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Preface

The dispersion of particles in a flow is of central importance in various geo-
physical and environmental problems. The spreading of aerosols and soot in
the air, the growth and dispersion of plankton blooms in seas and oceans, or
the transport of sediment in rivers, estuaries and coastal regions are striking
examples.

These problems are characterized by strong nonlinear coupling between
several dynamical mechanisms such as convective sweeping, rotation, buoy-
ancy, bio-physical influences and interactions between particles and fluid. As
a result, processes on widely different length and time scales are simultan-
eously of importance. These range from Kolmogorov scales at which the flow
at particle-scales is central, to much larger-scale structures that can be appre-
ciated best via satellite observations. The multiscale nature of this challenging
field motivated this colloquium that was organized by the recently established
Dutch Platform for Geophysical and Environmental Fluid-mechanics (PGEF).
The meeting took place at the University of Twente (the Netherlands), June
21-23, 2006.

In total 55 participants from 13 different countries and 4 different contin-
ents contributed to the colloquium. The six keynote speakers provided reviews
and recent research findings of areas that were central to the theme of the col-
loquium. These keynote lectures constituted the framework for the rest of the
program, which contained 33 contributed papers, several of which are collected
in this book.

Issues related to the large-scale environmental aspects of particle-laden
flows were addressed by considering turbulence modulation arising in high
density clay-laden flows, and by focussing on transport processes in the stra-
tosphere and its relevance to climate and weather predictions. Fundamental
aspects of transport of particles formed the topic of the second day of the col-
loquium. Insights from experimental and computational research were com-
bined to understand the distortion of flow in the neighborhood of embedded
particles. Aspects of Lagrangian statistics in turbulence were discussed at
length, addressing the dispersion of embedded point particles. Bridging the



X Preface

environmental and the fundamental aspects of particle-laden flows was the
topic of the final day of the colloquium. The Lagrangian dispersion of particles
in the context of their environmental setting was presented. The closing lec-
ture provided a synopsis of transport processes in particle-laden flow in which
possibilities of multi-resolution, multi-physics modeling and monitoring were
discussed.

The colloquium on particle-laden flow was organized under the auspices
of EUROMECH, the European Mechanics Society, and the Universities of
Technology of Delft, Eindhoven and Twente. It was supported financially by
a number of institutions: ERCOFTAC (European Research Council On Flow,
Turbulence and Combustion), COST Action P20 ‘LES-AID’ (COoperation in
the field of Science and Technology), the Netherlands foundation for funda-
mental research of matter (FOM), the Netherlands Royal Academy of Arts
and Sciences (KNAW), the J.M. Burgers Center for fluid mechanics (JMBC),
the Netherlands science foundation (NWO), the foundation for technical sci-
ences (STW), Water Research Center Delft, Eindhoven University of Techno-
logy, the Faculty of Applied Physics of Eindhoven University of Technology,
the University of Twente and the Twente institute for Mechanics, Processes
and Control (IMPACT). This support was crucial for the organization of this
colloquium and is gratefully acknowledged.

We hope that these proceedings will lead to new insights and fruitful de-
velopments.

Enschede, Eindhoven, Delft Bernard J. Geurts
February, 2007 Herman Clercx

Wim Uijttewaal



Part I

Dispersion in environmental flows



Sand motion induced by oscillatory flows: sheet
flow and vortex ripples

Jan S. Ribberink1, Jebbe J. van der Werf1 and Tom O’Donoghue2

1 University of Twente, Faculty of Engineering, Water Engineering and
Manage-ment, PO Box 217, 7500 AE Enschede, The Netherlands
j.s.ribberink@utwente.nl

2 University of Aberdeen, Department of Engineering, King’s College, Aberdeen
AB24 3UE, Scotland

1 Introduction

Shoaling short gravity waves at sea approaching the shore become asymmet-
ric and are able to generate a net resulting sand transport in cross-shore
direction (on-shore-offshore transport). The wave-related sand transport is
still very difficult to predict due to the complexity of its underlying processes,
which mainly take place in a thin layer near the sea bed in the wave boundary
layer (thickness of order centimeters). The development of models for cross-
shore sand transport heavily relies on experimental lab research, especially
as taking place in large oscillating water tunnels (see, e.g., Nielsen, 1992). In
oscillating water tunnels the near-bed horizontal orbital velocity, as induced
by short gravity waves, can be simulated above fixed or mobile sandy beds
(for a detailed description, see, e.g., Ribberink and Al-Salem, 1994). It should
be realized that the vertical orbital flow and relatively small wave-induced
residual flows as streaming and drift are not reproduced in flow tunnels. Re-
search aimed at their contribution to the net sediment motion under surface
waves is still ongoing (see Ribberink et al., 2000).

The present study is focused at the sediment motion as occurring under the
influence of horizontal oscillatory flows and measuring results will be presented
of the Large Oscillating Water Tunnel (LOWT) of WL—Delft Hydraulics and
the Aberdeen Oscillating Flow Tunnel (AOFT). Due to their large size (length
of test sections: 10-15 m) they belong to the few available facilities in which
the near-bed flows of full-scale waves can be generated and scale effects can
be avoided.

Based on an energetics-approach Bagnold and Bailard (see Bailard, 1981)
developed sand transport formulas for short gravity waves, relating the time-
dependent sand transport rate during a wave-cycle qs(t) in a quasi-steady way
to a power n of the horizontal velocity above the wave boundary layer U(t):

Bernard J. Geurts et al. (eds), Particle Laden Flow: From Geophysical to Kolmogorov Scales, 3–14.
© 2007 Springer. Printed in the Netherlands.



4 Jan S. Ribberink, Jebbe J. van der Werf and Tom O’Donoghue

qs(t) = m|U(t)|n−1U(t) (1)

Ribberink (1998) developed a similar quasi-steady formula based on the
time-dependent bed-shear stress. For asymmetric waves this type of transport-
formulas always leads to a time-averaged (net) transport rate which is ‘on-
shore’ directed.

All net transport rate measurements which were collected during the pre-
ceding years in the LOWT and the AOFT for asymmetric waves are depicted
in Figure 1 as a function of the sediment mobility number Ψ = 2U2

rms/∆gD
(with Urms the root mean square velocity of the wave, ∆ the relative density
of sand, D the grain diameter and g the gravitational acceleration).
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Fig. 1. Measured net sand transport rates 〈qs〉 under asymmetric oscillatory flows
as a function of the mobility number Ψ in the vortex ripple regime (triangles) and
the sheet flow regime (circles). The data refer to flows with a constant degree of
asymmetry R = Uc/(Uc +Ut) = 0.62, wave periods T = 3− 9 s and sand with grain
diameters D = 0.13 − 0.45 mm.

It is shown that - contrary to what transport model (1) suggests - the
net transport rates can be ‘on-shore’ (> 0) as well as ‘offshore’ directed (<
0). Moreover, two data groups with different micro bed morphology can be
observed : i) a vortex ripple regime (Ψ < 100 − 200) with mainly ‘offshore’
transport, and ii) a sheet flow regime with flat sea beds (Ψ > 100− 200) with
mainly ‘on-shore’ transport.

In order to obtain a better understanding of this variable behavior of
the net sand transport, in the present paper the underlying boundary layer
flow and sediment dynamics of these two bed regimes are discussed. Here-to
insights as obtained during a series of Ph.D. studies in the preceding years
(Dohmen-Janssen, 1999; Clubb, 2001; Wright, 2002; Hassan, 2003; Van der
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Werf, 2006) are presented and different types of sand transport models are
reviewed.

2 Oscillatory sheet flow

For large mobility numbers (Ψ > 100 − 200) ripples are washed out and the
sea bed becomes plane. The oscillatory sand transport is now confined to a
thin layer with a thickness of order 1cm near the bed, in which large sediment
concentrations (10-50 volume percent) and large sand fluxes can occur (sheet
flow layer).

Fig. 2. Time-dependent flow velocity in the free stream (upper panel) and sand
(volume) concentrations at different elevations in the sheet flow layer during 1 asym-
metric wave cycle (experiment Mh, 0.2 mm sand).

Ribberink and Al-Salem (1995) and McLean et al. (2001) showed how
small Conduction Concentration probes (CCM) can be used to visualize and
measure the sand pick-up and redeposition processes in the sheet flow layer.
The probes measure sand concentration and grain-velocity through electro-
resistance of the sand water mixture (sensing volume of ca. 1 mm high).

Asymmetric gravity waves on the shore-face induce a horizontal oscillatory
flow with a relatively large maximum velocity in on-shore direction velocity
Uc (under the wave crest) and a relatively small maximum velocity in off-
shore direction Ut (under the wave trough). Figure 2 shows time-dependent
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ensemble-averaged sand concentrations during an asymmetric wave cycle, as
measured with CCM, at different elevations in the sheet flow layer (z = 0 mm
refers to the original bed level without sand motion). The upper panel shows
the horizontal asymmetric velocity in the free stream (above the wave bound-
ary layer). The data were measured with 0.2 mm sand and reveal a two-layer
structure of the near-bed sand transport layer, with a pick-up layer (z < 0)
and an upper sheet flow layer (z > 0). During flow acceleration sand is picked
up from the pick-up layer (decreasing concentrations) into the upper sheet
flow layer (increasing concentrations). During flow deceleration the opposite
occurs and sand settles back from the upper sheet flow layer into the pick-up
layer. The upper elevations (z = 0.78 − 4.49 mm) show an increasing phase-
lag of the maximum concentration with increasing elevation. These phase-lag
effects play a crucial role in the magnitude and direction of the mean resulting
horizontal transport of asymmetric waves in the sheet flow regime (Dohmen-
Janssen et al, 2002; Hassan, 2003).

Phase-lags may occur in the pick-up process of sand grains, in the vertical
upward transport of sand and in the resettling process. Figure 3 shows how
the concentrations, measured at a fixed level in the upper sheet flow layer
and scaled with the time-averaged concentration Cm, experience increasing
phase-lags for decreasing wave periods T .

Further systematic experiments revealed that the phase-lags also increase
for decreasing grain size D (slower resettling) and for increasing free stream
velocities (entrainment to higher elevations).

Fig. 3. Time-dependent volume concentrations at a fixed level z = 7 mm in the
upper sheet flow layer during one wave cycle for three wave periods T . The concen-
trations are normalized with their mean values Cm.

Recently, O’Donoghue and Wright (2004) obtained further insight into
the phase-lag phenomenon with high-resolution sand flux measurements using
various sand sizes under asymmetric waves in the AOFT. They showed that
for very fine sand (0.15 mm) the direction of the mean (horizontal) sand
transport may even change sign (from ‘on-shore’ to ‘offshore’), due to the
fact that the (large) sand volumes stirred up during the (strong) ‘on-shore’
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half wave cycle, are still suspended in the wave boundary layer during the
‘offshore’ half cycle. As an illustration Figure 4 shows the measured horizontal
maximum ‘on-shore’, maximum ‘offshore’ and total mean flux profiles for two
grain sizes, i.e., 0.28 (MA5010) and 0.15 mm (FA5010).
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Fig. 4. Vertical profiles of horizontal sand flux for fine sand (0.15 mm; upper panels)
and medium sand (0.28 mm; lower panels). Maximum ‘on-shore’ flux (left panels),
maximum ‘offshore’ flux (middle panels) and time-averaged net flux (right panels).

Sand motion around oscillatory vortex ripples

Vortex ripples appear on the sea bed for mobility numbers Ψ < 100 − 200.
Their dimensions, such as ripple height η (of the order cm− dm) and length
λ (of the order dm−m), directly scale with the amplitude of the horizontal
oscillatory motion near the sea bed, and show a variation with the mobility
number (see Nielsen, 1992; O’Donoghue et al., 2006).

For an overview of present knowledge about this sand transport regime,
reference is made to Van der Werf (2006). The flow dynamics in the vortex
ripple regime differ strongly from the oscillatory sheet flow regime, mainly
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due to the fact that processes as flow separation and coherent vortex motions
now dominate the entrainment, transport and resettling of sand grains. The
turbulence associated with this vortex shedding process leads to much thicker
wave boundary layers and to a more important role of suspended sediment in
the sand transport process than in sheet flow conditions.

Recently, new flow velocity and sand concentration measurements were
carried out around natural mobile ripples under full-scale asymmetric waves
in the AOFT (see Van der Werf, 2006). Advanced measuring instrumentation
such as a.o. Particle Image Velocimetry (PIV) and an Acoustic Backscatter
System (ABS) were used. Figure 5 shows an example of (grain) velocity vector
fields at different moments during the wave cycle, as obtained with PIV.

The data reveal the development of a strong vortex at the lee side of the
ripple during the first ‘on-shore’ directed half wave cycle, when the highest
velocities occur (phases A,B,C,D). After flow reversal this vortex is transpor-
ted over the ripple crest ‘offshore’ (phases E and F). During this half wave
cycle the velocities are lower due to wave asymmetry, and a similar but less
strong vortex develops at the other side of the ripple crest (phases G and H).
After the next flow reversal this vortex is again transported over the ripple
crest but now in ‘on-shore’ direction (phases A and B). This process of os-
cillatory vortex shedding leads to a boundary layer dominated by coherent
vortex motions extending up to 2 ripple heights above the ripple crest.

Figure 6 shows the sand concentrations around the ripple, as measured
with ABS during the same experiment, at three moments after flow reversal
from ‘on-shore’ to ‘offshore’ (t/T = 0.5, 0.56 and 0.61, see upper plot of Fig-
ure 5). Sand - as trapped earlier during the ‘on-shore’ half wave cycle in the
large lee-side vortex - is transported over the ripple crest directly after the
flow reversed to the ‘offshore’ direction (to the left in Figure 6). Contrary to
the sheet flow regime, most of the suspended sand is now transported with
a considerable phase-lag of the order of 900 with respect to the free-stream
velocity.

This specific ‘offshore’ flux of suspended sand often controls the total net
transport as induced by the full asymmetric wave in the vortex ripple regime.
If suspension is dominantly present, also the total net transport is generally
‘off-shore’ directed (< 0), because - due to the wave asymmetry - the strong
ÔoffshoreÕ flux it is much stronger than its ‘on-shore’ counterpart.

3 1DV RANS modeling

Reynolds-averaged 1DV Navier-Stokes equations with different turbulence
closures are combined with an advection-diffusion equation for suspended
sediment concentrations and solved numerically to simulate time-dependent
suspended sediment fluxes and sand transport by waves in flat sea bed condi-
tions with sheet flow (see Ribberink and Al-Salem, 1995; Uittenbogaard and
Klopman, 2001; Malarkey et al., 2003). In general the flow is driven by the
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Fig. 5. Grain-velocity vector fields around a ripple at 8 phases during the wave cycle
as measured with PIV (exp. Mr5b63) Positive, ‘on-shore’ flow is to the right. The
top panel shows the free-stream orbital velocity u∞ during the wave cycle. Vertical
coordinate z and horizontal coordinate x are normalized with the ripple height η
and respectively the ripple length λ.

time-dependent pressure-gradient near the sea bed and a rough wall boundary
condition is assumed at the (fixed) bed level. A reference concentration at a
level close to the bed is prescribed as a function of the time-dependent bed
shear stress. The Point Sand Model (PSM) of Uittenbogaard and Klopman
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Fig. 6. Time-dependent concentration field around the ripple, as measured with
ABS at 3 moments directly after flow reversal from ‘on-shore’ to ‘offshore’, i.e.,
t/T = 0.5, 0.56 and 0.61 (experiment Mr5b63), and showing the transport of the
vortex filled with sand over the ripple crest.

(2001) is not confined to oscillatory flows but also includes wave-current inter-
action over the full water column. In PSM the equation for turbulent kinetic
energy is provided with a buoyancy term, leading to turbulence suppression
due to vertical concentration gradients (stratification). Moreover, a settling
velocity reduction function is included, accounting for the hindered settling
effect in case of large sediment concentrations.
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Fig. 7. Measured net transport rates (symbols) and predicted net transport rates
with PSM (lines) for asymmetric waves as a function of Urms (sheet flow regime).
The solid line and black symbols refer to 3 medium sands (0.21, 0.32, 0.46 mm), the
dashed lines and open symbols refer to 2 fine sands (0.13, 0.15 mm).

PSM is used to explain the phase-lag effects, occurring in oscillatory sheet
flows, as discussed above. Figure 7 summarizes the results of this investigation
by showing predicted and measured net transport rates as a function of Urms

(= root-mean-square velocity of the oscillatory flow velocity) for two fine sands
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with D50 = 0.13 and 0.15 mm and three medium sands with D50 = 0.21, 0.32
and 0.46 mm.

The measured transport rates are all from oscillatory flow experiments
(LOWT and AOFT) with a small range in wave asymmetry (R ≈ 0.60−0.65)
and wave periods (T = 5 − 9 s). In accordance with the data, PSM shows
a distinct separation between positive (‘on-shore’) and negative (‘offshore’)
transport rates for medium respectively fine sands. The medium sands be-
have in a quasi-steady way, showing increasing positive transport rates with
increasing Urms (〈qs〉 ∼ U3

rms ). The fine sands experience a substantial phase-
lag effect, which is simulated by PSM (D50 = 0.13 mm, R = 0.62, T = 6.5 s)
in a reasonable way. Inclusion of turbulence suppression and hindered settling
effects in PSM leads to increased phase-lags and a better agreement between
the data and the simulations. Nevertheless, it appears that the phase-lag ef-
fects as well as the negative transport rates are still underestimated by the
model.

Similar conclusions follow from simulations with a two-layer model,
provided with an empirical sheet flow layer description (Malarkey et al., 2003),
and a two-phase flow model (see O’Donoghue et al., 2004). It is concluded that
a better description of the time-dependent sand exchange between sea bed
and sheet flow layer (pick-up and re-settling) is probably needed for further
quantitative improvement of the models.

Using the new experimental tunnel data in the vortex ripple regime Van
der Werf (2006) shows that - although this regime would require in principle a
2DV or 3D modeling approach - also a 1DV model with adjusted descriptions
for eddy-viscosity and sediment entrainment is able to give a good description
of the over-all time-dependent sand fluxes and net transport rates.

4 Unsteady sand transport formulas

The process-research as described above has stipulated the dominant role of
phase-lag effects in the sand transport process by waves and their different
character in the vortex ripple and sheet flow regime.

For the sheet flow regime the ‘quasi-steady’ transport model of Ribberink
(1998) has therefore been adjusted to an ‘unsteady’ transport model. Hereto,
the sheet flow concentrations are modeled in a schematic way as an advection-
diffusion process with a constant eddy-viscosity εs and a simplified reference
boundary condition. The equations are solved analytically for asymmetric
oscillatory flows and a dimensionless phase-lag parameter is obtained, repres-
enting the ratio of sediment entrainment height above the bed (= sheet flow
layer thickness) and the vertical settling distance of sediment during a wave
period (WsT ). The sheet flow layer thickness δs is modeled as a function of the
Shields parameter. Using this phase-lag model an unsteady transport formula
is developed, which provides a strongly improved description of measured net
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transport rates in the sheet flow regime. For more details see Dohmen-Janssen,
et al. (2002) and Hassan (2003).

In the vortex ripple-regime the phase-lag effects are generated in a differ-
ent way than in sheet flow conditions, due to the vortex shedding process.
Apart from the strength of the lee-side vortices and the moment of their up-
ward injection during the wave cycle (near flow reversal), also the potential
of the sediments to be entrained into suspension in the lee-side vortex plays
an important role.
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Fig. 8. Measured non-dimensional net transport rates Φ for asymmetric oscillatory
flows in the vortex ripple regime as a function of the Shields parameter θ for 2 ranges
of the vortex suspension parameter p. Positive Φ-values refer to ‘on-shore’ transport.
The data are from oscillatory flow experiments with the same degree of asymmetry
(R = 0.6 − 0.63), wave periods T = 3 − 12 s and grain-size D50 = 0.21 − 0.44 mm.

Figure 8 shows how - during asymmetric wave experiments (in AOFT and
LOWT) - the direction and magnitude of the dimensionless mean transport
rate Φ (= 〈qs〉/

√
∆gD3) is influenced by two parameters, i.e., the Shields para-

meter θ (= fwU
2
rms/(∆gD)) and a new vortex-suspension parameter p = η/D.

The latter parameter, representing the ratio of the ripple height η ( dimension
of the vortex) and the grain-size D, indicates to what extent suspended sed-
iment and associated phase-lag processes are important. For small p-values
(small vortex/ coarse sediment) bed-load transport dominates and the net
transport rates are mainly ‘on-shore’. For large p-values (large vortex / fine
sediment) suspended sediment is dominant and phase-lag effects lead to ‘off-
shore’ directed transport rates. The transport rates also tend to become more
negative (‘offshore’ directed) for increasing Shields parameter. Using the avail-
able dataset of tunnel measurements in the vortex ripple regime, Van der Werf
(2006) developed a new empirical unsteady sand transport formula, in which
the vortex suspension parameter p is one of the key parameters.
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5 Conclusions

An overview is given of experimental research in oscillating water tunnels
(LOWT and AOFT) aimed at a better understanding of sand motion in oscil-
latory flows. Two different transport regimes were investigated using advanced
measuring techniques (CCM, UVP, PIV, ABS), i.e., the vortex ripple regime
and the sheet flow regime. New insights and detailed data were obtained of
the unsteady flow processes controlling the total net sand transport under
asymmetric waves. Phase-lag effects or time-history effects during the wave
cycle strongly control whether net sand transport under asymmetric oscillat-
ory flows is ‘on-shore’ or ‘offshore’ directed. The time-history effects in the two
transport regimes show large differences, mainly due to the large differences
in sand entrainment and transport mechanisms. In the vortex ripple regime
vortex shedding and suspended sediment generally lead to large phase-lags
and ‘offshore’ directed transport. Oscillatory sheet flow is often a more quasi-
steady process with ‘on-shore’ directed sand transport, except for fine sand
and short wave periods when phase-lag effects may lead to ‘offshore’ trans-
port. It was shown that a RANS model, which includes hindered settling and
turbulence suppression is able to explain the direction change from ‘on-shore’
to ‘offshore’ transport in the sheet flow regime in a qualitative sense. Based
on the new insights new unsteady sand transport formulas were developed for
the two bed-form regimes.
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Summary. A comprehensive study is being conducted with emphasis on establish-
ing laboratory-based physical model for predicting ripple dynamics and scour, burial
behavior of bottom objects in oceanic coastal environments. A brief description of
this study as well as salient observations and quantitative parameterizations on
ripples, scour and burial that resulted from it are presented. Comparisons with field
data are also given. The results have important coastal engineering and naval applic-
ations related to sediment transport and coastal morphodynamics under shoaling
waves that are typical of coastal zone.

1 Introduction and general analysis

This research is motivated by recent naval interests to predict the behavior
and fate of cylindrical anti-ship mines that are deployed in the coastal shoaling
zone and are heavy to repose on the ocean floor with little migration. The
behavior of objects of different shape, which can move/drift under the wave
action, was studied in (Voropayev et al., 1998, 2001; Luccio et al., 1998) and
not considered here.

A solid object resting at the sand-water interface in the oceanic coastal
region is subject to highly nonlinear processes associated with the sand-water-
object interaction. A myriad of physical processes determine the fate of the
object (scour, burial, migration, etc.) and morphodynamics at the immediate
vicinity of the object. To develop predictive models, a fundamental under-
standing of the sand-water-object interaction under shoaling and breaking
waves is required. However, nonlinear nature of these processes and particu-
lar complications associated with the interaction of three (sand-water-object)
different phases, such as sediment transport modeling, changing boundaries,
have been the bane for theoretical and numerical analysis (see e.g., Sleath,
1984; Blondeaux, 1990; Nielsen, 1992; Vittory and Blondeaux, 1990; Ander-
sen, 2001; Zhao and Fernando, 2006 and references herein). Therefore, an

Bernard J. Geurts et al. (eds), Particle Laden Flow: From Geophysical to Kolmogorov Scales, 15–27.
© 2007 Springer. Printed in the Netherlands.
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experimental approach is used in our studies to establish a laboratory-based
physical modeling for predicting the ripple dynamics and scour/burial beha-
vior of bottom objects in the oceanic coastal environment.

Taking into account that large number of governing parameters signific-
antly complicates the laboratory modeling, we first introduce some justified
simplifications and identify the most important governing parameters. Follow-
ing Voropayev et al., (2003a), consider a heavy cylinder (diameter D, length
Lc) placed at time t = 0 on a layer of sand (grain size d, density ρs) placed on
a slope (angle β) in oscillating water flow (oscillation frequency ω, amplitude
of the maximum near-bottom horizontal wave orbital velocity U, water dens-
ity ρ and viscosity ν) and the cylinder axis has an angle α relative to the flow
direction. The full set of (twelve) primary external parameters determining a
particular scour/burial characteristic, say B, of the cylinder is thus given by

B = F (D,Lc, d, ρs, t, U, ω, ρ, β, ν, g, α) (1)

(g - gravitational acceleration, F - function). Using dimensional analysis and
general physical arguments, (1) can be simplified and written in dimensionless
form as

B∗ = F ∗(Re,KC, θ, β, α, τ, a). (2)

Here we use: the Reynolds number, Re = DU/ν, Keulegan-Carpenter number,
KC = UT/D = 2πε/D (T - wave period, ε = U/ω - amplitude of near-bottom
horizontal water particle excursion), Shields parameter, θ = (f/2)Ψ [Ψ =
U2/(g∗d) - mobility parameter, g∗ = g(ρs/ρ − 1) and f - friction coefficient
that is well parameterized (Nielsen 1992, Sleath 1984)], non-dimensional time,
τ = ωt, and aspect ratio, a = Lc/D. For the simple case of α = 0, a =
5, corresponding to field experiments, and assuming the Reynolds number
similarity, (2) becomes

B∗ = F ∗(KC, θ, β, τ), (3)

thus simplifying the problem considerably. For fixed bed slope and steady
state, τ � 1, only two parameters remain in (3).

To evaluate the functional form in (3) (see Voropayev et al., 2003a,b; Testik
2003; Testik et al., 2005a,b), laboratory experiments were conducted and the
main dimensional and dimensionless governing parameters for laboratory and
oceanic conditions are given in Table 1. As can be seen, it is possible to match
KC and θ between typical oceanic and laboratory situations, but there is a
large mismatch of Re. However, observations (Testik et al., 2005b) demon-
strate that the Reynolds number flow similarity holds for Re ≥ 2000, and
recent field data show that the results obtained under similarity assumption
are valid for very large Re (Quinn, 2006).
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Table 1. Typical values of parameters

Laboratory Ocean

U (cm s−1) 10-46 20-100
T (s) 2.5-5 4-10
D (cm) 3-8 50
d (cm) 0.04-0.06 0.02-0.1
KC 6-60 1.6-16
θ 0.015-0.3 0.01-0.8
Re (4-35)103 (1-5)105

2 Experimental set-up and flow conditions

A detailed description of the experimental facility is given in (Testik, 2003,
Voropayev et al., 2003a,b) and only a brief description is given below. The
oceanic coastal zone was modeled in a wave tank (3200×90×180 cm3) with
a sloping (slope, β = 1/24) sandy bottom and before each experiment the
sand surface on the slope was made planar. A vertical paddle, driven by a
piston, is used to generate sinusoidal periodic waves, with the water depth near
the paddle being 100 cm (Fig. 1). The tank is equipped with measurement
instruments, which include wave gages, a three-component acoustic Doppler
velocimeter (ADV) and a structured light device (SLD) (Faraci et al., 2000).

Fig. 1. Schematic of the experimental setup: 1 - tank, 2 - water, 3 - vertical wave-
paddle, 4 - sloping bottom, 5 - bottom object, 6 - acoustic Doppler velocimeter
(ADV), 7 - structured light device (SLD), 8 - photo/video camera, 9 - hydraulic
system. Section numbers are also shown and the length of each section is 61 cm.

Although the wave paddle forcing is sinusoidal, with frequency ω and peak-
to-peak horizontal displacements 2ε0, the waves steepen and change their
height as they propagate from deep to shallow water. The underlying velocity
field becomes increasingly nonlinear and more energetic (Fig. 2) with notice-
able wave asymmetry and undertow velocity (Testik et al., 2006a). While this
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complicates somewhat the flow description (the wave characteristics should be
measured/parameterized along entire slope), such geometry has obvious bene-
fits. The advantage of the above experimental set-up with a slope, compared
to the standard set-up with horizontal bed, is that in our geometry the flow
intensity (e.g., U and ε) change along the slope, thus enabling one to collect
data on bottom morphology under different local flow conditions (different
dimensionless parameters) using a given experiment with fixed wave forcing.
In the latter approach, however, a series of experiments is necessary for this
purpose.

Fig. 2. Typical horizontal along-slope near-bed water velocity profiles (a) (at 10 cm
above the bed) and wave elevation profiles (b) at four different sections (see legend
for section numbers).

3 Ripple dynamics

3.1 Ripple formation and growth

Our experiments show that, in the absence of an object, the ripples first start
to form close to the wave breaking point, where the mobility (or Shields) para-
meter is maximum. The ripple front then propagates with decreasing velocity
down the slope towards deep water (Fig. 3). The ripple front displacement X
as a function of time t can be parameterized as (Voropayev et al., 2003b)

X/X0 = 1 − exp(−t/t0), (4)

where X0 - maximum displacement and t0 = C/(ωΨ1/2
0 ) - characteristic time

(Ψ0 ≈ 5.4 is the critical value of the mobility parameter for ripple formation,
C ≈ 2500 - empirical constant).

Observations show that the height h and spacing Λ of ripples evolve with
time t as (Voropayev et al., 1999, 2003b)

Λ(t)/Λ0 = h(t)/h0 = 1 − exp(−t/t1), t1 = C/ωΨ1/2. (5)

After a typical transition time interval (t ≈ 3t1, t1 - characteristic time for
ripple growth), the ripples reach an equilibrium state with a characteristic
height, h0, and spacing, Λ0, given by (see Sleath, 1984; Nielsen, 1992; Voro-
payev et al., 1999, 2003b)
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Fig. 3. Ripple front (shown by arrow) propagating (a, b) along initially flat slope
in the offshore (from left to right) direction.

Λ0 = ε(2.2 − 0.35Ψ1/3), h0 = Λ0(0.18 − 0.24θ3/2), (6)

where ε, Ψ and θ are based on local values. Note, that (4) and (5) also describe
sand ripple growth in an annular sand-water cell (Scherer et al., 1999).

3.2 Similarity of asymmetric ripples

Under asymmetric waves (Fig. 2) ripples are also asymmetric (Fig. 4). Res-
ults of measurements (Testik et al., 2006a) show that under nonlinear shoal-
ing waves sand ripple profiles demonstrate self-similar behavior. When dimen-
sional data on ripple sizes (Fig. 5a) are plotted in dimensionless form (Fig. 5b)
this similarity becomes obvious. Measurements show that in a broad range of
parameters studied, the resulting dimensionless ripple profile (shown by solid
lines in Fig. 5b) can be approximated by a similarity profile of “saw tooth”
shape, given by

z∗ =
{

C−1
1 [x∗ tan(θ1 − β) + sinβ], 0 ≤ x∗ ≤ C1/ tan θ1

C−1
1 (1 − x∗) tan(θ2 + β), C1/ tan θ1 < x∗ ≤ 1

, (7)

where z∗ = z/h0, x∗ = x/Λ0, C1 ≈ 0.22 - averaged ripple steepness and θ1 and
θ2 are “universal” on-shore θ1 ( ≈ 34o) and offshore θ2 ( ≈ 18o) ripple slope
angles. It is interesting that when the slope of the tank bottom is subtracted
from θ1, the on-shore ripple angle becomes equal to the “avalanche” (repose)
angle for the particular sand used for the experiments.

3.3 Ripple drift

At larger times, t � t1, the morphology of the rippled bed continues to change
and ripples demonstrate large time instabilities and drift slowly in the on-
shore direction. Under symmetric oscillatory flow this drift is predominantly
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Fig. 4. Photograph (a) and a structured light profile (b) of asymmetric ripples
under shoaling waves. Onshore direction is to the left and white line in (b) gives the
scale (10 cm).

Fig. 5. Typical dimensional (a) and dimensionless (b) equilibrium ripple profiles
taken at different sections (see legend) along the slope. Symbols - measurements,
solid line in (b) - parameterization (7).

“stochastic” (with zero mean ripple displacement over large time interval,
Voropayev et al., 1999), but under nonlinear shoaling waves the dominant is
the “unidirectional” drift when all ripples slowly drift in the onshore direction
with typical local velocity

u = U+C2A
3/4Ψ1/2. (8)

Here C2 ≈ 10−4 - empirical coefficient, A - wave asymmetry parameter, A
= (U+/U−)2, and U+ and U− - maximum positive (onshore) and negative
(offshore) near-bed water velocities at 10 cm above the bed. Note, that at
large times (several hours) a sand bar was formed near the breaking point
(Voropayev et al., 2003b) that strongly modified the flow. All quantitative
data on ripple dynamics and scour/burial were taken before a noticeable sand
bar was formed.

3.4 Effect of variable wave forcing

In the ocean, waves frequently change their intensity. To model the ripple dy-
namics under these conditions, a series of experiments was conducted (Testik
et al., 2005a) with variable wave forcing. In these experiments waves with
relatively large (L), moderate (M) and small (S) intensities were generated,
and three basic cases of cyclic variation of wave forcing, namely L-M-L, M-L-
M, and L-S-L were studied. Observations show that upon the change of wave
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forcing the ripples adjust themselves to the new forcing through proper ad-
justment processes. Depending on the forcing transitions (L-M, M-L or L-S),
three basic adjustment processes were documented as ripple splitting, ripple
re-growth and ripple flattening.

Typical example showing the process of ripple splitting and re-growth
for L-M transition is shown in Fig. 6. Initially (Fig. 6a) ripples are at an
equilibrium state and they are formed under forcing (L). When forcing is
changed from (L) to (M), the size of initially large ripples decreases, and the
adjustment takes place in two steps. First, the ripple splitting occurs and their
size is halved (Fig. 6b), thus doubling the number of ripples. This system of
transient ripples, with length and height half of the initial ones, is unstable
under forcing (M). With time the transient ripples (Fig. 6b) increase their size
to the equilibrium value, which are predetermined by the forcing (M) (Fig.
6c). To explain the results of observations, a model was advanced and Fig. 7
gives an example of how accurately this model describes the results obtained
in the run L-M-L.

Fig. 6. Initial ripples under (L) forcing (a). After wave forcing was changed from
(L) to (M), ripples first split into two smaller ripples (b) and then re-grow (c) to
their equilibrium sizes for (M) forcing. White line in (a) gives the scale (10 cm).

Fig. 7. The ripple length (a) and height (b) adjustment with time for run L-M-L.
Symbols - measurements, solid lines - model predictions.
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4 Scour/burial of short cylinder

4.1 Scour/burial regimes

The experiments on object burial delved into several issues, in particular,
burial mechanisms and scour around object (Voropayev et al., 2003a). In this
context, a scour/burial regime diagram was developed for the case of constant
wave forcing, wherein four main scour/burial regimes and a sheet flow regime
were identified as follows:

Regime I - No scour (KC < KC∗ ≈ 2 or θ < θ∗ ≈ 0.018; here, θ∗

is the critical θ for the initiation of sediment motion in the proximity of a
cylindrical mine and KC∗ is the critical KC for the generation of vortices for
an impulsively started flow around a cylinder).

Regime II - Initial scour (KC > KC∗ and θ > θ∗; scour usually occurs on
the onshore side of the cylinder, Fig. 8a, due to wave asymmetry).

Regime III - Expanded scour (KC∗ < KC < KC∗∗ ≈ 14, θ > θ∗∗ ≈ 0.054;
here, KC∗∗ is the critical value of KC, below which ripple height is expected
to be smaller than the cylinder diameter and θ∗∗ is the critical value of θ for the
initiation of ripple formation. When background water motion is sufficiently
energetic to form ripples, regime II becomes unstable and transforms into
expanded scour, see Fig. 8b. If the cylinder diameter is larger than the ripple
height, the flow disturbances due to the cylinder are dominant, the expanded
scour pattern is stable and it persists for many hours.

Fig. 8. A photograph showing typical initial scour pattern (a) (regime II) and
expanded scour pattern (b) (regime III) around a cylinder. The onshore direction is
to the top in (a) and to the left in (b).

Regime IV - Ripple dominated scour, with possible periodic burial (KC >
KC∗∗ ≈ 14, θ > θcr∗ ≈ 0.054; If the ripple height is larger than the cylinder
diameter, the expanded scour pattern transforms into regime IV, wherein the
cylinder is buried periodically under drifting ripples).

Regime V - Sheet flow (θ > θ0 ≈ 0.83; here θ0 is the critical value of
θ, above which sheet flow occurs. At such high values of Shields parameter,
bottom features are “washed” away to form a planar bathymetry).
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Collectively, the above limiting asymptotic estimates for KC and θ values,
that demarcate different regimes, are depicted on the scour/burial regime dia-
gram shown in Fig. 9 by dashed lines. Empirical parameterizations for trans-
itional boundaries, that best fit the experimental data while being consistent
with the limiting asymptotic behaviors between basic regimes discussed above,
were identified and parameterized as follows:

KC = KC∗ + (θ∗∗ − θ)/(θ − θ∗), (9)

KC = KC∗ + (θ0 − θ)5/(θ − θ∗∗), (10)

KC = KC∗∗ + 1/(θ − θ∗∗)2/3. (11)

These transitional boundaries are shown in Fig. 9 by solid lines.

Fig. 9. Scour/burial regime diagram showing four regimes (I-IV) depending on the
values of KC and θ parameters. Dashed lines show limiting asymptotes, solid lines
show transition boundaries between different regimes in accordance with (9)-(11).

4.2 Scour depth and length

Scour measurements (Voropayev et al., 2003a) near the cylinder showed fast
scour at the beginning, which slowed down with time similar to (4)

S(t)/S0 = 1 − exp(−t/t3), (12)

where t3 = C3/ω is the scour characteristic time, S(t) the maximum depth
of scour at time t and C3 ≈ 3300. Thus the typical time at which the system
reaches an equilibrium state (3t3, time for S ≈ 0.95 S0) is about 1600 (≈
9900/2π) wave periods. The steady state maximum scour depth S0 was found
to depend strongly on both KC and θ as

S0/D = C4[1 − exp(−m(KC −KC∗))][1 − exp(−n(θ − θ∗))], (13)

whereas the dimensionless scour length L0/D, depended only on KC as
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L0/D = C5KC. (14)

The best-fit empirical constants in (13), (14) are C4 ≈ 1.3, m ≈ 0.06, n
≈ 40 and C5 ≈ 0.35. Note that the strong dependence of scour on KC is
consistent with numerous recent data on scour around different two- and three-
dimensional objects and should not be ignored (Sumer and Fredsoe, 2002).

5 Comparison with field observations

The results of laboratory based modeling described above collectively form
the basis of a object burial predictive model recently proposed by Testik et
al. (2006b). To verify our model, we compare below the model predictions
with available observations of a recent field experiment, in which real size
bottom objects of interest (four acoustic instrumented mines, AIMs), were
deployed and their burial history was monitored. The data on background
flow conditions as well as sediment and object characteristics and burial depths
were kindly provided to us by the authors of (Bower et al., 2004, 2006). From
these data the maximum values of significant wave heights and corresponding
wave periods were obtained and used as the model input for a particular
(analysis) day of the object site. Then, using linear wave theory, the values of
the near bottom velocity and water particle excursion were calculated, from
which the values of KC and θ were estimated. For the range of KC and θ
so obtained, the scour/burial regime diagram (Fig. 9) predicts either regimes
II (initial scour) or III (expanded scour), for which (12), (13) can be used
to estimate the scour/burial depths, To determine the actual burial (distance
of the AIMs bottom part from the sediment-water interface), the heights of
sand ripples formed around the scour pit were also estimated from (5), (6)
and these values were added to the burial depth prediction due to scour alone.
The burial predictions of ASU model are compared with field measurements
in Fig. 10. As can be seen, the agreement is satisfactory. Note, that the ratios
of the ripple height to the object diameter in laboratory (h0/D ≈ 0.13) and
field (≈ 0.2) are comparable and the effect of ripples on the burial depths is
approximately the same in both cases.

6 Conclusions

Many extensions are desirable for the ASU model of Testik et al. (2006b).
First, although only wave-induced scour is considered as the main burial
mechanism (fortuitously this mechanism was dominant in the field experi-
ment), there are other major burial mechanisms such as tide-induced scour,
gravity sinking, liquefaction and impact/initial burial that can become im-
portant in field conditions. Such mechanisms need to be implemented in the
model based on existing and future work. Second, in laboratory modeling of
object scour/burial, the focus was on fixed wave conditions, but natural con-
ditions are far from steady, requiring the consideration of time evolving wave
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Fig. 10. Comparison of mine burial predictions of ASU model with the field obser-
vations for four AIMs (see legend).

fields, similar to that considered in our modeling of ripple dynamics. The local
(temporal) scaling developed in our study will help to gain a quantitative un-
derstanding of sediment transport under such evolving wave fields. Finally,
in our studies we used homogeneous sand. In the ocean, sand is usually het-
erogeneous and sand segregation on ripples and surrounding the objects is
frequently observed in the field. To clarify this effect, which is important in
acoustic detection of objects, additional laboratory modeling with heterogen-
eous (e.g., bi-modal, as a first step) sediments is required.
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Summary. Sand waves are bed-forms occurring in shallow seas. Although their
characteristics are mainly affected by bed load transport, during rough weather
suspended sediment transport can influence their characteristics. As a first step to
model these influences, we added suspended sediment transport to a numerical 2DV
model that was specifically developed for simulating sand waves. In this paper, res-
ults are presented for initial, small amplitude, sand waves. Incorporating suspended
sediment transport increases the growth rate of sand waves significantly while their
wave length is more robust. Furthermore, we found that the results are sensitive to
flow conditions, as expected, and sediment diffusivity, which needs a more advanced
description.

1 Introduction

The sea bed of a shallow sea is rarely flat. Various bed-forms occur, varying
from small scale ripples and mega-ripples to large scale sand banks. Sand
waves are bed-forms with a scale between these two extremes. The wavelengths
of these bed-forms vary between 100 and 800 meters, and heights can reach
up to one third of the water depth (i.e. a maximum of around 10 meters in 30
meters of water). These characteristics, together with the fact that sand waves
can migrate several meters per year and that they cover the majority of the
Southern North Sea ([16], Figure 1, mean that they affect human activities
in shallow seas. Therefore, we aim to model and so better understand the
dynamics of these sand waves and the influence of both the tidal motion and
weather conditions.
Observations indicate that sand waves change due to suspended sediment
transport, especially during rough weather conditions. For example, [11] in-
vestigated sand waves in the Dutch coastal area, together with their physical
environment. He concluded that sand waves occur under sufficiently high cur-

Bernard J. Geurts et al. (eds), Particle Laden Flow: From Geophysical to Kolmogorov Scales, 29–41.
© 2007 Springer. Printed in the Netherlands.
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(a) (b)

Fig. 1. (a) Sand wave and sand bank occurrence in the Southern part of the North
Sea; (b) measured field data of a sand wave field in the North Sea.

rent velocities, low to moderate wave activity and an asymmetry in the tidal
ellipse. Observations indicated that sand waves were lower on locations with
more suspended sediment transport. Recently, [13] investigated weather in-
fluences on compound sand waves and mega-ripples. Although mega-ripples
were found to be directly influenced by an individual storm, [13] concluded
that sand wave morphology is a result of the general wind-wave climate. This,
together with the local setting in which sand waves occur, was reasoned to
lead to variation in sand wave shapes.
Offshore in shallow seas, bed load transport is expected to be the main sed-
iment transport mechanism. As the water depth is in the order of tens of
meters, under normal conditions short surface waves rarely interact with the
sea bed. As grain sizes in sand wave areas are typically around the 200-300µm,
vertical velocity due to the tidal current is lower than the fall velocity for the
sediment for most of the tide, so the suspension of sediment only occurs during
part of the tidal cycle. However, under storm conditions, suspended sediment
can play an important role, especially in relatively shallow water. [2] found
that under normal conditions and a flat bed, suspended sediment transport
could be 30% of the bed load transport. [4] found seasonal dependency of
sand wave height and migration in the Marsdiep. In this long term data set
(1998-2005), sand waves were on average 30% higher after calm summer peri-
ods and lower after winter seasons. This variability was greater in locations
where, due to finer sediment and stronger tidal currents, suspended sediment
is more abundant.
Though techniques to measure sand wave characteristics as height and mi-
gration are improved over the past decades, still measurements are expensive
and little detailed data is available. Modeling sand wave characteristics im-
proves our knowledge of sand wave behavior and the processes underlying
this behavior. In this way modeling can help where data is unavailable or
insufficient.
The described studies indicate that suspended sediment transport influences
sand waves, yet the effects have not yet been thoroughly investigated. Though
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the occurrence of suspended sediment transport increases the total sediment
transport, it is not clear beforehand, whether suspended sediment will increase
the sand wave growth, or will repress this growth. This depends on the dis-
tribution of erosion and deposition of the suspended sediment over the sand
wave.
In this paper, we aim to contribute to an understanding of the effects of sus-
pended sediment transport on the initial stage of sand wave formation. Here-
to, we investigated the effect of implementing suspended sediment transport in
the 2DV numerical sand wave code and the sensitivity of several parameters.
After a short state of the art overview (Section 2.1), we will discuss the used
model and the equations implemented to describe suspended sediment (Sec-
tion 3). In Section 4, the simulations and their results are described, after
which in Section 5 the results are discussed and conclusions are drawn.

2 Sand wave modeling

2.1 State of the art

[8] described sand waves as free instabilities of the coupled system of a sandy
sea bed and a tidal flow. In such a system, vertical vortices play a crucial role.
Small perturbations of the sea floor cause small perturbations in the flow field
and vice versa. The bed can be either stable, which means that disturbances
will be damped, or unstable, which means that bed perturbations will grow
and the sea bed is changed. When perturbations are unstable (i.e. triggering
growth) the flow field is changed such that, averaged over the tidal cycle,
small vertical rest circulation cells occur (Figure 2). These cells cause small
net transport to the crests of the perturbation, thereby causing growth. This
process can be described using a linear stability analysis. A linear analysis
is valid only for small, formally only infinitesimal small, amplitude perturba-
tions. To overcome this limitation, numerical tools have been developed that
allow the simulation of fully developed sand waves ([12],[15]). [12] showed that
non-linear sand waves can be simulated with only bed load transport and an
unidirectional steady current. [1] investigated the effects of tidal waves and
asymmetry, explaining migration of small linear sand waves. [15] extended to
fields of sand waves and showed sand waves to develop from random small
bottom disturbances. Recently [3] showed effects of wind and waves on a sand
pit situation, in which waves had a quantitative but no qualitative effect on
the sand pit. In these studies, the effects of suspended sediment on sand wave
formation, i.e. the aim of this paper, have not yet been studied.

3 Sand wave model

The simulation method used in this paper is based on the model described by
[8], who applied a linear stability analysis. The linear stability analysis predicts
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Fig. 2. Averaged over a tidal cycle, vertical circulations cells can occur due to small
perturbations in the sea floor, causing growth or decay of these perturbations.

sand waves to grow exponentially in their initial stage. Starting with a small
sinusoidal perturbation of the sea floor, characterized by a certain wavelength,
growth or decay of the particular perturbation can be predicted numerical as
well. For an initial bed with the form h = A sin(2π

L x), with A being the
amplitude and L the wavelength of the sand wave, the growth rate can be
determined by the change in the sand wave height using ω = 1

∂t log(hnew

hold
). The

growth rate is expressed in 1/s. When the growth in height corresponding to
various wave lengths is known, the wave length that induces the fastest growth
in height can be found (fastest growing mode, FGM). The FGM indicates the
dominant sand wavelength that is expected to be the most likely to occur in
reality as it grows fastest in height.
We start the simulation by prescribing sinusoidal, small amplitude, bed waves.
The tidal flow is modeled as a symmetrical sinusoidal current prescribed by
means of a forcing. Using the bathymetry, a tidal flow is calculated. Since
the flow changes over a time-scale of hours and the morphology over a time-
scale of years, the bathymetry is expected to be invariant over a single tidal
cycle. Once the tidal flow is known, the bed changes are calculated over this
typical tide, using sediment transport equations. This is repeated until the bed
evolution exceeds a certain value, after which a new tidal flow is calculated.
This, in turn, affects the bed and so the process is iterative. In this way, we
are able to simulate the morphological time scale accurately, while avoiding
long computation times.
The model consists of the hydrostatic flow equations for 2DV flow (Equations
1 and 2). In the horizontal direction, periodic boundary conditions are used.
For model details, we refer to [15].

∂u

∂x
+

∂w

∂z
= 0 (1)
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+ u

∂u

∂x
+ w

∂w

∂z
= −g

∂ζ

∂x
+

∂

∂z

(
Av

∂u

∂z

)
(2)

In these equations x, z represent the horizontal and vertical directions and u
and w the horizontal and vertical flow velocities. The variable t denotes time,
ζ is the water surface elevation, g is the constant of gravity and Av is the
constant eddy viscosity.
Boundary conditions at the bed disallow flow through the bottom (equation
3). Further, a partial slip condition compensates for the constant eddy vis-
cosity, which overestimates the eddy viscosity near the bed (equation 3). The
parameter S denotes the amount of slip, with S = 0 indicating perfect slip
and S = ∞ indicating no slip. At the water surface, there is no friction and
no flow through the surface (equations 4).

w − u
∂h

∂x
= 0|seabed ; Av

∂u

∂z
= Su|seabed (3)

∂u

∂z
= 0|surface ; w =

∂ζ

∂t
+ u

∂ζ

∂x
|surface (4)

The flow and the sea bed are coupled through the continuity of sediment
(equation 5). Sediment is transported in two ways: as bed load transport (qb)
and as suspended load transport (qs), which are modeled separately. Here we
use a bed load formulation after [9] (equation 6).

∂h

∂t
= −

(
∂qb

∂x
+

∂qs

∂x

)
(5)

qb = α|τb|b
[
τb

|τb|
− λ

∂h

∂x

]
(6)

Grain size and porosity are included in the proportionality constant α, τb is
the shear stress at the bottom, h is the bottom elevation with respect to the
spatially mean depth H and the constant λ compensates for the effects of
slope on the sediment transport. For more details, we refer to [9] or [18].
In order to model suspended sediment transport qs, we describe sediment
concentration c throughout the water column, i.e. a 2DV model. Horizontal
diffusion is assumed to be negligible in comparison with the other horizontal
influences. The vertical flow velocity, w, is smaller than the fall velocity for
sediment, ws, and can be neglected in this equation, leading to equation (7).
This means that the sediment is suspended only by diffusion from the bed
boundary condition (equation 12). As the flow velocity profile is already cal-
culated throughout the vertical direction, suspended sediment transport qs

can be calculated using equation (8).

∂c

∂t
+ u

∂c

∂x
= ws

∂c

∂z
+

∂

∂z

(
εs
∂c

∂z

)
(7)
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qs =
∫ H

a

u(z)c(z)dz (8)

ws =
νD3∗

18D50
(9)

D∗ ≡
(
g(s− 1)

ν2

)1/3

D50 (10)

εs = Av (11)

The parameter εs denotes the vertical diffusion coefficient (here taken equal
to Av), a is a reference level above the bed above which suspended sediment
occurs, D is the grain size. The dimensionless grain size is denoted by D∗,
(s − 1) is the relative density of sediment in water (ρs−ρw

ρw
), with ρw the

density of water and ρs the density of the sediment and ν is the kinematic
viscosity. Equations (9-11) are due to [18].
Suspended load is defined as sediment which has been entrained into the flow.
By definition, it can only occur above a certain level above the sea bed. At
this reference height, a reference concentration can be imposed as a boundary
condition. Various reference levels and concentrations exist for rivers, near-
shore and laboratory conditions. Those often applied are [17, 14, 5, 21]. For
offshore sand waves, the choice of a reference height is more difficult than it is
for the shallower (laboratory) test cases. In this case, the reference equation
of [17] (equation 12) is used, with a reference height of 1 percent of the water
depth, corresponding with the minimum reference height proposed in [17].

ca = 0.015
D

0.01HD0.3∗

(
|τ | − τcr

τcr

)1.5

(12)

The reference concentration at height a above the bed is given by ca and τcr

is the critical shear stress necessary to move sediment.
Both the gradient and the quantity of suspended sediment are largest close
to the reference height. Therefore, concentration values are calculated on a
grid with a quadratic point distribution on the vertical axis, such that more
points are located closer to the reference height and fewer points are present
higher in the water column. To complete the set of boundary conditions for
sediment concentration, we disallow flux through the water surface.

4 Model results

In this paper, we concentrate fully on the influence of suspended sediment on
the initial state of sand waves. We started each simulation with a sinusoidal
bed-form with an amplitude of 0.1m.

Next, we investigated the (initial) growth rate and the fastest growing sand
wavelength (FGM). Table 1 shows some basic values used in the simulations
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and the characteristics of the simulations are given in Table 2. Where possible,
typical values for sand waves in the North Sea are used. Note that ū is defined
as the depth-averaged maximum flow velocity.

Table 1. Parameter values for the reference simulation

parameter value unit parameter value unit

ū 1 m/s εv 0.03 m2/s
H 30 m D 300 µm
Av 0.03 m2/s ws 0.025 m/s
S 0.01 m/s a 0.3 m
α 0.3 -

Table 2. Simulations

simulation bed suspended varied simulation bed suspended varied
load load parameter load load parameter

reference
√

- - 3
√ √

εv

1
√ √

- 4
√ √

u
2

√ √
ref. height a 5

√
- u

4.1 transport simulations

Figure 3(a) shows the growth rate for different sand waves lengths simulated
in the reference simulation. Moreover, the figure shows that the FGM is ap-
proximately 640m. For simulation 1, we included suspended sediment in the
reference computation. Figure 3(b) shows a comparison between the refer-
ence simulation and simulation 1. The growth rate is shown for a range of
wavelengths. Most remarkable is the increase of the growth rate by a factor
of approximately 10. This was unexpected as suspended sediment is assumed
to be of minor importance in these circumstances. The FGM for simulation 1
is 560m, 80m less than in the reference simulation.

In figure 4, the concentration profile in the water column at a crest point
over the tidal period is shown (upper figure), compared with the flow velocities
(lower figure). The sediment is only entrained into the first few meters of
the water column. The sediment concentration follows the flow without an
apparent lag, as the flow velocity near the bed is small and slowly changes over
time. However, these small variations in velocity are enough for the suspended
sediment to be entrained and to settle again within one tidal cycle. Close to
the reference height, the maximum sediment concentration is around 3·10−4

m3/m3 (0.8 kg/m3).



36 Fenneke van der Meer, Suzanne J.M.H. Hulscher and Joris van den Berg

200 300 400 500 600 700 800 900 1000
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
x 10

−8

wave length (m)

g
ro

w
th

 r
at

e 
(1

/s
)

reference simulation

(a)
200 300 400 500 600 700 800 900 1000

−1

−0.5

0

0.5

1

1.5
x 10

−7

wave length (m)

g
ro

w
th

 r
at

e 
(1

/s
)

reference simulation
simulation 1

(b)

Fig. 3. (a) Growth rate – reference simulation; (b) growth rate – simulation 1
(solid), compared with reference simulation (dashed). Parameters in Table 1.

Fig. 4. Sediment concentration (upper) and flow velocity (lower) on one location
over a tidal period, for simulation 1. More details see Fig 6 (upper).

4.2 sensitivity simulations

To study the influence of the reference height on the sediment entrainment
and suspended transport, the reference height in simulation 2 equation (12) is
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Fig. 5. Growth rate for simulation 2 (solid), compared to simulation 1 (dashed).
For simulation characteristics, see Table 1.
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Fig. 6. Sediment concentration in the first 4 meters above a certain point of the
sand wave during one tide. Comparison between simulation 1 (upper) and 2 (lower)

decreased to 0.01m above the bed. This height is used as the lowest measurable
height for suspended sediment in shallow seas ([10, 6]). The results are shown
in figures 5 and 6. It can be seen in figure 5 that the growth rate decreases for a
lower reference height, whereas the FGM becomes 660m. Note that the growth
rate, compared to the situation without suspended sediment, is still larger. In
figure 6, it can be seen that, for the first 4 meters above the reference height,
no change occurs, except that the sediment is entrained about 0.30m higher
in the reference simulation. This difference is a direct result of the change
in reference height itself (from 0.30m to 0.01m). Therefore the difference in
growth rate is solely due to the contribution of these 0.29m to the integration
of u · c over the water column.

Table 3. Simulation results, for varied values the first (second) value is for the
+50% (-50%) simulation

simulation FGM growth rate simulation FGM growth rate
(m) for FGM (1/s) (m) for FGM (1/s)

reference 640 6.75e-9 3 860 - 350 1.24e-7 - 1.12e-7
1 560 1.29e-7 4 810 - 340 2.40e-7 - 3.87e-8
2 660 8.55e-8 5 670 - 610 1.23e-8 - 2.20e-9

In simulations 3 and 4, a sensitivity analysis was carried out for the diffusion
coefficient and the flow velocity. The value of sediment diffusivity, εv, in the
reference situation was assumed to be equal to the eddy viscosity Av, though
its value is not established. Both εv and ū were varied by ± 50% of their
reference values. Their influence on the growth rate ω and the FGM are shown
in figures 7(a) and 7(b). It can be seen that the FGM increases significantly for
increasing εv (FGM becomes 860m), and decreases for decreasing εv (FGM
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Fig. 7. (a) Growth rate for simulation 3, variable εv; simulation 1 (solid), εv+50%
(dashed), εv-50% (dotted). (b)Growth rate for simulation 4, variable ū; simulation
1 (solid), ū+50% (dashed), ū-50% (dotted).
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Fig. 8. Growth rate for simulation 5, variable ū and no qs; reference (solid), ū+50%
(dashed), ū-50% (dotted)

becomes 350m). The growth rate of the FGM remains of the same order
of magnitude. However, smaller wavelengths are damped more severely for
increasing sediment diffusivity.
For the flow velocity ū, the FGM again tends to increase with increasing ū
and vice-versa (for values, see Table 3), and smaller wavelengths are damped
more for higher values of ū. For the growth rate, we now see a different effect.
As expected from the nonlinear ū in the sediment transport equation, the
growth rate is highly affected by ū. The higher the value of ū, the higher the
initial growth rate for the FGM.
As shown in figure 7(b), suspended sediment transport increases the effect
of variation in ū. If we compare this influence to the influence of varying ū
without suspended sediment transport (figure 8) it is clear that suspended
sediment increases the effect of changing velocities on the FGM (45% change
instead of 5% change in sand wavelength, for varying ū±50%). For the growth
rate of the FGM, this influence is less pronounced; the decrease (increase) of
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growth rate with higher(lower) ū is 82% (67%) for the case without suspended
sediment and 86% (70%) for the case with suspended sediment.

5 Discussion and conclusions

In the reference simulation, εv is assumed to be equal to the value of Av.
Various coupling equations exist to relate εv to Av, varying from εv being
larger than to being smaller than Av. [2] therefore assumed εv equal to Av,
as no generally accepted method is available. Figure 7(a) shows that varying
the value of εv influences the FGM significantly, though the growth rate itself
is hardly influenced. Possibly the large difference in growth rates between the
case with and without suspended load transport (reference simulation and
simulation 1) is caused, not by the value of εv, but by the constant value of
both the eddy viscosity and sediment diffusivity. Due to these constant values,
Av might be overestimated near the bed, which is corrected for by the partial
slip boundary condition. Such a correction is not used for the εv, possibly
leading to an increase of suspended sediment. Due to the constant εv this
sediment can also be entrained higher into the water column.
Unfortunately, little field data for offshore sediment transport is available at
the moment, hindering a direct comparison with the results. [6] measured
suspended sediment offshore in the North Sea at a water depth of 13 meters.
Only during minor storms suspended sediment was detected. Maximal values
were around 2.3 kg/m3 for 0.3m above the bed and 0.2 kg/m3 for 1m above
the bed. For simulation 1, these values were 8 kg/m3 and 0.34 kg/m3. [7]
measured sediment concentrations during a severe storm in the North Sea
close to the coast of the UK. They found, even under conditions of storm, finer
sediment (∼100µm) and a 25m water depth, that the sediment concentration
had decreased by about three orders of magnitude after 1 meter (± 40 kg/m3

to 0.03 kg/m3). However, in the simulations this decrease was slower, leading
to higher concentrations higher in the water column (± 8 kg/m3 close to
the reference height to 0.03 kg/m3 at 3 meter above the bed). Although the
sediment concentration predicted in the model seems to be in a comparable
order of magnitude, transport rates are too large. The most likely cause is the
high entrainment of sediment into the water column. Further study on this
topic, and the effect of a depth dependent εv is currently investigated.
As w turned out to be around an order of magnitude smaller then ws during
most of the tide, this term was neglected in the sediment continuity equation
(equation 7). However, for higher flow velocities or smaller grain sizes this
term will become more important. In that case w should be incorporated and
might increase the amount of suspended sediment during a part of the tidal
cycle on certain locations on the sand waves, leading to further growth or
decay of the sand waves. The effect depends on the specific locations (i.e.
crests or troughs) were suspended sediment will erode or deposit.
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[17] proposed a reference height for suspension with a minimum value of 1%
of the water depth. However, [19] stated that this leads to unrealistically high
reference levels in water depths of tens of meters. [19] therefore proposed to
use a reference height of 0.01m instead. [10] and [6] also used this height as the
lowest measurable height for suspended sediment in shallow seas. Both heights
are tested in simulations 1 and 2. They turn out to differ only in the lowest
part of the water column, which was excluded from the 1% (i.e. 0.3m) reference
height and included in the 0.01m alternative. Thus, the reference height does
not change the processes, but only includes or excludes the sediment in the
first view centimeters above the bed.
Based on grain sizes, [11] expected suspended transport for grains smaller than
230-300µm. Grains smaller than 170µm would be transported in suspension
only, in this case sand waves are rarely found. Recently, [20] showed that a
mixture of grain sizes leads to grain size sorting over sand waves, but hardly
affects the sand wave form and growth rate in the numerical code. Therefore,
in this paper we assumed grains of only one grain size, corresponding with
the medium grain size typically found on sand wave fields.

Concluding, the inclusion of suspended sediment transport in a sand wave
model demonstrates significant influences of suspended load on the initial
growth of sand waves. The influence of various parameters was investigated,
showing that the reference height for suspended sediment is of minor import-
ance, while the sediment diffusivity, εv, and especially the depth averaged
maximum flow velocity, ū, largely influence both the FGM and the initial
growth rate. Further research will focus on fully developed sand waves and
the effects of wind and storm conditions, validated against field data.
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Summary. In order to obtain more insight into the vertical transport of suspended
sediment, an experiment was performed using a combination of PIV and PTV for
the measurement of the fluid and particle velocity respectively. In this experiment,
the particles were fed to the flow at 16 and 75 water depths from the measurement
section with an injector located at the centerline of the channel near the free surface.
At 16 water depths from the sediment injection, most sediment is still near the
free surface, and the sediment is transported downwards in sweeps, thus leading
to a mean particle velocity that is faster than the mean fluid velocity. It appears
that in this situation, downward going particles are indeed found in sweeps (Q4),
whereas upward going particles are preferentially concentrated in both Q1 and Q2
events. In the fully developed situation on the other hand, upward going particles
are preferentially concentrated in ejections, while downward going ones are found in
both Q3 and Q4 events, with a relatively increased frequency in Q3, and a decreased
one in Q4. The increased number of particles in Q2 and Q3, which have low fluid
velocities, leads to a mean particle velocity lower than the mean fluid velocity.

1 Introduction

The transport of suspended particles in turbulent flows is important in many
environmental flows. Therefore, much research already has been done. Never-
theless, modeling this highly complex phenomenon remains difficult.

The current state of the art in modeling sediment transport is by using
a two-fluid model [e.g. 18]. A vertical momentum balance for the dispersed
phase shows in the equilibrium situation (where the vertical accelerations and
gradients of the vertical particle velocity are negligible) the following relation
for the mean vertical particle velocity 〈up,y〉:

〈up,y〉p = 〈uf,y〉f + 〈u′
f,y〉p + uy,T (1)

Here, 〈uf,y〉f is the fluid velocity ensemble averaged over the fluid phase,
uy,T the still water terminal velocity, and 〈u′

f,y〉p, the drift velocity, i.e. the

Bernard J. Geurts et al. (eds), Particle Laden Flow: From Geophysical to Kolmogorov Scales, 43–55.
© 2007 Springer. Printed in the Netherlands.
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deviation of the mean fluid velocity as seen by the particles. The drift velo-
city results from averaging the relative velocity in the Stokes drag term of
this equation. Turbophoresis is neglected, because for almost neutrally buoy-
ant particles, it is counterbalanced by the pressure gradient working on the
particles. This agrees with our intuition that fluid particles in a fluid should
not concentrate near the wall. Equation 1 physically means that the mean
particle velocity (i.e. the flux per unit of concentration) is equal to the set-
tling velocity added to mean vertical fluid velocity and the extra drift term.
Simonin et al. [18] used a gradient diffusion hypothesis for the closure of this
term. In fact, the drift term is comparable to the 〈c′v′〉 term in conventional
advection-diffusion models.

The importance of the drift velocity in this modeling approach implies
that in order to understand dispersion, we need to know in which flow struc-
tures particles are located. It is already widely known that particles are not
necessarily distributed homogeneously in a turbulent flow. Preferential sweep-
ing [8], does not seem to be important for the situation we consider with a
relative density ratio ρp/ρf just above one, as the sweeping of particle out of
vortices by their inertia is compensated by the inward pressure gradient into
the vortex. Nevertheless, some DNS results show preferential concentration
for similar particles [19], but this seems to be mainly due to the initial condi-
tions [20]. Particles subjected to gravity but without inertia moving in cellular
flow fields were shown to have a complex behavior [12]. These particles can
either get trapped inside the vortex, leading to an upward drift velocity, or
remain outside the vortex, leading to a downward drift that enhances their
apparent settling velocity, but that does not change their slip velocity. The
combination of these two situations leads to a zero drift velocity for these
kind of particles in homogeneous isotropic turbulence. From the previous, it
appears that even particles without inertia can see a velocity field that is dif-
ferent from the overall velocity field, although not strictly due to preferential
concentration.

The objective of this study is to provide more insight in the behavior of
small, particles that are slightly heavier than the fluid and to find the flow
structures that cause the vertical transport of these particles. In order to
capture these flow structures, we perform an experiment, measuring simul-
taneously the fluid and particle velocities with Particle Image Velocimetry
(PIV) and Particle Tracking Velocimetry (PTV) respectively. We inject poly-
styrene particles near the free surface and perform measurements at either 16
or 75 water depths from the injection point. In the first situation, the highest
concentration is found near the free surface and the particles are on average
moving downwards, whereas in the latter situation, a fully developed situation
exists, in the wall normal direction. From now on, we will call the case with the
sediment inlet at 16 water depth from the measurement section the “settling
situation” and the one with the inlet at 75 water depths the “fully developed
situation”. The complete experimental setup is described in the next section.
In section 3, we show the mean profiles and probability density functions of
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the drift velocity and we compare them with the statistics at randomly gener-
ated particle locations. In section 4, we determine the conditionally averaged
drift velocity in the vicinity of a vortex head, followed by our conclusions in
section 5.

2 Experimental setup

The experiments were performed in an open channel, with a length of 23.5 m
a width of 0.495 m and a height of 0.50 m (fig. 1). The walls and bottom were
made of glass in order to have a hydraulically smooth boundary. In order to
perform the fluid velocity measurements using the PIV technique, the water
was seeded with 10 µm hollow glass spheres (ρ = 1100 kg/m3).

As pseudo-sediment, polystyrene particles with a mean diameter of 347 µm
were used, which had a density ρp of 1035 kg/m3. The terminal velocity was
determined in still water as vT = 2.2 mm/s, which compares well with the
expected value of 2.1 mm/s (Rep = vTdp/νf = 0.71).

Fig. 1. Experimental setup

The experiments were performed at Re = 10, 000 (Re∗ = 508), which
was obtained by setting the centerline velocity to 0.20 m/s and the water
depth h to 5.0 cm. This velocity was chosen to ensure a sufficient amount of
sediment was suspended (u∗/vT ≈ 5). The particles were fed to the flow mixed
with water through a nozzle with an inner diameter of 1 cm at the channel’s
centerline and its center located at 0.7 cm below the free surface. The inflow
velocity was manually adjusted to the channel velocity. The position of the
nozzle was varied from 80 cm to 375 cm from the measurement section, i.e.
at xin/h = 16 and xin/h = 75. In the latter situations, the vertical particle
velocities were zero up to experimental accuracy, which means that a fully
developed situation exists. Apart from that, the statistics of that situation



46 W.A. Breugem and W.S.J. Uijttewaal

did not differ much from a preliminary test where the sediment was injected
at 160 water depths from the measurement section.

The volumetric sediment concentration that was introduced was 1.2 10−2.
For each set, a sequence of 15 × 300 double images was recorded at 2 Hz. It
was checked that the flow remained stationary for the time of the experiment.
For comparison, also four sets of 300 double images were recorded at a frame
rate of 2 Hz for the flow in the channel, without the nozzle and any sediment
input, which we will call the clear water flow (CWF) data.

A 45 mm x 45 mm measurement section was located at a distance of
14.25 m from the channel entrance. At this location, a combination of both
PIV and PTV was used to measure the streamwise and wall normal velocities
of the polystyrene particles and the ambient fluid.

The data were processed with a modified version of the method of Kiger
and Pan [9] to discriminate sediment from tracer particles. In this algorithm,
a median filter with a size of 7 pixels is applied to remove the image of the
tracer particles from the recorded images, resulting in an image of only the
sediment particles. A PTV algorithm [21], which uses the displacement of
the centroid of the particles to determine the particle velocities, was applied
to the image with only sediment particles. By subtracting the image of the
sediment particles from the original image, an image containing only the tracer
particles was obtained. A PIV algorithm [11] is applied to this tracer image
with first a 64 x 64 window (50 % overlap) and then two 32 x 32 window
(75 % overlap) iterations. The results are postprosessed with a median filter
to eliminate vectors that differ significantly from their neighbours. This leads
to 126 x 126 vectors with distance of 0.37 mm (3.76 wall units) between
each other. The velocity vector nearest to the wall was at y+ > 30, where
the resolution is equal to approximately two Kolmogorov length scales. This
seems adequate for transport process as these are goverend mostly by the
large scale structure. Breugem and Uijttewaal [5] found that the fluid velocity
profiles measured with this resolution compared well to the law of the wall,
when using the friction velocity from a fit of the Reynolds stress profile. The
fluid Reynolds stress profile was found to be linear and the mean vertical fluid
velocity was found to be zero up to experimental uncertainty, which together
indicate that secondary currents are negligible as might be expected with the
present B/h ratio of 10.

3 One-point drift velocity statistics

The sediment concentration profile (fig. 2) shows a high concentration near
the free surface in the xin/h = 16 case, whereas it resembles the Rouse pro-
file with most sediment near the bottom in the xin/h = 75 case 2. In the
same figure, the drift velocity profiles are also shown for both the settling
and the fully developed case. These are defined by performing a bicubic in-
terpolation of the PIV fluid velocities at the particle locations. It is clear that
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in the predominantly settling regime, the streamwise fluid velocity seen by
the particles is higher than the average streamwise fluid velocity, whereas the
opposite is true in the fully developed case. The latter result has been found
before by for example Kiger and Pan [10]. The wall normal drift velocity is at
first negative, meaning that the sediment particles see on average a downward
velocity, which brings them down even more rapidly than gravity does (as the
still water settling velocity is about 0.2u∗). In the fully developed situation,
the particles see on average an upward moving fluid velocity. From theory,
it is expected that the vertical drift is equal to the settling velocity, but in
the data, the drift is smaller (a maximum of 0.1u∗ rather than the expected
0.2u∗). There are two reasons for this discrepancy. First of all, there is a bias in
the measured fluid velocity toward the particle velocity as a result of leftovers
of the particle images after median filtering the images, which decrease the
measured relative velocity. Furthermore, because the grid spacing of the PIV
has about the size of a particle diameter, the fluid velocity that is used for
determining the drift velocity by interpolation is not the undisturbed velo-
city, but rather the one that is affected by the disturbance field of the particle
itself. In case of a Stokes flow, which is not completely valid here as Rep of
a freely settling particle is 0.71, the velocity disturbance around a moving
particle needs about five particle diameters to decay [e.g. 4].
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Fig. 2. Left: mean sediment concentration profiles. − ◦ −: xin/h = 16; − ∗ −:
xin/h = 75; Dashed line: Rouse profile. Middle: Drift velocity profile xin/h = 16;
Right: xin/h = 75; − � −: streamwise direction; −�−: wall normal direction;

In order to determine which coherent structures are causing the drift velo-
city, we computed the probability density functions (pdf) at y/h = 0.55 (fig.
3). From these figures, it is first of all clear that in both cases the particle
velocity and the drift velocity do not differ much. There is an asymmetry in
the data, showing stronger sweeps than ejections and showing significantly
less Q1 and Q3 events than Q2 and Q4. Yet, there exists a clear difference
between both cases, with the peak of the histogram in the settling case in the
Q4 quadrant, whereas it is at the center in the fully developed situation.

To determine in which flow structures, the particles are concentrated, we
first picked random locations in the measured flow fields using the same num-
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Fig. 3. PDF of particle velocity (left) and drift velocity (right) at y/h = 0.55. The
settling case is shown above, the fully developed situation below. Each contour line
indicates a doubled probability density.

ber as the particles that were measured at this height. We computed the drift
velocity histogram for these random positions and subtracted this from the
one measured at the particle locations (fig. 4). This method was chosen, in
order to prevent the results from being biased by a different statistical con-
vergence or from interpolation effects, which would have been the case if we
would have simply subtracted the fluid velocity histograms. It appears that
in the settling case, the upward moving particles are found in all upward flow
structures (Q1 and Q2), whereas downward moving particles, which are much
more common than upward moving ones, are preferentially concentrated in
sweeps (Q4). This appears to happen over the complete water depth (not
shown), except near the free surface (y/h > 0.8) , where downward moving
particles are preferentially concentrated in both Q3 and Q4 events.

In the fully developed situation on the other hand, upward moving particles
are preferentially concentrated in ejections (Q2), whereas downward moving
particles are concentrated preferentially in inward interactions (Q3). Note
that, because Q4 events are much more common than Q3 events in an open
channel flow, particles end up about as many times in Q3 as in Q4 events
due to the preferential concentration (fig. 3). In this situation, the number of
upward and downward moving particles is equal at every flow depth except
near the bottom [see 5], just as was found by Kiger and Pan [10].
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Fig. 4. PDF of the increase of the PDF at y/h = 0.55 with to respect to random
sampled particles for all particles (left), upgoing particles (middle), and downgoing
particles (right). The settling case is shown in the upper row, the fully developed
situation in the lower row. Each contour line indicates a doubled intensity and
negative values are indicated with dashed lines.

The results for the fully developed case agree with the data from Kiger
and Pan [10] at y/h = 0.6 (y+ = 340). Both the preferential concentration of
upgoing particles in ejections and of downgoing particles in inward interactions
(Q3) can clearly be seen in their data. A decreased number of particles in
sweeps and an increased one in ejections also agrees with the findings of Cellino
and Lemmin [6] and Nikora and Goring [14], who find larger than average
upward sediment fluxes (〈c′v′〉) in these quadrants, noting that an increased
upward flux in a sweep (i.e. in a downward flow structure) can only come
from a decreased concentration (because Cellino and Lemmin [6] do not find
the Reynolds stress contributions of the different quadrants to change with
respect to clear water flows). Cellino and Lemmin [6] do not find the increased
importance of Q3 events in their measurements. This may be attributed to the
larger concentration in their measurements, as Nikora and Goring [14] report
a large concentration dependence on the quadrant distribution with increased
contributions for Q1 and Q3 events and increased concentration fluctuations
in their low concentration cases.
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4 Spatial drift velocity structure

Here, we are interested in the conditionally averaged velocity field when there
is a vortex at a reference location x0. Conditional averaging is a widely used
tool in turbulence research. Unfortunately, statistical convergence is quite
slow, because only part of the data can be used to determine conditional
averages. A way to overcome this problem is the use of Linear Stochastic Es-
timation (LSE) [e.g. 1]. In LSE, a conditional average is approximated from
two-point correlations. In order to recognize the vortex, we use the fluctuating
part of the swirling strength λ′

s [22], which is scalar quantity.
The correlation functions were calculated for each PIV fluid velocity field

and then averaged over all 4500 realizations. Because of homogeneity in the
streamwise direction, the standard deviation and correlation function do not
change with x and therefore, only a reference height y0 has to be chosen.
Because the LSE is linear in λ′

s, the exact value for this quantity is not im-
portant. It merely acts as a kind of threshold, and therefore a value of 1 /s2

was used as was done before by Christensen and Adrian [7]. Swirling strength
does not detect the direction of the rotation, this in contrast to vorticity. Yet
it is known that both vortices in the direction of and opposite to the mean
shear are encountered in boundary layer turbulence [17]. Therefore, we cal-
culate the statistics conditioned on only those values of the swirling strength
for which ωz < 0, i.e. only for vortices that rotate with the mean shear.

The conditionally averaged fluid flow results for y0 = 0.5h are given in
figure 5. We use a streamline plot, rather than the normalized vector map
Christensen and Adrian [7] use to visualize the flow direction clearly even
at large distances from the hairpin vortex. In combination, we use a vector
plot without renormalization, which gives a clear impression of the size of the
structures. The swirling flow pattern is clearly visible at this location, and
it is also clear that a strong Q2 event can be found below the vortex head,
which extends over the complete water depth. This means that the whole
flow structure (vortex and the induced flow) can be classified as an attached
eddy. It is also interesting to note the absence of strong Q4 events in this flow
structure. A small Q3 event is visible upstream and below the vortex head.

The conditionally averaged drift velocity is shown in figure 6. Here, there is
a significant smaller number of vectors than in the fluid velocity LSE, because
larger bins were used in order to get converged statistics. Note that the drift
velocity, is not a zero-mean quantity (fig. 2). It appears that in the settling
case, the particles see large scale sweeps upstream and above the vortex head.
Around the vortex, it can be seen that the particles see an even intenser drift
at the downstream side of the vortex pulling the particles down around it.
In the fully developed case, the drift velocity again looks very similar to the
fluid velocity structure. Note that some care should be taken in interpreting
these results, because it does not show the amount of particles at a location
and some results therefore might be coming from a rather small number of
sediment particles and at the same time contribute little to the actual trans-
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port, as there are no particles at those locations. In the settling case, the
conditionally drift velocity becomes clearly smaller for a vortex higher in the
water column (not shown), with the most significant contribution above the
vortex head. In the fully developed situation on the other hand, the contri-
bution to the drift velocity becomes higher for vortices higher in the water
column (when its intensity is not changed), and it is located below the vortex

Fig. 5. Conditionally averaged fluid flow structure at y0 = 0.5h, calculated with
LSE. Only every other vector is shown.
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Fig. 6. Conditionally averaged drift velocity structure at y0 = 0.5h. Left for the
settling case, right for the fully developed situation.

