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Preface

In 1999, the first meeting dedicated to partial least squares methods (abbreviated as
PLS and also, sometimes, expanded as projection to latent structures) took place in
Paris. Other meetings in this series took place in various cities all over the world,
and in 2014, from the 26th to the 28th of May, the eighth meeting of the partial
least squares (PLS) series returned to Paris to be hosted in the beautiful building
of the Conservatoire National des Arts et Métiers (CNAM) under the double
patronage of the Conservatoire National des Arts et Métiers and the ESSEC Paris
Business School. This venue was again a superb success with more than 250 authors
presenting more than one hundred papers during these 3 days. These contributions
were all very impressive by their quality and by their breadth. They covered the
multiple dimensions and facets of partial least squares-based methods, ranging
from partial least squares regression and correlation to component-based path
modeling, regularized regression, and subspace visualization. In addition, several
of these papers presented exciting new theoretical developments. This diversity was
also expressed in the large number of domains of application presented in these
papers such as brain imaging, genomics, chemometrics, marketing, management,
and information systems to name only a few.

After the conference, we decided that a large number of the papers presented
in the meeting were of such an impressive high quality and originality that they
deserved to be made available to a wider audience, and we asked the authors of the
best papers if they would like to prepare a revised version of their paper. Most of the
authors contacted shared our enthusiasm, and the papers that they submitted were
then read and commented on by anonymous reviewers, revised, and finally edited
for inclusion in this volume; in addition, Professor Takane (who could not join us for
the meeting) accepted to contribute a chapter for this volume. These papers included
in The Multiple Facets of Partial Least Squares and Related Methods provide a
comprehensive overview of the current state of the most advanced research related
to PLS and cover all domains of PLS and related domains.

Each paper was overviewed by one editor who took charge of having the paper
reviewed and edited (Hervé was in charge of the papers of Beaton et al., Churchill
et al., Cunningham et al., El Hadri and Hanafi, Eslami et al., Löfstedt et al., Takane
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vi Preface

and Loisel, and Zhou et al.; Vincenzo was in charge of the paper of Kessous
et al.; Giorgio was in charge of the papers of Boulesteix, Bry et al., Davino et al.,
and Cantaluppi and Boari; Gilbert was in charge of the papers of Blazère et al.,
Bühlmann, Lechuga et al., Magnanensi et al., and Wang and Huang; Laura was in
charge of the papers of Aluja et al., Chin et al., Davino et al., Dolce et al., and
Romano and Palumbo). The final production of the LATEXversion of the book was
mostly the work of Hervé, Giorgio, and Laura. We are also particularly grateful to
our (anonymous) reviewers for their help and dedication.

Finally, this meeting would not have been possible without the generosity,
help, and dedication of several persons, and we would like to specifically thank
the members of the scientific committee: Michel Béra, Wynne Chin, Christian
Derquenne, Alfred Hero, Heungsung Hwang, Nicole Kraemer, George Marcoulides,
Tormod Næs, Mostafa Qannari, Michel Tenenhaus, and Huiwen Wang. We would
like also to thank the members of the local organizing committee: Jean-Pierre
Choulet, Anatoli Colicev, Christiane Guinot, Anne-Laure Hecquet, Emmanuel
Jakobowicz, Ndeye Niang Keita, Béatrice Richard, Arthur Tenenhaus, and Samuel
Vinet.

Dallas/Paris Hervé Abdi
April 2016 Vincenzo Esposito Vinzi

Giorgio Russolillo
Gilbert Saporta

Laura Trinchera
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Chapter 1
Partial Least Squares for Heterogeneous Data

Peter Bühlmann

Abstract Large-scale data, where the sample size and the dimension are high, often
exhibits heterogeneity. This can arise for example in the form of unknown subgroups
or clusters, batch effects or contaminated samples. Ignoring these issues would often
lead to poor prediction and estimation. We advocate the maximin effects framework
(Meinshausen and Bühlmann, Maximin effects in inhomogeneous large-scale data.
Preprint arXiv:1406.0596, 2014) to address the problem of heterogeneous data.
In combination with partial least squares (PLS) regression, we obtain a new PLS
procedure which is robust and tailored for large-scale heterogeneous data. A small
empirical study complements our exposition of new PLS methodology.

Keywords Partial least square regression (PLSR) • Heterogeneous data • Big
data • Minimax • Maximin

1.1 Introduction

Large-scale complex data, where the the total sample size n and the number of
variables p (i.e., the “dimension”) are large, arise in many areas in science. For the
case with high dimensions, regularized estimation schemes have become popular
and are well-established (cf. Hastie et al. 2009; Bühlmann and van de Geer 2011).
Partial least squares (PLS) (Wold 1966) is an interesting procedure and is widely
used in many applications: besides good prediction performance, with its “vague
similarity” to Ridge regression (Frank and Friedman 1993), and usefulness for
dimensionality reduction, it is computationally attractive for large-scale problems
as it operates in an iterative fashion based on empirical covariances only (Geladi
and Kowalski 1986; Esposito Vinzi et al. 2010).

When the total sample size n is large, as in “big data” problems, we typi-
cally expect that the observations are heterogeneous and not i.i.d. or stationary
realizations from a single probability distribution. Ignoring such heterogeneity

P. Bühlmann (�)
Seminar for Statistics, ETH Zurich, Zürich, Switzerland
e-mail: buhlmann@stat.math.ethz.ch

© Springer International Publishing Switzerland 2016
H. Abdi et al. (eds.), The Multiple Facets of Partial Least Squares and Related
Methods, Springer Proceedings in Mathematics & Statistics 173,
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4 P. Bühlmann

(e.g., unknown subpopulations, batch and clustering effects, or outliers) is likely
to produce poor predictions and estimation. Classical approaches to address these
issues include robust methods (Huber 2011), varying coefficient models (Hastie
and Tibshirani 1993), mixed effects models (Pinheiro and Bates 2000) or mixture
models (McLachlan and Peel 2004). Mostly for computational reasons with large-
scale data, we aim for methods which are computationally efficient with a structure
allowing for simple parallel processing. This can be achieved with a so-called
maximin effects approach (Meinshausen and Bühlmann 2015) and its corresponding
subsampling and aggregation “magging” procedure (Bühlmann and Meinshausen
2016). As we will discuss, the computational efficiency of partial least squares
together with the recently proposed maximin effects framework leads to a new and
robust PLS scheme for regression which is appropriate for heterogeneous data.

To get a more concrete idea about (some form of) inhomogeneity in the data, we
focus next on a specific model.

1.1.1 A Mixture Regression Model for Heterogeneous Data

In the sequel we focus on the setting of regression but allowing for inhomogeneous
data. We consider the framework of a mixture regression model

Yi D XT
i Bi C "i; i D 1; : : : ; n; (1.1)

where Yi is a univariate response variable, Xi is a p-dimensional covariable, Bi is a
p-dimensional regression parameter, and "i is a stochastic noise term with mean zero
and which is independent of the (fixed or random) covariable. Some inhomogeneity
occurs because, in principle, every observation with index i can have its own and
different regression parameter Bi, arising from a different mixture component. The
model in (1.1) is often too general: we make the assumption that the regression
parameters B1; : : : ;Bn are realizations from a distribution FB:

Bi � FB; i D 1; : : : ; n; (1.2)

where the Bi’s do not need to be independent of each other. However, we assume
that the Bi’s are independent from the Xi’s and "i’s.

Example 1 (known groups). Consider the case where there are G known groups
Gg .g D 1; : : : ;G/ with Bi � bg for all i 2 Gg. Thus, this is a clusterwise regression
problem (with known clusters) where every group Gg has the same (unknown)
regression parameter vector bg.

Example 2 (smoothly changing structure). Consider the situation where there is
a changing behavior of the Bi’s with respect to the sample indices i: this can be
achieved by positive correlation among the Bi’s. In practice, the sample index often
corresponds to time.
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Example 3 (unknown groups). This is the same setting as in Example 1 but the
groups Gg are unknown. From an estimation point of view, there is a substantial
difference to Example 1 (Meinshausen and Bühlmann 2015).

1.2 Magging: Maximin Aggregation

We consider the framework of grouping or subsampling the entire data-set, followed
by an aggregation of subsampled regression estimators. A prominent example is
Breiman’s bagging method (Breiman 1996) which has been theoretically shown to
be powerful with homogeneous data (Bühlmann and Yu 2002; Hall and Samworth
2005). We denote the subsamples or subgroups by

Gg � f1; : : : ; ng; g D 1; : : : ;G; (1.3)

where f1; : : : ; ng are the indices of the observations in the sample. We implicitly
assume that they are “approximately homogeneous” subsamples of the data.
Constructions of such subsamples are described in Sect. 1.2.2.

Magging (Bühlmann and Meinshausen 2016) is an aggregation scheme of
subsampled estimators, designed for heterogeneous data. The wording stands for
maximin aggregating, and the maximin framework is described below in Sect. 1.2.1.
We compute a regression estimator O�g for each subsample Gg; g D 1; : : : ;G:

Ob1; : : : ; ObG:

The choice of the estimator is not important for the moment. Concrete examples
include ordinary least squares or regularized versions thereof such as Ridge
regression (Hoerl and Kennard 1970) or the LASSO (Tibshirani 1996), and we will
consider partial least squares regression in Sect. 1.3. We aggregate these estimates
to a single p-dimensional parameter estimate. More precisely, we build a convex
combination

Obmagging D
GX

gD1
Owg Obg; Owg � 0;

GX

gD1
Owg D 1; (1.4)

where the convex combination weights are given from the following quadratic
optimization. Denote by H D ŒOb1; : : : ; ObG�

T Ȯ ŒOb1; : : : ; ObG� the G � G matrix, where
Ȯ D XTX=n is the empirical Gram- or covariance (if the mean equals zero) matrix

of the entire n � p design matrix X containing the covariates. Then:

Ow1; : : : ; OwG D argminwwT .H C � IG�G/w;

subject to wg � 0;
GX

gD1
wg D 1; (1.5)
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where � D 0 if H is positive definite which is typically the case if G < n; and
otherwise, � > 0 is chosen small such as 0:05, making .HC� IG�G/ positive definite
(and in the limit for � & 0C, we obtain the solution Ow with minimal squared error
norm k:k2).
Computational implementation. Magging is computationally feasible for large-
scale data. The computation of Obg can be done in parallel, and the convex
aggregation step involves a typically low-dimensional (as G is typically small)
quadratic program only. An implementation in the R-software environment (R Core
Team 2014) looks as follows.

library(quadprog)
hatb <- cbind(hatb1,...,hatbG)
#matrix with G columns:
#each column is a regression estimate
hatS <- t(X) %*% X/n
#empirical covariance matrix of X
H <- t(hatb) %*% hatS %*% hatb
#assume that it is positive definite
#(use H + xi * I, xi > 0 small, otherwise)
A <- rbind(rep(1,G),diag(1,G))
#constraints
b <- c(1,rep(0,G))
d <- rep(0,G)
#linear term is zero
w <- solve.QP(H,d,t(A),b, meq = 1)
#quadratic programming solution to
#argmin(x^T H x) such that Ax >= b and
#first inequality is an equality

1.2.1 The Maximin Effects Parameter

The magging aggregation scheme in (1.4) is estimating the so-called maximin
parameter. To explain the concept, consider a linear model as in (1.1) but now with
the fixed p-dimensional regression parameter b which can take values in the support
of FB from (1.2):

Yi D XT
i bC "i; i D 1; : : : ; n; (1.6)

where Xi and "i are as in (1.1) and assumed to be i.i.d. The variance which is
explained by choosing a parameter vector ˇ in the linear model (1.6) is

Vˇ;b WD EjYj2 � EjY � XTˇj2 D 2ˇT˙b � ˇT˙ˇ;

where˙ denotes the covariance matrix of Xi. We aim for maximizing the explained
variance in the worst (or most adversarial) situation. This leads to the definition of
the maximin effects.
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Definition (Meinshausen and Bühlmann 2015). The maximin effects parame-
ter is

bmaximin D arg maxˇ min
b2supp.FB/

Vˇ;b:

The name “maximin” comes from the fact that we consider “maximization” of a
“minimum”, that is, optimizing on the worst case.1

The maximin effects can be interpreted as an aggregation among the support
points of FB to a single parameter vector (i.e., among all the Bi’s, as, e.g., in
Example 2 in Sect. 1.1.1) or among all the clustered values bg (e.g., in Examples 1
and 3 in Sect. 1.1.1), see also Fact 1 below. The maximin effects parameter is
different from the pooled effects

bpool D arg minˇ EBŒ�Vˇ;B�

which is the population analogue when considering the data as homogeneous.
Maybe surprisingly, the maximin effects are also different from the prediction
analogue

bpred�maximin D arg minˇ max
b2supp.FB/

EŒ.XTb � XTˇ/2�:

In particular, the value zero has a special status for the maximin effects parameter
bmaximin, unlike for bpred�maximin or bpool, (see Meinshausen and Bühlmann 2015).
The following is an important “geometric” characterization which indicates the
special status of the value zero.

Fact 1. Meinshausen and Bühlmann (2015) Let H be the convex hull of the
support of FB. Then

bmaximin D arg min�2H �T˙�:

That is, the maximin effects parameter bmaximin is the point in the convex hull
H which is closest to zero with respect to the distance d.u; v/ D .u � v/T
˙.u � v/. In particular, if the value zero is in H , the maximin effects parameter
equals bmaximin � 0.

The characterization in Fact 1 leads to an interesting robustness property. If the
support of FB is enlarged, e.g. by adding additional heterogeneity to the model,
there are two possibilities: either, (i) the maximin effects parameter bmaximin does
not change; or (ii) if it changes, it moves closer to the value zero because the convex

1In game theory and mathematical statistics, the terminology “minimax” is more common. To
distinguish, and to avoid confusion from statistical minimax theory, Meinshausen and Bühlmann
(2015) have used the reverse terminology “maximin”.
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hull is enlarged and invoking Fact 1. Therefore, the maximin effects parameter and
its estimation exhibit an excellent robustness feature with respect to breakdown
properties: an arbitrary new support point in FB (i.e., a new sample point with a
new value of the regression parameter) cannot shift bmaximin away from zero. We
will exploit this robustness property in an empirical simulation study in Sect. 1.3.3.

Magging as described above in (1.4)–(1.5) turns out to be a reasonably good
estimator for the maximin effects parameter bmaximin. This is not immediately
obvious but a plausible explanation is given by Fact 1 as follows. For the setting
of Example 1 in Sect. 1.1.1, that is with known groups Gg each having its regression
parameter bg, the maximin effects parameter is the point in the convex hull which is
closest to zero. This can be characterized by

bmaximin D
GX

gD1
w0gbg;

X

g

w0g D 1

where the weights w0g are the population analogue of the optimal weights in (1.5)

(i.e., with bg instead of Obg and ˙ instead of Ȯ ). Thus, the magging estimator is of
the same form as bmaximin but plugging in the estimated quantities instead of the true
underlying parameters bg .g D 1; : : : ;G/ and ˙ .

1.2.1.1 Interpretation of the Maximin Effects

An estimate of the maximin effects bmaximin should be interpreted according to
the parameter’s meaning. The definition of the parameter implies that bmaximin

is optimizing the explained variance under the worst case scenario among all
possible values from the support of the distribution FB in the mixture model (1.1).
Furthermore, Fact 1 provides an interesting geometric characterization of the
parameter.

Loosely speaking, the maximin effects parameter bmaximin describes the “com-
mon” effects of the covariates to the response variable in the following sense. If
a covariable has a strong influence among all possible regression values from the
support of FB in model (1.1), then the corresponding component of bmaximin is large
in absolute value; vice-versa, if the effect of a covariable is not common to all the
possible values in the support of FB, then the corresponding component of bmaximin

is zero or close to zero.
In terms of prediction, the maximin effects parameter is typically leading to

enhanced prediction of future observations in comparison to the pooled effect
bpool, whenever the future observations are generated from a regression model with
parameter from the support of FB. In particular, the prediction is “robust” and not
mis-guided by a few or a group of outliers. Some illustrations of this behavior on
real financial data are given in Meinshausen and Bühlmann (2015).
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1.2.2 Construction of Groups and Sampling Schemes
for Maximin Aggregation

The magging scheme relies on groups or subsamples Gg .g D 1; : : : ;G/. Their
construction is discussed next.

1.2.2.1 Known Groups

As in Example 1 in Sect. 1.1.1, consider the situation where we have J known groups
of homogeneous data. That is, the sample index space has a partition

J1; : : : ;JJ ; Jj � f1; : : : ; ng;
[J

jD1Jj D f1; : : : ; ng; Jj [Jk D ; .j ¤ k/

where

Bi � bj for all i 2Jj:

For such a scenario, we deterministically subsample the data corresponding to
the known groups2:

G1; : : : ;GG;

where G D J and Gg DJg for all g D 1; : : : ;G: (1.7)

1.2.2.2 Smoothly Changing Structure

As in Example 2 in Sect. 1.1.1, consider the situation where there is a smoothly
changing behavior of the Bi’s with respect to the sample indices i. This can be
achieved by positive correlation among the Bi’s. In practice, the sample index often
corresponds to time. There are no true (unknown) groups in this setting.

