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Preface

Thermodynamics was created in the first half of the 19th century as a
theory designed to explain the functioning of heat engines converting
heat into mechanical work. In the course of time, while the scope of
research in this field was being extended to a wider and wider class of
energy transformations, thermodynamics came to be considered as a
general theory of machines identified with energy transducers. Impor-
tant progress in biochemistry in the first half of the 20th century, and
in molecular biology in the second half, made it possible to think of
treating even living organisms as machines, at least on the subcellular
level. However, success in applying thermodynamics to elucidate the
phenomenon of life has been rather mitigated.

Two reasons seem to be responsible for this unsatisfactory sit-
uation. Nineteenth century thermodynamics dealt only with simple
(homogeneous) systems in complete equilibrium. Although during the
20th century a nonequilibrium thermodynamics was developed, start-
ing with the Onsager theory of linear response and ending with the
Prigogine nonlinear theory of dissipative structures, these theories still
concern the originally homogeneous systems. Because living organisms
are complex systems with a historically frozen spatial and functional
structure, a thermodynamics of both nonequilibrium and complex sys-
tems is needed for their description. The first goal of the present book
is to formulate the foundations of such a thermodynamics.

The great advances in molecular biology in the 20th century con-
cerned the structure but not the dynamics of biomolecules. The latter
was assumed to be as fast as in small non-biological molecules, so that
the following statement rooted in the conventional theory of chem-
ical reaction rates still remains the dogma of modern biochemistry:
enzymes accelerate reactions by reducing the free energy of activation.
Only in the last two decades has more and more experimental evidence
been gathered to show that the internal dynamics of biomolecules is
as slow as, if not even slower than, biochemical reactions. The second
goal of the book is to consider some possible consequences of this fact.



VIII Preface

This book can be considered as an introduction to a new branch
of science, a monograph and a textbook alike. It is the fruit of over
a dozen years of the author’s research into the statistical physics of
biomolecules. No less important has been his experience obtained in
lectures delivered for graduate students of biophysics and medical
physics at the Faculty of Physics of the Adam Mickiewicz Univer-
sity, Poznań. The book is mainly concerned with theory and has been
written by a theoretician, although it is addressed to all physicists and
physicochemists, from graduate students to experienced researchers.
The author hopes that some biochemists, molecular biologists and
physicians will also take the trouble to read this book. It is assumed
that the reader is acquainted with the notions of derivative, integral,
ordinary differential equations, and probability theory on the level of
a one-year academic course in the foundations of mathematics. Maybe
some mathematicians and computer scientists interested in biological
applications will also find these topics of interest.

Many theoreticians reading the book may find the formalism pre-
sented here somewhat oversimplified, whereas experimentalists will
note the almost complete lack of description of experimental tools.
Biochemists will criticize the selection of particular problems, while
molecular biologists may find the presentation of recent crucial re-
search insufficiently detailed. The descriptive presentation in biological
terms is as a rule in disharmony with the explanatory and generalising
presentation in physical terms. It is neither straightforward nor com-
fortable to work at the meet of several branches of science. The reader
must forgive the author.

Besides Chap. 1, concerning the relationship between theory and
experiment in biophysics, four problems compose the content of the
book. In Chaps. 2 and 3, the nonequilibrium thermodynamics of com-
plex systems is constructed from the very beginning, the nonequilib-
rium state being considered as a partial equilibrium state. In Chaps. 4
and 5, the organization of the biological cell and its main macromolec-
ular components are reviewed and presented as a structure frozen in
a historical process of life evolution. In Chaps. 6, 7 and 8, the bi-
ological processes on the subcellular level are considered as coupled
chemical reactions proceeding within individual compartments of var-
ious organelles as well as transport processes across membranes. All
these processes are catalyzed by specific enzymes so that particular
attention is paid to the kinetics of enzymatic reactions and its control.
Coupling of several reactions through a common enzyme is considered
in the context of free energy transduction, the process of essential bio-



Preface IX

logical importance. All biological molecular machines, including pumps
and motors, can be effectively considered as chemochemical machines.
Chapter 9 discusses evidence for and consequences of the lack of par-
tial thermodynamic equilibrium in the internal dynamics of biological
macromolecules operating under steady-state conditions.

The book is written in such a way that it can in principle be read
independently of the Appendixes. The latter are addressed mainly to
physicists. Appendixes A and B require knowledge of more advanced
mathematics. Appendix C, rather trivial for chemists and molecular
biologists, is devoted to beginners on their first meeting with molecular
biochemistry. Appendix D, the closest to the author’s recent interests,
presents a branch of science that has only just started to develop.

The author has appreciated discussions with many specialist scien-
tists in various fields. His thanks go to each and every one of them. A
lot of the discussions were possible through the support of the Alexan-
der von Humboldt Foundation and several grants from the Polish State
Committee for Scientific Research. Special thanks go to Jack Tuszyn-
ski for discussing the main theses and providing encouragement for the
writing of this book. I am grateful to Genowefa Slósarek for a critical
reading of some chapters and identification of certain elements that
the reader might find difficult to understand, and Maria Spychalska
for adjusting the English in several chapters.

Poznań, Poland Micha�l Kurzyński
October 2005
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1 Biophysics: An Experimental Tool of Biology
or the Physics of Animate Matter?

For most biologists and physicians, biophysics tends to conjure up
images of more or less complicated experimental instrumentation con-
structed by physicists. Nobody can deny the utility of physical equip-
ment in biology and medicine. Progress in cytology would not be
possible without optical and electron microscopy. The unraveling of
metabolic pathways is to a large degree facilitated by using radioac-
tive isotopes as tracers. The time course of particular biochemical
processes can be observed by means of infrared spectroscopy. Optical
spectroscopy is applicable to biomolecules that contain fluorophores,
either intrinsic or externally attached. X-ray crystallography, neutron
and electron diffraction techniques, not to mention high resolution nu-
clear magnetic resonance, have contributed to dramatic advances in
molecular biology (Darnell et al., 1999; Morange, 2000). In the last
decade, various techniques of single biomolecule imaging and manipu-
lation have been developed (Ishijima and Yanagida, 2001).

However, physics is much more than a powerful experimental tool.
Physical theory is equally important, because it provides the concep-
tual tools and language necessary for appropriate description of the
relevant phenomena. It seems to the author, who has long been en-
gaged in solid state physics research, that just this branch of physics
gives an exemplary proportional representation of theory and experi-
ment. Elementary particle physics is involved more with theory than
experimental effort. Unfortunately, biophysics, especially in the area
servicing the needs of molecular biology, is placed at the other extreme,
where theoretical efforts have so far been very poor (Blumenfeld, 1974).
The basis for molecular biology at the beginning of the 21st century
is still the physical chemistry of the first half of the 20th century.

Finding new areas of application for its powerful experimental tools,
molecular biology adopted almost without change the original theo-
retical interpretations of the techniques used, notwithstanding their
different initial targets of investigation, which were not nearly as com-
plex as the newly studied biological systems. In particular, this led
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to an almost universally accepted picture of biomolecules devoid of
any complex internal dynamics beyond rapid vibrations around well
defined ‘tertiary structures’. Their impressive images are well suited
to the pages of popular science magazines and introductory textbooks
but are not a realistic representation of the underlying phenomena.
This view was suggested, with accidental consistency, by biochem-
istry in vitro considering biological macromolecules as ordinary small
molecules with vanishingly fast vibrational internal dynamics, and
structural X-ray studies which assume that the difference between
crystals of biomolecules and ordinary harmonic crystals can be brought
down simply to the numbers of atoms in the unit cell. This simplistic
picture has been particularly seductive to enzymologists, preoccupied
with optimal orientations of several catalytic molecular groups in reac-
tion transition states. In this way, they could conveniently avoid con-
sidering the dynamical properties of enzymes, simply assuming that
the appropriate states present themselves as equilibrium thermal fluc-
tuations (Fersht, 1999).

It is easy to understand the reason why elementary particle physics
has oversubscribed theory. This is obviously dictated by the enormous
costs associated with the construction of ever larger particle acceler-
ators. Theoretical physics has always been cheaper than experiment.
Hence it is much less clear why the theoretical basis of biophysics is
so underdeveloped. The blame can probably be equally shared by bi-
ologists and theoretical physicists. The former undoubtedly displayed
internal resistance to learning mathematical concepts more advanced
than elementary algebra and rudimentary probability theory. The lat-
ter may have somewhat arrogantly and nonchalantly formulated var-
ious ‘universal’ theories of biological processes using an abstract lan-
guage comprehensible only to a narrow group of experts (e.g., Fröhlich
and Kremer, 1983; Davydov, 1982; Del Guidice et al., 1988). Conse-
quently, we face an element of mutual distrust that will be difficult to
overcome.

In such a situation, it will perhaps be helpful to refer to the names of
a few theoretical physicists whose concepts have genuinely influenced
contemporary biology. Sixty years ago, in 1944, Erwin Schrödinger, one
of the co-originators of quantum mechanics, in his small book What is
life? (Schrödinger, 1967) asked directly what was the chemical nature
and the physical structure of molecules undergoing replication in the
process of chromosome division. The answer to Schrödinger’s question
was the double helix of DNA, proposed ten years later by Crick and
Watson.
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In 1948 John von Neuman, another co-founder of quantum me-
chanics, compared a biological organism to a mechanical computing
automaton, a computer, on whose theory of operation he happened
to be working. This analogy (von Neuman, 1963), which identifies
metabolism with hardware and the genome with software, is very deep
and has been used right up to the present time. However, it ought not
to be treated too literally. Recent experiments with the so-called refuse
RNA are a good example. For a long time it has seemed that the struc-
ture of genomes of the eukaryotic organisms, with divided genes and
intron sequences that do not code proteins, resembles the structure
of information recorded on a computer disk with fragments of current
program and data files divided by older, out-of-date fragments. Now,
the latter analogy appears to be much oversimplified as it becomes
more and more clear that some parts of RNA transcribed from introns
play important regulatory functions and can in no way be treated as
historical refuse (Dennis, 2002; Mattick, 2004).

The third physicist and theoretician Ilya Prigogine, a cofounder
of the contemporary thermodynamics of open systems, claimed that
the openness of biological organisms was the main property allowing
a resistance to the inexorable destructive effects of the second law
of thermodynamics (Prigogine and Stengers, 1984; 1997). Although
his concept of the analogy between living organisms and dissipative
structures (Nicolis and Prigogine, 1977; Prigogine 1980) cannot be
treated as universal, the idea that biological processes are nonlinear
and proceed in far from thermodynamic equilibrium conditions, has
gained increasing approval.

The dissipative structures manifest themselves as either a temporal
or a spatial self-organization, in simple cases reduced to periodic oscil-
lations. Though the mechanism of stable temporal oscillations (open-
ness and positive feedback) seems to be common to both animate and
inanimate systems, the spatial and functional organization of living
organisms on the subcellular level is considered as a frozen (histori-
cal) structure rather than a dissipative structure (see Chaps. 4 and
5). Examples of von Neumann’s and Prigogine’s ideas clearly indicate
that the most general concepts cannot flow one way from theoretical
physics to biology, but that a reverse flow is necessary. At present, both
theoretical physicists and mathematicians are diligently studying the
ideas of Charles Darwin.

I am tempted to mention the name of a fourth outstanding scien-
tist, Manfred Eigen, although he would be bewildered at being called a
theoretical physicist. He considers himself a chemist, or more exactly a
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biophysical chemist, and has inspired many crucial experiments. Nev-
ertheless, his methodology is very close to that used in the most ad-
vanced areas of physics. He uses an advanced mathematical apparatus
and co-works with theoreticians. This has so far brought about a the-
ory of self-organization and macromolecular evolution that has given,
for example, the notion of quasi-species so important in contemporary
efforts to combat AIDS (Eigen et al., 1989; Eigen, 1993).

Unfortunately, the works of Eigen constitute a glaring exception
against a much less bright background. There is still much to be done
in the field of physical chemistry of biological macromolecules and
nonequlibrium thermodynamics of biological processes. However, it
seems very likely that in the near future, having constructed the essen-
tial elements of a theoretical apparatus, we will see biophysics not as
an experimental tool of biology but simply as the physics of animate
matter. This would be analogous to the way we view astrophysics as
the physics of stellar matter. One of the tasks I set for myself when
writing this book was to prepare the reader for such a change in the
perception of what biophysics is becoming.

The subject of the book is biological processes occurring on the sub-
cellular level. These are still macroscopic phenomena to be described in
terms of thermodynamics, provided that special limitations are clearly
stated and some assumptions made. Four points seem to be especially
important and will be considered in more detail:

• The structure of the cell and metabolic pathways are kinetically
frozen and constant in time. Therefore, the thermodynamics pro-
posed to describe subcellular biological processes must be that of
complex, spatially inhomogeneous systems.

• Thermodynamic nonequilibrium is treated as a partial equilibrium
in which the vast majority of dynamical variables, characterizing
a system on the microscopic level, have reached their equilibrium
values determined by instantaneous values of some thermodynamic
variables. Formally, the state of partial equilibrium differs from that
of complete equilibrium by the number of thermodynamic variables.
These can be either slow or constant. The slow thermodynamic
variables reach their constant, complete equilibrium values in the
process described deterministically by time-irreversible equations
of nonequilibrium thermodynamics.

• The biological systems are thermodynamical and open, subjected to
thermodynamic forces that can usually be assumed constant. The
relations between the fluxes (time derivatives of thermodynamic
variables) and the thermodynamic forces are, as a rule, nonlinear.
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Thus the linear thermodynamics close to the complete equilibrium
state, commonly used in biology, is an incorrect approximation.
Besides the examples of biological clocks, the states of biological
systems are stationary and do not make spatial dissipative structure
as claimed by Prigogine (1980).

• The approximation of the partial equilibrium state holds only for
time periods longer than the times of intramolecular relaxation.
Biological systems are characterized by a distinct hierarchical or-
ganization with at least one intermediate (mesoscopic) level made
by biological macromolecules with sizes from a few to a few tens
of nanometers. Progress in understanding the dynamics of such
macromolecules, in particular enzymatic proteins, compels one to
change the traditional approach to biological processes. The in-
tramolecular dynamics proves to be as slow as, if not even slower
than, the biochemical reactions. If this is so, the dynamics should
have a much greater effect on these reactions than predicted by
the conventional theory of chemical reaction rates, assuming par-
tial equilibrium. Rejection of the partial equilibrium assumption
requires one to replace the conventional reaction rate constants by
more sophisticated quantities, the mean first-passage times, and
allows one to treat molecular biological machines transducing free
energy as specially biased Maxwell demons.

Some of the topics in the present book have already been described
more briefly in an earlier book (Tuszynski and Kurzyński, 2003), where
biological processes occurring on the subcelluar level were considered
jointly with those occurring on the supracellular level of tissues and
organs.



2 Statistical Description of Matter

2.1 Molecular Structure of Matter

Thermodynamics is a theory of physical phenomena proceeding on the
macroscopic scale, while properties of the objects it deals with are de-
termined by their microscopic structures. Almost ten generations of
researchers have worked out the formulation of three basic statements
which are presently no longer questioned. We list them, recalling the
most important steps on the way toward their justification (Ochoa
and Corey, 1995; Darnell et al., 1999; Morange, 2000; Ishijima and
Yanagida, 2001).

Statement 1. Matter on a macroscopic scale is composed of a huge
number of molecules.

• D. Bernoulli (1738) – combining Newtonian mechanics with prob-
ability theory, the origin of the kinetic theory of gases.

• A. Avogadro (1811) – formulation of a hypothesis that the same
volumes of chemically distinct gases contain the same number of
molecules.

• A.K. Krönig (1856), R.E. Clausius (1857) – complete statistical
explanation of the gas laws.

• J. Loschmidt (1865) – determination of Avogadro’s number to be
of the order of 1023 molecules per mole.

• J.C. Maxwell (1866), L. Boltzmann (1872) — statistical explanation
of transport phenomena.

• A. Einstein (1905), M. Smoluchowski (1906) – fluctuation theory
of Brownian motion.

• T. Svedberg, J.B. Perrin (1909) – confirmation of the thermody-
namic fluctuation theory from a study of diffusion in colloid solu-
tions and emulsions.

• G. Binning, H. Rohrer and coworkers (1982, 1986) – construction
of the scanning tunnel microscope and then the atomic force micro-
scope, allowing observation and manipulation of single molecules.
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Statement 2. Molecules are composed of atoms, while atoms are com-
posed of negatively charged electrons and positively charged nuclei.

• J. Dalton (1805) – explanation of the chemical laws of constant and
multiple ratios.

• M. Faraday (1833) – laws of electrolysis.
• D. Mendelejew, L. Meyer (1869) – the periodic system of the ele-

ments.
• J.H. van’t Hoff (1874) – foundations of stereochemistry.
• S. Arrhenius (1884) – ionic theory of electrolytes.
• J.J. Thomson and E. Wiechert (1897), R.A. Millikan (1911) – de-

termination of the mass and charge of the electron.
• E. Rutherford (1911) – discovery of the atomic nucleus.
• M. von Laue (1912), W.H and W.L. Bragg (1913) – X-ray diffrac-

tion on crystals.
• N. Bohr (1913), W. Heisenberg and E. Schrödinger (1926) – elec-

trons and nuclei interact through the electromagnetic forces accord-
ing to the laws of quantum mechanics.

• F. Hund, W. Heitler and F. London (1927) – foundations of the
quantum-mechanical theory of the chemical bond.

• M. Born, J.R. Oppenheimer and successors (after 1927) – the mo-
tion of the nuclei in a given electronic state is determined by an
effective ‘adiabatic’ potential that describes both the strong chemi-
cal bonds and much weaker non-chemical inter- and intramolecular
interactions,

• several independent groups (1986) – observation of quantum pro-
cesses proceeding in single atoms confined to electromagnetic or
optical traps.

Statement 3. Living organisms are also composed only of molecules.

• F. Wöhler (1828) – synthesis of an organic compound from inor-
ganic matter outside the living organism.

• H. and E. Büchner (1897) – protein enzymes can catalyze metabolic
processes outside the organism.

• C. Embeden, O. Mayerhof, H. Krebs (1930–40) – study of metabolic
pathways of the glycolysis and the citric acid cycle.

• F. Lipmann and H. Kalckar (1941) – ATP as the universal carrier
of biological free energy.

• O. Avery, C. Macleod and M. McCarty (1944) – DNA as the carrier
of genetic information.

• F. Sanger (1953) – sequence of amino acids in proteins is exactly
determined.
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• L. Pauling and R.B. Corey (1951), J. Kendrew (1957), M. Perutz
(1959) – the spatial structure of proteins.

• J. Watson and F. Crick (1953) – model of DNA structure is able
to explain replication and transcription.

• E. Racker (1960), P. Mitchel (1961), P.W. Boyer (1965) – mecha-
nism of the membrane synthesis of ATP.

• F. Crick and others (1960–70) – genetic code.
• M. Eigen (1970–80) – RNA is subject to Darwinian evolution.
• P. Berg, H. Boyer, S. Cohen (1970–80) – recombinational technol-

ogy of DNA (genetic engineering).
• H. Temin, D. Baltimore (1970) – discovery of the reverse transcrip-

tase in retroviruses (priority of RNA versus DNA).
• E. Naher and B. Sakmann (1976) – patch-clamp technique enabling

observation of ionic current through single protein channels.
• T. Cech, S. Altman (1983) – discovery of the autocatalytic intron

splicing from RNA (priority of RNA versus proteins).
• Many independent groups (1990–2000) – various techniques of ob-

servation and manipulation of single biological macromolecules.
• Global cooperation within the Human Genome Project and, inde-

pendently, the Celara Genomics Company (2001) – a ‘sketch’ (over
95% base pairs) of the full nucleotide sequence in human DNA.

The piece of history presented here is certainly incomplete and
probably not quite representative. However, it unambiguously implies
that, only at the end of the 1930s, when statements (1) and (2) were
already well founded, did molecular biology finally spring up. Until
recently, the limits of applicability of thermodynamics have not been
clear when describing the processes proceeding in biological systems.

2.2 The Principle of Mechanical Determinism

The entire rational structure of physics is based on the principle of me-
chanical determinism, formulated over 300 years ago by Isaac Newton
(Prigogine and Stengers, 1984; 1997; Newton, 1993). Using contempo-
rary language, we can express it in the statement:

The law of motion and the state of the physical system at a
given moment of time unambiguously and uniquely determine
the state of this system at all other moments of time, both in
the future and in the past.
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Fig. 2.1. The pendulum. A rigid body moving in a
given plane under the influence of gravity. The distance
between the mass centre and the rotation axis is fixed

States are characterized by appropriately long sequences of numbers.
The principle of determinism endows a sense to the notion of time as
a parameter that orders states linearly along trajectories of motion
which are the curves in a generally higher-dimensional space of states.

To avoid being too abstract, let us consider a simple example. The
mechanical state of a pendulum (Fig. 2.1) is determined by values
of the deflection angle α and the angular velocity ω. Here, the space
of states is reduced to a two-dimensional plane or, more precisely, an
infinitely long strip with boundaries α = −π and α = π identified with
one another. (Such a set can be imagined as the surface of a cylinder
made from the strip by gluing its edges.)

Figure 2.2a shows several trajectories of the pendulum motion in
the absence of friction. The uniqueness of the time evolution means
that one and only one trajectory crosses each point in the state space.
Locally, at each point, the law of motion determines a vector tangent to
the trajectory, with length equal to the rate (i.e., the time derivative)
of the state change along this trajectory (see Fig. 2.2b). The tangent
vector field to the trajectories on the whole space of states is described
by a certain differential equation referred to as the equation of motion.
For the pendulum it is the system of two equations

α̇ = ω , ω̇ = −I sinα , (2.1)

where I is a constant and the dot denotes differentiation with respect
to time. α̇ represents the horizontal component and ω̇ the vertical
component of the tangent vector (see Fig. 2.2b). The course of the
trajectories is found by solving this system of equations.

The two first-order differential equations (2.1) are equivalent to
one second-order differential equation, involving a second time deriva-
tive. On multiplying the deflection angle α by the constant distance
r between the mass center and the rotation axis, one gets the posi-
tion q = αr of the mass center on a circle described by r. Twofold
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Fig. 2.2. (a) Trajectories of the pendulum in the absence of friction. For small
values of the total energy, the pendulum oscillates around the equilibrium
state (α, ω) = (0, 0) (trajectories with shape close to an ellipse) whereas
for large values of the total energy the pendulum rotates with the angular
velocity never falling to zero (closed trajectories crossing the line α = ±π).
The stable equilibrium state (α, ω) = (0, 0) and also the unstable equilibrium
state, the upside down state (α, ω) = (±π, 0), make one-element trajectories.
(b) Field of vectors tangent to the space of states shown in (a)

differentiation of this relation with respect to time, after taking into
account (2.1) and multiplying both sides by the mass m, results in the
expression

mq̈ = −mrI sin
q

r
. (2.2)

It has the form of Newton’s second law : the mass times the acceleration
(the second derivative of position with respect to time) equals the force
acting on the pendulum treated as an effective material point.

Generally, in classical mechanics, the motion of a system with n de-
grees of freedom characterized by n position coordinates q1, q2, . . . , qn,
is determined by a system of n Newton equations

miq̈i = Fi(q1, q2, . . . , qn) , (2.3)

where mi are masses related to the positions qi, i = 1, 2, . . . , n. On
introducing n momenta pi conjugate to the positions qi, one can replace
the system of n second-order differential equations (2.3) by the system
of 2n first-order Hamilton equations (Penrose, 1979; Newton, 1993):

q̇i =
pi

mi
=

∂H
∂pi

, ṗi = Fi = −∂H
∂qi

. (2.4)
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Thus the state of a mechanical system with n degrees of freedom is
described jointly by a vector of 2n components (q1, . . . , qn, p1, . . . , pn).
The space of states of classical mechanics spanned by n positions and
n momenta is referred to as the phase space, and trajectories in this
space as the phase trajectories. A real-valued function on the phase
space, the Hamiltonian H = H(q1, . . . , qn, p1, . . . , pn) is interpreted as
representing the system’s total energy. The pendulum is a classical
mechanical system with one degree of freedom. Its Hamiltonian is the
sum of the kinetic and potential energies:

H(q, p) =
p2

2m
+ mr2I

(
1 − cos

q

r

)
, (2.5)

and the corresponding Hamiltonian equations (2.4) are of the form

q̇ =
p

m
, ṗ = −mrI sin

q

r
. (2.6)

In quantum mechanics the space of states is an infinite-dimensional
space of wave functions and the equation of motion is the partial dif-
ferential equation known as the Schrödinger equation, also involving
the first derivative with respect to time t, like (2.1) and (2.4) (New-
ton, 1993). In the case of a system of many indistinguishable particles,
the proper language is rather that of a quantum field . Let us stress
clearly that the evolution of the wave function or, more generally, the
quantum field is fully deterministic, only the process of measurement
that couples the microscopic object to a macroscopic observer indicates
some elements of indeterminism.

2.3 Irreversibility of Macroscopic Processes

Thermodynamic processes are also deterministic and the time evo-
lution of physical quantities characterizing them is determined by the
appropriate differential equations of motion. As an example let us con-
sider the simple process of enzymatic catalysis in vitro (in a test tube)
described by a system of two coupled chemical reactions (Cantor and
Schimmel, 1980, Chap. 16):

E + R
k′
+−→←−

k′
−

M
k′′
+−→←−

k′′
−

E + P . (2.7)

The symbol R denotes the reagent molecule, P the product molecule,
E the free enzyme and M the intermediate enzyme–substrate complex.
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Without the enzyme E, the reaction R −→←− P hardly proceeds at all.
The enzyme is a biological catalyst – it takes part in the reaction and
speeds it up considerably but it is not consumed, in the sense that the
molecule E used in the first reaction (2.7) is recovered in the second.

For chemists, the scheme (2.7) with the forward and the reverse
reaction rate constants k′

+, k′′
+ and k′−, k′′−, respectively, denotes the

fulfillment of two kinetic equations:

d
dt

[P] = −k′′
−[E][P] + k′′

+[M] ,

d
dt

[M] = −k′
−[M] + k′

+[E][R] + k′′
−[E][P] − k′′

+[M] .

(2.8)

The symbol whereby a compound is given in square brackets denotes
its concentration in moles per dm3. The course of each reaction in
a given direction increases the concentration of one compound and
decreases that of another. In the closed reactor, two conservation laws
are satisfied:

[R] + [P] + [M] = [R]0 = const. , [E] + [M] = [E]0 = const. , (2.9)

so that only two concentrations are independent variables.
Using the relations (2.9) and introducing dimensionless variables,

the molar ratios

x ≡ [P]/[R]0 , y ≡ [M]/[E]0 , (2.10)

the dimensionless time expressed in units of the reciprocal reaction
rate constant k′′

+, k′′
+t → t, as well as the parameters

a ≡ [R]0k′′
−/k′′

+ , b ≡ [R]0k′
+/k′

− , c ≡ [E]0/[R]0 , d ≡ k′
−/k′′

+ ,
(2.11)

we can rewrite (2.8) in the form

ẋ = −c[a(1 − y)x − y] ,

ẏ = d[b (1 − y)(1 − x − cy) − y] + [a (1 − y)x − y] .
(2.12)

As in (2.1), the dot denotes differentiation with respect to time.
The time-constant equilibrium solutions to (2.12), denoted by xeq

and yeq, satisfy the conditions ẋ = ẏ = 0, whence

yeq = a (1 − yeq) xeq , yeq = b (1 − yeq)(1 − xeq − cyeq) . (2.13)

These equations relate values of the parameters a and b to values of
the more directly interpretable parameters xeq and yeq.
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Fig. 2.3. Time course of the enzymatic reaction described by (2.12). The
variable x determines the value of the molar ratio of the reaction product
P, and the variable y the value of the molar ratio of the enzyme–substrate
complex M. For both diagrams, it is assumed that xeq = yeq = 0.75 and d = 1.
For (a) c = 0.1, and for (b) c = 0.3. Successive points are drawn for Δt =
0.005, from which the rates of particular process stages can be evaluated.
(Drawings were made using the program DiGraph written by Tomasz Jarus)

The system of two differential equations (2.12) for the variables x
and y is a counterpart to the system of two differential equations (2.1)
for the variables α and ω. Following the conservation laws (2.9), the
set of all possible states is the trapezium 0 ≤ y ≤ 1, 0 ≤ x ≤ 1 − cy.
However, the trajectories do not circle around the equilibrium point
as in the case of the pendulum, but tend to this point. Figure 2.3
shows numerical solutions to (2.12) for two different sets of values of
the parameters. Note that the trajectories tend to the state of ther-
modynamic equilibrium in two stages. First, they reach a common
trajectory, covering almost exactly the solution of the equation ẏ = 0,
and then following this trajectory, although not quite along it, which
is not allowed by the principle of determinism, they tend to the final
equilibrium. The distinguished trajectory determines the steady state
stage of the kinetics. We shall consider this in more detail in Chap. 7.

When compared to the determinism of mechanics, the determinism
of chemical kinetics described by (2.12) is somewhat defective. The
initial values of the molar ratios x(0) and y(0) do indeed determine
the values of these ratios unambiguously and uniquely in all the fu-
ture moments of time. However, if we try to find the values of x and
y in the past , it may happen that what we obtain is not physically
meaningful: either larger than unity or negative. The trajectories ex-
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Fig. 2.4. Trajectories of a real macroscopic pendulum also tend to a unique
equilibrium state. Solutions to (2.14) for k = 0.2 (a) and k = 0.4 (b). Only
two trajectories are shown, starting from rotational motions in the clockwise
and anticlockwise directions, respectively. (Drawings made using the program
DiGraph written by Tomasz Jarus)

trapolated backward leave the space of admissible states. In contrast
to (2.1), equations (2.12) are irreversible in time.

In general, the laws of motion on the macroscopic level are irre-
versible, while those on the microscopic level are reversible in time.
Trajectories of a real, macroscopic pendulum are described by a sys-
tem of equations

α̇ = ω , ω̇ = −I sinα − kω , (2.14)

rather than (2.1), with an additional term −kω describing friction.
The course of the trajectories is shown in Fig. 2.4. Friction causes a
continual decrease in the deflection amplitude as time goes by and a
tendency toward the equilibrium state (αeq, ωeq) = (0, 0). Conversely,
going back in time leads to a continual increase in the deflection am-
plitude until a value that can become physically meaningless.

Equations (2.1) of pure mechanics without friction and the trajec-
tories in Fig. 2.2a are meaningful only on the microscopic level, of
course, if quantum effects can be neglected. They can be applied, e.g.,
to describe torsional vibrations and internal rotations of the ethane
molecule C2H6 (see Fig. 2.5) (Pauling and Pauling, 1975, Chap. 7).
(As the rotational potential energy has three minima within the full
rotation about the C–C axis, the angle α has to be replaced by 3α.)
One of the tasks of statistical physics as far as we are concerned in
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�

Fig. 2.5. Torsional pendulum as a model of
the ethane molecule CH3–CH3. The bond
length and angles are assumed constant.
The potential energy has three minima for
values of the angle α, corresponding to the
position of the three hydrogen atoms bound
to one carbon atom in between the three
hydrogen atoms bound to another carbon
atom

this chapter is to explain how macroscopic irreversibility is possible on
the grounds of the reversible microscopic laws of motion of atoms and
particles.

2.4 Instability of Motion as the Origin of Irreversibility

In contrast to (2.12), the equations of mechanics (2.4) not only seem
to have physically sensible solutions both for t ≥ 0 and t < 0, but
they are in fact invariant under the transformation (Penrose, 1979;
Prigogine and Stengers, 1984; 1997; Newton, 1993)

t, pi �−→ −t,−pi , (2.15)

i.e., time reversal combined with the simultaneous reversal of all mo-
menta. The symmetry (2.15) means that if (q(t), p(t)) is a solution
to the set of equations (2.4), then (q(−t),−p(−t)) must also be its
solution. It is shown schematically in Fig. 2.6a, where q and p rep-
resent the (in general) n-dimensional vectors q = (q1, q2, . . . , qn) and
p = (p1, p2, . . . , pn). In fact, one could not distinguish whether a movie
of the motion of the frictionless pendulum were projected from the
beginning or from the end. In the mechanical system, not only the
reconstruction of the past, but also reversing towards the past seems
possible. Figure 2.6a suggests a ‘journey in time’ by two applications
of the momentum reversal operation.

Although the property of reversibility of motion does not depend
on the state space dimension, in the case of macroscopic systems com-
posed of a huge number of molecules, this no longer seems to be the
case. Let us imagine that the plane in Fig. 2.6 represents the practi-
cally infinite-dimensional space of states of some water in a pool and
let state 1 represent throwing a stone into the water, whilst state 2
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Fig. 2.6. (a) From the symmetry of the equations of mechanics it follows
that, together with the trajectory segment 1 2, the space of states must also
include the trajectory segment 2̄ 1̄ which is the symmetrical reflection of the
segment 1 2 in the plane p = 0. The segment 2̄ 1̄ of the trajectory describes the
reverse motion with respect to that described by the segment 1 2. A system
which, starting from state 1, reaches state 2 after time t, will return to state
1 after momentum reversal (transition from 2 to 2̄), the free evolution to
1̄ through the next period of time t, and the renewed momentum reversal.
(b) In the case of unstable motion, an infinitesimally small inaccuracy in the
momentum reversal can lead the system onto a quite unexpected trajectory
2̄′ 1̄′. Symmetrical to the trajectory segment 2̄′ 1̄′ is the trajectory segment
1′ 2′. This can be considered an alternative to the trajectory segment 1 2
when, knowing with a finite accuracy that the present state of the system is
2, one tries to reconstruct its past

corresponds to the resulting waves reaching the bank. Now the reverse
process, admissible by mechanics, beginning with the waves moving
back from the bank (state 2̄) and ending by ejecting the stone from
the water (state 1̄), is never observed. If we see such a phenomenon in
a movie we suppose immediately that it is being projected from the
end to the beginning. A clear contradiction between the irreversibility
of macroscopic phenomena and an expected reversibility of mechanics,
referred to by Loschmidt in the 1870s as the ‘irreversibility paradox’,
seemed to his contemporaries to be an argument against the newly-
born statistical physics, whose aim was to derive the macroscopic laws
of thermodynamics from the microscopic laws of mechanics.

The apparent contradiction between the irreversibility of macro-
scopic phenomena and the reversibility of the laws of mechanics is
explained by the asymmetric instability of trajectories (see Fig. 2.6b)
(Penrose, 1979; Prigogine and Stengers, 1984; 1997). A stone can be
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thrown into water (state 1) in many different ways, getting a similar re-
sult each time (state 2). A stone ejected from the water (state 1̄) can be
observed only if the initial state 2̄ is prepared with an accuracy that
is practically unrealizable. A slight inaccuracy results in the system
taking a completely different trajectory 2̄′ 1̄′. Also an uncontrollably
small inaccuracy in the reversal of momenta can lead to unpredictable
results, which puts the traveler getting into the above time vehicle at
serious risk.

The symmetry (2.15) implies that the practical impossibility of
getting back to the past is equivalent to the practical impossibility of
determining the state of this past. Two indistinguishable final states
2 and 2′ can be a consequence of two different initial states 1 and 1′
(see Fig. 2.6b).

Unstable mechanical systems prove to be practically irreversible, so
there is no essential difference between equations (2.12) and (2.4). Just
as not all values of x and y have physical meaning, not all states (q, p) in
the phase space can be practically realized (with a sufficient accuracy)
(Brillouin, 1964). Apart from the exact upside down state, all the other
trajectories of a planar pendulum are stable only because it is a sys-
tem of one degree of freedom, its phase space is two-dimensional, and
continuous trajectories in such a space must be stable. Stable systems
of a higher number of degrees of freedom are extremely rare. Recent
investigations provide increasing evidence that mechanical systems of
only a few degrees of freedom (including our planetary system, a tra-
ditional subject in the study of mechanics for over 300 years) occupy
in the phase space only small regions filled with fully stable trajecto-
ries. Much more common is a partly stable motion (stable for chosen
degrees of freedom) or completely unstable motion (Berry, 1978).

2.5 Statistical Ensembles.
Mixing and the Trend Toward Equilibrium

The great methodological role of the principle of mechanical determin-
ism rests with the distinction between general laws (the form of the
equations of motion) and individual facts (the data characterizing a
state of a specific system at a specific time). Although we have rather
well recognized laws of physics, a sufficiently accurate determination
of the state of a given system poses practically insurmountable difficul-
ties. Thus the methodological worth of mechanical determinism does
not have to automatically imply its prognostic worth, that is, a prac-
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tical prediction of states at any time in the future or reconstruction of
states in the past.

The difficulty in determining the initial state arises for several rea-
sons (Brillouin, 1964; Prigogine and Stengers, 1984; 1997). The first is
the complexity of systems, which means that a complete characteriza-
tion of a state requires the determination of the values of too many
quantities. A cubic micrometer of liquid water or an object similar in
size to the procaryotic cell contains some 3 × 1010 molecules, whose
translational degrees of freedom are described by a state vector with
2×1011 components. The second reason is related to the already men-
tioned instability of motion. A state of an unstable system, even one
of only a few degrees of freedom, must be determined with very high
accuracy in order to predict its evolution over a reasonable time span.
From the point of view of information processing, the description of a
stable state of a complex system or an unstable system with a small
number of degrees of freedom requires a practically infinite number of
digits (bits).

The third reason is more fundamental in nature. In order to deter-
mine the state of a system, we need to perform a measurement , taking
the risk of disturbing this state. The unavoidable disturbance when
coupling a macroscopic measuring device with a microscopic quantum
object makes it impossible to fully determine the wave function and
thus to make use of the determinism implied in the Schrödinger equa-
tion. A disturbance of the system’s state by the act of observation is
not restricted to quantum physics. It is obvious, for example, that the
more accurately a biological object is studied, the more it is affected
by the measurement. The act of collecting very detailed data can even-
tually prove pointless because of the death of the object during their
collection.

Statistical physics has found a simple way of circumventing the
problem of the impossibility of knowing the initial state. Instead of a
single system it considers a set (or ‘ensemble’) of many identical copies
of the system differing only in the initial state. Thus, a single phase
trajectory is replaced by a phase flow (Penrose, 1979). The trajecto-
ries included in the flow can be stable (when a small change in the
initial state does not lead to significant differences in their course) or
unstable (when a small change in the initial state brings about major
consequences).

Particularly interesting for statistical physics are extremely unsta-
ble mechanical systems having the property of mixing the phase flow
in an exponentially fast way (Penrose, 1979; Prigogine and Stengers,
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1984; 1997). After a period of time called the stochastization time, the
states of the set of systems showing this ability reach a practically
uniform distribution over the entire domain of phase space available
for motion (Fig. 2.7a). The uniform distribution of the final states is
independent of that of the initial states, knowledge of which proves
unnecessary. The effectiveness of the methods of statistical physics in
various applications is a strong argument supporting the thesis that
unstable behavior with exponential mixing is typical of systems com-
posed of many identical particles.

In the limit of a continuum (infinite and uncountable number) of
systems whose states initially fill up a certain regular region of nonzero
volume in the phase space, we get a phase flow like the one shown
schematically in Fig. 2.7b. Continuity of the evolution demands that
the regions containing the states of the ensemble do not lose their sim-
ple connectivity, whereas the Liouville theorem, known from classical
mechanics, demands that the initial volume of this region be preserved.
Therefore, a result of the evolution with exponential mixing must be a
region of fantastically diversified shape spreading over the entire avail-
able domain of the phase space, but without filling it (Prigogine and
Stengers, 1984; 1997).

Assuming that the initial distribution of states in the statistical
ensemble looks like the one shown in Fig. 2.7b (continuum of states
filling a region of nonzero volume), we can make a coarse-grained de-
scription of the actual ensemble, which can at best be composed of
a very high but always countable number of elements. Of course, the
result of the evolution whereby the states spread uniformly over the
entire available domain of the phase space for systems with exponen-
tial mixing is independent of the distribution of the initial states and
whether there is a countable number of states or a continuum of them.
The operation of making a coarse-grained description has a deep phys-
ical meaning, as it takes into account the uncertainty of measurements
in the state determination, with each point being replaced by a cubicle
or a sphere of the size corresponding to the measurement error. The
operation should be made directly before each physical description of
the system’s state distribution. In this sense the description of the
distribution of the final states of the system shown in Fig. 2.7b is defi-
nitely not physical. For mechanical systems with mixing, the operation
of making the description coarse-grained does not commute with the
operation of evolution. The process of making the description coarse-
grained after the evolution is completed leads to a uniform distribution
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Fig. 2.7. Schematic picture of the time evolution of an initial set of states of
a system having the property of exponential mixing. After a stochastization
time, a set A spreads uniformly over the entire available domain of the phase
space. Time t1 is shorter and time t2 longer than the stochastization time.
(a) Set A is countable. (b) Set A is uncountable and has a nonzero volume.
According to the Liouville theorem, the volume remains invariant during the
evolution so that the spread of the set A over the phase space does not mean
that it covers the entire available domain. (c) Coarse-graining of the set of
states made both at the initial and final moment of time
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of the system’s states, continuously covering the entire region of the
space of states available for motion (Fig. 2.7c).

The state of a statistical ensemble characterized by a uniform distri-
bution of states of the systems making it up over the entire available
domain of the space of states is called the state of thermodynamic
equilibrium (Penrose, 1979; Prigogine and Stengers, 1984; 1997).

2.6 Probability and Entropy.
The Mechanism of Entropy Increase

The coarse-grained description of the statistical ensemble, presented
schematically in Fig. 2.7, can be formally expressed using the concepts
of probability theory (van Kampen, 2001, Chap. 1). Later on, we deal
only with the statistical ensembles evolving according to the laws of
classical mechanics. The states of the systems making up the ensemble
are denoted by s and the whole space of states by S. In general, each
coarse-grained distribution of states in the ensemble is described by
a certain probability distribution density function ρ determined on S.
The probability that a state of a system in the ensemble belongs to
a given subset A of the phase space S is given by a volume integral,
usually of a large number of dimensions:

P (A) =
∫
A

ds ρ(s) . (2.16)

The probability distribution density has to be normalized to unity, i.e.,
the integral over the whole phase space is∫

S
ds ρ(s) = 1 , (2.17)

which means that each system is certainly in some state.
For a given probability distribution density ρ and a chosen dynam-

ical variable, that is a real-valued function determined on S,

X (s) = x , (2.18)

and treating the function X as a random variable of the probability
theory, we can define its expectation value

X = 〈X 〉 ≡
∫
S

ds ρ(s)X (s) . (2.19)

The operation of relating the dynamical variables to their expectation
values is linear, being an integration:
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〈aX + bY〉 = a〈X 〉 + b〈Y〉 , (2.20)

for any two dynamical variables X and Y and two arbitrary real num-
bers a and b. The difference between the dynamical variable and its
expectation value

X ≡ X − 〈X〉 (2.21)

is referred to as a fluctuation. From the property (2.20), it follows that
the expected value of a fluctuation equals zero. A non-zero measure
of a fluctuation is its standard deviation, i.e., the square root of the
expectation value of the square of the fluctuation:

σ =
√
〈( X )2〉 . (2.22)

Let us assume that we know the probability P (A) of a state of a
given system belonging to a subset A of the state space S and let the
system be subject to observation. Having found (measured) that the
system is actually in a state belonging to A (in the probability the-
ory the set A is interpreted as an event), the observer gains a certain
amount of information (Brillouin, 1964) about the system investigated
and the original probability P (A) changes into certainty. The amount
of information is larger as the probability P (A) is smaller. Conversely,
if P (A) is large, the amount of information gained is small. In other
words, the amount of information I is a decreasing function of P . The
amount of information corresponding to the occurrence of two inde-
pendent events (the joint probability is equal to the product of the
corresponding probabilities) should be the sum of the amounts of in-
formation corresponding to the occurrence of the separate events. The
only function of probability having all these properties is the logarithm:

I(A) = −k logb P (A) , (2.23)

where k and b are some constants. The logarithm of unity equals zero:
if the event A was sure to happen before the observation, P (A) = 1,
and we do not gain any new information, i.e., I(A) = 0. The formula
(2.23) was introduced by Shannon in his famous paper on information
theory in 1948.

Choice of the constants k and b determines a unit of the amount of
information. Assuming k = 1 and b = 2, we get one bit , the amount of
information gained after realization of one of the two equally possible
(P = 1/2) events represented by a binary digit 0 or 1:

I = − log2

1
2

= 1 . (2.24)
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The amount of information contained in a number written with the
help of the three decimal digits equals

I = − log2 P1P2P3 = − log2

1
9
− log2

1
10

− log2

1
10

= 9.28 bits .

(The probabilities of the choice of a value of each digit are indepen-
dent of each other, so the amounts of information are to be added;
the first digit cannot be zero and assumes only 9 values whereas the
remaining assume 10 values.) The amount of information contained in
an arbitrary sequence of 8 binary digits is somewhat smaller:

I = − log2

(
1
2

)8

= log2 28 = 8 bits ,

i.e., 1 byte.
If one knows not only the probability P (A) of belonging to a cer-

tain region A of the state space S, but also the whole probability
distribution density ρ(s) on S, then following (2.19), one can deter-
mine the expected amount of information to be gained by an observer
after establishing the state s of the system (Brillouin, 1964):

S = −kB

∫
ds ρ(s) ln ρ(s) . (2.25)

Equation (2.25) is identical to the expression first proposed by Boltz-
mann in 1872, and later, for the general case of an arbitrary statistical
ensemble, by Gibbs in 1902, in order to give a statistical interpretation
of entropy . This is the name given by Clausius in 1865 to the quotient of
the bound energy (the part of the internal energy that cannot be used
to perform work) and temperature. In this formula, ln stands for the
natural logarithm of base e = 2.718 . . ., while kB = 1.38×10−23 J/K is
the value of the constant occurring in the ideal gas equation divided by
the number of molecules, known as the Boltzmann constant . Entropy
is expressed in the units of energy divided by the units of temperature.

Equation (2.25) needs some explanation. Of course, only a loga-
rithm of a dimensionless quantity makes mathematical sense. However,
the probability density is expressed in the units of the inverse volume
in the phase space. As follows from the form of the Hamilton equa-
tions (2.4), the product of any generalized position and the conjugate
momentum is always expressed in the units of energy multiplied by
the units of time, i.e., in the units of action. The unit of volume in the
phase space is the unit of action raised to a power n, where n is the
number of degrees of freedom of the system. Having determined the
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unit of action, we can move to the dimensionless function of probability
density and make mathematical sense of (2.25). The determined unit
of action corresponds to the accuracy to which the observer can spec-
ify the microscopic state s of the system. This is, of course, somewhat
arbitrary, but there is a natural physical limit to this accuracy given
by the quantum of action, the Planck constant h = 6.6 × 10−34 J s.

Let A be a given subset of the phase space. We calculate the entropy
(2.25) for the probability density to be constant in the region A and
zero elsewhere (see Fig. 2.7b):

ρ(s) =

{
Ω−1 if s belongs to A ,

0 if s does not belong to A .
(2.26)

For the probability to be normalized to unity as in (2.17), the constant
Ω must represent the volume of the subset A:

Ω =
∫
A

ds . (2.27)

Hence, we have

S = −kB

∫
S

ds ρ(s) ln ρ(s) = kB

∫
A

dsΩ−1 lnΩ = kB lnΩ , (2.28)

so the entropy is proportional to the logarithm of the volume of region
A, or more precisely, to the logarithm of the number of units of volume
contained in A, determined by the accuracy of the state specification.
In its original formulation, Boltzmann’s entropy is proportional to the
logarithm of the number of microstates (states of individual systems
comprising the ensemble) in a given macrostate (state of the statistical
ensemble).

Since according to the Liouville theorem the volume in the phase
space of classical mechanics is preserved during evolution, the entropy
of a statistical ensemble calculated for the probability distribution ρ(s),
evolving strictly according to the equations of motion, also remains un-
changed (Fig. 2.7b). However, as stated earlier, only the probability
distribution coarse-grained each time we wish to describe the ensem-
ble makes physical sense. In systems with mixing, the coarse-grained
probability distribution extends on a certain time scale over the entire
available subset of states (Fig. 2.7c). Consequently, the entropy of the
coarse-grained distribution in the state of thermodynamic equilibrium
is greater than in the initial state. The instability of motion, hence the
phenomenon of mixing, leads to the law of entropy increase in time
(Penrose, 1979; Prigogine and Stengers, 1984; 1997).
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2.7 The Law of Large Numbers.
Physical Realizations of Statistical Samples

It might seem that the probability, and thus also the entropy, being a
measure of the information the observer had before the measurement,
characterizes the observer and not the system. But the probability
can be experimentally determined (Jaynes, 1978). Let us consider for
example the tossing of a coin. According to the principle of insufficient
reason (formulated by Daniel Bernoulli, whose father and uncle spent
much time playing this game), the probabilities of getting heads or
tails are the same, and each equals P = 0.5. However, after a series
of tosses we may find that tails has appeared on average 0.6 times
per toss. If the number of tosses is high enough, we conclude that the
coin is non-symmetric. In further experiments we expect to toss tails
with probability P = 0.6, so the value of the probability does indeed
characterize the system studied (its asymmetry) and not the observer.

The value of probability is determined in a statistical experiment
carried out for a sufficiently large statistical sample, assuming that the
components of the sample are statistically independent , which is un-
derstood in the sense that there is no correlation between the random
variables describing particular elements of the sample. Two random
variables (that we identify with dynamical variables) X and Y are
non-correlated if the expected value of their product is equal to the
product of their expected values:

〈XY〉 = 〈X 〉〈Y〉 . (2.29)

From the definition of fluctuation (2.21) and linearity (2.20), it follows
that

〈XY〉 − 〈X〉〈Y〉 = 〈 X Y〉 , (2.30)

so the lack of correlation of the variables X and Y implies that the
corresponding fluctuation correlation function equals zero:

〈 X Y〉 = 0 . (2.31)

A consequence of the condition of statistical independence is the
extremely important theorem known as the law of large numbers. Con-
sider a statistical sample of N identical random variables (that is, dy-
namical variables) X (l) with the same expected value X and standard
deviation σ: 〈

X (l)
〉

= X ,
〈
( X (l))2

〉
= σ2 . (2.32)

We assume that the variables X (l) are non-correlated:
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X (l) X (l′)

〉
= 0 , (2.33)

for l 
= l′. The statistical mean or average of the series of variables
(X (l)) is a random variable equal to their arithmetical mean:

X ≡ 1
N

N∑
l=1

X (l) . (2.34)

Linearity (2.20) implies that the expected value of the statistical mean
X equals the expected value X:

〈
X
〉

=

〈
1
N

N∑
l=1

X (l)

〉
=

1
N

N∑
l=1

〈X (l)〉 = X , (2.35)

while the statistical independence (2.33) of the variables X (l) gives

〈
( X )2

〉
=
〈
(X − X)2

〉
=

〈[
1
N

∑
l

(X (l) − X)

]2〉
(2.36)

=
1

N2

〈[∑
l

X (l)

]2〉
=

1
N2

∑
ll′

〈 X (l) X (l′)〉 =
σ2

N
.

(In the last but one expression, in the sum of N2 components, only N
components are different from zero.) As a consequence, the standard
deviation of the statistical mean X from its expected value X is√〈

( X )2
〉

=
σ√
N

. (2.37)

In the limit N → ∞ this deviation tends to zero, so the value of the
statistical mean X exactly equals the expected value X :

X = X . (2.38)

This is the thesis of the law of large numbers. The statistical mean X
from a sufficiently large sample is a random variable which, in contrast
to the variables X (l), shows no fluctuations at all .

The probability P of tossing tails in a series of Bernoulli experi-
ments can be considered as the expected value of a dichotomous (i.e.,
taking only two values) random variable P determined by the formula

P =

{
1 if tails ,

0 if heads .
(2.39)
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Indeed, equations (2.19) and (2.16) imply that 〈P〉 determines the
probability of the set of states A leading to tails. By virtue of the law
of large numbers, P is equal to the mean value of P, hence the fraction
describing the ratio of the number of favorable tosses to the number
of all tosses in a large enough sample. A possible difference between
the mean value obtained for an insufficiently large sample and the
real value P is interpreted as an error in measurement in a statistical
experiment (Jaynes, 1978).

The law of large numbers allows one to identify the expected val-
ues of the probability theory with the mean values from a sufficiently
large statistical sample. In statistical physics the quantity X = 〈X 〉 is
the mean or average value of the dynamical variable X and the name
expected value is not used (van Kampen, 2001, Chap. 1). A statistical
sample can be a set of many identical experiments performed at differ-
ent times on the same single system or one experiment (measurement)
performed simultaneously on many identical systems making up a sta-
tistical ensemble. Practically speaking, there is no problem in realizing
the two types of sample to determine the probability of tossing heads
or tails. (We can toss the same coin many times or toss a sack of coins
once.) However, use of the two methods in the statistical description
of macroscopic physical systems calls for caution.

Ludwig Boltzmann, one of the founders of statistical physics, em-
phasized that the main feature of a macroscopic measurement is to take
the time average of a given dynamical variable measured in consecutive
microscopic states of the observed system. This feature follows from
the finite time of measurement and from the inertia of the macroscopic
measuring device. A measurement by such a device automatically real-
izes a statistical experiment on a sample of the first kind. The problem
is that we cannot in general expect the dynamical variables X (t) de-
scribing a given property of the same system at different moments of
time to be statistically independent.1 Another founder of statistical
physics, Josiah Willard Gibbs, treated the macroscopic quantities as
mean values obtained for a statistical ensemble, namely the one intro-
duced in Sect. 2.5. This time the problem is that a statistical ensemble
made of many copies of the same system was to its author a concept ,
an abstract idea, and not a genuinely existing object. We always deal
with only one copy of a macroscopic system, so it is difficult to consider
it as a subject of statistical experiments.

1The temporal evolution of the system’s state defines the temporal evolution of
the dynamical variable as a real function of this state.
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(b) (c)(a)

Fig. 2.8. Three physical realizations of a statistical sample. (a) Single copy
of an ergodic system which, during the period of measurement, visits a
sufficiently uniformly distributed set of states in the entire domain of the
phase space available for the motion. (b) Ideal gas of many identical un-
correlated molecules. (c) System of strongly interacting molecules that can
be divided into many, approximately identical and practically independent
many-molecule subsystems

If statistical physics is entitled to use the actual realizations of the
two types of statistical sample, it is only because it deals with macro-
scopic systems assumed to show the property of exponential mixing
discussed in Sect. 2.5.2 The property of mixing is mathematically very
strong. First of all, it implies ergodicity , the equality of the time aver-
age of a dynamical variable X ,

X ≡ 1
τ

∫ τ

0
dtX (t) , (2.40)

for a period of time τ of the order of the stochastization time, and the
expected value 〈X 〉 defined by the formula (2.19):

X = 〈X 〉 . (2.41)

In this way the thesis (2.38) of the law of large numbers becomes valid
without the need to assume a lack of correlation between elements of
the sample X (t). Ergodicity means that, during the averaging time,
the system visits a sufficiently uniformly distributed set of states in
the entire available domain of the phase space (see Fig. 2.8a) (Penrose,
1979).

For over half a century, the condition of ergodicity seemed of key
importance for statistical justification of the laws of thermodynam-
ics, but today it is obvious that it is important only in the context of

2We should emphasize that mixing is a property of a system and not of a
statistical ensemble.
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the mixing condition, as only this condition ensures a trend toward
thermodynamic equilibrium. Ergodicity is sufficient when considering
the properties of a system that has already reached thermodynamic
equilibrium, but the processes of reaching the equilibrium must be de-
scribed in terms of another property of unstable systems with mixing,
that is, a time decay of correlation: for any two dynamical variables X
and Y,

〈X (τ)Y〉 −→ 〈X〉〈Y〉 , (2.42)

for a period of time τ of the order of the stochastization time. [In
the state of thermodynamic equilibrium, 〈X (τ)〉 = 〈X 〉.] The decay
of correlations is a formal expression of the stochastization process
(Penrose, 1979).

It should be emphasized that ergodicity or mixing can already char-
acterize very small mechanical systems such as two rigid spheres on
a billiard table, as was proved by Sinai in 1966 (Berry, 1978). Hence,
the property of mixing alone is not sufficient to justify the founda-
tions of statistical physics. Only for a macroscopic system composed
of many identical molecules of one or several kinds can the process of
stochastization end with a division of the system into many identical
uncorrelated subsystems (Penrose, 1979). An individual macroscopic
system in such a state makes a real statistical ensemble and its state
can be sensibly treated as a state of thermodynamic equilibrium. (Re-
call that the notion of thermodynamic equilibrium refers only to a
statistical ensemble or, more generally, a statistical sample.)

Each measurement of a dynamical variable in the form of a sum

X =
N∑

l=1

X (l)
sub , (2.43)

where the index l numbers individual subsystems, is a statistical exper-
iment to which the law of large numbers applies. Here, the sum on the
right-hand side is not divided by the number of subsystems N , as in
(2.34). The mean value of the variable X is nonzero and proportional
to N , while its standard deviation, according to the law of large num-
bers, is proportional to

√
N . The relative fluctuation, defined as the

ratio of the standard deviation to the mean value of a given quantity,
is thus inversely proportional to

√
N , as in the original formulation of

the law of large numbers, and tends to zero in the limit as N → ∞.
The density of the probability distribution of a system composed of
uncorrelated identical subsystems is a product of identical functions
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of the probability distribution density ρsub defined for the states sl of
individual subsystems:

ρ(s) ≡ ρ(s1, . . . , sN ) = ρsub(s1) · · · ρsub(sN ) . (2.44)

The density of the probability distribution ρ in the form (2.44) is
unambiguously determined by the density ρsub of the probability dis-
tribution of the subsystems, and it is all the same whether we speak
about one or the other.

The type of subsystem into which a given macroscopic physical sys-
tem is decomposed depends on the character of the system, its internal
structure, and the strength of internal interactions. The simplest sys-
tem of statistically independent subsystems is the ideal gas, that is,
an ensemble of many identical particles whose interactions are negli-
gibly small (Fig. 2.8b).3 Despite its simplicity, the statistical physics
of both classical and quantum ideal gases explains many nontrivial
phenomena. Unfortunately, this model is not able to describe certain
properties of the condensed phase, e.g., short-wavelength collective ex-
citations or phase transitions, related to a spontaneous ordering of the
system in which the interactions between particles and their mutual
correlations are essential (Chandler, 1987). In such circumstances, a
commonly adopted approach is to divide a given system into many,
approximately identical parts, as shown in Fig. 2.8c. (Considering its
arbitrary character, the division should be made in mind rather than
in reality.) If the parts are sufficiently large, the correlations and inter-
actions on their boundaries can be neglected, as in the ideal gas. An
exception is the critical state of the system in conditions close to a con-
tinuous phase transition, when the correlations become infinitely long-
range and the standard deviations infinitely high (see Appendix A.5).

All three physical realizations of a statistical sample can be used
in the thermodynamic description of processes taking place in a living
biological cell. However, because of the lack of spatial uniformity, the
problem is not so simple as in the thermodynamics of abiotic systems,
and we shall discuss it again several times.

3If the particles are indistinguishable, the elementary volume of the phase space,
determining the accuracy of determination of the state of a macroscopic system by
an observer [see the comment concerning the definition of entropy (2.25)] must
comprise all N ! permutations of the elementary volumes with a fixed numbering of
particles (Chandler, 1987).
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2.8 The Relativity of Thermodynamic Equilibrium

The process whereby a macroscopic system reaches thermodynamic
equilibrium does not have to be monotonic in time. It usually takes
place in stages and is characterized by several stochastization times
that can be significantly different. Thus the concept of thermodynamic
equilibrium is not absolute and depends on the time scale on which a
given phenomenon is considered (Haken, 1990; Prigogine and Stengers,
1984; 1997).

For example, let us consider the process in which a cup with hot
coffee to which a small amount of cream has been added moves to-
wards thermodynamic equilibrium (Palmer, 1982). On a time scale of
a few minutes, the process of spontaneous mixing (called diffusion by
physicists) will take place as a result of which, to begin with, the con-
centration of the cream in the coffee reaches equilibrium. Over a longer
time – of the order of one hour the temperature of the coffee and the
surrounding air will reach the same value. However, a cold coffee in
a cup is not yet a system at full thermodynamic equilibrium. If the
surrounding air is dry enough, water from the coffee must evaporate
on a time scale of a few days (equilibrium is reached between the liq-
uid and the gas phase). But complete equilibrium has still not been
reached, as the porcelain is not everlasting and will eventually undergo
sublimation or decomposition into dust.

The above example illustrates the hierarchism in the process of
reaching thermodynamic equilibrium. The origin of the hierarchy of
stochastization times are bottlenecks in the phase space (Fig. 2.9). A
division of the space of states into subsets separated by bottlenecks
follows from a specific organization of the system on the macroscopic
or microscopic scale, which we shall discuss in the next chapter.

On a practical level, we can distinguish fast , slow and very slow
processes for each time scale. By definition, nonequilibrium thermody-
namics deals with the phenomena involved in reaching thermodynamic
equilibrium by physical quantities determined by slow processes. The
stochastization times corresponding to these processes are known as re-
laxation times. On the time scale of slow processes, the physical quan-
tities determined by fast processes are already in a thermodynamic
equilibrium, called partial equilibrium, while the physical quantities
determined by very slow processes are frozen (Palmer, 1982).

Structures in frozen nonequilibrium are commonplace. For exam-
ple, a certain amount of carbon, hydrogen and oxygen atoms taken
in the proportion 1:2:3 can occur in the form of a diamond covered
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t1 t2

Fig. 2.9. As a consequence of the occurrence of a bottleneck (broken line)
between two subsets in the space of states, the process of stochastization
takes place in two stages: at first within the subsets (time scale t1), and then
between the subsets (time scale t2)

with water in a pure oxygen atmosphere, in the form of cellulose (the
main component of paper) also in a pure oxygen atmosphere, or as a
mixture of gaseous carbon dioxide and steam. Only the latter form is
in complete thermodynamic equilibrium, whereas the first two are, in
normal conditions, frozen structures. In fact, the atomic composition of
matter in the Universe, determined by the ratio of the total number of
neutrons to protons, is also frozen. Neutrons and protons are the high-
and low-energy states of the same particle known as a nucleon. At the
mean temperature of the Universe, only 3 degrees above absolute zero,
practically all nucleons should occur in the low-energy state, that is as
protons. Thus, the Universe should be composed only of hydrogen, and
the fact that there occur also carbon, nitrogen, oxygen and some other
elements as well, proves the presence of a deep nonequilibrium. The
frozen structures store a memory of the time of their formation. The
ratio of neutrons to protons was established at an early stage in the
evolution of the Universe, when the density of neutrinos became too
small to effectively influence nucleon transformations. The diamond
remembers the high pressure in the depth of the Earth’s crust, and
cellulose, the process of biosynthesis in a plant cell.

In certain states of matter, the stochastization times do not deter-
mine well-separable scales but form a more or less continuous spec-
trum. In such situations, only the time of observation allows a distinc-
tion as to whether a given structure is frozen or not. Two states of this
type, the glassy state and the already mentioned critical state, have
been for many years the subjects of intense study. It has been shown
that biological matter on some time scales reveals many properties of
the glassy state (Appendix D.3) (Frauenfelder et al, 1991; 1999).
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In terms of nonequilibrium thermodynamics, the process of reach-
ing a complete equilibrium is treated as passing through a series of
states of partial equilibrium. It is not concerned with evolutionary
processes on a time scale shorter than the time of stochastization to a
state of partial equilibrium. By virtue of the ergodic theorem, valid for
systems with mixing, the average over a statistical ensemble is equal
to the average over the time of stochastization. Therefore, it should be
emphasized that, at the stage of reaching a state of partial equilibrium,
a given system does not have to be an actual ensemble of statistically
independent subsystems.4 Only after the stochastization time is the
system, if macroscopic, divided into such subsystems, thanks to an-
other property of systems with mixing, the decay of correlations. In
the thermodynamic description of macroscopic systems, both temporal
and spatial averages are taken, as only the additive dynamical vari-
ables in the form of a sum (2.43) over all component subsystems are
considered. Only a few of the dynamical variables survive such a sum-
mation without vanishing. The mutually independent nonzero sums
thus obtained have the physical meaning of thermodynamic variables
and unambiguously characterize the thermodynamic state of a given
system (Callen, 1985).

By assumption, the subject of nonequilibrium thermodynamics is
only macroscopic systems. In order to note in them something more
than a set of atoms or molecules, they must be viewed from a certain
temporal and spatial perspective.

4Even in the ideal gas, the process of reaching equilibrium must be described
taking into account not only the interaction but also correlations between the ve-
locities of individual particles (see Appendix B.1).



3 Thermodynamic State

3.1 Global and Structural Thermodynamic Variables

Macroscopic physical processes are slow on the molecular time scale
and extended on the molecular distance scale. The thermodynamic
description carries out averaging both over time and over a set of
statistically independent identical subsystems into which the system
breaks up as a result of the disappearance of spatial correlations as time
goes by. Only few dynamical variables survive such averaging without
being canceled out. They have the form of the sum (2.43) over the
component subsystems and are called thermodynamic variables.

According to the law of large numbers, means taken over a suf-
ficiently large statistical ensemble do not undergo fluctuations. As a
consequence, the thermodynamic variables can be identified with these
means. Values of a complete set of thermodynamic variables uniquely
characterize the thermodynamic state of a system. By definition, the
thermodynamic state is, on a given time scale, a state of thermody-
namic equilibrium. The values of the thermodynamic variables should
thus remain constant on this time scale. Two kinds of such constants
are known in physics (Newton, 1993).

Constants of the first kind result from a continuous symmetry of
the microscopic equations of motion. Energy is constant due to in-
variance of the equations of mechanics with respect to translations
in time. Momentum is constant due to invariance of these equations
with respect to translations in space, and angular momentum is con-
stant due to their invariance with respect to rotations. Only the first
quantity is important in thermodynamics as it is always possible to
choose a reference system so that both the momentum and the angu-
lar momentum of the system are equal to zero. Constancy of electric
charge results from a more abstract gauge symmetry of the equations
of electrodynamics.

Constants of the second kind are related to a spontaneous breaking
of continuous symmetry during, e.g., a phase transformation (see Ap-
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X’ X’’

X’’ = 0X’ = 0/

(b)(a)

Fig. 3.1. Division of simple (a) and complex (b) thermodynamic systems
into two subsystems. In the case of a simple system, the values of a ther-
modynamic variable characterizing a given subsystem (X ′ for the first and
X ′′ for the second) are always proportional to the size of these subsystems.
However, in the case of a complex system, it may be arbitrary. (b) presents
a situation where the variable considered has a nonzero value only in the
selected subsystem with internal constraints

pendix A.1). Spontaneous condensation fixes the value of the volume,
whereas spontaneous solidification, forbidding individual molecules to
leave their specific positions, determines the value of the length and
other parameters that describe the shape (form) of the solid. Spon-
taneous orientational ordering of component entities determines the
values of electric or magnetic moments which, when related to a unit
volume, are called the polarization or magnetization of a system, re-
spectively. Spontaneous breaking of some more abstract symmetries
determines the values of certain discrete quantities that character-
ize the amount of matter, e.g., the number of atoms of a particular
kind (constant in the absence of nuclear reactions) or the number of
molecules of a particular kind (constant in the absence of chemical
reactions).

The fact that the means over an ensemble are not canceled out is a
consequence of the principle of additivity of thermodynamic variables.
If a system is composed of two subsystems, primed and double primed
(see Fig. 3.1), the variables characterizing the whole system are sums
of the values of the variables in the two subsystems:

X = X ′ + X ′′ . (3.1)

The division of the system into subsystems can be arbitrary; either
real or devised in a physical space or in an abstract space of internal
states. The only condition that must be met is that of the macroscopic
character of the subsystems, as otherwise their description in terms of
the thermodynamic variables would be meaningless.
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(b)

(a)
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Fig. 3.2. (a) Complex thermodynamic system in which internal constraints
are illustrated symbolically as a wall dividing the system into two parts. The
thermodynamic state of the system is specified by the values of two ther-
modynamic variables: global Y and structural X. The structural variable
X specifies the state of one of the subsystems. The value of its counter-
part for the other subsystem can be obtained using the additivity property
(3.1). (b) Example of the chemical reaction of isomerization. A molecule of a
compound designated R–C2H2O–R′ (R and R′ denote two arbitrary groups
of atoms) may exist in two distinct chemical states (isomers) as a ketone
or an alcohol . A transition of the molecule from one chemical state to an-
other through a transition state (the structure in brackets) corresponds to
the transition of a molecule through the semipermeable partition as in (a). In
this case, the total number of molecules corresponds to the global variable Y ,
while the number of molecules of a given isomer corresponds to the structural
variable X. During the reaction, the value of the variable X changes until it
reaches its equilibrium value when the flux of molecules moving from left to
right is balanced by the flux of molecules moving in the opposite direction

If the value of each variable characterizing a subsystem is propor-
tional to the size of this subsystem (i.e., each variable is extensive) the
whole system is said to be simple (Fig. 3.1a), otherwise it is referred
to as complex (Fig. 3.1b). It is usually more convenient to speak about
constraints on the motion rather than more or less abstract symme-
tries. Simple systems are uniform and restricted only by external con-
straints determining the values of global variables characterizing the
system as a whole. Complex systems have an inner structure imposed
by the presence of internal constraints determining the values of ad-
ditional structural thermodynamic variables.
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Fig. 3.3. Change in the electric dipolar moment (polarization) of a cluster of
five molecules of water requires reorganization of the hydrogen bond system,
just like a chemical reaction that requires reorganization of the covalent bond
system (see Fig. 3.2b)

The internal constraints can be represented by a wall that divides
the system into two parts (Fig. 3.2a). The wall is rigidly fixed and
impermeable to molecules, and conducts neither energy nor charge. In
order to characterize the system’s thermodynamic state, one has to de-
termine the values of the thermodynamic variables separately for each
part or, according to the property of additivity (3.1), for the whole
system and one chosen subsystem. A real wall can be purposefully
constructed to work only to a certain degree as a constraint. A wall
which is not rigidly fixed becomes a movable piston, and a wall incom-
pletely impermeable to molecules becomes a semi-permeable partition
(membrane). A diathermal wall conducts heat, while one made of a
charge conductor conducts electrons.

An electrical conductor does not necessarily require the structure of
a three-dimensional wall, and a semi-permeable partition does not have
to be a macroscopic entity, but can appear on a microscopic scale, in
the space of internal states of the molecules forming the system. Such
a microscopic partition occurs for example in chemical reactions. Let
us consider a simple unimolecular reaction of isomerization (Fig. 3.2b).
The continuum of the states characterizing internal degrees of freedom
of the molecule (lengths of particular bonds, planar valency angles and
dihedral angles of rotation about the bonds, considered jointly with
the conjugate momenta) corresponds to the inside of the whole box,
while the two chemical states correspond to the two parts of the box.
Passage through the partition corresponds to a reaction – conversion
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from one chemical state to another through the chemical transition
state (structure in brackets). The partition symbolizes the bottleneck
(see Fig. 2.8), a barrier of partly entropic nature (the lower number
of effective degrees of freedom of the transition state following from
strict orientation of particular molecular groups) and partly energetic
nature (temporary cleavage of two covalent bonds).

Constraints that fix the value of the polarization or magnetization
have a similar nature. In the condensed phase, molecules can usually
occur in a small number of discrete orientational states of electric or
magnetic dipolar moments. For instance, a water molecule linked by
four hydrogen bonds to four neighboring molecules can assume six
different orientations within a tetrahedron formed by these neighbors
(Fig. 3.3). A change in the molecule orientation requires a transient
breaking of hydrogen bonds, just as the chemical reaction requires
a transient breaking of covalent bonds. Discrete states of magnetic
moments result directly from their quantum nature.

On a short time scale, imperfect constraints behave as perfect ones
and determine the values of appropriate thermodynamic variables,
while on a longer time scale, the actual imperfections in the constraints
determine the rates of change in the values of these variables. The im-
perfect structural constraints can be more or less fictitious. Even in
simple systems in the absence of any structure, the processes of reach-
ing complete equilibrium do not take place in the whole space occu-
pied by the system simultaneously, but develop gradually, starting in
small areas and then in larger ones, as if there were partitions dividing
them. The reason for the slow rate of the changes is their spatially
extended character. According to the principle of the continuity of the
phenomena, at a constant rate of interaction propagation, the larger
the magnitude, the lower its rate. This hierarchic description of non-
equilibrium processes is offered by the thermodynamics of continuous
media, and in particular hydrodynamics, which we shall not discuss in
this book.1

3.2 The Clausius Entropy

It follows from the considerations in Sect. 2.7 that a macroscopic sys-
tem can be treated as a real statistical ensemble only after it has
reached a thermodynamic state. Only in such a state do the probabil-
ity and thus the entropy make physical sense, i.e., only then are they

1In the thermodynamics of continuous media, the notion of partial equilibrium
is replaced by that of local equilibrium.
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measurable. Because the thermodynamic state is uniquely determined
by the mean values of an appropriate set of thermodynamic variables,
the corresponding probability distribution is also uniquely determined
by this set (see the more detailed considerations in Appendix A.4).
As a consequence, the entropy S in the thermodynamic state is not
only a function of the probability density, but a direct function of the
thermodynamic variables

S = S(E, X1, . . . , Xn) = S(X0, X1, . . . , Xn) . (3.2)

A distinguished variable is energy. The number of thermodynamic
variables other than energy n is referred to as the number of thermody-
namic degrees of freedom of the system. The function (3.2) was intro-
duced into thermodynamics at the phenomenological level by Clausius
in 1865, and we thus call it the Clausius entropy, in contrast to the sta-
tistical Boltzmann–Gibbs entropy (2.25), being in general only a func-
tion of the probability density. The Clausius entropy (3.2) contains
all the information about the thermodynamic states of the system.
The irreversible progression toward the complete equilibrium state is
closely linked to the maximization of its value.

The Clausius entropy satisfies four universal postulates2 that follow
from experimental phenomenology and are well justified on the basis
of the statistical interpretation of thermodynamics.

Zeroth Postulate. The entropy S exists for each thermodynamic
state. It is a continuous and at least doubly differentiable function of
the thermodynamic variables and is additive like them:

S(E′ + E′′, X ′
1 + X ′′

1 , . . . , X ′
n + X ′′

n) (3.3)
= S′(E′, X ′

1, . . . , X
′
n) + S′′(E′′, X ′′

1 , . . . , X ′′
n) ,

where S′ and S′′ are the entropy functions of the subsystems [see (3.1)
and Fig. 3.1].

First Postulate. The entropy S is a strictly increasing, i.e., mono-
tonic function of energy E:(

∂S

∂E

)
X1,...,Xn

> 0 . (3.4)

2The numbering of the postulates corresponds to the historical numbering of
the ‘laws of thermodynamics’ (Kondepudi and Prigogine, 1998). The formulation
of the postulates presented here is a modification of the more modern formulation
due to Herbert B. Callen in 1960 (Callen, 1985).
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(In this and further formulas, the lower subscript on brackets around
a partial derivative indicates those parameters that are held constant
on differentiation.)

Thanks to the monotonic character of the dependence of S on E,
it can be inverted to give the dependence of the energy on the entropy
and other thermodynamic variables:

E = E(S, X1, . . . , Xn) . (3.5)

The entropy can be treated as a thermodynamic variable describing
on the macroscopic scale the myriads [a picturesque expression used
by Callen (1985)] of microscopic dynamical variables which disappear
as a result of statistical averaging and have no direct influence on the
distinguished variables X1, . . . , Xn.

Second Postulate. The entropy S is a convex function of all its
arguments:(

∂2S

∂E2

)
X1,...,Xn

< 0 ,

(
∂2S

∂X2
i

)
...,Xi−1,Xi+1,...

< 0 , (3.6)

for i = 1, 2, . . . , n, but in general this function is not monotonic. In
conditions when E = const. and in the absence or weakening of the
constraints determining the values of variables Xi, a system initially
in a state of partial equilibrium spontaneously evolves to the state of
complete equilibrium determined by those values of the distinguished
variables for which the entropy S reaches a maximum.

The convex character of the function S implies that, in conditions
when S = const. instead of E = const. (e.g., for purely mechanical
systems with S = 0), the energy E spontaneously takes a value that
minimizes it as a function of the distinguished variables Xi (Fig. 3.4).
It should be emphasized that the form of (3.2) does not indicate the
path to the complete equilibrium state.

Third Postulate. There is a state for which(
∂E

∂S

)
X1,...,Xn

= 0 . (3.7)

The value of the entropy in this state is zero (S = 0).
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Fig. 3.4. Sketch of the dependence of entropy S on energy E and a thermody-
namic variable X whose value is not fixed by constraints (a). The one-to-one
entropy–energy dependence allows the energy E to be treated as a function
of the entropy S and the variable X (b). In the plane E = const., the entropy
S reaches a maximum as a function of X, whereas in the plane S = const.,
the energy E reaches a minimum as a function of X. For clarity only the
range of negative energy values is considered

3.3 Temperature and Thermodynamic Forces.
Equations of State

The zeroth and second postulates make it possible to define the im-
portant concepts of thermal and dynamical equilibrium (in particular
mechanical, electrical and chemical) and the related physical quanti-
ties: temperature and thermodynamic forces. In order to do this we
shall consider a system composed of two subsystems and for the sake
of simplicity we shall distinguish only one global thermodynamic vari-
able X other than energy E (Fig. 3.5). The same reasoning will hold
for a system with an arbitrary number of degrees of freedom, either
simple or complex.

E’’ X’’ S’’, ,E’ X’ S’, ,

Fig. 3.5. Thermodynamic system composed of two subsystems. Walls rep-
resent internal and external constraints
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Assume that the values of variables X ′ and X ′′ for the subsystems
are determined by the constraints

X ′ = const. , X ′′ = const. , (3.8)

but that the subsystems can exchange energy (they are separated by
a diathermal , heat conducting wall) in such a way that

E′ + E′′ = E = const. , (3.9)

with the whole system being isolated. According to the second pos-
tulate satisfied by the Clausius entropy, the energy E′ spontaneously
takes such a value that the total entropy of the system

S(E′ + E′′, X ′ + X ′′) = S′(E′, X ′) + S′′(E′′, X ′′) (3.10)

reaches a maximum, and its derivative with respect to E′ therefore
vanishes:

∂S

∂E′ =
(

∂S′

∂E′

)
X′

+
(

∂S′′

∂E′′

)
X′′

dE′′

dE′ = 0 . (3.11)

From (3.9), we have
dE′′

dE′ = −1 , (3.12)

and hence a necessary condition for the maximum entropy is(
∂S′

∂E′

)
X′

=
(

∂S′′

∂E′′

)
X′′

, (3.13)

or taking advantage of the one-to-one relationship between S and E,(
∂E′

∂S′

)
X′

=
(

∂E′′

∂S′′

)
X′′

. (3.14)

From the point of view of experimental phenomenology, the sub-
systems exchange energy until their temperatures become equal,

T ′ = T ′′ , (3.15)

and energy is given by the subsystem with the higher initial temper-
ature. The condition of thermal equilibrium (3.15) is equivalent either
to (3.13) or (3.14). (More complex functions of derivatives occurring
in these equations are irrelevant here since they lead to more complex
equations.) The realization of a particular possibility is determined by
the sufficient condition for a maximum entropy which demands that,
immediately before reaching a maximum, the entropy increment
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ΔS =
∂S

∂E′ ΔE′ =
[(

∂S′

∂E′

)
X′

−
(

∂S′′

∂E′′

)
X′′

]
ΔE′ (3.16)

should be positive. Assuming that the primed system gives energy
(ΔE′ < 0), the expression in brackets must be negative. If the tem-
perature T is defined by

T ≡
(

∂E

∂S

)
X

, (3.17)

this implies that T ′ > T ′′, so the primed system is indeed warmer than
the doubly primed one. Thus, (3.15) corresponds to (3.14) and not to
(3.13).

Let us recall that, in the traditional formulation of phenomeno-
logical thermodynamics, the definition of temperature for systems in
thermal equilibrium was possible because of the zeroth law of ther-
modynamics (Kondepudi and Prigogine, 1998). In our formulation
adapted from Callen (1985), it is possible thanks to the zeroth and
second postulates. Since energy is an increasing function of entropy
(Fig. 3.4), the absolute temperature (3.17) is non-negative. Accord-
ing to the third postulate, entropy takes the value zero at the lowest
possible temperature T = 0, which is the content of the third law of
thermodynamics.

On identifying the primed subsystem with the total system we are
interested in and the double primed subsystem with the environment,
the above considerations lead to the important practical conclusion
that the thermodynamic state of an isolated system of energy E is the
same as that of a system at thermal equilibrium with an environment
at an appropriate temperature T (Fig. 3.6a).

Now assume that the partition separating the subsystems does not
allow a change in the entropy components (we shall exhibit a realiza-
tion of such conditions later on):

S′ = const. , S′′ = const. , (3.18)

but that the values of the thermodynamic variables X ′ and X ′′ can
change subject to

X ′ + X ′′ = X = const. (3.19)

When X is interpreted as volume, for example, the partition can be
a movable piston. When X is interpreted as a number of particles of
a given kind, the partition is a semi-permeable membrane. When X
is interpreted as charge, the partition is a conductor. In conditions of
constant total entropy S = S′ +S′′ = const., the value of X ′ (and also
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Fig. 3.6. (a) The thermodynamic state of an isolated system of energy E
is the same as that of a system at thermal equilibrium with an environment
at an appropriate temperature T . (b) The thermodynamic state of a sim-
ple system with a fixed value of the global thermodynamic variable X (e.g.,
volume) is the same as the state of this system in equilibrium with an envi-
ronment that exerts an appropriate thermodynamic force A on it. This force
is illustrated here as a piston applying some pressure to the system. (c) A
thermodynamic state of a complex system specified by fixed values of the
global variable Y and structural variable X, represented by the volume of
the subsystem separated by a wall, is the same as the state of this system
when a chosen subsystem is acted upon by an external force A, represented
here by an internal piston, preventing it from reaching an equilibrium with
the rest of the system

X ′′) will be established spontaneously in such a way that the total
energy of the system

E = E′(S′, X ′) + E′′(S′′, X ′′) (3.20)

reaches a minimum, and its derivative with respect to X ′ therefore
vanishes:
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∂E

∂X ′ =
(

∂E′

∂X ′

)
S′

+
(

∂E′′

∂X ′′

)
S′′

dX ′′

dX ′ = 0 . (3.21)

Using (3.19), we have
dX ′′

dX ′ = −1 , (3.22)

and hence a necessary condition for the minimum energy is(
∂E′

∂X ′

)
S′

=
(

∂E′′

∂X ′′

)
S′′

. (3.23)

The negative derivative of the energy with respect to the thermo-
dynamic variable X, viz.,

A ≡ −
(

∂E

∂X

)
S

, (3.24)

is called the thermodynamic force conjugate to X. In terms of the
definition (3.24), the relation (3.23) can be interpreted as equality of
the forces:

A′ = A′′ . (3.25)

This is the condition of dynamical equilibrium between the two sub-
systems. The thermodynamic state of a closed system, whose global
thermodynamic variable X assumes a fixed value, is the same as that
of a system at mechanical equilibrium with an environment acting on
it with the appropriate force A (Fig. 3.6b). The dynamical equilibrium
means that the system responds to the external force A with an equal
force acting on the environment. Physical interpretations of the forces
conjugate to various thermodynamic variables are given in Table 3.1.

If internal constraints do not allow a mechanical equilibrium be-
tween the subsystems, the thermodynamic state of the system is char-
acterized by two independent variables: the global one will hence-
forth be denoted by Y = Y ′ + Y ′′ and the structural (local) one by
X ≡ Y ′ = Y − Y ′′, so that the system becomes complex. If B is
the thermodynamic force conjugate to the global variable Y , the force
conjugate to the structural variable X is

A ≡ −
(

∂E

∂X

)
S

= −
(

∂E′

∂Y ′

)
S′

+
(

∂E′′

∂Y ′′

)
S′′

= B′ − B′′ . (3.26)

The thermodynamic state of a complex system is characterized by the
fixed values of the global variable Y and structural variable X, the
same as the state of the system when the chosen subsystem is acted
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Table 3.1. Some thermodynamic variables and the forces conjugate to them

Thermodynamic variable X Conjugate force A

Volume V Pressure P
Number of molecules N Negative chemical potential −μ
Charge Q Negative electrical potential −φ
Electric moment PV Negative electric field −E
Magnetic moment MV Negative magnetic field −H
Shape of a solid εV Negative stress −τ

Note: In spatially homogeneous systems the notions of polarization, magnetization
and deformation (strain) are used, defined as the electric moment , magnetic mo-
ment and form of a solid, respectively, related to the unit of volume. Polarization,
magnetization and the conjugate electric and magnetic fields are vectors, i.e., they
are characterized by three spatial components, whereas the strain of the solid and
the stress acting on it are in general characterized by six numbers (three describe
the stretching and three the torsion of the body).

upon by an external force A preventing it from reaching an equilibrium
with the rest of the system (Fig. 3.6c).