The clear difference between the conditional average of the drift velocity in
the settling case and the fluid velocity must mean that apparently only some
vortices are important for transporting the particles down in this case. I.e.,
although the downward and upward drifts are both related with a spanwise
vortex, the complete vortical structure transporting them is presumably very
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different. It appears that the concerned structure consists of a vortex head
with a sweep upstream and above of it. A model for this kind of structure
could be the type B eddies of Perry and Marusic [16], which consists of an
spanwise oscillating vortex tube, inclined 45 degrees in the streamwise dir-
ection and rotating with the mean shear. They proposed this structures in
order to obtain a better comparison with experimental data without claiming
their existence. Interestingly, a similar structure was found in conditionally
averaged structures by Adrian and Moin [2] in a DNS of a homogeneous shear
flow, related with Q4 events. Apparently, these second structures are much
less significant in a boundary layer than hairpin vortices, because in the con-
ditional average of the fluid velocity structure, no trace of them is visible. In
the fully developed situation on the other hand, it seems that hairpin vortices
are responsible for the drift velocity structure.

5 Conclusion

We performed a PIV/PTV experiment in order to measure the drift velocity
statistics of pseudo sediment particles in a turbulent flow. We varied the dis-
tance between the introduction of sediment and the measurement location.
At 16 water depths from the measurement section, we found that most of the
sediment was still near the free surface and moving downwards, preferentially
concentrated in sweeps (Q4), whereas a smaller number of upward moving
particles are found both in Q1 and Q2 structures, thus causing the mean
particle velocity to be higher than the mean fluid velocity. A spatial view of
these structures shows that mainly the structures located above a spanwise
vortex head rotating with the shear, are important for this downward trans-
port. A possible eddy that could display this kind of behavior is the type B
eddy from Perry and Marusic [16]. The downward transport in this situation
seems to be quite similar to the increased apparent settling velocities in a
cellular flow field [12], where settling particles that are outside a vortex move
around that vortex at the down flowing side.

In the fully developed situation on the other hand, upward sediment trans-
port occurs in ejections, whereas downward transport occurs in inward inter-
action (Q3) and sweeps (Q4), although particles are found significantly more
in Q3 events than could be expected from random sampling, and significantly
less in Q4 events. The streamwise velocity that is lower than the mean in Q2
and Q3 events causes the mean streamwise particle velocity to be slower than
the mean fluid velocity. The ejections are clearly related to hairpin vortex
structures. In this situation, the number of upward and downward moving
particles is approximately equal.

The physical mechanism for the increased concentration in Q3 events in
the fully developed situation is shown in figure 7. Particles from the near
the bottom, where the largest concentration exists, are transport upwards
by an ejection related to a hairpin vortex. These hairpin vortices travel in
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Fig. 7. Physical mechanism of particle transport in the fully developed situation.
The image shows a hairpin vortex packet and two typical particles in a frame moving
with the hairpin vortex packet convective velocity. ISL: Internal shear layer, HPV:
Hairpin vortex

packets [3] and therefore a Q3 event related to an upstream hairpin vortex
can transport a part of the particles downwards (dotted in fig. 7). Another
part of the particles (filled in fig. 7) is transported upwards of the internal
shear layer that connects the two vortices. From there, it might remain at
the same vertical location [15], be transported further upwards by another
hairpin vortex packet or be transported down by a sweep (similar as what
happens in the settling case). Note that these light particles do not seem to
settle down by gravity [also found by 13], but are transported downwards by
coherent structures. Yet, the influence of gravity on the concentration profile
in the fully developed situation is evident.
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1 Introduction

The stratosphere is an important component of the climate system which
hosts 90% of the ozone protecting life from the ultra-violet radiations and,
through the region called upper troposphere / lower stratosphere (UTLS)
that encompasses the tropopause, has some control on the weather, the chem-
ical composition of the atmosphere and the radiative budget. Because the
temperature grows with altitude in the stratosphere, convection is inhibited
by stratification, and the motion is mainly layer-wise on isentropic surfaces,
with time scales of the order of weeks to months. The cross-isentropic adia-
batic circulation is slow with time scales of the order of the season to several
years. Below 30km, many chemical species, among which ozone, do not have
significant sources or sinks and exhibit a chemical life-time of the order of
several months to years. Such species can be treated as passive scalars trans-
ported by the flow. Their distribution is then dependent on the transport
and mixing properties. Two useful quantities are the potential temperature
θ = T (p0/p)R/Cp which is related to entropy by S = Cp ln θ and the Ertel
potential vorticity (or PV) P = (∇×u ·∇θ)/ρ which is a passive tracer under
adiabatic and inviscid approximation. Owing to the separation between fast
horizontal adiabatic motion and slow vertical diabatic motion, the potential
temperature is often used as a vertical coordinate. PV is not practically meas-
urable by in situ or remote instruments unlike many chemical tracers but can
be easily calculated from model’s output. It is most often used as a diagnostic
of transport and dynamical activity.

Observations by in situ instruments and remote sensing show that the
stratosphere exhibits well-mixed regions separated by transport or mixing
barriers. Particularly, in the winter hemisphere, two dominating barriers are
formed at the periphery of the polar vortex and in the sub-tropics that isolate
the mid-latitudes from both the polar and tropical regions [1]. Since vertical,
diabatically induced, motion is upward in the tropics and downward in the
extra tropics, with the largest descent within the polar vortex, vertical tracer

Bernard J. Geurts et al. (eds), Particle Laden Flow: From Geophysical to Kolmogorov Scales, 57–69.
© 2007 Springer. Printed in the Netherlands.



58 Bernard Legras and Francesco d’Ovidio

gradients are turned into step horizontal gradients on isentropes intersecting
the barriers. In the UTLS, the barrier associated with the subtropical jets
near 30N and 30S in latitude separates the upper troposphere from the lower-
most stratosphere on isentropic surfaces crossing the tropopause. The layer
of the stratosphere just above the tropopause undergoes exchanges with the
mid-latitude troposphere mainly due to upper level frontogenesis, which is a
consequence of baroclinic instability and/or intense convective events which
are often themselves associated with frontogenesis. At higher levels, that is
for 380K > θ > 350K, the exchanges across the tropopause occur between
the lower stratosphere and the Tropical Tropopause Layer (TTL) which is an
intermediate region between the tropical convective layer and the stratosphere.
Figure 1 summarizes these processes.

Fig. 1. Scheme summarizing the Brewer-Dobson meridional circulation in the stra-
tosphere end exchange processes.

The scope of theory and modeling is to provide a qualitative and quantitat-
ive account of these observed properties. A number of progresses in this matter
over the last ten years have been due to the extensive usage of Lagrangian
calculations of parcel trajectories based on the analyzed winds provided by
the operational meteorological centers. It is the goal of this presentation to
review the ongoing work in this direction.

2 Isentropic stirring

The strong stratification of the stratosphere accompanied by weak net dia-
batic contribution constrains parcels to move on isentropic surfaces. Lag-
rangian isentropic motion differs from fully turbulent motion and is akin to
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two-dimensional turbulence or chaotic motion in a plane, where the flow is
smooth and advection is dominated by the large structures. Such dynamics is
known to produce transport barriers where tracer gradients intensify.

The effective diffusivity [2, 3, 4] has been used with success as a diagnostic
of such effects in atmospheric flows. The method applies to a tracer, usu-
ally PV, with a mean latitudinal gradient such that the longitude-latitude
coordinates can be replaced by the area of embedded tracer contours and an
azimuthal coordinate along the contours. By a weighted averaging along the
contours, the advection-diffusion equation ∂c/∂t + u∇c = κ∇2c is replaced
by a purely diffusive equation

∂C(A, t)
∂t

=
∂

∂A

(
κeff(A, t)

∂C(A, t)
∂A

)
,

where A is the area of the contour γ(C, t) and the effective diffusivity is

κeff(A,t) = κ0

L2
eq(A, t)

A
(
4π − A

r2

) (1)

with
Leq(A, t) =

∮
γ(C,t)

|∇c|dl
∮

γ(C,t)

1
|∇c|dl ,

and r is the radius of the Earth. The device in (1) is to bind the complex
stirring of the passive scalar in the averaging over the contour. It can be shown
[5] that Leq is always larger than the actual length of the tracer contour but
that in practice the two quantities scale similarly. Hence, effective diffusivity is
small where the contours are less deformed, that is where transverse gradients
are less intensified, leading to less mixing.

Another measure of atmospheric stirring is provided by the local Lyapunov
exponent [6, 7] which estimates the Lagrangian stretching as the separation
rate of two close parcels over a given period of time or over a given growth.
Around the Antarctic stratospheric polar vortex, a minimum in both the
effective diffusivity and local Lyapunov exponent is observed along the streak
lines at the center of the jet [7, 8]. This minimum is surrounded by a very
active mixing region with large stretching where air is brought from and to
the mid-latitudes within a few days. However, the very stable Antarctic polar
vortex is rather an exception than the rule among atmospheric flows which
usually exhibit much less stable patterns. Over most of the atmosphere, the
Lyapunov exponents and effective diffusivity are rather anti-correlated than
correlated, contrary to the simple expectation.

The main reason of this discrepancy is that atmospheric flow, like most
quasi-2D flows, is dominated by extended shear regions that stretch material
lines but contribute weakly to the growth of tracer gradients. Let us first
consider the deformation of a small material circle surrounding a parcel at
time t. As time runs forward or backward, the flow defines a pair of linear
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transformations T and T−1 which map the circle onto ellipses at future or past
time t + τ or t − τ . The local forward and backward Lyapunov exponents
are λf = 1/τ lnσf and λb = 1/τ lnσb where σf and σb are the singular
values of T and T−1. The singular vectors of these transformations are the
Lyapunov eigenvectors. The eigenvector pointing to the smallest axis of the
ellipse in the transformation indicates the unstable manifold or stable material
line for backward time and the stable manifold or unstable material line for
forward time [9, 8]. The convergence of the eigenvectors is at least as fast and
generally much faster than the Lyapunov exponent [10]. Consequently, the
tracer gradient tends, at any time, to be perpendicular to the local unstable
manifold [11, 12]. This leads to an estimate of the future growth of the tracer
gradient as the product of the forward Lyapunov exponent with the sine of the
angle between the local stable and unstable manifolds that we denote as λ⊥,
the transverse Lyapunov exponent. Since stable and unstable manifolds are
parallel in the direction of the wind for a pure shear, the transverse Lyapunov
exponent vanishes in this case. As a matter of fact, when the gradient is
perpendicular to the shear, it does not intensify at all.

Fig. 2 shows, strikingly, that that the maximum in stretching over the sub-
tropical jet in the northern hemisphere (near 30N) is turned into a minimum
of the transverse Lyapunov exponent, in agreement with the fact revealed
from effective diffusivity that the jet acts as a barrier to mixing.

Fig. 3 shows that the transverse Lyapunov exponent correlates linearly
with lnκeff while no correlation emerges with the Lyapunov exponent.

A quantitative relation between effective diffusivity and the transverse
Lyapunov exponent can be found by assuming that, owing to the chaotic
stirring by the atmospheric flow, Leq ∼ exp(λ⊥Tκ) where Tk is a characteristic
time after which diffusion becomes dominant and balances the exponential
growth. Using this expression in (1), we define the Lyapunov diffusion κλ as

ln
κλ

κ0
= A + 2λ⊥Tκ (2)

where A is a constant. Both A and Tk can be obtained by a fit of κλ to κeff .
Fig.4 shows that indeed κλ reproduces very well the variations of κeff .

Hence the transverse Lyapunov exponent provides a diagnostic of atmo-
spheric stirring that matches very well the effective diffusivity but with a
number of advantages with respect to this latter, in particular in resolving
structures in longitude. This is visible in Fig. 2 where the belt of low values
along the jet is interrupted in the eastern Pacific opening a gate to mixing
across this region between high and low latitudes. During the strong El Niño
event of 1998, Fig. 5 shows a much more continuous belt over the Pacific,
suggesting that El Niño is associated with a closing of the mixing gate. This
result is also supported by analysis of meridional fluxes [13] and the climato-
logy of intrusions of stratospheric air in the tropical upper troposphere [14].
For further discussion, see [15].
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Fig. 2. Forward Lyapunov exponent (top), measuring stretching intensity, and
transverse Lyapunov exponent (bottom) averaged over five January months (1997,
1999, 2000, 2001 and 2002) on the surface θ = 350K which intersects the tropopause
within the subtropical jet.

Fig. 3. Scatter plots of monthly-means of longitudinally averaged forward (a) and
transverse (b) Lyapunov exponent against effective diffusivity over the period 1980-
2000 on the θ =350K isentropic surface.
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Fig. 4. Zonally averaged Lyapunov diffusivity (continuous line) and effective dif-
fusivity (dashed line) for the El Niño winter 1997-1998 (gray) and La Niña winter
1998-1999 (black).

Fig. 5. Transverse Lyapunov exponent averaged over January 1998 on the surface
θ =350K.

3 Vertical mixing

In the previous section, we diagnosed the stirring of tracers by layer-wise
motion that elongates tracer contours and generates a large number of fila-
mentary structures within an isentropic surface. It has been shown [16, 17]
that filaments are merely the horizontal section of sloping sheets with large
horizontal to vertical aspect ratio of the order of 200. This value is essentially
the ratio of the vertical shear to the horizontal strain. Owing to this high
aspect ratio, the dissipation of a tracer sheet is mainly a product of vertical
mixing by small-scale turbulence. Present meteorological analysis provided
by weather centers basically resolve the motion that induces stirring and gen-
eration of tracer sheets, but small-scale turbulence due to shear instability
or gravity wave breaking is unresolved by any large-scale numerical atmo-
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spheric model. Local diffusion coefficient that may vary in space and time are
often used to characterize the mixing produced by turbulence. Radar estim-
ates of this quantity in active turbulent regions provide values of the order
of 1-5 m2s−1 but models [18, 17, 19] suggest that active regions are sparse in
the atmosphere and that, on the average, much smaller turbulent diffusion is
required to explain the observation of tracers.

Lagrangian reconstruction methods are often used to explain the spatial
and temporal variations of atmospheric tracers. Such methods, sketched in
Fig. 6, are based on the possibility to reconstruct small scales of the tracer
distribution from the time series of the advecting wind and have been very
successful in the lower stratosphere and the upper troposphere [20, 18, 21]
showing that a large number of tracer structures seen in satellite images, air-
craft transects and balloon profiles can be explained by advection. In most
early studies, the reconstructed tracer was PV but recent works focus on re-
constructed chemical tracers that can be compared more directly with obser-
vations. Diffusion can be introduced in such methods by dividing each parcel
into a large number of particles which are advected backward adding a random
velocity component in the vertical direction, such that over one time step

δz = wδt + ηδt ,

where the random component η fits a chosen vertical turbulent diffusivity by
[19]

D =
1
2
< η2 > δt .

The rationale of this approach is to integrate the adjoint equation for the
Green function of the advection-diffusion equation which is well-posed for
backward times [19]. It has been applied, using a different formulation, to
identify pollution sources from a network of sensors [22].

Comparing high resolution airborne tracer measurements with such re-
constructions done with several values of D provides an estimate of the Lag-
rangian averaged diffusivity which matches best the observed fluctuations.
Fig. 7 provides an example of such comparison done during a campaign in
the Arctic, showing that turbulent diffusivity is, on the average, much smaller
inside the polar vortex than outside, the largest of these estimates being one
order of magnitude less than the radar estimate. When sharp transitions are
identified in both the observed and the reconstructed data, it is possible to
provide a local estimate of Lagrangian turbulent diffusivity. Fig .8 shows that
D varies by at least one order of magnitude across a 80km wide filament.

As diffusivity can be estimated independently from the strain, a relation
between both quantity, which is usually assumed in most parameterization of
turbulence, can be tested. It has been shown [19] that on the average the two
quantities are correlated but that this cannot explain the type of variability
shown in fig. 8 which is perhaps due to burst of gravity wave breaking.
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Fig. 6. In the standard reverse domain filling method [23] parcel trajectories starting
at time t are integrated backward in time for a duration τ using available wind
fields over the time interval. Provided a coarse resolution distribution of the tracer
is known at time t − τ , the value attributed to the parcel at time t is that of the
coarse field at its location at time t − τ . This procedure is able to reconstruct the
small-scales at time t if transport is dominated by the resolved scales of motion.
In the diffusive version [19], each parcel is a mixture of a cloud of particles that
originate from a distribution of locations at time t − τ under backward advection
plus diffusion. Then the value of the tracer at time t is an average of the values at t−τ
for all the particles of the cloud. Unlike the standard procedure, the reconstruction is
to a large extend independent of τ and the applied diffusion controls its smoothness.
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Fig. 7. (a): Sample of aircraft tracer measurement at 56 hPa in the surf zone
outside the polar vortex during SOLVE campaign (winter 2000). The thick line
shows the corresponding transect in the chemical transport model used to provide
the coarse distribution of the tracer. (b-d): Advective-diffusive reconstructions for
three values of the diffusivity D = 1, 0.1 and 0.01 m2 s−1. The comparison is
based on the roughness of the curves with some details identified near 11UT and
11:30UT. Clearly, the reconstruction is too smooth for D = 1 m2 s−1and too rough
for D = 0.1 m2 s−1, while D = 0.1 m2 s−1seems of the right order. For a more
quantitative assessment, see [19]. (e): Same as (a) inside the polar vortex. (f-h)
Advective reconstructions inside the polar vortex where the comparison suggests
that 0.01 m2 s−1> D > 0.001 m2 s−1.
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Fig. 8. (a) Tracer transect across a filament just outside the polar vortex during
SOLVE campaign. The right edge of the filament fits very well an error function
(solution of the advective diffusive equation with constant strain) with a width
of 36km while the left edge is much steeper with a width of about 2.5km. (b-d)
The reconstructions show that the two slopes cannot be reproduced with a single
uniform diffusion indicating a large variation, by more than one order of magnitude,
of turbulent diffusion across the width of the filament.

4 Meridional Brewer-Dobson circulation

Over time scales of several years the stratospheric circulation is character-
ized by an overturning from the tropics to the mid and polar latitudes (see
Fig.1) known, since the pioneering work of Brewer [24], as the Brewer-Dobson
circulation. It is an important requirement, for the distribution of long-lived
chemical species that numerical models reproduce quantitatively this circula-
tion. A large class of models of atmospheric chemistry, denoted as chemical-
transport models, rely on the analyzed winds provided by the operational
weather centers to advect the chemical compounds horizontally and vertically.
Among those wind datasets, the ERA-40 reanalysis of the European Center
for Medium Range Weather Forecast (ECMWF), already used in section 1, is
particularly useful since it covers a 45-year period from 1957 to 2002 [25].

Most global weather forecast models, including that of ECMWF, use the
hydrostatic approximation. This means that vertical velocities are calculated
from the the continuity equation, that is basically from the vertical integration
of the horizontal divergence. Such estimate is known to be noisy by nature
as the divergent circulation is weak and badly constrained by observations.
Moreover, the practice of weather centers is to archive instantaneous velocity
fields at times separated by interval of several hours, hence strongly under-
sampling fluctuations, such as gravity waves, with time scales much shorter
than the archiving interval. Most studies indeed rely, by tradition, on 6-hourly
winds. Fig .9 shows that these winds induce a too strong meridional circula-
tion (hence the age is too young in the extra-tropics). However, a 3-hourly
dataset, also available from ECMWF reduces considerably the discrepancy
with observations. A chemical-transport model using this dataset is able to
reproduce with good accuracy the ozone column at mid-latitude (F. Lefèvre,
2005, personal communication). Since the 3-hourly dataset still contains a sig-
nificant amount of spurious noise, an alternative is to move horizontally parcel
on isentropic surfaces and to use diabatic heating rates, calculated from the
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Fig. 9. Comparison of the age of air between observations and model calculations.
The age of an air parcel is the time spent by this parcel in the stratosphere since
it entered it at tropical latitudes [26]. Since an air parcel is a mixture, the mean
age of air is the average over all particles within the parcel. The age of air can be
measured using gases like SF6, CH4 and N2O which are well mixed in the tropo-
sphere and are slowly destroyed in the stratosphere or CO2 which is also well mixed
in the troposphere and increases with time. The observation curve [27] is based an
aircraft measurements at about 20km. Model calculations are performed using Lag-
rangian trajectories initialised almost uniformly at 20km integrated backward until
they cross the tropopause. The age is averaged over latitude circles. The four curves
are built using wind datasets over the cycle 1999-2000 and calculations are done
over 15 years repeating this cycle. For parcels which have not left the stratosphere
after 15 years, the age is extrapolated as in [28]. Dotted: reconstruction using the
ERA-40 winds at 6-hour interval. Dash: reconstruction using the ERA-40 winds at
3-hour intervals (with forecasts interleaved with analysis as in [19]. Gray solid: re-
construction using the ERA-40 winds in the horizontal and heating rates for vertical
motion. Black solid: same as previous with a correction on the horizontal isentropic
divergence to balance the heating rate.

local radiative budget and averaged over 3-hour intervals, as vertical velo-
cities. Fig 9 shows that the meridional circulation calculated from such data
provides a good agreement with observations. Doing so, we have, however, in-
troduced an inconsistency since mass conservation is no longer satisfied. This
conservation is reestablished by forcing the horizontal divergence on isentropic
surfaces to satisfy the equation

∂σ/∂t + ∇θ(σu) + ∂(σθ̇)/∂θ = 0

where σ = −g∂p/∂θ. Fig. 9 shows that a further improvement in the agree-
ment with observations is obtained in this way except near the equator. Hence,
it is now clear that available analyses fulfill the constrain that the Brewer-
Dobson circulation is fairly well reproduced, at least over the recent years
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where high quality satellite observations are available, but it is also clear that
special care should be taken when using analyzed data for transport calcula-
tions over durations of months to years in order to avoid spurious diffusive
transport due to noise and under-sampling. Another important factor im-
pacting the quality of the analysis is the the model itself and the type of
assimilation scheme [28, 30].
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Summary. A stochastic numerical model is developed to simulate heat and water
vapor transfer from a rough surface through a boundary layer into the fully turbulent
atmosphere. The so-called interfacial boundary layer is conceptualized as a semi-
stagnant layer of air in the roughness cavities at the surface into which the smallest
eddies penetrate to random approach distances and with random inter-arrival times,
carrying away energy, molecules, or any other scalar admixture. The model makes
use of the one-dimensional transient heat conduction equation where the boundary
conditions are updated in time and space by random deviates from a general gamma
distribution. The one-dimensional transfer equation is solved by the implicit finite
difference method which allows conversion to a standard tridiagonal matrix equation.

The algorithm is simple to implement and allows generation of large ensembles
for statistical analysis in short periods of time. The simulations were used to com-
pare and contrast earlier results obtained for heat and mass transfer through Earth
surface-air interfaces. It is shown that even small increases in boundary-layer thick-
ness may significantly enlarge the inverse Stanton roughness number St−1

k reducing
heat transfer from the surface. Review of experimental work suggests an updated
relation for the heat transfer coefficient from bare soils into the atmosphere. Work
is under way to incorporate the results into the atmospheric and remote sensing
research related to the determination of the Earth’s sensible and latent heat fluxes.

1 Introduction

In the application of remote sensing techniques to determine evapotranspira-
tion, use is normally made of the energy balance equation

E = Rn −G−H (1)

where E is the evapotranspiration, Rn the net solar radiation, G the soil heat
flux and H the sensible heat flux. The net solar radiation and soil heat flux can
be determined reasonably well with remote sensing techniques in the visible
and thermal infrared parts of the spectrum, while several parameterizations

Bernard J. Geurts et al. (eds), Particle Laden Flow: From Geophysical to Kolmogorov Scales, 71–83.
© 2007 Springer. Printed in the Netherlands.
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exist to determine the sensible heat flux H using thermal infrared imagery
to determine surface temperatures. Therefore, even if the transport mechan-
isms for latent and sensible heat E and H are the same, it is more practical
to determine the sensible heat flux first because of the possibility to obtain
remotely sensed surface temperatures. For this reason the transport problem
is formulated here in terms of heat transport, closely following [1] and [3].

The transport of heat and water vapor in a fully turbulent atmosphere can
be described using Reynolds analogy for turbulent flow because it may be as-
sumed that transport is predominantly linked to eddy air movement at scales
where molecular diffusive transport can be neglected. Under these circum-
stances turbulent transport of momentum, heat, water vapor, carbon dioxide
and dust particles are analogous. However, close to the surface Reynolds ana-
logy ceases to be valid. Wind speed becomes zero at the roughness length for
momentum transport (z0) while temperature and water vapor concentration
on the other hand approach finite values. Conduction and diffusion are the
dominant transport mechanisms close to the surface even in fully rough re-
gimes. Kays and Crawford [8] express this as the heat transfer by conduction
through what may be a semi-stagnant fluid in the roughness cavities at the
surface. This stagnant layer is here referred to as interfacial sub-layer following
the usual micro-meteorological convention [3, 12].

The non-dimensional temperature difference δt+0 across the interfacial sub-
layer is related to the roughness Stanton number Stk as

δt+0 =
∆TρCpu∗

H
= St−1

k (2)

where ∆T is the temperature difference, ρ the air density, Cp the specific
heat and u∗ the friction velocity. The roughness Stanton number Stk must
be determined by experiment [8] and is a function of the type of surface
roughness.

In micro-meteorological applications very often a sub-layer Stanton num-
ber B is used which is defined as

B−1 = St−1
k − Cd−1/2 (3)

where Cd is a drag coefficient. The term kB−1 is also used frequently where
k is the von Kármán constant. Experiment has shown that the roughness
Stanton number Stk can be parameterized as

St−1
k = cRem

∗ Prn (4)

with surface roughness Reynolds number defined as Re∗ = u∗z0/ν and Pr
as the Prandtl number (0.71 for air). The parameter z0 is the roughness
length for momentum transport while ν is the kinematic viscosity of air
(≈ 1.5 10−5 m2s−1).

Figure 1 below shows the analysis given by [3] where kB1 = ln(z0/z0c) is
plotted as a function of the Reynolds surface-roughness number. The general
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scalar roughness length z0c becomes z0h for heat transport and z0v for water
vapor transport. The equations for the bluff roughness elements (bare soil)
are given by

kB−1
v = 2.25(Re∗)1/4 − 2 ; kB−1

h = 2.46(Re∗)1/4 − 2 (5)

Fig. 1. Summary of analysis given by [3] where kB−1 = ln(z0/z0c) is plotted as
a function of the Reynolds surface roughness number (Re∗ = u∗z0/ν). H refers
to sensible heat with Prandtl number Pr = 0.71, while E refers to water vapor
transport with Schmidt number Sc = 0.6. Also shown are some results for vegetated
areas (grass, corn and forest).

The results obtained with these relations have become embedded in cur-
rent practice to determine latent and sensible heat fluxes by remote sensing
techniques [11, 12]. The equations (5) show the close correspondence between
the results obtained by [3] for transport of water vapor and sensible heat.
Figure 1 also shows some results for vegetated areas. However, the analysis in
this paper is limited to the non-vegetated bluff-roughness case. It should also
be noted that only rough flow (Re∗ > 1) is considered here. The set of equa-
tions (5) were developed by [1] and [4] through a stochastic analytical model,
whereas [5] developed a more complex, partly numerical and partly analytical
model. It is the objective of this paper to show how quick results may also be
obtained with a completely numerical finite difference approach. First a short
review of the theory leading to the basic analytical solution is given in section
2. The structure of the model is discussed in section 3 while the results of
the simulations are given in section 4. Finally, the results are compared with
previous work, ending with a few conclusions and recommendations.
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2 Analytical solution of basic stochastic model

Atmospheric transport by turbulent flow takes place through a wide range
of eddy sizes varying from the internal to the external scale. However, the
closer to the surface the smaller these eddies become. Ultimately a limit is
reached where the Reynolds number becomes too low and no more eddies can
be generated. The energy is then absorbed by diffusion at molecular level.
Kolmogorov [6] put forward the hypothesis that the properties of the smallest
eddies are determined by the rate of energy dissipation (ε) in the flow and the
kinematic viscosity of the fluid (ν). The assumption was made that a change
in internal length scale could only be a result of change in ε and ν. Thus by
purely dimensional reasoning a length scale λ was defined by Brutsaert [4]
and Obukhov [7] as

λ = (ν3/ε)1/4 (6)

and a time scale θ as
θ = (ν/ε)1/2 (7)

Brutsaert [1, 4] linked these general similarity relations to a stochastic surface
renewal model. In this model it is assumed that water vapor molecules arrive
at the turbulent eddies by diffusion through a stationary air layer (the inter-
facial boundary layer) between the eddies and the surface. These eddies are
randomly swept away into the fully turbulent stream and constantly replaced
by new ones. The procedure is well known in chemical engineering [10, 19]
and appears to provide a reasonable physical and statistical picture of the
transport processes across the interfacial sub-layer.

The renewal probability p is given by

p = se−st (8)

where s is the eddy renewal rate (Hz).
Transport through the stationary boundary layer was modeled by the one-

dimensional heat conduction equation [9]

∂T

∂t
= D

∂2T

∂z2
(9)

where T is the specific humidity and D is the thermal diffusivity which is equal
to κ/(ρCp). The conductivity κ for air is approximately 0.025 Wm−1K−1. For
the case of water vapor transport T is replaced by q the specific humidity and
D is the molecular diffusivity of water vapor.

Solution of (9) under the boundary conditions

T = Ta ; 0 < z < ∞ ; t = 0
T = T0 ; z = 0 ; t ≥ 0 (10)
T = Ta ; z → ∞ ; t ≥ 0



Heat and water vapor transport 75

gives (∂T
∂z

)
z=0

= (Ta − T0)/
√
Dπt (11)

and the average value Havg can be found by integration

Havg = −κs

∫ ∞

0

e−st
(∂T
∂z

)
z=0

dt (12)

yielding the solution

Havg = −(Ta − T0)
√
sκρCp (13)

The renewal rate s is parameterized by assuming that it is inversely propor-
tional to the time scale θ = (ν/ε)1/2 (equation 7). Moreover, close to the
surface the rate of energy dissipation is equal to

ε =
u3∗
kz0

(14)

Combining equations (7) and (14) gives

s = C2

(u3∗
z0

)1/2

(15)

where C2 is a constant, equal to about 4.84 when the Brutsaert empirical
values are used. Thus (13) and (15) give the solution of the stochastic model
as a function of the air-surface temperature difference (T0 − Ta), the friction
velocity u∗ and the roughness length for momentum transport z0. The model
is assumed to be valid between z = 0 and z = e2z0(≈ 7.4z0). Note that the
roughness length for heat transport zoh does not appear as a parameter in
the solution. This parameter is defined as the height where the temperature
attains its surface value, when the logarithmic profile is extrapolated down-
ward. However, in the interfacial sub-layer the Reynolds analogy is no longer
valid as mentioned already in the introduction, so the physical interpretation
of the roughness length for heat transport must be treated with caution. The
same holds for all other scalar roughness lengths.

The Brutsaert model outlined above is simple because it assumes that the
replacement of eddies takes place right at the surface. A more general version
of the surface renewal model was already proposed by Harriott [5, 13] and
improved later by Thomas and Fan [14] who considered eddies not only with
random arrival times but also with variable approach distances, i.e., variable
thickness of the interfacial boundary layer. The statistics of this more general
process is governed by gamma distribution functions such as

p(t) =
1

Γ (α)βα
tα−1 exp

(
− t

β

)
(16)

The mean t of the distribution is equal to αβ, while the variance is equal
to αβ2. Relation (16) reduces to the Brutsaert inter-arrival time distribution
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(Eqn. 8) for α = 1 and β = 1/s. If the time t is replaced by the distance
z, the same gamma distribution can used to model the approach distances
hp. The eddies are assumed to arrive to a distance hp (see Figure 2) with a
uniform temperature (Ta) causing an instantaneous temperature drop from
T (t, z) to Ta at distances larger than hp. In practice, an outer model boundary
is assumed with constant temperature Ta at a distance of about 7.4z0. The
wall itself is assumed to have a constant temperature T0. Conduction of heat
takes place from the wall according to the general heat conduction equation
(6) after this event until the next event when a fresh eddy arrives at another
distance hp. Two random values need to be determined after each event: an
inter-arrival time ti and an approach distance hp.

Harriott [5] did not present a fully analytical solution but rather a
mixture of analytical expressions with numerical simulations. The time in-
tervals t1, t2, . . . , tn and a corresponding sequence of approach distances
hp1, hp2, . . . , hpn were generated by a computer. After each arrival the ex-
isting temperature curve T (t, z) is truncated at the new approach distance
hp, i.e., T (t, z) = Ta for z > hp. The solution between the eddy arrivals is
given by the analytical solution of the heat conduction equation (9).

Fig. 2. The figure shows the steps in the modeling according to Harriott [5]. Up
to t0 the time evolution of the temperature is governed by the conduction of heat
equation. At t = t0 an eddy arrives up to distance hp, leading to a truncated
temperature distribution. After that the temperature evolves again according to the
heat conduction equation and steps 1, 2, 3 and 4 (dashed lines) mark the successive
changes in temperature. This continues until the arrival of a fresh eddy at another
approach distance. Note that the average slope of the temperature curve at z = 0
determines the heat transport.
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3 Numerical model implementation

The model proposed here makes use of the transient heat conduction equa-
tion (9) and the general gamma distribution (16). The one-dimensional flow
equation can be solved by the implicit finite difference method as discussed
below in section 3.1, whereas the generation of random deviates for arrival
times and approach distances is described in section 3.2.

3.1 Finite difference model setup

The one-dimensional transient system of equation (9) with boundary con-
ditions (10) can easily be written in finite differences [15]. In this case the
implicit system of equations can be written as a tridiagonal matrix equation
that is easily and quickly solved with the Thomas algorithm.

In order to make the model as realistic as possible, a grid was used consist-
ing of 1000 elements with properties as summarized in Table 1. A temperature
solution array of 1000 elements is produced at each time step and an average
H was determined for each set of parameters after each simulation run.

3.2 Gamma distribution

A basic procedure to generate random deviates with a gamma distribution
is given by [16]. However, since this procedure assumes that β = 1, a more
general procedure gamdev(α, β) was developed which returns random deviates
as a function of both α and β. The average approach distance hp,avg was used
instead of β as a parameter during the simulation runs. Parameter β is then
calculated as hp,avg/α.

The Brutsaert model [1] can be implemented by drawing the arrival rates
with gamdev(1, 1) and resetting the entire temperature T array to the lower
temperature upon arrival of the eddies. The more general procedure consists
of drawing arrival rates as in the Brutsaert model with gamdev(1, 1) and
then, after selecting hp,avg and α, drawing an approach distance hp with
gamdev(α, β).

4 Results

Table 1 below shows the basic parameter set with their chosen values. The
parameters such as κ, ρ, Cp and ν depend to a minor extent on temperature.
However, this has been ignored in the simulations. The following parameters
were varied during the simulations: the friction velocity u∗, the average ap-
proach distance hp,avg and the gamma distribution parameter α. In section
4.1 the model validation against the analytical Brutsaert solution is briefly
described, after which the simulations with variable approach distance are
summarized in section 4.2.
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Table 1: Model parameters with their selected values.

4.1 Model validation with the Brutsaert analytical model

As mentioned before, the Brutsaert model [1] can be implemented by drawing
the arrival rates with gamdev(1, 1) and resetting all temperature values to
the constant air temperature at z = L immediately after arrival of the eddies.
This offers the opportunity to validate the stochastic numerical model against
the analytical solution of the simple case with approach distance zero. The
analytical solution is given by (13) with the renewal rate s given by (15). This
renewal rate s depends mainly on the friction velocity u∗ because z0 is taken
as a constant equal to 0.001 m. Figure 3 below shows the roughness Stanton
number Stk as a function of the surface roughness number Re∗ with a range
from 6 to 200, corresponding to a range in friction velocity from 0.1 to 2 ms−1.
It is clear that the stochastic numerical model results compare well with the
analytical approach by Brutsaert [1, 3, 4]. It should be noted that both the
analytical and numerical model make use of relation (15) with constant C2

having a value of 4.84 based on reported experimental values [1].

4.2 Model simulations with variable approach distances

In addition to varying Re∗ as in Figure 3, α and hp,avg were also changed
systematically. Parameter α was given the values 1, 2, 4, 9, 16. Increase in
α means a decrease in the variance of the gamma distribution. The average
approach distance was assigned the values 0.0001 m, 0.0002 m, 0.0005 m,
0.0010 m, 0.0015 m, 0.0020 m and 0.0040 m and finally, the gamma distribu-
tion parameter β was calculated as hp,avg/α.

Some results are illustrated in Figures 4 and 5 below. Figure 4 shows the
simulation results for the inverse roughness Stanton number St−1

k as a function
of the approach distance at Re∗ = 13.34 (u∗ = 0.2 ms−1). The curves show
a marked increase in the St−1

k value when the approach distances become
larger. The curves also indicate that the heat transfer coefficient does not
depend strongly on α, especially at low values of the approach distance hp.
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Fig. 3. Inverse Stanton number (St−1) as a function of surface roughness (Re∗) for
both the numerical model simulation and the analytical solution by Brutsaert [1].

This seems to be the case for all values of u∗. Because it appears that changes
in α only have a minor influence on the heat transfer coefficients, a value of
α = 1 is chosen to show the general response of Stk to Re∗ and hp.

Fig. 4. Simulation results for the inverse roughness Stanton number St−1
k as a

function of the approach distance (thickness interfacial boundary layer) at u∗ =
0.2 ms−1 (Re∗ = 13.3).

Figure 5 shows the simulation results for St−1
k versus Re∗ for α = 1.

The curves show that a strong decrease of the heat transfer coefficient St
(increase in St−1) occurs with larger approach distance. All variations show
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Fig. 5. The figure shows the inverse roughness Stanton number as a function of Re∗
for several model approach distances. The shaded bar indicates the range of reported
experimental results, for simplicity only shown at Re∗ = 10 [1, 3, 10, 20, 21, 22]. The
solid line shows the results obtained with the Brutsaert analytical model (Equation
20). The black square indicates the offset from the Brutsaert line resulting from the
analysis by Trombetti et al. [10].

a decrease from the simple Brutsaert model with hp = 0 (section 4.1). The
reported experimental/theoretical results are shown in figure 5 where the solid
line shows the results obtained with the Brutsaert analytical model (as in
Fig. 3) while the shaded rectangle indicates the range of reported results.
These have been indicated for simplicity at Re∗ = 10 only. The wide range of
results appears to be caused partly by the nature of the different experiments,
partly by the different definitions and conventions with regard to the Stanton
numbers B, Stk and the drag coefficient Cd (relations 2, 3, 4 and 5). The most
important reviews were made by [1, 3, 10, 20, 21, 22].

It appears that the stagnant interfacial layer thickness (as modeled here
with the approach distance) may perhaps explain the variability in reported
experimental results. The stagnant layer thickness would then be related to
the type of surface roughness used in these experiments. Inspection of Fig. 5
suggests that the approach distance lies on average between 0.0002 and 0.0005
m based on the experimental evidence. The Brutsaert model [1] is

St−1 = 7.3 Re
1/4
∗ Pr1/2 (Brutsaert) (17)

where the constant 7.3 is mainly based on the experiments reported by [1].
However, the value of the constant is probably as high as 9.3 based on the
review by [10] and therefore it is suggested to adapt relation (20) to the
following relation which is also more in accordance with [22]
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St−1 = 9.3 Re
1/4
∗ Pr1/2 (18)

This leads to a slightly different relation for kB−1 from the one shown in (5)

kB−1 = 3.21Re1/4
∗ − 2 (19)

In summary, the simulations show that the heat transfer from the surface
is strongly dependent on the approach distance. To a lesser extent it depends
on the variance in the distribution. In all cases the simulated inverse Stanton
number is higher than in the simple analytical stochastic model [1] and this
model with hp = 0 should therefore be seen as a special case of the more
general case with hp ≥ 0. Although there is not enough recent experimental
evidence to draw definite conclusions, most of the historical data seems to
corroborate this.

5 Discussion

The stochastic model proposed here makes use of the transient heat con-
duction equation (6) and the general gamma distribution (16). The one-
dimensional flow equation can be solved by implicit finite difference methods.
This leads to a tridiagonal matrix equation that is inverted with the Thomas
algorithm [15]. The gamma distribution then determines when and to what
depth the boundary conditions need to be updated. The procedure to imple-
ment the gamma distribution in the model is a generalization of the procedure
described in [16]. The algorithm is simple to implement and makes it possible
to generate large ensembles for statistical analysis in a short period of time.

Good correspondence was achieved between the analytical solution of
Brutsaert’s model with hp = 0 and the stochastic numerical solution. The
simulations with the variable approach distance showed the large influence
of the approach distance on the energy transfer. The heat transfer coefficient
depends to a lesser extent on the variance in the distribution as modeled with
parameter α. In all cases the numerically simulated heat transfer is lower than
in the simple analytical stochastic model as developed by [1]. This model with
hp = 0 should be seen as a special case of the more general case with hp ≥ 0.
Although there is not enough recent experimental evidence to draw definite
conclusions, most of the historical data appears to confirm this.

The solutions for both the analytical and numerical models depend on
the parameters z0 (surface roughness), u∗ (friction velocity) and the surface-
air temperature difference (T0 − Ta). They do not depend on z0h, the scalar
roughness length for heat transport. Indeed, as already noted by [3] (and
many other authors for that matter) this auxiliary parameter is used merely
to facilitate parameterization of the boundary layer; in effect it is redundant.
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The uncertainty still surrounding the parameterization of heat and water
vapor transfer near the Earth’s surface suggests to verify the Stanton number
values for natural environments by experiment.
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Summary. We demonstrate a novel purely hydrodynamic concept of formation of
stromatactic cavities in geological sediments, originated by Hladil (2005a,b). First,
the characteristic features of these cavities are described, as for their geometry and
occurrence in the sedimentary rocks, and the several existing contemporary concepts
of their formation are briefly reviewed. Then the new concept is introduced, and
laboratory experiments described that were designed to validate it. Finally, the result
obtained are presented and discussed, and the prospect for the future research is
outlined. Note that the stromatactic patterns are three-dimensional cavities which
are formed inside the rapidly thickening suspension/sediment. These are not the
surface-related patterns like ripples or dunes.

1 Introduction

Here, the problem of the stromatacta origin is formulated in the perspective of
the currently existing theories and their weaknesses. The name Stromatactis
was originally used as a biological name (Dupont 1881), because these objects
were then believed to be remnants of organisms buried in the sediments.
Despite the later counter-evidence, this name stromatactis was continuously
used for this specific type of filled cavities. Singular and plural forms are not
settled yet. One consistent choice seems to be stromatactis and stromatactites.
The other, we prefer, is stromatactum and stromatacta (adj. stromatactic).
A simple new concept is presented and discussed in this paper.

1.1 What are stromatacta?

Stromatacta (abbreviated as ST) are, plainly said, petrified ”holes” in sedi-
mentary rocks. They are very specific cavities (voids, structures, patterns) oc-
curring usually in carbonate sedimentary materials. Since the origin of these

Bernard J. Geurts et al. (eds), Particle Laden Flow: From Geophysical to Kolmogorov Scales, 85–94.
© 2007 Springer. Printed in the Netherlands.
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particular voids is unclear, sedimentologists spent a great effort in studying
this phenomenon during the last ca. 120 years, but with a little success to
date.

One can define ST as cavities occurring usually in sedimentary carbonate
material, filled with fine-grained infiltrated internal sediment or with isopach-
ous calcite cements. ST display the following basic features. The chamber is
domical in shape. It has a smooth, flat, or wavy, well-defined sharp base. In
contrast, its arched roof is highly irregular, ornamented with many cuspate
or digitate protrusions, from large to very small, spanning a range of length
scales. The vertical intersection with a plane resembles a fractal curve. Their
(width):(height) aspect ratio typically varies from 3:1 to 6:1, say. Typically,
they occur in swarms, either interconnected, forming a reticulate network, or
isolated, but also individual occurrences can be found. The horizontally inter-
connected structures (usually a series of dish-shaped openings with chimneys)
are usually flatter in comparison with other forms. The width of stromatacta
can range from millimeters or centimeters, to decimetres, or even metres. The
individual ages of their origin with sedimented beds span (with some lacunae
in the documentation) a giant part of the geological time-scale, with the first
possible occurrences in Paleoproterozoic (billions of years). The best fossil ex-
amples of ST are from Middle Paleozoic formations, and we have good access
to localities in the Barrandian area, for instance. However, their occurrence
is broad range, in many parts of the world, where the relevant carbonate
deposition facies are present, see Figure 1.

By the above properties, summarized in Table 1, ST strongly differ from
other types of cavities occurring in natural sedimentary materials. The other
types can be, for instance, the following: shelter cavities, large inter- and intra-
granular pores (e.g., with shells), voids related to gas bubbles (accumulated
under impermeable ”umbrellas”), openings with sheet cracks, and variety of
secondary hollowed structures).

1.2 How stromatacta formed?

It is a more than 120-year puzzle, not fully resolved until now. Various sug-
gestions, speculations, hypothesis and theories have been offered by many
authors, to explain the way ST were created. The most common version,
which found its place also in textbooks, is that ST are cavities that remained
after decay of certain organic precursors (soft-bodied organisms like sponges,
microbial mats, extracellular polymers, etc.). Other concept says that ST
are cavities after erodible mineral aggregates. Another concept stems from a
selective dissolution of the base material or specifically in conditions of hydro-
thermal vents, accompanied with leaching, precipitation, corrosion, etc. Yet
another concepts consider ST to be structures formed by non-uniform compac-
tion of the sediment (maturation, de-watering), opening of shear fissures by
gravitational sliding, over-pressured cracks, gas-hydrate decomposition, etc.
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Fig. 1. Stromatacta shapes.

The advantages and disadvantages of the many solutions suggested to the
ST problem are discussed in the special geological literature; this discussion
is so intriguing and so voluminous that cannot be presented here (e.g., Ba-
thurst 1982; Boulvain 1993; Neuweiler et al. 2001; Aubrecht et al. 2002; Hladil
2005b; Hladil et al. 2006). Striking is the severe contrast between the great
diversity of the possible solutions, linked to particular conditions and specific
presumptions, and the universality of the ST shape geometry and occurrence
in space and time. All the concepts mentioned above share the two following
features:

• They need many specific assumptions (diversity of dead bodies and/or
material-related heterogeneities, up to heterogenetic/polygenetic nature
of these cavities)

• None can be proved experimentally, here and now

1.3 Hydrodynamic concept

The marked discrepancy between the universality of the problem and the par-
ticularity of the suggested solutions lead us, more and more, to a new concept
of ST formation. To overcome the deficiencies of the existing approaches, the
new concept should comply with the following two demands:

• It should be based on a universal physical mechanism;
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I. Geometry

Size from millimeters to decimetres or even a meter (coalesced)
Shape mostly domical, curved forms of voids
Base well-defined, sharp, flat, smooth or wavy
Roof arched, irregular, ornamented, cuspate, protrusions
Aspect (height):(width) ∼ from 1:6 to 1:3
Placement middle part of normal graded beds; coalesced into swarms,

sub-horizontal rows or diagonal meshes, or separated and
scattered

Successions early synsedimentary voiding, other modifications by
bubbles, collapses of vaults, fractures and dissolution holes
are younger (superimposed on this primary cavities)

II. Occurrence

In time broad span, perhaps from Paleoproterozoic to present times
∼ 4 billion years, with intermittent evidence)

In space worldwide, spanning elsewhere where the facies of carbonate
sediment matter of relevant compositions were (are?) present

Table 1. Basic features of stromatactic cavities

• It should be experimentally provable.

The universality means that the mechanism must be robust, operating both
in the past and in the present, under various circumstances, being less sens-
itive to evolution of hydrosphere and forms of life. The experimentability
means that the concept must have manageable length and time scales, and
can therefore be subjected to laboratory tests. This is a general requirement
on any active and controllable “geological experiment” (not the case when we
passively observed a natural process).

The simple and universal way of stromatactic patterns formation could
thus consist of a purely physical process. We have suggested that the pro-
cess is the hydrodynamic process of rapid sedimentation of complex polydis-
perse mixtures of nonspherical anisometric rough grains of common geological
materials, under suitable hydrodynamic conditions, where the stromatacta
(voids, cavities) are formed inside the body of the deposit material, growing
below the freely sedimenting dispersion (Hladil 2005a,b; Hladil et al. 2006).
The first advantage of this hypothesis is the universality: the sedimentation is
a physical process driven by gravity (presented since the Earth originated) and
requires only the presence of very complex mixtures of fine granular material
dispersed in fluids (readily available on many places). The second advantage is
the fact that we can easily perform the necessary sedimentation experiments
in laboratory, where the typical length and time scales are quite manageable
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(seconds and minutes, hours). Also the consolidation, durability and secular
early diagenetic changes can be imitated (in ranges of days to several months).
As for the required “suitable conditions”, it is presently known that when a
dispersed mixture of hydrodynamically interacting material particles is ex-
posed to an external force field, the typical (= highly probable) behavior is
the formation of certain structures and patterns, possibly proceeding via a
sequence of generic instabilities. In general, these conditions in the case of ST
are presently little known or unknown, as well as the hydrodynamic mech-
anism leading to the formation of void structures in the sediment (deposit).
These two key issues present the object of our current research. In particu-
lar, some suitable conditions have already been found, and ST-like structures
have been obtained in laboratory experiments. There also are some early hints
towards discerning the physics behind the structures formation.

Thus, within this framework, an old geological problem has been reduced
to the fluid mechanics of multiphase systems. Indeed, the new concept is rather
simple: the ST are formed by pure sedimentation. For somebody working in
fluid mechanics, this would perhaps be the very first choice. On the contrary,
for somebody being involved in sedimentary geology and diagenesis for a long
time, it must have taken certain time to find enough courage and to pass
through painful catharsis to dismiss a significant part of the geological details
about ST and ST-like patterns. Within the framework of the hydromechanic
concept, these details are not essential for the ST formation and are not relev-
ant to the basic formation mechanism. They can produce only “second-order
effects” on the resulting patterns, and affect them mainly in the quantitative
way.

2 Experiments

Here, several relatively simple experiments are described that were made with
the purpose to prove or disprove the hypothesis about the purely hydro-
dynamic way of ST formation. The goal was to find some suitable conditions
for ST production in laboratory containers.

2.1 Experiment E1: Complex system

Our first goal is to find, whether it is possible to produce ST artificially. We
ask if the unknown hydrodynamic mechanism leading to ST formation on geo-
logical temporal and spatial scales in nature can also operate in a laboratory
cell. To this end, we prepared our sedimenting mixture very similar to what
is believed to be the genuine suspension of the past.

The first measurements were done with the most complex mixture of
particles. The attempt was at preparing an artificial mixture whose compos-
ition would be nearly identical with the composition of the original mixture
in which the ST were formed in the far past. The grain composition of the
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Fig. 2. Stromatacta of natural origin (A, C) and produced in laboratory in experi-
ment E1 (B, D).

original material (carbonate rocks, limestone) was resolved by the image ana-
lysis of pictures obtained by the optical and electron microscopy of fine cuts
of the ST bearing rocks. With this knowledge, the rocks were ground into
a polydisperse substrate and an artificial but ’nature-identical’ mixture was
prepared by sieving off the undesired fractions. The product had the follow-
ing qualities: density: 2700-2900 kg/m3, size: 1 µm − 1 mm, polydispersity,
polymodality (2-4 peaks), shape: anisometric, angular, irregular, surface: not
smooth, rough, textured, abrasive.

The inorganic artificial mixture was mixed with a small amount of a or-
ganic component (sludge and slurry) (organic:inorganic ≈ 1:5) and sea-water
(solid:liquid ≈ 1:5). This material was then homogenized by stirring and shak-
ing and let settle in a transparent rectangular plexiglas column of volume ca.
1.5 L. The sedimentation process was recorded with a high-speed video, and
the resulting 2D images of the near-wall sediment evolution and the patterns
formation were analyzed, mainly visually. In addition, the 3D structures of
the interior of the sedimentation deposit were investigated, after cutting it
when frozen in liquid nitrogen. The 3D observations were in accord with the
2D observations.

The result was positive. The stromatacta-like structures were formed in
the middle part of the layer of the polydisperse sediment bed (seen vertically),
in size of millimeters to centimeters, see Figure 2. They were voids filled with
the water only. Thus, a similar mechanism like that far before was likely
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operating. These results were reproduced both in “a glass of water” or in
narrow flat cells, and also using other kinds of vessels and troughs of various
shapes and size (dimensions from ∼ cm to less than 1 m), to exclude the
possible effect of the container geometry.

Not only the ST patterns were reproduced but they also possessed certain
stability features on different time scales (2 hours - end of visible compaction;
1 day - the bed resists rotation by 90¡; few days - decomposition of organic
material starts, bubbles; few months - slight contractions, solidification and
fracturing, etc.). The most significant feature was the formation of remark-
able internal sediment on the floor of the cavities. This sediment deposited
during the first minutes and has a continuous fining-upward structure, being
settled from the relict suspensions of the finest particles. These markers of
stromatacta strongly differ from all other internal fills, if they subsequently
infiltered into these voids in sediment.

2.2 Experiment E2: Reduced system

These measurements were performed to provide an answer to the question
how much we can reduce the system complexity, i.e., what are the minimum
requirements to obtain the wanted stromatactic cavities.

First, the measurements described under E1 were repeated with a simpler
system, only the artificial mixture + tap water. The result was positive, and
the ST structures were obtained, with slightly reduced size. Second, a mod-
ified artificial mixture was treated to remove its ability to produce ST. By
reducing the polydispersity and polymodality of the grain size distribution
by sieving off certain fractions (small and large grains) we obtained “limiting
mixture” or “matrix” with zero-capacity for ST formation. This matrix was
used in the next experiments, especially for testing the effects of coarse-grained
accessories.

2.3 Experiment E3: Simple system

These measurements were focused on increasing the system complexity, to
initiate the production of the stromatactic patterns.

We prepared simple mixtures by combining kinds of larger particles
(∼ 1 mm) of regular shapes (3 cubes, 2 spheres, 2 cylinders). Also, we com-
bined these larger particles with the matrix (grains ∼ 100µm, or smaller and
larger, alternatively), scoria (almost monodisperse), limestone (slightly poly-
disperse), see Table 2.3. The containers were flat quasi-2D cells (25 x 20 x
0.75 or 1.5 cm), and cylinders (6 cm dia). Certain combinations produced the
structures, and certain did not. The results are in Figure 3. It follows that cer-
tain proportions among polydispersity, non-sphericity, anisometricity, rough-
ness and abrasiveness of the material is needed to obtain the stromatactic
structures. In this way, the important components of the unknown physical
mechanism underlying the ST formation can be disclosed.
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Table 2: Experiments on stromatacta formation.

Fig. 3. Experiment E3. Effect of mixture complexity on its ability to produce void
structures, see Table 2. A - cube C3. B - cube C3+C2. C - cube C3+C2 and sphere
Y. D - cube C3+C2 and sphere Y+B. E - cube C3+C2 and matrix S. E - cube
C3+C2 and matrix L.

The experiments proved that it is possible to generate ST-like cavities in
laboratory experiments, even with particle mixtures much simpler than the
common geological materials. Thus, the patterns formation in the sedimentary
deposits deserve attention not only as a geological phenomenon, but also as
a kind of a hydrodynamic instability in dispersed systems, where the process



Stromatactic patterns formation in geological sediments 93

of the particle sedimentation is strongly coupled with the process of building
of the void structures in the sediment below. This kind of instability seems to
be typical for systems with polydisperse, nonspherical rough particles.

We believe that the hydrodynamic concept of the ST formation is thus
proved in general, despite the fact that the experiments we have accomplished
so far, suffer from the following. The comparison between the field observations
and the laboratory results (shapes of ST) is only visual (no image processing
and quantifications). The experiments are not exhaustive and represent a
preliminary random mapping of the parameter space. No dimensional analysis
or scaling arguments were employed in the design of the experiments, namely
the sizes, shapes, densities of the particles and the physico-chemical properties
of the fluids.

3 Theory

Currently, we do not have a theory for the phenomenon observed - the form-
ation of ST structures during the sedimentation process, although certain
hints in this direction follow from the observations. Starting with a simple
phenomenology, we can consider the process as a sequence of several over-
lapping steps: mixing suspension, sedimentation, deposit formation, structure
formation and structure duration. It can naturally be parameterized by time,
or for convenience, also by the particle concentration. Certain physical aspects
relevant for each step are indicated as:

I. Mixing suspension: mixing complex materials, uniformity/nonuniformity,
length/time scales.

II. Sedimentation: polydisperse, nonspherical, textured particles, instabilities:
planar waves, coarse graining, convective, lateral ..., finite-size container,
liquid counter-current, partial fluidization.

III.Deposit formation: product of/strongly coupled with sedimentation rhe-
ology of dense suspensions and granular media.

IV.Structure formation in sediment: product of/strongly coupled with sedi-
mentation and deposition contact forces, dry friction, yield stress, arching,
doming, bridging.

V. Structure duration: compaction, aging, soil mechanics

One way of solution leads via increasing complexity of a simple base
particle system, following the spirit of experiment E3. Here, the relevant
control parameters related to the particles seem to be these: non-sphericity,
polydispersity and surface roughness. Within this three-parameter space, cer-
tain niches should exist where the ST-like structures will typically be formed.
Quantitative relations can then be obtained between the ST properties (di-
mensions, shape features) and the parameters, in form of correlations, with
help of dimensional analysis. The underlying physics can be elucidated em-
ploying the huge potential of the theory of granular media (aspects III-V
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above), offering a sound basis for exploring the rheology of dense particulate
matter.

The other way goes through systematic reducing complexity of the genu-
ine ST-forming sedimenting systems (experiments E1 and E2). At a certain
point, the formation ability will be lost since the key ingredients or their suit-
able proportion disappear. Taking this point as the base state, quantitative
relations can be found between the ST properties and the control parameters,
expanding the latter beyond the base state. The physical mechanisms should
be understood by investigation into the hydrodynamic stability of sediment-
ing polydisperse mixtures. Namely, it concerns the phenomenon of the lateral
instability of continuing the work started by Whitmore, Weiland, Batchelor
and van Rensburg, and accounting also for the role of inertial effects (aspects
I-III above). The ultimate goal could be reached by coupling the granular
rheology aspects with the hydrodynamic stability aspects.
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Diffusion in rotating and stratified fluids is one of the central subjects in geo-
physical and astrophysical dynamics. As a fundamental property of diffusion,
particle dispersion has been studied extensively in various fields of engineering,
physics and mathematics. In this paper, we report features of the dispersion of
Lagrangian fluid particles in rotating stratified flows using the Direct Numer-
ical Simulations (DNS) of the Navier-Stokes equations. And for calculation
of particle dispersion, we use the cubic spline interpolation method by Yeung
and Pope [1].

Taylor’s picture of particle dispersion is summarized as follows. Suppose
the equation of the motion of a particle and its formal solution are given as

dx(t)
dt

= u(x, t) → x(t) = x(0) +
∫ t

0

u(x(t′), t′)dt′, (1)

where x(t) and u(x, t) are position and velocity of the particle, respectively.
From the formal solution, the variance of a displacement vector, r(t) ≡ x(t)−
x(0) is calculated as

〈
r(t)2

〉
=

∫ t

0

dt′
∫ t

0

〈u(t′)u(s)〉 = 2
∫ t

0

dt′
∫ t

0

ds 〈u(t′)u(t′ − s)〉 (2)

The Lagrangian velocity auto-correlation function RL(s) is

〈u(t′)u(t′ − s)〉 ≡
〈
u(t′)2

〉
RL(s) =

〈
u2

〉
RL(s). (3)

In (3), we assume that the velocity field is stationary. Using (3), (2) may be
written as〈

r(t)2
〉

= 2
〈
u2

〉 ∫ t

0

dt′
∫ t

0

RL(s)ds = 2
〈
u2

〉 ∫ t

0

(t− s)RL(s)ds. (4)
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There are two asymptotic time regimes for the above relation: one is for
t � tB in which we can set RL(0) ∼ RL(s) ∼ 1, and

〈
r(t)2

〉
= 2

〈
u2

〉 ∫ t

0

(t− s)ds =
〈
u2

〉
t2 (t � tB), (5)

where tB is the time after which RL drops rapidly. The time dependence in
this regime is called a ballistic mode. The other one is for t � tB in which we
first write (4) as〈

r(t)2
〉

= 2
〈
u2

〉 [
t

∫ ∞

0

RL(s)ds−
∫ ∞

0

sRL(s)ds
]
, (6)

and then assume that the integrals
∫∞
0 RL(s)ds and

∫∞
0 sRL(s)ds converge

to constants TL and C, respectively. The former corresponds to a time scale
which is often called as Lagrangian time scale. Then the time dependence in
this regime becomes〈

r(t)2
〉

= 2
〈
u2

〉
(TLt− C) (t � 1). (7)

This regime the time dependence of which describes the diffusion time scale
is the so-called Brownian mode. A particle dispersion law different from the
above canonical Taylor’s picture is often called anomalous diffusion, and the
objective of this paper is to show that stably stratified flows with rotation,
which provide large anisotropy in the particle motion, exhibit departures from
the canonical picture.

Our methodology is as follows[2]. We simulate the Navier-Stokes equation
in the Boussinesq approximation,

(∂t − ν∇2)u = −(u · ∇)u −∇p + θẑ + 2Ωẑ × u (8)

(∂t − κ∇2)θ = −N2w − (u · ∇)θ (9)

∇ · u = 0 (10)

where u is the velocity whose (x, y, z) components are (u, v, w), and θ is the
temperature fluctuations about the linear (stable) mean temperature profile

dT/dz ≡ −N2. N is the Brunt–Väisälä frequency,
√
gα(∂T/∂z)/T0 and Ω is

the angular velocity of rotation. Particle trajectories are computed by solving
(1) using the same time–marching scheme as with the velocity. The DNS
consists of an initial Gaussian random isotropic velocity field which has a 3D
energy spectrum given by

E(k) = 16

√
2
π
u2

0k
−5
0 k4exp(−2(k/k0)2). (11)

We report particle dispersion in the vertical and horizontal directions sep-
arately for various values of stratification and rotation parameters.[3]. Similar
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Fig. 1. Single Particle Dispersion in vertical direction at various parameters.

results are recently obtained by Liechtenstein, et. al[4]. When only stratifica-
tion is active, particles stop migration in the vertical direction after they pass
the time interval of the ballistic mode. Such suppression of diffusion was the-
oretically predicted by Csanady[5] with an heuristic stochastic modeling of the
pressure gradient term in the Navier-Stokes equation. In [2], we extended the
Langevin analysis incorporating the numerical data of energy decay to repro-
duce the overshoot of the dispersion plot at early time and slightly decreasing
afterwards in particular for the strongly stratified cases. If rotation is also im-
posed, we can observe that [1] the dispersion plots show more oscillation with
rotation, and [2] the suppression of the vertical dispersion is enhanced. This
may be true only asymptotically when Ω → ∞. For intermediate values of Ω,
rotation may enhance dispersion. For example, compare the plot of Ω2 = 1
to that of Ω2 = 10 for N2 = 100.

In the horizontal direction, contrary to the vertical, the dispersion shows
less dramatic but potentially interesting changes from the Taylor’s picture for
isotropic turbulence. Observations are summarized as follows: [1] With both
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Fig. 2. Single Particle Dispersion in horizontal direction at various parameters.

stratification and rotation t2 behavior is more and more evident not only for
the initial ballistic mode but also at later times. [2] In particular for weaker
stratification, there is a transition period of time between the ballistic mode
and the later t2 regime. [3] For a fixed value of stratification, the transition
period shifts to earlier time with rotation. [4] With strong stratification, the
transition period disappears.

The long lasting asymptotic t2 dispersion range may be universal for flows
which contains both regular and chaotic regions[6]. In this sense we expect per-
sisting coherent structures (waves/vortices) in rotating stratified turbulence.
In the transition period, the dependence of the horizontal dispersion on time is
sub-diffusive (i.e. tα, α < 1). The physical mechanism is an open problem, but
we may predict that this sub-diffusive mode corresponds to the situation that
particles are somehow trapped in the elliptic regions[7],[8]. Trapped particles
are usually characteristic for 2D steady or slowly varying flows, and for 3D
flows, such particles are seldom observed. The reason for the untrappedness
in 3D flows may attribute to the fact that it is often quite difficult to find
closed streamlines in such flows. If particles tend to be trapped in rotating
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stratified flows, this would imply possibility of abundant closed streamlines in
rotating stratified flows. For dispersion in quasigeostrophic turbulence, reader
is referred to [9] and the references therein.
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Summary. In this paper, we consider a phenomenological model, incorporating the
main features of hydrodynamic fluid turbulence, aimed at predicting the structure of
the velocity gradient tensor, M , coarse-grained at a spatial scale r. This model (M.
Chertkov, A. Pumir and B.I. Shraiman, Phys. Fluids 11, 2394 (1999)) is formulated
as a set of stochastic ordinary differential equations depending on three dimension-
less parameters. The joint probability distribution functions of the second and third
invariants of M , as well as the scaling laws of the average enstrophy, strain and
energy transfer are computed by using a semi-classical method of resolution of the
model. These results are compared with direct numerical simulations (DNS) data.
The semi-classical solutions correctly reproduce the DNS data behavior provided the
parameter that controls nonlinearity reduction induced by pressure is finely tuned.

1 Introduction

A fascinating aspect of turbulent flows comes from the existence of a broad
range of excited length scales. The successful prediction of a k−5/3 spectrum
of velocity fluctuations [1] and the discovery that simple scaling laws do not
adequately describe turbulence has been a major source of inspiration for the-
oretical work on turbulence. In this context, the study of turbulence has relied
for many years on measurements and analysis of a signal, such as a velocity
component, at one or two points of the flow. Much effort has been devoted
to the investigation of the structure functions and of their scale dependence.
But, although these quantities are very suitable for the study of scaling laws,
they do not provide much information on dynamical processes. However, the
existence of coherent vortical structures has a profound impact on turbulent
motion [2, 3, 4], and the strain determines the local stretching of material
lines, and of vorticity itself. The velocity gradient tensor mab = ∂avb, as func-
tion of which the vorticity and the strain can be expressed, is therefore of
crucial importance to understand the dynamics of turbulence.

Bernard J. Geurts et al. (eds), Particle Laden Flow: From Geophysical to Kolmogorov Scales, 103–113.
© 2007 Springer. Printed in the Netherlands.
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Coarse-graining of the velocity gradient tensor over a region of scale r,
by defining Mab = 1

V

∫
Γ mabd

3x, where Γ is a region of characteristic size
r, provides an averaged description of the velocity gradient tensor at scale r,
very appropriate in a number of contexts, for example in describing the energy
transfer in turbulence [5], or more generally in Large Eddy Simulations [6].

To understand the dynamics of the matrix M , one must address the ques-
tion of the Lagrangian evolution of the volume Γ , advected by the flow. The
model proposed by M. Chertkov, A. Pumir and B.I. Shraiman [7] couples the
evolution of the coarse-grained velocity gradient, M , and the geometry of the
volume, represented by the moment of inertia tensor g of Γ . The tensor g,
defined by gab ≡

∑
(r− r̄)a(r− r̄)b, also called the Cauchy-Green tensor [8], is

characterized by its eigenvalues gi, with the convention that g1 ≥ g2 ≥ g3, and
the associated eigenvectors, êi. This information in turn provides a simplified
approximation of the geometry of the set of points, by an ellipsoid of semi-
axes

√
gi in the direction êi. The problem can be posed as a set of stochastic

differential equations which depends on three dimensionless parameters, char-
acterizing the reduction of the nonlinearity induced by the pressure term, the
re-isotropization effect of the small scale velocity field, and the influence of
the small scales on the coarse-grained velocity derivative tensor.

The solutions of this system can be formally written in a path integral
representation. Because of the large number of degrees of freedom, a straight-
forward Monte-Carlo approach is unreliable to evaluate these solutions. As a
first step, we will rather use the semi-classical approximation. Effectively, this
amounts to reducing the contribution of all possible paths to the contribution
of the path that has the largest statistical weight. The formal procedure is
equivalent to the saddle-point approximation for computing simple integrals.
Semi-classical solutions of this model are presented and compared with direct
numerical simulations (DNS) data [7, 9]. Our results are presented in the plane
of Q and R, the second and third invariants of the matrix M (Q = −Tr(M2)/2
and R = −Tr(M3)/3), which leads to a synthetic presentation of the topology
of the flow [10]. The DNS data show that the joint probability distribution
function of Q and R, the invariants of M , becomes increasingly skewed as the
scale r decreases in the inertial range. The model results correctly reproduce
this behavior provided the parameter that controls nonlinearity reduction is
finely tuned [9]. The influence of the other parameters in the model is much
weaker.

The model is defined in Section 2. The method of resolution we used is
presented in Section 3. In Section 4 are presented the model solutions in the
semi-classical approximation. Concluding remarks are given in Section 5.

2 Definition of the model

In this section, we give the definition of the model, and introduce the para-
meters it depends on. The derivation as well as a more detailed description
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of the model can be found in [7, 9].

The model is formulated in terms of the matrix M , defining the coarse-
grained velocity gradient tensor, and of the moment of inertia tensor g, which
characterizes the geometry of the Lagrangian volume. In this model, the Lag-
rangian evolutions of M and g are described in terms of the following set of
phenomenological equations:

dM

dt
+ (1 − α)

(
M2 −Π TrM2

)
= η (1)

dg

dt
− gM −M tg − β

√
Tr(MM t)

(
g − 1

3
Tr(g) Id

)
= 0 (2)

Π ≡ g−1/T r (g−1) (3)

〈ηab (ρ; t) ηcd (0; 0)〉 = γ

(
δacδbd − 1

3
δabδcd

)
ε

ρ2
δ (t) (4)

where ρ2 = Tr(g).

To justify these phenomenological equations, it is convenient to consider
a tetrahedron whose vertices are Lagrangian particles, whose positions are ri

(i = 1..4). Because of the assumed homogeneity of the flow, the motion of the
center of mass ρ0 =

∑
i ri is immaterial, so the geometry of the tetrahedron

is described by a set of 3 reduced coordinates, ρi. It is more convenient to
define the tensor ρa

i where a is the spatial index, and the moment of inertia
tensor g = ρtρ.

The evolution equation for the coarse-grained velocity derivative tensor,
M , is reminiscent of the evolution equation for the velocity gradient tensor
mab ≡ ∂aub : dm

dt + m2 = H , where H is the pressure Hessian, plus viscous
corrections. Numerical observations [11, 7] indicate that the pressure term
tends to diminish the nonlinear effect : H ∼ αm2, where the parameter
α in equation (1) parameterizes the reduction of the nonlinearity. The
incompressibility condition, Tr(M) = 0 is satisfied, thanks to the Π Tr(M2)
term (Tr(Π)=1, by construction). This choice of Π as a ’projection operator’
to impose incompressibility is dictated by the fact that (i) the pressure term
does not do any work, as it should be the case in an incompressible flow,
and (ii) in the deterministic case (η = 0), the solutions of the system do
not blow-up in a finite time. The stochastic term represents the effect of the
rapidly fluctuating small scales on the pressure term. It is assumed to be
Gaussian, white in time, with a scaling form as a function of spatial scales
compatible with Kolmogorov scaling. The dimensionless factor γ simply
measures the intensity of this noise term.
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The equation describing the evolution of the moment of inertia tensor
(the ’geometry’) of the set of points, equation (2), can be understood by
decomposing the velocity field as an overall, shape preserving displacement,
a straining flow, coherent over the scale ρ (Tr(g) = ρ2) of the object, and an
incoherent, fluctuating component of the velocity field. Each of these three
terms can be formally written by a filtering of the velocity field. The global
displacement is ignored here, as we are considering a homogeneous flow. The
straining term is responsible for the coupling between M and g in equation
(2). One way to model the incoherent part of the velocity field over the set
of points is to add a fluctuating, white in time noise term, as proposed in
[7, 12]. This term can be written as the sum of a longitudinal component
contributing to the overall growth of the volume, and of a transversal part
which counteracts the tendency of the stretching term g ·M to generate very
anisotropic shapes. The former can be neglected with respect to the g ·M
term. In order to simplify the search of solutions, we simply replace the latter
by its mean field representation, the β-term in equation (2).

To summarize, the model reduces to a set of stochastic differential equa-
tions depending on one dimensional parameter, ε (the energy dissipation rate),
and on 3 dimensionless parameters: α, the reduction of nonlinearity due to
the pressure effect, β, the re-isotropization effect of the small scales and γ,
the intensity of the noise appearing in the M -equation. We present in the
following the dependence of the model solutions on α. The influence of the
other parameters on these solutions has been shown to be much weaker [9].

3 Method of resolution of the system

3.1 Path integral formulation

The system (1-4) defines a stochastic problem. A Fokker-Planck equation for
the Eulerian probability distribution function (PDF) of the velocity fluctu-
ations can be derived from it. Formally, this equation reads:

∂tP (M, g, t) = LP (M, g, t) (5)

The expression of the operator L can be found in [7]. We look for the
PDF solutions of equation (5) satisfying 3 conditions: (i) stationarity, (ii) a
normalization condition, (iii) a boundary condition. This last is a large-scale
condition: the PDF of the velocity fluctuations must be Gaussian at the
integral scale L, this constraint being consistent with many experimental
observations [13].

The PDF solutions of (5) satisfying these 3 conditions can be expressed in
terms of the Green’s function of the system. In this formulation, the PDF of
M and g at a time t = 0 can be expressed as a function of the corresponding
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PDF of M ′ and g′, at the integral scale at t = −T . The Green’s function
can be written with a path integral formulation, in which all the trajectories
starting from (M ′, g′) at t = −T and ending at (M, g) at t = 0 must be
considered. P (M, g) is then defined as:

P (M, g) =
∫

dM ′
∫

dT

∫ M ′′(0)=M

M ′′(−T )=M ′
[DM ′′]

∫ g′′(0)=g

g′′(−T )=g′
[Dg′′]

exp
[
−Tr [M ′[M ′]t]

ε2/3L−4/3
− S (M ′′; g′′)

]
×δ

(
dg′′

dt
− g′′M ′′ − [M ′′]tg′′ − β

√
Tr(M ′′[M ′′]t)

(
g′′ − Tr(g′′)

3
Id

))
(6)

where S is the “classical” action on each trajectory, whose expression can be
derived from the system (1-4):

S =
∫ T

0

dt

[
Ṁ + (1 − α)

(
M2 −Π TrM2

)] [
Ṁ + (1 − α)

(
M2 −Π TrM2

)]t

2γε/ρ2

(7)
Phenomenologically, one starts from a point (M ′, g′), at the integral scale,

and integrates the system in time until a given scale in the inertial range.
In principle, all these trajectories should be taken into account, which could
be done numerically by using a Monte Carlo algorithm. However, because of
the large number of degrees of freedom of the system (large dimension of the
phase space) it is impossible to obtain reliable results with a straightforward
Monte Carlo approach, especially at small scales. This is why we will use as
a first step a simplifying assumption to solve equation (6).

3.2 Semi-classical approximation

Equation (6) can be solved in the semi-classical approximation, in which one
considers only the trajectory on which the action is minimal. This approxim-
ation is in principle valid in the limit of small noise amplitude. At fixed initial
and final conditions, this trajectory can be calculated by integrating the Euler-
Lagrange equation. In our calculations, aimed at determining the probability
distributions in the (R,Q) plane as a function of scale, the Euler-Lagrange
equation requires a number of a-priori unknown boundary conditions. Spe-
cifically, imposing (R,Q) at scale r leaves 11 unknown free parameters to
completely determine the initial conditions M , Ṁ , g and ġ. For each value of
(R,Q), we will use the saddle approximation, by computing the logarithm of
the probability distribution in equation (6) as a function of the 11 other para-
meters, and looking for its maximum with the help of the algorithm “amebsa”
[14]. Technical details about the method we used can be found in [9].
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4 Results of the semi-classical calculations

The results presented in this section have been calculated by solving the model
in the semi-classical approximation with the method described in 3.2. The
model depends on 3 independent parameters: α, the reduction of nonlinearity,
β, which prevents the growth of anisotropy of the Lagrangian volume, and γ,
the amplitude of the noise acting on M . Only the α dependence of the model
solutions is presented here, the influence of β and γ on them being much
weaker [9].

4.1 Scaling laws

We discuss first the scaling properties of quantities such as the square of
the strain,

〈
Tr(S2)

〉
and of the vorticity,

〈
ω2

〉
, as well as of the energy

transfer term,
〈
−r2Tr(M2M t)

〉
[7, 9]. According to the Kolmogorov scaling,

〈∆v〉 ∝ r1/3, therefore M(r) should scale as r−2/3, and as a consequence the
second order moments of strain S (symmetrical part of M) and of vorticity
ω (anti-symmetrical part of M) should behave as r−4/3, whereas third order
quantities such as the energy transfer divided by r2,

〈
−Tr(M2M t)

〉
, should

scale as r−2 (equivalently, the mean energy transfer should be independent
of the scale). We have checked that these scaling laws are satisfied by DNS
data [9].

The semi-classical solutions of the model have been found to exhibit the
following behaviors:

• the enstrophy
〈
ω2

〉
scales as r−4/3 for any value of α;

• the square of strain
〈
Tr(S2)

〉
scales as r−4/3 only if α is greater than or

similar to 0.35 (see Fig. 1(a));
• the energy transfer,

〈
−r2Tr(M2M t)

〉
, is positive only if α is lower than

or similar to 0.5 (see Fig. 1(b)). In that case this third order moment of
M respects the Kolmogorov scaling.

Finally, the value of α needed to obtain the right scaling of energy transfer,
strain and vorticity from the solutions of the model has to be rather precisely
tuned. This can be also seen by studying the computed probability distribution
functions in the (R,Q) plane.

4.2 Joint probability distribution function of the Q, R invariants

Before presenting the joint PDF of the Q, R invariants solutions of the
model, we show here for comparison purposes P (R,Q) calculated by DNS at
two different scales. Briefly, we have used a standard pseudo spectral code,
described in [15]. The run discussed here has a 2563 resolution. We have
made sure that the highest wavenumber in the simulation, kmax, is large
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enough to describe the smallest length scales in the flow : kmaxη ≥ 1.4. Our
Reynolds number is Rλ = 130, and the ratio between the integral scale and
η is L/η ∼ 100. Because the end of the inertial range is at a scale ∼ 10η,
the inertial range in our simulation corresponds roughly to a factor 10 in
scale. In Fig. 2 are represented these distributions, at the integral scale
and at a scale lying in the inertial range: r = L/8. At the integral scale
(Fig. 2(a)), the distribution is symmetric with respect to the R−axis. As the
scale is decreased, the P (R,Q) distribution becomes more and more skewed
(Fig. 2(b)).

