metals. In particular, they introduced
the idea of the geometric strong magnetic field (GSMF) limit. Let us give here
some small insight into this area. We start with the classical work of I.M. Lif-
shitz, M.Ya. Azbel and M.I. Kaganov [1], where the importance of topology
of the Fermi surface for the conductivity was established. Namely, the dif-
ference between the “simple” Fermi surface (topological “sphere”) (Fig.2.1a)
and more complicated surfaces where the nonclosed quasiclassical electron
trajectories can arise was shown. In particular, detailed consideration of the
“simple” Fermi surface and surfaces like “warped cylinder” (Fig. 2.1b) for the
different directions of B was made.
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\B 3

(a) (b)

Fig. 2.1. The “simple” Fermi surface having the form of a sphere in the Brillouin
zone and the periodic “warped cylinder” extending through an infinite number of
Brillouin zones. The quasiclassical electron orbits in p-space are also shown for a
given direction of B

Figure 2.1 represents the forms of the Fermi surfaces in p-space and it
should be remembered that only one Brillouin zone should be taken into
account to get the right phase space volume for the electron states. The values
of p which are different from any reciprocal lattice vector nia; +nsas +nsas
(where n; are integers), are physically equivalent to each other and represent
the same electron state. The Brillouin zone can then be considered as the
parallelogram in the p-space with the identified opposite sides on the boundary
(Fig. 2.2).

Also the Fermi surfaces Sg will then be periodic in p-space with periods
a, az, as.

Remark. From a topological point of view, we consider the Brillouin zone
as the compact three-dimensional torus T2. The corresponding Fermi surfaces
will then also be compact surfaces of finite size embedded in T3.

Identified sides Identified sides

Identified sides

Fig. 2.2. The Brillouin zone in the quasimomentum (p) space with the identified
sides on the boundary
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The presence of the homogeneous magnetic field B generates the evolution
of electron states in the p-space, which can be described by the dynamical
system

b= [wu(p) x B] = [Ve(p) x BJ., (2.1)

where e(p) is the dependence of energy on the quasimomentum (dispersion re-
lation) and vg, (p) = Ve(p) is the group velocity at the state p. Both functions
£(p) and vg,(p) are also periodic functions in p-space and can be considered
as one-valued functions in T3.

System (2.1) has two conservative integrals that are the electron energy
and the component of p along the magnetic field. The electron trajectories
can then be represented as the intersections of the constant energy surfaces
e(p) = const. with the planes orthogonal to B and only the Fermi level
e(p) = ey is actually important for the conductivity. It easy to see then that
global geometry of the “essential” electron trajectories will depend strongly
on the form of Fermi surface in p-space.

Coming back to the Fig. 2.1 we can see that the form of electron trajectories
can be quite different for the Fermi surfaces similar to the Fermi surface
shown in Fig.2.1b, we can have periodic nonclosed electron trajectories (if
B is orthogonal to vertical axis), while for the surface on Fig. 2.1a all the
trajectories are just closed curves lying in one Brillouin zone for all directions
of B.

We now share that this global geometry plays the main role in the electron
motion in the coordinate space also (despite the factorization in p-space).
Thus the electron wave-packet motion in z-space (x = (x,y, z)) can be found
from the additional system

& = vg(p(t)) = Ve(p(t))

for any trajectory in p-space after the integration of system (2.1). The struc-
ture of system (2.1) permits to claim for example that the xy-projection of
“electron motion” in x-space has the same form as the trajectory in p-space
rotated by 7/2. We can see then that the electron drift in -space in magnetic
field is also very different for the trajectories shown in Fig. 2.3a, b due to the
action of the crystal lattice.

The effect of this “geometrical drift” can be measured experimentally in
the rather pure metallic monocrystals if the mean free electron motion time
is big enough (such that the electron packet “feels” the geometric features of
trajectory between the two scattering acts). The geometric picture requires
then that the time between the two scatterings is much longer than the “pass-
ing time” through one Brillouin zone for the periodic trajectory and much
longer than the “inverse cyclotron frequency” for closed trajectories.! For the

! This criterion can be actually more complicated for trajectories of more compli-
cated form.
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() (b)

Fig. 2.3. Electron trajectories in p-space given by the intersections of planes orthog-
onal to B for the Fermi surfaces shown in Fig.2.1a, b for B orthogonal to vertical
axis

approximation of effective mass m* in crystal this condition can be roughly
expressed as wpT > 1, where wg = eB/m*c is the formal cyclotron frequency
and 7 is the mean free electron motion time. Let us note that this require-
ment is satisfied better for big values of B and we consider the formal limit
B — o0 in this chapter. We call this situation GSMF limit and consider the
asymptotic of conductivity tensor for this case.?

We give here the asymptotic form of conductivity tensor obtained in [1]
for the case of trajectories shown in Fig.2.3a, b. Let us take the z-axis in the
x-space along the magnetic field B. The axes x and y can be chosen arbitrarily
for the case of Fig.2.3a and we take the y-axis along the mean electron drift
direction in z-space for the case of Fig. 2.3b. (It is obvious that the z-axis will
then be directed along the mean electron drift in p-space in this situation).
The asymptotic forms of the conductivity tensor can then be written as:

Case 1 (closed trajectories, Fig. 2.3a):

ey [(wBT) 72 (weT) T (wpT)
ik~ wpT) ! (wpT) 72 (wpT) ! , wT>1 (2.2)
m: (wpT)™t (wpT) ™! *

2 Formally another condition Awp < er should also be imposed on the magnetic
field B. However, this condition is always satisfied for the real metals and all
experimentally available magnetic fields (the upper limit is B ~ 10°-10* T). So
we do not pay special attention to this second restriction and assume that the limit
B — o0 is considered in the “experimental sense,” where the second condition is
satisfied.
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Fig. 2.4. The picture from [2] representing the “thin spatial net” and the corre-
sponding directions of B on the unit sphere where the nonclosed electron trajectories
exist

Case 2 (open periodic trajectories, Fig. 2.3b):

o2y [(wsT) 7 (wpT) T (wBT) T
otk ~ " (wpT)~? * * ,  wpT > 1, (2.3)
m (wpT)™t *

where * indicates some dimensionless constants of the order of 1.

We can see that conductivity reveals the strong anisotropy in the plane
orthogonal to B in the second case, and the mean direction of the electron
trajectory in p-space (not in @) can be measured experimentally as the zero
eigen-direction of o** for B — oo.

More general types of open electron trajectories are considered in [2, 3].
For example, the open trajectories that are not periodic are found in [2] for
the “thin spatial net” (Fig.2.4a). The open trajectories exist here only for
the directions of B close to main crystallographic axes (1,0,0), (0,1,0), and
(0,0,1) (Fig.2.4b). It was shown in [2] that the open trajectories lie in this
case in the straight strips of finite width in the plane orthogonal to B and pass
through them. The mean direction of open trajectories is given here by the
intersections of plane orthogonal to B with the main crystallographic planes
(zy), (y2), and (z2).

The form of conductivity tensor for this kind of trajectories used in [2]
coincides with (2.3).

Some analytical dispersion relations are also considered in [3].* Let us men-
tion here also the works [4-11] where different experimental (and theoretical)
investigations for some real metals were made. Detailed consideration of these
results can also be found in the survey articles [12,13] and the book [14] (see
also [15]).

3 Actually this work contains some conceptual mistakes but it also gives some
correct features concerning the existence of some open trajectories for these dis-
persion relations.
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2.1.2 Modern Ideas: The GSMF Limit, Topology,
and Dynamical Systems

From the physical point of view the problem arising here can be divided into
two parts:

(1) The investigation of topology and dynamics of electron trajectories on
the Fermi surface. Based on works [16-20] we call this Novikov problem.

(2) The problem of the relation of this dynamics with the physical prop-
erties of electric conductivity in the strong magnetic fields (GSMF limit)
formulated essentially in the works of Lifshitz group [1-3,12-14]).

The result of the Lifshitz group is based on the investigation of kinetic
equation for the corresponding quasiparticles given in work [1] for the concrete
examples. We had to generalize these results, which led us to the formulation
of the GSMF limit in the following form: all essential properties of electrical
conductivity (under certain restrictions) are determined by the geometry of
the dynamical system on the Fermi surface for the limit of large values of B.

It is worth noting that this part of investigation, including the GSMF-
limit principle, was never mathematically rigorously investigated unlike the
first part (the Novikov problem) where the investigation was made by the
rigorous methods of differential topology. It appeared then that in the case of
general position the electron trajectories have the integer topological invari-
ants stable with respect to the small rotations of the magnetic field. These
“topological quantum numbers” coincide for different trajectories (i.e., pos-
sess the “topological resonance” property). Due to this fact the “Topological
quantum numbers” become macroscopic observable quantities. We state that
there also exist very interesting cases of the so-called “chaotic trajectories”.
This type of trajectories is not yet completely investigated and it seems that
new physical phenomena arise there.

Let us now describe in more detail the topological approach to the prob-
lem of general classification of all possible electron trajectories regardless the
concrete features of the dispersion relation e(p) given by Novikov [16] (see
also [21-23]). We formulate the Novikov problem here.

Novikov Problem

Let any smooth 3-periodic function £(p) be given in the three-dimensional
space R? (with arbitrary lattice of periods). Fix any nondegenerate energy
level e(p) = const (i.e., Ve(p) # 0 on this level) and consider the intersections
of the corresponding smooth 3-periodic surface by any set of parallel planes in
R3. Describe the global geometry of all possible nonsingular (open) trajectories
that can arise in the intersections.

The term “the global geometry” means here first the asymptotic behavior
of the trajectory when ¢ — +o0o in the sense of dynamical systems. Let us
also formulate here the Novikov conjecture about the generic nonsingular
trajectories, which was proved later by his pupils.
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Novikov Conjecture

The generic nonsingular open trajectories lie in the straight strips of finite
width (in the plane orthogonal to B) and pass through them.

In the process of proving of Novikov conjecture, the deeper properties of
the generic open trajectories were actually revealed. They appeared to be
stable with respect to the (small) rotations of the direction of B. Moreover,
it appeared that all the generic open orbits lie on some “warped planes”
the quasimomenta space. All these “warped planes” have the integral mean
direction (i.e., generated by two reciprocal lattice vectors) and are parallel
on average to each other for a given direction of B. These integral mean
directions of “warped planes” appear to be rigid for small rotations of the
direction of B and represent the “Topological quantum numbers” mentioned
earlier.

Let us also emphasize that Novikov conjecture is connected with the
generic open trajectories and cannot be valid in the special degenerate cases
(Tsarev, Dynnikov) as we will see later.

There is also the natural question of what the generic case means in this
situation. According to the Novikov conjecture the Hausdorff dimension of
the set of directions of B on the unit sphere where the “nongeneric” open
trajectories arise is strictly less than 1 for the generic Fermi surfaces (for
some nongeneric Fermi surfaces this dimension can be greater than 1 as for
example in the case of the surface cos © + cos y + cos z = 0 (see [24,25])).

Let us now give some historical review on the consideration of the Novikov
problem in the topological school (Zorich, Dynnikov, Tsarev), where the basic
theorems about the nonclosed trajectories were obtained. We provide here
the main breakthroughs in this problem made in [17] (A.V. Zorich) and [20]
(Dynnikov).

We first note that even for the rather complicated periodic Fermi sur-
face, the electron trajectories will be quite simple if the direction of B is
purely rational (with respect to reciprocal lattice), i.e., if the plane IT(B)
orthogonal to B contains two linearly independent reciprocal lattice vectors.
This property can also be formulated in the form where the magnetic fluxes
through the faces of elementary cell in the x-space are proportional to each
other with rational coefficients. In this situation the picture arising in I7(B)
is purely periodic and all open electron trajectories can also be just the
periodic curves corresponding precisely to the case (2.3). However, the condi-
tion of rationality is completely unstable with respect to any small rotations
of B such that the rational directions give just a set of measure 0 among all
the directions of B.

The remarkable fact proved by Zorich is that the open trajectories reveal
the “topologically regular” properties even after the small rotations of the ini-
tial purely rational direction. That is, they lie in straight strips of finite width
in accordance with the Novikov conjecture (but are not periodic anymore).
Let us formulate this in a more precise form.
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Fig. 2.5. The open region (2 around the purely rational direction Bo/Bo on the
unit sphere and the general open trajectory lying in the straight strip of finite width
in the plane orthogonal to B for B/B € (2

Theorem 1 (Zorich [17]). Consider an arbitrary smooth Fermi surface and
the rational direction of magnetic field Bg such that no singular trajectory
connects two different (not equivalent modulo the reciprocal lattice) singular
(stagnation) points of the system (2.1). Then there exists a small open region
2 on the unit sphere around direction By such that all open trajectories (if
they exist) lie in straight strips of finite width in the plane orthogonal to B if
B/B € 0 (Fig. 2.5).

It was also proved by Dynnikov that any trajectory of this kind passes
through the corresponding strip and does not come back ([18,19]).

Let us also mention that the additional topological condition in Theo-
rem 1 has a generic form and generically does not impose anything on the
direction By.

In his theorem, of Zorich actually claims that all the rational directions of
B can be extended to some “small open spots” on the unit sphere (parame-
terizing directions of B) where we cannot have a situation more complicated
than that represented in Fig.2.5. This set already has the finite measure on
the unit sphere and moreover we can conclude that any stable open trajec-
tory can have only the form shown in Fig.2.5 since the rational directions
are dense everywhere on the unit sphere. The Zorich theorem, however, does
not permit to state that this situation is the only possible one since the sizes
of the “spots” become smaller and smaller for big rational numbers and we
cannot claim that they cover all the unit spheres in a general situation.

The next important result was obtained by Dynnikov [20] who proved that
the trajectories shown in Fig. 2.5 can be the only stable ones with respect to
the small variation of the Fermi energy ef for a given dispersion relation &(p).
We provide the exact form of the Dynnikov theorem in Sect.2.2 where we
will consider this aspect in more detail. We just state here that the methods
developed in [20] permitted to prove later that all the cases of open trajectories
different from those shown in Fig. 2.5 can appear only “with probability zero”
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(i-e., for the directions of B from the set of measure zero on the unit sphere)
for generic Fermi surfaces Sy : €(p) = er ( [24,26]), which gave the final proof
of Novikov conjecture for generic open trajectories.

The methods of proving Zorich and Dynnikov theorems gave the basis
for the invention of the “topological quantum numbers” introduced in [28]
by the present authors (see also the survey articles [29-31]) for conductivity
in normal metals. Let us also state that another important property, called
the “Topological Resonance,” played a crucial role for physical phenomena
in [28]. The main point of this property can be formulated as follows: all the
trajectories having the form shown in Fig. 2.5 have the same mean direction
in all the planes orthogonal to B for the generic directions of B (actually
for any not purely rational direction of B) and give the same form (2.3)
of contribution to conductivity tensor in the same coordinate system. This
important fact makes experimentally observable the integer-valued topological
characteristics of the Fermi surface having the form of the integral planes of
reciprocal lattice and corresponding “stability zones” on the unit sphere. We
describe in detail these quantities in Sect. 2.2 of our paper. Our goal here is to
give the main features of the corresponding picture, so we do not give all the
details of the classification of all open trajectories for general Fermi surfaces.
However, the picture we will describe serves as the “basic description” of
conductivity phenomena and all the other possibilities can be considered as
special additional features for the nongeneric directions of B. Let us also state
here that the final classification of open trajectories for generic Fermi surfaces
was completed in general by Dynnikov in [27], which solves primarily the
Novikov problem. The physical phenomena connected with different types of
open trajectories can be found in detail in the survey articles [30,31].

2.1.3 Transport in 2D Electron Gas and Topology
of Quasiperiodic Functions

Let us now mention a few words about the so-called generalized Novikov
problem in connection with the quasiperiodic functions on the plane with N
quasiperiods. According to the standard definition the quasiperiodic function
in R™ with N quasiperiods (N > m) is a restriction of a periodic function in
RN (with N periods) to any plane R™ C R" of dimension m linearly embed-
ded in RY. In our situation we will always have m = 2 and the quasiperiodic
functions on the plane will be the restrictions of the periodic functions in RY
to some 2D plane.

Generalized Novikov Problem

Describe the global geometry of open level curves of quasiperiodic function
f(r) on the plane with N quasiperiods.

It is easy to see that the generalized Novikov problem gives the Novikov
problem for the electron trajectories if we put N = 3. Indeed, all the
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trajectories in the planes orthogonal to B can be considered as the level curves
of quasiperiodic functions e(p)|;(py with three quasiperiods. As mentioned
earlier, the general Novikov problem is solved primarily for N = 3. However,
the case N > 3 becomes very complicated from the topological point of view
and no general classification in this case exists at the moment. The only topo-
logical result existing now for the general Novikov problem is the analog of
Zorich theorem (Theorem 1) for the case N = 4 [32] and the general situation
is still under investigation.

In Section 2.3 we consider the applications of generalized Novikov problem
connected with the “superlattice potentials” for the two-dimensional electron
gas in the presence of orthogonal magnetic field. This kind of potentials is
connected with modern techniques of “handmade” modulations of 2D electron
gas such as the holographic illumination, “gate modulation”, piezoelectric
effect, etc. All such modulations are usually periodic in the plane and in many
situations the level curves play an important role for the transport phenomena
in such systems. The most important thing for us will be the conductivity
phenomena in these 2D structures in the presence of orthogonal magnetic
field B. According to the quasiclassical approach the cyclotron electron orbits
drift along the level curves of modulation potential in the magnetic field,
which gives the “drift contribution” to conductivity in the plane. Among the
works devoted to this approach we would like to mention here the article [33],
where this method was introduced for the explanation of “commensurability
oscillations” of conductivity in potential modulated just in one direction, and
[34] where the same approach was used for the explanation of suppression of
these oscillations by the second orthogonal modulation in the periodic case.
Let us add that all these phenomena correspond to the long free electron
motion time, which will now play the role of the “geometric limit” (not B —
00) in the second situation.

We will show that the generalized Novikov problem can also arise naturally
in these structures if we consider the independent superposition of different
periodic modulations. It can be proved that in this case we always obtain
the quasiperiodic functions where the number of quasiperiods depends on the
complexity of total modulation. The results in Novikov problem can then
help to predict the form of the “drift conductivity” in the limit of long free
electron motion time. In Sect. 2.3 we give the main features of the situation
of superposition of several “1D modulations” where the potentials with a
small number of quasiperiods can arise. The detailed consideration of this
situation can be found in [35]. However, the Novikov problem also arises in a
much more general case of arbitrary superpositions of more complicated (but
periodic) structures.

Finally, we would like to mention that the quasiperiodic functions with
a large number of quasiperiods can be a model for the random potentials
on the plane. The corresponding Novikov problem arises in the percolation
theory for such potentials. We will also discuss this situation at the end of
Sect. 2.3.
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Fig. 2.6. The abstract surfaces (a), (b), and (c) with genuses 0, 1, and 2,
respectively

2.2 The Classification of Fermi Surfaces
and the “Topological Quantum Numbers”

Let us start with the definitions of genus and topological rank of the Fermi
surface.

Definition 1. Let us consider the phase space T3 = R3/L introduced earlier.
After the identification, every component of the Fermi surface becomes the
smooth orientable two-dimensional surface embedded in T3. We can then intro-
duce the standard genus of every component of the Fermi surface g = 0,1,2, ...
according to standard topological classification depending on whether this com-
ponent is a topological sphere, torus, sphere with two holes, etc. (Fig. 2.6).

Definition 2. Let us introduce the topological rank r as the characteristic of
the embedding of the Fermi surface in T3. It is much more convenient in this
case to come back to the total p-space and consider the connected components
of the three-periodic surface in R3.

(1) The Fermi surface has Rank 0 if each of its connected component can
be bounded by a sphere of finite radius.

(2) The Fermi surface has Rank 1 if each of its connected component can
be bounded by the periodic cylinder of finite radius and there are components
that cannot be bounded by the sphere.

(8) The Fermi surface has Rank 2 if each of its connected component that
can be bounded by two parallel (integral) planes in R? and there are components
that cannot be bounded by a cylinder.

(4) The Fermi surface has Rank 3 if it contains components that cannot
be bounded by two parallel planes in R3.

Figure 2.7a, b, ¢, d represents the pieces of the Fermi surfaces in R? with
the topological ranks 0, 1, 2, and 3, respectively. As can be seen the genuses
of the surfaces represented in Fig.2.7a, b, ¢, d are also equal to 0, 1, 2, and 3,
respectively. However, the genus and the Topological Rank are not necessary
equal to each other in the general situation.

Let us discuss briefly the connection between the genus and the topological
rank since this will play a crucial role in further consideration.

It is easy to see that the topological rank of the sphere can be only 0 and
the Fermi surface consists in this case of the infinite set of the periodically
repeated spheres S? in R3.
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(a) (b)

(c) (d)

Fig. 2.7. The Fermi surfaces (a), (b), (c), (d) with topological ranks 0, 1, 2, and
3, respectively

The topological rank of the torus T? can take three values r = 0, 1, 2.
Indeed, it is easy to see that all three cases of periodically repeated tori T2
in R (Rank 0), periodically repeated “warped” integral cylinders (Rank 1),
and the periodically repeated “warped” integral planes (Rank 2) give the
topological two-dimensional tori T? in T? after the factorization (see Fig. 2.8).

It is not difficult to prove that these are the only possibilities that we can
have for embedding of the two-dimensional torus T2 in T3. We note here that
the mean direction of the “warped periodic cylinder” (embedding of Rank 1)
can coincide with any reciprocal lattice vector nyai +noas +nsas in R3. Also
the “directions” of the corresponding “warped planes” (embedding of Rank 2)

[
==\l —

(@) (b)

Fig. 2.8. The periodically repeated tori T2, periodically repeated “warped” integral
cylinders, and the periodically repeated “warped” integral planes in R3
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are always generated by two (linearly independent) reciprocal lattice vectors
mgl)al —|—mgl)a2+mg1)a3 and m§2)a1 —l—mg)ag +m§2)a3. We can thus see that
both the embeddings of Rank 1 and Rank 2 of T? in T? are characterized by
some integer numbers connected with the reciprocal lattice. Let us also make
one more remark about the surfaces of Ranks 0, 1, and 2 in this case. Namely,
the case r = 2 actually shows one difference from the cases r = 0 and 1, which
is that the plane in R? is not homologous to 0 in T? (i.e., it does not restrict
any domain of “lower energies”) after the factorization. We can conclude that
if these planes appear as the connected components of the physical Fermi
surface (which is always homologous to 0), they should always come in pairs,
IT, and IT_, which are parallel to each other in R3. The factorization of IT,
and I1_ gives then the two tori Ti, T2 with the opposite homologous classes
in T3.

It can be shown that the topological rank of any Fermi surface of genus
2 cannot exceed 2 also. The example of the corresponding embedding of such
a component with maximal rank is shown in Fig.2.7c and represents the two
parallel planes connected by cylinders. We will not give the proof of this
theorem here but just mention that this fact plays an important role in the
classification of nonclosed electron trajectories on the Fermi surface of genus
2. Namely, it can be proved that the open trajectories on the Fermi surface
of genus 2 cannot be actually more complicated than the trajectories on the
surface of genus 1. In particular they always have the “topologically regular
form” in the same way as on the Fermi surface of genus 1 (see Sect. 2.2). Also
the same integral characteristics in the cases when this surface has Rank 1 or
2 as in the case of genus 1 can be introduced for genus 2 (actually for any
genus if rank is equal to 1 or 2).

Finally we would like to mention that the topological rank of the compo-
nents with genus g > 3 can take any value r =0, 1,2, 3.

Definition 3. We call the open trajectory topologically regular (corresponding
to “topologically integrable” case) if it lies within the straight line of finite
width in II(B) and passes through it from —oo to co. We call all other open
trajectories chaotic.

Let us now discuss the connection between the geometry of the nonsingular
electron orbits and the topological properties of the Fermi surface. We briefly
consider here the simple cases of Fermi surfaces of Rank 0, 1, and 2 and then
come to our basic case of general Fermi surfaces having the maximal rank
r = 3. We then have the following situations:

(1) The Fermi surface has topological rank 0.

It is easy to note that in this simplest case all the components of the Fermi
surface are compact (Figs. 2.7a, 2.8a) in R? and there are no open trajectories
at all.

(2) The Fermi surface has topological rank 1.

In this case we can have both open and compact electron trajectories. How-
ever the open trajectories (if they exist) should be quite simple in this case.
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They can arise only if the magnetic field is orthogonal to the mean direction
of one of the components of Rank 1 (periodic cylinder) and are periodic with
the same integer mean direction (Figs.2.7b, 2.8b). The corresponding sets of
the directions B/B are just the one-dimensional curves and there cannot be
open regions on the unit sphere for which we can find the open trajectories
on the Fermi surface.

(3) The Fermi surface has topological rank 2.

It can be easily seen that this case gives much more possibilities for the
existence of open orbits for different directions of the magnetic field. In par-
ticular, this is the first case where the open orbits can exist for the generic
directions of B. So, in this case we can have the whole regions on the unit
sphere such that the open orbits present for any direction of B belong to the
corresponding region. It is easy to see, however, that the open orbits also have
quite a simple description in this case. Namely, any open orbit (if it exists) lies
in the straight strip of the finite width for any direction of B not orthogonal to
the integral planes given by the components of Rank 2. The boundaries of the
corresponding strips in the planes IT(B) (orthogonal to B) will be given by
the intersection of IT(B) with the pairs of integral planes bounding the corre-
sponding components of Rank 2. It can also be shown [18,19] that every open
orbit passes through the strip from —oo to +00 and cannot turn back. We can
then see that all the trajectories are “topologically regular” in this case also.

Based on the remarks given earlier, the contribution to the conductivity
given by every family of orbits with the same mean direction reveals the strong
anisotropy when wg7T — 00 and coincides with the main order with formula
(2.3) for the open periodic trajectories.

Trajectories of this type already have all the features of the general topo-
logically integrable situation.

We start now with the most general and complicated case of arbitrary
Fermi surface of topological rank 3.

We first describe a convenient procedure [26,27] of reconstruction of the
constant energy surface when the direction of B is fixed.

We will assume that the system (2.1) has generically only the nondegene-
rate singularities having the form of the nondegenerate poles or nondegenerate
saddle points. The singular trajectories passing through the critical points
(and the critical points themselves) divide the set of trajectories into different
parts corresponding to different types of trajectories on the Fermi surface. We
are not interested here in the geometry of compact electron trajectories in
the “geometric limit” wpT — oco. It is not difficult to show that the pieces of
the Fermi surface carrying the compact orbits can be either infinite or finite
cylinders in R? bounded by the singular trajectories (some of them may be just
points of minimum or maximum) at the bottom and at the top (see Fig. 2.9).

Let us now remove all the parts containing the nonsingular compact tra-
jectories from the Fermi surface. The remaining part,

Sr/(compact nonsingular trajectories) = U; S;,
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Fig. 2.9. The cylinder of compact trajectories bounded by the singular orbits (the
simplest case of just one critical point on the singular trajectory)

is a union of the two manifolds S; with boundaries 0.5, which are the compact
singular trajectories. The generic type in this case is a separatrix orbit with
just one critical point like in Fig. 2.9.

It is obvious that the open orbit will not be affected at all by the con-
struction described here and the rest of the Fermi surface gives the same
open orbits as all possible intersections with different planes orthogonal
to B.

Definition 4. We call every piece S; the “Carrier of open trajectories.”

Let us fill in the holes by topological 2D discs lying in the planes orthogonal
to B and get the closed surfaces (see Fig. 2.10)

S; = S;U(2Ddiscs).

This procedure again gives the periodic surface S. after the reconstruction
and we can define the “compactified carriers of open trajectories” both in R3
and T3.

It is obvious that the reconstructed surface can be used instead of the
original Fermi surface for the determination of open trajectories. Let us ask a
question: can the reconstructed surface be simpler than the original one?

The answer is positive and moreover it can be proved that “generically” the
reconstructed surface consists of components of genus 1 only. This remarkable
fact gives the very powerful instrument for the consideration of open trajec-
tories on the arbitrary Fermi surface.

In fact, the proof of Theorem 1 was based on the statement that the genus
of every compactified carrier of open orbits gj is equal to 1 in this case.

Let us now formulate the theorem of Dynnikov [20], which made the second
main breakthrough in the Novikov problem.
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Fig. 2.10. The reconstructed constant energy surface with removed compact tra-
jectories and the two-dimensional discs attached to the singular trajectories in the
generic case of just one critical point on every singular trajectory

Theorem 2 (Dynnikov [20]). Let a generic dispersion relation

e(p): T = R

be given such that for level e(p) = eg the genus g of some carrier of open
trajectories S; is greater than 1. Then there exists an open interval (g1,€2)
containing £qg such that for all € # €q in this interval the genus of the carrier
of open trajectories is less than g.

Theorem 2 claims that only the “topologically integrable case” can be
stable with respect to the small variations of energy level also.

The formulated theorems permit us to reduce the consideration of open
orbits in any stable situation to the case of the surfaces of genus 1 where the
Fermi surface can have topological rank 0, 1, or 2 only. It is easy to see that the
Rank 0 cannot appear just by definition of the reconstructed surface S. since
it can contain only the compact trajectories. Rank 1 is possible in S. only
for special directions of B. Indeed, the component of Rank 1 has the mean
integral direction in R? and can contain the open (periodic) trajectories only
if B is orthogonal to this integral vector in p-space. The corresponding open
trajectories are thus not absolutely stable with respect to the small rotations
of B and cannot exist for the open region on the unit sphere.

We can then claim that the only generic situation for S, is a set of com-
ponents of Rank 2, which are the periodic warped planes in this case. The
corresponding electron trajectories can then belong just to “Topologically
integrable” case being the intersections of planes orthogonal to B with the
periodically deformed planes in the p-space.
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An important property of the compactified components of genus 1 arising
for the generic directions of B is the following: they are all parallel on average
to R? and do not intersect each other. This property mentioned in [28] and
called later the “topological resonance” plays an important role in the physical
phenomena connected with geometry of open trajectories. In particular, all
the stable topologically regular open trajectories in all planes orthogonal to
B have the same mean direction and give the same form (2.3) of contribution
to conductivity in the appropriate coordinate system common for all of them.
This fact gives the experimental possibility of measuring the mean direction
of noncompact topologically regular orbits both in @ and p spaces from the
anisotropy of conductivity tensor o**.

We reiterate that the surface S. is the abstract construction depending on
the direction of B and does not exist a priori in the Fermi surface Sg,. The
important fact, however, is the stability of the surface S. with respect to the
small rotations of B. This means in particular that the common direction of
the components of Rank 2 is locally stable with respect to the small rotations
of B, which can then be found from the conductivity experiments. From the
physical point of view, all the regions on the unit sphere where the stable open
orbits exist can be represented as the “stability zones” (2, such that each zone
corresponds to some integral plane I, common to all the points of stability
zone §2,. The plane I, is then the integral plane in reciprocal lattice, which
defines the mean directions of open orbits in p-space for any direction of B
belonging to {2, just as the intersection with the plane orthogonal to B. As
can be easily seen from the form of (2.3), this direction always coincides with
the unique direction in R® corresponding to the decrease of conductivity as
wBpT — OQ.

The corresponding integral planes I, can then be given by three integer

numbers (nl,n2,n?) (up to the common multiplier) from the equation

no (@)1 + ngfxls + nglals =0,

where [x]; are the coordinates on the basis {a1, as, as} of the reciprocal lat-
tice, or equivalently

ni(w,ll) + ni(a}, )+ ni(w, l3) =0,

where {l1,15,13} is the basis of the initial lattice in the coordinate space.
We see then that the direction of conductivity decreasing 7 = (11, 72,3)
satisfies the relation

nk (i, 1) +n2 (i, le) +nd (i, 13) =0

for all the points of stability zone {2, which makes possible the experimental

observation of numbers (nk,n2,n3).