Equation (3.26) may be generalized to the case of thermal nonequi-
librium caused by a difference in temperatures. It suffices to identify
the variable X with the entropy of one subsystem:

A = −
(

∂E′

∂S′

)
Y ′

+
(

∂E′′

∂S′′

)
Y ′′

= −T ′ + T ′′ . (3.27)

Definitions (3.17) and (3.24) [or (3.26)] determine 1 + n relations be-
tween the temperature and thermodynamic forces and 1 + n thermo-
dynamic variables including the entropy:

T = T (S, X1, . . . , Xn) , Ai = Ai(S, X1, . . . , Xn) , (3.28)

where i = 1, . . . , n. The relations (3.28) are called the equations of
state. They uniquely determine the fundamental equation (3.5) or the
equivalent equation (3.2). The equations of state of complex systems
can be found if the equations of state of the simple component sub-
systems are known.

As an example, let us consider the equations of state for an ideal gas
composed of molecules of one kind. It is a system with two thermody-
namic degrees of freedom (X1 = V , X2 = N). Besides the temperature
T , the properties of the surroundings are characterized by two thermo-
dynamic forces: pressure A1 = P and, in the case of the open system,
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chemical potential A2 = −μ. The fundamental equation (3.2) has the
form (its derivation can be found in Appendix A.1):

S

N
=

S0

N0
+ kB ln

[(
E

E0

)3/2 ( V

V0

)(
N

N0

)−5/2
]

, (3.29)

where ln denotes the natural logarithm, kB is the Boltzmann constant,
and the index 0 distinguishes values of S, E, V and N in a certain
reference system.

From (3.29), the two well-known equations of state can be found,
the first relating temperature to energy:

E =
3
2
NkBT , (3.30)

and the second, pressure to volume:

PV = NkBT . (3.31)

The relationship between the chemical potential and the number of
molecules N (the third equation of state),

μ = −kBT ln

[(
E

N

)3/2 (V

N

)]
, (3.32)

is less well known but equally important. We shall use it in Chap. 6 to
derive an expression for the thermodynamic force that drives chemical
reactions.

3.4 Energy Transformations:
Work, Heat and Dissipation

Using the definitions of temperature (3.17) and thermodynamic forces
(3.24), a small change in the energy

E = E(S, X1, . . . , Xn) (3.33)

of a system with n degrees of freedom can be rewritten in the general
form

ΔE =
(

∂E

∂S

)
X1,...

ΔS +
∑

i

(
∂E

∂Xi

)
S,...

ΔXi = TΔS −
∑

i

AiΔXi .

(3.34)
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An energy change ΔE can be achieved in two ways: either by providing
(or removing) heat Q, or by doing work on (or by) the system W :

ΔE = Q + W . (3.35)

Equation (3.35) expresses the content of the first law of thermody-
namics, an empirical ascertainment that heat is not an independent
physical quantity but a form of energy that emerges from work or
changes into it (Kondepudi and Prigogine, 1999).

While the supply or removal of heat is linked to a change in the
value of the entropy S, work involves a change in the values of the ther-
modynamic variables Xi of various kinds (mechanical, chemical, elec-
trical, etc.). However, one can neither identify heat Q with the quantity
TΔS nor directly identify work W with the sum −∑i AiΔXi, since
(3.35) can still be satisfied when something is added to and subtracted
from it simultaneously. Rewriting it as

ΔE = (Q + D) + (W − D) , (3.36)

we obtain the general relationships:

Q + D = TΔS (3.37)

and
W − D = −

∑
i

AiΔXi . (3.38)

The quantity D is called energy dissipation.3

As shown in the previous section, the thermodynamic state of a
given system can be specified either by the values of certain thermo-
dynamic variables fixed by appropriate constraints or by the values
of the conjugate forces acting on the surroundings. If the environment
acts on the system with identical forces, the system is in complete ther-
modynamic equilibrium. If, on the other hand, external forces do not
counterbalance internal forces, the system is only in a state of partial
equilibrium. The state of partial equilibrium can be treated formally
as a state of complete equilibrium maintained by fictitious external
forces that balance internal forces instead of incomplete constraints.
Positive or negative work W is performed by or against the actual
external forces Aeq

i :
W = −

∑
i

Aeq
i ΔXi , (3.39)

3In Prigogine’s terminology, the quantity D/T is referred to as internal entropy
production.
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whereas dissipation is related to differences, possible in the partial
equilibrium state, between the values of these forces and those of the
internal forces Ai determined by the equations of state (3.28):

D =
∑

i

(Ai − Aeq
i )ΔXi . (3.40)

The actual external forces Aeq
i are equal to the internal forces Ai in

the state of complete equilibrium, thus explaining the notation.
A change in the system’s thermodynamic state is called a thermody-

namic process. Processes wherein no work is done on or by the system,
W = 0, take place without any external constraints or manipulation by
forces, and are thus referred to as spontaneous. Processes taking place
without exchanging heat with the environment, Q = 0, are referred to
as adiabatic. For processes that are simultaneously spontaneous and
adiabatic, the relationships (3.35) and (3.37) take the form

ΔE = 0 , TΔS = D . (3.41)

Following the second postulate, the Clausius entropy in such processes
tends to a maximum. Hence, due to the positivity of the temperature
T , we always have

D ≥ 0 . (3.42)

From (3.37) and the inequality (3.42), we get the relation

TΔS ≥ Q , (3.43)

which formally expresses the second law of thermodynamics (Kon-
depudi and Prigogine, 1999).

Processes occurring without dissipation, i.e., D = 0, are said to be
reversible since under adiabatic conditions, Q = 0, they do not cause
an increase in entropy and, as we know, such an increase is a result of
the irreversibility of the process. It follows from (3.40) that reversible
processes proceed only through states of complete equilibrium where
internal forces exactly balance external forces. For reversible processes,
the second law (3.43) takes the form of the equality

TΔS = Q . (3.44)

Processes that are simultaneously adiabatic and reversible can be iden-
tified with isentropic processes, with S = const. We referred to such
processes in the definition (3.26) of the thermodynamic forces. Later,
we will see that a good approximation for the reversible processes are
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Fig. 3.7. Two exemplifying re-
alizations of a process in the
space of thermodynamic vari-
ables represented here by en-
tropy S and a single variable
X. The energy change ΔE de-
pends only on the initial and fi-
nal states, which are assumed to
be the same for both processes.
In contrast, work, heat and dis-
sipation depend in general on
the process paths

quasistatic processes proceeding sufficiently slowly. Only this kind of
process is considered by traditional equilibrium thermodynamics. Let
us stress that the general subject of our considerations are irreversible
processes proceeding at a finite rate.

For arbitrary large changes in the state of the system, the equality
(3.35) remains unchanged, whereas the expression (3.39) should be
replaced by

W = −
∫ ∑

i

Aeq
i dXi

= −
∫ t

t0

∑
i

Aeq
i

(
S(t), X1(t), . . . , Xn(t)

)
Ẋi(t) dt . (3.45)

The integral (3.45) is evaluated along the whole path of the pro-
cess in the space of thermodynamic variables starting from the ini-
tial state (S, X1, . . . , Xn) and ending in the final state (S + ΔS,
X1 + ΔX1, . . . , Xn + ΔXn) (Fig. 3.7). The variable t is an arbitrary
parameter that determines subsequent positions along this path. In
particular, it can be time, but does not have to. The dot in the second
line of (3.45) denotes differentiation with respect to the parameter t.

In contrast to energy change (3.34), the quantity W and also, ac-
cording to (3.35) and (3.37), Q and D depend not only on the initial
and final thermodynamic state of the system but, in general, on the
whole path of the process as well as the velocity Ẋi along this path.
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We say that energy E and entropy S are functions of state, whereas
work W , heat Q and dissipation D are functions of process.

3.5 Free Energy and Bound Energy

Thermodynamics was formulated in the first half of the 19th century
as a theory to explain the functioning of heat engines converting heat
into work. Such engines had been in use for almost a century by that
time (Newcomen in 1712, Watt in 1769). As we shall show in the
following, it is not possible to convert heat into work in a stationary
(cyclic) way when such an engine is coupled to only one source of
heat at a constant temperature. The machine converting heat into
work must also be coupled to a system of lower temperature (cooler).
Accordingly, traditional thermodynamics dealt with processes taking
place when coupling to an environment of variable temperature. For
simplicity, these processes were assumed to be quasistatic, i.e., without
dissipation.

This approach to thermodynamics has been adopted in many hand-
books right up to the present time. Meanwhile, the processes studied
in laboratories are for the main part those taking place at a constant
temperature stabilized by high quality thermostats. Moreover, the phe-
nomenon of dissipation is no longer neglected, as it provides much
information on the processes taking place at the microscopic scale.
Hence, the irreversible isothermal processes are of particular interest.
In fact these are the working conditions of biological machines con-
verting, not heat into work, but one type of work into another. The
majority of processes considered in this book are just of this type.

Under isothermal conditions, T = const., the temperature T can
be brought inside the increment operation and the change (3.34) can
be rewritten as

ΔE = Δ(TS) + ΔF , (3.46)

where
ΔF ≡ −

∑
i

AiΔXi . (3.47)

The quantity F can be considered as a function of temperature T
rather than entropy S. It then follows that

Ai = −
(

∂F

∂Xi

)
T

, (3.48)
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which turns out to be much more practical than (3.24). Many other
mathematical consequences of introducing the quantiy F are presented
in Appendix A.2.

It follows from (3.46) that the energy E is the sum

E = F + TS . (3.49)

(We assume that E = F for T = 0 when, due to the third postulate,
the Clausius entropy is zero.) The system in the thermodynamic state
under conditions T = const. behaves as if it were composed of two
subsystems. The first subsystem of the energy F can be called dy-
namic – its state is characterized by the thermodynamic variables Xi.
These are, as we remember, selected macroscopic (slow) dynamic de-
grees of freedom of the system. The second, thermal subsystem of the
energy TS is characterized by all the other (fast) microscopic degrees
of freedom that determine the entropy S.

These two subsystems can interact with the environment and with
each other and the measure of the interaction is the energy exchanged.
On the basis of the relation (3.46), equation (3.37) can be rewritten as

Q + D = Δ(TS) , (3.50)

while the definition (3.47) allows us to write (3.38) as

W − D = ΔF . (3.51)

It follows from the two relations and (3.46) that the work is the energy
exchanged between the environment and a dynamic subsystem, heat
is the energy exchanged between the environment and a thermal sub-
system, and dissipation is the energy exchanged between the dynamic
and thermal subsystems. According to the second law of thermody-
namics, dissipation is always positive, which means that energy can
only be transferred from the dynamic to the thermal subsystem, and
never the reverse. The energy

F = E − TS (3.52)

of the dynamic subsystem is called the free energy , as only this en-
ergy can be used for doing work. Because of the unidirectional energy
transfer from the dynamic to the thermal subsystems, the energy of the
thermal subsystem TS cannot be used for doing work and that is why
it is called the bound energy . A general scheme of the energy exchange
relations in a system in a thermodynamic state under isothermal con-
ditions T = const. is shown in Fig. 3.8.
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Fig. 3.8. Dynamic and thermal sub-
systems of the thermodynamic sys-
tem under isothermal conditions T =
const. and their interaction with the
environment and with each other

Equations (3.50) and (3.51) imply that, in isothermal processes, the
quantities Q + D and W − D do not depend on the pathway of the
process but only on the differences between the initial and final values
of the entropy and free energy of the system. In contrast to (3.37) and
(3.38), equations (3.50) and (3.51) hold for arbitrary large increments
and there is no need to introduce a curvilinear integral of the type
(3.45). Nevertheless, it should be emphasized that, for arbitrary large
increments ΔF , the linear approximation (3.47) is no longer valid and
then work W , dissipation D and heat Q will in general depend on the
pathway of the process, hence on the curvilinear integral (3.45).

For the isothermal reversible processes, the dissipation equals zero,
D = 0, and the direct relations hold:

ΔF = W , TΔS = Q . (3.53)

In this case work and heat do not depend on the process pathway. For
processes that are simultaneously isothermal and adiabatic (occurring
without exchanging heat with the environment, Q = 0),

ΔE = W , TΔS = D ≥ 0 . (3.54)

Work done on or by the system equals its free energy increment and
its entropy increases only due to the free energy dissipation. For pro-
cesses that are simultaneously isothermal and spontaneous (occurring
without work done on or by the system, W = 0),

ΔE = Q , ΔF = −D ≤ 0 . (3.55)
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Fig. 3.9. Different modes of realization of isothermal gas decompression:
(a) A certain amount of gas is enclosed in a container by a movable piston
loaded at the beginning of the process by a load M0, exerting such a pressure
on the gas that it is restricted to the volume V0. The movement of the piston
is slow enough to ensure that the gas remains homogeneous all the time. For
the sake of simplicity we shall assume that there is a vacuum in the part
of the container outside the piston. (b) When the load is released the gas is
decompressed to a maximum volume V limited by the container construction
(the constraints). No work is done, so the system does not take heat from the
thermostat, and all the free energy released is dissipated. (c) Work is done
and some heat is taken from the thermostat when the load M0 is reduced (in
a jump or continuous way) to the load M , giving an effect equivalent to a
restriction of the container construction keeping the gas volume at V

In this case the energy change of the system determines the quantity
Q called the process heat , and dissipation is the only cause of the free
energy decrease.

Let us illustrate the two ways to implement free energy change,
work and dissipation, on a simple example of different realizations
of the ideal gas isothermal decompression process (Fig. 3.9). It follows
from the equation of state (3.30) that, in the process taking place under
T = const. conditions, the energy of the fixed number of molecules
N = const. does not change:

ΔE = 0 . (3.56)
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Thus, a decrease in the system’s free energy should exactly compensate
an increase in the system’s bound energy and it follows from (3.29)
determining the entropy change that we have

−ΔF = TΔS = NkBT ln
V

V0
, (3.57)

where V0 and V denote the initial and final volumes of the gas, respec-
tively.

In the process of spontaneous gas decompression (the whole load
is taken off at once, see Fig. 3.9b), the expression (3.57) describes
dissipation of free energy only. The final volume V of the gas can also
be obtained by taking off part of the load (Fig. 3.9c). Then some work
(of negative sign) is being done over the rest of the load exerting the
pressure P eq on the gas, as the rest of the load will be elevated to a
level determined by the difference between the initial and final volumes
of the gas:

−W = P eq(V − V0) = NkBT
V − V0

V
, (3.58)

where we have used the equation of state (3.31) for a fully equilibrated
final state. The work (3.58) is smaller than the free energy released
(3.57) and the difference is dissipated. The dissipated part can be
reduced by taking the load off in small portions, which corresponds to
replacing (3.58) by a sum of the appropriate increments. In the limit
of infinitely small increments, when the external pressure P eq becomes
equal to the internal one P determined by the equation of state (3.31),
the expression (3.58) is replaced by the integral

−W = NkBT

∫ V

V0

dV

V
= NkBT ln

V

V0
, (3.59)

whose value equals the free energy released (3.57). Then, dissipation
is reduced to zero and the process becomes reversible.

The distribution of the free energy released by a system into work
and dissipation is presented in Fig. 3.10 for different modes of real-
ization of the process of isothermal decompression of the ideal gas. It
should be emphasized that, according to the law of conservation of the
total energy of a system (3.56), the work is done at the expense of the
heat collected from the thermostat. However, this does not contradict
the second law of thermodynamics since, after the process, the free
energy of the system has been reduced. According to the second law
of thermodynamics in the Kelvin formulation, the exchange of heat
into work is impossible only when, after the process, the system and
its environment come back to the state they had before the process.
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Fig. 3.10. Distribution of the free energy released by a system [the area
under the isotherm P = P (V )] into work (darkly shaded area) and dissipa-
tion (lightly shaded area) in different realizations of the process of isothermal
ideal gas decompression (see Fig. 3.9). The volume dependence of the pres-
sure exerted by the external load is given by the solid line, and the volume
dependence of the internal pressure determined by the equation of state is
shown by the broken line. (a) The whole load at the piston is released in one
step and the whole free energy released is dissipated. (b) Part of the load at
the piston is released. The system does some work by elevating the load that
is left to a level determined by the difference between the initial and the final
volumes. Much of the free energy released is still dissipated. (c) More work
can be done and less energy dissipated by taking the load off in small steps.
(d) By decreasing the portions of the load subsequently taken off we get, in
the limit, a realization of the reversible process without dissipation

3.6 Open Thermodynamic Systems:
Steady State versus Dissipative Structures

Let X be a certain structural thermodynamic variable, X ≡ Y ′ =
Y −Y ′′. The force conjugate to X [see the comments on the definition
(3.26)] is, under isothermal conditions, determined by
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Fig. 3.11. Open thermodynamic system in a steady state

A = −
(

∂F

∂X

)
T

= −
(

∂F ′

∂Y ′

)
T

+
(

∂F ′′

∂Y ′′

)
T

= B′ − B′′ . (3.60)

As discussed in Sect. 3.3, a state with a constant value of the structural
variable X can be retained either through absolutely tight internal
constraints or through an external force Aeq exactly equilibrating the
internal force A. Otherwise the system is in a partial equilibrium state
and evolves toward the state of complete equilibrium.

However, if both the external and internal constraints are not ab-
solutely tight (the system as a whole is open), the change ΔX in the
value of the thermodynamic structural variable X during its evolu-
tion, involving a transfer of some amount of X from one subsystem
to another, can be compensated for by supplying the same amount of
X from outside to the first subsystem and releasing the same amount
of X to the outside from the second subsystem (Fig. 3.11). Because
the value of the variable X in the whole system does not change, the
values of the free energy and the bound energy (entropy) of the whole
system remain unchanged:

F = const. , S = const. . (3.61)

In the absence of an external force, Aeq = 0, a spontaneous change
ΔX is associated with dissipation [see (3.40)]:

D = AΔX . (3.62)

To fulfill the conditions (3.61), D must be equal on the one hand to
the work done on the system and, on the other, to the heat released
to the environment:

D = W = −Q . (3.63)

The environment performs work on the system, not through an ex-
ternal force, but as a result of the flux of the quantity ΔX across the
system (Fig. 3.11). The system’s thermodynamic state does not change
because the work performed balances the heat released.
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In a nonequilibrium steady state maintained due to such a flux, the
rate of dissipation, i.e., the amount of free energy transferred into a
bound energy form over a unit of time Δt, remains constant:

D

Δt
=

W

Δt
= − Q

Δt
= const. (3.64)

In the limit of Δt → 0, the ratio (3.64) is called the dissipation func-
tion4 and denoted by Φ. In view of the second law of thermodynamics,
it is always non-negative and, from (3.62), it takes the form

Φ = AẊ ≥ 0 . (3.65)

The time derivative Ẋ has the meaning of the rate of change of the
variable X and is referred to as the flux of the variable X.

Two examples of simple open thermodynamic systems in a steady
state are shown in Figs. 3.12a and b. The direction of the flux Ẋ is de-
termined by the condition that the product of this flux and the internal
force A be positive. The flux of gas flows through a semi-permeable
partition from the region of higher pressure P ′ to that of lower pres-
sure P ′′, but the available volume grows in the opposite direction. The
current in an electric conductor, understood as a movement of positive
electric charge, flows through a resistor from a point of higher potential
φ′′ to a point of lower potential φ′.

The reasoning can be generalized to the steady state maintained
by several simultaneously acting flows Ẋi related to forces Ai. Then
the inequality (3.65) takes the form

Φ =
∑

i

AiẊi ≥ 0 . (3.66)

It should be remembered that the second law of thermodynamics de-
mands that the total sum (3.66) be non-negative, whereas particular
components of the sum can be both positive and negative. According
to (3.64), the components stand for the work done by particular fluxes
per unit time, in other words, for the power of the fluxes. Hence, not
only can the environment do work on a system, but the system can do
work on the environment.

The porous partition (Fig. 3.12a) can be replaced by a turbine
(Fig. 3.12c), while the resistor in the system of Fig. 3.12b can be re-
placed by an electric motor (Fig. 3.12d), and in this way some of the

4Prigogine refers to the product of the dissipation function and the temperature
as the rate of entropy production.
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Fig. 3.12. Examples of open thermodynamical systems. (a) Flow of gas
from one chamber to another (in a large container) through a porous parti-
tion. (b) Flow of electric current between the battery electrodes through a
resistor. When the porous partition is replaced by a turbine (c) or the re-
sistor is replaced by an electric motor (d), the systems can do some work.
The systems (a–d) are in steady state conditions. Replacing the resistor by a
redamped resonance circuit (e) leads to undamped oscillations that can also
be used to do some work, although the steady state condition is no longer
met
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work done on a system can be recovered, preventing its total conver-
sion into heat. The electric motor can be connected to the turbine and
then gas can be pumped from the chamber with the gas under a lower
pressure to that with the gas under a higher pressure. The possibil-
ities of organization of open systems under conditions of incomplete
thermodynamic equilibrium into various free energy transducers, i.e.,
machines, are unlimited. In this sense living organisms are such ma-
chines and the processes of energy transduction in living organisms at
the subcellular level will be the subject of Chap. 8.

Here we should point out one more problem. In the above discus-
sion, the thermodynamic system considered has been assumed to be
in the steady state, i.e., the values of the fluxes Ẋi of the thermody-
namical variables Xi and forces Ai, hence also the dissipation function
(3.66), have all been assumed constant. However, is a realization of
such a state admitted by the laws of thermodynamics in any condi-
tions? In other words is the steady state always stable and is the non-
negative dissipation function always constant or decreasing in time to
a constant steady state value (for Ai = 0 the equilibrium value)?

To find an answer to these questions, we differentiate (3.66) with
respect to time:

Φ̇ =
∑

i

ȦiẊi +
∑

i

AiẌi . (3.67)

The first component can be rewritten as

∑
i

ȦiẊi =
∑
ij

(
∂Ai

∂Xj

)
Xi

ẊjẊi . (3.68)

It follows from the conditions of thermodynamic stability (Appendix
A.3) that this expression for nonzero fluxes is always negative and thus
leads to a decrease in the dissipation function. However, we cannot say
this about the second term, which can be either positive or negative.
For large forces Ai and far from thermodynamic equilibrium, the total
sum (3.67) can assume positive values, although it does not have to,
and this implies instability of the initial steady state. Then another
state becomes stable. It can be a new steady state of ‘broken symmetry’
(one of a few alternatives) either periodically oscillating in time or with
chaotic dynamics, hence in general the state referred to by Prigogine
as a dissipative structure (Prigogine, 1980; Kondepudi and Prigogine,
1999) and by Haken (1990) as a synergetic structure.

The resistor in Fig. 3.12b can be replaced by a resonance circuit
with a tunneling diode (Fig. 3.12e), rather than by an electric motor
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(Fig. 3.12d). If the voltage at the source exceeds a certain threshold
value, the negative resistance of the diode will compensate a small but
finite and positive resistance of the resonance circuit and stable un-
damped oscillations will appear in the system. From the point of view
of our discussion, Fig. 3.12b presents an exemplary thermodynamic
system in a steady state, and Fig. 3.12e a thermodynamic system with
a dissipative structure. In practice, the tunneling diode is supplied
through a voltage divider shorted by appropriate capacities so that
the current flowing through it is constant. In this way the difference
between a steady state and a dissipative structure disappears and the
two examples illustrate two alternative organizations of the inside of
a black box representing a cyclic electric machine.

Machines and dissipative structures do not have to be organized on
a macroscopic level. In the chemochemical machines which play a key
role in biological processes (discussed in detail in Chap. 8), the orga-
nization is realized on a microscopic level or, to be more exact, on the
mesoscopic level of the macromolecular enzymes coupling particular
reactions. The conversion of a chemo-chemical machine into a dissipa-
tive structure is often equivalent, not only to a spontaneous temporal
reorganization, but a spontaneous spatial self-organization as well.

3.7 Rate of Nonequilibrium Thermodynamic Processes

For systems under conditions close to complete thermodynamic equi-
librium, we can assume that the fluxes Ẋi depend linearly on the ther-
modynamic forces Ai (a situation described as a linear response to
external stimulus) (Kondepugi and Prigogine, 1999):

Ẋi =
∑
j

LijAj . (3.69)

The coefficients of proportionality Lij are called Onsager’s kinetic co-
efficients.

In the approximation (3.69), the dissipation function (3.66) is a
quadratic function of thermodynamic forces:

Φ =
∑

i

LijAiAj ≥ 0 . (3.70)

The sign of Φ indicates that the diagonal kinetic coefficients are non-
negative:

Lii ≥ 0 . (3.71)
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This is not true in general for the off-diagonal coefficients. However,
using statistical thermodynamics (see Appendix A.5), it can be demon-
strated that, in the absence of magnetic fields, the matrix of kinetic
coefficients is symmetrical:

Lij = Lji . (3.72)

This expresses the so-called fourth law of thermodynamics due to On-
sager.

Table 3.2 gives examples of several linear relations between fluxes
and forces. Off-diagonal kinetic coefficients describe the so-called cross-
effects and are related to thermodynamic coupling of various irre-
versible processes. This coupling is the basis for the free energy trans-
duction phenomena which play significant roles in many processes tak-
ing place in biological cells. However, their description in terms of a
linear approximation is by and large incorrect in such cases.

In the linear approximation, and with the symmetry (3.72), the
second component of the sum (3.67) can be rewritten as∑

i

AiẌi =
∑
ij

AiLijȦj =
∑
ji

LjiAiȦj =
∑
j

ẊjȦj . (3.73)

Thus, in the linear approximation, the second component of (3.67)
exactly equals the first component, and the whole dissipation function
derivative (3.67) turns out to be an expression that is always negative
for nonzero fluxes. A conclusion is Prigogine’s variational principle:
close to complete equilibrium, systems tend to the state of minimum
dissipation.

Table 3.2. Examples of linear relations between fluxes and forces [see the
definition (3.60) and Table 3.1]

Relation Process Law

Q̇ = LQQ(φ′′ − φ′) Electrical conduction Ohm’s law

Ṅ = LNN (μ′′ − μ′) Diffusion, chemical reaction Fick’s law

Ṡ = LSS(T ′′ − T ′) Heat conduction Fourier’s law

Q̇ = LQS(T ′′ − T ′) Thermoelectric effect Seebeck’s law

Ṡ = LSQ(φ′′ − φ′) Electrothermal effect Peltier’s law

Ṅ = LNS(T ′′ − T ′) Thermodiffusion effect Soret’s law

Ṡ = LSN (μ′′ − μ′) Reverse effect to thermodiffusion Dufour’s law
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The linear relationships (3.69) apply to both open and closed sys-
tems. They can be used, for example, for the simplest case of a closed
system with only one nonequilibrium variable X that evolves toward
the equilibrium value Xeq:

Ẋ = LA. (3.74)

The force A conjugate to X disappears in the state of complete equilib-
rium. Hence, in the linear approximation, the equation of state linking
this force to X takes the form

X − Xeq = −CA , (3.75)

where C is the system’s capacity (see Appendix A.3):

C ≡ −
(

∂X

∂A

)
. (3.76)

Inserting one of these equations into the other gives a linear differential
equation that describes the system’s relaxation to the state of complete
equilibrium:

Ẋ = −τ−1(X − Xeq) , (3.77)

where
τ = C/L . (3.78)

The solution to (3.77), viz.,

X(t) − Xeq = [X(0) − Xeq] e−t/τ , (3.79)

describes an exponential decay of the initial value X(0) to the equi-
librium value Xeq with a characteristic relaxation time τ . It follows
from (3.78) that it equals the ratio of the capacity and the kinetic
coefficient.

We shall often use linear equations of the type (3.77). Their range
of applicability often greatly exceeds the range of validity of the linear
approximations (3.69) and (3.75). The time course of chemical reac-
tions, considered in more detail in Appendix B.3, represents one such
case.
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4.1 History in Physics

It has been customary to think about physics as a branch of science
that is indifferent to history. Kepler’s planets move along regular orbits
and, after some period of time, return at the same velocity to the same
position in space. Also in the case of unstable (chaotic) trajectories,
as stated in Poincaré’s famous theorem in the late 19th century, me-
chanical systems return arbitrarily close to the initial state. Equations
of motion in classical mechanics and electrodynamics are time-reversal
invariant. Similarly, by and large, in quantum mechanics and quantum
field theory.

Though Boltzmann in his statistical mechanics introduced the ‘ar-
row of time’, this idea applied to the future and not to the past of
a physical system. The trend toward equilibrium is irreversible and
the system before reaching its thermodynamic equilibrium state may
follow a variety of distinct pathways starting from various initial con-
ditions. Consequently, knowledge of the final state is not sufficient to
draw conclusions about the initial state of the system.

Each physical system has a structure, an organization or, in other
words, constraints imposed on its motion. This feature contains history
understood as a memory of an event in the past when this structure
became ‘frozen’. Indeed, it is frozen and not fixed as we fix initial con-
ditions when solving equations of motion. Freezing is a kinetic process
that does not contradict the second law of thermodynamics guaran-
teeing a trend toward the state of total thermodynamic equilibrium.
However, the time it takes to reach the total thermodynamic equilib-
rium turns out to be much longer than the time courses of the events
and processes we try to explain by assuming a specific structural or-
ganization of the system considered.

The process of the kinetic freezing of the structure is believed
to follow the laws of physics. Nonetheless, it has so much random-
ness (Dawkins, 1986; Winkler-Oswatitsch and Eigen, 1992; Kauffman,
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1993) that we are unable to deduce the structure from those very laws.
Hence, it must be introduced into theory as an externally supplied
piece of information. The randomness (in the sense of deterministic
chaos) of practically every structure made spontaneously without the
participation of any conscious constructor is a consequence of the time-
reversal symmetry of the equations of microscopic physics (Prigogine
and Stengers, 1984; 1997). According to this symmetry, the existence
of any trajectory tending to the stable state of thermodynamic equi-
librium (e.g., trajectory 1 2 in Fig. 2.6) implies the existence of a tra-
jectory starting from an extremely unstable initial state in which the
phenomenon of ‘ergodicity breaking’ (Palmer, 1982), i.e., a particular
structural distinction, takes place (trajectory 2̄ 1̄ in Fig. 2.6).

Our knowledge of present physical structure allows us to try to re-
construct the history of the Earth (van Andel, 1994), the Solar System
(McSween, Jr., 1995), the Universe (Weinberg, 1980) or even time it-
self (Hawking, 1988). That these interests occupy many physicists is
not shocking to anybody these days. There is a general consensus that
the laws of physics are well understood today and it is time to apply
them to systems and processes with high degrees of complexity.

Without a doubt, the greatest challenge for physicists today is the
phenomenon of life. Living systems are extremely complex and orga-
nized hierarchically. This is clearly a result of the process of evolution
that is almost as old as the Earth itself. Not surprisingly, biology was
the first branch of science that attempted to reconstruct past events
from today’s knowledge of the biosphere. This quest started with the
discovery of fossils of long-extinct species. A healthy dose of creativ-
ity and imagination applied to sets of more or less complete skeletal
remains led to depictions of various extinct animal and plant species
(Briggs and Crowther, 1990). The history of life on Earth, viewed from
this perspective, began in the Cambrian period at the dawn of the Pa-
leozoic era (540 million years ago) when living creatures developed the
ability to build a solid skeleton based on calcium carbonate or silica.
Contemporary techniques allow us to uncover fossils of much simpler
organisms that do not possess a skeleton. Furthermore, these findings
can nowadays be dated precisely and they push back the date of the
emergence of life on Earth over 3.5 billion years ago (Schopf, 1999).

Charles Darwin in 1859 proposed a method that had great poten-
tial to reconstruct the history of life based on differences in selected
features of living animal species and not extinct ones. In modern ap-
plications of this methodology, the most fundamental characteristics
are the nucleotide sequences in the genomes of selected individual or-
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ganisms (Dawkins, 1989). Based on the mathematically well defined
distance between genomes, one tries to reconstruct, e.g., the history of
the species Homo sapiens (Cann et al., 1987) or HIV 1 (Nieselt-Struve,
1997). Biochemistry and molecular biology (Darnell et al., 1999; Stryer
et al., 2002), whose dynamic development has flourished since the mid-
20th century, provide us with numerous examples of ‘living fossils’.
These are archaic metabolic pathways and more or less conserved do-
mains in enzymes. The contemporary organization of animate matter
reflects the history of its evolution and, conversely, the living structures
that we encounter on the Earth today are products of the evolution of
life.

Biophysics, when it attempts to describe the phenomenon of life
using the conceptual framework of physics, only partially explains the
structures of the elements of living systems, treating certain other
components as given. Describing in this book the emergence of these
‘given’ components as a historical process, we will strive to provide the
most precise answer possible to Erwin Schrödinger’s famous question
(Schrödinger, 1967): What is life?

4.2 Initiation

Planet Earth was formed about 4.6 billion years ago as a result of ac-
cretions (inelastic collisions and agglomerations) of larger and larger
rocky fragments formed gradually from the dust component of the
gaseous dusty cloud that was the original matter of the Solar System.
The ‘Great Bombardment’ ended only 3.9 billion years ago when the
stream of meteorites falling onto the surface of the newly formed planet
reached a more or less constant intensity. The first well preserved petri-
fied microstamps of relatively highly organized living organisms similar
to today’s cyanobacteria emerged about 3.5 billion years ago (Schopf,
1999), so life on Earth must have developed within a relatively short
time of a few hundred million years.

Rejecting the hypothesis of an extraterrestrial origin of life [which
may not appear so irrational, see arguments by Crick (1981)], we have
to answer the question of the origin of the simplest elements of living
organisms: amino acids, monosaccharides and nitrogenous bases. Three
equally probable hypotheses have been put forward to explain their
appearance (Cairns-Smith, 1990; Orgel, 1998). According to the first
and oldest hypothesis, these compounds appeared as a result of electric
discharges and ultraviolet irradiation of the primary Earth atmosphere
containing CO2 (the contemporary atmospheres of Mars and Venus
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are 98% composed of this gas) and H2O, but also a certain amount of
strongly reducing gases CH4, NH3 and H2S. According to the second
hypothesis, the basic elements of living organisms were formed in space
outside the orbits of large planets and transferred to the Earth’s surface
via collisions with comets and, indirectly, carbon chondrites. The third
and most recent hypothesis says that these elements appeared at the
oceanic rifts where the new Earth’s crust was formed and where water
overheated to 400◦C and containing strongly reducing FeS, H2 and
H2S met cool water containing CO2.

In fact the problem remains open and all three hypotheses have
been seriously criticized. First, the primary Earth atmosphere might
not have been sufficiently reducing. Second, organic compounds from
outer space could have deteriorated while passing through the Earth’s
atmosphere. Third, the reduction of CO2 in oceanic rifts requires non-
trivial catalysts.

The three most important characteristics of life that distinguish it
from other natural phenomena were aptly expressed by Charles Dar-
win, whose theory of evolution has appeared so crucial for biology.
Taking into account the achievements of post-Darwinian genetics and
biochemistry (Mayr and Provine, 1980) we can come up with the fol-
lowing definition:

Life is a process characterized by continuous (1) reproduction,
(2) variability and (3) selection (survival of the fittest). Us-
ing present-day language, to stay alive individuals must have
a replicable and modifiable program, a proper metabolism (a
mechanism of matter and energy conversion) and a capability
of self-organization.

The emergence of molecular biology in the 1950s answered many
questions about the structures and functioning of the three most im-
portant classes of biological macromolecules: DNA (deoxyribonucleic
acid), RNA (ribonucleic acid) and proteins. However, in the attempts
to develop a possible scenario of evolution from small organic elements
to large biomolecules, a classical chicken-and-egg problem was encoun-
tered. What appeared first? The DNA that carried the coded informa-
tion on enzymatic proteins controlling the physiological processes that
determined the fitness of an individual, or the proteins that enabled
the replication of DNA, its transcription into RNA and the translation
of certain sequences of amino acids into new proteins (Fig. 4.1a)?

The question was resolved in the 1970s as a result of the evolution-
ary experiments carried out in Manfred Eigen’s laboratory (Biebricher
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Fig. 4.1. Processing genetic information. (a) The classical dogma: the in-
formation is carried by DNA that undergoes replication during the process
of biological reproduction and transcription into RNA when it is to be ex-
pressed; gene expression consists of translation of the information written in
RNA onto a particular protein primary structure. (b) Modern corrections
to the classical dogma. RNA can be replicated and transcribed in the oppo-
site direction into DNA. Furthermore, the proteins themselves can also carry
information, as is assumed to occur in prion diseases

and Gardiner, 1997). The primary macromolecular system undergo-
ing Darwinian evolution may have been RNA. Single-stranded RNA
is not only the information carrier, a program or genotype, but thanks
to a specific spatial structure, it is also an object of selection or a
phenotype. Originally, Manfred Eigen and coworkers used viral RNA
replicase (Fig. 4.1b), a protein, to produce new generations of RNA in
vitro. It soon appeared that the complementary RNA could polymer-
ize spontaneously, without any replicase, on the matrix of the already
existing RNA as a template. Consequently, we can imagine a very
early ‘RNA world’ (Gesteland et al., 1999) composed only of ribonu-
cleosides, their phosphates and their polymers – subject to Darwinian
evolution, and thus alive according to the definition adopted.

A number of facts support the RNA world concept. Ribonucleo-
side triphosphates are a highly effective source of free energy. They
fulfill this function as a relict in most chemical reactions of contem-
porary metabolism (Stryer et al., 2002). Diribonucleotides play the
role of co-factors in many protein enzymes. In fact, RNA molecules
themselves can serve as catalysts (Cech, 1986; Lilley, 2003) and it is
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becoming more common to talk about ribozymes. Contemporary ri-
bosomes translating information from RNA onto a protein structure
(see Fig. 4.1a) fulfill their catalytic function due to their ribosomal
RNA content rather than their protein components (Ramakrishnan
and White, 1998; Steitz and Moore, 2003). Finally, for a number of
years now, we have known the reverse transcriptase that transcribes in-
formation from RNA onto DNA (Fig. 4.1b). It also appears that RNA
may be a primary structure and DNA a secondary one, since modern
organisms synthesize deoxyribonucleotides from ribonucleotides.

4.3 Origins of the Prokaryotic Cell Machinery

The RNA world could not exist any longer in conditions that occur on
the contemporary Earth. The smallest present-day system that has the
key function of a living object, namely reproduction, is a cell . There
is a sharp distinction between simple prokaryotic cells (that do not
have a cell nucleus) and much more complex eukaryotic cells (with
a well-defined nucleus). There is a body of evidence pointing to an
earlier evolutionary emergence of prokaryotic cells. Eukaryotic cells
are believed to have resulted from mergers of two or more specialized
prokaryotic cells. Unfortunately, little is known about the origins of
prokaryotic cells themselves. The scenario that we present below is only
an attempt to describe some key functional elements of the apparatus
possessed by all prokaryotic cells (Harris, 1995) and does not represent
a serious effort to reconstruct the history of life on Earth.

The world of competing RNA molecules must have eventually
reached a point where a dearth of the only building material, nu-
cleoside triphosphates, occurred. Molecules that were able to provide
themselves with adequate supplies of the building materials gained an
evolutionary advantage but they needed a bag, a container that could
protect them and their supplies from the surroundings. In the liquid
phase, such containers were formed spontaneously from phospholipids,
amphiphilic molecules with one part attracted and another repelled by
water. As a result of the movement of the hydrophobic part away from
water and the movement of the hydrophilic part toward water, a lipid
bilayer without a boundary, i.e., a three-dimensional vesicle, is formed
(Fig. 4.2, Appendix C.4).

Since phospholipid vesicles can join to make bigger structures from
several small ones, they are important for the RNA molecules that
compete for food. Merging into bigger vesicles can be advantageous
in foraging for food, while division into small vesicles can be seen as
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Fig. 4.2. In a water environment, amphiphilic molecules composed of a hy-
drophilic part (white circle) and a hydrophobic part (black line segment) or-
ganize themselves spontaneously into bilayers closed into three-dimensional
vesicles. A protein, a linear polymer of appropriately ordered hydrophilic
(white circles) and hydrophobic (black circles) amino acids, forms a struc-
ture that spontaneously builds into the bilayer and allows selectively chosen
molecules, e.g., nucleoside triphosphates, to pass inside the vesicle

a type of reproduction. The phospholipid vesicle itself does not solve
the problem, since there must also be a way of selective infusion of nu-
cleotides into its interior. Employing a new type of biomolecule, amino
acids, some of which are hydrophilic and some hydrophobic, solved
this latter problem. Their linear polymers are called peptides and long
peptides give rise to proteins. Proteins possess three-dimensional struc-
tures whose hydrophobicity depends on the order in which amino acid
segments appear in a linear sequence (see Appendix C.5). Such pro-
teins may spontaneously embed themselves in a lipid bilayer and play
the role of selective molecular channels (see Fig. 4.2).

It appears, therefore, that the first stage in the development of a
prokaryotic cell was probably the enclosure of some RNA molecules
into phospholipid vesicles equipped with protein channels that en-
abled a selective transfer of nucleoside triphosphates into the interior
(Fig. 4.3a). The second stage must have been the perfection of these
channels and a link between their structure and the information con-
tained in the RNA molecules. The latter property would have gained
a selective significance. Selective successes could be scored by RNA
molecules that could translate some of the information contained in
the RNA base sequence into an amino acid sequence of a channel pro-
tein in order to synthesize it. This was the way to distinguish the
so-called mRNA (messenger RNA) from tRNA (transfer RNA) and
rRNA (ribosomal RNA). While mRNA carries information about the
amino acid sequence in a protein, tRNA connects particular amino



72 4 Origins and Evolution of Life

acids with the corresponding triples of bases. rRNA is a prototype of a
ribosome, a catalytic RNA molecule that can synthesize amino acids,
transported to it by molecules of tRNA, into proteins (Fig. 4.3b).

The analysis of the nucleotide sequences in tRNA and rRNA of
various origins indicates that they are very similar and thus archaic.
The genetic code based on sequences of triples is equally universal
and archaic. Contemporary investigation of both prokaryotic and eu-
karyotic ribosomes has provided solid evidence that the main catalytic
role is played by rRNA and not the proteins contained within them
(Ramakrishnan and White, 1998; Steitz and Moore, 2003).

However, proteins have much better catalytic properties than RNA.
A key property is their high specificity with regard to the substrate.
In the form of polymerases, they soon replaced RNA in the process of
self-replication. It was already possible on the RNA template to repli-
cate sister RNA as well as DNA (deoxyribonucleic acid). DNA spon-
taneously forms a structure composed of two complementary strands
(a double helix, see Appendix C.6) and is a much more stable carrier
of information than RNA. This principle led to the current method
of transferring genetic information (see Fig. 4.3c) which goes as fol-
lows. Genetic information is stored in double-stranded DNA. Protein
replicases duplicate this information in the process of cell division.
If necessary, protein transcriptases transcribe this information onto
mRNA, which is used during the process of translation on ribosomes
as a template to produce proteins. The transfer of information in the
reverse direction from RNA to DNA via reverse transcriptases is a
fossil remnant that has been preserved in modern retroviruses.

Protein enzymes can perform useful tasks. They can produce much-
needed nucleoside triphosphates by recycling them from nucleoside
diphosphates and inorganic orthophosphate with the use of organic
compounds of a fourth type – saccharides as a source of free energy.
In the now universal process of glycolysis, the oxidation of the most
common monosaccharide, glucose, to pyruvate, two ATP molecules
are reconstructed (see Sect. 4.6). The oxidizer (hydrogen acceptor) is
NAD+ – nicotinamide adenine dinucleotide. This is also a relict from
the RNA world. The oxidizer NAD+ is recovered in the process of
fermentation of a pyruvate into a lactate (Fig. 4.3d).

The lactic fermentation process that accompanies phosphorylation
of ADP to ATP with the use of sugar as a substrate has several draw-
backs. In addition to its low efficiency (unused lactate), it leads to
increased acidity of the cell. While sugars are neutral (pH near 7),
lactate is a product of dissociation of lactic acid and, in the process of
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Fig. 4.3. Development of the prokaryotic cell machinery. (a) The self-
replicating RNA molecule with a supply of nucleotide triphosphates (NTP) is
enclosed in a vesicle bounded by a lipid bilayer with built-in protein channels
that allow a selective passage of nucleoside triphosphates. (b) In an RNA
chain, a distinction is made between mRNA and various types of tRNA and
rRNA, the latter being a prototype of a ribosome that can synthesize proteins
according to the information encoded in mRNA. Proteins produced in this
way are more selective membrane channels and effective enzymes that can cat-
alyze many useful biochemical processes. (c) Double-stranded DNA replaces
RNA as a carrier of information. Protein replicases double this information
during cell division and protein transcriptases transfer this information onto
mRNA. (d) Protein enzymes appear to be able to catalyze the process of
lactose fermentation of sugars as a result of which the pool of high energy
nucleoside triphosphates (mainly ATP) can be replenished using low energy
diphosphates (mainly ADP). The amount of oxidizer (hydrogen acceptor)
NAD+ remains constant, but the cell interior becomes acidic. (e) Proton
pumps are created which are able to pump H+ ions into the cell exterior
via ATP hydrolysis. (f) Other proton pumps use hydrogen obtained from the
decomposition of sugars through pyruvate to CO2 as fuel. Due to the pres-
ence of a wall or a second cell membrane, pumped-out protons may return
to the cell interior through the pumps of the first type that act in reverse to
reconstruct ATP from ADP. Membrane phosphorylation becomes the basic
mechanism of bioenergetics in all modern living organisms
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sugar decomposition, hydrated protons H+ (in the form of hydronium
ions H3O+) are released. This is a well-known experience during hard
physical work and exercise when blood is unable to deliver a sufficient
amount of oxygen to the muscles. The lowering of the pH results in
a significant slowdown or even a complete stoppage of the glycolysis
reaction.

For the decomposition of sugars to be effectively used in the pro-
duction of ATP, a cell must find a different mechanism of fermentation
whose product has a pH close to 7, or a way for the protons H+ to
be expelled outside the cell. The new type of fermentation was discov-
ered only by yeast, where it consists of the reduction of pyruvate to
ethanol with a release of carbon dioxide. Before it took place, a proton
pump had been found utilizing the hydrolysis of ATP as a source of
energy (Fig. 4.3e). During the production of one molecule of ATP, one
hydrated proton H+ is released inside the cell, while the hydrolysis of
one molecule of ATP results in the pumping outside the cell membrane
of three hydrated protons H+ (see Fig. 4.4a). Hence the process is still
energetically favorable.

However, from the viewpoint of ATP production, a more efficient
process is further oxidation of pyruvate to final products: carbon diox-
ide and water. This process takes place in the citric acid cycle of Krebs
(see Sect. 4.6). Discussing the economy of the Krebs cycle makes sense
only when a cell is able to utilize fuel in the form of hydrogen bound to
the NAD+ (and FAD – flavin adenine dinucleotide) for further phos-
phorylation of ADP to ATP. This became possible when a new gener-
ation of proton pumps was found. These pumps worked as a result of
the decomposition of hydrogen into a proton and an electron instead of
ATP hydrolysis. These particles were further transported along differ-
ent pathways to the final hydrogen acceptor which, in the early stages
of biogenesis, may have been an anion of an inorganic acid.

Primitive bacterial cells were endowed with cell membranes com-
posed of peptidoglycan, a complex protein–saccharide structure, and
later developed additional external cell membranes. This facilitated ac-
cumulation of protons in the space outside the original cell membrane,
from which they could return to the cell interior using the proton pump
of the first type (Fig. 4.3f). This pump, working in reverse, synthesizes
ATP from ADP and an orthophosphate. This very efficient mechanism
of membrane phosphorylation is universally utilized by all present-day
living organisms.

A more detailed explanation of the proton pump that utilizes the
oxidation of hydrogen is shown in Fig. 4.4b. In the original version,
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Fig. 4.4. Proton pumps transport free protons H+ across the membrane
from the cell interior to its exterior at the expense of the following chemical
reactions: hydrolysis of ATP into ADP and an inorganic orthophosphate (a)
or oxidation of hydrogen released in the decomposition of glucose to CO2 and
transported by NAD+ (b). A derivative of quinone Q is an intermediary in
hydrogen transport. This molecule is soluble inside the membrane and oxida-
tion is finally accomplished, for example, through nitrate NO−

3 that is reduced
to nitrite NO−

2 . If pumps of both types are located in the same membrane,
the first protons passing in the reverse direction can phosphorylate ADP to
ATP

the pump is composed of two protein trans-membrane complexes: a
dehydrogenase of NADH and a reductase, for example, the one reduc-
ing nitrate NO−

3 to nitrite NO−
2 . In the first complex, two hydrogen

atoms present in the NADH–hydronium ion pair are transferred to
FMN (flavin mononucleotide). Later, after two electrons are detached,
the hydrogens (as protons) are transferred to the other side of the
membrane. The two electrons are accepted in turn by one and then
the other iron–sulfur center. (Iron is reduced from the state Fe3+ to
Fe2+.) Subsequently, at a molecule of a quinone derivative Q, they are
bound to another pair of protons that reached the same site from the
interior of the cell. An appropriate derivative of quinone Q is well solu-
ble inside the membrane and serves as an intermediary that ferries two
hydrogen atoms between the two complexes. At the other complex, two
hydrogen atoms are again split up into protons and electrons. The re-
leased protons are transferred to the exterior of the membrane and the
electrons together with the protons from the interior of the membrane
are relocated to a final acceptor site that can be a nitrate anion. The
nitrite thereby created can be the oxidizer in another reaction used by
another reductase:

NO−
2 −→ N2 .
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Alternatively, the nitrite can be involved with other inorganic anions
such as an acid carbonate or sulfate in reactions leading to the forma-
tion of compounds with hydrogen: ammonia, methane, or sulfurated
hydrogen:

NO−
2 −→ NH3 , HCO−

2 −→ CH4 , SO2−
4 −→ H2S .

4.4 The Photosynthetic Revolution

The Earth is energetically an open system and a substantial flux of so-
lar radiation has reached it since the moment of its creation. Coupled
with the rotational motion of the planet, this flux has powered the
machinery of oceanic and atmospheric motions. The primary energy
sources for the newly emerged life on Earth were nucleoside triphos-
phates and small organic molecules such as monosaccharides that soon
turned out to be exhaustible. Life became energetically independent
only when it learned how to harness the practically inexhaustible solar
energy or, more precisely, the fraction of it that reaches the surfaces
of the oceans.

The possibility of utilizing solar energy by living cells is linked
to the use of chlorophyll as a photoreceptor (Nitschke and Ruther-
ford, 1991). The chlorophyll molecule contains an unsaturated carbon–
nitrogen porphyrin ring (see Fig. C.4) with a built-in magnesium ion
Mg2+ and phytol, a long saturated hydrophobic carbohydrate chain.
The molecules of chlorophyll are easily excited in the optical range
and equally easily transfer this excitation among each other, creating
a light-harvesting system in an appropriate protein matrix. The last
chlorophyll molecule in such a chain can become an electron donor and
replace the NADH + H+ fuel in a proton pump (see Fig. 4.4b).

The first organisms that found this possibility were most likely
purple bacteria. Their proton pumps are also composed of two pro-
tein complexes built into the cell membrane (Fig. 4.5). In the protein
complex called the type-II reaction center (RC), two electrons from
the excited chlorophyll are transferred with two protons from the cell
interior to a quinone derivative Q with a long carbohydrate tail. Q is
soluble in the membrane. When reduced to quinol QH2, it carries the
two hydrogen atoms inside the membrane to the next complex that
contains a protein macromolecule called cytochrome bc1. The macro-
molecule catalyzes the electron transfer from each hydrogen atom onto
another macromolecule called cytochrome c, while the remaining pro-
ton moves to the extracellular medium.
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Fig. 4.5. A proton pump in purple bacteria utilizing solar radiation energy. In
the first protein complex called a type-II reaction center (RC II), an electron
from an excited chlorophyll molecule (the ‘primary donor’) is transferred to a
molecule of a quinone derivative (Q) along with a proton taken out of the cell
interior. The quinone derivative molecule carries two hydrogen atoms formed
this way to another protein complex containing cytochrome bc1. In the latter
complex hydrogen atoms are again separated. A proton is moved outside the
cell, while an electron reduces a molecule of the water-soluble cytochrome c,
which carries it back to the primary donor. An alternative source of electrons
(broken line) for purple sulfur bacteria can be the molecule of sulfurated
hydrogen H2S

Cytochromes are proteins that contain a heme, a porphyrin ring
with a built-in iron ion Fe2+, that may also exist in a form oxidized
to Fe3+. Cytochrome c is a water soluble protein that drives electrons
outside the cell membrane back to the reaction center. This completes
the cyclical process during which two protons are carried from inside
the cell to the outside. An alternative source of electrons needed to
restore the initial state of the reaction center used, for example, in
purple sulfur bacteria, may be molecules of sulfurated hydrogen H2S.
In contrast to the oxidation of NADH, oxidation of H2S to pure sulfur
is an endoergic reaction (consuming and not providing free energy)
and it cannot be used directly for proton pumping.

The proton concentration difference on each side of the cell mem-
brane is further used by purple bacteria to produce ATP in the same
way that it is produced by non-photosynthetic bacteria. An alterna-
tive way of using solar energy was found by green bacteria (Fig. 4.6).
In the protein complex called the type-I reaction center, an electron
from photoexcited chlorophyll is transferred to a water-soluble pro-
tein of ferredoxin. The lack of electrons in the chlorophyll molecules
is compensated uncyclically from sulfurated hydrogen decomposition.
The electron carrier in ferredoxin is the iron–sulfur center composed
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Fig. 4.6. The utilization of solar energy by green sulfur bacteria. In the
first protein complex called the type-I reaction center (RC I), an electron
from an excited chlorophyll molecule is transferred to the water-soluble pro-
tein molecule of ferredoxin (Fd) which carries it to the complex of NADP+

(nicotinamide adenine dinucleotide phosphate) reductase. The deficit electron
in the initial chlorophyll is compensated in the process of oxidation of sulfu-
rated hydrogen H2S. The reduced hydrogen carrier NADPH + H+ serves as
a fuel in the Calvin cycle, synthesizing sugar from water and carbon dioxide

of four Fe atoms directly bound to four S atoms. After the reduction
of iron, ferredoxin carries electrons to the next protein complex where
they bind to protons moving from the cell interior and reducing the
molecules of NADP+ (nicotinamide adenine dinucleotide phosphate)
to NADPH + H+. The entire system is not really a proton pump since
there is no net proton transport across the cell membrane. The system
transforms light energy into fuel energy in the molecules of NADPH,
together with hydrated protons H+ that carry the original charge of
NADH+. This fuel is used in the synthesis of glucose from CO2 and
H2O in the Calvin cycle. This cycle is in a sense reverse to the Krebs
cycle (compare Sect. 4.6). In the Calvin cycle, ATP is still being used.
In the final balance, after the oxidation of glucose in the same way as
for non-photosynthetic bacteria, an excess of ATP is produced.

A combination of the two methods of using solar energy offers the
optimal solution. It was found by cyanobacteria. In cyanobacteria,
cytochrome c1 was replaced by the slightly different cytochrome f,
whereas cytochrome c was replaced by plastocyanin (PC) and used as
an electron carrier between type-II and type-I reaction centers. The
centers are now referred to as photosystem II (PS II) and photosystem
I (PS I), respectively (Fig. 4.7). The electron carrier in plastocyanin
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Fig. 4.7. A proton pump using solar energy in cyanobacteria can be thought
of as a combination of the proton pump in purple bacteria (type-II reaction
center, now called photosystem II or PS II) and the photosynthetic system
of green bacteria (type-I reaction center, now called photosystem I or PS I).
The coupling of the two systems is realized by a water-soluble molecule of
plastocyanin (PC) with a copper ion serving as an electron carrier. The final
electron donor is water H2O which, after donating electrons and protons,
becomes molecular oxygen O2. The proton concentration difference between
the two sides of the cell membrane is used to produce ATP via H+ATPase (see
Fig. 4.4a) working in the reverse direction. In principle, the photosynthetic
system in the thylacoid membranes of chloroplasts that are organelles of
eukaryotic plant cells are identical structures

is the Cu2+ copper ion reducible to Cu+ and directly bound via four
covalent bonds to surrounding amino acids.

However, the greatest breakthrough resulted not from the combi-
nation of the two photosystems, but from the utilization of water as
the final electron donor (and a proton donor, hence a hydrogen donor).
The dissociation of hydrogen atoms from a water molecule H2O turned
it into a highly reactive molecular oxygen O2 gas that was toxic to the
early biological environment. Initially, it oxidized only iron Fe2+ ions
that were soluble in great amounts in ocean water at that time. As
a result of this oxidation, poorly soluble Fe3+ was formed. This sed-
imented, giving rise to modern iron ore deposits. Simultaneously, the
increased production of sugars from CO2 and H2O reduced ocean acid-
ity and caused a transformation of acidic anions of HCO−

3 into neutral
CO2−

3 ions. The latter reacted with the Ca2+ ions initially present in
high concentrations, leading to sedimentation of insoluble calcium car-
bonate CaCO3. The membranes of cyanobacteria captured the calcium
carbonate and produced a paleobiological record of these processes in
the form of fossils called stromatolites (Schopf, 1999).
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The formation of calcified stromatolites depleted CO2 from the at-
mosphere. When a deficit of compounds capable of further oxidation
occurred, molecular oxygen O2 started to be released into the atmo-
sphere. Along with molecular nitrogen N2 formed by the reduction
of nitrates, they brought about the contemporary oxygen–nitrogen-
based atmosphere containing only trace quantities of carbon dioxide.
Life had to develop in a toxic oxygen environment from that point
onward. The problem was solved by the mechanism of oxidative phos-
phorylation used by modern aerobic bacteria and all higher organisms.
A proton pump that used inorganic anions as final electron acceptors
(see Fig. 4.4b) was replaced by a pump in which the final electron ac-
ceptor is molecular oxygen (Fig. 4.8). Use has been made of the protein
complex with cytochrome bc1 transferring electrons from quinone Q
to the water-soluble cytochrome c (see Fig. 4.7), a mechanism found
earlier by purple bacteria.

The source of electrons transferred to the quinone can be the NADH
+ H+ fuel generated by glycolysis and in the Krebs cycle or, directly,
FADH2 (reduced flavin adenine dinucleotide) produced in one stage
of the Krebs cycle. Electrons can also come from an inorganic source
(chemotrophy). For example, nitrifying bacteria can oxidize ammonia
to nitrite and further to nitrate:

NH3 −→ NO−
2 −→ NO−

3 ,

using molecular oxygen.
Nature demonstrates here, as it has many times before and since,

its ability to use environmental pollution to its advantage. It will be
interesting to see, for example, what use it finds for the countless tons
of plastic bottles deposited in modern garbage dumps.

4.5 Origins and Structure of the Eukaryotic Cell.
Further Stages of Evolution

In its 19th century interpretation, Darwin’s theory of natural selection
favoring the survival of the fittest could be readily associated with the
struggle for survival, tooth and nail, and all that was called the ‘law
of the jungle’. This, in turn, became the foundation of the ideologi-
cal doctrine of many totalitarian regimes on the 20th century political
landscape (‘the struggle of classes’ and ‘the struggle of races’). To the
credit of Lynn Margulis (1981, 1998), the third scientist we mention
by name in this chapter, some emphasis has been given to the fact
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Fig. 4.8. Protein pump of heterotrophic aerobic bacteria. Electrons from the
fuel in the form NADH + H+ (produced in glycolysis and in the Krebs cycle)
are transferred via a quinone derivative (Q) to the protein complex with
cytochrome bc1 and then via cytochrome c to the complex with cytochrome
aa3. The final electron acceptor is molecular oxygen O2. During the transfer
of two electrons along the membrane, eight protons are pumped across it.
The proton concentration difference between the two sides of the membrane
is used to produce ATP by H+ATPase (see Fig. 4.4a) working in reverse. This
is in principle identical to the mechanism of oxidative phosphorylation in the
mitochondrial membrane, which is an organelle present in all eukaryotic cells

that survival can be accomplished not only through struggle but also
through peaceful coexistence, called symbiosis in biology. Many clues
support the significance of symbiosis in the formation of modern eu-
karyotic cells.

Figure 4.9 shows a simplified scheme of the phylogenetic tree of liv-
ing organisms. There is a clear division between archaic bacteria (Ar-
chaebacteria) and true bacteria (Eubacteria) that may already have
emerged in the earliest periods of life on Earth. The history of subse-
quent differentiation of prokaryotic organisms within these two groups,
however, is not so clear. The modern phylogenetic tree is based on dif-
ferences in DNA sequences coding the same functional enzymes or
ribozymes. The more differences are found in the DNA sequences, the
earlier the two branches of the compared species must have divided.
However, the results obtained by comparing, for example, ribosomal
RNA with the genes of the proteins in the photosynthetic chain show
that they differ greatly from each other and hence lead to very dissim-
ilar reconstructions of the history of the evolution of photosynthesis
(Doolittle, 1999; Xiong et al., 2000). The reason for this ambiguity is
the lateral gene transfer processes by which genes are borrowed by one
organism from another. Branches can split away and merge over time.
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Fig. 4.9. Simplified and somewhat hypothetical phylogenetic tree of living
organisms. The earliest are the two groups of prokaryotic organisms, Ar-
chaebacteria and Eubacteria. As a result of the merger of prokaryotic cells
with different properties, eukaryotic cells (Eukaryota) were formed. The latter
further evolved either in undifferentiated form as single-cell organisms (the
kingdom of protista) or differentiated into multicellular organisms (the king-
doms of heterotrophic fungi with multinuclear cells, heterotrophic animals
and phototrophic plants)

Therefore, the phylogenetic tree of Eubacteria shown in Fig. 4.9 must
be viewed with caution, especially since only the taxons essential to
our discussion are depicted.

Gram-positive bacteria (the name originates in the staining process
proposed by Gram) have only a single external membrane and hence
are more sensitive to antibiotics. Fortunately, this group includes most
of the pathogenic bacteria. Spirochetes have developed mechanisms
of internal motion for the entire cell. Photosynthetic purple bacteria
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with the type-II reaction center can be sulfuric or non-sulfuric. They
must be evolutionarily close to aerobic bacteria because they utilize
the same mechanism of reduction of cytochrome c through the protein
complex with cytochrome bc1 (see Figs. 4.5 and 4.8). To be more
precise, biologists do not distinguish a taxon of bacteria that have
such a name. Most aerobic bacteria, including the common Escherichia
coli , can survive in oxygen-deprived conditions. Green bacteria and
cyanobacteria have in common the mechanism of sugar photosynthesis
with the use of type-I reaction centers.

Lateral gene transfer can be fully accomplished when several simple
prokaryotic cells merge into one supercell. According to Margulis, this
is how eukaryotic cells first formed. Most probably, a thermophilic
bacterium with a stable genomic organization whose DNA was pro-
tected by proteinaceous histones that combined to form a prototype
of chromatin entered into a symbiotic arrangement with a spirochete
containing a motile apparatus formed from microtubules (see Fig. 4.9).
This combination gave rise to a mitotic mechanism of cell division.
Chromatin with a doubled amount of genetic material organizes itself
after replication into chromosomes pulled in opposite directions by a
karyokinetic spindle formed from centrioles by self-assembling micro-
tubules that consume GTP as fuel (see Sect. 4.4).

In the next stage, cells with nuclei that contained chromatin as-
similated several aerobic bacteria (Fig. 4.9). The latter were trans-
formed into mitochondria, the power plants of cells that synthesized
ATP via the oxidative phosphorylation mechanism shown in Fig. 4.8.
The Eukaryota cells thereby formed continued to evolve (Fig. 4.9)
in undifferentiated forms as single-cell organisms (the protista king-
dom) or in differentiated forms as multicellular organisms (fungus and
animal kingdoms). All the above organisms were heterotrophs. The
assimilation of prokaryotic cells of cyanobacteria as chloroplasts led to
the formation of phototrophic single-cell organisms and multicellular
plants.

So far, we have only discussed the symbiosis of different prokary-
otic cells. An encounter of two organisms belonging to the same species
will lead either to cannibalism or to symbiosis. According to Margulis,
symbiotic encounters led to the emergence of sex . A symbiotic cell be-
comes diploidal, i.e., contains two slightly different copies of the same
genome. Obviously, reproductive cells nurtured by a parent organism
before entering into new symbiotic arrangements are haploidal and
contain only one copy of the genetic material. A reduction of the ge-
netic information took place in the process of generating reproductive
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cells when meiotic division replaced mitotic division. The evolutionary
advantage of sexual reproduction is due to the recombination (crossing
over) of maternal and paternal genes in meiotic division. As a result,
the genetic material undergoes a much faster variability compared to
random point mutations and such changes are seldom lethal.

Let us summarize the most important stages in the evolution of
life on Earth. We know some of the elements of the puzzle quite well
since they left visible traces that can be precisely dated. Some other
elements are somewhat hypothetical and have not yet been backed
by reliable precisely dated discoveries. They are indicated by question
marks. We finish with a survey of events over the last billion years, a
period in which life on Earth reached a supra-cellular level of organi-
zation (Cowen, 1990):

• 4.6 billion years ago – creation of Earth.
• 3.9 billion years ago – end of Big Bombardment. The surface tem-

perature of Earth is lowered so that the early gaseous envelope of
volcanic or cometic and meteoric origin differentiates into atmo-
sphere (mainly CO2) and ocean (mainly H2O with the addition of
simple organic compounds).

• ? – emergence of nucleosides and RNA allows the storage of infor-
mation and self-replication subjected to Darwinian selection based
on the survival of the fittest. Nucleoside triphosphates become the
key source of free energy for the reactions of polymerization.

• ? – emergence of key elements of the prokaryotic cell machinery:
membranes, membrane channels, ribosomes, DNA and RNA poly-
merases, and proton pumps. Phospholipid bilayers with selective
protein channels isolate various types of RNA from their surround-
ings and protect a supply of the required nucleotides. Primitive
ribosomes express the information contained in RNA in terms of
the proteins produced. Proteins turn out to be more efficient as
catalysts than RNA. The double-stranded DNA is found to be a
more stable information carrier than RNA. Protein enzymes enable
the use of sugars as a source of free energy in recycling nucleoside
diphospates into nucleoside triphospates. This is first carried out
through the process of fermentation and then in a more efficient
process of membrane phosphorylation with inorganic anions as ox-
idizers.

• 3.5 billion years ago – discovery of photophosphorylation is linked
to dissociation of H2O. The resulting molecular O2 oxidizes Fe2+

to the poorly soluble Fe3+, while sugar synthesis from CO2 and
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H2O lowers the acidity of the ocean, leading to the elimination of
insoluble calcium carbonate.

• 2 billion years ago – molecular oxygen starts to accumulate in large
quantities in the atmosphere. The chemical machinery of oxidative
phosphorylation is discovered.

• ? – thermophilic bacteria possessing DNA protected by histone pro-
teins enter into a symbiotic relationship with motile bacteria pos-
sessing microtubular cytoskeletons. The cell nucleus is formed and
the mechanism of mitotic cell division is carried out.

• ? – sex is discovered and with it the amount of genetic information
is doubled. A diploidal cell is formed and its meiotic division, re-
ducing the amount of information, offers the possibility of genetic
recombination.

• 1.4 billion years ago – symbiotic coexistence of cells containing nu-
clei with oxygen bacteria and possibly cyanobacteria is established.
Oxygen bacteria play the role of mitochondria and cyanobacteria
that of chloroplasts. The modern eukaryotic cell is born.

• 1.0 billion years ago – some cells that arose from cell division stop
dividing, which leads to the emergence of an embryo that differen-
tiates into a multicellular animal or plant organism.

• 540 million years ago – animals start developing skeletons from
calcium carbonate or silicate, thus enabling the formation of fossils
that give us a lasting chronological record. Beginning of Paleolithic
era (the Cambrian explosion).

• 440 million years ago – symbiosis of plants and fungi allows their
emergence on land.

• 100 million years ago – perfection of the most effective ways of
protecting the embryo (angiospermous plants and mammals with
placenta).

• 6 million years ago – first hominid forms are recorded.
• 150 thousand years ago – first Homo sapiens appears on Earth.

4.6 The Main Metabolic Pathways. Enzymes

Figure 4.10 illustrates schematically the main metabolic pathways
of energy and matter processing, common to contemporary bacteria
(prokaryotic cells) as well as animals, fungi and plants (Eukaryota).
Only the most important biochemical reactions have been shown; to-
day we know close to a hundred times as many reactions composing the
metabolism (Stryer, 2002). For simplicity, substrates are represented
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by black dots and reversible or practically irreversible reactions by bi-
or unidirectional arrows.

It is easy to see the vertical pathway of glycolysis, the oxidation of
the most common monosaccharide, glucose, to pyruvate. It is equally
easy to see the closed citric acid cycle of Krebs. The archaic origin
of the main metabolic pathways is evident not only from their uni-
versality (from bacteria to man) but also from the presence in many
of these reactions of nucleoside triphosphates, mainly ATP (adenosine
triphosphate). If a given reaction is connected with the hydrolysis of
ATP to ADP (adenosine diphosphate), it is marked in Fig. 4.10 by
a letter P at the start of the reaction. If, on the other hand, a given
reaction is linked to a synthesis of ADP and an orthophosphate group
into ATP (a process called phosphorylation), it is marked by a letter
P at the end of a reaction.

From the chemical point of view, the process of going from glucose,
C6H12O6, to pyruvate, CH3–CO–COO−, is an oxidation reaction and it
consists in taking hydrogen atoms from glucose. NAD+ (nicotinamide
adenine dinucleotide) is a universal oxidant (an acceptor of hydrogen,
i.e., simultaneously an electron and a proton). This is also a relict of
the RNA world. The process wherein NAD+ (or FAD in the case of
one reaction of the Krebs cycle) accepts two hydrogen atoms is marked
in Fig. 4.10 by a letter H at the end of a given reaction.

An overall balance of the glycolysis reaction, i.e., an oxidation of
glucose to a pyruvate, takes the form

C6H12O6 + 2 NAD+ + 2ADP + 2Pi (4.1)

−→ 2 CH3−CO−COO− + 2 NADH + 2 H+ + 2ATP + 2 H2O .

During this process two molecules of NAD+ are reduced by four atoms
of hydrogen:

C6H12O6 + 2NAD+−→2CH3−CO−COO− + 2H+ + 2NADH + 2H+

(4.2)
(two protons are obtained from the dissociation of pyruvic acid into
a pyruvate anion, whereas another two protons transfer the original
positive charge of NAD+) and the phosphorylation of two molecules
of ADP to ATP takes place according to the equation

ADP + Pi + H+ −→ ATP + H2O . (4.3)

In a neutral water environment, ATP is present as an ion with four
negative charges, ADP with three negative charges and an orthophos-
phate Pi with two.
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Fig. 4.10. Outline of the main metabolic pathways. Substrates of successive
reactions are represented by black dots. Reversible or practically irreversible
reactions catalyzed by specific enzymes are represented, respectively, by bi-
or unidirectional arrows
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The entry of pyruvate into the Krebs cycle requires its further oxi-
dation to acetate and carbon dioxide:

CH3−CO−COO− + H2O + NAD+ (4.4)

−→ CH3−COO− + CO2 + NADH + H+ .

As a result, a reduction of one molecule of NAD+ is made by two
atoms of hydrogen. The net balance in the Krebs cycle is

[CH3−COO− + H+ + 2H2O] + [3NAD+ + FAD] + [GDP + Pi + H+]

−→ 2CO2 + [ 3 NADH + 3 H+ + FADH2 ] + [ GDP + H2O ] . (4.5)

Acetate enters into it, bound to a so-called co-enzyme A (CoA) as
acetyl CoA. During one turn of the Krebs cycle a further reduction
takes place, of three molecules of NAD+ and one molecule of FAD
(flavin adenine dinucleotide) involving eight atoms of hydrogen and
phosphorylation of a molecule of GDP (guanosine diphosphate) to
GTP (guanosine triphosphate). For greater clarity of the overall re-
action, we have used square brackets to indicate the component sub-
processes.

Photosynthesizing organisms use hydrogen in the form of NADPH
+ H+ (see Fig. 4.7) in the synthesis of glucose from CO2 and H2O in
the Calvin cycle, whose overall balance equation takes the form

[ 6 CO2 + 12 NADPH + 12H+ ] + [ 18ATP + 18H2O ] (4.6)

−→ [C6H12O6 + 6H2O + 12NADP+] + [18ADP + 18Pi + 18H+] .

This cycle is in a sense reverse to the Krebs cycle. As for the Krebs
cycle, we have used square brackets to denote summary component
reactions, in order to show the net reaction more clearly. In the Calvin
cycle, ATP is still being used. In the final balance, after the oxidation of
glucose in the same way as for non-photosynthetic bacteria, an excess
of ATP is produced.

Each metabolic reaction is catalyzed by a specific protein enzyme.
Besides accelerating reactions many millions of times, enzymes have
two other important functions: regulatory – a given reaction is needed
for the cell only at a certain space and time; and coupling – processes
of biological free energy or signal transduction occur only when several
reactions are catalyzed by the same multienzymatic complex.

Enzymes have been given a special nomenclature (Enzyme Nomen-
clature, 1973). The name of each enzyme ends with an -ase suffix.
Here we list the six main classes of enzymes and give several typical
examples:



4.6 The Main Metabolic Pathways. Enzymes 89

1. Oxidoreductases catalyze electron transfer. If there is a simulta-
neous transfer of a proton (i.e., the whole hydrogen atom), then
we call them dehydrogenases or transhydrogenases. If the hydro-
gen acceptor is molecular oxygen, we use the name oxidase, and
if the hydrogen acceptor is hydrogen superoxide we use the name
peroxidase.

2. Transferases catalyze the transfer of a radical or a molecular group
from one compound to another. Here, an important subclass con-
tains phosphotransferases or kinaseses, which phosphorylate vari-
ous substrates.

3. Hydrolases catalyze the hydrolysis of bonds of ester type, in par-
ticular proper ester bonds (esterases or lipases), peptide bonds
(peptidases or proteases) and phosphodiester bonds (phosphodi-
esterases or deoxyribonucleases). An important subclass here are
the already mentioned ATPases, in which the hydrolysis of ATP
to ADP and Pi is coupled with various processes that require a
supply of free energy, e.g., active transport across ion channels in
biological membranes or movement along cytoskeletal structures.

4. Lyases catalyze the breaking of various bonds in a non-hydrolytic
way. Particular examples are decarboxylases, which free carbon
dioxide CO2 from substrates.

5. Isomerases catalyze unimolecular reactions of intra-molecular iso-
merization. When this accompanies a relocation of groups inside
molecules, we use the name mutases (e.g., acylmutase, phospho-
mutase).

6. Ligases (synthetases)indexsynthetase catalyze the synthesis of new
bonds in conjunction with the breaking (not hydrolysis) of the py-
rophosphate bond in ATP to give AMP and PPi. Important ex-
amples are DNA and RNA polymerases, transcriptase and reverse
transcriptase.



5 Molecular Biology of the Eukaryotic Cell

5.1 The Eukaryotic Cell as a System of Compartments

Under an optical microscope with small magnification (distance scale
≥ 5 m), a eukaryotic cell is seen as a drop of cytoplasm with a nu-
cleus inside, surrounded by a cytoplasmic membrane (Fig. 5.1a). The
largest possible magnification of the optical microscope (distance scale
≥ 0.5 m, a wavelength of visible light) can differentiate the cytoplasm
into various organelles suspended in semi-liquid cytosol (Fig. 5.1b).

On the magnification scale of an electron microscope (distance scale
≥ 0.5 nm, Fig. 5.2) a system of endoplasmic membranes can be seen
that spatially border particular organelles (Solomon et al., 2004): the
nucleus, mitochondria, rough and smooth cytoplasmic reticulum, Golgi
apparatus and lysosomes. Centromeres consisting of two centrioles
that organize structures responsible for cell division are the only or-
ganelles without membranes. Figure 5.2 shows the main compartments
distinguished by endoplasmic membranes in an animal cell. Plant cells
(Fig. 5.3) contain in addition a cellulose wall that can be considered as

cytoplasm

nucleus

cytoplasmic membrane

organelles

cytosol

cytoplasmic membrane

(b)(a)

Fig. 5.1. A eukaryotic cell as seen under an optical microscope at small (a)
and large (b) magnifications
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Fig. 5.2. Compartments of a eukaryotic cell seen under an electron micro-
scope. Solid lines represent bilayer membranes and neighboring compart-
ments differ in degree of shading

a transformed thick peptidoglycan layer of the Gram-positive bacteria,
vacuoles that store water as well as reserve substance in the form of
granules, and chloroplasts, large organelles consisting of three layers
of membranes that facilitate photosynthesis. The internal flattened
chloroplast bubbles called thylacoids can be viewed as disconnected
crista (combs) of mitochondria.

The eukaryotic cell nucleus contains diploid genetic material orga-
nized into chromatin, a complex nucleic acid–protein structure. Three
types of organelle have their own genetic material, different from the
nuclear genetic material. As mentioned earlier, they probably originate
from prokaryotic cells assimilated in the past. These are mitochondria
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Fig. 5.3. Additional compartments of a plant cell. Solid lines represent bi-
layer membranes and neighboring compartments differ in degree of shading

originating from the former aerobic bacteria, chloroplasts originating
from cyanobacteria, and centrioles originating from spirochetes, al-
though the last statement still remains questionable.

Various supramolecular structures are of intermediate size between
organelles and single protein or RNA macromolecules soluted in in-
tracellular buffer. These are portions of a protein cytoskeleton and
multienzyme or enzyme–ribozyme complexes. Figure 5.4 shows three
examples of such supramolecular structures: a model DNA polymerase
III complex (Stryer et al., 2002, Chap. 27), a ribosome (Stryer et al.,
2002, Chap. 24), and a hypothetical and probably not very stable
metabolon (Welch, 1985; Srere, 1987; Lyubarev and Kurganov, 1989).

Specific metabolic processes occur in their respective cell compart-
ments or on membranes that enclose them. In particular:

• in the cell nucleus, nucleic acid synthesis takes place,
• in lysosomes, various biopolymer hydrolysis reactions occur,
• in the mitochondrial matrix, Krebs cycle and fatty acid degradation

reactions occur,
• on the internal membranes of mitochondria, oxidative phosphoryla-

tion takes place,
• on the thylacoid membranes of chloroplasts, photophosphorylation

takes place,
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(c)(a) (b)
mRNA

protein

Fig. 5.4. Three examples of supramolecular structures with sizes exceeding
20 nm, surrounded by a homogeneous liquid medium and usually connected
to a lipid membrane. (a) DNA polymerase III. (b) Ribosome. (c) Metabolon
of tricarboxylic acid cycle. Shaded regions represent cross-sections of lipid
membranes. Note that the membrane thickness is ∼ 7 nm

• in the chloroplast stroma, Calvin cycle reactions take place,
• on membranes of the rough endoplasmic reticulum, protein synthe-

sis takes place,
• on membranes of the smooth endoplasmic reticulum, lipid synthesis

proceeds,
• in the interior of the Golgi apparatus, polysaccharide synthesis oc-

curs.

After merging with membrane proteins, polysaccharides synthesized in
the Golgi apparatus can be transported outside cells in a process called
exocytosis (Fig. 5.2). The external cytoplasmic membrane armed with
such glycoproteins recognizes various signals and selectively transports
substances from the external environment to the cell interior in a pro-
cess called endocytosis (Fig. 5.2). Transformations of monosaccharides,
amino acids, and nucleotides take place in-between organelles in the
cellular interior. This region is filled with supramolecular structures of
the protein cytoskeleton that provide the cell with motile machinery.

5.2 Membrane Channels and Pumps

Transport across membranes that divide particular compartments of
the eukaryotic cell is essential for its functioning. However, the purely
lipid bilayer membranes are not permeable either for water molecules
with their high electric dipolar moment or for ions endowed with an
electric charge. For this purpose, various protein channels are neces-
sary.

Although osmotic water transport across membranes has been the
subject of intensive study for over a century, only recently have aqua-
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(a) (b)

Fig. 5.5. Structure of aquaporin-1 water channel. View in directions paral-
lel (a) and perpendicular (b) to the cytoplasmic membrane surface, showing
the component secondary structure elements. In the present case, only α-
helices occur. The drawing was made using the program Rasmol and Protein
Data Bank (pdb) entry 1IH5 (Ren et al., 2001)

porin channels facilitating this transport been discovered (Agre et al.,
2002; Murata et al., 2000). Figure 5.5 shows the spatial structure of
the human aquaporin-1 water channel determined with the help of
X-ray crystallography. The time of individual water molecule transi-
tions through the channel is very short, of the order of 300 ps. The
permeation mechanism, proposed on the basis of molecular dynamics
simulations (de Groot and Grubmüller, 2001; 2005; Fujiyoshi et al.,
2002), elucidates both the high water-permeation rate and the filter-
ing properties with respect to protons. The former results from the
highly collective behavior of the hydrogen bond network during indi-
vidual water molecule transitions across the channel. The latter results
from the form of a local electric field generated by some amino acid
side chains in the middle of the channel, which forces the dipole mo-
ment of the passing molecule to rotate by 180◦. This reorientation
prevents the formation of a continuous network of hydrogen-bonded
water molecules enabling proton transport via the Grotthus mecha-
nism (see Fig. 5.17 below).

The concentration of three ions: K+, Na+ and Ca2+ is essential for
many intra- and intercellular process. Formally, protein ion channels
can be considered as typical enzymes, an ion on one or the other side
of a membrane corresponding to two chemical states. Like enzymes,
the ion channels have to be characterized by the three basic properties:
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Fig. 5.6. Structure of the KcsA potassium channel. (a) Drawing made using
the program Rasmol on the basis of pdb entry 1BL8 (Doyle at al., 1998),
showing the component α-helices. (b) The particular functional elements are
identified

high conduction rate, high selectivity, and possibility of control. The
control of ion channels consists in ‘gating’ them, with a transition
from closed to open state, and conversely. This can be realized either
by applying an external voltage or by binding various ligands (Fuller
and Shields, 1998, Chap. 9).

Most voltage-gated channels have a similar structure. They are
tetramers consisting of four identical molecules (K+ channels) or pseu-
dotetramers consisting of four similar, almost identical domains (Na+

and Ca2+ channels). Figure 5.6 shows the currently best known spa-
tial structure of the K+ channel of a particular type, KcsA, determined
with the help of X-ray crystallography (Doyle et al., 1998). Each of the
four component molecules (consisting of about 120 amino acids) con-
tains three α-helices. One helix from each monomer enters a selectivity
filter (Fig. 5.6) in the entrance pore which determines the maximum
radius of an ion that can pass through the channel. The minimum
radius is related to the hydration free energy (Morals-Cebrat, Zhou
and MacKinnon, 2001). Gating by an applied external voltage results
either from a counterclockwise rotation of two transmembrane helices
in each monomer, with a nonzero dipolar moment (Doyle et al., 1998;
Fig. 5.7) or from a movement of a charged NH+

3 group at the end of a
long flexible chain of an additional protein that behaves like a ball on
a chain and blocks the channel (Zhou at al., 2001).

The spatial structure of the voltage-gated sodium channel is known
to far less accuracy from cryo-electron microscopy studies (Sato et al.,
2001). Its main α-subunit (mass ∼ 260 kda, which corresponds to
about 2 300 amino acids) is composed of four homologous domains,
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(a) (b)

Fig. 5.7. KcsA potassium channel (a) closed and (b) open. The drawing was
made using the program Rasmol with pdb entry 1BL8 (Doyle at al., 1998)

each of which contains six transmembrane α-helices and two longer
loops that form extramembrane parts of the protein. It is interesting
that the central pore is densely stained with ions from the bathing
solutions and does not take part in the transport of ions from the ex-
tracellular to intracellular solution. Four actual transmembrane pores
are located peripherally, one in each domain (Fig. 5.8). The voltage
gating is related to a movement of the transmembrane helices.

The voltage-gated potassium and sodium channels play an essen-
tial role in the generation of an action potential in neuronal axons
(see Sect. 8.6). However, for excitation of a nerve impulse in the axon,

interior

out

Fig. 5.8. Schematic cross-section of the voltage-gated sodium channel as
seen by cryo-electron microscopy (after Sato at al., 1999). The central pore
(lighter grey) is densely stained with ions from the bathing solution and not
involved in the transport of ions. The actual transmembrane pores are located
peripherally in component domains
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(a)

(b)

Fig. 5.9. Acetylcholine-gated sodium channel. The strands of β-structure are
represented by broad arrows pointing to the C-terminal, and regions of the
α-helix are shown as helical ribbons. (a) Drawing made using the program
Rasmol on the basis of pdb entry 1QED (Miyazawa et al., 2003). (b) Rasmol
drawing from pdb entry 2BG9 (Unwin, 2005)

ligand-gated sodium channels are necessary, controlled by neurotrans-
mitters (Solomon, 2004). The best understood ligand-gated sodium
channel is the nicotinic acetylcholine-gated channel, also called the
nicotinic acetylcholine receptor (Brejc et al., 2001; Miyazawa et al.,
2003). It is a glycoprotein with mass ∼ 290 kda, composed of five sim-
ilar subunits (Fig. 5.9a). Two of them are identical (the α-subunits)
and bind acetylcholine, a small non-peptide hormone. All five subunits
form a ring that spans the membrane and encircles a pore inside the
membrane (Fig. 5.9b). Binding of acetylcholine to two α-subunits ini-
tiates their rotational movements. These are communicated to inner
α-helices of other subunits shaping the pore and this opens the gate,
making the whole pore hydrophilic and accessible to Na+ ions.