In Fig. 3 (resp. Fig. 4) are represented joint PDF of the Q, R invariants
calculated in the semi-classical approximation of the model at two different
scales, for α = 0.4 (resp. α = 0.2). The qualitative agreement of these
distributions with DNS data (Fig. 2) is good for the largest value of α
(Fig. 3). The main difference between the PDF evolution as scale decreases
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Fig. 1. Dependence with respect to α of (a) the scaling law exponent of
〈
Tr(S2)

〉
and (b) the sign of the energy transfer

〈
−r2Tr(M2M t)

〉
(β=0.4, γ=0.25). In (a)

the dot-dashed line indicates the Kolmogorov prediction −4/3. In (b) is plotted for
each value of α the average of the sign of the energy transfer at the different scales
considered. The range of values of α leading to a qualitatively acceptable behavior
of the model solutions is delimited by the vertical dashed lines.
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Fig. 2. PDF, calculated by DNS, of Q,R invariants normalized to the variance of

strain: Q∗ = Q/
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. (a) r = L and (b) r = L/8. The

isoprobability contours are logarithmically spaced, and separated by factors of 10.
The grey line is the zero discriminant line [10].

at the value α = 0.4 (Fig. 3) and at the low value α = 0.2 (Fig. 4) concerns
the growth of the probability distribution along the positive R-side of the
zero discriminant (PRZD) line. At small values of α (Fig. 4) the tail along
this line grows considerably when the scale r decreases, significantly more
than what is observed in DNS (Fig. 2).
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Fig. 3. PDF of Q,R invariants normalized to the variance of strain: Q∗ =

Q/
〈
Tr(S2)

〉
, R∗ = R/
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〉3/2
. These distributions are solutions of the model

in the semi-classical approximation, with α=0.4, β=0.4 and γ=0.25: (a) r = L/4 and
(b) r = L/16. The isoprobability contours are logarithmically spaced, and separated
by factors of 10. The grey line is the zero discriminant line [10].
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Fig. 4. PDF of normalized Q∗,R∗ invariants, for α=0.2, β=0.4 and γ=0.25: (a)
r = L/4 and (b) r = L/16. Same conventions as in Fig. 3.

Although the semi-classical solutions of the model reproduce in several
essential ways the probability distribution function in the (R,Q) plane ob-
tained by DNS, they lead to a number of quantitative incorrect features. The
main example is the enhanced probability distribution in the R > 0, Q > 0
quadrant. The method of resolution (semi-classical) discussed here should ul-
timately be improved. But the knowledge gained in obtaining semi-classical
solutions has helped us in designing a better approximations scheme. Prelim-
inary results in this direction show a better agreement of the model solutions
with DNS data [16].

4.3 Discussion

The growth of the PDF tail along the PRZD-line predicted by the model
for small values of α is generally consistent with the results of [6]. In this
work, it was noticed that the small scales of the flow tend to slow down the
effect of the nonlinearity, estimated at the given scale. This is precisely the
origin of the α-term in our model [7]. A large enough value of the parameter
α is needed to sufficiently reduce the growth of the probability along the
PRZD-line as r decreases, consistent with the model results.

The fact that the strain 〈Tr(S2)〉 grows faster when r decreases at small
values of α and that the energy transfer is positive only for small values of α
is consistent with the distribution of these quantities is the R,Q-plane. It is
indeed shown in [7, 9] that the strain density is large in the neighborhood of the
PRZD-line, and that the energy transfer is positive near this neighborhood,
whereas it can be negative in other regions of the plane. Therefore, for small
values of α the strong growth of the PDF tail along the PRZD-line as the
scale is decreased leads to a fast growth of the strain intensity, whereas, for
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large values of α the contribution from the tail along the PRZD-line is too
small, and the mean energy transfer becomes negative.

5 Conclusion

We have formulated a model predicting the statistics of the velocity gradient
tensor coarse-grained at a scale r. This model is formulated in terms of a
system of stochastic ordinary differential equations depending on 3 dimen-
sionless parameters: α, the reduction of nonlinearity due to the pressure
effect, β, which prevents the growth of anisotropy of the Lagrangian volume,
and γ, the intensity of the noise modeling the effect of small scales.

Semi-classical solutions of this model have been presented. In particular,
the model solutions reproduce the behavior of DNS data provided the α
parameter is finely tuned (α ∼ 0.45).

The model can also be extended to study flows with more complicated
large-scale structures by simply modifying the large-scale condition. We have
already applied it to shear turbulence [17], and plan to study the effect of
large-scale rotations or contractions on the M -dynamics.
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Summary. The influence of background rotation on all nontrivial triple correlations
of vorticity (VTCs) has been studied for an unbounded incompressible homogeneous
turbulent flow, using pseudo-spectral direct numerical simulation. It is found that
the time evolutions of the VTCs are in agreement with exact theoretical predictions
for rotating turbulence presented herein. Furthermore, the effects of viscosity, initial
value of the velocity derivative skewness S∂iui(tini), and background rotation rate
on the vertical vorticity skewness Sω3 have been thoroughly investigated. The initial
growth rate of Sω3 is found to be proportional to t0.75±0.1 for all considered cases,
in agreement with recent experimental results by Morize et al. [Phys. Fluids 17,
095105 (2005)]. Also, it is found that higher background rotation rates – implying
more linearity – result in lower final values of Sω3 , while lower viscosities and higher
S∂iui(tini) both yield higher final values of Sω3 .

1 Introduction

Rotating turbulence plays an important role in fields as diverse as geophysics,
astrophysics and engineering (e.g. turbomachinery and reciprocating engines
with swirl and tumble). In these applications, effects of rotation are often com-
bined with those of mean shear, mean strain and solid boundaries. Thus, the
problem of homogeneous rotating turbulent flow without physical boundaries
must be considered as a canonical flow, even though it is very far from applica-
tions. Despite the mentioned idealizations a better knowledge of the dynamics
of homogeneous rotating turbulent flow is a prerequisite to understand more
complex flow cases.

Here, we restrict ourselves to the simplest case of homogeneous rotating
turbulence, namely unbounded divergence-free flow with zero mean-flow in the
co-rotating frame of reference. In this case it is most convenient to adopt a
Cartesian coordinate system (x1, x2, x3) rotating at constant angular velocity

Bernard J. Geurts et al. (eds), Particle Laden Flow: From Geophysical to Kolmogorov Scales, 115–127.
© 2007 Springer. Printed in the Netherlands.
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Ω. We choose Ω = Ω3 > 0 without loss of generality. In this non-Galilean
coordinate frame, rotation introduces the well-known centrifugal and Coriolis
forces. Since the centrifugal force can be incorporated in the pressure term,
only the Coriolis force appears explicitly in the Navier–Stokes equations

∂tui + uj∂jui = −∂ip− 2Ωεi3kuk + ν∂2
j ui , (1)

where ui represents the fluctuating velocity in the co-rotating reference frame,
p is the corrected pressure divided by a mean reference density, and ε is the
antisymmetric Ricci tensor. The incompressibility of the flow is expressed by

∂iui = 0 . (2)

The modification of turbulence dynamics by rotation is due to the pres-
ence of inertial waves in rotating flows [8]. These wave motions arise from
the linearized equations of motion (1). In contrast with most turbulent shear
flows, however, there is no ‘production’ of turbulent kinetic energy since the
Coriolis force produces no energy. Instead, energy is redistributed by nonlin-
ear mechanisms such as resonant wave interactions. Accordingly, single-point
modeling is almost irrelevant to describe the dynamics of rotating turbulence
whereas the spectral, or two-point, approach is well adapted (see e.g. [5]).

When a Coriolis force is suddenly imposed on initially isotropic turbulence,
the following three main effects are shown. First, the energy cascade is partly
inhibited which is linked to a strongly reduced dissipation rate (such an effect
can be mimicked by an empirical modification of the dissipation equation [5]).
Second, because the dispersion relations for inertial waves are anisotropic,
the initial isotropy is broken. This breaking of isotropy is reflected by an
incomplete transition from 3D to 2D structure. Third, an asymmetry appears
between cyclonic and anti-cyclonic fluctuating vertical (along the rotation
axis) vorticity.

The effects mentioned above are intimately connected and result from
both linear and nonlinear effects which interplay in a subtle way to drive
the dynamics of rotating turbulence. In this paper, we focus on the third
effect, using Direct Numerical Simulation (DNS) as well as rational analysis
of relevant spectral equations. As firstly pointed out by Bartello et al. [1],
the dominance of cyclonic vorticity can be quantified by the vertical vorticity
skewness Sω3 ≡ 〈ω3

3〉/〈ω2
3〉3/2 with the vorticity ωi ≡ εijk∂juk and the brackets

〈·〉 denoting ensemble averaging, since the third order vorticity correlation
〈ω3

3〉 can distinguish by its sign cyclonic prevalence (ω3 > 0) from anticyclonic
prevalence (ω3 < 0). Bartello et al. [1] found a clear growth of the vertical
vorticity skewness using Large Eddy Simulation (LES) with hyper-viscosity.
Although the results of Bartello et al. [1] are questionable, because vorticity
represents small scales and is not correctly captured in a LES, they reflect
an actual feature in rotating flows, as confirmed experimentally by Morize et
al. [14].

Clearly, third order statistics play an important role when addressing the
asymmetry between cyclonic and anticyclonic vorticity, and more generally
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it can be shown that in the axisymmetric case single-point triple vorticity
correlations (VTCs hereinafter) involve only two key correlations, viz. 〈ω2

1ω3+
ω2

2ω3〉 and 〈ω3
3〉, as follows directly from

〈ωiωjωn〉 = +
1
2
〈ω3

3〉 (5ninjnn − δijnn − δinnj − δjnni) +

+
1
2
〈ω2

1ω3 + ω2
2ω3〉 (δijnn + δinnj + δjnni − 3ninjnn) , (3)

where δij is the Kronecker tensor, and the normal vector ni = δi3 without loss
of generality – index 3 refers to the axial (vertical) direction.

Since the dynamics of rotating turbulence is driven by both linear and
nonlinear effects, one may wonder what linear theory can say about the VTCs.
The so-called Rapid Distortion Theory (RDT) is relevant here, provided that
it is developed in Fourier space [4, 6] in order to render tractable the non-local
relation between pressure and velocity fluctuations. Accordingly, a general
solution in terms of Green’s functions can be derived for the VTCs 〈ωiωjωn〉
at any time t. This general solution however, is only useful if a full description
of all triads of the initial spectral vorticity distribution is at hand.

Furthermore, for very short times, Gence and Frick [9] showed that all
odd statistical moments of the turbulent vorticity field (with exception of the
first one) are instantaneously sensitive to the influence of the mean rotation
while all even moments of that vorticity do not change at the first order in
time. (Note that for isotropic turbulence all odd order tensors are zero while
a priori non-zero for the tensors of even order.) In particular, it can be shown
for the VTCs that the time derivative at t = 0+ is proportional to both the
rotation rate and the initial vorticity intensity production rate e0 ≡ 〈ωiωjdij〉
at t = 0 with dij the (symmetric) strain rate tensor, so that some VTCs grow
instantaneously if the rotation rate is positive. Mathematically, this can be
expressed as

d
dt

〈ω2
1ω3〉

∣∣∣
0+

=
d
dt

〈ω2
2ω3〉

∣∣∣
0+

=
2
15

e0Ω ,

d
dt

〈ω3
3〉

∣∣∣
0+

=
2
5
e0Ω ,

where the background rotation is abruptly initialised at t = 0. This result
also reflects the fact that the complex nonlocal effect of pressure fluctuation,
apparent from the linearized Poisson equation, is not involved at the first
order of a Taylor expansion in time, so that a simplified solution can be found
in physical space.

This paper is organized as follows. A brief description of the numerical
algorithm and procedures is given in Sect. 2. In Sect. 3 we present the time
evolution of relevant statistical quantities, such as the velocity derivative skew-
ness and vorticity skewness. In particular, we show that our numerical results
are consistent with (3). We conclude in Sect. 4 with a short discussion.
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2 Numerical procedures

Equations (1) and (2) are solved directly using a pseudo-spectral collocation
method expressed in Fourier space following a classical scheme as in e.g. [16,
17, 12]. The computational domain uses periodic boundary conditions, and
consists of N3 points in physical space. Furthermore, the velocity field is
completely de-aliased using a 2/3-truncation method in Fourier space. At t =
0, the velocity field is initialised with the narrow band energy spectrumE(k) ∝
k4e−2(k/ki)

2
, with peak energy at wavenumber ki, typically one tenth of the

maximum wavenumber of the de-aliased field. The directions of the initial
velocity vectors are distributed randomly in space and so do not correlate
with each other after initialization. From this initially random isotropic field
an isotropic precalculation is performed up to time tini in order to allow for
higher order velocity correlations to develop and isotropic energy dynamics
to build up. Various Eulerian temporal statistics are calculated during the
simulation at predefined time steps.

At t = tini, the background rotation Ω = (0, 0, Ω) is suddenly imposed
upon the well-developed isotropic turbulent velocity field. Discontinuities in
the statistical averages of the derivatives at time tini, that are due to the sud-
denly imposed anisotropic body force, are ignored. In order to check consist-
ency with the theoretical result (3), the minimal set of components relevant to
describe all VTCs in rotating turbulence, viz. 〈ω3

1〉, 〈ω2
1ω3〉, 〈ω1ω

2
3〉, 〈ω1ω2ω3〉,

〈ω2
2ω3〉, 〈ω3

3〉, is calculated for t > tini.
We have performed anisotropic computations with different (nondimen-

sional) kinematic viscosities ν and for various background rotation rates (as
expressed by the Coriolis parameter f ≡ 2Ω) in order to quantify how these
parameters affect the temporal evolution of the VTCs. An overview of the per-
formed runs and their parameters is presented in Table 1. We remark that the
Taylor-based Reynolds number Reλ ≡ 〈u2

i 〉1/2λ/ν, with λ ≡
√

15〈u2
i 〉/〈ω2

i 〉
the Taylor micro-scale, is not conserved in decaying turbulence, so that Reλ

depends on tini.
The time tini at which anisotropy is introduced is a crucial parameter. In

a conventional DNS (such as ours), any third order correlation is almost zero
initially in connection with the (close to) Gaussian initialization. During the
subsequent precalculation certain triple correlations develop, for instance cre-
ating a significant gradient skewness S∂iui ≡ −

√
135/98〈ωiωj∂ui/∂xj〉/Ω3/2

[3], with Ω ≡ 〈ω2
i 〉/2 the global enstrophy. The gradient skewness can asymp-

tote to a positive value, reflecting a nondimensional constant rate of enstrophy
production by nonlinear vortex stretching. Other triple correlations such as
the cubic vertical vorticity 〈ω3

3〉 remain zero because of isotropy. At t = tini,
the isotropy is broken by rotation and certain VTCs will develop whereas
the gradient skewness S∂iui will be rapidly and severely damped. The exact
mechanism that causes certain VTCs to grow in time is still unknown. Never-
theless, the work by Gence and Frick [9] strongly suggests that the growth of
certain VTCs is caused by linear mechanisms. If a purely linear mechanism is
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Table 1. Overview of the performed runs. For each run are given the number of
computation points in physical space N , the initial Reynolds number Re(0) ≡ ν−1

(with ν the nondimensional kinematic viscosity), the duration of the precalculation
tini, the Coriolis parameter f , the initial Taylor-based Reynolds number Reλ(tini),
and the initial Taylor-based Rossby number Roλ(tini). Note that our values for
Reλ(tini) are somewhat smaller than the typical values of 60 to 80 often used in
DNS of forced homogeneous turbulence with 1283 resolution.

Run N Re(0) tini f Reλ(tini) Roλ(tini)

A 144 600 5.0 5.0π 26.7 0.073
B1 288 1200 2.0 5.0π 39.2 0.36
B2 288 1200 4.0 5.0π 33.2 0.14
B3 288 1200 6.0 5.0π 30.3 0.084
B4 288 1200 8.0 5.0π 28.6 0.057
C1 288 1200 4.0 0.5π 33.2 1.41
C2 288 1200 4.0 2.5π 33.2 0.28
C3 288 1200 4.0 5.0π 33.2 0.14
C4 288 1200 4.0 10π 33.2 0.071
D 540 3000 2.0 5.0π 46.6 0.37

assumed, then the maximum growth of the cubic vertical vorticity 〈ω3
3〉 will de-

pend on the level of non-Gaussianity reached at the end of the precalculation,
with two extremes: 1) a very short precalculation implying small departure
from Gaussianity at t = tini so that the final level of 〈ω3

3〉 will be small too,
and 2) a long precalculation implying maximum level of non-Gaussianity at
t = tini so that the final level of 〈ω3

3〉 will be maximum.
Since the velocity derivative skewness clearly illustrates the departure of

Gaussianity of the velocity fluctuations (S∂iui ≈ 0.5 in isotropic turbulence
[13]), it is an obvious parameter from which to derive time tini. Accordingly, it
seems obvious to choose time tini such that S∂iui is maximum. However, dur-
ing a precalculation of decaying turbulence a significant part of the turbulent
kinetic energy is lost due to dissipation. In order to have a sufficiently turbu-
lent flow field at the end of the isotropic precalculation, time tini is therefore
chosen such that the velocity derivative skewness has almost reached its final
value. How the choice of time tini affects the relevant statistics is discussed in
Sect. 3.

3 Numerical results

In what follows we present the time evolution of various Eulerian quantities
during the anisotropic computation unless stated otherwise. Wherever con-
venient we use the scaled, shifted time τ ≡ (t − tini)f/(2π) to simplify the
comparison between runs for which anisotropy is introduced at distinct times
tini, and also to simplify the comparison with recent experimental results [14].
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We first investigate how the viscosity affects the time evolution of the kin-
etic energy and relevant nondimensional numbers in presence of background
rotation. Figure 1(a) shows the decay of the kinetic energy Ek for various
viscosities ν. This decay is monotonic in time, and proportional to power-law
t−3/2 for t � tini (power-law behavior not shown in Fig. 1(a) because τ is
shifted by −tini with respect to t) while expected to be proportional to t−1/2

in the asymptotic limit t � tini (this power-law behavior is not yet reached
by τ = 5). The change in the decay rate is caused by the background rotation
which inhibits energy transfer to the viscous scales.

Next, consider the time dependence of the nondimensional numbers Reλ

and Roλ ≡ 〈u2
i 〉1/2/2Ωλ, see Figs. 1(b) and (c), respectively. In contrast with

the decrease of Reλ during the isotropic precalculation (not shown), Fig. 1(b)
shows that sufficiently strong background rotation (as in cases A, C3 and D)
results in a growth of Reλ. This implies that the Taylor micro-scale λ grows
faster than that the kinetic energy decays. The Taylor-based Rossby number
decays monotonically (Fig. 1(c)), which is characteristic for decaying rotating
turbulence [11, 5, 10]. Furthermore, Roλ < 1 for all times and in all cases
which means that background rotation is dominant over nonlinear effects for
all times in all cases.

Similar time evolutions of Ek, Reλ and Roλ have been obtained for the re-
maining runs (not shown) with one exception: for the lowest background rota-
tion rate considered here (case C1) Roλ(tini) > 1, illustrating that background
rotation is not dominant over nonlinear effects (weakly rotating turbulence),
and Reλ initially still decreases.
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Fig. 1. (a,b,c) Time evolution of the kinetic energy Ek, the Taylor-based Reynolds
number Reλ, and the Taylor-based Rossby number Roλ, respectively, for various
viscosities.

We now discuss the effect of rotation on the energy spectrum E(k) for cases
A, C3 and D. Figure 2 shows E(k) at time tini and time tf , i.e. the end of the
anisotropic calculation, for each of the mentioned cases. The corresponding
isotropic (reference) energy spectra at time tf are also plotted. The effect of
rotation is to inhibit the direct energy cascade in the inertial range so that
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dissipation at the smaller wave-numbers is reduced, and energy appears to be
conserved for the larger wave-numbers.
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Fig. 2. (a,b,c) Energy spectrum of the decaying turbulence at t = tini and t = tf in
case A, C3 and D, respectively. An isotropic reference spectrum is shown for t = tf .

Velocity Derivative Skewness and Vorticity Skewness

The time evolution of the velocity derivative skewness S∂iui and the vorticity
skewness Sω3 , respectively, for cases A, C3 and D (different viscosities ν) is
depicted in Fig. 3. Clearly, the velocity derivative skewness develops during
the isotropic precalculation (t ≤ tini) and collapses when the anisotropic body
force is applied (t > tini). Furthermore, a higher viscosity (i.e. lower spatial
resolution) requires longer precalculations in order to attain the same value of
S∂iui . In cases A and C3 the initial increase of Sω3 [see Fig. 3(b)] is proportional
to the power-law t0.75±0.1. This power-law behavior is less apparent in case D
which is most likely related to the short precalculation, as will be addressed
further on. For later times [τ > O(Ω−1)], Sω3 wiggles about a positive value,
reflecting the dominance of cyclonic vorticity. Although it seems likely that a
lower viscosity ν results in a more developed vorticity skewness, the different
final values of Sω3 may also be ascribed to slight differences in S∂iui(tini), see
below.

Consider the effects of the duration of the isotropic precalculation on the
time evolution of Sω3 . It follows directly from Fig. 4(a) that shorter precalcu-
lations yield smaller S∂iui(tini). The vorticity skewness Sω3 [Fig. 4(b)] shows a
power-law dependence of t0.75±0.1 for τ < O(Ω−1), and wiggles about a pos-
itive value for τ > O(Ω)−1. Careful inspection of Fig. 4(b), however, could
reveal that the initial power-law behavior is affected by the duration of the
precalculation, in such a way that either a very short or a very long precalcu-
lation results in a smaller power-law exponent. Reverting to case D [Fig. 3(b)],
it seems that the less apparent power-law behavior of Sω3 is most likely re-
lated to the short precalculation. Returning to Fig. 4(b), the final value of
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Fig. 3. (a) Time evolution of the velocity derivative skewness S∂iui during and
after the isotropic precalculation for different viscosities ν. Background rotation in
cases A, C3 and D is applied at tini = 5.0, 4.0 and 2.0, respectively. For reference, the
isotropic precalculations have been prolonged. (b) Log-log plot showing the vorticity
skewness Sω3 as a function of the scaled, shifted time τ for cases A, C3 and D.

Sω3 appears to depend inversely on time tini, i.e. shorter precalculations yield
higher final values of Sω3 . The behavior observed in Fig. 3(b) may partly be
ascribed to slight differences in S∂iui at time tini.
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Fig. 4. As Fig. 3, but for different durations of the isotropic precalculation. Back-
ground rotation in cases B1-B4 is applied at tini = 2.0, 4.0, 6.0 and 8.0, respectively.

Finally, Fig. 5 shows the time evolution of S∂iui and Sω3 for various back-
ground rotation rates, viz. f = 0.5, 2.5, 5.0 and 10.0 (cases C1-C4). Clearly,
a lower background rotation rate results in a larger final value of Sω3 . This
result expresses the fact that the asymmetry between cyclonic and anticyc-
lonic structures is more pronounced at low rotation rates than at high rotation
rates. It is remarked that similar results were extracted from lower resolution
(N = 144) calculations.
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Fig. 5. As Fig. 3, but for different background rotation rates. Background rotation
in cases C1-C4 is applied at tini = 4.0.

Third Order Vorticity Correlations

Figure 6 shows the time evolution of all nontrivial VTCs for various back-
ground rotation rates. The following three observations are made: 1) 〈ω3

1〉,
〈ω1ω

2
3〉 and 〈ω1ω2ω3〉 are much smaller than unity and fluctuate around zero;

2) 〈ω2
1ω3〉, 〈ω2

2ω3〉 and 〈ω3
3〉 are clearly nonzero; and 3) the ratio 〈ω2

1ω3〉/〈ω2
2ω3〉

(not shown) is found to fluctuate around unity. These results are consistent
with relationship (3).
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Fig. 6. Time evolution of the minimal set of VTCs in axisymmetric turbulence for
various background rotation rates. All VTCs are normalized by 〈ω2

3〉3/2.

4 Discussion

Our numerical results show that in most of the considered cases Sω3 initially
grows at a rate proportional to t0.75±0.1. The latter power-law exponent is
in good agreement with the 0.7 obtained from recent laboratory experiments
[14, 15]. However, the amplitude of maximum Sω3 and the (scaled) time at
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which this maximum occurs are significantly smaller in our DNS calculations
than in the mentioned experiment. Morize et al. [15] already showed that the
maximum of Sω3 depends on the experimental configuration. Based on our
results, a better agreement between DNS and experiment is expected for very
low rotation rates (e.g. f = 0.10π), viz. a weak background rotation will not
succeed to immediately destroy the triple correlation of the velocity derivative
∂3u3.

Furthermore, we have investigated how the vertical vorticity skewness is
affected by the viscosity, the value of the velocity derivative skewness at time
tini, and the background rotation rate. The first two parameters affect the
initial Taylor-based Reynolds number Reλ(tini) while all parameters affect the
initial Taylor-based Rossby number Roλ(tini). The obtained results lead to the
following general conclusion: lower Reλ(tini) and/or lower Roλ(tini) – implying
a higher degree of linearity – yield a lower final vorticity skewness. This result
confirms that the asymmetry in terms of cyclonic and anticyclonic vorticity
is most prominently present in an intermediate range of Rossby numbers,
as also discussed by Jacquin et al. [11] for the anisotropic development of
integral length-scales, and more recently by Bartello [2] in the context of
VTCs. If the Rossby number is too small, nonlinearity is not important enough
– even if pure linear dynamics can induce a transient growth of Sω3 , that same
dynamics results in damping Sω3 at later times. The opposite case of very large
Rossby number is not addressed here, but recall that isotropy is conserved,
and therefore asymmetry excluded, at macroscopic Rossby numbers larger
than one [11].

Another surprising result is the different behavior of different triple cor-
relations. Even if the velocity derivative skewness and the vorticity skewness
look similar as statistical descriptors, their evolution in presence of solid-body
rotation is far from similar, the former always being damped while the latter
is showing transient (linear) growth. Initial Gaussianity and isotropy are also
very important, especially if linear terms are dominant. For instance, the velo-
city derivative skewness is zero only if Gaussianity holds, whereas the vorticity
skewness is zero either because of isotropy or because of Gaussianity.

The multi-fold behavior of various triple correlations in the non-isotropic
case suggests to revisit elaborated EDQNM theories in order to derive any rel-
evant three-point triple velocity and vorticity correlation, which are difficult to
extract experimentally and numerically. In previous studies, the EDQNM2-3
formalisms were used to derive a nonlinear energy transfer, but much more in-
formation, including VTCs, can be obtained. At least isotropic basic EDQNM
can be used for initializing vorticity correlations in the general linear solution
applied to VTCs, but more can be done. In this sense, anisotropic multi-point
statistical theory remains a relevant alternative to DNS, allowing much higher
Reynolds numbers and elapsed times (with in counterpart, less flexibility and
need for statistical assumptions).

In addition, the subtle interplay between linear and nonlinear processes is
altered in the presence of boundaries, Ekman pumping, or initially coherent



Refined vorticity statistics of decaying rotating 3D turbulence 127

structures: interesting insights to these effects can be found in recent studies
by Zavala Sansón and Van Heijst [18], Morize et al. [14], and Davidson et
al. [7].

References
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Intermittency is a basic feature of fully developed turbulence, for both ve-
locity and passive scalars. We consider here intermittency in a Lagrangian
framework, which is also a natural representation for marine organisms. We
characterize intermittency using multi-fractal power-law scaling exponents.
In this paper we recall four theoretical relations previously obtained to link
Lagrangian and Eulerian passive scalar multi-fractal functions. We then exper-
imentally estimate these exponents and compare the result to the theoretical
relations. Section 1 describes the non intermittent Lagrangian passive scalar
scaling laws; section 2 introduces the multi-fractal generalization, and gives
the four theoretical relations ; section 3 presents experimental results.

1 Non-intermittent Lagrangian passive scalar scaling
laws

Marine particle dynamics is an important area in turbulence studies. Particles
sampling is most easily achieved in the Eulerian sense, that is, in a refer-
ence frame fixed with respect to the moving fluid, such as moored buoy or a
pier. However, plankton organisms such as viruses, bacteria, phytoplankton
and copepods, perceive their surrounding environment in a Lagrangian way.
Those are mostly advected by the flows. The related Lagrangian turbulent
fluctuations in the flow velocity and passive scalars perceived by individual
plankton organisms have critical implications for foraging, growth and pop-
ulations dynamics, and ultimately for a better understanding of the struc-
ture and functioning of the pelagic realm. An absolute pre-requisite to the
analysis of e.g. behavioral response to the fluctuations of purely passive scal-
ars (e.g. temperature and salinity) and potentially biologically active scalars
in their Lagrangian environment is the characterization of Lagrangian pass-
ive scalar intermittency. The main objective of the present work is thus to

Bernard J. Geurts et al. (eds), Particle Laden Flow: From Geophysical to Kolmogorov Scales, 129–138.
© 2007 Springer. Printed in the Netherlands.
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provide baseline information on passive scalar Lagrangian intermittency that
could be compared to biological scalars (e.g. prey/mate abundance) in future
studies. In the following we will consider scales belonging to the inertial range;
i.e. larger than the Kolmogorov scale. For phytoplankters of smaller size, the
influence of turbulence is still important, but limited to inertial range scales.

In this section, we will recall the basic scaling properties for Lagrangian
passive scalar turbulence. We consider the inertial convective subrange, associ-
ated to large Peclet and Reynolds numbers, and hypothesize an homogeneous
and isotropic turbulence, which is generally the case at small scales for 3D
oceanic turbulence.

In the Eulerian framework, velocity and passive scalar fluctuations in ho-
mogeneous turbulence are classically characterized using Kolmogorov-Obu-
khov-Corrsin (KOC) [1, 2, 3] scaling laws (see [4] for details). For passive
scalar scaling exponents, let us mention the important result indicating that
even in case of uncorrelated velocity field, the passive scalar field is multi-
scaling (see [5] and [6] for a review). However such scaling exponents are quite
far from experimental estimates, indicating that intermittency in velocity fluc-
tuations has influence on temperature scaling exponents.

This framework has been extended to the Lagrangian framework for velo-
city fluctuations by Landau [7] and for passive scalar fluctuations by Inoue [8].
Let us note V (x0, t) and Θ(x0, t) the velocity and passive scalar concentration
of an element of fluid at time t, initially at a position x(0) = x0. Hereafter
these will be simply referred to as V (t) and Θ(t) since we assume statistical
homogeneity. We note also for the Lagrangian velocity and passive scalar time
increments ∆Vτ = |V (t+ τ)− V (t)| and ∆Θτ = |Θ(t + τ)−Θ(t)|. This gives
Landau’s relation for the velocity [7]:

∆Vτ ∼ ε1/2τ1/2 (1)

and Inoue’s law for passive scalars [8]

∆Θτ ∼ χ1/2τ1/2 (2)

where ε is the dissipation, χ = Γθ〈|∇θ|2〉 is the scalar variance dissipation
rate and Γθ is the scalar diffusivity of the fluid.

The Eulerian power spectra are of the form E(k) ∼ k−5/3 for velocity and
passive scalars (k is the wave number). In contrast, for Lagrangian fields, the
power spectra are also scaling, with a different exponent: E(f) ∼ f−2 for both
velocity and passive scalars (f is the frequency). These laws provide velocity
and passive scalar fluctuations in time, assuming constant and homogeneous
values for the fields ε and χ. In reality, one of the characteristic features of
fully developed turbulence is the intermittent nature of the fluctuations of as-
sociated fields, providing intermittent corrections for Eulerian and Lagrangian
fields (see reviews in [4]). This is discussed in the next section.
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2 Intermittent Lagrangian passive scalar multi-fractal
relations: four predictions

2.1 Intermittent multi-fractal generalization

Previous scaling relations describe only the mean behavior of passive scalar
fluctuations. Fully developed turbulence is now known to be associated to in-
termittency: fluctuations are random variables, whose scale dependence is usu-
ally characterized using statistical moments of various order q > 0. Following
developments obtained in an Eulerian framework, Lagrangian intermittency
has been characterized using scaling moments functions as:

〈∆Θq
τ 〉 ∼ τξθ(q) (3)

where Θ is the passive scalar concentration, ∆Θτ = Θ(t + τ) − Θ(t) is the
passive scalar increment, and ξθ(q) is the Lagrangian passive scalar scaling
moment function [9]. Without intermittency the latter is linear: ξθ(q) = q/2. In
case of intermittency ξθ(q) is nonlinear and concave, and the non-intermittent
value is valid only for q = 2: ξθ(2) = 1, indicating also that there is no
intermittency correction for the power spectrum exponent.

Fig. 1. The passive scalar Eulerian scaling exponent function ζθ(q) estimated by
various authors, and with an average fit (see Table 1).

It is interesting here to compare this Lagrangian scaling exponent ξθ(q) to
the more classical Eulerian ζθ(q) defined by:

〈(∆θ)q〉 ∼ �ζθ(q) (4)

In the following we will also need another Eulerian quantity, which depends
only on the passive scalar flux χ, and which is called “mixed moment func-
tion” and is denoted here ζm(q). This may be written in the following way
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(see [10, 11]):
〈
(
∆θ2

∆U

)q/3〉 ∼ �ζm(q) (5)

We will also need experimental or numerical estimates of the functions ζθ(q)
and ζm(q). Several values have been provided in the literature, and an average
estimate has been provided in [12]. These values are provided in Table 1, and
the corresponding curves are displayed in Figure 1 and Figure 2.

Table 1. Average values of ζθ(q), estimated from several published estimates [10,
13, 11, 14, 15, 16, 17, 18] (Column 1). Average values of ζm(q), estimated from
several published estimates [11, 14, 19, 20, 18, 15, 21] (Column 2).

q ζθ(q) ζm(q)

0.5 0.21
1 .365 0.39

1.5 0.56
2 .65 0.72

2.5 0.87
3 .85 1

3.5 1.12
4 .99 1.24

4.5 1.35
5 1.10 1.45
6 1.20 1.65
7 1.30 1.83

2.2 Four relations linking Eulerian and Lagrangian passive scalar
scaling exponents

We recently obtained four theoretical relations relating ζθ(q) and ξθ(q) based
on different sets of hypotheses [12]. All these relations verify ξθ(2) = 1, and
differ for other moments. We only provide here the four theoretical relations
and refer the reader to Ref. [12] for the detailed description of how they have
been derived.

The first and simplest relation was obtained assuming a “characteristic
time” relation for the de correlation of eddies, and a non-intermittent space-
time relation:

ξΘ(q) =
3
2
ζθ(q) Case I (6)

The second choice was to assume an “ergodic” hypothesis corresponding to an
equality of the statistics of the passive scalar flux in Eulerian and Lagrangian
frame, and a non-intermittent space-time relation:

ξΘ(q) =
3
2
ζm

(
3q
2

)
− q

4
Case II (7)
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Fig. 2. The mixed velocity-temperature Eulerian scaling exponent function ζm(q)
estimated by various authors (See Table 1).

The two last relations were both obtained assuming an intermittent space-
time relation, and the characteristic time relation (case III), and the ergodic
relation (case IV):

ξΘ(q) = ζm(q0) Case III (8)
q

2
=

2q0
3

− ζm(q0) (9)

ξΘ(q) = ζθ(q0) Case IV (10)
q = q0 − 2ζθ(q0) (11)

Relations corresponding to Case I and Case II are linear, and the ones cor-
responding to Case III and Case IV are fully nonlinear: a given q value is
associated to a q0 value given by solving the second line, and the value of
ξΘ(q) is given by the first line. The four curves will be shown below (Fig. 7)
and compared to experimental data.

3 Analysis of Lagrangian marine temperature data

We have previously shown that temperature, salinity and phytoplankton fields
recorded adrift in the Eastern English Channel during from February to
December 1996 exhibit Eulerian and Lagrangian components separated by
a length scale intrinsically linked to the size of the ship used to collect the
field data [22]. For scales smaller and larger than the eddy turnover time asso-
ciated to the size of the ship, we identified Eulerian and Lagrangian statistics,
respectively. These results show that Eulerian and Lagrangian scaling and
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Fig. 3. The time series N.2 which has been analyzed in this study (1 Hz resolution,
50 minutes recording). The measuring device is also shown.

multi-scaling properties of temperature and salinity are very similar and fully
compatible with the behavior of purely passive scalars, and with preliminary
results obtained from ocean temperature sampled in the same area [23]. In con-
trast, phytoplankton biomass exhibited a specific behavior for both Eulerian
and Lagrangian regimes. Briefly put, phytoplankton exhibited a non-passive
behavior, a density-dependent control of phytoplankton distribution in rela-
tion with the biological seasonal cycle, and the scaling and multi-scaling laws
of passive scalars and phytoplankton are closer in the Eulerian than in the
Lagrangian framework. However, the size of the ship used during this prelim-
inary experiment (i.e. 12 m) intrinsically limits the extent of the Lagrangian
scaling range and is hardly compatible with the fluctuations occurring at the
minute scales characteristic of plankton organisms. To investigate more thor-
oughly the Lagrangian fluctuations of purely passive scalars, we thus used a
small (0.5 m) buoy equipped with a miniature temperature sensor (Alec Elec-
tronics, model MDS MkV/T). The temperature sensor is 8 cm long, 18 mm
wide, a weight of 50 g; it has a sampling frequency of 1 Hz and autonomously
record data through a lithium ion battery.

We have recorded 2 time series of 80 and 50 minutes duration, on 6 June,
2006, in the Eastern English Channel. The power spectrum of the series 2 is
shown in Figure 3 (for series 1, the result is similar). It displays a very clear −2
power-law scaling for a large range of scales, as expected theoretically. Only
higher frequencies display a departure from this scaling law, corresponding to
the limit of sensor’s precision.

As a next step, structure functions have been estimated for both time
series (Eq. 3). The resulting scaling relation is shown in Figure 5. This shows
that the scaling property displayed by the power spectrum (Fig. 4) is also
respected for other order of moments in real space. For better precision, we
have in the following estimated the scaling moment function ξθ(q) using an
Extended Self-Similarity relation. This has been proposed originally in the
Eulerian framework for the velocity field, using as a reference the third order
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Fig. 4. The Fourier power spectrum of the data set N. 2, in log-log plot, together
with a power-law fit of slope −2. An extremely nice power-law spectrum is visible.

Fig. 5. Scaling of the moments of the Lagrangian structure functions, for moments
of order 1 to 5 (from top to bottom). The scaling is quite well respected, even for
larger moments.

moment (see [24]). Here we use this approach for the second order moment,
for the Lagrangian passive scalar field. This writes:

〈∆Θq
τ 〉 ∼

(
〈∆Θ2

τ 〉
)ξθ(q)

(12)

The scaling exponent ξθ(q) estimated this way is more precise than the one
obtained through a best-fit of the lines in Figure 5: see Figure 6, displaying
a really nice scaling for scales larger than 4 s. We could obtain this way
the following experimental estimates of ξθ(q), which were obtained from a
fit of Figure 6 as shown by the straight lines in this Figure: ξθ(1) = 0.54,
ξθ(3) = 1.39, ξθ(4) = 1.73, and ξθ(5) = 2.02. Due to the relatively small
amount of data used here, we have not estimated higher moments.
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Fig. 6. Relative scaling of Lagrangian structure functions using the ESS approach:
moments of order q versus moment of order 2, with q = 1, 3, 4, 5. There is an
extremely nice scaling.

The resulting values are shown in Figure 7, and compared to the four
theoretical cases discussed in the previous section. For Case I and Case IV,
we take here for Eulerian scaling exponents the average values estimated above
(Table 1), which are a rather good compromise between many published values
(see Fig. 1). For Case II and Case III, providing a prediction for Lagrangian
passive scalars as a relation to the mixed Eulerian exponents, we take for
ζm(q) the values estimated in [11], which are close to other values reported in
the literature for moments up to about 6.

Case I to III are very close for low orders moments, which can be under-
stood by the fact that intermittency effects are expected to become important
mainly for high order moments. But the underlying hypotheses are clearly dif-
ferent, and questions linked to higher moments have quite different outputs
since scaling exponents are different. Furthermore, the deviation from linear-
ity is stronger for Case I and Case II, which may indicate that to take into
account intermittency in the space-time relation reduces the apparent inter-
mittency of the Lagrangian estimates. The fourth prediction is quite far from
the others, except the common point ζθ(2) = 1. This may be the consequence
of the additional hypothesis which was needed to obtain Case IV prediction
(see Ref. [12]).

We may see in Figure 7 that the experimental estimates do not fit any
theoretical cases. First, experimental estimates are clearly nonlinear and con-
cave, and since they were obtained for a quite large range of scales, with a very
nice power-law scaling, this can be seen as a direct evidence of multi-fractal
Lagrangian intermittency property. Case III can be considered as the closest
to data; however, experimental estimates are far from this theoretical predic-
tion for moments larger than 3. We may consider that much more data points
may be needed to adopt a clear rejection of case III. Indeed, more and more
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Fig. 7. Curves of ξθ(q) obtained from experimental values for ζθ(q) and ζm(q)
associated to four different theoretical relations between these scaling exponents
(dotted lines). The straight line is the non-intermittent case of equation q/2. The
experimental estimates are also shown (black dots).

extreme events which are encountered when increasing the sampling size, lead
to more and more concave curves. A finite sampling is associated to a linear
scaling exponent for moments larger than a critical order of moment. To have
more confidence in large order of moments estimates, larger data sets will be
needed in the future.

4 Conclusion

Using experimental data recorded in the marine environment of the Eastern
English Channel, we have shown that temperature data behave as expected,
as an intermittent passive scalar. We obtained a very good scaling behavior
in the inertial range, with concave power-law exponents. For larger scales, we
find a failure of isotropy and homogeneity, due to side effects, the influence
of topography, or other reason: this large scale is visible in fig. 5, at scales of
about 2000 s, about 30 minutes.

We have also compared these experimental values to four theoretical scal-
ing moment functions that have previously been obtained using several sets
of hypotheses. The theoretical curve that appears the closest to data has been
obtained using an intermittent space-time relation and a characteristic time
approach. The agreement with experimental data is, however, only good for
small order of moments. For larger moments, there is a discrepancy. More
data points might be needed to sample more intermittent events and achieve
a more concave experimental curve.

While further data are needed to generalized the present observations, our
results have salient potential consequences on our understanding of the phys-



138 François G. Schmitt and Laurent Seuront

ical nature of turbulent flows, and the matter fluxes in the ocean through
biophysical interactions. For instance, the combination of the identified Lag-
rangian properties of purely passive scalars and the density-dependent control
of phytoplankton distribution demonstrated elsewhere [22, 25] might open new
perspectives in investigating the links between the scaling laws of biologically
active scalars, phytoplankton concentrations and turbulence.
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Compositional and particulate gravity
currents: a computational investigation
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Summary. We present some high-resolution 2D numerical simulation results for
gravity and turbidity currents in the lock exchange configuration. Results are
provided for both Boussinesq and non-Boussinesq flows, and for horizontal as well
as sloping bottom geometries. Furthermore, recent results for reversing buoyancy
currents are discussed.

1 Introduction

Gravity currents, which form when a heavier fluid propagates into a lighter one
in a predominantly horizontal direction, have been the subject of numerous
investigations over the past half century. They are frequently encountered both
in the environment and in engineering applications ([7], [14]). Gravity currents
can be driven by density differences of the fluids involved, or by differential
particle loading. In many situations (a freshwater river flowing into a saltwater
ocean, atmospheric flows involving warm and cold air, and many others), the
density differences are no more than a few percent, so that the Boussinesq
approximation can be employed. However, there are circumstances when the
density differences can be much more substantial (industrial gas leaks, tunnel
fires, powder snow avalanches, turbidity currents, pyroclastic flows), and the
full variable density equations have to be solved.

It is desirable to develop simplified models for the prediction of such flows.
However, such models are based on a variety of assumptions regarding the
nature of the flow whose validity needs to be established first. In this context,
high-resolution numerical simulations can be of great value, as they offer access
to several quantities that are hard to measure experimentally. The spatially
and temporally resolved dissipation field represents one example in this regard.
In the following, we will present a brief overview of our numerical simulation
results for a variety of gravity and turbidity currents. For this purpose, we
have focused on the lock-exchange configuration, which is the most commonly
used geometry for studying gravity currents (see fig. 1).

Bernard J. Geurts et al. (eds), Particle Laden Flow: From Geophysical to Kolmogorov Scales, 139–150.
© 2007 Springer. Printed in the Netherlands.
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Fig. 1. Lock exchange configuration. A membrane initially divides the rectangular
container into two compartments. The left chamber is filled with fluid (or suspension)
of density ρ = ρ1, while the right one contains a lighter fluid of density ρ = ρ2. Upon
release of membrane, a dense front moves rightwards along the lower boundary, while
the light front propagates leftward along the upper boundary.

2 Basic equations

The 2D simulations employ a rectangular channel of height H and length L,
cf. figure 1. The channel is filled with two miscible fluids initially separated
by a membrane. While the left compartment holds a fluid (or suspension)
of density ρ1, the right reservoir is filled with a fluid of smaller density ρ2.
This initial configuration causes a discontinuity of the hydrostatic pressure
across the membrane, which sets up a predominantly horizontal flow once the
membrane is removed. The denser fluid moves rightward along the bottom of
the channel, while the lighter fluid moves leftward along the top.

The full incompressible Navier-Stokes equations for variable density flows
without use of Boussinesq approximation, read

∇ · u = 0 , (1)

ρ
Du
Dt

= ρg −∇p + ∇·(2µS) . (2)

Here D
Dt denotes the material derivative of a quantity, u = (u, v)T indicates

the velocity vector, p the pressure, ρ the density, and S the rate of strain
tensor, while g = geg represents the vector of gravitational acceleration. In
the following, we will keep the kinematic viscosity ν constant for both fluids.
In deriving the above continuity equation, it is assumed that the material
derivative of the density vanishes, i.e., Dρ

Dt = 0. This common assumption
requires small diffusivities of the species concentration. The conservation of
species is expressed by the convection-diffusion equation for the concentration
c of the heavier fluid. By assuming a density-concentration relationship of the
form ρ = ρ2 + c (ρ1 − ρ2), we arrive at the following equation for the density
field

Dρ

Dt
= K∇2ρ , (3)

where the molecular diffusivity K is taken to be constant. Note that the
diffusive term needs to be kept in the above equation in order to avoid the
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development of discontinuities in the computation of the density field. This
holds true even if diffusive effects are very small, as in the case of liquids. In
order to nondimensionalize the above set of equations, the channel height H
is taken as the length scale, while the density ρ1 of the heavier fluid serves
as the characteristic density. Velocities are scaled by the buoyancy velocity
ub =

√
g′H, in which g′ denotes the reduced gravity ([14]), which is related

to the dimensional gravitational acceleration g by g′ = g ρ1−ρ2
ρ1

= g (1 − γ),
where the density ratio is given by γ = ρ2

ρ1
< 1. A characteristic pressure p is

given by u2
bρ1. We thus arrive at the following set of governing dimensionless

equations

∇ · u = 0 , (4)

ρ
Du
Dt

=
1

1 − γ
ρeg −∇p +

1
Re

∇ · (2ρS) , (5)

Dρ

Dt
=

1
Pe

∇2ρ . (6)

For compositional gravity currents, the convective velocity employed to form
the substantial derivative Dρ

Dt is equal to the fluid velocity. For particle-driven
currents, we employ the fluid velocity plus a superimposed, constant settling
velocity in the direction of gravity ([11, 12]). If one were to make use of the
Boussinesq assumption, equation (5) would instead simplify to

Du
Dt

= ρeg −∇p +
1
Re

∇2u . (7)

Note that we cannot obtain eq (7) from eq (5) just by substituting γ = 1, as
the hydrostatic pressure field absorbed into the variable p varies between the
two cases. eg is given by the unit vector (sin θ ,0,- cos θ). The three govern-
ing dimensionless parameters in equations (4) - (6) are the density ratio γ,
the Reynolds number Re, and the Peclet number Pe, respectively, which are
defined as Re = ubH

ν and Pe = ubH
K . They are related by the Schmidt number

Sc = ν
K , so that Pe = Re ·Sc. It represents the ratio of kinematic viscosity to

molecular diffusivity. For most pairs of gases, the Schmidt number lies within
the narrow range between 0.2 and 5. By means of test calculations we estab-
lished that the influence of Sc variations in this range is quite small, so that
in the simulations to be discussed below we employ Sc = 1 throughout. It is
to be kept in mind, however, that for liquids such as salt water, Sc ≈ 700.

For the purpose of numerical simulations, we recast equations (4) - (6) into
the vorticity-streamfunction formulation. In this way, the incompressibility
condition (4) is automatically satisfied throughout the flow field. Let ψ be
the streamfunction and ω the vorticity in the spanwise direction. Then the
relations ω = ∂v

∂x − ∂u
∂z , u = ∂ψ

∂y , and v = −∂ψ
∂z hold, and we obtain
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∇2ψ = −ω , (8)
Dω

Dt
=

1
Re

∇2ω − ρx

(1 − γ)ρ
+

ρz

ρ

Du

Dt
− ρx

ρ

Dv

Dt
(9)

+
1

ρRe

{
2ρx∇2v − 2ρz∇2u + 4ρxzvz + (uz + vx)(ρxx − ρzz)

}
.

If the dynamic viscosity µ is held constant instead of the kinematic viscosity
ν, (9) takes the form

Dω

Dt
=

1
ρRe

∇2ω − ρx

(1 − γ)ρ
+

ρz

ρ

Du

Dt
− ρx

ρ

Dv

Dt
. (10)

3 Computational approach

The simulations employ equidistant grids in the rectangular computational do-
main. The grid size used for our simulations varies from 1032X100 to 2064X200
depending on Re. Spectral Galerkin methods are used in representing the
streamwise dependence of the streamfunction and the vorticity fields

ψ(x, z, t) =
∑

l

ψ̂l(z, t)sin(lαx) , ω(x, z, t) =
∑

l

ω̂l(z, t)sin(lαx) , (11)

where |l| < N1/2 and α = 2π/L. N1 denotes the number of grid points in
the streamwise direction. Vertical derivatives are approximated on the basis
of the compact finite difference stencils described by [8]. As in the Boussinesq
investigation of [6], derivatives of the density field are computed from compact
finite differences in both directions. At interior points, sixth order spatially
accurate stencils are used, with third and fourth order accurate ones employed
at the boundaries. The flow field is advanced in time by means of the third
order Runge-Kutta scheme described by [6]. The material derivatives of the
velocity components appearing in the vorticity equation (9) are computed by
first rewriting them in terms of the local time derivative plus the convective
terms. The spatial derivatives appearing in the convective terms are then
evaluated in the usual, high order way. The local time derivative is computed
by backward extrapolation as follows[

∂u
∂t

]n

=
(
un − un−1

)
/∆t . (12)

This approximation is consistently utilized during the successive Runge-Kutta
sub-steps. Test calculations demonstrated that the low order approximation
of this term did not influence the results in a measurable way.

The Poisson equation for the streamfunction (8) is solved once per time
step in Fourier space according to
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(
ψ̂m+1

l

)′′
− (lα)2ψ̂m+1

l = −ω̂m+1
l , (13)

with the prime denoting differentiation with respect to z.
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Fig. 2. Concentration contours from a Boussinesq simulation for Re = 4, 000, at
different times, showing the evolution of a typical Boussinesq gravity current.

4 Boussinesq gravity currents

The density difference between two fluids can range from very small to very
large. In many geophysical situations such as sea water and fresh water the
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density difference is very small (within 5%). In cases of small density differ-
ence, density variations can be neglected in the inertia term, but retained
in buoyancy term where they are multiplied with g. This approximation of
the momentum equations is referred to as the Boussinesq approximation. It is
accurate for fluids with densities within a few per cent of each other. The form-
ation of a Boussinesq gravity current is shown in fig. 2 for Re = 4, 000. Here,
slip boundary conditions are employed both at the bottom and top walls.
For a comparison between flows with slip and no-slip conditions, we refer
the reader to [3]. The symmetry of the dense and light fronts for Boussinesq
gravity currents can be clearly seen for all times. It reflects the symmetry
of the governing equations and boundary conditions, and results in identical
propagation velocities and heights of both fronts. The heights remain close to
half the channel height, in agreement with experimental observations by other
researchers, cf. [14]. The dimensionless propagation velocities of both fronts
are near one half, which is the value given by [1] for an energy conserving cur-
rent. A vigorous Kelvin-Helmholtz instability can be observed along the entire
interface of the gravity current, which is typical for flows with Re > 1, 000. At
higher values of Re, more small-scale structures are observed, but the essen-
tial global properties remain nearly unchanged. More details on numerically
simulated Boussinesq currents in both two and three dimensions are provided
by [5] and [6].

5 Non-Boussinesq gravity currents

There can be practical situations of interest where the density difference
between the two fluids forming the gravity current is larger than a few per
cent. Turbidity currents and hot gas eruptions from volcanoes are just few
examples. In order to study such flows, we cannot use the above Boussinesq
approximation. We instead need to solve the complete Navier-Strokes equa-
tions involving variable density. For density ratios of γ = 0.92, 0.7, and 0.2,
fig. 3 shows contour plots of simulations for Re = 4, 000 at time t = 10. Fig.
3(a) still resembles the Boussinesq gravity current, although the symmetry is
maintained only approximately. This loss of symmetry can be observed most
clearly in the vortex pairing process. Fig. 3(b) clearly shows that already for
γ = 0.7 the dense front moves significantly faster than the light front, and that
it has traveled a longer distance than for the γ = 0.92 case. Also the height of
the dense front is smaller than that of the light front. These observations can
be seen even more clearly in fig. 3(c). We observe that the Kelvin-Helmholtz
instability forms only along the dense front, while the light front is stable. All
these observations are in agreement with experimental findings by [4] and [9].

Simplified models of non-Boussinesq gravity currents have been developed
by patching an energy-conserving light front to a dissipative dense front via
an expansion wave. The validity of this model is confirmed by the dissipation
data provided by [3]. The results demonstrate that the dissipation in the light
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Fig. 3. Concentration contours from a non-Boussinesq simulation for Re = 4, 000
at time t = 10 for different density ratios γ, clearly showing the changes in the front
speeds and the front heights.

front remains nearly constant as the density ratio changes from 1 to 0.2, while
the dissipation level in the dense front increases. This is observed for all values
of Re studied.

6 Gravity currents on slopes

Gravity currents in nature and industry frequently flow along slopes. Thus
it is important to understand the effects of a sloping bottom on the global
properties of gravity currents, cf. [2]. Gravity currents along inclines have been
modeled in the past using wedge models, cf. [13]. The wedge shape is used
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(a) t = 3

(b) t = 6

(c) t = 12

Fig. 4. Flow for γ = 0.998 at different times for Re = 4, 000. The angle of the
bottom is 30o to horizontal.

to model the long-term behavior of the gravity current, while it is proposed
that in the short term the angle of the slope does not matter. Also it has
been noted that friction along the bottom wall does not play an important
role in this flow. Thus, in order to better understand the long and short-term
behavior of gravity currents on a slope, we present highly resolved numerical
simulation results in fig. 4. Full non-Boussinesq governing equations are used,
although most results discussed have γ ≈ 1.

Fig. 4(a) shows that at t = 3 the gravity currents are just beginning to
form. There does not appear to be a strong effect of the slope angle during this
early phase, as the shape of the currents is similar to the case of a horizontal
flow. We observe slight differences in the front propagation velocity, however.
Fig. 4(b) shows that soon thereafter much more vigorous mixing takes place
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along the interface, as compared to the horizontal case. Accelerating fluid
layers form behind both fronts, similar to those studied experimentally by
[15] in inclined channels. In fig. 4(c) we observe that these accelerated layers,
whose dynamics are clearly affected by the angle of the slope, have reached
the fronts and start to affect their propagation velocities.
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Fig. 5. The dense front velocity for the gravity current on a slope shown in fig. 4.
It can be seen that close to t = 12 there is a jump in the velocity of the front. This
suggests a transition between different phases.

Gravity currents on slopes thus exhibit two different phases: The first
phase is characterized by early mixing and the formation of the accelerated
fluid layers behind the fronts, while the second phase is dominated by more
rapidly advancing gravity current fronts. The simulations give the time for
the transition between the two phases as tθ = tan θ−

4
9 . This is agreement

with the results provided by [13] for the time after which the angle becomes
important. Fig. 5 shows the jump in the front propagation velocity when the
transition between the two phases occurs.

7 Reversing buoyancy gravity current

We consider dilute suspensions of particles with volume fractions well below
one percent, so that particle-particle interactions can be neglected and coup-
ling between particles and fluid motion is dominated by the transfer of mo-
mentum. Particles move with fluid velocity and settle out with Stokes settling
velocity.

Reversing buoyancy gravity currents (Fig. 6) can be generated if the inter-
stitial fluid density in particle-driven gravity currents is lower than the density
of the ambient fluid, cf. [10]. If we set up such a current in the traditional lock-
exchange configuration described above, its initial phase looks very similar to
that of compositional gravity currents. However, as particles settle out of the
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Fig. 6. The buoyancy reversal of a propagating gravity current is shown using
density contour plots for times t = 8, 10, 15, 20 and 30. As the gravity current loses
particles, its bulk density decays to a value lower than that of the ambient fluid, so
that it lifts up from the bottom wall, and subsequently proceeds along the top wall.

lighter interstitial fluid, the bulk density of the gravity current decreases below
the density of the ambient fluid, while its front velocity decays. Fig. 7 shows
the tip location of such a reversing buoyancy gravity current. The slowdown
in the tip of the front can be clearly seen at t ≈ 10.

As particles settle, plumes of interstitial fluid rise from the gravity cur-
rent behind the tip. The shape of these plumes is similar to the well-known
mushroom associated with the classical Rayleigh-Taylor instability. As the
forward velocity of the front propagating along the bottom wall decreases to
zero, the rising interstitial fluid forms a gravity current front that propagates
along the top wall of the channel. This gravity current eventually assumes
a constant front speed. Significant mixing of both fluid and particles in the
vertical direction takes place due to the rise of the interstitial fluid.

8 Summary

Highly resolved numerical simulations can provide substantial insight into the
mechanisms governing gravity and turbidity currents. Here we have given a
partial overview over the effects of non-Boussinesq density ratios, sloping chan-
nels and reversing buoyancy. Both flows driven by fluid density differences and
flows driven by particle loading are considered. The simulation results are gen-
erally in good agreement with experimental observations regarding quantities
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Fig. 7. Front location of the reversing buoyancy gravity current as function of time.
The current initially propagates along the bottom as a dense front, with decreasing
velocity until time t ≈ 10. At this time the front comes to a halt. The current
subsequently rises to the top wall of channel and propagates along it with constant
velocity after t ≈ 10.

such as the front heights and their propagation velocities. They provide access
to quantities that sometimes are difficult to obtain from experiments, thereby
allowing us to test simplified theoretical models proposed in the literature.
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Summary. The dispersion of fluid particles in statistically stationary stably strat-
ified turbulence is studied by means of direct numerical simulations. Due to aniso-
tropy of the flow, horizontal and vertical dispersion show different behavior. Single-
particle dispersion in horizontal direction is similar to that in isotropic turbulence
for short times, but shows a long-time growth rate larger than ∝ t. In vertical dir-
ection three successive regimes can be identified: a classical t2-regime, a plateau
which scales as N−2 and a diffusion limit ∝ t. By forcing the flow and performing
long-time simulations we were able to observe this last regime, which was predicted
but not observed before in purely stratified forced turbulence. A model based on the
assumed shape of the velocity autocorrelation function correctly predicts these three
regimes. The vertical mean-squared separation of particle pairs shows two plateaus
that are not present in isotropic turbulence. They can be linked with characteristics
of the flow. Also here the diffusion limit is found.

1 Introduction

Dispersion of particles in stratified flows plays an important role in geophy-
sical environments. These particles can be active or passive, like aerosols
in the atmospheric boundary layer or micro-organisms in coastal areas and
estuaries. We focus on the latter application where competition can exist
between tidally- or wind-driven turbulent mixing on one hand, and density
stratification on the other hand which in general suppresses dispersion, at
least in the vertical direction. Including all biological and physical parameters
in modeling particle dispersion is complicated and as a starting point in this
work the effect of stratification on dispersion of fluid particles will be studied.
Not much work has been carried out on particle dispersion in stratified
turbulence. Both Kimura & Herring [1] and Liechtenstein et al. [2] studied
dispersion in decaying stratified turbulence by means of direct numerical

Bernard J. Geurts et al. (eds), Particle Laden Flow: From Geophysical to Kolmogorov Scales, 151–163.
© 2007 Springer. Printed in the Netherlands.
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simulations (DNS) and Nicolleau & Vassilicos [3] used kinematic simulations
(KS) to study dispersion in non-decaying stratified turbulence. Some examples
of experimental studies on particle dispersion in stratified turbulence can be
found in Pearson et al. [4]. We use here DNS of the Boussinesq equations and
study statistically stationary homogeneous stratified turbulence. By applying
forcing we have been able to follow particles for sufficiently long times in
order to obtain long time series for calculating Lagrangian statistics.
The present study deals with the effect of stable stratification on turbulent
flows, so the density of the fluid is decreasing with height. Under the
influence of strong stable density stratification two sorts of motion occur
simultaneously: propagating internal gravity waves and a non-propagating
nonlinear component connected with quasi-horizontal motions [5]. We want
to keep the stratified turbulence statistically stationary, thus we have to
add energy in our simulations to account for energy losses due to viscous
dissipation. There is still some discussion how these types of anisotropic flows
should be forced, whether forcing should be applied to all three directions or
just in the horizontal plane, and at which length scales the turbulence should
be forced [6][7][8]. We have forced only the largest scales and equally in all
three directions.
This study specifically aims to look at fluid particle dispersion. For ho-
mogeneous isotropic turbulence a lot of work has been reported on both
single-particle and particle-pair dispersion, experimentally but mainly using
numerical simulations [9][10]. Theoretically, the spreading of particles goes
like t2 for short times and is proportional to t in the long-time diffusion
limit. When stable background stratification is present, dispersion in the
vertical direction is suppressed. As a result a plateau is found for one-particle
diffusion in the vertical direction, which scales proportional to N−2 with N
the buoyancy frequency [1][3]. This plateau is reached around t = 2π

N . For
particle-pair dispersion the theoretical scaling laws for isotropic turbulence
depend on the initial separation between the particles. When stratified tur-
bulence is considered, vertical dispersion is suppressed like for single-particle
statistics. Nicolleau & Vassilicos [3] retrieved a plateau again at t � 2π

N and
observed the beginning of a second plateau for large times.
Attempts to model single-particle dispersion in stratified flows started with
the work of Csanady [11]. More recently, next to the above mentioned
plateau, models by both Pearson et al. [4] and Das & Durbin [12] predict a
linear growth of the mean-squared displacement for large times.
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2 Numerical method

2.1 DNS of the Boussinesq equations

The motion of an incompressible fluid in a stably stratified environment is fully
described by the Navier-Stokes equations in combination with an equation
that imposes the divergence-free constraint and one for the density. After
applying the Boussinesq approximation and using the hydrostatic balance
∂p
∂z = −(ρ0 + ρ)g they can be written as

∇ · u = 0, (1)

∂u
∂t

= −u · ∇u − 1
ρ0

∇p′ − ρ′

ρ0
gẑ + Fu,ext + ν∇2u, (2)

∂ρ′

∂t
= wN2 ρ0

g
− u · ∇ρ′ + Fρ,ext + κ∇2ρ′. (3)

Herein is u = (u, v, w) the velocity in the x-, y- and z-direction respect-
ively, with ẑ pointing upwards. Furthermore, ρ is the density, p the pres-
sure, g the gravitational acceleration, ν the molecular viscosity and κ the
scalar diffusivity. F denotes external forces for u or ρ. The buoyancy fre-
quency, or Brunt-Väisälä frequency, is defined as N2 = − g

ρ0

∂ρ
∂z and the ratio

of ν
κ = Sc is the Schmidt number. In this work we only present results for

cases where Sc = 1. Fluctuating components are indicated with a prime and
in the following an overbar is used for an averaged quantity. The density
ρ = ρ0 + ρ(z) + ρ′(x, y, z, t) is split in three components: a typical value (ρ0)
plus a time-independent background profile (ρ) plus a fluctuating part (ρ′).
The equations of motion are solved using a three-dimensional parallel pseudo-
spectral DNS code (see [13] for details). DNS enables to solve the Navier-
Stokes equations exactly at all relevant scales in the flow without making use
of any model. Main drawback is that only relatively low resolutions can be
used, thus flows with relatively low Reynolds numbers can be solved due to
its high computational costs. Here we used a resolution of 1283, to be able to
track particles for long times. However, as a check some cases are studied at a
higher resolution (2563) and they gave similar results. Periodic boundaries are
implemented in all three directions, allowing the use of a Fourier representa-
tion of the velocity and scalar field. Time-stepping of the linear viscous term
is performed using exact integration, whereas the other terms are treated by a
third-order Adams-Bashforth method. In a pre-computation a divergence-free
homogeneous isotropic turbulent velocity field is created using forcing of the
flow by injecting energy at the largest scales, equally in all three directions.
A general description of the forcing scheme is

Fn+1 = (1 − α)Fn + Aφ (4)
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where (1 − α)Fn (with α = [0, 1]) denotes a memory effect of the forcing, A
is the forcing amplitude and φ consists of both a random value for the forcing
amplitude, taken from a Gaussian with zero mean, and a random phase. Fn+1

and Fn are the forces at forcing-times n + 1 and n, respectively. The value
of the force is updated every five time-steps. Forcing is only applied to the
largest scales of the velocity field with wavenumber modes 0 < k ≤ 2

√
2k0

(k0 the smallest wavenumber), and serves to keep the total kinetic energy
statistically stationary.
The initial conditions of the simulations of forced stratified turbulence are a
velocity field of homogeneous isotropic turbulence together with a zero-valued
scalar fluctuation field. At t = 0 a linear stable background stratification is
switched on, which is kept constant throughout the simulation. Five different
cases are studied with different background stratification. The forcing method
mentioned above is used of which the amplitude A is adapted to keep the
kinetic energy statistically stationary. Some properties of the five cases are
given in table 1. The relative importance of stratification can be expressed

Table 1. Some properties of the five cases, with increasing stratification level.

case N2 (s−2) Fr TL (s) urms (ms−1)
√

w′2 (ms−1)

N0 0 - 9.5 1.1 · 10−2 1.04 · 10−2

N1 9.55 · 10−3 0.57 12 1.0 · 10−2 8.06 · 10−3

N10 9.55 · 10−2 0.14 11.9 1.06 · 10−2 4.36 · 10−3

N100 0.955 0.06 9 1.17 · 10−2 4.24 · 10−3

N1000 9.55 0.03 9 1.4 · 10−2 6.48 · 10−3

by the Froude number, which is defined as Fr = urms/NLz, and it gives the
ratio of inertial forces to buoyancy forces. The root-mean-square velocity is
given by u2

rms = 2
3Ekin and Lz is the vertical integral length-scale given by

π
2 Êzz(0)/w′2, with Êzz(0) the spectral energy in the modes with wavenumber
kz = 0. A measure for the turbulence intensity is Reλ ≈ 85 for the initial
field.

2.2 Particle tracking

A natural way to describe turbulent dispersion is the Lagrangian frame of
reference, in which the observer is moving with the particle. Here we study
fluid particles, which are infinitely small fluid elements that exactly follow the
flow. Particle trajectories are derived from

dxp

dt
= up (5)
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with xp the particle position and up = u(xp) its velocity. The velocity at the
particle position can be derived from knowledge of the Eulerian velocity field
by use of interpolation. In our code we implemented cubic spline interpolation
of the velocity field at the particle position. Next the particle trajectories
are obtained by numerical integration of equation 5. Time integration is
performed using the same third-order Adams-Bashforth technique as for the
Eulerian velocity field.
Velocity and position time series of 16384 particles are collected. These
particles are grouped in triangular pyramid structures, to be able to study
both single-particle and particle-pair statistics. The initial position of
one-quarter of the particles is uniformly spread over the computational
domain. The other particles are initially located at a fixed separation (about
5
2η, with η the Kolmogorov length scale) in x-, y- z-direction from the
reference particles. For two values of the background stratification (cases N0
and N1000) we also studied the influence of the initial particle separation
on particle-pair statistics. In these cases 81920 particles are tracked with
initial separations of about 1

6 ,
3
4 ,

3
2 , 6, 15 (in units of η) in all three direc-

tions. Particles are released when the flow has reached a quasi-stationary state.

3 Results from forced stratified turbulence simulations

3.1 Flow structure and density profile

An important question in this work is to see whether we are able to maintain
a state of statistically stationary stratified turbulence by applying artificial
forcing. If energy transfer to smaller scales is modified or an inverse cascade
is present in the flow, forcing of the large scales could lead to accumulation
of energy at these scales and eventually to a collapse of the simulation. We
do find that this type of forcing brings us a quasi-stationary state. Checking
stationarity is done by looking both at kinetic energy in all three directions and
at the velocity derivative skewness. Moreover, the value of the latter quantity
for case N0 is consistent with values found in studies of homogeneous isotropic
turbulence. Furthermore, (an)isotropy of the forcing is tested, because the
resulting flow is anisotropic for cases with N �= 0. Applying equal forcing in
all three directions or purely forcing the horizontal wavenumber modes leads
to different flow configurations with the main difference the ratio between the
vertical and horizontal kinetic energy. Dispersion statistics, however, are very
similar despite differences in the large-scale flow structures.
To get an idea of the structures in the flow, in figure 1 we have shown vertical
cross-sections of the density profile for two different values of the background
stratification. The plot on the right in figure 1 shows an almost linear density
profile. The stable stratification is so strong that turbulent fluctuations are
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Fig. 1. Vertical cross-sections of the density profile. For case N1 (left) mixing is
clearly visible, whereas case N100 (right) only shows slight fluctuations upon the
linear background profile.

hardly visible. For moderate stratification (left) much more overturning and
mixing between different layers can be seen. The structure of the flow becomes
also clear from the isovorticity plots in figure 2. The strong stratification shows
the ’well-known’ pancake-like structures, whereas the weaker stratification
shows traces of small-scale structures like in 3D isotropic turbulence. Wave-

Fig. 2. Isovorticity surfaces of cases N10 (left) and N100 (right) at 1.7ωrms. With
increasing stratification the structures become more horizontal and ’pancake’-like
and less small-scale structures are visible.

like motion is present in both the velocity and the scalar field. It can be
seen in most quantities (Eulerian and Lagrangian, mainly in the vertical)
of which the evolution in time is studied, like kinetic and potential energy,
length-scales, particle dispersion and autocorrelation functions. The frequency
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of these waves can clearly be linked to the buoyancy frequency and not to the
frequency of the forcing.

3.2 Single-particle statistics

The dispersion of particles is given by Taylor’s equation

(X(t) −X(0))2 = 2u2
rms

∫ t

0

(t− τ)RL(τ)dτ (6)

under the assumption that the Lagrangian and Eulerian rms-velocity are the
same and that the flow is homogeneous and stationary. RL(τ) is the Lag-
rangian velocity autocorrelation function which is only a function of the time
separation τ = t− t′:

RL(τ) =
u′

p(t′)u′
p(t)

u2
rms

. (7)

Using some known properties of the autocorrelation, the following scaling can
be derived for dispersion in homogeneous isotropic turbulence

(X(t) −X(0))2 ≈ u2
rmst

2 t → 0, (8)
(X(t) −X(0))2 ≈ 2u2

rmsTLt t → ∞. (9)

For stratified turbulence, several authors (see for example [3], [4] and [14])
provided evidence of a plateau for vertical dispersion for t � 2π

N , though
based on different arguments. This plateau scales as

(Z(t) − Z(0))2 ≈ w′2

N2
. (10)

Furthermore, the choice of the rms-velocity in equation 10 differs, some take
the overall value as defined above [3], while others use only the component in
vertical direction [4]. We use the vertical component given by w′2 = 2Ez with
Ez the kinetic energy in vertical direction.
Single-particle dispersion in horizontal and vertical direction is shown in fi-
gure 3 for five different values of the density stratification. For isotropic tur-
bulence (case N0) we do retrieve the classical regimes of equations 8 and 9,
as well as for horizontal dispersion in relative weak stratification. For strong
stratification the plateau with its accompanying scaling is found. When the
horizontal and vertical axes of the right plot in figure 3 are rescaled to t N

2π

and (Z(t) − Z(0))2N2/w′2, respectively, the graphs nicely collapse. For times
up to about TE = Lx/urms (O(50(s))) these plots resemble the results of
[1] and [3]. For longer times a new regime can be identified, which becomes
available by tracking the particles for sufficiently long times (possible due to
forcing of the flow). Dispersion in vertical direction starts to increase again
and is proportional to t, which is a clear indication of a diffusion process.
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Fig. 3. Horizontal (left) and vertical (right) single-particle dispersion as func-
tion of time t for five different cases N0: ——, N1: · · · · ·, N10: − · − · −,
N100: - - - -, N1000: —— . Horizontal dispersion is averaged over x- and y-

direction, 1
2

(
(X(t) − X(0))2 + (Y (t) − Y (0))2

)
. Vertical dispersion is calculated as

(Z(t) − Z(0))2. The plotted results are scaled with 1
2
(u′2 +v′2) and w′2 respectively.

The plateau starts around t = 2π
N

.

This diffusion of fluid particles away from the original equilibrium position is
caused by molecular diffusion of the active scalar (density), what we checked
by changing the Schmidt number. This regime was already predicted by the
models of Pearson et al. [4] and Das & Durbin [12]. However, to our knowledge
this is the first time that it has been observed in numerical studies.
What seems to happen with vertical dispersion is the following. In the early
stages particles move away from their initial position with their local velocity.
This results in a t2-regime. Next their vertical movement is trapped within
wave-like motions. The amplitude of this wave is determined by the scale of
the ’pancake’-like vortex structures. The wave-like motion is evident from the
continuous increase and decrease around an averaged plateau level. In case
the particle positions are initialized as a point or line source instead of a ho-
mogeneous random distribution, dispersion denotes the growth of the particle
cloud. A separate simulation in which the particles started in a thin horizontal
plane indeed showed that the vertical width of the cloud was oscillating. For
long times finally, particles completely forget their initial positions and the
resulting behavior is thus diffusive.
Horizontal dispersion in strongly stratified turbulence shows an increase for
long times with a much larger slope than linear, viz. ∝ t2 − t3. The cause of
this effect is not clear yet, further study is necessary to explain this scaling
behavior. It might be related to the same effects that cause a t2-regime in
rotating turbulence [2].
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3.3 Particle-pair statistics

In view of future applications, in which cluster formation and aggregation
(relevant for dispersion of micro-organisms) might play a role, not only single-
particle statistics but also particle-pair statistics are of importance. For ho-
mogeneous isotropic turbulence a couple of regimes can be identified [16]. For
short times, the mean squared separation between two fluid elements grows
either exponentially or like t2. When the inter-particle separation distance falls
in the inertial range this growth behaves as t3 according to Richardson. For
long times a diffusion limit exists similar to single-particle dispersion. Which
regimes are passed through depends on the initial separation of the particles,
only the final t-regime is universal since at long times particles become uncor-
related, independent of their initial separation ∆0. The t3 regime is derived
theoretically for high Reynolds number flows, with a clear inertial range.
The behavior for homogeneous isotropic turbulence (case N0) can be seen in
figure 4 (left) for an initial separation of about 3

2η. A t2-regime is expected
initially and indeed visible. Next follows a region which is close to t3, though
because of our relative low Reynolds number this is most likely a necessary
transition from the t2-regime to the t-regime of which the levels are determ-
ined by the flow. Finally the long-term diffusion limit is clearly visible. Figure
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Fig. 4. Second order moment of the vertical separation between two particles
(Z(1)(t) − Z(2)(t))2 as a function of time t. The left plot shows results for differ-
ent levels of the background stratification, cases N0: ——, N1: · · · · ·, N10: − ·− ·−,
N100: - - - -, N1000: —— . The initial separations are in horizontal direction, 3

2
η for

cases N0 and N1000 and 5
2
η for cases N1, N10 and N100. The first plateau starts

around t = 2π
N

whereas this value for the second plateau is t ∼ O(TE) = Lx
urms

and
thus not explicitly dependent on the stratification. On the right case N1000 is shown
for five different initial separations; 1

6
η: ——, 3

4
η: · · · · ·, 3

2
η: − ·− ·−, 6η: - - - -, 15η:

—— .

4 shows (Z(1)(t) − Z(2)(t))2 as a function of time, where superscripts 1 and 2
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denote the two particles of a pair. These results are derived from pairs with
an initial separation in the horizontal plane. Results of pairs with an initial
separation in vertical direction are similar, except for cases where ∆0 is larger
than the levels of the first plateaus. The results of horizontal dispersion are not
plotted here. For all values of N they behave similar to the non-stratified case
N0 in figure 4. Only for long times and for strong stratification different beha-
vior is seen, which is similar to the long-term behavior for single-particles (see
figure 3). The left plot of figure 4 shows that vertical separation starts with the
classical t2-regime. Next a plateau is found, starting around t = 2π

N . At later
times an increase to a second plateau (around t = 400(s)) can be seen, at least
for the strongest stratifications. The time at which the increase to this second
plateau starts is of the order of the largest time-scales in the flow (TE). The
final regime is again the linear diffusion limit. Nicolleau & Vassilicos already
predicted the existence of the second plateau, although their kinematic simu-
lation was not carried out long enough to see more than just the beginning of
this plateau. The most probable explanation of the course of the separation is
the following. Initially particles start separating, but they are trapped within
a vertical flow structure. This results in a first plateau. Trapping occurs only
in vertical direction, they can still freely disperse in the horizontal direction.
After some time the horizontal separation is large enough for them to reside
in different structures, where again they are able to disperse also in vertical
direction. A second plateau is reached that can be linked to the plateau found
for single-particle dispersion. By that time the two particles become uncor-
related and the level of the second plateau is therefore twice the level of the
plateau for dispersion of a single particle. The increase from the first to the
second plateau coincides with the inertial range for horizontal pair dispersion,
(X(1)(t) −X(2)(t))2 ∝ O(t3). The influence of initial separation is shown in
the right plot of figure 4. In general the behavior is the same for different ∆0.
Especially for long times its influence is rather small, a linear behavior is seen
at almost the same level. For very large initial separations in the horizontal
plane, it is expected to see only one plateau, namely the second one. Already
initially particles reside in different structures within the flow, so there is no
argument left for the existence of the first plateau. Clearly, our largest ini-
tial separation (15η) is smaller than the horizontal size of the flow structures,
because the first plateau is still present.