The numbers (nl,n?,n3) are called in [28] the “topological quantum num-
bers” of a dispersion relation in metal.
We can now consider the result of [2] about the “thin spatial net” as

a particular case of this general theorem where the integer planes take the



48 A.Ya. Maltsev and S.P. Novikov

simplest possibility of being the main planes xy, yz, zz. If we now introduce
the “topological quantum numbers” for this situation, we will have only the
triples (%1, 0,0), (0,41,0), and (0,0, £1) for this Fermi surface.

In general, we can state that the unit sphere should be divided into (open)
parts where the open orbits are absent on the Fermi level for given directions
of B and “stability zones” {2, where the open orbits exist on the Fermi level
and have “topologically regular” form. Each stability zone corresponds to
the triple of “topological quantum numbers” giving the integral direction of
periodically deformed two-dimensional planes in S..(B), which are swept by
the zero eigen-vector of o for B € (2.

We now state that the “topologically regular” trajectories are generic open
trajectories, nonetheless they are not ideal for rather complicated Fermi sur-
faces. Namely, for rather complicated Fermi surfaces and the special directions
of B, the chaotic cases can also arise (Tsarev, Dynnikov).

It was first shown by Tsarev [36] that the more complicated chaotic open
orbits can still exist on rather complicated Fermi surfaces Sy. An example
of an open trajectory that does not lie in any finite strip of finite width was
constructed. However, the trajectory had in this case the asymptotic direc-
tion of not even being restricted by any straight strip of finite width in the
plane orthogonal to B. The corresponding asymptotic behavior of conductiv-
ity should also reveal the strong anisotropy properties in the plane orthogonal
to B although the exact form of o* will be slightly different from (2.3) for
this type of trajectories. For the same reason, the asymptotic direction of orbit
can be measured experimentally in this case.

The more complicated examples of chaotic open orbits were constructed
in [26] for the Fermi surface having genus 3. These types of open orbits do
not have any asymptotic direction in the planes orthogonal to B and have a
rather complicated form of “walking everywhere” in these planes.

The corresponding contribution to 0¥ is also very different for this kind of
trajectories [37]. In particular, it appears that this contribution becomes 0 in
all the directions including the direction of B for B — oo. The total conductiv-
ity tensor o’* has then only the contribution of compact electron trajectories
in the conductivity along B, which does not disappear when B — oo. The
corresponding effect can be observed experimentally as the local minima of
the longitudinal (i.e., parallel to B) conductivity for the points of the unit
sphere where this kind of trajectories can appear. A more detailed description
of ¢ in this case can be found in [37].

Let us add that Dynnikov proved recently that the measure of chaotic cases
on the unit sphere is 0 for generic Fermi surfaces [26,27]. The systematic
investigation of the open orbits was completed in general after the works
[17,20,26,28] in [27]. In particular the total picture of different types of the
open orbits for generic dispersion relations was presented. Let us formulate
here the main results of [27] in the form of a Theorem.
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Theorem 3 (Dynnikov [27]). Let us fix the dispersion relation ¢ = e(p)
and the direction of B of irrationality 3 and consider all the energy levels for
Emin < € < €max. Then:

(1) The open electron trajectories exist for all the energy values € belong-
ing to the closed connected energy interval €1(B) < € < e9(B), which can
degenerate to just one energy level e1(B) = eo(B) = g¢(B).

(2) For the case of the nontrivial energy interval the set of compactified
carriers of open trajectories S. is always a disjoint union of two-dimensional
tori T2 in T3 for all e1(B) < ¢ < e3(B). All the tori T? for all the energy
levels do not intersect each other and have the same (up to the sign) indivisible
homology class ¢ € Ho(T3,Z), ¢ # 0. The number of tori T? is even for
every fized energy level and the corresponding covering S, in R3 is a locally
stable family of parallel (“warped”) integral planes II? C R3 with common
direction given by c. The form of S. described here is locally stable with the
same homology class ¢ € Hy(T?) under small rotations of B. All the open
electron trajectories at all the energy levels lie in the strips of finite width
with the same direction and pass through them. The mean direction of the
trajectories is given by the intersections of planes II(B) with the integral
family IT? for the corresponding “stability zone” on the unit sphere.

(3) The functions £1(B), e2(B) defined for the directions of B of irra-
tionality 3 can be continued on the unit sphere S* as the piecewise smooth
functions such that 1(B) > e2(B) everywhere on the unit sphere.

(4) For the case of trivial energy interval €1 = €5 = €¢ the corresponding
open trajectories may be chaotic. The carrier of the chaotic open trajectory is
homologous to 0 in Hy(T3,7Z) and has genus > 3. For the generic energy level
€ = gg the corresponding directions of magnetic fields belong to the countable
union of the codimension 1 subsets. Therefore a measure of this set is equal
to 0 on S2.

We give here the results connected with generic directions of B and do
not consider the special cases when B is purely or “partly” rational. The
corresponding effects are actually simpler than formulated earlier and can be
easily added to this general picture. Survey articles [27,29-31] provide all the
details (both from mathematical and physical point of view).

2.3 Quasiperiodic Modulations of 2D Electron Gas
and the Generalized Novikov Problem

In this section we provide a general description about the quasiperiodic mod-
ulations of 2D electron gas and the main topological aspects for the special
class of such structures. Let us first discuss about different modern modulation
techniques and the quasiclassical electron behavior in such systems.
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We first point here the holographic illumination of high-mobility 2D elec-
tron structures (AlGaA—GaAs heterojunctions) at temperatures T < 4.2K
(see, for example, [38]). In these experiments the expanded laser beam was
split into two parts, which gave an interference picture with the period a on
the 2D sample. The illumination caused the additional ionization of atoms
near the 2D junction, which remained for a rather long period of time after
the illumination. During this relaxation time, the additional periodic poten-
tial V(r) = V(x), V(z) = V(x + a) arose in the plane and the electron
behavior was determined by the orthogonal magnetic field B and the poten-
tial V(z).

The quasiclassical consideration for the case |V (x)| < er was first consid-
ered by Beenakker [33] for the explanation of “commensurability oscillations”
in such structures found in [38]. According to this approach the quasiclassical
electrons near the Fermi level move around the cyclotron orbits in the mag-
netic field and drift due to potential V' (x) in the plane. Since only the electrons
near Fermi level ep play the main role in conductivity, we can introduce the
characteristic cyclotron radius rg = m*vgr/eB for the Fermi velocity vp. The
corresponding drift of the electron orbits near the Fermi level will then be
determined by the averaged effective potential Vi§ () given by the averaging
of V(r) = V(z) over the cyclotron orbit with radius rp centered at the point
r (Fig. 2.11).

The potential V5T (z) is different from V(x) but has the same symmetry
and also depends only on z. The drift of the cyclotron orbits is along the
level curves of Vi (x), which are very simple in this case (just the straight
lines along the y-axis) and the corresponding velocity vy is proportional
to the absolute value of gradient |V (z)| at each level curve. The analytic
dependence of |V (2)| on the value of B (based on the commensurability of
2rp with the (integer number) X a) was used in [33] for the explanation of the
oscillations of conductivity along the fringes with the value of B.

Fig. 2.11. The averaging of the the potential V' (z) over the cyclotron orbit with
radius rg centered at the point r
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In article [34] the situation with the double-modulated potentials made
by the superposition of two interference pictures was also considered. The
corresponding potential V () is double periodic in R? in this case and the same
is true for potentials V$¥ (7). The consideration used the same quasiclassical
approach for the potential Vgﬁ(r) based on the analysis of its level curves.
It was then shown in [34] that the second modulation should suppress the
commensurability oscillations in this case, which disappear completely for the
equal intensities of two (orthogonal) interference pictures.

It is also obvious that all the open drift trajectories can be only periodic
in the case of periodic V§T (7).

It seems that the situation with the quasiperiodic modulations of 2D elec-
tron gas did not appear in experiments. However, we think that this situation
is also very natural for the technique described earlier and can be considered
from the point of view of the generalized Novikov problem. The correspond-
ing approach was developed in [35] for the special cases of superpositions of
several (three and four) interference pictures on the plane. Nonetheless, as we
already mentioned, the Novikov problem also arises actually for any picture
given by superposition of several periodic pictures in the plane. The corre-
sponding potentials can have many quasiperiods in this case and the Novikov
problem can then reveal much more complicated (chaotic) properties than
described in [35].

We next describe here just the main points of “topologically regular” be-
havior in the case of the superpositions of three and four interference pictures,
which give the quasiperiodic potentials V (r) and V5 (r) with three and four
quasiperiods on the plane. Unlike the previous works we do not pay much at-
tention to the analytic dependence on B and investigate mainly the geometric
properties of conductivity in this situation.

Before we start the geometric consideration, we wish to also state that the
holographic illumination is not a unique way of producing the superlattice
potentials for the two-dimensional electron gas. Let us mention here the works
[39-49] where the different techniques using the biasing of the specially made
metallic gates and the piezoelectric effect were considered. Both 1D and 2D
modulated potentials as well as more general periodic potentials with square
and hexagonal geometry appeared in this situation. Actually these techniques
give much more possibilities to produce the potentials of different types with
the quasiperiodic properties.

Let us now have three independent interference pictures on the plane with
three different generic directions of fringes 71,72, 73 and periods a1, as, as (see
Fig. 2.12).

The total intensity I(r) will be the sum of intensities

I(r) = Li(r) + Ia(r) + I3(r)

of the independent interference pictures.
We assume that there are at least two noncoinciding directions (say 71, 72)
among the set (11,12, 73).
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\ /\

Fig. 2.12. The schematic sketch of the three independent interference pictures on
the plane with different periods and intensities

It can be shown that the potentials V(r) and V5T (r) can be represented
in this situation as the quasiperiodic functions with three quasiperiods in the
plane.

Let us now introduce the important definition of the “quasiperiodic group”
acting on the potentials described earlier.

Definition 5. Let us fix the directions m1,m2,m3 and periods ai,as,az of the
interference fringes in Fig. 2.12 and consider all independent parallel shifts of
positions of different interference pictures in R%. All the potentials V'(r) (and
the corresponding Vﬁff’(r)) made in this way are related by the transforma-

tions of a quasiperiodic group.

According to the definition the quasiperiodic group is a three-parametric
Abelian group isomorphic to the three-dimensional torus T? due to the peri-
odicity of every interference picture.*

We state that potential V (r) is generic if it has no periods in R, is periodic
if it has two linearly independent periods in R2, and is “partly periodic” if it
has just one (up to the integer multiplier) period in R2.

It can also be shown that the quasiperiodic group does not change the
“periodicity” of potentials V (r), ViSE(r).

The results for the Novikov problem can also be applied in this situation.
We formulate here the main results for the generic potentials V' (r) (the special
additional features can be found in [35]). Let us formulate here the theorem
from [35] about the drift trajectories for the generic potentials of this kind
based on the topological theorems for Novikov problem in 3-dimensional case
(formulated earlier).

4 1t is obvious that the quasiperiodic group contains the ordinary translations as
the algebraic subgroup.
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Theorem 4 [35]. Let us fix the value of B and consider the generic quasi-
periodic potential VS (r) made by three interference pictures and taking the
values in some interval emin(B) < V§ff(r) < emax(B). Then:

(1) Open quasiclassical trajectories VST (r) = ¢ always exist either in the
connected energy interval

El(B) <c< EQ(B)

(Emin(B) < €1(B) < €2(B) < emax(B)) or just at one energy value ¢ = eo(B).

(2) For the case of the finite interval (e1(B) < e2(B)) all the nonsingular
open trajectories correspond to topologically reqular case, i.e., lie in the straight
strips of the finite width and pass through them. All the strips have the same
mean directions for all the energy levels ¢ € [e1(B),ea(B)] such that all the
open trajectories are on average parallel to each other for all values of c.

(8) The values €1(B), e2(B), or eo(B) are the same for all the generic
potentials connected by the “quasiperiodic group.”

(4) For the case of the finite energy interval (£1(B) < €2(B)) all the non-
singular open trajectories also have the same mean direction for all the generic
potentials connected by the “quasiperiodic group” transformations.

We again see that the “topologically regular” open trajectories are also
generic for this situation as seen earlier.

Let us now consider the asymptotic behavior of conductivity tensor when
T — 00 (mean free electron motion time). We consider here only the “topo-
logically regular” case. Let us point out that the full conductivity tensor can
be represented as the sum of two terms

Uék(B) = aék(B) + AU““(B).

In the approximation of the drifting cyclotron orbits, the parts Jék (B) and
Ac™*(B) can be interpreted as caused by the (infinitesimally small) difference
in the electron distribution function on the same cyclotron orbit (weak angular
dependence) and the (infinitesimally small) difference in the occupation of
different trajectories by the centers of cyclotron orbits at different points of
R? (on the same energy level) as the linear response to the (infinitesimally)
small external field F, respectively.

The first part o¥(B) has the standard asymptotic form:

otk (B) ~ ne’r <(WBT)2 (WBT)I)

meft \ (wpT) ™! (wpT) 72

for wpT > 1 due to the weak angular dependence (~ 1/wpT) of the distribu-
tion function on the same cyclotron orbit. We then have that the correspond-
ing longitudinal conductivity decreases for 7 — oo in all the directions in R?
and the corresponding condition is just wg7 > 1 in this case.

For the part Ac®*(B) the limit 7 — oo should, however, be considered
as the condition that every trajectory is passed for a rather long time by the
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drifting cyclotron orbits to reveal its global geometry. Thus another parameter
7/70, where 7p is the characteristic time of completion of close trajectories,
should be used in this case and we should put the condition 7/79 > 1 to have
the asymptotic regime for Ao (B). In this situation the difference between
the open and closed trajectories plays the main role, and the asymptotic
behavior of conductivity can be calculated in the form analogous to that used
in [1-3] for the case of normal metals. That is:

AG(B) o TET <(TU/T)2 T0/7 )

melt \ 7o/7 (10/7)°

in the case of closed trajectories and

Aaik(B)NneQT( x 1T >

mef \ 10/7 (10/7)?

(x ~ 1) for the case of open topologically regular trajectories if the z-axis
coincides with the mean direction of trajectories.

The condition 7/79 > 1 is much stronger than wpT > 1 in the situation
described here according to the definition of the slow drift of the cyclotron
orbits. We can keep then just this condition in our further considerations and
assume that the main part of conductivity is given by Ac®*(B) in this limit.
It is also obvious that the magnetic field B should not be “very strong” in
this case.

Based on these remarks, we can now write the main part of the conduc-
tivity tensor o'*(B) in the limit 7 — oo for the case of topologically regular
open orbits. Let us take the z-axis along the mean direction of open orbits
and the y-axis orthogonal to z. The asymptotic form of ¢**, i,k = 1,2 can
then be written as:

2
e ne‘T * To/T
g meft (7-0/7. (7_0/7_)2> , To/T —0, (2.4)

where * is some value of the order of 1 (constant as 7o/7 — 0).

The asymptotic form of ¢** makes possible the experimental observation
of the mean direction of topologically regular open trajectories if the value
T /7o is rather big.

Let us now introduce the “topological numbers” characterizing the regular
open trajectories analogous to those introduced in [28] for the case of normal
metals. We will first give the topological definition of these numbers using the
action of the “quasiperiodic group” on the quasiperiodic potentials [35].

We assume that we have the “topologically integrable” situation where
the topologically regular open trajectories exist in some finite energy interval
€1(B) < ¢ < e2(B). According to Theorem 4 the values £1(B), €2(B) and
the mean directions of open trajectories are the same for all the potentials
constructed from our potential with the aid of the “quasiperiodic group.”
It also follows from the topological picture that all the topologically regular
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trajectories are absolutely stable under the action of the “quasiperiodic group”
for the generic V§T/(r) and can just “crawl” in the plane for the continuous
action of such transformations.

We take the first interference picture (m1,a1) and shift continuously the
interference fringes in the direction orthogonal to 77 to the distance a1 keeping
two other pictures unchanged. At the end we will have the same potentials
V(z,y) and V5T (z,y) due to the periodicity of the first interference picture
with period a;. Let us fix now some energy level ¢ € (¢1(B),e2(B)) and look at
the evolution of nonsingular open trajectories (for V5 (x, y)) while making our
transformation. We know that we should have the parallel open trajectories
in the plane each time and the initial picture should coincide with the final
according to the construction. The form of trajectories can change during the
process but their mean direction will be the same according to Theorem 4
(“topological resonance”).

We can then claim that every open trajectory will be “shifted” to another
open trajectory of the same picture by our continuous transformation. It is
not difficult to prove that all the trajectories will then be shifted by the same
number of positions ny (positive or negative), which depends on the potential
Vst (z,y) (Fig. 2.13).

The number n; is always even since all the trajectories appear by pairs
with the opposite drift directions.

Let us now do the same with the second and the third sets of the inter-
ference fringes and get an integer triple (nq,ns,ng), which is a topological
characteristic of potential Vi (z,y) (the “positive” direction of the numera-
tion of trajectories should be the same for all these transformations).

The triple (n1,n2,n3) can be represented as:

(n1,n9,n3) = M (mqy,ma,ms3),

where M € Z and (mq,mg, m3) is the indivisible integer triple.

N4
—— - +
~ +

- N4 - _

+ -— - — '

1 ! r

- . = -—

- — ﬁ.

+ + -
— +

Fig. 2.13. The shift of “topologically regular” trajectories by a continuous trans-
formation generated by the special path in the “quasiperiodic group”
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Fig. 2.14. The functions X (r), Y (r), and Z(r) on the plane

The numbers (mq,mz,m3) (defined up to the common sign) play now
the role of “topological numbers” for this situation. For direct experimental
observation of these numbers, the connection between these numbers and
the mean direction of the “topologically regular” trajectories can play an
important role. This connection is described as follows.

Let us draw three straight lines ¢, g2, ¢3 with the directions 11, 72,73
(Fig. 2.12) and choose the “positive” and “negative” half-planes for every line
¢; on the plane. Let us now consider three linear functions X (r), Y(r), Z(r)
on the plane that are the distances from the point 7 to the lines g1, g2, g3 with
the signs “+” or “—” depending on the half-plane for the corresponding line
qi (Fig.2.14). Let us choose here the signs “+” or “—” such that the gradients
of X(r), Y(r), Z(r) coincide with directions of shifts of the corresponding
interference pictures in the definition of (my,msg, ms).

Theorem 5 [35]. Consider the functions
X'(r)=X(r)/ar, Y'(r)=Y(r)/az, Z'(r)=Z(r)/as

in R%. The mean direction of the reqular open trajectories is given by the linear
equation:
mi X' (z,y) + maY'(z,y) + msZ'(z,y) = 0, (2.5)

where (my,ma, m3) is the indivisible integer triple introduced earlier.

Let us now describe the situation with four independent sets of interference
fringes in the plane (see also [35]). In general we get here the quasiperiodic
potentials V (r), V5 (r) with four quasiperiods. The situation in this case is
more complicated than in the case N = 3 and no general classification of
open trajectories exists at the time. At the moment only the theorem anal-
ogous to Zorich result can be formulated in this situation [32]. According to
the Novikov theorem we can claim that the “small perturbations” of purely
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periodic potentials having four quasiperiods have the “topologically regular”
level curves like in the previous case.

The purely periodic potentials V (r) give the same dense set in the space
of parameters 71, 12, 13, N4, a1, az, as, aq and can be found in any small open
region of this space. The Novikov theorem claims then that every potential
of this kind can be surrounded by the “small open ball” in the space of pa-
rameters 71, 72, 13, 74, 41, a2, a3, a4 where the open level curves will always
demonstrate the “topologically regular” behavior. The set of potentials thus
obtained has finite measure among all potentials and the “topologically reg-
ular” open trajectories can be found with finite probability also in this case.
However, we do not claim here that the chaotic behavior has measure 0 for
four quasiperiods and moreover we also expect the nonzero probability for the
chaotic trajectories in this more complicated case.

The topologically regular cases demonstrate here the same “regularity
properties” as in the previous case including the “Topological numbers.” Thus,
we can introduce in the same way the action of the quasiperiodic group on the
space of potentials with four quasiperiods and define in the same way the four
tuples (mq,mg, m3,my) of integer numbers characterizing the topologically
regular cases in this situation.

Also, the analogous theorem about mean directions of the regular trajec-
tories can be formulated in this case. Namely, if we introduce the functions
X(7),Y(r), Z(r), W(r) in the same way as for the case of three quasiperiods
(above) and the corresponding functions

X'(r)=X(r)/ar, ... ,W'(r)=W(r)/aa,

we can write the equation for the mean direction of open trajectories on the
plane in the form:

mi X' (r) +maY'(r) + msZ'(r) + mgW'(r) = 0.

The numbers (mq,ma, ms, my) are stable with respect to the small vari-
ations of 11, 12, N3, N4, a1, aa, ag, as (and the intensities of the interference
pictures Iy, I, I3, I;) and correspond again to some “stability zones” in this
space of parameters.

A brief mention is now made about the limit of Novikov problem for large
values of N. The following problem can be formulated as:

Give a description of global geometry of the open level curves of quasiperi-
odic function V(r) in the limit of large numbers of quasiperiods.

We can claim that the open level curves should exist here also in the con-
nected energy interval [e1, €3] on the energy scale, which can degenerate just
to one point €. We expect that the “topologically regular” open trajecto-
ries can also exist in this case. However the probability of “chaotic behavior”
should increase for the cases of large N, which is closer now to random po-
tential situation. The corresponding behavior can be considered then as the

® The proof given in [24] for the case of 3 quasiperiods works actually for any N.
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“percolation problem” in special models of random potentials given by quasi-
periodic approximations. Certainly, this model can be quite different from the
others. Nevertheless, we expect a similar behavior of the chaotic trajectories
for rather big IV also in this rather special model. This area, however, is still
under investigation.

References

OOt WD

15.
16.
17.
18.
19.
20.

21.
22.

23.

24.

25.

26.

Lifshitz, I.M., Azbel, M.Ya., Kaganov, M.I.: Sov. Phys. JETP 4, 41 (1957)
Lifshitz, I.M., Peschansky, V.G.: Sov. Phys. JETP 8, 875 (1959)

Lifshitz, I.M., Peschansky, V.G.: Sov. Phys. JETP 11, 137 (1960)

Alexeevsky, N.E., Gaidukov, Yu.P.: Sov. Phys. JETP 8, 383 (1959)
Alexeevsky, N.E., Gaidukov, Yu.P.: Sov. Phys. JETP 9, 311(1959)
Alexeevsky, N.E., Gaidukov, Yu.P.: I.M.Lifshitz, V.G.Peschansky. Sov. Phys.
JETP 12:5, 837 (1960)

Alexeevsky, N.E., Gaidukov, Yu.P.: Sov. Phys. JETP 10, 481 (1960)

. Gaidukov, Yu.P.: Sov. Phys. JETP 10, 913 (1960)

. Alexeevsky, N.E., Gaidukov, Yu.P.: Sov. Phys. JETP 14(2), 256 (1962)
10.
11.
12.
13.
14.

Alexeevsky, N.E., Gaidukov, Yu.P.: Sov. Phys. JETP 15(1), 49 (1962)
Alexeevsky, N.E., Gaidukov, Yu.P.: Sov. Phys. JETP 16(6), 1481 (1963)
Lifshitz, I.M., Kaganov, M.I.: Sov. Phys. Usp. 2, 831 (1960)

Lifshitz, I.M., Kaganov, M.I.: Sov. Phys. Usp. 5, 411 (1962)

Lifshitz, .M., Azbel, M.Ya., Kaganov, M.I.: Electron Theory of Metals. Moscow,
Nauka (1971) (Translated: Consultants Bureau, New York, 1973)

Abrikosov, A.A.: Fundamentals of the Theory of Metals. “Nauka”, Moscow
(1987) (Translated: North-Holland, Amsterdam, 1998)

Novikov, S.P.: Russian Math. Surveys 37, 1 (1982)

Zorich, A.V.: Russian Math. Surveys 39, 287 (1984)

Dynnikov, I.A.: Russian Math. Surveys 57, 172 (1992)

Dynnikov, I.A.: Russian Math. Surveys 58 (1993)

Dynnikov, I.A.: “A proof of Novikov’s conjecture on semiclassical motion of
electron.” Math. Notes 53:5, 495 (1993)

Novikov, S.P.: Proc. Steklov Inst. Math. 1 (1986)

Novikov, S.P.: “Quasiperiodic structures in topology”. Proc. Conference “Topo-
logical Methods in Mathematics”, dedicated to the 60th birthday of J.Milnor,
June 1522, S.U.N.Y. Stony Brook, 1991. Publish of Perish, Houston, TX, pp.
223-233 (1993)

Novikov, S.P.: Proc. Conf. of Geometry Tel Aviv University (1995) December
15-26, 1993

Dynnikov, I.A.: PhD Theses, Moscow State University, Dept. of Math. and
Mech., Scientific Supervisor — S.P. Novikov, Moscow (1996)

Leo, R.D.: PhD Theses. University of Maryland. Department of Math., Scientific
Supervisor — S.P. Novikov, College Park, MD 20742, USA

Dynnikov, I.A.: “Semiclassical motion of the electron. A proof of the Novikov
conjecture in general position and counterexamples.” Editors: V.M.Buchstaber,
S.P.Novikov. Advances in the Mathematical Sciences. Solitons, Geometry, and
Topology: On the Crossroad. American Mathematical Society Translations, Se-
ries 2, Vol. 179 (1997)



27.
28.
29.
30.

31.
32.
33.
34.
35.
36.
37.
38.

39.

40.

41.

42.
43.

44.

45.
46.
47.
48.

49.
50.

51.
52.

2 Topology, Quasiperiodic Functions,and the Transport Phenomena 59

Dynnikov, I.A.: Russian Math. Surveys 54, 21 (1999)

Novikov, S.P., Maltsev, A.Ya.: ZhETP Lett. 63, 855 (1996)

Novikov, S.P., Maltsev, A.Ya.: Physics-Uspekhi 41(3), 231 (1998)

Maltsev, A.Ya., Novikov, S.P.: ArXiv: math-ph/0301033, Bulletin of Braz. Math.
Soc., New Series 34 (1), 171-210 (2003)

Maltsev, A.Ya., Novikov, S.P.: ArXiv: cond-mat/0304471

Novikov, S.P.: Russian Math. Surveys 54 (3), 1031 (1999)

Beenakker, C.W.J.: Phys. Rev. Lett. 62, 2020 (1989)

Grant, D.E., Long, A.R., Davies, J.H.: Phys. Rev. B 61 (13), 127 (2000)
Maltsev, A.Ya.: ArXiv: cond-mat/0302014

Tsarev, S.P.: Private communication. (1992-93)

Maltsev, A.Ya.: ZhETP 85, 934 (1997)

Weiss, D., Klitzing, K.V., Ploog, K., Weimann, G.: Europhys. Lett. 8 (2), 179
(1989)

Alves, E.S., Beton, P.H., Henini, M.: L. Eaves, P.C. Main, O.H. Hughes, G.A.
Toombs, S.P. Beaumont, C.D.W. Wilkinson. J. Phys. Condens. Matter 1, 8257
(1989)

Ismail, K., Antoniadis, D.A., Smith, H.I., Liu, C.T.: K. Nakamura, D.C. Tsui.
J. Vac. Sci. Technol. B 7, 2000 (1989)

Ismail, K., Smith IIT, T.P., Masselink, W.T., Smith, H.I.: Appl. Phys. Lett. 55,
2766 (1989)

Fang, H., Stiles, P.J.: Phys. Rev. B 41 (10), 171 (1990)

Toriumi, A., Ismail, K., Burkhardt, M., Antoniadis, D.A., Smith, H.I.: Phys.
Rev. B 41 (12), 346 (1990)

Puechner, R.A., Ma, J., Mezenner, R., Liu, W.-P., Kriman, A.M., Maracas,
G.N., Bernstein, G., Ferry, D.K., Chu, P. Wieder, H.H., Newman, P.: Surf. Sci.
228, 520 (1990)

Weiss, D., Klitzing, K.V., Ploog, K.: and G. Weimann, Surf. Sci. 229, 88 (1990)
Gerhardts, R.R., Weiss, D., Wulf, U.: Phys. Rev. B 43, 5192 (1991)

Davies, J.H., Larkin, I.A.: Phys. Rev. B 49, 4800 (1994)

Larkin, I.A., Davies, J.H., Long, A.R., Cusco, R.: Phys. Rev. B 56 (15), 242
(1997)

Davies, J.H., Petticrew, D.E., Long, A.R.: Phys. Rev. B 58 (10), 789 (1998)
Dynnikov, [.A.: “Surfaces in 3-Torus: Geometry of plane sections.” Proc.
ECM2 (Budapest, July 1996). Progress in Mathematics, Vol. 168, pp. 162-177,
Birkhauser, Basel, 1998

Dynnikov, I.A., Maltsev, A.Ya.: JETP 85, 205 (1997)

Zorich, A.V.: Proc. “Geometric Study of Foliations” /ed. T. Mizutani et al.
World Scientific, Singapore: 479-498 (1994) (Tokyo, November 1993)



3

The Role of Topology in Growth
and Agglomeration

R. Kerner

Summary. We describe several models of growth of atomic structures, mostly by
agglomeration from gas or from liquid. In many physical situations, like the forma-
tion of fullerenes, carbon nanotubes and onions, as well as in growth of quasicrystals
or glass formation, a very important role is played by topology of local configura-
tions. This chapter shows how some physical properties of certain forms of condensed
matter can be derived from simple topological and geometrical considerations con-
cerning the structure of local configuration space of atoms and molecules.

3.1 Introduction

The role of topology in physics of condensed matter has been steadily growing
since the second half of the twentieth century. It is often essential in the
analysis of geometrical structures, which enables us to derive subsequently
many physical properties of various systems. Like in classical problems of
mechanics, the analysis is divided into two fundamental parts: first kinematics,
which defines the space of possible nonredundant motions of the system under
investigation, second dynamics, which defines the relationships between the
forces and the motions they provoke. In the case of crystalline lattices, the
task is greatly simplified, because the kinematical part is largely constrained:
once the lattice structure is settled, each atom has a well-defined phase space
in which it can move, and its motions can be described by harmonic (or
anharmonic) oscillator regime. Also the number of closest and next-to-the
closest neighbors is strictly the same for the same atoms (it may vary from
one kind of atom to another in many-component lattices, but the complication
is not very great). This enables one to analyze mutual forces and interactions
between the neighbors, and many excellent models, with the Ising model and
its derivatives as best examples, have been constructed and have brought a
very good understanding of various physical phenomena in solids.

The situation is radically different in amorphous solids and glasses. Here
the number of neighbors is never well defined — only the averages can be taken
as reliable parameters, whereas local situations of single atoms represent an
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infinitely rich variety. Moreover, in order to foresee the local configuration that
will represent (a local) free energy minimum, we must know an approximate
expression for free energy there; but in order to define it, we should know with
how many neighbors the given atom interacts, thus making the whole problem
hopelessly intricate. The situation has some similarity to general relativity, in
which the behavior of matter defines the geometry of the space time, but in
order to describe the behavior of matter correctly (i.e., in order to solve the
equations of motion), one has to know first what is the underlying geometry
of space time. It is well known that except for very special cases, one can
get only approximate solutions, starting from simplified situations in which
one imposes the geometry first, then solves the (approximate) equations of
motion, then modifies the geometry solving Einstein field equations with the
matter source behavior obtained in previous stage, and so on.