All channels considered up to now conduct ions passively in the
direction of lower concentration, i.e., the only driving force was the
difference in chemical potential on either side of the membrane. How-
ever, there is a large group of channels that conduct the ions actively ,
against the concentration gradient. Such active transport in the direc-
tion contradicting the second law of thermodynamics is possible only
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Fig. 5.10. Structure of the ATP-driven calcium pump, Ca2+-ATPase. (a)
Drawing made using the program Rasmol on the basis of pdb entry 1SU4
(Toyoshima et al., 2000), showing the particular secondary structure ele-
ments, α-helices and β-strands. (b) Schematic representation of component
subunits. See text for details

at the expense of coupling to another chemical reaction, usually ATP
hydrolysis, which serves as a free energy donor. Free energy trans-
duction processes are one of the most characteristic and important
thermodynamic processes in biological systems and will be considered
in detail in Chaps. 8 and 9. Ion channels performing active transport
are called ion pumps.

H+, Na+/K+ and Ca2+ pumps (H+-, Na+/K+- and Ca2+-ATPases)
are essential for biological functions, but the best known structure and
mechanism of action is associated with the latter (Lee, 2002; Lykke-
Moller et al., 2004). It is a protein monomer of mass ∼ 110 kda (about
1000 amino acids) consisting of three cytoplasmic and two transmem-
brane domains (Fig. 5.10).

The anchor cytoplasmic domain A (about 50 amino acids) is con-
nected rather rigidly to the transmembrane region. In contrast, the
largest of the three cytoplasmic domains, the nucleotide-binding do-
main N (about 240 amino acids), has a considerable flexibility and
can rotate up to 90◦ and penetrate the central, phosphorylation do-
main P (about 60 amino acids). Only after this penetration can the
ATP molecule bound at the surface of the N domain phosphorylate
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one of the aspartate residues in the interior of the P domain. The
two Ca2+ ions are bound cooperatively between transmembrane do-
mains. The conformational changes that accompany the phosphoryla-
tion reaction move one of the transmembrane domains composed of
two α-helices and close a cytosolic entrance for calcium ions, thereby
preventing backflow before these ions are released on the other side
of the membrane. Steroid inhibitors bound to the protein on this side
can completely block the transport of ions.

The structures of H+ and Na+/K+-ATPases are similar to that of
Ca2+-ATPase, but the first occurs as a dimer with two additional gly-
coprotein units of mass ∼ 35 kda and the second as a hexamer (Moller
et al., 1996). All these ATPases are referred to as P-type ATPases, be-
cause a covalent high-energy phosphoryl-enzyme intermediate occurs
in their chemical reaction pathways.

5.3 Substrate, Oxidative, and Photo Phosphorylation

The ion pumps are one of many classes of biological molecular ma-
chines that consume free energy supplied by ATP. Other classes will
be described before long. In Chap. 4, we indicated the three sources
of ATP in the eukaryotic cells: substrate, oxidative, and photo phos-
phorylation. Here we present more details of each on the molecular
level.

Substrate phosphorylation takes place in the next reaction after
splitting the hexose molecule into two trioses in the glycolysis path-
way (Fig. 4.10). It is a glyceraldehyde-3-phosphate dehydrogenation
reaction. As a matter of fact, this reaction consists simultaneously of
two processes: substrate dehydrogenation and substrate phosphory-
lation (Blumenfeld, 1974, Chap. 8; Darnell at al., 1999, Chap. 15).
Both the processes take place on the same enzyme, glyceraldehyde-3-
phosphate dehydrogenase, whose detailed structure is not yet known. If
we write down the substrate formula in the form Ac–H, where the acyl
group Ac– ≡ PO2−

3 −O−CH2−CHOH−CO−, dehydrogenation can be
considered to proceed through an enzyme acylation stage (Fig. 5.11a).
With high probability, the acyl group is phosphorylated before an in-
termediate Ac–OH delivery. In this way, glyceraldehyde-3-phosphate
dehydrogenase appears to be a chemochemical molecular machine that
couples the dehydrogenation reaction donating the free energy with the
phosphorylation reaction accepting the free energy (see Sect. 8.2). The
delivery of the intermediate partly decouples the process of free energy
transduction. The phosphate group with the high free energy bond is
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Fig. 5.11. (a) Since it proceeds on the same enzyme, the process of sub-
strate phosphorylation is coupled to the process of substrate dehydrogena-
tion. (b) In a subsequent reaction the phosphate group is transferred from
the substrate to ADP which results in the creation of ATP. E denotes the
free enzyme and Ac denotes the acyl group of the substrate (see text for more
detailed explanation)

transferred from the substrate to ADP in a subsequent reaction, whose
product is ATP (Fig. 5.11b).

Substrate phosphorylation is only a minor source of ATP. The main
source is membrane phosphorylation. It took almost a decade until bio-
chemists accepted the chemiosmotic concept of Peter Mitchell, stating
that the free energy donor in membrane phosphorylation is a trans-
membrane proton gradient (Darnell at al., 1999, Chap. 15; Stryer et
al., 2002, Chap. 19). A molecular machine that transduces free energy
in this case is ATP synthase (Stock et al., 2000; Capaldi and Aggeler,
2002).

In fact, ATP synthase consists of two machines: a water-soluble ro-
tary motor called the F1 portion, driven by ATP hydrolysis to ADP
and Pi, and an intramembrane rotary motor called the Fo portion,
driven by the transmembrane flow of protons. Both component ma-
chines can operate reversibly in both directions and in ATP synthase
are linked by a peripheral stalk that permits transmission of the two
rotational motions (Fig. 5.12). In effect, proton flow drives the ATP
synthesis.

The F1 portion consists of five subunit types, labeled from α to
ε, and has a molecular mass of about 380 kda. Three β subunits,
each of mass 52 kda, i.e., containing about 450 amino acids, bind a
nucleotide in a cleft between two domains that can move with respect
to one another around a hinge. Three similar α subunits of mass 56 kda
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Fig. 5.12. Structure of ATP synthase. (a) Drawing made using the program
Rasmol with pdb entry 1E79 (Gibbons et al., 2000) for the matrix portion F1

end 1C17 (NMR data, Rastogi and Girvin, 1999) and for the intramembrane
portion Fo, showing the particular secondary structure elements, α-helices
and β-strands. (b) Schematic representation of component subunits. See text
for details

(about 500 amino acids) are more rigid. They do not bind nucleotides
but, together with the β subunits, form a muff within which a single
γ subunit (34 kda, about 300 amino acids) linked to δ and ε subunits
(14 and 6 kda, respectively) can rotate.

The Fo portion consists of a single a subunit, two b subunits, and
10 to 14 c subunits. The a subunit is a ‘stator’ and the c subunits,
organized in a ring, form a ‘rotor’. The b subunits form the periphelial
stalk linking the Fo stator to the F1 3α/3β muff. On the interface
between the a subunit and the c subunit ring, there are two half-
channels able to translocate protons. A proton transition from one half-
channel linked to the outer membrane area to a second half-channel
linked to the intra-membrane area takes place through the c subunits
and requires a full rotation of the c ring. The Fo rotor and the F1

rotor are connected in a noncovalent way and hence a torque resulting
from the proton flow is transmitted to F1 via the ε subunit and the
γ shaft. The latter, pushing cyclically mobile domains of the three β
subunits, facilitates nucleotide binding and rebinding, thus driving the
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Fig. 5.13. Schematic structure of NADH:Q oxidoreductase as seen by cryo-
electron microscopy (after Grigorieff, 1999)

ADP phosphorylation to ATP (Stock et al., 2000; Capaldi and Aggeler,
2002).

ATP synthase can operate in the reverse direction and it is then
called H+-ATPase. This is an example of an F-type ATPase, as the
substrates and the products of the catalyzed reaction bind noncova-
lently to one of the F subunits of the enzyme.

When the enzyme operates in the membrane phosphorylation di-
rection, the transmembrane proton gradient originates either from hy-
drogen oxidation in mitochondria or from use of light energy in chloro-
plasts.

The chain of charge transfer protein complexes in the mitochondrial
inner membrane is shown in Fig. 4.8. The mitochondrial respiratory
chain begins with NADF:Q oxidoreductase (Grigorieff, 1999). It uti-
lizes NADH + H+ formed during glycolysis and the citric acid cycle
and transfers two electrons to quinone. This transfer is coupled to the
translocation of two protons from the matrix to the intramembrane
area. The X-ray structure is not yet known. Low-resolution electron
microscopy reveals a characteristic L shape (Schultz and Chan, 2001).
Two portions can be distinguished: a membrane arm of mass 370 kda,
containing an Fe2S2 cluster, and a matrix arm of mass 520 kda, con-
taining an Fe4S4 cluster (Fig. 5.13).

The second link of the electron transport chain in mitochondria
is quinol:cytochrome c-oxidoreductase, the cytochrome bc1 complex
(Fig. 5.14). It is a protein dimer, each monomer consisting of some
2 150 amino acids (Darrouzet et al., 2001; Crofts and Berry, 1998;
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Fig. 5.14. Structure of quinol:cytochrome c-oxidoreductase, the cytochrome
bc1 complex. (a) Drawing made using the program Rasmol on the basis of pdb
entry 2BCC (Zhang et al., 1998), showing the particular secondary structure
elements, α-helices and β-strands, composing the supramolecular dimer. (b)
Schematic representation of the component subunits of the monomer. See
text for details. The asterisk indicates the position of a rotation axis of the
moving domain of the iron–sulfur complex

Zhang et al., 1998). Functionally, four subunits can be distinguished
in the monomer (Fig. 5.14b). The largest, intramatrix subunit (900
amino acids) is not involved in redox processes. The cytochrome b
complex (570 amino acids, i.e., some 8.5 thousand atoms) transfers
one electron from an outer quinol binding site qo through two b-type
heme groups bL (‘lower’) and bH (‘higher’) to an inner semiquinone
binding site qi. The iron–sulfur protein complex (270 amino acids,
some 4.0 thousand atoms) transfers the second electron from the quinol
binding site qo to a c1-type heme. The latter is a component of the
cytochrome c1 complex (440 amino acids, some 6.5 thousand atoms)
that transfers this electron further to a cytochrome c molecule, soluble
in the intramembrane mitochondrial medium.

A cycle of quinol to quinone reduction (see Sect. 8.4 and in particu-
lar Fig. 8.11) appears to be composed of two subcycles: that of quinol
to semiquinone reduction proceeding on one monomer, and that of
semiquinone to quinone reduction proceeding on the other (Fig. 5.15).
There is a cave in-between the two monomers that facilitates diffusion
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Fig. 5.15. Electron transfer processes taking place in two component
monomers of quinol:cytochrome c-oxidoreductase. In each monomer, one elec-
tron is transferred from the outer quinol binding site through the lower and
higher cytochromes b, bL and bH, respectively, to the inner binding site.
The latter binds either the quinone Q releasing the semiquinone QH•, or
the semiquinone QH• releasing the quinol QH2. The second electron in each
monomer is transferred through the mobile Fe–S center to the cytochrome
c1, from which it is taken by the water soluble cytochrome c. Diffusion of
various forms of quinone molecules takes place in a cave in-between the two
monomers, linked to the whole membrane quinone pool. As a result, one
quinol molecule with two hydrogen atoms is transferred within the cave from
the inner to the outer side of the membrane in which the considered complex
is built

of all forms of the quinone molecules between the appropriate binding
sites (Zhang et al., 1998). The transfer of two electrons perpendicu-
larly to the membrane, combined with the transfer of two hydrogens
on a quinol molecule diffusing in the cave in the opposite direction,
is equivalent to the transfer of two protons. The large-scale domain
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Fig. 5.16. Structure of the cytochrome c oxidase. (a) Drawing made using
the program Rasmol on the basis of pdb entry 1OCC (Tsukihara et al., 1996),
showing the particular secondary structure elements, α-helices and β-strands,
of a dimer. (b) Schematic representation of three component subunits of the
monomer. See text for details

movement in the iron–sulfur complex (Fig. 5.14b) makes it possible
to transfer a single electron per cycle. This is the main mechanism
minimizing energy losses (Darrouzet et al., 2001).

The third and terminal link of the electron transport chain in mi-
tochondria is cytochrome c oxidase (Michel, 1998; Rottenburg, 1998;
Bränden et al., 2001). It is a dimer, each monomer being a protein
complex of molecular weight up to 200 kda, consisting of up to 13
subunits (Fig. 5.16a). Three of them, subunit I (60 kda, about 550
amino acids), subunit II (26 kda, about 230 amino acids) and subunit
III (30 kda, about 270 amino acids), are conserved across all species,
from bacteria to mammalians (Fig. 5.16b). The enzymatic complex
catalyzes oxidation of four cytochrome c2+ molecules and four intra-
matrix protons by a single O2 molecule and couples this reaction to
the transport of the next four protons from the outer to the inner side
of the intramitochondrial membrane.

Subunit II contains the binuclear CuA center, which receives the
electrons from cytochrome c. These are then transferred to heme a
and the binuclear heme a3-CuB center in subunit I, where the hy-
droxyl ions are first formed out of water and molecular oxygen. Two
different pathways of proton transfer are possible within the protein
body (Michel, 1998; Hofacker and Schulten, 1998; Rottenburg, 1998;
Bränden et al., 2001). As in liquid water, the proton transfer in the pro-
tein matrix proceeds according to the Grotthus mechanism (Fig. 5.17).
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Fig. 5.17. The Grotthuss mechanism for proton conductivity in an acid (a)
and a base (b)

The essence of this mechanism is that no long-distance motion of the
hydrated proton H3O+ or the hydrated lack of proton OH− needs to
occur, but only a series of local proton jumps in the successive symmet-
rical hydrogen bonds between neutral water molecules and the charged
hydronium or hydroxyl ions (see Appendix C.4).

The chain of photosynthetic charge transfer protein complexes
in the thylacoid membrane of the chloroplast, identical to that in
cyanobacteria, is shown in Fig. 4.7. It consists of two photosystems and
two oxidoreductase complexes. The electron carrier diffusing within the
membrane is quinone and those diffusing in the water phase outside
the membrane are the small proteins, plastocyanin and ferredoxin.

The chain begins with photosystem II (PS II) in which two elec-
trons are transferred from water to a single quinone molecule at the
expense of the light absorption. PS II is a protein dimer (Fig. 5.18a),
each monomer consisting of 19 protein or polypeptide molecules with
total mass 210 kda, which corresponds to about 2 000 amino acids
(Barber, 2002; Ferreira et al., 2004). Functionally, four subunits can
be distinguished in each monomer (Fig. 5.18b). The core reaction cen-
ter (RC) composed of D1, D2 and connecting proteins of masses 31,
36 and 28 kda, respectively, is structurally very similar to the RC of
the photosynthesizing purple bacteria with component L, M and H
proteins (Fig. 5.19a). The oxygen evolving center (OEC) is linked di-
rectly to the RC at the lumenal site. It consists of three proteins of
masses 33, 23 and 17 kda, surrounding the Mn4 cluster. Flanking the
opposite sites of the RC are the CP43 and CP47 proteins of masses 43
and 47 kda, respectively, serving as internal light-harvesting proteins
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Fig. 5.18. Structure of cyanobacterial photosystem II. (a) Drawing made
using the program Rasmol on the basis of pdb entry 1S5L (Ferreira et al.,
2004), showing the particular secondary structure elements, α-helices and
β-strands, of a dimer. (b) Sketch of the spatial organization of functional
subunits composing the complex of the photosystem II dimer with external
light-harvesting centers in higher plants (after Barber and Kühlbandt, 1999).
View along the membrane normal from the outer (lumenal) side. See text for
details

(antennae). The cytochrome b559 subunit , consisting of two proteins α
and β, probably protects the RC against photoinduced damage. Nine
smaller polypeptides fulfill subsidiary functions.

PS II of the eukaryotic higher plants is surrounded by a system of
external light-harvesting centers LHC-II that diffuse in the thylacoidal
membrane (Kühlbrandt, 1994) and transiently enter into multisub-
unit complexes with PS II (Barber and Kühlbrandt, 1999). In these
complexes, two groups of CP29 and CP26 light-harvesting proteins
transfer energy excitations between the LHC-IIs and the internal light-
harvesting proteins flanking two central reaction centers of the PS II
dimer (Fig. 5.18b). LHC-II is a trimer, each monomer being a protein
molecule with mass 25 kda (232 amino acids) and containing 12 chloro-
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phylls and 2 carotenoids (Kühlbrandt, 1994). Altogether, there are
over 300 pigment molecules per PS II. The counterparts of the LHC-II
complexes in higher plants are phycobilisomes (PBS) in cyanobacteria,
LH-II complexes in purple bacteria, and Fenna–Mathew–Olson (FMO)
complexes coupled to chlorosomes in green bacteria (Hu et al., 1998).

The light-harvesting antenna system essentially increases the ef-
ficiency of the process of light-to-chemical free energy transduction
by photosynthesizing organisms. Under optimum conditions, over 90%
of the absorbed light energy is transferred within a few hundred pi-
coseconds from the antenna system to the reaction center. As said
above, the RC of PS II is almost identical to the RC of the photosyn-
thesizing purple bacteria (Fig. 5.19a), intensively studied in the past
two decades (Hoff and Deisenhofer, 1997). In the RC, the excitation
energy absorbed by a chlorophyll dimer results in a charge separation
(Fig. 5.19b). The chlorophyll dimer (the special pair) is a primary elec-
tron donor from which the electron is transferred very quickly, within a
few picoseconds, through a monomeric chlorophyll to pheophytin and
then, within two hundred picoseconds, to a bound quinone molecule
QA (Kriegl and Nienhaus, 2004). Owing to the strong irreversibility,
the quantum yield of the process is greater than 99.5%. Within ten
microseconds, Q−

A reduces a second quinone QB which, after accepting
a second electron and two protons from the interior (stromal) area, is
liberated as a quinol molecule into the membrane interior, increasing
the quinone pool . The electrons lacking on the primary donor are sup-
plied by the oxygen evolving center where water is split into molecular
oxygen, protons and electrons.

The structure of quinol:plastocyanin oxidoreductase (the cytochr-
ome b6f complex), the second link in the photosynthetic chain, is
very similar to that of quinol:cytochrome-c oxidoreductase, i.e., the
cytochrome bc1 complex (Kurisu et al., 2003). Plastocyanin is a small
water-soluble protein with mass 10 kda (92 amino acids) that operates
in the lumen of the thylacoid. It contains a copper ion able to transfer
a single electron from the cytochrome b6f complex to PS I by diffusion.
Under steady-state conditions, this process can repeat more than 1000
times per second (Gross, 1996).

From plastocyanin on the lumenal side of the thylacoid, electrons
are further transferred to ferredoxin on the stromal side. This is an
endoergic reaction and proceeds at the expense of the light energy
on the photosystem I (PS I) complex. PS I is a protein trimer, each
monomer consisting of 12 protein or polypeptide molecules with total
mass 356 kda which corresponds to about 3 400 amino acids (Jordan et
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Fig. 5.19. (a) Structure of the photosynthetic reaction center of Rhodobac-
ter sphaeroides. The drawing, made using the program Rasmol with pdb
entry 1PCR (Ermler et al., 1994), shows the particular secondary structure
elements, α-helices and β-strands. The three component domains L, M, and
H are distinguished by different degrees of shading. (b) Pathway of electron
transfer. M and L branches are shown. D (primary donor) is the special pair
of chlorophylls, B is monomeric chlorophyll, H (secondary acceptor) is pheo-
phytin, and QA and QB are strongly and weakly bound quinone, respectively

al., 2001). Six core subunits labeled A to F (Fig. 5.20) are involved in
the electron transport. The three subunits A, B and C form the proper
reaction center. Their organization shows striking similarities with the
organization of D1, D2 and the connecting proteins of PS II, as well as
L, M and H proteins of the purple bacteria RC (Heathcote, 2002). The
electron transfer branches from the A1–B1 chlorophyll pair to QA and
QB quinones in PS I correspond to the electron transfer chains from
the special pair to QA and QB quinones in PS II and purple bacteria
(see Fig. 5.19b). The only difference is that the AB entity in PS I is a
real homodimer and both branches are active. The electrons from QA

and QB are transferred through three Fe4S4 clusters FX, FA and FB

to the D subunit which binds the oxidized ferredoxin molecule. The
lack of electrons on the primary A1–B1 donor is completed from the
F subunit which binds the reduced plastocyanin molecule.

Subunits A and B of PS I (83 kda each) are larger then subunits
D1 and D2 of PS II (31 and 36 kda, respectively), as they also collect
light energy. Together with the smaller subunits I, J, K, L, M and X,
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Fig. 5.20. Structure of cyanobacterial photosystem I. (a) Drawing made
using the program Rasmol on the basis of pdb entry 1JBO (Nield et al.,
2003), showing the particular secondary structure elements, α-helices and β-
strands, of a monomer unit. (b) Schematic representation of the component
subunits of the monomer. See text for details

the core light-harvesting system of PS I contains 90 chlorophylls and
22 carotenoids.

Ferredoxin is a small water-soluble protein with mass 11 kda (about
100 amino acids) that operates in the stroma of the chloroplast (Knaff,
1996). It contains an F2S2 cluster, ligated by four cysteine residues.
Ferredoxin transfers two electrons from PS I to the terminal link of
the photosynthetic chain, ferredoxin:NADP+ oxidoreductase (Brunes
and Karplus, 1995). It is a single peripheral protein molecule with
mass 35 kda, bound to the stromal side of the thylacoid membrane.
The electron carrier of that oxidoreductase is constantly bound flavin
adenine dinucleotide (FAD).

5.4 Cytoskeleton and Cell Motility: Microfilaments

The protein cytoskeleton (Fuller and Shields, 1998, Chap. 7; Darnell et
al., 1999, Chaps. 17 and 18, Stryer et al., 2002, Chap. 34) is composed
of microfilaments, microtubules, and intermediate filaments connected
by a three-dimensional microtrabecular lattice. The intermediate fila-
ments and the microtrabecular lattice fulfill only constructive func-
tions. They make the cytoplasmic membrane and intercellular junc-
tions relatively rigid. In contrast, the microfilaments and microtubules
play the main part in cell motility, besides fulfilling constructive func-
tions. The present and the following sections will be devoted to them.

The microfilaments are made up of actin molecules. In monomeric
form, actin is a globular protein composed of 375 amino acids (see
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Fig. 5.21. Structure of the actin molecule. The drawing was made using the
program Rasmol on the basis of pdb entry 1ATN (Kabsch et al., 1990)

Fig. 5.21). Its structure is strongly conservative: the actin of transver-
sally striated skeletal muscles differs from that of smooth muscles by
a few amino acids, and differences between various phylogenetically
widely separated species do not exceed a dozen amino acids. The actin
molecule binds ATP as well as Mg2+ and K+ ions, and is an ATPase
from the enzymatic point of view. The nucleotide binding site is a
cleft between two similar domains. ATP hydrolysis results in a large
conformational change in the actin molecule.

Under the conditions of a sufficiently high concentration of Mg2+

and K+ ions, the ATP-bound actin molecules spontaneously polymer-
ize to form microfilaments composed of two helically wound chains of
total diameter ∼ 9 nm and repetition period ∼ 36 nm, which corre-
sponds to 13 monomers placed every 5.5 nm along each component
chain (see Fig. 5.22) (Squire, 1997). Just after completion of the poly-
merization process, ATP is hydrolyzed to ADP and Pi so that the
products of a possible microfilament depolymerization are always actin
molecules bound with ADP and not with ATP. The process of ADP to
ATP exchange, necessary for repeated polymerization, is slow, which
secures a large reserve of free actin molecules in the cell.

The actin microfilaments play a twofold role. Firstly, they can bind
various proteins that link them either into bunches, stabilizing cellular
appendices, or gel structures varying in time due to the polymeriza-
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Fig. 5.22. Schematic structure of the actin
microfilament. When it makes a track for
the myosin molecule movement, access is
forbidden to the actin molecules by two-
strand superhelices of tropomyosin (Tm) in
the conformation controlled by a complex
of troponins (Tn). Binding of one of them,
troponin C , to Ca2+ ions makes the actin
molecules accessible for the myosin heads

tion at one end and the depolymerization at the other, and respon-
sible for an amoeba-like movement of some cells (Marx, 2003). And
secondly, they make tracks for the movement of special molecular mo-
tors, the myosin molecules. In the latter case the actin filaments are
equipped with additional protein molecules that fulfill regulatory func-
tions. Among these, troponin C plays the key role. It is a two-domain,
Ca2+-binding protein with structure similar to that of calmodulin (see
Fig. 5.35). Moreover, its mechanism of action is similar to that of
calmodulin: after binding two additional calcium ions, the C-end do-
main conformation changes essentially, and this influences the con-
formation of controlled neighboring proteins. The final effect is an
unblocking of the myosin-to-actin binding site (Fig. 5.22).

The term myosin is ascribed to a wide class of proteins that perform
various functions: motion of membranes, transport of macromolecules
or whole liposomes and, in the most evolved form, a muscle contraction
(Mermall et al., 1998). All myosins are molecular motors that move in
a directed way along the actin microfilaments at the expense of ATP
hydrolysis. The muscular cell myosin, called myosin II, is the most
abundant animal protein (50% of all proteins in skeletal muscles). A
single myosin II molecule (Fig. 5.23a) is composed of six protein chains
with total mass 520 kda: two identical heavy chains (HC), each with
mass 220 kda, two identical essential light chains (ELC), and two iden-
tical regulatory light chains (RLC), each with mass 20 kda. The light
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Fig. 5.23. (a) Structure of the myosin II molecule. The non-globular α-
helices of two heavy chains are stranded in the long coiled-coil rod. Five
mobile swivels are indicated. (b) Schematic structure of the thick filament
composed of a number of myosin II molecules

chains have similar structure to troponin C or calmodulin and fulfill
a similar function (a change of conformation after Ca2+-ion binding).
With the help of proteolytic enzymes, the myosin II molecule can be
split into so-called light meromyosin (LMM) and heavy meromyosin
(HMM), the latter then being split into two subfragments S1 (the
myosin ‘heads’) and one subfragment S2 (the myosin ‘tail’).

Under the conditions of a sufficiently high concentration of ap-
propriate ions, the myosin II molecules spontaneously polymerize to
form structures called thick filaments (see Fig. 5.23b) (Squire, 1997).
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The thick myosin filament has the form of a triple helix with rep-
etition period ∼ 43 nm. The slip of each component helix equals
3 × 43 = 132 nm and includes 9 myosin molecules. Together, every
132 : 9 = 43 : 3 ≈ 14.3 nm, there is a ‘crown’ consisting of 3 double
myosin heads. An important role is played by five swivels of the myosin
II molecule, one within the tail, two between the tail and two heads,
and two within the heads (Fig. 5.23a). They admit of an independent
and almost free motion of the myosin heads in the thick filament when
looking for appropriate binding sites on the thin filament. The thick
filament has diameter ∼ 15 nm and consists of two oppositely oriented
halves of length ∼ 700 nm each with the protruding myosin heads,
joined by a bare zone of length ∼ 200 nm (Squire, 1997). Half of the
thick filament contains (700 : 14.3) × 6 ≈ 300 myosin heads.

The proper molecular motor is subfragment S1, the myosin head
(Fig. 5.24). It is a protein with mass 95 kda (a split fragment of the
heavy chain) plus 2×20 kda (the two light chains), totalling 135 kda,
i.e., about 1 200 amino acids or approximately 18 thousand atoms
(Geeves and Holmes, 1999; Howard, 2001). The myosin head is an
ATPase. Functionally, one can distinguish within it a catalytic sub-
unit (630 amino acids) joined by a swivel with a regulatory subunit
– an 8 nm long ‘lever arm’ (570 amino acids). Details deduced from
X-ray crystallography studies are shown in Fig. 5.24.

Like all ATPases, the myosin head does not actually perform its
enzymatic function until the conditions arise for the process to be bio-
logically useful. The enzyme activator is the actin filament (hence the
name ‘actin’). Only after strong attachment to the actin filament at
two sites is the myosin head able to bind and rebind substrates and
products of the catalyzed reaction. The binding site is a pocket be-
tween the upper (U) and the lower (L) domains of the catalytic subunit
(Fig. 5.24). This pocket can be in an open state (Rayment et al., 1993),
affording a possibility for exchanging ADP with ATP through an out-
let directed opposite to the filament, or in a closed state (Dominigues
et al., 1998), affording a possibility for exchanging only Pi through an
outlet directed toward the filament. The state of the pocket is trans-
mitted onto the orientation of the lever-arm subunit through a long
α-helix, referred to as the relay (Sablin and Fletterick, 2001), unless
another α-helix, called the SH1–SH2 helix, is melted (Houdusse and
Sweeney, 2001). Two orientations of the lever-arm subunit are seen,
not only in X-ray crystallography, but also in cryo-electron microgra-
phy (Whittaker et al., 1995; Holmes et al., 2003) and in observations of
the hyperfine structure of electron paramagnetic resonance (Baker et
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Fig. 5.24. Structure of the myosin head in the absence of a nucleotide. The
upper drawing was made using the program Rasmol on the basis of pdb entry
2MYS (Rayment et al., 1993) for the catalytic unit and 1SCM (Xie et al.,
1994) for the regulatory subunit. The lower drawing presents schematically
the component domains of the catalytic subunit, i.e., the upper (U), lower
(L) and amino end (N) domains, as well as those of the regulatory subunit,
i.e., the globular converter (C) becoming a single α-helix stabilized by the
essential light chain (ELC) and the regulatory light chain (RLC). The relay
and the SH1–SH2 helices are shown. The swivel is close to the hydrosulfide
group SH2

al., 1998; 1999; Baumann et al., 2004) or fluorescence energy transfer
(Suzuki et al., 1998; Xiao et al., 1998; Xu and Root, 2000).
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1' 1''

2'' 2'

Fig. 5.25. Four distinguished conformational states of the myosin head at-
tached to (1′′ and 1′) and detached from (2′′ and 2′) the actin filament in
the ATPase cycle of the actomyosin motor. The cycle proceeds in the coun-
terclockwise direction. A strong attachment of the myosin head to the actin
at two sites (black dots) makes the nucleotide pocket (weakly shaded) rela-
tively rigid. The SH1–SH2 helix transmits the motion of the lever-arm domain
onto the pocket shape, which in the state 1′ enables binding–rebinding of the
ATP molecule (two joined black disks) and in the substate 1′′, the Pi molecule
(smaller disk). In the detached state the SH1–SH2 helix is melted. For the
myosin head to attach weakly (at one site) to the actin, an appropriate sur-
face loop (single black dot) has to assume a suitable shape, different when the
nucleotide is non-hydrolyzed (substate 2′′) or hydrolyzed (substate 2′). This
can, but need not, be related to the position of the lever-arm domain. Here
we assumed that these positions coincide with the corresponding positions in
the attached state

Both states of the myosin head, with the open and the closed
pocket, are shown schematically in Fig. 5.25 as states 1′ and 1′′, respec-
tively. In the open state 1′, the lever arm is oriented as in Fig. 5.24,
making an angle of about 45◦ with respect to the actin filament axis.
In the closed state 1′′, the lever arm is raised to make an angle of about
90◦. The transition from state 1′′ to 1′, with the myosin head strongly
attached to the actin filament and the myosin tail remaining strained,
is related to the generation of a force that the myosin head exerts on
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the filament. This swinging lever-arm picture (Rayment et al., 1993;
Spudich, 1994; Geeves and Holmes, 1999; Houdusse and Sweeney, 2001;
Howard, 2001) refines H.E. Huxley’s (1969) classical swinging cross-
bridge hypothesis.

States of the myosin head with the third orthophosphate Pi in-
cluded, bound to or hydrolyzed from the nucleotide, become more
stable if the double attachment of the catalytic subunit to the actin
filament is reduced to an unspecific single attachment of only the U
domain (see Fig. 5.24), or if it is completely broken. Moreover, this de-
tached state of the myosin head has been observed crystallographically
(Houdussee at al., 2000). However, because of the melted SH1–SH2
helix (Volkmann and Hanein, 2000; Nitao and Reiser, 2000; Houdusse
and Sweeney, 2001), the orientation of the lever-arm subunit is not
well determined in true in vivo conditions (see the comment in the
caption to Fig. 5.25).

In skeletal and heart muscle cells, the thick myosin filaments and
the thin actin filaments are organized in structures called sarcomeres
(Fig. 5.26) (Squire, 1997). Here, the two types of filament form two
interpenetrating lattices with hexagonal symmetry. In a zone where
the two lattices overlap, each myosin filament is surrounded by six
actin filaments, recalling that the crown of myosin heads is formed
out of six independent heads (see Fig. 5.23b), and each actin filament
is surrounded by three myosin filaments. The distance between the
myosin filament (diameter ∼ 15 nm) and the actin filament (diameter
∼ 9 nm) is about 13 nm. The actin filaments, with length ∼ 1000 nm,
are attached on one side to a membrane disk and the position of the
myosin filaments with respect to the actin filaments is stabilized by
titin molecules (Squire, 1997). The latter are huge proteins with mass
3.0 Mda which corresponds to about 27 000 amino acids. They con-
tain some 300 linearly ordered domains of the immunoglobin and fi-
bronectin III type, each of about 90 amino acids (see Fig. 5.40 below),
and a single large PEVK domain (about 2 200 amino acids), rich in
proline (P), glutamate (G), valine (V) and lysine (K), and playing the
role of an elastic element (Fig. 5.26).

According to the sliding-filament model (A.F. Huxley, 1957; H.E.
Huxley, 1969; A.F. Huxley and Simmons, 1971), the thick and thin
filaments slide past each other during muscular contraction. Contrary
to a widespread view, the myosin heads in sarcomere do not interact
with the actin thin filaments in a cooperative way, but “like many
out-of-time rowers in a boat, they attach asynchronously to actin, tilt
their angles like oars stroking through the water, and then detach and
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intermediate3.65 m (0 % overlap)
 2.25 m (100 % overlap)


15 nm139

Fig. 5.26. Sarcomere in the loose (0% overlap), intermediate, and contracted
(100% overlap) state. Thick and medium thick lines represent the myosin
and actin filaments, respectively. Thin lines represent the titin molecules
(‘springs’ correspond to the PEVK domains). Bottom right : Hexagonal sym-
metry of the sarcomere cross-section

recock, similar to pulling the oar out of the water at the end of the
stroke” (Vale and Milligan, 2000). Each myosin head undergoes alter-
nating working and recovery strokes in the attached and the detached
state, respectively. Only 1–2% of myosin heads are doing their ‘duty’
at any given moment. The remaining behave like passengers (Howard,
2001).

Arranged one after the other, the sarcomeres form a myofibril with
length 50 m or more. The myofibrils, surrounded by the sarcoplas-
mic reticulum which stores and supplies the controlling Ca2+ ions, are
organelles of muscle fibers, the component cells of skeletal and heart
striated muscles. Smooth muscles of internal organs other than the
heart also make use of the sliding mechanism of the thick versus thin
filaments, but show no sarcomere structure (Fuller and Shields, 1998,
Chap. 7).
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Fig. 5.27. Structure of the αβ tubulin
dimer. The drawing was made using the
program Rasmol on the basis of pdb entry
1TUB (Nogales et al., 1998)

5.5 Cytoskeleton and Cell Motility: Microtubules

This detailed description of the actin microfilaments and myosin mo-
tors has been made because later on, in Sects. 9.4 and 9.5, we are
going to consider a theory of their action. The other elements of the
cytoskeleton, microtubules and the motors related to them will be de-
scribed more superficially.

Microtubules are made up of dimers of α and β tubulin (Fig. 5.27),
each with mass about 50 kda, comparable to the mass of actin (human
α and β tubulin consist of 451 and 444 amino acids, respectively). In
vitro and in vivo, as a result of polymerization, the tubulin dimers
make up a hollow cylinder with outer diameter 25 nm and inner diam-
eter 15 nm, consisting of 13 protofilaments (see Fig. 5.28) (Mandelkow
and Mandelkow, 1994).

In contrast to actin, tubulin is not ATPase but GTPase. In phys-
iological conditions, the GTP bound to α-tubulin is non-detachable
whereas that bound to β-tubulin is hydrolyzed to GDP during mi-
crotubule assembly. As a consequence, the β-tubulin molecules in the
interior of a microtubule contain GDP. The GTP hydrolysis provides
the driving force for microtubule dynamics and the notorious varia-
tion in its length referred to as dynamic instability (Mandelkow and
Mandelkow, 1994). The mechanism for switching between growth and
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Fig. 5.28. Microtubule structure (the so-called A-
lattice)

shrinkage of the microtubules is still under discussion (Bolterauer et
al., 1999).

The polymerization of microtubules starts at centrioles or basal
bodies (Darnell et al., 1999, Chap. 18), each having a highly organized
structure of 9-fold symmetry and consisting of several long-lived mi-
crotubular fragments1 (Fig. 5.29). The microtubules are polar. The
minus end is a germ at the organization center and it is the plus end
that is subjected to growth or shrinkage. Two centrioles compose the
centrosome (Fig. 5.2) which duplicates before mitosis. As mitosis pro-
ceeds from the two centrosomes on opposite sides of a dividing cell,
the mitotic spindle grows up and joins with the chromosomes just
formed from the nuclear chromatin. From the basal bodies, cilia and
flagella grow up, responsible for cell locomotion. Both cilia and flagella
have the same structure determined by the structure of the basal body
(Fig. 5.29a). The difference is that cilia occur in large numbers and are
short, whereas flagella are single and long.

Microtubules participate in an astounding variety of cell activities
most of which are related to motion. In principle, one can distinguish
three different mechanisms of microtubule-based motion, each making
use of a specific kind of molecular motor. The first mechanism affords

1Centrioles and the basal bodies have declined in the case of higher plants.
Here, the polymerization initiation mechanism remains unknown.
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(a) (b)

Fig. 5.29. Structure of microtubule organization centers. (a) Centrioles are
built from a cylindrical array of 9 triples of microtubules connected by protein
bridges. (b) Basal bodies are built from a cylindrical array of 9 double micro-
tubules surrounding 2 single central microtubules. The circulating doublets
are connected to the central microtubules by protein ‘spokes’

(a) (b)

Fig. 5.30. (a) Schematic structure of the kinesin double-headed molecule.
(b) More detailed structure of the kinesin head. The drawing was made using
the program Rasmol on the basis of pdb entry 1BG2 (Kull et al., 1996)

possibilities for transport of various substances with the help of kinesin
molecules. Kinesin is composed of two protein chains that form two
heads (ATPases) and a tail (Fig. 5.30). It walks along a protofilament
of the microtubule in a hand-over-hand manner with a step of 8 nm
(Yildiz et al., 2004). A variety of cargo can be attached to the kinesin
tail, including membranous organelles, mRNA, and signaling molecules
(Goldstein and Philip, 1999). In this way microtubules can also take
part in directed signal transduction processes.

The second mechanism affords possibilities for cell locomotion. It
consists in a relative sliding of adjusted double microtubules in cilia or
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inner dynein

outer dynein

Fig. 5.31. Linking of two adjusted double microtubules in cilium or flag-
ellum. Nexin as well as the inner and outer arms of dynein molecules are
shown

flagella (see Fig. 5.29b). Here, two other kinds of molecular motor are
used, nexin and dyneins (Darnell et al., 1999, Chap. 18). The former
have extraordinary elastic properties, whereas the latter are very large
complexes of mass 1 to 2 Mda, counting 1, 2 or 3 heads (Fig. 5.31).
In contrast to sarcomere with actin filaments and myosins, sliding of
dyneins fixed to one microtubule along the other does not result in
contraction, but bends the whole structure.

The third mechanism of motion is used during cell division for
chromosome segregation. Besides the already mentioned dynamic in-
stability of the microtubules, this mechanism makes use of yet another
kind of motor, i.e., mitotic motors (Heald and Walczak, 1999).

Each tubulin dimer included in a microtubule can switch between
two or more conformational substates with different electrical proper-
ties. Interaction between individual dimers in the microtubular wall
affords possibilities for information processing within axons of nerve
cells, provided the level of noise is sufficiently low (Tuszyński et al.,
1998). The problem is highly puzzling and various related questions
have been considered on both the classical (Tuszyński et al., 1995) and
the quantum level (Hagan et al., 2002).

5.6 Regulation of Enzyme Activity

Each biological molecular process is catalyzed by a specific enzyme.
Since the cell requires these processes to happen only at a certain
place and time, this must be controlled. Control of biological molecu-
lar processes occurs on two levels: expression of information recorded
on genes (synthesis of appropriate enzymes) and regulation of the ac-
tivity of appropriate enzymes. Most control of the first type consists
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in turning the gene transcription on or off, and will be considered in
the next two sections. Here, we restrict our presentation to control of
the second type.

Six mechanisms of enzyme activity regulation can be distinguished:
(a) proteolytic precursor activation, (b) covalent precursor modifica-
tion, (c) anchoring in membrane, (d) competitive inhibition, (e) feed-
back inhibition, and (f) allosteric control (Stryer, 2002, Chap. 10).

Just after synthesis on the ribosome, most proteins are only inac-
tive precursors of enzymes. In order to convert to the active form, they
must be subjected to additional chemical modifications. One possible
modification involves cutting off some fragments of the main chain.
A well-known textbook example is chymotrypsin (see Figs. C.28 and
7.4), an enzyme that hydrolyzes specific peptide bonds of proteins.
It is synthesized within the chief cells in gastric glands as an inac-
tive precursor, chymotrypsinogen, consisting of a single polypeptide
chain. In this form, it does not attack the chief cell itself. Only in the
medium of low pH outside the cell can a proteolytic reaction proceed
in which accidentally present active chymotrypsin molecules hydrolyze
specific peptide bonds in chymotrypsinogen molecules and transform
them into active three-chain chymotrypsin molecules, thereby initiat-
ing the whole avalanche reaction (Stryer, 2002, Chap. 10).

Other possible modifications of inactive precursors involve either
methylation of some charged side chains, which leads to charge neu-
tralization, or phosphorylation of side chains ending with hydroxyl
groups, which endows the originally neutral chain with a negative
charge. The latter form of activity regulation is the most common
for living organisms. There are three hydroxyl-containing amino acids:
serine, threonine and tyrosine. The enzymes that catalyze the phos-
phate group transfer are called kinases. Here we present the structure
of protein kinases A and C, the two important enzymes taking part in
signal transduction cascades, discussed in the next section.

The protein kinase A (PKA) is composed of two regulatory sub-
units (about 450 amino acids each) and two catalytic subunits (about
350 amino acids each). It performs phosphorylation of specific serine
and threonine groups in order to activate (a) enzymes taking part in
glycogen to glucose transformation, (b) some ion channels, and (c)
some transcription factors (see the next section). In an inactive form
of PKA, the substrate binding site is occupied by a ‘pseudosubstrate’
which is part of a regulatory subunit and plays the role of a com-
petitive inhibitor (Fig. 5.32). The binding of a messenger molecule to
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ATP binding site

pseudosubstrate

Fig. 5.32. Structure of the catalytic subunit of protein kinase A (PKA).
The component secondary structure elements, α-helices and β-strands are
shown. The drawing was made using the program Rasmol on the basis of
pdb entry 1ATP (Zheng et al., 1993). A specially matched pseudosubstrate
mimics either an actual substrate or a competitive inhibitor originating from
the regulatory subunit

the regulatory subunits prevents the pseudosubstrate from associating
with the catalytic subunit and activates the PKA itself.

The protein kinase C (PKC) contains one regulatory and one cat-
alytic subunit but its activation mechanism is similar to that of PKA.
PKC activates prostaglandins (lipid-soluble derivatives of arachidonic
acid taking part in short-range signaling and stimulating inflammatory
states) or some transcription factors. Besides the pseudosubstrate do-
main, the regulatory subunit of PKC contains a characteristic calcium-
binding C2 domain, an eight-stranded antiparallel β-sandwich contain-
ing approximately 120 amino acids (Fig. 5.33a). Calcium binding in-
duces a conformational change which enables domain anchoring in the
eukaryotic cytoplasmic membrane. Similar structure characterizes bac-
terial toxins of phospholipase C activity (Fig. 5.33b), the C-terminal
domain of which displays a strong structural and functional analogy
to the C2 domain (Titball, 1993; Naylor et al., 1998). The membrane
anchoring provides an additional form of enzyme activation mentioned
at the beginning of this section.

We have already given an example of the competitive inhibition
of enzyme activity due to replacement of an actual substrate by a
pseudosubstrate. Creation of appropriate competitive inhibitors is a
basic task in contemporary pharmacology. The kinetic mechanism of
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(a) (b)

Fig. 5.33. (a) Structure of the C2 domain of the regulatory subunit of protein
kinase C (PKC). (b) Structure of Clostridium perfringens α-toxin, the key
determinant in gas gangrene. Drawings were made using the program Rasmol
on the basis of pdb entry 1BDY (Pappa et al., 1998) and 1CA1 (Naylor et
al., 1998) for (a) and (b), respectively

activation

inhibition

R PI' I''

Fig. 5.34. Kinetic enzyme activity regulation: reagent R, if present in excess,
activates the last enzyme in the metabolic pathway from R to P, whereas
product P, if present in excess, inactivates the first enzyme in this pathway

competitive inhibition will be defined in detail in Sect. 7.3. In relation
to kinetics, we would like to mention feedback inhibition. The main
idea behind this form of enzyme activity regulation is illustrated in
Fig. 5.34. It is worth mentioning that the opposite process of feedback
activation can result in enzymatic oscillations (Sect. 7.6).

Physically, the most subtle mechanism of enzyme activity regula-
tion is allostery , a change in the global conformation of the enzyme
catalytic subunit caused by a weak local interaction. There are many
examples of allosteric enzymes presented in textbooks (e.g., Stryer et
al., 2002, Chap. 10). The kinetics of allosteric enzymes is considered in
Sect. 7.5. Here, we shall only discuss calmodulin, a universal detector
of calcium, already mentioned several times. This small (17 kda) pro-
tein consists of two similar globular lobes, each containing two Ca2+-
binding sites, joined by a long α-helix (Fig. 5.35). This α-helix winds
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Fig. 5.35. Structure of calmodulin. The drawing was made using the program
Rasmol on the basis of pdb entry 3CLN (Babu et al., 1988)

itself round another α-helix contained in a target protein in such a way
that both lobes touch one another. The cooperative binding of more
than three calcium ions results in serious conformational changes in
both the calmodulin itself and the target protein.

5.7 Receptors

Signal transduction is no less important for the functioning of a living
organism than matter transduction (metabolism) and energy transduc-
tion. However, the signal transduction system is much more complex
than either of the other systems. Only intensive studies of the mecha-
nisms of human transplant rejection and oncogenesis in the past two
decades have given some insight into the way this system is organized
on the intracellular level. The Human Genome Project has revealed
that up to 20% of over 30 thousand human coding genes encode pro-
teins involved in signal transduction (Blume-Jensen and Hunter, 2001).

Each cell of a living organism has to communicate with other
cells and, indirectly, with the environment. There are three cate-
gories of molecules carrying extracellular signals (Darnell et al., 1999,
Chap. 19). Category (a) includes steroid hormones and nitric oxide
that freely diffuse across the cytoplasmic membrane and interact only
with the receptors in the cytosol or nucleus membranes. Some amino
acids or their derivatives known together as neurotransmitters form
category (b). They open or close target channels allowing the appro-
priate ions to flow into or out of the cell interior. Category (c) consists
of carriers that are ligands of cell-surface receptors. The carriers of
category (a) will not be the subject of our considerations. Examples of
ion channels gated by the carriers of category (b) have already been
considered in Sect. 5.2. Here, we confine our attention only to the cas-
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cades of signal transduction impelled by the binding of carriers of the
most extensive category (c) to their target receptors.

The cell-surface receptors are transmembrane proteins whose extra-
cellular portion binds a signal carrier referred to as the receptor ligand
and whose intracellular portion impels a cascade of reactions taking
part in intramolecular signal transduction. Binding between a recep-
tor and its ligand is like that between an enzyme and its substrate. It
occurs by non-covalent forces and results in allosteric conformational
change in the intracellular portion. This change triggers subsequent
allosteric changes and/or effects chemical reactions taking place in
molecules that bind to the intracellular portion of the receptor and
are called generally adapter molecules or adapters. Either directly or
through a transducer , they transmit the signal to an effector which,
either directly or through a second messenger , transmits to the signal
target (Fig. 5.36).

Four main classes of receptor can be distinguished (Fuller and
Shields, 1998; Darnell et al., 1999, Chap. 19; Stryer et al., 2002,
Chap. 15): (a) serpentine receptors, (b) receptor tyrosine kinases
(RTKs), (c) tyrosine kinase-linking receptors (TKLRs) and (d) anti-
gen receptors. The main links of the corresponding signal transduction
pathways are listed in Table 5.1. RTKs are members of a more exten-
sive class of receptors with intrinsic enzymatic activity, and TKLRs
are members of a class of receptors that lack such activity but associate
directly with cytosolic protein kinases. However, we shall not consider
these more extensive classes of receptors and confine our attention to
the mentioned subclasses.

The serpentine receptors, also called seven-spanning receptors, are
the best and earliest studied. The names are related to the fact that
the main protein chain of these receptors winds seven times back and
forth through the cytoplasmic membrane. The ligands of the serpen-
tine receptors are amino-acid or peptide hormones, e.g., epinephrine
(adrenaline), acetylcholine or glucagon. The receptors can also be ex-
cited by sensory stimuli such as light or odorants. Ligand binding or
stimulation of the receptor activates a G protein. This is a trimeric
protein whose serpentine subunits Gβ and Gγ play the role of adapter
proteins and whose subunit Gα is a GTPase that hydrolyzes GTP to
GDP and the inorganic phosphate Pi (Fig. 5.37). The GTPase cycle
of the Gα protein drives the whole signal transduction process (see
Sect. 8.6).

The GTP-bound Gα protein dissociates from the receptor-bound
Gβ and Gγ proteins and activates an effector molecule. There are
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Fig. 5.36. General scheme of intramolecular signal transduction

Table 5.1. Main signal transduction pathways. Abbreviations: AC = adeny-
late cyclase, cAMP = cyclic AMP, DAG = diacylglycerol, IP3 = inositol
triphosphate, JAK = Janus kinase, LNK = either LAT (linker for activated
T cells) or BLNK (B-cell linker protein), MAPK = mitogen-activated protein
kinases (the entire pathway), PLC = phospholipase C, RTK = receptor tyro-
sine kinase, STAT = signal transducer and activator of transcription, TKLR
= tyrosine kinase-linking receptor. For other abbreviations, see the comment
in the text concerning proto-oncogenes

Ligand Receptor Adapter Transducer Effector Second
messenger

Hormone Serpentine Gβ–Gγ Gα AC cAMP
receptor Gβ–Gγ Gα PLC IP3 & DAG

Growth RTK PLCγ IP3 & DAG
factor Grb–Sos Ras Raf -MAPK

JAK STAT

Cytokine TKLR JAK STAT

Antigen Antigen LNK PLCγ IP3 & DAG
receptor LNK–Grb–Sos Ras Raf -MAPK

four different effectors depending on the kind of Gα protein involved
(Neves et al., 2002). Here we mention only the adenylate cyclase (AC)
and phospholipase C (PLC) pathways. AC catalyzes transformation of
ATP into cyclic AMP (cAMP), which is a stable compound of high free
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GTP binding site

Fig. 5.37. Structure of Gα protein. The drawing was made using the program
Rasmol on the basis of pdb entry 1AN0 (Kongsaere et al., to be published)

energy that serves as a second messenger. Its target is protein kinase
A (PKA), which catalyzes a number of metabolic reactions (see the
last section). The other effector, PLC, cuts the phosphodiester bond
in a phospholipid present in the cytoplasmic membrane, phosphatidyl
inositol biphosphate, thereby generating two other second messengers:
inositol triphosphate (IP3) and diacylglycerol (DAG).1 IP3 opens cal-
cium channels in the endoplasmic reticulum which liberates the Ca2+

ions stored there into the cytosol. A response can be, e.g., muscle
contraction or glycogenolysis. DAG activates protein kinase C (PKC),
which subsequently phosphorylates the serine or threonine residues of
various target proteins (see the last section).

The ligands of receptor tyrosine kinases (RTK) are commonly called
growth factors. They are peptides or small proteins, e.g., insulin, epi-
dermal growth factor (EGF) or platelet-derived growth factor (PDGF).
RTKs span the cytoplasmic membrane only once. Following ligand
binding, the adjacent receptors dimerize and become active tyrosine
kinases which autophosphorylate tyrosine residues on their own cy-
toplasmic portions. Various proteins can bind to the phosphorylated
portions of RTKs provided that they have a characteristic SH2 do-
main (Src-homolog 2 domain, the name will be explained later on).
One such protein is γ-type phospholipase C (PLCγ), which initiates a
cAMP cascade identical to the one taking place in the the serpentine
receptor case, but omitting the G protein intermediacy. An alternative

1Inositol is a six-carbon ring alcohol and diacylglycerol is glycerol doubly es-
terified by various fatty acids (see Appendix C.1). Diacylglycerols are precursors of
prostaglandins that originate local inflammatory states.
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GTP binding site

Fig. 5.38. Structure of Ras protein. Note the similarity with the structure
of Gα protein (Fig. 5.37). The drawing was made using the program Rasmol
on the basis of pdb entry 1IOZ (Kigawa et al., 2001)

pathway is initiated by an adapter Grb–Sos complex that activates an-
other GTPase, a Ras protein (Fig. 5.38). An effector of Ras protein
is Raf protein, a kinase that initiates the entire pathway of mitogen-
activated protein kinases (MAPKs). The final targets of MAPKs, just
as for other second messengers like cAMP and DAG, are transcription
factors (TF) that promote various gene expressions and contribute to
cell proliferation or apoptosis (see the next section).

Names of many proteins taking part in the RTK and other sig-
nal transduction pathways have their origin in symptoms observed in
the organism when the cellular gene coding a given protein is subject
to mutation or a replacement by some retroviral counterpart (Fuller
and Shields, 1998; Stryer et al., 2002, Chap. 15). Thus, the Src pro-
tein acquired its name from the src gene which, in the viral version,
codes a protein that produces avian sarcoma. The name of the Ras
protein originates in the gene which in its viral Ha-ras or Ki-ras ver-
sions produces Harvey or Kisten mouse sarcomas, respectively. The
Ki-ras gene has a role in the origin of lung cancer. Cancer-producing
genes are called oncogenes and their original, unaltered counterparts
proto-oncogenes. The term ‘Sos proteins’ is an abbreviation for ‘son-of-
sevenless’. ‘Sevenless’ is the name of a Drosophila mutant with elemen-
tary eyes (omatidia), each containing six rather than seven receptor
cells surrounding the eighth central cell. The origins of some other
proteins are much more direct. The Grb protein simply grabs hold of
the autophosphorylated RTK.

The tyrosine kinase-linking receptors (TKLR) lack intrinsic tyro-
sine kinase activity but can bind a special kind of cytosolic tyrosine
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Fig. 5.39. Structure of signal transducer and activator of transcription
(STAT) protein. The characteristic SH2 domain, containing some 100 amino
acids, is to the right of the Ras molecule. The drawing was made using the
program Rasmol on the basis of pdb entry 1UUR (Soler-Lopez et al., 2004)

kinases, called Janus kinases (JAK, the name comes from the Ro-
man god with two faces). The TKLR ligands are called cytokines.
Among them, we distinguish interferons, interleukins, tumor necrosis
factors and colony stimulating factors of various kinds. TKLRs are
dimers or trimers of identical or different cell-surface transmembrane
proteins. Binding of the ligand stimulates the dimer or trimer forma-
tion which then activates JAK (Aaronson and Horvath, 2002). The
activated JAKs phosphorylate signal transducer and activator of tran-
scription (STAT) molecules. Moreover, they have a characteristic SH2
domain (Fig. 5.39). The phosphorylated STAT molecules form dimers
that translocate to the nucleus and activate proteins that are involved
in transcription of genes into mRNA. The cell response to a specific cy-
tokine bound to a complementary specific TKLR are specific proteins
produced using such transcribed genetic information.

The action of antigen receptors shows some features of the action of
TKLRs and some of RTKs. For a better understanding, we present this
final class of receptors together with a basic review of immunology on
the subcellular level (Solomon et al., 2004; Stryer et al., 2002, Chap. 35;
Perelson and Weisbuch, 1997).

The task of the immune system is to defend a multicellular organism
against foreign pathogenic agents (pathogens) as well as its own cells
when they have undergone virus infection or malignant transformation.
The immune system of the vertebrates is a complex system of organs,
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cells and molecules diluted in intercellular fluids, but here we confine
our attention to the organization of this system at the subcellular level.

Pathogens and transformed cells differ from one another by specific
macromolecular components called antigens. Two kinds of cell present
in blood are involved in the specific immune response to attack by
pathogens: macrophages, developed from monocytes, and lymphocytes.
Among the latter, we distinguish B cells, produced and maturing in the
bone marrow, and T cells, produced in the bone marrow and maturing
in the thymus. There are three types of T cell: helper T cells, cytotoxic
T cells, and regulatory T cells. Each B cell and T cell is specific for a
particular antigen, which means that they are provided with specific
receptors exposed at the cell surface and made before the cell ever
encounters an antigen.

The specificity of the immune response is related to special pro-
tein domains which, being the main component of immunoglobins (see
below), are called immunoglobin-like (Ig-like) domains. They are com-
posed of some 100 amino acids and contain two antiparallel β-pleated
sheets forming a β-sandwich (Fig. 5.40). The Ig-like domains enter
into the composition of many proteins, among which the already men-
tioned titin (Sect. 5.4). Besides constant versions of Ig-like domains,
there are also somewhat larger variable versions with three hypervari-
able regions localized in three loops (Fig. 5.40). The genetic mechanism
of the variable Ig-like domain diversity is truly fascinating (Stryer et
al., 2002, Chap. 35). It is the variable Ig-like domains that determine
the specificity of T-cell and B-cell receptors.

The Ig-like domains are also basic components of major histocom-
patibility complex (MHC) molecules that afford possibilities for the
discrimination of ‘self’ from ‘non-self’. There are two classes of MHS
molecules. Class-I MHS molecules are present on the surface of almost
all the cells of the organism. Class-II MHS proteins are found only on
the surface of specialized antigen-presenting cells (macrophages after
fagicitosis and B cells after endocitosis of antigens). All MHS molecules
contain the two Ig-like domains and the two other domains that form
together a binding site for peptides, characteristic of the content of a
given cell and called epitopes. Protein molecules that help to operate
the antigen receptors are called cluster of differentiation (CD) pro-
teins. The class-I MHS molecules are recognized by CD8, whereas the
class-II MHS molecules are recognized by CD4 molecules on the surface
of T lymphocytes. They also involve Ig-like domains. Generally, CD8-
containing T cells are cytotoxic (killer) cells whereas CD4-containing
T cells are helper cells.
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V
H VL

C 1H CL

hypervariable
regions

Fig. 5.40. Structure of Ig-like domains. In the presented fragment of im-
munoglobin G, originating from a B-cell receptor, four such domains are
shown: constant and variable domain of the light chain (CL and VL, respec-
tively), as well as the first constant and the variable domain of the heavy
chain (CH1 and VH, respectively). Three hypervariable regions are localized
in the indicated loops. Concerning the component secondary structure ele-
ments, only β-strands occur in the present case. The drawing was made using
the program Rasmol on the basis of pdb entry 1FDL (Fischmann et al., 1991)

The T-cell receptor (TCR) consists of two protein chains, each con-
taining a variable and a constant Ig-like domain as well as an α-helix
crossing the membrane, noncovalently linked to the cluster of differ-
entiation 3 (CD3) complex (Fig. 5.41a). The recognition of a specific
epitope presented by the class-II molecule is facilitated by the cluster
of differentiation 4 (CD4). Alternatively, the recognition of a specific
epitope presented by the class-I molecule is facilitated by the cluster
of differentiation 8 (CD8). The consequence of epitope recognition and
binding is activation of the Lck molecule, a protein tyrosine kinase that
changes its place of binding from CD4 or CD8 to CD3. This creates
the docking site for another protein tyrosine kinase, the Syk molecule
which finally activates the linker of activated T cell (LAT). Due to
the latter molecular complex, the TCR is effectively endowed with the
tyrosine kinase function (Singer and Koretzky, 2002). Further signal
transduction pathways are the same as for typical RTKs (Table 5.1).
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Fig. 5.41. (a) Schematic structure of the T cell receptor (TCR) and more
important accompanied proteins. (b) Same for the B cell receptor (TBR).
See text for details

The B-cell receptor consists of two to five identical subunits. Each
subunit consists of two chains, light and heavy (see Fig. 5.40). The light
chain contains one variable and one constant Ig-like domain, and the
heavy chain contains one variable and three constant Ig-like domains
as well as an α-helix crossing the membrane. The latter are linked
to the cluster of differentiation 79 (CD79) complex (Fig. 5.41b). The
consequence of antigen recognition and binding is activation of a Syk-
like molecule, a protein tyrosine kinase that activates the B-cell linker
(BLNK) molecular complex. Like TCR, the BCR is in this way effec-
tively endowed with the tyrosine kinase function (Gauld at al., 2002).

General immune response mechanisms are quite well known today
(Solomon et al., 2004; Stryer et al., 2002, Chap. 35). Small, soluble anti-
gens (e.g., bacterial toxins) are engulfed directly into B lymphocytes
via receptor-mediated endocytosis. Large antigens (e.g., viruses or the
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whole bacteria) are swallowed up by macrophages via fagocytosis. Both
types of cell digest the antigen into fragments and display a charac-
teristic portion of antigen called an antigenic determinant or epitope
at the surface, nestling inside a class II histocompatibility molecule.
Helper CD4-containing T cells specific for this structure then bind to
these antigen-presenting cells and activate themselves.

There are two types of specific immunologic response: humoral and
cellular . The humoral response occurs in the case when the antigen-
presenting cell is a B cell. Then the activated helper T cell secretes
some cytokines and stimulates the antigen-presenting B cell with the
competent antigen receptor to enter the cell cycle. After multiple mi-
tosis, a clone of the B cells with identical receptors is developed. These
differentiate into plasmatic and memory cells. The former secrete the
receptors as soluble immunoglobins (antibodies) into the plasma. An-
tibodies bind specifically to antigens and precipitate the pathogens. A
small number of antibodies remain for a longer time and constitute
the origin of an early immunologic response to repeated infection by
the same pathogen. There are five classes of immunoglobins. They dif-
fer only in kind and number of the heavy chains. IG, IgD and IgE are
dimers, IgA has a variable number of subunits, and IgM is a pentamer.

If the antigen-presenting cell is a macrophage, then the activated
helper T cell secretes cytokines that stimulate both the macrophage
and itself. The activated macrophage secretes other cytokines that
attract other cells to the infection area and an inflammation state
develops. Simultaneously, the stimulated helper T cells enter the cell
cycle. After multiple mitosis, a clone of the T cells with identical re-
ceptors is developed. Those differentiate into plasmatic and memory
cells. Most of the plasmatic cells are now the cytotoxic T cells, which
secrete molecules that destroy the recognized pathogen.

Those of the organism’s own cells that have undergone virus infec-
tion or malignant transformation present their epitopes nestling inside
class I histocompatibility molecules, where they are bound by the spe-
cific cytotoxic CD8-containing T cells which secrete molecules that
destroy the recognized cell. The human immunodeficiency virus (HIV)
infects CD4-containing T cells. Therefore, the specific cytotoxic CD8-
containing T cells, when destroying the latter cells, disorganize the
whole immune system. To avoid autoagression against the organism’s
own regular cells, those T cells that react with the self-antigens are
eliminated. However, this process is incomplete, and some regulatory
T cells are helpful for deactivating remaining improper T cells.
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5.8 The Cell Cycle

Besides its own small supply of genetic material in the form of mito-
chondria, chloroplasts and possibly centrosomes, the essential part of
the genetic material of the eukaryotic cells is stored in the nucleus.
There, it is organized in chromosomes (Darnell et al., 1999, Chap. 8;
Stryer et al., 2002, Chap. 32) containing single molecules of DNA com-
plexed with proteins, mainly basic histones that neutralize acidity and
the negative charge of DNA. Chromosomes occur in pairs carrying two
slightly different copies of particular sections of the genome. Only a
part of the eukaryotic genome represents genes that encode proteins.
The genes are split: the coding stretches of DNA, exons, are divided
by the noncoding stretches, introns.

Gene expression proceeds in two steps: transcription from DNA
to RNA and translation from RNA onto a given protein. The tran-
scription starts by binding of a protein transcription factor to the
promoter site of a gene, usually on the 5′ end of the template. The sig-
nal transduction pathways that lead to the activation of appropriate
transcription factors were discussed in the last section. In the present
section, we consider signal transduction pathways controlling the sec-
ond process involving DNA, i.e., genome replication followed by cell
reproduction and proliferation.

The full cell cycle consists of two phases necessary for reproduction:
that of synthesis (S) during which the genome is doubled, and that of
mitosis (M) during which the genome is halved and the cell is divided.
The phase between M and S is called G1 (gap 1) and that between S
and M, G2 (gap 2). From phase G1, the cell can enter a stable, quiescent
phase G0 during which it performs all its functions in the organism
apart from reproduction (Fig. 5.42). The key point of the cycle is the
restrictive point R of the late G1 phase. Only after transition through
this point can the cell enter the whole cycle.

The cell cycle must be controlled to ensure that cells divide only
when necessary and the cycle proceeds correctly. The main control
switches of the cycle preparing the cell to enter the succeeding phases
are cyclines, whose concentration varies when the particular phases
develop (Fig. 5.42). Cyclin A is present during the whole phase G2, and
cyclin D determines transition through the restrictive point R. Cyclin
E initiates phase S, and cyclin B initiates phase M. Cyclins activate
cyclin-dependent kinases (CDKs). Simultaneously, CDKs are inhibited
by signal proteins in response to various factors. The whole system of
cell cycle control forms a complex network with many positive and



138 5 Molecular Biology of the Eukaryotic Cell

A

B

D

E

M

S

R

G1

G0
G2

Fig. 5.42. The cell cycle. The time scale is not preserved. M lasts about 2
hours, S about 10 hours, and G1 and G2 about 4 hours each. The change in
concentration of particular cyclins with the progress of succeeding phases is
shown

negative feedbacks and is still far from being completely understood
(Weinberg, 1996; Fuller and Shields, 1998, Chap. 6; Darnell et al., 1999,
Chap. 12). A few better known CDKs are listed in Table 5.2, together
with the cyclins and inhibitors controlling them.

The active CDKs phosphorylate one of the two main restrainers of
the cycle, the protein pRB. (Its name comes from retinablastoma, an
eye tumor that first proved to be related to damage of this protein.)
pRB liberates an appropriate transcription factor enabling synthesis
of proteins needed for the continuation of the cell cycle. The second
restrainer of the cycle is the protein p53, a transcription factor that
activates synthesis of a protein called p21 which blocks activity of all
CDKs (see Table 5.2). If DNA damage is so extensive that it cannot be
repaired, p53 also triggers synthesis of proteins leading to controlled
cell death, or apoptosis.

Perturbations to the cell cycle manifest themselves as cancer , an un-
scheduled and uncontrolled cellular proliferation. Rapid progress over
the last quarter of a century has revealed cancer to be a disease in-
volving dynamic changes in the genome. Despite the apparently im-
penetrable thicket of complexity, there are serious premises indicating

Table 5.2. Main cyclin dependent kinases

Kinase Cyclin Inhibitor

CDK2 D, E, A, B p21, p27
CDK4, CDK6 D p21, p15, p16
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that the emergence of all cancers from normal precursor tissues is gov-
erned by a few common mechanisms (Weinberg, 1996; Hanahan and
Weinberg, 2000; Evan and Vousden, 2001; Hahn and Weinberg, 2002).

The first mechanism involves self-sufficiency in growth signals. No
type of normal cell can divide in the absence of special external mito-
genic growth factors. As mentioned in the last chapter, cancer cells can
do it by transformation of their signaling molecules into a form that
remains active in the signal transduction network without requiring
initial receptor activation. Genes coding such transformed molecules,
kinases as a rule, are called oncogenes (Blume-Jensen and Hunter,
2001). An alternative to oncogenes is production by cancer cells of
their own growth factors, the tumor growth factor .

The second hallmark of cancer is insensitivity to antigrowth signals.
Normal cells cease to divide as a result of their DNA damage. From
the considerations of the present section, we know that the molecular
mechanism blocking the cell cycle consists in inhibition of CDKs. All
inhibitors of CDKs, including pRB and p53, are tumor suppressors.
Both the key proteins pRB and p53 are activated by proteins originat-
ing through alternative splicings of the same locus (Quelle et al., 1995).
An alternative to damage of the tumor-suppressor genes is production
by the cancer cells of their own growth factors, the transforming growth
factor .

The third hallmark of cancer is evading apoptosis. Normal cells die
when subjected to genotoxic stress or a strong radiation that result
in DNA damage. Controlled death, called apoptosis, follows the ac-
tion of p53 and when it is inactive, the cells with damaged DNA can
proliferate.

The fourth capability of cancer cells is their limitless replicative po-
tential . Each time chromosomes of normal cells replicate, their DNA
ends called telomers shorten. The length of telomeric DNA is a molec-
ular marker of the number of divisions a given cell has passed since
it originated in the embryo. After shortening below a critical length
the telomers lose their ability to protect chromosomal ends and the
cell is submitted to apoptosis. Cancer cells are immortal since, besides
evading apoptosis, most of them activate telomerase, an enzyme of the
reverse transcriptase type that extends telomeric DNA (Greider and
Blackburn, 1996).

The remaining hallmarks of cancer are related to a supracellular
organization and will not be discussed here.
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6.1 Single Unimolecular Reactions.
The Chemical Equation of State

The compartmental model of the cell formulated in Chap. 5 makes it
possible to treat biological processes at the subcellular level as a sys-
tem of many coupled chemical reactions. Hence, we devote the present
chapter to the thermodynamics of chemical reactions, not confining
ourselves for a while to typical biochemical reactions. When speaking
about thermodynamics, we have in mind in particular nonequilibrium
thermodynamics, as in Chap. 3. In the case considered this means that
our subject of interest will be essentially chemical kinetics (Kondepudi
and Prigogine, 1998).

Let us start with the simplest system possible, an ideal gas or an
ideal liquid solution comprising molecules each of which can occur in
two states R and P, and let us assume that a transition takes place:

R −→←− P . (6.1)

The states R and P can be various chemical states (isomers) of the
molecule or its various physical states, e.g., the occurrence on one or
another side of a lipid membrane with a built-in channel that enables
transport of the molecule across the membrane. In both cases the
formal description of the process (6.1) is the same as the transition
across a wall that divides the system into two subsystems (Fig. 6.1,
see also Fig. 3.2). The molecule in state R will be called symbolically a
reagent , and the molecule in state P a product of the reaction, although
in general the reaction can proceed in both directions.

As a rule, chemical reactions take place not only under isothermal
conditions, T = const., but also under isobaric conditions, P = const.
Then the free energy (3.52), referred to more exactly as the Helmholtz
free energy, should be replaced by the Gibbs free energy (free enthalpy)
equal to the difference between the enthalpy H (energy increased by
the product PV ) and the bound energy TS:
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NR NP

Fig. 6.1. Chemical reaction as a process of transition across a wall

G = G(T, P, N) = H − TS = E + PV − TS . (6.2)

There is a formal derivation in Appendix A.2.
Let NR denote the number of molecules in state R and NP the

number in state P. The total free energy G is the sum of the component
free energies:

G = GR(T, P, NR) + GP(T, P,NP) . (6.3)

As the total number of molecules does not change during reaction
(6.1),

NR + NP = N = const. , (6.4)

only one of NR and NP is an independent thermodynamic variable
that characterizes a state of chemical nonequilibrium. Let us choose
NP ≡ X as the independent thermodynamic variable.

The thermodynamic force conjugate to the variable X is called the
chemical affinity and it is equal to the difference between the chemical
potential of the reagent and the product in this reaction (Hill, 1989;
Kondepudi and Prigogine, 1998):

A = −
(

∂G

∂X

)
T,P,N

= −∂GP

∂NP
+

∂GR

∂NR
= −μP + μR . (6.5)

For ideal gases or perfect solutions the energy per molecule does not
depend on the kind of molecule [see (3.30)]. Hence, for a mixture of
ideal gases or perfect solutions, the chemical potential of molecules in
state R takes the form (Atkins, 1998, Chap. 7, see also Appendix A.1):

μR = μ◦
R + kBT ln

NR

N◦
R

, (6.6)

and similarly for molecules in state P. N◦
R is the number of all molecules

in the region occupied by molecules R, whence the fraction NR/N◦
R

determines the probability that a given molecule is found in state R.
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It appears that the second term in (6.6) has the meaning of minus the
entropy of mixing multiplied by temperature [see (2.28)].

If the distribution of molecules is spatially homogeneous, then the
numbers NR and NP can be expressed by molar concentrations denoted
by the symbol of the molecular state in a square bracket:

[R] ≡ NR

NAVR
, [P] ≡ NP

NAVP
. (6.7)

NA is equal to the Avogadro number , the number of molecules in one
mole, NA = 6.0 × 1023, whereas VR and VP are the volumes of the
regions occupied by molecules R and P, respectively. Those regions
may be identical but need not be (e.g., in the case of dissolution or
transport across a membrane). The numbers N◦

R and N◦
P are usually

chosen so that

N◦
R

NAVR
=

N◦
P

NAVP
= 1 mol/dm3 ≡ 1M . (6.8)

Then (6.6) takes the form

μR = μ◦
R + kBT ln

[R]
M

. (6.9)

The unit of molar concentration 1M has been adopted as the standard
or normal concentration that determines the standard chemical poten-
tial μ◦

R (μR = μ◦
R in the case when [R] = 1M). Similar relations are

obtained for μP.
Equation (6.9) can be considered to be always satisfied indepen-

dently of the assumption that the gas is ideal or the solution is per-
fect, i.e., regardless of the statistical independence of the molecules of
the system. This relationship should then be treated as a definition
of the quantity [R], which is in general called the activity . Chemists
have adopted a convention (Atkins, 1998, Chap. 7) that the activity
of a substance in the pure solid phase is equal to unity (it has then
to be M = 1 for μ◦ = 0), while the activity of a substance in the gas
phase is expressed by pressure measured in bars (M = 1 bar = 105 Pa).
The activity of substances in dilute liquid solutions is approximated
by their molar concentrations.

Substituting (6.9) and a similar expression for the chemical poten-
tial μP into (6.5), we obtain the following expression for the chemical
affinity:

A = −ΔG◦

NA
+ kBT ln

[R]
[P]

, (6.10)
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where the quantity
ΔG◦ ≡ NA(μ◦

P − μ◦
R) (6.11)

is called the free energy of reaction. It has the physical meaning of
the free energy change resulting from the transition of one mole of
molecules from state R to state P.

Equation (6.10) can be rewritten as

[P]
[R]

= K e−A/kBT , (6.12)

where
K ≡ e−ΔG◦/RT . (6.13)

The gas constant R is the product of Avogadro’s number and the
Boltzmann constant:

R = NAkB = 8.3 × 10−3 kJ mol−1deg−1 . (6.14)

In chemical equilibrium, the chemical affinity vanishes, A = 0, since
the chemical potentials of the molecules in both states are equal. Hence
the ratio of the equilibrium concentrations of the molecules in states
P and R is given by

[P]eq

[R]eq
= K . (6.15)

The quantity K is called the chemical equilibrium constant . Equation
(6.13) relates it to the free energy of the reaction ΔG◦.

For a homogeneous mixture of molecules, when VR = VP = V , the
conservation law (6.4) can be expressed via the concentrations:

[R] + [P] = [R]0 = const. . (6.16)

The mole fractions,

PR =
[R]
[R]0

=
X

N
, PP =

[P]
[R]0

=
N − X

N
, (6.17)

are interpreted as the probabilities that a given molecule is found in
state R and P, respectively. From (6.12) and (6.16), we obtain a unique
relationship between the thermodynamic variable X = NP and its
conjugate force A:

X =
N

1 + K−1eA/kBT
. (6.18)

This is the chemical equation of state for the unimolecular reaction
(Fig. 6.2).
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Fig. 6.2. Dependence of the variable X = NP on the conjugate force (chem-
ical affinity) A for a unimolecular reaction

The free energy of reaction can be divided into enthalpy and entropy
components according to [see (6.2)]

ΔG◦ = −RT lnK = ΔH◦ − TΔS◦ . (6.19)

In a single chemical reaction that proceeds in a closed reactor under
isothermal and isobaric conditions, no useful work is performed. As
a consequence, the quantity ΔH◦ corresponds to the heat of reaction
(see Fig. 3.8 in which the energy E is replaced by the enthalpy H and
the Helmholtz free energy F by the Gibbs free energy G). By differenti-
ating (6.19) with respect to temperature and using the thermodynamic
relation (see, e.g., Appendix A.2)(

∂H

∂T

)
P

= T

(
∂S

∂T

)
P

, (6.20)

we get the van’t Hoff equation

ΔH◦ = RT 2 ∂ lnK

∂T
= −R

∂ lnK

∂(1/T )
. (6.21)

This relates the reaction heat ΔH◦ to the chemical equilibrium con-
stant K.

The heat generated during a reaction spontaneously proceeding
from R to P may be given off (ΔH◦ < 0) in an exothermic reaction, or
taken up from the environment (ΔH◦ > 0) in an endothermic reaction.
Similarly, the free energy of a reaction can be both negative (ΔG◦ < 0,
K > 1) in an exoergic reaction, or positive (ΔG◦ > 0, K < 1) in an
endoergic reaction. If the free energy of reaction ΔG◦ does not depend
on temperature, by differentiating (6.19) and using the relation (6.20),
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we conclude that ΔS◦ = 0, i.e., ΔG◦ = ΔH◦. As a consequence, an
exoergic reaction automatically becomes an exothermic reaction while
an endoergic reaction becomes endothermic.

The direction of a reaction does not depend only on the sign of ΔG◦
but also on the initial value of the variable X = NP which, together
with ΔG◦, determines the sign of the chemical affinity A [see (6.10)].
Let us recall that spontaneous thermodynamic processes, without work
being performed on or by the environment, proceed in such a way that
the change in the total free energy of the system,

ΔG = −AΔX , (6.22)

is negative, i.e.,
AΔX ≥ 0 , (6.23)

whence ΔX has the same sign as the force A.
The time variation of the numbers of molecules NP = X and NR =

N − X is determined by the kinetic equation

ṄP = k+NR − k−NP = −ṄR . (6.24)

This can be derived on the basis of statistical physics (see Sect. 3.7
and Appendix B.3). In spite of the fact that (6.24) is linear, it applies
to situations arbitrarily far from the state of chemical equilibrium.
Parameters k+ and k− are called forward and reverse reaction rate
constants, respectively. They appear in the reaction equation

R
k+−→←−
k−

P . (6.25)

For the homogeneous mixture of molecules, (6.24) written in terms of
the concentrations [R] and [P] takes the form

d
dt

[P] = −k−[P] + k+[R] = − d
dt

[R] . (6.26)

The equilibrium solution to (6.24) or (6.26) satisfies the condition [see
(6.15)]

N eq
P

N eq
R

=
[P]eq

[R]eq
=

k+

k−
= K , (6.27)

linking one of the rate constants with the other through the equilibrium
constant K.

Taking into account the conservation law (6.4), we can rewrite the
kinetic equation (6.24) in terms of the only independent variable X :
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Ẋ = −τ−1(X − Xeq) , (6.28)

where
τ−1 ≡ k+ + k− (6.29)

and
Xeq ≡ k+N

k+ + k−
. (6.30)

This is the simplest possible differential equation. It has a solution

X(t) − Xeq =
[
X(0) − Xeq

]
e−t/τ , (6.31)

which represents an exponential decay of the initial value X(0) to the
equilibrium one Xeq, with a relaxation time τ .

The kinetic equation (6.24) and the relation (6.12) written in terms
of the variable X lead to the equation

Ẋ = k−
(
eA/kBT − 1

)
X . (6.32)

As A(eA/kBT − 1) ≥ 1 always holds, (6.32) guarantees the fulfillment
of the second law of thermodynamics [see (6.23)]:

AẊ ≥ 0 , (6.33)

independently of whether the system is closed or open. The chemical
equation of state (6.18) is satisfied in both the closed and the open
reactor, in steady state conditions. Expressing X in (6.32) in terms of
the force A, we obtain a one-to-one relationship between the reaction
flux per molecule and the thermodynamic force (Fig. 6.3):

J ≡ Ẋ

N
=

1 − e−A/kBT

k−1
+ + k−1

− e−A/kBT
. (6.34)

Close to chemical equilibrium, if the chemical affinity A is lower than
the thermal energy kBT , (6.32) or (6.34) can be linearized:

Ẋ ≈ (k−Xeq/kBT )A ≡ LA . (6.35)

The proportionality coefficient L is interpreted as Onsager’s kinetic
coefficient (Sect. 3.7). The dependence of the flux on the force, as
sketched in Fig. 6.3, shows directly the limits of applicability of linear
nonequilibrium thermodynamics to chemical reactions.
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Fig. 6.3. Dependence of the reaction flux J = Ẋ/N on the chemical affinity
(force) A for a unimolecular reaction

6.2 Transport Across Membranes

As already mentioned, the unimolecular reaction formalism applies
equally to transport processes across biological membranes. These pro-
cesses take place through the intermediary of protein channels and
involve both neutral and charged solute molecules as well as solvent
(water) molecules (see Sect. 5.2).

By assumption, if the membrane closes a distinguished region of a
cell: cytosol in the case of the cytoplasmic membrane, matrix in the
case of the inner mitochondrial membrane, or lumen in the case of the
thylacoid membrane, the transported molecule outside this region is
considered to be in state R, and the molecule inside this region to be
in state P. In other words, the forward reaction corresponds to the
transport process in towards the distinguished region.

From the chemical point of view, the molecules outside and inside
the region are identical,

μ◦
P = μ◦

R , ΔG◦ = 0 , (6.36)

whereupon the force that drives the transport process is determined
directly by the ratio of concentrations

A = μR − μP = kBT ln
[R]
[P]

. (6.37)

In thermodynamic equilibrium, A = 0, this ratio is equal to unity and
the concentrations are equal:

[R]eq = [P]eq . (6.38)
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Because the molecules in states R and P do not occupy the same
volume, the conservation law (6.16) should be replaced by the more
general relation (6.4). As a consequence, the equation of state (6.18)
and Fig. 6.2 remain valid provided that the equilibrium constant K
is replaced by a volume ratio VP/VR. Similarly, the flux–force depen-
dence (6.34) and Fig. 6.3 remain valid provided that the forward and
reverse rate constants are related through the redefined constant K
[see (6.27)]. If the outside region is open, we have VR → ∞, K → 0,
and in the corresponding formulas and figures, one must put N → ∞
and k− → ∞, although it is meaningful only for low negative values
of the force A.

In the case of transport processes involving charged molecules, i.e.,
ions (Hille, 2001), different values of the electric potential on either side
of the membrane may have to be taken into account (see Fig. 6.4a) and
the chemical potential (6.9) should be replaced by the electrochemical
potential

μ̃R = μ◦
R + zeφR + kBT ln

[R]
M

. (6.39)

Here φR is the electric potential of the membrane on the R side and
ze is the electric charge of the molecule expressed as a multiple of the
elementary charge e = |e| taken with an appropriate sign. A similar
expression can be written for the P side of the membrane. In this
way the equation for the affinity (6.37) takes the form of the Nernst
equation:

A = μ̃R − μ̃P = −zeΔφ + kBT ln
[R]
[P]

, (6.40)

where
Δφ ≡ φP − φR = φin − φout (6.41)

represents the membrane potential .
In electrochemical equilibrium, A = 0, there is no ion transport

across the membrane and the membrane potential balances the con-
centration difference:

Δφeq =
kBT

ze
ln

[R]eq

[P]eq
=

RT

zF
ln

[R]eq

[P]eq
. (6.42)

In the second equation we introduced the Faraday constant F =
NAe = 0.96 × 105 C, which represents the charge of one mole of el-
ementary positive charges. Table 6.1 lists the concentrations of the
biologically most important ions outside and inside a typical cell, to-
gether with the corresponding equilibrium membrane potentials Δφeq.
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Fig. 6.4. (a) Transport of ions across a membrane is influenced by the dif-
ference of electric potentials φP and φR on either side of the membrane.
(b) Transport of water (solvent) across a membrane is influenced by the os-
motic pressure, which is the difference of pressures Pin and Pout on either
side of the membrane. [S]in and [S]out denote the concentrations of a solute
inside and outside the cell, respectively

It should be noted that the values of the concentrations quoted here
are not in fact equilibrium values, but rather steady state values kept
fixed by molecular pumps remaining in a slippage state at the expense
of a constant ATP hydrolysis (see Sect. 8.4).

The equality of concentrations of electrically neutral molecules ex-
pressed by (6.38) or the constant concentrations of charged molecules
given in the relation (6.42) are achieved either by solute transport
across the membrane or as a result of solvent transport. In biological
cells, the solvent is water. The phenomenon of water transport across
membranes, driven by a difference in the solute concentration, is called
osmosis (Kondepudi and Prigogine, 1999).