3.4 Modeling

From the particle velocities the Lagrangian autocorrelation as defined in equa-
tion 7 can be calculated. The results are shown in figure 5 (left). For case N0
the autocorrelation function can be approximated with a decaying exponential
function (except for very short times), which is a general result for homogen-
eous isotropic turbulence (see for example [15]).

When a background stratification is present, the autocorrelation function
in vertical direction can be approximated by



The effect of stable stratification on fluid particle dispersion 161

0 10 20 30 40
−1

−0.5

0

0.5

1

10
−1

10
0

10
1

10
2

10
3

10
−2

10
0

10
2

10
4

t2

t

Fig. 5. Left: Lagrangian velocity autocorrelation function (Rzz(t)) as a function of
time t for cases N0: —, N1: ×, N10: ©, N100: �, N1000: •. The dashed line shows
equation 11 with values N = N10 and TL = 11.9. Right: single-particle dispersion
calculated with use of equation 13, for cases N0: ——, N1: · · · · ·, N10: −·−·−, N100:
- - - -, N1000: —— . The results are scaled with w′2 for comparison with figure 3
and values for TL are derived from fitting equation 11 with the autocorrelations in
the left figure.

Rzz(t) ∼ exp(−t/TL) cos(Nt), (11)

where a wave-like motion is added to the autocorrelation function for pure
isotropic turbulence. For isotropic turbulence the Lagrangian time-scale TL

can be derived from
TL =

∫ ∞

0

Rzz(τ)dτ. (12)

However, with increasing N the area under the Rzz graph goes to zero. Here,
we determine a value for TL from fitting equation 11 with the results of fi-
gure 5 (left).
Combining equation 11 with the general expression for single particle disper-
sion (eq. 6) gives a model for the vertical dispersion of particles:

Z2(t) =
2w′2T 2

L

1 + N2T 2
L

[
1 −N2T 2

L

1 + N2T 2
L

cos(Nt) exp(−t/TL)

− 2NTL

1 + N2T 2
L

sin(Nt) exp(−t/TL) +
t

TL
− 1 −N2T 2

L

1 + N2T 2
L

]
(13)

The vertical dispersion according to this model is shown in figure 5 (right)
which is plotted using the values of w′2, N and TL from the DNS. The three
regimes (t2, plateau and t) are clearly visible and they start around similar
times as in the DNS results in figure 3. The linear diffusion limit is easily
identified as the second last term of equation 13. The other regimes are more
difficult to trace in that equation, but they can be found under the assump-
tion that N2T 2

L > NTL > 1 which holds for strong stratification. The main
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difference between the model results and the DNS results is the length of the
plateau, which most likely is caused by the estimated value for TL. Increasing
the value of TL results in a longer plateau. Moreover, the amplitude of the
autocorrelation function decays more quickly for the DNS results than for the
artificial function of equation 11.
The model described above is only valid for stationary flows. However, if you
make w′2 a function of time w′2(t) ∼ t−p with p the slope of the energy decay
for decaying stratified turbulence, the model only displays a t2-regime and
a plateau for vertical dispersion. There seems to be a connection with the
decaying simulations of, for example, Kimura & Herring [1], who do not see
a final linear regime.

4 Concluding remarks

Stratification suppresses vertical motion in forced turbulent flows, as shown in
this work. For both single-particle and particle-pair dispersion in vertical dir-
ection this leads to the occurrence of plateaus in dispersion plots. We found a
linear diffusion regime for long times, which was not actually seen before. Both
the suppression of vertical dispersion and final diffusion might be important
for practical purposes. The first might enhance clustering and aggregation for
interacting particles, because particles remain close together for long times,
whereas the second makes it possible for particles to reach everywhere in the
flow for long enough times. We have derived a model for single-particle vertical
dispersion in stratified turbulence based on an Ansatz for the velocity auto-
correlation function. Although a fit in the autocorrelation function is far from
perfect for strong stratification, the model is able to describe the three differ-
ent dispersion regimes rather well. Finding a similar model for particle-pair
dispersion is a next topic to be addressed.
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DNS of particle-laden flow over a backward
facing step at a moderate Reynolds number
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Summary. The present study investigates turbulence modification by particles in
a backward-facing step flow with fully developed channel flow at the inlet. This
flow configuration provides a range of flow regimes, such as wall turbulence, free
shear layer and separation, in which to compare turbulence modification. Fluid-phase
velocities in the presence of different mass loadings of particles with a Stokes number
of St = 3.0 are studied. Local enhancement and attenuation of the streamwise
component of the fluid turbulence of up to 27% is observed in the channel extension
region for a mass loading of φ = 0.2. The amount of modification decreases with
decreasing mass loading. No modification of the turbulence is found in the separated
shear layer or in the re-development region behind the re-attachment, although there
were significant particle loadings in these regions.

1 Background

The use of Direct Numerical Simulations (DNS) to predict particle-laden flows
is appealing as it promises to provide accurate results and a detailed insight
into flow and particle characteristics that are not always, or not easily, access-
ible to experimental investigations. In the present study, a vertical turbulent
flow over a backward-facing step (with gravity pointing in the mean flow dir-
ection) at moderate Reynolds number Reτ ≈ 210 (based on friction velocity
uτ and inflow channel half-width h) is investigated by means of DNS. The
main focus is directed towards particle statistics and turbulence modification.

Fessler and Eaton [9] reported the results of experiments on particle-laden
flows in a backward-facing step configuration. Like in our simulations, in this
work the bulk flow rate was fixed. The corresponding Reynolds number was
approximately Reτ ≈ 644. The experiments were performed with glass and
copper particles of different diameters in downward air flows. The particles
used in our simulations were chosen to match those in experiments and our
previous studies. (Due to limited space results for only one particle species
are presented here.)

Bernard J. Geurts et al. (eds), Particle Laden Flow: From Geophysical to Kolmogorov Scales, 165–177.
© 2007 Springer. Printed in the Netherlands.



166 A. Kubik and L. Kleiser

Our previous studies, e.g. [13], concentrated on particle-laden flows in a
vertical channel down-flow at the above-mentioned Reynolds number. It was
confirmed that particle feedback causes the turbulence intensities to become
more non-isotropic as the particle loading is increased. The particles tended to
increase the characteristic length scales of the fluctuations in the streamwise
velocity, which reduces the transfer of energy between the streamwise and the
transverse velocity components.

2 Methodology, numerical approach and parameters

The Eulerian-Lagrangian approach is adopted for the calculations of the fluid
flow and the particle trajectories. The two phases are coupled, as the fluid
phase exerts forces on the particles and experiences a feedback force from the
dispersed phase.

Fluid phase

The fluid phase is described by the 3D time-dependent modified Navier-Stokes
equations in which the feedback force on the fluid is added as an effective body
force. Additionally, the incompressibility constraint must be satisfied.

Duf

Dt
= −∇p+

1
Re

∆uf + fg + fr , ∇ · uf = 0 (1)

The symbols uf , t, p, Re, fg and f r denote the fluid velocity, time, pressure,
Reynolds number, gravity force and feedback force per unit mass, respectively.
To compute the feedback force the sum of the drag and lift forces acting on a
particle is redistributed to the nearest grid points, summed up with feedback
forces from other particles and divided by the mass of fluid contained in the
volume surrounding the grid point. [11]

The geometry and dimensions of the backward-facing step domain are
shown in fig. 1. The Reynolds number of the inlet channel flow in the present
simulation is chosen to be Reτ ≈ 210, as in our previous work [12],[13]. This
is a moderate number, still manageable in terms of computational costs but
securely located in the range of flows considered turbulent. Based on the bulk
velocity of the fluid, the Reynolds number is around 3333. This translates to
a Reynolds number of the back-step, based on bulk velocity and step height
H of ReH ≈ 6666.

The equations are solved using a spectral–spectral-element Fourier–Le-
gendre code [20] with no-slip boundary conditions on the walls and peri-
odic boundary conditions in the spanwise direction. Fully developed turbu-
lent channel flow from a separate calculation is applied at the inlet, whereas
a convective boundary condition is imposed at the outlet.
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Fig. 1. The geometry of the backward-facing step domain.

Inlet channel

Channel half-width h
Channel span 3.2h
Channel length 5H

Backward-facing step domain

Step height H = 2h
Expansion ratio H : 2h = 1
Domain behind step 52H

Dispersed phase

The particles are tracked individually. Their trajectories are calculated simul-
taneously in time with the fluid phase equations by integrating the equation of
motion for each particle. This is done by solving the equations for the particle
velocity and position vectors as given by Maxey and Riley [15]. Several modi-
fications were necessary: A lift force was supplemented ad hoc as described in
[16],[18]. Empirical and analytical corrections for the drag and lift were neces-
sary to accommodate moderate Reynolds numbers [5],[17] and the proximity
of walls [1],[8],[19]. Only the effects of drag, gravity and lift are taken into
account [11]. The equations for the particle velocity and position are thus

dup(k)

dt
= F drag + F g + F lift ,

dxp(k)

dt
= up(k) (2)

where up(k) denotes the velocity and xp(k) the position of the particle k.
F drag, F g and F lift represent the drag, gravity and lift force per particle
mass, respectively. Equations (2) were discretized in time and solved using
a third-order Adams-Bashforth scheme. Particle-wall collisions are modeled
taking into account the elasticity of the impact and particle deposition for
low-velocity particles in regions of low shear [12],[11]. Particle-particle colli-
sions are omitted in this study and the parameter range for the calculations
is restricted such as to keep this assumption valid. At the initial time the
backward-facing step computational domain contains no particles. They are
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introduced via the inlet channel flow, in which they have reached a statistically
s spatial distribution (starting with a random field) in a separate calculation.

Monodisperse particles with a particle-to-fluid density ratio of ρp/ρf =
7458 are used. The particle Reynolds number Rep characterizing the flow
around the particle is defined as

Rep =
dp |uf − up|

ν
(3)

where dp is the particle diameter, |uf − up| the velocity slip between the
particle and the fluid at the particle position and ν the kinematic viscosity of
the fluid. The particles response time τp for small particles with high particle-
to-fluid density ratios can be derived from the expression by Stokes τp,Stokes

corrected for non-negligible Reynolds numbers by the relation [5]

τp =
τp,Stokes

[1 + 0.15Re0.687
p ]

≈
ρpd

2
p

18µ[1 + 0.15Re0.687
p ]

(4)

where µ the fluid dynamic viscosity. The Stokes number is the ratio of the
particle response time to a representative time scale of the flow, St = τp/τf .
There are several fluid time scales appropriate for analyzing the backward-
facing step flow, such as the approximate large-eddy passing frequency in the
separated shear layer 5H/ucl [9] or the local turbulence time-scale k/ε. (ucl is
the fluid velocity at the centerline.) In the present study the nominal Stokes
number was chosen to be St = 3.66, based on τp,Stokes and the large-eddy
time scale. This corresponds to a Stokes number of St = 3.0 based on τp and
turbulence time-scale k/ε at the inlet channel centerline.

3 Results and Discussion

Figure 2 shows a contour plot of the mean fluid velocity with superimposed
streamlines. The flow topology includes the recirculation region behind the
step, an enlarged boundary layer at the step-opposite wall (due to the pressure
gradient), the re-attachment point at x/H = 7.4, a deceleration of the flow
behind the step, and a re-development toward an symmetric channel flow at
approximately x/H = 20. It should be noted that the mean velocity profile
is unchanged by the presence of particles, as constant fluid mass flow was
enforced in the simulation. (Additionally, relatively low mass loadings of the
particles combined with the high particle-to-fluid density ratio result in very
low volume loadings of the particles.)

Figure 3 shows a contour plot of the mean particle number density c di-
vided by the particle number density averaged over the inlet c. Very few
particles are found in the recirculation region directly behind the step. After
the re-attachment point an increasing number of particles can be found below
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Fig. 2. Contour plot of the mean fluid velocity u/ucl with superimposed streamlines.
(Note the strongly enlarged vertical scale.)

y/H = 0 until at x/H ≈ 13 the number density across the section is be-
coming more uniform. These dispersion field characteristics were also found
in the experiments [9]. The lack of particles in the recirculation region is not
surprising. Previous studies [10] have found that particles will be dispersed
into the recirculation region only if their large-eddy Stokes numbers are less
than one. In this study the Stokes numbers of the particles based on the large-
eddy time scale, τf = 5H/ucl, are significantly larger than unity (St = 3.66).
Furthermore, heavy particles (ρp/ρf � 1) like those in this simulation tend
to migrate out of eddies and toward the fringes [6]. Also, particles whose re-
sponse time is larger than the relevant fluid time scale (i.e. St > 1, as in
the present case) do not respond quickly to the vortical structures and are
ejected from these structures soon after being injected [7]. Another parameter
which is important in this vertical downward flow is the ratio of the particle’s
terminal settling velocity to the maximum velocity of reverse flow, uT /urev.
The terminal settling velocity for a particle can be calculated from basic prin-
ciples [5], and is in the range of 0.12ucl for the particles considered here. The
maximum reverse flow velocity found behind the step is approximately 0.2ucl

(see fig. 4). The resulting ratio is uT /urev = 0.6. This is large enough that
particles would experience difficulty moving upstream (vertically upward) in
the recirculation region.

Fig. 3. Contour plot of the mean particle number density c/c0 distribution.
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Particles in the size range considered in this study have a tendency to
accumulate near the channel walls. (This is also apparent in fig. 9 below which
displays the particle concentration as a function of y/H , averaged over time,
and normalized by the initial mean particle concentration.) Particle inertia is
responsible for this phenomenon. Particles tend to travel closer to the walls
than the fluid elements that bring them into or near the viscous sub-layer.
Some particles strike the wall and rebound. Others lack sufficient momentum
to reach the closest wall and are confined to the viscous wall region for long
periods of time. Therefore, the particles tend to have a higher residence time
in regions close to the wall than in the channel core. Several other numerical
studies, e.g. [2], [14], report this accumulation of particles near the walls of
a vertical channel for a broad range of particle characteristics. The slight
increase of particle concentration in the middle of the channel can be partly
explained by the turbophoresis phenomenon [4]. Turbophoresis results from
small random steps taken by a particle in response to the surrounding fluid
turbulence. If there is a gradient in the intensity of the turbulence, the particles
will tend to migrate to regions of lower turbulence intensity since they have a
longer residence time in those regions. However, the particles in our study have
large values of St which limits their response to local turbulence and causes
them to move along roughly straight lines over relatively large distances.

In fig. 4, the mean streamwise particle velocities are plotted at different
distances from the step (indicated in fig. 2 by dashed lines) for particle mass
loadings (ratio of total particle mass to fluid mass in the computational do-
main) = 0.1 and 0.2. The mean fluid velocity of the unladen flow (φ = 0) is
shown for comparison. (The mean fluid velocity profile is unchanged by the
presence of particles.) At x/H = 2, the particle velocities in the bulk of the
channel are lower than the fluid velocities. This is a remnant of a phenomenon
observed for the channel flow [13] where the particles show a negative slip velo-
city due to cross-stream particle movement. Further downstream, the particles
are faster than the fluid due to the deceleration of the fluid by the sudden
channel expansion. Mean particle velocities in the wall-normal direction (not
shown) are generally similar to or slightly smaller than the corresponding fluid
velocities. The mean streamwise particle and fluid velocities exhibit the same
qualitative features as in the experiments [9]. At the location x/H = 40 it
may be seen that the symmetric character of the ordinary channel flow has
been regained. The particles lag the fluid in the core of the channel but lead
in the near-wall region, resulting in profiles that are flatter than those of the
fluid phase (see also [13]).

The streamwise velocity fluctuations of the particles are shown in fig. 5.
Mostly, the particles have higher fluctuating velocities (up

rms = (u′
pu

′
p)1/2)

than the unladen flow (uf
rms = (u′

fu
′
f)1/2). In the near-wall region the dif-

ference is most eminent. This phenomenon, also found in previous studies
(e.g. [9]), is a result of transport of inertial particles out of regions with mean
shear. The particle velocity fluctuations in the wall-normal direction (fig. 6)
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Fig. 4. Mean particle velocity profiles and mean fluid velocity profile for the unladen
flow. (·)f , φ = 0; ◦ (·)p, φ = 0.1; (·)p, φ = 0.2.

are consistently lower than the flow r.m.s. fluctuations. However, further down-
stream the fluid fluctuation intensities abate significantly whereas those of the
particles do not. So the wall-normal fluctuating velocity of the particles near
the wall is relatively large compared to that of the fluid. This provides par-
tial explanation for the divergence of the particle velocity from the decreasing
fluid velocity in this region and is consistent with the particle trajectory stat-
istics in the y-z-plane, where high-speed particles move towards the wall and
rebound, still carrying much of their streamwise momentum.

In fig. 7 the streamwise flow r.m.s. fluctuations for particle-laden flow
are compared to those of the unladen flow. At locations directly behind the
step (x/H = 2, 5, 7) only a small turbulence modification is obtained for
y/H > −0.25. The turbulence in the shear layer and the recirculation zone is
relatively unaffected by the particles. The particle number density in this re-
gion indicates that there are few particles in the area y/H < −0.25 before the
re-attachment point but significant dispersion of the particles has occurred at
the locations further downstream. Thus the extremely low level of turbulence
modification is not simply a result of an absence of particles in the shear layer,
but rather a difference in the response of the turbulence in that region to the
presence of particles must be assumed. Further downstream a slight disparity
between the fluctuations of laden to unladen flow develops. The effect is non-
homogeneous as the maxima at the walls become higher and broader whereas
the intensity in the channel core decreases as with increasing particle mass
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Fig. 5. Streamwise fluctuation intensities of the particles and r.m.s. fluctuations of
the unladen flow. (·)f , φ = 0; ◦ (·)p, φ = 0.1; (·)p, φ = 0.2.

0 0.05 0.1 0.15
−1

−0.5

0

0.5

1

0 0.05 0.1 0.15
−1

−0.5

0

0.5

1

0 0.05 0.1 0.15
−1

−0.5

0

0.5

1

0 0.05 0.1 0.15
−1

−0.5

0

0.5

1

0 0.05 0.1 0.15
−1

−0.5

0

0.5

1

0 0.05 0.1 0.15
−1

−0.5

0

0.5

1

y
/
H

y
/
H

vrms/uclvrms/uclvrms/ucl

x/H = 2 x/H = 5 x/H = 7

x/H = 9 x/H = 13 x/H = 40

Fig. 6. Wall-normal fluctuation intensities of the particles and r.m.s. fluctuations
of the unladen flow. (·)f , φ = 0; ◦ (·)p, φ = 0.1; (·)p, φ = 0.2.



DNS of particle-laden flow over BFS at moderate Re 173

loading φ. Figure 8 shows the profiles of the wall-normal fluctuating velocit-
ies. They display the same trends as the streamwise data, with very slight
modification of the turbulence only for y/H > −0.25 directly behind the step
but with increasing effect of the particle loading further downstream. This
findings are confirmed by the results of [9].

0 0.1 0.2
−1

−0.5

0

0.5

1

0 0.1 0.2
−1

−0.5

0

0.5

1

0 0.1 0.2
−1

−0.5

0

0.5

1

0 0.1 0.2
−1

−0.5

0

0.5

1

0 0.1 0.2
−1

−0.5

0

0.5

1

0 0.1 0.2
−1

−0.5

0

0.5

1

y
/
H

y
/
H

urms/uclurms/uclurms/ucl

x/H = 2 x/H = 5 x/H = 7

x/H = 9 x/H = 13 x/H = 40

Fig. 7. Streamwise flow r.m.s. fluctuations for different mass loadings.
(·)f , φ = 0; (·)f , φ = 0.1; (·)f , φ = 0.2.

To analyze the differences in turbulence modification at various streamwise
locations behind the step (x/H = 2, 13, 40) the ratio of the laden to unladen
wall-normal r.m.s. fluctuating velocity was calculated for a mass loading of
φ = 0.2. Any change in the turbulence due to the presence of particles will
appear as a departure of the ratio from unity. (Wall-normal r.m.s. fluctuating
velocities were deemed more appropriate for this analysis than the streamwise
ones since they do not exhibit the non-homogeneous behavior.) Figure 9 shows
these ratios along profiles of the particle number density. Local turbulence at-
tenuation of up to 27% is evident. At x/H locations of 2 and 13 there are still
considerably more particles in the region of y/H > 0 but at x/H = 13 the
particles have begun to spread to the y/H < 0 region. Despite this fact, the
turbulence attenuation is still small for y/H < 0. At x/H = 40 the turbulence
modification is roughly proportional to particle number density. (Near-wall
regions are an exception, as the particle number rises while turbulence modi-
fication decreases. This is due to the fact that for laden and unladen flow
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Fig. 8. Wall-normal flow r.m.s. fluctuations for different mass loadings.
(·)f , φ = 0; (·)f , φ = 0.2.

alike the no-slip condition must be observed. Furthermore, particles which
accumulate close to the wall have rather low momentum.)
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Fig. 9. Spatial development of wall-normal turbulence modification and particle
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Apparently, the particles’ effectiveness in influencing the surrounding fluid
depends on the flow structure. For flows with a large ratio of particle to fluid
density and particle diameters smaller than the Kolmogorov scale, the particle
path, the relative velocity, and the feedback force applied to the fluid should
be uniquely determined by the Stokes number. To investigate if the particle
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Fig. 10. PDF of particle Reynolds numbers at different locations downstream from
the step for φ = 0.2.

Reynolds number may also be a factor in determining the degree of turbu-
lence modification the probability density function (PDF) of this quantity at
different locations downstream of the step has been calculated for φ = 0.2.
It is obvious from fig. 10 that the mean values as well as the distribution of
Rep vary strongly with the location. The fact that particles with the same
Stokes number but different particle Reynolds numbers produce different tur-
bulence modification indicates that the latter is not solely determined by the
net inter-phase momentum transfer. The change in particle wake structure and
details of the flow distortion associated with different particle Reynolds num-
bers could affect the level of turbulence response to the presence of particles.
Recent calculations [3] have shown that the flow distortion around the particle
is a strong function of the particle Reynolds number.

4 Conclusions

The current DNS study investigated turbulence modification in a particle-
laden flow over a backward-facing step. The results show that the degree of
modification to the fluid phase depends on the particle Reynolds number as
well as on the Stokes number. In addition to these parameters, the flow regime
was found to strongly affect the degree of turbulence modification. After
the re-attachment point in the region behind the step, very little turbulence
modification was observed, although the particle number density was the
same as that in the channel flow extension where significant modification was
found.
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Summary. The neglect of the effects of sub-filter scale velocities often remains a
source of error in LES predictions of particle dispersion and deposition. Indeed,
sub-filter fluctuations should be expected to be more significant for particles with
smaller relaxation times compared to the LES-resolved turbulence time scales. In
this work, a stochastic diffusion process is used to include the sub-filter scale trans-
port when tracking a dilute suspension of heavy particles (glass beads in air with
different Stokes’ numbers, namely 0.022 and 2.8) in a high Reynolds number, equilib-
rium turbulent shear flow (Reτ = 2, 200 based on the friction velocity and the pipe
diameter). A Langevin-type equation is proposed to model the Lagrangian fluid ve-
locity seen by solid particles, taking into account inertia and cross-trajectory effects.
LES predictions are compared to RANS results and experimental observations. It
is shown that the RANS approach is unable to predict particle dispersion statistics
as accurately as LES does, especially for inertial particles characterized by a Stokes
number smaller than one. For particles with Stokes number higher than one, both
LES and RANS predictions compare reasonably well with the experimental results.
More importantly, the use of a stochastic approach to model the sub-filter scale fluc-
tuations has proven crucial for results concerning the small-Stokes-number particles.
The model requires additional validation for non-equilibrium turbulent flows.

1 Introduction

Understanding the dispersion of heavy particles from a source point in turbu-
lent flows is a domain of research of utmost practical interest. Heavy particle

Bernard J. Geurts et al. (eds), Particle Laden Flow: From Geophysical to Kolmogorov Scales, 179–192.
© 2007 Springer. Printed in the Netherlands.
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transport and dispersion are encountered in a wide range of flow configura-
tions, whether they are of industrial or environmental character.

For many environmental applications, the Reynolds-Averaged Navier-
Stokes approach has been proven inherently ill-posed [1]. Thus, the use of
Large-eddy simulation (LES) has increased over the years as a promising tool
to address these types of problems. The modeling of the residual, or sub-filter
scale, velocity field becomes especially important as smaller Stokes-number
inertial particles are tracked within higher Reynolds-number turbulent flows.

The large-scale velocity field provided by LES can be assumed to mimic
the large-scale fluid velocity field seen by inertial particles. This is the simplest
approach since it consists of neglecting the effects of the sub-filter fluctuating
velocity field on the particle trajectories. This should be a justifiable assump-
tion in most applications in which large Stokes-number, heavy particles are
numerically tracked on very fine LES grid using small filters. In this case, the
inertial particles do not sense turbulent fluctuations associated with the sub-
filter scales and less turbulent kinetic energy of the larger scales is filtered out.
For high Reynolds number wall-bounded turbulent flows, the LES grid is often
not fine enough, in particular near the walls, where the resolution is dictated
by restrictions in computing resources. In this case, discarding the sub-filter
fluctuations can be a major source of error in LES predictions of heavy particle
statistics, especially for the ones having very small Stokes numbers [2]. For
these cases, the instantaneous velocity can be synthetically derived from the
LES velocity field. Solving an additional transport equation for the residual
or sub-filter kinetic energy is often the approach used by meteorologists [3].
Another approach consists of de-filtering the LES velocities to generate the
fluid phase instantaneous field to use to track inertial particles [4]. Stochastic
modeling using the Langevin equation has been extensively used in the frame-
work of RANS to construct total turbulence fluctuations based on the mean
flow statistics [5]. This approach can be extended for the Lagrangian modeling
of the fluid velocity seen by heavy particles for LES of particle-laden turbu-
lent flows. Shotorban et al. [6] obtained promising results for particles with
very small response times when they used a Langevin equation to account for
the sub-filter effects in their LES of particle-laden decaying isotropic turbu-
lent flow. They neglected particle inertia and cross trajectory effects, however,
which is valid only for inertial particles with vanishing response times.

In this paper, the effect of the sub-filter scales on the heavy particle dis-
persion in an equilibrium non-homogeneous and anisotropic turbulent flow are
taken into account. The modeling of the fluid velocity seen by solid particles
is carried out using a Langevin-type equation allowing for both inertia and
cross-trajectory effects. LES predictions are compared to RANS results and
experimental observations [7].
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2 Governing equations of solid-gas turbulent flow

2.1 Equation of Fluid Flow

In order to simulate the experiment of Arnason [7], a turbulent pipe flow is
studied in a Cartesian framework. An unstructured grid consisting of 740,000
cells is used to avoid having too many grid points in the core region of the
pipe and in order to properly resolve the near-wall region. A polar grid is
used for the first three layers with non-conforming embedded refinement as
shown in Tab. (1). Then the polar grid is made to match an octahedral bloc
for the core region of the pipe (Fig. 1). The 2D grid is then extruded in the
streamwise direction by 192 nodes. The first grid point near the pipe wall
at which the axial velocity is computed is located at y+ = 1.3, with 2 grid
points placed within the viscous sub-layer, the depth of which approximately
equals 5 wall units. A non-uniform grid is employed in the normal-to-the-
wall direction within the circular part. This is done in order to locate more
grid points in the near-wall region that is characterized by steep gradients and
small energy-containing eddies. The Reynolds number of the simulation based
on the pipe diameter D and on the centerline velocity uc equals approximately
50,000 (based on mean velocity ub and shear stress velocity uτ , it is 42,000
and 2,200 respectively).

Fig. 1. Unstructured grid used for the simulations.

Table 1. Hanging nodes in the polar part of the unstructured grid

y+ = uτ .y/ν Rad. direction Circumf. direction

0 < y+ < 30 4 cells 256 cells
30 < y+ < 100 4 cells 192 cells

100 < y+ <≈ 360(r=(2/3)R) 8 cells 128 cells
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A flow solver from the R&D section of Electricité de France named
Code Saturne was used as starting point of the present development. It is
based on a collocated unstructured finite volume method, and has been ex-
tensively tested for LES of single-phase flows [8] as well as its Lagrangian
module for particle tracking based on RANS/Stochastic modeling [9].

The filtered spatial and temporal evolution of an incompressible Newto-
nian fluid flow can be determined from the following equations :

∂ui

∂xi
= 0 (1)

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+

1
Re

∂2ui

∂xj∂xj
+

∂τij

∂xj
(2)

where

τij = uiuj − uiuj . (3)

Here τij is the sub-grid scale (SGS) stress tensor and is modeled using the
algebraic eddy-viscosity model proposed by Smagorinsky [10]:

τij −
1
3
δijτkk = −2νSGSSij , (4)

with νSGS is the subgrid-scale viscosity

νSGS = Cs∆
2 | S | (5)

Here Cs is a constant, and |S| = |2SijSij |1/2, where Sij = 1
2 (∂jui + ∂iuj) is

the resolved rate-of-strain tensor. The length scale ∆ is taken equal to 2h,
where h is the grid spacing, and the value of the constant Cs is taken equal
to 0.065.

LES calculations provide the large-scale velocity field and allow, under
certain assumptions, the evaluation of the sub-filter kinetic energy and its
dissipation rate that are necessary for the construction of the velocity field seen
by inertial particles, as we shall see in the following sections. Mean velocity
and rms turbulent fluctuation profiles are computed from the LES of the single
phase flow and they were found to compare very well with previous LES results
and experimental observations, and are not presented in this paper.

For RANS calculations, the second-moment model (Rij − ε) is used
to close the time-averaged Navier-Stokes equations. Mean fluid velocity,
turbulent kinetic energy and its mean dissipation rate are computed and
used later to model the fluid velocity seen by the inertial particles. The
single-phase velocity fields of both RANS and LES will be used to track
inertial particles originating from a point source in a turbulent, vertically
downward pipe flow.
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2.2 Equation of Particle Motion

From a point source located at the center of the pipe, solid particles are
released and tracked into the turbulent flow described in the previous section.
The physical properties of these solid particles are summarized in Tab.(2). The
simplest way to characterize the dynamics of particle motion is by means of its
Stokesian relaxation or response time and the corresponding Stokes number
given by:

St =
τp

TE
, where τp =

ρpd
2
p

18µ
. (6)

Here ρp is the mass density of the particles, dp is the diameter of the particles,
µ is the dynamic viscosity of the fluid, and TE is the Eulerian time scale of
the fluid phase. Since large particles are also considered in this study, the
particle Reynolds number is expected to often exceed unity. A non-linear drag
coefficient, taking into account the high particle Reynolds number, is therefore
more appropriate. As a consequence the actual particle response time will, at
high particle Reynolds numbers, be smaller than the one defined by Eqn. (6).
As a result of the high density ratio between particle and fluid densities, the
equation describing particle motion becomes reasonably simple and only the
drag and gravity forces will be retained since other forces are in this case
negligible [11].

Table 2. Physical characteristics of inertial particles used in the simulations

Mean diameter dµ
p (µm) 5 57

Standard deviation σp (µm) 1 11
clipping (µm) 2 < dµ

p < 10 32 < dµ
p < 101

Density (kg/m3) 2475 2420
Response Time (s) 0.0002 0.025

The tracking of the solid particles within the turbulent flow obeys the
following system of equations:

dxp,i = up,idt (7)

dup,i =
us,i − up,i

τp
dt + gdt (8)

τp =
ρp

ρf

4dp

3CD|us − up|
(9)

CD =

⎧⎪⎨⎪⎩
24

Rep
(1 + 0.15Re0.687

p ) if Rep < 1000

0.44 if Rep > 1000

(10)
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Here xp and up are the particle position and velocity, us is the fluid velocity
seen by a solid particle along its trajectory, g is the gravity force by unit of
mass, CD is the drag coefficient and Rep is the particle Reynolds number,
Rep = dp|us − up|/ν.

A tri-linear interpolation scheme is used to obtain the velocities between
the grid points. The interaction of solid particles with the wall is considered
elastic. According to the Sommerfeld criteria [12], the turbulence level and the
size of inertial particles considered in Arnason experiment and in the numerical
simulations do not give rise to a wall-collision dominated flow. Also, neither
two-way coupling nor particle-particle collision is taken into account, since a
dilute concentration of particles is considered for all the simulations (volume
fraction αp < 10−6).

The system of Eqns (7-10) can be now used to track inertial particles in
a Lagrangian framework as they move down the pipe. The only unknown in
this system of equations is the fluid velocity us seen by these inertial particles
along their trajectories as they move through the turbulent field.

In the next section, a stochastic model is proposed to reconstruct the Lag-
rangian instantaneous fluid velocity seen by heavy particles from the filtered
Navier-Stokes equations.

2.3 Modeling of seen fluid velocity

Langevin models [13] have been attractive stochastic diffusion models de-
veloped for fluid particle turbulent velocities [14], and they have been exten-
ded for the generation of the fluid turbulent field seen by inertial particles.
The general form of the Langevin model chosen for the velocity of the fluid
seen by particles is:

dus,i = As,i(t, xp, up, us)dt + Bs,ij(t, xp, up, us)dWj , (11)

where the drift vector A and the diffusion matrix B have to be modeled.
Each component of the vector dW is a Wiener process (white noise); it is
a stochastic process of zero mean, 〈dW 〉 = 0, a variance equal to the time
interval, 〈(dW )2〉 = dt, and delta-correlated in the time domain [15]. This
formulation, along with Eqns. (7) and (8), is equivalent to a Fokker-Planck
equation for the corresponding filtered density function (fdf) and can be used
in a Monte Carlo simulation of the underlying fdf [16].

The theoretical and numerical formulations of the Langevin model have
been extensively discussed in the framework of particle-laden RANS [17, 18,
19] and its use is extended herein with the necessary modifications for the
modeling of the fluid velocity seen by particles in LES framework. It is:

dus,i = dt(− 1
ρf

∂p

∂xi
+

1
Re

∂2ui

∂xj∂xj
) − (

dt(us,i − uf,i

T ∗ ) +
√
C∗

0 〈εr〉dWi (12)

Here εr is the dissipation rate of the residual or sub-filter turbulent kinetic
energy kr, and C∗

0 is the diffusion constant. The fluid Lagrangian time scale
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seen by heavy particles T ∗ is TE in the limit of very large inertia, since in
this situation the heavy particles respond slowly to the fluid turbulence. On
the other hand, T ∗ = TL (the fluid Lagrangian time scale) if St → 0 since in
this case the inertial particles reduce to fluid elements. Thus, in general T ∗

is a function of St and varies between TL and TE as it is portrayed by the
following equation [20]:

T ∗ =
TL

β
(1 − (1 − β)(1 + St)−0.4(1+0.01St)) , (13)

where β is defined below.
This equation, though developed for homogeneous and isotropic turbu-

lence, can also be used for shear flow to compute the fluid time scale seen
by inertial particles [21]. To account for the crossing trajectory and the con-
tinuity effects, Csanady’s expressions [22] can be used to compute the fluid
Lagrangian time scale in the direction of the mean drift (‖) and the transverse
directions (⊥):

T ∗
‖ =

T ∗√
1 + β2|〈u〉|2/(2kr/3)

T ∗
⊥ =

T ∗√
1 + 4β2|〈u〉|2/(2kr/3)

(15)

Here 〈ur〉 is the mean slip velocity between fluid and inertial particles.
The diffusion coefficient C∗

0 is evaluated according to the following formu-
lation:

C∗
0 = C0bik̃r/kr +

2
3
(bik̃r/kr − 1) , (16)

where C0 is the Kolmogorov constant, and k̃r is a modified kinetic energy:

k̃r =
3
2

∑3
i=1 bi〈u′2

i 〉∑3
i=1 bi

(17)

Here u′
i is the fluid fluctuating velocity and bi = T ∗/T ∗

i (i =⊥ or ‖).
For the ratio of the Lagrangian timescale to the Eulerian time scale β,

it was shown that its value is Reynolds number dependent [23] and varies
considerably in the literature. For this study, it is expected that its influence
on the model predictions is very small, since small universal scales are modeled
unlike in RANS, where modeling of turbulent fluctuations linked to large scales
is sought. When formula (13) is used to take into account the inertia effect,
β is chosen to be 0.356 [20]. Two other values are tested: β = 1.3 [24] and
β = 0.8 [23]. Simulation results showed an insignificant influence of β on the
model predictions. These results are not presented in this paper.

For LES, the Lagrangian time scale for the sub-filter fluctuations TL is
assumed to evolve according Eqn. (17) [25], using the sub-filter kinetic energy
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kr and its dissipation rate εr that have to be evaluated according to the SGS
model used to take into account subgrid effects on the large scales.

TL = (
1
2

+
3
4
C0)−1 kr

〈εr〉
(18)

Indeed, in the case of the Smagorinsky model, if equilibrium is assumed at
the cutoff, the dissipation rate and then the residual kinetic energy can be
evaluated as:

εr = −τij .
dui

dxj
= (Cs.∆)2|S|3 (19)

kr = Cε(∆.εr)2/3 (20)

Typically Cε ≈ 1 and C0 ≈ 2.1 [16].
At each time step Eqns. (13) to (19) are evaluated. The stochastic dif-

ferential equation (SDE) system that comprises Eqns. (7), (8) and (12) is
integrated at each time step using an appropriate weak second-order integ-
ration scheme [26] that account for the nature of the problem characterized
by the presence of different time scales; this can lead to stiff equations when
the smallest time-scale is significantly less than the time-step of the simula-
tion. As it was highlighted by Maclnnes et al. [27] and Minier et al. [9], the
Langevin model under the formulation (12) does not suffer any spurious drift
in the non-homogeneous case.

3 Results and discussions

The numerical predictions for Arnason’s experiment using RANS and LES
were collected at three sections downstream the seeding point (Z=0.318m,
0.502m and 0.679m) and consist of particle concentration and radial velocity
profiles for two different particle diameters, namely 5µm and 57µm. Using
these results, the dispersion coefficient εp for both types of particles is evalu-
ated and then compared to the experimental measurements.

Figures 2 and 3 display numerical predictions of particle concentration and
radial velocity profiles for 5µm particles, for RANS, LES with and without
taking into account the sub-filter effects on particles dispersion. As expected,
a significant improvement in the results were made possible by introducing
the effects of the sub-filter scales on the motion of the 5µm particles; these
have Stokes numbers less than one (evaluation of the Stokes numbers for the
5µm particles shows that they vary between 0.022 and 0.46). These particles
sense the whole spectrum of turbulent fluctuations present in the flow with
different time scales. It is clear that LES predictions closely match the ex-
perimental results, though slightly underestimating the concentration profiles
near the wall. RANS predictions increasingly overestimate the particle con-
centration spread as we move downstream. The LES without sub-filter model
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Fig. 2. Concentration profiles for 5µm particles.

Fig. 3. Radial velocity profiles for 5µm particles.
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Fig. 4. Concentration profiles for 57µm particles.

Fig. 5. Radial velocity profiles for 57µm particles.
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shows an initial underestimation of the spread, and this lag remains constant
downstream. With the sub-filter model incorporated in the LES, this initial
defect is now well corrected. It should be mentioned that the injection is rep-
resented by only very a few cells, and this is why the enhanced dispersion by
the sub-filter model is more important at the initial stages.

For the 57µ particles, Fig. 4 and 5 show that the effect of the sub-filter
scales on their motion is clearly very small; this is because their Stokes num-
bers based on the sub-filter scale time scale exceed one (they are between
2.8 and 58 throughout the computational domain), and therefore they do not
respond significantly to the higher frequency sub-filter-scale motions. It was
expected that there would be little effect of the sub-filter scales on 57µm
particles, which is verified on particle radial velocity profiles. However, a very
small difference has been noticed on the particle concentration profiles, which
is probably due to an excessive filtering out of the kinetic energy that is not
well captured by the model. Both RANS and LES predict reasonably well
the experimental results, with the LES results being marginally closer to the
experiment for the concentration profiles.

Figure 6 shows, for both numerical simulations, the prediction of the
particle dispersion coefficient along with the experimental observations. Pre-
vious dispersion coefficient estimates were all based on observations of number
density profiles of particles dispersing from a line or point source [28]. Then
the dispersion coefficient or turbulent diffusivity of particles was related to
the time rate of change of the mean square dispersion y2 following [29, 30],
and is given as:

εp =
1
2
d

dt
y2 . (21)

This method is only correct if εp is constant throughout the flow field and the
convective velocity is uniform, as is the case for homogeneous and isotropic
turbulence. It is less meaningful for turbulent shear flows, however, which is
the case of turbulent pipe flow.

A method is developed to allow local estimates for the diffusivity to be
obtained when the turbulence is neither homogeneous nor isotropic [31]. If
the flux is considered to be caused only by gradient diffusion (Fick’s law),
the particle dispersion coefficient at every radial location can be computed
according to the following formula, except in regions where ∂C/∂r is near 0:

εp = −〈vp · C〉(∂C
∂r

)−1 . (22)

This allows the particle diffusivity to be computed locally at all measuring
points. The required measurements are the average particle velocity vp in the
radial direction and the concentration profile C.

As it is depicted by Fig. 6., numerical predictions for the 57µm particle dif-
fusivity are about the same, slightly under-predicting the experimental results
near the wall. For the 5µm particles, it is clear that LES results more closely
match the experimental results than the RANS predictions. It is shown that
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Fig. 6. Particle dispersion coefficient. top:5µm; bottom:57µm.

both RANS and LES predict reasonably well the particle dispersion coefficient
of 57µm particles, whereas RANS predictions failed to match the experimental
results of the 5µm particles. LES predictions for the 5µm particles are excel-
lent and highlight once again the importance of including the sub-filter effects
on small particles dispersion.

4 Concluding remarks

Numerical simulations using two approaches, namely RANS and LES, were
conducted to compute inertial particle dispersion in a turbulent gas flow in
a pipe at a high Reynolds number. Numerical predictions were compared to
the experimental observations of Arnason and Stock.

Stochastic modeling of the turbulent fluctuations seen by inertial particles
along their trajectories has been used in the framework of RANS, and is
extended to model turbulent sub-filter scale fluctuations seen by the inertial
particles in an LES velocity field. Particle dispersion statistics such as particle
concentration, radial velocity and the dispersion coefficient were computed for
two types of solid particles that have different inertia and drift.

The use of a Langevin-type stochastic approach to model the sub-filter
fluctuations has proven crucial for results concerning the small-Stokes-number
particles. The stochastic model used was of Langevin type that has been
extensively used in the framework of RANS. Its simplistic extension to predict
the sub-filter fluctuations for LES gave satisfactory results.
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Comparison of RANS and LES results have shown that the RANS ap-
proach is unable to predict particle dispersion statistics as accurately as the
LES in particular for inertial particles characterized by a Stokes number smal-
ler than one. For particles with Stokes number higher than one, both LES and
RANS predictions compare reasonably well with the experimental results.

One possible extension of this study can be the further testing of the
ability of the present stochastic sub-filter model, in the framework of LES of
non-equilibrium, non-homogeneous and anisotropic turbulent flows, such as
flows characterized by the presence of zones of recirculation for instance. It
is expected that the assumptions made to implement the model may cause it
to fail in the prediction of this type of flow (assumptions of an equilibrium at
the LES cutoff in modeling sub-filter time scales). Solving an extra transport
equation for the residual kinetic energy may be needed to replace the crude
Smagorinsky scaling estimates.

Acknowledgment

This work was funded by the Algerian Government and the Worldwide Uni-
versity Network at Manchester University. The authors would like to thank
EDF R&D for making the “Code Saturne” software available in source code.

References

[1] Lakehal D. (2002) Int. J.Multiphase Flows, 28:823-863
[2] Armenio V., Piomelli U., Fiorotto V. (1999) Phys. Fluids. A(11), pp.

3030-3042.
[3] Schumann U. (1975) J. Comp. Phys. 18,376.
[4] Shotorban B., Mashayek, F. (2005) Phys. Fluids 17, 081701.
[5] Pope S.B (2000) Cambridge University Press
[6] Shotorban B., Mashayek, F. (2006) J.of Turbulence. Vol 7, No. 18.
[7] Arnason G. (1982) Ph.D. dissertation, Washington State University, Pull-

man
[8] Archambau F., Mehitoua N., Sakiz M. (2004) International Journal on

Finite Volume.
[9] Minier J-P., Peirano E. (2001) Physics Reports, 352:1-214.

[10] Smagorinsky J. (1963) Mon. Weather Rev. 91-99.
[11] Maxey M.R., Riley J.J. (1983) Phys. Fluids., v 26, n4, pp. 883-9.
[12] Sommerfeld M.(1992) Int. J. Multiphase Flow, 18: pp.905-926.
[13] Langevin P. (1908) Comptes Rendus Acad. Sci., Paris 146, 530-533.
[14] Haworth. D.C., Pope S. (1986) Phys. Fluids. 29(2) pp. 387-405
[15] Kloeden P.E., Platen E., Schurz H. (1994) Springer-Verlag.
[16] Gicquel L.Y.M., Givi P., Jaberi F.A, Pope S.B. (2002) Phys. Fluids.

A(14)3.
[17] Pozorski J., Minier J-P. (1998) Int. J. Multiphase Flow, 24: 913-945
[18] Minier J-P., Peirano E., Chibarro S. (2004) Phys. Fluids, 18:302-14.



192 Abdallah S. Berrouk et al.

[19] Minier J. P. (2000) Monte Carlo Methods and Appl., Vol.7, No. 3, pp.
295-310.

[20] Wang L.P., Stock D.E. (1993) J. Atmos Sci. Vol.50, No 13, pp. 1897-1913.
[21] Carlier J. Ph., Khalij M., Oesterle B. (2005) Aerosol Sci. and Tech.

39:196-205
[22] Csanady G.T. : (1963) J. Atmos. Sci. Vol.20, pp 201-208.
[23] Sato Y., Yamamoto K. (1987) J. Fluid Mech. 175, 183.
[24] Riley J.J., (1971) Ph.D dissertation, The Johns Hopkins University, Bal-

timore.
[25] Heinz S.(2003) Springer-Verlag. Berlin.
[26] Minier J-P., Peirano E., Chibarro S. (2003) Monte Carlo Methods and

Appl., Vol.9, No. 2, pp. 93-133.
[27] Maclnnes J. M., Bracco F. V. (1992) Phys. Fluids A4(12). pp.2809-2824
[28] Arnason G., Stock D.E. (1983) American Society of Mechanical Engin-

eers. Fluid Engineering Division. v10, pp. 25-29.
[29] Taylor G.I. ( 1921) Proc. Roy. Soc. A 151, pp. 421-478.
[30] Hinze J.O. (1975) McGraw-Hill, 253,460-471.
[31] Arnason G., Stock D.E. (1984) Experiments in Fluids. v2, n2, pp. 89-93.



DNS study of local-equilibrium models in
dilute particle-laden turbulent pipe flows
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Summary. A two-fluid closure model, commonly used in engineering simulations,
is the drift-velocity model of Simonin. In this work, this model is evaluated for dilute
particle-laden pipe flows, using Direct Numerical Simulations (DNS) with particle
tracking. The simulations were performed with both heavy and light particles
(particle relaxation-times of τ+

2 = 100 and τ+
2 = 10, respectively) and with reflecting

and absorbing walls as the boundary conditions for the particles, resulting in four
different cases. For all the cases, except the combination of heavy particles and ab-
sorbing walls, from a pragmatic point of view, the assumptions of local-equilibrium
and homogeneous turbulence seem to hold. For the drift-velocity two models were
evaluated: (i) a simple Schmidt-number model, and (ii) a more advanced drift-tensor
model. From an engineering perspective, for light particles with reflecting walls the
Schmidt-number model appears to be the best choice. However, when the particles
are heavier or when the walls are absorbing, the more advanced drift-tensor model
gives better results. For these cases, provided that there exists good closure models
for the time-scales and particle-fluid velocity correlations, a drift-tensor model could
be a better option.

1 Introduction

Particle-laden turbulent pipe-flows are an important area of interest within the
broader field of multiphase flows. The applications are numerous: pneumatic
conveying of granular material, annular flow, catalytic crackers, to name just
a few examples. For engineering purposes, a method often used for numerical
simulations of particle-laden turbulent gas flows is the two-fluid model. In
this model, the particle-phase as well as the continuous-phase, is described
by a set of Reynolds-averaged Navier-Stokes equations. Although this has the
advantage of not requiring a large amount of computational resources, it has

Bernard J. Geurts et al. (eds), Particle Laden Flow: From Geophysical to Kolmogorov Scales, 193–206.
© 2007 Springer. Printed in the Netherlands.
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the disadvantage that modeling is required for both the Reynolds-stresses and
the interfacial momentum-transfer.

Over the years, quite some research has been done in particle-laden flows.
A possible modeling candidate to close the dispersed-phase Reynolds-stresses,
the local-equilibrium model of Tchen and Hinze [3], is found in the classic book
on turbulence from Hinze [3]. Some more recent work comes from Portela et
al. [6], who have done a numerical study of equilibrium models in turbulent
pipe flows near the wall. Portela et al. evaluated the model of Tchen and
Hinze, and, from an engineering perspective, found it is able to accurately
predict the dispersed-phase Reynolds-stresses, except very close to the wall.

For dilute systems with heavy small particles and conservation of mass for
each individual phase, the factor dominating the interfacial momentum trans-
fer is the drag force, exerted by the continuous-phase on the dispersed-phase.
This drag force is proportional to the difference between the average velocity
of the particles and the average velocity of the continuous-phase as seen by the
particles. The average continuous-phase velocity as seen by the particles needs
to be closed, and a method that can be used for this, is turbulent diffusion
modeling.

An example of a simple turbulent-diffusion model, is the Schmidt-number
model. This model is used by Young and Leeming [10], for their evaluation of
the influence of the gradient of the Reynolds stresses on particle deposition
for different particle relaxation-times. In their calculations of the turbulent
diffusion, Young and Leeming assume the Schmidt number to have a value
equal to one. Both Reeks [8] and Simonin [9] have developed more-advanced
turbulent-diffusion models, based on the local-equilibrium assumption. The
objective of this work is to evaluate the turbulent diffusion model of Simonin,
the drift-velocity model [9], using DNS with particle tracking, and to compare
it with the Schmidt-number model, which can be seen as a particular case of
Simonin’s model.

In the next section the basic, two-fluid equations are presented, together
with the models for the closure of the Reynolds stresses and the drift-velocity.
Then, in the subsequent section, the results are presented, followed by the
conclusions.

2 Theory of two-fluid modeling

2.1 General equations

The general two-fluid mass and momentum balances can be obtained in vari-
ous ways. One method, is by deriving them from the single-phase Navier-



Local-equilibrium models – particle-laden pipe flows 195

Stokes equation or the Maxey and Riley equation [4] with a phase-operator
[2]. This method is similar to Reynolds-averaging, used in RANS modeling.
Another approach, used by Simonin in the derivation of his drift-velocity
model, is the statistical approach with a probability density function [5]. This
probability density function (PDF) gives a Lagrangian description of both the
particles an the fluid. Using the Fokker-Plank equation, which describes the
evolution of system considered, the Lagrangian PDF can be rewritten into
the two-fluid mass and momentum balances. When using the statistical ap-
proach, also the transport equation for the average continuous-phase velocity
as seen by the particles can be obtained. From this transport equation, the
drift-velocity model is derived.

The focus of this work is on the drift-velocity modeling. In order not to
mix different influences, a few assumptions have been made: (i) the system
is assumed to be in a statistical steady state, (ii) there is no evaporation
nor chemical reaction taking place, so there is conservation of mass for each
individual phase, (iii) the system is very dilute, so it is valid to assume one-
way coupling and neglect collision terms, (iv) there is no gravity, and (v) there
are only small heavy rigid particles. These assumptions result in the Maxey
and Riley equation being reduced to only the drag term.

Applying the above assumptions to the general two-fluid equations of the
dispersed-phase, results in:

∇ · (α2U2) = 0 (1)

for the average mass balance and:

∇ · (α2U2U2) = −∇ ·
(
α2

〈
u′

2u
′
2

〉)
− α2〈

τ2
〉Urel (2)

for the momentum-balance. Here, α2, is the dispersed-phase volume-fraction,
U2, the average dispersed-phase velocity,

〈
u′

2u
′
2

〉
, the dispersed-phase Reyn-

olds stresses,
〈
τ2

〉
, the average particle relaxation-time, and Urel, the aver-

age relative velocity between the continuous and dispersed-phase. Equation 2
shows that the dispersed-phase is only influenced by advection, divergence of
its Reynolds stresses, and drag. Closure models are needed for the dispersed-
phase Reynolds-stresses and the average relative velocity.

2.2 Reynolds stresses

A model often used for the Reynolds stresses, is the local-equilibrium model of
Tchen and Hinze [3]. This model assumes that the dispersed-phase Reynolds-
stresses and the continuous-phase Reynolds-stresses are directly proportional
to each other:
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〈
u′

2u
′
2

〉
= Γ

〈
u′

1u
′
1

〉
(3)

where Γ is given by:

Γ =
τ1

τ1 + τ2
(4)

Here τ1 is the continuous-phase Lagrangian integral time-scale. Although not
shown here, the local-equilibrium model Tchen and Hinze was evaluated [1],
and previous results, from Portela et al. [6], were confirmed. From an engin-
eering perspective, Γ is a useful definition for modeling the dispersed-phase
Reynolds-stresses in a turbulent pipe flow. Albeit the model assumes homo-
geneous isotropic turbulence, as long as both the dispersed-phase average
radial-velocity and the continuous-phase average radial-velocity are close to
zero, the particle-fluid interaction is similar to the interaction found in homo-
geneous isotropic turbulence, and from a pragmatic point of view, the model
gives good results, except very close to the wall.

2.3 Interfacial momentum transfer

Besides the dispersed-phase Reynolds-stresses, the average relative velocity,
Urel, needs to be closed too. The definition of Urel is:

Urel = U2 − Ũs (5)

with Ũs being the average continuous-phase velocity, as seen by the particles.
This average velocity, Ũs, can also be written as:

Ũs = U1 +
〈
u′

1

〉
2

(6)

Here, U1, is the average continuous-phase velocity and,
〈
u′

1

〉
2
, is the average

continuous-phase velocity fluctuation as seen by the particles, also known as
the drift-velocity, Ud. Assuming homogeneous turbulence and steady state,
the transport equation of the continuous-phase velocity, as seen by the
particles, reduces to [5]:

Ud = −D12
1
α2

∇α2 (7)

The drift-velocity, Ud, is assumed to be in local equilibrium with the normal-
ized gradient of the dispersed-phase volume-fraction, 1

α2
∇α2. They are pro-

portional to each other with, D12 being the diffusion tensor. In this work, two
different models for D12 were evaluated: (i) a simple Schmidt-number model,
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which assumes D12 to be a scalar, and (ii) a more advanced tensor-diffusion
model, where D12 is a tensor.

The Schmidt-number model is the limiting case of the tensor-diffusion
model for small particles and homogeneous isotropic turbulence. It assumes
the diffusion of the drift-velocity, D12, to be directly proportional to the eddy
viscosity. The ratio between the two is defined as the Schmidt number, Sc,
resulting in the following equation for, D12:

D12 =
νt

Sc
(8)

The more advanced diffusion-tensor model [9] is given by:

D12 = −G−1
12

〈
ũ′

1u
′
2

〉T (9)

where
〈
ũ′

1u
′
2

〉T is the transpose of the correlation tensor between the velocities
of the continuous and dispersed phases. G−1

12 , is the inverse tensor of G12 and
has the dimension of a time-scale. G12 represents crossing-trajectory effects,
and is modeled by Simonin [9] as:

G12,ij = − 1
τ t
12,⊥

δij −
[

1
τ t
12,‖

− 1
τ t
12,⊥

]
Urel,iUrel,j

|Urel|2
(10)

Here τ t
12,‖ and τ t

12,⊥ are the Lagrangian integral time-scales, measured along
the particle paths, of the fluid velocity fluctuation, in the directions parallel
and orthogonal to the mean relative velocity, respectively. These time-scales
need to be modeled, and Simonin follows Csanady’s approach (with Cβ =
0.45) to obtain them from the standard Lagrangian integral time-scale of the
fluid, τ t

1. This gives the following set of equations to calculate the parallel and
orthogonal Lagrangian time-scales, τ t

12,‖ and τ t
12,⊥:

τ t
12,‖ = τ t

1

[
1 + Cβζ

2
r

]−1/2

ζ2
r =

3
2
|Urel|2
k1

β1 =
1
2

+
3
4
C0

τ t
12,⊥ = τ t

1

[
1 + 4Cβζ

2
r

]−1/2

τ t
1 =

1
β1

k1

ε1
(11)

k1 =
1
2
〈
u′

1,iu
′
1,i

〉
1

Here k1 is the continuous-phase turbulence kinetic energy and ε is the dis-
sipation. For the standard Lagrangian integral time scale ,τ t

1, Simonin uses a
model proposed by Haworth and Pope with C0 = 2.1 [9].

For the evaluation of the Schmidt-number model, the Schmidt number is
calculated using the formula:
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Sc = − νt

Ud

1
α2

∇α2 (12)

with νt, the eddy viscosity, defined as:

νt = −
〈
u′

1,ru
′
1,z

〉
∂U1,z

∂r

(13)

In both equations 12 and 13 all variables on the right-hand-side are ob-
tained from the data obtained from the DNS with particle tracking. The
drift-tensor model is evaluated using equation 9 to calculate the theoretic-
ally predicted drift-velocity. This theoretically-predicted drift-velocity is then
compared to the drift-velocity obtained from the DNS.

3 Results

We performed standard DNS with particle tracking on a non-uniform
staggered grid [7]. At both ends of the pipe, which has a length of five dia-
meters, periodic boundary conditions are applied. At the wall, the continuous
phase has a no-slip boundary condition, and for the particles two different
boundary conditions are implemented: (i) reflecting walls, which is akin to
the situation encountered when a solid particle hits the wall and bounces
back elastically, and (ii) absorbing walls, which is akin to the situation en-
countered when a liquid droplet in annular flow hits the liquid film at the wall
and disappears. For each individual particle it is counted how often it has
crossed the five diameter long computational domain of the pipe, and thus
how far it has traveled in total. In the code, when a particle hits the wall and
is absorbed, its counter for the total distance it traveled is reset to zero. It is
reinserted at the very beginning of the pipe with an uniform random distribu-
tion over the cross-section, and with the instantaneous velocity equal to the
local velocity of the continuous-phase. After having traveled approximately
twenty-five pipe diameters down-stream, a reinserted particle is uncorrelated
with its initial state, and is accounted for again in the particle statistics.

In the work of Young and Leeming [10], a classification is made which
distinguishes three different particle deposition regimes, depending on the
particle relaxation-time. (i) a regime where particle deposition is dominated
by Brownian motion, (ii) a regime where particle deposition is dominated by
the inertia of the particles, and (iii) an intermediate regime. In our simulations
two different particles are used: (i) “light” particles with a non-dimensional
relaxation-time of τ+

2 = 10, which are in the intermediate regime and (ii)
“heavy” particles with a relaxation-time of τ+

2 = 100, which are in the inertia-
dominated regime. Together with the two different boundary conditions, these
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Table 1. An overview of the values of the different parameters used in the DNS.

all: One-Way Coupling
Grid points (radial, tan-
gential and streamwise)

64x128x128

Radial grid stretching Cg = 1 .1745
Friction Reynolds number Reτ = 360
Bulk Reynolds number ReB ≈ 5300
Density ratio ρ2/ρ1 = 1000
Kinematic viscosity ν1 = 1 .5 · 10−5

Kolmogorov length-scale η+
k ≈ 2

Kolmogorov time-scale τ+
k ≈ 4

case 1: Reflecting walls
Particle relaxation-time τ+

2 = 10
Particle diameter d+

2 = 0 .42

case 2: Reflecting walls
Particle relaxation-time τ+

2 = 100
Particle diameter d+

2 = 1 .34

case 3: Absorbing walls
Particle relaxation-time τ+

2 = 10
Particle diameter d+

2 = 0 .42

case 4: Absorbing walls
Particle relaxation-time τ+

2 = 100
Particle diameter d+

2 = 1 .34

two particles result in a total of four different simulations. An overview of the
different parameters used in each simulation is given in table 1.

All parameters have been non-dimensionalized using the friction velocity,
uτ , and the viscosity, ν1, denoted by the superscript +.

Figure 1 shows the normalized concentration profiles for all four cases. For
all of them, except heavy particles combined with absorbing walls, a huge in-
crease of the particle concentration towards the wall can be seen. The increase
in concentration in the near-wall region compared to the center of the pipe can
be as big as four decades. For reflecting walls, the two terms of the momentum
balance (equation 2) that determine the particle-concentration profile are (i)
the gradient of the radial Reynolds-stresses, driving the particles towards the
wall, and (ii) the drag in radial direction, caused by the drift-velocity, pushing
the particles away from the wall. Particles constantly move towards the wall.
However, once they arrive there, they tend to stay there. Close to the wall,
the turbulence kinetic energy of the continuous phase is small, therefore it
is hard for a particle to gain enough kinetic energy to go back to the center
of the pipe. Due to their bigger inertia, for heavy particles it is even more
difficult to escape from the near-wall region. This explains the higher concen-
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Fig. 1. Normalized particle-concentration as a function of the distance from the
wall, for reflecting (Rf) and absorbing (Ab) walls, and non-dimensional particle
relaxation-times of τ+

2 = 10 and τ+
2 = 100.

tration of heavy particles towards the wall for reflecting walls, compared to
the concentration of the light particles.

For absorbing walls, an interesting difference between the light and heavy
particles can be seen. Although all the particles which hit the wall are ab-
sorbed, the light particles are still able to pile-up near the wall. The light
particles are slowed-down a lot in the near-wall region, and are not able to
move straight to the wall. Their deposition rate is dominated by the small-
scale near-wall turbulence. However, the heavy particles, due to their inertia,
are accelerated by the large scale eddies in the center region of the pipe, and
then have enough kinetic energy to move straight through the near-wall tur-
bulence and hit the wall. Contrary to the light particles the deposition rate
of the heavy particles is not dominated by small-scale near-wall turbulence,
but by the large-scale center-region turbulence. As will be shown below, for
heavy particles combined with absorbing walls, the relatively flat concentra-
tion profile makes the use of drift-velocity models quite problematic.

Figure 2 shows the radial, tangential and streamwise drift-velocities for
all the cases. Due to symmetry arguments, the tangential component of the
drift-velocity, U+

d,θ, should be equal to zero, as indeed is the case.

There exist two limits for the drift-velocity as a function of the particle
relaxation-time. Particles with a relaxation-time approaching zero behave as
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Fig. 2. Drift-velocities in radial, U+
d,r, tangential, U+

d,θ , and streamwise direction,

U+
d,z, for (a) reflecting walls and a particle relaxation-time of τ+

2 = 10, (b) reflecting

walls and a particle relaxation-time of τ+
2 = 100, (c) absorbing walls and a particle

relaxation-time of τ+
2 = 10, and (d) absorbing walls and a particle relaxation-time

of τ+
2 = 100.

tracers and there is no difference between the continuous-phase velocity they
see and the “true” continuous-phase velocity, hence there is no drift-velocity
for those particles. In the other limit, very-heavy particles are not influenced
by the turbulence, they stay at their place (in the case of zero gravity) and
also do not see another continuous-phase velocity. Therefore, for very-heavy
particles, the drift-velocity is also equal to zero. Somewhere in between, there
exists a particle relaxation-time for which a maximum drift-velocity occurs.
This can also be seen in figure 2. The heavy particles are less correlated to
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the continuous-phase fluctuations, and consistently show lower drift velocities
than the light particles.

Also interesting to see are the different streamwise drift-velocities. Firstly,
in all graphs of figure 2, except for graph (d), at approximately the same place
that the radial drift-velocity goes to zero, the streamwise drift-velocity changes
sign. Due to preferential-concentration effects, in the large-scale turbulence in
the center region of the pipe, the particles see an average continuous-phase ve-
locity higher than the actual continuous-phase velocity, whereas in the small-
scale turbulence in the near-wall region, they see a lower continuous-phase
velocity. Secondly, the streamwise drift-velocities are quite large compared to
the radial drift-velocities. This shows one of the shortcomings of the Schmidt-
number model. As can be seen in equations 7 and 8, according to the Schmidt-
number model, the drift-velocity in a certain direction is directly proportional
to the concentration gradient in that direction. However, the streamwise dir-
ection is a homogeneous direction and there is no concentration gradient in
this direction. Therefore, the Schmidt-number model wrongly predicts a zero
drift-velocity in the streamwise direction. Although this wrong prediction of
the streamwise drift-velocity can be a problem when one is interested in the
residence time of the particles, for a lot of engineering purposes, one is only
interested in the drift-velocity in the radial direction. The drift-velocity in
radial direction is the component that determines the particle deposition at
the wall, and thus the particle distribution.

Another case where the Schmidt-number model has problems, is light
particles combined with absorbing walls. In graph (c), of figure 2, it can be
seen that the drift-velocity in the radial direction changes sign, instead of ap-
proaching zero, as in the other figures. This change of sign is not predicted
by the Schmidt-number model, because the concentration gradient does not
change sign at that position.

In figure 3, the Schmidt number is shown for all cases. Since for this a-
priory evaluation of the Schmidt number equation 12 is used, in the center
region, a very small particle-concentration gradient is divided by a very small
drift-velocity. This results in a lot of statistical-noise in the center region, and
this region is left out in figure 3. However, when actually using the Schmidt-
number model, equation 8 is used, and the almost zero particle-concentration
gradient in the center region correctly results in a very small drift-velocity.

As explained above, the Schmidt number is not a very useful definition
for absorbing walls. For light particles, the Schmidt number, calculated with
equation 12, shows a strange change of sign, due to the change of sign of
the radial drift-velocity. For heavy particles and absorbing walls, the Schmidt
number is far from constant, because of the almost uniform concentration pro-
file. However, for reflecting walls the situation is better. Except very close to
the wall, the Schmidt number seems to be quite constant. For heavy particles
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Fig. 3. Schmidt number in the radial direction for reflecting and absorbing walls and
non-dimensional particle relaxation-times of τ+

2 = 10 and τ+
2 = 100, as a function

of the distance from the wall.

an increase in the Schmidt number can be seen from y+ ≈ 75 on, but for
light particles its value is almost constant. Also, its value is of the order of
one, as was assumed by Young and Leeming [10]. From an engineering per-
spective, the Schmidt-number model is a good modeling candidate for light
particles combined with reflecting walls. Especially, since using the Schmidt
number to calculate the drift-velocity only involves taking the right value
of the Schmidt number and modeling the eddy viscosity, whereas for the
diffusion-tensor model a much more complicated modeling is needed.

Figure 4, shows both the drift-velocity obtained directly from the DNS,
U+

d,sim, and the drift-velocity calculated using the diffusion-tensor model, U+
d,D,

which was introduced in section 2. When using the model presented above for
the two time-scales, the drift-tensor model gives quite a wrong prediction of
the magnitude of the drift velocities. However, when introducing a new fit-
ting constant, whose value is simply obtained by visually fitting the maximum
value of U+

d,sim to U+
d,D, the drift-velocities turn out to fit quite well for most

cases. Graphs (a) and (b), in figure 4, show the drift-velocities for reflecting
walls combined with light and heavy particles, respectively. In both graphs, es-
pecially for the light particles, the shape of the radial drift-velocity is predicted
well. Also, a drift-velocity in the streamwise direction is predicted, although
not its change of sign. Graphs (c) and (d), in figure 4, show the drift-velocities
for absorbing walls. As was also seen in the concentration profiles (figure 1) the



204 A.M.P. Boelens and L.M. Portela

Fig. 4. Theoretically-predicted drift-velocities and drift-velocities obtained from
DNS as a function of the wall-distance, for (a) reflecting walls and a particle
relaxation-time of τ+

2 = 10, (b) reflecting walls and a particle relaxation-time of
τ+
2 = 100, (c) absorbing walls and a particle relaxation-time of τ+

2 = 10, and (d)
absorbing walls and a particle relaxation-time of τ+

2 = 100.

light particles in combination with absorbing walls behave very similarly to
the case of light particles and reflecting walls. The drift-velocity is quite well
predicted. However, for the heavy particles neither the radial drift-velocity
nor the streamwise drift-velocity is predicted correctly. Only very close to the
wall, the theoretically-predicted radial and streamwise drift-velocities corres-
pond to the actual drift-velocities. Due to the fact, that the heavy particles
move straight through the near-wall turbulence, the concentration profile is
too flat, and both the radial and the streamwise drift-velocities are not well
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predicted anymore. Due to the flux of particles towards the wall, the basic
assumption of the drift-velocity model, local equilibrium, is not valid anymore.

4 Conclusions

For all cases, except very close to the wall, for both light and heavy particles in
combination with reflecting walls, and light particles combined with absorbing
walls, the tensor-diffusion model holds. From a pragmatic perspective, local
equilibrium and neglecting non-homogeneity of the flow, which are the basic
assumptions of the drift-velocity model, seem to be valid for these cases.

The Schmidt-number model for interfacial momentum transfer, has some
problems. It wrongly predicts a zero drift-velocity in streamwise direction and
it does not predict the drift-velocities for absorbing walls correctly. However,
for light particles with reflecting walls the radial drift-velocity is predicted
correctly. Because for engineering purposes the radial direction is usually the
only important direction, the Schmidt number is a simple way to predict the
drift-velocity for this case.

The more advanced drift-tensor model predicts both the radial and stream-
wise drift-velocity with the wrong value, when one uses the “standard” time-
scales proposed by Simonin. However, after multiplying the predicted drift-
velocities with a fitting constant, the model did predict the right shape of
the drift velocities for all cases, except heavy particles with absorbing walls.
With a better model for the time-scales, and when modeling the particle-fluid
velocity correlations correctly, this model is more flexible than the Schmidt-
number model. For light particles and reflecting walls the Schmidt number
seems better: there is less modeling involved and the results work equally
well.
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1 Overview

This paper discusses numerical particle tracking of a 3D cloud of monod-
isperse particles injected within a steady incompressible free round turbulent
jet. With regard to particle-turbulence interaction, the presented modeling
is adequate for dilute suspensions [7], as the carrier and dispersed phase’s
solutions are worked out in two separate steps.

Section 2 describes the solution of the carrier fluid’s Reynolds-averaged
flow. The Reynolds numbers of environmental concern are generally high,
and here the turbulence closure is a traditional k-ε model á la Launder and
Spalding [2] with an ad hoc correction of Pope’s to the ε equation to account for
circumferential vortex stretching in a round jet [21]. The resulting mean-flow
and Reynolds-stress fields are discussed in the light of the LDA measurements
by Hussein et al. (1994) with Re ∼ 105 [11].

Section 3 deals with the solution of the dispersed phase. The carrier fluid’s
unresolved turbulence is modeled as a Markovian process. We particularly
refer to the reviews of Wilson, Legg and Thomson (1983) [30] and McInnes
and Bracco (1992) [18]. Clouds of marked fluid particles, rather than traject-
ories, are used for visualizing the dispersing power of fluctuations. As fluc-
tuations in inhomogeneous turbulence are known to entail sizeable spurious
effects, the consistency of the Eulerian and Lagrangian statistics are checked
by comparing the first- and second-order moments of the particle velocity with
the mean flow and Reynolds stresses of the Eulerian solution, as well as the
concentration fields from either solution.

Surprisingly, our tests failed to confirm the full effectiveness of the correc-
tions proposed in either model. The particle spurious mean-velocity vanishes
towards the jet edge, thus abating the unphysical migration towards low-
turbulence regions. However, because of a residual disagreement between the
Lagrangian and Eulerian mean velocities, mass conservation entails concen-
tration profiles that do not follow the anticipated scaling. Possible reasons for
this are discussed in the closing section.

Bernard J. Geurts et al. (eds), Particle Laden Flow: From Geophysical to Kolmogorov Scales, 207–219.
© 2007 Springer. Printed in the Netherlands.
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2 Eulerian modeling of the Reynolds-averaged jet flow

The symbolism for the Reynolds averaging is ui = ui + u′
i (i = 1 . . . 3).

The Eulerian governing equations are the elliptic Reynolds-averaged mo-
mentum and continuity equations and the transport equations for the turbu-
lence scalars k and ε. In the Cartesian space and at the steady state, they
read

uj
∂ui

∂xj
= −1

ρ

∂p

∂xi
− ∂Rij

∂xj
+ νt

∂2ui

∂xixj
;

∂uj

∂xj
= 0.

The Reynolds-stress tensor Rij is modeled with the Boussinesq approxima-
tion:

Rij = −νt

(
∂ui

∂xj
+

∂uj

∂xi

)
+

2
3
kδij .

The eddy viscosity is based on the scaling νt = Cµk
2/ε, where the fields of

the k and ε turbulent scalars are computed with
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k
+

∂
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σε

)
∂ε

∂xj

]
. (1)

The constants Cµ through Cε2 and σε take the classic values of Launder and
Spalding [2]. The extra term having Cε3 in Eq.(1) depends on the vortex-
stretching invariant χ:

χ =
(

k

2ε

)3 (
∂ui

∂xj
− ∂uj

∂xi

)(
∂uj

∂xk
− ∂uk

∂xj

)(
∂uk

∂xi
− ∂ui

∂xk

)
,

put forward by Pope (1978) to reconcile the spreading rate of the axial ve-
locity profile [21], for which the uncorrected model would yield 0.11 against
the measured 0.094-0.096. We used a value Cε3 = 0.5, lower than 0.7, to
match more recent measurements than those originally used by Pope – Fig.
1a. Benefits and limitations of this correction are also discussed in [25].

The equations are solved in dimensionless form by normalization with the
nozzle diameter D and jet exit velocity u(0,0) and, exploiting axi-symmetry,
in the polar-cylindrical space (x, r, θ). The origins of both frames are placed
at the jet exit centerline.

The physical domain is the flow’s symmetry half-plane 100× 20 diameter
long and wide respectively. A pipe protrudes into the domain for 8 diameters.
A structured grid of 200×90 suitably clustered, orthogonal cells is more than
adequate to resolve the expected gradients accurately. A plug-flow profile is
assigned as inflow condition.

The general-purpose in-house research code stream, thoroughly described
in [16], has been used to solve the above equations with a finite-volume
method. Suffice it here to say that the norms of the algebraic-equation re-
siduals could be brought down below the order of 10−13 routinely.
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2.1 Results

Fig. 1. Radial profiles in self-similarity variables of: a) ux; b) k; c) Rxx; d) Rrr;
e) Rθθ; f) Rxr. Thin lines: k-ε results at transects x/D = 55, 74, 83, 92. Bold line:
measured data fit by Hussein et al. [11]. Dashed line: selected profile at x/D = 74
without Pope’s correction. Symbols: measurements from [23] (�), [15] (◦), [19] (�),[9]
(×), [28] (�), [10] (•), [24] (�) and [8] (�).

Centerline values (not shown here) . The normalized axial velocity is expected
to decay as x−1. The inverse quantity u(0.0)u

−1
(x.0) increases linearly with a slope

of 0.1564 very close to 0.1538 as measured. The virtual origin at x0 = 1.07D,
less than 4D as measured, implies a shorter zone of flow establishment.
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The turbulent kinetic energy k is to decay as x−2 [2], and the quadratic fit
of the inverse quantity is excellent from x = 10D onwards. Similarly, the rate
of turbulent energy dissipation ε should decay as x−4, which is well reproduced
by computation; the fourth-order polynomial fit to the inverse quantity has a
leading-order coefficient of 0.0188 against 0.0208 as measured by Antonia et
al. for Re = 1.5 · 105 [5].

The turbulence timescale T ′ = k/ε, therefore, increases as x2, e.g. in ac-
cordance with Batchelor’s analysis [6], with values ranging from 5 to 50 time
units. This derived quantity is central to modeling the autocorrelated part in
the fluctuation velocity – Eq. (2).

Radial profiles (Fig. 1). All plots are in self-similarity variables. Bold lines
represent the data fits of the benchmark experiment [11]. Continuous lines
show the computed quantities at selected far-field stations, which do collapse
on a single curve, achieving self-similarity. Dashed lines indicate the k-ε per-
formance without Pope’s correction.

Symbols are used to report the LDA measurements of high-Re single-phase
jets made available by some authors – Popper et al. (1974) [23], Levy and
Lockwood (1981) [15], Modarres et al. (1984) [19], Fleckhaus et al. (1987) [9],
Tsuji et al. (1988) [28], Hardalupas et al. (1989) [10], Prevost et al. (1996)
[24] and Fan et al. (1997) [8] – prior to studying the two-phase case.

Pope’s correction helps reduce to some extent the discrepancy between
measured and computed flow quantities. A Cε3-value to match the axial-
velocity spreading rate (the point of ordinate 0.5 in Fig. 1a) worsens the
prediction of the turbulent axial stress Rxx only (Fig. 1c), while those of Rrr,
Rθθ and Rxr improve to match the correct proportion with the scaling vari-
able u2

(x,0) (Fig. 1d-f). The off-axis peaks of Rrr and Rθθ are not supported
by the corresponding measurements though.

Further, the cross-comparison between the experimental data sets reveals
a noticeable disagreement between the benchmark and the two-phase studies
that, except for Fan et al.s, spread less than expected

3 Lagrangian modeling of the particulate cloud

Particles enter the domain at uniformly-distributed random positions on a
pipe cross-section with a chosen input rate Ṅ (equal to 100 particles per unit
time as a baseline default). The flow properties at a particles position are
worked out by mapping the Cartesian position (x1, x2, x3) into the compu-
tational grid (x, r) and, then, working out the Reynolds-averaged dependent
variables with a bilinear interpolation. The resulting values are then mapped
back into the Cartesian space with the standard vector/tensor rotation opera-
tions. The local instantaneous fluid velocity ui is then created by summing ui

and u′
i as obtained from Sec 2 and 3.1 respectively. The Lagrangian equations

of motion are finally resolved.
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Initial values at the injection point x
(0)
i are set as v

(0)
i = ui[x

(0)
i ] and

a
(0)
i = 0, where vi and ai are the instantaneous velocity and acceleration to

the dispersed phase. Given x
(n)
i and v

(n)
i , the particle acceleration is computed

as a(n)
i = ai[v

(n)
i , ui(x

(n)
i )]. A first-order Euler scheme yields the solution

v
(n+1)
i = v

(n)
i + a

(n)
i ∆t, x

(n+1)
i = x

(n)
i + v

(n)
i ∆t.

When dealing with marked fluid particles, vi ≡ ui and only the displacement
equation is solved for.

A cloud then progresses and disperses within the previously-computed
mean flow. Particles leave the domain if either x1 > 40 or r > 20 diameters.
The cloud reaches a statistically-steady state when the particles entering the
domain equates in mean value to those leaving it, and the co-ordinates stat-
istics start to oscillate closely around steady values. To compare Lagrangian
and Eulerian statistics, the particle instantaneous properties are averaged first
over the volumes of a monitoring grid and, then, over time.