As in any situation when a direct solution is not at hand, we must content
ourselves with some sort of approximations. In the case of amorphous networks
this means that we should abandon the exact description in terms of well-
defined positions of individual atoms, introducing statistical description in
terms of average values of the most important data characterizing typical
local situations in which atoms can be found. The probabilities of finding
particular short-range and medium-range configurations should depend on
the energy stored in bonds and atoms involved, and also on the temperature
in which the growth is occurs, through corresponding Boltzmann factors.

In this chapter we present several examples of this approach, leading to
fairly good physical predictions concerning fullerenes and structural glasses.
We start by recalling simple and powerful topological laws ruling two-
dimensional networks. Euler’s theorem which relates between them the num-
bers of summits, edges, and faces in convex polyhedra, provides a very strong
constraint on any networks, in the plane, or on a sphere. The connection with
local curvature gives a hint of the energy barriers resulting from purely topo-
logical properties of local configurations in networks. Applying these simple
ideas, and generalizing them to three-dimensional cases, we are able to set
forth several models of stochastic agglomeration and growth of random or
self-organized networks leading to fairly good physical predictions concern-
ing, among others, fullerenes and structural glasses.

3.2 Topology and Geometry of Polygon Tilings
and Networks

Among all possible tilings of the Euclidean plane, we consider only the very
simple case of three-coordinate networks with constant edge length. These
tilings are formed exclusively of equilateral polygons; at each vertex, three
polygons meet. It results from Euler’s formula that the average number of
sides of a polygon it this network must be equal to 6:

1 1 1

AL (3.1)



3 The Role of Topology in Growth and Agglomeration 63

This simple and important result is derived as a limiting case of Euler’s for-
mula relating the number of summits, edges, and faces of any convex polyhe-
dron topologically equivalent to a sphere:

S—E+F=2, (3.2)

where S is the number of summits, £ the number of edges, and F' the number
of faces. The right-hand side of this equation is called Euler’s characteristic
of a sphere. The same number for a torus is 0, and for a “pretzel” with two
holes, it would be —2.

The proof of Euler’s formula is well known and based on induction. More
complicated polyhedra can always be produced from simpler ones by per-
forming several elementary operations, like slicing one of the summits, thus
creating a new face and new edges and summits, or adding a new summit or
an edge by dividing one of the faces into two. In each of these cases the result
of formula (3.2) remains exactly the same. For example, if we divide one of
the faces into two, joining with a straight line (new edge) two of its summits,
then the number of summits remains unchanged (S — S, the number of edges
E grows by 1, but so does the number of faces F, and S — FE + F remains
constant). If we slice one of the summits at which M edges meet, we create a
new face with M new summits (so the number of summits grows by M — 1,
because the original one has disappeared), and the number of faces has grown
by 1; finally, the number of edges has grown by M, all the M edges of the
newly created face. Again, the expression S — F + F remains equal to 2, as
before.

In general, a two-dimensional sphere can be approached by a polyhedron
inscribed in it, containing a certain number of k-sided faces Fj, with & =
3,4, . .NP* (N denoting the faces (polygons) of maximal number of sides;
in common cases N*** is rarely higher than 8); with S, the number of m-
coordinate summits (vertices), also with m = 3,4, ... N™**_ The total number
of faces F' and the total number of summits S is given by

N}nax max

F= Z Fk, S = i Sm- (33)
k=3 m=3

Let us define the average coordinate number and the average coordination
number as follows:

Nmax Nmax
1 f 1°&
(Ny¢) fa ,;:3 k Fy, (Ne) 5 mEZS m .Sy, (3.4)

The number of edges can be computed in two different ways: either we
count m times all the m-coordinate summits (vertices), Y S,,, and each edge
will be counted twice, because it always belongs simultaneously to two sum-
mits; or we can count k times all the k-sided faces, and again, each edge will
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be counted twice, because it is always shared by two adjacent faces. Therefore
we get:
2F =Y kFy =) mSy, (3.5)

F(Ns)=S(N,) =2E. (3.6)

and we can write

This relation enables us to express Euler’s formula in terms of only one vari-
able, say F, substituting

_(Ny) 1
S = A F, E=g(NpF.

thus obtaining

<Nf>—1<Nf>+1 F=X, (3.7)

S—E+F=|5h -3

where X is the Euler—Poincaré characteristic determining the topology of the
underlying surface, 2 for a sphere, 0 for a torus, —2 for a “pretzel” with two
holes, etc.; in general, X = 2 — h, with h equal to the number of holes. A
more symmetric form of formula (3.7) can be obtained dividing its both sides
by (Nyg) F:

1 1 1 X

AR Ry (38)

or, by virtue of the identity (3.6),

1 11 X
o T T2 TS

(3.9)

We have changed the order of the right-hand side expression on purpose: now
it is clear that both formulae prove the existence of duality between the faces
(F) and summits (S). Any solution of (3.8) generates a solution of (3.9) by
interchanging the numbers F' and S, and correspondingly, (Ny) with (N.).
The two corresponding solutions are called dual tilings of the sphere. In the
case of homogeneous tilings, with all summits, edges, and faces identical, one
can replace the averages by exact numbers, which become all integers. The
solutions have been known since antiquity and are called platonic reqular
polyhedra (Fig.3.1). These are the following integer solutions of (3.8) (with
X =2):

e (3.10)

N, =3, Ny =3, F =4 the tetrahedron,
N, =3, Ny =4, F =6 the cube,
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Tetrahedron ’c’
Dodecahedron

Octahedron Icosahedron

Fig. 3.1. The five Platonic polyhedra

N, =4, Ny =3, F =8 the octahedron,
N, =3, Ny =5, F =12 the dodecahedron,
N, =5, Ny =3, F =20 the icosahedron.

According to this definition, the cube and the octahedron are dual to each
other, as is the dodecahedron with the icosahedron; the tetrahedron is dual to
itself. Of course, by admitting more than one kind of faces and more than one
kind of summits (vortices), one can create infinitely many convex polyhedra,
respecting Euler’s formula [1].

A similar homogeneous tiling of a torus with regular identical polygons
should verify relation (3.10) with X = 0. Here are the only three possible
solutions:

N, =3, Ny =6, three-coordinate hexagonal lattice,

N, =6, Ny =3, six-coordinate triangular lattice,
N, =4, Ny =4, four-coordinate square lattice.

It is worthwhile to note at this point that when the number of faces be-
comes very large, i.e., when F' — 0o, be it on a sphere or on another surface
with more complicated topology, formula (3.10) will lead to the same solution
as for the torus, because the last term on the right-hand side becomes neg-
ligible. Therefore the homogeneous regular tilings of the torus are the same
as those of any manifold topologically equivalent with the Euclidean plane.
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On the torus, the number of faces F' does not appear in the formula, and is
therefore arbitrary; on the Euclidean plane F' is simply infinite.

This result is of a purely topological character; however, it also remains
valid for metric (Euclidean) geometry. The important corollary to the last
result can be drawn from the assumption that all polygons are equilateral
and equiangular. Then we see that the only infinite homogeneous tilings of
the plane must be composed of perfect squares, triangles, or hexagons, and
all are three coordinate. By the same token we prove another important re-
sult, namely that the only angles that can be found in crystalline lattices are
60°, 90°, and 120°. What is amazing is that this result remains valid also
in three dimensions, although there is a new free parameter, the number of
faces meeting at one edge (which in two dimensions is fixed and always equal
to 2) [2].

Combining topology with simple properties of Euclidean geometry enables
one to find all possible homogeneous plane tilings made of perfect (i.e., equi-
lateral and equiangular) polygons. A network is called homogeneous if all its
vertices are identical; but now different equilateral polygons may meet at each
of the vertices [3].

Let us start with three-coordinate lattices. At each vertex, three perfect
polygons meet; if their number of sides is k1, ko, and k3, the sum of their re-
spective angles must be equal to 2r. The angles being that of perfect polygons,
this condition leads to the equation

—2)m (ka2 (ks —2)T_ (3.11)
ki ko ks

This equation has only four solutions in integers k1, ko, k3:
(6,6,6), (4,8,8), (3,12,12), (4,6,12).

Similarly, one can easily find that there exist only four homogeneous perfect
polygon tilings with coordination number N, = 4. They satisfy the condition
ki—2)m ko —2)m ks —2)m ky — 2
(kr=2)n (2= (ks —2)m (ks —2)

kl k‘g k/’3 k4

—2m (3.12)

The corresponding tilings are displayed in Fig.3.2. It is remarkable that de-
spite the variety of polygon types and their relative display, the overall symme-
try of resulting lattices always falls into the well-known crystalline symmetries:
cubic, hexagonal, or rhombohedric.

The validity of Euler’s formula for the plane (3.1) can also be checked
by another method—introducing a very useful concept of relative frequencies
of polygons of a given number of sides. Consider an arbitrary planar net-
work formed with polygons of various types, not necessarily equiangular (in
fact, they may also be nonequilateral). Let N be the maximal number of
faces in polygons encountered in the network, and let Py denote the relative
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Fig. 3.2. Four three-coordinate homogeneous perfect planar tilings

frequency of occurence of k-sided polygons in the network. By definition,
N

Z P, = 1. (3.13)
k=3

With the variables Py denoting the probabilities of finding a k-sided polygon
among all the polygons in the network, the normalization condition (3.13)
leaves only Npex—1 independent variables. In infinite planar networks, these
are still subjected to another constraint resulting from Euler’s formula:

s
C i _2(Ne)
];3 kP, =1=(Ng) = AN (3.14)

which is just another form of relationship (3.1). Looking at Figs. 3.3 and 3.4,
we can easily compute the probabilities and check formula (3.14), in which
(N.) can be replaced by N, because we consider homogeneous tilings. The
case of pure hexagonal lattice is obvious, because (Ny) = Ny =6, P = 1,
N, = 3, and the formula is obviously satisfied. For more complicated networks,
we have for the three-coordinate polygon tiling (4,8,8), Py = % and Py = %;
again, (Ny) = 4Py +8Ps = 5 + 3 = 6. For the tiling with vertices (4,6, 12)
we have P, = %, Ps = %, and Pjp = %; again, as it easy to check (Ny) = 6.
If a three-coordinate lattice on a plane is formed exclusively with three
types of polygons—pentagons, hexagons, and heptagons—then the statistics
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of these polygons obeys one simple rule, which states that P; = P;, whereas
Ps remains as the only free parameter. The proof is obvious: as we know, in
an infinite planar lattice, when N, = 3, we must have (N;) = 6. In the case
considered here, this means that

5Ps+6Ps+7P; =6. (3.15)

But here P; = 1 — Ps — P7, which after substitution leads directly to P; —
Ps = 0.

One can arrive at the same conclusion in a more qualitative manner. We
already know that a three-coordinate lattice formed exclusively by perfect
hexagons is an admissible infinite tiling of Euclidean plane. A pentagon or
a heptagon may be inserted in such a lattice, with their angles departing
from the perfect ones (and with a slight deformation of angles of the adjacent
hexagons). The sum of the angles in a pentagon is equal to 3n = 540°, and
divided by 5 gives the average of %’T = 108°, the angle of perfect pentagon. This
is 12° less than the 120° of a perfect hexagon. When found in a common vertex
in which three polygons of the network meet, it creates an angular deficit of
12°, which can be geometrically interpreted as local positive curvature. Of
course on a plane it is impossible, and the angles cannot keep their “perfect”
values—the polygons have to adapt themselves in order to make the sum of
three angles be equal to 2r. In a heptagon, the sum of the angles is equal to
51 = 900°, thus creating an angular ezcess at each of the seven angles equal
to % — %7 equivalent with creating negative local curvature in a vertex where
a heptagon meets two hexagons. Each heptagon contributes to seven vertices,
whereas each pentagon is shared by five vertices. It is easy to see that the sums
of local angular excesses and angular deficits created by these two polygons
mutually cancel themselves:

ST 4w 3t 4xn
= _)=o. 1
7><<7 6>+5><(5 6> 0 (3.16)

It can be said that inserting an equal amount of pentagons and heptagons
into a regular hexagonal lattice, which can also be viewed as creating local
defects in a perfect tiling, does not alter globally the “flat” topology of the
plane. This means that a plane can be covered not only by hexagons form-
ing a well-known regular pattern, but also with pentagons and heptagons,
provided that their numbers are strictly equal. It can be done in an ordered
manner, thus creating one of the admitted crystalline symmetries, or in a
chaotic way, leading to an amorphous (aperiodic) structure, like shown in
Fig. 3.3.

In what follows, we use these topological and geometrical effects in a model
describing actual growth and formation of real atomic structures.
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()

Fig. 3.3. Three possible planar lattices made of five-sided and seven-sided equilat-
eral polygons: (a) and (b) display crystalline symmetry, (c) is a random lattice.

3.3 Dynamical Model of Polygon Agglomeration
in Two Dimensions

An important category of crystalline or amorphous atomic structures have a
pronounced one-dimensional or two-dimensional character. Physical proper-
ties of many polymers and liquid crystals (especially the so-called nematics)
can be explained successfully with the well-known one-dimensional models, of
which the Ising model is most celebrated. Two-dimensional structures are also
common in many physical systems, in particular in high-temperature supra-
conductivity. Monoatomic and monomolecular layers play a growing role in
modern technology. They are often obtained by special growth and agglomer-
ation techniques, and the knowledge of the geometry of local configurations as
well as the energy landscape resulting from the interactions between the clos-
est and next-to-closest neighbors is essential for understanding the resulting
structures [4].

The effects certain combinations of polygons provoke by creating local cur-
vature, positive or negative, must have an important influence on the energy
stored in the network. One may express the same idea by stating that cre-
ating local curvature must cost some extra effort as compared with totally
flat lattice tiling a plane. The energy costs would be different, of course, if
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the support on which the network is created were no more flat: then it might
happen that a locally curved two-dimensional network is better adapted and
costs less energy than a flat one.

Let us consider the simplest case in two dimensions, with a three-coordinate
network consisting exclusively of five-sided, six-sided, and seven-sided equilat-
eral polygons. As we know, on the Euclidean plane tri-coordinate and purely
hexagonal lattice displays perfect translational symmetry and can be extended
to infinity. In contrast, pentagons and heptagons found in such a lattice rep-
resent local defects; it is therefore logical to assume that their presence in the
otherwise hexagonal lattice creates local stress equivalent to certain energy
cost. Whatever its value, we know that in order to be able to produce an
infinite tiling of a plane, the total number of pentagons must be equal to that
of heptagons.

Now, if someone wishes to produce a tiling of the plane using completely at
random these three types of equilateral polygons, the numbers of pentagons
and heptagons would asymptotically tend to the same limit, with certain
(arbitrary) amount of hexagons, the only relevant global characterization of
this random network. However, if one wishes to analyze the network in more
detail, one should look for correlations between the closest polygons. As can
be easily seen in Fig. 3.3, with the same global probabilities P; = P; = % one
can produce quite different results. The difference can be immediately felt if
one considers the statistics of doublets, i.e., pairs of edge-sharing polygons.
One finds easily that in the lattice (a) one has Pss5 = 8.33%, Ps7 = 66%, 67%,
and Pr; = 25%, whereas in the lattice (b) one has Ps5 = 25%, P57 = 45%,
and Pr; = 30% . Of course, in this particular example there are no doublets
containing a hexagon, because here F5 = 0. In a completely random lattice
the six probabilities of doublets would behave as the corresponding binomial
distribution:

(Ps + Ps + P;)? = (P2 +2PsPs + 2PsP; + P2 + 2PsP; + P?) =1, (3.17)
which can be interpreted as a doublet frequency distribution:

P55 = P2, Psg=2PsPs, Ps;=2P5P;,
Psg = P2, Psy =2PsP;, Prp = PZ. (3.18)

By construction, these probabilities are normalized to 1.

But if the real energy barriers exist for creation of such pairs, they will
alter this ideally random distribution of doublets. Let us evaluate such a
distribution, assuming that a real network is produced at finite temperature
T. Following [5], let us consider the simplest linear approximation, in which the
energy cost of creating a defect is the same for a pentagon as for a heptagon,
denoted by AFE in standard units k7", where k is Boltzmann’s constant and
T the absolute temperature in K (kelvin). We also assume that these energies
add up following the curvature effect created by two neighboring defects. This
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means that two edge-sharing pentagons must cost the energy 2 AE, two edge-
sharing heptagons also cost 2AFE, but a pentagon sharing an edge with a
heptagon cancels its curvatures, and the corresponding energy is roughly the
same as for two hexagons, i.e., 0 as compared with the “ideal” hexagonal
lattice, as for any two edge-sharing hexagons.

If a random three-coordinate network is created by agglomeration at given
constant temperature T, the probability distribution of five-sided, six-sided
and seven-sided polygons will be affected by the energy barriers related to
the local curvature effect they produce. Let us suppose that the probability
of creation of a single polygon of given type is determined by chemical com-
position, temperature, etc.; let us consider these probabilities as the input of
our model of agglomeration of polygons, and let us denote them by

P P and PV,

By definition, Péo) + PG(O) + P7(0) = 1, so that there are only two independent
parameters, e.g., Ps and Ps whose domain of variation is the triangle (simplex)
on the P5, P;r plane. The extremal points of the triangle correspond to “pure”
configurations with Ps = 1,Ps = P, =0, 0or P, = 1,Ps = Ps =0, or P5 =
1, Ps = P; = 0. Forming pairs of edge-sharing polygons may be considered
as a first step toward agglomeration; this is why we denote the resulting
probability distribution of doublets by PS with i,k = 5,6,7.

Let us incorporate the energy barriers resulting from the corresponding
stresses provoked by local (positive or negative) curvatures into the probabli-
ties of the corresponding doublets. We assume that the probability of a 5 — 6

couple, which represents one standard departure from flatness, should contain
__AFE
a Boltzmann factor e *87 ; the same should be true for the probability of the

doublet Pé;) . The doublets 55 and 77 should be affected by Boltzmann factor

_20E
e *8T | because they represent two standard deviations from flatness; finally,

the doublets 66 and 57 should be considered as representing zero-energy cost,
therefore the corresponding Boltzmann factor reduces to 1. Let us introduce
the shortened notation: ,CAB—E; = «. With Boltzmann factors incorporated, the
probabilities must be normalized to 1, so that now they should be computed
as follows:

1 1 0 _2a 1 2 0 5(0) —a 1 2 _0) (0
P - L - R0 p - 2 pOp,
W _ Lm0 p0) 2 50p0) —a p1) L 50082 20
P66:§(P6 )5P67:§P6 Pr7e 7P7726(P7 )“e , (3.19)

where the normalizing factor @ is given by:

Q=P")2e 2 4 2PV P e + 2 PV PV 1+ () +
+2P PV e + (PV)2e 2. (3.20)
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Now we can calculate the distribution of five-sided, six-sided and seven-sided
polygons in all spontaneously agglomerated doublets. The corresponding set
of probabilities is denoted by P,El) and is computed as follows:

1 1 1 1 1 1
PO =L PP+ PO+ PP): PO = (P + PP +2PY); (3:21)

T2
and obviously,

2

PO = (P 1o PR + P =1 PV - P

In a real agglomeration process, at least at its initial stage, one can observe a
mixture of single polygons and freshly created doublets; later on also triplets,
quadruplets of agglomerated polygons are created, too, but at the beginning,
only single polygons (“singlets”) and edge-sharing pairs (“doublets”) domi-
nate. Suppose that at a certain initial stage of agglomeration one has, in a unit
volume, N — m singlets and m doublets. The average probability of finding a
k-sided polygon in such sample will be

Pu(s)=(1—-s) P +sPY, (3.22)

where s = m/N is a natural parameter describing the progress of agglom-
eration process at its initial stage (reduced to doublet creation only). The
derivative of Pj(s) is therefore

d Py _ P(l)
ds k
and is independent of s in this approximation. Of course, only two out of these

three differential equations are independent.
The above differential system, reduced to two ordinary differential equa-

- pY (3.23)

tions, can be written explicitly as follows (we shall replace P,EO) by P for the
sake of simplicity):

dP5 1 1 1

ds  2Q [ 2P+ P+ P5(7)] -

dP7 1 1 1 1

& =30 [2137(7) +PY + Pé7)] — P (3.24)

The third equation is linearly dependent, because P = 1 — P5; — P7, so
that dPs/ds = —dPs/ds — dP7/ds.

The differential equations can be written in a more explicit manner, with
clear dependence on two independent variable Ps and Ps:

dpPs 1 Con
&~ 0 {21952 20 1 9Ps(1 — P5 — Pr)e* 4+ 2P Py — 2P5Q] ,
ar; 1

&~ 30 {2132 22 L 9P;(1 — Py — Py)e® + 2P5P; — 2P5Q] (3.25)
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with
Q = P2e 2* 4 2PsPse™* + 2P5P; + PZ + 2PsPre™® 4 PZe 2%,

where P6:1—P5—P7.
Finally, simplifying by 2 and putting forward common factors, we get:

ap; P

d85C;|:P5e2a+(1p5p7)ea+P7Q:|v

dP; P

de = 57 [P7e2a +(1=P5—Pr)e “+P; — Q] : (3.26)

Now it is quite easy to perform the analysis of phase trajectories of this
differential system displayed in Fig. 3.4.

First of all, we find out the position of singular points, corresponding to
constant solutions at which the two derivatives vanish simultaneously. There
are five such solutions, three of which are found at the summits of the simplex
of probabilities:

AZP7:1, P5:O, (PGZO), BZP6:1 (P5=P7:O),
C:Py=1, Pr=0, (Ps=0);

while the two remaining ones are:

1
D P5:P7:§ (Ps =0),
and the fifth one inside the triangle:
1 1 1—e™@
E: b=——— P=—— F=1-P—-—P=———.
5= 3 o—a 1T 3 aar 16 5 [ —
P
5 B
— -11C
R=1C R=1
1
D% D7
B B
o P=1 s h P=1 &
B=1 6 F=1 6

(@) (b)

Fig. 3.4. Two phase portaits of probability trajectories describing the agglomeration
process of five-sided, six-sided, and seven-sided polygons
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It is easy to check by linearization of (3.26) that A and C are repulsive singular
points, B and D are attractive singular points, while E is a saddle point. ( There
is another saddle point at infinity, the fact resulting also from Euler’s formula
for a sphere, but for the probabilities it has no physical meaning, of course.)

The points A, B, C, D keep their position steady independent of the value
of parameter « (therefore, independent of temperature, too), whereas the po-
sition of the saddle point E depends on the value of the parameter «, falling on
the attractive point D when o« — 0. Typical phase trajectories are displayed
in Fig.3.4. It is worthwhile to note that the two attractive points and the
saddle point are found on the line Ps; = P7, which satisfies Euler’s constraint
for three-coordinate lattices (3.1). The separatrix curve AEC divides the sim-
plex into two regions: on the right, the system is driven toward crystallization
(Ps = 1), whereas if the initial conditions happen to be on the left, the system
will prefer another attractive singular point corresponding to an amorphous
mixture of only pentagons and heptagons. Besides, in a more realistic model
taking into account second-order effects, the system can remain infinite time
in the vicinity of the metastable saddle point E.

This method has been developed and generalized to three dimensions
in [6-8]. It describes quite well the process of glass formation and enables
to compute certain interesting parameters of covalent network glasses, mostly
the chalcogenide glasses like Ge,Se(;_5) , AsySe(1_y), or alkali-boroxol glasses
(B203)(1—4)(NagO), [9,10]. in particular, the dependence of glass transition
temperature T, on the average coordination number of the network, and in-
directly, on its chemical composition [11,12]. Here we demonstrate an appli-
cation of this stochastic method for modeling of nucleation and growth of
fullerenes.

3.4 Application: How the Fullerene Molecules
are Formed

Fullerenes are a new form of pure carbon, first predicted, then discovered in
early 1980s of the last century (cf. [13,14]. The fullerene molecule is composed
of 60 carbon atoms, forming a perfect Archimedean polyhedron composed of
12 pentagon and 20 hexagon rings. Each pentagon is surrounded by hexagons,
while each hexagon shares three of its sides with pentagons, alternating with
three other sides adjacent to hexagons. It is easy to check how Euler’s formula
is satisfied in this case: we have 60 summits (i.e., carbon atoms), 30 edges (the
entire network is three coordinate, so that each atom is bonded with other
three, and each bond is shared by two atoms, so that the total number of
bonds (edges) is (3 x 60)/2 = 90, and the number of faces is 12 + 20 = 32).
Equation (3.1) then becomes 60 —90+ 32 = 2, as it should be. Modern soccer
balls are made of leather polygons following this scheme, with pentagons often
painted in black, and hexagons painted in white. We show a few examples of
these fancy carbon molecules in Fig. 3.5.
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Fig. 3.5. Examples of fullerene molecules: the Cgo, C7o, a nested fullerene Cgo (with
an La atom captured inside), and tubular fullerenes

Because these 32 polygons represent a simple covering of an Euclidean two-
dimensional sphere embedded in three-dimensional Euclidean space, the total
solid angle covered is equal to 4w = 720°. We know that the Euclidean plane
can be tiled entirely by a three-coordinate hexagonal lattice, with N, = 3
and Ny = 6. Each pentagon creates an angular deficit of 5 x 12° = 60°.
This is so because in a regular pentagon the angle is equal to 108° instead of
120° in a regular hexagon. Three hexagons meeting at one vortex give exactly
3 x 120° = 360°, like it should be on the plane. If we replace one of the three
hexagons by a pentagon, either the pentagon must undergo a deformation, or
else, if it is supposed to keep its perfect form, the whole structure will become
curved and will be possible only in three dimensions, out of the plane. The
measure of this local curvature is the deficit in angle, which with one angle of
the pentagon is equal to 12°; but each pentagon creates such a deficit in five
different vertices.

Now, if the total curvature has to attain 4w = 720°, it is easy to see
that 12 pentagons have to be inserted in a homogeneous hexagon lattice
in order to form a structure topologically equivalent to a sphere. The num-
ber of hexagons is in principle arbitrary. When there are no hexagons at all,
12 pentagons form one of the Platonic polyhedra, the perfect dodecahedron,
with 12 faces, 20 summits, and 30 edges (again, 20 — 30 + 12 = 2!). Its
dual polyhedron, with the same number of edges, but with NC/ = Ny and
N} = N, is the regular icosahedron, with 20 triangular faces and 12 five-
coordinate summits. The next regular structure with 12 polygons and extra
hexagons can be obtained from the icosahedron by slicing, in a very symmetric
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manner, all the summits, which will give rise to 12 pentagons, and transform
all the equilateral triangles into smaller hexagons. Such a polyhedron is called
an Archimedean regular body, and in this case coincides with the fullerene
structure.

The existence of Cgg molecules representing a new form of pure carbon
has been first conjectured by astronomers investigating the infrared spectra
of red giant stars. Later on, these molecules were obtained by synthesis from
carbon evaporating in a very hot electric arc between two graphite electrodes,
in closed space filled with helium under the pressure of 400 mbar, thus im-
itating the conditions in the outer atmosphere of an average red giant. The
soot that gathered at the bottom of the recipient contained as much as 10% of
fullerene molecules, which could be separated from the rest of carbon precip-
itate because they could be easily solved in benzene, and later on recovered
after its evaporation.

These ideas have been quite successfully applied to explain the growth of
fullerene molecules [14-16] in a model proposed recently in the series of papers
coauthored by Bennemann [17,18]. The model of nucleation and growth of
the fullerene Cgy molecules follows strictly the ideas of self-similarity and
converging algorithms exposed earlier.

We propose the following model of agglomeration processes leading to the
formation of fullerene molecules. These molecules are found in great abun-
dance in the soot falling from the electric arc discharge between two graphite
electrodes, at the temperature about 2,800°C, in helium atmosphere (acting
as a moderator) under the pressure of 0.4 atm. Each fullerene Cgp-molecule
contains 60 carbon atoms disposed of in rings, with 20 hexagons and 12 pen-
tagons arranged like in a soccer ball. Each pentagon is surrounded by hexagons
only, while each hexagon is surrounded alternatively by three pentagons and
three hexagons.

In the hot flame surrounding the electric arc one finds many carbon clus-
ters, the acetylene groups Cs, the molecules Cs, Cy4, etc. up to Cg benzene
rings, C19 naphthalene double rings, and even the C;5 molecules built up from
three rings, two hexagons, and one pentagon (see Fig. 3.6).

In an achieved fullerene molecule all the vertices are of the same type,
in which two hexagons and one pentagon meet together. Two pentagons can
never share an edge, nor can three hexagons share a common vertex. That is
why when a new ring is formed in one of the cavities of a C15 molecule by the
addition of a Cy or a C3 molecule abundant in the hot gas, out of four possible
stable configurations (excluding the formation of unstable seven-sided rings),
only two are appropriate for the consecutive fullerene formation, the other
two containing wrong combinations of polygons.

The same is true at each consecutive step of agglomeration, consisting in
the creation of a new polygon. Each time we get only half of configurations
that are proper for the fullerene building, the other half being lost because
it contains the wrong configurations, such as two neighboring pentagons, or
three hexagons sharing a common vortex. An example of two new polygons
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Fig. 3.6. Formation of a new polygon in a (6,5)-type cavity

formed in a cavity, one of which leading to a configuration that can lead to
formation of a fullerene molecule, another one leading to a prohibited (two
edge-sharing pentagons) configuration, is shown in Fig. 3.6.

Starting from the stage of 3-ring molecule Cy2, we need still 29 more rings
in order to complete a fullerene molecule with the total of 32 rings; but in
order to build all the remaining 29 rings, it is sufficient to complete only
about 22 or 23 polygons. It is obvious that when in such a closed structure
we already have 31 or 30 correct polygons in place, the remaining one or two
rings are also there; one can safely assume that this reasoning is still true at
the level of 26 or 27 completed rings, when only no more than 5 or 6 polygons
are missing.

This means that if at the beginning about 25% of carbon available in
the hot gas is contained in the Cio, Cy, and C3 molecules, the final yield of
fullerenes is given by the geometric progression with the ratio 1:2, which gives
the estimate

25% x (0.5)%3 ~ 1075,

This is more than seven orders of magnitude below the observed 10% yield.
Maintaining the idea that on average the yield of the fullerene-like molecules
at the subsequent agglomeration stages behaves as a geometric progression,
we can easily evaluate the ratio ¢ that leads to the observed final yield:

25% x ¢ ~10% = 0.1 = q ~ 0.961. (3.27)

In order to explain the experimental facts, we must assume that at each
agglomeration step the “proper,” i.e., fullerene-like configurations, are highly
preferred to the “wrong” ones. Their pure combinatorial factors being the
same, the only reasonable explanation could be given by the difference of
energies related to the respective polygon construction; these energies should
be contained in the corresponding Boltzmann factors as follows:

e~ ¢ : for a pentagon created between two hexagons;

e P : for a pentagon created between a pentagon and a hexagon;
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e~ : for a hexagon created between two hexagons;

e~ : for a hexagon created between a pentagon and a hexagon.

It is easy to compute the normalized probabilities of producing the “good”
clusters that are proper for the subsequent construction of Cgg after each
agglomeration step.

For example, at the stage of construction when the four-polygon molecules
are being formed, out of which only two are proper for fullerene formation,
their total probability is easily found to be

e + 2e™"
ec +2e M 4 e 4 2¢7F

This rational expression depends only on the ratios of the Boltzmann factors
involved; let us denote y = e~ (179 2 = ¢~ (=) and t = e~ (6=9); then the
above expression can be written as

1+ 2y

Fi=—7—7T7——.
14+2y+2t+2

Another interesting feature related to the self-similarity is the average ratio
of pentagons among all rings in the fullerene-like clusters. At the stage of
four-polygon clusters it is computed as follows:

e ¢ 1 2e7" e “+e™ 14y

1
T 2ec+2e + dec42e " e +2e 1 142y

Gy

We were able to compute these characteristic expressions up to the tenth
step of agglomeration, when the clusters made up from 11 polygons containing
28-30 carbon atoms, by obtaining two series of functions of three variables,
Y, z, and t, denoted by F,, and G,.