Changes in water content result in changes in pressure, which have
to be taken into account when calculating the Gibbs free energy G.
From (A.47) we find that, for a small change in the pressure value from
P0 to P , the change in the free energy is

Table 6.1. Concentration of key ions outside and inside a typical cell and
the corresponding equilibrium membrane potential

[R]/mM (out) [P]/mM (in) Δφ/mV

K+ 5 140 −84
Na+ 145 5 to 15 +85 to +57
Cl− 110 4 to 15 −83 to −50
Ca2+ 1.5 0.0001 +120
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G(P ) − G(P0) =
(

∂G

∂P

)
T

(P − P0) = V (P − P0) , (6.43)

where V is the thermodynamic variable conjugate to pressure, i.e., the
volume.

In order to describe the osmosis phenomenon, let us assume that
NR = Nout and NP = Nin determine the numbers of water molecules
outside and inside the cell, respectively, and that only one type of
electrically neutral molecule S is dissolved in the water (Fig. 6.4b).
For dilute solutions, the ideal gas approximation applies to both solute
and solvent. As a consequence, the chemical potential of water outside
the cell can be written as

μout = μ∗ + kBT ln
Nout

Nout + NS
+ v(Pout − P0) , (6.44)

and likewise for the chemical potential of water inside the cell. In
(6.44), we used the relation (6.43) and took into account the fact that
the pressure Pout can differ from the reference pressure P0.

The quantity μ∗ is the chemical potential of pure water (NS = 0)
for Pout = P0, and v is the mean volume per single water molecule at
P0. With the help of the quantity v, the argument of the logarithm in
(6.44) can be expressed in terms of the molar concentration [S]out of
molecules S outside the distinguished region [see the definition (6.7)]:

μout = μ∗ − kBT ln
(
1 + NAv[S]out

)
+ v(Pout − P0) (6.45)

≈ μ∗ − v[S]outRT + v(Pout − P0) ,

where NA is the Avogadro number and R = NAkB is the gas constant.
The approximation assumed corresponds to a linear expansion of the
logarithm in the neighborhood of unity and is justified by the small
value of the ratio NS/Nout = NAv[S]out.

The thermodynamic force that drives the water transport across
the membrane is the chemical potential difference

A = μout − μin = −vπ + v
(
[S]in − [S]out

)
RT , (6.46)

where the pressure difference inside and outside the distinguished re-
gion, viz.,

π ≡ Pin − Pout , (6.47)

is called the osmotic pressure. In osmotic equilibrium, A = 0, there
is no water transport across the membrane and the osmotic pressure
balances the concentration difference:
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π = ([S]in − [S]out)RT . (6.48)

This equation, similar to Clapeyron’s ideal gas equation of state, is
called the van’t Hoff equation.

6.3 Bimolecular Reactions

The vast majority of chemical reactions proceed with the participation
of two rather than one molecule. Two types of such reactions can be
distinguished: association–dissociation and exchange reactions.

In association–dissociation reactions of the form

A + C
k+−→←−
k−

AC , (6.49)

three thermodynamic variables NA, NC and NAC (the numbers of par-
ticular molecules) undergo changes. Only one variable is independent,
a consequence of the two conservation laws:

NA + NAC = const. , NC + NAC = const. . (6.50)

The latter can be rewritten in terms of concentrations:

[A] + [AC] = [A]0 = const. , [C] + [AC] = [C]0 = const. . (6.51)

The chemical affinity corresponding, for example, to the variable X =
NAC takes the form

A = −μAC + μA + μC (6.52)

= −μ◦
AC + μ◦

A + μ◦
C − kBT ln

[AC]M
[A][C]

,

and on introducing the free energy of the reaction,

ΔG◦ ≡ NAv (μ◦
AC − μ◦

Av − μ◦
C) , (6.53)

exceptionally denoting the Avogadro number in the present section by
NAv instead of NA, to avoid confusion with the number of A molecules,
we obtain the relation

[AC]
[A][C]

= M−1e−ΔG◦/RT e−A/kBT ≡ K e−A/kBT . (6.54)

The corresponding kinetic equation is of the form
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d
dt

[AC] = − d
dt

[A] = − d
dt

[C] = k+[A][C] − k−[AC] , (6.55)

and its equilibrium solution is given by

[AC]eq

[A]eq[C]eq
=

k+

k−
= K = M−1e−ΔG◦/RT . (6.56)

The latter determines what is called the law of mass action. It states
that the addition or removal of one substance from the closed reactor
is followed by changes in the concentration of the other substances,
in such a way that the value of the parameter K remains constant.
The parameter K depends only on temperature and, through ΔG◦,
on pressure.

The equation of state and the flux–force relation for the association–
dissociation reaction are rather complex, but if one of the reactants is
in excess, e.g.,

[A]0 � [C]0 , (6.57)

then
[A] ≈ [A]0 , (6.58)

and the kinetic equation (6.55) becomes linear, so that the equation
of state and the flux–force relation are identical to (6.18) and (6.34),
respectively, with the forward unimolecular rate constant k+ replaced
by the pseudo-unimolecular rate constant k+[A]0.

In exchange reactions of the form

A + CB
k+−→←−
k−

AC + B , (6.59)

the four thermodynamic variables NA, NB, NAC and NCB undergo
changes, while only one variable is independent as a consequence of
the three conservation laws:1

NA + NAC = const. , NCB + NB = const. ,

NCB + NAC = const. . (6.60)

The conservation laws can be rewritten in terms of concentrations:

[A] + [AC] = [A]0 = const. , [CB] + [B] = [B]0 = const. ,

[CB] + [BC] = [C]0 = const. . (6.61)
1The general rule is: one reaction – one independent thermodynamic variable,

m reactions – m independent thermodynamic variables.
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The chemical affinity corresponding to the variable X = NAC takes
the form

A = −μB − μAC + μA + μCB

= −μ◦
B − μ◦

AC + μ◦
A + μ◦

CB − kBT ln
[AC][B]
[A][CB]

, (6.62)

and on introducing the free energy of the reaction

ΔG◦ ≡ NAv (μ◦
B + μ◦

AC − μ◦
A − μ◦

CB) , (6.63)

we obtain the relation

[AC][B]
[A][CB]

= e−ΔG◦/RT e−A/kBT ≡ Ke−A/kBT . (6.64)

The kinetic equation for the exchange reaction is of the form

d
dt

[B] =
d
dt

[AC] = − d
dt

[A] = − d
dt

[CB] = k+[A][CB] − k−[AC][B] ,

(6.65)
and its equilibrium solution (the law of mass action) is given by

[AC]eq[B]eq

[A]eq[CB]eq
=

k+

k−
= K = e−ΔG◦/RT . (6.66)

The equations of state and the flux–force relation for the exchange
reaction are even more complex than for the association–dissociation
reaction, but if two of the reactants are in excess with respect to the
third,

[A]0 , [B]0 � [C]0 , (6.67)

then
[A] ≈ [A]0 , [B] ≈ [B]0 , (6.68)

and the kinetic equation (6.65) becomes linear. In this case the
equation of state and the flux–force relation are identical to (6.18)
and (6.34), respectively, with the forward and reverse unimolecular
rate constants k+ and k− replaced by the corresponding pseudo-
unimolecular rate constants k+[A]0 and k−[B]0.
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6.4 Protolysis Reactions

An example of the association–dissociation reaction taking place in
an aqueous environment is the electrolytic dissociation of neutral
molecules into ions (Atkins, 1998, Chap. 9):

AB −→←− A− + B+ , (6.69)

in particular, the electrolytic dissociation of water itself:

H2O −→←− H+ + OH− . (6.70)

The equilibrium constant for the latter reaction is

K =
[H+]eq[OH−]eq

[H2O]eq
= 1.8 × 10−16 M . (6.71)

One mole of H2O has a mass of 18 g, and hence the molar concentration
of pure water is

[H2O] = 55 M . (6.72)

In dilute solutions, this value well approximates [H2O]eq in (6.71).
Using the value of the dissociation constant from (6.71), we obtain

[H+]eq = [OH−]eq = 10−7 M . (6.73)

It is commonly accepted to use a negative decimal logarithm of the
molar concentration of hydrogen ions expressed in units of M, referred
to as the pH:

pH ≡ − log10

[H+]eq

M
. (6.74)

For pure water, we have
pH = 7 . (6.75)

Actually, the electrolytic dissociation reaction of water does not
proceed according to the scheme (6.70), as hydrogen ions cannot occur
as protons H+ of diameter five orders of magnitude smaller than the
diameter of the remaining ions. Much more realistic is the scheme of
an exchange reaction

H2O + H2O −→←− H3O+ + OH− , (6.76)

in which hydrated protons (hydronium ions) H3O+ take part. Reaction
(6.76) represents a particular case of a proton-transfer reaction in an
aqueous environment, i.e., a protolysis reaction:



156 6 Chemical Reactions

H2O + HA −→←− H3O+ + A− , (6.77)

A− + H2O −→←− HA + OH− . (6.78)

The compound HA which is a proton donor is called an acid . The
compound A− which is a proton acceptor is called a base, coupled to
HA. We have assumed here that its molecules have a negative charge
but in general this does not have to be so. It can be assumed that A−
= B and HA = BH+.

The equilibrium constants for the two reactions define the ratios of
the equilibrium concentrations:

K ′
a =

[H3O+]eq[A−]eq

[H2O]eq[HA]eq
≡ Ka

[H2O]
, (6.79)

K ′
b =

[HA]eq[OH−]eq

[A−]eq[H2O]eq
≡ Kb

[H2O]
. (6.80)

Since the concentration of water [H2O] is practically unchanged during
the reaction, it is convenient to use the constants Ka and Kb instead
of K ′

a and K ′
b. These sets are related via

KaKb = [H3O+]eq[OH−]eq = 10−14 M2 . (6.81)

Defining the quantities

pKa ≡ − log10

Ka

M
, pKb ≡ − log10

Kb

M
, (6.82)

we obtain the relationship

pKa + pKa = 14 . (6.83)

The degree of dissociation of acid molecules HA is defined by the
ratio

P ≡ [A−]eq

[A−]eq + [HA]eq
. (6.84)

Equation (6.79) leads to the relationship

P

1 − P
=

Ka

[H+]eq
, (6.85)

and after applying the logarithm function on both sides of this rela-
tionship, to the Henderson–Hasselbalch equation:

pH = pKa + log10

P

1 − P
. (6.86)
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Fig. 6.5. Titration curve corresponding to the Henderson–Hasselbalch equa-
tion

The latter equation forms the quantitative basis for titration, i.e., an
experimental method for determining the values of pKa or pKb from
the value of pH at the inflection point (see Fig. 6.5). In the neighbor-
hood of the inflection point, the pH value varies only slightly and the
system behaves like a buffer .

An acid is considered to be strong if pKa � 7 and a base is consid-
ered to be strong if pKb � 7. From (6.83), it follows that a strong acid
is coupled to a weak base and vice versa. In the case of dissociation
of one acid, the inflection point of the titration curve corresponds to
P = 0.5, which can be changed by mixing a strong acid with an un-
coupled weak base or a strong base with an uncoupled weak acid. Such
a technique offers the possibility of buffering practically any value of
the pH.

A particular case of protolysis reactions are processes of proton
transport through channels or pumps in biological membranes (see
Sect. 5.3). Replacing natural logarithms by decimal logarithms (using
ln 10 ≈ 2.3), we can rewrite the Nernst equation (6.40) for the proton
channels or pumps (z = +1) to take the form

Ep = Δφ − 2.3 RT

F
ΔpH , (6.87)

where R is the gas constant, F is the Faraday constant, and

ΔpH = pHP − pHR . (6.88)

The above expression represents the difference in pH between the in-
terior and exterior of the distinguished region. In the transition from
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(6.40) to (6.87), the chemical affinity A has been replaced by the
proton-motive force:

Ep = −A

e
. (6.89)

(The two thermodynamic forces balance one another under dissipa-
tionless conditions).

Proton transfer reactions proceed very quickly. Their rate constants
are comparable to the reciprocal Debye relaxation time of electric
dipole moments in water. This time is defined by the rate of reor-
ganization of the hydrogen bond system and is of the order of 1 ns−1

= 109 s−1 (Eigen, 1964).

6.5 Redox Reactions

The second important class of exchange reactions are reduction–
oxidation (redox ) reactions (Atkins, 1998, Chap. 10). These are chem-
ical processes during which one or more electrons are transferred from
molecule to molecule, for example:

Zn + Cu2+ −→←− Zn2+ + Cu (6.90)

or
Fe +

1
2
O2 + (H2O) −→←− Fe2+ + 2OH− , (6.91)

where the second example exhibits an excess of water. The substance
that accepts electrons is called an oxidizer and the one that donates
electrons is called a reducer . A reducer undergoes oxidation while an
oxidizer is reduced.

Reactions of reduction and oxidation are mutually coupled and, as
a rule, occur in the same place. They can be spatially separated in an
electrochemical cell . Figure 6.6 illustrates the classical Daniell cell in
which the reaction (6.90) is separated into the following two reactions:

Zn −→←− Zn2+ + 2e− ,

2e− + Cu2+ −→←− Cu .
(6.92)

Each cell is composed of two half-cells with electrodes, which are
electronic conductors, submerged in electrolytes which are ionic con-
ductors. Electrolytes must be connected through an electrolytic key
that enables the flow of ions. Electronic currents flowing between the
two electrodes can be used to perform useful work, whence the cell
is a chemoelectrical machine (see Sect. 8.1). Oxidation takes place at
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Fig. 6.6. The Daniell electrochemical cell

the anode, while reduction occurs at the cathode. In the case of the
Daniell cell shown in Fig. 6.6, the anode is a zinc electrode. The atoms
of Zn are oxidized to Zn2+ ions and move to the electrolyte, leaving
electrons behind at the anode. The anode therefore reduces its mass
and becomes negatively charged. The cathode is a copper electrode
that accumulates Cu2+ ions after neutralization as a result of electron
absorption. The cathode therefore increases its mass and becomes pos-
itively charged.

The chemical reactions taking place spontaneously at the two elec-
trodes continue as long as ionic concentrations in the electrolyte do
not reach their equilibrium values. Later on, the reactions can be in-
duced by applying an external source of electric current. The cell then
becomes an electrochemical machine called an electrolyzer , in which
electrons flow in the same direction as in the cell and the processes at
the two electrodes are the same as earlier. However, the cathode must
now be negatively polarized in order to attract positive ions of Cu2+,
while the anode must be positively polarized so that it can accept elec-
trons from the Zn atoms and turn them into positively charged ions
of Zn2+.

Redox processes can take place at the boundary between phases:
liquid and solid or liquid and gas. They can also occur entirely within
the liquid phase. We thus distinguish three types of half-cell:

• those with solid electrodes (Fig. 6.7a),
• those with gas electrodes (Fig. 6.7b),
• those with neutral electrodes, also called redox half-cells (Fig. 6.7c).
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Fig. 6.7. Three types of half-cell. (a) Half-cell with a metallic electrode.
(b) Half-cell with a gas electrode. Gas at pressure P is adsorbed at an elec-
trode made from porous nickel or covered with platinum. These substances
often act as catalysts. (c) Redox half-cell. The electrode is made from a chem-
ically neutral substance, e.g., platinum. Both oxidized and reduced forms of
molecules are found in the solution

In the latter case the active substances can be found in the solution in
both the oxidized and the reduced form.

In general, the redox reaction with electron transfer can be written
as

Dred + Az+
oxy

−→←− Dz+
oxy + Ared . (6.93)

We need not assume that molecules D and A in the reduced state
Dred and Ared, respectively, are electrically neutral. Each substance
taking part in the reaction can be a positive or negative ion. In an
electrochemical cell, the reaction (6.93) divides into two processes:

Dred
−→←− Dz+

oxy + ze− (6.94)

and
Az+

oxy + ze− −→←− Ared . (6.95)

The chemical equation of state for the reaction (6.93) links the
activities of the substances taking part in it with the driving force:

A = −ΔG◦

NA
+ kBT ln

[Dred][Az+
oxy]

[Dz+
oxy][Ared]

. (6.96)

Recall that the activity of a substance in a pure solid phase is equal
to unity, the activity in a gaseous phase is determined by the pressure
expressed in bars, and the activity in a dilute liquid solution can be
approximated by the value of its molar concentration in M.
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In a cell, which becomes a chemoelectrical machine after replacing
a conductor linking the anode to the cathode with an electric energy
receiver, the free chemical energy per molecule A is transformed into
the free electrical energy of the charge transfer involving z electrons
between electrodes at a potential difference (voltage)

E = E◦ +
RT

zF
ln

[Dred][Az+
oxy]

[Dz+
oxy][Ared]

. (6.97)

The voltage E, defined by the equation

E =
A

ze
, (6.98)

is called the electromotive force of the cell [compare with (6.89) and
ensuing comments, taking into account the fact that the charge of one
proton equals +e and the charge of z electrons equals −ze]. E◦ is the
electromotive force of a cell working under standard conditions, where
all the activities are equal to unity and the logarithm in (6.97) vanishes.
Measurement of E◦ allows one to determine directly the free energy
of the redox reaction, i.e., ΔG◦ = −zFE◦, where F is the Faraday
constant. It should be emphasized that the electromotive forces E
and E◦ are voltages between the electrodes of the unloaded cells with
no additional voltage drops on an internal resistivity, i.e., with no free
energy dissipation. The relationship (6.97), similar to the relationships
(6.40) and (6.87), is also called the Nernst equation.

The electromotive forces of different half-cells can be compared with
respect to the same reference half-cell. As a convention, the hydrogen
half-cell , which is a gas cell (Fig. 6.7b), has been adopted as such a
standard reference point. In this half-cell, a layer of oxidized platinum
that covers the electrode is saturated with gaseous hydrogen under
a pressure of 1 bar (105 Pa), while the electrolyte has a standard
hydrogen ion activity of [H+] = 1 M, i.e., it has a pH equal to 0. For
the reaction (6.94) applied to a hydrogen half-cell,

1
2
H2

−→←− H+ + e− , (6.99)

the reaction (6.93) adopts the more specific form

Az+
oxy +

z

2
H2

−→←− Ared + zH+ . (6.100)

E◦ for this reaction is called the standard reduction potential . Table 6.2
lists the values of E◦ for several selected reduction reactions (6.95)
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Table 6.2. Standard reduction potential for chosen redox reactions at 25◦C

Az+
oxy + ze− −→ Ared E◦/V

Li+ + e− −→ Li −3.05
K+ + e− −→ K −2.93
Ca2+ + 2e− −→ Ca −2.87
Na+ + e− −→ Na −2.71
Mg2+ + 2e− −→ Mg −2.36
H2O + e− −→ 1

2H2 + OH− −0.83
Zn2+ + 2e− −→ Zn −0.76
Fe2+ + 2e− −→ Fe −0.44
H+ + e− −→ 1

2H2 0.00
Cu2+ + 2e− −→ Cu +0.34
1
2O2 + H2O + 2e− −→ 2OH− +0.40
Fe3+ + e− −→ Fe2+ +0.77
1
2O2 + 2H+ + 2e− −→ H2O +1.23
1
2Cl2 + e− −→ Cl− +1.36
Au3+ + 3e− −→ Au +1.69
1
2F2 + e− −→ F− +2.87

(Atkins, 1998, Chap. 10). They vary from below −3.0 V for the re-
duction of the lithium cation Li+ to metallic Li, up to almost +3.0 V
for the reduction of molecular fluorine F2 to the fluorine anion F−.
The electromotive force of a cell working under standard conditions is
equal to the difference between standard reduction potentials for the
reactions taking place at the cathode and the anode, respectively. The
standard reduction potential for the reaction from Cu2+ to Cu equals
+0.34 V, and for the reaction from Zn2+ to Zn, it equals −0.76 V.
Therefore, the electromotive force of the Daniell cell equals +0.34 V
− (−0.76 V) = 1.10 V.

6.6 Fuel Cells and Photocells.
Biological Processes of Electron and Proton Transport

Any two half-cells can in principle be combined. This applies also to
half-cells with gas electrodes. In particular, combining the hydrogen
half-cell with the oxygen half-cell, we obtain a machine that directly
transforms hydrogen fuel energy into electrical energy, i.e., the fuel cell .
Figure 6.8 presents two versions of such a cell. In the cell with a base
electrolyte using the hydroxyl groups OH− (Fig. 6.8a), the reaction
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Fig. 6.8. Hydrogen–oxygen fuel cell with a base electrolyte (a) and an acid
electrolyte (b), and a system of respiratory chain complexes in the internal
membrane of mitochondrium (c)

H2 + 2OH− −→ 2H2O + 2e− (6.101)

takes place on the anode and the reaction

1
2
O2 + H2O + 2e− −→ 2OH− (6.102)

on the cathode. On the other hand, in the cell with an electrolyte using
hydrated hydrogen cations H+ (Fig. 6.8b), the reaction

H2 −→ 2H+ + 2e− (6.103)

takes place on the anode and the reaction

1
2
O2 + 2H+ + 2e− −→ H2O (6.104)

on the cathode.
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Is easy to check in Table 6.2 that the electromotive force in both
cases equals +1.23 V. The total reaction,

H2 +
1
2
O2 −→ H2O , (6.105)

is the same as the reaction of hydrogen gas burning in an internal
combustion engine, where chemical energy is first turned into ther-
mal energy, and then transformed to mechanical energy of rotational
motion. Just combining such an organized system with a generator
allows one to obtain electrical energy. In comparison to the internal
combustion engine, the fuel cell is silent and much more efficient. Im-
portant technological progress in the construction of catalysts able to
decompose hydrogen gas into protons and electrons opens the way to
considering a mass application of fuel cells for driving motor cars in
the near future (Burns et al., 2002). Animate nature made a similar
invention more than three billion years ago. Indeed, a system of en-
zymatic complexes of the respiratory chain in the internal membrane
of mitochondria (see Fig. 4.8 and Sect. 5.3) is a highly efficient fuel
cell (Fig. 6.8c). The only difference consists in the fact that hydrogen
is supplied in a much safer way, bound to NAD+, and instead of pro-
tons, electrons are transported along the membrane, resulting in the
creation of proton-motive rather than electromotive transmembrane
forces.

Similarly, a system of photosynthetic chain complexes in the thyla-
coid membrane (see Fig. 4.7 and Sect. 5.3) is a highly efficient photocell
(Fig. 6.9a). Here animate nature solved the problem in a better way
than man. Besides a transmembrane proton-motive force, the hydrogen
is produced safely, bound to NADP+. Later on, it is used in the Calvin
cycle for synthesizing glucose (see Sect. 4.6). Present technology offers
photocells that use semiconducting materials (Fig. 6.9b). The best-
studied semiconductors in which photons easily create electron–hole
pairs are cadmium selenite (CdSe), cadmium telluride (CdTe), gal-
lium arsenide (GaAs), or microcrystalline silicon in the form of a thin
film (Shah at al., 1999). The idea is to use the liberated electrons to
produce molecular hydrogen in an acid electrolyte (Fig. 6.9c), but it
appears that this is not an easy task.

From the point of view of biochemical reactions, the assumed def-
inition of the standard reduction potential is not quite realistic, since
the reference system is the electrolyte with pH = 0, i.e., a very strong,
biologically destructive acid. The Nernst equation (6.97) also describes
the case where the two half-cells are made from identical substances
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Fig. 6.9. (a) The system of photosynthetic chain complexes in the thylacoid
membrane can be considered as a photocell. (b) Photocell with a semicon-
ducting material. (c) Possible use of electrons created in the semiconductor
photocell to produce hydrogen

(D = A, E◦ = 0) and only differ in the concentrations of the elec-
trolyte. Such a cell is called a concentration cell . In particular, for a
cell composed of a hydrogen half-cell at an arbitrary pH and a standard
hydrogen half-cell at pH = 0,

E′ = −kBT

e
(ln 10) pH = −0.059 V pH , (6.106)

at 25◦C.
For pH = 7, E′ = −0.42 V. The value of this additional potential

must be taken into account for biochemical redox reactions which take
place in a buffer environment at a pH close to the neutral value. Elec-
tron transfer in such reactions is often linked to a proton transfer, and
a whole hydrogen atom is then transferred. In measurements of stan-
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dard reduction potentials for biochemical reactions in an environment
with pH = 7, one does not determine the value of E◦, but instead the
value of

E◦′ = E◦ − 0.42 V . (6.107)

Table 6.3 lists the values of the potential E◦′ for the most important
biochemical redox reactions (Stryer et al., 2002, Chap. 19). Note that
the reference reaction potential now equals just −0.42 V.

Table 6.3. Standard reduction potential for key biochemical redox reactions
at temperature 25◦C and pH = 7

Az+
oxy + ze− −→ Ared E◦′/V

ferredoxin+
oxy + e− −→ ferredoxinred −0.43

H+ + e− −→ 1
2H2 −0.42

(NAD+ + 2H+) + 2e− −→ (NADH + H+) −0.32
(NADP+ + 2H+) + 2e− −→ (NADPH + H+) −0.32
(FAD + 2H+) + 2e− −→ FADH2 −0.18
(fumarate + 2H+) + 2e− −→ succinate +0.03
(quinone + 2H+) + 2e− −→ quinoneH2 +0.10
cytochrome c3+ + e− −→ cytochrome c2+ +0.22
1
2O2 + 2H+ + 2e− −→ H2O +0.82

6.7 Two Successive Reactions.
The Steady State Approximation

Consider the following set of two consecutive unimolecular reactions:

R
k+1−→←−
k−1

I
k+2−→←−
k−2

P . (6.108)

The corresponding kinetic equations take the form

d
dt

[R] = −k+1[R] + k−1[I] ,

d
dt

[I] = −(k−1 + k−2)[I] + k−1[R] + k−2[P] , (6.109)

d
dt

[P] = −k−2[P] + k+2[I] .
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However, only two of them are independent in view of the conservation
law

[R] + [I] + [P] = [R]0 = const. . (6.110)

Indeed, adding (6.109), we obtain

d
dt

(
[R] + [I] + [P]

)
= 0 . (6.111)

The reaction rate constants satisfy detailed balance conditions (in ther-
modynamic equilibrium the number of forward and reverse transitions
is balanced for each reaction separately):

k+1[R]eq = k−1[I]eq , k+2[I]eq = k−2[P]eq , (6.112)

from which it follows that

k+1k+2

k−1k−2
=

[P]eq

[R]eq
. (6.113)

Since only two of the three differential equations (6.109) are linearly
independent, it is easy to find their analytical solutions, although they
are not very transparent. In practice, one often uses the steady state
approximation. If the equilibrium concentration of the intermediate I
is sufficiently small, or if its free energy is relatively large, in view of
the detailed balance conditions (6.112), we have

k+1

k−1
=

[I]eq

[R]eq
= e−(G◦

I −G◦
R)/RT � 1 (6.114)

and
k+2

k−2
=

[P]eq

[I]eq
= e−(G◦

P−G◦
I )/RT � 1 . (6.115)

It follows from the above inequalities that

k−1 + k+2 � k+1, k−2 . (6.116)

From the second equation of (6.109), we conclude that a weakly occu-
pied state under equilibrium conditions is also a short-lived state. Its
concentration [I] is a fast variable compared to [R] and [P], and after
a short transient period

τtr = (k−1 + k+2)−1 , (6.117)

it reaches the steady state:
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d
dt

[I] = 0 . (6.118)

A steady state is constant on a short time scale. On a long time
scale, however, the value of the concentration [I] follows the slowly
varying concentrations [R] and [P] (Haken, 1990). From (6.118), we
can deduce a relationship between the stationary value of the fast
variable [I] and the values of the slow variables [R] and [P]:

[I] =
k+1[R] + k−2[P]

k−1 + k+2
. (6.119)

Substituting it into the first or the third of (6.109), we find

d
dt

[P] = − d
dt

[R] = k+[R] − k−[P] , (6.120)

where
k+ =

k+2k+1

k−1 + k+2
, k− =

k−2k−1

k−1 + k+2
. (6.121)

Equation (6.120) can be considered as a kinetic equation for the
effective reaction

R
k+−→←−
k−

P , (6.122)

which, over a long time scale, well approximates the system (6.108).
Applying the detailed balance conditions (6.112), we can rewrite the
relationships (6.121) as

k+ =
[I]eq

[R]eq
[
(k−1)−1 + (k+2)−1

]−1
(6.123)

and
k− =

[I]eq

[P]eq
[
(k−1)−1 + (k+2)−1

]−1
. (6.124)

The effective reaction rates are determined by the equilibrium occu-
pation probability for the intermediate state relative to the initial and
final states, respectively, multiplied by the inverse of the sum of the
average transit times from the intermediate to the initial and final
states.
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6.8 Phenomenological Theory of Reaction Rates

The steady state approximation applies to an arbitrary number of
mutually coupled chemical reactions provided the fast- and slowly-
varying concentrations can be clearly distinguished. In particular, it
can be applied to the following sequence of reactions:

R
k+1−→←−
k−1

R‡ k+0−→←−
k−0

P‡ k+2−→←−
k−2

P , (6.125)

with the two short-lived intermediates R‡ and P‡. The effective sin-
gle reaction (6.122) is described by the kinetic equation (6.120) with
reaction rate constants

k+ =
k+1k+0k+2

k−1k−0 + k−1k+2 + k+0k+2
(6.126)

and
k− =

k−1k−0k−2

k−1k−0 + k−1k+2 + k+0k+2
. (6.127)

Making use of the three detailed balance conditions for the three re-
actions (6.125), we rewrite (6.126) and (6.127) as

k+ =

⎡
⎣( [R‡]eq

[R]eq
k+0

)−1

+ (k+1)−1 +
[R]eq

[P]eq
(k−2)−1

⎤
⎦
−1

(6.128)

and

k− =

⎡
⎣( [P‡]eq

[P]eq
k−0

)−1

+ (k−2)−1 +
[P]eq

[R]eq
(k+1)−1

⎤
⎦
−1

. (6.129)

The intermediates R‡ and P‡ can be interpreted as forming together
a transition state of the reaction (6.122) (see Fig. 3.2). The reciprocal
rate constants (k+0)−1 and (k−0)−1 can then be thought of as the mean
passage times through this state in the forward and reverse directions,
respectively. Without loss of generality, we can assume both times to
be equal, whence

k+0 = k−0 ≡ ν , [R‡]eq = [P‡]eq . (6.130)

In accordance with (6.13) and (6.15), we define the free energy differ-
ences ΔG‡

R and ΔG‡
P between the transition and the initial and final

states, respectively:
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[R‡]eq

[R]eq
= e−ΔG‡

R/RT ,
[P‡]eq

[P]eq
= e−ΔG‡

P/RT . (6.131)

The exponentials are treated as probabilities of transition state oc-
cupation under the assumption that it is in a partial thermodynamic
equilibrium with the initial or final state, respectively.

In terms of the newly introduced quantities, the reciprocals of the
reaction rate constants (6.128) and (6.129) can be rewritten in the
form

(k+)−1 =
(
νe−ΔG‡

R/RT
)−1

+ (k+1)−1 + K−1(k−2)−1 (6.132)

and

(k−)−1 =
(
νe−ΔG‡

P/RT
)−1

+ (k−2)−1 + K(k+1)−1 , (6.133)

where K is the equilibrium constant (6.15). Both (6.132) and (6.133)
represent a sum of three characteristic times that determine the resul-
tant reaction rate. The first component determines the time required
to cross the transition state under the assumption that it is in a par-
tial thermodynamic equilibrium with the initial (but not the final)
or the final (but not the initial) state. As a result of the transition,
this equilibrium is obviously disturbed. The second and third contri-
butions in (6.132) and (6.133) describe processes of restoring the local
equilibrium from the side of the initial and final states.

If the limiting factor of the reaction is crossing the transition state,
i.e., the first time components in (6.132) and (6.133) are the longest,
the remaining contributions can be ignored, yielding

k+ = νe−ΔG‡
R/RT , k− = νe−ΔG‡

P/RT . (6.134)

The assumption of an infinitely fast process of reaching partial equi-
librium between the initial state R and R‡ or P and P‡ forms the
basis of the transition state theory (Atkins, 1998, Chap. 27). Equat-
ing the mean passage rate across the transition state ν with the mean
frequency of thermal vibrations and using the relation

hν = kBT , (6.135)

where h is Planck’s constant and kB is Boltzmann’s constant (which
yields ν = 0.5 × 1013 s−1 at temperature T = 300 K), this theory is
limited only to calculations of the Gibbs free energy differences ΔG‡

R

and ΔG‡
P.
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Conversely, if the processes of restoring partial equilibrium in the
transition state are slower than the processes of transition state cross-
ing, a detailed knowledge of microscopic dynamics is required to com-
pute the requisite expressions (see Appendix B.3). This involves in-
tramolecular dynamics for isomerization reactions and, additionally,
intermolecular dynamics for exchange reactions. In such cases we say
that a reaction is controlled by dynamics.

One can always express the complete reaction rates (6.128) and
(6.129) in terms of an Arrhenius formula like (6.134):

k+ = ν+e−ΔG‡
R/RT , k− = ν−e−ΔG‡

P/RT . (6.136)

The quantities ΔG‡
R and ΔG‡

P are called activation free energies, while
ν+ and ν− are referred to as preexponential factors. From the detailed
balance conditions for the three reactions (6.125) and the relations
(6.130), it follows that

ν+ = ν− =
[
ν−1 + (k−1)−1 + (k+2)−1

]−1
. (6.137)

The value of (6.137) can in general be much lower than 0.5× 1013 s−1.
As the rate constants k−1 and k+2 themselves display an Arrhenius

temperature dependence, the reaction rates (6.128) and (6.129) can be
rewritten in yet another form:

k+ = νe−(ΔG‡
R+ΔG‡

eff
)/RT , k− = νe−(ΔG‡

P+ΔG‡
eff

)/RT . (6.138)

Here the preexponential factor ν is identical to the one occurring in
the relation (6.135) used in the standard transition state theory, and
ΔG‡

eff is an effective correction to the activation free energy. Evaluation
of this correction is the subject of the so-called generalized transition
state theory (Garcia-Viloca et al., 2004).



7 Enzymatic Catalysis

7.1 Chemical Mechanisms of Enzymatic Catalysis

In accordance with the considerations of Sect. 6.8, the highest rate of
a chemical reaction allowed by thermodynamics is determined by the
transition state theory. The expression for the mean reaction time (the
reciprocal rate constant) given by this theory is

k−1 = ν−1eΔG‡/RT . (7.1)

The exponent above represents the reciprocal equilibrium occupation
probability of the transition state. ΔG‡ denotes the free energy of
activation, i.e., the difference between the free energy of the transi-
tion state and that of the initial state, and RT for the temperature
T = 300 K corresponds to the energy 2.5 kJ/mol. The first factor, the
reciprocal mean frequency (the mean period) of thermal vibrations,
can be estimated using the relationship (6.135) to yield the value
2 × 10−13 s. For comparison, life has existed on Earth for over 3.5
billion years, i.e., almost 1017 s, which means a factor of 1030 longer
than this characteristic time scale. Since 1030 ≈ e70, the reaction time
would reach this astronomical value for a free energy of activation
that is only 70 times larger than the mean thermal energy, i.e., for
175 kJ/mol. For comparison, the bond energy in the carbon–carbon
case is approximately 350 kJ/mol (see Table C.1), and hence is twice
as large. Most reactions linked to the reorganization of covalent bonds
do not go through complete bond breaking, but their characteristic
free energy of activation is not much lower than 175 kJ/mol. Hence, at
physiological temperatures, spontaneous occurrence of such reactions
would require hours, years or even millennia.

These time scales are too long for living organisms. Living systems
accelerate the rates of almost all relevant reactions using specific cat-
alysts, i.e., compounds that take part in chemical reactions but are
recycled after their completion. Biochemical reactions are catalyzed
by protein enzymes or, currently very seldom, by the more archaic
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RNA-based ribozymes. A typical time for an enzymatic reaction is
10−3 s, whence enzymes accelerate biochemical reactions by a factor
of at least 10 million. To accelerate a reaction by a factor of ten, the
activation barrier has to be lowered by 5.7 kJ/mol. As a consequence,
enzymes reduce the activation barrier by at least 40 kJ/mol.

Besides accelerating chemical reactions, enzymes fulfill two other
important functions. First, they control reactions, which means that a
given reaction takes place in a cell only at an appropriate moment and
at the desired location. Second, enzymes couple reactions. To make use
of a chemical reaction in a process of biological free energy transduc-
tion, it must occur simultaneously with another reaction at the same
multi-enzymatic complex. Therefore, enzymes must be characterized
by high specificity . Each metabolic reaction is catalyzed by its own
enzyme (Sect. 4.6).

Before we move to the main topic of this chapter, i.e., the kinetics
of enzymatic reactions including their regulatory functions, let us first
consider the purely chemical aspects of accelerating chemical reactions
by enzymes. As we cannot cover the whole area of enzyme biochem-
istry here, we will limit our attention to just one well-known class of
enzymes, namely proteases which catalyze the hydrolysis of peptide
bonds. A general presentation of this topic can be found, e.g., in the
book by Fersht (1999) and a review by Garcia-Viloca et al. (2004).

The reaction of hydrolysis of a peptide or an ester bond,

R−CO−X + H2O −→←− RCOOH + H−X , (7.2)

where −X = −NH−R′ or −O−R′, while R′ and R are arbitrary molecu-
lar groups, occurs via a very short-lived tetrahedral intermediate state
(see Fig. 7.1) which can be identified with the transition state. In this
state, an electrostatic charge separation takes place over a relatively
long distance, and this is the main reason for the significant energy
increase of the system.

The transition state is stabilized (its energy is lowered) as a result
of bringing an electrophilic molecule (a cation and/or a lone electron
pair acceptor – see Appendixes C.3 and C.4) to its negative end and
a nucleophilic molecule (an anion and/or a lone electron pair donor)
to its positive end. An example of an electrophilic molecule is an acid
molecule that detaches hydrogen in the form of a proton keeping a
lone electron pair from the hitherto existing bond (general acid catal-
ysis, see Fig. 7.2a). An example of a nucleophilic molecule is a base
that attaches hydrogen in the form a proton, bringing its own elec-
tron pair into the bond thereby created (general base catalysis, see
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Fig. 7.1. Noncatalyzed reaction of hydrolysis of a peptide bond
(−X = −NH−R′) or an ester bond (−X = −O−R′). R and R′ are arbitrary
molecular groups. Electrostatic charge separation takes place in the transition
state

Fig. 7.2b). Metal cations (Fig. 7.2c) play a purely electrostatic role as
electrophiles, while nucleophiles often perform nucleophilic substitu-
tions and make themselves tetrahedral intermediates. A newly created
bond hydrolyzes faster than the original one, changing the reaction
pathway (covalent catalysis, see Fig. 7.2d).

Adding an electrophile or a nucleophile to a solution containing a
hydrolyzed peptide lowers the energy contribution to the free energy
of activation and simultaneously increases its entropic contribution.
Stabilization of a tetrahedral intermediate requires a collision of two
molecules with an adequate mutual orientation which is very improb-
able and thus carries low entropy. The entropic contribution can be
neglected when the two molecules are parts of a larger molecule within
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Fig. 7.2. Four main types of chemical catalysis stabilizing a tetrahedral inter-
mediate. (a) General acid catalysis: an acid molecule HB+ donates a proton
to a negatively charged molecule of carboxyl oxide. The dotted line denotes
a hydrogen bond. (b) General base catalysis: a base molecule A− accepts a
proton from a positively charged hydronium group. (c) Electrophilic cataly-
sis taking place with the help of a metal cation, e.g., Zn2+. (d) Nucleophilic
catalysis: a nucleophile Nu− forms a tetrahedral intermediate more stable
than a molecule of water
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Fig. 7.3. Example of intramolecular catalysis. Hydrolysis of acetylsalicylic
acid (aspirin). The basic catalytic group −COO− belongs to the same
molecule as the acetyl group CH3−CO− which, by contact with water, is
transformed into a tetrahedral intermediate and then detached

which they are already properly oriented for bonding. A well-known
example of such intramolecular catalysis is the hydrolysis of aspirin
(acetylsalicylic acid) to salicylic acid (see Fig. 7.3).
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Fig. 7.4. Hydrolysis of a peptide bond via serine and cysteine proteases
proceeds in two stages. In the first stage, a covalent intermediate compound
is formed, an acyl-enzyme EAc (the acyl group Ac referred to is the group
R−CO−). In the second stage, a bond between the acyl group and the enzyme
undergoes hydrolysis. The various functional groups in the active center are
shown. Nu denotes a nucleophile, an oxygen of a side chain of serine or a
sulfur of cysteine. The base B is a histidine. The binding of the radical R of
the acyl group is specific while the binding of the amine group X in serine
proteases is not. The latter can be readily replaced by an alcohol group. In
fact, most investigations on the mechanism of functioning of serine proteases
have been carried out using esters as substrates
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Fig. 7.5. Pathway for proton transfer from a nucleophile (a hydroxyl group of
serine or a sulfhydryl group of cysteine) via a histidine to asparagine (the so-
called catalytic triad). After freeing from the proton, the side chain of serine
or cysteine rotates around the bond Cα−C and the nucleophile attacks the
carboxylic carbon of the substrate

Usually in enzymatic catalysis, all elements of chemical catalysis
are present. As an example, consider in more detail the mechanism
underlying the action of serine proteases (e.g., pancreatic enzymes of
mammals such as trypsin, chymotrypsin, see Fig. C.28 in Appendix C,
elastase, or subtilisin in bacteria) or cysteine proteases (e.g., papain,
a plant enzyme). In both classes of enzymes, we deal with covalent
catalysis which changes the reaction pathway. First, a nucleophile (in
this case a hydroxyl group of one of the serins or a sulfhydryl group of
one of the cysteins) covalently bonds to the substrate forming an in-
termediate compound, acyl-enzyme, which then undergoes hydrolysis,
as shown in Fig. 7.4 (Fersht, 1999). The nucleophile becomes active
only after it donates a proton, and covalent catalysis must therefore
be linked with a general base catalysis. In both classes of enzymes, a
proton is transferred via a histidine onto an aspartate, as in Fig. 7.5
(Phillips and Fletterick, 1992; Dodson and Wlodawer, 1998). All the
catalytically active molecular groups must have proper spatial orien-
tation with respect to each other and with respect to a specifically
bound substrate (Fig. 7.4). Therefore, enzymatic catalysis is to a large
degree intramolecular catalysis.

7.2 Steady-State Kinetics of Enzymatic Reactions
with One Intermediate

For a unimolecular biochemical reaction of the form

R −→←− P , (7.3)
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the simplest catalytic counterpart is

E + R
k′
+−→←−

k′
−

M
k′′
+−→←−

k′′
−

E + P . (7.4)

This reaction contains two well-defined steps: the binding of a reagent
with an enzyme and the release of the product. E denotes a free en-
zyme and M denotes the enzyme–substrate complex . During this reac-
tion, the enzyme is not exhausted (see Fig. 7.6). The first approximate
analysis of the kinetic equations for the scheme (7.4) was carried out
by Michaelis and Menten in 1913. The full analysis was performed by
Haldane in his monograph on enzymes published in 1930 (Cantor and
Schimmel, 1980, Chap. 16).

Four concentrations occur in the kinetic equations describing the
two steps in (7.4). Only two are independent due to the conservation
laws

[R] + [M] + [P] = [R]0 = const. , (7.5)

and
[E] + [M] = [E]0 = const. . (7.6)

Figure 7.6 represents the reaction (7.4) from the viewpoint of the
enzyme macromolecules. To represent it from the viewpoint of the
substrate molecules, we rewrite it as

R
k′
+[E]−→←−
k′
−

M
k′′
+−→←−

k′′
−[E]

P . (7.7)

In general, the molar concentration of the enzyme is much lower than
that of the substrate:

[E]0 � [R]0 . (7.8)

Hence, the concentration [M] is much lower than the concentrations [R]
and [P]. After a short prestationary stage of the reaction (see Sect. 6.7),

E

R

M

P

Fig. 7.6. Enzymatic cycle with one intermediate. In the first component
reaction, the enzyme is used up, and in the second, it is recovered
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we can apply the steady state approximation treating the enzyme con-
centration [E] as a constant. Figure 2.3 in Sect. 2.3 illustrates the ac-
curacy of this approximation, even for relatively large values of the
fraction [E]0/[R]0. Utilizing (6.121) for the scheme (6.108) in which
the constants k+1 and k−2 are replaced by the constants k′

+[E] and
k′′−[E], respectively, we obtain

d
dt

[P] = − d
dt

[R] =
k′

+k′′
+[R] − k′−k′′−[P]

k′− + k′′
+

[E] . (7.9)

The value of the enzyme concentration [E] in its free state is de-
termined by the total enzyme concentration [E]0. An appropriate re-
lationship is found from (7.6) and the stationarity condition:

d
dt

[M] = −(k′
− + k′′

+)[M] + k′
+[E][R] + k′′

−[E][P] = 0 , (7.10)

which allows us to eliminate the fast-varying variable [M]. We thus
obtain an equation that describes the steady state rate of product
formation or reagent consumption:

d
dt

[P] = − d
dt

[R] =
k+K−1

+ [R] − k−K−1
− [P]

1 + K−1
+ [R] + K−1

− [P]
[E]0 , (7.11)

where
k+ = k′′

+ , K+ = (k′
− + k′′

+)/k′
+ , (7.12)

and
k− = k′

− , K− = (k′
− + k′′

+)/k′′
− . (7.13)

It follows from (7.12), (7.13) and the detailed balance conditions for
the two reactions (7.4) that the parameters k+, K+, k−, and K− are
related by the Haldane equation:

k+

K+

K−
k−

=
[P]eq

[R]eq
≡ K . (7.14)

It is more convenient to define the enzymatic reaction rate, i.e., the
reaction flux , with respect to a single molecule of enzyme [and not
substrate as in (6.34)]:

J ≡ d
dt

[P]/[E]0 . (7.15)

Using the Haldane equation (7.14), the approximate formula
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[R] + [P] = [R]0 , (7.16)

and the definition of chemical affinity for the noncatalyzed reaction
(7.3), viz.,

[P]
[R]

= Ke−βA , (7.17)

we can rewrite (7.11) in a form analogous to (6.34):

J =
1 − e−βA

J−1
+ + J−1

− e−βA
, (7.18)

where β = (KBT )−1 and

J± =
k±[R]0

K± + [R]0
. (7.19)

Under the condition that [R] = [R]0 ([P] = 0, βA → ∞) or [P] =
[R]0 ([R] = 0, βA → −∞), which corresponds to an early stage of the
reaction starting from the pure R or P, respectively, the reaction flux
(7.18) takes the asymptotic values J+ or −J−. The hyperbolic depen-
dence of the reaction fluxes J+ or J− on the substrate concentrations
[R]0 = [R] or [P] is called the Michaelis–Menten equation (Fig. 7.7a).
For low concentrations [R]0, the fluxes J± increase linearly with [R]0:

J± =
k±
K±

[R]0 . (7.20)

On the other hand, for high concentrations [R]0, they reach the satu-
ration values:

J± = k± . (7.21)

The parameters k+ or k− in the Michaelis–Menten equation have
a meaning of turnover number for the enzyme, i.e., the number of
product molecules P or R, respectively, produced per unit time. The
parameters K+ or K− are called the Michaelis–Menten constants and
also the apparent dissociation constants. Indeed, if k′′

+ � k′− (or, al-
ternatively, k′− � k′′

+), then K± become identical with the actual dis-
sociation constants of R or P from the complex M. The conditions [P]
= 0, [R] = [R]0 = const. or [R] = 0, [P] = [R]0 = const. can also be
satisfied in an open stationary reactor as a result of a constant removal
of reaction products. This is a typical situation in vivo and in most ex-
perimental systems in vitro. The experimental results of steady state
kinetics are more conveniently represented in the form of the so-called
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(a) (b)

0

J+_

k+_

0
[R]0 0

J+_

1

k+_

1

1
[R]0K+_

1

Fig. 7.7. (a) Dependence of the asymptotic enzymatic reaction flux J± on
the substrate concentration [R]0 = [R] or [P] in the absence of the product
([P] = 0 or [R] = 0, respectively). (b) The Lineweaver–Burk plot for an
enzyme with Michaelis–Menten kinetics

Lineweaver–Burk plot, which gives the dependence of the reciprocal
reaction flux on the reciprocal concentration of the substrate:

1
J±

=
1

k±
+

K±
k±[R]0

. (7.22)

It is then easy to determine both the enzyme turnover number and
the value of the apparent dissociation constant (Fig. 7.7b).

Equations of the type (7.11) and (7.19) for the steady state enzy-
matic kinetics can be derived for a much larger class of kinetic schemes
than (7.4), by taking into account more than one intermediate state
of the enzyme and even a quasi-continuum of such states (Chap. 9).
These types of equation usually describe experimental situations quite
well (Fersht, 1999). Therefore, the turnover numbers and the Michaelis
constants, in both forward and reverse directions, constitute universal
phenomenological parameters for enzymatic reactions and do not have
to be linked with specific kinetic schemes. The acceleration of the re-
action rate by an enzyme is due to the fact that the turnover numbers
k± are much larger than the reaction rates for the noncatalyzed re-
action (7.3). According to the Haldane equation (7.14), the presence
of an enzyme does not affect the chemical equilibrium between R and
P, and the acceleration of the reverse reaction is realized to the same
degree as that of the forward reaction.

A good enzyme in the case of the kinetic scheme (7.4) is character-
ized by high values of the constants k′′

+ and k′−. However, one physical
limitation cannot be directly circumvented. Bimolecular reaction rates
k′

+ and k′′− are controlled by spatial diffusion and their values cannot
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exceed 109 M−1s−1. Consequently, in the case of good enzymes, not
only are k′

+[E] and k′′−[E] small compared to the sum k′′
+ +k′−, which is

a precondition for the applicability of the steady state approximation,
but also k′

+[R] and k′′−[P] are small compared to this sum. According
to (7.12) and (7.13), this implies that the inequality

K± � [R]0 (7.23)

is satisfied, and the approximation (7.20) is valid. Indeed, most en-
zymes under physiological conditions do not reach saturation condi-
tions. The condition of having the larger of k+/K+ ≈ k′

+ or k−/K− ≈
k′′− close to 109 M−1s−1 means that the enzyme has reached kinetic
perfection (Stryer et al., 2002, Chap. 8). For typical substrate concen-
trations [R]0 = 10−6 M, reactions then take place at rates of the order
of 103 s−1.

Limitations due to long diffusion times of substrate molecules dis-
appear in the case of enzymes that catalyze subsequent reactions of
a metabolic chain into supramolecular multienzymatic complexes. In
the process of evolution, nature must have found this solution early
on, since this approach is very common in real biological systems
(Sect. 5.1).

If the inequality (7.8) is satisfied, the enzymatic reaction (7.4) pro-
ceeding in a closed reactor is completely characterized by one thermo-
dynamic variable:

X ≡ [P] − [P]eq = −[R] + [R]eq . (7.24)

According to the relationship (7.14), the steady state kinetics equation
(7.11) can be rewritten in terms of this variable as the Henri equation:

d
dt

X =
−
(
k+K−1

+ − k−K−1
−
)

[E]0X(
1 + K−1

− [R]eq + K−1
− [P]eq

)
+
(
K−1

− − K−1
+

)
X

. (7.25)

Hitherto we studied the solution to this equation at the beginning of
the steady state stage of the reaction, when the conditions [P] ≈ 0
or [R] ≈ 0 could be assumed, identical to those realized in the open
reactor. Let us now consider the solution to this equation at the end
of the steady state stage. We now have conditions close to total ther-
modynamic equilibrium, when the value of X is low and (7.25) can be
linearized to the equation

Ẋ = −τ−1X , (7.26)
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which describes an exponential decay of X to zero with the relaxation
time

τ =
1 + K−1

+ [R]eq + K−1
− [P]eq(

k+K−1
+ + k−K−1

−
)

[E]0
. (7.27)

For an enzyme close to kinetic perfection, the inequalities (7.23)
hold, and only unity is left in the numerator of the expression (7.27).
It follows that the relaxation time τ is independent of the substrate
concentration and inversely proportional to the enzyme concentration:

τ−1 ≈
(
k+K−1

+ + k−K−1
−
)

[E]0 . (7.28)

7.3 Competitive and Noncompetitive Inhibition

As already pointed out in Sects. 4.6 and 5.6, the role of enzymes is
not only to accelerate biochemical reactions, but also to control them.
Hence, there must exist mechanisms both for switching off active en-
zymes (inhibition) and switching on nonactive enzymes (activation).

The simplest method for slowing an enzymatic reaction is to re-
duce the effective number of enzyme molecules by binding them to
a molecule that resembles the substrate (competitive inhibition). The
majority of modern medicines act as competitive inhibitors. Various
blockers that bind to the target receptors eliminate or significantly
reduce their action thus change the signal transduction pathways. An-
tibiotics, on the other hand, disturb the metabolism of pathogenic mi-
crobes. For example, penicillin can be irreversibly bound to an enzyme
that catalyzes the synthesis of the cell wall of Gram-positive bacteria.

In the presence of a competitive inhibitor I, in addition to the re-
action (7.4), the reaction

E + I
k+I−→←−
k−I

E′ (7.29)

takes place. E′ represents an inactive form of the enzyme. Figure 7.8a
shows the cumulative kinetic scheme from the point of view of the
enzyme. The condition for conservation of the number of enzyme
molecules takes the form

[E] + [M] + [E′] = [E]0 = const. . (7.30)

We are interested only in the steady-state kinetics in an open reactor to
which a reagent is supplied at a constant rate and a product removed
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(a)

I

E
R

M

P
E'

(b)

I

I

E
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M

P
E'

M'

Fig. 7.8. Competitive inhibition (a) and noncompetitive inhibition (b) of an
enzymatic cycle with one intermediate. I denotes the inhibitor, whereas E′

and M′ denote inactive states of the enzyme and enzyme–substrate complex,
respectively

in such a way that [R] = const. and [P] = 0. From the relationship
(7.30) and the two independent steady-state conditions

d
dt

[M] = −(k′
− + k′′

+)[M] + k′
+[E][R] = 0 (7.31)

and
d
dt

[E′] = −k−I[E′] + k+I[E][I] = 0 , (7.32)

we find the steady-state concentration of the enzyme–substrate com-
plex M as

[M] =
[R][E]0

K+(1 + K−1
I [I]) + [R]

, (7.33)

where KI is the equilibrium constant for inhibitor binding,

KI ≡ k−I

k+I
=

[I]eq[E]eq

[E′]eq
, (7.34)

and the constant K+ is determined by the second equation of (7.12).
The value of the concentration [M] determines the steady-state pro-

duction rate of P:
d
dt

[P] = k′′
+[M]. (7.35)

It is still of the Michaelis–Menten form (7.19) but it has a changed
apparent dissociation constant. Indeed, the reciprocal flux of the re-
action as a function of the reciprocal concentration of the reagent is
given by

1
J+

=
1

k+
+
(
1 + K−1

I [I]
) K+

k+

1
[R]

. (7.36)
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(a)
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1
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[R]0K+

1

(b)
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1

1
[R]0K+

1

Fig. 7.9. Lineweaver–Burk plot for an inhibited enzyme described by
Michaelis–Menten kinetics (see Fig. 7.7b). (a) A competitive inhibitor
changes the value of the effective Michaelis constant. (b) A noncompetitive
inhibitor alters the turnover number

Comparing (7.36) with (7.22), we find that a competitive inhibitor
does not alter the turnover number but increases the value of the
Michaelis constant. On the Lineweaver–Burk plot, the crossing point
of the straight line representing the reciprocal flux with the horizontal
axis moves toward zero (Fig. 7.9a).

In contrast to a competitive inhibitor, a noncompetitive inhibitor
binds to both states E and M of the enzyme. Hence its binding site
must be different from the binding site of the substrate. In addition to
the reaction (7.4), we have two reactions:

E + I KI−→←− E′ , M + I KI−→←− M′ . (7.37)

In the schemes above we gave only the equilibrium constants and as-
sumed them to be equal. The kinetic scheme of noncompetitive inhibi-
tion shown from the viewpoint of the enzyme is illustrated in Fig. 7.8b.
The condition for the conservation of the number of enzyme molecules
takes the form

[E] + [M] + [E′] + [M′] = [E]0 = const. , (7.38)

and three independent steady-state conditions are given by

[M] = K−1
+ [E][R] , [E′] = K−1

I [E][I] , [M′] = K−1
I [M][I] . (7.39)

The first condition (7.39) follows from (7.31), valid in the absence of
product P, [P] = 0, whereas the other two conditions represent the
equilibrium conditions for the reactions (7.37).
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Using the four equations (7.38) and (7.39), we find the value of the
stationary concentration of the Michaelis complex as

[M] =
[R][E]0

(1 + K−1
I [I])(K+ + [R])

. (7.40)

Hence, the reciprocal reaction rate is given by

1
J+

=
(
1 + K−1

I [I]
)( 1

k+
+

K+

k+

1
[R]

)
. (7.41)

A noncompetitive inhibitor, in contrast to the competitive one, re-
duces the turnover number without altering the value of the Michaelis
constant (see Fig. 7.9b).

In Sects. 5.2 and 6.2, it has been argued that no hydrophilic
molecule, even water itself, can cross the phospholipid membrane with-
out the intermediacy of protein channels. Channels play an obvious
role as enzymes and the steady-state kinetics of transport processes
across membranes is in fact an enzymatic kinetics. In particular, all
the mechanisms of competitive and noncompetitive inhibition also ap-
ply to transport across biological membranes.

7.4 Two-Substrate Enzyme

The scheme shown in Fig. 7.8b can be generalized to the one with
two equivalent reagents shown in Fig. 7.10. In the new notation, the
conservation law for the number of enzyme molecules takes the form

[E] + [M1] + [M2] + [M] = [E]0 = const. . (7.42)

E

1

2

4

3R1
R1

R2

R2

MM1

M2

Fig. 7.10. General scheme of two-substrate enzymatic reactions. Not shown
are the component reactions detaching products
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Assuming that the reactions detaching the products (not shown in
Fig. 7.10) are much slower than the reactions binding the reagents,
we can approximate the values of the steady-state concentrations of
the particular enzyme states by the values of their equilibrium concen-
trations, and replace the apparent dissociation constants K− by the
actual dissociation constants:

K1 =
[E][R1]
[M1]

, K2 =
[E][R2]
[M2]

,

K3 =
[M2][R1]

[M]
, K4 =

[M1][R2]
[M]

.

(7.43)

Not all of them are independent, as the equality
K1

K2

K4

K3
= 1 (7.44)

is satisfied.
From the relationships (7.43) and the conservation law (7.42), equi-

librium values of the three intermediate enzyme state concentrations
can be found that approximate the corresponding steady-state values:

[M] =
[R1][R2][E]0

K3 (K2 + [R2]) + (K4 + [R2]) [R1]
, (7.45)

[M1] =
K4[R1][E]0

K3 (K2 + [R2]) + (K4 + [R2]) [R1]
, (7.46)

[M2] =
K3[R2][E]0

K3 (K2 + [R2]) + (K4 + [R2]) [R1]
. (7.47)

Many bimolecular reactions can be effectively treated as unimolecu-
lar reactions. A good example are hydrolysis reactions catalyzed by hy-
drolases (e.g., proteases considered in Sect. 7.1), in which one reagent is
water, always occurring in excess. However, the reverse reactions of the
generalized ester bond synthesis are catalyzed by other enzymes, the
synthases, since they are endoergic and proceed along other pathways.
In the latter reactions, two reagents of comparable concentrations oc-
cur, one of which is phosphorylated (see Appendix C.2). Such reactions
are of the form

R1 + R2 −→ products . (7.48)
The order of reagent binding can be arbitrary (Fig. 7.10).

The rate of product formation (the enzymatic reaction flux) is pro-
portional to the steady-state concentration of the enzyme–two reagent
complex [M]. From (7.45) it follows that the dependence of this rate
both on [R1] with [R2] fixed, and on [R2] with [R1] fixed, obeys the
Michaelis–Menten law.
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7.5 Allosteric Control of Enzymatic Activity

The molecule R2 does not have to be treated as one of the substrates.
Instead, as in Sect. 7.3, it can be treated as a regulatory molecule, or
effector . The effector can act both as a noncompetitive inhibitor or as
an activator . In the latter case, the active form of the enzyme is that
bound to the effector, whence the steady-state rate of the enzymatic
reaction is proportional to the concentration [M]. Assuming for sim-
plicity that K2 = K4 and denoting R1 = R (the reagent molecule) and
R2 = A (the activator), we obtain from (7.45):

[M] =
[R][E]0

(1 + K2[A]−1)(K3 + [R])
, (7.49)

and the reciprocal of the reaction flux

1
J+

=
(
1 + K2[A]−1

)( 1
k+

+
K3

k+

1
[R]

)
. (7.50)

An increase in the concentration [A] causes an increase in the effective
turnover number, with an unchanged value of the Michaelis constant
which is equal, under the approximation used here and in the present
notation, to the binding constant K3.

The effector is a molecule which binds to the enzyme at a site
different from the active center of the substrate binding and affects the
latter process over a certain distance. Without discussing its physical
nature, this type of interaction is referred to in molecular biology as
allostery (from the Greek allos, meaning ‘other’, and stereos, meaning
‘space’, ‘location’), see, e.g., Cantor and Schimmel (1980, Chap. 17).
The term was introduced in 1965 by Monod, Wyman and Changeaux.
In the case of allosteric control, the enzyme can be formed by two
separate entities: one catalytic and the other regulatory . We then refer
to an allosteric heterotropic effect (see Fig. 7.11a). Also possible is an
allosteric homotropic effect, which involves the cooperative action of
two or more identical catalytic entities (Fig. 7.11b), as described in
the original paper by the above-mentioned authors.

In simple terms, Monod, Wyman and Changeaux relate the al-
losteric interaction to a simultaneous cooperative change of all com-
ponent entities from a less active tense (T) conformational state to a
more active relaxed (R) conformational state. This change is affected
by binding the first ligand (Fig. 7.11c). An alternative model was pro-
posed in 1966 by Koshland and coworkers. According to this model,
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(d)

(b)
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(c)

(a)
R

I Aor

Fig. 7.11. Allosteric interaction. (a) Allosteric heterotropic effect. A sub-
strate and an effector (noncompetitive inhibitor I or activator A) bind at
different locations on the enzyme. The enzyme consists of two separate en-
tities: a catalytic and a regulatory one. (b) Allosteric homotropic effect. An
enzyme is composed of two (in general more than two) identical or nearly
identical catalytic sub-units. (c) The Monod–Wyman–Changeaux concerted-
transition interpretation of the scheme in Fig. 7.10. (d) The Koshland and
coworkers sequential-transition interpretation of that scheme. The rectangle
and half-oval represent the ‘tense’ and the ‘relaxed’ conformational states of
the enzyme, respectively
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a conformational change takes place separately in each entity, and co-
operativity consists in facilitating the subsequent ligand binding after
the preceding one (Fig. 7.11d).

Substituting R1 = R2 = R into (7.45) and assuming K1 = K2 and
K3 = K4, we obtain

[M] =
[R]2[E]0

K1K3 + 2K3[R] + [R]2
. (7.51)

For low concentrations, the dependence of [M] on [R] is quadratic,

[M] =
[R]2[E]0
K1K3

, (7.52)

whereas for high concentrations, saturation is reached,

[M] = [E]0 . (7.53)

Consequently, the dependence of the reaction flux on [R] is no longer
hyperbolic, of the Michaelis–Menten type, but sigmoidal (see Fig. 7.12).

The allosteric homotropic effect occurs commonly in proteins in
which a reduction of enzymatic functions has taken place, probably
as a result of evolution. These are transport and regulatory proteins
(Stryer et al., 2002, Chap. 8). A classic example of the allosteric pro-
tein of the first type is hemoglobin – a protein that transports molecu-
lar oxygen between regions with high concentrations and regions with
low concentrations of oxygen. An example of the allosteric protein of
the second type is calmodulin, a regulatory protein for many kinases
(Sect. 5.5). It cooperatively binds ions of Ca2+.

The reason for the organization of enzymes into supramolecular
allosteric structures is that it signifies an ability to make a large change
in the active enzyme form concentration by changing the activator
concentration [A] only slightly. In general, the process is described by
an effective kinetic scheme

E′ + mA
k′′′
+−→←−

k′′′
−

E , (7.54)

in which E′ and E denote the enzyme molecule in nonactive and ac-
tive states, respectively. Binding the first activator molecule A makes
binding the next one easier, and so on until the last (m th) molecule.
There is a conservation law,

[E′] + [E] = [E]0 = const. , (7.55)
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and the equilibrium condition for the reaction (7.54) is

k′′
+[E′][A]m = k′′′

− [E] , (7.56)

from which we obtain the dependence of the active enzyme form con-
centration [E] on the activator concentration [A]:

[E] =
[A]m

[A]m + K ′′′ [E]0 , (7.57)

where
K ′′′ = k′′′

−/k′′′
+ . (7.58)

For high values of the concentration [A], the dependence (7.57)
reaches saturation,

[E] = [E]0 , (7.59)

whereas for low values of [A], it can be approximated by a function

[E] = (K ′′′)−1[A]m[E]0 . (7.60)

From these asymptotic types of behavior, it follows that for m = 1
the dependence (7.57) is hyperbolic (the Langmuir law , Fig. 7.12a),
whereas for m > 1, when the function (7.60) becomes concave, the
dependence (7.57) is sigmoidal (Hill’s law , Fig. 7.12.b).

For m much larger than unity the dependence of the active en-
zyme form concentration [E] on the activator concentration [A] be-
comes close to a step function. One consequence is the possibility of
switching an enzymatic reaction on or off via small changes in the
activator concentration. The activators can be either protein macro-
molecules or inorganic ions like Ca2+.

[A]0

(a) (b)

0

[E]0

[E]

Fig. 7.12. Dependence of the active enzyme form concentration [E] on the
activator concentration [A], given by (7.57), for m = 1 (the Langmuir hyper-
bola) and m > 1 (the sigmoidal curve of Hill). In the latter case, the value
of the concentration [E] changes significantly for only slight changes in the
concentration [A] in the vicinity of the inclination point
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7.6 Oscillations in Enzymatic Reactions

If the role of activator is played by the very product of an enzymatic
reaction, i.e., if a positive feedback is realized feedback activation (see
Sect. 5.6), stable temporal oscillations can appear in the system (Gold-
beter, 1996). A steady state becomes a dissipative structure (Sect. 3.6).

Presumably, the best examined are the glycolytic oscillations result-
ing from the positive feedback on phosphofructokinase, the key control
enzyme of glycolysis (Stryer et al., 2002, Chap. 16). It can be assumed
that one reagent of this enzyme always occurs in excess. The second
reagent is ATP. One of the two products is ADP. ADP molecules are
the essential activators of phosphofructokinase which usually occur as
a tetramer.

Here we present the historical model of glycolytic oscillations pro-
posed by Selkov (1968). It is based on the schemes (7.4) and (7.54)
already considered. We identify R with ATP and P with ADP. How-
ever, the product molecules P are not simply removed from the system,
but also play the role of enzyme activators. Hence, besides replacing
A with P in the scheme (7.54), we have to consider the possibility of
different rates of reagent influx and product outflow from the system:

environment v−→ R , P w−→ environment . (7.61)

Following the reactions (7.61), concentrations [R] and [P] become in-
dependent variables in contrast to the scheme (7.4) alone.

The values of the concentrations [E′], [E] and [M] of the three en-
zyme forms E′, E and M are defined by the conservation condition

[E′] + [E] + [M] = [E]0 = const. , (7.62)

the equilibrium condition (7.56), and the steady-state condition for
the enzyme–substrate complex:

d
dt

[M] = −(k′
− + k′′

+)[M] + k′
+[R][E] = 0 . (7.63)

From those three conditions, there result three relationships between
the concentrations [E′], [E] and [M] and the concentrations [R] and
[P]:

[E′] =
[E]0

1 + (1 + x)ym
, [E] =

ym[E]0
1 + (1 + x)ym

,

[M] =
xym[E]0

1 + (1 + x)ym
. (7.64)
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Above, we have introduced the two dimensionless variables

x ≡ [R]
K+

, ym ≡ [P]m

K ′′′ . (7.65)

The apparent dissociation constant for the reagent, viz.,

K+ =
k′− + k′′

+

k′
+

, (7.66)

has the dimensions of a molar concentration, whereas the dissociation
constant for the activator K ′′′ in (7.58) has the dimensions of a molar
concentration raised to the power of m.

The concentrations [R] and [P] vary in time according to the system
of differential kinetic equations:

d
dt

[R] = v − k′
+[E][R] + k′

−[M ] ,

d
dt

[P] = k′′
+[M] − k′′′

+ [E′][P]m + k−[E] − w[P] .

(7.67)

Taking into account the relationships (7.64) and the definitions (7.65),
and then introducing a dimensionless time expressed in units of
(k′′

+[E]0/K+)−1,
(k′′

+[E]0/K+) t → t , (7.68)

the system (7.67) takes the form

ẋ = c − xym

1 + (1 + x)ym
,

ẏ =
axym

1 + (1 + x)ym
− by ,

(7.69)

with three parameters a, b and c.
Unfortunately, a more detailed discussion of this system is rather

complex so we simplify the model by assuming that c � 1, which
allows us to neglect the denominators in (7.69). The resulting system,
still nonlinear, reads:

ẋ = c − xym ,

ẏ = axym − by .
(7.70)

For m = 2, this has a stationary (steady-state) solution

xst =
b2

a2c
, yst =

ca

b
. (7.71)
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Fig. 7.13. Time course of the enzymatic reaction described by (7.70). The
dimensionless variable x determines the reagent concentration, and the di-
mensionless variable y, the concentration of the product which is simultane-
ously the enzyme activator. In both diagrams, it is assumed that a = 5 and
b = 1. In the left-hand diagram (oscillations decaying to a stable steady-state
point), the value c = 0.21 is higher and in the right-hand diagram (oscillations
tending to a stable limit cycle), the value c = 0.19 is lower than the critical
value c = 0.2. Drawings were made using the program DiGraph written by
Tomasz Jarus

Oscillations can appear when this solution becomes unstable. Lineariz-
ing the right-hand sides of the equations (7.70) in the vicinity of the
point (7.71) by expansion in Taylor series, we obtain the instability
condition

c2a2

b3
=

yst

axst
< 1 . (7.72)

Figure 7.13 presents the numerical solutions to (7.70) for a = 5, b = 1
and two values of c, one above and one below the critical value c = 0.2.

A still simpler positive feedback mechanism is realized when the
product of a reaction acts, not as catalyst activator, but as the cata-
lyst itself (autocatalysis). This happens frequently in the chemistry of
biological processes. In fact, the autocatalysis phenomenon is the basis
for replication of genetic material. Many cyclic biological phenomena
(so-called biological clocks) are related to processes of replication, or
more generally, reproduction. As a second example, let us consider a
simple model, but with a long history, associated with the names of
Lotka and Volterra (Nicolis and Prigogine, 1977; Haken, 1990). The
model consists of three irreversible reactions:

A + X k1−→ 2X , X + Y k2−→ 2Y , Y k3−→ products . (7.73)
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a

b

y

x

Fig. 7.14. The Lotka–Volterra system of equations (7.75) possesses (besides
the limiting cases x = 0 and y = 0) only periodic trajectories that encir-
cle the steady-state point with coordinates (b, a). The variable x determines
the concentrations of molecules that autoreplicate using a material which oc-
curs in unlimited amounts (‘hares’), whereas the variable y determines the
concentration of molecules that autoreplicate using a material consisting of
molecules of the first kind (‘lynxes’). Drawing made using the program Di-
Graph written by Tomasz Jarus

The first reaction describes the autoreproduction of particles X from
a material composed of particles A. The second reaction describes the
autoreproduction of particles Y from a material composed of parti-
cles X. And the third reaction describes the decay of particles Y. The
kinetic equations for molar concentrations of particles X and Y, re-
spectively, are

d
dt

[X] = k1[A]x − k2[X][Y] ,

d
dt

[Y] = k2[X][Y] − k3[Y] .

(7.74)

Introducing the dimensionless concentrations x ≡ [X]M−1 and y ≡
[Y]M−1, where M is the concentration 1 mol/dm3, and the unit of
time (k2M)−1, we obtain the set of two equations

ẋ = ax − xy ,

ẏ = xy − by ,
(7.75)

with two parameters a and b.
The set of equations (7.75) has a constant of motion

F (x, y) = x − b lnx + y − a ln y , (7.76)
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as is easily proved by differentiation:

d
dt

F =
∂F

∂x
ẋ +

∂F

∂y
ẏ = 0 . (7.77)

The function (7.76) is a simple solution to the equation(
1 − b

x

)
dx =

(
a

y
− 1
)

dy , (7.78)

obtained by dividing one equation of (7.75) by the other. The trajecto-
ries found numerically for the set (7.75), shown in Fig. 7.14, are indeed
identical to the contour lines of the surface (7.76).

Originally, the Lotka–Volterra model was not formulated in terms
of the kinetics of autocatalytic reactions, but in terms of the population
dynamics of two competing animal species: predator and prey (see the
caption to Fig. 7.14). In one of the relevant papers, the time course
of a solution to the system (7.75) was compared with the number of
lynx and hare skins being bought yearly in Canada in the period from
1845 to 1935. Since the time of that paper, the Lotka–Volterra model
has been commonly termed the lynxes-and-hares model.
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8.1 Isothermal Machines

For many historical reasons, the word ‘machine’ has had several differ-
ent meanings in most European languages. In our context, a machine
is understood to be a physical system that enables two other systems
to perform work on one another. Undoubtedly the oldest machine used
by man is the lever (see Fig. 8.1a). If we place weights A1 and A2 at the
ends, the work to be performed will involve transfer of gravitational
energy from one weight to the other. Hence,

A1ΔX1 = −A2ΔX2 . (8.1)

The changes in height ΔX1 and ΔX2 are inversely proportional to the
corresponding weights. Their values can differ greatly, which attests to
the usefulness of this simple machine. Equation (8.1) can be interpreted
as a condition for the conservation of gravitational potential energy,
namely

A1ΔX1 + A2ΔX2 = 0 . (8.2)

With the help of the lever, work can be done only once. The state of
the lever after performing work is different form the state before per-
forming work. However, other machines can perform work cyclically.
An example of such a machine acting on the same basis as the lever is
the winch (Fig. 8.1b).

So far in our discussion the effects of friction (energy dissipation)
have not been considered. Friction occurs at the fulcrum of the lever
and on the axis of the winch. The possibility of an irreversible bending
of the lever at the fulcrum corresponds to slippage at the axis of the
winch. Friction is accounted for by replacing (8.2) by the inequality

A1ΔX1 + A2ΔX2 = D ≥ 0 , (8.3)

where D represents irreversibly lost gravitational energy. In the pres-
ence of friction, a cyclical machine can work in a stationary manner
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(a) (b)
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A2

A2

�X1

�X2

Fig. 8.1. Lever (a) and winch (b)

at a constant rate (see Fig. 8.2). The inequality (8.3) divided by a
short interval of time Δt and after proceeding to the limit can then be
rewritten in the form of the inequality [see (3.66)]

A1Ẋ1 + A2Ẋ2 = Φ ≥ 0 . (8.4)

Work done per unit time is called power . The first term in (8.4) is the
input power and the negative of the second term expresses the output
power , while the dissipation function Φ represents the dissipated power
of the machine. The ratio of the output power to the input power,

η =
−A2Ẋ2

A1Ẋ1

= 1 − Φ

A1Ẋ1

, (8.5)

is called the efficiency of the machine.
The winch and the car shown in Fig. 8.2 (regardless of the type

of engine used) are two extreme examples of mechanomechanical ma-
chines since both variables Xi in (8.3) represent displacements, i.e., me-
chanical variables. Every machine that works cyclically and in which
the output variable X2 is a mechanical variable is called an engine or
a motor . The variable X1 does not have to be mechanical. In addition
to the mechanical engines discussed here, we also distinguish electri-
cal engines for which the variable X1 represents electrical charge. Its
time derivative Ẋ1 is an electrical current and the force A1 conjugate
to it is a voltage. Furthermore, we often deal with thermal or heat
engines, in which X1 corresponds to entropy and its time derivative
Ẋ1, when multiplied by the conjugate force A1 denoting a temperature
difference, expresses heat flux intensity. Finally, still in the realm of
speculation, is an efficient chemical engine that would directly convert
chemical energy into mechanical work.



8.1 Isothermal Machines 199

(a) (c)(b)

Fig. 8.2. Simple winch and a more complicated machine, viz., a car. (a) A
weight attached to a freely unwinding rope attains a constant velocity in its
downward motion when the force of friction proportional to velocity balances
the force due to gravity. A car left unbraked on an incline will sooner or later
attain a constant velocity in its backward rolling motion. In both cases the
total gravitational energy is being dissipated when this happens. (b) Rota-
tional motion of the crank can achieve a stationary velocity with complete
dissipation of the energy put into it. This corresponds to the motion of a car
at a constant velocity on a horizontal plane. (c) Coupling of the rotation of
the crank and the tumbling-wheel can lead to upward motion of the weight
at a constant velocity and only in this case is work performed against gravity.
Analogously, a car engine performs work when it drives at a constant velocity
up the hill

Note that, in a car engine, the chemical energy of gasoline is first
converted via its internal combustion into a heat flux and then into
the motion of pistons in the cylinders. This is in turn converted via
axles into the rotational energy of the wheels. In the general case,
both variables X1 and X2 can have an arbitrary character. For exam-
ple, an alternator is a mechanoelectrical machine while a battery is a
chemoelectrical machine.

The general theory of machine action is a subfield of thermodynam-
ics (Kondepudi and Prigogine, 1998). The origin of thermodynamics
can be traced back to the early 19th century when physical foundations
of the action of heat engines were searched for. The French engineer
Carnot was credited at the time with the development of a theoretical
model of a heat engine that works under the condition of an alternat-
ing contact with two thermostats kept at different temperatures. The
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assumption was that the changes were sufficiently slow to allow the
state of complete thermodynamic equilibrium to be maintained and to
ignore energy dissipation. In fact, 19th century thermodynamics was
first and foremost equilibrium thermodynamics.

However, the Carnot engine is a bad model for most modern ma-
chines that work under isothermal conditions of constant temperature
and far from thermodynamic equilibrium. The inclusion of dissipation
in such cases is very important. Furthermore, the molecular biological
machines that will be discussed in this chapter, such as chemomechan-
ical motors, chemoosmotic pumps and chemochemical receptors work
under isothermal conditions far from thermodynamic equilibrium.

Under isothermal conditions, T = const., the total energy of an ar-
bitrary thermodynamic system, regardless of whether the thermody-
namic variables Xi do or do not reach their total equilibrium values,
can be unambiguously divided into free energy G and bound energy TS
(see Sect. 3.5). The former changes as a result of work being done either
by the system or on the system. The latter changes due to a transfer of
heat. According to the second law of thermodynamics, free energy can
be transformed into bound energy in a dissipative process, but not the
other way around. In other words, bound energy can never be used
under isothermal conditions for the purpose of performing work. In
our context, gravitational, chemical and electrical energies are special
cases of free energy. In the most interesting case for us, where chemical
reactions take place under both isothermal and isobaric (P = const.)
conditions, the role of free energy is played by free enthalpy (also called
the Gibbs potential, see Sect. 6.1 and Appendix A.2). Hence G is used
throughout the present chapter to denote free energy.

Machines that operate under the condition T = const. are free
energy transducers (Hill, 1989). This means that work done by the
environment on one of the machine’s subsystems is transformed into
its free energy and this, in turn, is passed on to the second subsys-
tem which subsequently uses it to perform work on the environment
(Fig. 8.3). The free energy transfer between the two subsystems is
reduced by dissipation, which increases the bound energy of the two
subsystems. The heat transferred to the thermostat in the course of
the process can have an arbitrary sign, as can the entropy transfer be-
tween the two subsystems. At a steady state, the values of the bound
free energy (i.e., entropy) of the two subsystems remains constant,
Gi = const. and Si = const.. Therefore, balancing the transformations
shown in Fig. 8.3, the total work performed on and by the system per
unit time must be equal to the rate of dissipation, and this cannot be



8.2 Chemochemical Machines 201

G1

work

bound energy

dissipation

free energy

heat

G2

TS1 TS2

constraints

heat bath

Fig. 8.3. Pathways of energy transformations in a machine working under
isothermal conditions

negative according to the second law of thermodynamics. The latter is
equal to the heat flux transferred to the environment. This is precisely
the meaning of (8.4) which, originally derived for a winch, is generally
correct for an arbitrary isothermal machine. A transformation of free
energy takes place when, despite a positive value of the entire sum in
(8.4), one term has a negative sign.

8.2 Chemochemical Machines.
The Necessity of Enzyme Intermediacy

Consider two chemical reactions: ATP hydrolysis,

ATP
K1−→←− ADP + Pi ,

and phosphorylation of a certain substrate Sub,

Sub + Pi

K2−→←− SubP .

Both reactions ignore the participation of a water molecule which is in
excess. The equilibrium constants K1 and K2 are determined by the
quotients

K1 =
[ADP]eq [Pi]eq

[ATP]eq
, K2 =

[SubP]eq

[Sub]eq [Pi]eq
. (8.6)
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Fig. 8.4. Coupling of two phosphorylation reactions through a common
reagent Pi (a) and through a kinase enzyme E (b)

The first reaction is exoergic from left to right (K1M−1 > 1, ΔG◦ <
0). The second is assumed to be endoergic in this direction (K2M<
1, ΔG◦ > 0). However, the second reaction can take place from left
to right if both reactions take place in the same reactor and if the
first reaction ensures a sufficiently high concentration of the common
reagent Pi (Fig. 8.4a). It appears at first sight that this system acts
as a chemochemical machine, where the first reaction transfers free
energy to the second. But is this really so?

The thermodynamic forces acting in the two reactions are, respec-
tively

A1 = kBT lnK1
[ATP]

[ADP] [Pi]
,

A2 = kBT lnK2
[Sub] [Pi]
[SubP]

.

(8.7)

Under steady-state conditions, the corresponding fluxes are

J1 = Ẋ1 , J2 = Ẋ2 , (8.8)

where
X1 ≡ [ADP] , X2 ≡ [SubP] , (8.9)

and they are equal. The forces (8.7) are not, however, independent of
these fluxes. In Sect. 6.1 we demonstrated that the flux and force for
each reaction taken separately are always of the same sign and hence

A1J1 ≥ 0 , A2J2 ≥ 0 , (8.10)
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in the sum (8.4). Therefore, no free energy transduction can occur. At
most, an entropy transfer is possible (Blumenfeld, 1974; see Fig. 8.3) as
a result of a simultaneous influence of both reactions on the probability
of finding the molecule Pi in the reactor.

Many in vivo biochemical reactions take place simultaneously in
the same volume of a part or the whole of a cell. However, under
physiological conditions, the coupling of two reactions via a common
reagent is not easily implemented. As an example, consider the first
reaction in the glycolysis chain, i.e., glucose phosphorylation (Sub =
Glu) into Glu6P, which is coupled to the ATP hydrolysis reaction. For
this reaction,

K2 =
[Glu6P]eq

[Glu]eq [Pi]eq
= 6.7 × 10−3M−1 .

Under steady-state (nonequilibrium) physiological conditions [Pi] =
10−2 M and [Glu6P] = 10−4 M. As a consequence, for the reaction to
proceed in the forward direction, i.e., for the force A2 to be positive,
the concentration of glucose [Glu] must exceed 1.6 M = 300 g/dm3,
which is an unrealistic value.

Nature has a different way to achieve the coupling of ATP hydrol-
ysis and phosphorylation of the substrate, namely through an enzyme
that catalyzes both reactions simultaneously (Fig. 8.4b). According
to the terminology presented in Sect. 4.6, enzymes that catalyze the
transfer of a phosphate group are called kinases. Figure 8.4b shows
three reactions labeled I, II and III. In addition to the transfer of the
phosphate group Pi from ATP to Sub, it is also possible to detach this
group from the enzyme unproductively. This is characterized by the
following equilibrium constants:

KI =
[ADP]eq [EP]eq

[ATP]eq [E]eq
, KII =

[E]eq [SubP]eq

[EP]eq [Sub]eq
, KIII =

[E]eq [Pi]eq

[EP]eq
.