3.1 Fluctuation velocity field

The results discussed here only regard statistically-independent fluctuation
components which, at time t = n∆t for n > 1, take their values from the
Markov sequence:

u′(n)
i =

√
Φ

(n)
ii β

(n)
i + ciF

(n)
ii u′(n−1)

i + di. (2)

For n = 0, ci = di = 0.
In the first contribution, βi is a Gaussian random number with zero

mean and unit variance generated with the ‘polar Marsaglia’ method [1], and
Φii = φiφi are the diagonal components of the ‘randomness covariance matrix’
defined farther in Eq.(3). (No summation convention on tensor components.)

The ‘fluctuation variances’, resulting from squaring and averaging (2), fol-
low the sequence:

u′
iu

′
i

(n)
= Φ

(n)
ii + c2iF

2(n)
ii u′

iu
′
i

(n−1)
. (3)

Thereby, on requiring u′
iu

′
i = Rii for consistency between the representations

of the same flow viewed either in Eulerian or Lagrangian terms [22], and after
little manipulation, the ‘randomness variances’ read

Φ
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ii = R

(n)
ii

[
1 − c2i

(
R

(n−1)
ii /R

(n)
ii

)
F

2(n)
ii

]
. (4)

In the second contribution, the ci coefficients are scaling quantities de-
pendent on modeling choices discussed below. Farther, Fii belongs to the
autocorrelation tensor, modeling the ‘memory’ of the previous value in the
present component. We employ the exponential autocorrelation function
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Fii = exp(−∆t/Tp,i), (5)

wherein Tp,i is a (directional) Lagrangian particle-memory timescale. The con-
dition ∆t � Tp in F is recommended to limit the time-step dependence of
the cloud dispersion in homogeneous turbulence, and a stricter limitation is
anticipated in inhomogeneous turbulence [17, 31]. On taking ∆t < 0.1Tp,
F > 0.905 follows, i.e. the fluctuation is strongly autocorrelated.

In the third contribution, finally, di is a drift-correction term proposed by
various authors to remove spurious effects arising from modeled fluctuations
in inhomogeneous turbulence.

Fig. 2. Baseline Markovian fluctuation model. i) Side view of a 3D cloud of marked
fluid particles (distorted scales), N ≈ 69, 000; ii) Radial profiles of radial mean
velocity ur at stations x/D = 10 and 20. Lines: k−ε results. Symbols: volume/time-
averages of particles. The farther downstream the station, the lower the data set.

Baseline model (Fig. 2). The baseline model follows from the choices Tp,i =
Tp (isotropic timescale), ci = 1 (no rescaling), di = 0 (no drift correction).
The postulate Tp ∝ T ′ is commonly accepted, although there is no consensus
on its value even for isotropic homogeneous turbulence. An interesting, direct
measurement of this quantity in a jet flow, which effectively controls the cloud
spread, was presented at this conference by Bourgoin et al. [3]. Reviews report
estimates in the range of 0.06-0.63 [18, 26]. Kt = Tp/T

′ is here taken as 0.2
after Picart et al. (1986) [20]. For the resulting range of Tp here, this entails
∆t < 0.1 time units.

Plot 2.I shows the cloud of marked fluid particles. The fluid particles injec-
ted from the pipe drift away against the entraining mean flow un-physically.
This process, acting like spurious turbophoresis, is expected from stochastic
differential equations properties [12, 14] or on statistical [27] and physical
[29, 18] grounds.

A spurious velocity component appears in the radial mean-velocity profiles
of Plot 2.II, for the curves of the Lagrangian particles (symbols) and Eulerian
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field (lines) should rather collapse, as the fluctuations (2) are required to have
zero mean.

Fig. 3. Wilson-Legg-Thomson model. i) Side view of a 3D cloud of marked fluid
particles (distorted scales), N ≈ 25, 200; ii) Radial profiles of radial mean velocity
ur at stations at x/D = 10 and 20; iii) Radial profiles of radial turbulent stress Rrr

at x/D = 10, 20 and 30. iv) Normalized profiles of concentration c at x/D = 20, 30
and 40. Same symbols as in Fig. 2.

WLT-1983 model (Fig. 3). Wilson, Legg and Thomson (1983) [30] elaborated
on the previous works of Wilson et al. (1981) and Legg and Raupach (1982)
[14] on fundamental atmospheric dispersion problems. Here, the baseline
model is modified by assuming

a) ci =
√
R

(n)
ii /R

(n−1)
ii b) di =

1
2
∂Rii

∂xi
(1 − F )Tp, (6)

Here Φii > 0 is guaranteed unconditionally owing to (6a), as Φii = Rii(1 −
F 2) from (4). (Legg (1983) [13] and Thomson (1984) [27] presented further
analyses.)

The cloud of marked fluid particles (Plot 3.I) now remains neatly confined
within an ideal cone as expected [6]. However, the comparison of the Lag-
rangian and Eulerian radial mean-velocity profiles (Plot 3.II) shows that the
drift velocity is reduced, but far from removed.
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Plot 3.III shows the corresponding profiles of the radial turbulent stress
which are closely collapsing, predominantly as an effect of the ci rescaling
coefficients. This ensures that the particle velocity variance locally corresponds
to the turbulent stress field.

Plot 3.IV shows the self-similar concentration profiles with the ordinates
normalized with the cross-section average, rather than centerline, value to
reduce sensitivity on local scatter. Here, lines represent the solution of the
advection-diffusion equation of a passive tracer; symbols represent the volume-
time averages of the particle probability density (conditional to being at a
given streamwise location). The particle concentration profiles are bell-shaped,
but they do not reach a self-similar collapse as the centerline concentration
(commented later in Fig. 5) decays faster than x−1 [6]. Plausibly, this is a con-
sequence on the particle depletion off the axis caused by the residual spurious
radial velocity of Plot 3.II.

Fig. 4. Zhou-Leschziner/McInnes-Bracco model. Cloud population: N ≈ 32, 000.
Same symbols as in Fig. 3.

Interestingly, a separate test run with di = 0 also showed that similar
results can be obtained by enforcing (6a) alone.

ZL/MB-1992 model (Fig. 4). McInnes and Bracco (1992) reviewed a number
of random-walk models [18], including Wilson et al.’s (1981) [29] and Zhou and
Leschziner’s (1991) [4], yet leaving out the previous WLT-1983 model and, as
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a result, the assumption (6a). The baseline model is modified by assuming

a) Tp,i = Kt

√
2k

3u2
i

T ′ b) di =
∂Rij

∂xj
∆t, (7)

where di is the divergence of the stress vector acting on the surface element
normal to xi. The anisotropic Lagrangian time-scales (7a) originate from Zhou
and Leschziner, while the drift term (7b) belongs to McInnes and Bracco.

This model predicts a more active dispersion, as the particle cloud now
remains confined within a wider cone than Fig. 3 – see Plot 4.I. Again, the
drift velocity is reduced, but not entirely removed – Plot 4.II.

Plot 4.III shows three pairs of profiles of the radial turbulent stress, which
collapse as closely as in the WLT-1983 model, the less pronounced scatter
resulting from a larger number of particles in the cloud. Plot 4.IV finally
shows the concentration profiles in self-similar variables.

Overall, those plots make it apparent that the far-field difference between
the WLT-1983 and ZL/MB-1992 formulations is one of detail, rather than
character. We also recall that this analysis is restricted to independent fluctu-
ations (i.e. uiuj = 0 while in fact Rij �= 0 for i �= j), although separate runs
having covariances accounted for in the fluctuations did not effect improve-
ments.

Fig. 5. Centerline concentration decay in the range x/D = 1 − 40. Ordinates are
normalized with the initial in-pipe concentration. i) Wilson-Legg-Thomson model;
ii) Zhou-Leschziner/McInnes-Bracco model. Axes in log scale. Line: Eulerian passive
tracer. Symbols: volume/time-averages of particles. The sloping line indicates the
x−1 decay.

Finally, Fig. 5 compares the two fluctuation models and the Eulerian res-
ults with regard to the centerline concentration decay. Both models produce a
decay faster than x−1 (in fact, very close to x−2), while the ZL MB-1992 de-
cay starts from earlier within the unmixed core that predicted by the Eulerian
computation.
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Sensitivity tests

The cloud radial dispersion has been measured in an aggregated fashion by
time-averaging the standard deviations σ2, σ3 of the particle transversal co-
ordinates (x2, x3) all over the cloud outside the pipe. The time-averaged num-
ber of particles, N , has also been monitored.

Table 1a compares the above quantities obtained from either fluctuation
model with a given input rate of Ṅ = 100 and different time-steps. The results
are sensibly insensitive to the time step-refinement in both models.

Table 1b shows the same quantities against the increasing input rate in oth-
erwise identical conditions (∆t = 0.04 time units). The time-averaged number
of particles increases proportionally to the input rate, and dispersion is cor-
rectly insensitive to the cloud population.

Table 1. Cloud dispersion sensitivity to fluctuation models and: a) time-step re-
finement; b) particle population. Time-averages of the bulk standard deviations of
the particle xi co-ordinates (σi) and of particle number N .

WLT-1983 ZL/MB-1992

a) ∆t σ2 σ3 N σ2 σ3 N

0.0400 2.124 2.123 25,180 2.939 2.702 31,630
0.0100 2.115 2.125 25,120 − − −
0.0025 2.124 2.121 25,160 2.945 2.695 31,680

b) Ṅ

100 2.124 2.123 25,180 2.939 2.702 31,630
150 2.127 2.123 37,740 − − −
200 2.124 2.123 50,340 2.787 2.604 61,780

4 Closure

Regarding the carrier flow’s mean properties. Pope’s round-jet correction to
the standard k-ε closure does improve the agreement with the benchmark LDA
measurements of Hussein et al., though not sufficiently to enable accurate
numerical particle tracking (Fig. 1). A new value for Pope’s Cε3 constant
has been proposed allowing the k-ε and experimental axial-velocity profiles to
collapse.

Perhaps surprisingly, the benchmark and the published single-phase jet
measurements carried out prior to two-phase jet experiments show marked
discrepancies. Such basic inconsistencies shall affect a state-of-the-art calib-
ration of particle-laden jet models.
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Regarding the marked-fluid particles. Basic Markov fluctuation models are
well known to produce a fluctuation field violating the divergence properties
of the background flow (Fig. 2). We applied two mainstream modifications
thereof, E’s. (6) and (7) labeled as WLT-1983 and ZL/MB-1992, to a 3D
cloud of marked fluid particles injected within the jet flow.

Both models prescribe a drift-correction term having the gradient of the
turbulent normal stress – Eqs. (6b) and (7b). While WLT-1983 re-scale the
autocorrelated fluctuation according to the change of the background turbu-
lence intensity felt by the particle across the time step (6a), ZL/MB-1992
bring in the turbulence anisotropy by making the particle memory timescale
directional (7a). A working assumption of ours regarded modeling independ-
ent random numbers, with the neglect of the fluctuation correlation implied
in the shear stress, although this appeared not to be a crucial factor. Further,
our testing departed from the WLT-1983 specification for being applied to a
fully 3D dispersion problem, while the original was conceived for 2D atmo-
spheric dispersion; and from the ZL/MB-1992 model for not having included
the time cross-correlation between the fluctuation components.

Both approaches do result in a cloud with a bounded shape, reducing
but not correcting the spurious drift. In fact, the mean of the particle radial
fluctuations does not collapse onto the Eulerian mean value across the whole
cloud radius – plots II in Figs. 3 and 4. The same bias did not affect the
axial mean flow, as the axial turbulence inhomogeneity is greatly smaller than
the radial one. In consequence, particle mass conservation requires that the
Lagrangian concentration field does not follow the anticipated scalings, with
a faster streamwise decay (Fig. 5) and larger spread (Plots IV in Figs. 3 and
4, where the maxima approach the average value, the more so the farther
downstream, rather than keeping a constant ratio).

Both approaches, further, performed equally well as far as the Lagrangian
fluctuation variances and the Eulerian turbulent normal stresses are concerned
– plots III in Figs. 3 and 4.

Those results have been shown to be independent of a range of particle
input rates and time-step sizes. Therefore, the residual spurious drift, and the
consequences thereof, seem to point to modeling insufficiencies in the physical
description and/or more sophisticated approaches needed for the numerical
solution of stochastic differential equations. It should be stressed, however,
that this study is for fluid particles. When particles are solid, inertial effects are
likely to override subtle drift inaccuracies, so that the inadequacies highlighted
here are relevant when both effects are of the same order.
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Acceleration and velocity statistics of
Lagrangian particles in turbulence

Guido Boffetta

Dip. Fisica Generale and INFN, via P.Giuria 1, 10125 Torino, Italy

Summary. The statistics of Lagrangian tracers is a fundamental problem in fully
developed turbulence. On the basis of high resolution direct numerical simulations,
velocity and acceleration statistics will be discussed. The first part will be devoted
to ideal fluid tracers, while the second part will consider the more realistic case of
finite size particles with inertia.

1 Introduction

The knowledge of the statistical properties of Lagrangian tracers advected
by a turbulent flow is not only a fundamental problem in the theory of fully
developed turbulence but also a fundamental ingredients for the development
of stochastic models for different applications. Despite the importance of this
problem, there are still relatively few experimental studies of Lagrangian tur-
bulence [1, 2]. This is mainly due to the intrinsic difficulty to follow tracers for
long times at high resolution in a turbulent flow. An alternative approach is
given by direct numerical simulations, which have clear advantages in terms
of accuracy and possibility to make simultaneous measurement of different
statistical quantities albeit at a smaller Reynolds number.

This contribution discusses the statistics of Lagrangian velocity fluctu-
ations and accelerations in turbulent flows on the basis of high resolution
direct numerical simulations. Most of the results presented here were pub-
lished in previous papers [3, 4, 5, 6] where the interested reader can find more
details.

2 Numerical method

Direct numerical simulations of turbulent flow were done by using a parallel,
fully de-aliased, pseudo-spectral code on an IBM-SP4 parallel computer at
Cineca at resolution up to 10243. Energy is injected at the average rate ε by

Bernard J. Geurts et al. (eds), Particle Laden Flow: From Geophysical to Kolmogorov Scales, 221–228.
© 2007 Springer. Printed in the Netherlands.
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keeping constant the total energy in each of the first two wavenumber shells
[7] and is dissipated by a normal viscosity operator. In stationary conditions,
particles are injected into the flow and their trajectories integrated according
to [8]:

dx
dt

= v(t)

dv
dt

= −v(t) − u(X(t), t)
τs

(1)

where τs = r2/(3βν) is the response time of a particle of radius r and density
ρp in a fluid of viscosity ν and density ρf , and β = 3ρf/(ρf + 2ρp). These
equations are valid for a dilute suspensions of heavy (β � 1), small, spherical
particles. In the limit of τs → 0, equations (1) simplifies to dx/dt = u(x(t), t),
i.e. the motion of fluid particles. Lagrangian velocity was calculated using
linear interpolation on the Eulerian grid. Particles’ positions, velocities and
accelerations have been recorded along the particle paths about every 0.1τη.

The range of Stokes number investigated is 0 ≤ St ≤ 3.31 with 1.9 · 106

particles at St = 0 and 0.5 · 106 for each St > 0. Table 1 contains the most
important numerical parameters. Details can be found in [5, 6].

N Rλ TE/τη T/TE L/δx η/δx

512 183 43.8 2.4 523 0.83
1024 284 54.6 2.4 1047 0.83

Table 1. Parameters of the numerical simulations. Resolution N , micro-scale Reyn-
olds number Rλ, large-eddy turnover time TE = L/urms, Kolmogorov timescale
τη = (ν/ε)1/2, total integration time T , box size L, grid spacing δx, Kolmogorov
length-scale η = (ν3/ε)1/4

3 Fluid particle statistics

The simplest statistical object of interest in Lagrangian turbulence is single
particle velocity increment δtv ≡ v(t)−v(0) following a Lagrangian trajectory.
In homogeneous, isotropic fully developed turbulence, dimensional analysis
predicts [9]

〈δtviδtvj〉 = C0εtδij (2)

where ε is the mean energy dissipation and C0 is a dimensionless constant. The
remarkable coincidence that the variance of δtv grows linearly with time is the
physical basis for the development of stochastic models of particle dispersion.
It is important to recall that the diffusive nature of (2) is purely incidental,
consequence of Kolmogorov scaling in the inertial range of turbulence.
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It could be useful to recall the argument leading to the scaling in (2). Con-
sider the velocity v(t) advecting the Lagrangian tracer as the superposition
of the different velocity contributions coming from turbulent eddies. After a
time lag t the components associated with the smaller (and faster) eddies,
below a certain scale r are de-correlated and thus at the leading order one has
δtv = δrv. Within Kolmogorov scaling, velocity fluctuations at scale r is given
by δrv ∼ V (r/L)1/3 where V represents the typical velocity at the largest
scale L. The correlation time of δrv scales as τr ∼ τ0(r/L)2/3 and thus one
obtains the scaling in (2) with ε = V 2/τ0.

Equation (2) can be generalized to higher-order moments with the intro-
duction of a set of temporal scaling exponents ξ(p):

〈δtv
p〉 ∼ (εt)ξ(p) (3)

The dimensional estimation sketched above gives the prediction ξ(p) = p/2
but one might expect deviations in the presence of intermittency. In this case,
a generalization can be easily developed on the basis of the multi-fractal model
of turbulence [10, 11, 3]. The above dimensional argument is repeated for the
local scaling exponent h, giving δtv ∼ V (t/τ0)h/(1−h). Integrating over the
distribution of h one obtains the prediction [3]:

ξ(p) = min
h

[
ph−D(h) + 3

1 − h

]
(4)

The set of fractal dimensions D(h) is related to the Eulerian structure function
scaling exponents ζ(q) by the Legendre transform [10] ζ(q) = minh[qh−D(h)+
3]. The standard inequality in the multi-fractal model D(h) ≤ 3h+ 2 implies
for (4) that even in presence of intermittency, ξ(2) = 1. This is a direct
consequence of the fact that energy dissipation enters into (2) at the first
power.

Recent experimental results [2] have shown that Lagrangian velocity fluc-
tuations are intermittent and display anomalous scaling exponents, as pre-
dicted by the above arguments. We remark that, despite the high Reynolds
number of the experiments, the scaling range in temporal domain is very small.
This is due to the presence of trapping events in which particles are trapped
for relatively long times within small-scale vortices thus contaminating the
inertial range scaling [5]. Therefore, an estimate of the scaling exponent ξ(p)
can be done only relatively to a reference moment (the ESS procedure [12].

Figure 1 shows the Lagrangian structure functions as obtained from our
DNS for one component of the velocity. The inset shows that the relative
exponents, as obtained from the ESS procedure, are in very well agreement
with the multi-fractal prediction (4).

For very small time increments, δtv reproduces the acceleration of trans-
ported particles. It is now well known that turbulent acceleration is an ex-
tremely intermittent quantity, with a probability density function (pdf) char-
acterized by large tails corresponding to fluctuations up to 80 times the root
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Fig. 1. Lagrangian structure functions of orders p = 2, 4, 6 (bottom to top) as a
function of τ in log-log coordinates. Inset: ESS local slopes with respect to the second
order structure function for p = 4, 6 (bottom to top). Straight lines correspond to
the Lagrangian multi-fractal prediction (4) with the set of fractal dimensions D(h)
obtained from Eulerian velocity structure functions. Data refer to Rλ = 284.

mean square value arms [1]. The multi-fractal description of turbulence can be
used also for predicting the shape of acceleration pdf. The basic idea [4] is to
define the acceleration as the velocity increments at the smallest Kolmogorov
scale, a = δτηv/τη. Taking into account the fluctuations of the Kolmogorov
scale and integrating over the distribution of large-scale velocity fluctuations,
one ends with the prediction for the pdf of dimensionless Lagrangian acceler-
ation ã = a/σa:

P(ã) ∼
∫

ã
(h−5+D(h))

3 R
y(h)
λ exp

(
−1

2
ã

2(1+h)
3 R

z(h)
λ

)
dh (5)

where y(h) = χ(h−5+D(h))/6+2(2D(h)+2h−7)/3 and z(h) = χ(1+h)/3+
4(2h−1)/3 in which we put χ = 2 suph(D(h)−4h−1)/(1+h). We remark that
the above expression contains an unphysical divergence for a → 0 for several
models D(h). This is due to the fact that in general multi-fractal model cannot
be used to describe small velocity (and acceleration) increments [4]. Therefore,
we have to limit ã in a range of value above ãmin = O(1). This is the only
free parameter in (5), as the set D(h) is given from Eulerian measurements.

It is simple to recover from (5) the prediction in the case of non-
intermittent Kolmogorov scaling. Assuming h = 1/3 with D(h) = 3 one
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Fig. 2. Lin-log plot of the acceleration pdf. Points are the DNS data at Rλ = 284,
solid line is the multi-fractal prediction and the dashed line if the K41 prediction.

obtains the form

P(ã) ∼ ã−5/9R
−1/2
λ exp

(
−ã8/9/2

)
(6)

Figure 2 shows the pdf obtained from numerical data compared with the
theoretical predictions. The agreement with (5) is remarkable, especially con-
sidered the range of fluctuations from 1 to 70σa.

4 Heavy particle acceleration

We now consider the case of inertial particles with St > 0. It is well known
that inertial particles spontaneously concentrate on inhomogeneous sets, a
phenomenon called preferential concentration [13]. The clustering of inertial
particles has important physical applications, from rain generation [14] to
planet formation [15].

Preferential concentration has dramatic consequences on Lagrangian stat-
istics, in particular on the acceleration as inertial particles sample the turbu-
lent flow in non-homogeneous way. It is relatively simple to predict that in
general turbulent acceleration for inertial particles will be reduced with re-
spect to fluid. This is due to two different effects. From one hand, centrifugal
forces will expel particles from most intense vortices. Therefore we expect a
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preferential concentration on the region of minor pressure gradient (i.e. minor
acceleration). On the other hand, the formal solution to (1) yields [6]

a(t) =
1
τ2
s

∫ t

−∞
e−(t−s)/τs [v(X(t), t) − v(X(s), s)] ds . (7)

therefore inertial particles acceleration is the result of a low-pass filtering of ve-
locity differences and thus we expect the suppression of fluctuations at higher
frequencies. These two mechanisms, preferential concentration and filtering,
act in the same direction in a reduction of acceleration fluctuations.

Figure 3 shows the behavior of the acceleration variance as a function of
Stokes number. At the maximum St = 3.3 the acceleration rms has been re-
duced by a factor 2.5 with respect the fluid case St = 0. In Fig. 3 we also
show the two different contributions discussed above. The contribution from
preferential concentration has been estimated by computing fluid acceleration
conditioned to heavy particle positions. The agreement of this quantity with
the inertial particle acceleration indicates that this is the main mechanism for
St < 0.5. The second contribution has been computed by filtering the Lag-
rangian velocity with a low-pass filter which suppresses frequencies above τ−1

s

and then computing the acceleration as the time derivative of the filtered ve-
locity. Figure 3 shows that filtered acceleration recovers inertial particle accel-
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Fig. 4. Acceleration pdf in lin-log plot for inertial particles at St =
0, 0.16, 0.37, 0.58, 1.01, 2.03, 3.31 (from top to bottom) for the simulation at Rλ =
185.

eration for large St. In conclusion, the two described mechanisms, preferential
concentration and filtering, are complementary as they become important in
two limits of Stokes number.

The effects of inertia on acceleration pdf is shown in Fig. 4. Increasing
St the inertial particle acceleration becomes less and less intermittent with a
flatness which decreases from F � 30 at St = 0 to F � 5 at St = 3.31. The
change in the shape of the pdf can be qualitatively captured by an argument
similar to the one discussed for arms [6].

5 Conclusions

In conclusion, we have shown that single particle Lagrangian statistics in tur-
bulence can be described by a simple extension of the multi-fractal formalism.
Compared with other existing models, our proposal is very simple as it is based
on the assumption that Lagrangian velocity increments are dimensionally re-
lated to Eulerian velocity increments.

In the case of inertial particles, we have shown that acceleration statistics is
modified by two different mechanisms, namely preferential concentration and
filtering and we have discussed which mechanism is dominant in the small and
large Stokes number regimes. Of course, our comprehension of the effects of
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inertia on acceleration is here only at a qualitative level. It would be extremely
interesting to develop also in this case a quantitative prediction based on an
extension of the multi-fractal formalism.
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Summary. The motion of point-particles is studied by numerical simulations. We
analyze the turbulent particle fluxes to perfectly absorbing spheres, which are mov-
ing with the flow. Particular attention is given to the effect of viscosity for the case
where the radius of the sphere is comparable to or smaller than the Kolmogorov
length scale. By relatively simple model arguments, we arrive at analytical expres-
sions which give a very good agreement with the observed scalings.

1 Introduction

The problem of turbulent diffusion in neutral turbulent flows is often analyzed
in terms of an initial value problem [1, 2], where particles are released at some
reference time. However, for many applications, a boundary value problem
is more relevant. As such an example we consider the turbulent particle flux
to a perfectly absorbing spherical surface, which is a realistic physical model
for many practical applications. This formulation of the problem serves, for
instance, also as a model for predator-prey encounters in turbulent waters, and
seems to be the application of the problem that has received most attention
recently [3, 4]. For small predators, fish larvae for instance [5], it can often be
assumed that their self-induced motion is small or negligible, and that they are
passively convected by the local flow velocity, at least to a good approximation.
Similarly, it can be assumed that their food (micro-zooplankton, for instance)
is also passively convected by the same flow. The feeding process can be
modeled by assuming that any individual prey entering a suitably defined
“sphere of interception” is captured. (The surface is thus “virtual” in the
sense that it does not disturb the flow.) Assuming that capture is certain,
such surfaces can be considered as perfect absorbers.

Bernard J. Geurts et al. (eds), Particle Laden Flow: From Geophysical to Kolmogorov Scales, 229–241.
© 2007 Springer. Printed in the Netherlands.
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In turbulent waters, the prey flux to a passively convected predator is re-
lated to the problem of relative diffusion, but now considered as a boundary
value problem, with the sphere of interception acting as a perfect absorber of
prey. This is the standard reference model for this particular problem [6, 7].
We use this as a terminology in the following for simplicity and definiteness.
The general interest in the problem arises essentially from the simple observa-
tion that the food concentration in the near region of a predator will rapidly
be depleted, and without any self-induced motion a predator will be starving,
unless the prey within its sphere of interception is replaced by turbulent mix-
ing in the surrounding flow.

For the case where the radii of the absorbing surfaces are significantly
larger than the Kolmogorov length-scale, η, the problem has been studied
by analytical models as well as model laboratory experiments. Also by simple
dimensional arguments, it is possible to obtain a scaling law for the asymptotic
flux to a perfectly absorbing co-moving sphere as ε1/3R7/3, in terms of the
radius R of the sphere and viscous dissipation of energy per unit mass of the
fluid, ε. This scaling has found experimental support [8, 9]. It can be argued
that the scaling law is related to the ∼ (rε)2/3 variation of the structure
function in the universal Kolmogorov-Oubokhov subrange. The two results
are thus not independent, and the proposed scaling can be seen also as a
consistency relation between the saturated turbulent flux and the structure
function associated with the universal subrange.

Table 1. The Kolmogorov length scale is here η and the specific energy dissipation
(dissipated energy per gram fluid) is ε.

Open ocean ε ∼ 10−4 − 1 mm2s−3 η ∼ 10 − 1 mm
Shelf ε ∼ 10−1 − 1 mm2s−3 η ∼ 2 − 1 mm
Coastal zone ε ∼ 10−1 − 102 mm2s−3 η ∼ 2 − 0.2 mm
Tidal front ε ∼ 10 mm2s−3 η ∼ 0.5 mm

When relating the proposed parameter scaling of the turbulent flux we
note that the universal subrange has only limited relevance for aquatic mi-
croorganisms, where relevant capture ranges are 1 - 5 mm. For herring larvae
an estimated contact radius is ∼ 3 mm, for instance [10, 11], while it can be
smaller for other species. As indicated by the data summarized in Table 1, we
can often find that the capture range of the micro-organisms is comparable
to or even smaller than the Kolmogorov scale η ≡ (ν3/ε)1/4, and any result
based on the scalings of the universal subrange will fail.

Although viscosity is damping small scale motions, this does not imply
that the flow is entirely quiet when analyzed on sub-Kolmogorov scales: any
locally linear velocity shear will remain unaffected by a standard viscosity
term in the Navier-Stokes equation. If we consider a small surface (spherical
or other), the flux through this surface will remain finite for any radius, also
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when R < η. We found it important to extend our previous analysis also to
capture ranges smaller than η where no analytical results seem to be available.

A viscous subrange for scales smaller than the Kolmogorov scale is ob-
served in many turbulent flows [12], best when the Reynolds number is large.
Unfortunately, in most cases only parts of the power spectrum for the velo-
city is determined. To our knowledge no particle tracking has yet been carried
out in nature, where scales below the Kolmogorov scale could be resolved.
The only available data originate from numerical flow simulations and some
recent laboratory experiments [13]. We here use two dataset from numerical
simulations [14, 15].

Our aim in this study is two-fold. We will analyze data obtained by nume-
rical simulations, in order to determine an empirical relation for the fluxes to
a perfectly absorbing spherical surface for those conditions. These results are
presented in Section 2. Next, we suggest a model analysis which gives a con-
sistency relation between these observed fluxes and the structure function also
obtained in the given simulations. These results are presented in Section 3.
Finally, Section 4 contains our conclusions.

2 Numerical results

Our database consists of two very large numerical simulations with parameters
summarized in Table 2. The trajectories of point particles are followed, and
the positions and velocities of these points are recorded at each time-step.
The data are obtained by numerical solutions of the Navier-Stokes equation

∂

∂t
u + u · ∇u = −1

ρ
∇p + ν∇2u (1)

for incompressible motions, ∇·u = 0, with u = u(r, t) being the fluid velocity
field, p is the pressure, ρ is the mass density of the fluid, assumed constant,
while ν is the kinematic fluid viscosity. For water we have ν ≈ 0.89 mm2 s−1.
Viscous effects are here included by the physically correct viscous term, and
not by some “hyper viscosity” model, which is otherwise often used for nu-
merical modeling.

In figure 1 we show an example for an un-normalized structure function
〈(u(ξ, t) − u(ξ + r, t))2〉, obtained on the basis of the positions and velocities
of the point-particles followed in simulation II, see Table 2. The structure
function for the other dataset is very similar: the two inertial subranges are
almost overlapping, with the most conspicuous difference being the somewhat
larger Kolmogorov scale in the other case. The power-law variation with the
separation distance of the structure functions for the viscous subranges in the
two simulations are identical within the uncertainty of the estimates.

The detailed properties of the observed viscous subranges are a feature of
the present numerical simulations and can not be claimed to be universally
valid. They may be different from those observed in nature or in a laboratory.
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Table 2. Simulation I (column 2) lasts 1167 time steps with dt = 0.005, simulation
II (column 3) lasts 1841 time steps with dt = 0.0023. The Kolmogorov length scale
is here η and the specific energy dissipation is ε, while τη is the Kolmogorov time
scale. The Reynolds number is Reλ.

dx 2π/512 = 0.012272 2π/1024 = 0.0061359
ν 2.05 × 10−3 8.8 × 10−4

ε 0.8853212 0.810878
E = 1

2
〈u2〉 = 3

2
〈u2

rms〉 3.01 2.96
urms 1.42 1.40
λ 0.2642 0.179
Reλ 183 286
η 0.00993 = 0.81 dx 0.0054 = 0.88 dx
τη 0.048 0.033
T 5.84 4.23

Fig. 1. Structure function, obtained on the basis of point-particle trajectories and
velocities from the dataset with the largest Reynolds number, see Table 2. Dashed
lines for r2/3 and r2 are inserted as references for the universal and viscous subranges,
respectively.

In simulations we have an “artificial” small scale, the minimum length-scale
resolved by the algorithm (see Table 2), which does not have a counterpart
in natural turbulence. The so-called “bottle-neck” effect, is a feature of many
numerical simulations of turbulent flows [16, 17]. Physically, the bottleneck
effect arises because of the finite resolution of the sub-Kolmogorov scales,
giving a lack of small scale vortices, which makes the energy cascade less
effective around the Kolmogorov scale, as compared to the ideal, physical,
conditions. Some numerical results may indicate that the bottle-neck effect
is a consequence of viscous effects stabilizing small vortex tubes against the
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kink instability [18]. However, as argued in the following, the basic features
of the viscous subrange are well represented by the simulations, and these are
the most relevant for the present analysis. The numerical inaccuracies give
rise only to slight deviations in the observed power-law subranges in the small
scale part of the structure functions as compared to exact theoretical results.

In figure 1 we clearly identify a universal subrange ∼ r2/3 and a vis-
cous subrange for smaller scales. For scales below the Kolmogorov scale the
structure function follows a power-law rβ to a very god approximation, with
β ≈ 2 ± 0.05. We note that the “cross-over” from the dissipation to the uni-
versal subrange occurs at a scale r ≈ 0.07 which is approximately 10 times
larger than the Kolmogorov scale for these parameters. Similar features are
found also in other numerical simulations, and in particular also in the other
one of the two datasets in Table 2. By following “virtual” absorbing reference
spheres, we are thus able to encompass scales in the viscous as well as the
universal subrange of the simulated flow. Due to the spatial periodicity of the
simulations, for instance, the numerical results do not give a precise represent-
ation of turbulence in nature, but the results can serve as tests for analytical
models. If the applicability of such models can be demonstrated here, they
might be applied also to viscous subranges observed in nature, for instance.

Fig. 2. Examples for turbulent particle fluxes per surface area, as obtained for
a spherical absorbing surface. The curves are normalized with the same reference
particle density. Radii are R = 1, 0.1 and 0.01. Conditions are as in figure 1.

In figure 2 we show the turbulent particle flux to a perfectly absorbing
spherical surface per surface area. The three radii are R = 1, 0.1 and 0.01,
i.e. one radius in the universal subrange, one close to the cross-over to the
viscous subrange and one radius in the viscous subrange. It is readily evident
that the fluxes do not scale directly with the surface. If that was the case, the
curves should be on the top of each other.
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Fig. 3. Normalized turbulent flux 〈J〉/n0 for different R, for the case with Reλ =
286, see also Table 2. The full line shows the flux obtained by the simple model (10).

In figures 3 and 4 we show examples of the normalized asymptotic tur-
bulent flux to perfectly absorbing spheres, in the sense discussed before, for
different radii R. The two cases shown refer to the two realizations listed in
Table 2. The two corresponding structure functions are close to identical in
the universal subranges. Consequently, the fluxes are similarly indistinguish-
able for that interval. As R becomes smaller, and comparable to η, we see
the effect of the viscous subrange, and the flux variation with R becomes
stronger, i.e. the curves become steeper in the double logarithmic presenta-
tion of figures 3 and 4. Since the Kolmogorov scale is slightly larger for the
smaller Reynolds number case, the transition to the viscous subrange hap-
pens for larger R in that case. For the smallest values of R we have relatively
few particles crossing the spherical surface, and the flux estimates become
correspondingly more uncertain.

3 Analytical models for the saturated turbulent flux

We discuss here dimensional arguments for deriving a diffusion equation,
which can model the turbulent flux of prey into the capture region of a small
predator. Both predator and prey are assumed to be passively convected by
the flow. When their separations are small, we can distinguish turbulent ed-
dies which are larger than their separation and eddies which are smaller. The
large eddies predominantly move predator and prey together, without chan-
ging their relative distance. The time variation of the separation is controlled
by turbulent eddies with sizes which are smaller than or equal to the separa-
tion. The mean square value of the relative velocities at separation r are given
by the second order structure function, which can be modeled by dimensional
reasoning. Thus the fluid is characterized by its kinematic viscosity, ν, the
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Fig. 4. Normalized asymptotic turbulent flux 〈J〉/n0 for different R, for the case
with Reλ = 183, see also Table 2. The full line shows the flux obtained by the simple
model (10).

turbulence by the specific energy dissipation ε, and the geometry by the se-
paration r, assuming that all physical scales are much larger than this. It is
readily demonstrated [19] that the only possible normalized distance we can
obtain by combinations of these quantities is rε1/4/ν3/4, and the only quant-
ity of dimension “velocity” is (νε)1/4. We recognize the Kolmogorov length
scale η ≡ (ν3/ε)1/4 as the normalizing length unit. Since the variation of a
physical quantity can be written as dimensionless function of a dimension-
less variable multiplied with a constant which is giving the correct physical
dimension [20, 19], we have the second order structure function in the form〈

(u(ξ, t) − u(ξ + r, t))2
〉

= F

(
rε1/4

ν3/4

) √
νε . (2)

For homogeneous and isotropic turbulence the structure function intro-
duced in (2) has a simple relation to the longitudinal as well as the transverse
structure functions [12].

It is a general experience that viscosity is effective only for the smallest
scales in the turbulence, and a subrange may exist where the structure func-
tions are independent of viscosity. In order to have (2) independent of ν we
evidently have to require the functional dependence of F to be the power
2/3 of its argument, which is the only way ν will cancel. The result is the
well known Kolmogorov-Oubokhov second order structure function for the
universal subrange〈

(u(ξ, t) − u(ξ + r, t))2
〉

= CK(rε)2/3 , (3)

where the Kolmogorov constant CK has been introduced. For the component
structure function (where the velocity component is parallel to the separation
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vector r), experiments give CK ∼ 2.1.− 2.5, which for the present definition
of the structure function has to be multiplied by 11/3.

For the observed r2 small scale variation in figure 1 we have,〈
(u(ξ, t) − u(ξ + r, t))2

〉
= Cν r

2 ε

ν
, (4)

in agreement also with analytical results [21], with Cν being a numerical
constant characterizing the subrange.

A diffusion coefficient in a model equation for relative particle separations
can be constructed to be dimensionally correct by taking a characteristic velo-
city multiplied by a characteristic length. We take 〈(u(ξ, t) − u(ξ + r, t))2〉1/2

to be the characteristic velocity and the separation r to be the characteristic
length. Both choices seem natural. The use of the parallel structure function
merely implies a change of a numerical constant, which has to be determined
by other means anyhow. We then find a diffusion coefficient as

K(r) ≈ r (νε)1/4

√
F

(
rε1/4

ν3/4

)
(5)

where F is still an unknown function which contains also a universal numerical
constant as a coefficient.

For spherical geometry, we can then argue for a diffusion equation

∂

∂τ
n(ζ, τ) =

1
ζ2

∂

∂ζ
ζ2K(ζ)

∂

∂ζ
n(ζ, τ) (6)

where n(ζ, τ) is the ensemble averaged particle density, being related to the
distance-neighbor function introduced by L.F. Richardson [22]. We introduced
normalized variables ζ = rε1/4/ν3/4 ≡ r/η and τ = t

√
ε/ν. We here recognize

the Kolmogorov time scale τη ≡
√
ν/ε in the normalization of time.

We solve (6) for the case where we have a spherical absorbing bound-
ary at r = R, i.e. with n(R/η, τ) = 0. To have a steady state solution
for (6), we obviously require the left hand side to vanish, implying that
ζ2K(ζ)dn(ζ)/dζ = const. The constant can be determined by n(ζ → ∞) = n0,
which is assumed known. We have

n(∞) − n(R/η) =
∫ ∞

R/η

d

dζ
n(ζ)dζ =

∫ ∞

R/η

const
ζ2K(ζ)

dζ ,

or
const =

n0∫ ∞

R/η

dζ

ζ2K(ζ)

.

The time stationary diffusion flux of particles to a perfectly absorbing
sphere is in natural units given by J0 = 4πR2K(R)dn(r)/dr|r=R, in the
negative r-direction, towards the spherical surface. In normalized units:



Particle fluxes to absorbing surfaces 237

J0

n0
=

4π∫ ∞

R/η

dζ

ζ2K(ζ)

, (7)

where J0 is the number of particles absorbed on the surface per dimensionless
time units, and also the density is measured with a dimensionless length unit.

Hitherto, we have not specified the diffusion coefficient K(r). We now
introduce the estimate (5) or other forms derived from it.

The Richardson model [22] has K(r) = Cε1/3r4/3, including a universal
constant, C. Using this model for a three dimensional case, we find

J0

n0
= C

4πε1/3∫ ∞

R

dζ

ζ10/3

=
28π
3

Cε1/3R7/3 , (8)

having the well known ε1/3R7/3 scaling, which has been confirmed experi-
mentally [8] and numerically [15]. The model equation (6) together with the
present diffusion coefficient K(r) = Cε1/3r4/3 has been studied in detail [23].

For a slightly more general case where the second order structure function
has a (large) range of power-law variation, 〈(u(ξ, t) − u(ξ + r, t))2〉 ∼ rβ , we
have K(ζ) ∼ ζ1+β/2 and find

J0

n0
= C 2π(4 + β)R3

√
ε

ν

((
ν3

ε

)1/4 1
R

)1−β/2

, (9)

which reproduces (8) for β = 2/3. In particular, for fixed ν and ε we have
the scaling J0 ∼ R2+β/2. If ν and R are kept constant, we have the scaling
J0 ∼ ε(2+β)/8, while for ε and R constant, we have J0 ∼ ν(2−3β)/8. The result
(9) can be seen as a predicted consistency relation between a (long) spectral
subrange and the associated particle flux to a perfectly absorbing spherical
surface having a radius in that range.

We are particularly interested in analyzing the transition from the uni-
versal subrange to a viscous subrange. No exact analytical model exists, but
assuming that for some length-interval the viscous subrange can be approx-
imated by a power-law r2, we can postulate an interpolation formula as

K(r/η0) ∼
r

η0

(r/η0)1/3r/η0√
(r/η0)2/3 + (r/η0)2

≡ (r/η0)7/3√
(r/η0)2/3 + (r/η0)2

, (10)

apart from a numerical constant, which has to fitted empirically. It is readily
seen that this expression reproduces the previous results for small as well as
large normalized separations, r/η0.

We can estimate the “cross over” scale η0 between the viscous and the
universal subrange by equating (3) and (4) to have CK(η0 ε)2/3 = Cνη

2
0 ε/ν:

η0 =
(
CK

Cν

)3/4 (
ν3

ε

)1/4

≡
(
CK

Cν

)3/4

η , (11)
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in terms of the Kolmogorov length η. We use the generally accepted value
for the Kolmogorov constant CK ≈ 2.1 for the parallel-velocity component
structure function, together with the multiplication factor of 11/3 mentioned
before, and the analytical result [21] for Cν = 1/3, as relevant for the struc-
ture function in the form presented in figure 1. We then find η0 ≈ 11 η. If
we choose to use the longitudinal structure functions in the universal and
viscous subranges to determine η0, we will find a slightly different numerical
coefficient. The cross over scale is sometimes defined [24] with an “ad hoc”
numerical coefficient of 2π for η. This value is, as we have seen, approximately
a factor 2 too small.

Using the model (10), we obtain numerical solutions for the normalized
flux as shown in figures 3 and 4 by a solid line. The numerical constant is fitted
by the flux at the largest R-values. The general agreement is quite good. For
the universal subrange the results are close to identical, and indeed the two ε–
values are very close, see Table 2. For R < η0 the two curves deviate, since the
viscous subranges are somewhat different with the present simulation data.
The model curves follow the flux-values equally well in both cases.

We note that there is only a minor difference in the variation of the flux
with radius R in the viscous range (∼ R3) and in the universal range (∼ R7/3),
in spite of the pronounced differences in the second order structure function,
where we have ∼ r2 and ∼ r2/3, respectively, for the two subranges.

As an approximation we might accept power laws in K(ξ) entering (9),
as they are indeed often found to give a good experimental fit in a subrange.
For a general case, we believe that (7) can be used for modeling by inserting
a phenomenological model for K, and the integral then solved numerically.

4 Conclusions

We have analyzed the turbulent flux to a perfectly absorbing spherical surface
embedded in a turbulent flow. Using results from a numerical simulation which
resolves also parts of a viscous subrange, we are able to cover cases where the
radii of the spheres are in the universal as well as in the viscous subranges.

We have developed a simple model which gives a scaling law for the flux
which is in very good agreement with the observations. For the universal sub-
range we recover the well known ε1/3R7/3 scaling. Since the scaling of the
saturated turbulent flux can be interpreted as a universal relation to be de-
rived from the structure functions, we can take the observed viscous subrange,
which quite accurately follows r2 for our case. Applying this variation to our
analytical model, we find a flux variation ∼ R3, which is in very good agree-
ment with the observations, see figures 3 and 4. We point out that the good
agreement between the model and the simulation results is not automatically
given: it is not self evident that a diffusion equation in the form (6) is useful for
the turbulent flux. Indeed, if we apply it uncritically to the full time evolution
of the flux, we are likely to get results of little or no value [8]. The interesting
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observation here is that (6) gives a good agreement for the asymptotic fluxes,
apart from a universal constant which has to be obtained empirically.

It is interesting to note that the beginning of a viscous subrange might
have been observed already in the studies of laboratory data [8], where the
variation of the turbulent flux with R had a tendency to become steeper than
the predicted ε1/3R7/3-law, when the smallest R-values were considered. In
that case, however, the transition from a universal to a viscous subrange in
the structure function could not be unambiguously determined.

It is important to note that the scale η0 in (11) is approximately one order
of magnitude larger than the Kolmogorov scale, η, with relevant numerical
values summarized in Table 1. It can easily happen that the range of inter-
ception for a micro-organism is smaller than η0, and studies of the viscous
subrange may be particularly relevant for accurate models for the predator-
prey encounter rate of aquatic micro-organisms.

We expect the results of the present analysis to be relevant for very small
scale (sub Kolmogorov scale) transport in turbulent flows. We have already
mentioned the possible importance for our understanding of the feeding pro-
cess of aquatic micro-organisms, but models for the dynamics of coagulation
in turbulent environments [25] has also many similarities with that analysis.
Our results can be relevant also for such studies.
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Summary. We report Lagrangian measurements obtained with an acoustic Dop-
pler velocimetry technique. From the Doppler frequency shift of acoustic waves
scattered by tracer particles in a turbulent flow, we are able to measure the full three-
component velocity of the particles. As a first application, we have studied velocity
statistics of Lagrangian tracers in a turbulent air jet at Rλ ∼ 320 and at various
distances from the nozzle. The choice of an air jet is motivated by the fact that jets
produce a well characterized high level turbulence and open air flows are well suited
to simultaneously achieve classical hot wire Eulerian measurements. Therefore, we
are also able to explicitly address the question of the differences between Eulerian
and Lagrangian statistics. As Lagrangian tracers we use soap bubbles inflated with
Helium which are neutrally buoyant in air and can be assimilated to fluid particles.
Velocity statistics are analyzed. We show that the Lagrangian autocorrelation decays
faster in time than its Eulerian counterpart.

1 Introduction

Experimental and theoretical studies of turbulence has longly been dominated
by the Eulerian approach, where a given quantity in the fluid is measured with
a probe located at a fixed point in space and is represented as a continuous
spatial field. An alternative point of view is given by the Lagrangian approach,
where the same quantity is measured along the trajectory of a fluid particle
and is represented as a function of time parameterized by the initial position
of the considered fluid particle. One reason for the domination of Eulerian
approaches in turbulence is probably due to technical difficulties inherent to
Lagrangian experiments, which requires the tracking of particles in strongly
fluctuating flows. This has remained out of reach of experimentalist until very
recently, due to lagging technological advances in fast imaging, and ultrasonic
techniques. Simultaneously theoretical advances of stochastic models for tur-
bulence gave a renewed interest to Lagrangian experiments. Moreover many
practical situations are naturally described in the Lagrangian framework. This
is particularly the case of dispersion in particle laden flows.

Bernard J. Geurts et al. (eds), Particle Laden Flow: From Geophysical to Kolmogorov Scales, 243–256.
© 2007 Springer. Printed in the Netherlands.
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An important advance in Lagrangian measurements have been done in
the nineties by Virant and Dracos [1] who developed a 3D-Particle Tracking
Velocimetry (PTV) technique. They used simultaneously 4 video cameras at
a frame rate of 25 fps to access the 3D trajectories of several hundreds of
particles at once. Ott and Mann [2] developed a similar technique to study
relative dispersion of fluid particles. Because of the low frame rate, particle
dynamics could be resolved only for moderate Reynolds numbers, typically
Rλ < 100, where Rλ is defined based on the Taylor micro-scale. The first Lag-
rangian measurements for single particles statistics in high Reynolds number
regimes (Rλ < 1000) were obtained by LaPorta et al. [3], using silicon strip
detectors (initially developed for high energy particles detection) at a frame
rate up to 70kHz. They observed a strong Lagrangian intermittency character-
ized by strong acceleration events with non Gaussian fluctuations. Recently,
Bourgoin et al. [4] have developed a high resolution 3D-PTV facility using
ultrafast cameras at a repetition rate of 27kHz, which allows the tracking of
several hundred of particles in high Reynolds number regimes (Rλ < 1000).
They studied relative dispersion and Lagrangian structure functions, which
also exhibit strong intermittency [5].

All the techniques mentioned so far are optical and give the particles po-
sition. Particles velocity and acceleration are obtained by differentiating nu-
merically once and twice the position. This is a very noise sensitive procedure
which requires an important oversampling in order to get a good signal to
noise ratio for the particles velocity and ultrafast optical systems need to be
used to study highly turbulent flows. An alternative option is given by ultra-
sonic techniques. Mordant et al. [6] used Doppler frequency shift of acoustic
waves scattered by tracer particles to obtain Lagrangian velocity in a closed
von Kármán flow of water. The frequency shift is directly proportional to the
particle velocity, no differentiation is required to get the instantaneous velo-
city, and a single differentiation gives the acceleration of the particles. Even
though the tracers they used were bigger than the Kolmogorov length of their
flow (acoustic scattering impose a minimal tracer size) their results clearly
show strong Lagrangian intermittency : the probability density functions of
velocity increments are Gaussian for large time separation and strongly non
Gaussian for small time separation.

In neither of the previous studies a clean comparison between Lagrangian
and Eulerian statistics in turbulent flows were made, either because Eulerian
measurements were not available [3, 6], or because Reynolds number was
too low, so that turbulence could not be considered as fully developed [1,
2, 7]. In the present article, we describe an acoustical Lagrangian setup well
adapted to measurements in turbulent open flows of gas where simultaneous
Eulerian measurements can be easily done (with classic hot wire anemometry
for instance). We report the first measurements, carried out in an open air
jet at Rλ � 320. As tracers, we use small helium-filled neutral soap bubbles
seeded from a position upstream of the jet nozzle. The three components of
the Lagrangian velocity are obtained by acoustical Doppler effect. First, the
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detection setup, as well as the tracers are described. Then, we present the
signal processing techniques used to detect the passage of bubbles and to
extract their velocities from the frequency shift. finally we report some results
on the main statistical properties of the velocity signals.

2 Experimental setup

The measurements have been conducted in a round air jet, emerging from
a 2.25 cm conic nozzle and expanding freely in the room. The flow becomes
self-similar at a distance of approximately 40 times the nozzle diameter [8].
Measurement has been done at distances up to 120 diameters. In all exper-
iments the Reynolds number based on the Taylor micro-scale is about 320.
Jet characteristics are based on hot-wire measurements and classical isotropic
relations [9, 10].

2.1 Ultrasonic Doppler velocimetry

Figure 1 presents the principle of one-component ultrasonic velocimetry. It
is based on the Doppler frequency shift of an acoustic wave scattered by a
moving particle. A transducer emits a continuous ultrasonic wave at a given
frequency, typically 110 kHz ≤ ν ≤ 130 kHz, with a propagating direction ni

towards the jet. The wave scattered in a specific direction nd (θ = (ni;nd)
is the scattering angle) by particles transported in the flow, is recorded by a
receiver. Because of the particles motion, the scattered wave is Doppler shifted
an its frequency ν′ differs from ν:

ν′ − ν

ν
=

V · (ni − nd)
c

= −2
V//

c
sin(θ/2), (1)

where c is the speed of sound in the experimental conditions. For a given
incoming frequency ν and a given scattering angle θ, the instantaneous fre-
quency shift ν′ − ν gives a direct measurement of the projection, V//, of the
tracer velocity along ni−nd. Note that this is an algebraic measurement : the
sign of V// is given by the sign of the frequency shift.

The electric signal originating from the receiver is digitized by a
HP E1430A card at 65536 Hz after digital heterodyne demodulation. Series of
1,048,576 samples are recorded. Within each series, several isolated particles
are successively detected. Transducers are capacitive electro-acoustical circu-
lar pistons of Sell-type, with a diameter of 24 cm. They are reciprocal, highly
directive and linear. Thanks to the transducers high directivity, tracers can
only be detected when they are located in the volume defined by the intersec-
tion of the incoming and the detection transducer beams, which will be called
in the following the “measurement volume”. Its shape is sketched on figure 1.
Dimensions are Ls � 50 cm along the jet axis and 25 cm across the stream.
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Fig. 1. Principle of velocity measure-
ments. Particles can be detected in the
intersection of the emitter and receiver
acoustic beams (dashed lines). In the
configuration we used : Ls � 50 cm.
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Fig. 2. Transducers arrangement for
the three-component measurement. D =
24 cm. Emitters are referred to as E1 and
E2, receivers as R1 and R2. α = 26o,
yielding a scattering angle θ = 128o.

One challenge that arises in Lagrangian measurement is to follow the
particle over a long enough trajectory in order to describe its dynamics up
to scales of order the integral scale of the flow. Thus, the length Ls of the
measurement volume is chosen so that the time of flight of a particle traveling
along is larger than the Lagrangian integral timescale of the flow TL.

2.2 Three-component measurement

It is possible to measure the complete three velocity components by com-
bining several one-component measurements from multiple pairs of acoustic
transducers. The optimal configuration uses four transducers (two emitters
and two receivers) placed at the vertices of a square, tilted so that their axes
cross at the same point on the jet axis, in a square-based pyramid configur-
ation (figure 2). Distances from transducers to the intersection with the jet
axis are all identical, ensuring that wave propagation times are all identical.
Transducers are reverse-facing the nozzle, to avoid bubble impacts on their
active surfaces and they are sufficiently apart from each other not to perturb
the flow. The pyramid is elongated along the axis, with an angle α at its top
of 26o

The first emitter E1 generates a continuous wave at frequency ν1 =
110 kHz, scattered by each bubble, and then recorded in two different dir-
ections by the two receivers (resp. R1 and R2). This gives access to two pro-
jections of the tracer velocity, respectively along vectors k11 and k12. Similarly,
the wave emitted by E2, at frequency ν2 = 122 kHz (different from ν1) is also
scattered and then recorded by the two receivers, giving access to two more
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projections along vectors k21 and k22. Provided the bubble lies in the inter-
section of the four acoustic beams, its velocity can be obtained through four
non-orthogonal projections, which we will denote by (v11, v12, v21, v22). Com-
ponents along and perpendicular to the jet axis (u,v,w) can then be computed
by a simple matrix transformation.

u =
v11 + v12 + v21 + v22

4 cosα
v =

v12 − v21

2 sinα
w =

v22 − v11

2 sinα
(2)

2.3 Tracers

We have first used the acoustic velocimetry technique to study Lagrangian
statistics of single phase turbulence. This requires to have Lagrangian tracers
which must match the carrier fluid density in order to cancel buoyancy forces.
Whereas solid particles can be used for liquid, particles filled with light gases
must be used in air flows. We use helium-inflated soap bubbles. Once the soap
film has been made thin enough, the overall bubble density can match the one
of air. Helium-inflated bubbles have also the additional benefit of offering a
high contrast of acoustic impedance that increases the scattered amplitude.

Due to the evaporation of the liquid film, bubbles life time is around one
or two minutes, which is much larger than the time needed to travel across
the whole measurement volume (less than .1 s). Bubbles are produced by a
dedicated machine to the desired density, and injected just upstream of the
nozzle, so as not to disturb the flow. Statistics for bubble diameters have been
obtained with the help of a video camera. It has been found that bubbles
diameter has a very monodisperse distribution (2 mm ± 6 %). This ensures
that limitations due to bubble size will be at a constant scale. Indeed, the finite
size of the bubbles sets the small-scale limitation of the measurement. With
our present apparatus bubbles can’t be made smaller than about 2 mm. This
is below the Taylor micro-scale (from 4.4 mm to 7.3 mm), but still above the
Kolmogorov scale η (from 0.12 mm to 0.20 mm). Thus, we expect the bubble
dynamics to reflect a substantial part of the inertial range, up to the integral
scale, but very small-scale dynamics might be filtered due to the particles
size (previous work suggests that tracers should be smaller than about 5η to
behave as perfect fluid particles [11]).

Production frequency has to be low enough to ensure that most of the
time a single bubble is detected in the measurement volume. Injection rates
of about 5 bubbles per second gave good results.

The acoustic technique can also be used to track non Lagrangian particles,
in order for instance to study inertial effects. This work is in progress at
present. The first measurements aim to study finite size effects of neutrally
buoyant particles as well as effects of fluid to particle density ratio when heavy
bubbles are used (obtained by thickening the soap film and/or by filling the
bubbles with a heavier gas, such carbon dioxide).
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3 Signal processing

3.1 Channels separation

Figure 3a shows the power spectrum of a typical acoustic signal recorded on
one of the receivers over several second (during the period of the record, of
order 10 particles have traveled successively in the measurement volume). One
observes two sharp high-amplitude spikes exactly at the emitting frequencies.
They correspond to direct propagation between emitters and receiver, as well
as echoes. Beside each spike, at lower frequencies, stands a broader-band bump
which corresponds to Doppler frequencies of the acoustic wave scattered by
the particles. The maximum of the band reflects the average velocity of the
particles, while its width reflects the velocity fluctuations. All time information
is lost in the Fourier space representation of the acoustic signal. The main
point of the processing of the acoustic signals will be to obtain simultaneously
time and frequency information in order to extract the instantaneous velocity
of single particles. This requires first to filter out the spikes (which correspond
to direct acoustic waves propagation and do not carry any information on
the particles velocity) and to separate the channels for each emitter-receiver
pair. Filtering out the spikes removes a small part of the Doppler frequencies
because of overlapping. This enforces a limitation on the smallest velocity that
can be extracted. Two notch filters are applied to remove the spikes, then a
demodulation followed by a low-pass filtering allow the separation of the two
scattered signals. We emphasize the fact that demodulation is performed by
multiplication with a complex exponential (not a real cosine), yielding an
analytic signal. The same operation is applied to the two signals recorded on
the two receivers, leading to four different frequency-modulated signals, which
will be denoted hereafter by s (si . . . sl).

3.2 Detection of tracers traveling into the measurement volume

Each acquisition of the acoustic signal is typically 20 seconds long. During
each acquisition, about 100 bubbles travel successively in the measurement
volume. Only the portions of signal corresponding to the presence of a particle
in the measurement volume are analyzed for extraction of Lagrangian velocity.
Figure 3b shows the real part of a typical s signal (only a fraction of order 0.8
second is represented). The presence of a bubble in the measurement volume
corresponds to high amplitude events easily identifiable on the figure. When
no bubble is present, amplitude is not strictly zero. This remaining amplitude
is mostly due to sound scattering by the vorticity field (see [12]) and will be
considered as noise here. For the velocity vector to be computed, the bubble
should be detected at least on three signals simultaneously. Another selection
procedure is thus applied to keep only intervals that have a common part on
the four channels.
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receiver. (b) Real part (grey line) and amplitude (black line) of separated acoustic
signal (s)

3.3 Extracting velocity from acoustic signal

In order to extract the instantaneous velocity of the individual tracers, we have
to combine the spectral and the time representations of the acoustic signal. In-
deed, the spectral representation loses all time information and can only give
time-averaged information such as the mean velocity of the bubbles (which
corresponds to the peak of the Doppler shift) and the time representation is
well suited to detect in time individual tracers traveling in the measurement
volume but it does not give any information on their velocity. The determ-
ination of the instantaneous velocity of the tracers relies on an estimation
of the instantaneous frequency of the acoustic signal. Cohen class energetic
estimators are classical tools for this purpose. We chose the Chöi-Williams dis-
tribution, for its moment-preserving property ([13]). If x is a complex-valued
signal, its Chöi-Williams distribution Cx is defined by:

∀t, f Cx(t, f) =̂
∫ ∞

−∞

∫ ∞

−∞

1
|τ |e

−2(s−t)2/τ2
x
(
s +

τ

2

)
x∗

(
s− τ

2

)
e−2iπfτ ds dτ

(3)
A sample result is shown on figure 4. Frequency is along the vertical axis,

time along the horizontal. Gray-scale levels quantifies the energy level Cx(t, f).
Two crooked lines are visible, they correspond to two distinct bubbles. The
lines where the signal energy is concentrated reflect the time evolution of the
instantaneous Doppler frequency shift. The time-frequency transformation (3)
gives a 2D representation from which the instantaneous frequency shift ν′(t)
is extracted as the frequency average weighted by the energy distribution Cx

and equation (1) directly gives the corresponding velocity component.
This velocity extraction is applied to each s signal, on the selected intervals.

Coordinate transformation yields lots of small (2000 to 8000 points) velocity
signals which will be called “velocity segments” in the following. No time
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Fig. 4. Time-frequency representation.
Two bubble signals are visible.

D N
Ls

LE

〈Ts〉
TL

58 3552 8.1 1.48
80 9584 5.7 1.22
93 7444 5.0 1.20
111 1358 4.2 1.02

Table 1. Experimental paramet-
ers at different distances D from
the nozzle and the center of the
measurement volume. D is meas-
ured in multiples of the nozzle
diameter. N is the number of ve-
locity segments.

continuity exists between velocity segments, they all correspond to different
bubbles. Such a procedure leads to a large set of independent realizations of
Lagrangian velocities. The j-th point (time) of the i-th segment (realization)
will be denoted by vi(j).

4 Results

4.1 Data set

As already discussed, in order to resolve not only the small-scale dynamics
but also the large-scale dynamics of the particles we need the measurement
volume dimensions to be comparable to the integral scale of the flow. There-
fore, we carried the experiments in an air jet with a small nozzle (2.25 cm
in diameter) compared to the transducers diameter. As a consequence, only
moderate Reynolds number (up to Rλ = 320) were achievable. Series of re-
cordings were made at four distances (D) from the nozzle. Every measurement
corresponds to the same Reynolds number, as it is constant along the jet, but
to different integral length scales [9, 8, 10]. The measurement volume was
centered on the jet axis, to preserve cylindrical symmetry as much as pos-
sible.

Table 1 lists the main parameters of the different measurements. The num-
ber of velocity segments exceeds 1000 for all measurements, ensuring good
statistical convergence. Measurement volume length is always several times
larger than the Eulerian integral length scale (Ls/LE), and the ratio of the
average time-of-flight to the Lagrangian integral time scale (〈Ts〉 /TL) is every-
where above one.
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4.2 Velocity probability density function

The normalized velocity probability density functions (PDF) for the longit-
udinal velocity component measured at different distance from the nozzle are
represented on figure 5. No significant change in shape can be seen between
the four curves, indicating that the variation of Ls/LE does not break self-
similarity. The same remark is true for transverse components (figure 6). All
curves are Gaussian, but small departures exist. For the longitudinal com-
ponent (figure 5), PDF edges are largely sub-Gaussian due to limitations of
the velocity extraction algorithm and has no physical meaning. For transverse
components (figure 6), edges are over-Gaussian because of noise introduced
by the velocity extraction algorithm.
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Fig. 5. Longitudinal velocity PDF with
zero mean and unity variance. Corres-
ponding Gaussian curve is plotted in
dashed line.
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zero mean and unity variance. Corres-
ponding Gaussian curve is plotted in
dashed line.

Figure 7 shows the comparison of the Lagrangian PDF (P (u)) with the
corresponding Eulerian one (the hot-wire was located near the center of the
Lagrangian measurement zone). A reasonable agreement is found. A slightly
higher mean velocity is found in the Eulerian case (5 % higher), and the
standard deviation is higher for the Lagrangian velocity. These effects result
from the inhomogeneity of the flow inside the acoustic measurement volume,
which tend to under estimate the Lagrangian mean velocity on the axis and
over estimate its fluctuations but is not visible on the Eulerian measurement
which is carried out at a fixed point.

Figure 8 shows isocontours of the joint PDF P (u, v) of longitudinal u and
transverse v Lagrangian velocity. A slightly elliptical shape is visible, indicat-
ing that no large-scale isotropy exists (horizontal and vertical coordinates are
identical). Standard deviation of the longitudinal component is higher than
the corresponding one for the transverse component, by a factor ranging from
1.1 to 1.25, depending on the position along the jet (resp. farthest and nearest
from the nozzle). A similar behavior exists for Eulerian velocity components
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(see [8]) This non-constant ratio can also be explained by the variation of
the ratio between the lateral size of the measurement volume and the local
transverse integral length scale LE .

4.3 Velocity autocorrelations

We have measured the velocity autocorrelation function for the Lagrangian
and the Eulerian signals. The Lagrangian velocity correlation time TL plays an
important role in modeling turbulent diffusion of passive tracers[14]. Moreover
accurate measurements of the ratio TE/TL are of particular interest in the
frame of numerical models such as RANS calculations [15] where this ratio is
a parameter to be calibrated.

The statistical estimation of the Lagrangian autocorrelation function has
been obtained with an unbiased estimator, which also compensates to second
order the axial inhomogeneity of the flow, inherent to open flows situation
[16]. For the Eulerian autocorrelation, the integral scale LE is estimated from
the hot wire measurement using a Taylor hypothesis based on the local mean
velocity and the integral time TE is then defined as TE =̂ LE/σE , where σE

is the Eulerian velocity standard deviation.
Figure 9 shows the autocorrelation function of the Lagrangian velocity

components and the Eulerian longitudinal velocity for a measurement per-
formed at 80 diameters from the nozzle. The two curves for Lagrangian trans-
verse components are almost identical, in accordance with the cylindrical sym-
metry of the flow. The longitudinal component exhibits a slightly longer time
scale.

We denote in the following the longitudinal and transverse Lagrangian
integral time scales by T l

L and T t
L respectively. These values are computed

by fitting an exponential curve on the autocorrelation. Corresponding values
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for Eulerian components are denoted by T l
E and T t

E . Only T l
E can be readily

obtained from measurements, because of the necessity of a Taylor hypothesis.
As no measurement of transverse Eulerian velocity has been performed, T t

E

is estimated from the longitudinal value, assuming that Ll
E/L

t
E � 2.3 and

σl
E/σ

t
E � 1.2 (as found in [8]).

All these values are listed in Table 2 for the different positions of the
measurements. We note that the transverse integral time scales are smaller
than the longitudinal. In the Eulerian case, the ratio T l

E/T
t
E is constant as

a consequence of the previous hypotheses. On the contrary, we observe that
ratio T l

L/T
t
L tends to increase with the distance D from the nozzle. Several

reasons may be responsible for that. On the one hand, the jet self-similarity
can be broken. Wygnansky and Fiedler [8] have shown that self-similarity
can be violated for distances as large as 100 nozzle diameters, depending on
the quantity considered, in which case actual measurements of Eulerian time
scales would lead to similar results. On the other hand the velocity profile
varies linearly with the distance to the nozzle, while the measurement volume
size is constant, so that the flow homogeneity in the measurement volume
depends on the position in the jet. As T l

L/T
t
L increases when D increases, this

indicates that large-scale isotropy either does not exist whatever the distance,
or is recovered very slowly. Lagrangian times TL can be considered as a rough
measure of eddy life-time, whereas TE is related to the eddy turnover time.
These results show that whatever the component considered, both times are
very close, the turnover time being slightly longer. Obtained ratios are com-
patible with the predicted value of 1/0.78 � 1.28 [17]. A simple phenomen-
ological analysis leads to TL � TE [18]. A larger Eulerian time scale can be
explained by sweeping effects. The advection of the internal scales by the
energy-containing scale leads to broadening of the Eulerian autocorrelation in
comparison with the Lagrangian one [19].

D T l
L T t

L
T l

L

T t
L

T l
E T t

E
T l

E

T t
E

T l
E

T l
L

T t
E

T t
L

58 35 26 1.35 48 25 1.92 1.37 0.98
80 62 49 1.27 98 51 1.92 1.58 1.04
93 79 59 1.34 129 69 1.92 1.63 1.16
111 117 75 1.56 205 98 1.92 1.75 1.30

Table 2. Eulerian and Lagrangian time scales in milliseconds. T l
L, T t

L and T l
E meas-

ured. T t
E computed from T l

E (see text).
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5 Conclusion

Lagrangian measurements in a free turbulent air jet were performed using
acoustical Doppler effect. This method is adapted to collecting large data sets
without tremendous memory requirement, contrary to visualization methods.
A single tracer at a time can be detected, with the time- and space- dynamics
of the measurements comprising a large part of the inertial scales, comparable
to previously-obtained results [6]. Simultaneous Eulerian measurements were
performed.

We show that the Eulerian integral time is larger than the Lagrangian one.
This might be a consequence of the Eulerian statistics sensitivity to sweeping
effects, which instead do not affect Lagrangian statistics. This result holds
for distances in the jet ranging from 60 nozzle diameters up to 110 nozzle
diameters. The ratio T l

E/T
l
L is found of order 1.4, with a slight dependence

on the distance from the jet nozzle.
The acoustic technique is now being adapted to study two phase flows

laden with inertial particles. The first experiments aim to explore Stokes
number dependence of individual particles dynamics, with a particular fo-
cus on the effect of particles finite size and of the particle to fluid density ratio.
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Summary. Combined measurements of the Lagrangian evolution of particle con-
stellations and the coarse grained velocity derivative tensor ∂ũi/∂xj are presented.
The data is obtained from three dimensional particle tracking measurements in a
quasi isotropic turbulent flow at intermediate Reynolds number. Particle constella-
tions are followed for as long as one integral time and for several Batchelor times.
We suggest a method to obtain quantitatively accurate ∂ũi/∂xj from velocity meas-
urements at discrete points. We obtain good scaling with t∗ =

√
2r2/15Sr (r) for

filtered strain and vorticity and present filtered R-Q invariant maps with the typical
’tear drop’ shape that is known from velocity gradients at viscous scales. Lagrangian
result are given for the growth of particle pairs, triangles and tetrahedra. We find
that their principal axes are preferentially oriented with the eigenframe of coarse
grained strain, just like constellations with infinitesimal separations are known to
do. The compensated separation rate is found to be close to its viscous counterpart
as 1/2

(
dr2/dt

)
/r2 · t∗/

√
2 ≈ 0.11 − 0.14. It appears that the contribution from the

coarse grained strain field, rirj s̃ij filtered at scale ∆ = r, is responsible only for
roughly 50% of the separation rate. The rest stems from contributions with scales
∆ < r.

1 Introduction

An important consequence of turbulence is effective mixing and dispersion of
advected Lagrangian particles [1]. Recent work on two particle dispersion [2, 3]
raised the question to what degree two particle separation in the inertial range
is governed by the coarse grained velocity derivative field Ãij = ∂ũi/∂xj .
Moreover, it has been recognized for a few years now that constellations with
more than two particles have a rich structure at scales smaller than the integral
scale L [4, 5, 6, 7, 8]. Work that started with [5] and currently is being further
developed by [9] is relating the dynamics of Ãij to the evolution of tetrahedra
and a stochastical model has been developed for its simulation. Experimental
and numerical studies have investigated some of the properties of Ãij [10, 11].
The most important finding is that coarse grained velocity derivatives exhibit

Bernard J. Geurts et al. (eds), Particle Laden Flow: From Geophysical to Kolmogorov Scales, 257–269.
© 2007 Springer. Printed in the Netherlands.
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roughly the same properties like their small scale counterparts. Probably the
most important property is that

〈
Λ̃2

〉
> 0, where Λ̃i are the eigenvalues

of the rate of strain tensor s̃ij = 1/2 (∂ũi/∂xj + ∂ũj/∂xi). It means that
also for inertial range scales the field of velocity derivatives experiences self-
amplification.

In this contribution, we present for the first time experimental results that
attempt to combine measurements of Ãij with measurements of the evolution
of particle pairs, triangles, and tetrahedra. The filter scale covers a good part
of the inertial range and the particle constellations are followed as long as the
integral time, T , and for several Batchelor times, τB = R

2/3
0 /ε1/3, where R0

is the scale of the constellation at t = 0. Since Batchelor [12] it is known that
for the case of two particle separation at τB the relative separation regime
changes from

〈
r2 − r2

0

〉
∝ t2, known as the ballistic regime, to

〈
r2 (t)

〉
= gεt3,

which is known as the Richardson law. The importance of having observation
times t > τB can also be expressed in terms of kinetic energy of relative motion
in a particle swarm of size R with N points, E = 1/2

〈(
uN − U

)2
〉

R
: Only if

tracking times are long enough a transition from the regime where dE/dt < 0
to a regime with dE/dt > 0 can be observed [13]. The former regime is
essentially governed by Eulerian dynamics while the latter is governed by the
Lagrangian evolution of particle constellations.

One can define the tensor Ãij coarse grained at scale ∆ as

Ãij =
1
V∆

∫
V

∂ui

∂xj
d3x, (1)

where V∆ ≈ ∆3. If we provide an at least one time differentiable approxima-
tion to the velocity field as

ũ (x) ≈ 1
V∆

∫
V

u (x + x′) d3x′ (2)

we overcome the difficulty of having to measure ∂ui

∂xj
directly but can instead

differentiate the filtered velocity field to obtain

Ãij = ∂ũi/∂xj. (3)

The left hand side of eqn. 2 can be approximated by least square fitting
linear polynomials to discrete velocities of at least n = 4 points. For n →
∞ this operation becomes equivalent to top-hat filtering the spatial velocity
derivative field. Different to [14] here spherical polynomials that by definition
are incompressible and orthogonal are used. Since for ∆ > η the velocity field
is not smooth n > 4 is necessary to obtain convergence. As we will demonstrate
below in the result section we have found that n > 12 is sufficiently high.
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2 3D-PTV Experiment

In our attempt to simultaneously measure Ãij and the evolution of particle
constellations we have performed a Particle Tracking Velocimetry (PTV) ex-
periment in an intermediate Reynolds number turbulent flow. PTV is by now
a well established non-intrusive flow measuring technique [15, 16, 17, 18, 19,
14, 20, 2] which naturally allows to probe a flow’s Lagrangian properties. To
meet the competing goals of high tracer seeding density to allow for coarse
graining, and high trackability of particle constellations to reach t > τB some
trade off’s in the experimental design had to be made: Typically 900 particles
are tracked in an observation volume of 15 × 15 × 15cm3. This results in an
average particle distance of dp ≈ 50η and tracking lengths longer than integ-
ral scales tT > T and tT > 10τB. For the sake of ’good’ statistics the total
recording time is tR ≈ 500T .

The flow is forced with eight rotating propellers placed in the corner of
a water tank of 32 × 32 × 50cm3 and neutrally buoyant tracer particles are
recorded with four synchronized, 50Hz CCD cameras. To suppress the devel-
opment of a mean flow the propellers change their rotational direction after
0.5s of stirring and after an additional 0.5s of pausing. A typical propeller tip
velocity is 50cm/s. Further details of the experiment are described in [2]. The
characteristic flow properties are summarized in table 1. A recent modifica-

Table 1. Flow properties of the turbulent flow as already reported in [2].

η L τη T ε σu L/η Reλ

0.25mm 48mm 0.07s 2.45s 168mm2/s3 23mm/s 190 172

tion of tracking 3d particle positions through consecutive time frames allows
to connect tracked particle trajectories that are only interrupted by one ’miss-
ing’ point. The main impact of this feature is a drastic increase of the number
of long trajectories. The number of tracks with length tT > T has more than
doubled while the number of tracks with tT > 2T is one order of magnitude
larger.

3 Properties of ∂ũi/∂xj

In this section we present Eulerian results for Ãij for 100 < ∆/η < 300, where
η =

(
ν3/ε

)1/4 is the Kolmogorov constant. The lower bound of ∆ is defined by
our experimental tracer seeding density. Only for volumes larger than (100η)3

the number of particles is n > 12. In fig. 1(a) we plot the averages of s̃2 and ω̃2

as a function of filtering scale ∆/η. The comparison with the straight dashed
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line that is proportional to r−4/3 shows that there is no clear K41 scaling,
which is not surprising at the relatively low scale separation of L/η = 190.
Based on the longitudinal second order structure function S2 (r) we construct
a time, t∗ (r) with which a better compensation of Ãij can be obtained. We
define

t∗ =

√
2r2

15S2 (r)
, (4)

which for r � η gives t∗ (r) =
√

2τη in order that
〈
s2

〉
· t2∗ = 1 and in

homogeneous flows
〈
ω2

〉
· t2∗ = 2. For η � r � L eqn. 4 is proportional to

r2/3. With the parameterized form of S2 (r) employed by [21]

S̃2 (r) = 2

(
1 − exp

(
− r

(15Ck)3/4
η

))4/3

· (εL)2/3

⎛⎝ r4

64L4

C6
k

+ r4

⎞⎠1/6

(5)

the second order structure function is expressed as a function of separation
r, the viscosity ν, the flow properties L and ε and the Kolmogorov constant
Ck. Again in fig. 1(a) we show

〈
s̃2

〉
· t2∗ and

〈
ω̃2

〉
· t2∗ as a function of ∆/η.

Clearly the more general scaling with eqn. 4 holds over our entire range of
100 < ∆/η < 300 as s̃2 · t2∗ ≈ 1. To see how far off the approximation of Ãij

is with a too low number of points we show in fig. 1(b) the same quantities
for n = 4 points. Up to ∆/η ≈ 160 there is a seemingly nice K41 scaling.
However, at ∆/η = 100 we have

〈
s̃2

〉
≈ 50, which is much too high if we keep

in mind that for ε = 168mm2/s3 at the smallest scale
〈
s2

〉
≈ 80. Furthermore,

the compensated strain is much too high with s2 · t2∗ ≈ 8.
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Fig. 1. Coarse grained mean strain
〈
s̃2

〉
and enstrophy

〈
ω̃2

〉
are plotted versus

filtering scale ∆/η along with the compensated values
〈
s̃2

〉
· t2∗ and

〈
ω̃2

〉
· t2∗. In (a)

results are obtained from n > 12 points per least square fit to linear polynomials
and in (b) only n = 4 points are used.
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The qualitative difference between Ãij as obtained from n = 4 or n > 12
becomes even clearer if we look at the PDFs of the strain ’shape’ Λ2/Λ1.
It is known that in the viscous range 〈Λ2〉 / 〈Λ1〉 ≈ 0.15 over a wide range
of Reynolds numbers [22, 23, 14] and also for inertial scales it is reported
that

〈
Λ̃2

〉
> 0 [10, 11]. This means that also larger scale Ãij have a self-

amplifying nature. In fig. 2(a) we see that the PDFs for the shapes obtained for
100 < ∆/η < 300 almost collapse and yield a mean value of

〈
Λ̃2 /Λ̃1

〉
≈ 0.15.