In some applications, the samples are collected over time, as mentioned in
Example 2. For such situations, we construct:

disjoint groups Gg .g D 1; : : : ;G/, where each Gg is a

block of consecutive observations of (usually) the same size m. (1.8)

2We distinguish notationally the true (known) groups Jj from the sampled groups Gg, although
here for this case, they coincide exactly. For other cases though, the sampled groups do not
necessarily correspond to true groups.
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The group size m is a tuning parameter which needs to be chosen: a reasonable
guidance is to choose m as a fraction of n such that the resulting G D n=m is rather
small (e.g. in the range of G 2 Œ3; 10�). From a theoretical perspective, Meinshausen
and Bühlmann (2015) provide some arguments leading to asymptotic consistency
for bmaximin. Note that the true underlying structure has no strictly defined groups
while the estimator does.

1.2.2.3 Without Structural Knowledge

Corresponding to Example 3 in Sect. 1.1.1, consider the case where the groups are
unknown. We then construct G groups G1; : : : ;GG where each Gg � f1; : : : ; ng
encodes a subsample of the data, and these subsample do not need to be disjoint.
A concrete subsampling scheme is as follows:

for each group Gg .g D 1; : : : ;G/: subsample m data points without replacement;

while subsampling between groups is with replacement: (1.9)

The number of groups G and the group size m are tuning parameters which need to
be specified. A useful guideline is to choose m reasonably large (e.g., m D f � n with
f 2 Œ0:2; 0:5�) and G not too large (e.g. G 2 Œ3; 10�). Some theoretical considerations
leading to consistency for bmaximin are given in Meinshausen and Bühlmann (2015).

1.2.2.4 Contaminated Samples

An interesting special case occurs with outliers and associated robust inference.
There are unknown groups of the entire sample: one large group with “clean”
observations, all having the true regression parameter btrue and many singleton
groups of size 1 each having its own contaminated regression parameter. We
would then sample subgroups as in (1.9) and use these subsampled groups for the
magging scheme (1.4)–(1.5). Interestingly, magging then becomes a robust method
for estimating the true regression parameter btrue (Meinshausen and Bühlmann 2015;
Bühlmann and Meinshausen 2016), and we will also illustrate this fact in Sect. 1.3.3.

1.3 A PLS Algorithm for Heterogeneous Data

The use of magging in (1.4) for PLS in a regression setting is straightforward. The
subsampled estimators Obg D ObPLS;g are now from PLS regression with a specified
number of components (and the number of components can vary for different
subsamples Gg); the construction of the groups used in magging is as in Sect. 1.2.2,
depending on the situation whether we have known or unknown subpopulations, or
whether there is an underlying smoothly changing trend. The obtained aggregated
magging estimator is denoted by ObPLS�magging.
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1.3.1 PLS for Heterogeneous Data

The estimated parameter ObPLS�magging itself can serve as an appropriate value of the
maximin effects regression parameter. In addition, we might want a more genuine
PLS estimate with all its usual output. This can be easily obtained by running
a standard PLS regression on the noise free entire data where we replace the
response variable Y by the fitted values X ObPLS�magging and using the covariables
from the entire original design matrix X. The output of such an additional standard
PLS regression yields orthogonal linear combinations of the covariables and the
corresponding obtained PLS regression coefficients are typically not too different
from ObPLS�magging, depending on the number of components we allow in the
additional PLS regression.

1.3.2 A Small Empirical Experiment: Heterogeneous Data
from Known Groups

Consider a linear model with changing regression coefficients as in (1.1). The total
sample size is n D 300. There are p D 500 covariables which are generated as

X1; : : : ;Xn i.i.d. � N500.0; I/; (1.10)

and they are then centered and scaled to have empirical mean 0 and empirical
variance 1, respectively. The error terms "1; : : : ; "n i.i.d. � N .0; 1/ are standard
Gaussian.

We assume that there are six different known groups or clusters each with 30
observations such that

B1 D : : : D B30 D b1;

B31 D : : : D B60 D b2;

: : :

B271 D : : : D B300 D b6;

that is, in every group Gg we have the same regression coefficient bg for
g D 1; : : : ; 6. These regression coefficients are realizations of

b1 � Np.21; I/;

bg D diag.Zg
1 ; : : : ;Z

g
p/bg�1 .g D 2; : : : ; 6/; (1.11)
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where the Zg
j ’s are i.i.d. 2 f�1; 1g with PŒZg

j D 1� D �. Thus, for � close to 1,
the coefficient vectors b1; : : : ; b6 are rather similar whereas for � D 0:5, the sign
switches from bg�1 to bg for each component independently with probability 0.5.

We also consider a sparse version of (1.11):

b1 D N5.21; I/;

bg D diag.Zg
1 ; : : : ;Z

g
p/bg�1 .g D 2; : : : ; 6/; (1.12)

where we use a short-hand notation for b1, saying that the first 5 components are
Gaussian and all others are zero. The variables Z.g/j are as in (1.11).

We use magging in (1.4)–(1.5) with the PLS regression estimator Obg for the
groups Gg: thereby, the number of PLS components is set to 10. The groups are
assumed as known and they are constructed as in (1.7). We report in Table 1.1 the
out-of-sample squared error for a single representative training sample and for a test
set of exactly the same structure and size as the training set described above:

300�1
X

i2 test

.Yi � OYi/
2; (1.13)

where OYi is the prediction of Yi based on the estimated parameters from the training
data.

Table 1.1 Out-of-sample squared error (1.13) for magging with
PLS regression ObPLS�magging, the pooled PLS regression estima-

tor ObPLS�pool (also with 10 components) based on the entire
data-set, and using the mean y of the entire data-set: relative
gain (+) or loss (�) over the pooled estimator. (By chance, we
obtained exactly the same realized data-set for (1.12) with � D
0:95 and � D 0:90). Total sample size is n D 300, dimension
equals p D 500 and there are 6 known groups each having
their own regression parameter vector and each consisting of 50
homogeneous data

Model ObPLS�magging (%) ObPLS�pool (%) y (%)

(1.11), � D 0:95 2.0 0 �14.9

(1.11), � D 0:90 32.5 0 26.9

(1.11), � D 0:80 46.3 0 43.6

(1.11), � D 0:70 44.6 0 41.4

(1.11), � D 0:60 56.3 0 55.3

(1.11), � D 0:50 52.4 0 51.3

(1.12), � D 0:95 �13.1 0 �27.5

(1.12), � D 0:90 �13.1 0 �27.5

(1.12), � D 0:80 �6.0 0 �22.6

(1.12), � D 0:70 57.4 0 58.5

(1.12), � D 0:60 55.5 0 56.2

(1.12), � D 0:50 46.7 0 44.0
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We clearly see that if the degree of heterogeneity is becoming larger (smaller
value of �), the magging estimator with PLS has superior prediction performance
over the standard pooled PLS regression.

1.3.3 A Small Empirical Example: Contaminated Samples
and Robustness

We consider the model in (1.1) but now with two different groups: one with clean
data consisting of 285 observations, and one with 15 outlier datapoints, that is,

B1 D : : : D B185 D ˇ0;
B286 D : : : D B300 D b2:

Note that the outliers have all the same regression parameter b2, but we believe that
the findings below are also relevant for the case where each outlier would have its
own regression parameter. The regression coefficients are realizations of

ˇ0 � Np.21; I/;

b2 � Np.�1; I/; � 2 f�10; 10g: (1.14)

The covariates Xi are as in (1.10), and the error terms "1; : : : ; "n i.id. � N .0; 1/

are standard Gaussian.
We use magging in (1.4)–(1.5) with PLS regression (with 10 components) for

each subsample, and the random subsamples are constructed as in (1.9) with G D 6
and m D 100. The choice of G and m are rather ad-hoc. We report in Table 1.2 for a
single representative training sample and for a test set of exactly the same structure

Table 1.2 Robustness with 5 % outliers having a different regression parameter vector than
the target parameter ˇ0 in (1.14). Magging with PLS regression ObPLS�magging, the pooled PLS
regression estimator ObPLS�pool (also with 10 components) based on the entire data-set, and the
overall mean y based on the entire data-set. Total sample size is n D 300 and the dimension
equals p D 500. Out-of-sample squared error (1.13) and estimation errors (1.15) are given in
the respective rows: relative gain (+) or loss (�) over the pooled estimator.

Model Performance measure ObPLS�magging (%) ObPLS�pool (%) y

(1.14), � D �10 Squared out-sample error 50.1 0 40.4 %

(1.14), � D �10 `2-norm est. error 32.6 0 –

(1.14), � D �10 `1-norm est. error 27.0 0 –

(1.14), � D 10 squared out-sample error 18.1 0 3.6 %

(1.14), � D 10 `2-norm est. error 13.2 0 –

(1.14), � D 10 `1-norm est. error 4.4 0 –
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and size as the training set the out-of-sample squared error (1.13) as well as the
estimation error

kOb � ˇ0kq for q 2 f1; 2g: (1.15)

We conclude that magging is an effective and simple strategy to robustify PLS
regression in presence of (at least some kind of) outliers.

1.4 Conclusions

Maximin effects estimation (Meinshausen and Bühlmann 2015) and the associated
magging procedure (Bühlmann and Meinshausen 2016) are effective methods for
addressing the issue of statistical estimation when the data are heterogeneous. They
are computationally attractive, and especially the magging scheme is a very generic
subsampling and aggregation scheme with a simple algorithmic implementation
allowing for parallel processing. We present here magging for partial least squares
regression: the method is appropriate and computationally feasible in presence of
heterogeneity or outliers in large-scale data, and a small empirical study confirms
its usefulness.
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Chapter 2
On the PLS Algorithm for Multiple Regression
(PLS1)

Yoshio Takane and Sébastien Loisel

Abstract Partial least squares (PLS) was first introduced by Wold in the mid 1960s
as a heuristic algorithm to solve linear least squares (LS) problems. No optimality
property of the algorithm was known then. Since then, however, a number of
interesting properties have been established about the PLS algorithm for regression
analysis (called PLS1). This paper shows that the PLS estimator for a specific
dimensionality S is a kind of constrained LS estimator confined to a Krylov subspace
of dimensionality S. Links to the Lanczos bidiagonalization and conjugate gradient
methods are also discussed from a somewhat different perspective from previous
authors.

Keywords Krylov subspace • NIPALS • PLS1 algorithm • Lanczos bidiagonal-
ization • Conjugate gradients • Constrained principal component analysis (CPCA)

2.1 Introduction

Partial least squares (PLS) was first introduced by Wold (1966) as a heuristic
algorithm for estimating parameters in multiple regression. Since then, it has
been elaborated in many directions, including extensions to multivariate cases
(Abdi 2007; de Jong 1993) and structural equation modeling (Lohmöller 1989;
Wold 1982). In this paper, we focus on the original PLS algorithm for univariate
regression (called PLS1), and show its optimality given the subspace in which
the vector of regression coefficients is supposed to lie. Links to state-of-the-art
algorithms for solving a system of linear simultaneous equations, such as the
Lanczos bidiagonalization and the conjugate gradient methods, are also discussed
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from a somewhat different perspective from previous authors (Eldén 2004; Phatak
and de Hoog 2002). We refer the reader to Rosipal and Krämer (2006) for more
comprehensive accounts and reviews of new developments of PLS.

2.2 PLS1 as Constrained Least Squares Estimator

Consider a linear regression model

z D GbC e; (2.1)

where z is the N-component vector of observations on the criterion variable, G is
the N � P matrix of predictor variables, b is the P-component vector of regression
coefficients, and e is the N-component vector of disturbance terms. The ordinary LS
(OLS) criterion is often used to estimate b under the iid (independent and identically
distributed) normal assumption on e. This is a reasonable practice if N is large
compared to P, and columns of G are not highly collinear (i.e., as long as the matrix
G0G is well-conditioned). However, if this condition is not satisfied, the use of OLS
estimators (OLSE) is not recommended, because then these estimators tend to have
large variances. Principal component regression (PCR) is often employed in such
situations. In PCR, principal component analysis (PCA) is first applied to G to find
a low rank (say, rank S) approximation, which is subsequently used as the set of new
predictor variables in a linear regression analysis. One potential problem with PCR
is that the low rank approximation of G best accounts for G but is not necessarily
optimal for predicting z. By contrast, PLS extracts components of G that are good
predictors of z. For the case of univariate regression, the PLS algorithm (called
PLS1) proceeds as follows:

PLS1 Algorithm

Step 1. Column-wise center G and z, and set G0 D G.
Step 2. Repeat the following substeps for i D 1; � � � ; S (S 	 rank.G/):

Step 2.1. Set wi D G0i�1z=kG0i�1zk, where kG0i�1zk D .z0Gi�1G0i�1z/1=2.
Step 2.2. Set ti D Gi�1wi=kGi�1wik.
Step 2.3. Set vi D G0i�1ti.
Step 2.4. Set Gi D Gi�1 � tiv0i D QGi�1wi Gi�1 (deflation),

where QGi�1wi D I � Gi�1wi.w0iG0i�1Gi�1wi/
�1w0iG0i�1, and where 0 denotes the

transpose operation, and jj:jj denotes the L2 norm of a vector (i.e., jjxjj D px0x,
see, e.g., Takane (2014), for details); vectors wi, ti, and vi are called (respectively)
weights, scores, and loadings, and are collected in matrices WS, TS, and VS. For a
given S, the PLS estimator (PLSE) of b is given by

Ob.S/PLSE DWS.V0SWS/
�1T0Sz (2.2)
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(see, e.g., Abdi 2007). The algorithm above assumes that S is known and, actually,
the choice of its value is crucial for good performance of PLSE (a cross validation
method is often used to choose the best value of S). It has been demonstrated (Phatak
and de Hoog 2002) that for a given value of S, the PLSE of b has better predictability
than the corresponding PCR estimator.

The PLSE of b can be regarded as a special kind of constrained LS estimator
(CLSE), in which b is constrained to lie in the Krylov subspace of dimensionality S
defined by

KS.G0G;G0z/ D Sp.KS/; (2.3)

where Sp.KS/ is the space spanned by the column vectors of KS, and

Ks D ŒG0z; .G0G/G0z; � � � ; .G0G/S�1G0z� (2.4)

is called the Krylov matrix of order S. Because Sp.WS/ D KS.G0G;G0z/ (see
Eldén 2004, proposition 3.1; Phatak and de Hoog 2002) b can be re-parameterized
as b DWSa for some a. Then Eq. (2.1) can be rewritten as

z D GWSaC e: (2.5)

The OLSE of a is given by

Oa D .W0SG0GWS/
�1W0SG0z; (2.6)

from which the CLSE of b is found as

Ob.S/CLSE DWS Oa DWS.W0SG0GWS/
�1W0SG0z: (2.7)

To show that (2.7) is indeed equivalent to (2.2), we need several well-known
results in the PLS literature (Bro and Eldén 2009; de Jong 1993; Eldén 2004; Phatak
and de Hoog 2002). First of all, WS is column-wise orthogonal, that is,

W0SWS D IS: (2.8)

Secondly, TS is also column-wise orthogonal,

T0STS D IS; (2.9)

and

TSLS D GWS; (2.10)

where LS is an upper bidiagonal matrix. Relations (2.8), (2.9) and (2.10) imply that

W0SG0GWS D L0SLS D HS; (2.11)
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where HS is tridiagonal. Thirdly,

V0S D T0SG; (2.12)

so that

LS D T0SGWS D V0SWS: (2.13)

Now it is straightforward to show that

Ob.S/CLSE DWS.W0SG0GWS/
�1W0SG0z

DWSH�1S L0ST0Sz

DWS.L0SLS/
�1L0ST0Sz

DWSL�1S T0Sz

DWS.V0SWS/
�1T0Sz

D Ob.S/PLSE; (2.14)

and this establishes the equivalence between Eqs. (2.7) and (2.2).
The PLSE of regression parameters reduces to the OLSE if S D rank.G/ (when

rank.G/ < P, we use GC, which is the Moore-Penrose inverse of G, in lieu of
.G0G/�1G in the OLSE for regression coefficients).

2.3 Relations to the Lanczos Bidiagonalization Method

It has been pointed out (Eldén 2004) that PLS1 described above is equivalent to the
following Lanczos bidiagonalization algorithm:

The Lanczos Bidiagonalization (LBD) Algorithm

Step 1. Column-wise center G, and compute u1 D G0z=jjG0zjj and q1 D Gu1=ı1,
where ı1 D jjGu1jj.