(8.11)
Since an enzyme cannot affect chemical equilibrium conditions, the
constants (8.11) must depend on the constants (8.6), and the following
relations are satisfied:

KIKIII = K1 , KII/KIII = K2 . (8.12)

As with relationships between equilibrium constants, we find corre-
sponding relationships between thermodynamic forces:

A1 = AI + AIII , A2 = AII − AIII , (8.13)
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where the forces acting on reactions I, II, and III are defined analo-
gously to those in (8.7). Using the definitions (8.8) and (8.9), one can
identify the reaction fluxes shown in Fig. 8.4:

J1 = JI , J2 = JII , (8.14)

and from the steady-state conditions [E] = const. and [EP] = const.,

JIII = JI − JII . (8.15)

It follows from the relationships (8.15) and (8.13) that the dissipation
function for the system of the three reactions illustrated in Fig. 8.4b
can be rewritten in two forms:

Φ = AIJI + AIIJII + AIIIJIII

= (AI + AIII)JI + (AII − AIII)JII

= A1J1 + A2J2 . (8.16)

The three terms in the first equation are nonnegative, but this does
not mean that the two terms in the third equation must also be non-
negative. It is sufficient that, for J1, J2 > 0 when AI, AII > 0, we
have AIII > AII. The other condition AIII < −AI is impossible to sat-
isfy for Pi concentrations under physiological conditions. However, for
J1, J2 < 0 when AI, AII < 0, the inequality AIII > −AI can hold. In
both cases we are dealing with real transduction of the free energy.
The first case, namely the transfer of free energy from subsystem 1 to
subsystem 2, takes place in the already discussed process of glucose
phosphorylation at the expense of ATP hydrolysis. The second case,
namely the transfer of free energy from subsystem 2 to subsystem 1
occurs in the next two stages of the glycolysis chain, in which ADP
phosphorylation to ATP proceeds at the expense of even higher energy
substrates.

8.3 Universality of the Enzymatic Mechanism
of Free Energy Transduction

The kinetic scheme shown in Fig. 8.4b can be generalized to the case
of two arbitrary coupled chemical reactions:

R1 ←→ P1 and R2 ←→ P2 .
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We assume for simplicity that both reactions are unimolecular. One
reaction is a donor of free energy and the other is a free energy accep-
tor .

Each biochemical reaction must be catalyzed by a protein enzyme.
Separately , each reaction takes place in the direction determined by
the second law of thermodynamics, i.e., the condition that the amount
of chemical energy dissipated is positive (Figs. 8.5a and b). Only when
both reactions occur simultaneously using the same enzyme, with one
reaction taking place according to the second law of thermodynamics,
can the second reaction be forced to take place against the second
law. In this case, the first reaction transfers a part of its free energy
recovered from dissipation performing work on the second reaction
(Fig. 8.5c). The mechanism of energy transfer is very simple: if both
reactions occur in a common cycle, they must proceed in the same
direction.

Figure 8.5 is intended to resemble Fig. 8.2 in order to emphasize
the similarity between a chemochemical machine and a winch device.
In the same way, cranking a winch requires the input of work acting
against the force of gravity exerted by the weight attached through a
rope to the spool: the first reaction performs work against the chem-
ical force acting on the second reaction, forcing it to proceed in the

(b) (c)(a)

E1

E2
P1

P2

R2

R1
E1

E2

P2

R2

E1

E2
P1

R1

Fig. 8.5. (a) and (b): Two different chemical reactions proceeding indepen-
dently of each other. We assume that they are catalyzed by the same enzyme,
but the reagent R1 for the first reaction binds to the state E1 of the enzyme,
and the reagent R2 for the second reaction binds to the state E2. Reactions
take place under stationary conditions as a result of keeping the reagent and
product concentrations fixed but different from the equilibrium values. These
concentrations are selected so that the first reaction proceeds from R1 to P1

and the second from P2 to R2. (c) If both reactions take place simultaneously
using the same enzyme, the direction of the first reaction can force a change
of direction of the second. The new direction would be opposite to the one
dictated by the stationary values of the respective concentrations. The broken
line denotes a possible unproductive transition between states E1 and E2 of
the enzyme. It is instructive to compare this diagram with Fig. 8.2
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opposite direction. Friction associated with the motion of the winch
corresponds to energy dissipation in the common reaction cycle. Slip-
page of the crank with respect to the spool axis is mirrored by the
possible direct reaction between the states E1 and E2 of the enzyme.
The only difference between the winch and a chemochemical machine
is in their organization. The winch is a device characterized by macro-
scopic spatial organization, while the enzymes enabling the operation
of a chemochemical machine are microscopic, or at worst mesoscopic
entities. The chemochemical machine is a more or less spatially homo-
geneous solution of enzymes with a typical concentration of 10−6 M,
i.e., close to 1015 molecules per cubic centimeter, or 103 molecules per
cubic micrometer (the typical size of a bacterial cell or an organelle of
a eukaryotic cell).

Historically, the scheme in Fig. 8.5c is identical to a general scheme
of chemical induction proposed by the Russian chemist Shilov in 1905
(Blumenfeld, 1974). He called the substrate of the first reaction the
inducer , the substrate of the second reaction the acceptor , and the
counterpart of the enzyme, not consumed during the reaction, the
actor (Fig. 8.6a). If the conditions of free energy transduction are
not satisfied, the inducer and the acceptor are not uniquely defined.
They need each other and the process is referred to as mutual chemical
induction.

(b)
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(a)

Fig. 8.6. (a) Shilov’s scheme of chemical induction. X denotes the actor
molecule, a reagent common to the two coupled reactions, I is the inducer
molecule which reacts spontaneously with the actor X, and A is the acceptor
molecule which reacts with X only in the presence of the inducer. (b) Example
of a chain reaction
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Particular examples of mutual chemical induction are chain reac-
tions (Pauling and Pauling, 1975, Chap. 10), for instance, an associa-
tion of H2 and Br2 into hydrobromide HBr (Fig. 8.6b). The reaction
consists of an infinite number of steps in which intermediates, the
free radicals H• and Br•, are alternately created and consumed. Note
that the atomic hydrogen and bromide are highly unstable and recom-
bine directly into molecular hydrogen and bromide (Fig. 8.6b). After
an accidental initiation of the reaction, a steady-state concentration
of the free radicals is very rapidly established and this concentration
determines the effective reaction rate. The mechanism of some chain
reactions makes the concentration of the intermediates increase expo-
nentially without reaching a saturation level. The chain reaction then
becomes an avalanche reaction. Examples are the explosive reaction
of H2O synthesis in the gaseous mixture of two parts of hydrogen H2

and one of oxygen O2, or the reaction of uranium 235U fission under
conditions of an exponentially increasing number of neutrons.

Assuming as in Sect. 7.2 that each component reaction proceeds
through one substrate–enzyme intermediate, we replace the three
schemes in Fig. 8.5 by three more complex schemes shown in Fig. 8.7.
In such a case, however, besides the coupling of the two reactions
through a free enzyme E (Fig. 8.7c), three other possible schemes of
coupling can be devised (Fig. 8.8). Thus, both reactions are also to be
coupled through an intermediate complex M (see Fig. 8.8b), the inter-
mediate complex for one reaction appears to be the free enzyme for
the second reaction (see Fig. 8.8c), and both reactions proceed as al-
ternating half-reactions (see Fig. 8.8d). Figure 8.8a repeats the scheme
of coupling the reactions through a free enzyme E.

R1

M1

P1

E1

E2

E1
P2

M2

R2
E2

E1

E2

R1 P2

M1
M2

R2P1

(b)(a) (c)

Fig. 8.7. Counterparts of three schemes from Fig. 8.5, assuming that each
component reaction proceeds through one intermediate enzyme–substrate
complex
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Fig. 8.8. Four possible kinetic schemes for the system of two coupled re-
actions, assuming that each proceeds through one intermediate state of the
enzyme. The broken lines represent unproductive (without binding to or un-
binding from substrates) direct transitions between different states of the
enzyme. They cause a possible mutual slippage of the two component cycles

In general, the chemochemical machine can be viewed as a ‘black
box’, entered and exited by molecules that take part in both coupled
chemical reactions (Fig. 8.9). The kinetic scheme of the reactions can
be arbitrary, as long as it involves at least one cycle so that the enzyme
cannot be exhausted in the course of the reaction.

R2

P2

P1

R1

J1 J2

J2J1

A1 A2

Fig. 8.9. General scheme of a chemochemical machine coupling two reac-
tions: R1 ↔ P1 which produces free energy, and R2 ↔ P2 which consumes
free energy. Both reactions can take place in either direction, as determined
by the sign of the flux Ji. The forces Ai are determined by the values of the
reagent and product concentrations which are kept stationary
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8.4 Molecular Pumps and Motors

Besides simple phosphorylation reactions, the reaction of ATP hydroly-
sis is coupled to many other biological processes. It can force the trans-
port of ions across membranes in the direction of increasing ion concen-
tration, not directly allowed by the second law of thermodynamics. The
chemoosmotic or chemoelectric molecular machines performing such a
function are called molecular pumps. ATP hydrolysis can also result
in a mechanical motion along molecular tracks (microfilaments, micro-
tubules or nucleic acid chains). The corresponding chemomechanical
machines are called molecular motors. Transport across membranes
can also be coupled to a rotational mechanical motion. We then speak
about molecular turbines.

From a theoretical point of view, it would be convenient to treat
all molecular biological machines as chemochemical machines. In fact,
the scheme in Fig. 8.8b applies to molecular motors, while those in
Figs. 8.8c and d apply to molecular pumps. Treating molecular pumps
as chemochemical machines poses no great problem. The molecules
present on either side of a biological membrane can be considered to
occupy different chemical states, while the transport process across
the membrane can be regarded as an ordinary chemical reaction (see
Sect. 6.2). Figures 8.10a and b present simplified kinetic cycles of the
calcium and the sodium–potassium pumps, respectively (see Sect. 5.2
and Stryer et. al., 2002, Chap. 13). Assuming the concentration of ATP
to be much higher than the equilibrium concentration determined by
the actual concentration of ADP, we can consider the ATP hydrolysis
reaction as an irreversible unimolecular reaction ATP → Pi. Hence,
both schemes in Fig. 8.10 are identical to the one presented in Fig. 8.8d.
A possible slippage is realized, not at the pump itself, but due to the
leakage of Ca2+, Na+ or K+ ions through the corresponding channels
(see Sect. 5.2).

Proton pumps taking part in membrane phosphorylation (Sect. 5.3)
and representing molecular chemoelectrical machines [fuel cells, see
Sect. 6.5)], in particular the quinol : cytochrome c-oxidoreductase (see
Fig. 5.14), act according to the scheme presented in Fig. 8.8c. This is
clear from Fig. 8.11a, which shows a simplification of the scheme given
in Fig. 5.15. From the kinetic point of view, the action of molecular
chemoelectrical machines differs only slightly from the action of macro-
scopic chemoelectrical machines. Figure 8.11b shows the working cycle
of the macroscopic Daniell electrochemical cell (see Sect. 6.5).
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Fig. 8.10. Simplified kinetic cycles of the calcium pump, Ca2+-ATPase (a)
and the sodium–potassium pump, Na+,K+-ATPase (b). E1 and E2 denote
two states of an enzyme that represents a pump with a reaction center ori-
ented inside and outside a compartment, respectively. T, D, and Pi stand for
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Fig. 8.11. Simplified kinetic cycles of two chemoelectrical machines, one
molecular and one macroscopic. Scheme (a) represents the action of the
quinol : cytochrome c-oxidoreductase (see Fig. 5.15). Scheme (b) represents
the action of the Daniell electrochemical cell [see Fig. 6.6 and (6.90) or (6.93)].
The main difference is that the vertices of scheme (a) correspond to various
charge states of a single macromolecular enzymatic complex, whereas those
of scheme (b) correspond to various parts of a macroscopic device: cathode
(ct), anode (an) and electrolyte (el)

Molecular motors represent a more complicated case. Figure 8.12
depicts a simplified version of the Lymn–Taylor–Eisenberg kinetic
scheme of the chemomechanical cycle of the actomyosin motor
(Howard, 2001; Kurzyński and Che�lminiak, 2004; see also Sects. 5.4
and 9.4). The scheme indicates how the ATPase cycle of the myosin
head is related to states that are detached, weakly attached and
strongly attached to the actin filament. Both the substrate and prod-
ucts of the catalyzed reaction bind to and rebind from the myosin in
its strongly attached state, whereas the reaction takes place either in
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Fig. 8.12. Simplified Lymn–Taylor–Eisenberg kinetic scheme of the chemo-
mechanical cycle of the actomyosin motor. M denotes the myosin head and
A the actin filament, while T, D and Pi stand for ATP, ADP and inorganic
phosphate, respectively

the weakly attached or detached state. Only completion of the whole
cycle with ATP hydrolysis achieved in the detached state results in the
directed motion of the myosin head along the actin track. ATP hydrol-
ysis in the weakly bound state alone is ineffective and corresponds to
slippage.

Assuming a low fixed value of the ADP concentration, the scheme
shown in Fig. 8.12 is identical to the one presented in Fig. 8.8b. The
question remains as to how to represent a load acting on a motor in
terms of concentrations. In Fig. 8.12, A denotes the actin filament
before or after translation of the myosin head by a unit step. Experi-
mental evidence and a more deeper reasoning (see Sect. 9.4) indicate
that an external load attached to the statistical ensemble of myosin
heads (organized, in the case of myofibrils, into a system of thick fila-
ments) influences the free energy involved in binding the myosin heads
to thin actin filaments. The associated changes in the binding free
energy can be expressed as changes of effective rather than actual con-
centrations of the actin filament [A] before and after translation. As a
consequence, the actomyosin motor can indeed be effectively treated
as a typical chemochemical machine. The output flux J2 is related to
the mean velocity of the myosin head along the actin filament and the
force A2 is proportional to the load (Kurzyński and Che�lminiak, 2004).

At a macroscopic level, the action of molecular pumps and motors is
manifested by directed transport of a substance. The possible function-
ing of mesoscopic machines on a macroscopic scale is due to appropri-
ate organization of the statistical ensemble. Molecular pumps are em-
bedded in the two-dimensional structure of the membrane (Fig. 8.13a),
while molecular motors move along a structurally organized system of
tracks: microfilaments or microtubules (Fig. 8.13b). However, not all
biological molecular machines perform work on a macroscopic scale.
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(b)(a)

Fig. 8.13. Functioning of biological molecular machines on a thermodynamic
(macroscopic) scale is only possible due to appropriate organization of the
system. Molecular pumps are embedded into the two-dimensional structure of
the membrane (a), while molecular motors move along an organized system
of tracks, microfilaments or microtubules (b)

Examples of such behavior are molecular turbines, e.g., the Fo por-
tion of ATP synthase (Sect. 5.3). Since no mechanism coordinates the
rotational motion of individual turbines, no macroscopic thermody-
namic variable characterizes this motion. The two portions Fo and F1

must therefore be treated jointly from the macroscopic point of view,
together giving rise to a reversible molecular pump, the H+ ATPase.

The organization of a molecular pump system in the membrane
does not require the individual pumps to be single macromolecules.
Thus, the leakage for the calcium or the sodium–potassium pumps is
realized through separate Ca2+ or Na+ and K+ ionic channels. Trans-
port of ions through channels in the direction of increasing concentra-
tion is forced by the electric membrane potential created by transport
of other ions through other channels (Sect. 6.2). Similarly, osmosis in
the direction of increasing solute concentration can be forced by an
appropriate hydrostatic pressure.

8.5 Flux–Force Dependence

To provide a better analysis of the character of flux–force relations
in biological processes of free energy transduction, we now return to
the simplest kinetic scheme presented in Fig. 8.5c for the enzymatic
coupling of a reaction supplying free energy with one that absorbs it.
Figure 8.14 shows this scheme in more detail and defines reaction rate
constants for the individual reactions involved. The thermodynamic
forces for the three component reactions are given by the equations
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AI = kBT ln
[E2]eq[P1]eq

[E1]eq[R1]eq
[E1] [R1]
[E2] [P1]

,

AII = kBT ln
[E1]eq[P2]eq

[E2]eq[R2]eq
[E2] [R2]
[E1] [P2]

, (8.17)

AIII ≡ kBT ln
[E1]eq

[E2]eq
[E2]
[E1]

,

and the corresponding reaction fluxes [see (6.34)] are

JI =
1 − e−βAI

(k+1[R1])
−1 + (k−1[P1])

−1 e−βAI
[E]0 ,

JII =
1 − e−βAII

(k+2[R2])
−1 + (k−2[P2])

−1 e−βAII
[E]0 ,

JIII =
1 − e−βAIII

k−1
02 + k−1

01 e−βAIII
[E]0 ,

(8.18)

where [E]0 is the total enzyme concentration:

[E]0 = [E1] + [E2] = [E1]eq + [E2]eq . (8.19)

Operational forces and fluxes, respectively (Hill, 1989), are given
for noncatalyzed reactions as

A1 ≡ kBT ln
[P1]eq

[R1]eq
[R1]
[P1]

, J1 =
d
dt

[P1] = − d
dt

[R1] ,

A2 ≡ kBT ln
[P2]eq

[R2]eq
[R2]
[P2]

, J1 =
d
dt

[P2] = − d
dt

[R2] .

(8.20)
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Fig. 8.14. Enzymatic coupling of a reaction providing free energy to one
absorbing free energy. The notations for the reaction rate constants, conven-
tional reaction flux directions and cyclical fluxes are shown
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Reaction fluxes JI and JII directly determine operational fluxes J1 and
J2:

J1 = JI , J2 = JII . (8.21)

Comparing the forces (8.17) and (8.20), we obtain

A1 = AI + AIII , A2 = AII − AIII , (8.22)

and from the steady-state conditions

d
dt

[E1] =
d
dt

[E2] = 0 , (8.23)

we find the relationship

J1 − J2 = JIII . (8.24)

The dissipation function (8.4) (the total dissipated power) can be
written in three different ways:

Φ = AIJI + AIIJII + AIIIJIII (transition fluxes)

= AaJa + AbJb + AcJc (cycle fluxes)

= A1J1 + A2J2 (operational fluxes) , (8.25)

where (see Fig. 8.14)

Ja + Jc = JI , Jb + Jc = JII , Jc − Jb = JIII , (8.26)

and hence,

Aa = AI + AIII , Ab = AII − AIII , Ac = AI + AII . (8.27)

All terms in the first and second sum are non-negative (Hill, 1989).
Only the two terms in the third sum can have different signs, and when
this happens we are dealing with the process of free energy transduc-
tion.

As mentioned earlier, J1A1 is called the input power , whereas
−J2A2, is the output power . The efficiency of the process is defined as
the ratio of output power to input power:

η =
−J2A2

J1A1
=

J1A1 − Φ

J1A1
= 1 − Φ

J1A1
. (8.28)

This is often written as the product

η = ε
−A2

A1
, (8.29)
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in which the degree of coupling ε of the two subsystems determines the
ratio of the operational fluxes:

ε ≡ J2

J1
. (8.30)

Using the relations (8.21), (8.22) and (8.24), we can eliminate the
force AIII from (8.18). Introducing the equilibrium constants

K ≡ [E1]eq

[E2]eq
, K1 ≡ [P1]eq

[R1]eq
, K2 ≡ [P2]eq

[R2]eq
, (8.31)

and taking the fixed values of the total substrate concentrations

[R1] + [P1] = [R1]0 , [R2] + [P2] = [R2]0 , (8.32)

we can obtain, after a rather tedious calculation making use of the
detailed balance conditions for reactions I through III, the equations
that link operational fluxes with forces:

J1 =

[
1 − e−β(A1+A2) +

(
1 − e−βA1

)
k02 τ2

]
[E]0

(1 + K−1e−βA2) τ1 + (1 + Ke−βA1) τ2 + (k01 + k02)τ1τ2
,

J2 =

[
1 − e−β(A1+A2) +

(
1 − e−βA2

)
k01 τ1

]
[E]0

(1 + K−1e−βA2) τ1 + (1 + Ke−βA1) τ2 + (k01 + k02)τ1τ2
,

(8.33)
where the quantities

τi ≡ (k+i[Ri])
−1 = (k+i[Ri]0)

−1
(
1 + Kie−βAi

)
, (8.34)

for i = 1, 2, have the dimensions of time. In (8.34), we used the equa-
tion of state (6.18). In the case of no slippage, k01, k02 → 0, we are
dealing with perfect coupling (ε = 1) and the two fluxes are identical:

J1 = J2 =

[
1 − e−β(A1+A2)

]
[E]0

(1 + K−1e−βA2) τ1 + (1 + Ke−βA1) τ2
. (8.35)

The flux–force relations (8.33) for two coupled reactions are of the
same functional form as the flux–force relation for the separate reaction
(6.18):

Ji =
1 − e−β(Ai−Ast

i )

J−1
+i + J−1

−i e−β(Ai−Ast
i )

[E]0 , (8.36)
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Fig. 8.15. Character of the functional dependence of the output flux Ji

versus force Ai. Only when the stalling force Ast
i is negative does free energy

transduction take place. The Ji(Ai) dependence in this range is marked with
a bold line

for i = 1, 2. However, the parameters J+i and J−i now depend on
another force, and their dependence on the reaction rate constants and
substrate concentrations is much more complex, so we shall not present
them here. Moreover, there are additional parameters Ast

i , determining
the non-zero values of the stalling forces, for which only the fluxes Ji

vanish.
The dependence Ji(Ai) given in (8.36) is strictly increasing with a

point of inflection and two asymptotes (Fig. 8.15). As noted earlier, free
energy transduction takes place if one of the fluxes is of the opposite
sign to its conjugate force. From (8.36), it follows that this condition
holds when the corresponding stalling force As

i is negative (Fig. 8.15).
The dependence Ji(Ai) in the range Ast

i ≤ Ai ≤ 0 can be convex or
concave, or it can involve an inflection point as well.

We do not discuss here the conditions for maximum efficiency of free
energy transduction since, even in the linear approximation of the flux–
force relations (which is usually a poor approximation as can be seen
from Fig. 8.15), the formulas for the values of forces maximizing the
efficiency are very complex (Westerhoff and van Dam, 1987). Anyhow,
the conditions for maximum efficiency and maximum power output
contradict each other. A machine is the more efficient the lower its
free energy dissipation, i.e., the more slowly it works. But the more
slowly it works, the lower its output power.

However, maximum efficiency and maximum output power are not
always at their optimum values from the point of view of living or-
ganisms. Very often the output power of biological machines is simply
equal to zero, i.e., the output forces stall the machines. This can be the
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case with molecular motors and molecular pumps as well. The muscles
of a man sustaining a big load do not perform any work but, of course,
ATP is consumed. The intracellular concentration of Ca2+ is kept at
a very low level of 100 nM to avoid association with phosphate ions Pi

present in the cytosol to form insoluble calcium phosphate. Conversely,
potassium K+ remains at a very high level to secure a constant value,
say −60 mV, of the cytoplasmic membrane potential. Because of ATP
hydrolysis by the corresponding pumps, there is no resultant flow of
the ions into or out of the cell despite the concentration differences. All
cases considered are indeed similar to what happens in a car that re-
mains at the same spot on an inclined road with its wheels constantly
rotating and slipping (Fig. 8.2).

The steady state of zero output power has several advantages for bi-
ological organisms related to their reaction to environmental changes.
The first and simplest advantage is the possibility of regulating the
degree of a passive reaction to external changes. By linearizing the
dependence (8.36) for the output flux J2 in the vicinity of the stalling
force Ast

2 , we obtain the relation

J2 =
(
J−1

+2 + J−1
−2

)−1
β(A2 − Ast

2 ) . (8.37)

If one of the asymptotic fluxes J±2 is small and the other large, the
proportionality coefficient in (8.37) is small. Large deviations from
the stalling force Ast

2 result in a small reaction. If both asymptotic
fluxes are large, the proportionality coefficient in (8.37) is large. Small
deviations from the stalling force, which can even be zero in such a
case, result in (almost arbitrarily) large changes in the output flux (see
Fig. 8.15).

Active reactions of the organism to external perturbations follow
from either a negative or a positive feedback . The first manifests itself
by maintaining the original state regardless of environmental changes
(homeostasis), whereas the second does so in an on/off-switch-type
reaction to arbitrary changes above a certain threshold. The reaction
of the cell to environmental changes will be discussed in more detail
in Sect. 8.6 devoted to biological signal transduction.

The attainable range of variability of the force stalling the machine
is nevertheless limited. Comparing (8.33) and (8.36), it follows that

−βAst
1 = ln

1 + C1 + K1e−βA2

1 + (C1 + K1)e−βA2
,

−βAst
2 = ln

1 + C2 + K2e−βA1

1 + (C2 + K2)e−βA1
,

(8.38)
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where the constants

Ci =
k+i[Ri]0

k0i
, i = 1, 2 , (8.39)

represent the ratios of the corresponding productive and nonproductive
reaction rates (see Fig. 8.14). The dependences found for the negative
stalling forces −Ast

1 and −Ast
2 on A2 and A1, respectively, are strictly

increasing but they saturate both for very large positive and for very
large negative values of the determining forces. For values outside the
variability range, the forces can no longer stall the machine. Figure 8.16
shows both dependences (8.38) and domains in the (A1, A2) plane
where free energy transduction takes place.

For small values of the forces, (8.38) can be linearized to yield

−βAst
1 =

C1

1 + C1 + K1
βA2 , −βAst

2 =
C2

1 + C2 + K2
βA1 . (8.40)

The proportionality coefficients are always less than unity.
In terms of constants Ci, the degree of coupling (8.30) reads

ε =
J2

J1
=

1 − e−β(A1+A2) + C−1
1 (1 − e−βA2)(1 + K1e−βA1)

1 − e−β(A1+A2) + C−1
2 (1 − e−βA1)(1 + K2e−βA2)

. (8.41)

It can be readily seen that in the case when βA1 ≥ 0 and βA2 ≤ 0,
the coupling coefficient is less than or equal to unity. Conversely, when

A2

A1

( = 0)J2A 2

st

( = 0)J1A 1

st

Fig. 8.16. Regions in the (A1, A2) plane for which free energy transduction
takes place. The boundaries of the vanishing fluxes are determined by (8.38)
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βA1 ≤ 0 and βA2 ≥ 0, the coupling coefficient is greater than or equal
to unity. Therefore, in a similar way to macroscopic machines (see
Fig. 8.2), slippage lowers the efficiency of a chemochemical machine.
This statement, however, is not entirely general since certain mecha-
nisms for coupling between the two reactions that are more complex
than the one defined by the kinetic scheme in Fig. 8.14 can in princi-
ple lead to any value of the parameter ε, e.g., much greater than unity
for βA1 ≥ 0 and βA2 ≤ 0. This kind of coupling will be discussed in
Sect. 9.5 in the context of the action of the actomyosin motor.

8.6 Biological Signal Transduction

In order to survive, a living organism has to react even to very weak
external signals. The sensitivity of biological receptors is extraordi-
narily high. Textbook examples are the reaction of the human eye to
a single photon of light or the reaction of a butterfly male to a sin-
gle ferromone molecule coming from a female at a distance of several
kilometers. Receptors of internal cells of biological organisms react to
hormones, cytokines or antigens at very low concentrations (Sect. 5.6).
Axons of neural cells generate a complete action potential if their mem-
brane potential only slightly exceeds a threshold value.

Strong reaction to a weak impulse needs an amplification which is
performed by virtue of special processes of free energy transduction.
In biological cells, the direct source of free energy is ATP or GTP
hydrolysis.

As a well-studied example, let us consider the mechanism of action
potential generation in the cytoplasmic membrane of an axon (Solomon
et al., 2004; Darnell et al., 1999, Chap. 21; Hille, 2001). The Na+–K+

pump and at least five different ionic channels take part in this process
(Fig. 8.17a). Three channels of Na+, K+ and Cl− ions are non-gated,
and two channels of Na+ and K+ ions are voltage-gated (see Sect. 5.2).
The non-gated Na+ channel has an extraordinarily low conductance.

We study a patch of the membrane small enough for the distri-
butions of ions on either side to be spatially homogeneous. Electrical
properties of this patch can be described in terms of the equivalent cir-
cuit presented in Fig. 8.17b. The voltage applied to the circuit equals
the axon membrane potential (see Sect. 6.2)

u = Δφ ≡ φin − φout , (8.42)

and the pump is considered as a source of constant current iP. iC
denotes a current that flows through the membrane capacitance c,
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Fig. 8.17. (a) In the process of action potential generation, the Na+–K+

pump, the three non-gated channels of Na+, K+ and Cl+ ions, and the two
voltage-gated channels of Na+ and K+ ions all take part. Permanent pumping
of ions across the cytoplasmic membrane increases the Na+ and Cl− ion con-
centration outside the axon and the K+ ion concentration inside. (b) Equiva-
lent electrical circuit of a patch of the axon membrane. The voltage u equals
the membrane potential and iP is a constant current generated by the pump.
Currents iC, iL, iNa and iK flow through the membrane capacitance c and
the conductances gL, gNa and gK, respectively. gL represents leakage through
the non-gated channels, whereas gNa and gK represent leakage through the
voltage-gated channels

and iL a current that flows through the membrane conductance gL

characterizing a leakage through non-gated channels of Na+, K+ and
Cl− ions. iNa and iK are currents through the conductances gNa and gK

of the voltage-gated Na+ and K+ channels, respectively. All currents
obey the conservation law

iC + iP + iL + iNa + iK = 0 . (8.43)

The steady-state value of the membrane potential, referred to as
a resting potential , is fixed. Three factors maintain this value: a con-
stant intracellular concentration of large organic anions unable to pass
through the membrane, a permanent action of the Na+–K+ pumps,
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and leakage through the non-gated Na+, K+ and Cl+ ion channels.
The result is an increase in the Na+ and Cl− ion concentration out-
side the axon and the K+ ion concentration inside (Fig. 8.17a). For
typical axons, the resting potential urest = −70 mV. Under the con-
stant resting potential, iC = iNa = iK = 0, whereupon the pump
current compensates the leakage current:

iP + iL = 0 . (8.44)

Current generated by the pump does not vary with a change in the
value of the membrane potential. Hence, in the general case, (8.44)
should be replaced by

iP + iL = gL(u − urest) . (8.45)

The capacity current iC is determined by the time derivative of the
membrane potential:

iC = c
d
dt

u . (8.46)

Moreover, the gated currents iNa and iK depend on the time variation
of the potential:

iNa = gNa(t, u)u , iK = gK(t, u)u . (8.47)

(We noted an explicit dependence of the corresponding conductances
on time and voltage.) Substituting (8.45), (8.46), and (8.47) into the
conservation law (8.43), we obtain the Hodgkin–Huxley equation (Hille,
2001):

d
dt

u = −c−1
[
gNa(t, u)u + gK(t, u)u + gL(u − urest)

]
. (8.48)

Equation (8.48) is an ordinary differential equation but its right-hand
side is highly nonlinear and has time-dependent coefficients. The form
of the time and voltage dependence of the conductances gNa and iK is
not simple (Hille, 2001). We shall therefore discuss solutions to (8.48)
qualitatively rather than quantitatively.

Under the resting potential, both Na+ and K+ voltage-gated chan-
nels are closed, but a local concentration of cytoplasmic Na+ ions
can increase as a result of opening the neighboring voltage-gated Na+

channels or ligand-gated channels controlled by neurotransmitters (see
Sect. 5.2 and, e.g., Solomon et al., 2004; Darnell et al., 1999, Chap. 21).
Due to the low conductance of the non-gated Na+ channels, a local in-
crease in the Na+ ion concentration that occurs rapidly enough causes
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Fig. 8.18. Character of the time variation of the local membrane potential of
the axon. (a) If the stimulating potential does not reach a threshold value, no
action potential develops and the initial resting potential is slowly recovered.
(b) The reaction to a stimulating potential of a value exceeding the threshold
is a spike of action potential. In a depolarization stage, it is mainly the
voltage-gated Na+ channels that are active, and in a repolarization state, it is
the voltage-gated K+ channels. A long-lasting refraction stage is determined
mainly by the activity of the slow, non-gated Na+ channels. Successive stages
are indicated as follows: A stimulation, B depolarization, C repolarization,
and D refraction to the resting state

a local depolarization of the axon membrane. If the membrane poten-
tial does not reach a threshold value (−55 mV for typical axons), the
voltage-gated Na+ channels remain closed and the initial resting po-
tential is slowly recovered due to leakage of excessive Na+ ions through
the non-gated channels (Fig. 8.18a). This is an example of the home-
ostasis phenomenon mentioned in the last section.

If the membrane potential exceeds the threshold, both Na+ and
K+ voltage-gated channels open. Initially the Na+ channels conduct
more strongly and depolarization continues until the activity of the K+

channels prevails (at a maximum potential u = +35 mV for typical
axons) and repolarization begins. Finally, after reaching a minimum
value (−100 mV for typical axons), the membrane potential returns
to the resting value in a process called refraction. The latter stage is
determined mainly by the activity of the slow, non-gated Na+ channels.

Reaction to the membrane potential stimulation of a value exceed-
ing the threshold is called an action potential (Fig. 8.18b). Its spike-like
time duration of the order of 1 ms remains the same regardless of how
much the level of stimulation exceeds the threshold value. Positive
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Fig. 8.19. Generation of action potential considered as a complement of
the free energy transduction process taking part at the Na+–K+ pump. For
notation, see Fig. 8.10b

feedback realized by the voltage-gated channels causes the membrane
patch to behave as an on/off switch. A spike of action potential gen-
erated at one site of the axon membrane stimulates a spike of action
potential at neighboring sites, giving a reason for neural signal propa-
gation (Solomon et al., 2004; Darnell et al., 1999, Chap. 21).

The process of action potential generation can be seen as a com-
plement to the free energy transduction process realized by the Na+–
K+ pump (Fig. 8.19). In fact, a similar approach can be applied to any
process of signal transduction starting with an arbitrary receptor (see
Sect. 5.7). Figure 8.20 presents a simplified kinetic scheme that can be
attributed to the signaling pathway shown in Fig. 5.36. Here, the sig-
nal transducer molecule tr, e.g., G or Ras protein, is simultaneously,
as a GTPase, the free energy transducer. In the signaling pathways
omitting the signal transducer molecules, e.g., JAK-STAT pathways
of tyrosine kinase-linking receptors (Sect. 5.7), the free energy trans-
duction takes place at each kinase molecule involved in the process.
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Fig. 8.20. Simplified kinetic cycle of a receptor signal transduction consid-
ered as a free energy transduction process. The notation used is as follows:
Pr primary messenger, Rp receptor, Tr transducer, Ef effector and finally,
Sd second messenger (see Fig. 5.36). Here, T denotes GTP and Pi inorganic
phosphate. An asterisk distinguishes excited states of the receptor and the
effector molecules



9 Lack of Partial Thermodynamic Equilibrium

9.1 Two Classes of Experiments

In Sect. 6.8, devoted to the phenomenological theory of reaction rates
(and in Appendix B.3, devoted to the stochastic theory of these rates),
we showed that the reciprocal rate of any effectively unimolecular
chemical reaction consists in general of three time components:

k−1 = (keq)−1 + τ ′ + K−1τ ′′ . (9.1)

The term (keq)−1 defines the time needed for the reaction to hap-
pen under the assumption that the initial and transition states of a
molecule involved in it are in partial thermodynamic equilibrium, both
internally and with one another. τ ′ and τ ′′ the define the times needed
to achieve partial equilibrium in the initial and final states, respec-
tively. K is the chemical equilibrium constant.

In the transition state theory (Atkins, 1998, Chap. 27) which is
still commonly used for interpreting enzymatic reactions (Fersht, 1999;
Stryer et al., 2002, Chap. 8), times τ ′ and τ ′′ are considered as negli-
gibly short. To determine (keq)−1, one needs only to know the average
structure of an enzyme–substrate complex in the initial and transition
states. No knowledge of dynamics is required. The original purpose of
the transition state theory was to describe the reaction rates of small
molecules in the gas phase, where a high frequency of collisions and fast
vibrational relaxation really do achieve partial thermodynamic equi-
librium in a short time. However, this is not the case for biochemical
reactions involving protein macromolecules. Here, the second and third
contributions in (9.1) dominate over the first. In this, the last chapter
of the book, we present the main evidence for the slow intramolecular
dynamics of protein enzymes and its possible consequences.

That biochemical reactions are controlled by the intramolecular
dynamics of proteins follows directly from two classes of experiments.
The first includes observations of the non-exponential initial stages of
reactions during which the internal degrees of freedom of the molecules
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involved only reach a partial thermodynamic equilibrium. The first,
already historic experiment of this type was performed thirty years
ago by Frauenfelder and coworkers (Austin et al., 1975; Frauenfelder
et al., 1991). It concerned the kinetics of ligand binding to myoglobin.
Myoglobin, like the more complex hemoglobin, is a protein that stores
molecular oxygen. It is well known that the replacement of oxygen
by carbon monoxide poisons the organism. This is related to the fact
that the CO binding process, as opposed to the O2 binding process, is
irreversible. There are two steps: a reversible bimolecular reaction of
ligand adsorption from the solution and an irreversible unimolecular
reaction of ligand covalent binding to heme from the protein interior:

Mb + CO −→←− Mb · CO −→ MbCO .

The experimentalists broke up the heme–CO bond in a nonthermal
way using a laser flash and observed the process of ligand rebinding
to heme in various conditions after the photolysis (Fig. 9.1). At 300 K
only the bimolecular reaction of binding from the solution was ob-
served, with its usual exponential time course. The essential novelty
of the experiment was to study the process at low non-physiological
temperatures. In such conditions the time curve of the bimolecular
reaction reveals the clearly non-exponential time course of the uni-
molecular reaction of ligand binding from the protein matrix.

In standard kinetic experiments with an ensemble of molecules,
the initial distribution of microstates is not specially prepared and not
usually much different from the local equilibrium distribution which
results practically in the absence of the preexponential stage of the
reaction, even if the reaction rate is controlled by the intramolecu-
lar dynamics. In Frauenfelder’s experiment the laser photodissociation
prepares the ensemble of myoglobin molecules complexing CO so that
they are initially in the transition state of the irreversible CO rebind-
ing reaction. In such a case, the short initial stage of the reaction can
even dominate the main, exponential stage. The initial stage kinet-
ics, when the partial equilibrium state is still being achieved, cannot
be described in terms of a conventional reaction rate constant. The
more sophisticated notion of first-passage time has to be used. Quite
generally, the complete time course of any irreversible unimolecular
reaction is described by the equation (Kurzyński et al., 1998; see also
Appendix B.4)

Ṗ (t) = −f(t) , (9.2)

where P (t) is the fraction of molecules remaining in the initial state,
the dot denotes the time derivative, and f(t) is the distribution func-
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Fig. 9.1. Sketch of the time dependence of the rebinding of CO molecules
after the photodissociation of CO-bound sperm wale myoglobin at various
temperatures, after Frauenfelder and coworkers (Austin et al., 1975; Frauen-
felder et al., 1991). P (t) represents the fraction of the myoglobin molecules
that have not rebound CO at time t after the laser flash. At low temperatures,
only the unimolecular reaction of CO rebinding from the protein interior is
observed. Its time course is clearly non-exponential. The exponential stage
observed at 240 K and higher temperatures is attributed to the bimolecular
reaction of CO rebinding from the solution. The latter process masks the
exponential stage of the unimolecular reaction of CO rebinding from the pro-
tein interior (incomplete masking has been observed for horse myoglobin by
Post et al., 1993)

tion of first-passage times from the transition to the final state. If it
differs from a simple exponential, this function points to the existence
of a whole spectrum of relaxation times not well separated from the
complete chemical equilibration time k−1 in (9.1), whence the predom-
inance of the second and third components over the first.

The first-passage time distribution f(t) between two, in general,
transition states (separately, in the forward and reverse reaction) can
also be determined in the second class of experiments. These concern
single molecules that occur in two states effectively treated as chemi-
cal states. After each reactive transition, the molecule starts its further
microscopic motion from the transition state of the reverse reaction.
Observation reveals a dichotomous telegraphic noise showing succes-
sive dwell times in the alternating chemical states (Fig. 9.2). From the
statistics of these dwell times, one is able to determine the first-passage
time distribution for the reaction in both directions. If the distribution
densities are exponential, the telegraphic noise is a Markov stochastic
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Fig. 9.2. Schematic ‘telegraphic noise’ recorded for a single molecule ex-
periencing transitions between two states M′ and M′′. It may be an ionic
current flowing through a single protein channel, that fluctuates between
two values corresponding to two ‘chemical’ states: open (O) and closed (C).
Alternatively, it may also be the fluorescence intensity of a single protein
enzyme, that fluctuates between two levels corresponding to the fluorophore-
containing on state and the fluorophore-lacking off state

process (see Appendix B.2), with no memory of the intramolecular dy-
namics in the preceding chemical state. Non-exponential distributions
allow one to determine some features of this intramolecular dynamics
(Quin et al., 1996; Edman and Rigler, 2000; Flomenbom et al., 2005;
see also Appendixes B.5 and D.4).

The first single-molecule detection technique was the patch-clamp
technique developed at the turn of the 1970s (Sackmann and Naher,
1995). It enabled observation of the fluctuations of ionic current flowing
through single protein channels. It soon appeared that most of the
channels occur in two discrete states named ‘open’ and ‘closed’, and
that the statistics of open and closed times very often show a non-
exponential distribution, i.e., the noise is non-Markovian (Fig. 9.3).

A more recent technique is single fluorophore detection using confo-
cal fluorescence microscopy (Eigen and Rigler, 1994) or total internal
reflection fluorescence microscopy (Funatsu at al., 1995). This enables
direct observation of the kinetics of a single protein enzyme immobi-
lized in a femtoliter (10−15 dm3 = 1 m3) viewing volume. The enzyme
takes part in a reaction

E + R −→←− ER −→←− EP −→←− E + P .
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Fig. 9.3. Sketch of the time dependence of the closed time (C) and open time
(O) distribution f(t) observed with the help of the patch-clamp technique for
the protein K+ channel of NG 109-15 cells, after Sansom et al. (1989). Both
curves show a short-time non-exponential behavior

The R molecule binds a fluorophore that is activated in the EP and
the P state. As the product P molecules quickly diffuse out of the
viewing region, a blinking fluorescence signal is observed with the form
of dichotomous telegraphic noise, as shown in Fig. 9.2. This originates
from the single enzyme molecule jumping between the non-fluorescent
E or ER states and the fluorescent EP state.

The dichotomous noise overlaps with noises of other origins so that
the simplest way of extracting the information included in it is to de-
termine its autocorrelation function G(t) (for the definition see, e.g.,
Appendix B.2). Figure 9.4 sketches the time dependence of the correla-
tion function of the fluorescence signal emitted by a single horseradish
peroxidase molecule (Edman et al., 1999). This enzyme produces the
fluorescent product by oxidation, after the decomposition of hydrogen
peroxide (H2O2), of the non-fluorescent substrate dihydrorhodamine
6G. Note that the initial time course over the first 10 ms is corrected
by a non-exponential contribution. It has a stretched exponential form
(see Appendix B.4)

exp[−(t/τ)α] , (9.3)

where the exponent has value α = 0.2 .
The autocorrelation function C(t) is related to the time distribution

density functions for the lifetimes of both the fluorescent and non-
fluorescent states, but the latter can also be determined more directly
by digitalizing the blinking fluorescence signal. This procedure, applied
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Fig. 9.4. Sketched time dependence of the correlation function of the fluores-
cence signal emitted by a single horseradish peroxidase molecule immobilized
in the light cavity of a confocal microscope. The substrate concentration is
[R] = 65 nM. The short-time course does not follow the curve (broken line)
that fits the long-time exponential behavior. After Edman et al. (1999)

to a lipase B enzyme, also indicates the presence of a 300-ms long initial
course of the autocorrelation function with the stretched exponential
form (9.3) and exponent α = 0.15 (Flomenbom et al., 2005).

9.2 Intramolecular Dynamics of Biomolecules

Because each atom can move in three directions, a molecule consisting
of N atoms has 3N degrees of freedom, numbers that are independent
functions of all atomic positions and completely characterize the mo-
mentary spatial organization of the molecule. Three of these numbers
(coordinates of the mass center) define the translational motion of the
molecule as a whole, three angles define the resultant rotational mo-
tion of the molecule, and the remaining 3N − 6 are internal degrees
of freedom. They can be identified with covalent bond lengths and an-
gles, as well as dihedral angles of rotations about the bonds (Fig. 9.5a).
It is the ability to perform such rotations (limited only to some de-
gree by steric hindrance), combined with the possibility of hydrogen
bond break-up and reformation, that makes the landscape of the con-
figurational potential energy of biomolecules (proteins, nucleic acids
or polysaccharides) extremely complicated. A general feature of this
landscape is the presence of an astronomical number of local minima
separated by higher or lower energy barriers of non-covalent nature
(McCammon and Harvey, 1987; Brooks et al., 1988; Frauenfelder et
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vibrations

conformational transitions

(a) (b)

Fig. 9.5. (a) Intramolecular dynamics of biomolecules consists in changing
the values of covalent bond lengths and angles as well as dihedral angles
of rotations about the bonds. Break-up and reformation of the weak hydro-
gen bonds is also important. (b) In the many-dimensional landscape of the
configurational potential energy of a biomolecule, one can distinguish confor-
mational substates – the local minima separated by higher or lower energy
barriers. On assuming interconformational barriers to be high enough, the in-
tramolecular dynamics can be reasonably decomposed into vibrations within
particular conformational substates and conformational transitions

al., 1991; 1999; Kurzyński, 1998). As in the stereochemistry of low-
molecular weight organic compounds (see Appendix C.3), regions of
the configurational space surrounding the local minima can be referred
to as conformational states (substates in particular contexts).

In a reasonable approximation, assuming interconformational bar-
riers to be high enough, the internal dynamics can be decomposed
into more or less damped vibrations within particular conformational
substates and purely stochastic conformational transitions (Fig. 9.5b).
As a lower bound of the interconformational barrier heights, one can
assume a few units of kBT , say 10 to 20 kJ/mol, which is a typi-
cal energy barrier height for a local rotation about a single covalent
bond in the absence of any steric constraints or a more collective tran-
sition in small cyclic chains of sugar ‘puckering’ type. At the same
time, it is the typical energy needed to break up and reform a hy-
drogen bond. The vibrational dynamics is characterized by a spec-
trum of periods of vibrational normal modes whose number equals the
number of internal degrees of freedom. Vibrational periods range from
10−14 s (weakly damped localized N–H or C–H stretching modes) to
10−11 s (overdamped collective modes involving whole macromolecu-
lar domains). The conformational transition dynamics is characterized
by a spectrum of relaxation times whose number equals the number
of conformational substates. In physiological conditions, this spectrum
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begins at 10−11 s (overcoming the just-assumed lowest energy barrier
of the order of 10 kJ/mol), and its character depends on the kind of
biomolecule.

In proteins, which usually play the role of enzymes and thus take
part in almost any biochemical process, the relaxation time spectrum
of conformational transition dynamics seems to be practically quasi-
continuous, at least in the range from 10−11 to 10−7 s (Kurzyński,
1998; see also Appendix D.2). Two classes of mathematical models can
be proposed for the stochastic dynamics which display such a prop-
erty. In the first, ‘protein-machine’ class of models (Appendix D.4),
the dynamics of conformational transitions is represented by quasi-
continuous diffusion in a certain effective potential along a few ‘me-
chanical’ coordinates, e.g., angles or distances describing mutual orien-
tation of approximately rigid fragments of protein secondary structure
(α-helices, β-pleated sheets) or larger structural elements. The spec-
trum of reciprocal relaxation times for dynamics of this type is more or
less homogeneous. Otherwise, in the second class of models, the spec-
trum of reciprocal relaxation times is assumed to have a hierarchical
organization. The latter is considered to be a generic property of glassy
materials, and we refer to this second, more extensive class of models as
protein-glass models (Appendix D.3). Time hierarchies, often observed
in the case of proteins (Frauenfelder et al., 1991; 1999), can originate
either from a hierarchy of barrier heights in the conformational poten-
tial energy landscape or from a hierarchy of bottlenecks (the entropy
barrier heights) in the network joining conformations between which
direct transitions take place.

Conformational transitions do not take part in the entire body
of the protein macromolecules. Figure 9.6 presents the structure of
the presumably universal statistically independent unit of biochemi-
cal processes, a supramolecular multienzyme protein complex. From
the dynamical point of view it is essential to distinguish within its
body between solid-like fragments of secondary structure (α-helices or
β-pleated sheets) and liquid-like surrounding regions, either nonpolar
(domain interiors, lipid membrane environment), or polar (‘channels’
between domains, water environment). A complex with size exceeding
20 nm (see Fig. 5.4) is too large to be described in terms of micro-
scopic mechanics of individual atoms, and too inhomogeneous to be
described in terms of macroscopic thermodynamics. The proper lan-
guage is the mesoscopic theory of stochastic processes, a short intro-
duction to which can be found in Appendix B.
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Fig. 9.6. Schematic cross-section of a universal unit of biochemical pro-
cesses, a supramolecular multienzyme protein complex. Darkly shaded ar-
eas are solid-like fragments of secondary structures. Medium shaded areas
are non-polar and lightly shaded areas are polar liquid-like regions. Black
marks indicate individual catalytic centers, usually localized at two neigh-
boring solid-like elements. After Kurzyński (1998)

Both mentioned classes of conformational dynamics models use this
language. Models of protein-glass type treat the dynamics of confor-
mational transitions as a quasi-continuous diffusion of structural de-
fects through the liquid-like medium. Alternatively, models of protein-
machine type treat this dynamics as a relative motion of solid-like ele-
ments, also with the nature of quasi-continuous diffusion. Intermediate
metabolites are channeled to internal liquid-like regions and the corre-
sponding concentrations are also mesoscopic variables characterizing
the state of the complex rather than the thermodynamic variables. In
principle, slow diffusion dynamics controls all chemical reactions that
take place in localized catalytic centers.

Besides very fast processes of non-adiabatic charge or energy trans-
fer (see Appendix D.6), typical time scales of biochemical processes
range from microseconds to seconds. Hence the vibrational dynam-
ics is too fast to appreciably influence chemical reactions involving
proteins. Only much slower conformational transition dynamics can
effect the majority of biochemical processes, and therefore any ade-
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Fig. 9.7. (a) Exemplifying realization of model intramolecular dynamics
underlying a unimolecular reaction M′ ↔ M′′. Chemical states M′ and M′′

of a macromolecule are composed of many conformational substates (white
and black circles) and the intramolecular dynamics involves purely stochastic
conformational transitions (arrows). In fact, a much larger number of confor-
mational substates are expected. The chemical reaction is realized through
transitions between a distinguished conformational substate (the gate) in
M′, forming the transition state (M′)‡, and a distinguished conformational
substate in M′′, forming the transition state (M′′)‡. (b) The representation
assumed in subsequent sections. Shaded boxes represent diagrams of an arbi-
trary number of sites, whereas black dots represent gates

quate statistical theory of these processes has to be a development of
the stochastic theory of reaction rates (Kurzyński, 1993; 1998; see also
Appendix B.3). Following that theory, the intramolecular dynamics in
both the initial and the final chemical states comprises only purely
stochastic transitions between a multitude of substates, some of which
form the forward and reverse reaction transition states. Figure 9.7
shows the situation of a gated reaction when the transition states are
reduced to single conformational substates, the gates. A more general
case is presented in Fig. B.1 of Appendix B.3. The reason why we
restrict our considerations to the gated reactions will be explained in
the next section.

Let us consider the hierarchy of relaxation times that occur in the
problem considered. The fastest is vibrational relaxation, which results
in an equilibrium of microstates within individual conformational sub-
states. On a timescale longer than a few picoseconds, these substates
can be described in thermodynamic terms including values of the con-
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formational free energy and the mean lifetime. However, the concentra-
tion of a conformational substate is not a macroscopic quantity since,
apart from a few exceptional cases, one cannot prepare a macroscopic
ensemble of biomacromolecules in a given conformational substate. In
fact, only a time average is realized, not the actual ensemble average
(Sect. 2.7).

The macroscopic quantities are the concentrations (molar fractions)
of chemical states of a biomacromolecule.1 To attribute a value of the
free energy to a chemical state, a partial equilibrium must be achieved
between conformational substates composing this state. However, we
argued that the time evolution of individual conformational substates
can be described only in probabilistic and not in thermodynamic terms,
i.e., only the probability of a given substate occupation and not the cor-
responding concentration has a physical meaning. As a consequence,
the initial time course of a given chemical reaction, described by a
function like (9.3), has a physical meaning on a timescale longer than
the vibrational relaxation time, but until the conformational relax-
ation time has passed, it remains beyond the scope of nonequilibrium
thermodynamics as we understand it in the present book. It is an open
question as to whether it can be described by a generalized, nonaddi-
tive thermodynamics (Tsallis, 1999; 2001).

Direct observation of non-exponential initial stages of reactions in
experiments and simulations is only possible for a special preparation
of the initial conformational substate of the protein confined to the
reaction transition state. Usually, the initial distribution of conforma-
tional substates is not much different from partial equilibrium and no
initial-condition-dependent stages are observed in the time course of
biochemical reactions proceeding in standard conditions. But the spe-
cially prepared initial substates of protein macromolecules also occur
in standard conditions, if several coupled reactions gated by confor-
mational transition dynamics proceed in the steady state. Because of
the slow character of the intramolecular dynamics, the succeeding re-
actions proceed before the partial equilibria in the preceding chemical
species have been reached. As a consequence, the steady-state kinetics,
like the initial stage kinetics, cannot be described in terms of the usual
rate constants. This possibility was already suggested thirty years ago
by Blumenfeld (1974). More adequate physical quantities that should

1We treat the notion of ‘chemical state’ generally to mean any thermodynam-
ically distinguishable state. It thus also comprises, e.g., the occurrence of a small
molecule on one or other side of a membrane, or the occurrence of a membrane
channel macromolecule in the open or the closed state (see the last section).
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be used are the mean first-passage times (Kurzyński and Che�lminiak,
2003; see also Appendix D.5). In the three last sections of this book,
we consider how this statement changes the conventional view of the
enzymatic catalysis process itself and biological free energy transduc-
tion.

9.3 Enzyme in a Multitude of Conformational States

In Sect. 7.2, we derived (7.18) and (7.19) which determine the steady-
state kinetics of the enzymatic reaction involving one intermediate
(see Fig. 9.8a). Identical equations can be derived for the enzymatic
reaction involving two intermediate enzyme–substrate states (Hal-
dane’s kinetics, Fig. 9.8b) (Cantor and Schimmel, 1980, Chap. 16).
For the enzymatic reaction involving two discriminated free-enzyme
states (Fig. 9.8c), simple but rather tedious calculations result in a
slight generalization of (7.18) expressing the reaction flux per enzyme
molecule J as a function of the chemical force A :

J =
1 − e−βA

J−1
+ + J−1

− e−βA + J−1
0 (K + eβA)−1 . (9.4)

As in (7.18), the quantities J± have the meaning of asymptotic flux
periods and their dependence on the substrate concentration [R]0 is of
the conventional Michaelis–Menten form [see (7.19)]:

J± =
k±[R]0

K± + [R]0
, (9.5)

where k± is the enzyme turnover number and K± the apparent disso-
ciation constant. An additional quantity J0 determines the position of
an inflection point on the flux–force functional dependence (9.4).

As a matter of fact, we argued in the last section that a still more
complicated kinetic scheme for the enzymatic reaction is appropriate,
involving a whole quasi-continuum of intermediate conformational sub-
states and stochastic transitions between them (Fig. 9.8d). The slow
character of this dynamics results in a steady-state occupation dis-
tribution of the conformational substates, rather than a partial equi-
librium distribution. As a consequence, the steady-state kinetics of
the enzymatic reaction considered cannot generally be described in
terms of conventional chemical kinetics, i.e., reaction rate constants
that need partial equilibrium to be achieved in the chemically discrim-
inated states. A more sophisticated language of mean first-passage
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Fig. 9.8. (a) to (c) Single enzymatic reaction involving one, two, and
three intermediates, respectively. (d) Single enzymatic reaction with a quasi-
continuum of intermediate conformational substates considered in the present
section. As in Fig. 9.7b multitudes of conformational transitions within E
(the free enzyme) and M (the enzyme–substrate complex) are represented
by shaded boxes. The reactant and product binding–rebinding bimolecular
reactions are assumed to be gated, i.e., they take place only in certain con-
formational substates represented by black dots

times has to be used (Kurzyński and Che�lminiak, 2003). It is worth
noting here that, in contrast to the reaction rate constants, the mean
first-passage times do not generally obey the detailed balance condi-
tion.

A technique has been developed to enable calculation of steady-
state fluxes for systems of enzymatic reactions controlled and gated by
arbitrary-type stochastic dynamics of the enzyme molecule (Kurzyński
and Che�lminiak, 2003). The corresponding basic ideas are discussed
in Appendix D.5. Here we merely note that, using this technique,
we found that the reaction flux per enzyme molecule for the scheme
in Fig. 9.8d is also determined by the conventional (9.4) and (9.5).
However, the expressions for the phenomenological parameters k± and
K± we obtained were unconventional. In the notation explained in
Fig. 9.8d, the reciprocal turnover numbers are

k−1
+ = (k′′ eq

+ )−1 + τE(0′′→0′) + τM(0′→0′′) , (9.6)

k−1
− = (k′ eq

− )−1 + τE(0′→0′′) + τM(0′′→0′) , (9.7)
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and the apparent dissociation constant is

K+ = K ′k+

[
(k′′ eq

+ )−1 + (k′ eq
− )−1 + τM(0′↔0′′)

]
, (9.8)

where K ′ is the actual dissociation constant given by

K ′ = [R]eq[E]eq/[M]eq . (9.9)

The apparent dissociation constant K− is related to K+ by the Hal-
dane equation (7.14) and the flux J0 is given by

J0 =
K ′[R]−1

0

τE(0′↔0′′)
. (9.10)

The quantities τE(0′ → 0′′), τE(0′′ → 0′), τM(0′ → 0′′) and τM(0′′ → 0′)
are the mean first-passage times between the specified gates within E
and M, and k′′ eq

+ and k′ eq
− are the equilibrium (transition state the-

ory) rate constants for the product and the reactant dissociation re-
action, respectively. The mean first-passage times in (9.6) to (9.8) are
between the succeeding gates and not between the ‘typical’ average
states and the gates as in the full expression for the rate constant
(see Appendix B.4). Therefore, the parameters k± and K± cannot be
expressed in terms of the full rate constants k′± and k′′± describing the
conventional kinetics presented in Sect. 7.2.

If the transition states of the component reactions consisted of
many conformational substates with different transition probabilities
to the final state (the model with fluctuating barriers, see Appendix
B.3), the total steady-state forward or reverse reaction flux would be
a sum of several terms like (9.5) with different values of the appar-
ent dissociation constant K+ or K−. However, this sum could not
generally have the Michaelis–Menten form. Consequently, a sufficient
condition for the dynamically controlled enzymatic process to follow
the Michaelis–Menten steady-state kinetics is gating of the component
binding–rebinding reactions. That the vast majority of enzymatic reac-
tions actually obey the Michaelis–Menten law (Fersht, 1999) is, when
confronted with the proofs of the slow character of intramolecular pro-
tein dynamics presented in the last two sections, a strong argument in
favour of the gated mechanism for protein-involving reactions (Fig. 9.7)
which we assumed as the basis for all theoretical models considered.

Equations (9.6) to (9.10) describe the steady-state kinetics of en-
zymatic reactions one level deeper than (9.4) and (9.5). However, this
is still phenomenology. A task for theorists is to fill the interiors of
the shaded boxes in Fig. 9.8d with simple but adequate models of
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conformational transition dynamics. It should comprise not only the
formation of the catalytic center in a proper conformation (Fersht,
1999), but also even more complicated processes of molecular recogni-
tion and formation of a diffusional encounter complex (Verkhivker et
al., 2002; Gabdouline and Wade, 2002; Schreiber, 2002).

We would like to conclude this presentation of results with two
possibly speculative comments. The first concerns the role of the equi-
librium rate constants in enzymatic catalysis. Assuming that billions
of years of biological evolution has acted to optimize the rates of enzy-
matic reactions and that the optimum rate is the fastest possible, one
can speculate that present day enzymes have the entrance and exit
gates for the reaction very close to each other, so that the correspond-
ing mean first-passage times are negligible. Putting them equal to zero
in (9.6) to (9.8) leads to the reconstruction of the simple conventional
expressions (7.12) and (7.13), but with the full reaction rate constants
replaced by their transition state theory counterparts. This could ex-
plain the applicability of the transition state theory for description of
enzymatic catalysis, commonly assumed by most enzymologists (Fer-
sht, 1999).

The second comment concerns the role of the mean first-passage
times between the gates in the control of enzymatic catalysis. The ac-
tivity of a protein enzyme can change greatly upon binding an effector
molecule. The conventional approach to heterotropic allosteric regula-
tion, in particular noncompetitive inhibition, assumes effector binding
to induce long-range structural changes (Fersht, 1999). However, there
is serious evidence that it can induce some dynamical changes as well
(Jardetzky, 1996; Stivers et al., 1996; Hodson and Cistola, 1997; Hoof-
nagle et al., 2001; Kern and Zuiderweg, 2003). The theory presented
predicts the enzyme turnover number to depend on both the equi-
librium rate constants and the mean first-passage times between the
entrance and exit gates. The former are determined by the structure,
but the latter by the dynamics. It is physically reasonable to sup-
pose that some inhibitor molecules can act so as to increase the mean
first-passage times between the gates rather then to decrease the equi-
librium rate constants. The importance of this supposition, if actually
true, in particular for pharmacology, can hardly be overestimated.
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9.4 Two Coupled Enzymatic Processes:
Case of the Actomyosin Motor

Effects due to the lack of partial thermodynamic equilibrium in the
case of two coupled enzymatic reactions will be discussed here in the
context of free energy transduction. In Chap. 8, the action of biological
molecular machines was described in terms of simple chemical kinet-
ics. However, the protein macromolecules shown in many figures in
Chap. 5 do not resemble the small molecules of conventional physi-
cal chemistry with rapidly equilibrating intramolecular dynamics. In-
stead, they look more like highly organized assemblies of mechanical
elements: levers, hinges, springs (or pistons) and triggers. Moreover,
some electrical elements such as conductors, semiconductors and insu-
lators can be distinguished. All these elements seem to cooperate in a
similar way to the elements of typical macroscopic machines.

However, molecular machines are not macroscopic but mesoscopic
systems, and they are ‘soft’ in the sense that their elements stick to
one another (Jones, 2004). As a matter of fact, molecular machines act
due to thermal fluctuations: energy is borrowed from and returned to
the surroundings. ATP hydrolysis makes this process unidirectional.
Consequently, the action of molecular machines has to be described in
the same terms as common chemical reactions, except that a multitude
of specially organized conformational substates have to be taken into
account, just as in the case of the single enzymatic reaction considered
in the last section.

The technique we have used for the single enzymatic reaction ap-
plies also for two coupled enzymatic reactions, but the general formulas
obtained in this way are complex (Kurzyński and Che�lminiak, 2003)
and not very perspicuous so we do not quote them here. Instead, we
shall restrict our considerations to a case study of the actomyosin mo-
tor.

The structure of the actin and myosin filaments organized in the
myofibrils, as well as the myosin head itself, were considered in detail
in Sect. 5.4. Here, we only recall that the main result from structural
studies is the swinging lever-arm picture of the myosin head. It refines
the classical H.E. Huxley (1969) swinging cross-bridge model and re-
lates the force that the myosin head exerts on the actin filament to
rotational motion of its regulatory subunit, the lever arm, relative to
the catalytic subunit strongly attached to the actin filament (Rayment
et al., 1993; Spudich, 1994; Geeves and Holmes, 1999; Houdusse and
Sweeney, 2001; Howard, 2001).
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But what drives the movement of one filament relative to another?
The question that remains open is how to combine chemistry and me-
chanics and describe the mechanism of chemomechanical coupling for
molecular motors. Presumably, much of the superfluous discussion on
this topic results from the fact that authors usually do not clearly de-
fine which notion of force they have in mind, i.e., force on the micro-,
meso- or macroscopic level. These are formally different quantities.
Force in the Newtonian sense can be defined only on the microscopic
level of motion of individual atoms and is the subject of molecular
dynamics (Hansson et al., 2002), which will not be considered here.
Note that this force changes only the velocity of the motion, which
itself proceeds due to inertia. The forces exerted by a motor on a
track and by a track on a motor have a meaning on the mesoscopic
level of the stochastic dynamics of a single motor macromolecule and
compete with the fluctuating Brownian forces. They are directly ob-
served only using single-molecule detection techniques (Ishijima and
Yanagida, 2001). Otherwise, the external load acts on a statistical en-
semble of motor molecules composing, e.g., a myofibril or the whole
muscle, and can be directly defined only on the macroscopic level of
irreversible thermodynamics (Hill, 1989).

Stochastic translational motion of two macromolecules relative to
each other is overdamped, which means that the force F one molecule
exerts on another is balanced not only by external forces and fluctu-
ating Brownian forces, but also by friction forces. The friction force is
proportional to the velocity and so the one-dimensional translational
motion of an actin filament relative to a single myosin head is deter-
mined by a stochastic differential Langevin equation (van Kampen,
2001; see also Appendix B.2):

ζẊ = Fi(X ) + F ext(X ) + F . (9.11)

The random variable X describes the relative position of the actin
filament with respect to the considered myosin head, and the time
derivative Ẋ describes the corresponding velocity. ζ denotes a friction
coefficient and F is an infinitely short-time correlated random force
(‘white noise’) with amplitude proportional to temperature. An ex-
ternal force F ext is exerted, e.g., by optical traps or micro-cantilevers
in the single-molecule assays or by the remaining myosin heads and
any external boundary constraints in the case when the molecules de-
scribed by (9.11) enter into a statistical ensemble of myosin and actin
filaments composing the myofibril.
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The force Fi the given myosin head exerts on the actin filament is
a strictly molecular property, not dependent on macroscopic external
constraints such as the external load (Hill, 1989). Besides the position
X , it still depends on the chemical or conformational substate i the
myosin molecule is in, and equals the negative derivative of a confor-
mational free energy Gi considered to be a function of the value x
assumed1 by the random variable X :

Fi(x) = − ∂

∂x
Gi(x) . (9.12)

In the simplest model including two states of the myosin head, at-
tached to and detached from the actin filament, i = att and det, re-
spectively (Huxley, 1957), Gatt(x) can be approximated by a parabola
and Gdet(x) by a constant (no force is exerted in the detached state).

In order to determine the dynamics of the system completely, tran-
sition probabilities per unit time between the two substates have yet
to be defined. These transitions are limited to more or less localized re-
gions of the variable x values and depend on the concentrations of the
ATP hydrolysis substrates (Fig. 9.9a). If we replace the quasi-continua
of translational conformational states between successive transitions
by two discrete states numbered with a position index l (Fig. 9.9b), we
get a chain of sites representing the simple Lymn and Taylor (1971)
model of the mechanochemical cycle of the actomyosin motor. The
kinetic equations for this model (usually without the index l), with
molecular ratios interpreted as occupation probabilities of the corre-
sponding states, can be considered as a discrete counterpart to the
Langevin equations (9.11), completed by appropriate interstate tran-
sition probabilities. In the theory of stochastic processes, such equa-
tions are known as the master equations (van Kampen, 2001; see also
Appendix B.2).

Generalizations taking into account more conformational substates
are possible, both for the continuum model (Hill, 1989; Duke, 1999)
and for the discrete model. Among the latter, the Lymn–Taylor–
Eisenberg model distinguishing between strongly-attached and weakly-

1Following the discussion in Sect. 9.2, a macromolecule that occurs in a multi-
tude of conformational substates quickly reaches a partial equilibrium in the vibra-
tional degrees of freedom, and each of its conformational substates can be attributed
by some partial equilibrium free energy G. It corresponds to a basic free energy level
in the terminology of Hill (1989). The conformational substates can be labeled with
both a discrete index i and a quasi-continuous variable x (see the protein-machine
model discussed in Appendix D.4).
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attached states of the myosin head to the actin filament is commonly
used at the present time (Ma and Taylor, 1994; Howard, 2001).

For the equilibrium concentrations of ATP and Pi (the concentra-
tion of ADP is assumed to be held constant), the transition probabil-
ities obey the detailed balance condition and the forward and reverse
stochastic motions of the myosin head relative to the actin filament
are equally probable. Nonequilibrium concentrations of ATP and/or
Pi break the detailed balance and result in a systematic decrease or
increase in the free energy (Fig. 9.9c). The change in free energy after
completion of each ATPase cycle corresponds exactly to the chemical
force A that drives the catalytic reaction (see Sect. 7.2). It is clearly
from Fig. 9.9c that the presence of a positive chemical force makes
stochastic motion more probable to the right than to the left. For more
complex models, the translational motion becomes partly independent
of the chemical reaction and the introduction of an additional axis rep-
resenting reaction progress is necessary (Keller and Bustamante, 2000;
Bustamante, Keller and Oster, 2001).

The reasoning presented above reconciles two seemingly opposite
approaches to the motor movement: the so-called power-stroke and
thermal-ratchet models (Howard, 2001). The first approach assumes
that the motion takes place in the attached state of the myosin head
(Fig. 9.10a) during release from the force (strain) that emerged af-
ter transition to the distorted high-free-energy conformation with the
cocked lever arm (see Fig. 5.25). Following the second approach, the
motion is mainly of a diffusive character and takes place in the de-
tached state (Fig. 9.10b). Short-lived nonequilibrium transitions to
the attached state with a strongly asymmetric free-energy dependence
on the position make this free diffusion unidirectionally biased. The
essence of this model does not change if the sequence of attached asym-
metric states is replaced by a single detached state with a saw-tooth
free energy dependence (see Fig. 9.10c) (Astumian, 1997; Jülicher et.
al, 1997). Figures 9.10a, b and c are drawn for total chemical and me-
chanical equilibrium, when the motions to the right and to the left have
to proceed with the same probability. Under such conditions, it can be
seen that, as a matter of fact, there is no essential difference between
the power-stroke and the thermal-ratchet models. All the motions have
a diffusion character, either driven or free. Presumably, the case pre-
sented in Fig. 9.9a, combining the two approaches, is the closest to
reality. Strong evidence for this statement comes from observations of
the long step sizes in unconventional myosins V and VI, far exceeding
their lever-arm lengths (Rock et al., 2001; Tanaka et al., 2002).
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Fig. 9.9. (a) Two-state model of the translational motion of the single myosin
head relative to the actin filament. The vertical axis represents the conforma-
tional free energy G of the system. The horizontal axis represents the position
x of a fixed point of the myosin head. In the attached states of the myosin
head to successive actin filament binding sites, G depends parabolically on
x. In the detached state, G is constant. Vertical arrows represent transitions
between the two states. These transitions can take place at sharply defined
values of the position x or they can be delocalized to some extent. Their prob-
abilities depend on the concentrations of ATP and Pi (the concentration of
ADP is assumed to be held constant). The picture shows the situation of to-
tal chemical equilibrium, when a stochastic motion to the right has the same
probability as a stochastic motion to the left. (b) On replacing the quasi-
continua of translational states in the sequence of alternating attached and
detached states by two discrete states, the model from drawing (a) transforms
into the kinetic model of Lymn and Taylor. (c) The change in free energy by
A after each ATPase cycle resulting from nonequilibrium concentrations of
ATP and Pi in the scheme shown in drawing (a)
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Fig. 9.10. (a) The power-stroke model of myosin motor motion along the
actin filament: the movement takes place mainly in the attached state.
(b) The thermal-ratchet model of myosin motor motion: the movement takes
place mainly in the detached state. (c) Replacement of the sequence of at-
tached asymmetric states by a single detached state with a saw-tooth free-
energy dependence on the position
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In terms of (9.11), no comparison of the force exerted by the myosin
heads with the external load is possible as the later is a macroscopic
quantity and acts on the whole statistical ensemble of motor molecules
composing a myofibril or a muscle. Only after ensemble averaging,
taking into account the fact that the mean value of the Brownian
force is zero, do we get a macroscopic balance equation:

ζv = F load + Fmots , (9.13)

where v ≡ 〈Ẋ 〉 is the mean velocity of the myofibril (muscle) contrac-
tion, F load denotes the load, and Fmots is the mean force exerted by
all the myosin heads.

In physiology, there are two common techniques for studying muscle
contraction dynamics (Woledge et al., 1985). In isometric contraction
experiments, the length of the muscle fiber is held constant, i.e., the
velocity v is zero. Then

F load + Fmots = 0 . (9.14)

The force exerted by the myosin heads is proportional to the number
of heads strongly attached to the actin filaments, so that the load is
also proportional to this number. In isotonic contraction experiments,
the load is held constant, in particular, at zero. Then

ζv = Fmots . (9.15)

The force Fmots is proportional to the number of myosin heads strongly
attached to the actin filaments, whereas the friction coefficient ζ is pro-
portional to the number of weakly attached myosin heads (Stehle and
Brenner, 2000). Both numbers are proportional to the overlap between
the filaments (see Fig. 5.26). The unloaded shortening velocity should
therefore be independent of this overlap and constant (stationary) in
time, as observed (Lionne et al., 1996).

As already noted, the external load is not a microscopic quantity
and determines only the special organization of the statistical ensemble
it is applied to. It changes the number of myosin heads attached to the
actin filament but does not directly change their conformation (Hill,
1989; Duke, 1999). In other words, the external load applied to the
myofibril influences the free energy of binding of the myosin heads to
the filaments and not the free energy of the particular conformational
substates. An experimental pendant to this reasoning are the results
of EPR studies by Baker et al. (1998; 1999), indicating that the load,
like the chemical force, does not change the fraction of myosin heads
in any distinguished orientational state.
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The idea of attributing changing nonequilibrium transition rates
to the load appeared explicitly for the first time in papers by Quian
(1997; 2000), Fisher and Kolomeisky (1999), Baker et al. (1999), and
Baker and Thomas (2000). However, the reasoning of all these authors
was not quite correct. Quian, Fisher and Kolomeisky consider the ki-
netics of chains of the type presented in Fig. 9.9b, but relate the load
directly to the behavior of single motor molecules. Conversely, Baker
and Thomas correctly relate the load to a property of the whole en-
semble of motor molecules, but try incorrectly to interpret it in terms
of a force the myosin heads exert on the actin filaments.

Figure 9.11a shows the commonly accepted Lymn–Taylor–Eisenberg
kinetic scheme (Ma and Taylor, 1994; Howard, 2001) indicating how
the ATPase cycle of myosin is related to detached, weakly-attached
and strongly-attached states of the myosin head to the actin filament.
Both the substrate and the products of the catalyzed reaction bind
to and rebind from the myosin in its strongly-attached state, whereas
the reaction itself takes place either in the weakly-attached or in the
detached state. The changes in the binding free energy due to the ex-
ternal load can be expressed as changes in the effective rather than
actual concentrations of the actin filament A, which allows the motor
to be treated as a standard chemochemical machine. This approach
was discussed in Sect. 8.4 (see the simplified scheme in Fig. 8.12).

However, the kinetic scheme in Fig. 9.11a is insufficient for the
proper description of the actomyosin mechanical cycle. We have shown
that, in order to determine the force exerted by the myosin head on
the actin filament in the strongly-attached state, one has to consider a
quasi-continuum of conformational substates labeled with the help of
a one-dimensional quasi-continuous variable. In the weakly-attached
and detached states of the myosin head, the stochastic dynamics of
conformational transitions appears to be still more complex than one-
dimensional diffusion (Volkman and Hanein, 2000).

In fact, both X-ray crystallography (Houdusse et al., 2000) and the
study of cross-linking between various thiols (Konno et al., 2000; Nitao
and Reisler, 2000) show that bonding of ATP causes melting of the
SH1–SH2 helix, crucial for myosin head rigidity (see Fig. 5.24). Sev-
eral flexible surface loops, important for the attachment, are not seen
at all in X-ray diffraction (Rayment et al., 1993; Dominigues et al.,
1998; Houdusse, 2000). Fluorescence polarization data show an essen-
tial increase in the dispersion of the lever-arm tilt angle relative to the
actin filament axis during the change from rigor to relaxed physiolog-
ical states of specially prepared muscle (Corrie et al., 1999). A local,
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Fig. 9.11. Lymn–Taylor–Eisenberg kinetic model of the chemomechanical
cycle of the actomyosin motor. (a) The version of Ma and Taylor (1994) with
the three distinguished conformational states of the myosin head: open M′,
closed M′′, and detached M (see Sect. 5.4). A denotes the actin filament, T,
D and Pi stand for ATP, ADP and inorganic phosphate, respectively. The
original labeling of the reaction steps used by these authors is indicated. The
values of particular rate constants are k+2 = 1.8 k−2 ≥ 1000 s−1, k+3 ≈
k−3 ≤ 150 s−1, k+3′ = 150 s−1, k−3′ < 15 s−1, k+4 = 2.2 k−4 = 140 s−1, and
k+5 = 500 s−1 (see also the compilation by Howard, 2001). (b) The version
with a quasi-continuum of conformational substates of myosin considered
in the present paper. The multitudes of conformational transitions within
E1 (the myosin–ADP complex strongly attached to the actin filament), M
(the weakly attached myosin–ATP or ADP·Pi complex) and E2 (the same
complex detached from the actin filament) are represented by shaded boxes.
R1 = ATP, P1 = Pi whereas R2 and P2 denote the actin filament before
and after translation by a unit step, respectively. All bimolecular reactions
are assumed to be gated, i.e., they take place only in certain conformational
substates of the myosin head. The distinguished conformational substates
composing the gates are labeled 1′, 1′′, 2′ and 2′′ (see Fig. 5.25)

internal conformational disorder on the nanosecond time scale was ob-
served when analyzing the hyperfine splitting of the EPR signal from
a nitro-oxide spin label (Ostap et al., 1995). A global, orientational
disorder of the catalytic domain relative to both the actin filament
and the lever-arm domain was observed on the microsecond time scale
using saturation transfer EPR (Berger and Thomas, 1994; Adhikari
et al., 1997) and detection of fluorescence polarization from a single
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molecule (Warshaw et al., 1998). Orientational disorder was observed
on the millisecond time scale by parallel studies of stopped-flow flu-
orescence and time-resolved electron cryo-microscopy (Walker et al.,
1999). According to many investigators (Berger and Thomas, 1994;
Baker et al., 1998; Walker et al., 1999), the power stroke proceeds
after a conformational disorder-to-order transition.

A consequence of all these observations is the need to replace a few
distinguished conformational substates in the scheme of Fig. 9.11a by a
quasi-continuum of conformational substates, in the same manner as in
the case of a single enzymatic reaction in Sect. 9.3. Figure 9.11b shows
an extended version of the Lymn–Taylor–Eisenberg model we consider.
Shaded boxes represent the multitudes of conformational substates and
transitions within the three main states of the motor: E1 (the myosin–
ADP complex strongly attached to the actin filament), M (the weakly-
attached myosin–ATP or ADP·Pi complex), and E2 (the latter complex
detached from the actin filament). All binding–rebinding reactions are
assumed to be gated, i.e., they take place only in certain distinguished
conformational substates. These substates are supposedly similar to
those presented in Fig. 5.25, from which we have taken the notation.

Assuming the ADP concentration to be held fixed, ATP hydrolysis
can effectively be treated as a unimolecular reaction R1 ↔ P1, where
R1 is ATP and P1 is the inorganic phosphate Pi. We have already
argued that the physical motion itself can be treated as a unimolecular
reaction R2 ↔ P2, where R2 and P2 denote the actin filament non-
translated and translated by one step, respectively.

9.5 Flux–Force Dependence for the Actomyosin Motor

As discussed above, the motor is formally considered as a chemochemi-
cal machine that enzymatically couples the two unimolecular reactions:
the free-energy-donating reaction 1 and the free-energy-accepting re-
action 2. The input and output fluxes Ji (i = 1 and 2, respectively)
and the conjugate thermodynamic forces Ai are defined as in Sects. 7.2
and 9.3:

Ji =
d[Pi]/dt

[E]0
, [E]0 ≡ [E1] + [M] + [E2] , (9.16)

and
βAi = lnKi

[Ri]
[Pi]

, Ki ≡ [Pi]eq

[Ri]eq
. (9.17)
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Free energy transduction is realized if the product J2A2 representing
the output power is negative. In the absence of reaction 1, reaction 2
proceeds from P2 to R2 and can be driven against the conjugate force
A2, provided that reaction 1 occurs.

For the scheme presented in Fig. 9.11b, the flux–force dependence
for the two coupled reactions has a general functional form similar to
(9.4) (Kurzyński and Che�lminiak, 2003):

Ji =
1 − e−β(Ai−Ast

i )

J−1
+i + J−1

−i e−β(Ai−Ast
i ) + J−1

0i (Ki + eβAi)−1
, (9.18)

where i = 1, 2. However, the parameters J+i, J−i and J0i now depend
on the other force. As in Sect. 8.5, Ast

i have the meaning of stalling
forces for which the fluxes Ji vanish: Ji(Ast

i ) = 0. The flux J1 is al-
ways positive, i.e., the actomyosin motor cannot work in the opposite
direction and reconstruct ATP from ADP and Pi, whereas the force
A2 is always negative, i.e., the myofibril can only be stretched by an
external load, as one can pull but not push with a myosin tail (see
Figs. 5.23a and b). As noted earlier, energy transduction takes place
if the flux J2 has opposite sign to its conjugate force A2. From (9.18),
it follows that this condition holds when A2 lies in the range between
Ast

2 and 0.
In the present case, the lack of partial thermodynamic equilibrium

between the conformational substates of the enzyme results in the
need to replace conventional reaction rate constants by various mean
first-passage times between the distinguished conformational substates
forming the gates for the component reactions. Unfortunately, the gen-
eral expressions obtained for the parameters J+i, J−i, J0i and Ast

i are
complex and not perspicuous (Kurzyński and Che�lminiak, 2003). Seri-
ous simplifications arise from the assumptions that both the reactions
are practically irreversible and values of the corresponding reaction
constants differ considerably from unity:

1 ≤ eβA1 � K1 (9.19)

and
K2 � eβA2 ≤ 1 . (9.20)

These assumptions are well satisfied for the actomyosin motor. Indeed,
the equilibrium constant for the complete ATP hydrolysis reaction is

[ADP]eq[Pi]eq

[ATP]eq
≈ e30 kJ/RT M ≈ 2 × 105 M .
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In physiological and most experimental conditions, in the presence of
the creatine phosphate/creatine kinase system, the ADP concentration
we assume for [ADP]eq is less than 20 M = 2× 10−5 M (Stryer et al.,
2002, Chap. 14), whence

K1 ≡ [Pi]eq

[ATP]eq
≥ 1010 � 1 .

Creatinine phosphate acts as a buffer and holds both the ADP and
ATP concentrations constant (the latter is of the order of a few mM).
The positivity of A1 is a consequence of the fact that the concentra-
tion of Pi is never 10 orders of magnitude lower than the concentra-
tion of ATP. A low value of K2 expresses the fact that, in chemical
equilibrium, the myosin heads remain strongly attached to the myosin
filament and no reasonable external load can stretch the muscle. The
second inequality (9.20) corresponds to the already mentioned state-
ment that one can pull but not push with a myosin tail.

Under the assumptions (9.19) and (9.20), the flux–force depen-
dences (9.18) get the simpler form (8.36), but the full expressions for
the parameters involved are still rather complicated. However, the ad-
ditional assumption that the myofibril is able to sustain a high load
under the condition of a sufficiently high ATP concentration, i.e.,

βAst
2 � −1 , for βA1 � 1 , (9.21)

simplifies the expression for the stalling force Ast
2 sufficiently to be

worth quoting:

βAst
2 = ln

e−βA1 + c1

1 + c1
, (9.22)

where

c1 ≡ (keq
+1′′)

−1 + [M]eq/[E1]eq τE1(1
′′↔1′) + τM(1′′↔{1′, 2′})

(keq
−1′)−1 + τM(1′′↔1′)

.

(9.23)
As in Equations (9.6) to (9.8), the quantities keq are the equilibrium
(transition state theory) rate constants for the substrate dissociation
reactions taking place between the specified gates within M and E1

(see Fig. 9.11b). The sign + or − is appended depending whether a
given reaction proceeds in a counterclockwise or a clockwise direction,
respectively. The quantity τE1(1

′′↔1′) denotes the mean first-passage
time in E1 from substate 1′′ to 1′ and back :

τE1(1
′′↔1′) ≡ τE1(1

′′→1′) + τE1(1
′→1′′) , (9.24)
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Fig. 9.12. Fit of (9.22) to the data of Paté et al. (1998), Fig. 6. We have
assumed that the concentration of inorganic phosphate Pi directly determines
the force A1 in kBT units (the ratio of ATP to ADP concentrations is held
constant). The maximum negative stalling force −Ast

2 in kBT units was fitted
to be 10.0. After Kurzyński and Che�lminiak (2003)

and similarly for the other quantities of this type further on. The quan-
tity τM(1′′ ↔{1′, 2′}) denotes the mean first-passage time in M from
substate 1′′ to 1′ or 2′ and back, and similarly for the other quantities
of this type. Note that relations like the following hold (Kurzyński and
Che�lminiak, 2003):

τM(1′′↔{1′, 2′}) + τM(1′↔{1′′, 2′}) = τM(1′′↔1′) . (9.25)

Figure 9.12 shows how a function of the form (9.22) fits the exper-
imental data of Paté et al. (1998). The fitted value of the parameter
c1 = 0.45×10−4 corresponds to the maximum negative value of −10.0
for the stalling force Ast

2 in kBT units. It is really much smaller than
−1, in agreement with the assumption (9.21). Note that, in the linear
range, the negative stalling force −Ast

2 is to high accuracy equal to the
force A1, which implies the highest efficiency of stalling [see (8.40)].
All the experimental data in Fig. 9.12 are for βA1 � 1, and later we
shall therefore assume that reaction 1 is very far from equilibrium.