Contrary, in fig. 2(b) the same PDFs but obtained from only n = 4 points
peak at zero and

〈
Λ̃2 /Λ̃1

〉
≈ 0, i.e. one of the most important turbulent

properties is lost completely.
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Fig. 2. PDFs for the coarse grained strain shape Λ̃2/Λ̃1 for filter scales 100 <
∆/η < 300. In (a) results are obtained from n > 12 points per least square fit to
linear polynomials and in (b) only n = 4 points are used.

In fig. 3(a,b) we show how the large scale axis-symmetry that for this exper-
iment was already reported in [2] is reflected in Ãij , especially for large ∆/η.
In fig. 3(a) we see the preferential orientation with x3 of the most stretch-
ing principal strain axis λ̃1 of s̃ij . x3 is the vertical tank axis, which with
32 × 32 × 50cm3 is higher than wide. Towards smaller scales a slow relaxa-
tion of this anisotropy can be observed, similar to reports of [9]. For ω̃ the
situation is slightly different as is shown in fig. 3(b). Consistent with the tank
dimensions it seems that large scale vorticity is preferentially aligned with the
longer vertical tank axis but equally distributed over both directions of rota-
tion. Towards larger scales the symmetry is broken slightly as the horizontal
component of vorticity starts to align with +x1 and −x2.

Finally we show in fig. 4 the topological property of measured Ãij by means
of the two invariants R and Q [24]. The normalized invariants are defined as

Q = −1
2
Tr

(
Ã2

ij

)
/
〈
s̃2

〉
, R = −1

3
Tr

(
Ã3

ij

)
/
〈
s̃2

〉3/2
. (6)
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Fig. 3. (a) PDFs of the cosines between the most stretching principal coarse grained

eigenvector λ̃1 and the coordinate directions x1,2,3 for three different scales ∆/η. x1,2

are the horizontal directions and x3 is the vertical direction. (b) PDFs of the cosines
between coarse grained vorticity ω̃ and the coordinate directions x1,2,3 for three
different scales ∆/η.

For plots obtained from only n = 4 points we see that essentially for all
scales 100 < ∆/η < 300 the RQ-shapes look like such obtained from Gaussian
velocity fields [22]. Very differently for n > 12 the well known ’tear drop’
shapes are recovered for all scales. This is at first surprising since we would
expect Gaussian RQ-shapes for ∆ > L. Indeed, for ∆/η = 200 we observe the
most symmetric RQ-shape for the n > 12 figures. The only explanation we
have is that the observed ’tear drop’ shapes at larger than integral scales are
caused by large scale mean strain. This effect has already been observed in
stochastical model results [9].

4 Multi point statistics

In the previous section we established that the measured Ãij is approximating
well the actual coarse grained velocity derivative tensor. In this section we
show how particle pairs, triangles and tetrahedra grow in time and how their
principal axes are oriented with respect to Ãij . In addition, we check to what
degree the kinematic relation for the growth of pairs r

1
2
dr2

dt
= rirjsij , (7)

which in the viscous range is exactly true, also holds in the inertial range with
s̃ij instead of sij .

We start with the growth of particle constellations. In fig. 5(a,b) we show
how normalized separations, areas and volumes grow in time. Times are nor-
malized with τB that correspond to initial scales R0, which for pairs are r0.
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Fig. 4. Joint PDFs of the invariants R and Q as defined in eqn. 6. Shown are
results from n > 12 points per least square fit to linear polynomials (bottom row)
and n = 4 points (top row) for three different filtering scales ∆/η = 100, 200, 300.
The isoprobability contours are logarithmically spaced.

For evolving triangles or tetrahedra we use R0 =
√
g1, where g1 is the largest

eigenvalue of the moment of inertia tensor

gab =
∑

ρa
i ρ

b
i (8)

ρ1 = (x1 − x2) /
√

2

ρ2 = (2x3 − x1 − x2) /
√

6

ρ3 = (3x4 − x1 − x2 − x3) /
√

12

that was introduced in [5]. Growth is scaling nicely with the Batchelor time τB .
However, neither pairs, nor triangles nor volumes reach a convincing Richard-
son scaling of ∝ ε1/2t3/2, εt3, or ε3/2t9/2, denoted by the straight dotted lines.
We attribute this to the too low scale separation of our experiment. In fig. 5(a)
it can be seen how shortly before r0 = L (denoted by circles) the growth rate
starts weakening. In the case of triangles and volumes fig. 5(b) the statistics
become too sparse even before integral scale is reached.

Fig. 6 shows the temporal evolution of the eigenvalues of the tensor gab

defined in eqn. 9 and the evolution of the mean shape factors 〈w〉 and 〈I2〉
for triangles and tetrahedra respectively. These shape factors are a measure
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for the elongation and w = 0 and I2 = 0 would be obtained for needle-like
objects. Following [6] they are defined as

I2 = g2/R
2 (9)

w = 2
√
I2 (1 − I2) (10)

where R2 = ρ2
1 + ρ2

2 + ρ2
3 is the radius of gyration. Again, the eigenvalues

do not reach Richardson scaling that is denoted by straight dotted t3 lines in
fig. 6(a,b). For the tetrahedra it can be observed how at early times, where due
to small scales the velocity field is still quite smooth, the volumes are almost
conserved. This is reflected in initially decreasing mean values of g3, which are
the most compressed directions of the tetrahedra. Both shape factors reach a
stable plateau after a short transient time in which the initially regular shapes
assume their intermediate state. It is difficult to decide if these intermediate
states reflect self-similarity or just ’Gaussianity’. The noise level is relatively
high and our inertial range is very small. In addition, as can be seen by
the straight dotted lines of fig. 6(c), the values for self-similar and Gaussian
shapes are fairly close together. From slightly higher Reynolds number DNS
simulations [8] deduced I2 ≈ 0.16 for the inertial range while the Gaussian
value is I2 ≈ 0.22 [6]. Our data lies in-between for tetrahedra and, since three
points are ’easier’ to follow, probably also for triangles for which we don’t
know the corresponding values.

We now look at how evolving particle constellations are oriented with
respect to the strain eigenframe spanned by the coarse grained eigenvectors
λ̃i. For the following Lagrangian results we use as an evolving filtering scale
R0 (t) = r (t) or R0 (t) =

√
g1 (t). For infinitesimal separations and also for

infinitesimal areas it is well known that after a transient time of t/τη > 1
separation vectors are predominately aligned with the most stretching axis λ̃1
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and that surface normals are predominately aligned with the most compressing
axis λ̃3 [25, 22, 14, 26]. It is natural to expect the larger scale counterparts
r0, g1, and g3 of pairs, areas and volumes to behave similarly. In fig. 7 and 8
we present experimental evidence for this. PDFs for all cases are shown for
t > τB, i.e. τB is replacing τη as the relevant time scale. Initial scales range
from 6 < η < 30, 14 < η < 30, and 22 < η < 30, for pairs, triangles and
tetrahedra respectively. This is reflecting that it is more difficult to find e.g.
four points close by and to be able to track them for a long time than it
is to find and track ’just’ a pair. In all cases we observe a clear alignment
of r and g1 with λ̃1 (fig.7), and moreover, the PDFs for pairs, triangles and
tetrahedra are almost identical also on a quantitative level. For the surface
normals of triangles and the smallest eigen-direction of tetrahedra, g3, we see
a clear preferential alignment with the compressing principal axis λ̃3 (fig. 8).
These alignments are one way to explain why in the inertial range flat and
elongated structures can be observed as it is reported in [6, 8].

Such alignments to principal axes only affect separations if the correspond-
ing strain field s̃ij is strong enough, e.g. as one would expect from K41 type
arguments. As we have seen above in fig. 1 this seems to be the case. For
particle pairs we now directly check how much the coarse grained counterpart
of eqn. 7

1
2

dr2

dt

r2
∼=

rirj s̃ij

r2
(11)

is balanced. In other words, we check to what degree particle separation
dr (t) /dt is governed by the strain field filtered at the local scale ∆ = r (t)
as it is assumed in [3]. Fig. 9(a) shows the temporal evolution of averages
of the l.h.s. and r.h.s. of eqn. 11 for initial separations 6 < r0/η < 30. For
the r.h.s. values are only given if separations are large enough to find n > 12
particles inside volumes of v = r3 (t). We see how at early times the terms
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are roughly balanced but at later times it is clear that 1/2dr2/dt > rirj s̃ij .
This means that a significant part of separation must be caused by scales
∆ < r (t). In fig. 9(b) we show the same quantities but compensated with
t∗/

√
2 that was introduced above with eqn. 4. We observe a good scaling for

1/2
(
dr2/dt

)
/r2 while the compensated rirj s̃ij/r

2 continues to decrease. The
two straight dotted lines at 0.11 and 0.14 denote the interval of the seemingly
universal stretching rate for the viscous scales [25, 22, 14, 26, 2]. Our data
for the compensated large scale separation rates fall into this range. It thus
appears, that the total separation rate indeed does behave like its viscous
counterpart, also on a quantitative level, as it was assumed in [3]. However,
we infer that the total separation must be the sum of contributions that stem
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data as in (a) but all quantities are compensated with t∗/

√
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also from smaller scales ∆ < r. The contribution from rirj s̃ij , filtered at scale
∆ = r, is in our case roughly 50%.
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1 Introduction

Two-phase turbulent flows are of great interest for a number of most important
and extremely diverse application such as combustion, sedimentation, fluid-
ized beds, settling and resuspension of organic material and contaminants in
lakes, ocean, waste water management, evolution of clouds, rain formation
and dust storms (see for example Crowe et al., 1998, Gyr and Kinzelbach,
2003, Burton & Eaton 2005 and references therein). In a turbulent flow the
interaction between the second phase and the carrier fluid is important since,
for example the nonlinear processes that redistribute energy between the scale
of the energy containing eddies and the scales associated with the field of ve-
locity derivatives, are two-way coupled with the spatial distribution of the
second phase. In the case of dilute suspensions of solid particles, the small
scale processes of turbulence were observed to be modified due to the effects
such as inertial response of particles to fluid acceleration, gravitational effects
and preferential concentration of particles (see e.g. Ferrante & Elghobashi,
2003). In particular, in the flow regions where the dispersed solid phase tends
to accumulate (i.e., clusters), the two way coupling effects may be enhanced,
leading to strong modification of the local processes of self-amplification of
velocity derivatives (see e.g. Tsinober, 2001).

The Stokes number St, defined as the ratio between the particle response
time τp and a timescale of the flow τf is the characteristic dimensionless group
for particle laden flows. The relevance of small scales, in this context, is em-

Bernard J. Geurts et al. (eds), Particle Laden Flow: From Geophysical to Kolmogorov Scales, 271–283.
© 2007 Springer. Printed in the Netherlands.
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phasized by the occurrence of clusters at the critical Stokes number of the
order of 1 when the Kolmogorov time scale τk is chosen as the representat-
ive flow time scale, i.e τf = τk. Indeed for St � 1 particles tend to follow
the flow closely, for St ∼ 1 clustering was observed (Squires & Eaton 1991,
Ferrante & Elghobashi, 2003, and Fallon and Rogers 2001, both in standard
and micro-gravity conditions) and to affect the settling velocity (Aliseda et al.
2002, Bosse and Kleiser, 2006). For St � 1 particles respond too slowly to be
able to feel the spatial and temporal variations of the ambient flow field and
therefore tend to settle like in an undisturbed fluid. It is noteworthy that most
of the available experimental knowledge on the interaction between a turbu-
lent flow and a suspension of solid particles comes either from measurements
of the liquid phase in water channel or pipe flows or from measurements of
the distribution of solid particles in a nearly homogeneous turbulent air flows.
A few exceptions regard the cases in which solid particles were tracked sim-
ultaneously with the fluid phase ( PTV combined with PIV measurements in
water channel flows, Kiger & Pan, 2002) and the case of the study of particle
settling velocity in oscillating grid turbulence in water (e.g. Yang & Shy 2003).
In both cases measurements were limited to a two-dimensional velocity field.

The main goals of this experimental study are: i) to observe clustering
in a dilute suspension of solid particles in a homogeneous turbulent flow
through measurements of local particle concentration in three-dimensions, ii)
to quantify the effect of the local particle concentration on the properties of
small scale turbulence. It is thus essential to study the interactions between
the two phases by assessing simultaneously both the location and distribution
of the solid particles, and the fields of velocity and velocity derivatives of the
flow. In order to obtain such measurements in three dimensions, we adopted
the 3D-PTV technique. We choose water, instead of air, to be the carrier fluid
and we employ neutrally buoyant particles as the fluid tracers and silica-gel
particles as the dispersed phase (ρs=1400 kg m−3 and diameter D=900 µm).

In the case of water as the carrier fluid and large solid particles, i.e.
mean diameter D which is larger than the Kolmogorov length scale η, as
the dispersed second phase, the definition of the particle response time is less
straightforward than in the typical case of small solid particles in air. In this
case one of the key assumptions of Maxey & Riley (1983) is violated, implying
that the particle motion cannot be correctly estimated by using the first prin-
ciple. In such case a fully resolved simulation of the particle boundary layer
has to be implemented as described by Burton & Eaton (2005). According
to the authors, the Stokes drag is the dominant term for a fixed particle in
homogeneous turbulent flow with diameter twice as large as the Kolmogorov
length scale, while the history term and the combination of added mass, fluid
pressure gradient and viscous stress were observed to be small. In a turbu-
lent channel flow, for ρp � ρf , Armenio & Fiorotto (2001) observed that, as
compared to the Stokes drag, the added mass force is negligible, the Basset
force is appreciable and the pressure drag is relevant when the densities of the
carrier ρf and dispersed ρp phases are comparable. Therefore, in the present



Two-phase flow measurements 273

contribution we assume that i) the equation of motion as described by Maxey
& Riley (1983) is still valid in our case, ii) we neglect the Basset force and
the Faxen force, iii) we neglect the acceleration of the fluid in the particle
location. The particle response time can be thus defined as:

τp =
2(ρp + ρf )/ρfD

2

36νf
, (1)

note that for ρp >> ρf we obtain the definition τp = ρpD2

18µf
commonly used

for the cases of gas-solid, gas-liquid two-phase flows.
Regarding the steady Stokes drag term FD = 1/2ρfCD|u − v|(u − v), we

must note that the drag coefficient CD is a function of the Reynolds number
based on the slip velocity, i.e. the difference between the particle velocity v
and the fluid velocity u, Re = D|u − v|/nu. For Re > 1 Oseen correction
has to be considered. The following definition of the particle response time is
given for larger Re, up to 200 (see e.g. Crowe, 1998).

τp =
(2ρp + ρf )/ρfD

2

36νf(1 + 0.15 ∗Re0.687)
(2)

We can estimate the particle Reynolds number to be approximately 50, if
we assume the slip velocity to be equal to the settling velocity Ws of 5 cm
s−1 calculated following Clift et al (1978), which is approximately equal to
the measured r.m.s. velocity of the ambient fluid. In this case τp = 30 ms,
while if we neglect the Oseen correction, τp = 80 ms. The Stokes number
based on the kolmogorov scale τη = 20 ms, is thus in the range of 1.5 - 4. It is
noteworthy that the time scale of the flow which participates to the definition
of the Stokes number can also vary (see e.g. Eaton & Fessler, 1994). Due to
the fact that Dp is larger than η we consider other time scales, e.g. the one
based on the r.m.s velocity, and Taylor microscale λ/urms � 100ms. In this
case the Stokes number is in the range of 0.3 - 0.8. In either case we may
expect to observe clustering since the discussed range of values are close to
the critical value of 1.

2 Experimental setup

The experiment has been carried out in a glass aquarium of 120 x 120 x 140
mm3 in which the flow is forced mechanically from two sides by two sets of
four rotating disks with artificial roughness elements. The observation volume
of approximately 30 x 30 x 30 mm3 was centered with respect to the forced
flow domain, mid-way between the disks. A description of the forcing device,
depicted in fig 1 can be found in Liberzon et al. 2005.
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Fig. 1. Sketch of the forcing device.

2.1 Recording system

The experimental approach is based on the three-dimensional Particle Track-
ing Velocimetry technique (3D-PTV, Luthi et al. 2005). Such technique is of
special importance since the second phase (i.e. the solid particles) is an essen-
tially Lagrangian object, so one can track its evolution, distribution (cluster)
and dynamics, along with its interaction with the carrier fluid. A sketch of
the experimental apparatus is shown in figure 2. For the present experiments
two 3D-PTV systems have been synchronized at a frame rate of 500 fps. A
Photron-Ultima high-speed camera with a 4 mirror image splitter and a res-
olution of 1024× 1024 pixels was set to record images of the solid phase only,
i.e. the Rhodamine labeled silica gel particles. A dichroic red filter and a low
aperture were employed to filter out the light scatter by the 40÷60 µm neut-
rally buoyant tracer particles. Another system, consisting of 4 CMOS cameras
(Mikrotron GmbH, 1280× 1024 pixels) linked to a real-time digital video re-
cording system (IO Industries) was used for the fluid phase. These cameras
were equipped by dichroic green filters. Typical images of the tracers and the
solid particles are shown in figure 3, where we can see that there is no contam-
ination of the silica particle images in the system devoted to the fluid tracers
recording and vice versa. The observation volume of 30 ×30× 30 mm3 was
illuminated by a continuous 20 W Ar-Ion laser.

2.2 Mutual calibration of the two 3D-PTV systems

Both 3D-PTV systems are calibrated on the same measurement volume. In
order to achieve this we used a planar (x,y) calibration target and we acquired
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Fig. 2. Sketch of the experimental setup.

Fig. 3. Sample images of tracers particles (1000 pixels, left) and silica particles (512
pixels, right)

calibration images at different z-locations in depth (multi-plane calibration).
The calibration target consists of two symmetric aluminum black painted
plates with conically shaped holes forming a grid of 5 mm mesh size. A thin
aluminum foil (< 10µm) was positioned in between the two plates in order
to scatter the light in correspondence of the grid points in both directions
of the two acquisition systems. In such way the x, y, z location of each point
used for the calibration is the same for the two systems besides the thickness
of the aluminum foil in the z direction. The calibration procedure was tested
in a single phase experiments where the seeding was kept low. Both systems
recorded the same tracers particle within the same observation volume. The
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distance between the same particles at the same time as obtained by the two
systems is a reasonable estimate of the error in the mutual location of the
tracers and the solid particles: as shown in figure 4 together with a snapshot
of particle trajectories, it is found to be in the range up to 100µm, which
is almost an order of magnitude smaller than the solid particle radius and
comparable with the error in the determination of the centroid of the solid
particles.
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Fig. 4. A snapshot from simultaneous measurements of tracer particles (top). PDF
of the displacement components between the location of the same tracer particle as
reconstructed by the two 3D-PTV systems.
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3 Results

3.1 Solid phase: estimate of local concentration

The three dimensional location of solid particles is the first output of 3D-
PTV. In the following we present only statistics related to the position and
concentration of the second phase. We can thus use a larger dataset of matched
particles (reconstruction of the 3D location in space from the 2-D location in
the image plane of at least three cameras) as compared to the (slightly) smaller
dataset of tracked particles (reconstruction of 3D particle trajectory in time).
The particle image of the dispersed solid phase is rather large, with respect
to the observation volume. Thus at this stage only with a limited number
of particles (order of 100 per image) it was possible to obtain simultaneous
measurement of the fluid phase. This is due to the fact that solid particles,
though transparent to laser light, are not refractive-index matched to the
fluid. This implies that the tracers particles located behind them in the optical
path from the camera sensor, cannot be reconstructed. Therefore increasing
the solid particle concentration has the side effect of reducing the spatial
resolution of the flow. The relatively low concentration is the major limitation
of the current setup. Nevertheless, an estimate of the local concentration as a
function of space x, y, z and time t is possible, by counting the number of solid
particles Np which can be found in a sphere of a known radius centered on
each solid particle. The first evidence of non Gaussian distribution of particles,
though weak, is given in figure 5 in which the distribution of Npis provided
for different sphere radii.

3.2 The fluid phase: turbulent quantities and scales

From the trajectories of the fluid tracers it is possible to extract the three
dimensional velocity and velocity derivatives fields, together with the Lag-
rangian acceleration, as a function of space and time. With respect to the
previous results (Luthi et al. 2005, Liberzon et al. 2005) the estimate of the
velocity derivatives is not as accurate. This is because in the latter experi-
ments the inter-particle distance was of the order of the Kolmogorov length
scale, while in this case, is of the order of 10 Kolmogorov length scale. Since
the silica gel particles are as well larger than the Kolmogorov length scale,
such estimate of ωi and sij is not considered as a limiting factor for the present
investigation. We present the point-wise checks on the Lagrangian, Eulerian
and convective acceleration (Dui/Dt = ∂ui/∂t+ uj∂ui/∂xj ) in figure 6. the
shape the Joint PDF could serve as a qualitative check on the estimation of
temporal and spatial velocity derivatives, according to Luethi et al 2005.

Despite of the aforementioned technical limitation, the qualitative beha-
vior of the small scales of turbulence is still captured as we can see from figures
7, 8. In figure 7 we observe the typical shape of the PDFs of strain, enstrophy
and their respective production terms in the left panel and Joint PDFs of
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these quantities on the right side. In figure 8 the important features of small
scale turbulence, as the alignment between vorticity ω and the eigenframe λi

of the rate of strain tensor and the vortex stretching vector Wi are shown.
The distribution of these quantities is in qualitative agreement with previous
results (see for example Tsinober, 2001).

The scales of the flow are reported in table 1 and the comparison with
some of the relevant quantities from the single phase experiments of Liberzon
et al. (2005) is provided in table 2. The Kolmogorov scales are based on the
estimate of the dissipation rate ε. The latter was slightly overestimated by
ε = 2νsijsij , compared to the definition based on the r.m.s. velocity urms and
integral length-scale u3

rms/L. Using the estimated standard deviation of one
component of the fluid acceleration a = 0.8 ms−2, we obtain the dimensionless
parameter a0 = var(a)/(ε3/2ν−1/2) = 4.77 which is, at this value of Reλ =
250, in agreement with results of Voth et al., 2002, among others. The Taylor
microscale was estimated as λ = 15νurms/ε to be equal to 5 mm.

L[cm] urms [cms−1] ε [m2s−3] 〈a2
i 〉0.5[ms−2] η [µm] τη [ms]

4 5 2.5 10−3 0.8 195 20

Table 1. Some relevant scales of the flow derived from the estimates of the velocity,
strain and acceleration fields; Taylor microscale λ = 5 mm.
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Reλ 〈Λ1〉 〈Λ1〉 〈Λ1〉 〈s2〉 〈ω2〉
250 14.9 [s−1] 1.4 [s−1] -16.4 [s−1] 510 [s−2] 890 [s−2]
250 0.30 0.03 -0.34 0.2 0.36
50 1.3 [s−1] 0.26 [s−1] -1.52 [s−1] 4.9 [s−2] 11.8 [s−2]
50 0.30 0.06 -0.35 0.26 0.62

Table 2. Dimensional quantities are reported in the first row, while dimensionless
quantity normalized by Kolmogorov time scale τη = 0.02s are reported in the second
row. In the following two rows are reported the same dimensional and dimensionless
mean values from Liberzon et al. (2005) with τη = 0.23s.
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3.3 Joint statistics: local particle concentration in the field of
velocity derivatives

In order to relate the local concentration to the flow topology, we condition
the statistics of Np on the value of Q = ω2 − 2s2, averaged on a sphere of
radius RQ. The results of joint statistics is given in figures 9. The conditional
average of (Np−〈Np〉)/〈Np〉 is shown as a function of Q/〈ω2〉 for different RQ.
There is an indication that particles tend to accumulate in high strain regions
(Q/〈ω2〉 < 0) rather than in high enstrophy regions (Q/〈ω2〉 > 0). This
preliminary result suggests that large solid particles exhibit local preferential
concentration, though weak, in nearly homogeneous turbulent flow in water.

4 Summary and discussion

Simultaneous measurements of a dilute suspensions of large solid particles
in liquid turbulent flow at Reλ � 250 in nearly homogeneous conditions are
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provided. The spatial distribution of solid particles, together with the fields
of velocity and velocity derivatives, are obtained by means of two synchron-
ized 3D-PTV systems. Preliminary tests on the mutual calibration of the two
systems, on the optical filtering and particles labeling and on the perform-
ance of 3D-PTV in high Reynolds number flows, were performed. The scales
of the flow were consistently estimated and a series of checks on the quality
of the measurements of the liquid phase were made and compared to previ-
ous results at Reλ � 50 (see Luthi et al., 2005 and Liberzon et al., 2005).
Results on the strain and vorticity fields show that the key features of turbu-
lent flows are captured, despite of the coarse spatial resolution. Regarding the
solid phase, the local concentration is estimated by counting the number of
particles Np in the close neighborhood of each particle, within a sphere of ra-
dius comparable to the Taylor microscale. This approach is adopted due to the
limited number of tracked solid particles per frame. Joint statistics between
the local particle concentration and the strain and vorticity fields show that
solid particles have a weak tendency to concentrate in strain dominated re-
gions rather than in vorticity dominated regions. This is a preliminary result
which suggests that large solid particles (D > η) in water (ρp comparable
with ρf ) tend to form clusters in strain dominated regions. The clustering
effect observed in this study is significantly weaker as compared to the nume-
rical results of Squires and Yamazaki (1995). We understand that the main
difference is due to the settling velocity which is in our case almost 10 times
larger than the Kolmogorov velocity scale. We may expect to observe stronger
preferential concentration for particle of similar size but lower density. One
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has to be aware of the limitations of this experiment. A limited number of
solid particles in a small observation volume were tracked. Therefore the oc-
currence of clusters cannot be visualized in snapshots. Moreover Np provides
only a rough estimate of particles distribution and it depends on the radius of
the sphere in which the particles are counted. In the further experiments it is
necessary to implement a method of refractive index matching allowing for a
significant increase of solid particle concentration. In addition, the occurrence
and the intensity of clustering of large solid particles in liquids, remains to be
investigated for different Stokes numbers and settling to Kolmogorov velocity
ratios.

We gratefully acknowledge funding by ETH research commission under
grant TH 15/04-2.
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Summary. The evolution of a two-dimensional turbulent decaying flow is experi-
mentally analyzed in a rotating system considering the effect of the change of the
Coriolis force with latitude. The flow is generated using an electro-magnetic (EM)
cell, i.e., by electro-magnetically forcing a thin layer of a saline solution, in a rotating
reference frame. A Feature Tracking (FT) technique is used to measure the flow field
allowing the reconstruction of high resolution velocity and vorticity fields. In agree-
ment with theoretical prediction and previous experiments, results corresponding
to high values of the beta parameter show a preferential transfer of energy towards
zonal modes and the consequent organization of a weak anticyclonic circulation in
the polar zone. Moreover, the analysis of the one-dimensional energy spectra shows
a scaling steeper than Kolmogorov’s law and a peak near the Rhines scale indicating
a soft barrier of the energy transfer towards low wave-numbers.

1 Introduction

Large scale flows in the ocean and in the atmosphere of the Earth and other
planets are significantly influenced by rotation and stratification. Both of these
effects cause the inhibition of the vertical velocity; as a consequence, motion on
these scales can be represented using a quasi-two-dimensional approximation.
Also, turbulent flows subjected to rotation develop spectral anisotropy [1].
Kolmogorov’s k−5/3 scaling, which characterizes the inverse energy cascade
developing towards large scales [2, 3] in the absence of rotation, under strong
rotation occurs in the wave-number domain only away from the zonal axis
[4]. The dynamics of 2D turbulence in the presence of strong rotation differs
from 2D classical turbulence in at least two main respects: the inverse energy
cascade is arrested at a characteristic wavelength [5], known as Rhines scale,
above which the flow is predicted to show high anisotropy and opposite sign
vortices organize along the meridional axis forming zonal jet like structures
[6] observed in several geophysical systems (i.e., in the atmosphere of Giant
Planets [7]).

Bernard J. Geurts et al. (eds), Particle Laden Flow: From Geophysical to Kolmogorov Scales, 285–297.
© 2007 Springer. Printed in the Netherlands.



286 G.F. Carnevale, and A. Cenedese, S. Espa, M. Mariani

Rhines’ argument to explain the energy transfer towards zonal modes in
beta-plane turbulence [5] is based on a competition between nonlinear and
beta terms in the quasi-geostrophic vorticity equation [8]:

Dq

Dt
= ∂tζ + J(Ψ, ζ) + β∂xΨ = −λE∇2

HΨ + ν∇4
HΨ + F (1)

where q = (ζ + f)/h is the potential vorticity (PV), ζ the relative vorticity, h
the height of the fluid column, J = Ψxζy − Ψyζx the Jacobian operator , Ψ is
the stream function, β the gradient of f = 2Ω sin(φ) (i.e., the Coriolis para-
meter), λE = fE1/2/2 the bottom friction (Ekman friction, E is the Ekman
number) coefficient, ∇H the horizontal Laplacian operator, ν the kinematic
viscosity and F represents the forcing. From the dispersion relation for Rossby
waves and estimates of time scales for isotropic turbulence, one can predict
that the beta effect term will dominate only at large scales. The anisotropy
of the dispersion relation results in energy being transferred to large-scale
zonal motions more easily than to other large-scale motions. Thus the energy
distribution becomes strongly anisotropic at large scale producing a tendency
toward the formation of zonal jets. The associated characteristic scale separ-
ating the regions of wave-vector space where either beta or nonlinear effects
dominate respectively is also anisotropic; however, an isotropic average of this
dividing scale, expressed in terms of rms velocity and beta coefficient i.e., the
Rhines scale, can be written as [5]:

kRh =
√

β

2Vrms
(2)

Where linear wave effects dominate, energy transfer rates are diminished with
respect to turbulent transfer rates. Thus kRh can be said to represent the
arrest scale of the inverse cascade, a soft barrier to energy transfer towards
smaller wave numbers. The presence of this barrier leads to a steeper power
law spectrum for k > kRh:

E(k) = Cβ2k−5 (3)

where the value of the constant C ≈ 0.5 has been estimated in numerical beta
plane turbulence simulations [4, 7]. Subsequent studies [4, 9] clarified Rhines
theory relating the inhibition of non-zonal modes to triad interactions. The
scaling (3) has been recovered in numerical simulations of the flow on the
Cartesian beta plane [9, 10] as well as in spherical geometry [4]. Also, a region
characterized by a homogeneous distribution of PV surrounded by large PV
gradients has been seen in the polar zone in simulations of the flow on a
rotating sphere [11]. Chekhlov et al. [1] show that the scaling (3) develops in
a very narrow sector of the wave numbers space close to the zonal axis while
a -5/3 slope, indicative of an isotropic-turbulence-like behavior, prevails in
almost all other regions. The role of bottom friction has been discussed by
Danilov and Gurarie [12] who introduce a measure of the zonal strength of the
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flow in terms of the ratio γ = kRh/kfr where kfr represents the arrest scale of
the cascade in absence of rotation due to dissipative effects. Anisotropy arises
if γ � 1.

Laboratory experiments give an insight into beta plane turbulence dy-
namics, showing, for instance, the organization of jets and mixing of PV [13].
Starting from experimental data, a detailed investigation of the spectral flow
characteristics is still difficult to perform because of two limiting factors: the
resolution of the reconstructed velocity field (which depends on the acquis-
ition system and on the adopted measuring technique) and the rapid decay
rate due to bottom friction that restricts the time scale of the experiments.

In the recent work Afanasyev and Wells [14] (AW herein), have demon-
strated a new experimental methodology that allowed them to study beta-
plane turbulence both qualitatively and quantitatively. We intend to use this
methodology in conjunction with numerical simulations to further explore the
nature of two-dimensional turbulence. We hope, in particular, to understand
how both the beta effect and a strong bottom drag interact to determine the
width of the observed jets. The preliminary work presented here demonstrates
how our laboratory apparatus can be used in this investigation.

In this context, we perform a series of experiments, with various config-
urations of the velocity field in two different regimes, corresponding to two
different rotation rates. Following AW and previous works on 2D non rotating
turbulence [15, 16], the flow is generated using an EM cell where the initial
condition of vorticity distribution is generated by the superposition of electric
and magnetic field on a thin layer of saline solution The effects of the variation
of the Coriolis force with the latitude is modeled by placing the test section
on a rotating table in order to make the fluid surface assume a parabolic pro-
file. Flow is measured using a particle imaging based technique; in particular,
a feature tracking (FT) algorithm [17, 18] allows the reconstruction of high
resolution instantaneous velocity and vorticity fields.

FT allows a Lagrangian description of the velocity field, in particular it re-
constructs the displacement field by selecting image features (i.e., salient point
characterized by large luminosity intensity gradients) and tracking these from
frame to frame. Lagrangian data are then used to reconstruct instantaneous
Eulerian velocity and vorticity fields through a re-sampling procedure.

Results here do reproduce the important aspects of the phenomena as
previously found by AW: the organization of a weak anticyclonic circulation
as well of a zonal jet in the high rotation rate experiments. Also, in the case of
high rotation rate, we see the formation of the expected soft spectral energy
barrier in the wave-numbers space.

2 The model

In order to reproduce the planetary beta effect in a laboratory, a sloping
bottom is generally used [19]; such a configuration, known as topographic
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beta-plane, is dynamically equivalent to a fluid layer with flat bottom with
a Coriolis parameter that is linear in y, which measures the distance in the
meridional direction from some reference latitude. If in the polar region an
approximation for the variation of the Coriolis parameter would be quadratic
in y, this would imply assuming the pole as the reference point (the so-called
gamma-plane). In order to reproduce in laboratory a similar effect of the
quadratic variation of f with y, we can use the parabolic height profile assumed
by the free surface of a rotating fluid (figure 1), considering that topographic
variations can be seen in the quasi-geostrophic approximation to be equivalent
to variations in f when appropriately scaled.

(a) (b)

Fig. 1. (a) Side view and (b) plan view of plexiglas tank.

In stationary rotating flow, the centrifugal force and the hydrostatic pres-
sure are balanced when:

∆z =
Ω2

2g
r2 = sr2 (4)

where s = Ω2/(2g), Ω is the rotation rate, g the gravitational acceleration,
and r indicates the north-south distance (note that here r is used instead of
y and that with the origin at the pole it assumes only positive values). In this
model, the point of maximum depression of the fluid surface represents the
pole while the peripheral areas corresponds to the lower latitudes.

Considering now the PV expression:

q =
ζ + f

H0 + sr2
(5)

where H0 is the height of the fluid at r = 0, assuming the constant r0 = R/2
(see figure 1) as a reference radius in order to express in terms of y the small
shifts of r from r0 (r = r0 + y; y � r0), an expression for the laboratory
beta-plane is obtained with the local value of beta given by:
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β =
2sr0f0

H0 + sr2
0

(6)

2.1 Experimental set-up

The experimental set-up has then been built from the superposition of two
standard mechanisms commonly used for generating 2D turbulence in the
laboratory [20]: a rotating table and an EM cell. The rotating table has an
adjustable angular speed. The sense of rotation used is counter-clockwise in
order to simulate flows in the northern hemisphere.

The EM cell (figure 1b) consists of a plexiglas tank whose dimensions are
L = 33 cm, W = 35 cm, it is filled with an electrolyte solution of water
and NaCl. The cell is placed flat on the rotating table. The center of the
tank is lined up with the rotation axis of the table. The flow is generated
by a superposition of electric and magnetic fields, i.e., using the effects of
Lorentz force. The magnetic field is generated by 97 Neodymium permanents
magnets covering the area of a circle on a metallic plate just below the bottom
surface of the tank. The tank is filled by injecting the fluid from the lateral
reservoirs surrounding the test section. These reservoirs have been designed
to house the copper electrodes providing the forcing current, a voltage signal
of fixed amplitude generated by a computer controlled power supply. In the
experiments, the fluid thickness when non-rotating is 10 mm.

The combined effect of electric and magnetic forcing induces the continu-
ous formation of opposite signed vortical structures whose vorticity is positive
or negative according to the phase of the resulting Lorentz force, and whose
characteristic length scales are related to the distance between magnets, (2
cm here).

2.2 Experimental procedure

All the experiments were performed as follows:

• the free fluid surface is seeded using styrene particles (dm ∼ 50µm);
• the electromagnetic forcing is switched on. The early flow field is a regular

array of closely packed dipolar vortices, each corresponding to one magnet.
As this flow becomes stronger, it proves unstable and begins to deform
under the effect of strong nonlinear interactions between the vortices;

• the tank is brought up to the desired rotation rate by imposing a constant
angular acceleration (∼ 1rpm every 3 s). An approximately parabolic
profile is assumed by the fluid free surface in a time interval 5 min < T <
10 min after the target rotation rate is reached;

• the forcing is switched off. The subsequent evolution of the flow field de-
pends on the value of the beta parameter, i.e., on the imposed rotation
rate. In both high and low beta experiments dissipation effects start dom-
inating quite quickly after the forcing has stopped;
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• the fluid flow is recorded using a standard speed video camera (acquisition
frequency=25 Hz, resolution 720 × 570 pixels) placed orthogonally to the
tank surface and co-rotating with the system. Acquired images are then
digitized and post-processed using an FT image-processing technique to
reconstruct the velocity field evolution.

A series of experiments characterized by various rotation rates (0s−1 ≤ Ω ≤
3.1s−1), and, therefore, by different values of β and λE , has been performed.
Results corresponding to the parameters in Table 2.2 will be commented in
the further sections.

Table 1: Experimental parameters corresponding to the performed experiments.
D = (1/R)

∫ R

0
H(r)dr is the average depth of the layer.

2.3 Measuring technique

The Feature Tracking method is based on the Lukas-Kanade algorithm [21]
and on a subsequent version given by Shi and Tomasi [22] and can be defined
as a tracking technique based on correlation windows [17]. The method defines
the matching measure between fixed-sized feature windows (i.e., interrogation
window surrounding a feature) in two consecutive frames and the window dis-
placement is then evaluated by considering the best correspondence between
subsequent images as in classical PIV. In FT this measure is given by min-
imizing the sum of squared differences (SSD) between the image intensity in
two subsequent images - instead of by maximizing the inner product (i.e., the
correlation) between intensities - and the problem is reformulated as a minim-
ization in a least square sense providing a system with two equations and two
unknowns (i.e., the velocity components u(x, y) and v(x, y)). To this regard,
it has shown [18] that FT compared to PIV yields higher spatial resolution
and detects flow characteristics more exhaustively.

The FT routine can be subdivided in two steps: feature extraction, i.e., of
(x, y) coordinate pairs that are good to track, and feature tracking. The feature
extraction algorithm is then defined in such a way that the optimal solution
of the tracking algorithm is achieved: rather than defining a subjective, a
priori, notion of a good feature, this definition is based on the method used
for tracking itself: ‘a good feature is one that can be tracked well’. With this
approach, one overcomes a subjective definition of the object which has to be
tracked (such as particle centroids in classical Particle Tracking Velocimetry-
PTV) and of its corresponding definition parameters. In particular, it can be
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proved that the solvability of the SSD minimization problem is guaranteed
if the eigenvalues of the correlation matrix of the gradients of the intensity
values corresponding to a small window around the feature are both real
and positive and if the minimum eigenvalue of this matrix is greater than a
minimum prefixed threshold [17].

It follows that the solution of this problem has to be searched where image
intensity gradients are not null both along x and y direction. As a consequence,
contrary to classical PTV, the seeding density can be very high and traject-
ories can be followed for large time intervals. After the tracking procedure,
Lagrangian data are obtained by evaluating the feature position in different
time instants and by dividing the displacement by the time interval between
frames. By a re-sampling procedure of sparse velocity vectors over a regular
grid, the Eulerian flow picture in terms of instantaneous velocity and vorticity
fields is obtained as well. In both sets of experiments, the FT algorithm has
allowed the reconstruction of almost 10000 trajectories per processed frame.
Consequently, the interpolation procedure for obtaining the Eulerian velo-
city fields is very accurate and maximizes the information content of the raw
data. Both of these aspects are crucial when dealing with experiments [15].
In particular, concerning the Eulerian view-point and related analysis (i.e.,
spectra evaluation) it provides the possibility of characterizing the flow on a
wide range of spatial scales. Concerning the Lagrangian view point and re-
lated analysis (i.e., statistics on particle displacement and diffusion coefficients
evaluation), it should be noted that FT provides trajectories sufficiently long
for observing the asymptotic behavior. In contrast, when classical techniques
are used, long trajectories are difficult to obtain and they are often evaluated
synthetically by integrating the measured velocity field.

3 Results

In this section we will discuss in detail two representative cases, with relat-
ively high and low values of beta (Table 1: experiments numbered 8 and 15
respectively).

In figures 2-4, we show snapshots of the flow evolution for both of the selec-
ted experiments in terms of reconstructed particles’ trajectories and velocity
and PV fields. Eulerian instantaneous flow fields are obtained by re-sampling
sparse velocity vectors over a regular 128x128 grid. As already discussed, the
initial condition (figure 2) is similar for both flows while differences clearly
arise as time evolves.

In particular, in figures 3a-b results corresponding to the intense beta
effect (experiment 8), shortly (∼ 2 s) after the electromagnetic forcing is
stopped, are shown. The pictures show the flow pattern - a weak anticyclonic
circulation forms at the center of the domain while a cyclonic jet-like zonal
current forms around the edge of the central anticyclonic region. Moreover,
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Fig. 2. Velocity and potential vorticity fields for experiment # 8 shortly (≈ a few
frames) after stopping of the forcing.

(a)
(b)

Fig. 3. Snapshot of the flow evolution for experiment #8 at ≈ 2 s after stopping
of the forcing. Reconstructed trajectories (a), velocity potential vorticity fields (b).
PV scale is cm−1s−1.

the jet region is subjected to a wave-like perturbation, a Rossby wave, which
induces the formation of meanders associated with vortices.

In the weak beta case (figures 4a-b), the resulting flow ∼ 4 s after the
electromagnetic forcing is stopped, consists of a few vortices characterized by
a length scale larger than in the strong beta case, while no noticeable zonal
jet is observed. We may conclude that in the low beta case, corresponding to a
smaller value of kRh, the inverse cascade has room to proceed to larger scales
than in the strong beta case and conjecture that the jet formation cannot
occur for the weak beta case because kRh is so small that the associated jet
width would be large compared with the characteristic size of the domain.
Moreover, in this case PV mixing is clearly evident.
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(a) (b)

Fig. 4. Snapshot of the flow evolution for experiment #15 at ≈ 4 s after stopping
of the forcing. Reconstructed trajectories (a), velocity potential vorticity fields (b).
PV scale is cm−1s−1.

(a) (b)

Fig. 5. Trend of the average zonal velocity Vz (cm/s) with distance r (cm) from
the center for the experiment #8 (a) and #15 (b).

The differences between the two regimes can be also highlighted by ana-
lyzing the azimuthally averaged zonal velocity versus the distance r evaluated
from the center of the domain (pole). In the strong beta case (figure 5a), its
distribution is characterized by a narrow peak around r ≈ 8 cm, correspond-
ing to the jet, and by a relatively weak anticyclonic circulation in the central
part of the domain. In the low beta case (figure 5b), the profile is not peaked
at large radii, but its maximum seems to be associated with a single strong
vortex, not centered on the origin (see figure 4b), forming as a result of the
merging process.

Further insight into the flow dynamics can be obtained by spectral analysis;
energy spectra evaluation is based on a two-dimensional Fourier transform in
Cartesian coordinates. The one-dimensional spectrum with k =

√
k2

x + k2
y

is calculated by averaging both in time, over fixed time intervals, and over
direction in wave-number space. In Figure 6 the energy spectra corresponding
to the regime of intense beta effect is shown. The spectra are respectively
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Fig. 6. Energy spectra corresponding to the experiment #8. The spectra are cal-
culated by an average on time intervals concerning various experiment phases (T1
: forced spectrum; T2 : time interval from 10 to 20 frames after the stop of the
forcing; T3: time interval from 20 to 45 frames after the stop of the forcing). The
characteristic slopes k−5, k−5/3 and k−3 are shown in the box.

evaluated in three different time ranges: (T1) when the forcing is still active;
(T2) in the time interval from 10 to 20 frames after the forcing has stopped;
(T3) in the time interval from 20 to 45 frames after the forcing has stopped.
Concerning the energy spectra corresponding to the regime of weak beta effect
(figure 7), we evaluated them when (T1) the forcing is still activated, (T2) in
the time interval from 100 to 150 frames after the forcing has stopped and
(T3) in the time interval from 200 to 500 frames after the forcing has stopped.

While spectra corresponding to the forced regime T1 are similar in the two
cases, differences arise after the forcing has stopped. In particular, the spectra
T2 and T3 corresponding to high beta effects show a peak near k ∼ 1 cm−1,
close to the theoretical estimate of kRh, and the slope approximates the k−5

scaling.
In the low beta effect experiment, the energy spectra peak seems to be

shifted to large scales (k = 0.3 cm−1) indicating that in this case, in analogy
with non-rotating case, the cascade process is not arrested. On the other hand,
differences between the case with β = 0 (not shown) can be seen if the slope of
the energy spectra is considered: as a matter of fact, a steeper (approximately
k−4 or k−5) scaling, instead of the classical k−5/3 corresponding to the inverse
cascade, is recovered.
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Fig. 7. Energy spectra corresponding to the experiment #15. The spectra are cal-
culated by an average on time intervals concerning various experiment phases (T1
: forced spectrum; T2 : time interval from 100 to 150 frames after stopping the
forcing; T3 : time interval from 250 to 500 frames after stopping the forcing). The
characteristic slopes k−5, k−5/3 and k−3 are shown in the box.

4 Conclusions

The experiments on inverse cascade in a rotating system have shown, in case
of high beta, the formation of an intense cyclonic zonal jet. The formation of
these structures is directly related to the topographic slope of the free surface
in the rotating system. In the case of high beta, a barrier to the inverse
cascade corresponding to kRh is evident. The work reported here in large part
reproduces the findings of AW, validating the method that we have used.
One of the remarkable features of the phenomena investigated here is that
the predictions based on stationary turbulence have some predictive ability
even though the flow is decaying rapidly (the bottom drag decay rate in on
the order of a few seconds in these experiments). Numerical simulations of
continually forced as opposed to decaying flows show remarkable differences
and pose important questions regarding lack of universality in 2D flows [24].
In future work, we hope to use numerical simulations in conjunction with
laboratory experiments to more fully analyze the physical processes that allow
jet formation on such a rapid timescale.
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Summary. We describe a Lagrangian particle tracking technique that can be ap-
plied to high Reynolds number turbulent flows. This technique produces three-
dimensional Lagrangian trajectories of multiple particles, from which both Lag-
rangian and Eulerian statistics can be obtained. We illustrate the application of this
technique with measurements performed in a von Kármán swirling flow generated
in a vertical cylindrical tank between two counter-rotating baffled disks. The Taylor
microscale Reynolds number investigated runs from 200 to 815. The Kolmogorov
time scale of the flow was resolved and both the turbulent velocity and acceleration
were obtained and their probability density functions measured. Measurements of
the Eulerian and Lagrangian velocity structure functions are presented. The aver-
age energy dissipation rates are determined from the Eulerian velocity structure
functions.

1 Introduction

Early experimental investigations of turbulence relied on so-called Eulerian
measurement techniques, where measurements are made at points fixed with
respect to an inertial reference frame. Recent advances in imaging techniques
and technology have, however, made Lagrangian measurements of fluid flow,
where the trajectories of individual fluid elements are followed, possible. In
principle, these trajectories are easily measured by seeding a flow with small
tracer particles and following their motion. In practice, this can be a very
challenging task. Here, we present a robust optical imaging technique, capable
of tracking the motions of multiple particles simultaneously, even in intensely
turbulent flow. Intense turbulence is typified by a high Reynolds number.
We here report the Taylor microscale Reynolds number, defined as Rλ =√

15 u′L/ν, where u′ is the root-mean-square velocity, L is the correlation
length of the velocity field, and ν is the kinematic viscosity of the fluid. The
largest length and time scales of the turbulence are L and TL, where the latter
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is the correlation time of the velocity field. According to Kolmogorov [1], the
smallest turbulence scales are η and τη, defined as (ν3/ε)1/4 and (ν/ε)1/2,
respectively, where ε is the mean rate of energy dissipation per unit mass. To
investigate the dynamics at the small scales, one must resolve η and τη, which,
in intense turbulence, can be a demanding task. A full characterization of
Lagrangian turbulence also requires following the motion of many Lagrangian
particles for long times.

We present here a measurement technique that is capable of tracking the
motions of multiple particles simultaneously. We describe briefly the track-
ing algorithm used to construct the three-dimensional trajectories of tracer
particles in Sec. 2. We apply the technique to a von Kármán swirling flow gen-
erated in a cylindrical tank between two counter-rotating baffled disks. We
validate our technique by measuring the probability density functions (PDFs)
of the velocity and acceleration fluctuations and comparing them with known
results. Eulerian and Lagrangian measurements of the velocity structure func-
tions are also presented and the energy dissipation rates are measured from
the Eulerian structure functions.

2 Particle Tracking

An optical three-dimensional Lagrangian particle tracking algorithm consists
of three main steps: first, the particles need to be identified and their posi-
tions be determined on the two-dimensional images recorded by the detectors.
Next, the three-dimensional coordinates of the particles in real space need to
be constructed. Finally, the particles must be tracked in time. Our particle
tracking technique is described in detail by Ouellette et al. [2]; the main steps
involved are described below.

2.1 Center Finding

The first step in image processing is the determination of the positions of
tracer particles on the two-dimensional image plane of the cameras. We
identify particles by first assuming that every local maximum in image in-
tensity above some small threshold corresponds to a particle. We then fit two
one-dimensional Gaussians to the horizontal and vertical pixel coordinates of
each local maximum pixel and its nearest neighbors [2, 3]. An analytical ex-
pression for the particle center can be obtained in terms of the coordinates
and intensities of the local maximum pixel and its two adjacent pixels. La-
beling the horizontal coordinates of these points as x1, x2 and x3, where x2

is the coordinate of the local maximum, and the corresponding intensities as
I1, I2 and I3, we solve the set of equations

Ii =
I0

σx

√
2 π

exp
[
−1

2

(xi − xc

σx

)2
]

(1)
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for i = 1, 2, 3 to give the horizontal particle coordinate as

xc =
1
2

(x2
1 − x2

2) ln(I2/I3) − (x2
2 − x2

3) ln(I1/I2)
(x1 − x2) ln(I2/I3) − (x2 − x3) ln(I1/I2)

. (2)

The vertical position of the particle is defined analogously. We estimate that
this algorithm is capable of finding the true particle centers to within 0.1 pixels
[2].

2.2 Stereomatching

The second step in the particle tracking technique involves the reconstruction
of the three-dimensional coordinates of the tracer particles in the laboratory
reference frame from the two-dimensional coordinates of the particles on the
camera image planes. For this stereoscopic reconstruction, the characteristics
of each camera-lens system and its position in the lab frame must be determ-
ined. We discuss this calibration procedure in Sec. 3.3.

Since the particles have no distinguishing features that can be used in the
stereoscopic matching, the only information available is the photogrammetric
condition. This condition asserts that, for each camera, the camera projective
center, the particle image on the camera sensor plane and the particle in the
laboratory frame must be collinear and that, therefore, lines of sight from all
cameras must intersect at the true location of the particle [4]. The stereo-
matching algorithm we use is similar to those of Dracos [5] and Mann et al.
[6]. We first construct a line of sight from the projective center of one camera
through one particle image. This line of sight is then projected onto the image
planes of the other cameras and particle images on these image planes that
are within some small distance of the projected line are considered to be
possible matches for the particle image from the first camera. In this manner,
a list of candidate matches for the particle image can be constructed for every
other camera. This process is then repeated for every particle image on each
camera. Matches in three-dimensional space are then found by performing a
consistency check on the lists.

2.3 Tracking

The last step in a Lagrangian particle tracking algorithm is the tracking of
particles in time. We have developed a predictive algorithm for this purpose.
For each particle in frame n, a velocity is estimated from the camera frame
rate and the particle’s position in frames n − 1 and n. This velocity is used
to predict a position for the particle in frame n + 1. Particles in frame n + 1
that are within some small distance of the predicted position are considered
to be possible candidates for the continuation of the track. For each of these
candidates, we estimate both a new velocity from the positions in frames n
and n+1 and an acceleration from the positions in frames n−1, n and n+1.
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This velocity and acceleration are used to predict a position for the particle
in frame n + 2. The particle in frame n + 1 that gives a predicted position in
frame n + 2 closest to a true particle position is then chosen to continue the
track. This process is repeated until a conflict arises or the particle disappears
from view. A conflict occurs when a single particle in frame n + 1 is the best
match for multiple particles in frame n. When this occurs, the involved tracks
are ended at frame n and a new track is started in frame n + 1.

We have also developed a way to handle the possible loss of particles
for a few frames. Particles might be missing on a frame for a number of
reasons, including intensity fluctuations of the illumination, occlusion by other
particles or the non-uniform sensitivity of the sensor area within a single pixel.
This situation is handled by extrapolating the tracks with estimated positions
and looking for a continuation of the track. If no continuation is found within a
set number of frames, the track is fully terminated and the estimated positions
are dropped.

3 Experimental Details

We have implemented our Lagrangian particle tracking technique in a von
Kármán swirling flow confined within a cylindrical tank. Here we briefly de-
scribe the details of the experiments.

3.1 Flow Apparatus

Our apparatus has been described in detail previously [7, 8, 9]. A sketch of
the experimental setup is shown in Fig. 1. The cylindrical tank has an inner
diameter of 48.3 cm, a height of 60.5 cm and contains approximately 120 liters
of water. The tank is mounted vertically between two hard-anodized aluminum
top and bottom plates. Images are taken through eight round, glass windows,
12.7 cm in diameter and attached symmetrically around the center of the tank,
to avoid lensing effects caused by the cylindrical walls of the flow chamber.
The top and bottom plates contain channels for cooling water used to control
the temperature of the fluid in the apparatus. Turbulence is generated by
the counter-rotation of two baffled disks. The two circular disks are 20.3 cm
in diameter, 4.3 cm in height and spaced 33 cm apart. Twelve equally spaced
vanes are mounted on each disk so that the flow is forced inertially. Each
disk is driven by a 1 kW DC motor and its rotation frequency is controlled
by a feedback loop. The large-scale flow in the tank is axisymmetric and is
composed of a pumping mode and a shearing mode. The measurement volume
of approximately 2×2×2cm3 is in the center of the tank where the mean flow
is negligible. In order to remove dirt, the water in the apparatus is cleaned
by pumping it through a filtering loop. Bubbles in the flow are removed by
de-gassing the water using a second recirculation loop, with one end open to
the atmosphere.
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Fig. 1. A sketch of the flow apparatus, cameras and lasers.

3.2 Tracer Particles

To investigate the dynamics of the small scales of turbulence, we must resolve
η and τη. To resolve η, we use very small tracer particles. The accuracy with
which the tracer particles follow the motion of the fluid elements is measured
by the Stokes number, defined as

St =
1
18

 p −  f

 f

(
d

η

)2

, (3)

where  p and  f are the densities of the particle and fluid, respectively, and
d is the particle diameter. In our experiment, the flow is seeded with poly-
styrene micro-spheres of diameter 25 µm with a density of 1.06g cm−3, roughly
matched to the density of water. The size of these particles is smaller or com-
parable to the Kolmogorov length scale for all Reynolds numbers investigated
and the Stokes number ranges from 5.7 × 10−5 at Rλ = 200 to 3.9 × 10−3 at
Rλ = 815. Particles with this combination of size and density have been shown
to be passive tracers in this flow and thus to approximate fluid elements [10].
We note, however, that our tracking technique is not limited to the tracking
of passive tracers. It can also be used to track particles with non-negligible
inertia.

3.3 Imaging System and Illumination

To resolve τη in our flow, we need an imaging system with very high temporal
resolution. We use Phantom v7.1 high-speed CMOS digital cameras developed
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by Vision Research, Inc. Three such cameras are used in the experiment,
since, as shown by Dracos [5], at least three cameras are needed to resolve
the ambiguities in stereoscopic matching. The Phantom v7.1 cameras can
record images at a maximum rate of 27000 frames per second at a resolution
of 256 × 256pixels. At such a high frame rate, the exposure time for each
frame is very short, with a maximum of 37 µs. In order to illuminate the
tracer particles in such a short exposure time, a very intense light source
is needed. We use frequency-doubled, Q-switched Nd:YAG solid state lasers,
specially designed for both high power and high pulse rates. Two such lasers
are used in the experiments, one pumped with flash-lamps and one pumped
by diode arrays. The flash-lamp laser has a pulse width of about 300 ns and
a maximum power of 60W, and the diode pumped laser has pulse width of
about 120ns and maximum power of 90W. The cameras are aligned in the
forward scattering direction of both lasers.

We model the camera-lens system with a pin-hole camera model proposed
by Tsai [11], which has three intrinsic parameters: the effective focal length,
the radial distortion and the aspect ratio of the sensor pixels. Six additional
external parameters are needed to determine the three-dimensional position
of the camera. By imaging a calibration mask at different positions in the
fluid, these nine parameters can be determined.

3.4 Data Acquisition and Post-processing

As noted earlier, the Phantom v7.1 cameras can record images at a rate of up
to 27000 frames per second at a resolution of 256 × 256pixels. With such a
high acquisition speed, the data rate is too large for the cameras to transfer
their images to a computer in real time with current technology. Therefore, the
cameras store images in an internal buffer and transfer the contents of their
buffer over gigabit ethernet. A computer cluster is used for data acquisition.
During a data run, all three cameras typically record movies simultaneously
for one to two eddy turnover times before transferring their images. The set
of three movies is then transferred to one node of the cluster. Once this set
of three movies is transferred, the node processes them while the cameras
record a new set of movies that will be transferred to a different node. After
processing each movie, each node transfers the calculated particle tracks to
central data storage and waits for new images. The data acquisition process is
entirely automated with no human intervention needed during the data run.

Once the track files are obtained, turbulence statistics involving velocity
and acceleration can be calculated by taking time derivatives of the position.
Simple finite differences are not adequate for differentiating the tracks; the
results obtained from such a method are easily contaminated by errors in the
position measurement. Instead, we calculate time derivatives by convolution
with a Gaussian smoothing and differentiating kernel [12]. To characterize the
mean flow field in our measurement volume, we average the velocity and accel-
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eration measurements for long times. Subsequently, in calculating fluctuating
quantities, the mean flow is subtracted.

4 Velocity and Acceleration Statistics

In the measurements presented here, Rλ ranges from 200 to 815. The
Kolmogorov length scale η ranges from 192 µm to 23 µm, and the Kolmogorov
time scale τη ranges from 36.8ms to 0.54ms. Figure 2(a) shows the prob-
ability density functions (PDFs) of the radial and axial components of the
velocity fluctuations at Rλ = 690. It is well known that, in turbulence, the
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Fig. 2. (a) PDFs of the turbulent velocity fluctuations at Rλ = 690 for the radial
(� and �) and axial (◦) components with no residence-time weighting, plotted on
a semilogarithmic scale. The velocity has been normalized by its root-mean-square
value. The dashed line is a standardized Gaussian. (b) Velocity PDFs for the radial
and axial components at Rλ = 690 with residence-time weighting.

velocity PDF should be Gaussian. Our measured PDFs for both radial com-
ponents are very close to Gaussian, with a kurtosis of 2.79. Unlike the radial
velocity PDFs, the axial velocity PDF deviates from Gaussianity and has
a kurtosis of 3.44. In addition, the measured root-mean-square velocity for
the radial components differs significantly from that of the axial compon-
ent, measured to be 0.47ms−1 and 0.31ms−1, respectively. These results are
calculated without considering possible biases that may affect the statistics.
Since the measurement volume is finite, fast-moving particles are more likely
to enter the measurement volume than slow-moving particles. Slow-moving
particles, however, will stay in the measurement volume longer than fast-
moving particles. We thus consider the velocity statistics with residence-time
weighting, which weights the velocities by the amount of time the particle
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Fig. 3. Velocity PDFs for one radial component of the velocity fluctuations at
Rλ = 200 (+), 690 (�) and 815 (�), normalized by the root-mean-square velocity,
with residence-time weighting. The dashed line is a standardized Gaussian.

spends in the measurement volume. Figures 2(b) shows the PDFs of the ve-
locity fluctuations with residence-time weighting. They are slightly closer to
Gaussian, with kurtosis of 2.93 and 3.43 for the radial and axial components,
respectively. The radial and axial root-mean-square velocities now decrease to
0.44ms−1 and 0.30ms−1, respectively. Within experimental uncertainty, the
difference between the PDFs with and without residence-time weighting is in-
significant, since our measurement volume is large and the finite-volume bias is
not strong. The gap between the radial and axial root-mean-square velocities,
however, remain significant even after considering residence-time weighting.
This difference is most likely due to the effect of the large-scale forcing of the
flow. We have also investigated the Reynolds number dependence of the velo-
city PDF. The PDFs for one radial component of the velocity for Rλ = 200,
690 and 815 are shown in Fig. 3. The distributions for all three Reynolds
numbers show no statistically-significant Reynolds number dependence.

Figure 4(a) shows the standardized PDFs of the acceleration measured
in the radial and axial directions without residence-time weighting. The root-
mean-square accelerations for the radial and axial components are 105.8m s−2

and 86.2m s−2, respectively. Acceleration PDFs with residence-time weighting
are shown in Fig. 4(b). The radial and axial root-mean-square accelerations
decrease to 99.3m s−2 and 81m s−2. While strong deviation from Gaussian-
ity is evident, the tails of the PDFs are somewhat depressed compared to
previous measurement by Mordant et al. [12] in the same flow at Rλ = 690
using one-dimensional silicon strip detectors, which can reach a frame rate of
70000 frames per second at a resolution of 512pixels. The PDFs of one radial
component of the acceleration for Rλ = 200, 690 and 815 are shown in Fig.
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5. All three sets of data behave similarly, with narrower tails compared to
those measured by Mordant et al. [12]. At 4 〈a2〉1/2, our acceleration PDF is
roughly 90% of that of Mordant et al. This difference is most likely due to
the poorer temporal and spatial resolution of our cameras. At a resolution of
256 × 256pixels, a frame rate of 25 frames per τη is not sufficient to resolve
very intense accelerations.
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Fig. 4. (a) Acceleration PDFs at Rλ = 690 for the radial (� and �) and axial (◦)
components with no residence-time weighting plotted on a semilogarithmic scale.
The acceleration has been normalized by its root-mean-square value. The dashed
line is a Gaussian and the solid line is the acceleration PDF measured by Mordant
et al. [12]. (b) Acceleration PDFs for the radial and axial components at Rλ = 690
with residence-time weighting.

5 Structure Functions

Since our particle tracking technique can resolve the trajectories of many
particles simultaneously, we can use it to measure multi-point Eulerian stat-
istics as well as Lagrangian statistics. At each instant of time, the three-
dimensional coordinates of multiple particles are known, and each frame can
be considered to be a collection of Eulerian data.

The Eulerian velocity structure functions, the moments of the spatial ve-
locity differences, have played a fundamental role in describing turbulence. In
isotropic turbulence, we can decompose the second-order structure function
into two components: a longitudinal component DLL(r) where the velocity is
in the direction of the separation vector and a transverse component DNN(r)
where the velocity is perpendicular to the separation vector. In the inertial
subrange η � r � L, Kolmogorov’s hypotheses [1] state that turbulence
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Fig. 5. Acceleration PDFs for one radial component at Rλ = 200 (+), 690 (�) and
815 (�) with residence-time weighting. The dashed line is a standardized Gaussian
and the solid line is the PDF measured by Mordant et al. [12].

statistics have a universal form dictated only by ε. Therefore, the structure
functions should scale as

DLL(r) = C2 (ε r)2/3 , DNN (r) =
4
3
C2 (ε r)2/3 , (4)

in the inertial subrange, where the scaling constant C2 has a well-established
value of 2.13 ± 0.22 [13]. Our measurements of the energy dissipation rate
ε are based on these scaling relationships. We determine ε from the plateau
value of (DLL)3/2 and (DNN )3/2, compensated by (C2)3/2 r and (4C2/3)3/2 r
respectively. In addition, we also measured the third-order Eulerian longit-
udinal structure function DLLL(r) which, in the inertial subrange, scales as
[14]

DLLL(r) = −4
5
ε r . (5)

This result allows an additional estimate of ε from the plateau value of DLLL,
compensated by − 4

5 r.
Our measurements of the compensated structure functions at Rλ = 690

are shown in Fig. 6. The average plateau value is 1.22m2 s−3, consistent with
a previous measurement in the same flow at the same Reynolds number [10].
While the scaling range for the third-order structure function is short, the
value of ε estimated is consistent with those estimated from the second-order
structure functions. The short scaling range of DLLL could be due to a number
of reasons, including the finite-volume bias or insufficient statistics for the
measurement of higher moments.

Using the Lagrangian trajectories recorded by our system, we can also
measure Lagrangian statistics. Let us define the Lagrangian velocity increment
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Fig. 6. Compensated second- and third-order Eulerian velocity structure functions
at Rλ = 690. � and � are the longitudinal and transverse second-order structure
functions respectively and ◦ is the third-order longitudinal structure function. The
dashed line marks the average plateau value of 1.22 m2 s−3.

as δui(τ) = ui(t + τ) − ui(t), taken along the trajectory of a fluid element.
The second-order Lagrangian velocity structure functions, defined as DL

ij(τ) =
〈δui(τ) δuj(τ)〉, scale in the inertial subrange as

DL
ij(τ) = C0 ε τ δij , (6)

where C0 is assumed to be a universal scaling constant. Figure 7 shows our
measurement of the second-order Lagrangian structure functions at Rλ = 690.
It is well known that, at a given Reynolds number, the Lagrangian inertial
subrange is narrower than its Eulerian counterpart [15]. Even at Rλ = 690,
we do not see a distinct scaling regime. Nevertheless, we can estimate C0 by
the taking the values of the peaks of the compensated structure functions,
obtaining 6.0 and 4.9 for the radial and axial components, respectively. The
estimated values are consistent with the asymptotic values 6.2±0.3 and 5.0±
0.4 for the radial and axial components measured by Ouellette et al. [16]. The
difference in the value of C0 measured from the radial and axial components
is most likely due to the large-scale anisotropy of the flow [16].

6 Conclusions

We have presented a particle tracking technique suitable for both Eulerian
and Lagrangian measurements. We validated the technique by measuring the
turbulent velocity and acceleration PDFs and comparing them with known
results. We found that the PDFs of the two radial components of the velocity
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Fig. 7. Compensated second-order Lagrangian velocity structure functions at Rλ =
690. � and � are the radial components and ◦ is the axial component. The off-
diagonal components (not shown) are indistinguishable from zero.

fluctuations in our flow were very close to Gaussian, but the axial component
had tails that deviate from Gaussianity. Extreme deviation from Gaussian-
ity was evident in the acceleration PDFs, though the tails were depressed
compared to the measurement of Mordant et al. [12] in the same flow at a
higher resolution. We also demonstrated the versatility of our technique with
the measurement of the Eulerian and Lagrangian velocity structure functions.
Based on the well-established value of the second-order Eulerian velocity struc-
ture function scaling constant and a relationship for the third-order velocity
structure function, we estimated the average energy dissipation rate in our
flow. From the Lagrangian velocity structure functions, we have measured the
scaling constant C0 and found that the large-scale anisotropy of our flow also
affects the small-scale statistics of the velocity structure functions.
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The role played by the turbulent mixing in the Lagrangian dispersion of tracers
in a tidally-driven, mid-latitude, shallow-water environment is here discussed.
The Eulerian carrying flow is supplied by a turbulent oscillating boundary
layer without and with rotation. In the purely oscillating case, the dispersion
of the particulate is stronger in the near-wall region and the diffusivity along
the main flow direction is larger than the other ones. For the value of Rossby
number herein considered, rotation strongly affects particle dispersion and
increases the mixing efficiency of particles within the whole fluid column, up
to the near surface region. Diffusion along the spanwise direction is comparable
to that in the streamwise one, and consequently the time needed to completely
homogenize the physical properties associated to the particulate is reduced.

1 Introduction

Understanding the hydrodynamic characteristics of a dispersed phase in a
shallow water basin is an important task especially in practical applications,
from pollutant dispersion to biological feeding mechanisms.
In a coastal basin, despite the advective transport is mainly driven by the
horizontal components of the velocity field and depends on the characteristics
of the coastline, vertical mixing is governed by the three dimensional turbulent
regime that develops in the water column. In particular, the following features
rule the vertical mixing in coastal applications: 1) the shallowness of the water
column; 2) turbulence generated at the bottom boundary layer by a current
that drives the flow; 3) turbulent mixing at the free-surface region supplied
by wind stress and wave breaking; 4) the presence of thermal and/or haline
stratification. Being a geophysical problem, also earth rotation can play an
�� corresponding author
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important role. In a flow field characterized by such aspects, the dynamics of
vertical mixing rules the fate of a dispersed phase.

So far, particle dispersion in a turbulent flow has been mostly investig-
ated in simple cases (i.e. isotropic or homogeneous turbulence, plane channel
flow). For an exhaustive review, the reader is referred to [1] and the literature
therein reported. Comparatively, only few investigations have been carried out
in conditions characterized by either complex geometry or complex physics.
Among the others, [2] studied particle segregation in a steady flow over a large
amplitude wavy wall, showing that particles tend to be dispersed in different
ways depending on the region where they are released in the flow field. Dealing
with marine applications, recently [3] studied a problem archetypal of sedi-
ment motions over the sea bottom, focusing on the sedimentation mechanism.

The goal of the present study is to get insight into the role of turbulence
in the dispersion of particles under the typical conditions of a mid-latitude
shallow-water column, focusing in particular on the vertical mixing within
the fluid column. In our numerical study, we only consider the contributes to
turbulence dynamics given by i) a semi-diurnal tidal current (pure oscillatory
flow) that drives the flow, and ii) the Earth rotation. These two features
correspond to the minimum level of forcing present in a basin in absence of
stratification. The approach to the problem here followed is the Lagrangian-
Eulerian one, that considers the dispersed phase as a cloud of Lagrangian
particles moving in the Eulerian carrying flow.
This work is part of a research project aimed at improving the knowledge of
vertical turbulent mixing in a shallow water basin, subjected to a main tidal
current and Earth rotating force. A deep comprehension of the phenomenon
can be helpful to understand the role of mixing activity in the marine biological
feeding mechanism or in the environmental pollution dispersion. This could be
done by considering the micro-organisms or the pollutant agents as small-size
particles with inertia comparable with that of the carrying fluid (i.e. tracers,
as in the present study).

We first study particle dispersion in the case of a purely oscillating flow
without rotation. Successively, we consider the rotational effects, comparing
the results of the two cases and analyzing the role of rotation in the vertical
mixing.

2 The problem formulation

The Stokes-Ekman bottom boundary layer is archetypal of the physical prob-
lem of interest in the present research (for details see [4]). This flow is forced
by a time-dependent, sinusoidal free-stream velocity and is subjected to the
rotation of the frame of reference. A mid-latitude case is here considered,
and the horizontal components of the rotation vector are thus included in the
governing equations (see also [5]).
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The flow is driven by an harmonic pressure gradient aligned with the x-
direction:

dPd

dxd
(td) = −U0ω cos(ωtd) (1)

In Eq. 1, Pd is the dimensional kinematic pressure (pressure divided by the
fluid density ρ0), U0 is the amplitude of the outer velocity, ω is the angular
frequency of the oscillation associated to the tidal flow, td is the time and
xd is the direction along which the oscillation develops (the index d refers to
dimensional quantities).
The pressure gradient defined above gives the sinusoidal free-stream velocity
Ud(td) = U0 sin(ωtd). As the equations are written in a rotational frame of
reference, the non-dimensional equations governing the flow read as:

∂ui

∂xi
= 0 (2)

∂ui

∂t
+

∂ujui

∂xj
= − ∂p

∂xi
+

1
Re

∂

∂xj

∂ui

∂xj
+

cos(t)δi1 +
1

Ro sinφ
εijmej(sin(t)δm1 − um) (3)

In Eq. 2 and 3 the coordinate xi (hereafter x1, x2, x3 or x, y and z are used in-
terchangeably for the streamwise, spanwise and wall-normal direction) is made
non-dimensional with the amplitude of the free stream motion a = U0/ω, t is
the time coordinate made non-dimensional with 1/ω, ui is the i-component
of the velocity field (u1, u2, u3 or u, v and w are used for the streamwise,
spanwise and wall-normal components) made non-dimensional with U0 and
p is the turbulent pressure (the pressure arising from the turbulent fluctu-
ations) made non-dimensional with ρ0U

2
0 . The third term of the RHS is the

non-dimensional harmonic pressure gradient that drives the flow. The fourth
term is the non-dimensional Coriolis force associated with the oscillating in-
ertial velocity, with εijm the Levi-Civita tensor, ej = (0, cosφ, sinφ) the unit
vector and φ the latitude.

The non-dimensional parameters governing the problem are the Reynolds
number Re = aU0/ν where ν is the kinematic viscosity, and the Rossby num-
ber Ro = ω/f where f = 2Ω sinφ is the Coriolis parameter, and Ω is the Earth
angular velocity. Usually, a Reynolds number based on the Stokes laminar
thickness δS =

√
2ν/ω is defined as ReS = U0δS/ν (note that Re = Re2

S/2).
If we define a Reynolds number ReE = U0δE/ν, based on the Ekman penet-
ration length δE =

√
2ν/f , it can be easily shown that:

ReE

ReS
=

√
Ro. (4)
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2.1 The numerical method

The present study is performed by a Large Eddy simulation (LES) technique
coupled with the dynamic-mixed model of [6] where the constant is averaged
over the planes of homogeneity. The integration of the governing equations is
performed using the semi-implicit fractional step method of [7]. Spatial deriv-
atives are discretized by means of second-order accurate centered differences.

The dispersed phase is treated as a swarm of fluid tracers: the position of
each tracer is advanced in time following:

dxi,p

dt
= ui,p (5)

where xi,p and ui,p are respectively the i-coordinate of particle position and
the i-component of the fluid velocity at particle position. Eq. 5 is integrated
by means of an explicit, second-order accurate, Adams-Bashforth scheme.

The interpolation of the Eulerian field onto particle position is performed
using a very recent interpolation scheme based on the Taylor series expansion
of the Eulerian fluid velocity at the node closest to particle position (see for
details [2]). The scheme is suited both for orthogonal and curvilinear grids
and its order of accuracy can be easily adapted to that of the Navier-Stokes
solver employed for the Eulerian phase.

When the Eulerian field is evaluated by LES, the resolved velocity field
misses the energy content associated to the turbulent scales that are para-
meterized. Armenio et al. [8] showed that when the Eulerian phase is solved
by resolved LES (a simulation where the wall layer is directly resolved), the
contribute of the sub-grid scales (SGS) to particle statistics is small and pro-
portional to the amount of SGS dissipation. In order to minimize such an
effect, Kuerten [9] has recently proposed to reconstruct the missed contribute
of sub-grid scales performing a suitable deconvolution. Further numerical tests
(see [10]) showed that this technique allows to accurately reproduce particle
statistics, when compared to the DNS data of the same flow. Here, since the
SGS stresses are parametrized by means of a dynamic-mixed model, a first
order deconvolution is carried out to de-filter the velocity field. The de-filtered
velocity field is thus used to move the particles, following Eq.5.

2.2 Physical and numerical parameters

In the present research we use parameters typical of a real mid-latitude prob-
lem (i.e. data of the Gulf of Trieste, northern Adriatic Sea, see Fig. 1). Field
data and previous investigations suggest that the driving current is domin-
ated by the M2 tidal component (TM2 = 12.42 hours) and, according to [11], a
reference value for the free stream velocity is U0 = 0.05 m/s. The mean water
depth is h = 16 m and considering the viscosity of the water as ν = 1.15×10−6

m2/s and a latitude φ = 45o, we obtain the following parameters:
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KC =
U0TM2

h
= 140 ReS = 5560 Ro = 1.36.

The Keulegan-Carpenter number KC is commonly used to characterize oscil-
latory flows and represents the ratio between the oscillating period TM2 and
an inertial time scale h/U0. These parameters give a value of ReS laying in the
fully developed turbulent regime [12]. Since resolved LES at the present value
of the Reynolds number would require a number of grid points not afford-
able with our computational resources, we decided to perform a small-scale
experiment, holding the inertial parameters and reducing the Reynolds num-
ber of the simulation at an affordable value, nonetheless characterized by the
presence of fully developed turbulence along the cycle of oscillation. We chose
ReS = 1790 for two reasons: 1) at this value, fully developed turbulence is
present in most of the cycle of oscillation [12]; 2) experimental data for the
purely oscillatory flow are available for comparison with our results (test n. 8
of [12]).

13,3 13,35 13,4 13,45 13,5 13,55 13,6 13,65 13,7 13,75 13,8
45,5

45,55

45,6

45,65

45,7

45,75

xy

xy

Fig. 1. Sketch of the domain location. The x-direction is aligned with the driving
tidal flow, the rotation angle with respect to the North is γ = 45o.

The simulations were carried out over a rectangular box, using periodic
conditions over the horizontal planes of homogeneity, a stress-free condition
at the top boundary and a no-slip condition at the bottom solid wall. The
depth of the domain and the amplitude of the free stream velocity were scaled
holding the full scale value of KC, whereas the horizontal dimensions of the
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computational domain were chosen large enough to accurately reproduce the
largest scales of the motion. The computational parameters used for the si-
mulations of the Eulerian field are in Table 1.

Lx/δS , Ly/δS , Lz/δS nx, ny , nz ∆x+, ∆y+, ∆z+
min, ∆z+

max

OF 50, 25, 40 64 × 64 × 256 62, 31, 2, 22
OFR 50, 50, 40 64 × 128 × 256 62, 31, 2, 22

Table 1. Computational parameters of the simulations at ReS = 1790. The non-
dimensional grid spacing is referred to the maximum wall shear stress along the
period and consequently to the minimum value of the wall unit z∗ = ν/uτ , where
uτ is the friction velocity. OF refers to the purely oscillating flow, OFR refers to the
oscillating flow in the case with rotation.

The Lagrangian phase consists of tracers, representative of a particulate
with inertia comparable with that of the carrying fluid. The simulations were
executed in two distinct cases. First we considered the dispersion of a swarm
of particles in the case of a purely oscillating flow (Stokes boundary layer)
in the turbulent regime (OF in Tab.1), subsequently we moved particles in
the oscillatory rotating flow (Stokes-Ekman boundary layer; OFR in Tab.1),
with the aim to quantify the effect of rotation on the characteristics of partic-
ulate dispersion for a mid-latitude shallow-water environment. In both cases
102400 particles were released in the flow field. Particles were initially placed
over 16 longitudinal planes x1 − x3, respectively using for each plane 80× 80
equispaced particles.
As regards the initial conditions of the simulations, a statistically steady Eu-
lerian field was considered at the phase θ = 0 and particles were released in
the Eulerian field with velocity equal to that of the carrying fluid.