We need three independent equations in order to solve for (y, z,t). These
equations can be easily produced if we suppose that on average the yield at
each step is constant, and close to the evaluation we made shortly before, i.e.,
if we set

F,1/F, ~0.961.

But with the help of the second set of functions we can be more ambitious
and try to find the numerical value from the first principles. The functions Fj,
should behave as a geometrical sequence; so we require that

Fn+2/Fn+1 - Fn+1/Fn~

The functions G,, give the average ratio of pentagons in all fullerene-like
clusters containing n polygons. It is reasonable to suppose that at the very
early stages of agglomeration this ratio is very close to the ultimate limit, and
that the convergence is also very rapid, i.e., exponential.
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In the final product — a Cgp molecule — this ratio is equal to 3/8 =
0.375. It seems therefore reasonable to suppose that functions G, obey the
exponential law:

G = Gena (1 — ™).

Here too, we can eliminate the unknown characteristic exponent A and
the final value Genq = 0.375 by comparing several expressions with different
values of n, arriving at the following law of self-similarity:

Gn+2 - Gn—i—l _ Gn+1 - Gn
Gn+1 - Gn Gn - anl .

With two equations for F;, and one for GG,, constructed with n = 8,9, 10,
and 11 we have solved for y, z, and t:

y=0691, z=0122, and t=0.032

This leads to the constant average ratio Fj,11/F, = 0.957, which is very
close to what has been anticipated, and gives the final yield of about 9.5%,
which is also satisfactory.

For the obtained values of the parameters y, z, and ¢ the characteristic
exponent A is equal to 0.635, and the rates defined by G,;s are:

Gr =0.370, Gs=0.372, Gg=0.373, G1o = 0.3736,

which is fairly rapid, taking into account that without discriminating
Boltzmann factors the same ratios would behave as:

Gg = 0.3417, G7=0.3444, Gs = 0.3467, Gy = 0.3492, G1p = 0.3512, etc.

It is interesting to note that all the numerical values (the final yield of
Cgo molecules, the ratio of pentagons in the final product, and the values
of the Boltzmann factors) are obtained here by applying ezclusively the self-
similarity principle — quite a remarkable result.

Finally, knowing that the temperature around the arc at which the process
takes place is about 3,000 K, we find the energy differences:

Eg — E1 =0.104 eV, E3 — E1 = 0.588 eV, E4 — E1 = 0.965 eV,

which suits reasonably well our ideas about the forces needed to bend the
graphite network creating local curvature around one of the carbon atoms.

3.5 Onion Fullerenes and Carbon Tubes

Since the discovery of fullerenes, an impressive amount of new structures
made of pure carbon have been put into evidence and studied by many ex-
perimentalists [19,20] and theorists [20, 21]. These structures are supposed
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to give rise to many new materials with exciting physical properties that are
now intensely studied. Apparently, the most common structures besides the
fullerenes proper are carbon nanotubules and the so-called onion fullerenes,
which are composed of multiple layers forming most probably around a Cgg
fullerene nucleus.

Whatever the size of the subsequent layer, it must be composed of carbon
polygons, as the smallest Cgg fullerene molecule. If it contained exclusively
hexagons and pentagons, the number of the latter must always be 12, as
it follows from Euler’s theorem. It is quite easy to form bigger and bigger
symmetric molecules containing 12 pentagons and an appropriate number of
hexagons. These giant molecules will possess an icosahedral form, because they
can be formed out of 20 triangular flat structures made of certain number of
hexagons and three pentagons at the three summits. Some of them are shown
in Fig. 3.7.

When the triangles containing pieces of pure hexagonal lattice grow bigger,
they are closer and closer to flat surface. Therefore, big shells built with a
great number of hexagons and 12 pentagons, become more and more like
perfect icosahedrons. However, pictures obtained with electronic microscopy
show clearly that great onion fullerenes look like almost perfect spheres. This
means that their local curvature is almost constant, and close to the value
1/R, with R denoting the radius of spherical fullerene shell. The same is true
for the spherical caps of giant carbon tubes, which apparently do not display
any tendency to become like halves of corresponding icosahedrons [19].

But this is possible only if the structures contain not only hexagons and
pentagons, but heptagons as well. As we have shown earlier, even a flat tiling
can be achieved exclusively with a mix of pentagons, and heptagons, pro-
vided they are in equal number, or with a mix of hexagons, pentagons and

Fig. 3.7. Some possible triangular configurations containing three pentagons
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heptagons, provided that P; = P;. Topological and geometrical constraints
provide equations that enable us to determine the structure of giant molecules
topologically equivalent to a sphere. For example, it is easy to determine the
total number of atoms if we assume that only vertices at which two hexagons
and one pentagon meet are present. Let the total number of vertices (i.e., car-
bon atoms) be N 4. At each vertex, the angular deficit is equal to (3n/5—4m/6).
As the total angular deficit to cover a sphere must be —4n, we must have

and the solution is, of course, Ny = 60, which corresponds to the fullerene
molecule.

It is also quite easy to evaluate the number of atoms and polygons in the
icosahedral structures made of 20 triangles represented in Fig.3.7. Any such
triangular face can be parametrised, following Coxeter [1], by two integers
(p,q). The prescription is then as follows: in a perfect planar hexagonal lat-
tice choose a hexagon and replace it by a pentagon. Go p steps (i.e., skip p
hexagons) along a straight row; then turn at the angle 120— and go ¢ steps
along this new direction. Place a new pentagon; start over again, but at the
direction, which makes 120— with respect to the last one; again, p steps, and
q steps along the direction at the angle of 120—. The third operation will
lead back to the place we started from, and the construction is complete.The
triangles displayed in Fig. 3.7 correspond to the labels (2, 2), (3,0), and (4, 2).

The number of carbon atoms in the icosahedral molecule made of triangles
of the type (p,q) is equal to

N =20 (p* +pq+¢%).

With number of pentagons always equal to N5 = 12, it is easy to evaluate the
number of remaining hexagonal rings: it is equal to

N =10 (p*> +pq + ¢° — 1).

The first few icosahedral structures following after the fullerene Cgo are the:
Cso, corresponding to p = 2, q = 0; Cy49, corresponding to p = 2,q = 1; Cygo,
with p = 3,¢q = 0; Cag9, with p = 2,¢ = 2, and so on [22,23].

It is also easy to evaluate the sizes of pure carbon icosahedrons that could
be built as a next layer on a smaller one, so that the distance between layers is
no lesser than the standard distance between layers in the graphite structure,
which is of the order of d = 3.2 x 1078 cm, about twice more than the standard
distance between the closest neighbors in the same layer, i.e., the side of a
hexagon, which is @ = 1.42 x 1078 cm. For example, the average radius of
a Cgo fullerene ball is about 3.45 x 10~% cm; the average radius of the next
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Table 3.1. Icosahedral structures of growing size and their radii (in Angstroms)

Type (p,q) Number of C atoms ()  Tmin

(1,1) Ceo 345 3.42
(2,0) Cso 3.85  3.79
(2,1) Cia0 544 5.32
(3,0) Ciso 584  5.67
(2,2) Caa0 6.89 6.67
(3,1) Ca60 7.39 7.20
(4,0) Cas20 7.83 7.54
(4,1) Caz20 9.24 894
(5,0) Cs00 9.82  9.40
(3.3) Csa0 10.35 9.94

regular ball, Cgg, is equal to 3.85 x 1078 cm, clearly too close in order to serve
as a next layer.

It follows from the Table 3.1 that if multilayer icosahedral structures made
of pure carbon could be observed, the first structure that could grow on a Cgg
fullerene ball would be a Cayg or a Cagg icosahedron, and the third could then
be a Csq0 structure, and so on. Similarly, if the first structure serving as a
“core” were a Cgp ball, then the second layer should be a Csyg, the third one
a CBQO, etc.

But the electron microscope pictures of onion fullerenes show almost per-
fect spherical shapes, which could not be observed with the above icosahedral
structures. In spite of this theoretical possibility, Nature apparently chooses
another way to create closed bottoms of nanotubes: they are apparently as
close as possible to hemispheres [19].

Also the nanotubes of various sizes can close with similar icosahedral
structures, which can be regarded as halves of carbon icosahedrons, centered
around one of the pentagons, and continued with five-fold symmetry as five al-
most flat triangular sides made exclusively with hexagons, up to a layer when
five new pentagons are added, thus creating solid angle of 2m; then a locally
flat tubular structure made of hexagons may continue as a regular cylindric
nanotube.

As a matter of fact it is not difficult to find out how such spheroidal
structures can be produced with a three-coordinate lattice composed only
of five-sided, six-sided and seven-sided carbon rings. In order to do this, let
us analyze local curvature around each carbon atom surrounded by three
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Table 3.2. Ten possible vertices and corresponding angular deficits (in radians and
degrees)

Vertex type  Angular deficit (rad) Angular deficit (deg)

(555) -z —36
(556) -z —24
(557) - —15.43
(566) -z —12
(567) -2 —3.43
(666) 0 0
(577) +£ +5.14
(667) +& +8.57
(677) +Z +17.14
(777) +3 +25.71

polygons. The angular deficit (or angular excess) of each triplet is given in
Table 3.2.

We see that the first five triplets display positive local curvature, the triplet
(666) is flat, and four remaining ones contribute to negative local curvature. In
view of this, we shall suppose that giant onion fullerenes contain exclusively
convez triplets. To avoid too strong local curvatures, we exclude the triplets
containing two 5-fold rings at once; and to avoid the formation of locally flat
surfaces, like in the icosahedral molecules discussed earlier, we also exclude the
(666) triplets. This leaves us with only two kinds of vertices: (566) and (567),
whose angular deficits are —{% = —12° and —120—“5 = —3.43°, respectively. But
it is easy to see that if we start surrounding a heptagon with (567) vertices,
we must also produce at least one (667) vertex.

Now we are ready to form the equations that will enable us to determine
the admissible configurations of giant onion fullerenes. The following seven
numbers are to be found: N4, the total number of atoms; N5, Ng, and Ny,
the numbers of five-sided, six-sided, seven-sided polygons; finally, the exact
numbers of (566), (567), and (667) vertices. It is easy to establish siz linear
relations between these variables.

As the total angular deficit of a sphere must be —4m, taking the values of
angular deficits of (566) and (567) vertices from Table 3.2, we must have

B 2 B
—— Nggg — —— Nig7 + — = —4 2
15 566 105 567 21 T, (3.28)
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from which we get
7 Nseg + 2 Nsg7 — 5 Ngg7 = 420. (329)

The above equation remains valid even in the presence of (666) vertices, which
are flat and do not contribute to angular deficit or excess. From Euler’s theo-
rem we also know that in a tri-coordinate lattice covering a sphere exclusively
with five-sided, six-sided, and seven-sided polygons, we must have

N5 = N7 + 12, (3.30)

the number of hexagons Ny being arbitrary.
Next, any atom belongs to one type of vertex exclusively; therefore the
total number of atoms is equal to the sum of numbers of these vertices:

Nse6 + Nse7 + Noos + Neor = Na, (3.31)

where we also counted the triplets (666) for a more general case. The total
number of carbon atoms (vertices) can also be obtained by counting individual
polygons weighted by their respective numbers of sides (vertices) — this will
count each atom three times, because the network is three coordinate:

5N5 + 6Ng + TN7 =3 Ny4. (3.32)

Finally, supposing that only one (667) triplet can be found around a hep-
tagon, we must have the following two relations:

Nee7 = N7, Nse7 = 6N7. (3.33)

We shall choose the number of heptagons N7 as free parameter. Then the
set of equations can be reduced and represented as follows:

Nsgs = 60 — N7, Ny =12+ Ny,
6Ng + 12N7 = 3N4 — 60, Nsgs + Negs = Na — TN (3.34)

Now we can find many solutions corresponding to different choices of N7
and Nggg. Not all of them are physically acceptable though. In order to main-
tain sphericity, we should not break the symmetry too strongly (as suggested,
e.g., in [23]. For example, a good choice seems to be N7 = 20, decorating all
potential faces of an icosahedron; let us also choose Nggg = 0. Then we get

N; =20, Ns—=32, Ng=40, Ny = 180,
Nses =40, Nsgr =120, Nggr = 20.

In view of (3.34), N7 should not exceed 60, in which case there are no more
(566) vertices in the giant onion fullerene. If we suppose that no “flat” (666)
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vertices are present, we get the following solution:

N; =60, N;=72, Ng=80, Nj=420, Nse =0,
Nsg7r = 360, Nger = 60.

These are only two possible solutions: the number and distribution of
vertices reflects the mean curvature of the giant fullerene sphere, which is
obviously higher in the first case, and lower in the second case. A rough
estimate of the mean curvature can be obtained via inverse square law, (R) ~
(N4)~2; this law supposes that the average density of carbon atoms on the
surfaces of subsequent fullerene onions is very much the same, as are the sides
of the polygons. Therefore the average radii of the Cyg9 and Cy99 onions are
about 5.92 and 9.06 A, respectively.

3.6 Rigidity and Local Structure in Covalent Glasses

Most of the glasses, especially the so-called covalent glasses, are formed by the
elements from the third, fourth, and fifth groups of the periodic table, their ox-
ides, or in combination with chalcogenides like sulfur or selenium. They form
a very homogeneous and, at first glance, totally random network. However,
local structures are not random at all: every atom has a well-defined valence,
i.e., coordination number, the chemical bonds between given kinds of atoms
are essentially of the same length, and even the angles between the bonds are
quite rigid, with the exception of oxygen or chalcogenide bridges. This meek-
ness of angular constraints is responsible for the breakdown of geometrical
order on the medium-range (several bond lengths) scale, which in turn en-
hances crystalline growth. For a long time however, it remained quite unclear
why certain compounds do not crystallize and prefer to keep the amorphous
structure of an overcooled liquid, whereas many other covalent substances
prefer to crystallize.

In 1979, Phillips [24] had formulated a very simple criterion in order to de-
cide those chemical compounds that covalent networks would belong a priori
to the species of good glass formers. It consisted in stating that the best glass
formers, when looked upon as random networks of solid bars (symbolizing the
covalent chemical bonds) and massive balls (atoms), are those, that are closest
to isostatic networks. This means that the number of mechanical constraints
per atom should be exactly equal to 3, whenever possible, because 3 is the
natural number of degrees of freedom of a point-like mass in three dimensions.
The theory has been developed further by Thorpe [25] and applied very suc-
cessfully to the experimental analysis of many glasses by Boolchand [26-28].

A single atom is maintained in its position by bonds stretching towards
its closest neighbors (from now on, “a neighbor” is synonymous with another
atom with which a given atom is linked via real chemical bond, and not
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just geometrically close). As seen from a given point-like atom, the bonds
stretching toward its neighbors form a star-like figure, with the number of rays
corresponding to the central atom’s valence. Let us call this number N, the
coordination number. The mechanical constraints that these N. bonds impose
on the system are of two types. First, their constant length represents clearly
a mathematical (thus also mechanical) constraint, one equation corresponding
to one bond; but each bond contributing to two atoms found at its extremities,
the number of constraints (called the bond-stretching constraints) per atom is
clearly N./2. But the star-like structure is still not rigid if only the lengths of
bonds are kept constant. In order to ensure the rigidity of the structure, the
angles between the bonds should also be fixed at given values. The number of
these angular constraints is very easy to compute: once a specific direction is
given to one of the bonds, which corresponds to a choice of the basis in vector
space E3, the direction of a second bond stemming from the same atom is
fixed with respect to the first vector by the choice of just one angle between
them. The second angle corresponds just to the choice of the reference frame
in E3. If we wish to fix a third unit vector with respect to the former two, we
have to fix two new angles with respect to the former construction serving as
the reference frame, as for any unit vector in three dimensions, and so forth.
The simple formula for the total number of angular constraints belonging to
an atom is then 2 N, — 3, so that the total number of mechanical constraints
per atom with coordination number N, is

re= "t 2N -3 (3.35)
If the average number of constraints per atom is higher than 3, the corre-
sponding network will be overconstrained; if it is lower than 3, the network
will be underconstrained, thus making possible local motions characteristic
for liquid state; finally, when r. = 3, the network is isostatic, which has been
proposed as an important criterion for glass-forming tendency.
When generalized to an arbitrary random network, i.e., replacing N, by
its average value (N,), it leads to an obvious condition

N,
(re) :%H (N.)—3=3
12
wherefrom (N.) = T 2.4. (3.36)

In many glasses (mainly the so-called chalcogenide glasses, Ge,Se(1_g),
AsgSe—q), SizSe_z), one can observe the change of behavior of many
parameters, in particular the glass transition temperature and the specific
heat C,, near the threshold of r. = 2.4. The best results have been obtained
for simple two-component chalcogenide glasses, like Ge,Se(1_z), AszSe(1—_),
Ge;S(1_z), in which single atoms of selenium, germanium, or arsenic can be
viewed as elementary building blocks with well-defined coordination number
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equal to their chemical valence: 2 for selenium and sulfur, 4 for germanium,
and 3 for arsenic. Then the average coordination number (r.) is given by
simple formula, (r.) =4z +2 (1 —x) for Ge,Se(1_g), or (re) =3z +2(1—x)
for As;Se(1_5), and so on.

Recently in [29] this “magic” rule has also been successfully applied to more
common oxide glasses, and in the first place, to the silicate-based window
glass, whose local geometry is much more complicated than that of binary
chalcogenide glasses.

The composition of window glass, also used for the production of bottles
and light bulbs, does not vary very much since its introduction by Italian
masters in the fourteenth century in Venice. Besides some small amount of
special modifiers (usually below 1.5%) intended to give the glass the desired
color or to improve its mechanical resistance, the basic composition is as
follows: 75% of SiO2, 15% of NaoO, and 10% of CaO. In a more compact
notation, one can express it in a formula,

(Si02)1—z—y (Nag0), (Ca0), with = =10%, y=15%.

It is clear that in order to fix the values of x and y one needs two independent
equations. One of them is readily provided by the rigidity criterion, which
indicates that the best glass-forming tendency will be observed when the av-
erage coordination number (r.) is equal to 2.4. Let us express this condition as
an algebraic equation. In order to compute (r.), let us take one mole of win-
dow glass, then sum up all coordination numbers multiplied by their relative
weights, and divide the result by the total number of atoms in the sample. We
have only 1 (Na), 2 (Ca,O) and 4 (Si) valenced atoms in our network. The
total number of bonds stemming from these atoms (per unit of mass) is then:
4 (1 —z —y) taking into account the 4-valenced Si atoms, plus 2x 2 (1 —z —y)
from the O-atoms in the SiO; molecules, plus 2 x 2y from the Ca and O
atoms in the CaO molecules, plus 2z from the O atoms in NasO molecules,
finally 1 x 2z from the one-valenced Na atoms in the NayO molecules. The
total number of bonds per unit of mass is therefore

dr+4y+8(1l—x—y)=8— 4z — 4y.

The total number of atoms per unit mass is also easily evaluated: there are
three atoms in a SiOs molecule, three atoms in a NasO molecule, and two
atoms in a CaO molecule, which leads to the simple formula

31l—z—y)+32+2y=3—y.
The equation defining the rigidity threshold now becomes:

8—dr—4y 12

2.4. 3.37

We need another independent relation between x and y in order to determine
their values. Such a relation should be imposed by an independent physical
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Fig. 3.8. The effect of Na* and Ca™™" cations on local ring structure in the SiO»
random lattice

or geometrical principle. Hopefully, another simple condition may be imposed
if we want the network to be as homogeneous as possible, from a structural
point of view. To this end, let us consider the effect of NayO and CaO mole-
cules on the structure of initial amorphous SiO5 network. If all the bonds are
saturated, there are always six minimal rings starting with pairs of oxygen
bonds stemming from each silicon atom, as shown in Fig.3.8C. A minimal
ring is defined as a circular loop made of oxygen bonds, such that there is
no shorter way to start from the given bond and come back through another
chosen bond. There are six different couples of bonds that can be chosen from
four different bonds coming out from each Si atom, as simple combinatorics
shows, the number of choices being C3 = W.

When one NasO molecule is added to the network, each of its sodium
atoms breaks one of the oxygen bonds of the SiOs network in halves, the
extra O atom completing one of the two broken oxygen bonds. This creates two
local structures with three minimal rings only, as shown in Fig. 3.8. Therefore,
each NasO molecule removes siz rings from the network, creating voids that
enhance homogeneity of the network.

On the contrary, when one CaO molecule is added to the network, it also
breaks an oxygen bond, but being two valent, it zips together two neighboring
Si-centered tetrahedra, thus creating a compact local unit with as many as siz
oxygen bonds pointing out, as shown in Fig. 3.8. The corresponding number
of minimal rings surrounding this new building block is 15, which is nine more
rings than before. Summarizing up we see that whereas each NagsO molecule
suppresses six rings in the network, each CaO molecule creates nine new rings.
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To keep the balance, i.e., to compensate the loss of rings due to NasO, one
must add two CaO molecules for three NasO molecules, which gives us the
new relationship we were looking for:

2z =3y.
With these two equations the solution is immediately found to be:

x = % =15719%, y= % =1052%, 1—2—y=73.69%,00, (3.38)
which is almost exactly the average usual composition of window and bottle
silicate glass.

Some amount of AlyOg is present in most of industrial glasses, except for
those whose chemical purity is specially supervised. The amount of AlyOg is
usually not higher than 1.5%. Our simple method enables us to evaluate the
“ideal” composition also in presence of the aluminum oxide. A new variable
must be introduced, denoting the relative amount of Al;Og; let us name it z.
Then the new glass composition will be

(8102)1—3:—31—.2 (NaQO)w (CaO)y (A12O3)z .

We have only two basic equations at our disposal, and we would not like to
introduce a new principle each time a small amount of new modifier is added.
Supposing that the amount of Al;Oj3 is rather small as compared with other
components, we can solve the problem by successive approximation method.
This means that we take the highest rate obtained in the previous example of
ternary (SiO2)1—z—y (Nag0), (Ca0O), glass as a starting point and solve the
remaining two equations with two unknowns only. Therefore, we shall suppose
that the amount of SiOs remains close to 75%, which enables us to write an
extra equation

l—ax—y—2=075 or 4do+4y+4z=1. (3.39)

The average coordination number is computed as the ratio of all valencies per
mole to all atoms per mole, which gives readily the next equation:

81—z —y—=z)+dz+4y+ 122 12

31—2z—y—2)+3x+2y+52 5’

leading to the following linear equation:
S +2y+2z=1. (3.40)

Finally, we follow the principle of maximal homogeneity of ring structure.
We already know that each NagO molecule suppresses six rings in the SiOs
network; the CaO molecules, zipping together silicon-centered tetrahedra add
nine extra rings to the structure. The Al,O3 molecules also act as “zipping”
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agents, but each Al atom is three valenced, so it creates a cluster with three
silicon-centered tetrahedra attached together, which leaves nine free valencies
on which the rings can be constructed. Simple combinatorics leads to the
conclusion that the number of new rings around each such cluster will be
(9 x 8)/2 = 36, which means an excess of three rings per one Al atom, or 60
rings per one Al;O3 molecule. In order for all these rings to compensate to
the average, we must have

—6z + 9y + 60z = 0, (3.41)

which completes the set of equations to solve. The result is as follows:

31 14 1
= — ~ 1 = — ]_ = — . .
T = T2 6,33%, vy 184 7,61%, =z T8 0.6%
and of course, 1 —x —y — z = 75%.

This method has its limitations too. For example, it is difficult to ex-
plain the composition of Pyrex glass (80.6%Si02, 13.0% B203,4.1% NasO,
2.3% Al503), partly because pure BoOg itself ideally satisfies the isostatic cri-
terion: 3 x %+2 X g = 1—52 In quaternary composition (Si02)1—z—y—» (NasO),
(B2 03)y, (Al203), the average coordination number is readily found as

8(1—w—y—=z)+dr+12y+ 122 8 —dor +4y+4z

re) = iy —atsetoytss 3oyt

When we fix the value of (r.) at 12/5 = 2.4, we get the equation y = 1—5x—z,
which is far from being satisfied by the pyrex glass composition. The ring
structure is dominated by silicate rings, and it is not at all clear if borons can
form typical flat boroxol rings, their percentage being too low to ensure fre-
quent clustering of three borons at once. This means that the rigidity counting
must be more sophisticated, and taking into account certain local rigid struc-
tures, and others with some of the angular constraints relaxed. Also, other
parameters may turn out to be more important: chemical and mechanical
resistance, low thermal expansion coefficient, and others as well. Since time
immemorial, good glass has always been a compromise among these multiple
factors [29].
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Topological Defects in Carbon Nanocrystals

V.A. Osipov

Summary. The modern status of the problem of topological defects in graphitic
nanocrystals is discussed. The gauge theory and topology are proved to be powerful
methods in analyzing the electronic structure of variously shaped carbon nanoparti-
cles. Both the eigenfunctions and the local density of states (DOS) near the pentag-
onal defects are calculated for three geometries: sphere, cone, and hyperboloid. It is
found that the low-energy DOS has a cusp, which drops to 0 at the Fermi energy
for any number of pentagons at the tip except 3. For three pentagons, the nonzero
DOS across the Fermi level is formed.

4.1 Introduction

Topology and geometry have many applications in modern condensed matter
physics (see, e.g., the books [1,2]). The purpose of this brief review is to
present some bright examples of using topology and geometry in a study
of a new interesting class of carbon materials—carbon nanoparticles. The
discovery of these cage-like molecules has attracted considerable attention of
both experimentalists and theorists due to unique physical properties that are
directly related to their exotic geometry. Moreover, there is reason to believe
that an infinite variety of both carbon-based and some other materials with
particular nanoscale shapes and forms can be produced, therefore increasing
the significance of geometrical methods [3] in theoretical studies.

An additional interest in carbon nanoparticles originates from the fact
that the exotic geometry is accompanied by topological defects. Note that
topologically nontrivial objects play an important role in various physically
interesting systems. It will suffice to mention the 't Hooft—Polyakov mono-
pole in the non-Abelian Higgs model, instantons in quantum chromodynam-
ics, solitons in the Skyrme model, Nielsen—Olesen magnetic vortices in the
Abelian Higgs model, etc. (see, e.g., [4]). Note that similar objects are known
in condensed matter physics as well. For instance, vortices in liquids and lig-
uid crystals, solitons in low-dimensional systems (e.g., in magnetics, linear
polymers, and organic molecules), as well as the famous Abrikosov magnetic
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vortices in superconductors are a matter of common knowledge. Mathemati-
cally, all these objects appear in the framework of nonlinear models as partial
solutions of strongly nonlinear equations. An important point is that all the
solutions are topologically stable and belong to nontrivial homotopic sectors.

It should be noted that elastic media also leave room for topological defects
known as dislocations and disclinations. Disclinations in liquid crystals are one
of the best-studied cases. In particular, the known exact “hedgehog” solution
has been obtained within the continuum model of nematics. It is interesting
that a hedgehog-like solution was also found for a point 47 disclination within
the framework of the gauge model [5]. An important advantage of the gauge
model follows from the fact that it is similar to the known field theory models,
first of all to the non-Abelian and Abelian Higgs models, where topological
objects are studied well. Taking into account this similarity, two exact static
solutions for linear disclinations have been found [6-8].

It is now well understood that the modern problems of condensed matter
physics call for using new theoretical methods. As we show here, a theoretical
description of variously shaped carbon nanocrystals requires involving differ-
ential geometry, topology, and gauge theory. These methods are not typical
for condensed matter theory though they are widely used in the field theory
and gravity.

4.2 Geometry and Topology of Carbon Nanoparticles

The high flexibility of carbon allows producing variously shaped carbon nanos-
tructures: fullerenes, nanotubes, nanohorns, cones, toroids, graphitic onions,
etc. In some sense, the carbon nanoparticles mediate between the molecular
and bulk phases and can be considered as a third form of carbon along with di-
amond and graphite. Historically, fullerenes Cgg (nicknamed also as Buckmin-
sterfullerene or “bucky ball”) were first discovered in 1985 [9]. They are tiny
molecular cages of carbon having 60 atoms and making up the mathematical
shape called truncated icosahedron (12 pentagons and 20 hexagons). Although
the amount of Cgg actually produced in the experiment was very small, these
curious molecules right away attracted the attention of theorists. In 1990, the
adaptation of arc technique for carbon rods gave a possibility of making Cgg
in gram quantities [10]. Since then, in the process of graphite vaporization var-
iously shaped fullerene molecules have been produced. The more spherical of
them are the Cgp molecule and its generalizations like Co4 and Cs49 molecules.
Others are either slightly (like the Crq (see Fig.4.1)) or remarkably deformed.

Soon after the fullerenes, other interesting carbon structures were discov-
ered. First of all, carbon nanotubes of different diameters and helicity [11] were
produced. It turns out that single-walled carbon nanotubes can be twisted,
flattened, or bent around to form sharp corners. These distortions do not
cause them to break (see Fig.4.2). The mechanical, magnetic, and especially
electronic properties of carbon nanotubes are found to be very specific (see,
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Fig. 4.2. Carbon nanotubes

e.g., [12]). For example, the nanotube can be either metallic or semiconducting
depending on its diameter and helicity (see discussion later).

Carbon “onions” have also been found and they can be considered as
carbon cages one inside the other [13]. The tubes and onions are likely to be
composed of hexagonal and pentagonal carbon rings just like the fullerenes.
However, structures having heptagonal rings are also possible. There has been
much progress in recent years in producing toroids [14], cones [15,16] (see
Figs. 4.3,4.4), nanohorns [17], boxes [18], and helically coiled graphite [19].

One can expect that even more exotic configurations can be produced
in experiments (see, e.g., Fig.4.5). Indeed, theoretically the closed (without
dangling bonds) fullerenes and nanotubes exhibiting high topologies (from
genus 5 to genus 21) were suggested in [20]. This follows from the known
Euler’s theorem that relates the number of vertices, edges, and faces of an

Fig. 4.3. Torus
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Fig. 4.5. Exotic configurations

object. For the hexagonal carbon lattice it can be written in the form [20]

e 2ngtms —nr =2 =Y (6 2)ng =x =12(1-g), (4.1)

where n,, is the number of polygons having x sides, x is the Euler characteris-
tic, which is a geometrical invariant related to the topology of the structure,
and g is the genus or a number of handles of an arrangement. So, for a sphere
g = 0, a torus has ¢ = 1 while for two “sticked” torii in Fig.4.5 one has
g = 2. According to (4.1) there is no contribution to the Gaussian curvature
for x = 6. This means that 2D carbon lattice consisting only of hexagons is
flat. On the contrary, to obtain a nontrivial shape one has to introduce some
additional polygons. For example, in order to make a fullerene with genus 0 we
need additionally 12 pentagons. In general, Euler’s theorem allows to deter-
mine all the possible graphitic structures. As mentioned in [20], in accordance
with (4.1) the complex structures with no pentagons (no positive Gaussian
curvature) can be constructed if the genus is increased. In particular, an ex-
istence of the new stable family of fullerene-like structures (holey-balls and
holey-tubes), which have high genus and no pentagonal rings, was predicted
in [20].