Step 2. For i D 2; � � � ; S (this is the same S as in PLS1),

(a) Compute �i�1ui D G0qi�1 � ıi�1ui�1.
(b) Compute ıiqi D Gui � �i�1qi�1.

Scalars �i�1 and ıi (i D 2; � � � ; S) are the normalization factors to make jjuijj D 1

and jjqi�1jj D 1, respectively.
Let US and QS represent the collections of ui and qi for i D 1; � � � ; S. It has been

shown (Eldén 2004, Proposition 3.1) that these two matrices are essentially the same
as WS and TS, respectively, obtained in PLS1. Here “essentially” means that these
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two matrices are identical to WS and TS except that the even columns of US and QS

are reflected (i.e., have their sign reversed). We show this explicitly for u2 and q2
(i.e., u2 D �w2 and q2 D �t2). It is obvious from Step 1 of the two algorithms that

w1 D u1 and t1 D q1: (2.15)

Let ˛1 D jjG0zjj. Then

w2 / G0QGw1z (from Step 2.4 of the PLS1 algorithm)

D G0z �G0Gw1.w01G0Gw1/
�1w01G0z

D ˛1.w1 �G0Gw1=ı
2
1/ (2.16)

/ �G0Gw1=ı1 C ı1w1; (2.17)

where / means “proportional.” To obtain the last expression, we multiplied
Eq. (2.16) by ı1=˛1 (> 0). This last expression is proportional to �u2, where
u2 / G0Gu1=ı1 � ı1u1 from Step 2(a) of the Lanczos algorithm. This implies
u2 D �w2, because both u2 and w2 are normalized.

Similarly, define ˇ21 D w01.G0G/2w1. Then

t2 / QGw1GG0QGw1z (from Step 2.2 of the PLS1 algorithm)

D ˛1.Gw1 �GG0Gw1=ı
2
1 �Gw1 C ˇ21

ı41
Gw1/ (2.18)

/ �GG0Gw1 C ˇ21
ı21

Gw1: (2.19)

To obtain Eq. (2.19), we multiplied (2.18) by ı21=˛1 (> 0). On the other hand, we
have

q2 / 1

ı1�1
.GG0Gu1 � ı21Gu1 � �21Gu1/ (from Step 2(b) of the Lanczos algorithm)

/ GG0Gu1 � .ı21 C �21 /Gu1: (2.20)

To show that q2 / �t2, it remains to show that

�2 C ı2 D ˇ21=ı21: (2.21)

From Step 2(a) of the Lanczos algorithm,

�2 D .G0Gu1=ı1 � ı1u1/0.G0Gu1=ı1 � ı1u1/
D ˇ2=ı2 � ı2; (2.22)

and so indeed (2.21) holds. Again, we have q2 D �t2, because both q2 and t2 are
normalized.
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The sign reversals of u2 and q2 yield u3 and q3 identical to w3 and t3, respectively,
by similar sign reversals, and u4 and q4 which are sign reversals of w4 and t4, and so
on. Thus, only even columns of Us and Qs are affected (i.e., have their sign reversed)
relative to the corresponding columns of WS and TS, respectively. Of course, these
sign reversals have no effect on estimates of regression parameters. The estimate of
regression parameters by the Lanczos bidiagonaliation method is given by

Ob.S/LBD D Us.L�S /�1Q0Sz; (2.23)

where

L�S D Q0SGUS; (2.24)

which is upper bidiagonal, as is LS (defined in Eq. (2.13)). matrix L�S differs
from matrix LS only in the sign of its super-diagonal elements. The matrices L�1S
and .L�S /�1 are also upper bidiagonal, for which the super-diagonal elements are
opposite in sign, while their diagonal elements remain the same. Thus

WSL�1S T0S D
sX

iD1
.`i;iwit0i C `i;iC1wit0iC1/

D
sX

iD1
.`�i;iuiq0i C `�i;iC1uiq0iC1/

D Us.L�s /�1Q0s; (2.25)

where `i;j and `�i;j are the ij-th element of (respectively) LS and L�S . Note that

`i;i D `�i;i; wit0i D uiq0i; `i;iC1 D �`�i;iC1; and wit0iC1 D �uiq0iC1 (2.26)

It is widely known (see, e.g., Saad 2003) that the matrix of orthogonal basis
vectors generated by the Arnoldi orthogonalization of KS (Arnoldi 1951) is
identical to US obtained in the Lanczos algorithm. Starting from u1 D G0z=kG0zk,
this orthogonalization method finds uiC1 (i D 1; � � � ; S � 1) by successively
orthogonalizing G0Gui (i D 1; � � � ; S � 1) to all previous ui’s by a procedure
similar to the Gram-Schmidt orthogonalization method. This yields US such that
G0GUS D USH�S , or

U0SG0GUS D L�0

S L�S D H�S ; (2.27)

where H�S is tridiagonal as is HS defined in Eq. (2.11). The diagonal elements of
this matrix are identical to those of HS while its sub- and super-diagonal elements
have their sign reversed. Matrix H�S is called the Lanczos tridiagonal matrix and it
is useful to obtain eigenvalues of G0G.
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2.4 Relations to the Conjugate Gradient Method

It has been pointed out (Phatak and de Hoog 2002) that the conjugate gradient (CG)
algorithm (Hestenes and Stiefel 1951) for solving a system of linear simultaneous
equations G0Gb D G0y gives solutions identical to Ob.s/PLSE [s D 1; � � � ; rank.G/],
if the CG iteration starts from the initial solution Ob.0/CG � b0 D 0. To verify their
assertion, we look into the CG algorithm stated as follows:

The Conjugate Gradient (CG) Algorithm

Step 1. Initialize b0 D 0. Then, r0 D G0z �G0Gb0 D G0z D d0. (Vectors r0 and
d0 are called initial residual and initial direction vectors, respectively.)

Step 2. For i D 0; � � � ; s � 1, compute:

(a) ai D d0iri=d0iG0Gdi D jjrijj2=d0iG0Gdi.
(b) biC1 D bi C aidi.
(c) riC1 D G0z � G0GbiC1 D ri � aiG0Gdi D Q0di=G0Gri, where Qdi=G0G D

I � di.d0iG0Gdi/
�1d0iG0G is the projector onto the space orthogonal to

Sp.G0Gdi/ along Sp.di/ [its transpose, on the other hand, is the projector
onto the space orthogonal Sp.di/ along Sp.G0Gdi/].

(d) bi D �r0iC1G0Gdi=d0iG0Gdi D jjriC1jj2=jjrijj2.
(e) diC1 D riC1 C bidi D Qdi=G0GriC1.

Let Rj D Œr0; � � � ; rj�1� and Dj D Œd0; � � � ;dj�1� for j 	 S. We first show that

Sp.Rj/ D Sp.Dj/ D Kj.G0G;G0z/ (2.28)

by induction, where, as before, Sp.A/ indicates the space spanned by the column
vectors of matrix A. It is obvious that r0 D d0 D G0z, so that Sp.R1/ D Sp.D1/ D
K1.G0G;G0z/. From Step 2(c) of the CG algorithm, we have

r1 D Q0di=G0Gr0 D r0 �G0Gd0c0 (2.29)

for some scalar c0, so that r1 2 K2.G0G;G0z/ because G0Gd0 2 K2.G0G;G0z/.
From Step 2(e), we also have

d1 D Qd0=G0Gr1 D r1 � d0c�0 (2.30)

for some c�0 , so that d1 2 K2.G0G;G0z/. This shows that Sp.R2/ D Sp.D2/ D
K2.G0G;G0z/. Similarly, we have r2 2 K3.G0G;G0z/ and d2 2 K3.G0G;G0z/, so
that Sp.R3/ D Sp.D3/ D K3.G0G;G0z/, and so on.

The property of Dj above implies that Sp.WS/ is identical to Sp.DS/, which in
turn implies that

Ob.S/CG D DS.D0SGGDS/
�1D0SGz (2.31)
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is identical to Ob.S/CLSE as defined in Eq. (2.7), which in turn is equal to Ob.S/PLSE defined in
Eq. (2.2) (Phatak and de Hoog 2002) by virtue of Eq. (2.14). It remains to show that
Ob.S/CG defined in (2.31) coincides with bS generated by the CG algorithm. By the G0G-
conjugacy of dj’s (the orthogonality of dj’s with respect to G0G, i.e., d0iG0Gdj D 0

for any i ¤ j, as will be shown later), Eq. (2.31) can be rewritten as

Ob.S/CG D
S�1X

iD0
di.d0iG0Gdi/

�1d0iG0z: (2.32)

From Step 2(b) of the CG algorithm, on the other hand, we have

b1 D d0.d00G0Gd0/�1d00r0 D d0.d00G0Gd0/�1d00Gz D Ob.1/CG; (2.33)

and

b3 D Ob.1/CG C d1.d01G0Gd1/�1d01r1;

D Ob.1/CG C d1.d01G0Gd1/�1d01G0z D Ob.2/CG; (2.34)

since d01r1 D d01Q0d0=G0Gr0 D d01r0 D d01Gz (the second equality in the preceding
equation holds again due to the G0G-conjugacy of d1 and d0). Similarly, we obtain

b3 D Ob.2/CG C d2.d02G0Gd2/�1d02r2;

D Ob.2/CG C d2.d02G0Gd2/�1d02G0z D Ob.3/CG; (2.35)

since d02r2 D d02Q0d1=G0Gr1 D d02r1 D d02Q0d0=G0Gr0 D d02r0 D d02Gz. This extends to
S larger than 3. This proves the claim made above that (2.31) is indeed identical to
bS obtained from the CG iteration.

It is rather intricate to show the G0G-conjugacy of direction vectors (i.e.,
d0jG0Gdi D 0 for j ¤ i), although it is widely known in the numerical linear
algebra literature (Golub and van Loan 1989). The proofs given in Golub and van
Loan (1989) are not very easy to follow, however. In what follows, we attempt
to provide a step-by-step proof of this fact. Let Rj and Dj be as defined above.
We temporarily assume that the columns of Dj are already G0G-conjugate (i.e.,
D0jG0GDj is diagonal). Later we show that such construction of Dj is possible.

We first show that

d0j�1rj D 0: (2.36)

From Step 2(c) of the CG algorithm, we have

d0j�1rj D d0j�1Q0dj�1=G0Grj�1 D d0j�1.I �G0Gdj�1.d0j�1G0Gdj�1/�1d0j�1/rj�1 D 0;
(2.37)
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as claimed above. We next show that

d0j�2rj D 0; (2.38)

based on (2.36). From Step 2(c) of the algorithm, we have

d0j�2rj D d0j�2Q0dj�1=G0Grj�1

D d0j�2.I �G0Gdj�1.d0j�1GGdj�1/�1d0j�1/rj�1

D d0j�2rj�1 D 0; (2.39)

as claimed. Note that d0j�2G0Gdj�1 D 0 by the assumption of the G0G-conjugacy
(among the column vectors) of Dj. The last equality in (2.39) holds due to (2.36).
By repeating essentially the same process, we can prove that d0j�krj D 0 for k D
3; � � � ; j, which implies

D0jrj D 0; (2.40)

and

R0jrj D 0; (2.41)

since Sp.Dj/ D Sp.Rj/ D Kj.G0G;G0z/. These relations indicate that in the CG
method, the residual vector rj is orthogonal to all previous search directions as well
as all previous residual vectors.

We are now in a position to prove that

d0j�1G0Gdj D 0: (2.42)

To do so, we first need to show that

d0jrj D jjrjjj2; (2.43)

and also that

d0jrj�1 D jjrjjj2: (2.44)

For Eq. (2.43), we note that

d0jrj D r0jQ0dj�1=G0Grj (by Step 2(e))

D jjrjjj2 � r0jG0Gdj�1.d0j�1G0Gdj�1/�1d0j�1/rj D jjrjjj2; (2.45)
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due to Eq. (2.36). For Eq. (2.44), we have

d0jrj�1 D r0jrj�1 C bj�1d0j�1rj�1 (by Step 2(e))

D 0C .jjrjjj2=jjrj�1jj2/jjrj�1jj2 D jjrjjj2: (2.46)

To show that (2.42) holds is now straightforward. We note that

r0jdj D r0j�1dj � aj�1d0j�1G0Gdj (2.47)

by Step 2(c), and that r0jdj D r0j�1dj D jjrjjj2 by Eqs. (2.43) and (2.44). Since
aj�1 ¤ 0, this implies that d0j�1G0Gdj D 0. That is, dj is G0G-conjugate to the
previous direction vector dj�1.

We can also show that dj is G0G-conjugate to all previous direction vectors
despite the fact that at any specific iteration, dj is taken to be G0G-conjugate to
only dj�1. We begin with

d0j�2G0Gdj D 0: (2.48)

We first note that

r0j�2dj D r0j�2rj C bj�1r0j�2dj�1 (by Step 2(e))

D 0C .jjrjjj2=jjrj�1jj2/jjrj�1jj2 (by (2.44))

D jjrjjj2: (2.49)

We also have

r0j�1dj D r0j�2dj � aj�2d0j�2G0Gdj (2.50)

by Step 2(c). Since r0j�1dj D r0j�2dj D jjrjjj2 and aj�2 ¤ 0, this implies (2.48). We
may follow a similar line of argument as above, and show that d0j�kG0Gdj D 0 for
k D 3; � � � ; j. This shows that D0jG0Gdj D 0, as claimed.

In the proof above, it was assumed that the column vectors of Dj were G0G-
conjugate. It remains to show that such construction of Dj is possible. We have
D01r1 D d00r1 D 0 by (2.36). This implies that R01r1 D 0 (since Sp.D1/ D Sp.R1/),
which in turn implies that D01G0Gd1 D d00G0Gd1 D 0. The columns of D2 D
Œd0;d1� are now shown to be G0G-conjugate. We repeat this process until we reach
Dj whose column vectors are all G0G-conjugate. This process also generates Rj

whose columns are mutually orthogonal. This means that all residual vectors are
orthogonal in the CG method. The CG algorithm is also equivalent to the GMRES
(Generalized Minimum Residual) method (Saad and Schultz 1986), when the latter
is applied to the symmetric positive definite (pd) matrix G0G.
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It may also be pointed out that RS is an un-normalized version of WS obtained
in PLS1. This can be seen from the fact that the column vectors of both of these
matrices are orthogonal to each other, and that Sp.WS/ D Sp.RS/ D KS.G0G;G0z/.
Although some columns of RS may be sign-reversed as are some columns of Us in
the Lanczos method, it can be directly verified that this does not happen to r2 (i.e.,
r2=jjr2jj D w2). So it is not likely to happen to other columns of RS.

2.5 Concluding Remarks

The PLS1 algorithm was initially invented as a heuristic technique to solve LS
problems (Wold 1966). No optimality properties of the algorithm were known at
that time, and for a long time it had been criticized for being somewhat ad-hoc. It
was later shown, however, that it is equivalent to some of the most sophisticated
numerical algorithms to date for solving systems of linear simultaneous equations,
such as the Lanczos bidiagonalization and the conjugate gradient methods. It
is amazing, and indeed admirable, that Herman Wold almost single-handedly
reinvented the “wheel” in a totally different context.
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Chapter 3
Extending the Finite Iterative Method
for Computing the Covariance Matrix Implied
by a Recursive Path Model

Zouhair El Hadri and Mohamed Hanafi

Abstract Given q C p variables (q endogenous variables and p exogenous vari-
ables) and the covariance matrix among exogenous variables, how to compute the
covariance matrix implied by a given recursive path model connecting these qC p
variables? The finite iterative method (FIM) was recently introduced by El Hadri
and Hanafi (Electron J Appl Stat Anal 8:84–99, 2015) to perform this task but only
when all the variables are standardized (and so the covariance matrix is actually
a correlation matrix). In this paper, the extension of FIM to the general case of
a covariance matrix case is introduced. Moreover, the computational efficiency of
FIM and the well-known Jöreskog’s method is discussed and illustrated.

Keywords Finite iterative method (FIM) • Jöreskog’s method • Covariance
matrix • Correlation matrix • Endogenous variable • Exogenous variable

3.1 Introduction

Path analysis (Boudon 1965; Duncan 1966; Heise 1969; Hauser and Sewall
1975) is a set of statistical techniques used to examine cause and effect between
observed (measured) variables on the same set of observations. Path analysis—
which originated in the early twentieth century mostly from the work of Sewall
Wright (1921) and Kline (2016)—generalizes multiple regression models because,
in path analysis, all variables can be both dependent and independent variables.
Today, path analysis—the simplest form of structural equation models with latent
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variables (Boudon 1965; Duncan 1966)—is applied in many fields going from
ecological studies (Sanchez-Pinero and Polis 2000; Shine 1996; Shipley 1999) to
social sciences (Blalock 1971; Wolfle 2003).