Very far from chemical equilibrium, for βA1 � 1, the flux J1 given
by (9.18) for i = 1 assumes its asymptotic value

J1 = J+1 . (9.26)
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To simplify also the flux–force dependence J2(A2), we assume it to be
convex, which is actually the case for the actomyosin motor (Woledge
et al., 1985; Howard, 2001). The convexity condition is

J−1
+2 � J−1

02 + J−1
−2 eβAst

2 , (9.27)

and hence,

J2(A2) =
eβA2 − eβAst

2

J−1
02 + J−1

−2 eβAst
2

= J2(0)
eβA2 − eβAst

2

1 − eβAst
2

. (9.28)

A similar relation was obtained for a simpler model by Qian (2000).
The flux J2 is proportional to the mean velocity of the myosin head
along the actin filament and the force A2 is proportional to the load.
Since our description of the motion is in terms of an effective reac-
tion, we consider only the dimensionless quantities J2(A2)/J2(0) and
−A2/A

st
2 .

The function (9.28) describes experimental behavior as well as A.V.
Hill’s conventional hyperbolic dependence (Woledge et al., 1985). Fig-
ure 9.13 shows how it fits the data of He et al. (2000). The fitted
values of 4.8 and 7.9 for the negative stalling force −βAst

2 in kBT units
are comparable to the maximum value of 10.0 determined for another
sample from the Ast

2 (A1) dependence (see Fig. 9.11).
Far from chemical equilibrium, for βA1 � 1, assuming (9.19) and

(9.20) and neglecting the parameter c1, i.e., the exponential eβAst
2 , the

expression for the ratio of the two fluxes (the degree of coupling) also
simplifies:

J2

J1
≡ ε =

c

1 + c2(e−βA2 − 1)
, (9.29)

where

c2 ≡ (keq
−2′)

−1 + τM(2′↔{1′′, 2′′})
(keq

+2′′)−1 + [M]eq/[E2]eq τE2(2′′↔2′) + (keq
−2′)−1 + τM(2′↔2′′)

,

(9.30)
and

c ≡ τM(1′↔1′′)
(keq

+2′′)−1 + [M]eq/[E2]eq τE2(2′′↔2′) + (keq
−2′)−1 + τM(2′↔2′′)

.

(9.31)
Neglecting eβAst

2 in (9.28), the degree of coupling (9.29) states a linear
dependence between the rate of ATP utilization and the rate of muscle
shortening:
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−1 0−A2/A2

st
0

1
J2(A2)/J2(0)

Fig. 9.13. Fit of (9.28) to the data of He et al. (2000), Fig. 3, for the sar-
comere shortening velocity. Black circles correspond to slow fibers and white
circles to fast 2A fibers. The fitted values of the negative stalling force −βAst

2

in kBT units were found to be 4.8 and 7.9, respectively. After Kurzyński and
Che�lminiak (2003)

J1 ∝ 1 +
1 − c2

c2

J2(A2)
J2(0)

. (9.32)

Figure 9.14 shows how this dependence fits the data of He et al. (2000).
The parameter c2, with value approximately equal to 1/3, appears to
control the Fenn effect , a decrease in the rate of ATP consumption
when the muscle shortening rate is reduced (Woledge et al., 1985).

Assuming in addition that the reciprocal equilibrium rate constants
(keq)−1 are negligibly small, i.e., that the binding–rebinding reactions
are much faster than most conformational transitions (see the classical
kinetic model in Fig. 9.11a), the flux (9.28) can be rewritten in terms
of a simple Michaelis–Menten formula (Kurzyński and Che�lminiak,
2003):

J2 =
eβA2

τE2(2′→2′′)
[ATP]

K + [ATP]
, (9.33)

with an apparent dissociation constant

K =
τE2(2

′′↔2′)
τE2(2′→2′′)

[E1]eq

[E2]eq
[ATP]eq . (9.34)

In the above, we set [R1] = [ATP]. Because the ATP hydrolysis process
usually proceeds for nonsaturating values of the ATP concentration,
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0 0.25 0.5 0.75 1 J2(A2)/J2(0)
0

1

2

3

J1(J2)/J1(0)

Fig. 9.14. Fit of (9.32) to the data of He et al. (2000), Fig. 4A. Black circles
correspond to slow fibers and white circles to fast 2A fibers. The fitted values
of the parameter c2 were found to equal 0.35 and 0.30 for the slow and the
fast fibers, respectively. After Kurzyński and Che�lminiak (2003)

[ATP] � K, the flux (9.33) is in fact inversely proportional to K, and
hence to τE2(2

′′↔2′) rather than to τE2(2
′→2′′).

As the degree of coupling (9.29) does not depend on the ATP con-
centration, both J1 and J2 should show the same Michaelis–Menten-
type dependence on this concentration. Such a dependence has been
recorded experimentally (Ma and Taylor, 1994; Lionne et al., 1996;
Amitani et al., 2001) with comparable values of the constant K of the
order of 10−5 M to 10−4 M. It is difficult to discuss whether the val-
ues of K for the ATPase coincide with those for the motion since, in
particular experimental conditions, various values of the parameters
occurring in (9.34) were assumed.

The degree of coupling (9.29) is a ratio of two factors. The denom-
inator, tending to unity as the load approaches zero, determines the
slippage of the two reaction cycles. The numerator c can be accounted
for as a transmission coefficient . It represents the mean number of
steps the myosin head travels without slippage per ATP molecule hy-
drolyzed. Until recently, it was more or less commonly accepted that
only one step could be made per ATP molecule consumed (the tight
coupling hypothesis, Howard, 2001). This seemed to be well grounded
on the results of single myosin molecule motility assays (Finer et al.,
1994). However, new instrumentation with higher resolution convinc-
ingly indicates that each movement consists of several shorter regular
steps. The step size depends on the geometry of the experiment and
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can equal either 5.5 nm, the actin molecule diameter (Kitamura et al.,
1999), or 2.7 nm, the monomeric repeat along the actin filament (Liu
and Pollack, 2004). As the mean distance of a single movement in the
motility assays equals about 10 nm (Finer et al., 1994; Kitamura et al.,
1999), some 2 to 5 steps are made on average per ATP molecule con-
sumed. A two-step movement per ATPase cycle was observed in the
single molecule motility assay for an unconventional myosin I (Veigel
et al., 1999).

Presumably, this sliding through several steps per ATP molecule
hydrolyzed also takes place in an assembly of actomyosin motors com-
posing a myofibril. Such a loose coupling hypothesis has been assumed
in order to explain various experimental findings, mainly using non-
steady techniques (Brenner, 1991; Cooke et al., 1994; Higuchi and
Goldman, 1995; Piazzessi and Lombardi, 1995). It could also explain
what are at first sight rather strange experimental findings by Lionne
et al. (1996), in which the total ATP consumed during unloaded my-
ofibril contraction is independent of the initial sarcomere length and
the myofibrillar ATPase does not vary in time.

Recall from Sect. 9.4 that the contraction velocity v (flux J2 multi-
plied by step size d) of the unloaded myofibril does not depend on the
initial overlap between the filaments. On the other hand, the ATPase
flux J1 increases with the initial overlap (Lionne et al., 1996). A conse-
quence of these facts and (9.29) is that the product of the transmission
coefficient c with the step size d should decrease with the initial over-
lap. The product cd can be interpreted as the distance traveled by
the myosin head per ATP molecule consumed and is referred to as
the sliding or interaction distance. The sliding distance evaluated by
Lionne et al. (1996) actually varies from ∼ 270 nm for a small initial
sarcomere length (large overlap) to ∼ 600 nm for a large initial sarcom-
ere length (small overlap). The order of these values agrees with the
order of values defined by the ratio of the shortening velocity per half
sarcomere of the unloaded filament (a few m s−1) and the turnover
number for the ATPase (a few tens s−1), compiled by Howard (2001).
It should be noted that the sliding distance value depends sensitively
on temperature (Candau et al., 2003).

From (9.33), (9.34) and the constancy of the sliding velocity, it fol-
lows that the step size d, if variable, should be proportional to the
time τE2(2

′′ ↔ 2′). In addition, the transmission coefficient (9.31) de-
pends on that time. Let us emphasize that the model presented in
Fig. 9.11b and considered here concerns the kinetics of a single ac-
tomyosin motor. The time τE2(2

′′ ↔ 2′) is the only parameter in the
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model that contains any information about the force the remaining
motors exert on the common actin filament,1 and it is natural for this
time to depend on the filament overlap. We have also to remember
that the step size d should be a multiple of the actin filament period
36 nm, which can be considered as an elementary step distance for
the myofibril. Conventionally, assuming the tight-coupling hypothesis,
the sliding distance value was interpreted in terms of the duty ratio,
the fraction of the myosin heads performing the work, i.e., the power
stroke (Howard, 2001). Equations (9.29) and (9.31) suggest that a more
correct interpretation is in terms of the transmission coefficient.

To conclude, there is stronger and stronger experimental evidence
that the actomyosin motor makes several steps per ATP molecule hy-
drolyzed. Equation (9.31) is able to explain this fact, provided that
the mean first-passage time τM(1′′ ↔ 1′) is several times longer than
the sum of times occurring in the denominator. The long mean first-
passage time τM(1′′ ↔ 1′) can be explained by the necessity of the
already discussed melting and recrystallization of the SH1–SH2 he-
lix during a transition from the substate 1′′ to 1′ and back within the
state M. The relatively short mean first-passage time τM(2′↔{1′′, 2′′}),
shorter than τM(2′↔2′′), is the reason why, before coming back to the
strongly attached state E1, the myosin head can stochastically undergo
several mechanical cycles through the detached state E2. A slight gen-
eralization of the model can be considered in which the complete re-
folding of the motor molecule is achieved only after several such cycles
(Terrada et al., 2002).

This result is very important. It can help to answer a still open
question about the origin of the free energy for the directed motor
motion (Howard, 2001): one-step conformational changes or a thermal
ratchet-type mechanism? The power stroke, being the source of the
force the myosin head exerts on the actin filament, takes place in the
strongly-attached state E1. A diffusive motion of the myosin head with
respect to the actin filament takes place in the detached state E2.
Equation (9.29) implies that no details of the dynamics in E1 are
important for the action of the actomyosin motor. The dynamics in
M and, to a lesser extent, in E2 are essential. This result is vaguely
reminiscent of A.F. Huxley’s (1957) idea of a thermal ratchet including
the intramolecular dynamics of the myosin head (see also Cordova,
Ermentrout and Oster, 1992).

1This way of describing the properties of an assembly of elements in terms of the
single-element property is called the molecular field approximation in theoretical
physics.
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The stochastic model of the actomyosin motor action presented here
is consistent with all presently available experimental data. However,
it is only phenomenology. A challenge for theorists is to fill the interiors
of the shaded boxes in Fig. 9.11b with simple but adequate models of
conformational transition dynamics that afford possibilities for calcu-
lating appropriate mean first-passage times (see Appendixes B and D).
The dynamics in both E1 and E2 can be reasonably approximated by
driven one-dimensional diffusion (Hill, 1989; Duke, 1999; Astumian,
1997; Jülicher et al., 1997), described in the continuous limit by a
simple Langevin equation like (9.11). However, the dynamics in M
is certainly not one-dimensional diffusion. Presumably, it should in-
volve diffusion on fractal lattices (see Appendix D.4 and Che�lminiak
and Kurzyński, 2004) which has been demonstrated to be a reason-
able model of the protein’s intramolecular dynamics (Kurzyński et al.,
1998). Against such a dynamical background, transitory detachments
from the actin filaments resulting in no translational motion, and also
the melting of the SH1–SH2 helix, should be described. Here, experi-
ence with protein folding dynamics can be helpful (Lee et al., 2003). An
open question concerns the mechanism of energy transfer between the
binding and catalytic centers, which can proceed either as a sequence
of local conformational transitions (Böckmann and Grubmüller, 2002),
or as a process analogous to non-adiabatic electron or proton transfer
(Cruzeiro-Hansson and Takeno, 1997; see also Appendix D.6).

Models of driven and biased one-dimensional diffusion (transla-
tional or rotational) have been proposed for many molecular biologi-
cal motors. Let us mention RNA polymerase (Jülicher and Bruinsma,
1998; Wang et al., 1998), kinesin (Peskin and Oster, 1995; Duke and
Leibler, 1996), ATP synthase (Wang and Oster, 1998; Elston, Wang
and Oster, 1998) and, in general, arbitrary F- or V-type ATPase pumps
(Grabe, Wang and Oster, 2000). The main problem solved in the cited
papers was to describe the coordinated action of several subunits: two
heads in the case of the kinesin, three β units in the case of F1 or V1

portions, and up to ten protonatable entities in the case of Fo or Vo

rotors of F- or V-type ATPase pumps (see Chap. 5). An intriguing
question concerns the role of the internal dynamics of the component
protein molecules in the action of these motors.
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(a) (b)

fuel

valve
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2+

Fig. 9.15. (a) Newcomen’s heat engine from 1712. Steam from the boiler
moves the piston up the cylinder. Then, after closing the valve, the cylinder
is cooled, the steam is precipitated, and atmospheric pressure moves the pis-
ton downwards, raising the load. (b) A muscle consists of many periodically
repeated structures, the sarcomeres. They are composed of the thick myosin
filaments along which the thin actin filaments can slide. After activation by
calcium ions, the muscle contracts raising the load. This motion, is the re-
sult of many Brownian motions of the myosin heads, directed due to ATP
hydrolysis

9.6 Biological Molecular Machines
as Biased Maxwell Demons

A nontrivial challenge for contemporary statistical physics is to find
an adequate conceptual apparatus to describe the action of biologi-
cal molecular machines. Functionally, there is no essential difference
between the muscle and, e.g., the steam engine. They both perform
macroscopic work at the expense of certain chemical reactions, either
ATP hydrolysis or fuel burning. However, the steam engine has macro-
scopic structure (Fig. 9.15a), whereas the muscle is organized on a
microscopic or, more precisely, a mesoscopic level (Fig. 9.15b).

Viewed macroscopically, any biological machine is an appropriately
organized assembly of enzymes. Similarly to the suspension particles
in the solution observed by Brown, macromolecular enzymes playing
the role of the component molecular machines move about and, in par-
ticular, change their chemical state due to thermal fluctuations. On a
short time scale, energy is ‘borrowed’ from and ‘returned’ to the heat
bath. That the stochastic motion of biological machines is not purely
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random results from their highly organized structure and the constant
input of free energy, mainly due to the hydrolysis of ATP. A large
number of ingenious techniques have been designed to enable precise
observation of the behavior of single molecular machines. For molecu-
lar pumps and ion channels, one such a technique is the patch-clamp
method (Sackmann and Naher, 1995). In the case of molecular motors,
there have been various motility assays (Mehta et al., 1999; Ishijima
and Yanagida, 2001). All these observations reveal the stochastic na-
ture of the behavior exhibited by biological molecular machines. We
must emphasize the essential difference between the stochastic behav-
ior of biological macromolecules and small molecules that are the sub-
ject of conventional physical chemistry. Small molecules fluctuate only
between a small number of discrete chemical states (the microscopic
dynamics of translational, rotational and internal degrees of freedom
is from that perspective purely random), whereas the stochastic dy-
namics of large biomolecules is much more complex. Biological macro-
molecules have a mesoscopic level of organization which is lacking in
the case of small molecules.

In 1871, James Clerk Maxwell, pondering the foundations of ther-
modynamics, contemplated the functioning of a hypothetical being
that could observe the velocities of individual gas molecules moving
about in a container. The special feature of the container would be a
partition with an opening that could be covered by a latch (Fig. 9.16a).
This being, referred to in the literature as Maxwell’s demon, would be
in charge of closing and opening the hole in the partition, allowing only
sufficiently fast particles to move from right to left and only sufficiently
slow ones to pass from left to right. Over time, this would of course
result in a temperature increase in the left part of the container and a
decrease in the right part. The temperature gradient thereby created
clearly contradicts the second law of thermodynamics due to the work
that can be performed in the process just by thermal fluctuations in a
gas at thermodynamic equilibrium.

Fewer than 100 years later, another great physicist, Richard Feyn-
man (1966) presented this problem in the more provocative manner
shown in Fig. 9.16b. A mechanical wheel and a ratchet and pawl are
mounted on a common axis which has vanes attached to it. The sur-
faces of the vanes are bombarded with gas molecules on both sides.
The presence of the pawl prevents the ratchet from rotating in one
of the directions. As a result the kinetic energy of gas fluctuations is
transformed into the rotational kinetic energy of the ratchet’s unidi-
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(a)

(b)

Fig. 9.16. (a) Maxwell’s demon as originally proposed. (b) Feynman’s ver-
sion of the Maxwell demon problem: the ratchet and pawl machine

rectional motion around the axis. This can, in principle, be utilized to
raise a weight against the force of gravity.

The logical error in both arguments is made when we consider direct
interaction of microscopic systems (gas molecules) with macroscopic
ones (hole opened in the partition, pawl in the wheel). However, the
pawl device cannot possibly react to the collision of a single molecule
unless it, too, is a microscopic object subject to the same types of
thermal fluctuations. Random bending of the pawl assists with the ro-
tation of the wheel in the opposite direction. Similarly, with the latch
controlled by Maxwell’s demon: to measure the speed of individual
molecules, it must be in contact via a physical interaction. To react
to such an interaction, the observing device must be microscopic but
then, of course, it will rapidly be brought to thermal equilibrium as
a result of interactions with chaotically moving molecules around it.
Hence, it will behave chaotically, in the same way as an average gas
molecule does, and consequently, no net macroscopic force will be gen-
erated. These unfavorable fluctuations can be reduced by lowering the
temperature of the pawl or by freezing the head of Maxwell’s demon.
In general, this can be done by reducing the entropy or supplying free
energy. When this is done the contradiction with the second law of
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thermodynamics is automatically removed and these mesoscopic ma-
chines will work according to the normal rules of behavior discussed
earlier. The biological machines that are the centerpiece of this book
provide an example of such biased Maxwell demons.



A Thermodynamic Supplement

A.1 Thermodynamics of Ideal Gases

For simple thermodynamic systems, the equations of state (discussed
in Sect. 3.3) are of a special form (Callen, 1985; Kondepudi and Pri-
gogine, 1999). The simple systems are spatially homogeneous and can
always be divided into an arbitrary large number of identical subsys-
tems. In the continuous limit, the additivity condition (3.3) applied to
such a division implies that the entropy of a simple system must be a
homogeneous function of its arguments:

S(λE, λX1, . . . , λXn) = λS(E, X1, . . . , Xn) , (A.1)

for arbitrary λ. A similar relation holds for the energy:

E(λS, λX1, . . . , λXn) = λE(S, X1, . . . , Xn) . (A.2)

From the homogeneity (A.2) of the energy and from the definitions of
temperature T and thermodynamic forces Ai, it follow that the latter
quantities are intensive, i.e., independent of the size of the system:

T = T (S, X1, . . . , Xn) = T (λS, λX1, . . . , λXn) ,

Ai = Ai(S,X1, . . . , Xn) = Ai(λS, λX1, . . . , λXn) ,
(A.3)

for i = 1, . . . , n and arbitrary λ. In particular, setting λ = 1/Xn, we
find from it that n + 1 forces (including temperature) are functions
of only n variables S/Xn, X1/Xn, . . . , Xn−1/Xn. Hence, all the forces
and the temperature cannot be independent. They are linked by a
universal relationship called the Euler equation:

E = TS −
n∑

i=1

AiXi . (A.4)

The relationship (A.4) is easily derived by differentiating (A.2) with
respect to λ, making use of the definitions (3.17) and (3.24), and finally
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setting λ = 1. The variables Xi/Xn like the forces Ai, i = 1, . . . , n− 1
are intensive. If Xn denotes the volume V , then we refer to them as
densities. If Xn denotes the number of molecules (or moles) N , then
we speak about proper thermodynamic variables.

An ideal gas of classical particles of one kind is a simple thermody-
namic system with two thermodynamic degrees of freedom (X1 = V ,
X2 = N). Besides the temperature T , properties of the environment
are determined by two thermodynamic forces: the pressure, A1 = P ,
and (in open systems) the chemical potential, A2 = −μ. Energy is
related to temperature by the equation

E =
3
2
NkBT . (A.5)

This is the first equation of state, which says that, for an ideal gas,
energy is independent of the volume and the type of particles, and that
each translational degree of freedom contributes a quantity kBT/2 to
it, where kB is the Boltzmann constant. The second equation of state
relates the pressure to the volume:

PV = NkBT . (A.6)

This is known as the Clapeyron equation (see Fig. A.1a). A more com-
plex equation for real gases which allows for two different phases to
occur,1 is represented by the three-dimensional diagram in Fig. A.1b.

From the Euler equation (A.4), which in the present case takes the
form

E = TS − PV + μN , (A.7)

and from (A.5) and (A.6), we obtain the third equation of state for
the chemical potential:

μ =
(

5
2
kB − S

N

)
T . (A.8)

The energy E occurs in the equation of state (A.5), whereas it is
replaced by the entropy S in (A.8). The basic equation (A.2) or (A.5)
relating the two quantities can be derived from the differential identity

dE(S, V, N) =
(

∂E

∂S

)
V,N

dS +
(

∂E

∂V

)
S,N

dV +
(

∂E

∂N

)
S,V

dN

= TdS − PdV + μdN , (A.9)
1Spontaneous division of a system into two or more parts called phases follows

when the stability condition is broken and equations (A.3) are no longer uniquely
reversible (see Appendix A.3).
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Fig. A.1. (a) Dependence of the pressure P on the volume V and tempera-
ture T for an ideal gas. (b) Dependence of P on V and T for a system with
the gas–liquid phase change. A region of phase coexistence is shown, where
the P–V dependence is not one-to-one. A singular point at which the phases
are no longer distinguishable has very interesting physical properties and is
referred to as the critical point

or, after a transformation,

dS =
1
T

dE +
P

T
dV − μ

T
dN . (A.10)

Substituting (A.5), (A.6) and (A.8), and using the rule for differenti-
ation of a quotient, viz.,

d
(

S

N

)
=

dS

N
− SdN

N2
, (A.11)
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we obtain from (A.10)

d
(

S

N

)
= kB

(
3
2

dE

E
+

dV

V
− 5

2
dN

N

)
. (A.12)

This relation is easy to integrate and results in the dependence

S

N
=

S0

N0
+ kB ln

[(
E

E0

)3/2 ( V

V0

)(
N

N0

)−5/2
]

, (A.13)

where the subscript 0 characterizes the values of the corresponding
variables in a certain reference system. Equation (A.13) can be rewrit-
ten in a form that explicitly displays the homogeneity of the system:

S

N
=

S0

N0
+ kB ln

[(
E

N

N0

E0

)3/2 (V

N

N0

V0

)]

=
S0

N0
+ kB ln

[(
T

T0

)5/2 ( P

P0

)−1
]

. (A.14)

Substituting (A.13) or (A.14) into (A.8), we obtain the equation of
state for the chemical potential μ depending on the energy or the
remaining thermodynamic forces instead of the entropy:

μ

T
=

μ0

T0
− kB ln

[(
E

E0

)3/2 ( V

V0

)(
N

N0

)−5/2
]

=
μ0

T0
− kB ln

[(
T

T0

)5/2 ( P

P0

)−1
]

. (A.15)

As there are many applications in chemical kinetics, let us consider
a two-component ideal gas, i.e., a homogeneous mixture of two different
ideal gases of classical particles. This is a simple system with three
thermodynamic degrees of freedom X1 = V , X2 = N1 and X3 = N2.
The forces conjugate to the numbers N1 and N2 of particles of the two
different kinds are the chemical potentials μ1 and μ2. The equations
of state (A.5) and (A.6) do not depend on the type of particle and can
be rewritten as

E =
3
2
(N1 + N2)kBT ≡ E1 + E2 (A.16)

and
PV = (N1 + N2)kBT ≡ (P1 + P2)V , (A.17)



A.1 Thermodynamics of Ideal Gases 267

where energies and pressures of particular components are introduced
explicitly. The Euler equation (A.4) includes the four terms

E = TS − PV + μ1N1 + μ2N2 , (A.18)

and can be considered as a sum of two Euler equations, i.e.,

Ei = TSi − PiV + μiNi , (A.19)

i = 1, 2, provided that Si is interpreted as the entropy of the i th
component when it alone occupies the entire volume V under the
partial pressure

Pi =
Ni

N
P , N ≡ N1 + N2 . (A.20)

The formulas (A.19) are identical in form to (A.4), so that all the
equations derived for the one-component ideal gas can be applied to
the case of the two-component mixture. In this way, from (A.14) we
obtain

Si

Ni
=

S0

N0
+ kB ln

[(
T

T0

)5/2 (Pi

P0

)−1
]

, (A.21)

and from (A.15),

μi

T
=

μ0

T0
− kB ln

[(
T

T0

)5/2 (Pi

P0

)−1
]

. (A.22)

When we use (A.20) to replace the partial pressures by the total pres-
sure (only the latter is recorded in experiment), we obtain the simple
relationships

Si

Ni
=

S◦
i

N
− kB ln

Ni

N
(A.23)

and
μi = μ◦

i + kBT ln
Ni

N
, (A.24)

where S◦
i and μ◦

i denote the values that the entropy and chemical
potential would assume under given conditions (fixed T , P and N) for
the pure i th component.

The second term in (A.23) is referred to as the entropy of mixing .
It has the form of the negative Boltzmann constant multiplied by the
logarithm of the probability of a random choice of the i th particle type.
This does indeed correspond to the statistical definition of entropy
discussed in Sect. 2.6. An important conclusion is that the expressions
(A.23) and (A.24) for the entropy and chemical potential of a system of
statistically independent molecules each of which occurs in two states
also remain valid for inhomogeneous systems.



268 A Thermodynamic Supplement

A.2 Legendre Transformations

Let us allow the temperature T to vary. From (3.52) and (3.34), a
general expression results for the free energy change:

ΔF = ΔE − TΔS − SΔT = −SΔT −
∑

i

AiΔXi . (A.25)

The form of this change indicates that the free energy is a function of
the temperature T and the parameters Xi:

F = F (T,X1, . . . , Xn) , (A.26)

and that

S = −
(

∂F

∂T

)
X1,...,Xn

, Ai = −
(

∂F

∂Xi

)
T,...

. (A.27)

The second equation (A.27) represents a definition of thermodynamic
parameters much more practical than (3.24). It is easier to realize
isothermal than isoentropic conditions.

The transition from the energy as a function of entropy E = E(S)
to the free energy as a function of temperature F = F (T ) can be given
a simple geometrical interpretation (Fig. A.2). Since(

∂2E

∂S2

)
X

> 0 , (A.28)

a curve that represents the dependence E of S is concave for each S.
A curve whose second derivative has constant sign (and only such a
curve) can be represented equivalently as a set of points(

S,E(S)
)

(A.29)

or as a set of straight lines

(T, E − TS) =
(
T, F (T )

)
. (A.30)

The first number in the brackets denotes the tangent of the inclination
angle of a straight line tangential to the relevant curve, and the second
number, the coordinate of the point at which this line crosses the
vertical axis (Fig. A.2).

Formally, the transition from energy to free energy in thermody-
namics, i.e.,
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E TS�

E

S

Fig. A.2. Legendre transformation from energy E = E(S) to free energy
F = F (T )

E(X,S) → F (X, T ) = E − TS , T ≡
(

∂E

∂S

)
X

, (A.31)

is identical to the transition from the Lagrangian to the (minus) Hamil-
tonian function in mechanics, i.e.,

L(q, q̇) → −H(q, p) = L − pq̇ , p ≡
(

∂L
∂q̇

)
q

. (A.32)

Both transitions are examples of the Legendre transformation.
Most of the considerations in Chap. 3 concerned isothermal con-

ditions, T = const., since it is the temperature T rather than the
entropy S that can be easily controlled during thermodynamic pro-
cesses. Moreover, a thermodynamic force A often turns out to be more
easily controlled than the conjugate thermodynamic variable X (iso-
baric conditions, P = const., instead of V = const. conditions; con-
stant chemical potential conditions, μ = const., instead of N = const.
conditions; constant magnetic field conditions, H = const., instead of
constant magnetization conditions, M = const., etc.). If there is no
way of controlling a thermodynamic variable X, we cannot actually
use the work related to a change in its value. The really useful work
is that decreased by a component −AΔX :

W ′ = W + AΔX . (A.33)

Just as work W is related to changes in energy and free energy
[(3.35) and (3.51)], the useful work W ′ is related to changes in enthalpy
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Fig. A.3. Dynamic and thermal
subsystems of the thermodynamic
system under T = const. and A =
const. conditions, and their inter-
action with each other and with
the environment

ΔH = Q + W ′ = ΔE + AΔX , (A.34)

and free enthalpy

ΔG = W ′ − D = ΔF + AΔX . (A.35)

Under A = const. conditions, when the force A can be inserted under
the increment operation Δ, we have

H = E + AX (A.36)

and
G = F + AX = E − TS + AX , (A.37)

whence
H = G + TS . (A.38)

Under T = const. and A = const. conditions, enthalpy transformations
should be considered instead of energy transformations (Fig. A.3).

The quantity G is often called the Gibbs potential or the Gibbs
free energy (to be distinguished from the free energy F , which is then
referred to as the Helmholtz free energy). For simple thermodynamic
systems with two thermodynamic degrees of freedom and X2 = N ,
from the Euler equation (A.4) and from (A.37), a simple interpretation
of the Gibbs potential follows as the chemical potential μ multiplied
by the number of molecules N :

G = μN . (A.39)
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According to (A.37), the free enthalpy (the Gibbs potential) G is the
double Legendre transformation of the energy E. The function G is
convenient to use as it depends on two thermodynamic parameters
that are easy to control:

ΔG = ΔE−TΔS−SΔT +AΔX +XΔA = −SΔT +XΔA , (A.40)

whence
G = G(T,A) (A.41)

and
S = −

(
∂G

∂T

)
A

, X =
(

∂G

∂A

)
T

. (A.42)

For simple thermodynamic systems, the third independent argument of
the Gibbs potential is the number of molecules N . Only this argument
is extensive, so it is no wonder that the Gibbs potential is proportional
to the chemical potential:

G = Nμ = N

(
∂E

∂N

)
S,X

= N

(
∂G

∂N

)
T,A

. (A.43)

Let us summarize all the basic thermodynamic equalities for the
simple system with two thermodynamic degrees of freedom under the
conditions N = const.:

E = E(S,X) , ΔE = TΔS − AΔX , (A.44)

F = E − TS = F (T, X) , ΔF = −SΔT − AΔX , (A.45)

H = E + AX = H(S, A) , ΔH = TΔS + XΔA , (A.46)

G = E − TS + AX = G(T, A) , ΔG = −SΔT + XΔA . (A.47)

Comparing coefficients in the expressions for increments, it follows
that:

T =
(

∂E

∂S

)
X

=
(

∂H

∂S

)
A

, (A.48)

S = −
(

∂F

∂T

)
X

= −
(

∂G

∂T

)
A

, (A.49)

A = −
(

∂E

∂X

)
S

= −
(

∂F

∂X

)
T

, (A.50)

X =
(

∂H

∂A

)
S

=
(

∂G

∂A

)
T

. (A.51)
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Differentiating (A.48) to (A.51) with respect to the appropriate
thermodynamic variables or forces and taking into account the com-
mutativity of second derivatives, we obtain a variety of Maxwell’s re-
lations. For instance,(

∂X

∂T

)
A

=
∂2G

∂T∂A
=

∂2G

∂A∂T
= −

(
∂S

∂A

)
T

. (A.52)

This relation gives a simple recipe for an indirect measurement of en-
tropy changes. In particular, substituting X = V and A = P , we ob-
tain from it a useful relationship for the thermal expansion coefficient ,
namely,

αP ≡ 1
V

(
∂V

∂T

)
P

= − 1
V

(
∂S

∂P

)
T

. (A.53)

All Legendre transforms of energy are called thermodynamic poten-
tials. The complete n + 1-tuple Legendre transform of energy is given
by a generalization of (A.37):

I = F +
n∑

i=1

AiXi = E − TS +
n∑

i=1

AiXi . (A.54)

The counterpart of (A.40) is

ΔI = −SΔT +
n∑

i=1

XiΔAi , (A.55)

from which it follows that the thermodynamic potential I is indeed a
function of the temperature and n thermodynamic forces:

I = I(T, A1, . . . , An) , (A.56)

and that

S = −
(

∂I

∂T

)
A1,...,An

, Xi =
(

∂I

∂Ai

)
T,...

. (A.57)

The commutativity of the second derivatives of the potential I leads
to Maxwell’s relations(

∂Xi

∂Aj

)
Ai,...

=
(

∂Xj

∂Ai

)
Aj ,...

,

(
∂Xi

∂T

)
Ai,...

= −
(

∂S

∂Ai

)
T,...

,

(A.58)
just as the commutativity of the second derivatives of the energy E
results in Maxwell’s relations(

∂Ai

∂Xj

)
Xi,...

=
(

∂Aj

∂Xi

)
Xj ,...

,

(
∂Ai

∂S

)
Xi,...

= −
(

∂T

∂Xi

)
S,...

.

(A.59)
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A.3 Capacities and Susceptibilities.
Thermodynamic Stability

The negative derivatives of thermodynamic variables with respect to
the conjugate thermodynamic forces,

C ≡ −
(

∂X

∂A

)
(A.60)

are called capacities. An example is the electric capacity , which is the
derivative of the electric charge X = Q with respect to the electric
potential −A = φ (see Table 3.1). For spatially homogeneous systems,
it is convenient to introduce an intensive quantity, the susceptibility,
equaling the capacity divided by volume:

χ =
C

V
. (A.61)

Particular examples are the compressibility coefficient

κ = − 1
V

∂V

∂P
, (A.62)

the magnetic susceptibility

χm =
∂M

∂H
, (A.63)

or the electric susceptibility

χe =
∂P

∂E
. (A.64)

The magnetic and electric susceptibilities are in general tensor quanti-
ties, since the directions of magnetization or polarization need not be
the same as the directions of the magnetic or electric fields.

Capacities and susceptibilities are defined under various thermody-
namic conditions that relate them to various thermodynamic poten-
tials. For instance, the isothermal capacity CT at constant tempera-
ture T is related to the second derivatives of the free energy G(T,A)
or F (T,X). Indeed, according to the second relationship of (A.51) and
the one-to-one dependence of the thermodynamic variable X on the
force A, we obtain from the second relationship of (A.50)

CT = −
(

∂X

∂A

)
T

= −
(

∂2G

∂A2

)
T

= −
(

∂A

∂X

)−1

T
=

(
∂2F

∂X2

)−1

T

. (A.65)
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The entropy S is a convex function of X, whereas the energy E is
concave. Moreover, because the temperature T is positive, the free
energy F (T, X) = E(S,X) − TS(E,X) is a concave function:

∂2F

∂X2
> 0 . (A.66)

As a consequence, the isothermal capacity (or susceptibility) is always
positive:

CT > 0 . (A.67)

A similar inequality can be proved for the capacity under any other
thermodynamic condition: constancy of the entropy S, or the con-
stancy of some thermodynamic variable X ′ or the conjugate force A′.

The counterpart of the capacity in the case when the variable X
is replaced by energy E or enthalpy H and the negative force −A by
temperature T is the heat capacity . In more detail, the heat capacity
at constant value of a certain thermodynamic variable X or the con-
jugate force A is defined as the amount of heat needed to change the
temperature by one unit (e.g., 1 K):

CX =
(

Q

ΔT

)
X

, CA =
(

Q

ΔT

)
A

. (A.68)

For a reversible process, Q = TΔS and, after the limit transition, the
heat capacities (A.68) can be rewritten as derivatives of some function
of state:

CX = T

(
∂S

∂T

)
X

= T

(
∂T

∂S

)−1

X
= T

(
∂2E

∂S2

)−1

> 0 , (A.69)

CA = T

(
∂S

∂T

)
A

= T

(
∂T

∂S

)−1

A
= T

(
∂2H

∂S2

)−1

> 0 . (A.70)

For irreversible processes, these are the expressions (A.69) and (A.70),
but not (A.68), which are well-determined. On substituting

T =
(

∂E

∂S

)
X

=
(

∂H

∂S

)
A

, (A.71)

we can write

CX =
(

∂E

∂S

)
X

(
∂S

∂T

)
X

=
(

∂E

∂T

)
X

, (A.72)
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CA =
(

∂H

∂S

)
A

(
∂S

∂T

)
A

=
(

∂H

∂T

)
A

. (A.73)

The susceptibilities corresponding to the heat capacities

cX =
CX

V
, cA =

CA

V
, (A.74)

are referred to as the specific heats at constant X or A, respectively.
The positivity of the capacity or susceptibility expresses the thermal

stability of a system. The state of a system with negative susceptibility
is unstable. Such a state can appear when solutions of the equation
of state are no longer unique. The system is divided into two or more
different phases (see Fig. A.1b). At special points of the phase dia-
gram of a system which indicates phase transitions, the susceptibility
can become divergent. It will be shown in Appendix A.5 that such
divergences are related to infinitely large thermodynamic fluctuations.
We than speak about a critical state.

Let us consider two thermodynamic variables Xi and Xj and as-
sume that their variations result only in the variation of the force Ai,
with the other force remaining fixed: Aj = const. Small changes can
be described by general expressions of the form

ΔAi =
(

∂Ai

∂Xi

)
Xj

ΔXi +

(
∂Ai

∂Xj

)
Xi

ΔXj , (A.75)

and

ΔAj =
(

∂Aj

∂Xi

)
Xj

ΔXi +

(
∂Aj

∂Xj

)
Xi

ΔXj (A.76)

=

(
∂Ai

∂Xj

)
Xi

ΔXi +

(
∂Aj

∂Xj

)
Xi

ΔXj = 0 .

In the latter equation, the Maxwell relations (A.59) were used. Calcu-
lating ΔXj from (A.76) and substituting into (A.75), we obtain

ΔAi =

[(
∂Ai

∂Xi

)
Xj

− (∂Ai/∂Xj)2Xi

(∂Aj/∂Xj)Xi

]
ΔXi , (A.77)

and after the limit transition as the increment goes to zero:
(

∂Ai

∂Xi

)
Aj

=
(

∂Ai

∂Xi

)
Xj

− (∂Ai/∂Xj)2Xi

(∂Aj/∂Xj)Xi

. (A.78)
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The second term is a quotient of a square of a certain quantity over a
reciprocal capacity. According to the thermodynamic stability condi-
tion, it is always positive. In this way we obtain the Planck inequality :(

∂Ai

∂Xi

)
Aj

>

(
∂Ai

∂Xi

)
Xj

, (A.79)

or, taking into account the fact that the capacity is positive,

−
(

∂Xi

∂Ai

)
Aj

> −
(

∂Xi

∂Ai

)
Xj

. (A.80)

In particular, the relation

CA > CX (A.81)

follows from (A.80). This states that the heat capacity under a fixed
value of some thermodynamic force A is larger than the heat capacity
under a fixed value of the conjugate variable X. This result has a
simple physical meaning: when the system is heated under conditions
A = const., it has to perform an additional but not useful work related
to a possible change in the value of X.

In general, the inequality (A.79) gives mathematical expression to
the Le Chatelier–Brown principle: the possibility of a variation in the
thermodynamic variable Xj weakens the reaction to a variation in the
value of the thermodynamic variable Xi. In other words, the system
itself opposes external changes.

A.4 Canonical and Generalized Canonical Probability
Distributions

The considerations in Chap. 2 conclude with all the necessary premises
to construct an explicit form of the probability distribution ρ(s) which
describes a macroscopic system in a state of thermodynamic equilib-
rium. On the one hand, this distribution must be constant in time, so
that the mean values of all the dynamical variables are constant, while
on the other hand, it must be a coarse-grained description of a uniform
distribution of states of a statistical ensemble over the entire region
of the phase space available to motion, so that it must be constant in
this region. But we have shown that the notion of a thermodynamic
equilibrium is relative. Therefore, the properties of the sought prob-
ability distribution must be relativised: it should be constant in time



A.4 Canonical and Generalized Canonical Distributions 277

on a given time scale and take constant values in the regions available
to motion only on a given time scale. The distribution would reach
a global constant value only on a much longer time scale, when tran-
sitions through the bottlenecks separating various available regions
become possible (see Fig. 2.9).

The state of thermodynamic equilibrium is related to the maximum
value of the entropy of the coarse-grained probability distribution. It
follows from Sect. 2.6 that a probability distribution taking a constant
value over a certain subset A, and equal to zero beyond it, gives an
entropy higher than any other probability distribution constant on
a set smaller than A. We now prove that a probability distribution
constant on A gives the highest value of the entropy from among all
distributions different from zero on A.

Entropy is a functional (a function defined on a set of functions) of
the probability distribution:

S[ρ] = −kB

∫
A

ds ρ(s) ln ρ(s) . (A.82)

We require the function ρ to fulfill the following normalization condi-
tion on the subset A: ∫

A
ds ρ(s) = 1 . (A.83)

The task of finding the form of the function ρ for which the functional
(A.82) takes the maximum value whilst satisfying the condition (A.83)
is equivalent to the task of finding the form of ρ for which an extended
functional

−kB

∫
A

ds
[
ρ ln ρ + αρ

]
(A.84)

takes the maximum value without any additional condition. The quan-
tity α, referred to us as a Lagrange indefinite multiplier for the condi-
tion (A.83), is to be determined by that condition.

Looking for the extrema (minima or maxima) of functionals is the
subject of the calculus of variations, well known from, e.g., effective
applications to classical mechanics in the Lagrange formulation. Ac-
cording to the rules of this calculus, an integral with fixed boundaries,
which depends only on a function ρ but not on its derivatives, takes
the extreme value if the derivative of the integrand with respect to
the relevant function is zero. In the case considered, this leads to the
condition

d
dρ

[
ρ ln ρ + αρ

]
= ln ρ + 1 + α = 0 , (A.85)

or, on introducing a new quantity
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1 + α = lnΩ , (A.86)

to the condition
ρ(s) = Ω−1 = const. . (A.87)

Hence, we have proved that the probability distribution of the ex-
tremal (in our case the maximum) entropy is indeed constant. The
corresponding entropy has value

S = kB lnΩ . (A.88)

From the normalization condition (A.83), it follows that the quantity
Ω, related to the Lagrange indefinite multiplier α, satisfies the equality

Ω =
∫
A

ds . (A.89)

In this way we reconstruct the result (2.27). The probability distribu-
tion (A.87) constant on a certain region of the phase space is called
the microcanonical distribution.

However, a problem appears when we consider how to determine
the region in the phase space ‘available to motion on a given time
scale’. It could be defined as a hypersurface in S for which a certain
dynamical variable X takes a constant value:

X (s) = X . (A.90)

For instance, we certainly know that the energy H is a constant of mo-
tion for the Hamilton equations (2.4). But how do we define a possible
variation of that region on a longer time scale? And how do we take
into account the case where the probability distribution has constant
but different values in various subsets composing the entire region ac-
cessible for motion (see, e.g., Fig. 2.9)? We can do this by replacing
the condition (A.90) by the weaker condition requiring a fixed mean
value of the dynamical variable X :

〈X 〉 ≡
∫
S

dsX (s) ρ(s) = X . (A.91)

A variation of the mean value 〈X 〉 in time can result from a variation
of the region accessible for motion, i.e., from a variation of the very
function ρ in (A.91) or, in the case of a dynamical variable X of the
type (2.39) having several different discrete values, from a variation of
the values of the function ρ in various regions determining X (Fig. 2.9).
Fluctuations are negligible for macroscopic variables in the form of the
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sum (2.43), and the condition (A.91), although richer in possibilities,
does not in fact differ from the condition (A.90).

Thus, we look for the function ρ that maximizes the functional

S[ρ] = −kB

∫
S

ds ρ(s) ln ρ(s) , (A.92)

the integral being determined on the entire space of states S, and
satisfying two additional conditions:∫

S
ds ρ(s) = 1 , (A.93)

where the normalization now involves the entire space S, and (A.91).
On introducing two undefined Lagrange multipliers α and β, we study
the necessary condition for maximizing the extended functional

−kB

∫
S

ds
[
ρ ln ρ + αρ + βXρ

]
. (A.94)

This condition is that the derivative of the integrand should be zero:

ln ρ + 1 + α + βX = 0 . (A.95)

Hence
ρ(s) = Z−1e−βX (s) , (A.96)

where
lnZ = 1 + α . (A.97)

The entropy that corresponds to the distribution (A.96) is

S = kB lnZ + kBβX . (A.98)

In terms of (A.98), the distribution (A.96) can be rewritten in yet
another form:

ρ(s) = e−S/kBe−β[X (s)−X] = e−S/kBe−β X (s) . (A.99)

The probability distribution (A.96) is called the canonical prob-
ability distribution. It was introduced into physics for the first time
by Gibbs who considered an appropriately defined statistical ensem-
ble of macroscopic systems. Let us note that when the variable X has
the form of a sum (2.43) than the canonical distribution (A.96), being
an exponential of this sum, is factorized according to (2.44). Hence,
the distribution (A.96) in fact defines a statistical ensemble of many
identical copies of the same subsystem. Following the comment after
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(2.44), it is irrelevant whether we describe a single subsystem or the
whole ensemble of subsystems.

From the normalization condition, it follows that

Z(β) =
∫
S

ds e−βX (s) . (A.100)

The quantity Z is referred to as the partition function or the sum of
states. Differentiating with respect to β, we get

∂Z

∂β
= −

∫
S

dsX e−βX (s) = −Z〈X 〉 , (A.101)

whence
X = − ∂

∂β
lnZ . (A.102)

From this equation the value of the second undefined Lagrange multi-
plier β can be determined.

Differentiating the function lnZ once more with respect to β:

∂2 lnZ

∂β2
= −∂X

∂β
= − ∂

∂β
Z−1

∫
S

dsX (s)e−βX (s) (A.103)

= Z−2 ∂Z

∂β

∫
S

dsX (s)e−βX (s) + Z−1
∫
S

dsX (s)2e−βX (s)

= −〈X〉2 + 〈X 2〉 .

This is an important result saying that the derivative of the mean value
X with respect to the Lagrange multiplier β determines the dispersion
(the squared standard deviation) of the corresponding dynamical vari-
able X :

∂X

∂β
= −〈( X )2〉 . (A.104)

The condition (A.91) can be extended by fixing the mean values of
a larger number of dynamical variables Xi, i = 0, 1, . . . , n (X0 ≡ X ):

〈Xi〉 ≡
∫
S

dsXi(s) ρ(s) = Xi . (A.105)

The variational procedure then leads to the generalized canonical dis-
tribution

ρ(s) = Z−1e−
∑

i
βiXi(s) , (A.106)

with the entropy
S = kB lnZ + kB

∑
i

βiXi , (A.107)
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and partition function

Z(β0, β1, . . . , βn) =
∫
S

ds e−
∑

i
βiXi(s) . (A.108)

The relationship (A.102) is replaced by 1 + n relationships

Xi = − ∂

∂βi
lnZ , (A.109)

from which the values of 1 + n Lagrange multipliers βi can be deter-
mined, whereas (A.104) is replaced by 1 + n more general equations

∂Xi

∂βj
= −〈 Xi Xj〉 . (A.110)

Expression (A.106) describes the most general form of the proba-
bility distribution for a system in a state of thermodynamic equilib-
rium on a certain fixed time scale. This distribution is unambiguously
determined by the mean values of a small number of distinguished
dynamical variables (small relative to all the microscopic degrees of
freedom). In Chap. 3, these mean values were identified with the ther-
modynamic variables. The mean values of all other dynamical variables
either vanish or, in the case of fast variables, are determined by the
mean values of the distinguished variables or again, in the case of very
slow variables, are frozen. The distinguished variables are considered
as slow in the sense that, on a time scale longer than initially as-
sumed, their mean values can change until they reach a constant value
characterizing a thermodynamic equilibrium state on a higher level of
the time-scale hierarchy. In contrast to some partial equilibrium state,
we then talk about a complete equilibrium. The generalized canonical
probability distribution (A.106) therefore describes the state of par-
tial equilibrium and total equilibrium as well, and the only difference
is the number of distinguished dynamical variables. A physical inter-
pretation of the Lagrangian multipliers βi and their relationship with
the thermodynamic variables is presented in Appendix A.5.

A.5 Statistical Interpretation of Thermodynamics

Under fixed temperature conditions T = const., it is easy to inter-
pret the macroscopic phenomenological thermodynamics in terms of
the microscopic mechanics. The interpretation follows immediately by
identifying the Clausius entropy of Chap. 3 with the Boltzmann–Gibbs
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entropy of Sect. 2.6 for the canonical or generalized canonical proba-
bility distributions just derived.

For the canonical probability distribution (A.96) with the dynam-
ical variable X chosen to be the energy, X = E, X = H, (A.98) reads

S = kB lnZ + kBβE . (A.111)

Comparing it with (3.49), which can be rewritten as

S = −T−1F + T−1E , (A.112)

we can interpret the undefined Lagrange multipliers β and lnZ, hith-
erto only formally introduced. Thus, the multiplier β has the physical
meaning of reciprocal temperature,

β = 1/kBT , (A.113)

while the logarithm of the partition function is related to the free
energy by

F = −kBT lnZ = −kBT ln
∫
S

ds e−H(s)/kBT . (A.114)

Comparing (A.72) or (A.73) with (A.104), we obtain the statistical
interpretation of heat capacity as a quantity proportional to the mean
square fluctuation of the energy:

C =
(

∂E

∂T

)
=

1
kBT 2

〈
( H)2

〉
. (A.115)

The relationship (A.115) justifies the heat capacity being positive.
Under conditions where not only the temperature T is fixed but so

also are n additional thermodynamic forces Ai, the second equation of
(A.54) implies

S = −T−1I + T−1E +
n∑

i=1

AiT
−1Xi . (A.116)

Comparing this with (A.107), in which X0 is chosen to be the energy,
X0 = H, X0 = E, β0 ≡ β, and hence

S = kB lnZ + kBβE + kB

n∑
i=1

βiXi , (A.117)

we find, besides (A.113), the relationships
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βi = Ai/kBT = βAi , (i = 1, . . . , n) , (A.118)

and

I = −β−1 lnZ = −β−1 ln
∫
S

ds e−β[H(s)+
∑n

i=1
AiXi(s)] . (A.119)

Equation (A.110) implies the following relations between capacities
(susceptibilities) and mean square fluctuations or, more generally, the
fluctuation correlation functions of the dynamical variables Xi that
correspond to the thermodynamic variables Xi:

−
(

∂Xi

∂Aj

)
=

1
kBT

〈 Xi Xj〉 . (A.120)

Equation (A.114), or more generally (A.119), is the basis for theo-
retical modeling of the free energy or thermodynamic potential. Know-
ing these quantities, one can find equations of state that determine all
the other thermodynamic quantities [see the relationships (A.109) cor-
responding to (A.57)].

Statistical interpretation of the kinetic coefficients Lij occurring
in the relationships (3.69) as well as the relaxation time (3.78) re-
quires knowledge of the temporal evolution of a partial equilibrium
probability distribution function (A.106) toward the complete equilib-
rium probability distribution function; or equivalently, knowledge of
the temporal behavior of fluxes (the time derivatives) Ẋi(t) of the dy-
namical variables Xi. In general, all the necessary information can be
obtained using thermodynamic perturbation theory which, however,
is a rather sophisticated technique. Close to the complete thermo-
dynamic equilibrium, a simple approximation is offered by Onsager’s
fluctuation regression hypothesis (Chandler, 1987), which states that
fluctuations decay in time according to the same equation (3.79) as
the thermodynamic variables:

Ẋ (t) = −τ−1
[
X (t) − 〈X〉

]
= −τ−1 X (t) . (A.121)

Setting t = 0, multiplying by Ẋ (t), and averaging over the complete
thermodynamic equilibrium state, we obtain from (A.121) the expres-
sion

〈Ẋ (t)Ẋ (0)〉 = −τ−1
〈
Ẋ (t) X (0)

〉
. (A.122)

Integrating it over time from 0 to ∞ and taking into account the fact
that X (t) tends to the equilibrium mean value 〈X 〉 as t → ∞, we have
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0
dt
〈
Ẋ (t)Ẋ (0)

〉
= −τ−1

〈[
〈X 〉 − X (0)

]
X (0)

〉
= τ−1

〈[
X (0)

]2〉
.

(A.123)
Finally, we obtain from the latter equation a statistical formula for the
reciprocal relaxation time (3.78):

τ−1 =
∫ ∞

0
dt

〈Ẋ (t)Ẋ (0)〉
〈( X )2〉 =

L

C
. (A.124)

Generalization of (A.122) to the case of time correlation functions
of various fluxes and the expression (A.104) for the capacity results in
a statistical formula defining the kinetic coefficients:

Lij =
1

kBT

∫ ∞

0
dt
〈
Ẋi(t)Ẋj(0)

〉
. (A.125)

This formula explains both the Onsager symmetry (3.70) and the pos-
itivity (3.72) of the kinetic coefficients.



B Stochastic Processes

B.1 From Liouville’s Equation to the Diffusion Equation

The time behavior of macroscopic systems is deterministic on the level
of both the microscopic and macroscopic descriptions (see Chap. 2).
However, the time behavior of individual molecules seems to be purely
random. Is this really the case? What kind of randomness could there
be in the parts that does not contradict the determinism of the whole?

To answer these questions let us consider a system of N identical
molecules of mass m. Their translational motion is described by N
vectorial differential Newton equations of the second order:

mr̈i = F i(r1, . . . , rN ) , (B.1)

equivalent to 2N vectorial differential Hamilton equations of the first
order:

ṙi = vi , mv̇i = F i . (B.2)

(It is convenient here to consider the velocities vi rather than the mo-
menta pi = mvi.) With the initial positions and velocities of individual
particles unknown, we consider, instead of trajectories, the N -particle
probability distribution

ρ = ρ(r1,v1, . . . , rN ,vN , t) . (B.3)

According to Liouville’s theorem [volume conservation by time trans-
formations of the phase space, Penrose (1979)], the evolution equation
of ρ is of the form

d
dt

ρ =
∂

∂t
ρ +

N∑
i=1

(
∂ρ

∂ri
·ṙi +

∂ρ

∂vi
·v̇i

)
= 0 , (B.4)

where the central dots denote the 3-dimensional scalar products, and
the partial derivatives with respect to vectors are the 3-dimensional
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gradient operators. Using the Hamilton equations (B.2), (B.4) leads
to the Liouville equation:

∂

∂t
ρ +

N∑
i=1

(
vi· ∂ρ

∂ri
+ m−1F i· ∂ρ

∂vi

)
= 0 . (B.5)

The single particle probability distribution is obtained from ρ by
integration over positions and velocities of all particles except for the
one considered:

p(r1,v1, t) =
∫

d3r2 d3v2 . . .d3rN d3vN ρ(r1,v1, r2,v2, . . . , rN ,vN , t) .

(B.6)
This satisfies the equation(

∂

∂t
+ v· ∂

∂r
+ m−1F · ∂

∂v

)
p(r,v, t) = I , (B.7)

where F is a resultant force acting on a distinguished particle and I
is some functional of ρ referred to as the collision integral .

Boltzmann assumed in 1872 that, when the system is so diluted
that only binary collisions are possible, the states of the particles in
it are not correlated at distances larger than the distance over which
interparticle forces act [hypothesis of molecular chaos, see (2.44)]:

ρ(r1,v1, . . . , rN ,vN , t) = p(r1,v1, t) . . . p(rN ,vN , t) . (B.8)

The collision integral can then be written in the form

I =
∫

dσ d3v1|v − v1|
[
p(r,v′

1, t)p(r,v′, t) − p(r,v1, t)p(r,v, t)
]

,

(B.9)
where dσ is the differential cross-section for scattering and the veloc-
ities of two particles before collision, v and v1, and after collision, v′
and v′

1, satisfy the conditions of momentum and energy conservation.
Equation (B.7), with the collision integral I approximated in this way,
is called the Boltzmann equation (Penrose, 1979; Huang, 1987).

The Boltzmann equation is a nonlinear integro-differential equation
and the techniques for solving it are not easy. This equation is the
starting point for the derivation of Boltzmann’s so-called H-theorem
(the law of entropy increase). For the force F = 0, the equilibrium
solution to the Boltzmann equation does not depend on the position
and its dependence on the velocity has the form known as the the
Maxwell–Boltzmann distribution:
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peq(v) ∝ e−mv2/2kBT , (B.10)

The mean velocity of a molecule calculated for this 3-dimensional dis-
tribution in spherical coordinates is

v̄ =
√

8kBT/πm . (B.11)

The mean velocity determines the mean free path of a molecule:

l̄ = n̄v̄/2z , (B.12)

where n̄ is the mean value of the spatial density of molecules (the
number of molecules per unit volume) and z is the number of collisions
per unit volume and unit time (each collision ends the free paths of
two molecules).

The Boltzmann equation is also the starting point for derivation
of the equations of hydrodynamics in which the transport theory is
rooted. In particular, after integrating (B.7) over velocity and taking
into account the momentum and energy conservation laws, we get the
continuity equation:

∂

∂t
p(r, t) +

∂

∂r
·j(r, t) = 0 , (B.13)

where
p(r, t) =

∫
d3v p(r,v, t) (B.14)

is the probability density of individual molecule position and

j(r, t) =
∫

d3v v p(r,v, t) (B.15)

is the corresponding flux density. When multiplied by the number of
molecules N , (B.14) and (B.15) have the meaning of the spatial density
of the number of molecules and the corresponding flux.

The driving force for the flux comes from the molecule number
density fluctuations. In the linear approximation

j(r, t) = −D
∂

∂r
p(r, t) , (B.16)

from which, after substituting into (B.13), we get the diffusion equa-
tion:

∂

∂t
p(r, t) = D

∂

∂r
· ∂

∂r
p(r, t) ≡ DΔp(r, t) . (B.17)



288 B Stochastic Processes

Here Δ denotes the Laplace operator and D is the coefficient of self-
diffusion,

D = l̄v̄/3 . (B.18)

The diffusion equation (B.17) determines the dynamics of the molecule
number density fluctuations or the position probability distribution
of individual molecules. The position of a given molecule is indeed
random, but the position probability distribution behaves in time in a
deterministic way.

Instead of considering the macroscopic hydrodynamic variable re-
lated to underlying microscopic variables, we can consider a mesoscopic
variable, the position of a massive Brownian particle colliding with
light (microscopic) particles. On identifying the massive particle with
particle number 1 in (B.6), the collision integral can be reinterpreted
as (Huang, 1987)

I =
∫

d3u
[
w(v,v + u) p(r,v + u, t)−w(v −u,v) p(r,v, t)

]
, (B.19)

where w(v + u,v) is the probability of the massive particle velocity
changing from v to v + u in a single collision with a light particle per
unit time.

If the mass difference between the heavy and light particles is large,
u is small and the integrand can be expanded in a Taylor series with
the initial velocity v being irrelevant for the result of the collision:

w(v,v + u)p(r,v + u, t) − w(v − u,v)p(r,v, t) (B.20)

= u· ∂

∂v
w(−u,0)p(r,v, t)

+
1
2

(
u· ∂

∂v

)(
u· ∂

∂v

)
w(−u,0)p(r,v, t) + · · · .

After substituting the collision integral (B.19) approximated in this
way into (B.7), we get

∂

∂t
p(r,v, t) =

[
−v· ∂

∂r
+ m−1 ∂

∂v
·
(
−F + a + b

∂

∂v

)]
p(x,v, t) ,

(B.21)
where m now denotes the mass of a heavy particle, while

a =
∫

d3u muw(−u,0) (B.22)

and
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b =
∫

d3u
mu2

2
w(−u,0) (B.23)

are the mean changes in the momentum and energy per unit time,
respectively, experienced by the heavy particle as a result of collisions
with many light particles.

The quantities a and b are interrelated. For the external force F =
0, the equilibrium solution to (B.21) should have the form (B.10),
whereupon (

a + b
∂

∂v

)
peq(v) = 0 , (B.24)

and we obtain the relation

a = b
mv

kBT
. (B.25)

The term a, proportional to the velocity, can be interpreted as a fric-
tion (dissipation) force, whereas the term in b corresponds to the
fluctuating force. Equation (B.25) is a prototype of the fluctuation–
dissipation theorem. Introducing the friction coefficient

ζ =
mb

kBT
, (B.26)

we rewrite (B.21) in the form

∂

∂t
p(r,v, t) (B.27)

=
[
−v· ∂

∂r
+ m−1 ∂

∂v
·
(
−F + ζv + ζkBTm−1 ∂

∂v

)]
p(x,v, t) .

This equation, known as the Fokker–Planck equation, also leads to the
spatial diffusion equation, as will be shown further on. First, however,
it may be worth reviewing the basic concepts of the theory of stochastic
processes.

B.2 Markov Processes

The variation of probability in time is the subject of the theory of
stochastic processes (Gardiner, 1983; van Kampen, 2001). A stochas-
tic process can be considered as a family of random variables X (t) at
different moments of time t. Let us recall that the assumption of me-
chanical determinism allows us to identify the random variables with
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dynamical variables, i.e., real-valued functions on the space of micro-
scopic states s (Sect. 2.6). As a consequence, the stochastic process,
being a real-valued function

X (t, s) = x , (B.28)

can alternatively be considered as a family of realizations of the process
X (s), functions of time labeled generally by uncontrollable microscopic
states s.

For a fixed moment of time t, a random variable X (t) is character-
ized by the mean value and the fluctuation of the process:

X(t) ≡ 〈X (t)〉 , X (t) ≡ X (t) − X(t) . (B.29)

For two fixed moments of time t and t′ and two random variables X (t)
and X (t′), we define the fluctuation correlation function:

G(t, t′) ≡ 〈 X (t) X (t′)〉 = 〈X (t)X (t′)〉 − 〈X (t)〉 〈X (t′)〉 . (B.30)

A stochastic process X (t) is referred to as stationary if its charac-
teristics are invariant with respect to translation in time. Thus, for a
stationary process the mean does not depend on time:

X(t) = X = const. , (B.31)

and the two-time function of fluctuation correlation depends only on
one time argument equal to the time difference:

G(t, t′) = G(t − t′) ≡ 〈 X (t − t′) X (0)〉 . (B.32)

The Fourier transform of G(t),

S(ω) ≡ Ĝ(ω) ≡
∫ ∞

−∞
dt eiωtG(t) , (B.33)

is called the spectral density of the stationary process X (t).
The description of a stochastic process is all the more complete as

the higher time correlation functions of the process are established.
Unfortunately, the amount of information needed to do this grows
rapidly with the increasing number of moments of time. Usually, either
no correlation or at most the two-time correlation is considered.

A process for which all random variables X (t) are uncorrelated is
said to be purely random. In such a process the two-time function of
fluctuation correlation disappears for t 
= t′ (no memory), so it should
have the form
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G(t, t′) = Sδ(t − t′) . (B.34)

The Dirac delta δ(t) is a mathematical quantity that vanishes when
the argument differs from zero, whilst at zero it behaves in such a way
that normalization to unity is possible:∫ ∞

−∞
dt δ(t) = 1 . (B.35)

As a consequence, for any (not necessarily stationary) purely random
process, the spectral density does not depend on frequency:

S(ω) = S = const. . (B.36)

All Fourier components are represented with equal weight so another
name for the purely random process is white noise. Of course, the
notion of white noise is meaningful only for continuous time changes.
An example of a purely random process with discrete time (and a
discrete set of values { 0, 1 }) is the series of Bernoulli trials considered
in Sect. 2.7 in the context of coin tossing.

A more complex process, the Markov process, is completely char-
acterized by the two-time correlation function. (It has a memory, but
a ‘short’ one.) Markov processes are the only stochastic processes for
which the evolution of probability is deterministic. A deeper analysis
leads to the conclusion that the evolution equation has to be linear
and in general irreversible in time (Gardiner, 1983).

Without going into the deterministic microscopic dynamics under-
lying a given Markov process, we shall describe it on a phenomeno-
logical level in terms of the probability or the probability density be-
ing a function of the process values alone. For simplicity, let us start
by considering processes involving a discrete (countable) set of values
(‘states’). In such cases, the probability pl(t) of being in the state l at
time t is described by a system of master equations:

ṗl(t) =
∑
l′

[
wll′pl′(t) − wl′lpl(t)

]
. (B.37)

The dot denotes the derivative with respect to time. The transition
probabilities per unit time wll′ are assumed to satisfy the detailed bal-
ance condition:

wl′lp
eq
l = wll′p

eq
l′ , (B.38)

where the peq denote the equilibrium solutions to (B.37).
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As a particular example let us consider a linear chain of states
l = . . .−2,−1, 0, 1, 2, . . . with the only nonzero transition probabilities
per unit time being those between nearest neighbors:

wl+1,l = wl−1,l = 1/2τ . (B.39)

This corresponds to the master equations

ṗl(t) =
1
2τ

[
pl+1(t) + pl−1(t) − 2pl(t)

]
. (B.40)

Denoting the change in the process value in one jump by ξ and intro-
ducing formally the probability density

p(x, t) = ξ−1pl(t) , x ≡ lξ , (B.41)

we rewrite (B.40) as

∂

∂t
p(x, t) =

1
2τ

[
p(x + ξ, t) + p(x − ξ, t) − 2p(x, t)

]
. (B.42)

Expanding the probability density in the series

p(x ± ξ, t) = p(x, t) ± ξ
∂

∂x
p(x, t) +

1
2
ξ2 ∂2

∂x2
p(x, t) + · · · , (B.43)

and taking the continuous limit ξ, τ → 0 with D ≡ ξ2/2τ remaining
finite, we finally arrive at the equation

∂

∂t
p(x, t) = D

∂2

∂x2
p(x, t) , (B.44)

identical to the diffusion equation considered (in three dimensions) in
Appendix B.1. The above line of reasoning implies that diffusion may
be identified with the process of a random walk . To mathematicians
this process is known as the Wiener process, whereas physicists stick
to the historical name of Brownian motion. Of course, the variable x
need not necessarily be treated as the position of a randomly walking
particle. It can, for example, be the intensity or voltage of an electrical
signal or any other physical quantity.

A general solution to (B.44) with an arbitrary initial probability
density p(x, 0) can be written in the form of the integral

p(x, t) =
∫ ∞

−∞
dx′ p(x, t|x′) p(x′, 0) , (B.45)
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where the kernel (the Green function or propagator) p(x, t|x′) is the
solution to the equation

∂

∂t
p(x, t|x0) = D

∂2

∂x2
p(x, t|x0) , (B.46)

with initial condition

p(x, 0|x0) = δ(x − x0) . (B.47)

It is easy to check that this solution is a Gaussian distribution

p(xt|x0) = (2πσ2)−1/2 exp
[
−(x − x0)2/2σ2

]
, (B.48)

with a constant mean value x0 (determined by the initial condition)
and dispersion

σ2 = 〈 X (t)2〉 = 2Dt . (B.49)

The limit t → 0 of the function (B.48) completed by the relationship
(B.49) represents a very intuitive model of the Dirac delta.

The standard deviation σ of the value of a random walk process
increases in time as t1/2. This implies a specific feature of scaling: to
make the effect of such a process look on average the same on a scale of
observation reduced by a factor of 2, the time of observation should be
reduced, not just by a factor of 2, but by a factor of four! Of course, a
continuous curve featuring such a scaling cannot be differentiable and
must have an infinite number of ‘teeth’ so that direct representation
of any realization of the diffusion process is technically possible only
at discrete moments of time.

In fact, the Gaussian character of the probability distribution for
a diffusion process should not be surprising. Let us divide the interval
(0, t) into n equal parts: 0 = t0 < t1 < . . . < tn = t, ti = iτ , and let us
consider a sequence of increments of the process X :

X (t1) −X (t0) , X (t2) −X (t1) , . . . , X (tn) −X (tn−1) . (B.50)

According to the definition of a random walk in its discrete form,
(B.40), these increments are uncorrelated random variables. According
to the law of large numbers and the central limit theorem (Gardiner,
1983) applied to the sum

X (t) −X (0) =
n∑

i=1

[X (ti) −X (ti−1)] , (B.51)



294 B Stochastic Processes

in the limit n → ∞, the resulting increment X (t) − X (0) must be a
variable with a Gaussian probability distribution having a dispersion
proportional to n, and thus to the time t.

The lack of correlation between the increments (B.50) suggests that
the time derivative of the diffusion process should be a purely random
process, provided that it is given a definite mathematical meaning. We
know that the derivative of a particular realization of the diffusion pro-
cess does not exist (teeth at each moment of time), but differentiation
of the process with respect to time may be defined independently of
any realization by resorting to the notion of, e.g., mean square conver-
gence (Gardiner, 1983). Analogously, a time stochastic integral can be
defined.

Having defined the meaning of the time derivative of a stochastic
process, we can write down the supposed stochastic differential equa-
tion for the diffusion process X (t) as

Ẋ (t) = BY(t) , (B.52)

where Y(t) stands for a stationary purely random process (white noise)
with vanishing mean:

〈Y(t)Y(t′)〉 = δ(t − t′) , 〈Y(t)〉 = 0 , (B.53)

and B is the amplitude of that process. The solution to (B.52) is a
stochastic integral of the process Y:

X (t) −X (0) = B

∫ t

0
dtY(t) . (B.54)

As the mean of a stochastic integral is an ordinary Riemann integral
of the mean, we find that

〈X (t)〉 = 〈X (0)〉 = const. , (B.55)

and

〈 X (t)2〉 = B2
∫ t

0
dt′
∫ t

0
dt′′〈Y(t′)Y(t′′)〉 = B2t . (B.56)

The dispersion we arrive at here is identical to the dispersion (B.49).
Consequently, the ordinary stochastic differential equation (B.52) is
indeed equivalent to the partial differential equation (B.44), provided
that

1
2
B2 = D . (B.57)
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Diffusion and possible purely deterministic components of the pro-
cess jointly satisfy the equation

Ẋ = A(X ) + BY , (B.58)

where A is some well-determined function of the process X . The
stochastic ordinary differential equation (B.58) is equivalent to the
usual differential equation with partial derivatives for the probability
density (Gardiner, 1983):

∂

∂t
p(x, t) = − ∂

∂x

[
A(x)p(x, t)

]
+

1
2
B2 ∂2

∂x2
p(x, t) . (B.59)

Equations (B.58) and (B.59) can be generalized to the case of a vec-
torial (many-component) variable x. In the literature, (B.58) is called
the Langevin equation. If x contains only position coordinates, (B.59)
is known as the Smoluchowski equation, and if x contains both position
and velocity coordinates, the Fokker–Planck equation.

The Fokker–Planck equation (B.27) for a massive Brownian particle
that moves in one dimension depends on two variables, the position x
and the velocity v. As a consequence, there are two coupled Langevin
equations for the corresponding stochastic processes X (t) and V(t):

Ẋ = V ,

mV̇ = F − ζV + ζBY ,
(B.60)

where
1
2
ζB2 = kBT . (B.61)

In the overdamped limit, we assume the velocity V to reach the station-
ary stage much faster than the position X , so that after substituting
V̇ = 0 into (B.60), we get a single Langevin equation:

ζẊ = F (X ) + ζBY . (B.62)

This has the physical meaning of a balance equation for the forces: the
viscous (friction) force balances the driving force (exerted by the envi-
ronment) and the Brownian fluctuation force. The partial differential
equation corresponding to the ordinary stochastic equation (B.62) is
the Smoluchowski equation:

∂

∂t
p(x, t) = − ∂

∂x

[
ζ−1F (x)p(x, t)

]
+

1
2
B2 ∂2

∂x2
p(x, t) . (B.63)
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For F = 0 (no external driving force), we reconstruct from (B.63)
the diffusion equation (B.44) holding for the Brownian particle. From
(B.57) and (B.61), the Einstein relation follows:

Dζ = kBT . (B.64)

B.3 Stochastic Theory of Reaction Rates

As a rule, the rates of biochemical reactions are interpreted in terms of
the transition state theory (Stryer et al., 2002, Chap. 8; Fersht, 1999).
This theory, known also as the theory of absolute reaction rates, was
developed by Eyring, Evans and Polanyi in 1935 with the intention
of applying it to gas-phase bimolecular reactions. It draws attention
to the purely inertial intramolecular dynamics of what is called the
activated complex (Atkins, 1998, Chap. 27) and assumes equilibration
processes to be negligibly fast.

However, there is a great deal of convincing experimental evidence
(see Sect. 9.1) to suggest that, in the case of biochemical reactions
involving protein enzymes, processes of both intermolecular and in-
tramolecular equilibration cannot be neglected. These are taken into
account in the stochastic theory of reaction rates. The basic assump-
tion of this theory is that the molecule under consideration can occur
in a number of substates and that the transitions between these states
are purely stochastic. The origins of the stochastic theory of reaction
rates go back to the Smoluchowski theory of diffusion-controlled coagu-
lation from 1917 and the Kramers one-dimensional theory of reactions
in the overdamped limit from 1940. A clear discussion of the concepts
involved can be found in papers by Widom (1965, 1971), Northrup and
Hynes (1980) and Hänggi et al. (1990). The application to biochemical
processes involving macromolecular proteins is considered in papers by
Kurzyński (1998) and Kurzyński and Che�lminiak (2003).

Let us start with a simple picture presenting an exemplifying real-
ization of the microscopic (or rather mesoscopic) stochastic dynamics
underlying a unimolecular reaction

R →← P

between two chemical species R and P of a given molecule. We as-
sume that the molecule fluctuates among many substates which can
be divided into two subsets corresponding to chemical species R and
P (Fig. B.1). The chemical reaction is realized through transitions be-
tween distinguished substates in R, jointly forming what is called the



B.3 Stochastic Theory of Reaction Rates 297

R P
Fig. B.1. Exemplifying realization of the model intramolecular dynamics
underlying the unimolecular reaction R ↔ P. Chemical states R and P of the
molecule are composed of many substates (white and black circles) and the
intramolecular dynamics involves purely stochastic transitions between these
states (arrows). Actually, a much larger number of substates is expected.
The chemical reaction is realized through transitions between distinguished
substates in R, jointly forming what is called the transition state R‡ (black
circles), and distinguished substates in P, jointly forming the transition state
P‡. If the transition states comprise all the substates in R and P, we refer to
such a situation as a reaction with fluctuating barriers, and if the transition
states are reduced to single conformational substates, we talk about a gated
reaction

transition state R‡, and distinguished substates in P, jointly forming
the transition state P‡ (see Sect. 6.8). Two limiting cases can be for-
mally distinguished: one where both transition states comprise all the
substates in R and P, referred to as a reaction with fluctuating barri-
ers (each substate is related to a generally different set of free energy
barriers for the reactive transitions); and the opposite one, in which
the transition states are reduced to single conformational substates,
jointly forming a ‘gate’, whence we talk about a gated reaction.

In the Smoluchowski theory of coagulation, the subset R is a three-
dimensional region accessible to translational diffusion of the molecule,
the transition state R‡ is formed out of uniformly distributed traps,
and the subset P is reduced to a single totally absorbing sink (irre-
versibility). The reaction can be considered as gated when one trap
falls, on average, to one diffusing molecule. In the Kramers theory of
reaction rates, all the substates lie along a one-dimensional reaction
coordinate and the transition state is a single substate of the highest
free energy.
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In formal terms, the model dynamics is generally described by a
system of master equations (B.37). The quantity pl(t) denotes, in our
context, the probability of the molecule being in the substate l at time
t. In the appropriate linear combinations of probabilities

Xk(t) =
∑

l

Xklpl(t) ≡ 〈Xk(t)〉 , (B.65)

the system of linear equations (B.37) is decoupled into the system of
independent equations

Ẋk(t) = −τ−1
k Xk(t) . (B.66)

If the condition (B.38) is satisfied, the coefficients τ−1
k are real and

positive and have the meaning of reciprocal relaxation times. The nor-
mal modes of relaxation (B.65) are written in such a way that they
can be interpreted as the mean values of some physical quantities Xk

defined on a set of substates labeled with the index l.
The mole fractions of individual species, proportional to the molar

concentrations [R] and [P], are the sums of probabilities

PR(t) =
∑
l∈R

pl(t) , PP(t) =
∑
l∈P

pl(t) . (B.67)

These can be rewritten as the mean values

PR(t) = 〈PR(t)〉 , PP(t) = 〈PP(t)〉 (B.68)

of the characteristic functions of the subsets R and P, respectively:

PRl ≡
{

1 if l ∈ R ,
0 if l ∈ P ,

PPl ≡
{

1 if l ∈ P ,
0 if l ∈ R .

(B.69)

Following the normalization of probability to unity, the mole fractions
(B.68) are related by

PR + PP = 1 . (B.70)

The molar fractions (B.67) satisfy the equation

ṖR(t) = −ṖP(t) = −
∑

l∈R‡,l′∈P‡

[
wl′lpl(t) − wll′pl′(t)

]
, (B.71)

where R‡ and P‡ are the appropriate transition states. In general, the
solution to (B.71) is non-exponential and depends on the initial values
of all the probabilities pl. The situation simplifies, however, when the
reaction is an activated process, i.e., as a result of a bottleneck of either
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Fig. B.2. Schematic spectrum of reciprocal relaxation times characterizing
the conformational transition dynamics of the molecule and a chemical trans-
formation involving it. The gap in this spectrum between the reciprocals of
the longest and the next shorter relaxation times, τ−1

1 and τ−2
2 , respectively,

testifies to the existence of time-scale separation. The ground value of the
spectrum equal to 0 (the infinite relaxation time) is related to the sum of all
probabilities, which remains constant

energetic or entropic origin, the transitions between the two subsets are
not very probable. For such a reaction, equilibration of substates within
individual chemical species proceeds much faster than equilibration
between the species. A consequence is a time-scale separation in the
system and a gap in the spectrum of relaxation times between the
longest and the next shorter relaxation times τ1 and τ2, respectively
(Fig. B.2).

After the lapse of time τ2 (initial stage of the reaction), equation
(B.71) takes the form of the usual kinetic equation

ṖR(t) = −ṖP(t) = −k+PR(t) + k−PP(t)
= −τ−1

1 (PR − P eq
R ) = τ−1

1 (PP − P eq
P ) (B.72)

of the exponential solution. For given equilibrium values of the mole
fractions P eq

R and P eq
P , the longest chemical relaxation time τ1 deter-

mines in a unique way the forward and reverse reaction rate constants
k+ and k−, respectively, through the equations

τ−1
1 = k+ + k− (B.73)

and



300 B Stochastic Processes

k+/k− = P eq
P /P eq

R ≡ K , (B.74)

where K is referred to as the equilibrium constant . The quantities PR

or PP do not have to coincide exactly (up to some multiplicative and
additive constant) with the slowest variable of the system X1. If it
holds, the kinetic equation (B.72) is valid on any time scale, and also
at the very beginning stage of the reaction.

Because of the special properties of the characteristic functions

P2
R = PR , P2

P = PP , PRPP = 0 , (B.75)

the thermodynamic perturbation theory for the problem discussed can
be applied exactly, up to infinite order (Kurzyński, 1990). This results
in an exact expression (valid arbitrarily far from equilibrium) for the
reaction rate constant k+ in terms of the equilibrium time correlation
function of fluxes:

k+ = P eq
P τ−1 =

∫ ∞

0
dt′〈ṖR(t′)ṖR(0)〉eq/P eq

R . (B.76)

A similar formula determines the reverse reaction rate constant k−.
Equation (B.76) was derived for the first time by Yamamoto (1960),
assuming the first order perturbation theory. Chandler (1987) derived
it simply by resorting to Onsager’s regression hypothesis (see Ap-
pendix A.5). After integration over time k+, (B.76) can be rewritten
formally as a limit of the reactive flux

J+(t) ≡ 〈PR(t)ṖR(0)〉eq/P eq
R , (B.77)

for a sufficiently long time t. Similarly, k− can be rewritten as a limit
of J−(t) given by a formula analogous to (B.77). In the derivation of
(B.77), we have taken into account the causality principle which says
that the reactive fluxes vanish for t < 0.

Both time limits t → ∞ and t → 0 of the reactive flux should be
treated very carefully (Hänggi et al., 1990). The limit

lim
t→0

J+(t) =
〈PRṖR〉eq

P eq
R

≡ ν
P eq

R‡

P eq
R

= ν exp(−ΔG‡
R/kBT ) ≡ keq

+ (B.78)

coincides with the value of the reaction rate constant provided by the
transition state theory (see Sect. 6.8). Here, ν is interpreted as the
mean frequency of transitions from R‡ to P‡, P eq

R‡ is the equilibrium
occupation of the transition state and ΔG‡

R denotes the free energy of
activation. On the other hand, the exact limit is
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Fig. B.3. Schematic dependence of the reactive flux on time. For the reaction
which is an activated process, the plateau value behavior is characteristic.
Transition state theory approximates the reactive flux time course by the
Heaviside step function. The long-time behavior of the reactive flux is drawn
on a much more compressed time scale

lim
t→∞J+(t) = 〈ṖR〉eq = 0 . (B.79)

Hence, the assumption of the time-scale separation corresponds only
to the plateau value behavior of J+(t) and J−(t) (Fig. B.3).

Note that the reaction may proceed faster in the initial stage and
the long-time exponential decay may need to be cut off by an appro-
priate regularization factor in the integral (B.76). The jump at t = 0
is related to a Dirac delta component of the time correlation function
of fluxes, which thus appears to have the form of a sum:

〈ṖR(t)ṖR(0)〉eq
〈PR〉eq = keq

+ δ(t) + S+(t) . (B.80)

Equations (B.76) and (B.80) state clearly that the core of the transition
state theory is the assumption that the flux ṖR(t) is delta-correlated
white noise. To determine the transition state theory rate constant
(B.78), no knowledge of the intramolecular dynamics is needed. It is
the finite correlation time component S+(t) in the sum (B.80) that
results from the intramolecular dynamical processes.

If the transition states R‡ and P‡ are short-lived intermediates,
the exact reciprocal rate constants can be decomposed into three time
components (see Sect. 6.8):

k−1
+ = (keq

+ )−1 + τR + K−1τP , (B.81)

and similarly for k−1
− , related to k−1

+ by (B.74). The first component
in (B.81) determines the time needed to cross the boundary under the
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assumption, made in the transition state theory, that the transition
state R‡ is in a partial equilibrium with the rest of the microstates
composing the chemical state R. However, as a result of the transi-
tion, this equilibrium is disturbed. The second component in (B.81)
determines the time needed to restore this equilibrium from the side
of the R species and the third component determines the time needed
for the same process, but from the side of the P species (recrossing
the border). From (B.81), it follows that keq

+ is always larger than the
exact rate constant k+ (Fig. B.3). If all three components in (B.81) are
comparable (as in the case of reactions of small molecules in the gas
phase), the reaction rate constant is well described by the transition
state theory, possibly with a certain transmission coefficient smaller
than unity. The initial stage of the reaction is then practically absent.
If, on the contrary, the second and third components prevail, the reac-
tion is said to be controlled by processes of intramolecular dynamics
and the transition state theory fails. In the latter case, the initial stage
of the reaction can even appear to dominate.

B.4 Reaction Rate and the First-Passage Time Problem

One should note that (Widom, 1965): “the rate constants k+ and k−
are not the probabilities per unit time of an R molecule making the
R → P transition and a P molecule making the P → R transition, and
k+PR and k−PP are not the separate P → R and R → P fluxes.” This
holds only for imagined irreversible reactions

R → P or P → R ,

with an absorbing boundary between the R and P subsets of mi-
crostates, which can be realized by adding an imagined totally absorb-
ing limbo state (Fig. B.4). The stochastic theory of such imagined or
real irreversible reactions is identical to the first-passage time problem
for the corresponding stochastic processes (Gardiner, 1983; Montroll
and West, 1987; van Kampen, 2001). For irreversible reactions, it is
the addition of the limbo state (Fig. B.4) that introduces the smallest
finite value τ−1

1 into the spectrum of reciprocal relaxation times (the
dynamics in the sets R or P alone is characterized by the next larger
value τ−1

2 , see Fig. B.2).
Later on we shall consider only the irreversible reaction R→P. The

case of the irreversible reaction P→R is analogous. By definition, tran-
sition probabilities per unit time from the limbo state ∗ to any mi-
crostate l in the transition state R‡ vanish:
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R P

*

Fig. B.4. Any reversible reaction can be formally divided into two irreversible
reactions after introducing the imagined limbo state (∗)

wl,∗ = 0 . (B.82)

Consequently, the occupation probability of the limbo state tends in
time to unity:

lim
t→∞ p∗(t) = 1 . (B.83)

In the presence of the limbo state, the quantity

P (t) ≡
∑
l∈R

pl(t) = 1 − p∗(t) (B.84)

has the meaning of the survival probability in R over time t (the mole
fraction of molecules R that survived through time t). In various con-
texts, the time t in (B.84) is referred to as the dwell time in R, the
waiting time for transition to P, the first-exit time from R, or the
first-passage time to the limbo state. The quantity 1− P (t) is the cu-
mulative probability of the first-passage time being shorter than t, so
that its derivative

−Ṗ (t) = f(t) (B.85)

has the meaning of the first-passage time distribution. Knowing the
first-passage time density distribution, one can calculate the mean
first-passage time:

τ ≡
∫ ∞

0
dt t f(t) = −

∫ ∞

0
tdt

dP (t)
dt

=
∫ ∞

0
dt P (t) , (B.86)

provided of course that it is finite. In the last equality we used inte-
gration by parts.
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In general the average survival probability P does not obey a kinetic
equation, at least at the beginning, but one can always determine a
time-dependent rate parameter k(t) formally through the equation

Ṗ (t) = −f(t) = −k(t)P (t) , (B.87)

or equivalently,

k(t) =
f(t)
P (t)

. (B.88)

If the reaction considered is the activated process, k(t) in (B.88)
reaches the long-lasting stationary value

k =
f(t)st

P (t)st
. (B.89)

The flux-over-population formula (B.89) is usually simpler in applica-
tions than the time correlation function formula (B.76), which requires
calculations of the full reactive flux (B.77). This method was used in
the pioneering papers by Smoluchowski and Kramers. Substituting the
solution of (B.87) with constant k,

P (t) = e−kt , (B.90)

into the last integral in (B.86), we get the relation

τ = k−1 , (B.91)

which means that the reaction rate constant for the irreversible reac-
tion can also be calculated as the reciprocal of the mean first-passage
time to the limbo state.