3 Results

3.1 Particle dispersion in the turbulent oscillating flow field

The Eulerian phase of the turbulent Stokes boundary layer at ReS = 1790
was analyzed and discussed in [13] and in the literature therein reported. A
detailed discussion is not repeated here, rather we summarize some results
relevant for the present research.

The oscillatory boundary layer is inherently unsteady, and presents a sym-
metry between the first (0o ÷ 180o) and the second (180o ÷ 360o) half cycle
which, in a statistical sense, repeats identically to the first one, apart that
the sign of the streamwise velocity is inverted. The half cycle is character-
ized by two main phases, namely the phase of acceleration from 0o to 90o

and a successive phase of deceleration, up to 180o. The study presented the
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following scenario: during the late deceleration up to the early acceleration
phases, a thin laminar boundary layer develops. At ReS = 1790 this bound-
ary layer undergoes a transition due to shear instability between 30o and 45o

accompanied by a sharp increase of the turbulent kinetic energy K, related
to the rapid growth of the production rate of K. Fully developed, equilibrium
turbulence is observed between 60o and around 150o, when the mean velocity
profiles are characterized by the presence of a log-layer and the flow dynamics
evolves through a sequence of quasi-equilibrium states. In the early to mid
deceleration phases a strong turbulence dissipation is observed related to the
explosive, bursting production of small scale vorticity (see also [14]). Around
160o the flow field starts to invert its own direction, first in the near-wall
region and subsequently upward in the fluid column. This inversion produces
the splitting of the fluid column into two separate regions, a near-wall one
where a laminar boundary layer rapidly grows, and an upward one where tur-
bulence has strongly decayed owing to the absence of production rate and, due
to a history effect, few large-scale structures coming from the previous phases
populate the fluid column. The study has also shown that, at ReS = 1790
significant turbulent activity is detectable in the fluid column up to 25δS.
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Fig. 2. Trajectories of particles along an oscillatory cycle, released at a fixed ho-
rizontal station (plotted as a thick segment) at two different heights in the fluid
columns: a) z = δS; b) z = 30δS . For sake of clarity, the ratio among axis is exag-
gerated and the ticks are in δS units.

Figure 2 shows the 3D trajectories of selected particles released at two
different heights in the flow field. The trajectories of particles released in the
near-wall region (Fig.2a) show the presence of turbulent mixing during most
of the first half cycle of oscillation. The particles undergo a large scale motion
during the phases of inversion (around 180o) and again they are subjected to
a wide spectrum of turbulent scales during the second half cycle. Conversely,
particles released above the turbulent region (Fig.2b) have trajectories that
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do not exhibit the presence of significant turbulent mixing, except that one
marked with circles that penetrates into the turbulent region. In all cases,
during the phases when inversion of the flow direction takes place (160o-
180o), particles are subjected to a very large scale displacement in the cross-
stream direction, which tends to transport them at a fast rate within the
fluid column. As clearly shown in [13], this transport cannot be associated to
classical turbulent mixing, since at the inversion phases turbulence is nearly
suppressed in the near-wall region and only few large-scale structures populate
the flow field. However, these weak large-scale structures are able to transport
fluid particles over distances comparable with their length scale in the flow
field and consequently they still supply a source of mixing for the particulate.

0 90 180 270 360
degrees
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ea
n-z

0] 
/ h

Fig. 3. Mean non dimensional vertical displacement of tracers released at different
heights from the wall for the OF case: 0.0 − 0.1 (solid line); 0.1 − 0.2 (diamond);
0.2−0.3 (cross); 0.3−0.4 (right triangle); 0.4−0.5 (square); 0.5−0.6 (star); 0.6−0.7
(up triangle); 0.7 − 0.8 (left triangle); 0.8 − 0.9 (plus); 0.9 − 1.0 (circle). For sake
of clarity we plot values skipped about every 900 time iterations, note that the
computational time increment is not constant.

In Fig.3 we observe that the mean vertical displacement of the particulate
rapidly increases for particles released in the near-wall region, due to the large
mixing. The mean vertical displacement of the particles gradually reduces for
particles initially released in the core region of the turbulent layer, associated
to nearly symmetric vertical fluctuations, whereas particles released in the
free surface region on average tend to be transported toward the wall. This
has to be attributed to the low level of turbulence in the top region of the
domain; specifically a particle traveling in the top region of the domain (say
above 25δS) tends to remain at the same height or, if trapped in a turbulent
structure, it is transported within the near-wall turbulent region. Finally, Fig.3
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also shows that the slope of the mean vertical displacement decreases in the
second half cycle, as particles spread over a large distance and experience the
features of turbulence averaged on a larger slab of fluid.
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Fig. 4. (a) Dispersion along the three directions for particles released at different
heights for the OF (see caption of Fig.3 for details); (b) diffusivity along the three
directions for particles released at different heights for the OF case: 0.0 − 0.1 (solid
line); 0.5 − 0.6 (star); 0.8 − 0.9 (plus).

The dispersion along the three directions of the slabs of particles above
discussed is shown in Fig. 4a. The dispersion along the i-direction is defined
as:

x2
i (t) =

1
Np

Np∑
j=1

[
xi,j(t) −

∫ t

0

ui(t)dt− xi,j(t = 0)
]2

(6)

where Np is the number of particles belonging to a slab in the fluid column
and xi,j(t) is the i-component of the position of the j-particle of the swarm
at time t. The dispersion is related to the fluctuating field only, since the
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mean displacement given by the averaged velocity field ui (
∫ t

0
ui(t)dt) has

been removed. The quantity ui is evaluated at each time step considering the
mean velocity of the Lagrangian particles at the position of the j-particle.

Consistently with the classical theory [15], the dispersion in the three
directions always increases in time and is characterized by an initial ballistic
regime (t → 0) where x2

i (t) ∼ t2 and a Brownian regime (t → ∞) where the
dispersion increases as t. Our simulations show that the results of the theory
hold also in case of wall bounded, inhomogeneous turbulence.

The dispersion along the streamwise direction is much larger than that
along the other two directions. Indeed, it is mainly driven by the streamwise
velocity fluctuations, whose rms value is about three times larger than that
relative to the remaining directions, at least in the near-wall region (see [13]).
This indicates that the cloud of particles tends to spread in the streamwise
direction at a much larger extent than in the other ones. Figure 4a also shows
that the dispersion decreases as the height of release increases. Due to the low
level of turbulence present in the free surface region, the dispersion associated
to particles initially released in this region is negligible. Interestingly, we do
not observe significant slope change of the dispersion during the phases of
velocity inversion, where the level of K is around its own minimum. This is
due to the above mentioned effect of large-scale residual turbulence present
in the fluid column at the phases of flow reversal.

As a final step, we calculated the diffusivity along each direction as in [16]:

Di(t) =
1
2
d

dt
x2

i (t) (7)

where x2
i (t) is evaluated in Eq.6. In Fig. 4b we show for clarity the diffusivity of

three meaningful slabs of particles: near the wall, in the core fluid column and
near the free surface region. We observe that the diffusivity obeys the Taylor’s
two-regime rule (Di(t) ∼ t in the ballistic regime and Di(t) ∼ const in the
Brownian one) only for particles released in the turbulent region of the fluid
column. The diffusivity is larger for particles initially located in the near-wall
region and exhibits anisotropic characteristics because the streamwise velocity
component dominates over the cross-stream ones. Finally, Fig.4b shows that,
for particles initially released within the turbulent layer, particle diffusivity
tends to be less sensitive to the initial location during the second half of
oscillation owing to the homogenization process above mentioned.

3.2 Particle dispersion in the rotating oscillating flow field

Although rotation does not vary the amount of energy of a system, it can
redistribute energy from mean to turbulent flow and vice versa. If we con-
sider the viscous length scales δS and δE previously defined and respectively
associated to the oscillatory and the rotational components of the motion,
we obtain δE/δS =

√
Ro, in agreement with Eq.4. Since our simulations are

carried out at Ro = 1.36, we expect that rotation increases the thickness of
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the layer in the water column where turbulent activity is present. The results
of the simulations (see [4] for details) show that the specific volume-integrated
turbulent kinetic energy increases with respect to the OF case through the in-
crease of the vertical and spanwise components (w and v velocity rms) in the
fluid column, especially in the half-column near the surface. The presence of
the Coriolis force gives rise to a spanwise pressure gradient that oscillates ac-
cordingly with the tidal motion. As a result, the mean trajectories of particles
follow elliptic paths, and the ratio between the axes varies with the distance
from the wall. The horizontal component of rotation gives a background vor-
ticity which combines with the flow mean vorticity thus producing a lack of
symmetry in the two half cycles. Specifically, in the second half period, when
the mean vorticity associated to the forcing is opposite to the background
vorticity, turbulence tends to be enhanced, thickening the turbulent bound-
ary layer and featuring the flow with characteristics very different from those
of the non-rotating case. The opposite is true in the first half cycle. Moreover,
being all the components of the Reynolds stress tensor not negligible, turbu-
lence assumes a clear three-dimensional character.

0 90 180 270 360
degrees

-0,3

0

0,3

[z
m

e
a
n
-z

0
] 

/ 
h

a)
0 90 180 270 360

degrees

-4

-3

-2

-1

0

1

2

[y
m

e
a
n
-y

0
] 

/ 
h

b)

Fig. 5. Mean non dimensional vertical (a) and spanwise (b) displacement of tracers
released at different heights from the wall for the OFR case (see caption of Fig.3 for
details).

Figure 5a shows the mean vertical displacement of the slabs of particles
in the OFR case. The rate of increase of the mean vertical displacement is
faster than that relative to the OF case in the first quarter of the oscillation
cycle, and the largest displacement is observed for the tracers released in the
top half column. As shown in [17] and [4], this is related to higher vertical
velocity fluctuations between 0o and 90o along the whole water column, and to
an increased level of turbulence in the region closer to the free surface. In the
OFR case, the vertical mixing is therefore able to move the tracers released
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close to the free surface region downward to almost half channel, much more
than in the OF case. As an example, in the OFR case the tracers released in
the slab between 0.9 and 1.0 (Fig.5a) reach, after a complete oscillation cycle,
a mean distance that is more than twice that reached in the OF case (Fig.3).
Similarly to the OF case, the slopes of the mean vertical displacement decrease
in the second half cycle due to the homogenization process above mentioned.

The presence of the cross-stream pressure gradient in the OFR case gives
rise to a large spread of tracers in the spanwise direction (Fig.5b). The max-
imum mean spanwise displacement is observed in the near-wall region, asso-
ciated to the largest values of the spanwise velocity component. The mean
spanwise displacement decreases and eventually changes its sign going up
along the fluid column. This is associated to the shape of the mean profile of
the spanwise velocity ([4]) that, due to the coupling between oscillating and
rotating motions, in the first phases of oscillation has negative values in the
bottom region and gets positive in the free surface region.

The dispersion x2
i (t) along the three directions of the tracers released in

the slabs is computed as in Eq.6, and shown in Fig. 6a.
The streamwise velocity rms is slightly affected by rotation in the near-wall
region, whereas it increases in the free-surface region ([17]); as a result, the
streamwise dispersion related to particles released close to the free surface is
much more affected by rotation than the near-bottom ones. A similar behavior
is observed for the vertical dispersion, because the quantity wrms is strongly
enhanced by rotation in the core region as well as in the free-surface region
([17]). Therefore, particles released in the upper part of the fluid column
show a vertical dispersion larger than that relative to the non-rotating case
(compare the third plot of Fig. 6a with that of 4a).

The most relevant difference between OF and ORF is observed in the
dispersion along the spanwise direction: in the OFR case, after one cycle
of oscillation, due to the higher spanwise velocity rms and to the non-zero
Reynolds shear stresses τ12 and τ23, y2 has values comparable with x2, with
the tracers released in the core region characterized by the largest dispersion.
The turbulent mixing is therefore more efficient in the OFR case: in particular
rotation enhances dispersion in the horizontal planes and, at the same time,
thickens the fluid layer where a large spreading of the particulate is observed.

Figure 6b shows that the diffusivity along the streamwise direction be-
haves quite differently in the first and in the second half cycle of oscillation.
For particles released in the near-wall region, after a sudden increase similar
to the OF case, Dx reaches nearly constant values, comparable with those of
the OF case. Conversely, the streamwise diffusivity of tracers released in the
core and in particular in the near-surface regions is larger than in the OF case,
due to the already discussed increase of turbulence level in the free surface
region. As in the previous case, in the second half cycle Dx looses the memory
of the tracers’ initial location, consistently with the homogenization process.
The second half cycle is also characterized by a strong increase in streamwise
diffusivity with respect to the OF case, especially for tracers released in the
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Fig. 6. (a) Dispersion along the three directions for particles released at different
heights for the OFR case (see caption of Fig.3 for details); (b) diffusivity along
the three directions for particles released at different heights for the OFR case (see
caption of Fig.4b for details).

core and the near-surface regions, coherently with the increased slope of the
dispersion and with the above mentioned asymmetry in the turbulence dy-
namics.
In the first half cycle, the vertical diffusivity is larger than that of the OF case,
especially for tracers released in the core region. This is due to the augmen-
ted level of turbulent mixing in such region, that is basically related to the
higher vertical velocity rms and to the non-zero correlation between vertical
and spanwise velocity fluctuations. In the second half cycle Dz homogenizes
and decreases to values comparable to those of the OF case.
As observed for dispersion, the amplitude of the diffusivity in the spanwise
component results comparable to the streamwise one. After 90o, Dy appears
nearly constant along the whole column, justifying the efficiency of the hori-
zontal mixing.
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4 Concluding remarks

The dispersion of fluid particles in a turbulent flow representative of a shallow-
water marine environment has been investigated using resolved Large Eddy
simulation. We performed a small-scale numerical experiment employing phys-
ical parameters relative to the Gulf of Trieste, thus considering a tidally-
driven, mid-latitude case. A large number of particles has been released in the
flow field, under two different conditions: first the dispersion of the particulate
in the purely oscillatory flow was studied; subsequently the dispersion in the
oscillating-rotating case was investigated.

As regards the response of particles in the turbulent Stokes boundary layer
(OF case), we observed the presence of two distinct regions in the water co-
lumn, namely a near-wall one characterized by small-scale turbulent structures
and a free surface region where turbulent mixing is very weak.
Moreover, we observed that dispersion and diffusivity obey the two classical
regimes as theorized by Taylor, respectively the ballistic and the Brownian
regimes. The streamwise component of the dispersion dominates over the other
two, and tracers result essentially dispersed along the mean flow direction. In
particular, particles released near the wall are more broadly dispersed than
those released in the upper region.
During the flow reversal, although the level of turbulent fluctuations rapidly
decays, particle dispersion is mainly governed by the presence of weak, large-
scale structures remaining in the fluid column as an history effect from the
previous phases of the cycle.

In the OFR case herein investigated, rotation has two main effects on the
flow field: 1) it causes an increase of the horizontal and the vertical turbulent
mixing; 2) it thickens the turbulent depth in the fluid column.
As a result, both in the core region and in the free surface region the particu-
late is dispersed at a much larger extent than in the OF case. The presence of
a mean spanwise velocity raised by the Coriolis force severely affects the dis-
persion in the spanwise direction within the whole fluid column. The tracers
diffuse mainly on horizontal planes, with intensities that are similar in both
the streamwise and the spanwise components.
The results of the present paper do interest a mid-latitude shallow-water prob-
lem. Although it is possible to argue that rotation enhances spanwise disper-
sion of the particulate, more research is needed in order to evaluate particle
dynamics dependence on different values of the Rossby number.
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Influence of Coriolis forces on turbidity
currents and sediment deposition.

M.G. Wells

Department of Physical and Environmental Sciences, University of Toronto, 1265
Military Trail, Toronto, Ontario M1C 1A4, Canada

Summary. Using laboratory analogue experiments I show how the Earth’s rotation
can influence the deposition patterns of large-scale turbidity currents. While it has
been previously recognized that the EarthÕs rotation can influence the trajectories
of turbidity currents (Middleton 1993; Huppert 1998; Kneller & Buckee, 2000) the
experiments discussed in this paper represent the first systematic laboratory study
of the Coriolis forces acting upon turbidity currents. The scale at which Coriolis
forces become important is best expressed using the Rossby number, defined as
Ro = U/fL, where U is a depth averaged velocity, L the length scale and the
Coriolis frequency, f , is defined by f = 2Ω sin θ, where Ω is the Earth’s rotation
rate and θ is the latitude. Coriolis forces will dominate a current when Ro < 1 (Nof
1996). For example a large turbidity current with a velocity of U = 10m s−1 at a
latitude of 45o North where f = 1 × 10−4s−1, has Ro < 1 for length scales greater
than 100 km.

In this paper I discuss two effects of the Coriolis forces upon large-scale turbidity
currents. The first series of experiments document how an increase in the Coriolis
parameter resulted in a decrease in the rate of turbulent entrainment of overlying
sea-water into a density current. The second set of experiments look at the max-
imum radius of deposition of a turbidity current on a flat plane, and we find that
the resulting radius is inversely proportional to the Coriolis parameter. This result
implies that there may be a latitudinal dependence upon the radius of turbidite
deposition on the flat oceanic abyssal plane. I compare the scaling developed from
these idealized laboratory models to field observations of the 300-500 km spatial ex-
tent of the turbidites arising during the 1929 Grand Banks earthquake. By making
estimates of the velocity we find that this turbidity current had Ro ∼ 1, so that
Coriolis forces may have limited the spatial extent of the resulting turbidite.

1 Introduction

Turbidity currents are underwater flows that are driven by density differences.
Such currents can arise by a variety of mechanisms including instances where

Bernard J. Geurts et al. (eds), Particle Laden Flow: From Geophysical to Kolmogorov Scales, 331–343.
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sediment laden rivers enter a lake or estuary, or when sloping layers of sed-
iments become unstable due to loading, underground gas release or seismic
activity. Turbidity currents can carry large volumes of suspended sediment,
and over geological time-scales a series of such turbidity currents can form
thick layers of sedimentary rock within deep ocean basins. Turbidite deposits
in deep water off the continental shelf can be associated with large petroleum
reservoirs, where oil and gas collect within the porous and permeable sands
of the turbidites. Such turbidite deposits are now seen as an important area
of petroleum exploration, and many of the major marine petroleum reserves
in the North Sea and the Gulf of Mexico are within the sands of ancient tur-
bidite deposits. If these turbidite deposits are very large, of the order 10-100
km, then the Coriolis forces might be the limiting factor that determines the
spatial extent of large turbidites, and hence the extent of subsurface oil and
gas deposits.

The forces that drives turbidity currents are due to the density anomaly
from the suspended sediment load, as well temperature and salinity differ-
ences. This material is kept in suspension by the turbulence generated at the
bottom boundary, and by hindered settling of particles. The entrainment of
underlying sediment can make the current denser and move faster, a pro-
cess called auto-suspension (Parker et al. 1986). The entrainment of water
at the upper boundary reduces the density differences and can slow a dens-
ity current (Turner 1986). Ultimately the turbidity current stops when the
turbulence within the current can no longer suspend the sand and mud. If
the turbidity current is large then Coriolis forces may begin to be important.
While the influence of Coriolis forces upon turbidity currents is acknowledged
in several reviews (Middleton 1993; Huppert 1998; Kneller & Buckee 2000)
and in theoretical studies (Nof 1996; Emms 1999; Ungarish & Huppert 1999),
the present paper is the first experimental investigation to study turbidity
currents on a rotating platform. The results in the present paper build upon
what has been learned in the oceanographic context, where there have been
many previous studies on the influence of Coriolis forces on non-sedimenting
density currents (Griffiths 1986; Shapiro & Zatsepia 1997; Jacobs & Ivey 1998;
Etling et al. 2000; Hallworth et al. 2001; Cenedese et al. 2004; Davies et al.
2006).

New experimental results for the rates of interfacial entrainment in rotating
density currents are presented in §2. The influence of Coriolis force on limiting
the spatial extent of sediment deposits is studied experimentally in §3. We
finish with a discussion of the observed deposition patterns resulting from the
1929 Grand Banks earthquake in light of our experimental results in §4.

2 Turbulence in rotating density currents

One of the important mechanisms that determines the downward trajectory
of a density or turbidity current is the interfacial drag associated with the



Influence of Coriolis forces on turbidity currents 333

turbulent mixing of lighter overlying fluid. In this section I will discuss labor-
atory experiments that quantify the dependence of the mean mixing rates
upon the Coriolis parameter f . In the oceanographic literature the mixing
of lighter water into a denser current by shear driven turbulence is referred
to as “entrainment” (Turner 1986), and should not be confused with the en-
trainment of underlying sediments that makes a turbidity current denser. In
figure 1 is an illustration of the forces that act on a dense current as it flows
down a slope. The magnitude and direction of the dense mixture of water
and sediments is controlled by rotation, turbulent mixing, bottom drag, slope
angle and local stratification resulting in a trajectory at some angle to the
maximum slope (Griffiths 1986).

Fig. 1. The depth averaged velocity U and the downwards trajectory of a density or
turbidity current in the ocean is set by a balance between buoyancy, Coriolis forces,
bottom drag and interfacial entrainment. Figure modified from Baringer & Price
(1993).

The turbulence at the upper stratified interface of the density current leads
to drag upon the current and dilution of the current with the overlying sea-
water. The rate at which the current thickens in the downstream direction is
known as the “entrainment velocity” and represents the speed at which lighter
fluid is mixed into the dense current of thickness h. This entrainment velocity
is defined as

we = dh/dt (1)

This entrainment velocity then allows the definition of the dimensionless en-
trainment ratio (Ellison & Turner 1959) as

E = we/U. (2)
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where U is the depth averaged velocity of the current (figure 1).
The entrainment ratio has been found experimentally to depend upon the

local Froude number of the flow, which is defined as Fr = U/
√
g′oh cosS,

where g′ = g∆ρ/ρo is the reduced gravity and S the slope angle (Turner
1986). For a Froude number greater than one, the interfacial entrainment
ratio E is proportional to Froude number Fr and E decreases rapidly for
Fr < 1 (Turner 1986). For low angle slopes the speed is largely independent
of slope and the speed scales as U ∼

√
g′h cosS. If a turbidity current lasts

for a period similar to the inertial period Tin = 2π/f , (i.e. at 45o, Tin= 19
hours) then rotation becomes important and the gravity current comes into
geostrophic balance. In this case the depth averaged velocity U is shown by
Nof (1996) to scale with a velocity of

Ugeo ∼ g′tan(S)/f. (3)

Substitution of this geostrophic velocity into the definition of the Froude num-
ber gives

Frgeo =
Ugeo√
g′h cosS

=

√
g′

h cosS
tanS
f

. (4)

Fig. 2. A side view of the laboratory experiment. Dense saline fluid is pumped
through small holes in a circular pipe onto the top of the truncated cone. This dense
fluid then flows down the 45o slope and forms a pool of dense water at the base. The
depth of the pool of dense water depends upon how much entrainment has occurred
on the slope. In this image a thin layer of dense fluid 3 cm deep has formed at the
end of the experiment.

Hence if the entrainment ratio is proportional to the Froude number as
E ∝ Frgeo, then the entrainment ratio is inversely proportional to the Coriolis
parameter and proportional to the square root of the reduced gravity, for the
same slope S and initial thickness h.
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Fig. 3. The depths of the dense pool of fluid were taken from images such as that
shown in figure 2. Two sets of experiments are shown, where both the rotation rate
and the initial density anomaly were varied. When the resulting depths are plotted
against Frgeo (equation 4) the two sets of experiments collapse to the same trend.

To explore the predictions of (4), a series of experiments were conducted
on a rotating table using a similar experimental design to that of Shapiro &
Zatsepin (1997) and Jacobs & Ivey (1998). The experiments were conducted
in a 1 m2 tank that contained a truncated cone with a flat shelf in the center,
as shown in figure 2. Dense saline water is pumped through a manifold located
1.5 cm above the 20 cm diameter shelf. This dense water then flows down a
slope of 45o, with a vertical drop of 16 cm. To simulate the variation of Corilios
force with latitude the rotation rates were varied between 0.01 < f < 1.5 rad
s−1. The density of the incoming fluid was also varied from g′ = 4.9 to 196
cm s−2. In each experiment 6 liters of dense saline fluid was pumped through
the manifold at a rate of 5 cm3s−1 for 20 minutes. A mirror located to the side
of the tank, at a 45o angle, allows both a top and side view of the experiment
to be recorded. The resulting depth of the dense water pool was determined
from digital photographs. After the dense current was stopped the depth of
the pool of dense water was measured and results are plotted in figure 3. With
no mixing, the dense saline water in the gravity current would only form a
1.5 cm deep layer of fluid, but due to the entrainment a layer of between 2-16
cm depth could form. Thus, even when the same buoyancy flux was applied
in each case, there could be a 10-fold reduction in mixing for more rapidly
rotating experiments. The results of two series of experiments are plotted in
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figure 3, where both the rotation rate f and the initial density anomaly g′

were varied.
The entrainment ratio E was determined from the increase in the volume

of dense saline fluid caused by mixing in the density current. Due to the radial
symmetry of the cone, the area over which the dense current can entrain is the
same in all experiments. This is an advantage over the related experiments of
Etling et al. (2000) or Cenedese et al. (2004) where the dense current flowed
down a flat slope and hence the surface area over which entrainment into
the dense currents can occur increased dramatically for strongly rotationally
deflected currents. To determine the entrainment ratio from the measured
depth of dense pool in the experiments, we use the relationship between the
amount of mixing and entrainment ratio, introduced by Cenedese et al. (2004).
The mixing ratio r is the ratio of the initial density to the final density of
the density current. This is the same as defining the mixing ratio as r =
input volume/output volume. The entrainment ratio (2) is related to the
mixing ratio by

E ≡ we

U
=

lh

A

(
1
r
− 1

)
(5)

where l the width of the current, and A the area over which the entrainment
occurs. The initial current thickness h was observed to stay approximately
constant in the experiments where g′ varied, and both l and A stay constant
because of the radial symmetry of the cone.

In the figure 4 we plot the inferred entrainment ratios against the geo-
strophic Froude number. For comparison we have also plotted the entrainment
ratios against the Froude number from density currents measured in the pre-
vious experimental observations of Ellison & Turner (1959), Alavain (1986)
and Cenedese et al. (2004) and the field observations of Price & Baringer
(1993), Dallimore et al. (2001), Princevac et al. (2005). The new experimental
results in figure 4 are within 10% of the entrainment ratio values measured in
similar experiments of Ellison & Turner (1959) or Wells & Wettlaufer (2005).
Based on figures 3 and 4 we would thus expect turbidity currents to move
more slowly at higher latitudes (where f is smaller) and consequently entrain
less overlying fluid.

3 Deposition patterns of rotating turbidity currents

To study the influence of Coriolis forces upon the depositional patterns of
turbidity currents, a simple series of experiments were conducted where a
sediment laden flow was released in the corner of square tank. The density
of the sediment laden flow was kept constant, and the dynamics of the tur-
bidity current were observed for increasing background rotation rates. The
experimental apparatus is shown in figure (5). The dynamics of the release of
a dense turbidity current at the boundary of this tank are analogous to the
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Fig. 4. We plot the new laboratory measurements of entrainment ratio E as a
function the Froude number. Previous measurements of entrainment ratio are also
plotted.

situation experienced when fresh river-water flows into the salty ocean. In this
case a large round bulge initially forms on the river plume, with a radius that
scales with the Rossby number (Horner et al. 2006). Eventually water starts
to leave this bulge, and is deflected to the right in the Northern hemisphere,
to form a coastally trapped gravity current. The significant difference between
a buoyant river plume and a dense turbidity current is due to the time-scale
of sedimentation of the particles, so that the sedimentation pattern may only
show the initial bulge and very little of the sediment may be transported into
the geographically steered coastal current.

To make the sediment laden flow, a slurry containing 20g of silicon carbide
(density = 3.15 g/cm3) was stirred in a container of volume of 160 cm3. This
produced a turbidity current with initial density 1.08 g/cm3. The particles we
used were Mesh 240 Carbolon SiC. These SiC particles have a mean size of 60
µ m, which implies a Stokes settling velocity of 4 mm s−1. Hence the particles
settle rapidly once turbulence stops in these shallow turbidity currents.

Photographs from eight experiments are shown in figure 6 where the de-
position patterns of the black silicon carbide stand out against a white back-
ground. The photographs are taken from above and show the systematic re-
duction in deposition radius as the rotation rate is increased. Most of the
sediment rapidly falls out of suspension with this radius, however there is a
small fraction of much finer sediment that stays in suspension longer, and this
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Fig. 5. The laboratory experiment used to determine the influence of Coriolis forces
upon sedimentation patterns.

forms a weak turbidity current that is deflected to the right and is seen as the
black sediment at the base of the images.

The observed radius L of the sedimentation patterns are plotted in figure
7 and show an inverse dependence upon rotation rate f . In analogy to the
radius of the bulge of the buoyant river plume, we assume that the radius
of sedimentation on the rotating turbidity current is that which has Ro = 1.
The Rossby number is defined as Ro = U/fL. The initial speed of collapse
of the turbidity currents is U ∼

√
g′h, so that the Rossby number is one

when L =
√
g′oh/f . Based upon the low measured values of entrainment for

flows where Fr ∼ 1 in figure 4, we will assume there is little entrainment to
change the volume or g′. If we then use conservation of volume of the turbidity
current so that V = hL2π/4, the radius L of the quarter circle is related to
the reduced gravity, the initial volume and the Coriolis parameter by

L ∼ (4/π)1/4(g′oV/f)1/4. (6)

This radius is similar to the scaling of non-sedimenting rotating experiments
by Hogg et al. (2001). In figure 7 there is good agreement between the scaling
(6) and the observed reduction in L with increasing f .
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Fig. 6. Eight images of the sedimentation patterns resulting from the release of
a black silicon carbide turbidity current in a rotating tank of area 1m2. The two
dashed circles in each picture define the minimum and maximum estimates of the
radius L.

4 Applications to the 1929 Grand Banks earthquake

The 1929 earthquake off the Canadian coast of Nova Scotia triggered a tur-
bidity current which spread a 1.5 thick layer of sediment over 280,000 km2 of
the sea floor (Piper et al. 1987). Heezen & Ewing (1952) calculated the speed
of the turbidity current based on the times that the trans-Atlantic telegraph
service was interrupted, and found that speeds varied from 25 m s−1 on the
continental slope to under 4 m s−1 on the flat abyssal plain. The time for
propagation of the current from the shelf to the deepest regions of the flat
abyssal plain 800 km away was about 12 hours, comparable to the inertial
period, Tin = 2π/f , of about 19 hours (Nof 1996). Thus the EarthÕs rotation
should determine the radius that the turbidity current reaches and the res-
ulting sedimentation patterns. A simple estimate on the size of the turbidite
is then that Ro = 1 or that L ∼ U/f . If we use the speed estimates based on
Heezen & Ewing (1952), that U = 25 m s−1 and that f = 9.5 × 10−5s−1 at
40o North then this implies that the radius of deposition is L = 250 km. In
figure 8 we see that this compares favorably with the distribution of sediment
observed by Piper et al. (1985).

5 Conclusions

The experiments described in this paper clearly show two strong effects of
rotation upon the dynamics of density or turbidity currents. Firstly rotation
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(a)

(b)

Fig. 7. The experimentally determined radius of sedimentation in figure 6 is plotted
as a function of Coriolis frequency f , along with the theoretical predication that
L = 1.06(g′V/f)1/4 in a). The Rossby number for all the experiments can be seen
to be close to one in b) where we plot

√
g′V /L2f .

controls the entrainment ratio in such currents, as the velocity is in geo-
strophic balance. Our theoretical prediction that E ∼

√
g′/f

√
h showed good

agreement with experimental results in figure 4. Secondly we showed that the
radius of a large turbidity current influenced by Coriolis forces is comparable
the Rossby radius of deformation, so that the deposition patterns of turbidites
should be determined by (6) or L ∼ U/f . This theoretical prediction again
showed good agreement with laboratory experiments.

As there is an inverse dependence of speed and the deposition radius upon
the Coriolis parameter, these effects should be most striking for high latit-
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Fig. 8. a) The distribution of turbidites after the 1929 earthquake is shown in
grey on this contour map. Most of the sediment lies within 250 km of the canyon
mouth, but a small tongue of sediment between 0-50 cm thickness extends south for
approximately 600 km. Modified from Piper et al. (1985). b) A simplified conceptual
drawing of the sediment distribution, showing a quarter circle of radius 300 km from
the point where the turbidity current entered onto the abyssal plain, within this
radius lies all of the turbidite between 50-200 cm thickness.

ude turbidity currents and their resulting turbidites. We predict that at high
latitudes the turbidites would be of smaller spatial extent and have thicker
deposition patterns (assuming similar initial conditions). We found favorable
comparisons of the order of magnitude of the spatial extent of 1929 Grand
Banks turbidite with the Rossby number scaling. Future work will compare
these predictions with a more extensive set of geological observations at dif-
ferent latitudes.
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Summary. This paper focuses on the prediction of particle distributions in a flow
field computed by large eddy simulation (LES). In an LES, small eddies are not
resolved. This gives rise to the question in which cases these eddies need to be re-
constructed (modeled) for tracing particles. Therefore the influence of eddies on the
particles in dependence on eddy and particle time-scales is discussed. For the case
where modeling is necessary, a stochastic model is presented. The model proposed
is a model in physical space and not in velocity space, i.e. not the velocities of the
unresolved eddies but the effects of these eddies on particle positions are reconstruc-
ted. The model is evaluated by an a priori analysis of particle dispersion in turbulent
channel flow.

1 Introduction

Particle laden flows in nature often reach Reynolds numbers for which dir-
ect numerical simulation (DNS) is not possible on nowadays computers. For
detailed numerical predictions of such flows, large eddy simulation (LES) is
considered to be an appropriate method. This paper focuses on the simulation
of a particle-laden flow by LES.

In a LES, not all length scales of the turbulent fluctuations are resolved.
This can be described formally by applying a spatial filter to the velocity field.
To solve the Navier-Stokes equations for the filtered velocity fields, a subgrid-
scale (SGS) model is required which accounts for the effect of the unresolved
scales on the resolved ones (SGS stresses). In the present work, this model
is referred to as fluid SGS model. In order to evaluate the performance of a
fluid SGS model, an a priori analysis can be conducted. In such an analysis,
the SGS-stresses are computed explicitly on the basis of an unfiltered solution
and its corresponding filtered one.

In many applications (e.g. prediction of sedimentation processes, disper-
sion of aerosols in the atmosphere) the dynamics of the carrier fluid is only
of secondary interest. It is more important to predict the distribution of the
suspended phase. Therefore only the scales in the carrier fluid which have a
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significant influence on the suspended phase must be computed. Nevertheless,
these scales are often too small to be resolved by LES; the corresponding ed-
dies might be in the subgrid range and a particle-SGS model will be required.

In the present work we focus on such cases. We compute the carrier fluid by
a LES and the suspended phase by solving the transport equation of particles
in a Lagrangian framework. Effects of the suspended phase on the carrier
flow as well as particle-particle interactions are neglected. For the effect of
the unresolved eddies of the carrier fluid on the particle motion, a stochastic
particle SGS model is developed. This model is validated by an a priori ana-
lysis conducted for dispersion in turbulent channel flow. The carrier fluid is
computed by DNS and subsequently filtered to eliminate errors that would
be introduced by a fluid SGS model.

It will be shown that the SGS eddies are most important for computing
particle distributions if the relaxation time of the particles is small. There-
fore we restrict the development and validation of the model on inertia free
particles.

This paper is organized as follows: In sections 2 and 3, the governing equa-
tions and numerical methods for DNS of the carrier flow and the suspended
phase are presented. In section 4, we discuss the significance of the subgrid
scale (SGS) velocities on the suspended phase. For the case where these velo-
cities are significant, we propose a stochastic model for including their effects
on the suspended phase. This model is developed in section 5 and verified by
an a priori analysis in section 6.

2 Numerical simulation of the carrier fluid

In order to conduct an a priori analysis, in this study a DNS of the carrier
fluid is performed by solving the Navier Stokes equations

div u = 0 (1)
Du
Dt

= −1
ρ
∇p + ν∆u. (2)

Here, u represents the fluid velocity, ρ the density, ν the kinematic viscosity
and p the pressure. D

Dt = ∂
∂t + u.∇ denotes the material derivative.

For solving equations (1) and (2), we used a Finite-Volume method. This
method is a modified version of the projection or fractional step method
proposed independently by [2, 20]. For spatial discretization a second order
scheme (mid point rule) was implemented. For advancing in time, we use a
third order Runge-Kutta scheme as proposed by Williamson [22] with constant
time step ∆t. The continuity equation (1) is satisfied by solving the Poisson
equation for the pressure. In this paper, we investigate turbulent channel flow
only. Therefore the Poisson equation can be solved by a direct method using
Fast-Fourier transformations in the homogeneous streamwise and spanwise



A stochastic model for LES of a particle-laden turbulent flow 347

directions of the channel flow and a tridiagonal solver in wall-normal direc-
tion. For a detailed description of the implemented flow solver the reader is
referred to [13]. Please note that in [13] a second-order scheme for advancing
in time was used whereas here, we implemented a third order Runge-Kutta
scheme.

We use periodic boundary conditions in the two homogeneous directions
and no slip conditions at the walls. The flow is driven by a constant pressure
gradient that adjusts the Reynolds number based on the half channel height
H and the bulk velocity ubulk to Re = 2817. This corresponds to a wall units
based Reynolds number of Reτ = 180. In our coordinate system, x is pointing
in streamwise, y in spanwise and z in wall-normal direction. The size of our
computational domain is 9.6H in streamwise, 6.0H in spanwise and 2.0H in
wall normal direction. For all computations staggered Cartesian grids were
used.

For the DNS we used 96×80×64 grid cells. The cell distance in wall units in
streamwise and spanwise direction is ∆x+ = 18 and ∆y+ = 13.5, respectively.
In wall normal direction a stretched grid was used with a stretching factor less
than 5%. Here, the cell width is ∆z+ = 2.7 at the wall and ∆z+ = 9.8 at the
channel center-plane. We compared our results up to second order statistics
with the spectral DNS of [8] and found excellent agreement. Further valida-
tions of the solver are given in [12, 13]. For evaluating the grid dependency on
the suspended phase, further computations were conducted on a refined grid.
This grid was obtained by refining the grid mentioned above by a factor of 2
in each direction, i.e. the number of grid cells was incremented by a factor of
8.

For the a priori analysis, the fluid velocity was filtered by top-hat filters
using a trapezoidal rule. Most of the results presented in this study are based
on a three dimensional filter with a filter width of 4 cell widths in each direc-
tion. This filter will be referred to as fil3d. Please note that this filter does
not correspond to filtering over a cube due to the different cell widths in each
direction. For analyzing anisotropic effects we implemented a two dimensional
top-hat filter which filters in spanwise and wall normal direction only (fil2d).
In these directions again the filter width was chosen to be 4 cell widths. For a
detailed investigation on the effect of different filters in a particle laden flow,
the reader is referred to [1].

3 Numerical simulation of the suspended phase in a DNS

For computing the suspended phase, single particles are traced. In all compu-
tations, only effects of the fluid on the particles are considered; effects of the
particles on the fluid are neglected (one way coupling). For computing traces
of particles other than fluid particles it is assumed that the acting forces on
these particles are given by the Stokes drag, fluid acceleration force and grav-
ity. Hence, according to Maxey and Riley [14] the equation of motion for a
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particle is given by

dv
dt

= −cDReP

24tP
(v − u)︸ ︷︷ ︸

Stokes drag

+
ρ

ρP

Du
Dt︸ ︷︷ ︸

fluid acceleration

+
ρP − ρ

ρP
g︸ ︷︷ ︸

gravity

. (3)

Here, v(t) denotes the particle velocity, ρP the density of the suspended phase
and g the gravity. tP is the particle relaxation time, i.e. the timescale for
the particle to adopt to the velocity of the surrounding fluid. The particle
Reynolds number ReP is based on particle diameter and particle slip velo-
city ‖u − v‖ which leads to a nonlinear term for the Stokes drag. The drag
coefficient cD was computed in dependence of ReP according to the scheme
proposed by Clift et al. [3]. Du

Dt as well as the fluid velocity u must be evalu-
ated at the particle position xP (t), i.e. Du

Dt = Du
Dt (xP (t), t) and u = u(xP (t), t).

Hence, these values must be interpolated (see below).
In the cases which we considered in this study (for parameters cf. section

4), we found the Stokes drag to be a stiff term whereas fluid acceleration
force as well as gravitation are independent of v and thus not stiff. There-
fore it is appropriate to solve equation (3) by a numerical scheme that can
treat stiff terms and non stiff terms separately. Such a scheme is given by a
Rosenbrock/Wanner method [7]. Here, in each time step the stiff term (i.e. the
Stokes drag) is linearized and discretized by an implicit Runge-Kutta scheme.
For the other terms an explicit Runge-Kutta method is used.

The stiffness is dependent on particle properties. In order to trace different
suspended phases, an adaptive method was chosen. Altogether we decided to
implement the adaptive Rosenbrock/Wanner scheme of 4th order together
with an error estimation of 3rd order. This scheme can be found in [7].

In the remaining part of this section we will describe how we approximated
Du
Dt (xP (t), t) and u(xP (t), t).

Let t1 and t1+∆t be two instants at which the fluid velocity u is computed
on the given grid by solving the Navier-Stokes equations (1) and (2). Du

Dt
equals the right hand side of the momentum equation (2) and is therefore also
computed on this grid at the given instants. Let t be some instant in between
two time steps of the flow solver, t1 < t < t1 +∆t. For computing the particle
velocity according to equation (3), the terms u(xP (t), t) and Du

Dt (xP (t), t) are
required. These can be obtained by interpolation in space (at xP ) and in time
(at t).

The spatial interpolation uses a second order interpolation in direction of
the velocity vector and first order interpolation in the remaining directions.
This ensures a conservative interpolation which we found to be important for
the particle distributions. A change to a second order interpolation did not
affect the results significantly.

In detail, first u(xP (t1), t1) and Du
Dt (xP (t1), t1) were computed by spatial

interpolation. For the fluid acceleration force this was sufficient,



A stochastic model for LES of a particle-laden turbulent flow 349

Du
Dt

(xP (t), t) ≈ Du
Dt

(xP (t1), t1) ∀t1 < t < t1 + ∆t. (4)

If this was done for u(xP (t), t) as well, this would correspond to a non-
continuous fluid velocity along a particle path. Due to the stiffness (v → u)
this would result in large amplitude higher order terms for v. An adaptive
solver would considerably reduce the time step size in such a situation which
would render the scheme ineffective. In order to circumvent this problem, we
approximated u during one time step ∆t linearly in time by using the flow
field of the previous time step t1 −∆t.

4 Influence of SGS velocities on the particles

In a LES context, not u but the filtered velocity ū is computed. The question
at hand is whether replacing the velocity u by ū in equation (3) has a signi-
ficant effect on the particle dynamics, i.e. if the non resolved eddies could be
neglected or not. This question will be addressed in the present section.

Consider a particle with a relaxation time tP residing in an eddy with a
much larger lifetime tEL, tEL � tP . Here, it can be assumed that the particle
will eventually adopt to the eddy velocity. On the other hand, if the particle
relaxation time is large with respect to the eddy lifetime, tEL � tP , the
eddy will disappear before the particle can adopt its velocity. Seen on the
timescale of the particle, this particle is pushed very slightly by such eddies.
Soon (referring to the timescale of the particle), the particle will be located
in the next eddy with tEL � tP and the particle will be pushed again. For
such a particle, this will result in an effect similar to Brownian motion and
can therefore be considered as noise for the particles.

Concluding, the effect of a specific eddy on a particle is dependent on
tEL/tP . This was also found experimentally by Fessler et al. [5]. They invest-
igated the distribution of Lycopodium, glass and copper in air and found a
preferential concentration for Lycopodium but not for copper particles. This
is due to the different Stokes numbers St = tP /tK , tK being the Kolmogorov
timescale. For Lycopodium the Stokes number is St = 0.6 whereas for copper
the Stokes number is St = 56.

As shown by Rouson and Eaton [18], the effect under consideration can be
shown by DNS at a lower Reynolds number at fixed Stokes number. We did
the same computations and found the results depicted in figures 1 and 2. The
flow field was computed as described above, i.e. at Reτ = 180, discretized on
96 × 80 × 64 cells. Recalling that the flow field in the two figures is identical
due to one-way coupling, it can be seen that the influence of an eddy varies
with the material properties of the particles.

For these computations we took Stokes drag, fluid acceleration and grav-
ity into account. The corresponding parameters were chosen in accordance to
the experiment by Fessler et al. Thus, Stokes numbers were chosen as stated
above for Lycopodium and copper resp., density ratio was ρ/ρP = 0.0017
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for Lycopodium and ρ/ρP = 0.000136 for copper. Gravity points in stream-
wise direction. For scaling gravity with the smallest eddies, particle Froude
numbers based on Kolmogorov scales FrP =

√
ρP η/

√
(ρ− ρP )gt2K were held

constant. Here, η is the Kolmogorov length scale. Thus, FrP = 1.9151 for
Lycopodium and FrP = 1.9136 for copper.

In contrast to our computations, Rouson and Eaton neglected fluid accel-
eration and gravity. We found good agreement between their results and ours.
Thus, in this case only Stokes drag affects the particle distribution signific-
antly. Hence, the influence of the eddies varies with the particle relaxation
time, the only material inherent parameter appearing in the Stokes drag.

Fig. 1. Lycopodium in air, instant-
aneous distribution on channel center-
plane, Reτ = 180, St = 0.6

Fig. 2. Copper particles in air, in-
stantaneous distribution on channel
center-plane, Reτ = 180, St = 56

In a LES, the size of the resolved eddies depends on the coarseness of the
LES grid. Equivalently, the minimal lifetime of the resolved eddies depends on
the LES cutoff frequency 1/tLES. According to this analysis, the SGS terms
are not negligible for tracing particles if tLES � tP . In such a case, a model
is required for recovering these effects. Evidently modeling is most important
if tP = 0, i.e. for tracer particles. Therefore a model can be evaluated by
applying it on such particles.

5 A stochastic SGS model

For cases in which SGS velocities cannot be neglected, several models were
already proposed by different authors. Some of these models are stochastic
[15, 19, 21], some are deterministic models [10, 15, 16].

In all the approaches mentioned, modeling is done in velocity space, i.e.
the SGS fluctuations u′ are approximated. When modeling u′ as a stochastic
variable, time correlations along the particle path must be included. Therefore
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in many of the models mentioned above, an additional differential equation
has to be solved.

In what follows, a SGS model for dispersion of inertia-free particles is
derived. Here, we propose to model the SGS-effect in physical space rather
than in velocity space. This will be explained as follows. For tracer particles
the particle position is given by

x(t) = x(0) +

t∫
0

ū(τ)dτ

︸ ︷︷ ︸
=: x̄(t)

+

t∫
0

u′(τ)dτ

︸ ︷︷ ︸
=: x′

t

. (5)

Here, ū(τ) = ū(x(τ), τ) and u′(τ) = u′(x(τ), τ) are the filtered and SGS
velocities on a particle path, resp.

The filtered (i.e. resolved) velocities would result in deterministic particle
positions x̄(t). In our model, the non-resolved (SGS) velocities are considered
as random displacements, denoted here by x′

t. Thus, we propose to model x′
t

as a stochastic process. To this end, we consider the moments of x′
t. Here we

start with the model proposed by Shotorban and Mashayek [19]. This is a
model for the velocity fluctuations u′. Under the assumption of isotropic SGS
fluctuations they propose to solve for the SGS fluctuations at each time step
in a Lagrangian sense a stochastic differential equation

dū + du′ = du =
(
−1
ρ
∇p̄ + ν∆ū − u − ū

TL

)
dt +

√
C0εsgs dWt. (6)

Here, Wt is a three dimensional Wiener process, εsgs is the SGS dissipation
rate, TL is the lifetime of a representative SGS eddy and C0 is a model con-
stant.

According to Deardorff [4], εsgs can be computed by

εsgs =
ν3

t

C4
S∆

4
(7)

with the Smagorinsky constant CS , filter width ∆ and the eddy viscosity νt.
In most LES models, the eddy viscosity is estimated from the gradients of the
resolved velocity field.

Combining the results of Gicquel et al. [6] and Lilly [11], a formula for the
SGS relaxation time TL can be obtained,

TL =
(

1
2

+
3
4
C0

)−1
∆2CT

νt
(8)
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with another model constant CT which was set to 0.094 according to [6] and
[11].

Now we read the model by Shotorban and Mashayek in a LES context.
Therefore the filtered velocity in a Lagrangian framework can be written as

dū =
(
−1
ρ
∇p̄ + ν∆ū − div τ

)
dt (9)

with τ being the SGS stress tensor. By subtracting equation (9) from equation
(6) a stochastic differential equation for the SGS fluctuations is obtained,

du′ =
(

div τ − u′

TL

)
dt +

√
C0εsgsdWt. (10)

Equation (10) is a linear stochastic differential equation. For such equa-
tions Kloeden and Platen [9] give differential equations for the first and second
moments of u′:

dE(u′)
dt

= − 1
TL

E(u′) + div τ (11)

dE(u′2)
dt

= − 2
TL

E(u′2) + 2E(u′) div τ + C0εsgs (12)

Again, these equations are linear. Assuming a deterministic velocity for the
particles at t = 0, i.e. E(u′)(0) = E(u′2)(0) = 0, the solution reads

E(u′) = TL(1 − e−t/TL) div τ (13)

E(u′2) = (TL div τ)2(1 + e−2t/TL − 2e−t/TL)

+
C0εsgsTL

2
(1 − e−2t/TL). (14)

Hence, the variance of the SGS fluctuations can be computed as

Var(u′) = E(u′2) − E2(u′) =
C0εsgsTL

2
(1 − e−2t/TL). (15)

Equation (15) gives the variance for the SGS fluctuations in velocity space.
This information will be used now in order to compute the variance of the SGS
fluctuations in physical space, Var(x′

t). To this end, several assumptions will
be taken in the remaining part of this section. We will not present validations
for each assumption individually; instead, in section 6 results will be presented
which support the correctness of the resulting function Var(x′

t).

We start by integrating the model equation (10) under the assumption
that TL and εsgs vary little1:

1 for a rigorous deduction the mean value theorem can be applied instead
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t∫
0

du′ =

t∫
0

div τ dt− x′
t − x′

0

TL
+

√
C0εsgsWt (16)

Solving for x′
t gives

x′
t = x′

0 + TL

⎛⎝−u′(t) + u′(0) +

t∫
0

div τdt +
√
C0εsgsWt

⎞⎠ . (17)

x′
0, u′(0) and

t∫
0

div τdt are deterministic. Thus,

Var(x′
t) = −Var (TLu′(t)) + Var

(
TL

√
C0εsgsWt

)
− 2T 2

L

√
C0εsgs Cov (Wt,u′(t)) . (18)

Now we compute the covariance of the fluctuations and the Wiener pro-
cess generating the fluctuations, Cov (Wt,u′(t)). For this we assume that the
fluctuation velocities are unbiased, E(u′(t)) = 0. Multiplication of (17) by
u′(t) and computing the expectation gives

t∫
0

E (u′(t)u′(s)) ds = −TLE(u′2) + TL

√
C0εsgsE (u′Wt) (19)

Now we assume that the autocorrelation of the fluctuations decays expo-
nentially with the Lagrangian correlation timescale tL,

Cor(u′(t),u′(t + τ)) = e−τ/tL . (20)

Furthermore in many applications one is interested in the long time behavior.
Therefore in the following we will consider large t only. According to equation
(14), E(u′2) is constant for large t. Thus, by substituting (20) into (19) we
obtain

E(u′2)(tL + TL − tLe
−t/tL) = TL

√
C0εsgsE (u′Wt) . (21)

Substituting this into equation (18) gives

Var(x′
t) = C0εsgsT

2
L(α + tLe

−t
tL )(1 − e

−2t
TL ) + T 2

LC0εsgst (22)

α = −3
2
TL − tL (23)

The first terms in equation (22) are exponentially decaying functions
whereas the last term is linear. This means that for large t the first terms
are negligible. We assume that these terms appear due to the suppression of
fluctuations at t = 0, x′

0 = u′(0) = 0. If the latter terms were random, the
exponential and constant terms in equation (22) might disappear.

Therefore we neglect these terms and model the SGS fluctuations accord-
ing to
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Var(x′
t) = T 2

LC0εsgst. (24)

One possibility to model xt with this variance is to model xt as a scaled Wiener
process. This is not only consistent with the derivation given but can also be
interpreted physically as dispersion. Armenio et al. [1] found that neglecting
SGS velocities results in a lack of dispersion. We want to compensate this by
modeling xt as scaled Wiener process:

dx′
t = TL

√
C0εsgs dWt. (25)

This process can be implemented by adding in each time step of the flow
solver the appropriate stochastic term on the position of each particle:

x(t + ∆t) = x(t) +

t+∆t∫
t

ū dτ + TL

√
C0εsgs∆t Z (26)

Z is a Gaussian distributed random variable with expectation 0 and variance
1. TL, C0 and εsgs can be obtained according to the model of Shotorban et
al. [19]. In our computations we implemented an explicit Euler scheme for
solving equation (26).

6 A priori analysis

In this section we present an a priori analysis of the SGS dispersion model
developed in section 5. For this analysis we distributed particles on the center-
plane of the channel described in section 2. Therefore each particle has the
same wall distance and by sampling over the particles, statistics in wall normal
direction can be obtained. All results will be displayed in wall units.

We traced the particles with velocities computed by DNS using the two
different grids described in section 2. During the simulations we stored the
particle positions on hard disk. In a post-processing step we computed the
variance of the wall normal coordinate of the particles which develops as
predicted by Pope [17] and computed by Armenio et al. [1] (cf. figure 3).
We compared both, coarse and fine grid simulations and decided that the
resolution of the coarse grid was sufficient for our purposes.

For conducting the a priori analysis, we filtered the DNS-velocity field by
top-hat filters as described in section 2. We traced particles with the filtered
velocities and found that the dispersion is reduced by filtering. This was
already found by Armenio et al. [1]. In contrast to their work, we filtered
also in wall normal direction. The corresponding variance of the particle po-
sition in wall normal direction (dispersion) is depicted in figure 3. Here, for
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both filters mentioned in section 2 the dispersion is depicted. Evidently dis-
persion in wall normal direction is not very sensitive to filtering in streamwise
direction.

In a LES context, we are interested in the SGS dispersion, i.e. the dif-
ference between dispersion computed by DNS and by filtered velocities. For
fil3d this SGS dispersion is plotted in figure 4. Please note that in such an
analysis the dependency of x′ on x̄ is neglected whereas in our model this de-
pendency is respected due to adding the SGS dispersion subsequently during
the simulation. In order to validate the shape of the theoretically derived SGS
dispersion (equation (22)), we fitted the SGS dispersion according to equation
(22). The fit for tL = 0.19, TL = 0.001, C0εsgsT

2
L = 1100 is also shown in fi-

gure 4. We find very good agreement between fitted function and numerically
computed SGS dispersion. This justifies the assumptions of section 5.

In the next step, we computed the particle positions with the filtered
velocities only and added subsequently the modeled SGS dispersion as given
by equation (26). For small time steps the stochastic term in equation (26)
(i.e. the contribution to the SGS dispersion) is so low that roundoff errors
become significant. In our simulations we used a time step for the flow solver
of ∆t = 0.01 H

ubulk
. We found that when using this time step in combination

with the filter fil3d these roundoff errors become dominant. In order to
compensate for this, we added the term corresponding to the SGS dispersion
at every 50 time steps only. The corresponding result is shown in figure 5.

It can be seen that for short times the deviation between DNS and modeled
result is still large whereas this becomes somewhat better for large times. This
was to be expected since we developed our model for long term behavior.
The difference occurs due to the neglecting of the constant and exponentially
decaying terms in equation (22). Therefore it is more appropriate to validate
the model on the dispersion rate, i.e. the time derivative of the dispersion.
This is plotted in figure 6. According to these results we are very satisfied
with the performance of our model.
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Fig. 3. Dispersion computed by DNS
and filtered velocities, displayed in
wall units.

Fig. 4. SGS dispersion and fit accord-
ing to equation (22).

Fig. 5. Dispersion computed by
DNS and filtered velocities as well as
filtered velocities plus modeled SGS
dispersion

Fig. 6. Rate of dispersion computed
by DNS and filtered velocities as
well as filtered velocities plus modeled
SGS dispersion

7 Conclusions

In this work we developed a stochastic SGS model for computing particle dis-
persion in turbulent flows. The model was developed for Eulerian-Lagrangian
simulations, i.e. where the fluid phase is computed by an Eulerian method and
the suspended phase is computed by tracing single particles in a Lagrangian
view. For such simulations the effect of the non resolved scales in the carrier
fluid must be modeled for tracing the suspended particles.

Modeling is done in physical space by subsequently adding a stochastic
term on the particle position which can be seen as dispersion caused by unre-
solved scales. For developing the model simplifications were taken which are
only valid when focusing on the long term behavior of the suspended particles;
the model is only capable of predicting the dispersion of particles when a cer-
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tain time after particle injection has passed. Since the model is of stochastic
nature, it can only be used for prediction of statistical properties.

In order to maximize the effect of subgrid scale influence, we focused on
tracer particles only in this study. An a priori analysis was conducted in
turbulent channel flow. Particles were released on the channel center-plane and
the evolution of particle dispersion was computed. In order to get a reference
solution, particles were traced by velocities computed from DNS. In another
simulation particles were traced by using filtered velocities and adding LES
dispersion as given by the model proposed. We found good agreement between
both simulations.
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Summary. Aggregate formation is an important process in industrial and environ-
mental turbulent flows. Two examples in the environmental area, where turbulent
aggregate formation takes place, are raindrop formation in clouds and Marine Snow
(aggregate) formation in the upper layer in the oceans.

The dispersion of inertial particles differs from that of (passive) fluid particles
and is dominated by particle-turbulence interaction. This is especially important
when the particle scales match the small-scale turbulent flow scales. Our motivation
to study turbulent aggregate formation comes from the need to describe aggregate
formation in small-scale turbulence in the oceans.

For a proper description, the study of aggregate formation in turbulent flows
requires a particle-based model, i.e. following single particles. Therefore, three main
processes should be modeled: the turbulent flow, the motion of the particles, and
the collision between particles and subsequent aggregate formation. In this study
we use 3D kinematic simulations to model the turbulent flow. A simplified version
of the Maxey-Riley equation is used to describe the motion of the particles. For
the collision and aggregate formation a geometrical collision check is used: when
the distance between two particles is smaller than the sum of their radii a collision
takes place. All the particles that collide stay together to form an aggregate, i.e.
100% coagulation efficiency. To account for the porosity of the aggregates a Fractal
Growth Model is used.

In this study the importance of the Stokes number and the fractal dimension
of the aggregates on collision rates and aggregate formation has been explored,
finding that the preferential concentration plays a very important role in aggregate
formation by creating regions of high particle concentration. Other results are: the
net effect of fractal growth is to increase the aggregate Stokes number and to decrease
the density of the aggregate.

In order to determine the performance and applicability of 3D-KS models on
aggregate formation processes, DNS simulations and supplementary laboratory ex-
periments are planned.

Bernard J. Geurts et al. (eds), Particle Laden Flow: From Geophysical to Kolmogorov Scales, 359–371.
© 2007 Springer. Printed in the Netherlands.
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1 Introduction

Phytoplankton populations in oceans are immersed in a turbulent environ-
ment. Turbulence increases encounter rates among plankton cells and other
organic and inorganic particles, promoting the formation of aggregates. These
aggregates are known as marine snow, and they are a vehicle for transporting
organic matter (CO2) to the bottom of the ocean [1]. The spectrum of spatial
and temporal scales in the ocean is extremely broad, ranging from kilomet-
ers to micrometers and from days to seconds. This makes direct numerical
simulation (DNS) of this system not feasible with the present computational
capacity. Implying that the large-scale modeling requires the use of empirical
models to be able to represent the effects of small-scale processes on large-
scale phenomena, i.e. to represent the gap between small- and large-scale phe-
nomena. Phytoplankton dispersion in large-scale simulations is an example.

In models the phytoplankton is usually represented as a passive tracer, but
under some conditions this representation fails. The transport of organic ma-
terial to the bottom of the ocean, also called the Carbon pump, is an example
of a process that cannot be described by considering plankton and particulate
matter as passive tracers. The net transport depends on the settling velocity
of individual particles which in turn depend in the particle-flow interaction.
The settling velocity of particles in turbulent flows is modified from the set-
tling velocity in quiescent fluids [2, 3] and particle properties can change by
particle-particle interaction (e.g. aggregation), or by particle-fluid interaction
(e.g. breaking up of aggregates). Therefore Lagrangian-based models follow-
ing trajectories of single particles are an ideal method to study aggregate
formation, where particle-particle and particle-flow interaction are import-
ant. These models capture in simplified ways these interactions, but they are
computationally expensive.

In general, when a few solid particles have formed an aggregate, the shape
of this aggregate is complex (although for many constituting particles the
aggregate can become more or less spherical). The aggregate is porous and its
density is different of that of the constituting particles. Aggregate growth is
known to be of fractal nature [4], and this fractal behavior should be taken in
account, although with a rather simplified model.

The inertial effects of plankton in turbulent flows have been studied pre-
viously by Squires and Yamazaki [5], finding that plankton can experience
preferential concentration. There are some works on aggregate formation:
turbulent aerosol aggregate formation using DNS [6]; polymer flocculation
in turbulent pipe flows [7] and aggregate formation in the ocean has been
explored with coagulation theory [8].

In the first part of this paper a brief theoretical introduction is presented.
The model is described in the second part, in the third section the results are
presented and conclusions are presented in the final section.
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2 Turbulence-particle interaction

The interaction between a particle and a (turbulent) flow is complex. When
the volume fraction of the solid phase (particles), denoted by φ = NVp/Vd

(with N the total number of particles, Vp the particle volume, and Vd the
total volume of the system), is very small, say φ ≤ 10−4, the particles do
not influence the flow properties but the flow influences the particle traject-
ories. This is known as one-way coupling. Under different conditions particles
can act as passive tracers, showing a homogeneous distribution of particles
or, on the contrary, behave in ”resonance” with the flow, then showing pref-
erential concentration [9, 10]. This flow-particle interaction depends on the
combination of the particle and flow scales.

The smallest scales of the turbulent flow are the Kolmogorov time and
length scales,

τk =
√

ν

ε
and η =

(
ν3

ε

)1/4

. (1)

An important quantity characterizing the response of a particle of diameter
dp to the turbulent flow is known as the Stokes number and is given by

St =
τp

τk
(2)

where τp, the particle response time. It is the time the particle needs to adapt
to a change in velocity and is given by

τp = γ
d2

p

18ν
(3)

where γ = ρp/ρf . This response time is valid for small spherical particles
with dp � η. The particle-based Reynolds number Rep = |u−v|dp

ν � 1, where
v is the particle velocity and u is the velocity of the fluid at the particle
position x. When St � 1 particles behave approximately as passive tracers
and they are homogeneously distributed in the flow domain. When St � 1
particles respond to the smallest scales of the flow (τp ≈ τk). The particles
are then ejected from the high-vorticity regions and accumulate in the high-
strain regions, thus giving rise to preferential concentration. Note that for
St � 1 the particles are virtually insensitive to the small-scale turbulent
velocity fluctuations.

The equation of motion for a small, rigid spherical particle in the limit of
zero particle Reynolds number is given by the Maxey-Riley equation [11]

mp
dv
dt

= 6πaµ(u − v − 1
6
∇2u) + (mp −mf )g + mf

Du
Dt

+
mf

2
d

dt
(u − v − 1

10
∇2u)

+ 6πa2µ

∫ t

0

d

dτ
(u− v − 1

6
∇2u)

dτ

πν
√

(t− τ)
,

(4)
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where a is the particle radius and µ is the dynamic viscosity of the fluid.
Furthermore, g is the gravitational acceleration, mf = ρfVp and mp = ρpVp,
with Vp the particle volume, and ρf and ρp are the fluid and particle densities,
respectively. The forces appearing in the right hand side of (4) are: the Stokes
drag, the buoyancy force, the pressure gradient force, the added mass and
Basset history force, respectively. For particles with γ � 1, often called heavy
particles, the only important forces are the Stokes drag and the buoyancy
force, and the resulting equation is:

mp
dv
dt

= 6πaµ(u− v) + (mp −mf)g. (5)

This study is restricted to turbulent dispersion and aggregation of heavy
particles.

3 Flow and aggregation model

The particle-based aggregation model described here consists of three parts:
the turbulent flow, the equation of motion for the particles and the collision-
aggregation process. The basic assumptions of the model are that at the smal-
lest scales of the flow the turbulence is homogeneous and isotropic, that dp � η
and that φ < 10−4 to assume only one-way coupling and to consider particle-
pair collisions as the dominant process for aggregate formation.

3.1 3D Kinematic Simulations

Three-dimensional kinematic simulations (3D-KS) of turbulent flows [12] are
models of turbulent flows whose velocity field is constructed as a sum of ran-
dom Fourier modes with a prescribed Eulerian energy spectrum. The velocity
at position x and time t is given by:

u(x, t) =
Nk∑
n=1

[(An × k̂n) cos(kn · x + ωnt) + (Bn × k̂n) sin(kn · x + ωnt)], (6)

where Nk is the number of modes in the simulation, An × k̂n and Bn × k̂n

are spatial Fourier amplitudes, k̂n = kn/|kn| and kn is the wavenumber.
By construction, the velocity field satisfies the incompressibility condition
∇ · u = 0. The positive amplitudes of An and Bn are chosen according:

3
2
|An| =

3
2
|Bn| = E(k)∆kn, (7)

where E(k) is the Eulerian energy spectrum, ∆kn = (kn+1 − kn−1)/2 for
2 ≤ n ≤ Nk − 1, ∆k1 = k2 − k1 and ∆kNk

= kNk
− kNk−1. The distribution

of wave numbers is geometric,
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kn = k1

(
L

η

) n−1
Nk−1

, (8)

where k1 = 2π/L and kη = kNk
= 2π/η, the wave number associated with

the largest scale in the flow and the Kolmogorov length scale, respectively.
We are interested in modeling the so-called inertial range, where the energy
spectrum is given by:

E(k) = Cεε
2/3k−5/3 k1 < k < kη

= 0, otherwise
(9)

where ε is the energy dissipation rate, k is the wavenumber, Cε is an empirical
constant which value is chosen to be 1.5, according to Kraichnan [13]. The time
dependence of a turbulent flow is determined by the non-linear interaction
between different modes and by advection of the vorticity field by the velocity
field. However, in 3D-KS there is no dynamics and therefore the time evolution
of the flow is determined by the unsteadiness frequencies ωn in equation (6).
Following Fung [12], we choose the frequency of the mode n to be proportional
to the eddy turnover time associated with the wave-vector kn:

ωn = λ
√
k3

nE(kn), (10)

where λ is the unsteadiness parameter, and in this study λ = 0.5. The resulting
velocity field incorporates turbulent-like flow structures, eddying, straining,
and streaming regions. Moreover, given the exact way in which the velocity
field is calculated we avoid interpolation errors calculating the velocities of
the flow at the particle position. One of the disadvantages of 3D-KS models
is the impossibility of having periodic boundary conditions.

3.2 Reduced equation of motion for the particle

The motion of the particles is calculated from equation (5) without the buoy-
ancy term, in order to understand as a first step solely the effects of inertia.
This assures that the collision rates are not affected by other processes like
differential sedimentation. So, the final equation used in this study is

mp
dv
dt

= 6πaµ(u − v). (11)

This equation is solved using a fourth order Adams-Bashforth (predictor)-
Adams-Moulton (corrector) method.

3.3 Collision-Aggregation

To explore aggregate formation we chose to start with a population of spher-
ical particles all having the same properties: all have diameter dp and density
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ρp. After each collision a new aggregate is formed and to keep the background
population of particles constant a new particle is added at a random position.
This would represent a steady state for the background particle number dens-
ity. However, this will slowly increase the volume fraction φ and might have
some effect in increasing the collision rate, but the effect is expected to be
small compared to other processes involved. A geometric check for the colli-
sion is used: a collision takes place if the distance of separation between two
particles or aggregates is smaller than the sum of their radii in the interval
[t, t+∆t]. If the diameters of the colliding particles (or aggregates) are di and
dj then this condition for the collision to take place is

rij ≤ di + dj

2
, (12)

with rij = |rij | their mutual distance. To check if the particles may collide in
a (given) time interval ∆t, the relative velocity between the particles i and j,
Vij = (Vi−Vj) ·rij , is calculated at the beginning of the time-step. If Vij > 0,
i.e. the particles are approaching, then the collision time, ∆t(ij), defined by

∆t(ij) =
rij − (di + dj)/2

Vij
, (13)

is calculated. If ∆t(ij) < ∆t the particles collide and aggregate. The colliding
particles are not allowed to collide again in the same time-step, an assumption
based on the observation that the probability of two collisions within the time
interval ∆t scales approximately with φ2. This probability is extremely small,
due to φ � 1.

We consider a Fractal Growth Model (FGM), which implies that the ag-
gregate properties are different from those of the initial particles. An aggregate
formed by n of the original particles is assumed to be spherical with diameter
da given by,

da = dpn
1/Df , (14)

where Df is the fractal dimension, a parameter that accounts for the porosity
of the aggregate [8]. To first approximation, considering that γ � 1 the density
of the aggregate is changed as

ρa = ρpn
1−3/Df . (15)

From this equation it can be seen that in the case of coagulation of droplets,
where there is no porosity and Df = 3, the density is conserved. For solid
particles where Df <3 (the aggregates are porous) and if ρp > ρf , the density
of the aggregate will always be smaller than the density of the particles forming
it. It is important to mention that we only model the effects of the fractal
growth (porosity) on the particle size and density. Using equations (2), (14)
and (15) the Stokes number of the aggregate composed by n particles with
Stp will be given by:
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Sta = Stpn
1−1/Df . (16)

In order to model the effects of breaking-up up particles, the aggregates are
not allowed to grow indefinitely. We choose to allow them to reach a maximum
size equal to the Kolmogorov length scale. In the experiments performed, when
the aggregates reach that size then Sta�1 thus the effect of the small scales
is expected to be reduced.

4 3D-KS of particle dispersion and aggregation

4.1 Encounter rates of non-aggregating particles

The encounter or collision rates among non-interacting (”ghost”) particles is a
measure of the probability of interaction between real particles. If the particles
collect in particular regions of the flow domain because of their interaction
with the structures in the flow (see Fig. (1)), the collision rate will be increased
as can be seen in Fig. (2). To explore the effects of St on the encounter or
collision rates of ”ghost” particles four numerical experiments were performed
with properties given in table 1.

Table 1. Parameter of the numerical experiments exploring the effects of St on the
collision rates of non-aggregating particles. For all runs Reλ = 70 and φ = 10−5

C1 C2 C3 C4

Stp 0.14 0.91 2.29 9.17

The Stokes number of the particles depends on the ratio γ = ρp/ρf and
on the particle size, and is varied from O( 1

10 ) to O(10). This is done by chan-
ging the density of the particles keeping the size and the volume fraction
(φ) constant. In the long term an increased encounter rate of non-interacting
particles is found to be higher for particles with St ≈ 1 as can be seen in
figure (2). This increase can be explained by the preferential concentration
effect, a phenomenon that has been observed in several numerical and ex-
perimental works [9, 2, 10]. When St ≈ 1 the distribution of particles is
inhomogeneous, thus increasing the encounter probability of particles in areas
with high (particle) concentrations.

It is important to point out that for the initial stage the collision rates
are much higher for particles with St � 1. In this Stokes number regime the
particles follow the flow and the preferential concentration effects are nearly
absent. The collisions are expected to be caused by relative motion generated
by the turbulent small-scale shear flows.
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Fig. 1. Preferential concentration for particles with St � 1. Snapshot of particle
distribution in domain emphasizing the regions of high particle concentration. The
big dots are the regions of the flow were the number of particles is 50 times larger
than the homogeneous case. The smallest dots denote the regions with a number
of particles between 1 and 5, and the mid-sized dots are regions with a number of
particles between 5 and 20.

4.2 Effect of initial Stokes number on aggregate formation rates

To explore in more detail the effect of the initial Stokes number of the particles
(Stp) on the collision rate five experiments were performed. The details are
given in the table 2. In these experiments Reλ ∼ 70, Df = 2.5 and Stp is varied
from 0.56 to 4.30. This is done by keeping the same dp in all experiments and
changing ρp.

Table 2. Experiment parameters exploring the effects of initial Stokes number Stp

and Df = 2.5 on aggregate formation. For all runs Reλ = 70 and φ = 10−5 .

S1 S2 S3 S4 S5

Stp 0.56 0.70 1.00 2.10 4.30

In the figure (3) three different regimes can be identified. The first concerns
the initial stage of the simulation, where a peak in the collision rate is found
and a subsequent decrease is observed. This transient behavior can be ex-
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Fig. 2. Effects of St on the encounter (collision) rates.
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Fig. 3. Effects of the Stokes number of the initial population of particles on aggreg-
ate formation rates

plained as an effect of initial inhomogeneities in the particle distribution and
preferential concentration. After a period of initialization the collisions are
turned on, and that is considered to be t = 0. In a high concentration region
there will be an initial stage of high collision rates, due to the collision model:
when two particles collide one bigger particle is formed and another particle
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is created at a random position somewhere in the flow domain. This implies
that the local population of particles is depleted. This fact also explains the
spiky behavior of the aggregate formation rate during the full simulation (and
an ensemble averaging of many runs might eventually yield smooth curves).

The second regime emerge most prominently for the experiment with
Stp = 0.7, apparently just in a regime where augmented collision rates occur as
a result of the initial aggregation process. This can be the result of the change
in the growth of the aggregates. As stated before, the Stokes number of the
aggregates is growing as Stpn1−1/Df . It means that if Stp < 1 the growth will
result in a Stokes number of the aggregate closer to one, promoting the pref-
erential concentration of aggregates formed. If Stp ≈ 1 the growth will result
in Sta > 1, thus the aggregates will experience increasingly less preferential
concentration. Because of the growth, the aggregates formed by particles with
Stp = 0.7 approach faster Sta ≈ 1 than those of Stp = 0.56, experiencing then
preferential concentration. The aggregates formed with particles of Stp ≈ 1
gradually stop experiencing preferential concentration.

Finally, the third regime concerns the long-term evolution where the higher
collision rates are found when Stp = 0.56. This can be explained as the result
of the rate of change in Sta. Equation (16) shows that the rate of change of
Sta with the number of particles is proportional to Stp this implies that for
Stp = 0.56, when Sta ∼ 1 it will remain there for longer times compared with
aggregates formed by particles with bigger Stp.

The collision rates can be divided in two components: the aggregate-
particle or aggregate-aggregate collision, both denoted by (APC), and the
particle-particle collision (PPC). This can be observed from the evolution of
the particle size distribution: if APC is dominant big aggregates should be
formed very fast; otherwise if PPC is dominant then many small aggregates
will be formed rapidly. Further work is needed to clarify under what conditions
APC or PPC are dominant.

In principle, the most important parameter defining the interaction among
particles is the Stokes number. This implies that in the first stage the collision
rates will be dominated by PPC, where St1 ≈ 1, and after some time they
will be dominated by APC, when the aggregates reach Sta ≈ 1.

4.3 Effect of fractal dimension on aggregate formation

To explore the effects of the fractal dimension of the aggregates (Df ) three
experiments were performed, see table 3.

The numerical experiments are performed with Reλ ∼ 70, φ = 10−5 and
particle Stokes number Stp = 1.1. Only the porosity, accounted for by Df , is
changed. The results are shown in figure (4).

Once again figure (4) shows the initial peak that can be explained as before
as an effect of the preferential concentration of the particles with Stp = 1.1.
The long-term evolution where the experiment with Df = 2.2 dominates
in the number of collision can be explained by two factors. The size of the
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Table 3. Experiment parameters exploring the effects of Df on aggregate formation.
For all runs Reλ = 70, φ = 10−5 and Stp = 1.1.

D1 D2 D3

Df 3.0 2.5 2.2
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Fig. 4. Effect of Df on collision rates and aggregate formation.

aggregates grows faster when Df is decreased, bigger particles have more
probability to interact with other particles. The second factor is the rate of
growth of Sta ∼ n1−1/Df , i.e. given Stp, decreasing Df (increasing porosity)
will result in a slower increase rate of Sta, thus resulting in the aggregates
experiencing preferential concentration for larger times.

5 Conclusions

In this work we report on the effects of the Stokes number of the particles on
the encounter rates of non-interacting particles, on the effects of the initial
Stokes number of aggregating particles and the effects of porosity (fractal
growth) on the collision rates.

In spite of the fact that the volume fraction is very small, the number
of collisions between particles is high for particles with St � 1. This can
be explained by the phenomena of preferential concentration: it collects the
particles in localized regions of the domain promoting collisions between them.

The effects of Stp on aggregate formation rates present three regimes:
In the initial regime the higher collision rates are found in particles whose
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Stp � 1; in the long term, the higher collision rates are found when the
aggregates are formed by particles with Stp � 0.5; and in the intermediate
stage the collision rates are dominated by the particles whose Stp � 0.7.
All these results are explained by the preferential concentration effects when
either Stp or Sta are close to one. When Stp < 1 the Stokes number of the
aggregates will approach one and will experience preferential concentration.
When Stp � 1 the aggregate Stokes number will become larger than one and
the effect of preferential concentration is reduced.

The effect of the fractal growth (porosity) on the aggregate formation is
indirect, in particular a modification of the Stokes number of the aggregates
and a modified collision diameter (also affecting collision probability). The
result for the Stokes number is that Sta grows as Stpn

1−1/Df . If Df is de-
creased, the growth of Sta is decreased. In our the numerical experiments
performed to explore the effects of Df , particles with Stp = 1.1 are used,
and three values for Df . Under these conditions the higher collision rates are
found when Df = 2.2. This is the result of small Sta growth rates near Stp
implying that Sta stays longer near one, experiencing the effects of prefer-
ential concentration for prolonged times. Additionally, higher da (lower Df)
promotes an increased collision probability.