In the vocabulary of path analysis there are two types of variables: exogenous and
endogenous variables. An exogenous variable is always an independent variable; its
role is to explain other variables, which implies that it can never be an effect in
the considered model, whereas an endogenous variable can be the cause (predictor)
of one or more other variables and can also, at the same time, be caused by other
variables.

The starting point of path analysis is a conceptual diagram, considered as a
schematic representation of the model; This diagram should be specified by the
modeler. In addition to the causal relationships between variables, the disturbances
associated to endogenous variables as well as direct effects (parameters) between
variables must also be specified. When two variables are correlated and there is no
causal relationship between them, this is represented by a curved arc. This diagram
is represented algebraically by a set of regression equations in which at least one
variable is both explanatory and explained. Figure 3.1 shows a path analysis model
with four variables �1, �1, �2 and �3, together with its system of structural equations.

When a variable � is the cause of the variable �, much of the variance of �

could be explained by �. The disturbance � associated to � represents the source of
variability of � which is not explained by �. The disturbance is then an exogenous
variable not directly measured. The magnitude of an effect is measured by a
numerical quantity called the path coefficient or parameter. It is a statistical estimate
of the direct effect of an independent variable on the dependent variable taking into
account other variables.

In path analysis, there are two basic kinds of models, the recursive model and the
non-recursive model. In a recursive model, the causal effects are unidirectional. In
other words, no variable is both a cause and an effect of another variable, directly
or indirectly. In contrast, in a nonrecursive model there is a mutual causal influence
among variables.

Fig. 3.1 Representation of a path analysis model with four variables and its system of structural
equations. �1 is an exogenous variable (predictor), �1, �2 and �3 are endogenous variables
(explained), �1 is explained by �1 with direct effect noted by a, �2 is explained by �1 and �1
with direct effects noted respectively by b and c, �3 is explained by �1 and �2 with direct effects
noted respectively by d and e: Disturbances are associated to endogenous variables �1, �2 and �3.
These disturbances are noted respectively by �1, �2 and �3
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The present paper focuses on the computation of the covariance matrix implied
by a recursive path model noted ḃ . The computation of this matrix is needed at least
at three different levels of the process of the analysis: (i) to test the validity of the
model, (ii) to evaluate the total effect of exogenous variables, and (iii) to estimate
the parameters where several criteria are minimized, such as, for example,

F D 1

2
trace

h�
S� ḃ

�i2

with S being the empirical covariance matrix.
The topic of the present paper can be summarized as follows. Given q C p

variables (q endogenous variables and p exogenous variables) and the covariance
matrix of the exogenous variables, how to compute the covariance matrix implied
by a given recursive path model (i.e., whose parameters are known) connecting
these qC p variables? For example, the model given in Fig. 3.1 corresponds to the
following covariance matrix.

ḃ D

2

6664

s11
as11

bs11 C acs11

as11
s22

abs11 C cs22
ads11 C bes11 C aces11 ds22 C abes11 C es22

bs11 C acs11
abs11 C cs22

s33

ads11 C bes11 C aces11
ds22 C abes11 C ces22
abds11 C cds22 C es33

abds11 C cds22 C es33 s44

3

7775

(3.1)

The well-known method proposed by Jöreskog (1977) (see also Sect. 3.4.2 in
the present paper) can be considered as a solution for the computation of the
covariance matrix implied by a given recursive model; but Jöreskog’s method
has two major drawbacks: (1) it requires matrix inversion and (2) the variances
of disturbances should be computed based on model parameters. However the
expression of these variances in terms of parameters is known only for simple
models and this constitutes the main limitation of Jöreskog’s method.

Alternatively, El Hadri and Hanafi (2015) have recently proposed a new method
called the Finite Iterative Method (FIM) that can overcome the limitations of
Jöreskog’s method but, so far, this new method is limited to correlation matrices
(i.e., all variables must be standardized). The present paper generalizes FIM to the
case of a covariance matrix.

The paper is organized as follows. The second section presents the notations used
in the rest of the paper. The third section presents the extension of the finite iterative
method to the covariance matrix. The fourth section illustrates with examples the
efficiency of FIM compared to Jöreskog’s method. Finally, some conclusions are
presented.

3.2 Notations

This section introduces the basic notations following Jöreskog (1977), Jöreskog and
Wold (1982), and Hoyle (1995). The translation of the diagram of a recursive path
model to equations is given by the following generic form:
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2

66664

�1

�2
:::

�q

3

77775
D

2

666664

0 : : :

ˇ21
: : :

: : : 0

: : :
:::

:::
: : :

ˇq1 : : :

: : :
:::

ˇq;.q�1/ 0

3

777775

2

66664

�1

�2
:::

�q

3

77775
C

2

666664

�11 �12

�21 �22

: : : �1p

: : : �2p
:::
: : :

�q1 �q2

: : :
:::

� � � �qp

3

777775

2

66664

�1

�2
:::

�p

3

77775
C

2

66664

�1

�2
:::

�q

3

77775

(3.2)

System (3.2) can be also written in compact form as:

� D B�C � � C �; (3.3)

where :

(i) � D ��1; �2; : : : ; �q
�

is the (q � 1) vector of all endogenous variables,
(ii) � D ��1; �2; : : : ; �p

�
is the (p � 1) vector of all exogenous variables,

(iii) B is the (q � q) lower triangular matrix of structural coefficients relating
endogenous variables. Matrix B is always lower triangular for a recursive
model.

(iv) � is the (q� p) matrix of structural coefficients relating endogenous variables
to exogenous variables,

(v) � D ��1; �2; : : : ; �q
�

is the (q � 1) vector of disturbances.

In addition, the following assumptions are made:

(i) the vector of disturbances � is not correlated to the vector of exogenous
variables �:

�
E
�
��t
� D 0

E
�
��t
� D 0 (3.4)

where E denotes the expected value and t the transpose operation.
(ii) disturbances are not correlated, which implies that E

�
��t

�
is a q � q diagonal

matrix.

The covariance matrix implied by the model described by System (3.2) is the .pC
q/� .pC q/ symmetric matrix ḃ whose elements are the covariance between each
pair of variables in the model. This matrix can be defined as:

ḃ D
�

E
�
��t

�
E .��t/

E
�
��t

�
E .��t/

�
: (3.5)
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3.3 Extention of the Finite Iterative Method
to the Covariance Matrix

This part presents FIM—a new method to compute the matrix ḃ . Its principle,
shown in Fig. 3.2, is to build ḃ iteratively. Starting with the first square block
of order p (corresponding to the p exogenous variables

�
�1; �2; : : : ; �p

�
), then the

.p C 1/th row and the .p C 1/th column (corresponding to the first endogenous
variable �1) and ending with the .pCq/th row and .pCq/th column (corresponding
to the last endogenous variable �q).

This building process is possible by using System (3.2) directly without recourse
to Eq. (3.3). This system can be written as follows:

�1 D �11�1 C � � � C �1p�p C �1
�2 D �21�1 C � � � C �2p�p C ˇ21�1 C �2
:::

�j D �j1�1 C � � � C �j;p�p C ˇj1�1 C � � � C ˇj;.j�1/�j�1 C �j
:::

�q D �q1�1 C � � � C �q;p�p C ˇq1�1 C � � � C ˇq;.q�1/�q�1 C �q

(3.6)

Thereafter, we denote by A the q�.pCq/matrix of model parameters defined as:

A D 	� B

 D

2

66664

�11 : : : �1p 0 : : : : : : 0

�21 : : : �2p ˇ21
: : :

: : :
:::

: : : : : : : : : : : :
: : :

: : :
:::

�q1 : : : �q;p ˇq1 : : : ˇq;.q�1/ 0

3

77775
(3.7)

For fixed k between 1 and q, and m between 1 and .pC q/, the following notations
are used:

A1Wk;1Wm D
	
ai;j


1�i�k;1�j�m

: (3.8)

Fig. 3.2 Construction of the implied covariance matrix using the finite iterative method (FIM)
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The Finite iterative method is defined by the following q (finite) iterations
(Algorithm 3.1):

Algorithm 3.1: Finite iterative method
Repeat for j D 1; 2; : : : ; q

1. ḃFIM
pCj;1WpCj�1 D Aj;1WpCj�1

ḃFIM
1WpCj�1;1WpCj�1

2. ḃFIM
1WpCj�1;pCj D

�
ḃFIM

pCj;1WpCj�1

�t

3. ḃFIM
pCj;pCj D spCj;pCj

These iterations are initialized by ḃFIM
1Wp;1Wp D ˚ , the covariance matrix among

exogenous variables

Theorem 3.1. The matrix ḃ can be computed by the algorithm above: ḃ D ḃFIM

Proof. Variables �1; : : : ; �p are all exogenous, therefore the block Ȯ FIM
1Wp;1Wp corre-

sponding to these variables is naturally identical to ˚ , the covariance matrix among
exogenous variables. Therefore

ḃFIM
1Wp;1Wp D ˚

1. The following notations are used:

(i)

O	�i� i0
D cov .�i; �i0/ D E .�i0�i/ 8.i; i0/ 2 f1; : : : pg

(ii)

O	�j�i D cov
�
�j; �i

� D E
�
�j�i

� 8j 2 f1; : : : qg and 8i 2 f1; : : : pg

(iii)

O	�j�j0
D cov

�
�j; �j0

� D E
�
�j0�j

� 8.j; j0/ 2 f1; qg

Since the first equation in system (3.6) contains in the right term only the
exogenous variables, we can separate it from the other equations. This first
equation is,

�1 D �11�1 C � � � C �1p�p C �1; (3.9)

thus, for i 2 f1; pg the multiplication of this equation on the right side by �i gives:

�1�i D �11�1�i C � � � C �1;p�p�i C �1�i (3.10)
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however, the model assumptions from Eq. (3.4) imply that �1 is uncorrelated with
all exogenous variables �1; : : : �p. This in turn, implies that

E .�1�i/ D 0 8i 2 f1; : : : pg : (3.11)

So, taking the respective mathematical expectation we obtain,

O	�1�i D �1;1 O	�1�i C � � � C �1;p O	�p�i (3.12)

or equivalently,

O	�1�i D A1;1Wp ḃFIM
1Wp;i; (3.13)

thus, for i in the set of integers between 1 and p we obtain,

ḃFIM
pC1;1Wp D 	

b� �1�1 ; : : : ;b� �1�p

D

h
A1;1Wp

ḃFIM
1Wp;1; : : : ;A1;1Wp

ḃFIM
1Wp;p

i
D A1;1Wp

ḃFIM
1Wp;1Wp

(3.14)

We now consider equations for the other endogenous variables �2; : : : �q. Let
j 2 f2; qg, the structural equation for the jth endogenous variable �j is:

�j D �j1�1 C � � � C �j;p�p C ˇj1�1 C � � � C ˇj;.j�1/�j�1 C �j: (3.15)

Let i 2 f1; pg and k 2 f1; j � 1g, if we multiply this equation on the right side
successively by �i and �k we obtain,

�j�i D �j1�1�i C � � � C �j;p�p�i C ˇj1�1�i C � � � C ˇj;.j�1/�j�1�i C �j�i (3.16)

and

�j�k D �j1�1�kC� � �C �j;p�p�kCˇj1�1�kC� � �Cˇj;.j�1/�j�1�kC �j�k (3.17)

From Eq. (3.4), �j is uncorrelated with all exogenous variables �1; : : :and �p.
Moreover, since �j is explained by �1; : : :and �j�1, �j is uncorrelated with all the
endogenous variables �1; : : :and �j�1. Thus,

�
E
�
�j�i
� D 0 8i 2 f1; pg

E
�
�j�k

� D 0 8k 2 f1; j� 1g (3.18)

So, taking the respective mathematical expectation, we obtain,

O	�j�i D �j;1 O	�1�i C : : :C �j;p O	�p�i C ˇj;1 O	�1� i
C : : :C ˇj;j�1 O	�j�1� i

and

O	�j�k D �j;1 O	�1�k
C : : :C �j;p O	�p�k C ˇj;1 O	�1�k C : : :C ˇj;j�1 O	�j�1�k
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or, equivalently:

O	�j�i D Aj;1WpCj�1 ḃFIM
1WpCj�1;i

and

O	�j�k D Aj;1WpCj�1 ḃFIM
1WpCj�1;pCk;

thus for i in the set of integers between 1 and p, and k in the set of integers
between 1 and j� 1:

ḃFIM
pCj;1Wp D

h
O	�j�1 ; : : : ; O	�j�p

i
D
h
Aj;1WpCj�1 ḃFIM

1WpCj�1;1; : : : ;Aj;1WpCj�1 ḃFIM
1WpCj�1;p

i

and

ḃFIM
pCj;pC1WpCj�1 D

	 O	�j�1 ; : : : ; O	�j�j�1




D 	Aj;1WpCj�1 O	FIM
1WpCj�1;pC1; : : : ;Aj;1WpCj�1 O	FIM

1WpCj�1;pCj�1



(3.19)

thus
ḃFIM

pCj;1Wp D Aj;1WpCj�1 ḃFIM
1WpCj�1;1Wp (3.20)

and

ḃFIM
pCj;pC1WpCj�1 D Aj;1WpCj�1 ḃFIM

1WpCj�1;pC1WpCj�1: (3.21)

Together Eqs. (3.20) and (3.21) give

ḃFIM
pCj;1WpCj�1 D Aj;1WpCj�1 ḃFIM

1WpCj�1;1WpCj�1 (3.22)

2. The matrix ḃFIM being a covariance matrix is symmetric and therefore:

ḃFIM
1WpCj�1;pCj D

�
ḃFIM

pCj;1WpCj�1
�t

(3.23)

3. Since ḃFIM is also a covariance matrix then by definition:

ḃFIM
pCj;pCj D spCj;pCj (3.24)

ut
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3.4 Efficiency of FIM and Its Complementarity
with Jöreskog’s Method

The aim of this section is to analyze the efficiency of FIM, to compare it with
Jöreskog’s method, and discuss the relationships between these two methods. To
do this, the model described in Fig. 3.1 is considered. The three structural equations
in this model can be written as System (3.2) with,

B D
2

4
0 0 0

c 0 0
d e 0

3

5 ; � D
2

4
a
b
0

3

5 ; ˚ D Œs11� :

3.4.1 Jöreskog’s Method

The expression given by Jöreskog to compute the covariance matrix implied by the
model is as follows:

ḃ D ḃ JOR D
2

4 ˚ ˚� t
h
.I � B/�1

it

.I � B/�1 � ˚ .I � B/�1
�
� ˚� t C �

� h
.I � B/�1

it

3

5

(3.25)

where ˚ D E
�
�� t

� D 	
cov

�
�j; �i

�

1�j;i�p

is the .p � p/ covariance matrix among

exogenous variables and � D E
�
��t
� D 	cov

�
�j; �i

�

1�j;i� is the .q�q/ covariance

matrix among disturbances.

3.4.2 Computation of b˙ by Jöreskog’s Method

For Jöreskog’s method we start with

.I � B/�1 D
2

4
1 0 0

c 1 0

dC ce e 1

3

5 ;

and thus

E
�
�� t
� D

2

4
1 0 0

c 1 0

dC ce e 1

3

5

2

4
a
b
0

3

5 � s11 D
2

4
as11

.acC b/s11
.adC aceC be/s11

3

5 ; (3.26)
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and also

E
�
��t
� D .E ���t

�
/t D 	as11 .acC b/s11 .adC aceC be/s11



:

However, the matrix � is diagonal with elements:
8
<

:

�21 D var .�1/
�22 D var .�2/
�23 D var .�3/

Then

� D
2

4
�2

1 0 0

0 �2
2 0

0 0 �2
3

:

3

5

Thus

E
�
��t

� D
2

4
1 0 0

c 1 0

dC ce e 1

3

5

0

@

2

4
a
b
0

3

5 � s11
	

a b 0

C

2

4
�21 0 0

0 �22 0

0 0 �23

3

5

1

A

2

4
1 c d C ce
0 1 e
0 0 1

3

5 ;

thus

E
�
��t

� D
2

4
1 0 0

c 1 0

dC ce e 1

3

5

2

64
a2s11 C �21 abs11 0

abs11 b2s11 C �22 0
0 0 �23

3

75

2

4
1 c dC ce
0 1 e
0 0 1

3

5 ;

and therefore, the covariance matrix implied by the model described by Sys-
tem (3.25) and provided by Jöreskog’s method is written as:

ḃ JOR D
2
66664

Œs11�
h

as11 .acC b/s11 .adC aceC be/s11
i

2

64
as11

.acC b/s11
.adC aceC be/s11

3

75

2

64
1 0 0

c 1 0

dC ce e 1

3

75

2

64
a2s11 C �21 abs11 0

abs11 b2s11C �22 0

0 0 �23

3

75

2

64
1 c dC ce
0 1 e

0 0 1

3

75

3
77775

(3.27)

3.4.3 Computation of b˙ by the Finite Iterative Method

For the finite iterative method we consider

A D

2

64
a 0 0 0
b c 0 0
0 d e 0

3

75 :
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The covariance matrix implied by the model ḃFIM provided by FIM is built in
three iterations .q D 3/ and Algorithm 3.1 is initialized by

ḃFIM
1W1;1W1 D ˚ D Œs11� :

First iteration .q D 1/: Computation for the first endogenous variable.