By their nature, pentagons (as well as other polygons with « # 6) in
a graphite sheet are topological defects. In particular, fivefold coordinated
particles are orientational 60° disclination defects in the otherwise sixfold
coordinated triangular lattice. This can be understood by realizing that a
pentagon can be inserted in the hexagonal lattice by a cut-and-glue procedure
typical for disclination defects. Namely, one has to cut out a 60° sector from a
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graphene (a single layer of graphite) sheet and then glue together the two cut
sides of the sheet. Moreover, if the departure from the flat surface is allowed,
a cone whose apex angle is directly related to the disclination angle will be
generated. Pentagonal defects in cones can therefore be considered as apical
disclinations, and the opening angle is directly connected to the Frank index
of the disclination. A cone’s apex may consist of a combination of ring defects.
Because of the symmetry of the graphite sheet, only five types of cones can
be created from a continuous sheet of graphite. The total disclinations of
all these cones are multiples of 60°, corresponding to the presence of a given
number (n) of pentagons at the apices. It is important to mention that carbon
nanocones with the cone angles of 19°, 39°, 60°, 85°, and 113° have been
observed in a carbon sample [16]. Note that these angles might correspond to
300°, 240°, 180°, 120°, and 60° disclinations in graphite, respectively. Disks
(n = 0) and one-open-end nanotubes (n = 6) have also been observed in the
same sample [16]. This case was theoretically studied in [21-23]. At the same
time, cones with apex angles of 30°, 50°, and 70° have also been found [20,24].
These angles are forbidden within this scenario. In [24,25] the appearance of
such cones was explained in terms of an open cone model. Another possibility
gives a creation of partial disclinations. As is known, a finite graphite sheet
with disclinations will be buckled to screen its energy [26]. In this case, one
of the allowed geometries is the hyperboloid.

It should be noted that the presence of topological defects in the elastic
medium changes the topology of space, a simple connected region becomes
multiply connected whenever there are defects. As a result, the physical char-
acteristics of quantum particles moving in defect medium can be modified in
comparison with the defect-free case. Indeed, the Aharonov—Bohm-like (AB-
like) effect in dislocated crystals (called “phase-dismatching”) was predicted
in [27]. It was found that the Schrédinger equation for a tight-binding electron
is reduced to the AB-like equation in the presence of a screw dislocation (see
also [28,29]). In experiments, the effects of Berry’s geometrical phase were
established by analyzing the high-energy electron diffraction from a screw
dislocation [30].

Among other effects it is necessary to note the prediction of the AB-like
electron scattering due to disclinations [6,31], an electron localization near
topological defects [32,33] as well as a formation of the polaron-type states
near dislocations [34]. Note that a possibility of the solid state realization of
the AB effect was suggested earlier in metals [35,36] and in dielectrics [37].
It has been shown that the AB effect results in oscillations of physical char-
acteristics (transport properties, magnetic susceptibility) with a certain fun-
damental period @9 = hc/ne, where n = 1 for pure metals and n = 2 for
disordered metals and dielectrics.

One would expect some new physical phenomena arising from nontrivial
topology of carbon nanoparticles. It is interesting to note in this connection
that an important role of topology has been recently discovered in experiments
with niobium and selenium. In particular, a Mobius strip (see Fig.4.6) of
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Fig. 4.6. Mobius stripe (left) and a more exotic configuration (right)

single microcrystals NbSes has been produced by twisting a ribbon of mate-
rial through 180° and joining its two ends, resulting in a distinct one-sided
topology [38]. In a sense, these crystals can be considered as global disclina-
tions. It was established that the electronic properties of the Mdbius crystals
are modified in comparison with the ring configuration. Namely, the temper-
ature of charge-density-wave phase transition was observed to be 4 K lower
than this in the ring. There is reason to believe that this effect is pure topo-
logical in origin. Evidently, topologically nontrivial crystal forms offer a new
route to study topological effects in solid state physics.

4.3 Electronic Properties

Among the most unique features of carbon nanoparticles are their electronic
properties. Electronic states in nanotubes, fullerenes, nanocones, nanohorns,
as well as in other carbon configurations are the subject of an increasing
number of experimental and theoretical studies. They already find use in
the development of modern nanoscale electronic devices: flat panel displays,
nanoswitches, molecular memory devices, transistors, electron field emitters,
etc. It has been predicted and later observed in experiments that bending or
stretching a nanotube changes its band structure, therefore changing the elec-
trical properties: stretched nanotubes become either more or less conductive.
Moreover, a nanotube’s chiral angle (the angle between the axis of its hexag-
onal pattern and that of the tube) determines whether the tube is metallic or
semiconducting (see, e.g., [12]). This finding could allow to build nanotube-
based transducers sensitive to tiny forces.

Interesting changes in the electronic properties arise from topological de-
fects. The peculiar electronic states due to topological defects have been
observed in different kinds of carbon nanoparticles by scanning tunneling
microscopy (STM). For example, STM images with five-fold symmetry (due
to pentagons in the hexagonal graphitic network) have been obtained in the
Ceo fullerene molecule [39]. The peculiar electronic properties at the ends of
carbon nanotubes (which include several pentagons) have been probed exper-
imentally in [40,41]. Recently, the electronic structure of a single disclination
has been revealed on an atomic scale by STM [42], where the enhanced charge
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density at the disclination, which was located at the apex of the conical pro-
tuberance of the graphitic particle, has been experimentally clarified.

The problem of peculiar electronic states near the pentagons in curved
graphite nanoparticles was the subject of intensive theoretical studies in
fullerenes [43, 44], nanotubes [45], nanohorns [46], and cones [21,47]. In
particular, analysis within the effective-mass theory has shown that a spe-
cific V3 x /3 superstructure induced by pentagon defects can appear in
nanocones [48]. This prediction has been experimentally verified in [42].
A recent study [23] within both tight-binding and ab initio calculations shows
the presence of sharp resonant states in the region close to the Fermi energy.
The strength and the position of these states with respect to the Fermi level
were found to depend sensitively on the number and the relative positions
of the pentagons constituting the conical tip. In particular, a prominent peak
that appears just above the Fermi level was found for the nanocone with three
symmetrical pentagons (which corresponds to a 60° opening angle or, equiv-
alently, to 180° disclination). A similar result has been recently obtained in
the framework of the gauge-theory approach [47]. Note also that localized cap
states in nanotubes have been recently studied in [49].

It is interesting to note that the problem of specific electronic states at the
Fermi level due to disclinations is similar to that of the fermion zero modes
for planar systems in a magnetic field. Generally, zero modes for fermions in
topologically nontrivial manifolds have been of current interest both in the
field theory and condensed matter physics. As was revealed, they play a major
role in getting some insight into understanding anomalies [50] and charge
fractionalization that results in unconventional charge—spin relations (e.g., the
paramagnetism of charged fermions) [51] with some important implications for
physics of superfluid helium (see, e.g., review [52]). Three-dimensional space-
time Dirac equation for massless fermions in the presence of the magnetic field
was found to yield N — 1 zero modes in the N-vortex background field [53].
As shown in [44], the problem of the local electronic structure of fullerene
is closely related to Jackiw’s analysis [53]. The importance of the fermion
zero modes was also discussed in the context of the high-temperature chiral
superconductors [54-56].

4.3.1 Theory: Basic Assumptions

Investigation of the electronic structure requires formulating a theoretical
model describing electrons on arbitrary curved surfaces with disclinations
taken into account. An important ingredient of this model can be provided
by the self-consistent effective-mass theory describing the electron dynamics
in the vicinity of an impurity in graphite intercalation compounds [57]. The
most important fact found in [57] is that the electronic spectrum of a single
graphite plane linearized around the corners of the hexagonal Brillouin zone
coincides with that of the Dirac equation in (2+1) dimensions. This find-
ing stimulated formulation of some field-theory models for Dirac fermions on
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hexatic surfaces to describe electronic structure of variously shaped carbon
materials: fullerenes [44], nanotubes [45,49], and cones [21, 22].

The effective-mass theory for a 2D graphite lattice is equivalent to the k-p
expansion of the graphite energy bands about the K point in the Brillouin
zone when the intercalant potential is equal to 0. In fact, there are two kinds
of sublattice points in a unit cell (two degenerate Bloch eigenstates at K) and
the electron wave function can therefore be approximated by

U(k,r) = fi(K)e" " (K, ) + fa(k)e" "0 (K, T),

where k = K + k. Keeping the terms of the order of k in the Schrodinger
equation results in a secular equation for the amplitudes fi 2(k), which after
diagonalization finally yields the 2D Dirac equation (see, for details, Ref. [57])

iy 0,0(r) = Eu(r). (4.2)

Here +* are the Dirac matrices that in 2D reduce to the conventional Pauli
matrices, the energy E is measured relative to the Fermi energy, and the two-
component wave function v represents two graphite sublattices. As mentioned
in [57], the k - p approximation essentially amounts to replacing the graphite
bands by conical dispersions at the Fermi energy.

For our purpose, we need a generalization of (4.2) incorporating both a
disclination field and a nontrivial background geometry. A possible descrip-
tion of disclinations on arbitrary 2D elastic surfaces is offered by the gauge
approach [58]. In accordance with the basic assumption of this approach,
disclinations can be incorporated in the elasticity theory Lagrangian by intro-
ducing a compensating U(1) gauge fields W,,. It is important that the gauge
model admits exact vortex-like solutions for wedge disclinations [58], thus rep-
resenting a disclination as a vortex of elastic medium. The physical meaning of
the gauge field is that the elastic flux due to rotational defect (which is directly
connected with the Frank vector (see Sect.4.1)) is completely determined by
the circulation of the W, field around the disclination line. In the gauge theory
context, the disclination field can be straightforwardly incorporated in (4.2)
by the standard substitution 9,, = 9,, —iWV,,.

Within the linear approximation to gauge theory of disclinations (which
amounts to the conventional elasticity theory with linear defects), the basic
field equation that describes the U(1) gauge field in a curved background is
given by

D, Frk =0, FM =orwh — oW, (4.3)

where covariant derivative D, := 9, + I, involves the Levi-Civita (torsion-
free, metric compatible) connection

1 0gix | 0gu  0gux
ko._ k_ Lokl w99y
Lin = (L)X = 59 (ax# + 35~ S (4.4)

with g, being the metric tensor on a Riemannian surface X with local coor-

dinates z# = (2!, 2?). For a single disclination on an arbitrary elastic surface,



4 Topological Defects in Carbon Nanocrystals 101

a singular solution to (4.3) is found to be [58]

W* = —ve" D\G(x,y), (4.5)

where
D, D'G(xt,2%) = 2r6% (2, 2?) / /9, (4.6)
with €,, = /g€ being the fully antisymmetric tensor on X, €19 = —€91 = 1.

It should be mentioned that (4.3)—(4.6) self-consistently describe a defect lo-
cated on an arbitrary surface [58].

To describe fermions in a curved background, we need a set of orthonormal
frames {eq}, which yield the same metric, g,,, related to each other by the
local SO(2) rotation,

ea — e, = Ales, A2 €350(2).

It then follows that g,, = eﬁeféag, where e is the zweibein, with the ortho-
normal frame indices being a, § = {1, 2}, and coordinate indices p, v = {1, 2}.
As usual, to ensure that physical observables are independent of a particular
choice of the zweinbein fields, a local SO(2) valued gauge field w,, must be
introduced. The gauge field of the local Lorentz group is known as the spin
connection. For the theory to be self-consistent, the zweibein fields must be

chosen to be covariantly constant [59]:
D,e; = 0,€;, — F:‘Ve(j + (wu)gef =0,
which determines the spin connection coefficients explicitly
(wu)*? = e2D,e". (4.7

Finally, the Dirac equation (4.2) on a surface X' in the presence of the U(1)
external gauge field W, is written as

e (V,, —iW,)0 = B, (4.8)
where V,, =0, + {2, with

1
“QM = gwauﬂ[’yaa’}%] (49)
being the spin connection term in the spinor representation.

Note that the general analytical solution to (4.8) is known only for chosen
geometries. One of them is the cone [21,22]. For the sphere and the hyper-
boloid, which are of interest here, some approximations were used. In par-
ticular, asymptotic solutions at small r (which allow us to study electronic
states near the disclination line) were considered in [47]. For this reason, the
numerical calculations for all three geometries were performed in [60]. The
results of both analytical and numerical studies are presented in Sects. 4.2
and 4.3.
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4.4 Spherical Molecules

4.4.1 The Model

To describe a sphere, we employ the polar projective coordinates ' = r,
72 = ;0 < r < 00,0 < ¢ < 21 with R being the radius of the sphere. In
these coordinates, the metric tensor becomes

Grr = 4R4/(R2 + T2)27 Gop = 4R4T2/(R2 + 72)27 9ro = Gpr = 07 (410)

so that
Vg = 1/det||g || = AR /(R? + 1?)2.

Nonvanishing connection coefficients (4.4) take the form

oo R IR
TUR24 2T TP T R2 42 T R2 42

and the general representation for the zweibeins is found to be

ey =c, =2R%cosp/(R*+1?), el =—el =—2R’sinp/(R*+17),

which in view of (4.7) gives

w? =w =0, w}f = —wil =2r2/(R* +r?%) =: 2u. (4.11)

The following solution to (4.5) and (4.6) can be easily found
G=logr; W,=0, W,=v, r#0.

Locally, it describes a topological vortex on the Euclidean plane, which con-
firms the observation that disclinations can be viewed as vortices in elastic
media. Note that the elastic flux is actually characterized by the Frank vector
w, |w| = 2mv with v being the Frank index. The elastic flow through a surface
on the sphere is given by the circular integral

1
ﬁj{Wdr:u

Generally, there are no restrictions on the value of the winding number v
apart from v > —1 for topological reasons. This means that the elastic flux
is “classical” in its origin; i.e., there is no quantization (in contrast to the
magnetic vortex). However, if we take into account the symmetry group of
the underlying crystal lattice, the possible values of v become “quantized”
in accordance with the group structure (e.g., v = 1/6,1/3,1/2,... for the
hexagonal lattice). It is interesting to note that in some physically interesting
applications vortices with the fractional winding number have already been
considered (see, e.g., the discussion in [54]). Note also that a detailed theory
of magnetic vortices on a sphere has been presented in [61].
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In 2D, the Dirac matrices can be chosen as the Pauli matrices: y! = —o2,

72 =o' and (4.9) reduces to
2, = iws®. (4.12)

As a result, the Dirac operator D = e (V, +iW,) on the two-sphere
becomes

24 R 0 TP (=0, + et 4 9)

D =Dt . . (413
2R? [e9(D, 4 Qe _ @) 0 (4.13)

For massless fermions o serves as a conjugation matrix, and the energy

eigenmodes are symmetric with respect to £ = 0 (03 = 1_g). The gener-
ator of the local Lorentz transformations A7 € SO(2) takes the form —id,,
whereas that of the Dirac spinor transformations p(A) is

i 1,

Mg = = —0".
12 4[717’72] 20

The total angular momentum of the 2D Dirac system is therefore given by

1 .
Lz = 718(‘0 + 50’3,

which commutes with the operator (4.13). Consequently, the eigenfunctions
are classified with respect to the eigenvalues of J, = j+1/2, j =0,+1,+2, ...,
and are to be taken in the form

u(r)el#s

v= (voq@wo+n>' (4.14)

As follows from (4.13) the spin connection term can be taken into account
by redefining the wave function as

¥ =UV/R2+ 12, (4.15)

which reduces eigenvalue problem (4.8) to

ma—o_wa:Ea
T
—0,0 O+1_m@:E@ (4.16)
T

where E = 2R2E/(R? + r?).
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4.4.2 Extended Electron States

Let us consider an approximate solution to (4.16). The point is that, because
we are mainly interested in electronic states near the disclination line, we can
restrict our consideration to the case of small r. In this case, a solution to
(4.16) (with (4.15) taken into account) is found to be

(-,

where n = +£(j —v), 7 = £(j — v + 1), and A is a normalization factor.
Therefore, there are two independent solutions with n(7) > 0 and 7n(7) < 0.
Note that respective signs + in (4.17) correspond to states with £ > 0 and
E < 0. As noted already, o3 serves as the conjugation matrix for massless
fermions, and the energy eigenmodes are symmetric with respect to £ = 0.
One can therefore consider either case, for instance, £ > 0.

The important restrictions come from the normalization condition

/(\u|2 + [v*) /g dat dz? = 1. (4.18)

From (4.17), it follows that A2 ~ E. On the other hand, the integrand in (4.18)
must be nonsingular at small Fr. This imposes a restriction on possible values
of j. Namely, for 7,7 > 0 one obtains j — v > —1/2, and for 1,7 < 0 one has
Jj —v < —1/2. As seen here, possible values of j do not overlap at any v.

In the vicinity of a pentagon, the electron wave function reads

1/2+
(“) ~ (E / m’). (4.19)
v E/2+0yn
In particular, in the leading order, one obtains ¥ ~ VE, W ~ E'/37=1/6 and
W~ EY6r=1/3 for v = 0,1/6,1/3, respectively. Because the local density of
states diverges as r — 0, it is more appropriate to consider the total density of
states (DOS) on a patch 0 < r < § for small §, rather than the local quantities.
For this, the electron density should be integrated over a small disk |r| < ¢

(recall that r, ¢ are stereographically projected coordinates on the sphere).
The result is

S

0)9, v =0;
(E6)%/35, v=1/6,5/6;

D(E, ) (4.20)
ESY3s8, v=1/3,2/3;

, v=1/2.

>~

For the defect-free case (v = 0) we obtain the well-known behavior of the
DOS in the § disk given by D(FE,§) ~ Eé* (in accordance with the previous



4 Topological Defects in Carbon Nanocrystals 105

analysis [57]). For v = 1/6,1/3,2/3,5/6, the low-energy total DOS has a cusp
that drops to 0 at the Fermi energy. Most intriguing is the case where v = 1/2
and a region of a nonzero DOS across the Fermi level is formed. This implies
local metallization of graphite in the presence of 180° disclination. In the
fullerene molecule, however, there are twelve 60° disclinations, and therefore,
the case v = 1/6 is actually realized.

4.4.3 Numerical Results

The numerical calculations for the case of sphere a are presented in a recent
paper [60]. As a starting point, the analytical asymptotic solutions found in
Sect. 4.2 are considered. The initial value of the parameter r is defined as
r = 1074, It is worth noting that the choice of the boundary conditions does
not influence the behavior of the calculated wave functions and only the start-
ing point depends on it. A dimensionless substitution z = Er is used. The
normalized numerical solutions to (4.16) are given in Fig. 4.7. The parameters
are chosen to be ' = 0.01 and R = 1. Note that here we present the solutions
for dotted values v'(= 0) and «”(= @). The local DOS is shown schematically
in Figs.4.8 and 4.9 for different n. Note that Fig.4.9 also describes the de-
pendence of the local DOS on a position of the maximum value of integrand
in (4.18)(which actually characterizes the numerically calculated localization
point of an electron).

Here and below § = 0.1. Note that in fact the choice of the value of §
does not influence the characteristic behavior of LDOS. As seen earlier, the
DOS has a cusp that drops to 0 at the Fermi energy. The case n = 3 becomes

’

V, u
0.002 0.12
0.001 01

0.08

0.06
0.001 0.04
0.002 0.02
0.003

Fig. 4.7. The solutions v'(x),u (x) for different n
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Fig. 4.8. Schematic densities of states near the Fermi energy in the case of sphere
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Fig. 4.9. 3D schematic plotting of the DOS near the Fermi energy for n = 0,1, 2
(going from the front side to the back side)

distinguished. Let us emphasize once more that in the fullerene molecule there
are twelve 60° disclinations, so that the case n = 1 is actually realized.

4.4.4 Zero-Energy Modes

An interesting issue to be addressed is the existence of zero-energy modes.
For the two sphere, this problem can be solved exactly (see [44,53]). Namely,
for E =0, (4.16) reduces to

o0 U= Ya o,
T

i
—0,7 — Ui}o —0. (4.21)
T

One can construct self-conjugate solutions (%0) and (500) where
g = Ari™", = Ar~ U, (4.22)

The normalization condition

/\wol2\/§dr dp =1 (4.23)

yields
0o 4R47”2l
2 _
2wA o W’f‘ dr = 1, (424)
where | = j — v for ug and | = —(j — v + 1) for vg. Finally, A2 =
sin 7 /4n? R2(HD) for ug and A2 = —sinnn/4n?R2(=") for vy, respectively.

Note that the restriction —1 < j — v < 0 serves to avoid divergence in (4.23).
In the defect-free case (v = 0), this yields no zero modes on a sphere. Note
that this agrees with a general observation that the Dirac operator can have
no zero modes on a manifold with an everywhere positive Ricci scalar curva-
ture R. Indeed, one easily obtains D? = A+7R /4, where the Laplace-Beltrami
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operator A has non-negative eigenvalues. For the two-sphere R = 1/R?, and
therefore, D2 > 0.

For v = 1/6, which is of our interest here, the only possible value of
jis j = 0, so that ug ~ r~/% and vy ~ r~°/6 near the disclination line.
Thus, our analysis shows that two normalizable zero modes can exist on a
sphere in the presence of a disclination vortex. Let us note that this conclusion
agrees with [43] (where different continuum model was formulated) and differs
from [44, 53] where either ug or vy was found to be normalizable. The reason
is that in [44, 53] the external gauge field was assumed to be well behaved at
the origin whereas here singular solutions are also admitted.

The total DOS on a patch 0 < r < ¢ becomes

513, v =1/6,5/6;
D(8) o< 82/3, v =1/3,2/3; (4.25)
0, v=1/2.

As seen here, this behavior differs from (4.20) thus allowing to recognize the
zero-eigenvalue states in experiments.

4.5 Nanocones

4.5.1 The Model

In the polar coordinates (7, ) € R? a cone can be regarded as an embedding
(r,p) — (arcosy, arsing, cr), 0<r<1,0<¢<2m,

with @ and ¢ being the cone parameters. From this, the components of the

induced metric can be easily read:

Grr = 0% + 2, Jpp = a’r?, Gro = Gor = 0. (4.26)
The opening angle of a cone, 6, is determined by sin(6/2) = a/va? + 2.
Because the cone itself appears when one or more sectors are removed from
graphene, all possible angles are divisible by ©t/3. Therefore, the Frank index
of the apical disclination can be specified by v = 1 — sin(6/2). At v = 0 one
gets a flat graphene sheet (6 = m). For convenience, we introduce a parameter
& =1+c?/a?, so that sin(0/2) = 1//€ and 1/\/E =1 —v.

Nonvanishing connection coefficients (4.4) are now given by
F;“(p =—r/¢, Ff(p = Z’Lfr =1/r.
The general representation for the zweibeins is found to be

1 1 _ . 2 _ : 2 _
e, =ay/§cosp, e, =—arsing, e =a\/{sing, e, =arcosy,
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which in view of (4.7) gives

w2 =w'=0, wl=-wl=1-1//f= 2w (4.27)

The external gauge potential is then found to be W, = 0, W, = v, and the
Dirac operator on the cone takes the form

_ 0 e i¥ (— 72162 + L0y + v+ w))
ei“’(\/az"?—kﬁ(iaw—ku—w)) 0
Making the substitution
Y=, a=/Ew,

one reduces the eigenvalue problem (4.8) to

D

—m@—%?u+1—m@=Em (4.28)
where E = \/€a E.

4.5.2 Electron States

Unlike the previous case of the two sphere, the cone is essentially a flat man-
ifold (the scalar curvature R = 0 everywhere on the cone, except for the
origin), and as a result, (4.28) allows an exact solution. Namely, the general
solution to (4.28) is found to be [22]

(f:) _ Ao (i}j(@)) , (4.20)

where n = £(VE(j —v +1/2) —1/2), and 7 = +(VE(j — v + 1/2) + 1/2).
As earlier, we consider the case where E > 0. Normalization condition (4.18)
takes the form

oy /Ea2A® / (J2(Br) + J2(Er))rdr = 1. (4.30)

The normalization factor can be extracted from the asymptotic formula for
Bessel functions at large arguments. Indeed, in our case, 7 —n = 1 so that
J2+ J2 — 2/nEr for Er > 1. Substituting this in (4. 30) yields A% = F/4a.
Clearly, (4.30) must be nonsingular at small . This imposes a restriction on
possible values of j. Namely, for n,7 > 0 one gets j > —1 (i.e., 7 =0,1,2,...)
while for 1,77 <0 one has j < —2v (j = —-1,-2,... at v <1/2).
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We are interested in the electron states near the apex of a cone. As it
follows directly from (4.29), for small r the wave functions behave as

wy (B2
(U) ~ (E1/2+’77"77> . (4.31)
In the leading order, one obtains

@ ~ E(l—QV)/Q(l—V)T—V/(l—V).

In particular, we obtain U~ VE, U~ E?/5p=1/5  and W ~ EY4r=1/2 for
v =20, 1/6, 1/3, respectively.
Finally, the total DOS on the patch 0 < r < § is found to be

EO+20)/(-05042)/(0-0) 55
D(E,6) {E(12u)/(11/)6(231/)/(1u)’ .7 < 0. (4.32)

It should be stressed that, according to (4.32), a specific behavior of
D(E, §) occurs only for v = 1/2 where D ~ E°. This agrees with the finding
in [23], where the prominent peak just above the Fermi level was found for the
nanocone with three symmetric pentagons (180° disclination). In the leading
order, it follows from (4.32) that

E§?, v=0;

EY589/5 v =1/6;
EY283/2 v =1/3;
0, v=1/2.

D(E, ) (4.33)

As seen here, the extended states with a nonzero DOS at Ex appear only at
v=1/2.

To examine the electron states at the Fermi energy, one has to return to
(4.28) and set E = 0. The solution reads

ug = Ar_%'g\/g, vy = Br_%_g\/g, (4.34)

where 3 = j—v+1/2. A simple analysis shows that for j = 0 both ug and vg
are normalizable on the cone of a finite size. Both solutions are singular. For
v = 1/6 one gets |up|? ~ r=1/5/a® and |vy|? ~ 7=%/% /a®. For any other j, either
ug or vy is found to be normalizable and the solutions become nonsingular.
As before, for singular states one can consider the total DOS. It is easy to
find that D ~ §'/5 for ug and D ~ §°/° for vy. This result differs from [48]
where, although in a different framework, the states on a finite cone with
a single-pentagon defect have been found at the Fermi energy (these states
decay away from the apex as [1)|> ~ 772/%). At the same time, our study
confirms the principal conclusion in [48,62] that the states contributing to the
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Fig. 4.11. Schematic densities of states near the Fermi energy in the case of cone

nonzero DOS at the Fermi energy exhibit a power-law behavior for a single-
pentagon defect. Note also that in a monolayer graphite of infinite length
(a — o0) there are no zero-energy electronic states on a single disclination. It
should be emphasized that this conclusion agrees with the results of numerical
calculations [62] where the local DOS at the Fermi level was found to be 0 for
five-membered rings (pentagons). Note also that for v =1/2, D ~ ¢ for both
ug and vg.

4.5.3 Numerical Results

It is interesting to present the results of numerical calculations [60]. The nor-
malized numerical solutions to (4.28) for different n are shown in Fig. 4.10.
The parameters are chosen to be £ = 0.01, a = 1, and ¢ = 1. The “total”
DOS near the Fermi energy for the case of the cone is illustrated schematically
in Fig. 4.11.

One can see that the “total” DOS has a cusp that drops to 0 at the Fermi
energy. It should be stressed that a specific behavior takes place only for n = 3
where a nonzero DOS near the Fermi energy is found.

4.6 The Geometry of Hyperboloid

4.6.1 The Model
The upper half of a hyperboloid can be regarded as the embedding

(x,¢) — (asinh x cos p, asinh x sinp, ¢ coshx), 0<x < 00,0 < ¢ < 2m,
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From these, the components of the induced metric can be obtained as
Gy = @* cosh? y + ¢?sinh? x, Gpp = a° sinh? y, Jox = Ixp =0, (4.35)
which, for the nonvanishing connection coefficients, yields
2 .
a” sinh 2y
X DX o _ e —
rx, = % . Ip, =1IY, = cothy.
XX
(4.36)

(a? + c?)sinh 2

rx =
XX 20+

)

In a rotating SO(2) frame, the zweibeins become

1 3 2 . 1 _ . . 2 .
€y = /Oxx COS P, €, = \/Gyx sinp, e, = —a sinh x sin p, e, = a sinh x cos ¢,

(4.37)
which in view of (4.7) gives the spin connection coefficients
1 h
R LI IR VRS
2 9xx
and therefore,
2, = iwo®. (4.39)

The external gauge potential in this case is found to be W, =0, W, = v,
and the Dirac operator on the hyperboloid takes the form

—i 0y
5 0 e w(fermth(la +V+w)>
ol (7\/% + asmhx(la +v-— )) 0

Tt can be verified that D = DT.
The substitution

Y = 1+/sinh x

reduces the eigenvalue problem (4.8) to
9, @ — \/coth® x + b2 jii = E?,
9,0 — 1\/coth? x + b2 jo = Ei, (4.40)

where E = \/Gox B, b=c/a,and j = j — v +1/2.

4.6.2 Electron States

To study electronic states on the hyperboloid one has to analyze (4.40). As for
the sphere, let us consider the behavior of the electron states near the apex,
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which is the case of small y. One obtains

o = Eail (4.41)

with the obvious solution

= A/ EaxJj—,(Eax), 0= A\ EaxJj_,+1/(Eay).

As seen here, this is exactly the case of a sphere, which should not be sur-
prising, because these two manifolds are locally diffeomorphic. Evidently, the
“total” (on the disk |r| < §) DOS is the same as on the sphere. However, for
hyperboloid the problem is more intricate due to the requirement to fulfill the
normalization condition (see the numerical calculations given later).

An interesting situation arises for the zero-energy solution. Let us consider
the zero-energy modes setting £ = 0 in (4.41). The general solution is found
to be

Wk

u(x)=A [(k cosh x + A)** A_COShX}

A + cosh x

ok A — coshx} ~2

4.42
A + cosh y ( )

i(x)=A4 [(kz coshx +A)

where k = V1402, A = \/1+ k2sinh® y. An important restriction comes
from the normalization condition, which on a finite hyperboloid yields j >
—1/2 for u(x) and j < 1/2 for v(x). One can see that for —1/2 < j < 1/2 both
u(x) and v(x) are normalizable simultaneously. For the zero-energy mode, the
total DOS on a finite hyperboloid is found to be the same as on the sphere
(see (4.25)).

Although the local electronic structures are similar on the hyperboloid
and the sphere, there is a principal global distinction. In proving this, let
us consider an unbounded hyperboloid (full locus). In this case, one has to
take into account additional restrictions at the upper limit of the integral in
(4.18). One obtains —1/2 < j < —1/2k for u(x) and 1/2k < j < 1/2 for v(x).
Thus, either u(x) or v(x) becomes normalizable on the hyperboloid of infinite
volume. One can see that as (¢/a) — 0 a normalizable solution does not
exist. In fact, under this condition the hyperboloid changes over to a plane.
Consequently, our results are in accordance with the planar case. The total
DOS on an infinite hyperboloid for a variety of defects is as follows:

3y = : cla
D(é)o({a , 1/6,5/6; c/a > /5/2,

(4.43)
823, v =1/3,2/3; c/a>2V2.
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Note that normalizable zero-energy states do not exist for the defect with
v = 1/2 or for the defect-free case v = 0. The most important conclusion
from our consideration is that there is a possibility for the true zero-mode
fermion state on the hyperboloid. As we have shown, the normalized zero-
mode states on both the sphere and the cone exist only for a finite system
size and disappear in the infinite-size limit. For an infinite hyperboloid, a
normalized zero-energy electron state can exist in the presence of a disclination
flux.