This work only considered the effect of inertia on encounter rates of
non-interacting particles and on the collision and aggregate formation rates
of interacting particles. Next step is to modify the equation of motion of
the particles adding buoyancy and added mass forces, see equation (4). This
will help us to consider realistic conditions for plankton systems where the
density of the particles is close to the density of the fluid, ρp ∼ ρf .
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Summary. In this paper we analyze the influence of the particle Froude number
in the settling velocity of particles in wall-bounded turbulence. We consider dilute
situations using point-particle direct numerical simulations, neglecting the modi-
fications of the flow by the particles (one-way coupling). We compare our results
with the cases of particles settling around a single vortex and a vortex array. The
behavior of the settling velocity in the wall-bounded turbulence case is found to be
similar to the one of particles settling in a vortex array with a ”large” inter-vortex
distance. We analyze how the particle settling velocity is related to the particle-fluid
two-point velocity correlations.

1 Introduction

The transport of sediment in wall-bounded turbulent flows is important in
many engineering applications. This situation happens in numerous scenarios,
from the motion of sand in the ocean, to the mixing of microscopic particles
in a pipe of a chemical plant. A common situation involves the transport and
sedimentation of sand-like particles in turbulent water-flows. In this case, the
sedimentation of the particles depends strongly on the interaction between
the particles and the turbulence, and there is a lack of good understanding
about it. It is important to get more physical insight of the situation, using
both numerical simulations and experiments [1]. This physical insight can be
used to develop physically-based models for sediment transport.

It is known that in a turbulent flow the non-dimensional particle settling
velocity (Vs) is different than in a stagnant fluid. In the past, some work has
been done in simplified situations, trying to understand this phenomenon.
Hunt and Davila [3] considered the motion of particles around a single vortex,
and they found that Vs can be described by two dimensionless parameters:
Vt, the non-dimensional particle settling velocity in stagnant fluid, and Fp,
the particle Froude number. Fp can be interpreted as the ratio of the inertial
forces experienced by a particle to the buoyancy forces. They showed that,
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depending on Fp, Vs can be higher (up to 80% for Fp ∼ 1) or lower (up to
20% for Fp ∼ 10) than Vt.

Some authors extended the analysis of Hunt and Davila for a group of
vortices. De Ronde [2] found that in a symmetric vortex array, the settling
velocity depends not only on Vt and Fp, but also on the vortex separation, D.
He found that, for Fp ∼ 0.1, depending on the value of D, Vs can be higher
or lower than the settling velocity in a stagnant medium. For Fp < 0.01 and
Fp > 1, he found the value of Vs is approximately the same regardless of the
value of D. Eames and Gilbertson [4] analyzed the settling and dispersion of
particles by spherical vortices. They showed that the use of Vt and Fp is not
enough to properly describe the physical situation, and that other parameters
are needed, in order to take into account the distribution of the vortices.

The work of De Ronde and Eames and Gilbertson suggest that the turbu-
lence structure can play an important role in determining Vs. In their work,
the influence of Fp and other parameters on the value of Vs was considered for
simplified situations. In this work, we study how the falling velocity of particles
in wall-bounded turbulent flows is affected by Vt, Fp and the turbulence struc-
ture, using DNS simulations of a particle-laden turbulent open-channel flow.
We use a standard point-particle approach, where the forces acting on the
particle are determined from the fluid velocity interpolated at the center of
the particle [6]. We consider dilute situations and neglect the modification of
the flow by the particles (one-way coupling).

In this paper, we present a quantitative systematic analysis of the vari-
ation of Vs with Vt and Fp, and its relation with the turbulence structure. In
section 2 there is a description of the particle equation of motion, with the
forces considered in the simulations. In section 3 there is a discussion about
the particle Froude number. In section 4 and 5 there is an analysis of the sed-
imentation of particles around a single vortex and a vortex array. In section
6, the sedimentation of particles in an open-channel flow is presented. Finally,
in section 7 we give some concluding remarks.

2 Particle equation of motion

The forces acting on a particle immersed in a flow were described by Maxey
and Riley[5]. In this work, in order to keep the situation as simple as possible,
we consider only Stokes drag, gravity, added mass and the surrounding fluid
stress. Then, the motion of a particle is described by:

dṽ
dt̃

=

∣∣∣∣∣ 18 µ̃
ρ̃p d̃2

p

(ũ − ṽ)︸ ︷︷ ︸
drag

+

∣∣∣∣∣ g̃︸︷︷︸
gravity

+

∣∣∣∣∣ 1
ρ̃p

(
∇̃ · T̃

)
︸ ︷︷ ︸

stresses

+

∣∣∣∣∣12 ρ̃f

ρ̃p

(
Dũ
Dt̃

− dṽ
dt̃

)
︸ ︷︷ ︸

added mass

(1)

were, ṽ is the particle velocity, ρ̃p and ρ̃f are the particle and fluid density,
respectively, d̃p is the particle diameter, µ̃ is the fluid viscosity, g̃ is the gravity
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acceleration, ũ and Dũ/Dt̃ are the surrounding fluid velocity and acceleration,
respectively, at the particle position, and T̃ is the fluid stress tensor (through-
out this paper, the superscript ∼ is used to denote dimensional quantities).
Neglecting the influence of the particles on the fluid, the acceleration of the
surrounding fluid is given by:

Dũ
Dt̃

=
∂ũ
∂t̃

+ ũ ·
(
∇̃ũ

)
=

1
ρ̃f

(
∇̃ · T̃

)
+ g̃ (2)

Finally, we can express the particle equation of motion as:

dṽ
dt̃

=
β − 1
β + 1

2

1
τ̃p

(ũ − ṽ) +
β − 1
β + 1

2

g̃ +
3
2

1
β + 1

2

Dũ
Dt̃

(3)

where β = ρ̃p/ρ̃f is the particle-fluid density ratio, and τ̃p = (β − 1) d̃2
p/(18ν̃)

is the particle relaxation time.

3 Particle Froude number

Using the equations from section 2 we can define two parameters which are
important for the following analysis: the particle terminal velocity in a stag-
nant fluid and the particle Stokes number. From equation 3, the terminal
velocity in a stagnant fluid is Ṽt = τ̃p g̃. Considering a relevant fluid velocity
scale, Ũf , we define the dimensionless terminal velocity in a stagnant fluid as
Vt = Ṽt/Ũf . The second parameter is the particle Stokes number, which is the
ratio between the particle relaxation time τ̃p, and some representative time
scale of the fluid, τ̃f : St = τ̃p/τ̃f .

As can be seen from equation 3, the motion of the particles depends on the
flow field, the density ratio, the particle relaxation time and the acceleration
of gravity. For heavy particles (β >> 1), besides the flow field, the motion of
the particles depends only on the particle relaxation time and the accelera-
tion of gravity; i.e., for a given flow field, the particle motion is completely
determined by two non-dimensional parameters: St and Vt. Davila and Hunt
[3] suggested that the motion of particles near a vortex can be better under-
stood by combining these two parameters into a single parameter, the particle
Froude number, Fp, defined as Fp = V 2

t St. Fp can be interpreted as a rescaled
Stokes number, and is a measure of the ratio of the inertial forces experienced
by a particle to the buoyancy force. In the following sections we present an
analysis of the influence of the particle Froude number on the settling velocity
of particles for different flow fields.

4 Single vortex

Davila and Hunt performed an asymptotic analysis of the influence of the
particle Froude number in the settling velocity of particles around a single
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Rankine-like vortex, like the one presented in figure 1. They showed that Vs

can be higher or smaller that Vt, depending on the value of Fp.

g

Fig. 1. Single vortex schematic representation. The gray circles represent the tra-
jectory of a particle settling down around the vortex center.

Similarly, de Ronde [2] analyzed the settling of particles around a Rankine-
like using numerical simulations in a finite domain. As in the case of Davila
and Hunt, the flow field was constant in time. The maximum circumferential
velocity of the vortex, Ũmax, and the vortex strength Γ̃ were used to make
the different quantities dimensionless. The non-dimensional settling velocity
was defined as Vt = Ṽt/Ũmax, and the Stokes number as St = τ̃p/τ̃f , were
τ̃f = Γ̃ /Ũ2

max is the fluid time-scale. As explained in section 3, the particle
Froude number is Fp = V 2

t St.
In the simulations, De Ronde used a constant non-dimensional particle

terminal velocity, equal to Vt = 0.1, and a constant particle diameter equal to
dp = 10−3 Rv, where R̃v = Γ̃ /Ũmax is the vortex radius. The particles were
released at the top of the vortex, distributed in a line, with an equal number
of particles on each side of the vortex center. This line of particles was released
at two different distances d from the vortex center: d = 2Rv and d = 4Rv.
The values of d were chosen in order to compare the results of a single vortex
with a vortex array (see section 5). The situation is presented in figure 2.

2d=D

dg

Fig. 2. Initial particle distribution for the single-vortex cases. The black circle
represents the center of the vortex. The gray circles represent the particles at their
initial positions.
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The particles were released with an initial downward velocity equal to
Vt. As the particles fell down trough the vortex field, if a particle was on
the the left hand side of the vortex (see figure 2), both the gravity and the
vertical fluid-velocity pointed in the same direction, and the particle vertical
velocity increased. If a particle was on the right hand side of the vortex, the
vertical velocity of the fluid was opposite to gravity, and the particle velocity
decreased. Therefore, if a particle was on the right hand side of the vortex, it
could reach a position where its vertical velocity was zero. At this point, its
acceleration was opposite to gravity, and the particle was ejected to the top
of the vortex, a phenomenon called the ”over-shooting effect”.

The average particle settling velocity Vs was determined by computing
the time it took for a particle to fell down a fixed distance L from the vortex
center. The distance L was set equal to L = 50Rv, large enough to capture
the ”over-shooting effect”. The average value of Vs, as a function of Fp, is
presented in figure 3.
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Fig. 3. Average settling velocity for a single vortex as a function of the particle
Froude number.

The qualitative behavior of both cases presented in figure 3 is the same,
but the values are a bit different. For Fp << 1, the particle settling velocity
was smaller than Vt, because the particles found regions where the gravity was
in equilibrium with the flow velocity, and then they ”over-shooted” to the top
of the vortex. As a consequence, the particles followed a longer trajectory, and
the average settling velocity was smaller that Vt.

For Fp >> 1 the particles ignored the presence of the flow, and Vs ∼ Vt.
Finally, when Fp was of the order of unity, Vs could be either higher or slower
than Vt.
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5 Vortex array

De Ronde analyzed also the particle sedimentation in a vortex array. A domain
of counter-rotating vortices was constructed, where each vortex rotated in an
opposite direction to its closest neighbor. The situation is plotted in figure 4.

g

Fig. 4. Vortex array schematic representation. The gray circles represent the tra-
jectory of a particle settling down.

Similarly to the single vortex case, the non-dimensional parameters were
defined using the maximum velocity Ũmax, and the strength Γ̃ of one vortex.

In the simulations, the particles were distributed in a line in the central
region between two rows of vortices (see figure 5). Two different values for
the inter-vortex distance, D, where considered: D = 4Rv and D = 8Rv. In
both cases, the non-dimensional particle terminal velocity was set equal to
Vt = 0.1. Similarly to the single vortex case, the diameter of the particles was
set equal to dp = 10−3 Rv.

D

D

d=D/2

D
g

Fig. 5. Initial particle distribution for the vortex array cases. The black circles
represent the center of the vortices. In the middle of a vortices row, the gray circles
represent the particles at their initial positions. An equal number of particles was
used on each side of the middle vortex center.

The particles were released with an initial downward velocity equal to Vt.
The average settling velocity Vs was determined as in the previous section, by
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computing the time it took for a particle to travel a distance L = 50Rv. In
order to make sure that the particles felt an infinite vortex array, the domain
was big enough such that each particle was always surrounded by at least five
vortices in each direction. The results for different values of Fp are presented
in figure 6.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.001  0.01  0.1  1  10  100

A
ve

ra
ge

 s
et

lin
g 

ve
lo

ci
ty

Particle Froude number

Vortex separation D = 4 Rv
Vortex separation D = 8 Rv

Stagnant medium

Fig. 6. Average settling velocity for a vortex array as a function of the particle
Froude number.

When the particles were released, they started to fell down due to gravity.
The trajectories they followed depended on the particle Froude number. For
Fp << 1 the particles were ejected to the vortex edges and they tended to
follow the flow streamlines. However, since they had a fixed terminal velocity,
they could feel the effect of gravity, and they did not followed exactly the fluid
streamlines. When the particles reached an stagnation point, they jumped to
the next flow streamline and kept on traveling downward, as shown in figure
4. In this way, the trajectories they followed were longer than in a stagnant
medium, however, the speed they gained was big enough to make the average
settling velocity higher than Vt, for both values of the vortex separation D.

For Fp >> 1, as in the single vortex case, the particles ignored the presence
of the flow and fell down at a velocity almost equal to Vt.

When Fp was of the order of one, the particles had more inertia, and they
did not follow exactly the streamlines. Instead, they were driven mainly to
regions of higher flow velocity. In this particular configuration, the velocity of
the fluid was higher in between the vortices, either upward or downward, at
an angle of 45 degree. Therefore, the particles preferentially followed regions
of fluid either going upward or downward. The important parameter here was
the distance between the vortices D. For Fp = 0.1, if D = 8Rv, the particles
moved mainly in regions were the flow was going down. On the other hand,
when D = 4Rv, the particles moved either up or down [2]. As a result, the
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average particle settling velocity could be either higher (D = 8Rv) or smaller
(D = 4Rv) than Vt, as can be observed in figure 6.

6 Channel flow simulations

In order to analyze the influence of the particle Froude number in the settling
velocity for wall-bounded turbulence, we performed DNS simulations of a
particle-laden turbulent horizontal channel flow, as shown in figure 7.

Fig. 7. Scheme open-channel flow.

We imposed a free-slip boundary condition at the top wall, and a no-slip
condition at the bottom-wall. In the streamwise and spanwise directions we
used periodic boundary conditions. The flow was driven by a streamwise pres-
sure gradient. The code used a standard finite-volume approach on a staggered
grid, were the continuous phase was solved using a predictor-corrector scheme,
with a second-order Adams-Bashforth time discretization. The time step was
obtained using the Courant stability criterion. For the discrete phase, we in-
tegrated the particle equation of motion using a explicit method. To calculate
the fluid velocity at the particle position we used a tri-linear interpolation.
Further details can be found in [6].

The equations of motion were made dimensionless using the friction velo-
city ũτ and the height of the channel, H̃. With this parameters, the Reynolds
number was set equal to Reτ = ũτ H̃

ν̃ = 500, where ν̃ is the kinematic viscos-
ity of the fluid. The non-dimensional particle terminal velocity was defined as
Vt = Ṽt/ũτ , and the Stokes number number as St = τ̃p/τ̃f , where the fluid
time scale τ̃f was defined as τ̃f = ũ2

τ/ν̃
The size of the computational domain was 5H and 2H in the streamwise

(x) and spanwise (y) directions, respectively. We used a grid of 256 x 192 x
128 nodes, which gave us a domain of x+ = 2500, y+ = 1000 and z+ = 500,
where the + superscript denotes wall units. The grid was uniform in the x and
y directions, with ∆x+ ∼ 10 and ∆y+ ∼ 5. A hyperbolic-tangent stretching
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was used for the normal direction, with ∆z+ ∼ 0.9 at the wall, and ∆z+ ∼ 7
at the center of the channel.

The particles were released homogeneously distributed in a plane at a
distance z = 0.9H from the bottom of the channel, which corresponds to
z+ = 450, with an initial vertical velocity equal to Vt = 0.1. For each particle,
we computed the time it took to travel: (i) from z+ = 450 to z+ = 250 (center
of the channel), (ii) from z+ = 250 to z+ = 50 (buffer region), and (iii) from
z+ = 50 to z+ = 3.
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Fig. 8. Average settling velocity for an open-channel as a function of the particle
Froude number.

The results for different particle Froude numbers, are presented in figure 8.
When the particle Froude number was smaller than 1, and when the particles
were falling down between z+ = 450 and z+ = 250, and between z+ = 250
and z+ = 50, the average settling velocity Vs was higher than Vt. In this case,
the relation between Vs and Fp is somehow similar to the case of a vortex
array where the vortex distance is ”large” (8Rv), with an almost monotonic
decrease in the average settling velocity as Fp increases. On the other hand,
in the near-wall region, there is a maximum in the average settling velocity at
Fp ∼ 1. In the vortex array case we saw that for ”intermediate values” of Fp,
the average settling velocity had a strong dependence on the vortex spacing,
with a more complex behavior when the vortex spacing was smaller. Near the
wall the streamwise vortices play an important role and their spacing is smaller
than further away from the wall [6]. This could be a possible explanation for
the behavior near the wall. However, the behavior is quite different from the
”compact vortex array” (D = 4Rv), and contrary to the vortex array Vs is
always higher than Vt. Clearly, the turbulence structure appears to play an
important role in determining the settling velocity.

In order to quantify the importance of the turbulence structure on the
particle motion, we analyzed the particle-fluid two-point velocity correlations.
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In figures 9 and 10 are plotted, respectively, the spanwise and normal-wise
particle-fluid velocity correlation.
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Fig. 9. Particle-fluid vertical velocity two-point spanwise correlation.
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Fig. 10. Particle-fluid vertical velocity two-point normal-wise correlation.

In the spanwise correlation plots, for the fluid auto-correlation at z+ = 50,
there is a minimum around ∆y+ = 60, which can be seen as a measure of the
vortices diameter. Even though the particle-fluid correlation is in general smal-
ler than the fluid auto-correlation, for the smallest values of Fp we notice than
the particle-fluid correlation is higher at ∆y+ ∼ 60. This seems to indicate
than the effect of the fluid structures on the spanwise direction persist in time.
On the other hand, when Fp >> 1, the velocity correlation is almost zero for
all values of ∆y+, which means that the particles ignored the presence of the
turbulence and fell down with a velocity equal to Vt.
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In the normal-wise velocity correlations (figure 10) it can be seen that the
loss of correlation is not the same in the central part of the channel as in the
near-wall region. For example, for Fp = 1 the correlation is larger at z+ = 250
than at z+ = 50. This seems to indicate that the particles tend to follow in a
stronger way the larger fluid structures at the center of the channel than the
smaller structures closer to the channel wall.

In figure 10 we can also note that in both regions (center of the channel
and near wall region), there is an asymmetry in the correlations. The particles
seem to correlate more with the structures close to the top of the channel than
with those structures close to the bottom. This effect is more pronounced for
Fp < 1, where the particle-fluid correlation at z+ = 250 can be even higher
in the top part of the channel than the fluid auto-correlation. This seems to
indicate that the particles feel more the presence of the fluid structures from
the top of the channel than from below, and that they keep a ”memory” of
the fluid structure above them.

7 Conclusions

Clearly, the turbulence structure appears to play an important role in determ-
ining the settling velocity in wall-bounded turbulence. Far from the wall the
behavior is somehow similar to a vortex array with a ”large” vortex spacing.
Near the wall, the behavior is more complex and a maximum in the settling
velocity is found for Fp ∼ 1.

The precise mechanisms through which the turbulence structure influences
the settling velocity are still not clear. However, a preliminary analysis of the
two-point fluid-particle correlation shows that the particles ”feel” the normal-
wise and spanwise velocity correlation and appear to keep a ”memory” of the
fluid structure above them.
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Summary. Even the simplest velocity statistics, i. e., the mean and the variance for
particles moving in turbulence still offer challenges. This paper offers simple concep-
tual models/explanations for a couple of the most intriguing observations, namely,
the enhanced settling rate in strong turbulence and the reduced Lagrangian velocity
variance for even the smallest of sinking particles. While simultaneous experimental
observation of the two effects still do not exist, we draw parallels between two clas-
sical sets of experiments, each exhibiting one, to argue that they are two sides of the
same phenomenon: Selective sampling due to particle concentration on fast tracks
like those illustrated by Maxey & Corrsin (1986).

1 Settling in strong turbulence

Figure 1 shows comprehensive experimental data on mean vertical velocity
w, i. e., the settling or rise velocity of particles with still water settling/rise
velocity wo in turbulence with vertical rms velocity w′.

The settling/rise delay at moderate turbulence strength, 0.3 < w′/wo < 3,
can be understood in terms of vortex trapping. Vortex trapping was shown ex-
perimentally by Tooby et al. (1977), see their magnificent stroboscopic photo
showing a heavy particle and bubbles trapped in the same vortex. The trapped
particles move in closed orbits analogous to those of the fluid but offset ho-
rizontally. Heavy particles thus move predominantly in the upward moving
fluid while light particles and bubbles move predominantly in the downward
moving fluid. Closed sediment/bubble paths result from the simple superpos-
ition law up = uf + wo which is a good approximation as long as the flow
accelerations are small compared with g, see, e. g., Nielsen (1992) p 182. Non-
linear drag may also cause a settling delay. However, this effect is very weak.
It’s magnitude A may be estimated as

A <
wo

4

(dup

dt
/g

)2

Bernard J. Geurts et al. (eds), Particle Laden Flow: From Geophysical to Kolmogorov Scales, 385–391.
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Fig. 1. Measured (exp) and simulated (sim) settling velocities of dense particles
(solid symbols) and rise velocities of light particles and bubbles (open symbols),
and rise velocities of diesel droplets (+, ∗,×) in water.

in most natural scenarios. To measure the non-linear drag effect one must
thus use a ‘flow’ free of trapping vortices like the vertically oscillating jar of
Ho (1964).

2 Accelerated or delayed settling/rise in strong
turbulence

While the data in Figure 1 indicate that light and heavy particles are similarly
delayed by turbulence of moderate strength, 0.3 < w′/wo < 3, the effects
of strong turbulence are qualitatively different depending on particle density.
Broadly speaking, heavy particles are accelerated asymptotically for w′/wo →
∞, while light particles are increasingly delayed by stronger turbulence. The
intriguing thing is that the critical particle density separating delay from
acceleration is not ρp = ρf . That is, the diesel droplets of Friedman & Katz
(2002) while lighter than the surrounding water are accelerated by strong
turbulence like the heavy particles of Murray (1970) and others.

To get a qualitative understanding of the accelerated settling of heavy
particles in turbulence it is helpful to consider the cellular flow field in Fi-
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Fig. 2. In a field of vortices, heavy particles will, spiral outwards and become
concentrated on the ‘fast tracks’ along the vortex boundaries.

gure 2. Maxey & Corrsin (1986) showed that dense particles initially uni-
formly distributed in such a velocity field, will after a while, end up on the
‘fast track’ and experience enhanced settling.Based on this scenario, Nielsen
(1993) suggested the asymptotic relation:

w ≈ 0.4wo for w′ � wo (1)

While heavy particles spiral out, light particles and bubbles will generally
spiral towards the neutral or stationary point given by uf = −wo. This inward
spiraling and ensuing stable trapping corresponds to the descending curve in
Figure 1, i.e., stronger rise-delay with increasing turbulence intensity. This
inward spiraling might thus lead to the expectation that all light particles
and bubbles plot along the descending curve in Figure 1. However, curiously,
the ‘diesel droplets in water results’ of Friedman & Katz show an increasing
trend similar to (1) except that they recommended the factor 0.25 in stead of
0.4.

An explanation for this enhanced rise velocity for some light particles
might be the ‘rising fast tracks’ in Figures 5 and 6 of Maxey (1990). Based on
a simplified equation of motion, excluding lift forces and the Basset history
term, Maxey found that bubbles, which were initially uniformly distributed on
the cellular flow field, would after a long time, either spiral into the stationary
points or move along rising fast tracks. The rising fast tracks are in fact, within
each cell, pieces of inward spirals towards the stationary points, see Figure 3.

A set of unique rising fast tracks like those in Figure 3 probably exist
within a certain domain of the (Umax/wo, g/(woω))-plane, where Umax is the
maximum velocity in the flow field and ω its angular velocity. Determining this
domain by further simulations (or analysis) might lead to an understanding of
the parameter ranges within which accelerated rise of light particles like the
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Fig. 3. Pattern of concentrated bubbles in a cellular flow field calculated by Maxey
(1990) using a simplified equation of motion without lift forces and Basset history
term. The bubbles were initially uniformly scattered. The isolated ‘bubble’ in each
cell is at the stable neutral point, where uf = −wo, into which a great number of
particles have actually converged. The curves are rising fast tracks which are pieced
together from arcs, which within each cell are inward spirals towards the neutral
point.

diesel droplets of Friedman & Katz may occur. A complete understanding may
also require consideration of lift forces although the fast tracks predominantly
occupy areas of low velocity shear and correspondingly weak lift forces.

3 Velocity variance for suspended particles

The velocity variance offers a long standing conundrum raised by Snyder &
Lumley (1971) (S&L). After carefully designing their smallest particle to fol-
low the fluid perfectly (for all practical purposes), they still found

V ar(wp) ≈ 0.6V ar(wEulerian) (2)

see Figure 4. That is, the particle’s Lagrangian velocity variance was signi-
ficantly smaller than the fluid velocity variance observed by a fixed probe.
S&L were at a loss to explain this reduction. Apparently, they expected the
Lagrangian variance from the particles to be the same as the Eulerian one
from the fixed probe. However, while that identity would hold for any pair of
point statistics for fluid particles in an incompressible fluid, there should be
no such expectation, where disperse suspended particles are con-cerned. Dis-
perse particles do not behave as an incompressible fluid, and their one point
statistics need not be the same as those of the fluid.

A qualitative explanation for V ar(wp) ≈ 0.6V ar(wEulerian) can again
be based on the tendency for heavy particles to become concentrated in
certain parts of the flow and hence sample fluid velocities with a reduced
range/variance. Particles on the fast tracks in Figure 2 only see downward
fluid velocity and hence only half the fluid velocity range:
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wfluid,min < wp < 0 (3)

A probe which ‘sweeps’ this velocity field at random sees the full range of
fluid velocities, i.e.,

wfluid,min < wEulerian < wfluid,max (4)

Correspondingly, particles on the fast track see a smaller velocity variance
than a fixed probe. The precise relation depends on exactly how the particles
turn the corners on the fast track, but a value which agrees with the observa-
tion of S&L can be obtained with reasonable estimates.

A possible objection to explaining the reduction of V ar(wp) for the smal-
lest of S&L’s in terms of the fast tracks in Figure 2 is that these small particles
had too little inertia or velocity bias to actually get onto the fast tracks. Unfor-
tunately, the necessary experimental information about wp is not available to
settle this question on direct evidence. What is available, is indirect evidence
in the form of accelerated settling data from Murray (1970).

Like Snyder & Lumley, Murray also used a set of low inertia particles,
which had been designed to follow the fluid perfectly. These particles were
observed to experience very significantly accelerated settling: In strong tur-
bulence (10 < w′/wo < 20) they settled two to four times faster than in still
water, see Figure 1. This is taken as evidence that Murray’s particles did get
on to the fast tracks.

Whether the particles have enough inertia to get onto the fast tracks may
be measured by the time scale ratio

Tp

TL
=

wo/g

TL
(5)

This time scale ratio also measures the particles’ ability to respond to
fluid velocity oscillations and hence also the expected velocity variance ra-
tio V ar(wparticle)/V ar(wfluid). In the absence of coherent flow structures and
fast tracks, i.e., in what might be termed structure-less turbulence, a plausible
frequency response function is

V ar(wparticle)
V ar(wfluid)

=
1(

1 + 0.3(TP

TL
)2

)2 (6)

However in order to get a good match with Snyder & Lumley’s data in Figure 4
an 0.6 reduction is required. That is, the trend of Snyder and Lumley’s data
is mimicked very nicely by

V ar(wparticle)
V ar(wfluid)

=
0.6(

1 + 0.3(TP

TL
)2

)2 (7)

in Figure 4.
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Fig. 4. Larger, more inert particles will have smaller velocity variance in a given
flow. The solid squares correspond to the data of Snyder & Lumley and dashed
shows Equation (6). The range of TP /TL for Murray’s data is also indicated.

The suggestion that the 0.6-factor is due to S&L’s particles moving along
fast tracks is supported by Murray’s observations in the following way: as in-
dicated on Figure 4, Murray’s particles were significantly smaller than those of
S&L in terms of wo/(gTL). Murray’s particles clearly experienced fast track-
ing, see Figure 1, so they moved along fast tracks. If Murray’s particles were
big enough to get onto the fast tracks, so were those of S&L.

4 Conclusions

We argue that the accelerated settling of heavy and the accelerated rise of
some moderately buoyant particles in turbulence can be seen as analogous
with the fast-racking in cellular the flow fields initially explored by Maxey &
Corrsin (1986).

Since particles on the fast tracks sample a subset of fluid velocities with
a reduced variance one should expect a smaller Lagrangian velocity variance
from particles in a flow with coherent eddy structures than from an Eulerian
probe which samples the eddies at random.

This applies in particular to the smallest particles used by Snyder & Lum-
ley (1971). The variance reduction by 40%, which was unexpected at the time,
can be explained in terms of the particles moving along the turbulence equi-
valent of the fast tracks in the cellular flow field in Figure 2. Even the smallest
of S&L’s particles were big enough to spiral onto the fast tracks because they
were, in terms of TP /TL, more than one order of magnitude bigger than Mur-
rayÕs (1970) smallest particles which showed clear signs of fast tracking via
strongly enhanced settling.
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The turbulent rotational phase separator
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Summary. The Rotational Phase Separator (RPS) is a device to separate liquid or
solid particles from a lighter or heavier fluid by centrifugation in a bundle of channels
which rotate around a common axis. Originally, the RPS was designed in such a way
that the flow through the channels is laminar in order to avoid eddies in which the
particles become entrained and do not reach the walls. However, in some applications
the required volume flow of fluid is so large, that the Reynolds number exceeds
the value for which laminar Poiseuille flow is linearly stable. Depending on the
Reynolds numbers the flow can then be turbulent, or a laminar time-dependent flow
results. In both cases a counter-rotating vortex is present, which might deteriorate
the separation efficiency of the RPS. This is studied by means of direct numerical
simulation of flow in a rotating pipe and particle tracking in this flow. The results
show that the collection efficiency for larger particles decreases due to the combined
action of the vortex and turbulent velocity fluctuations, while it is unchanged for
smaller particles.

1 Introduction

The Rotational Phase Separator (RPS) is a separation device built around a
rotating filter element consisting of a large number of narrow parallel channels
(see Fig. 1 for a schematic drawing). Usually, the RPS is applied in addition
to a conventional tangential or axial cyclone in order to decrease the cut-off
particle diameter by one order of magnitude [1, 2]. In the original design of the
RPS, the flow in the channels of the filter element is kept laminar to prevent
capture of particles or droplets in turbulent eddies. In case of the tangential
design, mainly used to separate droplets or particles from a gas flow, it is
normally not a problem to design within this limit as the throughput is low
compared to the flow area of the cyclone and filter element.

The opposite is true for the axial version which is mainly used for in-line
(offshore) separation of condensed droplets from another liquid or gas flow.
In such applications the pressure and required volume flow lead to higher
Reynolds numbers and the conditions for stable Poiseuille flow might become

Bernard J. Geurts et al. (eds), Particle Laden Flow: From Geophysical to Kolmogorov Scales, 393–405.
© 2007 Springer. Printed in the Netherlands.
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Fig. 1. Schematic drawing of tangential RPS mounted in a cyclone.

too restrictive. However, in many cases the Reynolds number is low enough
for the flow and particle behavior to be studied in detail by means of direct
numerical simulation of the fluid flow (DNS) and Lagrangian particle tracking.
In this study, the consequences of allowing conditions in the channels of the
filter element for which Poiseuille flow is unstable, are investigated.

In section 2 of this paper an analytical model for the calculation of particle
collection efficiency will be presented briefly. Section 3 provides the governing
equations and numerical method for the computation of particle-laden flow in
a rotating pipe and in section 4 results are presented. Finally, in section 5 the
conclusions of the paper are given.

2 Analytical model

Brouwers [3] derived the elementary particle collection efficiency of the RPS
for channels with circular, triangular and sinusoidal shape in case the flow
in the channels is laminar and stationary. At entry of the filter element, or
soon after, the fluid co-rotates with the filter element. As we are concerned
with particles in the micrometer range, inertial forces are neglected. Whether
a particle reaches the outer wall depends on the radial distance to be traveled
by the particle, the centrifugal force, the axial velocity profile and the length of
the channel. The centrifugal force depends on the angular velocity of rotation,
the difference in mass density between particle and fluid, the particle diameter
and the distance between particle and axis of rotation. The velocity at which
the particles move radially can be calculated using Stokes’ law for drag force.
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Assuming a constant axial fluid velocity Ub and a uniform distribution of the
particles over the cross-sectional area, an expression can be derived for the
smallest particle which is collected with 100% probability in a channel at a
radial location R [3]:

d2
p,100 =

18µUbD

(ρp − ρf )Ω2RL
. (1)

Here µ denotes the dynamic viscosity of the fluid, D the pipe diameter, ρp

and ρf the mass density of the particle and fluid, Ω the angular velocity and
L the length of the pipe.

To derive an expression for the particle collection efficiency in the presence
of a Hagen-Poiseuille velocity profile, the circular cross section is divided into a
system of parallel planes within which the movement of particles takes place.
Equation (1) can be used for the local conditions. Subsequent integration
gives the particle collection efficiency η in circular channels subject to Hagen-
Poiseuille flow

η =
{

4
πx

2a− 4
3π

√
(1 − a2)a(5

2 − a2) − 2
π arcsin(a) + 1 if x <

√
4/3

1 if x ≥
√

4/3.
(2)

Here a = [1 − (3x2/4)2/3]1/2 and x = dp/dp,100. Although current production
methods produce sinusoidal or rectangular channel geometries, the case of a
circular geometry is adopted for this study as there are more reference cases
available and numerical simulation is easier.

3 Numerical method

In this paper the flow in a pipe rotating with angular velocity Ω around an axis
parallel to its own axis is studied by solving all relevant scales of motion. To
this end the three-dimensional Navier-Stokes equation for incompressible flow
is solved in a cylindrical geometry in the vorticity formulation. The equation
is solved in a rotating frame of reference and reads:

∂u
∂t

+ ω × u + Ω× Ω × r + 2Ω× u = −1
ρ
∇P + ν∆u. (3)

Here, P denotes the total pressure, P = p+ 1
2u

2, u the fluid velocity, ω the fluid
vorticity, ρ the fluid density, ν the kinematic viscosity and r the position vector
with respect to the rotation axis. Compared to the Navier-Stokes equation in
a stationary frame of reference, two additional terms appear. The centrifugal
acceleration, Ω×Ω× r, can be incorporated in the pressure [1]. The Coriolis
acceleration, 2Ω × u, does not depend on the distance to the rotation axis.
Hence, the fluid velocity does not depend on this distance, which implies that
in one calculation the flow in all pipes in the bundle can be simulated. Note
however, that the pressure field does depend on this distance; only the sum
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of the pressure and centrifugal pressure is independent of the distance to the
rotation axis.

In the calculations a pipe of a finite length equal to five times its diameter
is taken with periodic boundary conditions in the axial direction. Since the
tangential direction is periodic by definition, a spectral method with a Fourier-
Galerkin approach in the two periodic directions is a natural choice. In the
radial direction a Chebyshev-collocation method is applied, but, in order to
avoid a large number of collocation points near the axis of the pipe, the radial
direction is divided into five elements with a Chebyshev grid in each element
[5]. The coupling between the elements is continuously differentiable.

For integration in time a second-order accurate time-splitting method is
chosen. In the first step the nonlinear terms, including the Coriolis force,
are treated in an explicit way. The nonlinear terms are calculated pseudo-
spectrally by fast Fourier transform, where the 3/2-rule is applied to prevent
aliasing errors. In the second step the pressure is calculated in such a way
that the velocity field at the new time level is approximately divergence free.
Finally, in the last step the viscous terms are treated implicitly. The wall of
the pipe acts as a no-slip wall. The correct boundary conditions at the pipe
axis follow from the property that the Cartesian velocity components and
pressure are single-valued and continuously differentiable.

The mean axial pressure gradient is chosen in such a way that the volume
flow remains constant. The simulations are started from an arbitrary initial
solution. After a large number of time steps a state of statistically stationary
flow is reached. In [5] it is shown that for turbulent flow in a non-rotating pipe
the DNS results for mean flow, velocity fluctuations and terms in the kinetic
energy balance agree well with results of other DNS codes and experimental
results.

Particle-laden flows can be described in two different ways. In Lagrangian
methods an equation of motion for each particle is solved, whereas in Eulerian
methods the particles are described as a second phase for which conservation
equations are solved. We chose a Lagrangian approach for two reasons. First,
the number of particles is limited and the particle mass loading small, so that
a Lagrangian method with one-way coupling is possible. Second, the length
of an actual channel of an RPS is much larger than the length of the pipe
used in the calculations. In Eulerian approaches a particle concentration field
for the whole channel length and for each particle diameter would be needed,
which leads to huge memory and computational resources. Hence, particles
are tracked by solving an equation of motion for each particle.

If x is particle position and v = dx/dt its velocity, the equation of motion
reads in general:

m
dv
dt

=
∑

f . (4)

Here, m denotes the mass of the particle and the right-hand side contains all
(effective) forces acting on the particle. In the simulations considered here,
we restrict to cases where particles are small and have a large mass density
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compared to the fluid mass density. As a result the only forces which cannot
be neglected are the drag force and centrifugal force. This leads to an equation
of motion of the form:

dv
dt

=
u(x, t) − v

τp
(1 + 0.15Re0.687

p ) + Ω2(Rex + r2), (5)

where τp is the particle relaxation time, ex is the unit vector in the direction
from the rotation axis to the pipe axis and r2 the position vector of the particle
in the two-dimensional plane perpendicular to the pipe axis. The standard
drag correlation for particle Reynolds number, Rep, between 0 and 1000 is
used. Note that in contrast to the fluid velocity, the particle equation of motion
depends on the distance between the pipe axis and axis of rotation through the
centrifugal force. Since the particle relaxation times of the particles considered
are very small, the inertia term on the left-hand side of Eq. (5) could be
neglected. However, since the equation is nonlinear in the particle velocity
due to the particle Reynolds number, it is easier to solve it in this way. A
partially implicit two-step Runge-Kutta method, in which the particle velocity
appearing in Rep is treated explicitly, is used to this end. Finally, the fluid
velocity at the particle position, which appears in Eq. (5) is found from fourth-
order accurate interpolation from its values at grid points.

The particle simulations start from a fully-developed velocity field with a
homogeneous distribution of particles over the entire pipe. The initial particle
velocity is chosen in such a way that its initial acceleration equals zero. In a
real RPS the length of a channel is much larger than the length of the compu-
tational domain. Therefore, if a particle reaches the end of the computational
domain in the axial direction, it is re-inserted at the corresponding position
at the pipe entrance until it has traveled an axial distance equal to the length
of the real pipe. If a particle reaches the wall of the pipe before it travels the
whole length it is considered as being collected.

In an actual experiment where the particles are homogeneously distributed
over the total flow domain, the number of particles that enter a channel of
the RPS at a certain radial position per unit of time, is proportional to the
axial velocity at that position. Therefore, in the calculation of the collection
efficiency, each particle has a weight proportional to its exact initial axial
velocity.

4 Results

In this section results will be presented. The fluid flow is determined by two
non-dimensional parameters, the bulk Reynolds number Re = UbD/ν and
the rotation Reynolds number ReΩ = ΩD2/(4ν), where Ub is the bulk velo-
city and D the diameter of the pipe. Without rotation the laminar Hagen-
Poiseuille flow is unstable for large perturbations if Re > 2300 approximately.
Rotation reduces the stability of the laminar flow considerably as shown by
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Mackrodt [7]. In order to study the resulting flow and the effects on particle
motion, we will consider three typical test cases.

4.1 Turbulent flow at Re = 5300

For the first test case with Re = 5300 and ReΩ = 980, the flow without
rotation is already turbulent. Flows without particles in this regime have
been studied by means of direct numerical simulation before by Orlandi and
Fatica [6]. As a second non-dimensional parameter they used the rotation
number defined as the ratio of the rotation Reynolds number and the bulk
Reynolds number. The rotation number in our simulations equals 0.37. The
DNS is performed with 106 collocation points in the wall-normal direction and
128 Fourier modes in both the axial and tangential direction. In the following,
results of the fluid calculations will be presented and analyzed first, and then
the results of the particle simulations will be discussed.

For rotating pipe flow time-averaged quantities depend on the radial co-
ordinate only and from the continuity equation it follows that the mean radial
velocity component equals zero, but in contrast to the non-rotating case, the
mean tangential velocity is not equal to zero.

In Fig. 2 the mean tangential velocity component in wall units is plotted as
a function of the radial coordinate. In this figure also the result for the same
bulk Reynolds number and ReΩ = 490 is included. It can be seen that the
mean tangential velocity is almost exactly linearly dependent on ReΩ when
scaled with the friction velocity,

uτ =

√
ν
dūz

dr

∣∣∣∣
r=D/2

(6)

The non-zero mean tangential velocity can be understood from the equa-
tion for the radial-tangential component of the Reynolds stress tensor, which
reads after disregard of the very small viscous terms:

ūφ

(
2u′2

φ − u′2
r

)
− ru′2

r
dūφ

dr = −2Ωr
(
u′2

φ − u′2
r

)
+ 1

r
d
dr

(
r2u′2

r u
′
φ

)
−u′3

φ + 1
ρ

(
ru′

φ
∂p′
∂r + u′

r
∂p′
∂φ

)
.

(7)

In this expression primes denote the fluctuating part of a quantity, subscripts
r and φ refer to the radial and tangential component and bars denote mean
quantities. The third order moments appearing in Eq. (7) turn out to be very
small throughout the pipe, whereas the last term on the right-hand side is only
significant close to the wall of the pipe. Furthermore, due to the behavior of
the tangential velocity component near the pipe axis rdūφ/dr ∼= ūφ there.
Therefore, Eq. (7) simplifies to ūφ

∼= −Ωr close to the axis of the pipe. The
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Fig. 2. Mean tangential velocity component in wall units, for rotating pipe flow
with Re = 5300. The brackets have the same meaning as the overbar in the text.

results presented in Fig. 2 indeed agree with this behavior close to the axis of
the pipe.

A further flow property which is important for the understanding of
particle behavior is the fluctuating part of the fluid velocity in the plane
perpendicular to the pipe axis. In Fig. 3 the root-mean-square of the tangen-
tial velocity component is plotted as a function of the radial coordinate in
wall units. Included are results at ReΩ = 490 and for a non-rotating pipe.
It can be seen that the rotation slightly increases these velocity fluctuations.
Moreover, it appears that the magnitude of the velocity fluctuations is almost
equal to the mean tangential velocity component in case ReΩ = 980. The in-
crease in velocity fluctuations with increasing ReΩ occurs for all three velocity
components.

Particle behavior in turbulent rotating pipe flow can be understood from
a simplified equation of motion in the plane perpendicular to the pipe axis.
To this end all forces on the particle are disregarded except the linearized
drag force and the centrifugal force. If r and φ are the radial and tangential
coordinate of a particle, the equations of motion are:{ dr

dt = u′
r + τpΩ

2(r + R cos(φ))
r dφ

dt = ūφ + u′
φ − τpΩ

2R sin(φ)
(8)

The equations of motion contain three different terms: the mean tangential
fluid velocity, which has Ωr as order of magnitude, the fluctuating velocity
with the friction velocity uτ as order of magnitude and the last term on the
right-hand sides of Eq. (8), which represents the centrifugal velocity. For the
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Fig. 3. Root-mean square of tangential velocity component in wall units, for rotating
pipe flow at Re = 5300.

smallest particles which are completely separated in uniform laminar flow,
the order of magnitude of the centrifugal velocity equals UbD/L with L the
length of the pipe. For situations relevant in practice, the centrifugal velo-
city is always smaller than the fluctuating velocity. In our example the mean
tangential velocity is only slightly smaller than the fluctuating velocity.

We first consider a hypothetical velocity field with a mean tangential ve-
locity, but without velocity fluctuations. In Fig. 4 the collection efficiency for
this flow is compared with that for laminar Hagen-Poiseuille flow. The particle
diameter is non-dimensionalized with the smallest diameter which is collec-
ted with 100% probability for uniform laminar flow. Fig. 4 shows that the
collection efficiency is reduced dramatically by the presence of the axial vor-
tex. Particles are trapped in this vortex and follow a path which differs only
slightly from the path they would follow without centrifugal force. Only those
particles which are initially close to the wall are collected. This situation is
similar to the one obtained for laminar flow in a slightly tilted rotating pipe,
which was studied by Brouwers [4]. Also in that case particles are trapped in
the secondary flow perpendicular to the pipe axis, which results in a reduced
collection efficiency.

Next, we return to particle behavior in turbulent rotating pipe flow. In the
simulation particles with diameters ranging between 0.1dp,100 and 1.6dp,100 are
inserted in the flow, where dp,100 is the smallest particle collected with 100%
probability in a uniform laminar flow. For each diameter 25,000 particles are
initially uniformly distributed over the pipe and their motion is subsequently
tracked by solving their equation of motion until they either reach the wall
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Fig. 4. Collection efficiency for laminar flow with and without extra tangential
velocity.

of the pipe or travel over an axial distance larger than the length of the pipe,
which equals 133.5D. The mass density of the particles equals 22.5 times the
mass density of the fluid and only one pipe is considered with its axis at a
distance of 26.7D from the rotation axis.
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Fig. 5. Collection efficiency for laminar and turbulent flow.
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In Fig. 5 the collection efficiency calculated in this simulation is compared
with the result for a laminar Hagen-Poiseuille fluid velocity profile. Although
the collection efficiency for a turbulent RPS is lower than for a laminar RPS,
the reduction obtained is not as dramatic as for the hypothetical flow without
turbulent velocity fluctuations shown in Fig. 4. Fig. 5 shows that the collection
efficiency of the smallest particles is hardly affected by turbulence, whereas the
reduction in efficiency for particles near dp,100 is almost 30%. This result can
be explained in the following way. In laminar flow, particles with diameter
equal to dp,100 will reach the collecting wall exactly at the end of the pipe
if they are located just opposite of the collecting wall at the beginning of
the pipe. In turbulent flow conditions the path of a particle becomes more
irregular due to turbulent velocity fluctuations. The turbulent dispersion of
particles at the end of the pipe depends on the magnitude of the velocity
fluctuations and the time of travel and is for particles with diameter equal to
dp,100 on the order of the diameter of the pipe. Hence, due to turbulent velocity
fluctuations some of these particles will reach the collection wall at a more
upstream axial position and will still be collected in turbulent flow, whereas
other particles would reach the collection wall at a more downstream position
and will not be collected in turbulent flow. Hence, the collection efficiency of
particles with diameter close to dp,100 will decrease in turbulent flow. On the
other hand, some of the particles with a diameter much smaller than dp,100

that are collected in laminar flow conditions, will not be collected in turbulent
flow, whereas some of these small particles that are not collected in laminar
flow, will be collected due to turbulent velocity fluctuations in turbulent flow.
The effects of both phenomena on the total collection efficiency approximately
cancel, so that the collection efficiency for small particles is approximately the
same in laminar and turbulent flow.

Another conclusion that can be drawn from the simulation results is that
dp,100 cannot be defined for turbulent flow conditions. Even for large particle
diameters, some particles will be trapped in flow structures and will not reach
the collecting wall before the end of the pipe. The results shown in Figs. 4
and 5 imply that the presence of turbulent velocity fluctuations counteracts
the trapping of particles in the axial vortex. This is due to the fact that
the tangential velocity fluctuations are as large as or larger than the mean
tangential velocity. Two extra simulations have been performed to verify this.
In the first the Coriolis force in the Navier-Stokes equation has been set to
zero, but the centrifugal force in the particle equation of motion remained
unaffected. Hence, in this simulation the mean tangential fluid velocity in
Eq. (8) equals zero, but the velocity fluctuations are almost the same. The
resulting collection efficiency is only slightly higher than the turbulent result
in Fig. 5. On the other hand, a simulation with a mean tangential velocity
artificially increased by a factor of 3 resulted in a substantial reduction in
collection efficiency.
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4.2 Turbulent flow at Re = 1400

In the second test case Re = 1400 and ReΩ = 980, so that the flow without
rotation would be laminar and stationary. The rotation, however, leads to a
turbulent flow state very similar to the one at higher bulk Reynolds number.
The calculation is performed at the same parameter values as the one in
the previous subsection. The flow differs from the one at Re = 5300, but
the important features are more or less the same. The flow is still turbulent,
in spite of the low bulk Reynolds number. The mean axial velocity and the
velocity fluctuations are of the same order of magnitude as at the higher
Reynolds number. The mean tangential velocity is higher than at Re = 5300,
but still of the same order of magnitude as the tangential velocity fluctuations.
This explains the result for the collection efficiency shown in Fig. 6, which
differs only slightly from the Re = 5300 result.
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Fig. 6. Collection efficiency for laminar and turbulent flow.

4.3 Laminar time-dependent flow

According to Mackrodt [7] laminar Poiseuille flow already becomes unstable
at low bulk Reynolds numbers if a small rotation rate is applied. However, he
remarked that this instability will probably lead to another stable flow rather
than to turbulence. Indeed, the work of Sanmiguel-Rojas and Fernandez-
Feria [8] indicates that a time-dependent laminar flow results. In order to
study this and the effect of this flow on particle behavior, we calculated the
flow at Re = 540 and ReΩ = 72 with the present DNS code starting from



404 J.G.M. Kuerten and B.P.M. van Esch

a state of turbulence at a higher Reynolds number. After a transition period
the resulting flow turns out to be very different from the turbulent flows dis-
cussed in the previous sections. Most of the Fourier modes of the expansion
are negligibly small and the solution is in good approximation given by

ui(r, φ, z, t) = u0
i (r) + ûi(r) exp(i(φ − 2πz/L+ ωt)) + c.c., (9)

where ui denotes one of the three velocity components. Moreover, the mean
axial velocity u0

z(r) is in very good approximation given by the quadratic
Poiseuille profile at this Reynolds number and, because of incompressibil-
ity, u0

r(r) = 0. The mean tangential velocity is unequal to zero, like at the
higher Reynolds numbers. This solution is not a solution of the linear stability
equations: nonlinear interactions play a role as well and the amplitude of the
disturbance, ûi, is determined by the balance of some of the nonlinear terms
in the Navier-Stokes equation and the pressure and Coriolis terms.

Although the flow in these conditions is not turbulent, the particle mo-
tion in this flow is similar. The mean tangential velocity leads to trapping
of particles without time-dependent velocity. However, the effect of the time-
dependent velocity destroys this particle trapping mechanism. In contrast to
the real turbulent flow, the particle paths have a helical shape. The resulting
particle collection efficiency, included in Fig. 6 differs only slightly from the
one at Re = 5300, but there is a striking difference. Since the flow is not
turbulent and the particles follow a deterministic path, dp,100, the diameter
above which all particles are collected, has a finite value again.

5 Conclusions and future work

We studied the effect of turbulence in the circular channels of a Rotational
Phase Separator on the collection efficiency. To that end direct numerical
simulation of the flow and Lagrangian particle tracking were performed. The
results of the fluid flow show that an axial vortex is present in the flow, caused
by the rotation, but, in contrast to the secondary flow in laminar flow in a
slightly tilted pipe, this vortex hardly influences the collection efficiency for
the parameter settings of the simulated test cases. However, turbulent velocity
fluctuations have a negative influence on the collection efficiency, especially
for larger particles. One of the consequences is that dp,100, the diameter of
the smallest particles which are all collected, cannot be defined for turbulent
flow conditions. At low Reynolds number, the laminar Poiseuille flow is un-
stable, but evolves into a time-dependent laminar flow. The resulting particle
collection efficiency is comparable to the one at higher Reynolds numbers.
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Summary. A brief review of natural particle-laden flows is given, paying particular
attention to the wide range of scales of motions and particles found in the envir-
onment. Some fundamental concepts underlying particle-turbulence interactions are
discussed and their application to a few selected flow configurations (particle laden
jets and particle settling through vortices and turbulence) is exemplified. Examples
of the application of a sophisticated modeling system to predict particle concentra-
tion and visibility in the atmosphere are also illustrated.

1 Introduction

Suspended particles are ubiquitous in environmental flows. They produce in-
teresting and important effects such as dust storms, avalanches, spectacular
sunsets and visibility reduction in the atmosphere as well as turbidity cur-
rents and thin layers that act as biological hot-spots in oceans. Particulate
matter (PM) is a key atmospheric pollutant, and it spans a wide variety of
sizes (Figure 1). Small particles (aerodynamic diameter dp < 10 microns or
PM10) have a tendency to remain suspended for extended periods of time
without being deposited, but larger particles settle out within minutes of en-
tering the atmosphere. Atmospheric aerosols (solid and liquid PM) are of two
kinds: primary (directly emitted by anthropogenic and natural sources) and
secondary (formed by chemical reactions, typically dp < 1 micron). Much at-
tention has been focused on these aerosols because of their proven association
with severe health problems and other quality of life issues (e.g., reduction in
visibility and welfare of animal/plants). Also shown in Figure 1 are the differ-
ent types of aerosols and their sources. Of these, particles of size less than 2.5
microns (PM2.5) are known to be most detrimental to human health. Atmo-
spheric visibility is mainly affected by still smaller particles (dp < 1 micron),
which are responsible for the appearance of a brown cloud over polluted cities
in the morning. Aerosols, irrespective of the nature of their sources [e.g., point
(e.g., chimney stacks), line (e.g., unpaved roads) or area (e.g., cities) sources]
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are transported by airflow, undergo physical and chemical transformations
and can deposit over surfaces. Deep convection and flow convergence can
lift aerosols up to several km, which are then picked up by large-scale flow
and transported over long distances, covering intercontinental (global) and
regional (synoptic) scales. These upper atmospheric aerosols are fumigated
(mixed down) over land by convection and subsidence, and then transported
and dispersed off by mesoscale, urban/rural and local turbulent flows. A con-
tinuum of scales are responsible for particle dispersion, the larger scales being
responsible for advection while turbulence down to the Kolmogorov scale plays
a critical role of dispersing, mixing and suspending the particles. The role of
sub-Kolmogorov (micron) scales is yet to be delineated. For suspended ultra-
fine particles (< 0.1 microns), the Knudsen number is small, the continuum
hypothesis fails and the usual fluid dynamics concepts may become invalid.

Fig. 1. A typical surface area distribution of atmospheric aerosols associated with
different source regions (from Bridgeman, 1990)

Particles found in lakes and oceans (hydrosols) also span a large range of
scales, depending on the nature of existing sources and particles, physical and
biological processes, aggregation and age. Most oceanic particles are organic
material, including living plants and animals, pieces of dead/dying organisms
(aggregates of which produce ‘marine snow’) and their waste products. Dust
depositing from the air or pieces of the continents carried by rivers or waves is
also common. Oceanic particles thus are more diverse and complex, and only
a few measurements exist on suspended-particle size spectra. A typical hypo-
thetical spectrum is shown in Figure 2. As in the atmosphere, bio-geochemical
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processes are abundant amongst ocean particles, and the modeling of ensuing
complicated physiological functions poses intricate challenges (Ghosh et al.
2005). In all, particle-laden flows in the environment spans geophysical ( km)
to sub-Kolmogorov (10-100 nm) scales, where the Kolmogorov scales in the
atmosphere and oceans/lakes are on the order of 1 mm.

The aim of this paper is to present a brief overview of the types of envir-
onmental particle-laden flows and their underlying dynamics in the realm of
fluid-particle interactions, modeling and applications. Given the preponder-
ance of scales (100 nm to 104 km; seconds to weeks) and the multitude of
processes involved, a detailed review is beyond the scope of this paper. There-
fore, only a few selected topics are discussed. Of particular interest is the
application of fluid-dynamics based knowledge to real environmental flows,
which is exemplified using visibility and PM modeling for the atmosphere.

Fig. 2. A suggested size distribution by volume of oceanic particles. Note the dis-
tribution over eight decades covering clay particles to whales (from McCave 1984)

2 Particles/Flow Interactions: Bulk Considerations

One of the earliest attempts to describe particle-turbulence interaction was
made by Tchen (1947; also see Hinze 1975). By assuming that: (i) the tur-
bulence is homogeneous and stationary; (ii) the flow has an infinite domain;
(iii) the particles are spherical; (iv) the particles are small compared to the
smallest wave length present in turbulence (i.e., Kolmogorov scale); (v) the
neighborhood of the particles is always formed by the same fluid; and (vi)
the body forces are conservative, Tchen derived the equation of motion for a
single particle as

π
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where vp is the velocity of the particle, µf the dynamical viscosity of the
fluid, t the time, Fb the body force on the particle, and vf the fluid velocity
in the neighborhood of the particle but at a sufficiently large distance not to
be disturbed by the relative motion. The terms in this equation, from left to
right, represent the particle inertia, the drag due to relative motion between
the fluid and the solid, the local pressure gradient, the virtual inertia, forces
due to unsteadiness of the particle (Basset forces), and the body forces. The
total derivative d/dt for the particle and the fluid phases should be based on
their respective velocities.

As pointed out by Maxey and Riley (1983), among others, (1) is valid only
under restrictive conditions, and thus (1) can only give a qualitative descrip-
tion of the motion of a single particle or a set of particles at low concentra-
tions. Currently, more precise expressions exist to describe particle motions
(e.g., Maxey and Riley 1983), but they also lead to the same non-dimensional
numbers as those based on (1). Thus, in the following bulk analysis we pro-
ceed with (1). The vertical component of (1) can be written by including the
buoyancy term Fb = −πd3

p(ρp − ρf)g/6 and the settling velocity of individual
particles ws = d2

p(ρp − ρf )g/(18µf) as

dwp
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where wf and wp are the vertical velocities of the fluid and the particle, re-
spectively, and g the gravitational acceleration. In the spirit of the Boussinesq
approximation, it is assumed that ρp ≈ ρf , except for the buoyancy term. Ac-
cordingly, the dimensional variables governing the motion of a solid particle in
homogeneous turbulence are νf/d

2
p and ws as well as the parameters that char-

acterize the velocity field. These governing variables can be utilized in bulk
analyses, for example, in deriving non-dimensional numbers. If ρp is much
different from ρf , then ρp/ρf also should enter as a parameter.

Of course, in the presence of velocity shear, (2) should be modified
to include the velocity gradient terms as well as the lift on the particle
(Hunt et al. 1994). However, gradient terms can be shown to be small when
dp � |∇U |/|∇2U | and |vp − vf | � dp|∇ × vf |, where U is the characteristic
flow velocity. The inclusion of lift force CL(vf − vp)× (∇× vf ), where CL is
the lift coefficient, does not introduce additional governing parameters.

As an example, consider the evolution of particle-laden jets, a problem
motivated by its application to karstic lakes (in particular, Lake Banyoles,
Catalonia), wherein resuspension of argillaceous and marly material near the
lake bottom by subterranean springs is a common phenomenon (Colomer
and Fernando 1996; Casamitjana et al. 2000). An idealized configuration that
mimics this flow is a heavy particle-laden jet discharging upward from a point
source, as shown in Figure 3a (in some cases, it is also appropriate to use
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multiple jets; Colomer et al. 1999). It is possible to expect that the resulting
velocity field to be determined by the initial momentum of the jet M0, initial
(jet) particle concentration c0 and parameters governing the fluid-particle
interactions, i.e., νf/d

2
p and ws. For the problem at hand, a plausible set of

governing variables is M0 , νf/d
2
p, c0 and ws, and thus the maximum height

of rise of particles zm within the jet can be written as

zm

(M1/2
0 /ws)

= f1

( w2
sd

2
p

νfM
1/2
0

, c0

)
(3)

where f1 is a function.
Likewise, an expression for the ground concentration can be obtained. If

the rate of accumulation of particles per unit area on the ground is Ṅ and the
number of particles per unit volume at the discharge is n0 (which is directly
related to c0), then the expression for the conservation of particles under
steady conditions takes the form (Neves and Fernando 1995)∫ ∞

0

Ṅ(r)2πr dr = n0Q0 = F (4)

where Q0 is the volumetric rate and F the total flux of particles at the jet
discharge. Thus, in ground deposition studies, F can be selected as a governing
parameter alternative to c0, viz.,

Ṅ = f2(F,M0, ws, νf/d
2
p, r) (5)

or

Ṅ∗ =
Ṅ(

Fw2
s

M0

) = f3

( r

M
1/2
0 /ws

,
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sd
2
p

νfM
1/2
0

)
(6)

In the laboratory experiment depicted in Figure 3a, a particle-laden jet was
injected vertically into a laboratory tank. The maximum height of particle rise
and the radial deposition rate of particles were measured. Figure 3b shows the
variation of zm/(M1/2

0 /ws) with c0. Several trends of the results are evident.
For c0 < 5 10−3, the normalized zm is independent on the concentration, but
at larger concentrations there is a slight dependence on c0. The normalized zm

in both regimes appears to be independent on w2
sd

2
p/(νfM

1/2
0 ). The normal-

ized particle deposition rate is shown in Figure 3c, which shows dependence on
both r/(M1/2

0 /ws) and w2
sd

2
p/(νfM

1/2
0 ). Further analysis (not shown) shows

that an excellent collapse of data is possible, if the curves are normalized by
the maximum deposition rate, which is a function of w2

sd
2
p/(νfM

1/2
0 ).

3 Particle Settling in Turbulent Flows

Particles are subjected to a myriad of physical effects as they travel in a tur-
bulent fluid. For example, the so-called crossing trajectory effect arises as a
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(a) (b)

(c)

Fig. 3. (a) A laboratory particle driven jet emerging out of a circular slot, (b)
The normalized maximum particle rise height (measured using a particle tracking
technique) as a function of the concentration at jet discharge, (c). The normalized
particle distribution rate as a function of normalized effective radius (r′ = r− d0/2,
d0 being the jet orifice diameter). Different symbols indicate different experimental
runs conducted with widely varying experimental parameters.

result of the change of surroundings when a particle settles with a determin-
istic velocity in the direction opposite to the gravity. It moves from a region
where flow velocity is highly correlated to another that is de-correlated from
the previous region. Settling particles therefore lose their velocity correlation
more rapidly than neutrally buoyant particles. Another is the continuity ef-
fect, where a back-flow is generated surrounding the particle to satisfy fluid
continuity. The inertia effect, which is signified by the time necessary for a
particle to adjust to the background flow, is also of critical importance; the
particle response time takes the usual form τp = (β − 1)d2

p/(18νf). If τp = 0,
the particle responds to all changes in the fluid flow immediately, and in this
case the velocity of the particle can be expressed as vp = vf + vT , where vT

is the settling velocity, and |vT | = ws.
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The interaction of settling particles and flow ought to be determined by
d2

p/νf , ws , β and characteristic flow parameters, as discussed in Section 2.
Note that τp includes the d2

p/νf term, and hence these governing parameters
can be recast as τp, ws, and β. For simplicity, as was done in Davila and Hunt
(2001), consider particle settling in a vortex characterized by its radius R,
velocity U and circulation Ã = UR. Important parameters for the problem
therefore become the Stokes number, St = τp/(R/U), the normalized settling
velocity V T = VT /U and β. Other related parameters have also been used,
for example, the Froude number of the flow (Fr = V 2/(gR) ; the ratio of fluid
inertia to gravitational forces) or the particle Froude number Fp = V 3

T /(gÃ)
(inertial forces exerted by particles to gravitational forces).

As an illustration, consider an inertia-less particle entering into a vortex
described by the sample velocity field (u1, u2) = (ωx2,−ωx1). It is clear that
a particle may stay trapped inside the vortex or escape from it, depending on
the value of V T . If V T < 1, then a particle can be permanently trapped inside
the vortex moving in a circle with center (−VT /ω, 0). If there is finite inertia,
then the particles can break closed orbits without following the fluid particles.
Owing to a centrifugal force, particles with finite inertia may spiral inward or
outward, depending on the signs of the settling velocity and buoyancy.

Davila and Hunt (2001) considered the instantaneous position and velocity
of small spherical particles with inertia (St �= 0) settling through a Rankine
vortex having the velocity field

u =
( −2x2

1 + x2
1 + x2

2

,
2x1

1 + x2
1 + x2

2

,
)

; max |u| = 1 (7)

For convenience, heavy particles β � 1 were considered, for which the equa-
tion of motion becomes

dv∗
p

dt
=

1
St

(
vT + u∗ − v∗

p

)
(8)

where u∗ is the background flow velocity and superscript ∗ denoted quantities
normalized by flow variables U and R. Equation (8) points to the equilibrium
points (vp = dvp/dt = 0) for particles satisfying u∗(xE) + vT = 0. They
showed that for the vortex described by (7), there are two equilibrium (E)
points

(x∗1)E1 =
1 −

√
1 − V

2

T

V T

; (x∗1)E2 =
1 +

√
1 − V

2

T

V T

(9)

with (x∗2)E1 = (x∗2)E2 = 0, where (x1)E1 is a node and (x1)E2 is a saddle point.
It is clear that stationary points are possible only when V T = VT /U ≤ 1, and
that particles with V T > 1 do not show stagnation behavior.

If V T ≤ O(1) and if the inertia is small enough, only those particles
in regions with |u| ∼ VT ought to be affected by the flow. This points to
the possibility of using VT as the scaling velocity. For the general case of
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|u∗| ∼ 1/|x∗|a, Davila and Hunt (2001) suggested an alternative scaling, where
VT , Ã/(VTU

a−1)1/a and Ã/(V a+1
T Ua−1)1/a were the velocity, length and time

scales, respectively, which yielded a new non-dimensional parameter (or a
rescaled Stokes number)

Fp = V
1+1/a

T St =
τp

Ã/[V (a+1)
T U (a−1)]1/a

(10)

as a measure of inertia effects. Fp represents the ratio of distance over which
a particle accelerates (VT τp and the maximum radius of curvature of particle
trajectories around line vortices. For the line-vortex case with a ≈ 1, small Fp

implies quick response of particles to flow variation and vice versa. At large Fp

(contributed by large St and V T ), particles cannot maneuver changing courses
of fluid trajectories well and overshooting into nearby trajectories occurs.

The above simple model of particle settling in line vortices (for which the
governing parameters are Fp, V T and β) can be used to explain observations of
heavy particle settling in turbulent flows. Of course, there are clear differences
between the two cases, for example, even the simplest case of isotropic tur-
bulence consists of time-dependent random distribution of vortices. Vortices
therein are separated by a distance on the order of the integral scale Lx, with
each having a radius on the order of Taylor microscale λT . Assuming that (i)
Lx � λT , (ii) those vortices having axes that are horizontal contribute most
to the particle settling, and (iii) that the persistence time of vortices Lx/U is
greater than the particles penetration time through them, it is possible to ex-
trapolate (qualitatively) the results of Davila and Hunt (2001) to understand
particle settling through turbulent fluids.

It should be noted that there are several definitions for particle settling ve-
locity. The Eulerian settling velocity VE is the average of the particle settling
velocity at a given point weighted by the particulate concentration distribu-
tion. The Lagrangian settling velocity VL is defined in terms of the vertical
distance traveled along a particle trajectory (X,Y ) over a given time ∆T ,
averaged over an ensemble starting from different positions (X0, Y0),

VL =
1

∆T

∫ ∆T

0

dt Vp(X,Y,X0, Y0) (11)

The bulk settling velocity VB is defined on the basis of averaged time for
particles to cross two different vertical levels separated by ∆Y . If the char-
acteristic length scale (Ã/VT ) of particle trajectories is much less than the
characteristic horizontal vertical separation of vortices, then it is possible to
show that VB ≈ VL.

Computations of Davila and Hunt (2001) illustrate how the settling velo-
city (say VL) is affected by V T and Fp. When V T > 1, there are no equilibrium
points, and thus no void and accumulation regions, leading to rather mono-
tonic descent of particles. In this case the particles can show slightly larger
settling speeds up to about Fp = 3 − 5, beyond which the settling speed
slightly decreases.
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The most striking effect of turbulence arises when there are equilibrium
points (or empty regions), wherein V T < 1. In this case, for Fp < F ∗

p ,
where F ∗

p ≈ 1, when the particles have lesser inertia, the particles follow
fluid parcels along the fast tracks in the fringes of empty regions, leading to
enhanced settling velocity. For finite Fp, as V T increases, this enhancement
of settling decreases because of the increasing dominance of buoyancy forces
that tend to reduce the influence of the background flow. As Fp > F ∗

p , there
is a sharp reduction in the increase (above VT ) of settling velocity with Fp,
and for Fp > F ∗∗

p , F ∗∗
p ≈ 10, even a reduction of the settling velocity below

VT can be expected. This owes to the fact that with increasing Fp the inertia
also increases, and thus particles lose their tendency to follow the fluid. This
may cause particles to cross trajectories.

The results of an experiment conducted to verify the above arguments are
shown in Figure 4. The experiments were conducted by generating ‘nearly’
isotropic turbulence in a mixing box, with two oscillating grids placed on
either sides of the tank (Srdic et al., 1996). Note the variation of bulk settling
velocity with Fp for the a = 1 case. The normalized VB increases with Fp for
small Fp, achieves a maximum and then reduces below unity. This observation
is in qualitative agreement with the concepts described above. Although it is
not possible to directly compare the predictions of the model with the exper-
iments due to differences in flow configurations, a qualitative comparison is
reasonable given that the experimental flow possesses some features, such as
coherent vortex structures, assumed in the theoretical model. There have been
a few previous experimental studies on settling of particles in turbulent fluids
(Murray 1970; Nielsen 1992). In the former study the turbulence was gener-
ated using a horizontal bar grid oscillating vertically whereas in the latter two
perforated plates oscillated in the vertical direction was used. Turbulence was
not measured in either study, but inferred using oscillating grid/plate para-
meters. Both of the studies indicated that weak turbulence (V T = VT /σ > 1)
may have a delaying effect on settling whereas strong turbulence V T < 1
increases the settling velocity, where σ is the r.m.s. velocity. VT /σ was the
only parameter considered in both of these studies, but we expect the results
to depend on Fp. In all, the experimental results are qualitatively consistent
with the theoretical arguments presented above.

4 Applications of Particle Laden Flows

In this section, a few practical applications of particle driven flows are dis-
cussed in the context of urban air quality and visibility. Obviously, the simple
fluid dynamic models described above cannot be directly used for practical
predictions of particle laden flows in the atmosphere, given the complexity of
natural flows subjected to ever changing chemical, physical and biological con-
ditions of the atmosphere. Modeling systems that include flow and turbulence,
two phase dynamics and chemical changes need to be used in this regard.
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Fig. 4. A plot of normalized bulk settling velocity as a function of the rescaled Stokes
number. The parameters are defined in the text. The experiments were conducted
by releasing particles of different properties into a fluid with sustained turbulence
introduced by oscillating grids.

Inherent to such complex models are a host of assumptions on particulate
matter and their precursor emissions, nature of the sources and their inter-
action with the flow, secondary particle formation, chemical transformations,
deposition and biogenic effects. Prediction of the composition and morpho-
logy of particles also enables us to estimate the visibility reduction through an
aerosol-optical model. Below, we will first deal with the modeling of episodic
particulate matter events using a 3-D air quality model for the case of a pair
of cities in the U.S./Mexico border, which are amongst the most polluted of
the U.S. A visibility calculation for the Phoenix urban area for typical days
of winter and summer are presented next.

4.1 Particulate Matter Modeling for the U.S./Mexico Border

The U.S./Mexican border region consists of arid or semi-arid largely rural
and/or agricultural land with irregularly spaced small and large twin cities
across the border. These borderlands are characterized by a diverse mix of
topography, ecology and human activity. As a result of fast demographic and
economic growth, the U.S./Mexico border regions, particularly the twin cities
across the border, have received increased attention with regard to environ-
mental degradation and human health concerns. One of the major pollutants
in the borderlands is the PM. It has been shown that episodic events contrib-
ute to many of the violations of the U.S. EPA’s PM10 National Ambient Air
Quality Standards (NAAQS) in the area. A number of factors, for example,
topography, local anthropogenic sources, mesoscale transport, resuspension,
frontal turbulence, prevailing wind speed and direction, daily cycle of the
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atmospheric boundary layer and traffic density have been highlighted as the
drivers of PM episodes. To understand and quantify the causal factors leading
to high PM episodes that frequent the border twin-city area of Douglas/Agua
Prieta, air quality modeling with high grid resolution was performed.

The Models-3/CMAQ modeling platform was employed to calculate the
PM concentration. This predictive tool consists of three integrated elements:
the Pennsylvania State University (PSU)/NCAR Mesoscale (Generation 5)
model for meteorology (MM5), Sparse Matrix Operator Kernel Emissions
(SMOKE) model for emission processing, and the Community Multiscale Air
Quality (CMAQ) model. Douglas and Agua Prieta, are located in southeast-
ern Arizona and northeastern Sonora, within the Sulfur Springs valley, and are
characterized by complex topography and arid desert climatology. Because the
sources are close together, substantial gradients exist within these relatively
small cities, thus requiring fine grid simulations. Therefore, typical pollution
inventories available in the modeling context (∼ 4 km resolution) cannot be
utilized for simulations, and a special pollution inventory with 0.5 km resol-
ution was constructed (Reynolds et al. 2002).

MM5 modeling was performed using nested domains, down-sizing from the
parent domain of 54 km grid resolution to the domain of interest 44 x 32 km2

(1 km resolution). Meteorological inputs for 44 x 32 km2 CMAQ simulations
with 0.5 km grid spacing were obtained via linear interpolation of wind fields
from the 1-km grid simulation, considering the putative notion that MM5
modeling paradigms and parameterizations may not be suitable for grid sizes
below 1 km. Owing to the lack of available observations, CMAQ default values
were used as initial conditions. To minimize the impact of this selection, a spin-
up time of three days was employed. Time-dependent boundary conditions for
the study domain were derived from one-way nested CMAQ simulations over
the larger domain, which also encapsulate the effects of long-range transport of
PM2.5 and gaseous precursors (U.S. EPA 2004). Nine PM events were selected
for modeling from a special measurement program conducted over the area
by the Arizona Department of Environmental Quality during January 1999
through mid-February 2000.

The model predictions were evaluated against observation the data by
computing conventional statistical measures, and performance measures were
found to be in acceptable ranges compared to other air quality models and
studies. Arid desert conditions make the area more vulnerable to wind-blown
dust, and thus some of the observed PM10 NAAQS exeedances were re-
lated to high wind speeds. The other high episodes occurred under stag-
nant conditions with low wind speeds. A severe limitation of the sophistic-
ated CMAQ/MM5/SMOKE modeling system was clearly identified during
the simulations, which is the inability of the system to deal with wind-blown
dust at high and time-dependent wind speeds. The predicted 24-hr averaged
PM10 concentrations are shown in Figure 5. More hot spots with PM10 over
500 µg/m3 are concentrated in the vicinity of emissions sources on a low wind
day (02/23) than on a high wind day (12/02). The CMAQ, lacking a paramet-
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erization for enhanced dust entrainment during high wind events, predicted
lesser particle concentrations than the observations for high wind days. The
model particles are solely provided by the emission inventory, but not by dust
entrainment.

By conducting three groups of sensitivity simulations with carefully selec-
ted boundary conditions, it was possible to conclude that the regional con-
tribution to high PM events over the area is insignificant, and that high PM
episodes are dominated by local conditions. The simulations showed only a
small contribution of secondary particles to total PM, which are most likely
to be regional rather than local. Considering all, the observed high PM events
appear to be a result of entrainment of soil dust from unpaved/paved roads
and wind-blown dust at high wind speeds. These results are consistent with
the chemical analyses of PM measurements in the area. Based on our study,
most of the PM10 exeedances took place on the Mexican side, mainly con-
tributed by unpaved roads. The exeedances in the U.S. side occurred only at
a site close to the border when winds were strong and southerly (Choi et al.
2006).

Fig. 5. CMAQ-simulated 24-hr averaged PM10 concentrations on the design (simu-
lation) day of 02/23/1999 (left panel; this is a low wind day). The right panel shows
a high wind day 12/2/1999.

4.2 Visibility Modeling

Visibility is the observer visual range, which is the greatest distance at which a
large black object can just be seen against the horizon sky. Visibility impair-
ment is probably the most easily recognizable effect of air pollution, which
is caused by the scattering and absorption of light by particles and gases
in the air (U.S. EPA 1999). In order to simulate visibility in the Urban
Phoenix area, the MM5/CMAQ/SMOKE modeling system was employed.
The SMOKE emission model was processed to produce speciated, gridded,
hourly emissions, using EPA 1999 National Emissions Inventory. The MM5
was simulated to produce gridded, hourly meteorological fields. The CMAQ
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aerosol module calculates visibility indices (deciview and light extinction coef-
ficient βext) using two different methods: an approximation to Mie theory and
a mass reconstruction technique. The Mie algorithm estimates the light ex-
tinction efficiency due to aerosols based on the particle effective radius and
refractive index (Wiscombe 1980). On the other hand, the mass reconstruc-
tion method is an empirical approach, and calculates βext from aerosol species
mass concentrations, using (12) below (Malm et al. 1994),

βext = 0.003f4(RH)
[
ammonium + sulfate+ nitrate

]
+ 0.004

[
all organic species

]
+ 0.01

[
elemental carbon

]
+ 0.001

[
unspeciated PM2.5

]
+ 0.0006

[
coarse particles

]
+ 0.01 (12)

The brackets denote species mass concentration in µg/m3. The coefficients
represent scattering efficiencies, except for light absorbing carbon, which in-
stead has absorption efficiency. The function f4(RH) is a relative humidity
correction. Since ammonium sulfate and ammonium nitrate swell and increase
in size at relative humidities above about 70

Vr = 3.91/βext ; deciview = 10 ln(β/0.01) (13)

where Vr in km and βext in km−1 (Pitchford and Malm 1994).
According to the observations, visibility in winter is worse than any other

season. It is thought that lower mixing height makes pollutants concentrate
near the surface, and lower temperature provides more favorable condition to
aerosol formation in winter than in other seasons. As an illustration, therefore,
the worst and best visibility days in 2001 were simulated for the Phoenix area.
December 18 was the worst visibility day recorded in that year, and August 11
registered the best visibility. Both days had a similar relative humidity (RH)
around 40 50

Simulations were performed for a 4 day period including a 3-day spin-
up time for each case. Hence, the simulation period for the worst visibility
day, December 18, was 15-19 December, and that for the best visibility day,
August 11, was 9-12 August 2001. The model seems to underestimate particle
concentrations, and accordingly under-predict visibility degradation. Using
Mie theory, the visibility degradation was under-predicted by a factor of two,
and using the mass reconstruction method, by a factor of three. It should
also be noted that CMAQ visibility calculations are somewhat hampered by
uncertainty in coarse particle emissions due to the absence of wind blown
dust. At this point, a complete evaluation of the model cannot be performed
because of the lack of detailed observations. However, the relative magnitude
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of the modeled value for the worst day to that of the best day appears to
be consistent with the observations, even though the absolute deciview values
are far off from the observed values. Figure 6 displays simulated visual ranges
at noon time for both days.

Fig. 6. Simulated visual range Vr at noon on August 11 and December 18, 2001. The
visibility in winter days is smaller due to the high particle concentrations induced
by more stable air-flows and smaller mixing heights.
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