ḃFIM
2;1W1 D A1;1W1 ḃFIM

1W1;1W1 D a � s11 D as11
ḃFIM
1W1;2 D

�
ḃFIM
2;1W1

�t D as11
ḃFIM
2;2 D s22, thus

ḃFIM
1W2;1W2 D

�
s11
as11

as11
s22

�

Second iteration .q D 2/: Computation for the second endogenous variable.

ḃFIM
3;1W2 D A2;1W2 ḃFIM

1W2;1W2 D
	

b c

 � s11

as11

as11
s22

�
D 	 .bC ac/s11 abs11 C cs22




ḃFIM
1W2;3 D

�
ḃFIM
3;1W2

�t D
�
.bC ac/s11
abs11 C cs22

�

ḃFIM
3;3 D s33;

and thus

ḃFIM
1W3;1W3 D

2

4
s11

as11
.bC ac/s11

as11
s22

abs11 C cs22

.bC ac/s11
abs11 C cs22

s33

3

5

Third iteration .q D 3/: Computation for the third endogenous variable.

ḃFIM
4;1W3 D A3;1W3 ḃFIM

1W3;1W3 D
	
0 d e



2

4
s11

as11
.bC ac/s11

as11
s22

abs11 C cs22

.bC ac/s11
abs11 C cs22

s33

3

5

D 	 ads11 C .bC ac/es11 ds22 C e.abs11 C cs22/ d.abs11 C cs22/C es33



ḃFIM
1W3;4 D

�
ḃFIM
4;1W3

�t D
2

4
ads11 C .bC ac/es11

ds22 C e.abs11 C cs22/
d.abs11 C cs22/C es33

3

5

ḃFIM
4;4 D s44, and thus
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Fig. 3.3 Comparison
between Jöreskog’s method
and “FIM”

ḃFIM D
2

6664

s11
as11

.bC ac/s11

as11
s22

abs11 C cs22
ads11 C .bC ac/es11 ds22 C e.abs11 C cs22/

.bC ac/s11
abs11 C cs22

s33

ads11 C .bC ac/es11
ds22 C e.abs11 C cs22/

d.abs11 C cs22/C es33
d.abs11 C cs22/C es33 s44

3

7775

3.4.4 Which Method Is More Flexible?

The answer to this question is summarized in Fig. 3.3. This figure lists the matrices
needed to compute the implied covariance matrix for a given recursive model.

As clearly shown in Eq. (3.25), Jöreskog’s method requires prior knowledge of
the inverse matrix .I � B/�1, and computes Ȯ as a function of the variances of
disturbances (see Eq. 3.27). By contrast, FIM requires neither the inverse matrix
.I � B/�1 nor the matrix � but provides directly the matrix Ȯ (the specific
computations depend only upon matrices ˚ , � and B, which are all given). As
a consequence, FIM seems more flexible than Jöreskog’s method in computing the
covariance matrix implied by the model.

3.4.5 Is FIM More Efficient Than Jöreskog’s Method?

The answer to this question depends on the matrix of variances of disturbance
� . When this matrix can be exhibited from ˚ , � and B, the efficiency of both
methods is identical. Unfortunately, no known method allows computation of the
matrix � from ˚ , � and B. This leads to the conclusion that FIM is more efficient
than Jöreskog’s method. In practice, however, Jöreskog’s method does not provide
exactly the matrix Ȯ , it provides an approximation of it, denoted Ȯ app because an
approximation of � is used.

To illustrate this situation, 100 data sets were randomly generated. Four variables
are considered for each data set. The model in Fig. 3.1 is considered for each data
set, the matrix ˚ is taken as the empirical covariance matrix between exogenous
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variables, and the matrices � and B are estimated as solutions of the minimization
criterion

1

2
trace

h�
S � ḃ

�i2

with S being the empirical covariance. The lavaan package (Rosseel 2002) was
used to estimate the model for each simulation. Thereby, for each data set, the
matrix Ȯ app provided by Jöreskog’s method was obtained as the output of the
lavaan package, and the matrix Ȯ FIM was computed following Algorithm 3.1.
We measured the distance between these two matrices as:


 D 1

2
trace

h Ȯ app � Ȯ FIM
i2
: (3.28)

Figure 3.4 displays the quantity 
 for each simulation. This figure shows that this
difference is negligible as it does not exceed 0:0002. The most important result of
these simulations is judging the quality of this approximation.
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Fig. 3.4 Distance between the two implied matrices Ȯ App
and Ȯ FIM

for 100 simulations
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3.4.6 Are Both Methods Complementary?

The simultaneous use of both methods has the advantage of determining exactly the
matrix of the variances of disturbance � as a function of parameters (˚, � , and B).
This saves the user from worrying about approximations. Indeed, the matrix � can
be calculated as follows:

(i) matrices ˚ , � and B are given,

(ii) compute Ȯ FIM
,

(iii) compute � as:

� D .I � B/ ḃFIM
pC1WpCq;pC1WpCq

	
.I � B/t � � ˚� t



(3.29)

Indeed, from

ḃ JOR D ḃFIM

and by identifying the blocks corresponding to the endogenous variables,

.I � B/�1
�
� ˚� t C � �

h
.I � B/�1

it D ḃFIM
pC1WpCq;pC1WpCq

And by applying (3.29) to the model of Fig. 3.1, the matrix � is as follows :

� D

2

64
1 0 0

�c 1 0

�d �e 1

3

75

�

2

64
s22 abs11 C cs22 ds22 C e.abs11 C cs22/

abs11 C cs22 s33 d.abs11 C cs22/C es33
ds22 C e.abs11 C cs22/ d.abs11 C cs22/C es33 s44

3

75

�

0

B@

2

64
1 �c �d
0 1 �e
0 0 1

3

75 �

2

64
a
b
0

3

75 � Œs11� �
h

a b 0
i
1

CA (3.30)

and thus,

� D
2
64

s22 � as11 0 0

0 s33 � b2s11 � c2s22 � 2abcs11 0

0 0 s44 � d2s22 � e2s33 � 2abdes11 � 2dces22

3
75

To conclude, FIM does not determine the variances of disturbances, and Jöres-
kog’s method does not allow the computation of ḃ . The simultaneous use of the
two methods make it possible to compute both ḃ and � .
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3.5 Conclusion and Perspectives

The computation of the covariance matrix implied by a recursive path model is a
crucial step in the global path analysis process. This paper proposes a new method
called Finite Iterative Method (FIM) which will enrich and expand strategies for
computing this matrix. On a conceptual level, FIM has two advantages compared
to the well-known method of Jöreskog. First, it does not need matrix inversion and
second, knowledge of variances of disturbances is not necessary. On a practical
level, if we get good approximations of variances of disturbances, this new method
is equivalent to Jöreskog’s method.

The question that still remains to be answered and always open is to propose
similar strategies of computation for non-recursive models, and for models with
latent variables.
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Chapter 4
Which Resampling-Based Error Estimator
for Benchmark Studies? A Power Analysis
with Application to PLS-LDA

Anne-Laure Boulesteix

Abstract Resampling-based methods such as k-fold cross-validation or repeated
splitting into training and test sets are routinely used in the context of supervised
statistical learning to assess the prediction performances of prediction methods
using real data sets. In this paper, we consider methodological issues related to
comparison studies of prediction methods which involve several real data sets and
use resampling-based error estimators as the evaluation criteria. In the literature
papers often claim that, say, “Method 1 performs better than Method 2 on real
data” without applying any proper statistical inference approach to support their
claims and without clearly explaining what they mean by “perform better.” We
recently proposed a new statistical testing framework which provides a statistically
correct formulation of such paired tests—which are often performed in the machine
learning community—to compare the performances of two methods on several real
data sets. However, the behavior of the different available resampling-based error
estimation procedures in this statistical framework is unknown. In this paper we
empirically assess this behavior through an exemplary benchmark study based on 50
microarray data sets and formulate tentative recommendations regarding the choice
of resampling-based error estimation procedures in light of the results.

Keywords Resampling • K-fold cross-validation • Supervised statistical
learning • Statistical inference

4.1 Introduction

Resampling-based methods such as k-fold cross-validation or repeated splitting into
training and test sets are routinely used in the context of supervised statistical
learning to assess the prediction performance of prediction methods using real
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data sets. In this paper, we consider methodological issues related to comparison
studies of prediction methods which involve several data sets and use resampling-
based error estimators as evaluation criteria. Here such comparisons will be termed
benchmark studies and the number of considered real data sets will be denoted as J.

In statistical literature most articles presenting new supervised learning methods
include a sentence like “our method performed better than existing methods on real
data sets”— usually in terms of prediction error (Boulesteix 2013; Boulesteix et al.
2013). However, these claims are often not based on proper statistical inference. To
contrast, in machine learning literature it is common to compare the resampling-
based error estimates of prediction methods using statistical tests such as paired t-
tests or paired Wilcoxon tests (Demsar 2006). This approach consists (in the case of
the t-test) of testing whether the means of the prediction errors are equal for the two
considered supervised learning methods by considering the differences between the
resampling-based estimates of the two methods obtained for each of the J real data
sets as independent realizations. The tested hypothesis, however, is almost never
clearly defined and poor attention is usually paid to the Type I and Type II error.
To our knowledge, a proper statistical framework for these ad-hoc tests is, until our
recent contribution (Boulesteix et al. 2015), missing from the literature completely.

To address this issue we proposed a new statistical testing framework which
provides a statistically correct formulation of such paired tests (Boulesteix et al.
2015). With this framework in mind, we also examined benchmark studies in terms
of their power to detect existing differences in performance in relation to the number
J of data sets used in the study. However, we illustrated these ideas based on a single
resampling procedure, namely repeated subsampling with a splitting ratio between
training and test data sets of 4:1 (i.e., the training sets include 4/5 and the test sets
1/5 of the data).

The power of the considered paired test depends highly on the variance of the
estimates over the data sets. The variance of resampling-based error estimates has
been relatively well investigated in the context of simulation studies given a pre-
specified underlying data distribution (Dougherty et al. 2010; Molinaro et al. 2005).
In the context of real-data-based benchmark studies which include various data sets
with different underlying distributions, however, this variance has to our knowledge
never been examined systematically. Hence, the behavior of common resampling-
based error estimators in our statistical testing framework is essentially unknown.
This paper aims at filling this gap.

In Sect. 4.2 we give a brief overview of the considered resampling-based error
estimation procedures: k-fold cross-validation (CV), leave-one-out cross-validation
(LOOCV), repeated subsampling (SUB) and repeated bootstrapping (BOOT) and of
our recently proposed statistical framework (Boulesteix et al. 2015) with particular
emphasis on power issues. Section 4.3 presents the design of our empirical analyses
and the obtained results.
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4.2 Methods

In this paper we focus on binary class prediction problems, i.e. the response variable
Y to be predicted is binary (Y D 0; 1). Prediction rules are constructed based on p
predictor variables X1; : : : ;Xp. The data set at hand is denoted by D and consists of
n i.i.d. realizations of the random vector .Y;X1; : : : ;Xp/

>. If several data sets are
considered they are denoted by D1; : : : ;DJ, where J is the number of data sets in
the benchmark study. Classification methods used to construct prediction rules are
denoted by M1; : : : ;MK , where K is the number of methods compared in the study.
Since the response Y is binary, the prediction error of a prediction rule is simply
defined as the proportion of misclassified observations (or error rate) when this
prediction rule is applied to make class predictions for test data. Note that other error
criteria might be considered to assess classification accuracy. If Y is a continuous
variable prediction error is typically assessed through the mean squared difference
between predicted and true values. The testing framework and analyses presented in
this paper are essentially generalizable to such other error criteria, though we focus
on the error rate for simplicity.

4.2.1 Resampling-Based Methods for Prediction Error
Estimation

In this paper we consider the following common resampling-based error estimation
procedures: k-fold cross-validation (CV), leave-one-out cross-validation (LOOCV),
repeated subsampling (SUB) and repeated bootstrapping (BOOT).

4.2.1.1 K-Fold Cross-Validation (CV)

In k-fold CV, the available data set is partitioned into k approximately equally
sized folds. In each of the k CV iterations, the kth fold is considered the test
data set and the k � 1 remaining folds form the training data set. The considered
supervised learning method is used to fit a prediction rule from the training set,
which is subsequently applied to the test set. Overall prediction error is assessed
for all iterations by comparing the predicted and true value response variable and
the average is built over the k iterations. To reduce the variability of this error
estimate it is recommended (but not at all systematic in the literature) to repeat this
procedure BCV times for different random partitions of the data sets and to finally
average the results over these BCV repetitions. On the whole, if CV is repeated BCV

times, it implies that BCV � k splittings into training and test sets are considered
successively, which has to be kept in mind when comparing CV to other procedures
such as repeated subsampling or repeated bootstrapping. The number of folds k is a
parameter which is chosen by the user. Usual choices are k D 3, k D 5 or k D 10.
The ratio between the sizes of the training and test sets is .k � 1/ W 1.
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4.2.1.2 Leave-One-Out Cross-Validation (LOOCV)

A special case of CV is when each fold consists of a single observation, corre-
sponding to k D n. This variant of CV is known as leave-one-out cross-validation
(LOOCV). The partition is then unique. Hence, LOOCV cannot be repeated, in
contrast to k-fold CV with k < n. It yields a deterministic error estimate.

4.2.1.3 Repeated Subsampling (SUB)

Repeated subsampling (SUB) is similar to CV in the sense that it also considers
splits of the data set D into training and test sets. But it differs from CV because
these splits do not result from a single partition into k folds. Instead, at each
subsampling iteration a new random partition into training and test sets is generated
independently of the previous iterations. In other words, a training set is drawn
without replacement out of the available data set (hence the term subsampling) and
the rest of the data set forms the test set. As with CV, the ratio between the sizes of
the training and test sets is a parameter which is chosen by the user. Usual choices
are, for example, 2:1, 4:1 or 9:1. Note that these ratios correspond to the ratios of
three-fold CV, five-fold CV and ten-fold CV, respectively. This procedure is repeated
a large number BSUB of times and the average error is taken over the BSUB iterations.

4.2.1.4 Repeated Bootstrapping (BOOT)

The last resampling-based error estimation procedure which we will consider is
bootstrapping. Repeated bootstrapping is very similar to repeated subsampling with
the difference that at each iteration the training set is drawn from the available data
set with replacement, i.e. observations are allowed to occur several times in the
training set. Once the training set is drawn, the rest of the data set is taken as test set,
as with the repeated subsampling procedure: note here however that the size of the
test set varies at each iteration, depending on how many duplicates are included in
the training set. It is usual to draw training sets of size n from the available data set,
in which case an average of 63.2 % of the original observations are included in each
training set. If this standard approach is adopted, the repeated bootstrap procedure
does not involve any parameters. As with repeated subsampling, the procedure is
repeated a large number BBOOT of times and the average error is taken over the
BBOOT iterations.
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4.2.2 Statistical Testing Framework for Real-Data Benchmark
Studies

We recently proposed a proper statistical framework for hypothesis tests comparing
the performances of supervised learning methods using several real data sets
with unknown underlying distributions (Boulesteix et al. 2015). This statistical
framework is briefly summarized here. For this purpose, we have to introduce the
well-known concepts of conditional and unconditional errors.

Let us consider a data set D0 � Pn0
0 , where n0 denotes the number of observations

in D0 and P0 the underlying distribution from which the data set is drawn. The
conditional error ".Mk;D0;P0/ of method Mk (for k 2 f1; : : : ;Kg) constructed from
D0 is defined as ".Mk;D0;P0/ D EP0.OfMk ;D0 .X1; : : : ;Xp/ ¤ Y/; where OfMk;D0 stands
for the prediction rule constructed from D0 with method Mk taking the predictors
X1; : : : ;Xp as input and returning a prediction for Y.

If we consider D0 as a random variable with distribution Pn0
0 , we can define the

unconditional error "�.Mk; n0;P0/ of method Mk for distribution P0 and size n0 as
"�.Mk; n0;P0/ D EP

n0
0
.".Mk;D0;P0//, where the asterisk indicates that we are now

considering the unconditional error.
Coming back to the problem of benchmarking based on J data sets D1; : : : ;DJ ,

we denote by P1; : : : ;PJ their respective underlying distributions and n1; : : : ; nJ

their respective numbers of observations. The data set Dj is thus a realization of
P

nj

j . The basic idea of our previously proposed statistical framework (Boulesteix
et al. 2015) consists of considering Pj as the outcome of a random variable˚ taking
values in the set of the possible underlying distributions and nj as the outcome of a
random variable N taking values in N. The random variables .˚1;N1/; : : : ; .˚J;NJ/

are i.i.d.. Note that, for j 2 f1; : : : ; Jg we cannot observe˚j D Pj but only a data set
Dj of size nj.