The formula (B.89) includes both the process of crossing the bound-
ary, assuming the local equilibrium between initial and transition state,
and the process of restoring this equilibrium from the R side, although
of course it neglects the process of recrossing the boundary [see (B.81)].
One can, however, take into account the effects of the latter process
by considering the backward irreversible reaction P → R. Because the
forward and reverse transition state theory reaction rates are related
by (B.74) [see Sect. 6.8 and (B.78)], the reciprocal reaction rates for
both irreversible reactions are of the form

k−1
R = (keq

R )−1 + τR , k−1
P = K(keq

R )−1 + τP . (B.92)

Knowing keq
R , one can express τR and τP in terms of kR and kP and,

after substituting into (B.81) and (B.74), obtain the complete forward
and reverse reaction rate constants:
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Fig. B.5. Log–log plot of the time-dependent rate parameter (the irreversible
reactive flux) k(t). (a) The case of a single time characterizing the intramolec-
ular relaxation process (see Fig. B.3). (b) A whole scaling spectrum of in-
tramolecular relaxation times

k−1
+ = k−1

R + K−1k−1
P − (keq

R )−1 (B.93)

and
k−1
− = k−1

P + Kk−1
R − K(keq

R )−1 . (B.94)

In the formulas (B.81) and (B.92), we assumed that the processes
of intramolecular equilibration within R and P were characterized by
the single relaxation time. The same was assumed when constructing
Fig. B.3 which, introducing the natural unit of time τ , can be redrawn
more correctly in a log–log plot (Fig. B.5a).

However, the processes of macromolecular relaxation are usually
characterized by a whole spectrum of relaxation times (see Fig. B.2).
Very often this spectrum scales, i.e., it has a self-similarity symmetry
(Appendixes D.2 and D.3). In Fig. B.5b, such a scaling is sketched
symbolically in the form of stairs which can be replaced by a sloping
straight line. Thus, the time dependence of the rate parameter (B.88)
in the initial stage of the reaction can be approximated by an algebraic
function

k(t)τ = (t/τ)α−1 , (B.95)

where the exponent α varies between 0 and 1. The solution to (B.87)
with a time-dependent k is

P (t) = e−
∫ t

0
dt k(t) . (B.96)

For k(t) given by (B.95), the integral∫ t

0
dt k(t) = τ−α

∫ t

0
dt tα−1 = (t/τ)α , (B.97)
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and hence the initial time course of the reaction, has the form of a
stretched exponential :

P (t) = e−(t/τ)α
. (B.98)

Such an initial time course is often observed in the case of biochemical
rations involving protein enzymes (Sect. 9.1).

B.5 One-Dimensional Diffusion in the Presence of a Sink

The process of continuous one-dimensional diffusion is described by
the partial differential equation (see Appendix B.2):

∂

∂t
p +

∂

∂x
j = 0 , (B.99)

where t and x denote time and position (the value of the process),
respectively, p(x, t) is the probability density, and j(x, t) the diffusion
flux density.

As a complement to (B.99), we assume the general reactive bound-
ary condition at x = 0:

j(0, t) = −η p(0, t) , p(x, t) = 0 for x < 0 , (B.100)

or
j(0, t) = η p(0, t) , p(x, t) = 0 for x > 0 . (B.101)

In the limit η → ∞, the conditions (B.100) or (B.101) determine the
absorbing boundary, viz.,

p(0, t) = 0 , (B.102)

whereas in the limit η → 0, the reflecting boundary is

j(0, t) = 0 . (B.103)

For η 
= 0 there is always a negative jump in the flux density j at x = 0,
whereupon (B.99) with the boundary condition (B.100) or (B.101) is
to be replaced by the single equation

∂

∂t
p +

∂

∂x
j = −ηδ(x)p , (B.104)

with a delta-type sink. In fact, (B.104) is more general as the jump
does not necessarily have to take place from or to the zero value of
the diffusion flux density. Consequently, (B.104) describes both the
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processes of absorption and reflection, and the process of transmission
from the region (−∞, 0) to (0,∞) or the reverse.

A general solution to (B.104) with an arbitrary initial probability
density p(x, 0) can be written in the form of the integral (B.45), where
the kernel p(x, t|x′) is the solution to (B.104) with the delta-type initial
probability distribution:

p(x, 0|x′) = δ(x − x′) . (B.105)

Our goal is to calculate the survival probability in the whole region
R = (−∞,∞) over time t, under the assumption that the process at
t = 0 starts from the value x:

P (t|x) =
∫ ∞

−∞
dx′ p(x′, t|x) . (B.106)

The probability P (t|x) obeys the equation [see (B.85)]

Ṗ (t|x) = −η p(0, t|x) ≡ −f(t|x) , (B.107)

and therefore can also be calculated as a time integral

P (t|x) = 1 − η

∫ t

0
dt′ p(0, t′|x) . (B.108)

Assuming that the solution p0(x, t|x′) to the equation (B.99) for
free diffusion, without any boundary condition or a sink, is known, one
can find the solution p(x, t|x′) to the full equation (B.104) by treating
the sink term formally as an external time-dependent perturbation.
Following the theory of temporal Green functions [see, e.g., Byron
and Fuller (1968)], the propagator p(y, t|x), satisfies the self-consistent
integral equation

p(y, t|x) = p0(y, t|x) − η

∫ t

0
dt′ p0(y, t−t′|0) p(0, t′|x) . (B.109)

The particular propagator we need, i.e., p(0, t|x), satisfies the integral
equation

p(0, t|x) = p0(0, t|x) − η

∫ t

0
dt′ p0(0, t′|0) p(0, t − t′|x) . (B.110)

The latter can be solved by introducing the Laplace transform

p̃(0, s|x) ≡
∫ ∞

0
dt e−stp(0, t|x) . (B.111)
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In terms of Laplace transforms, (B.110) reads

p̃(0, s|x) = p̃0(0, s|x) − ηp̃0(0, s|0)p̃(0, s|x) , (B.112)

whence

p̃(0, s|x) =
p̃0(0, s|x)

1 + ηp̃0(0, s|0)
. (B.113)

The exact solution to (B.110) can be obtained in the case of homo-
geneous diffusion with the reactive boundary condition, described by
the equation

∂

∂t
p − D

∂2

∂x2
p = −αδ(x)p , (B.114)

where D denotes the diffusion constant and α, the transition probabil-
ity to the sink per unit time. In this problem there are natural units
of length,

ξ ≡ 4D/α , (B.115)

and time,
η−1 ≡ 4D/α2 . (B.116)

Passing to the dimensionless position variable,

ξ−1x → x , (B.117)

equation (B.114) reads

∂

∂t
p − η

4
∂2

∂x2
p = −ηδ(x)p . (B.118)

The free propagator, in the absence of a sink, is the Gaussian [see
(B.48) and (B.49)]

p0(0, t|x) =
1√
πηt

e−x2/ηt , (B.119)

and both the direct and inverse Laplace transformations of (B.109)
can be performed exactly using, e.g., the tables by Abramowitz and
Stegun (1964). The result is

p(0, t|x) =
1√
πηt

e−x2/ηt − exp(ηt + 2x) erfc
(√

ηt +
x√
ηt

)
, (B.120)

where the symbol erfc denotes the complementary error function:

erfc z ≡ 2√
π

∫ ∞

z
dy e−y2 ≈

⎧⎪⎨
⎪⎩

1√
πz2

e−z2
for z � 1 ,

e−2z/
√

π for 0 < z � 1 .

(B.121)
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In this way, after integrating the propagator (B.120) following (B.108),
we get the exact expression for the survival probability for the model
considered:

P (t|x) = exp(ηt + 2x) erfc
(√

ηt +
x√
ηt

)
+ 1 − erfc

x√
ηt

. (B.122)

For x = 0 we get from (B.120) the probability density of returning
to the initial state,

p(0, t|0) =
1√
πηt

− eηt erfc
(√

ηt
)

, (B.123)

and from (B.122), the corresponding survival probability,

P (t|0) = eηt erfc
(√

ηt
)

≈
⎧⎨
⎩ exp

[
−2(ηt)1/2/

√
π
]

for t � η−1 ,

(ηt)−1/2/
√

π for t � η−1 .
(B.124)

Because the region of diffusion is unbounded, the mean first-passage
time (B.86) for the survival probability (B.122) or (B.124) is infinite.
In other words, the survival probability has a long-time tail , i.e., the
reaction modeled is not the activated process. However, the space of
microstates of real molecules is bounded, which makes any gated reac-
tion the activated process. Consequently, the reaction will eventually
reach the stage of exponential decay with relaxation time equal to the
reciprocal rate constant κ−1. The crossing between the time course of
reaction P (t|x) described by (B.122) and the exponential decay can be
described by the simple corrected formula for the survival probability
(Kurzyński, 1997a)

P̄ (t|x) =
[
(1 − a)P (t|x) + a

]
e−κt , (B.125)

where a denotes the level from which the exponential decay begins.
Following (B.107), we get the corresponding first-passage time dis-

tribution:

f̄(t|x) = (1 − a)
{

f(t|x) + κ

[
P (t|x) +

a

1 − a

]}
e−κt , (B.126)

and following (B.86), the corresponding mean first-passage time from
x through the sink at 0 to the totally absorbing limbo state:

τ̄(x) = (1 − a)
∫ ∞

0
dt P (t|x)e−κt + aκ−1 . (B.127)
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The integral has the meaning of the Laplace transform of the survival
probability P (t|x). The finite value of κ secures the cutoff of its long-
time tail. After integrating by parts and taking into account (B.107),
we obtain

τ̄(x) = κ−1 − (1 − a)
η

κ

∫ ∞

0
dt e−κtp(0, t|x) . (B.128)

For the Laplace transform of the transition probability density (B.120),
equation (B.128) reads

τ̄(x) = κ−1 − (1 − a)κ−1 e−2|x|
√

κ/η√
κ/η + 1

. (B.129)

This simple formula can be used in a more general context to describe
the mean first-passage time dependence on some effective distance |x|
from the gate for homogeneous diffusion on lattices of arbitrary dimen-
sions (Che�lminiak and Kurzyński, 2004). Let us note that the mean
first-passage time (B.129) is always shorter than the value determined
by the reaction rate constant κ.

B.6 Diffusion in a Parabolic Potential

In the case of inhomogeneous one-dimensional diffusion in a certain
potential G(x), the diffusion flux density j(x, t) consists of two com-
ponents [Gardiner, 1983; van Kampen, 2001; see also (B.59)]:

j = −D

[
β

(
∂G

∂x

)
+

∂

∂x

]
p , (B.130)

where β ≡ 1/kBT denotes the inverse temperature.
For diffusion in the parabolic potential

G(x) =
1
2
K(x − x0)2 , (B.131)

there are natural units of length,

ξ ≡ (βK/2)−1/2 , (B.132)

and time,
γ−1 ≡ (βKD)−1 . (B.133)

Passing to the dimensionless position variable,
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Fig. B.6. Diffusion in the parabolic potential in the presence of a point sink

ξ−1x → x , (B.134)

equation (B.99) with j determined by (B.130) reads

∂

∂t
p(x, t) =

1
2
γ

∂

∂x

[
∂

∂x
+

∂G(x)
∂x

]
p(x, t)

=
1
2
γ

∂

∂x

{
e−G(x) ∂

∂x

[
eG(x)p(x, t)

]}
, (B.135)

where our parabolic potential is given in kBT units by (Fig. B.6)

G(x) = (x − x0)2 . (B.136)

In the case discussed, (B.109) can no longer be solved analytically.
However, if the potential G(x) tends to infinity for x → −∞, the
mean first-passage time τ(x) becomes finite without any additional
assumptions. In the limit η → ∞ of a totally absorbing boundary, the
formula

τ(x) = 2γ−1
∫ 0

x
dy eG(y)

∫ y

−∞
dz e−G(z) (B.137)

follows from (B.135) for an arbitrary potential G(x) (Gardiner, 1983;
Montroll and West, 1987; Hänggi et al., 1990). In particular, for the
parabolic potential (B.136), equation (B.137) reads

τ(x) = 2γ−1
∫ 0

x
dy e(y−x0)2

∫ y

−∞
dze−(z−x0)2

= 2γ−1
∫ −x0

x−x0

dy ey2
∫ y

−∞
dz e−z2

. (B.138)

The diffusion down the potential can be several orders of magni-
tude faster than the diffusion up it. We approximate the corresponding
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formulas using the asymptotic expansions of the integral that defines
the error function (Abramowitz and Stegun, 1964):∫ y

−∞
dz e−z2 ≡

√
π

2
(1 + erf y) ≡

√
π

2
(2 − erfc y)

=

⎧⎪⎨
⎪⎩
√

π − · · · for y → +∞ ,

1
2|y| e−y2

+ · · · for y → −∞ .
(B.139)

According to the expansion for y → ∞, the time of diffusion up the
parabolic potential from its minimum at x = x0 to the gate at x = 0
can be expressed as

τup(x0 → 0) = 2γ−1
∫ |x0|

0
dy ey2

∫ y

−∞
dz e−z2

≈ 2
√

πγ−1
∫ |x0|

0
dy ey2 ≈ √

πγ−1|x0|−1ex2
0 . (B.140)

The first approximate equality results from the fact that the main
contribution to the integral over y comes from large y values and the
second approximate equality results from the asymptotic expansion of
the Dawson integral (Abramowitz and Stegun, 1964):∫ x

0
dy ey2

=
1
2x

ex2 − · · · for x → +∞ . (B.141)

For x close to the gate and x0 < 0, the diffusion still proceeds up
the potential and, according to the expansion (B.139) for y → ∞,

τup(x → 0) = 2γ−1
∫ |x0|+x

|x0|
dy ey2

∫ y

−∞
dz e−z2

≈ 2
√

πγ−1
∫ |x0|+x

|x0|
dy ey2 ≈ 2

√
πγ−1|x|ex2

0 . (B.142)

Conversely, for x close to the gate and x0 > 0, the diffusion proceeds
down the potential and, according to the expansion (B.139) for y → ∞,

τdn(x → 0) = 2γ−1
∫ −|x0|

−|x0|+x
dy ey2

∫ y

−∞
dz e−z2

≈ γ−1
∫ −|x0|

−|x0|+x
dy

1
|y| = γ−1 ln

|x0|
|x0| − x

≈ γ−1 |x|
|x0| . (B.143)
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The times (B.142) and (B.143) are short compared to the time
(B.140), which is to a good approximation the longest time in the
system. Its reciprocal equals the reaction rate constant k [see (B.91)].
Equation (B.140) reconstructs the original Kramers result for the re-
action controlled by the overdamped motion in the parabolic potential
along the reaction coordinate (Hänggi et al., 1990). Equations (B.142)
and (B.143) present corrections to the Kramers theory for the initial
stage of a reaction (Kurzyński, 1997b), or determine steady-state flux–
force dependences (Sects. 9.3 and 9.5) in the protein-machine model
of intramolecular enzyme dynamics (see Appendix D.4).



C Structure of Biomolecules

C.1 Elementary Building Blocks

Animate matter is almost exclusively built from six elements:

• hydrogen H (60.5%),
• oxygen O (25.7%),
• carbon C (10.7%),
• nitrogen N (2.4%),
• phosphorous P (0.17%),
• sulfur S (0.13%).

The percentages of atomic abundance in the soft tissues of the mature
human body are given in brackets (Bergethon and Simons, 1990). The
remaining 0.4% are ions that control the electrolytic equilibrium:

• calcium Ca2+ (0.23%),
• sodium Na+ (0.07%),
• potassium K+ (0.04%),
• magnesium Mg2+ (0.01%),
• chloride Cl− (0.03%).

Two transition metal ions that are electron carriers, i.e.,

• iron Fe3+ ←→ Fe2+,
• copper Cu2+ ←→ Cu+,

and trace elements

• Mn, Zn, Co, Mo, Se, J, F, . . . ,

are much less abundant.
At the lowest level of chemical organization, animate matter is also

composed of a rather limited number of standard building blocks. One
can divide them into seven classes (Pauling and Pauling, 1975):

• carboxylic acids characterized by general formula R−COOH, dis-
sociated to anions R−COO− in a neutral water environment,



316 C Structure of Biomolecules

COO
-

CH3

COO
-

acetate

benzoate

COO
-

CH3

CH3 COO
-

oleate (unsaturated fatty acid)

palmitate (saturated fatty acid)

Fig. C.1. Four typical examples of carboxylic acids with purely hydrocarbon
substituents
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Fig. C.2. Four typical examples of alcohols with purely hydrocarbon sub-
stituents

• alcohols characterized by the general formula R−OH,
• monosaccharides characterized by the general formula (CH2O)n

with n = 5 (pentoses) or n = 6 (hexoses) and containing either
an aldehyde group −CHO (aldoses) or a ketone group −CO− (ke-
toses),

• amines characterized by general formula NH2−R, protonated to
cations NH+

3 −R in a neutral water environment,
• nitrogen heterocycles,
• phosphates characterized by the general formula R−O−PO2−

3 , dou-
bly dissociated in a neutral water environment,

• hydrosulfides characterized by the general formula R−SH.

The Rs are substituents that distinguish individual compounds. They
can be shorter or longer, open or closed hydrocarbon chains. Several
examples of carboxylic acids and alcohols are shown in Figs. C.1 and
C.2, respectively.
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A chemical compound is definitely identified only if the spatial
structure of its system of covalent bonds (constitution) is described
explicitly, because two or more different compounds can happen to
have the same atomic composition (the phenomenon of isomerism).
In organic chemistry, to simplify the notation of structural formulas
characterizing the molecular constitution, we often omit the carbon C
and hydrogen H symbols and leave only a lattice of covalent bonds
between the carbon atoms. When interpreting schemes like those pre-
sented in Figs. C.1 and C.2, it is assumed that, at all vertices of lattices
shown, the carbon atoms are completed by an appropriate number of
hydrogen atoms to preserve the fourfold carbon valency.

Figure C.3 shows the three most important examples of monosac-
charides: glucose, fructose and ribose. Under physiological conditions,
the majority of monosaccharide molecules form a ring structure closed
by an oxygen atom that originates from breaking the double carbon–
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glucose fructose ribose

Fig. C.3. Three important examples of monosaccharides: glucose, fructose
(hexoses) and ribose (pentose). The glucose and ribose rings are closed by
an oxygen coming from an aldehyde group. The fructose ring is closed by an
oxygen coming from a ketone group. α anomers are shown in the upper row
and β anomers in the lower row
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Fig. C.4. Several important examples of heterocycles. Pyrimidine is a direct
modification of benzene, and purine is a direct modification of indene. No
purely hydrocarbon homologues of pyrrole and imidazole exist. Porphyrin,
the main component of heme and chlorophyll, is formed from four pyrrole
rings

oxygen bond in an aldehyde or a ketone group. Just before closing
the monosaccharide ring, a rotation can take place about the single
carbon–oxygen bond, and this results in the formation of two ring iso-
mers, α and β. Because of the low activation energy, they are often
called anomers. At physiological temperatures, the β anomer is twice
as abundantly occupied as the α anomer.

Nitrogenous heterocycles are modifications of aromatic hydrocar-
bons in which a singly hydrogenated carbon (CH) is replaced by N.
Figure C.4 shows the most important examples.

The simplest examples of phosphates are the orthophosphate
H−O−PO2−

3 , a doubly dissociated anion of orthophosphoric acid
known in biochemistry as an inorganic phosphate (Pi), and the py-
rophosphate H−O−PO+

2 −O−PO2−
3 , a triply dissociated anion of py-

rophosphoric acid known in biochemistry as an inorganic diphosphate
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Fig. C.5. Examples of organic compounds with two functional groups

(PPi). Phosphates will be considered further in the context of phos-
phodiester bonds.

Hydrosulfides R−SH are structurally similar to hydroxides (al-
cohols) R−OH. However, they differ by forming not only thioester
R−CO−S−R′, but also (after reduction) disulfide R−S−S−R′ bonds.

Elementary organic building blocks very often belong simultane-
ously to two or more classes listed above. This means that the sub-
stituent R, besides a hydrocarbon component, comprises also an addi-
tional functional group or serves as such a group. Thus, we can have
simple carboxylic acids with ketonic −CO−, hydroxylic −OH or pro-
tonated aminic −NH+

3 groups (keto, hydroxy and amino acids, respec-
tively) or, e.g., aminated heterocycles or phosphorylated saccharides
and alcohols (Fig. C.5).

C.2 Generalized Ester Bonds

The reaction between a carboxylic acid and an alcohol is of special
importance in organic chemistry. The product is referred to as an ester ,
with a characteristic ester bond −CO−O− (Fig. C.6a). Alcohol in
the esterification reaction can be replaced by an amine to form an
amide with an amide bond −CO−NH− (Fig. C.6b). Carboxylic acid,
on the other hand, replaced by phosphate forms a phosphodiester bond
−O−PO−

2 −O− (Fig. C.6c). Phospholipids, the main component of
biological membranes, are double esters of fatty acids and glycerol
and, simultaneously, phosphodiesters (Fig. C.7).
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Fig. C.6. Formation of the ester bond (a) and its generalization to amide (b),
phosphodiester (c) and glycosidic (d) bonds. The circular ring represents any
monosaccharide ring closed by an oxygen atom neighboring a carbon atom
taking part in the glycosidic bond. The carboxylic and phosphate groups are
assumed to be dissociated

Monosaccharides behave both as alcohols and as carboxylic acids.
From their open structure (Fig. C.3), it follows that the carboxylic
properties are characteristic of −OH groups bound to the carbon atom
neighboring the oxygen atom that closes the saccharide ring. The gen-
eralized ester bond formed by such a group with another hydroxylic
−OH group with alcoholic properties is referred to as a glycosidic
bond (Fig. C.6d). The alcohol hydroxylic group can be replaced by the
−NH2− group of some nitrogenous heterocycles that are derivatives
of pyrimidine and purine. Such a bond is called an N-glycosidic bond.
Compounds of ribose with nitrogenous heterocycles (or nitrogenous
bases as the −NH2− groups are good proton acceptors) are referred
to as nucleosides and their phosphates as nucleotides (Fig. C.8).

The chemical equilibrium of all the four reactions presented in
Fig. C.6 is strongly shifted to the left, toward hydrolysis rather than
synthesis of the bond. The formation of the generalized ester bond
needs an additional source of free energy. It therefore proceeds along

R3OHH
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H
+

R1 HCO O
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H
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R2 HCO O
-

H OOH

OH

O

H

H O

H O PO
-
2

O
-

Fig. C.7. Phospholipids originate as a result of triple esterification of phos-
phoglycerol (see Fig. C.5)
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Fig. C.9. (a) Formation of ATP (adenosine triphosphate) from AMP (adeno-
sine monophosphate) and PPi (inorganic diphosphate). (b) Hydrolysis of
ATP to ADP (adenosine diphosphate) and Pi (inorganic phosphate)

a more complex pathway than the one presented in Fig. C.6. Uni-
versal donors of biological free energy are nucleoside triphosphates,
mainly ATP (adenosine triphosphate). Hence, the formation of the
generalized ester bonds usually proceeds simultaneously with the hy-
drolysis of ATP to ADP (adenosine diphosphate) (see Fig. C.9b). The
ATP itself originates from AMP (adenosine monophosphate) as a re-
sult of phosphodiester bond formation with inorganic diphosphate PPi

(Fig. C.9a).
All three kinds of biological macromolecule, i.e., polysaccharides,

proteins and nucleic acids, are built from the elementary entities
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Fig. C.10. (a) Polysaccharides (the case of glycogen) are polymers of
monosaccharides linked by glycosidic bonds. (b) Proteins are linear poly-
mers of amino acids linked by amide bonds. Ri denote side chains of the
successive amino acids. (c) Nucleic acids are linear polymers of nucleotides
linked by phosphodiester bonds. Bi denote the successive nitrogenous bases.
X = OH in the case of RNA (ribonucleic acids) and X = H in the case of
DNA (deoxyribonucleic acids)

monosaccharides, amino acids and nucleotides, respectively, linked by
generalized ester bonds.

Polysaccharides are polymers of monosaccharides linked by glyco-
sidic bonds (Fig. C.10a). The polymers can be either linear (e.g., cel-
lulose, chitin or amylose – a type of starch which is the main storage
polysaccharide in plants) or branched (e.g., amylopectin, another type
of starch, or glycogen, the main storage polysaccharide in animals).
Small polysaccharides are called oligosaccharides and very small ones
are called disaccharides, trisaccharides, etc.

Proteins are linear polymers of amino acids linked by amide bonds
(Fig. C.10b). Small proteins are called peptides, and amide bonds are
often called peptide bonds.

Nucleic acids are linear polymers of nucleotides linked by phospho-
diester bonds (Fig. C.10c). Note that in dinucleotites, which often ap-
pear as cofactors of protein enzymes, two component nucleotides are
linked by phosphotriester rather than phosphodiester bonds. Exam-
ples are NAD+ (nicotinamide adenine dinucleotide) and FAD (flavin
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adenine dinucleotide), two molecules that carry electrons jointly with
protons in the form of hydrogen atoms, considered in Chaps. 4 and 5.

A more systematic but nevertheless compact introduction to the
foundations of organic chemistry can be found in Chap. 13 of the
textbook by Pauling and Pauling (1975).

C.3 Directionality of Chemical Bonds

The spatial structures of biomolecules, so important for their function,
are related to directional properties of chemical bonds. These proper-
ties are in turn determined by the spatial distribution of electronic
states of the constituent atoms. The hydrogen atom contributes only
one s-orbital to chemical bonding, while carbon, nitrogen and oxygen
atoms contribute one s-orbital and three p-orbitals, and phosphorous
and sulfur atoms can contribute another five d-orbitals (Atkins, 1998,
Chap. 14).

Figure C.11a outlines the spatial distribution of the electron prob-
ability density in the s- and p-orbitals. One s-orbital and three p-
orbitals can hybridize into four orbitals of tetrahedral symmetry
(sp3 hybridization), and one s-orbital and two p-orbitals can hy-
bridize into three orbitals of trigonal symmetry (sp2 hybridization)
(see Fig. C.11b). Two orbitals of digonal symmetry coming from sp
hybridization play no practical role in biochemistry.

The carbon atom has four electrons on the outer shell, organized
into four sp3 hybridized orbitals. It needs four additional electrons
for those orbitals to be completely filled. As a consequence, it can
bind four hydrogen atoms, each giving one electron and admixing its
own s-orbital to the common bonding σ-orbital with axial symmetry
(Fig. C.12).

The nitrogen atom has five electrons in four sp3 hybridized orbitals.
It needs only three additional electrons and thus binds three hydro-
gen atoms. The ammonia molecule formed, like the methane molecule,
has tetrahedral angles between the bonds. However, one bond is now
replaced by a lone electron pair (Fig. C.12). The oxygen atom has six
electrons in four sp3 hybridized orbitals. It binds two hydrogen atoms
and has two lone electron pairs (Fig. C.12). As a consequence of sp3

hybridization, the nitrogen and oxygen atoms have highly directed neg-
ative charge distributions, leading as we shall see to hydrogen bonding,
essential for the spatial structures of all biomolecules.

By replacing one hydrogen atom H in methane, ammonia and wa-
ter by the methyl group CH3, one obtains ethane, methylamine and
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Fig. C.11. (a) Outline of the spatial distribution of electron probability
density in an s-orbital and three p-orbitals. (b) Four orbitals of tetrahedral
sp3 hybridization and three orbitals of trigonal sp2 hybridization

methanol, respectively (Fig. C.13). The CH3 can rotate around the
C−C, C−N, or C−O bonds. The lowest value of the potential en-
ergy of the molecule is found for the electron densities of one triple of
atoms or lone electron pairs located between the electron densities of
the other triple of atoms when looking along the rotation axis.

In the cases of ethane, methylamine, and methanol, a 120◦ (2π/3)
rotation does not lead to a structural change of the molecule. However,
if the other triple has free electron pairs or atoms other than hydrogen,
a rotation around the central covalent bond may lead to a new confor-
mational state of the molecule (Pauling and Pauling, 1975, Chap. 7).
Such a state cannot be reconstructed from the original state by either
a translation or a rigid body rotation. Various conformational states
become geometrically significant for long molecular chains, e.g., hy-
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drocarbons, which can exist both in maximally stretched linear forms
and as folded clusters. A rotation around each covalent bond in the
chain allows one conformational trans state and two gauche states
(Fig. C.14a).

If we ignore the steric constraints (excluded volume effects) that
rapidly emerge in longer chains and constitute a separate and signifi-
cant problem, the differences between equivalent conformational states
of a single bond amount to several kJ/mol, while the potential energy
barrier height is on the order of 10 to 20 kJ/mol (Fig. C.14b). This
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Fig. C.14. (a) Conformational states related to rotation around one cova-
lent bond. R1 and R2 are atoms or molecular groups (in the case of longer
chains) other than atomic H. (b) The potential energy related to the ro-
tation around a single covalent bond. The three minima correspond to the
three conformational states: one trans and two gauche. They are separated
by energy barriers with heights of 10 to 20 kJ/mol

corresponds to four to eight times the value of the mean thermal en-
ergy kBT = 2.5 kJ/mol at physiological temperatures. The probability
of a random accumulation of such an amount of energy in one degree
of freedom, defined by the Boltzmann factor, i.e., the exponential of
its ratio to kBT , exp(−Δ/kBT ), equals 10−2 to 10−4. The latter value
multiplied by the average frequency of thermal vibrations, 1013 s−1,
gives 1011 to 109 random local conformational transitions per second
at physiological temperatures. A conformational state of a molecule is
not therefore very stable.

In the case of closed chains (unsaturated cyclic hydrocarbons or
monosaccharides), 120◦ rotations around individual bonds are not pos-
sible without breaking them. Hence, conformational transitions involve
much smaller rotations that are simultaneously applied to many bonds.
The process is called ring puckering since an entirely flat conformation
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envelope half-chair chair twist boat

Fig. C.15. Envelope and half-chair conformations of five-atom rings, and
chair, twist and boat conformations of six-atom rings

becomes energetically unstable. In the case of a five-atom ring, we dis-
tinguish the conformations of an envelope and a half-chair . In the case
of a six-atom ring we distinguish the conformations of a chair , a twist
and a boat (Fig. C.15).

Not all transitions between different energetically stable geomet-
rical structures can be achieved by simple rotations around covalent
bonds involving small energy barrier crossings. A mutual exchange of
hydrogens with hydroxyl groups of monosaccharide rings (see Fig. C.3)
is not possible without covalent bond breaking and its subsequent
restoration. Table C.1 lists some of the biologically important bond
lengths and bond energies (Atkins, 1998, Chap. 14). It can be seen
that the process of a single covalent bond breaking and restoration
requires an energy of about 300 kJ/mol. This is one and a half orders
of magnitude greater than the energies mentioned earlier. Various geo-
metrical forms of chemical molecules with the same summary formulas
but requiring bond breaking and bond restoration are called isomers.
It is easy to imagine a large diversity of such isomers even for simple
monosaccharides. Isomers differ in the location of hydrogen atoms and
hydroxyl groups and in the position of the oxygen bridges. Hexoses
can form both five- and six-atom rings (see the structures of glucose
and fructose in Fig. C.3).

Half the monosaccharides are simple mirror images of their counter-
parts. Such isomers are called enantiomers and the phenomenon itself
is called chirality . This refers to the symmetry-breaking of handedness
(left/right invariance), from the analogy with human hands. In fact
the term comes from the Greek word ‘cheir’ meaning ‘hand’. Ignoring
specific relations with double bonds, steroisomerism is usually linked
to the existence of at least one carbon atom in the molecule whose four
covalent bonds are all inequivalent in that they lead to different atoms
or groups of atoms. Chiral molecules are optically active, twisting the
light polarization plane to the left or right.

Enantiomers are divided into L- and D-types. Their definitions are
based on the simplest monosaccharide, glyceraldehyde (Fig. C.16). L-
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Table C.1. Lengths and energies of biologically important covalent bonds.
Note: 1 kJ/mol = 0.24 kcal/mol = 1.0 × 10−2 eV/bond = 0.40 kT/bond at
300 K

Bond length Energy
[nm] [kJ mol−1]

C−C 0.154 350
C=C 0.134 610
C−N 0.147 300
C=N 0.126 610
C−O 0.143 360
C=O 0.114 740
C−S 0.182 260
S−H 0.135 340
C−H 0.114 410
N−H 0.101 390
O−H 0.096 460
H−H 0.074 440

D-glyceraldehydeL-glyceraldehyde

CH2OH
H

OH
OHC

OHH

CH2OH
OHC

Fig. C.16. Two enantiomers of glyceraldehyde. Thick continuous lines rep-
resent bonds that point to the observer, whereas thick dashed lines represent
bonds that point from the observer

type monosaccharides are derivatives of L-glyceraldehyde. Similarly,
D-type monosaccharides are derivatives of D-glyceraldehyde. By defi-
nition D-glyceraldehyde twists the polarization plane to the right, but
this is not generally the case for all D-type monosaccharides. Further-
more, all amino acids except for glycine are chiral, which is linked
to the fact that the central carbon Cα has four inequivalent bonds.
Therefore, we have both D-amino acids and L-amino acids. Chemists
have adopted an unambivalent way of transferring the determination
of D- and L-type enantiomers from the defining glyceraldehydes onto
other compounds different from monosaccharides. This is a little too
complicated for our purposes, so we will not dwell on it here. We only
wish to note that all biologically active monosaccharides are D-types,
while all biologically active amino acids are L-types.
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Fig. C.17. (a) A double bond consists of a σ-bond formed by orbitals in
sp2 hybridization and a π-bond formed from p-orbitals perpendicular to the
previous ones. (b) Planar molecules of ethylene, imine, and formaldehyde

Let us now consider the bonds formed by electron orbitals in trig-
onal hybridization sp2. Using these orbitals, two carbon atoms can
form σ-bonds (with axial symmetry) among themselves and with the
other four atoms that lie in the same plane, for example hydrogen. The
remaining p-orbitals perpendicular to this plane, one for each carbon
atom, then form a second, slightly weaker bond between these atoms.
This is called a π-bond (see Fig. C.17a). A planar molecule of ethylene
is formed in which two carbon atoms are bound together via a double
bond. If one carbon atom is replaced by a nitrogen atom, with an extra
electron, and simultaneously one hydrogen atom is replaced by a lone
electron pair, we obtain an imine molecule. If, on the other hand, one
carbon atom is replaced by an oxygen atom with two excess electrons
and simultaneously two hydrogen atoms by two lone electron pairs, we
obtain a formaldehyde molecule (Fig. C.17b). Table C.1 lists the most
important double bond lengths and energies.

Double bonds can exist in longer chain molecules, for example,
unsaturated hydrocarbons. For each double bond, two energetically
stable spatial structures can occur, each obtained from the other by a
180◦ rotation. A rotation around a double bond requires a temporary
breakage of the π-bond, and hence an energy of nearly 300 kJ/mol (see
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Fig. C.18. Configurational trans and cis isomers are related via rotation
through one double bond. R1 and R2 denote atoms or molecular groups other
than H

Table C.1). Hence, both structures are isomers rather than conformers.
They are called trans and cis configurational isomers (Fig. C.18).

The π-bonds often occur in a delocalized form. In the famous his-
torical case of the benzene molecule C6H6 (Fig. C.19a), one can imag-
ine two symmetrical Kekule structures in which every other carbon–
carbon bond is a double bond. Which of these two structures is actu-
ally adopted by the molecule? Are both represented statistically in the
population of identical molecules with the same probability? Answers
to these questions come from quantum mechanics. The actual state
of each benzene molecule is a quantum-mechanical linear combination
of the two states defined by the Kekule structures. The π-bond is not
localized on every other carbon pair, but rather delocalized over the
entire ring. An electric current circulates around the ring and can be
induced by magnetic fields and other electric currents. Due to such
planar interactions in benzene rings and also in other aromatic hetero-
cycles (e.g., in purine and pyrimidine bases), their compounds have a
tendency for parallel stacking . Effectively, each carbon pair is allocated
one half of a π-bond, which justifies the commonly accepted notation
(Fig. C.19a).

The π-bond between carbon and oxygen in a dissociated carboxyl
group −COO− is also delocalized (Fig. C.19b). This group can be en-
visaged as a planar, negatively charged plate with a rotational degree
of freedom around the axis that connects one carbon atom to the next
atom. The phosphodiester bond (Fig. C.19c) exhibits similar behav-
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Fig. C.19. Delocalization of π-bonds in the case of benzene (a), a carboxylic
anion (b), a phosphodiester bond (c), an orthophosphate anion (d), and an
amide bond (e)

ior, except that the phosphorus atom is connected to the rest of the
molecule via two single bonds, each of which provides a rotational axis.

The delocalization of the π-bond in the case of the orthophosphate
group −PO2−

3 is more complicated. A double bond can be established
between carbon and each of the three oxygen atoms. Another possi-
bility is a state involving transfer of an electron from the phosphorus
atom onto a hitherto neutral oxygen atom. The actual state of the
group is a linear combination of all four possibilities (Fig. C.19d). Bio-
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chemists represent the entire orthophosphate group using the symbol
P drawn within a small circle.

The delocalization of the π-bond in the orthophosphate group is
related to a high energy which is stored in a phosphodiester bond in
ATP. As a result of ATP hydrolysis into ADP and an inorganic phos-
phate Pi, two phosphodiester bonds and one orthophosphate group are
replaced by one phosphodiester bond and two orthophosphate groups
(see Fig. C.9b). In the latter arrangement π-electrons are more delocal-
ized. The negative delocalization energy in connection with additional
negative energy of hydration causes the products of ATP hydrolysis to
have lower energy than the products of hydrolysis of other generalized
ester bonds.

An electron transfer also takes place in the case of amide (peptide)
bonds (Fig. C.19e). Due to partial delocalization of the π-bond, the
amide bond structure becomes planar. All four O, C, N and H atoms
lie in one plane, which is an important element of the protein structure
discussed later in this appendix.

C.4 Hydrogen Bond. Amphiphilic Molecules
in Water Environments

The fact that nitrogen and oxygen atoms possess one and two lone
electron pairs, respectively, has enormous consequences for the spatial
organization of the four most important classes of biomolecules: lipids,
polysaccharides (carbohydrates), proteins and nucleic acids. The nega-
tive lone electron pairs distributed on tetrahedrally oriented σ-orbitals
attract positively polarized hydrogen atoms of other molecules form-
ing hydrogen bonds with them (Atkins, 1998). The energy of hydro-
gen bonds is comparable to the potential barrier heights for rotations
around single covalent bonds, i.e., it ranges between 10 and 20 kJ/mol.
The processes of reorganization of the system of hydrogen bonds, their
breakage and restoration possibly in new locations, take place at a rate
that is comparable to conformational transitions and to all intents and
purposes are indistinguishable from them.

Water is the simplest system in which the structure and dynamics of
hydrogen bonds play fundamental roles (Eisenberg and Kautzmann,
1969). Each oxygen atom, in addition to covalent bonds within the
same water molecule, can form two hydrogen bonds with other water
molecules (Fig. C.20). The structure of crystalline ice with completely
saturated hydrogen bonds is highly ordered but has lower density than
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Fig. C.20. Locally saturated system of hydrogen bonds (dotted lines) in
water

the disordered structure of liquid water with globally unsaturated hy-
drogen bonds. To determine which structure is more stable at a given
temperature T , one uses the condition of free energy minimum, where
the free energy is (see Chap. 3)

F = E − TS , (C.1)

and the internal energy E favoring order competes with the entropy S
favoring disorder. The higher the density of the system, the lower the
internal energy E, and the more hydrogen bonds are formed the lower
the entropy S, hence the greater the value of the term −TS.

The system of hydrogen bonds in water determines its main biologi-
cally significant properties: high specific heat capacity, high latent heat
of melting, high electric susceptibility, and specific dynamic properties
that will be discussed in Appendix D. This system also determines the
water solubility properties of various molecules.

Molecules capable of forming hydrogen bonds with water, e.g., sug-
ars or alcohols, increase the disorder in the system of hydrogen bonds
and hence increase entropy leading to free energy reduction. The pro-
cess of solvation is thermodynamically favorable in this case. Molecules
that do not form hydrogen bonds but are electrically charged, or at
least have high dipole moments, reduce the electrostatic energy of
the system, and their solvation is also thermodynamically favorable
in spite of introducing order into the hydrogen bond distribution.
Molecules which do not form hydrogen bonds and are uncharged and
non-polar, e.g., long hydrocarbon chains or aromatic rings, only order
the water environment (Fig. C.21), but do not contribute to the energy
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Fig. C.21. In water surroundings of non-polar hydrocarbon chains or aro-
matic rings, the hydrogen bond system is ordering and local ‘icebergs’ are
formed. This reduces entropy and hence increases free energy

of the system and hence are not water soluble. We refer to them as
hydrophobic (water fearing), in contrast to hydrophilic soluble particles
(Tanford, 1980).

Interesting physical phenomena take place when amphiphilic mole-
cules, containing both a hydrophilic and a hydrophobic moiety, are
placed in an aqueous environment (Tanford, 1980; Evans and Wenner-
ström, 1999; Hamley, 2000). Among biological systems, examples of
such amphiphilic molecules are phospholipids (see Fig. C.7) and sim-
ilar to them sphingolipids (Stryer et al., 2002, Chap. 12). Their polar
head is hydrophilic and their two hydrocarbon tails are hydropho-
bic. Surfactants (superficially active molecules, e.g., soap) have a hy-
drophilic head and one hydrophobic tail. In a water environment, to
minimize free energy, amphiphilic molecules spontaneously organize
into spherical micelles (usually the case of one-tail molecules) or bi-
layers (usually the case of two-tail molecules). These structures allow
the amphiphilic molecules to have their hydrophilic head groups facing
outside and hydrophobic tails inside (Fig. C.22a). Bilayers can close
up to form three-dimensional vesicles which, when sufficiently large,
contain a hierarchy of internal vesicles and are referred to as liposomes.
When the amount of solvent becomes too small, liposomes unfold to
form lamellae, in which consecutive bilayers are placed parallel to each
other (Fig. C.22b).

Micelles, vesicles and liposomes are lyophilic (they like solvents)
colloidal (5 to 500 nm in diameter) particles, and when dispersed in
water form a spatially inhomogeneous dispersive structure called a
sol . A decrease in water content results in an unfolding process of
liposomes into lamellae and a transition of the sol into a spatially
homogeneous lamellar phase with successive bilayers of amphiphiles
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vesicle

micelle

lamelle

bilayer

(a)

(b)

liposome

Fig. C.22. (a) Structures created by amphiphilic molecules in a water envi-
ronment: micelles and bilayers. (b) From vesicles through liposomes to lamel-
lae. White circles denote hydrophilic head groups, while line segments denote
one or two hydrophobic tails

divided by monomolecular layers of water. In the lamellar structure,
molecular orientation is ordered, but molecular spatial arrangement is
not. Hence, the lamellar phase is a special example of a liquid crys-
tal (Fig. C.23). A spatial ordering of the molecular heads is possible
at lower temperatures when translational degrees of freedom become
frozen. The liquid crystal transforms into a solid crystal . Lowering the
temperature also causes translational degrees of freedom to freeze in
the sol phase. The liposomes and vesicles become unfolded and wa-
ter is allowed to penetrate their interior. The sol undergoes a phase
transition into a gel . Figure C.23 presents only the main characteris-
tics of the phase diagram of an amphiphilic molecule–water system.
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Fig. C.23. Simplified phase diagram of an amphiphilic molecule–water sys-
tem as a function of temperature and water content

In fact, the diagram is much more complex and depends on particu-
lar properties of the amphiphilic molecules (Tanford, 1980; Evans and
Wennerström, 1999; Hamley, 2000).

For biological systems, the sol phase is optimal since it contains
vesicles or liposomes of appropriate sizes. The stability and mechani-
cal properties of a bilayer at physiological temperatures are controlled
by an appropriate chemical composition of phospholipids and sphin-
golipids, and also by cholesterol (see Fig. C.2), which stiffens the bi-
layer. Such a lipid bilayer integrated with built-in protein molecules
forms a biological membrane. Proteins of the membrane can perform
various functions such as those of immobilized enzymes, channels,
pumps, receptors, signal generators, and constituents of a membrane
skeleton. An important immunological role is played by carbohydrates
of glycolipids and glycoproteins on the outer face of the cytoplasmic
membrane.

C.5 Protein Structures

Proteins are linear polymers of amino acids (to be more exact, of L-
enantiomers of α-amino acids, with a side chain from the central Cα

atom) linked by amide (peptide) bonds −CONH− (Fig. C.24a). In
each polypeptide chain we distinguish the N (amine) and the C (car-
boxyl) termini. Successive amino acids are numbered starting from
the N terminus. The formation of a peptide bond is an endoergic reac-
tion and needs free energy, which is usually released in GTP (guanine
triphosphate) hydrolysis. The sequence in which the individual amino
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Fig. C.24. Chemical structure of proteins. (a) The main chain. Consecutive
amino acids with central carbon atoms Cα

i and characteristic side chains Ri

are connected by amide bonds −CONH− in the planar trans configuration.
(b) The way proline is attached to the main chain. (c) Disulfide bridges
made by cysteine side chains. (d) Hydrogen bonds between amide groups of
the main chain. The notation of dihedral angles is shown

acids of definite side chains occur along the main chain of a protein is
strictly fixed and genetically determined. We refer to it as the primary
structure of the protein.

There are 20 ‘canonical’ amino acids. Figure C.25 shows their side
chains and the notation used. Three amino acids play special roles in
the spatial structure of proteins. We refer to them as structural amino
acids. The first is glycine (Gly or G); it has a side chain reduced to a
single hydrogen atom. The small side chain produces no serious steric
hindrance and enables almost free rotation of the main chain about
the neighboring Cα−N and Cα−C bonds. The site at which glycine
is situated behaves like a ball joint in the polypeptide chain. Proline
(Pro or P) is an imino acid. It attaches the main chain through the two
bonds (Fig. C.24b) and makes it locally rigid and looped in a defined
manner. The third structural amino acid, cysteine (Cys or C), forms
relatively strong covalent bonds (disulfide bridges) after oxidation and
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Fig. C.25. Side chains of 20 canonical amino acids and their division into
three main groups. Dots denote central Cα atoms

pieces together distant sites of a single polypeptide chain and separate
chains composing the protein macromolecule.

The concept of primary structure is identical to that of chemi-
cal structure (constitution). This completely determines the system
of covalent bonds in the protein macromolecule and hence also in-
cludes information about the disulfide bridges which form sponta-
neously during protein synthesis on the ribosome. However, after com-
pletion of this process, most proteins are subjected to additional chem-
ical modifications. The modification may involve cutting off fragments
of the main chain, methylation of some charged side chains leading to
charge neutralization, or phosphorylation of side chains ending with
hydroxyl groups which endows an originally neutral chain with a neg-
ative charge. Enzymatic proteins often form permanent bonds with
different prosthetic groups (coenzymes), while the external proteins of
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cell membranes undergo glycolization, as a result of which glycopro-
teins with up to 80% saccharide component are formed. The process of
protein biosynthesis ends with a spontaneous formation of supramolec-
ular structures, e.g., multienzyme complexes.

The spatial structure of a protein macromolecule of a given primary
structure is determined by local conformations of the main and side
chains as well as a system of noncovalent (secondary) bonds (Schulz
and Schirmer, 1979; Creighton, 1992; Fersht, 1999). The commonly ac-
cepted notation of dihedral angles in the polypeptide chain is shown in
Fig. C.24. In the absence of steric hindrances, rotation about the single
bonds C−C, C−N, C−O and C−S allows three stable local conforma-
tions (one trans and two gauche, see Fig. C.14), unless the rotation
involves planar carboxylic, amidic or aromatic rings (Fig. C.19) which
would allow two stable conformations. Individual conformations can
differ in energy by a few kJ/mol and are separated by barriers with
heights from 10 to 20 kJ/mol originating from van der Waals and
electrostatic multipolar interactions (Fig. C.14).

Only rotations around covalent bonds distant from Cα atoms
(branching sites of the polypeptide chain) are usually unhindered, if
one does not take into account the long-range excluded volume effects.
This applies to angles χ2, χ2, χ3, etc., describing internal conforma-
tions of longer side chains if not branched (Fig. C.24).

The peptide bond CO−NH, as discussed in Appendix C.3, is in
part a double bond and may exist as two configurational trans and cis
isomers (Fig. C.18). The potential energy barrier height is determined
by the delocalization energy and approaches 80 kJ/mol. This is why
peptide bonds occur as a single local configurational isomer, almost
exclusively in trans form. The only exception is a peptide bond neigh-
boring a proline residue (Fig. C.24b) in which the part with the polar
structure is smaller, thereby lowering the trans to cis transformation
barrier to 50 kJ/mol.

The presence of bulky side chains of amino acids always brings
about steric hindrance for angles φ and ψ, making the corresponding
local conformations mutually dependent. Figures C.25a and b show
the region sterically allowed for angles φ and ψ (the Ramachandran
map) separately, for glycine and arbitrary side chains different from
glycine. Glycine behaves just like a ball joint: the sterically allowed
region is connected and exceeds 50%. For the remaining side chains,
the three distinct, much smaller, sterically allowed regions correspond
to three distinct, cooperative conformations of the pair (φ, ψ). Strictly
speaking, because rotation about the angle χ1 is hindered for some



340 C Structure of Biomolecules

(a)

�	
�	

�	

�	�




(b)

�	
�	

�	

�	�



�

�
� ’

(c)

�	
�	

�	

�	�




Fig. C.26. Sterically allowed regions for angles φ and ψ (Ramachandran
map) for glycine (a) and an arbitrary side chain different from glycine (b).
All atoms involved in peptide bonds are assumed to be rigid spheres of an
appropriate van der Waals radius. Configurations of the α-helix as well as par-
allel and antiparallel β-pleated sheets (β and β′, respectively) are indicated.
(c) Number of sterically allowed conformations for the angle χ1 depending
on the value of φ and ψ. For residues with one side carbon atom third from
Cα, blackened , heavily shaded and lightly shaded regions correspond to three,
two and one conformation, respectively. For residues with two side carbon
atoms third from Cα (threonine, valine and isoleucine), shadings correspond
to three, two, and zero conformations, respectively. For alanine three rota-
tional conformations are allowed everywhere

values of angles φ and ψ, the whole triple (φ, ψ, χ1) should be treated
as a single unit. The number of sterically allowed local conformations
for the angle χ1 is shown against the background of the Ramachandran
map in Fig. C.25c.

The secondary bonds in proteins are mainly hydrogen bonds. Their
energy, 10 to 20 kJ/mol, is comparable to potential barriers for transi-
tions between the local conformations of protein chains. It is reasonable
to distinguish hydrogen bonds within the polypeptide backbone from
those formed by side chains.

The hydrogen bonds within the main chain link nitrogen and oxy-
gen atoms of distinct amide groups (Fig. C.24d). A regular pattern in
which hydrogen bonds are organized in the polypeptide backbone with-
out reference to side chain types is traditionally known as a secondary
structure of the protein. Two main secondary structures are distin-
guished. The α-helix is a helical arrangement of a single polypeptide
chain with hydrogen bonds between each carbonyl group at position i
and a peptide amine at position i+4 (Fig. C.27a). In β-pleated sheets,
hydrogen bonds are also realized in completeness but they link differ-
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Fig. C.27. (a) α-helix structure. (b) and (c): Parallel and antiparallel β-
pleated sheets, respectively

ent strands of a polypeptide chain placed in a parallel or antiparallel
manner (Fig. C.27b and c).

Assuming all peptide bonds occur in trans conformation, the val-
ues of the dihedral backbone angles are φi = −57◦, ψi = −47◦ for
the α-helix, φi = −119◦, ψi = 113◦ for the parallel β-pleated sheet,
and φi = −139◦, ψi = 135◦ for the antiparallel β-pleated sheet. These
positions lie within two distinct sterically allowed regions of angles φ
and ψ (Fig. C.26b) and coincide almost exactly with two main min-
ima of the potential energy as a function of these angles, although it
is energetically profitable for planar β-sheet structures to be slightly
twisted. The system of hydrogen bonds in the α-helix and β-pleated
sheet structures considerably stabilize local backbone conformations.
This is why fragments of both secondary structures are so abundant
in protein macromolecules.

However, there is also a need for the main chain to form reverse
turns in addition to participating in regular α and β secondary struc-
tures. Some turns are standard, but most turns are nonstandard and
contain no backbone hydrogen bonds. In these, the structural amino
acids glycine and proline play this part. A complete distribution of all
hydrogen bonds within the polypeptide backbone can be considered
as composed of fragments of secondary structures linked by standard
reverse turns and shorter or longer nonstandard sections of the main
chain. An example of such an organization is shown in Fig. C.28d. Hy-
drogen bonds formed by side chains compete with backbone hydrogen
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(a) (b)

(d)(c)

Fig. C.28. Various ways of presenting the spatial structure of the chy-
motrypsin molecule. (a) The atoms different from hydrogen are represented
by spheres of the corresponding van der Waals radius. (b) Atoms are repre-
sented as small balls and bonds as sticks. (c) The route of the main chain
(backbone). (d) The component secondary structure elements. The regions
of α-helices are represented by helical ribbons and strands of β-structure are
represented by broad arrows pointing to a C-terminal. All the drawings were
made using the program Rasmol on the basis of Protein Data Bank (pdb)
entry 1AB9 (Yennavar et al., 1994)

bonds and this fact, together with the position of structural amino
acids, largely determines which sections of the main chain (chains) do
not participate in secondary structures. All charged and polar amino
acid side chains (see Fig. C.25) are involved in hydrogen bond forma-
tion. They bind mainly with surrounding water molecules, but also
with carbonyl and amidic groups of the main chain.
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Charged amino acids: aspartate (Asp, D), glutamate (Glu, E), ly-
sine (Lys, K), arginine (Arg, R), as well as charged C and N termini of
the main chains are also able to form ionic bonds (salt bridges), apart
from the usual hydrogen bonds. Ionic bonds can be formed both with
free counter-ions occurring in the surroundings and between the men-
tioned groups. All ionic bonds, when immersed in an environment of
high dielectric constant (water, or regions of the protein interior with
high polar group concentration) are only slightly stronger than the
usual hydrogen bonds. Other secondary bonds between the residues
set out along the main chain, the van der Waals bonds, are much
weaker still (0.1 to 0.2 kJ/mol).

The side chains of all amino acids involved determine the native
conformation of a protein. Some canonical amino acid side chains are
hydrophobic and some are hydrophilic (Fig. C.25). All the hydrophobic
side chains try to concentrate in the centers of protein molecules, away
from the aqueous environment. Hydrophilic side chains are attracted
to the outsides of molecules in order to lower the free energy by making
contact with the environment.

The fundamental structural unit of a protein is a domain com-
posing roughly one to two hundred amino acid residues (Janin and
Wodak,1983; Creighton, 1992). It has a hydrophobic interior and a
more or less hydrophilic surface. If the surface is completely hy-
drophilic, protein can occur as a water-soluble, single-domain molecule.
Partly hydrophobic surfaces ensure domain contacts in multi-domain
protein macromolecules. Figure C.28 shows an example of the water-
soluble two-domain protein, chymotrypsin. Specific organization of
surface hydrophobic amino acids also ensures the formation of protein
supramolecular complexes or proteins joining the lipid membranes. On
the other hand, specific organization of surface hydrophilic amino acids
can result in non-covalent binding of proteins to nucleic acids.

C.6 Nucleic Acid Structures

Nucleic acids are linear polymers of nucleotides linked by phospho-
diester bonds −O−PO−

2 −O− (Fig. C.29). Two kinds of nucleic acid
are distinguished: ribonucleic acid (RNA) and deoxyribonucleic acid
(DNA). The sugar ribose that occurs in RNA is replaced by the sugar
deoxyribose with one missing oxygen atom in DNA. Five carbon atoms
in ribose and deoxyribose are numbered from 1′ to 5′. Accordingly, in
each nucleic acid chain, we distinguish the 5′ (phosphate) and the 3′
(hydroxyl) termini.
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Fig. C.29. Chemical structure of nucleic acids. Di-
hedral angle notation and carbon atom numbering of
the ribose are shown. X = OH for RNA and X = H
for DNA

In DNA there are 4 ‘canonical’ nitrogenous bases, guanine (G) and
adenine (A), both derivatives of pyrimidine, and cytosine (C) and
thymine (T), both derivatives of purine. In RNA, thymine is replaced
by uracil (U). Crucial for molecular biology was the discovery by Wat-
son and Crick in 1953 that specific pairs of nitrogenous bases can make
unique hydrogen bonds (Fig. C.30).

The sequence in which the individual nucleotides of definite nitroge-
nous bases occur along a given nucleic acid chain is called its primary
structure. In both DNA and RNA, successive nucleotides are num-
bered starting from the 5′ terminus. DNA stores the genetic informa-
tion. It occurs in the form of two complementary strands linked by the
Watson–Crick hydrogen bonds. This form makes possible both DNA
replication and transcription on RNA (Stryer et al., 2002, Chap. 5).
In order for all the Watson–Crick hydrogen bonds to be saturated, the
dihedral angles in complementary chains have to take values giving the
whole DNA molecule a characteristic double-helix form. Among three
possible types of double helix the B type is the most stable under
physiological conditions (Fig. C.31).

RNA transmits information and can play a catalytic role. In con-
trast to DNA, it occurs in the form of single strands. Several types
of RNA can be distinguished. Messenger RNA (mRNA) is transcribed
from DNA and later translated into protein chains. Transfer RNA
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(tRNA) molecules carry particular amino acids to the growing protein
chains. Ribosomal RNA (rRNA) is used in the building of ribosomes.
Small nuclear RNA (smRNA) plays various roles in processing the
three former types of RNA, e.g., it is used in the building of spliceo-
somes that excise introns and splice exons in divided genes transcribed
onto mRNA, tRNA or rRNA. Micro RNA (miRNA) consists of pro-
cessed parts of excised introns that have several regulatory functions
(Dennis, 2002; Mattick, 2004).

Single-strand RNA can form a double helix only locally. Regions
of the Watson–Crick pairing are indicated in a secondary structure
of RNA. Figure C.32 shows the secondary structure of phenylalanine
tRNA from yeasts, obtained for the first time by Holley in 1965, and
Fig. C.33 shows the complete spatial structure of that tRNA.

Figure C.34 shows the spatial structure of rRNA of the large ribo-
somal subunit and Fig. C.35 shows the spatial structure of rRNA of
the small ribosomal subunit.
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(a) (b)

Fig. C.31. Spatial structure of the B-DNA double helix. (a) Atoms different
from hydrogen are represented by spheres of the corresponding van der Waals
radius. (b) Bonds are represented as wires. Both drawings were made using
the program Rasmol on the basis of pdb entry 2BNA (Drew et al., 1982)
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Fig. C.32. Secondary structure of phenylalanine tRNA. M denotes a post-
transcriptionally modified nucleotide. Three-nucleotide anticodon and a place
of amino acid binding are shown

(a) (c)(b)

Fig. C.33. Spatial structure of phenylalanine tRNA. (a) Atoms different
from hydrogen are represented by spheres of the corresponding van der Waals
radius. (b) Bonds are represented as wires. (c) Route of the main chain.
Drawings were made using the program Rasmol on the basis of pdb entry
6TNA (Sussman et al., 1978)
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(a) (b)

Fig. C.34. Spatial structure of large ribosomal subunit RNA (23S). (a)
Bonds are represented as wires. (b) Route of the main chain. Drawings were
made using the program Rasmol on the basis of pdb entry 1FFK (Ban et al.,
2000)

(a) (b)

Fig. C.35. Spatial structure of small ribosomal subunit RNA (16S). (a)
Bonds are represented as wires. (b) Route of the main chain. Drawings were
made using the program Rasmol on the basis of pdb entry 1FKA (Schluenzen
et al., 2000)
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D.1 Vibrations Versus Conformational Transitions

Since atomic nuclei are at least two thousand times more massive than
electrons, nuclear dynamics is very well separated from electronic dy-
namics and can be described with the help of the so-called Born–
Oppenheimer adiabatic potentials for individual quantum mechanical
electronic states of a molecule (Atkins, 1998, Chap. 14). We assume
that the ground electronic state of biomolecules is always well sepa-
rated in energy from the excited states. The ground state adiabatic
potential energy is a function of all nuclear degrees of freedom or their
linear combinations.

Besides three translational and three rotational degrees of freedom,
a typical structural subunit of biological macromolecules has approxi-
mately 104 internal degrees of freedom. This number corresponds to a
small protein or a protein domain consisting of some 200 amino acids,
each of a dozen or so atoms, a polysaccharide crystallite composed of
150 monosaccharides, or a transfer RNA consisting of fewer than 100
nucleotides. The internal degrees of freedom are defined by values of
covalent bond lengths and angles as well as dihedral angles of rota-
tions about the single bonds (see Figs. C.24 and C.29). The ability
to perform such rotations (limited only to some degree by steric hin-
drance), combined with the possibility of hydrogen bond break-up and
reformation, makes the many-dimensional landscape of the potential
energy of internal degrees of freedom extremely complex, with a huge
number of local minima separated by higher or lower energy barriers
of a non-covalent nature (Schulz and Schirmer, 1979; McCammon and
Harvey, 1987; Brooks et al., 1988; Creighton, 1992).

As in the stereochemistry of low-molecular weight organic com-
pounds (see Appendix C.3), regions of the configurational space sur-
rounding the local minima can be referred to as conformational states
(substates in particular contexts) or, more simply, conformations of
biomolecules. Because the distribution of barrier heights spreads prac-



350 D Dynamics of Biomolecules

tically from zero (McCammon and Harvey, 1987; Brooks et al., 1988;
Frauenfelder et al., 1991; 1999), the stereochemical notion of a confor-
mational state is, however, not as well defined for biomolecules as for
small molecules. To make the stereochemical definition of a biomolec-
ular conformational state more precise and at the same time to make
it consistent with the thermodynamic definition referring this concept
to a certain free energy level (Hill, 1989), we shall consider a well in
the potential energy to be a conformational state only if it is sur-
rounded by barriers high enough to ensure internal equilibration of
microstates preceding each transition to another conformational state
(Kurzyński, 1998). As a lower bound for the interconformational bar-
rier heights, one can assume a few units of kBT , say 10 to 20 kJ/mol,
which is a typical energy barrier height for a local rotation about a
single covalent bond in the absence of any steric constraints (see Ap-
pendix C.3) and, simultaneously, a typical energy of a hydrogen bond
(see Appendix C.4).

We have devoted so much space to semantic considerations because
in the current biochemical literature the term ‘biomolecule conforma-
tion’ is rather poorly defined and often used with quite different mean-
ings. We would like to point out a slight difference between our concept
of a conformational state (substate) and that of a conformational sub-
state due to Frauenfelder et al. (1991, 1999), who use this term with
reference to any local minimum of the configurational potential energy.

Each global conformational state of a biomolecule can be repre-
sented by a sequence (s1, s2, . . . , sM ) of local conformational states of
the component monomers, each described by a generalized ‘spin’ vari-
able si, which takes two or more discrete values si = 0, 1, 2, . . . , mi−1,
where the mi are not necessarily equal to each other. For si = 0, 1 (the
local states labeled by a single bit), the global states represent vertexes
of an M -dimensional cube (Fig. D.1) and for larger values of mi, they
represent sites of a more complex M -dimensional lattice. For typical
biological monomers, mi are of the order of 10 (e.g., for proteins, two
conformational states of the peptide bond times five conformational
states of the side chain, see Fig. C.26). For M=200 we thus obtain the
astronomical number of 10200 global conformational states.

However, only a minute fraction of these states are occupied under
physiological conditions. Due to steric constraints and environmen-
tal entropic effects, free energies of many global conformational states
are exceedingly high, making these states practically negligible. Low
conformational mobility is characteristic for polysaccharides, which are
branched polymers (Fig. C.10a), so that the steric constraints are espe-
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Fig. D.1. For two local states labeled by a single bit si = 0, 1, the global
states of a system composed of two units represent vertexes of a square. Those
of a system composed of three units represent vertexes of a 3-dimensional
cube, and those of a general system composed of M units represent 2M

vertexes of an M -dimensional cube

cially large. In contrast, in the absence of interaction with proteins, the
double-strand DNA is highly mobile and behaves like a statistical coil.
Intermediate conformational mobility is characteristic for proteins and
ribonucleic acids, both occurring in globular or multi-globular form
(Figs. C.28, and C.33–C.35). The dynamics of ribonucleic acids is sim-
ilar to that of proteins (McCammon and Harvey, 1987), but the latter
is much more intensively studied at present. This, combined with the
fact that DNA in vivo is always bound to proteins which determine its
dynamics, is the reason why we confine our considerations to proteins
below.

The more specific concept of conformational state that we have
adapted is a good starting point for an approximate description of
protein internal dynamics. A distinction is thus to be made be-
tween vibrations within particular conformational states and con-
formational transitions (Kurzyński, 1998). The former are approxi-
mated by damped harmonic oscillations subjected, according to the
fluctuation–dissipation theorem, to weaker or stronger stochastic per-
turbations. The latter are purely stochastic activated processes de-
scribed by a set of master equations like (B.37).

The vibrational dynamics is characterized by a spectrum of periods
(or frequencies) of vibrational normal modes. Their number equals the
number of degrees of freedom (∼ 104). The conformational transition
dynamics is characterized by a spectrum of relaxation times (or their
reciprocals), equal in number to the huge number of conformational
states.

The spectrum of vibrational periods ranges from 10−14 s [weakly
damped localized N–H or C–H stretching modes, easily observed spec-



352 D Dynamics of Biomolecules

10−14 s 10−13 s 10−12 s 10−11 s

3000 cm−1 300 cm−1 30 cm−1 3 cm−1

�

300 K

localized vibrations
(mainly stretching and

bending of bonds)

collective vibrations
(mainly torsional motions

about the bonds)

Fig. D.2. Frequency spectrum of protein vibrations and its conventional
division into two ranges. Particular vibrational periods are related to corre-
sponding wave numbers of infrared radiation

troscopically (Krimm and Bandekar, 1986)] to 10−11 s [overdamped
collective modes involving the whole domains, directly studied only by
numerical methods (Parak, 2003a)]. It can be conventionally divided
into two ranges (Fig. D.2). A reasonable dividing point is the period
2 × 10−13 s. Equilibrium vibrations with this period have energy cor-
responding to temperature 300 K. Modes in the high-frequency range
mainly involve the stretching and bending of bonds, whereas those in
the low-frequency range mainly involve the collective torsional motions
in dihedral angles about the bonds. Because of the effect of quantiza-
tion, only low-frequency vibrations are, in principle, thermally excited,
whence only they contribute to the thermal properties of proteins (the
value of entropy and specific heat).

Free energies, and hence probabilities of equilibrium occupation,
and transition probabilities between protein conformational states
both depend strongly on temperature and environmental conditions
(the influence of the latter is mainly of entropic nature, Schulz and
Schirmer, 1979; Creighton, 1992). In physiological conditions, the spec-
trum of relaxation times of conformational transitions begins at 10−11 s
(local side chain rotations or hydrogen bond rearrangements related
to overcoming the energy barrier of order of 10 kJ/mol) and its upper
limit is discussed further on.

The assumed picture of protein dynamics is somewhat oversimpli-
fied due to the anharmonicity of actual vibrations in the period range
10−12–10−11 s (McCammon and Harvey, 1987; Brooks et al., 1988).
This anharmonicity, already directly observed in the first molecular
dynamics simulation (McCammon et al., 1977), also comprises local
minima divided by barriers lower than 10 kJ/mol. In the simplest
approach, the anharmonicity of vibrations is taken into account by as-
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suming a finite correlation time of stochastic forces and, accordingly, a
time-dependent friction (Schlitter, 1988). However, under special con-
ditions it can result in non-ergodic, long-lived excitations such as soli-
tons in proteins (Davydov, 1982; Yomosa, 1985; Yakushevich, 1993).

Until now, the actual existence of solitons in proteins has remained
an open question (Careri et al., 1988; Yakushevich, 1993). Solitons are
propagating, highly energetic non-thermal coherent motions of local
groups of atoms. The problem as to whether they exist or not is only
a question of their lifetime in real (not exactly periodic and influenced
by thermal fluctuations) chains of bonds in proteins (Cruzeiro-Hansson
and Takeno, 1997). The situation is quite different with coherent low-
frequency collective vibrations of proteins, considered in a number of
theoretical papers and reported to have been observed experimentally
(Fröhlich and Kremer, 1983; Del Guidice et al., 1988). In our opinion
they cannot occur, simply because the notion of coherence makes sense
only for an ensemble of identical or almost identical modes of vibra-
tions, and such an ensemble of low-frequency collective normal modes
does not exist in highly inhomogeneous biomolecular structures.

D.2 Conformational Transitions
Within the Protein Native State

A characteristic feature of biologically active proteins in physiologi-
cal conditions is their well-defined spatially folded structure. Protein
folding is a process of discontinuous thermodynamic phase-transition,
independent for each domain (Privalov, 1989; Onuchic at al., 1997;
Mirny and Shakhnovich, 2001), i.e., all the particular conformational
states of each domain in physiological conditions are in principle to
be divided unambiguously between the native (folded) and unfolded
states. The mean waiting time of folding lies in the range 10−1–102 s,
and the mean waiting time of spontaneous unfolding in physiological
conditions should be longer by the same factor as the equilibrium pop-
ulation of the native state is higher than the equilibrium population
of the unfolded state. Careful estimation (Creighton, 1992) yields a
value in the range 103–1012 s, and this value is to be considered as the
upper limit of the relaxation time spectrum of protein conformational
transitions.

Up until the end of the 1970s, the native state of protein was
commonly considered to be a single conformational state, identified
with the protein tertiary structure, and only a few scientists with Blu-
menfeld (1974), Careri (Careri et al., 1979) and Williams (1979) in
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the forefront, opposed this view. Most biochemists have disregarded
the fact that the penetration of water or oxygen molecules into the
protein interior, observed in historical experiments by Linderstrom-
Lang (Linderstrom-Lang and Schellman, 1959) and Perutz (Perutz and
Mathews, 1966), requires much more complex motions than simple vi-
brations. The first distinct experimental evidence that the native state
of protein is in fact a dynamical mixture of a multitude of conforma-
tional substates came from Frauenfelder and coworkers’ studies of the
low-temperature dispersive kinetics of ligand rebinding to myoglobin
after laser flash photolysis (Austin et al., 1975).

A veritable avalanche of observations of conformational transi-
tion dynamics within the protein native state was sparked off in
the 1980s. Techniques used include Mössbauer spectroscopy (Parak,
2003a), quasi-elastic neutron scattering (Doster et al., 1989; Bicout and
Zaccai, 2001), fluorescence depolarization and quenching (Milar, 1996),
saturation transfer (Berger and Thomas, 1994; Adhikari et al., 1997)
and hyperfine splitting (Ostap et al., 1995; Columbus and Hubbell,
2002) in electron paramagnetic resonance of spin labels and, last but
not least, liquid-solution (Wüttrich, 1986; Dayie at al., 1996; Wider
and Wüttrich, 1999) and solid-state (de Groot, 2000) high-resolution
nuclear magnetic resonance.

Studies of the dispersive rebinding kinetics of small ligands to heme
proteins after photolysis were continued under a broad and varied
range of conditions (Nienhaus et al., 1997; Parak, 2003a). To distin-
guish the dynamics of ligand binding from that of conformational re-
laxation, multiple flash photolysis experiments appeared effective (‘ki-
netic hole burning’, Ormos et al., 1990; 1998).

Various techniques enabling observations of single biomolecules in
time have turned out to be an even more powerful tool (see Sect. 9.1).
These include recording the ionic current which flows through individ-
ual protein channels (the patch-clamp technique, Sackman and Naher,
1995; Liebovitch et al., 1987), single fluorophore detection using confo-
cal fluorescence microscopy (Eigen and Rigler, 1994) or total internal
reflection fluorescence microscopy (Funatsu at al., 1995), fluorescence
resonance energy transfer (Haran et al., 1992; Weiss, 1999; Xu and
Root, 2000, Margittai et al., 2003), and single-molecule fluorescence
polarization (Warshaw et al., 1998; Corrie et al., 1999).

Conformational transitions within the native state of proteins were
observed directly in molecular dynamics simulations. Since the first
8.5 ps simulation by McCammon et al. (1977), the computational
power and quality of algorithms has improved so much that at present
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simulations of over 10 ns are more and more frequently reported (Hann-
son et al., 2002). With the help of special procedures like conforma-
tional flooding (Grubmüller, 1995), the simulation time can even be ex-
tended to 1 s for molecules that are not too large (Doniach and East-
man, 1999). Using the technique called jumping-among-minima, Kitao
et al. (1998) showed that the separation of the protein intramolecular
dynamics into vibrations and conformational transitions is quite good.
A key step in the methodology of molecular dynamics simulations was
introduced by Garcia (1992) and Amadei et al. (1993), namely the
concept of the molecule optimal dynamical coordinates or the essential
modes of motion. These modes, now simply called collective modes
(Kitao and Gō, 1999), diagonalize not the force matrix (as the normal
modes do), but the covariance matrix of atomic displacements.

The slowest processes are studied with the help of hydrogen-to-
deuterium exchange (Englander et al., 1996; Hernandez et al., 2000).
The time scale of conformational transition dynamics observed with
the help of particular techniques is given in Fig. D.3.

As far as the X-ray diffraction technique is concerned, the classical
evidence for conformational mobility comes from the often observed
diffusion of some regions of electron density (Creighton, 1992) and
from a comparison of different crystalline structures, when available
(see, e.g., Clothia and Lesk, 1985). More subtle evidence is provided by
an analysis of the Debye–Waller factors (Parak, 2003a) and a refine-
ment of structures with an assumed heterogeneity (Rejto and Freer,
1996). One should also mention diffuse scattering observations (Thüne
and Badger, 1995). The X-ray diffraction method is not included in
Fig. D.3 because it does not provide information on time resolution.
This situation is gradually changing, however, as a result of the avail-
ability of strong white beam sources of synchrotron radiation (Burgeois
at al., 2003).

Single-molecule X-ray diffraction (Hajdu, 2000) remains with no
time resolution. Force-induced conformational transitions in single
molecules are studied, also without time resolution, by scanning (Bus-
tamante et al., 1997; Heynmann et al., 1997) and force-clamp (Fisher et
al., 2000) atomic spectroscopy, and also using optical tweezers (Finner
et al., 1994; Kitamura et al., 1999; Mehta et al., 1998).

Both structural and dynamical studies indicate that conformational
transitions within the protein native state do not take place in the en-
tire body of the globule, but are limited to liquid-like regions surround-
ing solid-like fragments of secondary structure (α-helices or β-pleated
sheets, Fig. D.4). These fragments survive the transition to the un-
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Fig. D.3. Time scale of conformational transitions within the protein native
state observed with the help of various experimental techniques. The time
period 10−11 s at one end of the spectrum characterizes localized conforma-
tional transitions on the protein surface. The time period 105 s at the other
end is a (rather underestimated) value of the waiting time for spontaneous
unfolding of the protein in physiological conditions. Note that the typical
reciprocal turnover number of enzymatic reactions, 10−3 s, lies exactly in the
middle of the scale

folded state in physiological conditions (‘molten globule’, Creighton,
1990; Onuchic et al., 1995, Mirny and Shakhnovich, 2002). However,
the experimentally provided picture of conformational dynamics is still
far from complete. We know that conformational transitions occur over
the whole time scale from 10−11 s to 105 s or more, but we do not in
fact know the size of the population of conformational states compos-
ing the native state.

In many experiments, only a few, often two, conformational states
are apparent. Obviously, this is a result of the observational methodol-
ogy applied. From this point of view, numerical simulation results ap-
pear important, pointing to the existence of a whole quasi-continuum
of conformational substates within the protein native state (Kitao et
al., 1998; Kitao and Gō, 1999). Although this has only yet been proved
for time periods shorter than a few tens of nanoseconds, there is no
reason to doubt that conformational states visited on the longer time-
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x

Fig. D.4. Schematic cross-section of a domain, the fundamental structural
unit of protein. Solid-like fragments of secondary structure (α-helices or
β-sheets) are darkly shaded and surrounding liquid-like regions are weakly
shaded . Black areas indicate the catalytic center, usually localized in two
neighboring solid-like elements. In models of protein-machine type, the dy-
namics of conformational transitions is treated as a quasi-continuous diffusive
motion of solid-like elements relative to each other. Alternatively, in models
of protein-glass type, this dynamics is treated as a diffusion of structural
defects through the liquid-like medium. The picture can be reinterpreted on
a higher structural level: solid-like elements then represent whole domains
moving in a multidomain enzymatic complex (see Fig. 9.6)

scale also form some kind of quasi-continuum. The number of different
conformational states observed seems to increase proportionally to the
square root of the simulation time (Kitao and Gō, 1999; Hannson et al.,
2002). Clear evidence of a quasi-continuous distribution of interdomain
distances, hence conformational states of the whole protein, comes
from studies of fluorescence energy transfer between donor and accep-
tor centers located on different domains (Haran et al., 1992; Weiss,
1999; Xu and Root, 2000; Margittai et al., 2003). The non-exponential
time course of processes discussed in Sect. 9.1 also indicates the exis-
tence of a quasi-continuum of conformational substates.

Because the experiments at hand cannot elucidate the nature of
conformational transition dynamics within the protein native state in
detail, the problem of modeling this dynamics is to some extent left
open to speculation. In two classes of models provided hitherto in
the literature, the speculative element seems to be kept within rea-
sonable limits. We refer to them symbolically as protein-glass and
protein-machine (Kurzyński, 1998). Both approaches have support
from molecular dynamics simulations (Kitao et al., 1998; Kitao and
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Fig. D.5. Schematic spectra of reciprocal relaxation times of conformational
transition dynamics within the native state of a protein. (a) Protein-glass
model: spectrum looks approximately alike on several successive time scales.
(b) Protein-machine model: spectrum consists of a few more or less equidis-
tant subspectra

Gō, 1999). In essence, the question concerns the form of the reciprocal
relaxation time spectrum above the gap (see Fig. B.2). The simplest
way to tackle problems without a well-defined time scale separation is
to assume that the dynamics of a system looks alike on every time scale,
i.e., the spectrum of relaxation times has a self-similarity symmetry.
This assumption is the core of any protein-glass model (Fig. D.5a). An
alternative is provided by the protein-machine class of models in which
the variety of conformations composing the native state is supposed to
be labeled by only a few ‘mechanical’ variables. The reciprocal relax-
ation time spectrum is then a sum of several more or less equidistant
subspectra (Fig. D.5b).
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D.3 Protein-Glass Model

There are two fundamental experimental facts indicating the glass-
like dynamics of conformational transitions in native proteins. The
first is the stretched-exponential time course of the initial stages of
protein-involving reactions, during which partial thermodynamic equi-
librium is established. Some examples of such reactions are presented
in Sect. 9.1 and their explanation in terms of a hierarchy of relaxation
times is given in Appendix B.4.

The second fact indicative of glassy dynamics is a characteristic
temperature anomaly in the Lamb–Mössbauer or the Debye–Waller
factors, observed at about 200 K in Mössbauer spectra, inelastic
neutron scattering, temperature-dependent X-ray scattering (Parak,
2003a), as well as in specific heat spectroscopy and deuterium NMR
relaxation (Lee and Wand, 2001). This anomaly is interpreted as a
transition to glassy phase (Parak, 2003a; 2003b). There are some pre-
requisites for this transition to be a slaved process driven by the solvent
(Fenimore et al., 2002; Tournier and Smith, 2003). The glass transition
is a kinetic phenomenon which depends on an experimental time scale
rather than a thermodynamic phase transition (Jäckle, 1986; Götze
and Sjögren, 1992). This means that, below the glass-transition tem-
perature, the protein is frozen in a conformational substate of a specific
level of the hierarchy, not necessarily having the lowest free energy.

Time scaling, considered to be a generic property of glassy materials
(Palmer, 1982; Götze and Sjögren, 1988), can originate either from a
hierarchy of barrier heights in the potential energy landscape or from a
hierarchy of bottlenecks in the network joining conformations between
which direct transitions take place (the ‘fractal time’ and the ‘fractal
space’, respectively; Blumen and Schnörer, 1990). All the experimental
observations mentioned above were interpreted in terms of the hier-
archy of barrier heights, but most of them can also be interpreted in
terms of the hierarchy of bottlenecks (Kurzyński, 1998).

A hierarchy (tiers) of interconformational barrier heights (Fig. D.6)
was originally proposed by Frauenfelder and coworkers in order to give
a unified explanation of the results of various experiments concern-
ing the process of ligand binding to myoglobin (see the reviews by
Frauenfelder et al., 1991, 1999, and by Nienhaus et al., 1997). Such
an organization of barrier heights was directly confirmed by numerical
simulations (Troyer and Cohen, 1995; Garcia et al., 1997, Nymeyer et
al., 1998; Wales et al., 2000).
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Fig. D.6. An example of a one-dimensional potential with a hierarchy of
barrier heights. The curve represents a superposition of three sinusoids of
appropriately scaled periods and amplitudes. Addition of more and more
subtle components leads in the limit to the Weierstrass function, everywhere
continuous but nowhere differentiable

The potential energy landscape with a hierarchy of barrier heights
(Fig. D.6) forms what is known in mathematics as an ultrametric space
(Rammal et al., 1986). Spin glasses are a reasonable mathematical
realization of ultrametric structures in the context of application to
proteins (Stein, 1985; Byngelson and Wolynes, 1987; Garel and Orland
1988; Shakhnovich and Gutin, 1989; Stein, 1992; Bryngelson et al.,
1995). In models of spin-glass type, each global conformational state of
a protein molecule is represented by a sequence (s1, s2, . . . , sN ) of local
conformational states, each described by a spin si which can assume
two or more discrete values (see Fig. D.1). The number N can be
equal, e.g., to the number of amino acid residues. The free energy of a
particular global conformational state is assumed to be determined by
the energies of (possibly all) individual pairs of spins. An important
feature is the randomness of pair interactions ‘frustrating’ the spins
because of the impossibility of finding a single well-defined state of
lowest energy.

Most spin-glass models display a discontinuous phase transition to
the spin-glass phase (Binder and Young, 1986). This is to be inter-
preted as the protein-folding transition (Stein, 1992; Bryngelson et al.,
1995). In standard spin-glass models, the matrix of interactions be-
tween spins is assumed to be completely random (Binder and Young,
1986). This assumption is not in fact justified in the case of proteins
because the well-defined primary structure of the amino acid sequence
determines, as we believe, the folding pattern of the native state and
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reduces degeneracy of the ground state. Following the Hopfield (1982)
theory of associative memory, Wolynes and coworkers proposed a pro-
cedure for incorporating into the interaction matrix information about
how the primary structure is related to the tertiary structure in a set
of known proteins included in the database, thus obtaining the ‘asso-
ciative memory Hamiltonian’ (Friedrichs et al., 1991) or the ‘perfect
funnel model’ (Onuchic and Wolynes, 2004).

The dynamics of spin glasses is usually assumed to involve changes
in the state of a single spin at a time with a transition probability of
Glauber or Metropolis type (Binder and Young, 1986), satisfying the
detailed balance condition. Spin transitions take place within both the
disordered and the spin-glass phase. The latter consists of a number
of nearly degenerate low-energy conformational states divided by a
hierarchical system of energy barriers. Unfortunately, only the spin
dynamics within the disordered phase has been considered as yet, for
simulation of the time course of the protein-folding process.

An alternative to the hierarchy of barrier heights in the potential
energy landscape is the hierarchy of bottlenecks in the network joining
neighboring conformational states. Mathematical realizations of hier-
archical networks are fractal lattices (Mandelbrot, 1982). Figures D.7
and D.8 show two examples of such lattices: the planar Sierpiński gas-
ket and the planar percolation cluster. Fractals are defined as objects
with a fractional value of the fractal dimension, but the hierarchi-
cal dynamical properties of lattices are related to the spectral rather
than the fractal dimension. It is worth distinguishing the two concepts
clearly here.

The notion of fractal (Hausdorff–Besicovitch) dimension d̄ of a
given lattice is simple (Mandelbrot, 1982). It is the exponent in the
power law determining how the number of sites n changes with the
scale (size) s:

n = sd̄ . (D.1)

Consequently,

d̄ =
log n

log s
. (D.2)

For instance, for the planar Sierpiński gasket shown in Fig. D.7, a two-
fold change in the scale entails a three-fold increase in the number of
sites, i.e., d̄ = log 3/ log 2 ≈ 1.585.