4.6.3 Numerical Results

A more clear difference comes from the numerical study. The results of the
numerical calculations are shown in Fig. 4.12 where the parameters are chosen
to be £ = 0.01, a = 1, and ¢ = 1. Note that the starting point in this case
was chosen to be y = 0.01. As can be seen, for the hyperboloid the electron
eigenfunctions behave similar to the sphere near the disclination line and
differ remarkably at large distances. In addition, there is a problem with the
normalization of the solution for hyperboloid. Actually, the integrand is found
to be constantly growing with increasing parameter y. Due to this problem
(coming from the hyperboloid geometry itself) it is impossible to perform
numerical calculations of the DOS.

To compare the behavior of the solutions u(u’) for every kind of the geome-
tries the combined pictures are shown in Fig.4.13 for n = 1, 2. It can be seen
that the solutions for the sphere and the hyperboloid have a similar behavior

v u
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5‘\'\\ ,’ ‘\: \I'S 5 AN
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Fig. 4.13. The schematic pictures for u(z) for three geometries in the case of n = 1,2
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near the disclination line at small z(y), as already discussed. Let us note that
the solution for w(u’) is found to be of the decisive importance in the final
results for all three geometries, which is consistent with the previous analyti-
cal results. The choice of the parameters (R, ¢,a) does not influence the main
characteristics of the calculated wave functions.

In summary, the numerical calculations confirm the finding that the pen-
tagonal defects in graphite nanoparticles markedly modify the low-energy elec-
tronic structure. This is evident from both the exact form of wave functions
and the local density of electron states. As seen from Fig.4.9, in the case of
the sphere the local DOS increases with a distance from the disclination line
for defects with n = 1,2. The low-energy total DOS has a characteristic cusp
at the Fermi energy for any number of pentagons except n = 3, where the
enhanced charge density at the Fermi energy is found.

4.7 Conclusions

There are many interesting applications of geometrical and topological meth-
ods to actual problems of modern condensed matter physics. As shown earlier,
the physics of carbon nanoparticles is one of the striking examples. The geom-
etry and topology is found to influence the main physical characteristics of
graphite nanoparticles, first of all, their electronic properties. The topological
defects (disclinations) appear as generic defects in closed carbon structures.
For 180° disclination (three pentagons), the electronic DOS is found to be re-
markably increased. Physically this means local metallization, thus suggesting
some important applications of nanocone-based structures in microelectronic
devices. First of all, such a remarkable increase of the DOS must provoke
the corresponding enhancement of the field emission current, thereby decreas-
ing the threshold voltage for emitted electrons. It should be noted that this
conclusion agrees well with the results in [23], where the prominent peak ap-
pearing just above the Fermi level was established in a nanocone with three
pentagons at the apex. It was proposed that such peculiar nanocones are good
candidates for nanoprobes in scanning probe microscopy and excellent can-
didates for field-emission devices. As mentioned in [23], the nanocones with
free pentagons at the tip have the highest probability of nucleation and are
frequently observed [16]. It is expected that localized states at the Fermi level
may give rise to materials with novel electronic and magnetic properties.

It should be emphasized that a large variety of closed graphitic structures
is generally expected to be produced. Therefore, the theoretical study of vari-
ous topologically nontrivial objects as well as of topological defects in graphite
and other materials is of great importance. There is reason to believe that ap-
plication of geometrical and topological methods to condensed matter physics
will result in considerable progress in the near future.
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Physics from Topology and Structures

J.Yi

Summary. This chapter reviews physical properties resulting from topology, taking
representative systems whose space of topological origin is presented. In addition,
we review Josephson junction and one-dimensional conductors described by the
collective degrees of freedom, that is, phase variables defined on a compact interval.
Then the Shapiro steps in Josephson junctions and the Aharonov—Bohm effects
by instanton tunneling are discussed. Various quantum phases defined on a closed
path in real space are introduced, and as their well-known demonstration, persistent
currents are discussed. Finally, we introduce carbon nanotubes where genuine lattice
structures together with the topology define their electric properties.

5.1 Introduction

In condensed matter physics, one can easily note that the main stream runs
with, so to say, a dirty spinnaker—randomness, disorder, frustration, and
chaos. Whereas one may think of high-energy terminology, unification, charm,
beauty, and supersymmetry (we are often interested even in symmetry break-
ing!), dirty systems could rather discourage a freshman in graduate school
from choosing her or his major in condensed matter physics. Yet, here is a
fact that we should not overlook : the best precision comes from dirty systems.
In the presence of strong magnetic fields, Hall resistance has been observed
to be quantized in units of h/2e? with an accuracy in a few parts per million.
The accuracy of the quantum Hall effect (QHE) is indeed so impressive that it
is used as a resistance standard. One may ask “why so accurate?” Instead of
a detailed discussion (that is presented in Sect. 5.2), we merely answer that it
is a consequence of nontrivial topology robust to any external perturbations,
unlike symmetry that is easily broken.

To appreciate what nontrivial topology stands for, we draw attention to
the question: how many Ts in TOPOLOGY? At first glance, one can answer
1, which is, of course, not the right answer in the view of topology—often
called rubber geometry. Allowing deformation of the characters, we have four
Ts by spreading the two upper branches of Y to form a m-angle, unfolding the
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arc of G, and stretching the tiny head decoration of L, for example. On the
other hand, O or P cannot fall into the “T” group, and nor, be deformed into
a single point via continuous transformation. Such noncontractible geometries
are referred to as nontrivial (or nonsimply connected) topology.

This chapter addresses representative systems having characteristic prop-
erties resulting from topology. We organize this chapter according to the space
embedding the topology; (i) momentum space; (ii) phase space; and (iii) real
space. For (i), QHE and its topological origin are presented in Sect.5.2. For
(ii), Sects.5.3 and 5.4 review Josephson junction (JJ) and one-dimensional
conductors described by the collective degrees of freedom, respectively, that
is, phase variables defined on a compact interval. For an introduction to topo-
logical aspects, the Shapiro steps in JJs and the Aharonov—Bohm (AB) effects
by instanton tunneling are discussed. Section 5.5 is devoted to introducing
various quantum phases defined on a closed path in real space. Quantum
phases that can alter the ground state properties of small-scaled conductors,
whereby currents can flow eternally (if without dissipation), namely the per-
sistent currents, in the system are also discussed. In Sect. 5.6, we introduce
carbon nanotubes where a genuine lattice structure together with the topol-
ogy defines the electric properties. We also study how a tiny change in the
windings of hexagons along the tube can transform the tube metallic into
a large-gap semiconductor. Furthermore, an even more transparent view of
the role of topology can be made in transport properties through a carbon
nanotube torus.

5.2 Quantum Hall Effect

One of the most significant discoveries in the 1980s was QHE [1]. Normally
in solid state experiments, scattering processes introduce enough uncertainty,
so that most results have error bars of several percentages. For example, the
conductance of a ballistic conductor has been shown to be quantized in units
of h/2e?. However, this is true as long as we are not bothered by deviations
of a few percentages since real conductance is usually not truly ballistic. On
the other hand, in the presence of strong magnetic fields, the Hall resistance
has been observed to be quantized in units of h/2e? with an accuracy in a few
parts per million.

This impressive accuracy arises from the nearly complete suppression of
momentum relaxation processes in the quantum Hall regime, resulting in a
truly ballistic conductor. This is achieved because at high magnetic fields the
electronic states carrying current in one direction are localized on one side of
the sample, while those carrying current in other direction are localized on the
other side. Due to the formation of this divided highway, there is hardly any
overlap between the two groups of states and hence back scattering cannot
take place even though impurities are present in the system. In this section
we give a general discussion of the two-dimensional electron gas (2DEG) in
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a magnetic field, including the integer quantum Hall effect (IQHE) and its
topological origin.

We consider noninteracting electrons moving on a (z — y) plane in the
presence of magnetic field B = BZ. We take the vector potential of the form
A = ByZ so that the time-independent Schrédinger equation can be written

as

2 2

1 eB py

[gm (pm + y) T om
Note that the choice of the vector potential is not unique for the given mag-
netic field: for instance, we could choose A, = 0 and A, = —Bx. The solution
would then look very different although the physics must remain the same.
With the translational invariance along z-direction in (5.1), we can express the

solution in the form of plane waves, ¥(z, y) = e *%y(y), where the transverse
function satisfies the equation

U(x,y) = BV (x,y). (5.1)

o= + omwi(y —uk)? | x(y) = Ex(y). (5.2)

Here we have defined the cyclotron frequency w. = |e|B/mc and y, =
chik/|e|B. In fact, (5.2) is simply a one-dimensional Schrédinger equation of a
harmonic oscillator centered at yi. So, it is easy to get the well-known eigenen-
ergies and eigenfunctions: E,, = (n+1/2)hw. and x, 1 = e(q_Qk)2/2Hn(q—qk),
with H,(q) being the nth Hermite polynomial, and ¢ = \/mw./hy. These
energy levels FE, with different values of n are referred to as the Landau
levels. Although the eigenfunctions have the form of plane waves, these
waves have no group velocity because the energy is independent of k. If
we were to construct a wavepacket out of these localized states, it would
not move. This keeps parallel with what we would expect from classical dy-
namics, which predicts that an electron in a magnetic field is described by
the closed orbit not moving in any particular direction. Further, the spatial
extent of each eigenfunction in the y-direction is approximately +/i/mwe,
which is equal to the radius of the classical orbit if the energy of the electron
is hwe/2.

One question that often comes up is: how many electrons can fit into one
Landau level? We can obtain the answer to the question by noting that the
allowed values of k are spaced by 2rn/L, with L, being the length of the plane
in the z-direction, which means that the corresponding wavefunctions are
spaced by Ay = 2nhe/|e|BL, along the y-direction with the spatial extent
L,,. Hence the total number of states is given by N = 2L, /Ay;, = |e|BS/nhc,
where factor 2 accounts for the spin states and S is the sample area (S =
L,L,).

After these preliminaries we now turn to the Hall effect by starting with
a brief account of its conventional (classical) theory. Consider a slab of con-
ducting material in crossed electric and magnetic fields, E = Fy and B = Bz,
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where voltage is induced in the direction orthogonal to the crossed fields,
as manifested by an induced current flowing in that direction, i.e., the Hall
current. If E = 0, the electrons move in circular orbits. The effect of the non-
vanishing E can be boosted by performing a Lorentz boost along the x-axis
with the boost velocity vp = ¢cE/B (as E < B in typical experiments, so
vp K c¢). Therefore the resulting trajectories become the superpositions of the
circular and the uniform drift motions. The net current (with n being the 2D
carrier density)
enc
Jy = envp = ( 5 )E,

defines the Hall conductivity oy = enc/B. In two dimensions, the ratio e?/h
has the dimension of the conductivity, and nhec/eB = v is defined as the filling
factor of the system. We thus obtain (h/e?)oy = v. The main features of IQHE
are the plateaus of integer values (in units of e?/h) in the Hall conductivity,
centered around the integer fillings.

The system, in which QHE shows up, may be disordered. In a perfectly
pure sample, the density of states is composed of a series of A-functions cen-
tered at the position of the Landau levels. On the other hand, in the presence
of impurities each Landau level is broadened into a band. In general, the local-
ized states exist near the band edge. As long as the Fermi level lies within the
tail of the localized states, there are no electron states available for contribut-
ing to conduction. On the contrary, conductivity is expected to rise sharply
when the Fermi level sweeps the new set of the extended states. This pic-
ture for the density of states explains the plateau, but it does not explain the
integer values of the Hall conductance.

Let us now have a rather detailed look at the Hall conductance obtained
through the use of the Kubo formula, which is given for an individual eigen-
states |n)

ih62 (vz)nm(vy)mn - (Uy)nm (vm)mn

OHn = A (En — Em)2 5
m#n

where A is the sample area and v, is defined as

Vom = (n|v|m)

<un|:n (p + hk + ZA) |um> )

Here the Bloch function u,(z) has been defined according to ,(x) =
KXy, (x), which leads to the expression for the z-component of v,

(Va ) = E, —FE,, /ou, u
x)nm h akx m .

We thus obtain the Hall conductivity in the compact form:

162/ d® [/ Qun Quy\ [/ Ouy Ouy
THn = | em? |\ ok, | ok, dky ' Oky /|’
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where the integration is taken over by the Brillouin zone (k;, k) = (—m, m).
With the definition of oy ,, = (€?/h)C}, one can write

d’k (0A; QA" 1
= ——=]=—¢dk-A" .
1 /(2n)2 (akx aky> Qn% A% (5:3)
where € is the first Chern number and A7 ) = i{un[0un/0kyy)) is called

Berry’s connection. The equation appears suggestive for nonsimply connected
geometry in momentum space to give nonzero values of Ci: when A is a
single-valued function, C; = 0 and thus oy = 0. Recalling that the momen-
tum space is periodically defined in the Brillouin zone, we can easily notice
that the space spanned by k is defined on a torus. In this case, C; measures
winding numbers of the A-trajectory, where the paths can start and end at the
same point but have different windings. For a better understanding, let us lift
the (nonsimply-connected) torus to its (simply-connected) universal covering
space. Any curve on the universal covering space can be characterized by an
element (n,,n,) of the fundamental group of the torus. Here n,(,) measures
the total number of boundary crossings between the squares in the horizontal
and vertical directions, respectively.

We now discuss the effect of lattice potential, which is periodic in x
and y and takes the form V(x,y) = Vi cos(2nz/a) + Vacos(2ny/a). In the
weak-potential limit (V' < fw.), the band structure deformed by the lattice
potential can be obtained within a perturbative scheme. The Schrodinger
equation can be expanded in the unperturbed basis as (E — E,)¥, =
Y owr (n E|Vn, k"YW, where W, is the amplitude corresponding to the state
|n, k) of the eigenstates of the perturbed system: ¥) = 3", ¥y|n, k). For sim-
plicity, we consider the lowest Landau level (n = 0), where the matrix elements
of the periodic potential can be computed easily by using Hy(x) = 1:

(KIV (@) = e ™2 Ay

Va x
(kV(y)|E') = 726 PP (Ap g sonsa + Ak —2n/a)s

with f being the magnetic flux per lattice cell in units of flux quantum. Thus
we obtain the Harper equation:

yv/lcf27t/a + gj}c+2ﬂ:/a + Vcos(?nfﬁlm + H)J/k = ¥,

where we set k — 2nm/a = f6/a, 2V /Vo =V, and € = E — Ey. The Harper
equation has been studied by a number of authors [2]. When f~! is given
by a rational number p/q, with p and ¢ being the relative prime integer, the
energy spectra are known to consist of ¢ bands together with ¢ — 1 gaps in
between. Note here that the original Brillouin zone has been reduced such that
—n/q < k < m/q, which reflects the formation of the superlattice consisting
of ¢ original cells. This reduction of the Brillouin zone can be viewed as the
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Fig. 5.1. A trajectory defined on a torus, having three turns along the small radius
and a single turn along the large radius. The trajectory is equivalently mapped onto
the universal covering space, whereby there are three crossings in the horizontal
direction and one crossing in the vertical direction

torus perimeter along k-direction becoming m/q. When the path in (5.3) is
completed over the original Brillouin zone, the winding number becomes ¢ (see
Fig.5.1). This provides a topological picture of the quantized conductivity
steps whose heights vary according to the magnetic fields.

5.3 Shapiro Steps in Josephson Junctions

In this section, we give an introduction to the Josephson effect [3], a repre-
sentative macroscopic quantum system [4]. Traditionally, macroscopic systems
have been considered to behave classically. In general, a macroscopic system is
described by a few collective degrees of freedom, where a number of remaining
microscopic degrees of freedom may be regarded as the environment. Here the
coupling between the collective degree of freedom and the environmental de-
grees of freedom leads to dissipation in the system [5]. Accordingly, quantum
coherence is not usually maintained in the macroscopic system, which makes
it difficult to observe macroscopic quantum effects. Nevertheless, there do ex-
ist macroscopic quantum systems, where the coupling is too weak to destroy
quantum coherence; one of the pronounced examples being the JJ system.
JJ is a heterostructure in which a normal metal or an insulator is sand-
wiched between superconductors (SCs). As is well known, many-particle wave-
function in the SC can be written as ¥(x) = [1h(x)[e?™) where [¢(x)[?
corresponds to the number density of Cooper pairs at x, and the phase co-
herence over the whole sample guarantees superconductivity. This makes it
possible to take 1(x) as the superconducting order parameter in the Ginzburg—
Landau (GL) theory of superconductivity [6]. The postulate of the GL theory
is that for ¢ small and varying slowly in space the free energy density F can

be expanded in the form
* 2 2
(? - eA) o+
1 C

— 5.4

F = algl? + Sl +

2m*
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with appropriate constants o and (3, where A is the vector potential corre-
sponding to the magnetic field h. The order parameter adjusts itself to mini-
mize the overall free energy given by the volume integral of (5.4), which leads
to the GL differential equation,

h
oo+ (2= Ca) b= —aw 5.5
Note that this is analogous to the Schrodinger equation for a free particle, but
with the nonlinear term. The corresponding equation for the supercurrent of
the system is given as

*2

J, fv h=g *Cw*wA, (5.6)

(w Vip —pVyT) —

which is also the same as the usual quantum mechanical current expression
for particle of charge e* and mass m*. In the theory of Bardeen, Cooper, and
Shrieffer (BCS) [7], and Gor’kov [8], it has been shown that m* = 2m and
e* = —2e, where m and —e are the mass and the charge of an electron.

We first simplify the situation by considering the case where the magnetic
fields are absent. Then we can take ¢ to be real since the differential equa-

tion (5.5) has only real coefficients. If a normalized wavefunction ¥ = /1

is introduced, where ¥2, = —a/3 with negative a, the equation becomes, in
1D,
Rz 0%y ~y
5.7
2m*|a o2 7’[} ¥ = (5.7)

which can yield a zero-voltage supercurrent flowing between two supercon-
ducting electrodes separated by an insulating barrier. We assume two massive
electrodes for which |¢)| = 1, with different phases allowed. Since the ab-
solute phase is undefined, without loss of generality we can take the phase
at each electrode to be 0 and A6, respectively; here Af can be regarded as
the phase difference between the two electrodes. The appropriate solution of
(5.7) in the insulating barrier matches the boundary conditions ¢ = 1 at
x = 0 and 1% = 2% at 2 = L with L being the barrier width. As long as
L < &(=h%/2m* ), the first term in (5.7) dominates the other two terms for
any nonzero Af [9]. In this limit, applying the boundary conditions leads to
the solution

U= (—a/L)+ (/L) (5-8)

where the first term represents the spread of the order parameter from the
left superconducting electrode with phase 0, and the second represents the
spread from the right one with phase A#. Inserting 1) given by (5.8) into the
supercurrent expression, we obtain

I, = I. sin AG,
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where the critical current is given by I. = (2eh2 /m*)(A/L) with A being
the cross-sectional area of the insulating barrier.

The previous discussion had been carried out without taking magnetic
flux into consideration. However, it is important to work out the effects of an
applied field on the supercurrent. Since Af is not a gauge-invariant quantity,
it is appropriate to introduce the gauge-invariant phase difference ¢ defined by

¢ =N — (2n/q50)/A -l

leading to the general form of the supercurrent Iy = I sin ¢, which can also be
obtained had we used the full gauge-invariant term [—1AV —e* A /] throughout
the preceding evaluation of the current.

Armed with this gauge-invariant form of the current, we now evaluate
the maximum current of de-SQUID (superconducting quantum interference
devices). To avoid sensitivity to the gauge choice of the vector potential, results
would rather be obtained in terms of the magnetic flux @ through a specified
contour: since B = V x A, the line integral of A along the path passing
through both links (denoted 1,2) and the supercurrent electrodes (denoted
AB) in Fig.5.2 gives the enclosed flux @. The integration contour, taken
in the interior of the electrodes, is assumed to be thick enough where the
supercurrent density vanishes. Therefore, the enclosed flux is given by

@:%A-dl:(@o/Zn)/ Vo - dl+ A -dl
electrodes

links

The single-valuedness of the phase 6 allows us to replace the integration taken
in the region of the electrodes by the sum of finite phase difference ¢; at each
link related through

(bl — d)g = QTEE(IHOdQﬂZ).
Dq

A B
i
2

Fig. 5.2. Schematic diagram showing geometry for quantum interference of Joseph-
son tunneling in the presence of the magnetic flux @
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This relation implies that ¢; and ¢2 cannot simultaneously take the value
7/2, as it would be regarded to give the greatest total supercurrent, unless @
is an integral multiple of @(. In fact, if Iél) = 10(2) = I, then the maximum
supercurrent can be shown by a simple trigonometric argument to be

Imax = 21| cos(nd/Py)|,

which is the basis of the dc-SQUID magnetometer
Here we have a simple and interesting feature revealed in a junction with
combined dc¢ and ac voltage bias V' = Vg, + Viccos £2t. According to the
Josephson relation ¢> = 2eV/h, the phase difference across the junction is
given by
d(t) = ¢o + wt + (2eVae/hS2) sin 02t

with an integration constant ¢y and w = 2eVy./h. The resulting supercurrent
can be expressed in terms of the Bessel functions

Io=1. Y (=1)"Jn(2Vae/h12) sin(¢g + wt — nf2t),

n=-—oo

which displays that the dc voltage satisfying w = n{2 gives a contribution
toward the nonvanishing time-averaged current. In consequence, when Vg4, =
nh{2/2e, the total direct current including the normal current can take any
value in the range

Vi /R — Iy (26Vae /0S2) < T < Vi /R + IeJ(26Vic/BS2)

with R shunting resistance, which gives rise to the Shapiro steps in the
current—voltage characteristics [10].

This discussion has been made possible by solving the equation of motion
for phase. A more complete description based on topological argument is made
in the following. The Hamiltonian of JJ is given by

(Q B cht)2

H= 2C

— Ej cos ¢.
The first term is responsible for the charging energy, where external current
(or voltage) bias is incorporated with the gauge charge Qext = Toxt = OV,
and the second term is Josephson energy with E; = (h/2e)l.. Here the
charge variable (Q and the phase variable ¢ are conjugate to each other via
[h¢/2e,Q] = ih. Thus, we can consider hf/2e as a coordinate x and Q as
a momentum p = (—ik)0/0x. It is of interest to note that the problem can
also be mapped onto one-dimensional electron moving on a periodic potential.
Writing the Schrodinger equation Hy = E1, we have the external charge part
gauged away via transformation 1/ (z) = e'%%¢(x) with iy = Qexs.

Now we recall that the coordinate x is, in fact, a phase variable defined
on a compact interval 2ex/h = ¢ = (0,2, and we have a definite closed
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path defined in the phase space. Let us now examine what the physical con-
sequence is. For example, when Qext = qq + ¢a cos(£2t) and the system has no
degeneracy, the wavefunction should be periodic after one frequency evolution
of the periodic driving: ¢(z,t + 7) = ¢ (x,t) with 7 = 2r/£2. Such boundary
conditions can then be guaranteed only by

Ot +7) — o(t) = 21Ny,

with integer n,,. Using the Josephson relation, the time-averaged voltage
across the junction is given by

1 [T ho h2
W=7 5 =g

which is precisely the same as the voltage quantization obtained previously.
Interestingly, we can also predict fractional quantization resulting from the
system degeneracy. For instance, let us consider the ground state having g-fold
degeneracy whose the wavefunction can be written as () (a=1,2,...,9).
Thus the average over the ¢ degenerate ground states should be taken in
calculating the properties. The ath ground states exhibits its phase change
A (t+71)— @ (t) = 2nn(®), and the average change rate of phase difference

is given by
q
il Z p® ==

withn=>3"_ n(® leading to the fractional Shapiro steps.

*Qb—\

5.4 Charge Density Waves

A characteristic property of a one-dimensional electron system is its instability
against the potential having the wave number 2kr with krp being the Fermi
momentum: the amplitude of the electron density wave coupled to a periodic
potential increases divergently when the wave number approaches 2kg. This
Peierls instability gives rise to a collective state of electrons called the charge
density wave (CDW) and causes a metal-insulator transition known as the
Peierls transition [11].

Let us have a brief look at the origin of the instability. The potential V
oscillating spatially with the wave number ¢ causes the spatial modulation p,
of the electron density. For sufficiently small V,, the linear response, i.e., pq,
proportional to V; is dominant, and we thus introduce the response function
X¢,» which relates p, and V, according to p, = x4V [12]. The standard linear
response theory gives the expression

fk+q
5.9
Xq = N Z Ek _ Ek+q ( )
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known as the Lindhard function, where fj is the Fermi distribution function.
For simplicity, let us consider the zero-temperature case. Each term in (5.9)
has a nonvanishing contribution only when either £, < Fr and Ejq > Er
or B4 < Ep and £, > Ep. In the former case we have f;, =1 and fy44 =0,
whereas in the latter f; = 0 and fi4, = 1. Replacing the summation by
integration, we obtain

Xq

?

2m 1 q + 2kp
= n
wh?ng  |q — 2kp

where the free-electron energy Ej = h%k?/2m has been used, and n is the
number density of electrons.

The Lindhard function in (5.9) can also be evaluated in two dimensions
and three dimensions. While in 1D the response function diverges at ¢ = 2kp,
in higher dimensions it does not diverge, and instead its derivative has jump
discontinuity or divergence at 2kp. The origin of the singularity in x, at 2kp
can be understood in the following way. In 1D only the term with k£ kp of 5.9
can give a divergent contribution at ¢ = +2kp. Other terms do not contribute
to the divergence even when Ej = Ej4, because numerator fiyq, — fr also
becomes exactly equal to 0. In higher dimensions, the situation is not different
with regard to the singularity of the terms |k| = kp. However, from the 1D
and 2D Fermi surfaces shown in Fig. 5.3, it can be seen that the number of
diverging terms for given ¢ is of the order 1/kr in 1D but only of the order
1/k% in 2D. Similar conclusions can be reached for the 3D case. Thus we
can qualitatively understand why the singularity at ¢ = 2kp weakens with
increasing dimensionality, and in higher dimensions the singularity appears
only in the derivative of x, at ¢ = 2kp.

This instability gives rise to the CDW displaying periodic variations of
the charge density with the wave number 2kp [13]. In general, a CDW is de-
scribed by the modulated density of electrons p = pg cos(2kpx + ¢), where

®
O
k)

Fig. 5.3. Fermi surfaces of noninteracting electrons in one dimension (left) and in
two dimensions (right)
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the phase ¢ represents the location of the CDW. Here the temporal evo-
lution of ¢ corresponds to the sliding motion of the CDW, and hence, the
kinetic energy of the CDW is proportional to gf)Q. In the case of the Mth order
commensurability (2krp/G = N/M with relatively prime integers N and M,
and G is the reciprocal lattice vector), the effective potential takes the form
of V.= V5(1 — cos M¢). Here, the coherent many-particle AB effect can be
expected through the collective motion of electrons described by the phase
variable ¢. In the presence of the AB flux fap, the effective Lagrangian can
be written in terms of the collective degree of freedom ¢ [14]:

2
L= %Mc <?;f) — faB (%f) — Vo(1 — cos M)

from which we can calculate the density matrix and the partition function with
the help of the path integral method [15]. For that purpose, let us introduce
the imaginary time via 7 = it and the Euclidean action Sg = [ Lg d7, where
the corresponding Euclidean Lagrangian takes the form

2
Lr = %MC (gf) —ifan (gf) —Vo(1 — cos M 9).

The classical solution satisfying ASg = 0 can be obtained from the following
equation of motion

GR0) .

M.— — MVy sin M¢ =0,

or?
which of this form is called the sine-Gordon equation. Trajectories on a cir-
cle, which is nonsimply connected, can be classified into homotopically non-
equivalent classes labeled by the winding number n. It represents the number
of rotations of the trajectories around the circle in the anticlockwise direction

2nn
(1 +B) —o(r) = ST
where 8 = 1/kgT is the inverse temperature. Assuming that the temperature
is very low, one can get the solution corresponding to n = 1 given by [16]

o(r) = % tan™ ! exp(+wT)],

where w? = MV;/M., and the positive (negative) sign represents an instanton
(anti-instanton). We can compute single-instanton contribution to the parti-
tion function, and then straightaway generalize it to contain the contributions
of n; instantons and ny anti-instantons by neglecting the interaction among
them, yielding

Z=eP2/u/n Z e AN (BAFE),

n=—oo
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where AE = 8y/Vow/mexp(—8Vy/w), and I, (z) is the nth modified Bessel
function. In the limit SAE < 1, we obtain

2nfaB
Zx1 AFE — .
14 BAE cos ( i )

The partition function is therefore periodic in the AB flux with the period M,
resulting in the persistent current given by the derivative of the free energy
with respect to the flux. The periodicity of the current is different from that
in the free electron case, which reflects the effects of the commensurate po-
tential. Moreover, the amplitude of the current is finite but small due to the
exponential factor in AFE. It is thus concluded that the (nonconventional) AB
effect in a Peierls insulator is still possible due to the collective states, which
provides a good example of a macroscopic quantum coherence.

5.5 Quantum Phases

It has been realized that electromagnetic fields affect the state of matter even
in the spatial regions where they do not exert any forces. The most prominent
example is the AB effect in the configuration, where charged particles move on
a field-free plane, which is pierced by a tube of magnetic flux [17]. Although
the classical motion of a particle in such a configuration is indistinguishable
from that of a free particle in quantum mechanics, the presence of the flux
tube gives a phase shift in the wave packet of the particle and changes the
interference pattern.

The Hamiltonian of the particle, for example, an electron with charge e,
and mass m subject to such a magnetic flux leads to the Schrédinger equation
for the wavefunction

o B2 ie \?

lhat =5 (V—I— A) .
Here the vector potential is associated with the magnetic flux in such a way
that V x B = A. If we impose invariance of quantum mechanics under the
gauge transformation A’ = A+V A, the corresponding transformed wavefunc-
tion acquires the quantum phase according to ¢' = exp(ied/fic)1). As a result,
the phase difference between the two paths due to the localized magnetic flux
is given by
PaB

e e
— A-dl—-— Aodl:—}{A-dlEQTti,
he pathl hic path2 fic 2

e

where &ap = fA -dl = fB - da is the total magnetic flux enclosed by the
paths, and @ is the flux quantum, ®g = hc/e = 4.135 x 10~7 Gauss cm?. The
probability for finding electrons in the screen depends on the phase difference,
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which results in the interference pattern oscillating with the period @(. This
genuine quantum effect has been observed in a series of experiments [18].

Subsequent developments have revealed that the appearance of the phase
shift of the AB-type is in fact rather ubiquitous in quantum mechanics. By
exchanging the roles of the flux tube and of the electric charge, for example,
Aharonov and Casher found that a neutral particle with a magnetic moment
p = pz moving around a line of electric charges experiences a similar phase
shift 2P ¢ /Py, where Pac = (u/e) [ Exdl-Z is the Aharonov—Casher (AC)
flux [19]. Although in this case the particles move in the presence of an electric
field E, the resulting AC phase is indeed of the AB type, if the line charge
and the magnetic moment are aligned to be parallel so that the force acting
on the particle vanishes. The AC phase has been detected in an experiment
using a Bonse-Hart single-crystal neutron interferometer [20].