We now return to error estimation and denote ej.Mk/ the error estimate for
method Mk obtained using a chosen resampling-based error estimation procedure on
data set Dj, for j 2 f1; : : : ; Jg and k 2 f1; : : : ;Kg. For simplicity, we will consider
the case of the comparison of two methods M1 and M2. The difference between the
two error estimates is 
ej D ej.M2/� ej.M1/. The statistic of the paired t-test often
performed in machine learning to compare the prediction errors of M1 and M2 based
on data sets D1; : : : ;DJ can be formulated as

T D 
e
q

1
J

1
J�1

PJ
jD1.
ej �
e/2

;

where 
e stands for the empirical mean of 
e1; : : : ; 
eJ. Researchers performing
this t-test usually do not clearly state the tested null hypothesis.

With the above theoretical framework in mind, it becomes intuitive (and it can
be shown Boulesteix et al. 2015) that the null hypothesis implicitly tested when
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conducting (the one-sided version of) this paired t-test in a benchmark study is of
the type:

H0 W E."�.M2;N; ˚/�"�.M1;N; ˚// � 0 vs. H1 W E."�.M2;N; ˚/�"�.M1;N; ˚// < 0:

Readers are referred to the original paper Boulesteix et al. (2015) for more details.

4.2.3 Power Considerations

Considering the one-sided paired t-test outlined above, we can use standard
formulae to derive the number of data sets J needed to detect a difference of ı
at a power of 1 � ˇ given that the standard deviation of the difference is 	 (Bock
1998; Boulesteix et al. 2015):

J.˛; ˇ; ı; 	/ 
 Œt1�˛;J�1 C t1�ˇ;J�1�2

.ı=	/2
; (4.1)

with t˛;df standing for the ˛-quantile of Student’s distribution with df degrees of
freedom.

4.3 Analyses and Results

4.3.1 Aims and Design of Our Analyses

A question that remains unanswered, however, is whether the different common
resampling-based approaches reviewed in Sect. 2.1 behave identically in terms
of power within real-data benchmark studies. The variance and mean squared
error of these methods as estimators of the unconditional prediction error have
been extensively studied in the literature through simulations and theoretical
considerations (Dougherty et al. 2010; Molinaro et al. 2005) for given underlying
distributions of response and predictors. For example, LOOCV is known to have a
small bias (since the considered data sets are of size n� 1, i.e. almost n) but a large
variance because it is highly “data set dependent” and yields very different estimates
depending on the data set at hand. In contrast, resampling procedures which use
smaller training data sets have a larger positive bias (i.e., they overestimate the
error) but a smaller variance. Existing literature mainly focuses on the properties of
these error estimators for a given underlying distribution of response and predictors.
Variability between data sets arises because the considered data sets are randomly
sampled from this distribution.

It is unclear, however, how these properties impact the results of real-data-based
benchmark studies. In real-data-based benchmark studies, the considered data sets
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are drawn from different underlying distributions. Variability between data sets
is not only due to random sampling but also to the variability of the underlying
distributions. In this study, we aim at filling this gap by empirically investigating the
behavior of the considered resampling-based error estimates in terms of variability
and power in the context of a real-data-based benchmark study.

For this purpose, we consider an application of supervised classification methods
based on Partial Least Squares (PLS) components to a collection of 50 high-
dimensional microarray data sets used in two previous studies (Boulesteix et al.
2015; de Souza et al. 2010). More precisely, we consider the “PLS+LDA” classifi-
cation method (Boulesteix 2004) as implemented in the R package CMA (Slawski
et al. 2008): this consists of applying linear discriminant analysis (LDA) to the c
first principal PLS components constructed by the SIMPLS algorithm considering
the binary response as metric (with values 0 or 1). In our study the parameter c
is set successively to the three values c D 1; 2; 3. Moreover, since this method
is known to often yield better accuracy when applied to a subset of pre-selected
predictor variables, we perform preliminary variable selection before applying
the PLS+LDA algorithm. Variable selection is performed by (i) applying to each
predictor variable successively a standard t-test to test the equality of the means
of the two groups Y D 0 and Y D 1 and (ii) retaining the p� variables yielding
the smallest p-values. In our study the parameter p� is successively set to the four
values p� D 100; 200; 500; 1000.

In total, since we have three values of c and four values of p�, we consider
3 � 4 D 12 variants of the PLS + LDA classification method; we thus conduct
11 � 12=2 D 66 pairwise comparisons using the paired t-test described in
Sect. 4.2.2, for each resampling-based estimation method. The used methods are:
leave-one-out cross-validation, cross-validation with different numbers of folds
(3, 5, and 10) and different numbers of repetitions, repeated subsampling with
different training/test ratios (2:1, 4:1 and 9:1) and different numbers of iterations,
and repeated bootstrapping with different numbers of iterations.

Note that the training/test ratio is identical in three-fold CV and 2:1 subsampling,
in five-fold CV and 4:1 subsampling and in ten-fold CV and 9:1 subsampling.
To make CV and subsampling completely comparable and ensure that observed
differences are due to the partitioning scheme and not to the number of iterations,
we set the number of CV repetitions and the number of subsampling iterations for
each CV-subsampling pair in such a way that they yield the same total numbers of
training/test iterations. For example, repeating five-fold CV 10 times corresponds to
BSUB D 50 iterations in repeated subsampling.

The real-data-based benchmark study is based on a collection of J D 50 high-
dimensional (i.e., large p) microarray data sets of different moderate sizes with
binary response variable (e.g., diseased versus healthy) previously used in the
literature (Boulesteix et al. 2015; de Souza et al. 2010). These data sets as well as the
R code reproducing all our results are publicly available from http://www.ibe.med.
uni-muenchen.de/organisation/mitarbeiter/020_professuren/boulesteix/plsproc.

http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/020_professuren/boulesteix/plsproc
http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/020_professuren/boulesteix/plsproc
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4.3.2 Results

4.3.2.1 Results of the Benchmark Study

Although the purpose of this paper is to provide insights into the behavior of the
testing procedure as influenced by the resampling scheme and not to discuss the
results of the respective performances of the considered variants of PLS + LDA, we
first briefly present key results in this section for three-fold CV repeated 333 times,
since this procedure shows important advantages in our later analyses. It can be
seen from Fig. 4.1 (left) which displays the histogram of the p-values obtained for
the 12 � 11=2 D 66 pairs of variants with three-fold CV repeated 333 times, that
many differences are significant. In particular, the smallest p-values are obtained for
the comparisons c D 1; p� D 1000 vs. c D 2; p� D 1000 .p-value D 8 � 10�6),
c D 1; p� D 500 vs. c D 2; p� D 500 .p-value D 2 � 10�5/ and c D 1; p� D 1000

vs. c D 3; p� D 1000 .p-value D 2 � 10�5).

4.3.2.2 Ordering of the Methods and Splitting Ratio

One of the central questions addressed in this paper is the influence of the splitting
ratio between training and test sets on the testing procedure (i.e., in the case of CV,
the influence of the number of folds). The mean estimated error over the J D 50

data sets is displayed in Fig. 4.1 (right) for three-fold CV, five-fold CV and ten-fold
CV repeated several times such that all estimates are based on 
1000 splits into
training and test data sets. A very similar picture is obtained if repeated subsampling
(SUB) is considered in place of CV with splitting ratios 2:1, 4:1 and 9:1, respectively
(data not shown). As expected from the theory of statistical learning, the mean
estimated error consistently decreases with an increasing number of folds, i.e. with
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Fig. 4.1 Left: Histogram of the p-values obtained for the 12 � 11=2 D 66 pairs of variants with
three-fold CV repeated 333 times. Right: Mean estimated error over the J D 50 data sets for the
K D 12 considered variants with three-fold CV, five-fold CV and ten-fold CV
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an increasing size of the training sets. This decrease, however, is moderate. A more
interesting result is that, in this study, the curves of the K D 12 considered methods
almost never cross and even remain approximately parallel. In other words, the
variants ranking best with three-fold CV also rank best with five-fold CV and ten-
fold CV.

The latter result is not obvious. We could also imagine scenarios where some
variants for instance cope better with small training sets than others but perform
worse when training sets get larger, in which case the curves might cross between
three-fold CV and ten-fold CV. Such a scenario is not observed in the present study.
This might seem comforting in the sense that the final ranking of methods resulting
from the benchmark studies is not strongly influenced by arbitrary parameters like
the number of CV folds or the splitting ratio—at least in our setting.

4.3.2.3 Absolute Value of the Mean Difference and Resampling Scheme

Figure 4.2 displays the absolute value j
ej of the mean error difference over the
J D 50 data sets for each of the 1

2
.12 � 11/ D 66 pairs of variants. Each boxplot

summarizes 66 data points corresponding to the absolute difference for the 66 pairs
of variants for a particular resampling-based error estimation method (SUB, CV,
LOOCV, BOOT) for a given splitting ratios/number of folds (top: ratio 2:1, middle:
ratio 4:1, bottom: ratio 9:1) and a given number of splittings into training and test
data sets. Note that the results for BOOT are displayed on the top panel together
with the ratio 2:1, since a bootstrap sample drawn with replacement includes an
average of 63:2% 
 2=3 of the original observations. It can be seen from Fig. 4.2
that the distribution of j
ej is almost identical for all considered resampling-based
error estimation procedures.

4.3.2.4 Standard Deviation of the Difference and Resampling Scheme

In the context of the testing framework for benchmark studies reviewed in Sect. 4.2,
however, the variability over the J D 50 data sets also plays a major role. For
Eq. (4.1)— which gives the required number J.˛; ˇ; 	; ı/ of data sets—the variance
	2 of
ej over the data sets is of crucial importance since a small change in variance
could lead to a large change in the number of required data sets. To visualize the
variability over data sets, Fig. 4.3 displays similar boxplots to Fig. 4.2 but this time
with the standard deviation of
ej over the J D 50 data sets rather than the absolute
value of the mean. The right y-axis indicates the required number J.˛; ˇ; 	; ı/ of
data sets according to Eq. (4.1) to achieve ˛ D 0:05 and ˇ D 0:2 for ı D 0:05.

It can be clearly seen from Fig. 4.3 that the distribution of the standard deviation
over the 12 � 11=2 D 66 differences depends substantially on the considered
resampling variant. The standard deviation is highest for LOOCV procedure, as
suggested by theory (Dougherty et al. 2010). In the same vein, it is also higher for
large training set sizes than for small training set sizes. While the median standard
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Fig. 4.2 Absolute value j
ej of the mean error difference over the J D 50 data sets. Each
boxplot depicts 11 � 12=2 D 66 data points corresponding the 66 pairwise differences between
the K D 12 considered variants. SUB3,: : : ,SUB999,SUB5,: : : ,SUB1000: repeated subsampling
with BSUB D 3; : : : ; 999; 5; : : : ; 1000. CV1,: : : ,CV333: CV repeated BCV D 1; : : : ; 333 times.
BOOT3,: : : ,BOOT999: repeated bootstrapping with BBOOT D 3; : : : ; 999
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Fig. 4.3 Standard deviation of 
ej over the J D 50 data sets. Each boxplot depicts 11� 12=2 D
66 data points corresponding the 66 pairwise differences between the K D 12 considered variants.
The right y-axis indicates the required number J.˛; ˇ; 	; ı/ of data sets according to Eq. (4.1) for
˛ D 0:05, ˇ D 0:2 and ı D 0:05. SUB3,: : : ,SUB999,SUB5,: : : ,SUB1000: repeated subsampling
with BSUB D 3; : : : ; 999; 5; : : : ; 1000. CV1,: : : ,CV333: CV repeated BCV D 1; : : : ; 333 times.
BOOT3,: : : ,BOOT999: repeated bootstrapping with BBOOT D 3; : : : ; 999
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deviation is below 0.05 for the 2:1 ratio/three-fold CV, it increases to 
0.065 for
the 9:1 ratio/ten-fold CV (for a sufficiently large number of splittings into training
and test sets). These differences may appear minimal at first glance, but yield large
differences in term of the required number of data sets. The right y-axis shows that
the median number needed in three-fold CV, approximately 7, increases to almost
J D 15 if LOOCV is used.

It can also be seen from Fig. 4.3 that very small numbers of splittings between
training and test sets lead to higher standard deviations, as expected. However,
the standard deviation rapidly stabilizes with increasing number of splittings: the
standard deviations obtained for 100 splittings have the same distributions as those
obtained for 1000 splittings. Note that increasing the number of splittings is in
general always recommended, because it yields more precise error estimates for
each considered data set. Our results merely suggest that further increasing the
number of splittings does not reduce the standard deviation over data sets—at least
in the investigated settings. So we do not aim to dissuade readers from performing
many splittings in their analyses: we just claim that this would not reduce the
variability across data sets. This is because, roughly speaking, the considered
standard deviation is dominated by (i) the variability induced by the fact that each
data set can be seen as a sample (of moderate size) randomly drawn from an
underlying distribution and (ii) the variability of the underlying distributions, i.e.,
the fact that the real data sets are very different from each other. The variability
induced by the randomness of the splitting procedure only accounts for a small part
of the total variability, at least as soon as the number of splittings becomes “large
enough” (
100 in our analysis).

Finally, we observe that SUB and CV do not differ in terms of variance if they
are based on the same total number of splitting into training and test data sets and
use the same splitting ratio. Similarly, the bootstrap procedure (BOOT, top panel)
shows the same pattern as SUB with ratio 2:1 and three-fold CV.

4.4 Conclusion

We conducted a benchmark study based on a large collection of J D 50 high-
dimensional microarray data sets with binary response variable for comparing the
performances of different variants of the PLS + LDA classification method. The aim
of the study was to examine the impact of the resampling-based error estimation
procedure (type of procedure, number of splittings, ratio between training and test
set sizes) in the context of a statistical testing framework based on a paired t-test for
the comparison of two methods. In particular, we focused on the variability of the
estimates of the error difference over the J D 50 considered data sets and on the
resulting power of the paired t-test. In our analyses:

• the ordering of the PLS + LDA variants according to their performance did not
depend on the splitting ratio;
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• the absolute mean difference did not depend on the resampling scheme;
• the standard deviation of the difference decreased for increasing number of

iterations until 100 iterations and then remained stable;
• the standard deviation of the difference was larger for splitting ratios with large

training sets;
• there were no substantial differences in terms of standard deviation between

three-fold CV, repeated subsampling with ratio 2:1 and bootstrapping.

Based on these results (and considering the disadvantages of bootstrapping with
replacement documented elsewhere Binder and Schumacher 2008), we recommend
using three-fold CV or 2:1 repeating subsampling with in total at least 100 splittings
into training and test sets in the context of real-data-based benchmark studies in the
considered settings.

Acknowledgements We thank Rory Wilson for helpful comments.
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Chapter 5
Path Directions Incoherence in PLS Path
Modeling: A Prediction-Oriented Solution

Pasquale Dolce, Vincenzo Esposito Vinzi, and Carlo Lauro

Abstract PLS-PM presents some inconsistencies in terms of coherence with the
direction of the relationships specified in the path diagram (i.e., the path direc-
tions). The PLS-PM iterative algorithm analyzes interdependence among blocks
and misses to distinguish explicitly between dependent and explanatory blocks
in the structural model. This inconsistency of PLS-PM is illustrated using the
simple two-blocks model. For the case of more than two blocks of variables, it
is necessary to have a close look at the different criteria optimized by PLS-PM
to show this issue. In general, the role of latent variables in the structural model
depends on the way the outer weights are calculated. A recently proposed method,
called Non-Symmetrical Component-based Path Modeling, which is based on the
optimization of a redundancy-related criterion in a multi-block framework, respects
the direction of the relationships specified in the structural model. In order to
assess the quality of the model, we provide a new goodness-of-fit index based on
redundancy criterion and prediction capability. Furthermore, we provide a procedure
to address the problem of multicollinearity within blocks of variables.

Keywords PLS Path Modeling • Predictive Direction • Redundancy Index

5.1 Introduction

Multivariate techniques can be categorized as either interdependence or dependence
techniques. Interdependence techniques involve the simultaneous analysis of the
relationships among variables in the data set, where variables are not classified as
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either dependent or explanatory. Thus, distinction between predictors and criteria is
discarded and the direction of the relationships between blocks is symmetrical. In
this case, an appropriate multivariate method predictive in both directions.

Dependence techniques take into account a priori information on the different
roles of the variables or sets of variables (Lauro and D’Ambra 1992). A single
variable or a set of variables is identified as the dependent variable to be explained or
predicted by other variables known as explanatory or independent variables, and the
analysis focuses on deriving those combinations of predictors which explain most of
the variation in the set of dependent variables. In this case, the predictive direction
of the relationship between the blocks of variables is asymmetrical.