The idea of spectral or fracton dimension is more complex (Naka-
yama et al., 1994). It resorts to the functional dependence of the den-
sity of vibrational normal modes vs. the frequency when a given lattice
is considered to consist of massive points with elastic coupling between
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Fig. D.7. Sierpiński gasket. Three small equilateral triangles are combined in
a larger triangle, three larger triangles in an even larger one and so on. Here
a finite order Sierpiński gasket is shown with imposed periodic boundary
conditions (identification of outgoing bonds from one external vertex with
those incoming at two other external vertexes)

nearest-neighbors. Quite generally, the Hamiltonian dynamics of a sys-
tem of coupled harmonic oscillators is described by the equation

ȧ = −iΩa , (D.3)

where a is the vector of complex numbers with real and imaginary parts
corresponding to positions and momenta, respectively, of particular
harmonic oscillators:

al =
1√
2
(ql + ipl) , (D.4)

and Ω is the frequency matrix. In the coordinates of the normal modes
of vibrations, the frequency matrix becomes diagonal and the set of
equations (D.3) decouples into a set of independent equations

ȧk = −iωkak . (D.5)

If the density of vibrational modes in the spectrum of frequencies ω
behaves regularly, according to a certain power law

ρ(ω) ∝ ωd̃−1 , (D.6)

the number d̃ is referred to as the spectral dimension of the lattice.
The relation (D.6) can be considered as a generalization of the Debye



D.3 Protein-Glass Model 363

(b)

(a)

Fig. D.8. Percolation cluster. (a) Bonds on a square lattice are realized
stochastically with probability 1/2 and then clusters which are not connected
to the largest one are removed. (b) Hierarchical structure of of the cluster
from the picture above. The subcluster of highest order with three external
bonds is singled out. Bonds joining subclusters of the two next lowest or-
ders in the hierarchy are distinguished. The finite number of conformational
substates in real proteins requires the hierarchy to be bounded both from
below and from above (periodic or reflecting boundary conditions imposed
on external bonds)
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relation for acoustical phonons in crystal lattices of integer Euclidean
dimension d̃ (Kittel, 1996). The normal modes of vibration in lattices
of fractional dimension d̃ are referred to as fractons (Nakayama et al.,
1994).

It is important for the present problem that the set of master equa-
tions (B.37) describing a random walk on a given lattice can be rewrit-
ten in a form analogous to (D.3):

ṗ = −Γ (p − peq) , (D.7)

where Γ is the matrix of transition probabilities wll′ . The correspond-
ing set of decoupled equations for the relaxational normal modes reads

ṗk = −γk(pk − peq
k ) . (D.8)

There are in fact twice as many equations (D.5) as equations (D.8) (the
ak are complex variables, whereas the pk are real). Hence, following
the relation (D.6), the density of relaxational modes in the spectrum
of reciprocal relaxation times γ should behave as

ρ(γ) ∝ γd̃/2−1 . (D.9)

This is an alternative definition for the spectral dimension.
Time scaling takes place only if the density of relaxational nor-

mal modes increases with decreasing reciprocal relaxation time γ
(Fig. D.5a). Consequently, the hierarchy of bottlenecks is character-
istic only for lattices with spectral dimension smaller than 2, i.e.,

d̃ < 2 . (D.10)

For a Sierpiński gasket embedded in d-dimensional Euclidean space
d̃ = log(d + 1)/ log(d + 3), and hence for the planar Sierpiński gasket
(d = 2, Fig. D.7), the spectral dimension d̃ = log 3/ log 5 ≈ 1.365.
The spectral dimension of any percolation cluster (in particular that
embedded in 2-dimensional Euclidean space, Fig. D.8) is very close to
the value d̃ = 4/3 (the Alexander–Orbach conjecture).

The spectral dimension influences two physically very important
quantities. The first is the probability of return to the original point ,
which in the case of free diffusion (without any boundary conditions)
behaves asymptotically in time as

p0|0(t) ∝ t−d̃/2 . (D.11)

This equation is a generalization of the well-known result for free dif-
fusion in Euclidean spaces (van Kampen, 2001). The second quantity
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is the mean number of distinct sites visited by a random walker , which
in the case of free diffusion behaves asymptotically in time as

S(t) ∝
{

td̃/2 if d̃ < 2 ,

t if d̃ > 2 .
(D.12)

The preexponential initial stage of a large class of gated reactions
with intramolecular conformational transition dynamics of random-
walk type on fractal lattices and the initial substate reduced to the
gate itself is well described by the simple expression (Kurzyński et al.,
1998)

Pini(t) = exp(ηt)2αerfc(ηt)α , (D.13)

where the symbol erfc denotes the complementary error function, η−1

is a characteristic unit of time, and α is an exponent with value less
than unity. In the limit of short times, (D.13) represents the stretched-
exponential law and in the limit of long times, the algebraic power law:

Pini(t) ≈
⎧⎨
⎩ exp

[
− 2(ηt)α/

√
π
]

for t � η−1 ,

(ηt)−α/
√

π for t � η−1 .
(D.14)

The crossover from nonexponential decay (D.13) to exponential de-
cay with chemical relaxation time κ−1, equal to the reciprocal of the
irreversible reaction rate constant, is related to the finite number of
conformational substates and can be described with the help of the
formula

P (t) =
[
(1 − a)Pini(t) + a

]
e−κt , (D.15)

where a denotes the level (concentration) from which exponential de-
cay begins.

Equation (D.13) with exponent α = 1/2 is the exact solution of the
continuous one-dimensional problem [see (B.124)], and for α > 1/2 it
has been carefully verified by computer simulations of random walks
on fractal lattices (Kurzyński et al., 1998). The exponent α was found
to be related to the spectral dimension of the lattice d̃ :

α = 1 − d̃/2 . (D.16)

The approximation of the results of simulations with the help of
the combined analytical formulas (D.13) and (D.15) is very good
(Fig. D.9).

Depending on the value of the time constant η−1, the initial stage
of the reaction described by (D.13) can proceed according to either
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Fig. D.9. Fit of the results obtained in computer simulations of a ran-
dom walk on the planar Sierpiński gasket with periodic boundary condi-
tions (Fig. D.7) to the combined analytical formulas (D.13) and (D.15). The
fitted curves are plotted as continuous lines and simulation data are repre-
sented by points. Not involved in the fitting procedure, the fixed value of
α = 1− log 3/ log 5 = 0.317 [see (D.16)] was assumed. Different values of the
ratio q of the probability of leaving the lattice to the probability of transition
between the neighboring sites determine different values of the time unit η−1.
After Kurzyński et al. (1998)

the stretched-exponential law or the algebraic power law, or both. All
three types of behavior were observed in CO rebinding experiments
after laser flash photolysis (Fig. 9.1) as well as in the patch-clamp ex-
periments (Fig. 9.3). In single fluorophore detection experiments, only
the initial stretched-exponential time course was observed (Fig. 9.4).
Apart from the α exponent, (D.13) and (D.15) comprise two dimen-
sionless parameters, the level (concentration) a related somehow to
the conformational relaxation time γ−1, determined by the fractal (not
spectral) dimension of the lattice and responsible for a possible plateau
preceding the exponential decay, and the ratio b ≡ κ/η. Both parame-
ters depend on temperature according to the Arrhenius relation. As a
consequence, one should have no problem describing the time course
of any experimentally observed reaction in such terms, including its
variation with temperature, especially when taking into account cer-
tain time variations of α and b allowed by the model with somewhat
extended gate (Kurzyński et al., 1998). However, the success of the fit
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should be treated very cautiously, comparable fits can be obtained by
the alternative one-dimensional model with fluctuating barriers (Ag-
mon and Sastry, 1996).

Furthermore, (B.129) determining the mean first-passage time for
one-dimensional diffusion in the presence of boundary conditions can
be generalized to the case of diffusion on fractal lattices (Che�lminiak
and Kurzyński, 2004). This result is hoped to be important for mod-
eling the steady-state fluxes in enzymatic reactions controlled by the
intramolecular dynamics of protein-glass type (see Sects. 9.3 and 9.5).

D.4 Protein-Machine Model

The concept (and the name) protein-machine was proposed by Cher-
navsky, Khurgin and Shnol in 1967 (Chernavsky et al., 1987), but a
similar picture of protein dynamics, rather speculative at that time,
had also been considered independently by McClare (1971), Blumen-
feld (1974), Williams (1993) and Gavish (1986) (for a review, see
Kováč, 1987). All these authors use a similar notion of the machine as
“a device which uses energized motion to bring about transformation”
(Williams, 1993), “a structure which displays high mobility in certain
directions and rigidity in others” (Gavish, 1986), or “a device with
mechanically constrained parts predetermined to give some effects by
restricting motion along one or several degrees of freedom” (Kováč,
1987). According to Kováč after Blumenfeld (1974): “Any machine
exhibits a particular degree of freedom which, when excited by an in-
put of energy, exchanges its energy with other degrees of freedom very
slowly; in other words, its rate of relaxation is low.” The latter state-
ment coincides, however, with a definition of any macroscopic system
(Callen, 1985). For the protein-machine concept, it is important that
the distinguished variable is intensive rather than extensive and that
the system is not macroscopic but mesoscopic, with stochastic rather
than deterministic dynamics.

A quasi-continuum of conformational transitions of the character
of a relative motion of the secondary structure elements has been ob-
served directly in numerical simulations (Rojewska and Elber, 1990).
More recent simulations also indicate a quasi-continuous, almost har-
monic motion of whole domains relative to each other (de Groot et
al., 1998; Hayward and Berensen, 1998; see review by Kitao and Gō,
1999). In the simplest case, the mechanical variables can be identi-
fied with angles or distances describing the mutual orientation of rigid
fragments of secondary structure or larger structural elements (see
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Fig. D.4). The mechanical coordinate may also be identified with a
‘reaction coordinate’, if this can be determined. There is serious evi-
dence that the mechanical coordinates are related to certain collective
variables in molecular dynamics simulations (Kitao and Gō, 1999).

The first, although implicit, practical use of the protein-machine
picture of dynamics was the application of Kramers’ theory of reaction
rates in the position diffusion limit (Hänggi et al., 1990) to interpret
two particular protein reactions studied by Gavish and Werber (1979)
and Frauenfelder and coworkers (Beece et al., 1980) in solvents of var-
ious viscosities. Explicitly, the protein-machine model was formalized
in terms of diffusion in an effective potential along the mechanical co-
ordinate by Shaitan and Rubin (1982). This kind of dynamics with
the simplest, parabolic potential was applied to describe a single irre-
versible protein reaction by Agmon and Hopfield (1983). Since those
times, many authors have used similar language to describe various
dynamical processes in proteins. The author of this book applied the
model to describe a reversible three-step enzymatic reaction in both
the transient and the steady-state stages (Kurzyński, 1997b). Diffusion
in a parabolic potential is described in more detail in Appendix B.6.

Assumptions which have to be made in order to approximate the
dynamics of conformational transitions by a process of limited dif-
fusion along a mechanical coordinate are presented schematically in
Fig. D.10. By definition, any conformational state of the protein is
characterized by a definite value of the free energy; thermodynamic
averaging is taken over equilibrated vibrational degrees of freedom.
One can always label a set of all ‘free energy levels’ of the protein with
the help of one or several ‘conformational’ coordinates (Fig. D.10a).
What distinguishes the mechanical coordinates from the others is that
direct transitions take place only between the nearest neighbor confor-
mational states along them (Fig. D.10b). Variation of, e.g., the angle
between two structural elements of a protein molecule goes through
a series of well-defined successive conformational transitions involving
break-up and reformation of hydrogen bonds in the liquid-like inte-
rior of the protein, as well as in the surrounding water (see Fig. D.4).
Smoothing of the free energy (Fig. D.10c) and transition to the con-
tinuous limit (Fig. D.10d) result in replacement of a chain of confor-
mational jumps by diffusion in an effective, approximately parabolic
conformational potential.

The mathematical equation of diffusion in a parabolic potential also
describes overdamped low-frequency collective vibrations of domains.
Moreover, numerical analysis indicates that these vibrations also have
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Fig. D.10. Formulation of the protein-machine model. (a) Conformational
states (free energy levels) are labeled with the help of a conformational (me-
chanical) coordinate. (b) Transitions are assumed to be possible only between
neighboring conformational states. (c) Smoothing of the conformational po-
tential. (d) Transition to the limit of continuous diffusion. After Kurzyński
(1998)

the character of mutual motions of relatively rigid fragments of sec-
ondary structure (Nishikawa and Gō, 1987). In fact, the crossover be-
tween sequences of conformational transitions along the mechanical co-
ordinates and overdamped low-frequency collective vibrations is more
or less a matter of convention, since one can introduce effective normal
modes corresponding to the principal axes of the envelope of a ragged
(with many local minima) potential (Kidera and Gō, 1990). On the
other hand, the dynamics of large proteins, not studied in molecular
dynamics simulations, can be described in terms of a diffusive, almost
harmonic hinge-bending motion of whole multidomain subunits rela-
tive to one another, as suggested by fluorescence resonance excitation
transfer experiments (Weiss, 1999; Xu and Root, 2000).

We do not claim that the description of protein dynamics in terms of
diffusion in a parabolic potential represents a comprehensive version
of the one-dimensional protein-machine model. Firstly, the effective
potential can differ considerably from the parabolic one. This is not
a problem in itself, as various approximation techniques well known
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from quantum mechanics can then be applied in order to solve the dif-
fusion equation (which is equivalent to the Schrödinger equation with
imaginary time, Kurzyński, 1994). Secondly, the smoothing procedure
[transition from (b) to (c) in Fig. D.10] can appear too rough an ap-
proximation. In that case the model known as a random walk in a
random potential (Zwanzig, 1988) is more appropriate. And thirdly,
the restriction to transitions between nearest neighbors in the confor-
mational coordinate (Fig. D.10b) may turn out to be insufficient. This
is technically the most difficult problem. When the insufficiency arises
from too small a number of the considered degrees of freedom, one
can try to replace the neglected degrees of freedom by memory effects
(Schlitter, 1988). There are many ways to generalize the described ver-
sion of the protein-machine model and some of them certainly merit
detailed study.

D.5 Calculation of Mean First-Passage Time

In time-course kinetics (Appendix B.4) and in steady-state kinetics
(Sects. 9.3 and 9.5), values of the mean first-passage times between
certain conformational substates of a protein enzyme are important.
Here we present a general method for calculating such times for an arbi-
trary network of conformational substates (Kurzyński and Che�lminiak,
2003).

Let us consider a set of states M of arbitrary nature with stochastic
dynamics determined by a set of master equations (B.37) with tran-
sition probabilities per unit time wll′ satisfying the detailed balance
conditions. The set M can be considered as a graph (diagram, lattice):
the substates of the system are represented by the vertexes (points,
sites) and the direct transitions, determined by the non-zero w, by the
edges (lines, nearest neighbors) [see Wilson (1996)]. By definition (see
Appendix B.4), to find the mean first-passage time from some initial
to some final state of the diagram M, one has to put a statistical en-
semble of the systems into the initial state and observe its stochastic
evolution. Each system reaches the final state after a certain time. The
average of these times is the mean first-passage time from the initial to
final state. But one can also observe some equivalent infinite process
for a single system, assuming that each time a given system reaches
the final state, the same system appears anew at the initial state. After
a long enough time this will be the stationary flux in a diagram that
determines the sought mean first-passage time.
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More precisely, following Hill (1989), the mean first-passage time
τM(l0 → l) from the state l0 to l in the diagram M, with absorption at
the final state l, can be found as the reciprocal of a steady-state one-
way cycle flux or a sum of such fluxes J in a modified diagram Ml0→l

in which the absorption transition or transitions are redirected to the
starting state l0 with a simultaneous elimination of the absorption
state from the original diagram M. An illustrative example of such a
modification is shown in Figs. D.11a and b. In formal terms,

τM(l0 → l) = J−1 =

(∑
l′

wll′pl′

)−1

, (D.17)

where the probabilities pl′ are solutions of the set of master equa-
tions (B.37) for the modified diagram Ml0→l under the steady-state
boundary conditions, with some detailed balance conditions broken.
A useful method for calculating such steady-state probabilities and
fluxes is offered by the technique of summing up the directional dia-
grams described in an algorithmic way in the above-mentioned book
by Hill (1989).

Hill’s algorithm for finding the steady-state probability pl (or the
equilibrium probability in the case when the detailed balance condition
is satisfied for each transition probability wll′) for an arbitrary diagram
S comprises the following steps:

1. Construction of the complete set of partial diagrams for S, each of
which contains the maximum possible number of lines that can be
included in the diagram without forming any cycle (closed path).

2. Construction of directional diagrams for each state l and each par-
tial diagram, if possible, in which all connected paths are directed
toward and end at the state l. The directional diagram is uniquely
attributed a number equal to the product of transition probabilities
corresponding to all directed lines involved.

3. Calculation of the sum of all directional diagrams for each state l in
S, denoted by Dl(S), and then the sum of all directional diagrams
in S, viz.,

D(S) ≡
∑
l∈S

Dl(S) . (D.18)

The steady-state (or equilibrium) occupation probability of the
state l is determined by the ratio

pl =
Dl(S)
D(S)

. (D.19)
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Fig. D.11. (a) Example of the diagram M determining certain stochastic
dynamics. (b) The modification M2→1 of the adjoining diagram, used in the
calculation of the mean first-passage time τM(2 → 1). (c) A complete set
of partial diagrams for the modified diagram M2→1. (d) A complete set of
partial diagrams for three possible dissections of the original diagram M into
a subdiagram containing site 1 and a subdiagram containing site 2. If isolated
sites counted as unity are disregarded, it can be seen that the set of diagrams
in (d) is identical to the set in (c). (e) Multiplying diagrams in the set (d)
by appropriate transition probabilities to the final site 1, one gets a set of
diagrams which is identical to the complete set of all directional diagrams for
site 1 in the original diagram M
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Applying this algorithm to the the probabilities pl′ in (D.17), we get

τM(l0 → l) =
∑

l′ Dl′(Ml0→l)∑
l′ wll′Dl′(Ml0→l)

. (D.20)

To proceed further, it is essential to note that the complete set of
partial diagrams for the modified diagram Ml0→l is identical to the
complete set of partial diagrams for all possible dissections of M into
sums of the form Ml0 ∪Ml, the subdiagram Ml0 containing site l0 and
the subdiagram Ml containing site l (see the example in Figs. D.11c
and d). As a consequence, the numerator of (D.20) can be rewritten
as the quantity

Dl,l0(M) ≡
∑

Ml0
∪Ml

Dl(Ml)D(Ml0) , (D.21)

with the summation running over all possible dissections Ml0 ∪ Ml

of M, and the denominator of (D.20) simply equals the sum of all
directional diagrams of the final state l in M (see Fig. D.11e). Hence,

τM(l0 → l) =
Dl,l0(M)
Dl(M)

. (D.22)

In the example considered in Fig. D.11, the numerator consists of 12
different terms in the form of products of two possible transition proba-
bilities allowed in the five diagrams presented in Fig. D.11d (the points
count as unity), whereas the denominator consists of 8 terms in the
form of products of three transition probabilities, presented directly in
Fig. D.11e.

From the formula (D.22), three general theorems of increasing com-
plexity follow, useful in the theory of reactions controlled and gated
by the intramolecular stochastic dynamics. Simple proofs are given in
the paper by Kurzyński and Che�lminiak (2003). The notation is ex-
plained in Figs. D.12a to c, where diagrams of intramolecular dynam-
ics between an arbitrary number of conformational substates within a
given chemical molecular state are represented by shaded boxes. Fig-
ures D.12a and b present irreversible gated reactions – the product
state is replaced by the completely absorbing limbo state (see Ap-
pendix B.4) denoted by the asterisk. It should be stressed that the
zero transition probability in the backward direction does not mean
here that the detailed balance is broken, but that the equilibrium oc-
cupation probability of the initial chemical state P eq is zero.
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Fig. D.12. Illustrations for Theorem 1 (a), Theorem 2 (b), and Theorem
3 (c). Shaded boxes represent diagrams of an arbitrary number of sites and
the direct transitions between them. The asterisk denotes the completely
absorbing limbo state

Theorem 1. The mean first-passage time between the transition state
0 of a reaction and the limbo state ∗ equals the reciprocal of the tran-
sition state theory rate constant:

τ(0 → ∗) = (keq
+ )−1 , (D.23)

where

keq
+ =

peq
0

P eq
η , (D.24)

the ratio of peq
0 to P eq being the partial equilibrium probability of the

transition state occupation (to be interpreted in terms of a conditional
probability, otherwise it equals zero over zero), and η is the transition
probability per unit time through the gate from the transition state 0
to the limbo state (Fig. D.12a).

Theorem 2. For an arbitrary state l in M (see Fig. D.11b),

τ(l → ∗) = τM(l → 0) + (keq
+ )−1 . (D.25)

Theorem 3. Let the two diagrams M1 and M2 (representing the
reagent and the product chemical state of a molecule) be connected
by a reversible transition between the gates denoted by 0, with proba-
bilities per unit time η and α in the forward and backward directions,
respectively (Fig. D.11c). Then, for an arbitrary state 1 in M1 and an
arbitrary state 2 in M2,

τ(1 → 2) = (keq
+ )−1 + τM1(1 → 0) + τM2(0 → 2) + K−1τM2(0 ↔ 2) ,

(D.26)
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where τMi (i = 1, 2) denote the mean first-passage times confined to
the corresponding subdiagrams. The quantity

K =
keq

+

keq
−

(D.27)

has the meaning of a reaction equilibrium constant,

keq
+ = η

D0(M1)
D(M1)

, keq
− = α

D0(M2)
D(M2)

, (D.28)

corresponding respectively to the forward and backward transition state
theory rate constants, respectively.

For a typical (highly occupied at equilibrium) state 2, the mean first-
passage time τM2(0 → 2) is much shorter than τM2(2 → 0) and can
be neglected. Then (D.26) reconstructs the general expression (B.81)
for the complete forward rate constant:

k−1
+ = (keq

+ )−1 + τM1(1 → 0) + K−1τM2(2 → 0) , (D.29)

and similarly for the backward rate constant.
The main application of the formula (D.22) is to express steady-

state fluxes that occur in various enzymatic reactions controlled and
gated by the intramolecular stochastic dynamics of proteins in terms
of the mean first-passage times between certain distinguished confor-
mational substates (Kurzyński and Che�lminiak, 2003). Important re-
sults obtained in this way for the two special models are presented in
Sects. 9.3 and 9.5.

D.6 Nonadiabatic Processes
of Charge and Energy Transfer

In Appendix B and up to now in this appendix, we have studied re-
action rates only in classical terms. However, if a considered reaction
R ←→ P involves an intramolecular transfer of light particles, an elec-
tron between a donor D and an acceptor A,

D A ←→ D+A− ,

or a proton between an acid A–H and a base B,

A–H · · ·B ←→ A · · ·H–B+ ,
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where dots denote a hydrogen bond, quantum effects cannot be ne-
glected. Quantum dynamics must also be taken into account when the
energy transfer occurs between different quantum states, either elec-
tronic,

D∗A ←→ D A∗ ,

or vibrational ones, e.g., in the complex of two amide groups1 OCN–H
linked by a hydrogen bond as shown in Fig. C.24d:

OCN∗–H · · ·OCN ←→ OCN–H · · ·OCN∗ ,

where the asterisk distinguishes excited states.
The ground adiabatic electronic state of biomolecules is well sep-

arated in energy from excited states. Only the latter may not be so
well separated one from another. As a consequence, the electron or the
energy transfer between two different electronic quantum states R and
P must be preceded by an excitation process. Such an excitation can
occur either at the expense of a light quantum absorption, i.e.,

R0 + γ −→ R ←→ P −→ subsequent states ,

or as a result of a bimolecular chemical reaction, i.e.,

S + R0 −→ R ←→ P −→ subsequent states ,

e.g., of redox type (Marcus and Sutin, 1985; see Sect. 6.5),

Dred + Aoxy ←→ D A ←→ D+A− ←→ D+
oxy + A−

red .

Excitation of the amide group vibrational quantum state is also sup-
posed to be preceded by some bimolecular chemical reaction (Davy-
dov, 1982). A transition to the subsequent state can involve product
detachment, another excitation or electron transfer, as well as another
photon emission (fluorescence) or absorption (e.g., resulting in stim-
ulated emission or transient absorption in pump–probe experiments,
Mukamel, 1995).

1The amide group OCN–H has an exceptional property. Its high-frequency vi-
brational mode with excitation energy 1 700 cm−1 = 20 kJ/mol, thus not describ-
able classically, is collective rather then localized, contrary to what was suggested
in Fig. D.2. This collective aspect takes its origin in a π-bond delocalization (see
Fig. C.19e), which results in a high dipolar electric moment able to interact over a
long distance.
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The proton transfer reaction occurs within a single electronic adia-
batic potential. As a matter of fact, it is a transition between two dif-
ferent conformational substates that only additionally involves quan-
tum tunneling effects (May and Kühn, 1984). It can be a stage of a
bimolecular protolysis reaction (Eigen, 1964; see Sect. 6.4):

AH + B ←→ A–H · · ·B ←→ A− · · ·H–B+ ←→ A− + HB+ ,

or it can be preceded by a photoexcitation to an excited electronic
state (photoinduced tautomerization; Manz and Wöste, 1995).

Further on, we restrict our considerations to two adiabatic quan-
tum states |R〉 and |P〉, corresponding to chemical states R and P,
respectively, and to a single nuclear dynamic variable Q representing
either the distance between the molecular centers at which the quan-
tum states |R〉 and |P〉 are localized or a more collective variable such
as a local polarization of the surrounding protein matrix. As usual, a
value of the dynamic variable Q will be denoted by the corresponding
small italic letter q. We shall refer to the states |R〉 and |P〉 as excited
states, although it may not be the case for the proton transfer.

In the four-dimensional space of operators acting in the two-
dimensional space spanned by states |R〉 and |P〉, it is convenient to
distinguish two Pauli spin operators:

|P〉〈P| − |R〉〈R| = σz , |P〉〈R| + |R〉〈P| = σx . (D.30)

The condition of the system being in either excited state is written as

|P〉〈P| + |R〉〈R| = 1 . (D.31)

We assume that both adiabatic potentials corresponding to R and P
have the same parabolic shape determining harmonic vibrations. We
also assume that their minima are translated by Q0 and their values
by ε (Fig. D.13a). Accordingly, the excitation-vibrational Hamiltonian
takes the form

Hexc + Hvib + Hexc−vib =
ε

2
σz +

ω

2

[
P2 +

(
Q +

1
2
σzQ0

)2
]

+ const.

=
ε

2
σz +

ω

2
(P2 + Q2) +

ω

2
Q0Qσz . (D.32)

The position Q and the conjugate momentum P are chosen to be
dimensionless quantities, whence the frequency ω has the meaning of
vibrational energy in units h̄ = 1. A translation Q0 is related to a
reorganization energy (see Fig. D.13a) (Marcus and Sutin, 1985):
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(a) (b)
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P

Fig. D.13. (a) Potentials of two localized excited states in the nonadiabatic
transfer problem. (b) Potentials of two delocalized excited states in the adi-
abatic transfer problem. The lower state is well separated in energy from the
higher one

λ =
1
2
ωQ2

0 . (D.33)

Localized states |R〉 and |P〉 are not the exact excited quantum states.
An excitation transfer is possible due to a delocalization component
of the Hamiltonian, which we assume to be independent of the nuclear
variable Q (the Condon approximation, May and Kühn, 2004):

Htr = V σx , (D.34)

where V is a phenomenological parameter resulting from various pos-
sible mechanisms of long-range excitation transfer in proteins (Bixon
and Jortner, 1999; May and Kühn, 2004).

We assume only a vibrational relaxation in the system, described
by equations similar to (B.60) and (B.61):

Q̇ = ωP , Ṗ = −ω

(
Q +

1
2
σzQ0

)
− 2κP + 2

√
κ

ω

kBT

ω
Y , (D.35)

where Y is normalized Brownian white noise and the dimensionless mo-
mentum P is related to velocity V by the equation V = ωP. Equations
(D.35) can be treated either as the classical Poisson–Langevin equa-
tions or as the quantum Heisenberg–Langevin equations (Zwanzig,
2001).

The treatment of the problem depends on the ratio of rates of
vibrational relaxation κ and electron transfer 2V (Bixon and Jortner,
1999; May and Kühn, 2004). If 2V � κ, Hel + Hvib + Hel−vib is to
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be treated as an unperturbed Hamiltonian and Htr as a perturbation,
and we have a nonadiabatic theory involving two adiabatic potentials
(Fig. D.13a). If κ � 2V , it is Hel+Htr+Hvib that should be treated as
an unperturbed Hamiltonian and Hel−vib is a perturbation. We then
have a typical adiabatic theory , because only the ground adiabatic
potential is sufficient to be considered (Fig. D.13b). The problem is
identical to that considered by Kramers (see Appendix B.3).

As in Kramers’ adiabatic approach (Hänggi, 1990), we shall con-
sider the nonadiabatic theory of reaction rates in two opposite limits of
high and low vibrational damping , i.e., κ � ω and κ � ω, respectively.

For high vibrational damping, the two equations (D.35) are replaced
by a single equation of overdamped motion [see (B.62)]:

Q̇ = −ω2

2κ

(
Q +

1
2
σzQ0

)
+

√
kBT

κ
Y . (D.36)

As a consequence, the positional representation of vibrational states is
convenient and we choose the adiabatic states in the form of products
|R〉|Rq〉 and |P〉|Pq〉, where |Rq〉 and |Rq〉 are vibrational states with
well-determined positions.

In the classical approach to nuclear dynamics, (D.36) is equivalent
to a system of two coupled Smoluchowski equations (σz = −1 or +1
for R and P, respectively; Wang et al., 1992):

∂

∂t
pR(q, t) =

ω2

2κ

∂

∂q

[(
q − 1

2
Q0

)
+

kBT

ω

∂

∂q

]
pR(q, t)

−w(q)
[
pR(q, t) − pP(q, t)

]
,

∂

∂t
pP(q, t) =

ω2

2κ

∂

∂q

[(
q +

1
2
Q0

)
+

kBT

ω

∂

∂q

]
pP(q, t)

+w(q)
[
pR(q, t) − pP(q, t)

]
, (D.37)

where pR(q, t) and pP(q, t) are the probability densities of being in the
states |Rq〉 and |Pq〉, respectively, at time t. The transition probability
density w(q) per unit time between the states |Rq〉 and |Pq〉 is defined
by the first order perturbation theory (Fermi golden rule):

w(q) = 2π |〈Rq|〈R|Htr|P〉|Pq〉|2 δ

[
ε +

ω

2
(q + Q0/2)2 − ω

2
(q − Q0/2)2

]

=
2πV 2

ωQ0
δ(q − Qc) , (D.38)
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where Qc is the position where the two potentials cross each other
(Fig. D.13a). In the derivation of (D.38), we have taken into account
the fact that 〈Rq|Pq′〉 = 1 only for q = q′ and replaced the density of
states with respect to energy by the density of states with respect to
position.

When the positional relaxation is fast compared with the transfer
rate, the system first reaches the equilibrium probability distribution
in R:

peq
R (q) =

(
2πkBT

ω

)−1/2

exp

[
−ω(q − Q0/2)2

2kBT

]
. (D.39)

The rate constant for the next forward transition is given by

keq
+ =

∫ ∞

−∞
dq peq

R (q)w(q) , (D.40)

and substituting (D.38) and (D.39), we reconstruct the historical Mar-
cus result (Marcus and Sutin, 1985):

keq
+ = 2πV 2(4πλkBT )−1/2 exp

[
−(ε + λ)2

4λkBT

]
, (D.41)

where (ε + λ)2/4λ is the value of the potential at the crossing point
Qc. The full transition rate constant is given by (B.81). The relax-
ation times for diffusion in the parabolic potential are calculated in
Appendix B.6. The reverse transition rate constants are related to the
forward ones by (B.74) and (D.27).

The Marcus equilibrium rate constant (D.41) for nonadiabatic tran-
sitions differs from the Eyring equilibrium rate constant (B.78) for adi-
abatic transitions. The preexponential factor does not increase with
temperature like the mean frequency of transitions in the Eyring the-
ory but, instead, decreases with temperature. This points to the contri-
bution of tunneling-type quantum effects. And secondly, the expression
divided by kBT in the exponent cannot be simply interpreted as the
activation free energy since, depending on the relation between the
energy drop −ε and the reorganization energy λ, three various cases
can occur in the nonadiabatic transition, as shown in Fig. D.14.

For low vibrational damping, κ � ω, it is convenient to choose the
energy representation by introducing complex variables

a =
1√
2
(Q + iP) , a∗ =

1√
2
(Q− iP) . (D.42)
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Fig. D.14. Three cases in the Marcus theory of nonadiabatic transitions

Then the vibrational Hamiltonian reads

Hvib =
ω

2
(a∗a + aa∗) . (D.43)

In the quantum mechanical approach, a∗ and a represent bosonic cre-
ation and annihilation operators. The energy eigenstates are states
with a well-determined number of bosons, n = 0, 1, 2, . . . :

Hvib|n〉 = ω

(
n +

1
2

)
|n〉 . (D.44)

In the energy representation, the adiabatic states are products of the
form |R〉|Rm〉 and |P〉|Pn〉, where |Rm〉 and |Pn〉 are the energy eigen-
states of the oscillators with minima at −Q0/2 and Q0/2, respectively,
and m varies in the same way as n.

Despite introducing the discrete variables m and n, we shall treat
the vibrational subsystem classically (in the so-called semiclassical ap-
proximation). In this case, the density matrix equation of motion in
the energy representation (Suzuki et al., 1995) simplifies to the usual
set of master equations:

ṗRm(t) = wm,m−1pRm−1(t) + wm,m+1pRm+1(t) (D.45)

−(wm+1,m + wm−1,m)pRm(t)

+
∑
n

[
vm,npPn(t) − vn,mpRm(t)

]
,

ṗPn(t) = wn,n−1pPn−1(t) + wn,n+1pPn+1(t) (D.46)

−(wn+1,n + wn−1,n)pPn(t)

+
∑
m

[
vn,mpRm(t) − vm,npPn(t)

]
.
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The w are transition probabilities per unit time determining vibra-
tional relaxation:

wm−1,m = mκ , wm,m−1 = mκe−βω , (D.47)

and the v are transition probabilities between different excited states
determined in first order perturbation theory by the Fermi golden rule
(Bixon and Jortner, 1999; May and Kuhn, 2004):

vn,m ≡ 2πV 2|Snm|2δ[ε + (n − m)ω] , (D.48)

where the overlap integral Snm is given by

Snm = 〈Pn|Rm〉 = 〈n|e−iQ0P |m〉 = 〈n|e
√

γ(a∗−a)|m〉 , (D.49)

with γ a coupling parameter given by

γ ≡ λ

ω
. (D.50)

The overlap integral has the property

Snm = (−1)n−mSmn . (D.51)

Some manipulations with the bosonic creation and annihilation op-
erators result in a formula for the squared modulus of the overlap
integral:

|Snm|2 =
eγγn−m

n!m!

[
dn

dγn
(e−γγm)

]2
. (D.52)

Formulas like this are usually the starting point for calculating the
equilibrium rate constant (Bixon and Jortner, 1999). However, we
would like here to consider also a dynamical contribution to the rate
constant originating in the vibrational relaxation, so we shall still deal
with the complete (D.45) and (D.46).

For high temperatures, βω � 1, one can pass to the continuous
energy limit by introducing probability densities:

pR(e, t) = ω−1pRm(t) , e ≡ ωm , (D.53)

and
pP(e − ε, t) = ω−1pRn(t) , e − ε ≡ ωn . (D.54)

Energy conservation during the transition has been taken into account
in the above, as indicated by (D.48). In the continuous limit, (D.45)
and (D.46) take the form
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Fig. D.15. Potentials of the two localized excited states in the energy space.
The transition probability density distribution between the two states is
shown, with maximum at the energy value where the corresponding potentials
in the positional space cross one another (see Fig. D.13a)

∂

∂t
pR(e, t) = κω

∂

∂e
D(e)

[
β

∂U(e)
∂e

+
∂

∂e

]
pR(q, t)

−w(e)
[
pR(e, t) − pP(e, t)

]
,

∂

∂t
pP(e, t) = κω

∂

∂e
D(e − ε)

[
β

∂U(e − ε)
∂e

+
∂

∂e

]
pP(q, t)

−w(e)
[
pP(e, t) − pR(e, t)

]
. (D.55)

For e > 0, the potential and the diffusion coefficient now depend on e :

U(e) = e , D(e) = e , (D.56)

respectively, and for e < 0, V is infinite and D vanishes (Fig. D.15).
The transition probability density per unit time can be approximated
by the Gaussian

w(e) = 2V 2(4λβ)−1/2γe−γ2[e−(ε+λ)2/4λ] . (D.57)

In the strong coupling limit, γ � 1, the distribution (D.57) narrows
to the Dirac delta function:

w(e) = 2πV 2(4πλβ)−1/2δ
[
e − (ε + λ)2/4λ

]
. (D.58)

If the energy (vibrational) equilibration is fast compared with the
transfer rate, the system reaches the equilibrium probability distri-
bution

peq
R (e) = βe−βe , (D.59)
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for e > 0, which determines the equilibrium rate constant

keq
+ =

∫ ∞

0
de peq

R (e)w(e) . (D.60)

The integral can be calculated in the strong coupling limit given by
(D.58), and the Marcus formula (D.41) is again reconstructed. Owing
to the energy dependence of the diffusion coefficient, the mean first-
passage time to the energy gate, defining a nonequilibrium contribution
to the rate constant, is determined by a slight modification of the
formula (B.137) (Zwanzig, 1988):

τ(0 → e) =
1

κω

∫ e

0
dx eβU(x)D(x)−1

∫ x

0
dy e−βU(y) . (D.61)

Substituting in the functions (D.56), we get an integral

τ(0 → e) =
1

κωβ

∫ βe

0
d(βx)

eβx − 1
βx

=
1

κωβ

[
Ei(βe) − ln(βe) − Eu

]
,

(D.62)
where Ei is the integral exponential function and Eu the Euler con-
stant. For high energy barriers βe � 1, we can use the asymptotic
expansion of the integral exponential (Abramowitz and Stegun, 1964)
to obtain

τ(0 → e) ≈ (κωβ2e)−1eβe . (D.63)

Treating the vibrational subsystem in a full quantum manner, i.e.,
replacing the set of master equations (D.45) and (D.46) by a set of
equations of motion for the density matrix, one can get quantum beats,
often observed for low vibrational damping (Suzuki et al., 1995). Quite
generally, the rate constant for an arbitrary quantum model of charge
or energy transfer, both in the high and low vibrational damping limits,
is determined by a quantum version of the flux-correlation formula
(B.76) derived by Yamamoto (1960). However, calculations with this
formula are not straightforward as a rule (Fain, 1980).

Let us now generalize the model considered to the case of quantum
states localized on a linear chain of many sites. The main goal is a
possible application to a system of amide groups linked by hydrogen
bonds in the α-helices (see Figs. C.24d and C.27a) (Davydov, 1982).
In the present case, it is more convenient to express the dynamics of
excitation in term of creation and annihilation operators of certain
quasiparticles:

|P〉〈P| − |P〉〈P| = c∗PcP − c∗RcR ,

|P〉〈R| + |R〉〈P| = c∗PcR + c∗RcP ,
(D.64)
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and similarly for other sites. For two-state dynamics on a site, it is
indifferent whether the operators c∗ and c are bosonic or fermionic.
For N identical sites, the excitation Hamiltonian with a transfer term
reads

Hexc + Htr = Δ
N∑

l=1

c∗l cl − V
N∑

l=1

(c∗l cl−1 + c∗l cl+1) . (D.65)

The condition (D.31) is replaced by the condition that there be a single
excitation (quasiparticle) present:

N∑
l=1

c∗l cl = 1 . (D.66)

The vibrational Hamiltonian is

Hvib =
ω

2

N∑
l=1

[
P2

l + (Ql −Ql−1)2
]

, (D.67)

where Ql is a displacement from the equilibrium position of site l and
Pl is the conjugate momentum. The interaction Hamiltonian between
quasiparticles and vibrations is

Hexc−vib = χ
N∑

l=1

(Ql+1 −Ql−1)c∗l cl . (D.68)

We introduce Fourier transforms,

cl = N−1/2
∑
k

ckeiklξ (D.69)

and
Ql = N−1/2

∑
k

Qkeiklξ , (D.70)

where k assumes N values in the first Brillouin zone from −π/ξ to π/ξ,
ξ being the equilibrium distance between the sites. The excitation and
vibrational Hamiltonians (D.65) and (D.67) then take the form

Hexc + Htr =
∑
k

εkc
∗
kck (D.71)

and
Hvib =

∑
k

ωka
∗
kak , (D.72)
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respectively, where we introduced the creation and annihilation op-
erators of bosons related to the Fourier transforms of positions Qk

and momenta Pk. Collective quasiparticles created by the operators
c∗k are called excitons, whereas those created by the operators a∗k are
phonons. The energies are

εk = Δ − 2V cos kξ (D.73)

and
ωk = 2ω

∣∣∣∣sin kξ

2

∣∣∣∣ . (D.74)

In terms of the phonon operators, the interaction Hamiltonian (D.68)
reads

Hexc−vib = N−1/2χ
∑
lk

eiklξc∗l cl(bk + b∗−k) . (D.75)

For low values of the wave number k, the exciton and phonon energies
can be approximated by

εk ≈ Δ − 2V + v(k)|k| (D.76)

and
ωk ≈ v0|k| , (D.77)

where
v(k) = V ξ2|k| (D.78)

and
v0 = ωξ (D.79)

are the exciton and phonon (longitudinal sound wave) velocities, re-
spectively. If the exciton velocity is higher than the sound velocity,

v(k) > v0 , (D.80)

the exciton can lose energy by creation of phonons which then dissi-
pate due to the process described by (D.35). However, if the condition
(D.80) is not satisfied, the interaction (D.75) results in a local defor-
mation rather then phonon creation, moving in a correlated way with
the exciton. This deformation–exciton pair is called a Davydov soliton.

Under the semiclassical approximation, i.e., a quantum treatment
of the excitons and a classical treatment of the deformation, the soliton
state is sought in the form of a linear combination:

|sol〉 =
N∑

l=1

φl(Q,P, t)c∗l |0〉 , (D.81)
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where |0〉 is the exciton vacuum state and Q and P are sequences of
positions and momenta of all deformations at the sites l = 1, 2, . . . , N .
In the continuous limit, assuming

x = lξ , (D.82)

and inserting the explicit time dependence Ql(t) and Pl(t), the se-
quences Q and P are replaced by continuous fields Q(x, t) and P(x, t).
Similarly, the coefficients φl(Q,P, t) in (D.81) are replaced by a con-
tinuous field φ(x, t). It has the meaning of a probability amplitude for
finding the exciton at a given position and time.

The classical Hamilton equations for Qs and Ps and the Schrödinger
equation for the exciton jointly minimize the functional

〈sol|Hexc + Htr + Hvib + Hexc−vib|sol〉 , (D.83)

and result in a nonlinear Schrödinger equation for the field φ(x, t)
(Davydov, 1982):[

i
∂

∂t
− Δ + 2V − W + V

∂2

∂q2
+ 4μ|φ(q, t)|2

]
φ(q, t) = 0 , (D.84)

where W is the chain deformation energy,

W ≡ 1
2

∫
dx

[
ω−1

(
∂Q
∂t

)2

+ ω

(
∂Q
∂x

)2
]

, (D.85)

and μ is a parameter of nonlinearity,

μ ≡ χ2

ω

(
1 − v2

v2
0

)−1

, (D.86)

meaningful only if the inequality opposite to (D.80) holds.
The squared modulus of the exact solution to (D.84), viz.,

|φ(q, t)|2 = 2μ sech2 [μ(x − vt)] , (D.87)

represents a bump-like soliton with width πμ−1, traveling with velocity
v(k) equal to the exciton velocity (Fig. D.16). The chain deformation
is correlated with the probability amplitude of the exciton localization
(D.87), i.e.,

∂Q(x, t)
∂x

=
2μ

χ
|φ(q, t)|2 . (D.88)
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Fig. D.16. Davydov soliton. |φ|2 represents the probability amplitude of the
exciton localization and, simultaneously, the spatial derivative of the chain
deformation

The deformation energy (D.85) represents the binding energy of the
exciton to the chain deformation and equals

W = χ4/3ω2V . (D.89)

It is this large energy that does not allow the exciton to emit phonons
and makes the soliton exceptionally stable.

However, vibrational relaxation (D.35), not considered as yet, re-
sults in fast decoherence and decay of the exciton–deformation corre-
lations on a timescale κ−1, shorter than a split picosecond. Numerical
simulations indicate that, despite the lack of correlations, the exciton
itself remains localized and its motion acquires a diffusive character
(Cruzeiro-Hannson and Takeno, 1997). This is not to be wondered at,
since the excitation transfer between two centers studied at the be-
ginning of this section did indeed have a stochastic character. Such
a localized exciton could transfer energy on a timescale shorter than
the lifetime of the excited amide vibrational mode, but we do not ex-
pect the distance traveled in a diffusive manner during that time to
be especially long.
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194. Kitao, A., Hayward, S., Gō, N. (1998): Energy landscape of a native
protein: Jumping-among-minima model, Proteins 33, 496–517

195. Kittel, C. (1996): Introduction to Solid State Physics (Wiley, New York)
196. Knaff, D.B. (1996): Ferredoxin and ferredoxin-dependent enzymes. In:

Oxygenic Photosynthesis: The Light Reactions, ed. by D.R. Ort and
C.F. Yokun, Advances in Photophysics, Vol. 4 (Kluwer, Dordrecht)
pp. 333–361



400 References

197. Kondepudi, D., Prigogine, I. (1998): Modern Thermodynamics (Wiley,
Chichester)

198. Kongsaeree, P., Cerione, R.A., Clardy, J.C. The structure determina-
tion of Cdc42Hs and GDP complex, to be published

199. Konno, K., Ue, K., Khoroshev, M., Martinez, H., Ray, B., Morales,
M.F. (2000): Consequences of placing an intramolecular crosslink in
myosin S1, Proc. Natl. Acad. Sci. USA 97, 1461–1466
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207. Kurzyński, M. (1994): A model of reversible reaction with slow in-
tramolecular relaxation, J. Chem. Phys. 101, 255–264
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377. Wider, G., Wüthrich, K. (1999): NMR spectroscopy of large molecules
and multimolecular assemblies in solution, Curr. Opin. Cell Biol. 9,
594–601

378. Widom, B. (1965): Reaction kinetics in stochastic models, Science 148,
1555–1560

379. Widom, B. (1971): Molecular transitions and chemical reaction rates,
J. Chem. Phys. 55, 44–52

380. Williams, R.J.P. (1979): The conformational properties of proteins in
solution, Biol. Rev. 54, 389–437

381. Williams, R.J.P. (1993): Are enzymes mechanical devices?, TIBS 18,
115–117

382. Wilson, R.J. (1996): Introduction to Graph Theory , 4th edn. (Addison
Wesley Longman, London)

383. Winkler-Oswatitsch, R., Eigen. M. (1992): Steps Towards Life: A Per-
spective on Evolution (Oxford University Press, Oxford)

384. Woese, C. (1998): The universal ancestor, Proc. Natl. Acad. Sci. USA
95, 6854–6859

385. Woledge, R.C., Curtin, N.A., Homsher, E. (1985): Energetic Aspects of
Muscle Contraction (Academic, London)
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myosin at 2.8-Å resolution, Nature 368, 306–312

389. Xiong, J., et al. (2000): Molecular evidence for the early parallel transfer
of genes, Science 289, 1727

390. Xu, J., Root, D.D. (2000): Conformational selection during weak bind-
ing at the actin and myosin interference, Biophys. J. 79, 1498–1510

391. Yakushevich, L.V. (1993): Nonlinear dynamics of biopolymers: Theo-
retical models, experimental data, Q. Revs. Biophys. 26, 201–223

392. Yamamoto, T. (1960): Quantum statistical mechanical theory of the
rate of exchange chemical reactions in the gas phase, J. Chem. Phys.
33, 281–289

393. Yennawar, N.H., Yennawar, H.P., Farber, G.K. (1994): X-ray crystal
structure of gamma-chymotrypsin in hexane, Biochemistry 33, 7326–
7336

394. Yildiz, A., Tomishige, M., Vale, R.D., Selvin, P.R. (2004): Kinesin walks
hand-over-hand, Science 303, 676–678



References 411

395. Yomosa, S. (1985): Solitary excitations in muscle proteins, Phys. Rev.
A 32, 1752–1758

396. Zhang, Z., et al. (1998): Electron transfer by domain movement in cy-
tochrome bc1, Nature 392, 677–684

397. Zheng, J. H., et al. (1993): 2.2-angstrom refined crystal-structure of the
catalytic subunit of cAMP-dependent protein-kinase complexed with
ATP and a peptide inhibitor, Acta Crystallogr. D 49, 362–365

398. Zhou, M., Morals-Cabral, J.H., Mann, S., MacKinnon, R. (2001): Potas-
sium channel receptor site for the inactivation gate and quaternary
amine inhibitors, Science 411, 657–661

399. Zwanzig, R. (1988): Diffusion in a rough potential, Proc. Natl. Acad.
Sci. USA 85, 2029–2030

400. Zwanzig, R. (2001): Nonequilibrium Statistical Mechanics (Oxford Uni-
versity Press, New York)



Index

absorbing boundary 306
acceleration 11
acetate 88
acetylcholine 98, 128
acid 156, 157, 163, 164, 375
actin 111, 115

filament 113, 117–119, 123, 210,
211, 240, 242, 246, 247, 257

action 24, 25
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activated complex 296
activated process 298, 351
activation 183
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active transport 98
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adenosine diphosphate see ADP
adenosine monophosphate see

AMP
adenosine triphosphate see ATP
adiabatic

electronic state 376
potential 8, 349, 377
state 379, 381
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allosteric

control 124
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homotropic effect 188–190
interaction 188, 189
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D 328
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hydrophobic 343
L 328
main chain 337, 339
side chain 337–339, 343
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AMP 321
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Arrhenius formula 171
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base 156, 157, 176, 375
benzene 318
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bilayer 334–336
bimolecular reaction 226, 376
biochemical reaction 85
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BLNK see B cell linker
Boltzmann

constant 24, 144
entropy 25
equation 286, 287

Boltzmann–Gibbs entropy 40, 282
bottleneck 33, 39, 277
bound energy 53, 56, 58, 59, 141,
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Brownian

fluctuation force 295
force 241, 246
motion 7, 292
particle 288, 295
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byte 24
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calcium carbonate 79, 85
calcium pump 99, 210
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Calvin cycle 78, 88, 94
cancer 138, 139
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membrane 74
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central limit theorem 293
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209, 336
aquaporin 95
calcium 96
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non-gated 219, 221, 222
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221–223
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equation of state 144, 160
equilibration 227
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equilibrium constant 225
force 205

induction 206
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nonequilibrium 142
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149, 151, 264, 266
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173, 296, 376
relaxation time 299, 365
structure 338

chemomechanical coupling 241
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chlorophyll 76–78, 109, 110, 318
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stroma 94
cholesterol 336
chromatin 83, 92
chromosome 83, 109, 121, 123, 137
chymotrypsin 124, 177, 343
chymotrypsinogen 124
cilia 121
citric acid cycle 8, 74, 86, 103
Clapeyron equation 264
classical mechanics 11, 65
Clausius entropy 40, 281
cleft 101, 112
clone 136
closed reactor 13, 182
cluster of differentiation 133–135
coarse-grained description 20, 22,
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coenzyme 338
coherent vibration 353
collision integral 286, 288
colloid 7, 334
competitive inhibition 124, 125,
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complementary error function 365
compressibility coefficient 273
concentration 13, 32, 98, 150, 153,

202, 211, 365
concentration cell 165
Condon approximation 378
conduction 96
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conformation 339
conformational

change 100, 112, 125, 127, 190
relaxation 235
state 117, 324–326, 350, 352, 353,

356, 357, 368
global 350, 360
local 350, 360

state (substate) 231, 235, 240,
249, 349, 354, 370, 377

transition 231, 232, 247, 326, 351,
354–357, 367, 368

transition dynamics 231–233,
235, 239

conformer 330
conservation law 13, 14, 152, 153,

167, 178, 186, 187, 190, 221
constitution 317, 338
constraint 37, 39, 42, 65

external 50, 58
imperfect 39, 49
internal 37, 46, 58
perfect 39, 58

continuity equation 287
continuous symmetry 35
contraction velocity 256
control 96, 123
correlation time 353
covalent bond 38, 39, 173, 317, 325,

327, 328, 332, 338
single 326

covalent catalysis 175, 177
creation operator 381, 382, 384
critical state 31, 33, 275
cross effects 63
current 219, 221
cyanobacteria 67, 78, 79, 83, 85, 93,

109
cyclic AMP 129
cyclin-dependent kinase see CDK
cycline 137
cysteine 111, 177, 337
cytochrome

aa3 81
b6f complex 109
bc1 76, 80, 81, 83
bc1 complex 103, 104, 109
c 76–78, 80, 81, 83, 104, 105, 166
c oxidase 106
c1 78
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cytokine 132, 136, 219
cytoplasm 91
cytoplasmic membrane 91, 94, 127,

148, 336
cytoplasmic reticulum

rough 91
smooth 91

cytosine 344
cytoskeleton 93, 94, 111, 120
cytosol 91, 127, 148

d-orbital 323
DAG 130
Darwinian

evolution 9, 69
selection 84

Davydov soliton 386
Dawson integral 312
decay of correlations 30, 34
decoherence 388
deformation 47

energy 388
degree of coupling 215, 218, 253,

255
degree of dissociation 156
degree of freedom 18

internal 38, 225, 230, 349
macroscopic 53
microscopic 53
thermodynamic 40
translational 335

dehydrogenase 75, 89
dehydrogenation 100
delocalization energy 339
density matrix 384
deoxyribose 343
depolarization 222
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detailed balance conditions 167–
169, 171, 179, 215, 237, 291,
370, 371

diacylglycerol see DAG
diathermal wall 43
diffuse scattering 355
diffusion 7, 32, 233, 368

constant 308
equation 287, 289, 292
free 307, 365
in parabolic potential 310
one-dimensional 247, 258, 306,

367
process 294

diffusional encounter complex 239
dihedral angle 38, 337, 339, 344
dinucleotite 322
Dirac delta 291, 293, 301, 383
directional diagram 371, 373
diribonucleotides 69
dispersion 280, 294
dissipation 49–53, 56, 59, 161, 197,

200, 205, 206
function 59, 61, 62, 204, 214

dissipative structure 3, 61, 62, 192
dissociation 157

constant 155, 238
disulfide

bond 319
bridge 337

DNA 2, 8, 9, 68, 72, 84, 137, 343,
344, 351

replication 344
transcription 344

domain 96, 99, 101, 112, 232, 343,
349, 353, 367

movement 105
double bond 329–331, 339
double helix 72, 344, 345
driving force 295
duty ratio 257
dwell time 227, 303
dynamic instability 120
dynamic subsystem 53

dynamical variable 22, 26, 28, 30,
34, 41, 276, 281, 283, 290, 377

mean 30, 278, 298
dynein 123

effective Michaelis constant 185
effector 128, 188, 224, 239
efficiency 198, 214, 216, 219
Einstein relation 296
electric

charge 35, 47, 59, 94, 198
field 47
moment 36, 39, 47, 94, 95, 376

electrical potential 47
electrochemical

cell 158–160, 209, 210
equilibrium 149
potential 149

electrode 158, 161
electrolyte 158, 159, 161, 164, 210
electrolytic

dissociation 155
equilibrium 315

electromotive force 161, 162, 164
electron 8

acceptor 160, 375
carrier 107, 315
donor 76, 79, 109, 160, 375
transfer 105, 110, 160, 165, 375,

376
electron paramagnetic resonance

see EPR
electronic state 349

adiabatic 376
electrophile 175
electrophilic

catalysis 175
molecule 174

electrostatic multipolar interaction
339

enantiomer 327
endocytosis 94
endoergic reaction 77, 109, 145,

187, 202, 336
endoplasmic
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membrane 91
reticulum

rough 94
smooth 94

endothermic reaction 145
energy 35, 40, 42, 45, 46, 48, 52, 53,

264, 268, 333
energy representation 381
engine 198

chemical 198
electrical 198
heat 198, 199
thermal 198

ensemble average 246
enthalpy 141, 145, 269
entropy 24, 25, 39–42, 44, 47, 49,

51–53, 56, 58, 145, 175, 198,
261, 264, 268, 333, 352

increase 25
maximum 277
of mixing 267
production 59

envelope conformation 327
environment 44–46, 49, 53, 54, 58,

71, 127, 200
enzymatic

catalysis 177, 236, 239
oscillation 126
reaction 14, 237, 368

enzyme 8, 12, 62, 69, 73, 84, 88, 95,
100, 123, 128, 173, 178, 205,
207, 208, 225, 229

activation 125
activity regulation 124
immobilized 336

enzyme–substrate complex 12, 14,
178, 184, 192, 225, 237

epinephrine 128
epitope 133, 136
EPR 248, 354
equation of motion 10, 12, 35, 65
equation of state 47, 154, 263, 264,

266, 283
chemical 160

equilibrium constant 144, 146, 149,
155, 156, 170, 184, 201, 203,
215, 300

equilibrium thermodynamics 51,
200

ergodicity 29, 30
breaking 66

error function 312
ester 319
ester bond 174, 319, 320

generalized 187, 320
ethane 15, 16
ethanol 74
eukaryotic cell 70, 79, 81, 83, 85, 91,

94, 137
Euler equation 263, 267
exchange reaction 153, 154, 171
excitation 76, 108, 376, 385

transfer 378, 388
excited state 377, 382
exciton 386, 387

velocity 386, 387
excluded volume effect 339
exocytosis 94
exoergic reaction 145, 202
exon 137, 345
exothermic reaction 145
expectation value 22
expected value 26–29
Eyring rate constant 380

FAD 74, 86, 88, 111, 166, 322
Faraday constant 149, 161
fast process 32
fast variable 168
fatty acid 319
feedback

activation 126, 192
inhibition 124, 126

Fenn effect 254
fermentation 72–74, 84
Fermi golden rule 379, 382
ferredoxin 77, 78, 107, 109–111, 166
first-exit time 303
first-passage time 226, 303
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distribution 303, 309
mean 236–239, 250, 251, 258,

303, 304, 309, 311, 370, 371,
375, 384

flagella 121
flavin adenine dinucleotide see

FAD
flavin mononucleotide see FMN
fluctuating force 289
fluctuation 7, 23, 30, 290, 353

thermal 240, 259, 260
thermodynamic 275

fluctuation correlation function 26,
283, 290

fluctuation regression hypothesis
283

fluctuation–dissipation theorem
289, 351

fluorescence 229
depolarization 354
polarization 248
quenching 354

fluorescence microscopy
confocal 228, 354
total internal reflection 228, 354

fluorescence resonance energy
transfer 354, 369

flux 58, 59, 62, 283, 371
density 287

flux–force relation 149, 153, 154,
212, 215, 216, 236, 250, 253, 313

flux-over-population formula 304
FMN 75
Fokker–Planck equation 289, 295
force 11
fossils 66, 85

living 67
Fourier transform 385
fractal

dimension 361, 366
lattice 258, 361, 365

fracton dimension 361

free energy 8, 53, 54, 56, 58, 59, 88,
100, 141, 142, 169, 200, 261,
268, 282, 283, 333, 336, 350, 368

donor 99
of activation 171, 173, 300
of reaction 144, 145, 152
transducer 61, 200
transduction 63, 99, 100, 109,

203, 212, 216, 218, 223, 236,
240, 250

free enthalpy 141, 200, 270
free radical 207
friction 15, 197, 199, 206, 241, 289,

295, 353
coefficient 289

frozen structure 32, 33
fructose 317
fuel cell 162–164, 209
function

of process 52
of state 52, 274

functional 277
fungi 82, 85

G protein 128, 130, 223
gas constant 144
gated reaction 234, 237, 249, 297,

365
gauche state 325
Gaussian distribution 293, 383
GDP 88
gel 335
gene 84

divided 345
general acid catalysis 175
general base catalysis 174, 175
genetic

code 72
information 344

genome 3, 9, 66, 137, 138
genotype 69
Gibbs free energy 141, 145, 170,

270
Gibbs potential 200, 270
glass transition 359
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glassy state 33
glucose 72, 75, 78, 86, 317

oxidation 88
glutamate 343
glyceraldehyde 327
glycerol 319
glycine 328, 337, 339–341
glycolipid 336
glycolization 339
glycolysis 8, 72, 74, 86, 100, 204
glycolytic oscillation 192
glycoprotein 94, 336, 339
glycosidic bond 320, 322
Golgi apparatus 91, 94
Gram-positive bacteria 82, 92, 183
granule 92
graph 370
Grb protein 131
Grb–Sos complex 131
green bacteria 77–79, 83
Green function 293, 307
Grotthus mechanism 95, 106, 107
growth factor 130, 139
GTP 88, 336

hydrolysis 120
GTPase 120, 223
guanine 344
guanosine diphosphate see GDP
guanosine triphosphate see GTP

H+ ATPase 79, 81, 103
Haldane equation 179, 181, 238
half-cell 158–160

hydrogen 161, 162, 165
half-chair conformation 327
Hamilton equations 11, 285
harmonic oscillator 362
heart muscle 118, 119
heat 49, 51–53, 200

capacity 274, 276, 282
engine 52
flux 201
of reaction 145

Helmholtz free energy 141, 145, 270
heme 77, 106, 226, 318

Henderson–Hasselbach equation
156, 157

Henri equation 182
heterocycle 318, 319
hexose 316, 317, 327
hierarchy 32

of barrier heights 232, 359, 360
of bottlenecks 232, 359, 361, 364

Hill sigmoidal curve 191
hinge 101
histidine 176, 177
history 65, 66
HIV 136
Hodgkin–Huxley equation 221
homeostasis 217, 222
homogeneity 263, 266
hormone 98, 219
human immunodeficiency virus see

HIV
hybridization 323–325, 329
hydration 96
hydrocarbon 316, 319, 333

aromatic 318
cyclic 326
unsaturated 329

hydrodynamics 39, 287
hydrogen bond 38, 39, 95, 107, 230,

231, 332, 333, 337, 340, 341,
344, 349, 350, 376

hydrogen exchange 355
hydrolase 89, 187
hydrolysis 174, 320
hydronium ion 74, 107, 155
hydrophilic

amino acid 343
head 70
side chain 343

hydrophilicity 71, 334
hydrophobic

amino acid 343
side chain 343
surface 343
tail 70

hydrophobicity 71, 334
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hydrostatic pressure 212
hydrosulfide 316, 319
hydroxyl

group 124, 162, 177, 327, 338
ion 107

hypothesis of molecular chaos 286

ideal gas 29, 31, 34, 47, 141, 142,
151, 264

isothermal decompression 55, 56
two-component 266

Ig-like domain 133–135
imidazole 318
imine 329
imino acid 337
immune

response 135
system 136

immunoglobin 136
immunologic response 136
immunology 132
indene 318
indeterminism 12
inelastic neutron scattering 359
inflammatory states 125
inhibitor 100, 239
initial stage

kinetics 235
of reaction 299, 365

initial state 19, 20
inorganic

diphosphate 318, 321
phosphate 128, 318

inositol triphosphate 130
instability of motion 16, 17, 19, 25
integral exponential function 384
intermediate filament 111
intermediate state 168
intermolecular dynamics 171
internal combustion engine 164
intramolecular

catalysis 176, 177
dynamics 5, 171, 225, 226, 228,

234, 235, 238, 240, 257, 355
relaxation 5

stochastic dynamics 373, 375
intron 137, 345
ion pump 99
ionic bond 343
iron–sulfur center 75
iron–sulfur complex 104, 106
irreversibility 16
irreversible reaction 302, 304
isentropic conditions 268
isobaric conditions 141, 200, 269
isoleucine 340
isomer 141, 327, 330

cis 330, 339
trans 330, 337, 339, 341

isomerase 89
isomerism 317
isomerization reaction 37, 38, 171
isometric contraction 246
isotherm 57
isothermal conditions 52–54, 57,

141, 200, 268, 269
isotonic contraction 246

Janus kinase 132

ketone 37, 316–318
ketose 316
kinase 124, 190, 202, 203, 223
kinasese 89
kinesin 122, 258
kinetic coefficient 62–64, 147, 283,

284
kinetic equation 13, 146, 147, 152,

154, 168, 169, 178, 300
kinetic freezing 65
kinetic hole burning 354
kinetic perfection 182, 183
kinetic theory of gases 7
Kramers theory 297, 313, 368
Krebs cycle 74, 78, 80, 81, 86, 88, 93

lactate 72
Lagrange multiplier 277, 279–281
lamella 334, 335
Langevin equation 241, 295
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Langmuir hyperbola 191
Laplace transform 307, 308, 310
LAT 134
law of large numbers 26–30, 35, 293
law of mass action 153
law of motion 9
Lck molecule 134
Le Chatelier–Brown principle 276
leakage 209, 212, 220–222
Legendre transformation 269, 271
length 36
lever 197, 198
life 68, 70
ligand 96, 128
ligase 89
light-harvesting

center 108
protein 107, 108
system 76, 111

limbo state 302–304, 373, 374
linear response 62
Lineweaver–Burk plot 181, 185
linker of activated T cell see LAT
Liouville

equation 286
theorem 20, 21, 25, 285

lipase 89
lipid 332

bilayer 70, 94
membrane 141, 343

liposome 113, 334–336
liquid crystal 335
load 55, 56, 211, 217, 241, 242, 246,

253, 255, 318
local conformation 340
lone electron pair 323, 325, 329, 332
long-time tail 309
loose coupling hypothesis 256
Lotka–Volterra model 195, 196
lumen 107, 109, 148

of thylacoid 109
lyase 89
lymphocyte 133
lysine 343

lysosome 91

machine 61, 62, 197, 367
chemochemical 62, 100, 202, 205,

206, 208, 219, 247, 249
chemoelectrical 158, 161, 199,

209, 210
chemomechanical 209
cyclic 62, 197
electrochemical 159
isothermal 201
macroscopic 219, 240
mechanoelectrical 199
mechanomechanical 198
molecular 100, 101, 240
molecular biological 200, 209,

211, 240, 258, 260
ratchet and pawl 261

macrophage 133, 136
macroscopic

machine 240
quantity 235
system 28–31, 34, 39

magnetic
field 47
moment 36, 39, 47

magnetization 36, 39, 47
major histocompatibility complex

(MHC) 133
class I MHS molecule 133
class II MHS molecule 133

malignant transformation 132
MAPK 131
Marcus rate constant 380, 384
Markov process 228, 291
master equation 242, 291, 298, 351,

364, 370, 381, 384
matrix 148
Maxwell demon 5, 260, 261
Maxwell relations 272
Maxwell–Boltzmann distribution

286
mean free path 287
mean frequency of transitions 300
measurement 19, 28, 30
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error 20
mechanical cycle 257
mechanical determinism 9, 18, 289
mechanics 17
meiotic cell division 84, 85
membrane 38, 44, 319

anchoring 124, 125
biological 336
channel 73, 84
phosphorylation 73, 74, 84, 101,

103, 209
potential 149, 219, 220, 222
transport across 143, 148–151,

186
mesoscopic system 240
messenger 124

primary 224
second 128, 224

messenger RNA see mRNA
metabolic pathway 8, 67, 85–87
metabolism 3, 68, 69, 85
metabolon 93, 94
methane 76
methylation 124, 338
micelle 334, 335
Michaelis

complex 186
constant 188

Michaelis–Menten
constant 180
kinetics 181, 238
law 180, 187, 254

micro RNA see miRNA
microfilament 111–113, 209, 211
microtrabecular lattice 111
microtubule 83, 111, 120–123, 209,

211
miRNA 345
mitochondria 83, 85, 91–93, 103,

137
mitochondrial

matrix 93
membrane 148
respiratory chain 103, 164

mitogen-activated protein kinases
see MAPK

mitosis 137
mitotic

cell division 83–85
motor 123
spindle 121

mixing 19, 25, 30, 34
exponential 20, 21, 29

molar
concentration 143, 160, 178, 193,

195
ratio 13, 14

mole fraction 144, 298
molecular

dynamics 241
machine 100, 101, 240
motor 113, 121, 209, 211, 241
nitrogen 80
oxygen 79–81, 85, 106, 109, 166,

226
pump 150, 209, 211, 212, 260
recognition 239
turbine 209, 212

molecular dynamics simulation
352, 354, 368

momentum 11, 35
monosaccharide 67, 76, 94, 316,

317, 320, 326, 327, 349
Mössbauer spectroscopy 354
motility assay 260
motor 198, 200
mRNA 71, 73, 344
multicellular organism 82, 83
multienzyme complex 88, 93, 232,

233, 339
muscle 246

contraction 113
fiber 119
shortening 254

mutation 84
myofibril 119, 240, 241, 246, 251
myoglobin 226
myosin 113, 210
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filament 118, 119, 240
II 113, 114
motility assay 256
tail 251

myosin head 115–117, 211,
240–242, 246, 247

attached state 117
catalytic subunit 115
closed state 115, 117
detached state 117, 118
lever arm 115, 117, 118
open state 115, 117
regulatory subunit 115, 116
relay helix 115, 116
SH1–SH2 helix 115–118
strongly attached state 117

N terminus 336
negative feedback 217
Nernst equation 149, 157, 161
nerve impulse 97
neural signal 223
neurotransmitter 127, 221
Newton equations 11, 285
nexin 123
nicotinamide adenine dinucleotide

72, 86, 166, 322
phosphate 78, 166

nicotinic acetylcholine receptor 98
nitric oxide 127
nitrogen heterocycle 316, 318, 320
nitrogenous base 67, 320, 344
NMR 354
noise 228, 229

white 241, 291, 294, 301, 378
non-covalent

binding 343
bond 339
force 128

non-exponential
decay 365
initial stage 235
time course 226

noncompetitive inhibition 185, 188,
189

nonequilibrium
frozen 32, 33
thermal 47
thermodynamics 4, 32, 147, 235

nonlinear Schrödinger equation 387
nuclear paramagnetic resonance

see NMR
nucleic acid 321, 322, 332, 343
nucleophile 174, 175, 177
nucleophilic catalysis 175
nucleoside 320
nucleoside diphosphate 72, 84
nucleoside triphosphate 70–73, 76,

84, 86
nucleotide 94, 101, 116, 320, 343,

347, 349
binding 102

number of molecules 36, 37, 47, 48,
55, 142, 146, 271

ocean 84
oncogene 131, 139
oncogenesis 127
Onsager regression hypothesis 300
open reactor 180, 183
open system 3
optical tweezers 355
organelle 91
orthophosphate 86, 118, 318, 331,

332
osmosis 94, 150, 151, 212
osmotic

equilibrium 151
pressure 151

output flux 211
overlap integral 382
oxidase 89
oxidation 158, 337
oxidative phosphorylation 80, 81,

83, 85, 93
oxidizer 84, 158
oxidoreductase 89

ferredoxin NADP+ 111
NADF:Q 103
NADH:Q 103
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quinol:cytochrome c 103–105,
109, 209, 210

quinol:plastocyanin 109
oxygen bacteria 85
oxygen evolving center 107

p-orbital 323, 324, 329
partial diagram 371
partition function 280–282
patch-clamp technique 228, 229,

260, 354, 366
pathogen 132, 133
Pauli spin operator 377
pendulum 10, 15, 16
pentose 316, 317
peptide 71, 174, 322

bond 124, 176, 322, 336, 339, 341,
350

peptidoglycan 74, 92
percolation cluster 363, 364
perfect solution 142
phase 265, 275
phase diagram 336
phase flow 19

mixing 19
phase space 12, 20, 24, 29, 32
phase trajectory 12
phase transformation 35
phase transition 335
phenotype 69
pheophytin 109, 110
phonon 386
phosphate 316, 320
phosphodiester 319, 343

bond 319, 322, 332
phospholipase C 125, 129
phospholipid 70, 319, 320, 334, 336

bilayer 84
vesicle 71

phosphorylation 72–74, 86, 88, 99,
124, 201, 203, 209, 338

photocell 164, 165
photon

absorption 376
emission 376

photophosphorylation 84, 93
photorecepter 76
photosynthesis 81, 92
photosynthetic chain 81, 164, 165
photosystem

I 79, 109, 111
II 78, 79, 107, 108

phycobilisome 109
π-bond 329–331
piston 38, 44, 55
PKA 124, 125
PKC 125, 126, 130
Planck constant 25
Planck inequality 276
plant cell 91, 93
plants 82, 85
plastocyanin 78, 79, 107, 109, 110
PLC 129, 130
polarization 36, 39, 47, 377
polymerase 72, 89, 93
polysaccharide 321, 322, 332, 350
porphyrin 318

ring 76, 77
position 11
positive feedback 192, 194, 217
potential energy 326, 349, 360

barrier 339
power 59, 198

dissipated 198
input 198, 214
output 198, 214, 216, 250

power law 365, 366
power-stroke model 243, 245, 257
precursor

activation 124
modification 124

preexponential factor 171
pressure 47, 48, 56, 59, 150, 151, 264
Prigogine variational principle 63
probability 22, 23, 25, 26, 39, 235

theory 7, 22, 28
probability density 287, 292, 295,

307, 382
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probability distribution 22, 30, 31,
40, 277, 285

canonical 279, 282
equilibrium 380, 383
generalized canonical 280
microcanonical 278

process heat 55
product 141
program 68, 69
prokaryotic cell 70, 71, 73, 83–85,

92
proline 337, 339, 341
promoter 137
prostaglandins 125
prosthetic group 338
protease 89, 174, 176, 187
protein 9, 68, 71–73, 84, 232, 321,

322, 332, 336–338, 343, 351
backbone 340–342
channel 84
folding 258, 353, 360, 361
matrix 106
native state 353–355
p21 138
p53 138, 139
pRB 138, 139
primary structure 337–339, 360
secondary bond 340, 343
secondary structure 232,

340–342, 355, 367, 369
spatial structure 337
tertiary structure 353

Protein Data Bank 342
protein kinase A see PKA
protein kinase C see PKC
protein-glass model 232, 357, 358
protein-machine model 232, 357,

358, 368–370
protista 82
protolysis reaction 155, 157
proton

acceptor 156
donor 156
flow 102

pump 74–80, 84, 209
transfer 106, 155, 158, 165, 375,

377
transport 95, 157

proton-motive force 158, 164
pseudosubstrate 124
puckering 326
pump 157, 200, 336
purely random process 290, 291,

294
purine 318, 320, 330, 344
purple bacteria 76, 77, 79, 80, 82,

107, 109, 110
pyrimidine 318, 320, 330, 344
pyrophosphate 318
pyrrole 318
pyruvate 72, 74, 86, 88

quantum beat 384
quantum mechanics 12, 19, 65, 330
quantum tunneling 377
quinol 76, 104, 105, 109
quinone 75–77, 80, 81, 103–105,

107, 109, 110, 166
pool 109

Raf protein 131
Ramachandran map 339, 340
random variable 22, 26, 289

dichotomous 27
random walk 292, 364, 370
Ras protein 131, 223
reaction center 107, 109, 110
reaction controlled by dynamics

171, 237, 302
reaction coordinate 297, 368
reaction flux 147, 148, 179–181,

188, 202, 204, 213, 236–238
asymptotic 217, 236
correlation function 300, 384
cyclic 214
input 249
operational 213, 214
output 249
steady-state 375
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transition 214
reaction pathway 175
reaction product 12, 14
reaction progress 243
reaction rate 179, 186

Kramers theory 297, 313, 368
nonadiabatic theory 379
stochastic theory 234, 296

reaction rate constant 13, 167, 171,
173, 236, 250, 300, 302, 304

equilibrium 238, 239, 254, 380,
382, 384

forward 146, 299, 304
pseudo-unimolecular 153, 154
reverse 146, 299, 304
transition 380
transition state theory 374

reaction with fluctuating barriers
238, 297, 367

reactive boundary condition 306
reactive flux 300
reagent 12, 141
receptor 127, 128, 139, 200, 219,

223, 224, 336
receptor tyrosine kinase see RTK
recombination 84, 85
redox reaction 158, 160–162, 165,

166
reducer 158
reductase 75
reduction 159
reflecting boundary 306
refraction 222
refuse RNA 3
regulatory protein 190
relaxation 64

time 32, 64, 147, 183, 227, 231,
232, 234, 283, 284, 298, 305,
309, 351, 353, 364, 365, 380

reorganization energy 377, 380
replicase 69, 72, 73
replication 9, 68, 137, 344
repolarization 222
reproduction 68

respiratory chain 163
of mitochondria 164

resting potential 220
restrictive point 137
reverse transcriptase 9, 70, 72
ribonucleic acid 351
ribonucleosides 69
ribose 317, 343, 344
ribosomal RNA see rRNA
ribosome 70, 72, 73, 84, 93, 94, 124,

338, 345
ribozyme 70, 174
RNA 9, 68, 73, 84, 343, 344

polymerase 84, 258
secondary structure 345
world 69, 70, 86

rotary motor 101
rotation of ethane 15
rRNA 70, 71, 73, 81, 345, 348
RTK 128, 130

s-orbital 323, 324
saccharide 72, 319, 339
salt bridge 343
sarcomere 118, 119, 123, 256, 259
selection 68, 69
selectivity 96
self-organization 62
self-similarity symmetry 305
semi-permeable partition 38, 59
semiclassical approximation 386
semiquinone 104, 105
sensory stimulus 128
serine 124, 177
serpentine receptor 128
sex 83, 85
SH2 domain 130, 132
shape 36, 47
Sierpiński gasket 361, 362, 364
σ-bond 329
σ-orbital 323, 332
signal transduction 88, 122,

127–129, 137, 139, 224
biological 217

signaling pathway 223
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single fluorophore detection 228
single-molecule assay 241
skeletal muscle 112, 118, 119
sliding distance 256
sliding-filament model 118
slippage 206, 208, 209, 211, 215, 219
slow process 32
slow variable 168
small nuclear RNA see smRNA
Smoluchowski

equation 295, 379
theory of coagulation 297

smooth muscle 112, 119
smRNA 345
sodium–potassium pump 219, 220
sol 334–336
solar energy 76–79
solid crystal 335
soliton 353, 386, 387
solvation 333
Sos protein 131
sound velocity 386
specific heat 275, 352, 359
spectral density 290
spectral dimension 361, 362, 364
sphingolipid 334, 336
spin glass 360, 361
spirochetes 82, 93
spliceosome 345
spontaneous ordering 36
spontaneous symmetry breaking

35, 61
spontaneous thermodynamic process

146
Src protein 131
stacking 330
stalling force 216–218, 250, 252
standard chemical potential 143
standard deviation 23, 26, 27, 30,

280, 293
standard reduction potential 161,

162, 166
STAT protein 132
state 9, 22, 23

initial 19, 20
space 10, 16, 32, 33
thermodynamic 34, 35, 38–40,

45, 46, 49
statistical

average 41
coil 351
ensemble 18–20, 22, 28, 30, 34,

35, 39, 211, 241, 246, 279, 370
experiment 26, 28, 30
independence 27, 143
mean 27, 28
physics 17, 19, 28, 29
sample 28, 29, 31
system 30
thermodynamics 63

steady state 14, 58, 59, 61, 62, 167,
179, 192, 235, 368

approximation 167, 169, 179, 182
conditions 185, 202, 204, 214
kinetics 180, 186, 235, 236, 238,

370
reaction flux 375

step size 255–257
steric

constraint 231, 325, 350
hindrance 337, 339

steroid hormone 127
stochastic dynamics 237, 241, 247,

260, 296
intramolecular 373, 375

stochastic process 232, 289, 295
fluctuation 290
mean value 290
realization of 290

stochastization time 20, 29, 30,
32–34

strain 47
stress 47
stretched exponential 229, 230,

306, 359, 365, 366
stroma 109, 111
structure 65, 66
substrate phosphorylation 100, 101
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subsystem
dynamic 53
thermal 53

sulfhydryl group 177
sulfurated hydrogen 76–78
sum of states 280
supramolecular multienzymatic

complex 182
supramolecular structure 339
surfactant 334
survival of the fittest 68, 80, 84
survival probability 303, 307, 310
susceptibility 273, 283

electric 273
magnetic 273

swinging lever-arm picture 118,
240

Syk molecule 134
symbiosis 81
synergetic structure 61
synthase 187

T cell 133, 136
cytotoxic 133, 136
helper 133, 136
receptor 134, 135
regulatory 133, 136

telegraphic noise 227
telomer 139
telomerase 139
temperature 42–44, 47, 48, 52
tetrahedral intermediate 174, 175
theory of evolution 68
thermal expansion coefficient 272
thermal stability 275
thermal-ratchet model 243, 245,

257
thermodynamic coupling 63
thermodynamic equality 271
thermodynamic equilibrium 14, 22,

25, 30, 32, 35, 61, 65, 148, 167,
260, 276, 281

complete 4, 5, 32–34, 39, 41, 49,
50, 58, 64, 182, 200, 281, 283

dynamical 42, 46

local 39
partial 4, 32, 34, 39, 41, 49, 50,

58, 170, 225, 226, 235, 236, 240,
242, 250, 281, 283, 302

thermal 42–44
thermodynamic force 42, 46, 48,

62, 142, 147, 151, 202, 203, 212,
249, 263

external 46, 47, 49, 50, 58
internal 49, 50, 58
operational 213

thermodynamic potential 272, 283
thermodynamic process 12, 50

adiabatic 50, 54
irreversible 51
isentropic 50
isothermal 54

irreversible 52
reversible 54

quasistatic 51, 52
reversible 56
spontaneous 50, 54

thermodynamic stability 61, 276
thermodynamic state 34, 35, 37–40,

45, 46, 49
thermodynamic system 54, 61

complex 37, 45, 46
isolated 43–45
open 58, 59
simple 37, 263

thermodynamic variable 34–39, 41,
42, 44, 46, 49, 51, 53, 142, 152,
233, 281, 283

additive 36, 40
extensive 37
global 37, 42, 45, 46
intensive 263
mean 40
structural 37, 46, 57

thermodynamics 4, 7, 17, 29, 35, 44,
52, 199, 281

first law 49
fourth law 63
irreversible 241
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laws of 40
nonadditive 235
nonequilibrium 4, 32, 141, 147,

235
second law 3, 50, 53, 56, 59, 65,

98, 147, 200, 201, 205, 209, 260,
262

third law 44
zeroth law 44

thermostat 200
thick filament 114, 115, 118
thin filament 118, 119
threonine 124, 340
threshold 217, 219, 222
thylacoid 92, 164, 165

membrane 79, 93, 107, 111, 148
thymine 344
tight coupling hypothesis 255
time 10, 51

average 28, 29, 235
time correlation function 304
time reversal 16
titin 118, 119
titration 157

curve 157
TKLR 128, 131
trace element 315
trajectory 10, 14
trans state 325
transcriptase 72, 73, 89
transcription 9, 68, 137, 344

factor 125, 131, 137, 138
transducer 128, 224
transfer RNA see tRNA
transferase 89
transition probability 242, 364,

371, 373, 382
per unit time 291, 302, 308

transition state 2, 37, 39, 169, 170,
173, 227, 234, 235, 297, 298, 374

theory 170, 171, 173, 225, 239,
251, 296, 301, 302, 374

translation 68, 137

transmembrane proton gradient
103

transmission coefficient 255, 257
transport protein 190
tRNA 71, 73, 344, 349

phenylalanine 345, 347
troponin C 113, 114
true bacteria 81
tubulin 120, 123
tumor suppressor 139
turnover number 180, 181, 188, 236,

237, 239
twist conformation 327
type-I reaction center 77–79, 83
type-II reaction center 76, 77, 79,

83
tyrosine 124
tyrosine kinase-linking receptors

see TKLR

uniform distribution of states 20,
22

unimolecular reaction 38, 148, 187,
226, 249

unstable trajectory 65
uracil 344

vacuole 92
valency angle 38
valine 340
van der Waals

bond 343
interaction 339
radius 340, 342, 347

van’t Hoff equation 145, 152
variability 68
very slow process 32
vesicle 70, 334–336
vibration 2, 231, 351, 352, 354, 355,

368, 369, 377
coherent 353
collective mode 355
ethane molecule 15
normal mode 355, 362

vibrational
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damping 379, 380, 384
dynamics 2, 231, 233
relaxation 225, 235, 378, 382

virus 135
infection 132

voltage 62, 96, 161, 198, 219
volume 36, 47, 48, 55, 59, 151, 264

waiting time 353
water 71, 74, 79, 86, 92, 95, 106,

107, 150, 151, 155, 156, 186,
187, 201, 232, 323, 325, 332,
342, 368

solubility 333
Watson–Crick pairing 345
white noise 241, 291, 294, 301, 378
Wiener process 292
winch 197, 198, 205
work 49–53, 56, 58, 59, 61, 200, 205

useful 269, 276

X-ray
diffraction 247
scattering 355, 359
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