There also exists another quantum phase, which is dual to the AC phase:
a neutral particle with an electric dipole moment d moving in a magnetic
field B obtains a nontrivial phase ¢q = (1/hic) [ B x d - dl, again suggesting
the possible interference effects [21]. Here we would point out that the dual
phase has a relativistic theory origin in the following. Consider spin-1/2 (as
an example of a fermion) and spin-1 (as an example of a boson) particles. The
Dirac equation for a massive neutral spin-1/2 particle carrying an electric
dipole moment d is

d
(ihv“bu —mc+ 4Ce’*”‘“ﬁawFaﬁ) P =0,

where 1) is the Dirac spinor and the convention for the metric, v,, and ehvab
follows [22]. Note that the interaction of the electric moment with the exter-
nal electromagnetic field takes the dual form of the interaction of a magnetic
moment. This terms breaks the CP invariance such that CP violation is gener-
ally expected in the standard model of fundamental interactions. Now suppose
that the external field is generated by a line of magnetic monopoles with a
uniform density. The corresponding magnetic field is two-dimensional such as
B = B'(z,y)7 + B?(x,y)y. By denoting \/cé exp(—imc?t/h) to be the up-
per component of the spinor 1, we can deduce the Dirac equation into the
Schrédinger equation

2 2 2
ihd¢ = " V. — s L) 4 Vy + isLp1) + o 4v.B o,
2m he

he he
(5.10)
in the nonrelativistic limit. Here s is twice the spin value of ¢ and thus takes
the value +1 for spin up and —1 and for spin down.
We now turn to the case of a spin-1 particle and consider a complex vector
field @/, satisfying the following equation:

h20,(3"¢" — 0" ¢HM) + m2c2p” + imde ' P, Fop = 0, (5.11)
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where d again represents the magnitude of the electric dipole moment. In this
equation, ¢q is not a dynamical variable and can be solved formally as

h2 ) 2
b0 = —5 (V6" +Vig' - id% ik ).

To take the nonrelativistic limit, we set ¢; = exp(—imc?t/h)®;//2m and
obtain

d .
po ~ —ih exp(—imc?t/h)(V;D; — %e”k@ij)/mC\/ 2m,

which allows to reduce (5.11) into the Schrodinger equation

h? d d
ihd by = —o (vx — 13%32)2 +(Vy + 15%31)2 + vﬁ) Dy +--- (5.12)

and @1 = (P1 £ ®5)/\/2. The subscript + for @ corresponds to the spin of
the particle (£1) and the parameter s still takes the value 1 or —1 depending
on the spin of @,. The external magnetic field is given as in the case of the
spin-1/2 system considered earlier, and “---” stands for interactions between
&, and @_, which are not important in the consideration of the phase. In
both cases ((5.10) and (5.12)), the Hamiltonian contains the term

h? i 9

Qm(V + s}_wd x B)
with d = dz. It is thus obvious that the above Hamiltonian yields the dual-AC
phase given by &4 = (1/e) §(B x d) - dl.

In the following, we will see such quantum phases are a special case of
geometric phases [23]. Let us consider the dual AC phase where an electric
dipole d in a small box is located at R. In the absence of a magnetic field,
the (nonrelativistic) Hamiltonian of the electric dipole can be written in the
form: Hy = H(p,r — R), and the wavefunction takes the form v, (r — R)
with the corresponding energy F,, independent of R. Now suppose that there
exists a magnetic field produced by a line of magnetic monopoles. The energy
eigenstates |n(R)), which satisfy the Schrodinger equation

1
H (p - -Bxd,r— R) [n(R)) = E,|n(R)),
c
can be written in the form
(r|n(R)) = exp {1 / dr' - B(r)) x d} Un(r — R).
hC R

We then transport the box around a closed loop I' encircling the monopole
line. The geometric phase acquired by the wavefunction during this transport
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is given by [23]

() = ijfpm(R)an(R» AR = ;cf B xd-dR.

One of the most well-known demonstrations of quantum phase effects is the
persistent current in a mesoscopic ring threaded by AB flux. For simplicity, let
us consider free electrons in an ideal ring of radius R at zero temperature. In
the presence of the AB flux, the kinematic momentum of an electron, shifted
by the vector potential, can be chosen by A = (Pap/2nR)¢, which leads to
the Schrodinger equation

h? 0
2m2< ¢+f) Yn = Entpy,

with f = &ap/®Po. This yields the simultaneous eigenfunction v, of the an-
gular momentum L, = —ihd/d¢ + fh and the energy 1, = ¢"?/y/2n. The
corresponding energy levels of the system are given by

h2

En = 2mR2

(n+ )%

These flux-dependent energy levels yield interesting ground-state proper-
ties. The current density of a quantum mechanical system is given by J =
Re[p*v1)], where v is the velocity operator. In the system of interest here, the
corresponding current density can be written in the form

1 . e R LOH ]~
T, = —Re [0} (p+“A) ] = S Re {mafwn} 0.
This yields the charge current carried in the nth level.
e 0F,
I, =— =—— .
" e/d“" omh of

The total current of the system is then given by the summation over all the
occupied levels. Therefore, the flux dependence of the ground-state energy
implies that the current flows persistently around the ring, thus bearing the
name persistent current. Although only the persistent current driven by the
AB flux is mentioned, one can easily infer that persistent spin current [24]
and dipole current [25] are also present via AC phase and dual AC phase,
respectively.

5.6 Carbon Nanotubes

A carbon nanotube can be thought of as a layer of graphite sheet folded into
a cylinder [26]. Hence, understanding the basic properties can be made by
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Fig. 5.4. The lattice structure of graphite and the translational vectors 71 and 72
are shown in the left panel. The so-called armchair, zig-zag, and a general chiral
tube are shown in the center, and band structures are in the right panel

introducing lattice structures and energy bands of graphite. A graphite sheet
consists of many hexagons whose vertices are occupied by the carbon atoms,
each of which supplies one conduction electron. The electron can transfer
from site to site through tunneling. In this case, the following Hamiltonian
can describe the system:

H = €p ZCZCZ‘ — Z'yijc;rcj.
% ij

In fact, the simple tight-binding Hamiltonian has been revealed to yield re-
markably similar density of states to the measured values by using the tip of
a scanning tunneling microscope [27]. All the lattice sites shown in Fig.5.4
can be defined through linear combinations of the translational vectors,

. 3a_. 3 _
T =V3a2, To= \fo + 59Y-
Noting the translation symmetry, we can choose the Hilbert space spanned by
the Bloch basis. Further a bipartite lattice, which can be defined for neglect-
ing next-nearest-neighbor hopping, that is, to restrict 7;; with the nearest
neighboring 7 and j, can be separated into two disjoint sublattices A and 5.
Thus, we have [¢/% 5)) = ;¢ 45 ¢ ¢!0). We construct a state vector that
is an eigenstate of the Hamiltonian as [¢)F) = A¥|¢k) + B¥|F). In the matrix
representation, the energy eigenvalue equation reads

haa hag) (AR B AF
hB.A hBB Bk — Lk Bk ;
where haa = hgg = (¢§|H|1/}f4> = €g, and

has = (UgIHIRG) = —rels® — 2ye 7002 cos (k) :
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Thus, the energy bands of a graphite are given by

Ey (kg ky) =€ £7v,|1+4cos <32aky> cos <\/2§akx> + 4 cos? (\/Zgakx>

How to roll up the graphite sheet into a cylinder is specified by a wrapping
vector

Wxm = nTi +mTy

with the two integers defining its electrical properties [27,28], which we show
in the following. Two often-cited examples among nanotubes are armchair
and zigzag types, characterized by (¢,¢) and (¢,0), respectively.

We first consider an (¢, ¢)-armchair case. As shown in Fig. 5.4, starting
from the point 0, we make ¢-step in the vector direction 77 and again, another
in the direction 73. We then reach the point A. Cutting the sheet along the
line perpendicular to OA, and folding up the cut-out so that the two ends
coincide, we then have an ¢, -armchair tube. Now, it is natural to impose
periodic boundary conditions according to the tube diameter L: k,L = 2nn.
Here the tube diameter is given by L = 3af: there are 2/ lattice spacings and
half of them are given by 2a and the other by a. Thus, feeding the boundary
condition into the graphite energy bands, we obtain

E%(k,n) =€ £v,|1+4cos (n%t) cos <\/2§ak:x> + 4 cos? (mkz >

Here we have the first Brillouin zone defined by

\[Sk 20 < — \73 —ng?kma—i—gkyagn,

leading to n = 1,2,...,2¢ and |ka| < m/+/3. This resulting one-dimensional
dispersion has a large degeneracy at the zone boundary where |ka| = 1/v/3,
in particular, for half-filling case where the Fermi energy lies in £ = ¢y. The
two subbands E; and F_ have degeneracy, indicating the absence of the band
gap, and thus, the armchair nanotube is metallic, as reflected in Fig. 5.4.

Similarly for (¢, 0)-zigzag tube, being at the same point A, we make ¢-step
along 77 direction and then reach the point Z. The cut lines perpendicular to
AZ are attached, leading to the boundary conditions: k,v/3af = 2nn, where
every / lattice spacing is given by v/3a for the configuration. Then, we have
the energy dispersion

Ei(k,n) =¢o j:’y\/l + 4 cos <32ak:y> cos (ng ) + 4 cos? ( ;).

Here the Brillouin zone is defined as |k|la < n/3 and n = 1,2,...,2¢. Unlike
the armchair case, F% (k,n) can have gapful bands, depending on ¢: when ¢
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is given by integer multiple of 3 there is no gap at the Fermi level, thus the
system becomes metallic. On the other hand, for example, zigzag tube with
¢ =10 bears the band gap. Especially in the case where /¢ is given by an even
number dispersionless bands exist for n = ¢/2 (see Fig.5.4).

We can also manipulate the tubes according to arbitrary wrapping vectors,
which are called chiral tubes. The boundary condition can be obtained by a
symmetry translation operator 7"

TN + MT)[Y*) = [4),

leading to
V3
2
A detailed analysis of the energy dispersion given by the above boundary
condition leads to the classification, depending on A’ — M (i) a multiple of 3,
(ii) a multiple of 3C' with C being the highest common divisor of M and A
Carbon nanotubes can also be in the form of multiwalled cylinder where a few
single-walled tubes are concentrically arranged. Since the distance between
adjacent walls is larger than atomic spacing, the properties of multiwalled
tubes bear overall similarity to single-walled tubes.
Among other physical quantities, electron transport can be regarded as
a direct reflection of the system. With a ballistic transport to be kept in
mind, electrons appreciate mainly the geometry of the system that they travel
through. For the question on how to formulate electron transport, by referring
the readers to the monographs and surveys in [29], we would provide a quick
view on the transport through a carbon nanotube torus as fully topological
object; besides the noncontractible path along the tube diameter, bending
the cylinder into a torus introduces additional nonsimply connected path [30].
Figure 5.5 shows the linear transmission and its dependence on the position of
the second lead (see also the schematic of the set-up). The density plot is also

2N + M)kga + g/\/lkya = 27mn.

! +—3 movable
% second tip

\:&/
i
HT
b
—

% n

Fig. 5.5. The left panel: A pure-carbon set-up. The two semi-infinite CNT leads
can scan the upper surface of the CNT ring. The right panel: Density plot of the
linear transmission as a function of the position n and of the gate voltage 1. In this
scale, white corresponds to 0 and black to 1
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configured by varying the gate voltage, which one can consider as the Fermi
level of electrons in the tube. Along the gate voltage axis (with fixed n), one
can clearly see the dark-and-bright pattern of the transmission, indicating off-
and-on resonance of the energy of an incident electron with the Fermi level.
Even more interestingly, at a fixed gate voltage, the transmission can also
vary with positional change of the second lead. For particular values of the
gate voltage, zeros in the transmission occur, as shown in the upper panel
blow-up of the region indicated by the arrows. If the readers were now to
view topologically, a surmise that a one-dimensional ring might lead similar
effects to that the nanotorus revealed can be readily made. Indeed, essential
properties such as “chessboard” pattern and transmission zeros are not the
exclusive possession of carbon nanotorus but are fairly shared in a community
of affine topology.

5.7 Conclusions

We had a retrospective study of topology revealed in condensed matter
physics. Although many important issues might be overlooked or barely
touched, this chapter covers the essence.

In this age where a huge body of numerics powered by superfast machinery
is regarded to be more convincing than an elegant and potent argument, a
word such as, topology may sound ancient (for a few, even a geologic “lan-
guage”). Latin is quite a suggestive example of this—once it was believed to be
the closest language to God but by new most of priests do not (cannot) speak
Latin. Nonetheless, our ambition is that one should fully recognize topology
not only as a fascinating object in mathematics but also as a powerful tool in
studying a physical system.
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Phason Dynamics in Aperiodic Crystals

T. Jannsen

Summary. Aperiodic crystals have a dynamical behavior that is different from that
of lattice periodic crystals. The properties are related to the possibility of describing
aperiodic crystals in a higher-dimensional space, for which the physical space is a
subspace. The special motions can be considered as motions in the additional space.
Such motions may have low or zero frequencies due to the existence of symmetries
that are special for aperiodic crystals. The ensuing large amplitude motions require
a treatment in the framework of nonlinear dynamics. Under certain conditions, the
low-frequency vibrations are related to friction. The phenomena are discussed for a
number of classes of aperiodic crystals.

6.1 Introduction

6.1.1 Quasiperiodic Crystals

The majority of crystal structures have lattice translation symmetry. This
means the existence of a unit cell and invariance under one of the 230 space
groups in three dimensions. The proof that a crystal is lattice periodic can
come from diffraction experiments, or, more indirectly, from morphology. The
diffraction peaks of a lattice periodic system are on a three-dimensional recip-
rocal lattice (k-space), and they can be labeled by three integer indices. The
reciprocal lattice is generated by vectors a; and the system is invariant under
three independent lattice translations a; with

3 3
* *
k= E hiai, a = E nia;, a;a; = 275513‘ .
=1

i=1

In the morphology facets are seen that can be labeled by the same reciprocal
lattice vectors.

However, there are many examples of materials that cannot be indexed
by n indices, but nevertheless show sharp Bragg peaks. These belong to what
can be seen as a generalization of the reciprocal lattice, the Fourier module.
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This module consists of all vectors of the set

where n, which may be different from 3, is called the rank of the Fourier
module M*. The material then has a density function

p(r) = S p(k) explikr) . (6.1)

keM*

If n # 3 this function does not have three-dimensional translation symmetry,
although it may be periodic in one or two directions. A function of this type
is called quasiperiodic, even if n = 3. If n > 3 the structure is aperiodic.

Quasiperiodicity can also be seen macroscopically in the morphology. Crys-
tallites in the shape of a dodecahedron, or crystals with facets for the indexing
of which one needs more than three indices are usually quasiperiodic.

6.1.2 Examples of Quasiperiodic Crystals

Roughly speaking, there are three big classes of quasiperiodic (also called in-
commensurate if they are aperiodic) systems. First are the modulated crystal
structures, second the incommensurate composites, and third the quasicrys-
tals. This is not a strict division into classes. Some materials can be considered
to belong to two classes.

Incommensurate displacively modulated phases have a structure, which
can be described as a periodic deformation of a lattice periodic structure. The
positions of the atoms are

Tnj =N + L + (qn) fj ) (62)

where n belongs to the three-dimensional lattice, r; is the average position of
the j-th atom in the unit cell, and f; is a periodic function with period 2m.
The function is called the modulation function. Because q is incommensurate
(i.e., has irrational indices) two atoms of type j in the unit cells n and 7
only give the same argument in f; if their difference is perpendicular to g.
The diffraction pattern consists of main reflections belonging to the reciprocal
lattice of the basic structure, and satellites as a consequence of the periodic
modulation. If there is only one modulation wave the diffraction spots are
situated at
k = ha* + kb* + lc* + mq,

where h, k, and ¢ are the usual indices for the main reflections.

Apart from this modulation in position, a composition wave may be
present. The probability of finding an atom A at position n + r; is p;(gn)
and the probability of finding another type B is equal to 1 — p;(qn).

A second class of aperiodic crystals is formed by incommensurate com-
posites [1]. Such composites consist of two or more subsystems, which are
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themselves incommensurately modulated. The subsystems labeled by v have
periodic basic structures with lattice A, . The position of the j-th atom in unit
cell n, of system v is given by

Tynj =y + 105+ Y F(k(n, +71,)), (6.3)
ke M x

where n, is a lattice vector of lattice A}, 7,; a vector in the unit cell of
that lattice, whereas the modulation function has Fourier components in the
Fourier module. The modulations are caused by the interactions with the
other subsystems. That is the reason why the modulation wave vectors are
combinations of reciprocal lattice vectors of the other subsystems. The vector
module is spanned by the basis vectors a}, of the reciprocal lattice vectors.
If the subsystems are mutually incommensurate, the full system is aperiodic
and the positions of the Bragg peaks are given by

k=Y mya; = zn: hia! (6.4)
vi =1

where the vectors a} are linear combinations of the vectors a;,; such that they
are a minimal set of vectors spanning the Fourier module. In principle, addi-
tional satellites might be present due to other mechanisms, not belonging to
the span of the various reciprocal lattices A}, but we shall neglect this possi-
bility here. Special cases of incommensurate composites are misfit structures,
intercalation compounds, and adsorbed monolayers on a crystal surface.

A third class of aperiodic crystals is the quasicrystals [2,3]. They have
a rank higher than 3. A precise definition is lacking, but most of them can
be considered as tilings or have a (possibly broken) point group symmetry,
which is noncrystallographic in three dimensions. An example is the alloy
i-Al, Mn, Pd, in a certain composition range. It has the noncrystallographic
symmetry group of the icosahedron as point group.

Quasicrystals often contain Al, and most of them, but not all, are ternary
or quaternary alloys. Building blocks often found are Mackay and Bergman
clusters with icosahedral symmetry. In general, these clusters overlap. There
are families with icosahedral, decagonal, dodecagonal, or octagonal symme-
try. However, such noncrystallographic three-dimensional point groups are not
essential. There are often periodic, structurally related compounds, called ap-
proximants. These have strictly speaking only one of the 32 three-dimensional
crystallographic point groups as symmetry.

6.1.3 Symmetry

The diffraction pattern of a quasiperiodic crystal has intensities

I(k)= Y a(kp)i(k—kg). (6.5)

kpeM*
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If the orthogonal transformation R leaves these intensities invariant (I(Rk) =
I(k) for all k € M*), then RM* = M* and in particular

Ra; =Y I'(R)ja}, (6.6)
i=1

where the integer n x n matrices I'(R) form a representation of the finite sym-
metry group K of the diffraction pattern. A well-known theorem in group-
theory then states that this representation is equivalent with an orthogonal
transformation. If one then chooses three basis vectors, the space spanned
by them (the physical space) is left invariant. So, the n-dimensional represen-
tation is reducible. This implies that there is a basis transformation such that
the operations are represented by orthogonal matrices of the form

(?E (1)%1) ~I'(R). (6.7)

The orthogonal matrices Rg and Ry are three and (n—3)-dimensional, respec-
tively. The n x n matrices form the symmetry group of the diffraction pattern.
It is a finite point group, but not necessarily one of the 32 three-dimensional
crystallographic point groups. For example, the symmetry group of the dif-
fraction of the icosahedral AlMn Pd quasicrystal is the icosahedral group of
order 120. The three-dimensional noncrystallographic point group 53m leav-
ing the diffraction pattern invariant has generators, which are integer matrices
on the basis of the Fourier module:

100000 00 0 001 100000
000001 10 0 000 010000
010000 00 0 010 001000
001000 | 00-1 000|” 1000100
000100 00 0-100 000010
000010 01 0 000 000001

Apart from this symmetry, quasiperiodic crystals may show symmetries
that are important for the dynamics. We show this in one dimension. For a
modulated phase the positions of the atoms are given by

Tn =z +na+ f(qna) , (6.8)

where the function f has periodicity 2rt. A change in position x,, — z}, = 2, +6
does not change the mutual distances, and leaves, for that reason, the potential
energy invariant. The consequence of this symmetry is that the momentum is
conserved. A second symmetry is actually only a pseudo-symmetry. A change
in position

Tp — T, = Tpip — Pa = To+ na+ f(q(na +pa)) ~ x, +ef (gna)  (6.9)
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if an integer p is chosen in such a way that € = pag mod (2r) is (arbitrarily)
small. Then the displaced atoms with a renumbering have the same mutual
distances as before with arbitrary position.

For incommensurate composites the same symmetries are present. We con-
sider a model consisting of two chains. The positions of the atoms in the two
chains are

Tn = xo +na+ f(na), f(z)=f(z+0)
Ym = Yo +mb+g(mb), g(y) =gy +a).

The displacement of all atoms in both chains by ¢ leaves again the potential
energy invariant. The pseudosymmetry is seen by choosing a small number
€ = pa — ¢gb and displacing the atoms as

Ty — Tpyp —pa = xo +na+ f(na+pa) =z, + ef'(na)
Ym — Ym—q +qb =Y +mb+g(mb_ qb) X Ym T egl(mb) .

These symmetries will have consequences for the dynamics.

6.2 Embedding in Superspace

By definition a quasiperiodic structure has a density function p(r) with Fourier
decomposition

plr) =Y plk)exp(ikr), (6.10)

keM*

where the Fourier module M* is the set of vectors
k=Y ma; . (6.11)
i=1

Because there are no three independent vectors k such that the inner product
with any vector from the Fourier module is a multiple of 2w, there is no
lattice periodicity. The function p(r), however, is a section of a lattice periodic
structure in n dimensions and a three-dimensional physical space. The crucial
observation is that the basis a} of the module is the projection of a (reciprocal)
lattice X* in n dimensions with basis (a}, b}). Then each vector (k, k1) in the
lattice spanned by this basis is the unique vector that projects on the vector
k of the Fourier module. The atom positions in the physical space are taken
modulo the n-dimensional lattice X, for which X* is the reciprocal lattice.
The periodic function on the n-dimensional space is

po(r.rr) = Y p(k)exp(i(kr + kiry)) . (6.12)
kseX*

Typical examples of embeddings of quasiperiodic systems belonging to the
various classes are given in Fig.6.1. Modulated crystals are embedded as ar-
rays of (n—3)-dimensional hypersurfaces in n dimensions. These are called the
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Fig. 6.1. Embeddings into higher-dimensional space of two quasiperiodic structures.
Left: sinusoidally modulated chain (dashed: lattice), right: 1C composite (dashed:
system 1, solid: system 2)

atomic surfaces. When the modulation functions are continuous the atomic
surfaces stretch out until infinity. For incommensurate composites there are
periodic arrays of atomic surfaces for each of the subsystems. For quasicrys-
tals, the atomic surfaces are bounded, generally, although it is possible to
construct three-dimensional quasiperiodic patterns that could be considered
as quasicrystals from a periodic array of unbounded atomic surfaces.

For modulated phases the additional coordinate can be seen from the
embedding:

Tn =na+ f(gna) — (na+ f(nga+1t), t) —oco<t<oo. (6.13)

This is a periodic pattern with translation symmetry generated by (a, —ga)
and (0, 2m). The variable ¢ is just the phase of the modulation function. ¢ is
the phase variable. Certain excitations in such system may be considered to
be phase oscillations, for which the term phason was introduced.

For incommensurate composites we consider an example with two subsys-
tems and with rank 4. Suppose that the lattice constants in z- and y-direction
are the same, but incommensurate in the z-direction. Suppose furthermore,
for simplicity, that there is only atom per unit cell in each subsystem. Then
the positions n + f(gin) and m + g(gam) can be embedded as

(n+ f(gin+t) + Z1t, t),

(6.14)
(m+g(gom +t) — Zat, t) .

Here the vector functions f and g have periodicity b (=lattice constant in
the z-direction of system 2) and a (=lattice constant in the z-direction of
system 1). The vectors g; are parallel to the z-axis. The system has a four-
dimensional lattice periodicity. The internal degree of freedom here is not
only the phase of the modulation function, but also the relative positions
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of the centers of mass of the two subsystems. There is a dense set of shifts
in the internal coordinate for which the potential energy does not change.
Therefore, these are dynamic symmetries. The Goldstone mode associated
with this symmetry is a (dynamical) shift in internal space, which for smooth
embeddings may have zero frequency. These motions are called phasons.

The excitations in quasicrystals have certain aspects in common with this.
There are jumps that can be seen as jumps in superspace, and here also the
term phason was used. Very often phenomena involving the additional space
(for quasicrystals usually called perpendicular space) get a name with the term
phason. For example, a strain in a quasicrystal can be divided into “phonon
strain” and “phason strain.”

6.3 Simple Models for Incommensurate Structures

6.3.1 Displacively Modulated Phases

The structure and vibrational excitations of incommensurate modulated
phases may be exemplified on simple model systems. A very simple model
is one dimensional. It is a linear chain with particles with one degree of free-
dom, for example the deviation of its position from that in an equidistant
array. The potential is a non linear function of the deviations and there is an
interaction between a particle and its first and second neighbors. The Hamil-
tonian then is given by

H=3 (pj +Vi(wn) + Va(en — 2na) + Va(zn — xn2)> . (6.15)

An example is

2 2 4
H = ; (172n n A;Cn + % + BxpTn_1 + anacn2> . (6.16)
The on-site potential is here a fourth-order polynomial. The terms with B and
C may favor different ground states, which leads to frustration. Therefore, the
model is called the discrete frustrated ¢* (DIFFOUR) model (Fig.6.2) [4,5].

The ground state of (6.16) for T = 0 is given by the coupled nonlinear
equations

Az 4+ 23 + B(xpy1 + 1) + C(Tnyo + 20 _2)=0. (6.17)
Periodic solutions with period N can be found by the solution of a finite set

of coupled equations. Aperiodic solutions with wave vector 2mg; can be found
as the limit of periodic solutions with ¢ = L/N when N tends to infinity such
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Fig. 6.2. The modulation function for the ground state of the DIFFOUR model
determined for three different values of the parameters

that ¢ tends to the irrational value ¢;. The ground state is found as the lowest
energy solution for all wave vectors q.

If A is sufficiently high the ground state is an undeformed, periodic chain
(z, = 0). For a critical value of A this state becomes unstable, and the insta-
bility is a wave with a critical wave vector ¢;. Below the critical value of A the
ground state is a displacively modulated chain. If ¢; is irrational, the ground
state is quasiperiodic. Close to A; the modulation function is sinusoidal, but
for lower values there are higher harmonics, leading to a squaring up. Gener-
ally, the modulation function remains smooth down to a value Aq. Below Aq
the modulation is still incommensurate but the modulation function is discon-
tinuous. The typical situation is that below A, < Aq, the ground state is mod-
ulated with a modulation vector that locks in at a commensurate value. Then
the chain is again periodic, generally with a larger unit cell than for A > A;.

The phase diagram can be constructed from the determination of the
ground state for given values of the parameters. In the A/C versus B/C plane
incommensurate phases are concentrated around the origin. For high values
of A/C the solution z,, = 0 (the paraphase) is the ground state. For large
absolute values of B/C the ground state is ferroic (period 1 different from
the paraphase) or antiferroic (period 2). For low values of A/C ground states
are commensurate. Around the origin the wave vector is incommensurate or
commensurate and the phase diagram is complicated. This means that for
comparable values of A/C and B/C the ground state may be quasiperiodic
and the ground state is degenerate.
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If z,, is considered as the displacement of particle n, the positions of the
particles are

rn =na+ x, =na+ f(gna).

The modulation function f is obtained numerically, from a solution of (6.17),
which minimizes the potential energy, as f(qna) = x,, where ¢ is twice the
number of nodes divided by the periodicity of the solution. With this mod-
ulation function the solution can be embedded in a two-dimensional space
according to (6.13). This means that for A4qg < A < A; the atomic surfaces
are unbounded and smooth, whereas for A. < A < Aq they are disjoint and
bounded.

6.3.2 The Double-Chain Model for Incommensurate Composites

For aperiodic composites we study a system consisting of two one-dimensional
chains, one with atoms at positions x,, and the other with atoms at y,,. The
potential energy is given by

V:ZVl(xn _xnfl)'i_zvé(ym_ymfl)'i_zw(xn_ym) . (6.18)

m nm

The intrachain couplings are either harmonic (Vi(z) = a(z — a)?/2, Va(y) =
B(y — b)?/2) or they are Lennard-Jones potentials with minima for z = a
and y = b, respectively [6,7]. For the interchain coupling a Lennard-Jones
potential has been chosen:

wora((9)"2(0)).

where 72 = (z — y)? + d?, if d is the interchain distance.

The model is in fact a generalization of a model introduced by Dehlinger,
and which was studied by Frenkel and Kontorova and by Frank and Van
der Merwe [8]. It consists of a linear chain on a fixed substrate, with the
Hamiltonian

0o Z <ij N o, — x;_l —a)’ 4 A cos(2man /b + ¢)> ) (6.19)

Usually it is called the Frenkel-Kontorova model, also when the lattice con-
stant a is incommensurate with the periodicity b of the substrate potential.
In the DCM also the substrate is deformable.

6.3.3 The Ground State of the DCM

The ground state is obtained as the configuration that minimizes the poten-
tial energy. This is done numerically for commensurate approximants. If a



148 T. Jannsen

and b are the lattice constants of the two chains, solutions for x, and y.,
are obtained with the condition La = Mb for integers L and M such that
L/M approximates the irrational value a/b for the incommensurate chain.
In general, the solutions can be written as

Tn = xo + na+ f(xo + na), flx) = f(x+0), (6.20)
Ym = yo +mb+ g(yo +mb),  g(y) = g(y + a). (6.21)

The modulation functions can be determined from
f(na mod b) =z, —na, ¢g(mb mod a) =y, —mb,

when x,,,y,, are found numerically. For small interaction parameter A the
functions f and g are continuous, for larger values of A they become simul-
taneously discontinuous. In the latter region the modulation functions are
approximately piecewise linear. This means that locally the lattice parameter
of each chain is changed. Because the density of the particles is fixed, the dis-
continuities provide an overall incommensurability. In this sense the transition
from smooth to discontinuous can be called a discommensuration transition
as well.

Using the modulation functions f and g the solution can be embedded in
a higher-dimensional space according to (6.14). For values of the parameter
A smaller than the critical value the atomic surfaces extend to infinity. For
values exceeding this value the atomic surfaces are bounded or form even
fractal structures.

A line in the plane of the relevant parameters (A\/a and A\/(3) forms the
transition from smooth modulation functions to discontinuous modulation
functions. This has been obtained by keeping A/« fixed and varying A/
monitoring the value of the discontinuity. In the real calculations, which were
based on approximants, this means that the largest gap exceeds a threshold
value. If one increases the size of the approximant the transition becomes more
pronounced (Fig. 6.3).

6.4 Phonons and Phasons

6.4.1 Phonons in Aperiodic Crystals

Phonons are collective dynamical excitations in solids describing oscillations
of the atomic positions around the equilibrium positions. When the displace-
ments of the atoms from their equilibrium positions are denoted by u,, the
potential energy may be written as V(uq,...,un). A development in a series
gives, up to second order in the displacements:

1
V(ug,...,un) = 3 Z U(nm)agtnatmg + - -

namf



6 Phason Dynamics in Aperiodic Crystals 149

0.02 T T T T T

T T o b2
D

—0.02 |
—0.04 | & KRR

006t Y

~0.08 |- 1

-0.12 1 1 1 1 1 , 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 6.3. The modulation function for one of the chains in the ground state of the
DCM. There is a transition from smooth to discontinuous functions

Here uy,,, is the Cartesian a-coordinate of the displacement of particle n. The
equation of motions

Mplipe = — Z U(nm)agtimg
mf3
can be reduced to a problem in 3s dimensions (s is the number of atoms
per unit cell) if the crystal is periodic. Then the position of the j-th atom in
the unit cell n has coordinates x(nj), and displacement u(nj),. The second
derivative of the potential energy with respect to the positions is a tensor
U(n —m,ij)ag-

The eigenvectors of the Fourier transform of this tensor
D(if|q)ap = Y U(n,if)ap(mim;)~"/? exp(—ign)
n

are e(qu|ja), have eigenvalues wgy, and specify the phonons

ung)a = 3" Quelavlja) explign) + c.c.
qu

The modes are characterized by a wave vector ¢ and a branch label v.
For aperiodic crystals there is nither such a unit cell nor a Brillouin zone.
For periodic approximants the number of branches, labeled by v, increases
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with the size of the unit cell of the approximant, and becomes infinite for the
aperiodic structure. Nevertheless, it is possible to consider pseudo-Brillouin
zones and a function that can be measured with inelastic neutron scatter-
ing, the function S(g,w). A Brillouin zone boundary occurs in those places
in reciprocal space where two plane waves with wave vectors differing by a
reciprocal lattice vector are degenerate. For example, in one dimension elas-
tic waves with wave vectors k and —k are degenerate and a gap originates
if Kk = —k + 2n/a, at the Brillouin zone boundary k¥ = m/a. For aperiodic
crystals the wave vectors of the structure form a dense set, but the coupling
between two degenerate waves ki and ko is only strong when the structure
has strong Fourier components K = ki — ko. From the diffraction pattern it is
clear that the strong peaks are not dense. Therefore, there is a discrete set of
surfaces where a substantial gap may occur. These are the pseudo-Brillouin
zone boundaries.