PLS-PM is a method aimed at modeling a network of linear dependence
relationships among several blocks of manifest variables (MVs), where each block
is summarized by a latent variable (LV) defined as a component or a composite (i.e.,
an exact linear combination of the MVs). Since LVs are defined as components
which aim to explain the variances of their own set of MVs, PLS-PM is commonly
referred to as a component-based (or variance-based) approach (Lohmöller 1989;
Tenenhaus et al. 2005; Wold 1982).

In order to respect the predictive directions of the structural relationships
specified in the path diagram (i.e., the path directions), the estimation process
should implicitly analyze the dependence relationships among LVs asymmetrically.
However, it is known that PLS-PM presents some inconsistencies in terms of
coherence with the direction of the relationships specified in the path diagram
(Vittadini et al. 2007; Dolce 2015).

The directions of the links in the structural model do not play a role in the
algorithm apart from the specific case of the so-called path weighting scheme for the
inner estimation (Tenenhaus et al. 2005). In the inner step of the PLS-PM algorithm,
each LV is defined as a linear combination of all the connected LVs. Two LVs are
connected if there exists a link between the two blocks: an arrow goes from one
LV to the other in the path diagram, independently of the direction. When the path
weighting scheme is applied, the path direction is taken into account only in the way
the inner weights are computed, but each LV is still defined in the inner step of the
algorithm as a function of all the connected LVs irrespective of the path directions.

Depending on the utilized outer schemes, PLS-PM provides components that
are either optimally correlated to each other or as much correlated as possible
while being somehow representative of each corresponding block of MVs. In
the search for optimally correlated components, the estimation process amplifies
interdependence among blocks and misses to distinguish between dependent and
explanatory blocks in the structural model. As a consequence, there is often a
difference between what PLS-PM wants to model and what is actually computed
by the PLS-PM algorithm.

We will first illustrate this inconsistency of PLS-PM by using a simple model, the
case of two blocks of variables. For the case of more than two blocks of variables,
we will look at the different criteria optimized by PLS-PM (Esposito Vinzi and
Russolillo 2013) in order to show this issue.
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In general, the role of the LVs in the structural model depends on the way the
outer weights are computed. We show that the only way for giving an explanatory
role to a LV is to apply Mode B, while applying Mode A gives it a role of dependent
variable, whatever the path direction is. In the case of more than two blocks, we
cannot apply this rule (i.e., Mode B to the exogenous block and Mode A to the
endogenous block) because some endogenous LVs appear as both explanatory and
dependent LVs (we define them as “bridge” LVs).

Dolce’s dissertation (Dolce 2015) describes a non-symmetrical component-based
estimation approach—called Non-Symmetrical Component-based Path Modeling
(NSC-PM)—based on the optimization of a redundancy-related criterion. It aims
at maximizing the explained variance of the MVs in the dependent blocks, and
it is more suitable for prediction purposes. As PLS-PM, NSC-PM is applied in a
multiblock framework, where relationships among blocks are specified by a path
diagram.

The NSC-PM respects the direction of the relationships specified in the structural
model: bridge blocks are considered as explanatory when they play an explanatory
role in the particular step of the algorithm, and as dependent when they play a
dependent role.

In order to assess the quality of the model, we provide a global goodness of pre-
diction index based on redundancy criterion and prediction capability. Furthermore,
since in the NSC-PM algorithm multiple regressions are applied when the outer
weights are computed for the explanatory LVs, we provide a procedure to address
the issue of multicollinearity within the blocks of variables.

5.2 PLS-PM Incoherence with Path Directions

PLS-PM does not rigidly adhere to an underlying theoretical model (Chin 1998),
and there is often a difference between what PLS-PM wants to model (the
hypothesized model depicted in the path diagram) and what is actually computed
by the PLS-PM algorithm.

Generally, the directions of the links in the structural model do not play a role in
the algorithm. As a consequence PLS-PM misses to distinguish between dependent
and explanatory LVs.

As for the measurement model, the choice between using Mode A instead of
Mode B, for the computation of the outer weights, depends mainly on the theo-
retical difference between the two schemes, based essentially on the hypothesized
relationships between LVs and their own MVs. Under conditions of low theoretical
knowledge on the nature of the LVs, a rule of thumb in PLS-PM is to apply Mode B
to the exogenous block and Mode A to the endogenous block (Wold 1980). However,
to the best of our knowledge, there are hardly any studies in the literature that give
reasons for following this rule and that analyze this issue into details.

In general, beyond the theoretical differences between the two different mea-
surement model schemes, depending on the way the outer weights are calculated,
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Fig. 5.1 Two-block model
with inwards and outwards
directed schemes: redundancy
analysis

X11

ξ1 ξ2
X21

X31

X41

X12

X22

X32

X42

the role of the LV in the structural model changes. The only way for giving an
explanatory role to an LV is to apply Mode B, while applying Mode A gives it a role
of dependent variable, whatever the path direction. Thus, the predictive direction in
the structural model is given by the utilized outer mode.

For two blocks of variables, the only case where PLS-PM adheres to the
theoretical two-block model depicted in the path diagram is for the model in Fig. 5.1,
that is, when the exogenous block is specified as formative (and the outer weights
are computed by Mode B), and the endogenous block is specified as reflective (and
the outer weights are computed by Mode A), which is equivalent to performing a
Redundancy analysis (RA) of the endogenous block with respect to the exogenous
one (Wollenberg 1977; Chin 1998; Tenenhaus et al. 2005).

When the weights are computed by using either Mode A for the two blocks of
variables or Mode B for the two blocks of variables, predictive direction in the
structural model (i.e., the direction of the relationship between the two LVs) is not
explicitly considered in the algorithm. The procedure misses to distinguish between
dependent and explanatory blocks in the model. Blocks are treated in the same
way, that is the direction of the relationship between the two blocks of variables
is symmetrical, that is, PLS-PM analyzes the interdependence relationship between
the two blocks, instead of dependent relationship.

Recent works by Hanafi (2007), Krämer (2007) and Tenenhaus and Tenenhaus
(2011), have shown that the PLS-PM iterative algorithm optimizes different statisti-
cal criteria according to the different options chosen for the computation of the outer
and inner proxies of the components, also for the case of more than two blocks of
variables.

Considering a network of dependence relationships between K blocks of MVs
where each block, Xk (k D 1; : : : ;K), is summarized by an LV, denoted by �k .k D
1; : : : ;K/. A generic MV is denoted by xpk .p D 1; : : : ;Pk/; .k D 1; : : : ;K/, where
Pk is the number of MVs in the k-th block.

When all the outer weights are calculated by means of Mode B, Hanafi (2007)
proved that the Wold’s PLS-PM algorithm monotonically converges to the following
criterion

arg max
jjXkwkjj2DjjXk0

wk0
jj2D1

X

k¤k0

ckk0g
�

cor.Xkwk;Xk0wk0/
�

(5.1)
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where g is one of these two functions

g.x/ D
(

x2 if factorial

jxj if centroid;
(5.2)

while ckk0 is the generic element of the Boolean square matrix C of order K, where
ckk0 D 1 if �k is connected to �0k and ckk0 D 0 otherwise (ckk D 0).

In 2007, Krämer (2007) showed that the PLS-PM algorithm was not based on
a stationary equation related to the optimization of a twice differentiable function
when Mode A was used for all the blocks in the model. In the same work, Kramer
proposed a slightly modified version of the classical Mode A outer scheme in
which a normalization constraint is put on outer weights rather than latent variable
scores. If this new scheme—also called New Mode A by Tenenhaus and Tenenhaus
(2011)—is used for all the blocks in the model, then the PLS-PM iterative algorithm
monotonically converges to the criterion:

arg max
jjwk jj2Djjwk0

jj2D1

X

k¤k0

ckk0g
�

cov.Xkwk;Xk0wk0/
�

(5.3)

where g is defined as in Eq. 5.2.
Looking at the different optimized criteria, it is clear that the PLS-PM algo-

rithm does not focus on directional analysis in terms of dependence relationships
between blocks of variables. Depending on the chosen estimation modes (for
the measurement model) and schemes (for the inner model), PLS-PM provides
composite scores that are as much correlated as possible to each other while being
somehow representative of each corresponding block of manifest variables. The
PLS-PM estimation process analyzes symmetrical relationships between blocks,
thus, it misses to distinguish between the role of dependent and explanatory blocks
in the inner model.

Let us define �k D 1 when Block k is estimated by new Mode A and �k D 0 when
Block k is estimated by Mode B. When both new Mode A and Mode B are used in
the same model, Wold’s procedure converges to the following criterion (Esposito
Vinzi and Russolillo 2013; Tenenhaus and Tenenhaus 2011):

arg max
wk

X

k¤k0

ckk0g

�
cor.Xkwk;Xk0wk0/ �pvar.Xkwk/�k

p
var.Xk0wk0/�k0

�

subject to �kjjwkjj2 C .1 � �k/jjXkwkjj2 D 1; k D 1; : : : ;K:
(5.4)

Considering that, in the case of two blocks of variables, X1 and X2, the
redundancy analysis of X2 with respect to X1 maximizes the following criterion:

arg max
w1;w2

cor.X1w1;X2w2/ � var.X2w2/
1
2

subject to jjX1w1jj2 D jjw2jj2 D 1
: (5.5)
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Looking at Eqs. 5.5 and 5.4 it is clear that the role of the blocks in the structural
model depends on the way the outer weights are calculated. The only way for giving
an explanatory role to an LV is to apply Mode B, while applying Mode A to the
dependent variable, whatever the path direction.

However, in PLS-PM, we cannot apply this rule (i.e., Mode B to the exogenous
block and Mode A to the endogenous block), because some endogenous LVs appear
only as dependent LVs, but others appear as both explanatory and dependent LVs.

5.3 Non-symmetrical Component-Based Path Modeling
(NSC-PM)

The NSC-PM is a non-symmetrical component-based estimation approach for
modeling a network of dependence relationships between K blocks of variables
where each block, Xk (k D 1; : : : ;K), is summarized by an LV, denoted by
�k .k D 1; : : : ;K/. Hence, NSC-PM is applied in a multiblock framework, where
relationships among blocks are specified in a path diagram. A generic MV is denoted
by xpk .p D 1; : : : ;Pk/; .k D 1; : : : ;K/, where Pk is the number of MVs in the k-th
block.

Similarly to the PLS-PM, the NSC-PM consists of two sub-models: the structural
(or inner) model and the measurement (or outer) model. This method is based on the
optimization of a redundancy-related criterion, and it is more suitable for prediction
purposes. It aims at maximizing the explained variance of the MVs in one block
given the others.

In this new approach, the distinction between reflective and formative measure-
ment models is disregarded. The nature of LVs and the direction of relationships
between LVs and MVs is not taken into account. On the contrary, great emphasis
is placed on the dependence relationships between LVs in the structural model. We
only make a distinction between explanatory blocks and dependent blocks in the
structural model.

The NSC-PM respects the direction of the relationship specified in the structural
model because the directions of the links in the structural model play a role in the
algorithm. In particular, taking into account the two roles that bridge LVs play into
the model (i.e., they appear as both explanatory and dependent LVs in the structural
model), in NSC-PM algorithm Bridge LVs are considered as explanatory when they
play an explanatory role in the particular step of the algorithm, and as dependent
when they play a dependent role. When a block of variables plays an explanatory
role in a specific step of the algorithm we apply Mode B for computing the outer
weights, while we apply Mode A when a block of variables plays a dependent role
(further details are provided in Dolce 2015).
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5.3.1 Model Assessment

Since NSC-PM is based on the maximization of the explained variance of the MVs
of the endogenous blocks, it is extremely important that the assessment of the quality
of the model takes also into account appropriate measures of predictive ability.
Generally, some measures commonly used in PLS-PM can be used as well. As in
PLS-PM, the goodness of the structural model depends on the portion of variability
of each endogenous LV explained by the corresponding exogenous predictors, that
can be measured by the multiple linear determination coefficient (R2).

As for the measurement model, the proportion of the variance of a generic MV
xpk reproduced by O�k is equal to cor2.xpk; O�k/ that, in the case of standardized MVs,

corresponds to O2pk (i.e., the so-called “communality”).
If all the MVs are standardized, for each Block k, the average of the commu-

nalities is equal to the average variance extracted (AVE) that expresses the part of
variance of the block explained by O�k:

Comk D 1

Pk

PkX

pD1
cor2.xpk; O�k/ D

1

Pk

PkX

pD1
O2pk D

PPk
pD1 O2pkPPk

pD1 var.xpk/
D AVEk (5.6)

In PLS-PM the weighted average of all the K blocks specific communality
indexes, with weights equal to the number of MVs in each block, is used as a
goodness of fit of the whole measurement model.

In NSC-PM communality index is conceptually appropriate just for dependent
blocks. For LVs that appear at least in one equation of the structural model as
predictors (i.e., exogenous and bridge LVs), the MVs do not necessarily measure
the same underlying construct, (i.e., they are not supposed to be highly correlated).
The components of the blocks that appear only as predictors (i.e., the exogenous
blocks) are expected to maximize the explained MVs variance of the related
dependent blocks. The components of the bridge blocks are expected to maximize
the explained MVs variance of the related dependent blocks while being correlated
with their own predictors LVs.

Moreover, since in the NSC-PM algorithm multiple regressions are applied when
the outer weights are computed for explanatory LVs, excessive correlations among
MVs are not desired. However, in order to avoid the multicollinearity problem, we
propose a solution (see next Section).

The interpretation of exogenous and bridge LVs should be based on the weights.
The weights provide information about the direct relation between the MVs and
their own LV, which reflects the impact of the MVs on the LV (Bollen 1989), and
a comparison among them gives information about which MV contributes most
effectively to the LV. Loadings can also be used for interpretation, bearing in mind
that while the outer weight is a measure of relative contribution of a MV to its LV,
the loading can only be used to evaluate the absolute importance of a MV for its LV.



66 P. Dolce et al.

On the contrary, MVs of dependent blocks are expected to be unidimensional
and to measure the same construct (i.e., the MVs in each block are supposed to
be highly correlated among each others). In this case, multicollinearity is not an
issue because only simple regressions are involved. The components of dependent
blocks are expected to be as much correlated as possible to their predictor LVs,
while being representative of their corresponding blocks of MVs. The interpretation
of dependent LVs should be based on the loadings.

As a measure of the quality of the global model, the goodness-of-fit (GoF) index
proposed by Amato et al. (2005) is not conceptually appropriate for measuring
the global quality of NSC-PM. As a matter of fact, the Gof index—as described
by Amato et al. (2005)—is computed as the geometric mean of the average
communality and the average R2 of the different inner models:

GoF D
q

Com � R2 (5.7)

Because the GoF index is partly based on average communality, it is conceptually
appropriate only for dependent blocks. For this reason, we cannot use the Gof index
in NSC-PM as a measure of the quality of the global model.

A way of assessing the global model in NSC-PM could be to measure the amount
of variance in the sets of variables of the dependent blocks explained by their own
latent predictors. In this direction, we can use the redundancy index which measures
the portion of variability of dependent block of MVs explained by its own predictors.

Given two blocks of variables, X1 D .x11; : : : ; xP11/ and X2 D .x12; : : : ; xP22/,
the redundancy index as proposed by Stewart and Love (1968) measures the
proportion of the variance in the dependent set X2 that is accounted for by the
predictor set X1. The redundancy analysis model, proposed by Wollenberg (1977),
searches for the linear combination, O�1 D X1w1 (the so-called first redundancy
variate), that maximizes the redundancy index, RX2 , defined as

RX2 D
P2X

pD1
cor. O�1; xp2/

2=P2 (5.8)

under the restriction that the variance of O�1 D 1.
In the context of canonical correlation analysis (Hotelling 1935, 1936), the

redundancy index (Eq. 5.8) can be written as:

RX2 D �2
P2X

pD1
cor. O�2; xp2/

2=P2 (5.9)

where � is the canonical correlation coefficient and �2 D X2 Qw2 is the first canonical
component of X2 (Rencher 1998).

For each endogenous block, in PLS-PM the redundancy index is computed as:

Redk D Comk � R2k : (5.10)
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where Comk is the average of the communalities in the kth block and R2k is the
multiple linear determination coefficient in the regression model of O�q on its own
predictor LVs. Looking at the redundancy index from the two different perspectives,
it is clear that in PLS-PM the redundancy index is computed as in the context of
CCA.