The inelastic neutron scattering is described by the differential cross sec-
tion, which for s atoms at positions 7; is determined by the function

2

Zeiq” ge(kv|j)| d(w— wry)A(qg — k),

j=1

S(g.w) ="

qv

where the sum is over all phonons and where A(q) = )", d(g — k) is a sum
over all vectors of the Fourier module. The latter is an infinite sum, but the
inner product of the eigenvector and the wave vector will be of importance
only in certain cases. The function would give for a periodic structure a sharp
maximum along the lines of the dispersion curves (wg, q). For aperiodic crys-
tals this remains the case for lower frequencies. There most of the vibrations
propagate plane waves like sound waves. For higher frequencies the maxima
become broader because the eigenvectors tend to be more localized, which
implies that in their Fourier decomposition more wave vectors are involved.
These wave vectors form a quasicontinuum around the dispersion curve.

The latter shows that the character of the excitations may be different
from that for periodic crystals. For periodic crystals the excitations in various
unit cells differ only by a phase factor, due to Bloch’s theorem. This means
that phonons in periodic crystals are extended. Localized phonons only occur
due to defects. For aperiodic crystals they may also exist in ideal systems.
In one dimension it has been proven that the behavior in many systems is
neither extended nor (exponentially) localized. The displacements of a mode
may fall off algebraically or be self-similar. Such states are called critical.

The phonons in aperiodic crystals can be numerically calculated by ap-
proximating the aperiodic structure by a series of periodic structures. The
results for the aperiodic crystal then are supposed to be the limit of
the results for the series. As an example consider the vibrations in a Fibonacci
chain. It can be considered to be a modulated structure with discontinuous
modulation function and wave vector ¢ = 7 = (v/5 — 1)/2. This value is the
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limit of a series of truncated continued fraction expansions:
. F,
7= lim s Fn+1 = Fn -|—F‘n,17 FO = F1 =1. (622)

(This means 7 can be approximated by 1/2,2/3,3/5, 5/8, 8/13,...).
Replacing 7 by an approximant gives a periodic structure with F,, atoms
per unit cell and F},, phonon branches. From the eigenvalues and eigenvectors
the function S(q,w) is easily determined.

6.4.2 Phason Excitations

Very often a structural phase transition from a periodic to an incommensurate
modulated structure goes via an instability of the periodic system, where the
frequency of a mode tends to 0 as a function of temperature or of the system
parameters. For the DIFFOUR model the dispersion curves for the chain with
xn = 0, when the system is lattice periodic, are given by

w(q)? = A+ 2Bcos(q) +2Ccos(2q), —m<q<m. (6.23)

The minimum of the curve is at g. with cos(q.)=—B/4C, if |B/4C| < 1
(Otherwise at ¢ = 0 or ¢ = m). The frequency goes to 0 if A decreases to
A; = 2C + B?/4C. This is called a soft mode. For A < A; the structure
with z,, = 0 is unstable. The ground state just below A = A; is a modulated
structure with modulation wave vector ¢.. The two degenerate modes at +q.
are coupled by the modulation. Actually the mode frequency changes with the
parameters. In a mean field treatment the equations of motion are effectively
the same, but the parameters A, B, and C depend on temperature. Then the
critical value of A corresponds to a critical temperature T;.
In the neighborhood of +¢. the dispersion curves are linear:

w(ge + k) = [4C — B* /40 k> (6.24)

for A = A;. The coupled modes give new modes that are the symmetric
and anti-symmetric combinations of the original modes. One is proportional
to the sinusoidal modulation function, the other differs by a phase of /2
and corresponds to the derivative of the modulation function. This means
that the first changes the amplitude, the other the phase of the modulation.
These modes are called the amplitude and phase modes, or amplitudon and
phason, respectively. The branch starting from this zero frequency mode is
called the phason branch. Because the phase of the modulation corresponds to
the internal coordinate in superspace, when one embeds the aperiodic chain in
higher dimensions, a phason may be described as an oscillation in superspace
with a polarization pointing out of the physical space.

Because the potential energy of the crystal is invariant under a phase shift
of the modulation, it is to be expected that the phason with £ = 0 (¢ = ¢.)
has frequency 0, also for A < A;. Numerical calculations of the dispersion
curves in the modulated phase show that this is true in the neighborhood of



152 T. Jannsen

A = A;, but not generally for any value of A. The typical situation is that
the frequency remains 0 in the interval A3 < A < A; for some value of Ay
that is larger than the value A. of A for which the ground state becomes
commensurate. Below Aq the frequency of the lowest phason is nonzero, a
phason gap opens. A careful analysis shows that at the transition point the
modulation function is no longer smooth, but shows discontinuities. It is the
discommensuration transition, also found in similar systems under the name
“transition by breaking of analyticity” [9].

Excitations with 0 or low frequency and with eigenvectors, which corre-
spond to motions that can be interpreted as motions in the additional space
(and therefore can be called phasons), have been found in the DIFFOUR
model, in the DCM, and in the Frenkel-Kontorova model (see Sect.6.6). In a
certain parameter or temperature range the minimal frequency of these modes
is zero. Let us summarize the results for the three models at zero tempera-
ture, as a function of the parameters. Fixing B/C in the DIFFOUR model,
there is a zero frequency phason mode in the range from Aq/C to A;/C.
Above A;/C the paraphase is stable, and there is no phason. Below Aq/C
there is a phason gap. For the DCM there is a line in the (A/a, A\/(3)-plane
separating the region with zero frequency phason from that with a phason
gap. This happens both for the Gaussian and for the Lennard-Jones poten-
tial. In the Frenkel-Kontorova model, another model for composites that is
discussed in Sect. 6.6, there is a critical value of the chain-substrate inter-
action A\ above which there is a phason gap, and below which the gap is
0 (Fig.6.4).

In all these cases the character of the modulation functions has been stud-
ied. The line (or point) in parameter space where the phason gap opens coin-
cides always exactly with the appearance of discontinuities in the modulation
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Fig. 6.4. The parameter space k1 = A/, k2 = A/ with the lines indicating the
opening of the phason gap, and the discommensuration transition [7]
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function. Therefore, the conclusion is that the discommensuration transition
is connected to the softening of the phason. If the modulation functions are
smooth, the phason gap is 0.

For a zero frequency acoustic phonon (a displacement of the crystal) in-
creasing the amplitude does not change the distances between the particles.
For a phason that is different. A phason is a harmonic oscillation only for
small amplitudes. Because of the zero frequency the amplitudes may become
large and nonlinear terms have to be taken into account. In the following we
study the nonlinear dynamics related to the phason motion.

6.4.3 The Phason Content of Phonons

In principle, phonons may be described fully in physical space. Then the
displacements are parallel to this physical space. Sometimes, a phonon can be
described as an oscillation in the phase variable, and the displacements then
have components in internal space.

Consider a simple modulated chain, embedded as (na + f(gna — t),t).
A shift in superspace €(cos 6, sin 0) gives a displacement field

Uy, = € cos 0 + € sin Of(qna) .

Then U; = ), un/N = €ecos § and Usf'(qna) = u, — U;. The internal
polarization is defined by tan § = Us/U; and ¢ = \/U? + UZ. The phason
content increases with higher values of 6.

Consider the two chains in the double chain model. The equilibrium po-
sitions are I, for one chain, and 7, for the other. The oscillations around
these positions then are given by displacements u,,(t) and vy, (¢). We consider
the case of eigenmodes with a frequency w. Then x,(t 4+ 2n/w) = u,(t) and
U (t + 2W/w) = vy, (t). In an eigenmode the average displacements of the two

chains are i 1
A = — n Ay = — m - 2
1 N, ; U 9 N, ; v (6.25)

A translation in two-dimensional superspace of the chains in the direction
€(cos 0, sin 6) would give displacements of the centers of mass according to

Ay =€(cos 0+ Zysin 0), Az =e€(cos 0 — Zysin 0) . (6.26)

This means that for an eigenmode (uy,,v,,) an internal polarization can be
defined by the values of € and 6.

ay U, —bdY  vm

tan6 = ’
aZs >, un+bZ1>, vm -
1 .
€= m((Al — Ay)sinf + (ZQAl + Zlﬂg) COS 9) .

Therefore, the displacements in physical space determine the phason character
of a phonon mode. For a pure homogeneous acoustic mode u,, = v,, = ¢, and
6 = 0, and for a phason with w, = Zic and v,, = —Zsc one has § = 1/2,
because alN7 = bN>.
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6.5 Nonlinear Phason Dynamics

6.5.1 Modulated Phases

The eigenmodes of a (periodic or aperiodic) crystal are solutions of the lin-
earized dynamical problem. Among them are the phasons in modulated phases
that are phonons with a character that can be described as a shift of the modu-
lation function. The frequency of the homogeneous shift, the pure phason with
wave vector zero, is 0 if the modulation function is smooth, due to the degen-
eracy of the potential energy. The latter argument can be used to show that
also an arbitrary shift will not cost energy. However, in this case nonlinear
terms will come in. In principle, these could give rise to a coupling between
phasons and other phonons.

We consider this question in the frame of the DIFFOUR model. We first
introduce a new parametrization of the model such that the Hamiltonian is
given by

2 be fI:4
H= ; (" -t (@ —wn)® +d(an - xn2)2> - (6.28)

Note that the parameter change from A, B, and C to b and d is such that
A and b have different signs. If the ground state is given by the modula-
tion function z,, = f(kna) a shift of the modulation function gives x,(t) =
f(k(na — vt)) or an initial speed

0 (0) = —kvf'(kna) = euy, Z lu,|? = 1.

n

For a sinusoidal modulation x,, = U cos(kna) the speed is given by v =
€\/2a/L/kU, where L is the length of the normalization domain. The speed
should be compared with the phason velocity, the slope of the phason branch,

which is equal to vpn = /1/2d — 8d.

We look for solitary wave solutions of the equations of motion of the form
n(t) = f(na — vt) (6.29)

and start with a continuum approximation. The Lagrange function has the
form

2 4
n

@2 b oz
L= Z <2 + 7 - Z - (l‘n - l‘n—l)2 - d(fEn - $n_2)2) . (630)

The solution f(z) is periodic with period p just as the modulation function.
Then the Lagrangian function in the continuum approximation is an integral



6 Phason Dynamics in Aperiodic Crystals 155

over the unit cell p.

_N P moPf(2)? f(2)t | bf(2)?
L= p /0 ( 2 2

(f(z) = fz+a)® —d(f(z) — f(z + 2a))2) dz . (6.31)

Here N is the number of particles.

For v = 0 the action is extremal. Here it is a maximum. The function f,
which depends still on v, should maximize the Lagrangian. For a trial function
f(2) = fosinkz this means that

2,2
(mk:4v + Z — 2 sin(ka/2)* — 2 sin(ka)2> A% —

EA‘*
16

is maximal, which is an equation for k. This transcendental equation has
nontrivial solutions provided

mv? < —8d— 2. (6.32)

If v satisfies this condition and ky maximizes the Lagrangian, then the equa-
tion for A has a nontrivial solution if
mk3v? b

1 + i~ 2 sin(koa,/2)? — 2 sin(kga)? > 0.

Under these conditions a solitary wave solution exists if it is nearly sinusoidal.
For speeds higher than /(—8d — 2)/m the solution is unstable. This leads to
the conjecture that if the modulation function is smooth (which is required for
using the continuum approximation) there is a solitary wave solution moving
through the crystal without energy loss provided its speed remains below the
threshold value. In the discrete system there will nevertheless be some energy
loss due to the coupling to phonons, but it may be expected to be small.

To check these expectations the equations of motion were numerically
solved for the DIFFOUR model with as initial positions the positions of the
ground state configurations, and as initial velocities a factor € times the eigen-
vector coordinates of the phason, i.e., proportional to the derivative of the
modulation function. After many iteration steps the shape of the modulation
function did not change for small initial speed v = 0.03. The speed itself re-
mains practically constant. There is only a very small energy loss to internal
vibrations because of the discreteness of the system. However, for an initial
speed v = 0.07 the speed decreases immediately and goes to 0. The energy
then is completely transferred to the phonons (Fig.6.5).

6.5.2 Incommensurate Composites

The vibrations around the equilibrium positions considered in Sect. 6.4, de-
scribed in terms of phonons, are harmonic. The harmonic approximation is
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Fig. 6.5. The speed of a nonlinear excitation in the DIFFOUR model. For the lower
speed the motion is almost dissipation-less

valid only for small displacements. For larger displacements the equations
become nonlinear. They are

myin=—V{(xn —2pn_1) — V{(2p — Tpny1) — /\Z W' (zn — Ym), (6.33)

Mol = *‘G(ym - ym—l) - VQI(ym - y7n,+1) +A Z W/(xn 7ym) . (634)

We suppose that the displacements u,, and v,, remain small in the moving
frame

Vi(zn — 1) + V(T — pi1) = a(2uy — Up—1 — Upt1)

and a similar expression for V3. The phonons then are nonlinearly coupled by
the W terms.

The solutions z,, (t) and y,,(t) also determine the motion of the centre of
mass, and the motion of the internal coordinate Z. The latter is determined
by (choose Z; = 0, then Z = Zs)

1
tZ = ;yn — (6.35)

7 = i;ym = _%2(2:%71 — Ym—1 — Ym+1) + % ZW’(xn —ym) .

m nm

The relative motion of the two chains may be described as a motion in internal
space.
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The change in the internal coordinate Z is obtained from the two displacive
modes in the two chains:

1
1 2
) = N§ Un, g):mﬁ VU - (6.36)

The equations of motion for these variables are

1) )\ /
= - w n— Ym)
- nim (Tn = Ym)
5(2) _ A E w’ _
0 mo v (xn ym) N

The right-hand sides can be developed in powers of the normal coordinates

(6.37)

Q,(fj ) according to

S W (@, —y ZZ =W D (na — vt — mb) (up — vm)? . (6.38)

nm j

The first-order terms are given by

Z W" (na — vt — mb)u Z széQK exp(—isf2t)

nm Kos
Z W' (na — vt — mb)v Z gKlSQK exp(—is{t),
nm Kis

where K7 is a multiple of 2n/a and K is a multiple of 2rn/b, 1 = 2nv/b
and 25 = 2nv/a. The latter frequencies correspond to the frequencies with
which the particles of one chain move over the particles of the other chain.
Furthermore, fks and gis are the Fourier transforms of Zm W' (na — vt —mb)
and ), W'(na — vt — mb), respectively.

By the expressions in terms of the normal coordinates the modes with
wave vector k in chain one are coupled to modes at k + K5 in the same, and
to modes at k + K7 in the other chain, and vice versa. The center of mass
motions are in first approximation coupled to modes with wave vectors in one
of the two reciprocal lattices. Then the equations of motion become

= —— lz szlQK exp(—ift) + ZgKlngz exp(—if2at)

K1

.~(()2) = lz szlQK2 exp(—if21t) + ZgKﬂQK exp(—if2t)| ,

K1

=1
QK2 = _legQKza

Q%ﬁ = W2k, Q([?i .
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The solutions give for the change in the internal coordinate
Zl — Z2 ~ vt + A CXp(—int + ileQt) + B CXp(—i_Qgt + iLUQKlt) . (639)

The result is a quasiperiodic oscillation of the internal coordinate around a
mean value v. Through the coupling to other modes energy flows from this
center of mass motion to the phonon bath. The flow is most important in
the regions where one of the frequencies sf2; becomes equal to a frequency
w1k, Or wak,. The effect is even more pronounced at frequencies where the
participation of the chains is comparable in size (i.e., approximately 0.5).

The analysis given earlier may be illustrated by numerical calculations [10].
This allows to explore the region that is not accessible to analytical treatment.
We consider the DCM with truncated Lennard-Jones potentials:

Vi(z) = ((ai/sc)12 - 2(ai/x)6) exp(—ra?) .

Chain lengths up to N = 89 and L = 144 were considered, with periodic
boundary conditions. The equations of motion were integrated with a four-
step Runge—Kutta procedure. For various values of the lengths L and N the
equations were integrated with the equilibrium positions as positional initial
conditions, zero velocity for the particles of chain 1, and a uniform initial ve-
locity of the particles of chain 2. The monitored properties were the momenta
of the two chains, and their kinetic energies as function of time.

In the first simulations the interchain coupling was taken to be so small
that the modulation functions were smooth. In Fig.6.6 the momentum of

momentum loss chain two

momentum P_2

5 0 20 40 60 80 100 120 140 160 180 200

time (s)

Fig. 6.6. Time dependence of the momentum of one chain in the DCM for initial
speeds ranging from 0.5 to 2.0, with intervals of 0.05
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Fig. 6.7. Time dependence of the kinetic energies of the two chains in the DCM,
for initial speed v = 1.5

chain 2 is plotted as function of time for a number of initial velocities. For
smaller than a critical value v = 1.1 it remains practically constant for a very
long time. For v = 0.65 the coupling becomes stronger, the energy is lost
faster, and there are stronger oscillations due to resonance of 2; and wik,.
The resonance disappears for higher values of v. Above the critical value the
energy loss is much stronger. There is no longer a sliding mode. If the relative
motion vanishes the momentum of the second chain goes to L/(L + N) of its
original value because of conservation of total momentum. Figure 6.7 shows
the kinetic energy in both chains as a function of time, when there is a strong
dissipation (v = 1.5). Chain 2 loses quickly its kinetic energy to chain 1, until
the point where the energy is evenly distributed over the modes of both chains.
The cross-over from almost dissipation-less to strong dissipative behavior is
very similar to that in the Frenkel-Kontorova model for weak coupling [11].
The calculations show that for low velocities the energy loss, and therefore
also the damping of harmonic modes, is very small. In experiments the phason
and sliding modes have been found usually as strongly damped. This would
then not be an intrinsic property of the dynamics of incommensurate phases,
but probably due to other effects, such as the coupling to defects and pin-
ning. In [12] the dynamics of incommensurate phases has been studied with
a phenomenological approach to the damping.

When the coupling between the chains becomes stronger the modulation
functions are no longer continuous, and the analysis in terms of normal coor-
dinates of the two chains is no longer valid. The two chains are still mutually
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incommensurate, which means that the ground state remains infinitely de-
generate. However, in this case there are barriers between the various ground
states involving finite jumps of the particles. Therefore, the displacements
are no longer harmonic. A numerical integration of the equations of motion
gives another cross-over behavior. For low relative momenta the kinetic en-
ergy is not sufficient to cause the particles to move over the barriers. Then
the kinetic energy is exchanged between the two subsystems and the center
of mass oscillates. For higher momenta the two chains may slide over each
other, and the kinetic energy is quickly transferred to the phonon degrees of
freedom.

6.6 Sliding on a Quasiperiodic Substrate

6.6.1 A Model

As discussed in Sect. 6.2 the embedding of the usual quasicrystals in super-
space consists of disjoint atomic surfaces. Although there is phason dynamics
in such systems its character resembles that of other aperiodic crystals with
discontinuous modulation functions. Therefore, it is not to be expected that
there are propagating phason modes with a very low dissipation. However,
for quasicrystals one may have smooth modulation functions for the case of
a crystal sliding over a quasicrystalline surface. In this section sliding of a
periodic crystal over a quasiperiodic substrate is considered.

An often used model for surface phenomena is the one originally intro-
duced by Dehlinger, but usually called after Frenkel and Kontorova. It is a
quasi-one-dimensional model with a rigid periodic substrate potential in which
a harmonic chain is situated. For the case where the lattice constant is incom-
mensurate with the substrate periodicity, the model was first studied by Frank
and Van der Merwe. The model Hamiltonian is

H= Z (an + %(mn —Tyo1 —a)® + V(xn)> , V(z) = X cos(2ma/b) .

(6.40)
For an incommensurate situation a/b is an irrational number. A generaliza-
tion of this model is obtained by replacing the periodic potential by a quasi-
periodic one. A further generalization is a two-dimensional periodic crystal
moving over a quasiperiodic two-dimensional substrate.

Suppose a periodic crystal moves over the surface of a quasicrystal. Mo-
tions in the quasicrystal corresponding with a polarization in the perpendic-
ular direction are phason jumps, which cost energy. At the surface one might
have sliding if the situation can be compared to that in the DCM or the GFK
model. We consider a tenfold symmetric substrate potential in which a square
lattice moves (Fig. 6.8). The Hamiltonian is given by
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Fig. 6.8. Top: Dispersion curves square crystal. Bottom: Contourplot for the tenfold
symmetric substrate potential, which is a model for a quasicrystal surface. (G(0,0),

X(3,0), M(3,3))

H= Z (p% + Z Qnm (T = T — dpm)? + )\V(xn)> (6.41)

with V(z) = Zcos(kj:zc)7 k; = (cos(2mj/5), sin(2m;/5)) .
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Here n, m belong to a square lattice, d,,, is the equilibrium distance between
the lattice points n and m, and ay,, is only different from 0 for first and
second neighbors.

The ground state is a modulated structure of rank 6 (the dimension of
the lattice is 2, and there are four independent vectors in the potential). The
phenomenon of the discommensuration transition is the same. For weak in-
teractions between crystal and substrate the modulation is a smooth function
of four variables. The quasiperiodic substrate can be embedded in four di-
mensions as a periodic function. For small values of A the unit cell of this
four-dimensional lattice is uniformly covered by the positions of the atoms in
the ground state. For higher values of A the modulation function has discon-
tinuities and the unit cell of the periodic function has avoided regions.

6.6.2 Nonlinear Dynamics and Friction

The equations of motion are the Hamilton equations for the Hamilton function
H. Under the assumption that the distance between two points n and m
remains bounded, the solutions can be written as

T, =10 + Z Qrv(t)e(kv) exp(ikn) ,
kv

where v labels the two branches, k is in the two-dimensional Brillouin zone, the
normal coordinates Qy, (t) are bounded in time, except Q¢ which corresponds
to the motion of the center of mass. Two phonons of the crystal are strongly
coupled if they have the same frequency wy, (Fig.6.8) and k vectors differing
by one of the five vectors k;.

Integration of the equations of motion yields the time dependence of Qg (¢).
Briefly formulated, the behavior is similar to that of the DCM. There is a
zero frequency sliding mode for such small values of A where the modula-
tion function is smooth. Above the critical value, the modulation function is
discontinuous and a phason gap opens.

Given an initial value of the vector Qo (t) for values of A below the critical
value the value of Qo(t) decreases slowly. The friction is very low under the
condition that Qo(0) is small. The friction increases strongly as soon as the
initial speed exceeds the phason speed. The direction of Q(t), however, does
not stay the same. Very soon a change of direction occurs, and that does not
change strongly afterward.

The system can be embedded in six dimensions. Then the shift of the
crystal with respect to the substrate is a phason motion. The transfer of
energy from the phason to the other phonons is interpreted as friction.

6.7 Conclusions

There are various dynamical and static phenomena in quasiperiodic systems
related to the motion in internal (or perpendicular) space. In the harmonic
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approximation these dynamical excitations are special phonons called pha-
sons. Beyond the harmonic approximation these phasons may nonlinearly be
coupled to other phonons.

In some models phason modes originate from a soft mode, a mode of the
undeformed crystal becoming unstable at the transition to the modulated
phase.

In aperiodic crystal models often a transition is observed from a state with
smooth modulation functions to a state with discontinuous modulation func-
tions. It is called the discommensuration transition. This transition coincides
with the opening of a phason gap.

In incommensurate structures static and dynamic excitations occur in the
form of solitary waves. These phase excitations move through the system
almost without energy loss if the modulation functions are smooth and the
speed is sufficiently low. A dynamic transition takes place from a practically
dissipation-less motion to a dissipative motion if the speed exceeds a critical
value.

This dynamic transition has been found both in the sliding of subsystems
in an aperiodic composite (internal friction) and in the sliding of one crystal
on top of another (normal friction).

Acknowledgments. Many results presented here have been obtained in
pleasant collaboration with Linda Brussaard, Annalisa Fasolino, Ovidiu Rad-
ulescu, Alexei Rubtsov, and Han Slot.
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7

Hamiltonian Monodromy as Lattice Defect

B. Zhilinskii

Summary. The analogy between monodromy in dynamical (Hamiltonian) systems
and defect in crystal lattices is used in order to formulate some general conjec-
tures about possible types of qualitative features of quantum systems that can be
interpreted as a manifestation of classical monodromy in quantum finite particle
(molecular) problems.

7.1 Introduction

The purpose of this chapter is to demonstrate amazing similarity between
apparently different subjects: defects of regular periodic lattices, monodromy
of classical Hamiltonian integrable dynamical systems, and qualitative fea-
tures of joint quantum spectra of several commuting observables for quantum
finite-particle systems. First of all we recall why regular lattices and lattices
with defects appear naturally for classical integrable Hamiltonian systems and
for their quantum analogs. Then we describe several “elementary dynamical”
defects using tools and language developed in the theory of crystal defects.
Comparison between defects arising in dynamical systems and crystal defects
leads to many interesting questions about possibility of realization of certain
defects in Hamiltonian dynamics and in crystals.

7.2 Integrable Classical Singular Fibrations
and Monodromy

Let us start with the example of Liouville integrable classical Hamiltonian
system with N degrees of freedom [1]. This means that there exists a set
F = {Fy,...,F,} of functions defined on 2n-dimensional symplectic mani-
fold M, which are functionally independent and mutually in involution. The
Hamiltonian H can be locally represented as a function H = f(dFy,...,dF,).
The mapping F:M — R™ defines the integrable fibration. We call it a general-
ized energy—momentum map. Each fiber is the union of connected component



166 B. Zhilinskii

1 F2 |2 1 F2

Fig. 7.1. Examples of images
fibrations

\“{“i\\\llllllif%;'i =
SN Wy 2=
.

o
e
=

11

i
'I

:‘
o
o2
522

%
o

K
=
“:‘

%
o
’0
<2
I

==

%
<
S

oS

<

00
<
S

==

Ness

S
e

NNy
\\

S

A\\ay

Fig. 7.2. Singular fibers. Pinched torus (left). Curled torus (center). Pinched curled
torus (right)

of inverse images F~1(f) of points f € R™. If the differentials {dF7,...,dF,}
of functions from F' are linearly independent in each point the fibration
is called regular. If moreover all fibers are compact, the fibration is toric.
We are interested in integrable toric fibrations with singularities of some very
simple type.

Let us restrict ourselves to systems with two degrees of freedom. Typ-
ical examples of images of singular energy—-momentum maps are shown in
Fig. 7.1. The isolated critical value of the map F' (see Fig. 7.1, left), also known
as focus—focus singularity [2, 3], appears, for example, for such problems as
spherical pendulum [4-6], champagne bottle [7, 8], coupling of two angular
momenta [9], etc. The singular fiber in this case is a pinched torus (Fig. 7.2,
left) with one isolated critical point of rank 0.

The presence of a half-line of critical values, together with end point, is
typical for nonlinear 1:(—k) resonant oscillator [10]. Each point on the singular
half-line corresponds to a singular “curled torus” (Fig.7.2, center, shows a
curled torus for the case k = 2) [10,11], which differs from an ordinary torus
due to the presence of one circular trajectory that covers itself k-times. This
particular circular trajectory is formed by critical points of rank 1 of the map
F. The end point (see Fig. 7.1, center) corresponds to the pinched curled torus
with a multiple circle shrinking to a point. This fiber has one critical point of
rank 0 and is topologically equivalent to pinched torus but its immersion into
4D-space is different. A pinched curled torus for & = 2 is shown in Fig. 7.2,
right.

A more general situation with two singular rays starting at one singular
point (as shown in Fig.7.2, right) corresponds to k:(—l) resonant nonlinear
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oscillator. An example of the integrable fibration corresponding to all shown
in Fig. 7.1 of the energy-momentum maps with two integrals (F;, F) in invo-
lution can be written as [10]
Fr=mig(pf +6f) — mag (03 +63), (7.1)
Fy = Im[(q1 +ip1)"2 (g2 +ip2)™ |+ (m15 (07 +67) +ma5 (93 +43)) " (7.2)

with s > (m1 + m2)/2, and m, my positive integers.

All regular fibers are two-dimensional tori. Their fundamental groups are
abelian groups Z2 with two generators, corresponding to two basic cycles on a
torus. The fundamental groups for different regular tori are isomorphic among
themselves and to Z? integer lattice. We can establish the correspondence
between basic cycles defined on different tori by choosing a continuous path
in the 4D-space, which is transversal to fibers and by deforming basic cycles
continuously along this path. In particular, for a closed path passing only
through regular tori we get the automorphism of the fundamental group of a
chosen regular torus. The corresponding map of basic cycles is the monodromy
map. It is the same for all homotopy equivalent closed paths. If the path
crosses singular lines similar to those taking place for integrable fibration of the
(7.1,7.2) resonance oscillators only a subgroup of chains can be continuously
deformed along the path and the monodromy map in such a case can be
defined only for a subgroup of fundamental groups [12]. Nevertheless this
map can be linearly extended to a whole group. In this case the extended
monodromy map is represented by a matrix with fractional entries, while in
the case of isolated critical values the monodromy map is given by integer
matrix p € SL(2, 7).

7.3 Quantum Monodromy

In order to study the manifestation of classical monodromy in associated quan-
tum problems we first need to recall the existence of local action-angle vari-
ables [1,13] and to introduce the elementary cell in the space of actions I, Io,
which is defined by Ay, Als. Such a cell corresponds locally to the lattice of
quantum states associated with integer values of local actions. If we choose

basic vectors of such lattice as (z;) = (ﬁg) then under the transformation

/

from one local action to another (Il) =M (g) the basic of the cell varies like

I
e _ el
() = ().

For quantum problems we are interested in the joint spectrum of commut-
ing operators, corresponding to classical integrals { Fy, F5} [14-17]. The collec-
tion of joint eigenvalues superimposed on the image of the energy-momentum
map for classical problem reveals locally the presence of a regular lattice as-
sociated with integrality conditions imposed on local actions by quantum me-
chanics. The lattice of quantum states for quantum problem corresponding
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Fig. 7.3. Example of the lattice of quantum states with monodromy. Resonant
oscillators (7.1,7.2) with m1 = ma =1 (left) and m1 = 1, ma = 2 (right)

to classical oscillators with 1:(—1) and 1:(—2) resonances is represented in
Fig. 7.3 [10].

Due to the existence of monodromy, the lattice of quantum states can-
not be regular globally. From Fig. 7.3 it is clearly seen that the transport of
elementary cell of the locally regular part of the lattice around the singular-
ity shows nontrivial monodromy for a noncontractible close path in the base
space (in the space of Fy, F» values). The presence of quantum monodromy
can be interpreted as a presence of defects of locally regular 