Because NSC-PM aims at maximizing the explained variance of the MVs in
one block given the other (i.e., a redundancy-related criterion in a multi-block
framework), as a redundancy measure in NSC-PM we propose to compute for
each MV of endogenous blocks, the portion of its variability explained by its own
predictors as:

Redxpk D R2
�

xpk; f O�0k0

s explaining O�kg
�

(5.11)

that is, as in the context of RA.
For Block k, the redundancy index is defined as

Redk D
PkX

pD1
Redxpk (5.12)

In Lohmöller’s dissertation (Lohmöller 1989) some advice about the evaluation
of model quality is given. The author states that the fit of the global model (outer and
inner model) can be judged as satisfactory if the average of the redundancy indexes
is high enough. Thus, he considers the redundancy index as an index of Goodness
of fit of the global model.

In this perspective, we consider the average of all the Redxpk as an index of global
goodness of prediction, because it is based on redundancy criterion and prediction
capability. Let us define the first J blocks Xk (k D 1; : : : ; J) as exogenous blocks,
and Xk (k D J C 1; : : : ;K) as endogenous blocks; if we denote by QP the number of
MVs of the endogenous blocks, the global goodness of prediction is defined as

Red D 1

QP
KX

kDJC1
Pk � Redk (5.13)

Just as with canonical correlations, no generally accepted guidelines have been
established for the minimum acceptable redundancy index needed to judge a fit of
the model as satisfactory. The researcher must judge the specific research problem
being investigated to determine whether the redundancy index is sufficient to justify
interpretation.

Model validation regards also the way relations are modeled, in both the struc-
tural and the measurement model. In this respect, since NSC-PM does not require
any distributional hypothesis on MVs, confidence intervals for model parameters
can be obtained by resampling techniques, such as Jackknife and Bootstrap.
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As said above, NSC-PM is a method for predictive purposes, and could be an
important technique deserving a prominent place in research applications when the
aims of the analysis is prediction. For these reasons, NSC-PM evaluation cannot
focus only on parameter recovery and on the quality of the measurement model and
the structural model—in terms of explained variance—indiscriminately. In order
to evaluate the model in terms of predictive ability the so-called Blindfolding
procedure, using the Stone-Geisser’s approach to cross-validation, can be used
(Stone 1974; Geisser 1975; Chin 1998).

5.3.2 A Solution to the Issue of Multicollinearity

In the NSC-PM algorithm, multiple regressions are applied when the outer weights
are computed for explanatory LVs. As a consequence, the stability of the MV outer
weights are affected by the strength of the MV intercorrelations. For this reason,
multicollinearity is an important issue to take into account also in NSC-PM.

For LVs that appear only as dependent variables in the structural model,
multicollinearity is not an issue because only simple regressions are involved, and
theoretically it is desired. By contrast, excessive multicollinearity among MVs of
explanatory LVs makes it difficult to separate the distinct influence of the individual
MV on the LV or else the outer weights may be non-interpretable, having incoherent
signs with the correlation with the corresponding LV.

A possible way to check for multicollinearity in a block of variables is to
compute the “tolerance” of each MV as 1 � R2, where the R2 is the coefficient of
determination for the regression of the specific MV on the other MVs of the block.
A measure related to the tolerance is the Variance Inflation Factor (VIF), computed
as the inverse of the tolerance (VIF D 1=TOL) (Hair et al. 2010). A large VIF
value indicates a high standard error of the specific weight due to multicollinearity
among the MVs. As a rule of thumb, the VIF should not exceed a value of 10, but,
particularly when samples size is small, the critical value may be smaller then 10
(Hair et al. 2010). In general, the critical value should be defined considering the
specific analysis objectives.

As a preliminary analysis to NSC-PM, multicollinearity is checked in the blocks
that appear as explanatory at least in one equation of the structural model. If
excessive multicollinearity occurs in a block, we extract fewer components obtained
by principal component analysis (PCA) on the specific block of variables, and then
we use them instead of the original variables in the outer estimation step when
the blocks play an explanatory role. In particular, a multiple regression can be
performed to predict the instrumental inner composite from the extracted principal
components and then the outer composite is computed as a weighted aggregate of
the principal components.

A drawback of this procedure is that PCA creates components that explain the
observed variability in the MVs, but do not consider the relationships of these
variables with the MVs of the dependent blocks. An alternative approach could be
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similar to the one proposed by Esposito Vinzi et al. (2009) in the PLS-PM algorithm,
namely, providing PLS regression for estimating the outer weights as an alternative
to OLS regression. As it is well known, PLS regression does take into account the
relationships of the explanatory MVs with the response MVs.

5.4 Conclusions and Future Research

Generally speaking, there is a difference between what PLS-PM wants to model
and what the iterative algorithm implicitly processes. As a matter of fact, PLS-PM
analyzes relationships between LVs symmetrically, without taking into account the
roles of dependent and explanatory LVs in the structural model. When theoretical
knowledge about the nature of LVs is scarce, Mode B is suggested for exogenous
blocks and Mode A for endogenous blocks (Wold 1980). However, in this paper we
show that the only way for giving an explanatory role to an LV is to apply Mode B for
its block, while applying Mode A gives it a role of a dependent variable, whatever
the path direction. In the case of more than two blocks of variables, where some
endogenous LVs appear as both explanatory and dependent LVs, this rule cannot be
applied.

NSC-PM is a non-symmetrical approach that respects the direction of the
relationship specified in the structural model, since the directions of the links play
a role in the algorithm. In particular, LVs that appear as both explanatory and
dependent LVs in the structural model are considered as explanatory when they play
an explanatory role in the particular step of the algorithm, and as dependent when
they play a dependent role. NSC-PM aims at maximizing the explained variance of
the MVs of the endogenous blocks (i.e., an approach based on the optimization of
a redundancy-related criterion in a multi-block framework), and seems to be a good
compromise between favoring stability (high explained variance) in the blocks and
correlation between components.

Further research is needed to study the properties and the performance of the
method, and to find out if the NSC-PM algorithm optimizes a global criterion.
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Chapter 6
Imaging Genetics with Partial Least Squares
for Mixed-Data Types (MiMoPLS)

Derek Beaton, Michael Kriegsman, ADNI*, Joseph Dunlop,
Francesca M. Filbey, and Hervé Abdi

Abstract “Imaging genetics” studies the genetic contributions to brain structure
and function by finding correspondence between genetic data—such as single
nucleotide polymorphisms (SNPs)—and neuroimaging data—such as diffusion
tensor imaging (DTI). However, genetic and neuroimaging data are heterogenous
data types, where neuroimaging data are quantitative and genetic data are (usually)
categorical. So far, methods used in imaging genetics treat all data as quantitative,
and this sometimes requires unrealistic assumptions about the nature of genetic data.
In this article we present a new formulation of Partial Least Squares Correlation
(PLSC)—called Mixed-modality Partial Least Squares (MiMoPLS)—specifically
tailored for heterogeneous (mixed-) data types. MiMoPLS integrates features of
PLSC and Correspondence Analysis (CA) by using special properties of quantitative
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data and Multiple Correspondence Analysis (MCA). We illustrate MiMoPLS with
an example data set from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
with DTI and SNPs.

Keywords Imaging genetics • Partial least squares • Alzheimer disease • (Multi-
ple) Correspondence analysis • Burt’s stripe • SNPs • Heterogenuous data

6.1 Introduction

Imaging genetics (and “imaging genomics”) combines two scientific disciplines:
neuroimaging—often from the cognitive neuroscience perspective—and genetics—
often from the genomics perspective (Meyer-Lindenberg 2012; Thompson et al.
2010). Imaging genetics integrates neuroimaging and genetic data to understand
how genetics contributes to brain structure and function—often with respect to
diagnostic criteria or complex behavior and traits (such as personality). Usually, the
data sets in imaging genetics are very large: neuroimaging data (measured in number
of voxels) can comprise up to one million variables, whereas genetic data (often
genome-wide with single nucleotide polymorphisms [SNPs]) can comprise more
than three million variables. With such large data sets it is often impractical to use
mass-univariate statistics, simply because the corrections for multiple comparisons
become too drastic.

So, instead of using mass-univariate approaches, imaging genetics researchers
often turn to multivariate methods (Liu and Calhoun 2014) such as sparse reduced
rank regression (Vounou et al. 2010), distance matrix regression (Zapala and
Schork 2006), independent components analysis (Meda et al. 2010; Liu et al.
2009), Canonical Correlation Analysis (CCA) (Sheng et al. 2014), or Partial Least
Squares (PLS) (Le Floch et al. 2012). Because the goal of imaging genetics is to
understand the relationships between imaging and genetics, researchers often turn
to multivariate techniques designed to conjointly analyze two tables of data (e.g.,
imaging and genetics). However, nearly all implementations of CCA, PLS, and
most other multivariate techniques are designed for quantitative data and this can be
problematic because many types of genetic data—especially SNPs—are categorical
data.

6.1.1 Ambiguity with Allelic Coding

With the advent of genome-wide technology, many biological, medical, and psy-
chological disciplines conduct genome-wide association (GWA) studies. Typically,
genome-wide data consist in single nuclear polymorphisms (SNPs) (Weiner and
Hudson 2002). A SNP is expressed by the two nucleotide letters that exist at
a particular genomic location. These two letters can be, for example, AA, AT,
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or TT. For a given SNP, each letter can be a major allele—say A—or a minor
allele—say T. For analyses, SNPs are often recoded into an allelic count; typically,
SNPs emphasize the minor allele. Thus our example—AA, AT, and TT—would be
recoded respectively as the numbers 0, 1, or 2 (because AA has 0 minor allele, and
TT has 2 minor alleles). This {0,1,2} coding scheme is often called an “additive”
model. In biological, medical, and psychological studies with SNPs, the minor allele
is usually assumed to be associated with risk for diseases and disorders (Cantor et al.
2010; Visscher et al. 2012).

This allelic count makes several unrealistic assumptions. First, the {0,1,2}
scheme is an implicit contrast—which, in GWA studies, emphasizes the minor allele
for hundreds of thousands or even millions of SNPs. Second, this contrast is linear
even though many risk factors are non-linear (e.g., risk of Alzheimer’s Disease from
ApoE) (Genin et al. 2012). Finally, because the minor allele frequency is usually
computed per study sample, there is a possibility that a separate sample would
detect a different minor allele, and so the “2” in one study would be a “0” in another
study (and this could create problems with replication); thus the only unambiguous
genotype—across different samples and populations—is the heterozygote marked
as “1” (e.g., AT in our example).

To avoid these measurement assumptions, SNPs can be expressed in a purely
categorical format that preserves exactly the alleles found without presuming a
linear contrast effect. However, there exists only a few statistical methods (e.g.,
Multiple Factor Analysis, Bécue-Bertaut and Pagès 2008) designed to simultane-
ously analyze heterogeneous data such as SNPs (categorical) and neuroimaging
(continuous). In this paper, we provide a new formulation of PLS designed for
heterogeneous data types that allows both SNPs and imaging data to remain in
their natural formats (categorical, and continuous, respectively). This approach—
called“mixed-modality” PLS (MiMoPLS)—generalizes PLS for use with data sets
that comprise both quantitative and categorical variables.

6.2 Notation and Prerequisites

This section presents the notations and a sketch of the main prerequisite methods:
the singular value decomposition and its generalization, principal components
analysis, (multiple) correspondence analysis, partial least squares correlation, and
partial least squares correspondence analysis.

6.2.1 Notation

Uppercase bold letters denote matrices (e.g., X) and lower case bold letters denote
vectors (e.g., x). The transpose operation is denoted T, the inverse operation �1, and
the diagonal operation—which turns a vector into a diagonal matrix, or extracts the
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diagonal as a vector from a diagonal matrix—is denoted diag fg. The identity matrix
is denoted I, an identity matrix of a specific size is denoted Ia where a indicates the
size (i.e., the number of rows and columns) of I; 1a is a vector of ones of length a.
Matrices denoted as Z� are centered and normalized (i.e., each column of Z� has
mean 0 and norm 1). Italic or bold subscripts of a matrix denote its relationship with
an index or another matrix (e.g., matrix ZY is centered and normalized Y, matrix
WK denotes the “weights” matrix derived from the K set).

6.2.2 The Singular Value Decomposition

The singular value decomposition (SVD) of a J � K matrix R of rank L (with L 	
min.J;K/) is expressed as

R D U�VT; where UTU D IL D VTV; (6.1)

where U is the J � L matrix of the left singular vectors, V the K � L matrix of the
right singular vectors, and � is an L � L diagonal matrix whose diagonal contains
the singular values (ordered from the largest to the smallest). When squared, the
singular values become eigenvalues and so 	 D diag f�g2 is a diagonal matrix of
eigenvalues. The first singular value and pair of first singular vectors are the solution
to the following optimization problem:

ı D arg max
u;v

�
uTRv

�
under the constraints uTu D vTv D 1: (6.2)

The other pairs of singular vectors are solutions of the same optimization problem
with the additional constraint that right (respectively, left) singular vectors are
orthogonal to all other right (respectively, left) singular vectors associated with a
larger singular value (see Greenacre (1984), Lebart et al. (1984), and Abdi (2007),
for details).

6.2.3 The Generalized Singular Value Decomposition

The generalized singular value decomposition (GSVD) generalizes the SVD
by imposing, on the left and right singular vectors, orthogonality constraints
(also called “metrics”) expressed by positive-definite matrices denoted 
 and
ˆ (Greenacre 1984; Lebart et al. 1984; Abdi 2007). The GSVD of a J � K matrix
R of rank L (with L 	 min.J;K/) is expressed as

R D U�VT; with UT
U D IL D VTˆV: (6.3)
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The first generalized singular value and pair of generalized singular vectors are
solution of the following optimization problem (cf. 6.2):

ı D arg max
u;v

�
uTRv

�
under the constraints uT
u D vTˆv D 1: (6.4)

The other pairs of singular vectors are solutions of the same optimization problem
with the additional constraint that right (respectively left) singular vectors are 
-
orthogonal (respectively ˆ–orthogonal) to all other right (respectively left) singular
vectors associated with a larger singular value. Component (a.k.a. factor) scores are
obtained as:

FJ D 
U� and FK D ˆV�: (6.5)

Often, the GSVD is expressed via the compact “triplet notation” (Escoufier 2006;
Dray 2014; De la Cruz and Holmes 2010) and, for example, with this notation, the
GSVD of Eq. 6.3 is presented as the analysis of the triplet .R;ˆ;
/.

6.2.3.1 Principal Components Analysis

PCA analyzes a quantitative data matrix X with I rows (observations) and J columns
(variables) (Abdi and Williams 2010a). The matrix X is first pre-processed such that
columns are centered and often normalized (i.e., the sum of squares of each column
equals 1). With the centered and normed matrix denoted ZX, PCA is then defined as
the analysis of the triplet .ZX; IJ ; II/.

6.2.3.2 Correspondence Analysis

Correspondence Analysis (CA) is analogous to a PCA but for—typically—
contingency tables (i.e., the cross product of two disjunctive data tables; see
Table 6.1) (Greenacre 1984; Lebart et al. 1984; Abdi and Williams 2010b; Abdi and
Béra 2014). CA requires specific pre-processing and constraints prior to the GSVD
step. First, for a matrix R of size J by K we compute a matrix of observed values:

OR D N�1R (6.6)

where N is the total sum of R. The row constraint matrix M and column constraint
matrix W are defined as:

m D OR1J and M D diag fmg ; (6.7)

and as

w D 1KOR and W D diag fwg (6.8)
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Table 6.1 Example of nominal data table, and its disjunctive counterpart

(a) Nominal

Variable 1 . . . Variable J

Subj.1 A . . . A

Subj.2 A . . . A

. . . . . . . . . . . .

Subj.I-1 B . . . C

Subj.I C . . . B

(b) Disjunctive

Variable 1 . . . Variable J

A B C A B C

Subj.1 1 0 0 . . . 1 0 0

Subj.2 1 0 0 . . . 1 0 0

. . . . . . . . . . . . . . . . . . . . . . . .

Subj.I-1 0 1 0 . . . 0 0 1

Subj.I 0 0 1 . . . 0 1 0

where m (respectively w/ is the vector of the row (respectively column) sums of
OR. Next, we compute an *expected* matrix

ER D mwT: (6.9)

Finally, we compute the matrix of deviations:

ZR D OR � ER: (6.10)

The CA of R is performed from the analysis of the triplet
�
ZR;W�1;M�1

�
.

6.2.3.3 Multiple Correspondence Analysis

Multiple correspondence analysis (MCA) is a specific version of CA applied to a
single disjunctive data table (see Table 6.1). MCA can be carried out by following
the steps of CA as outlined in Sect. 6.2.3.2. However, there are several ways to define
MCA as a centered, non-normalized, and weighted PCA (Bécue-Bertaut and Pagès
2008). Here, we provide another alternative MCA formulation.

Given a matrix N with I rows as observations and N nominal columns (see
Table 6.1a.), we then transform N into the disjunctive formated (see Table 6.1b.)
matrix R, which has I rows and J columns. First, we define the constraints, where R
is the sum of R:

M D III and m D diag fMg (6.11)

w D R�1 .1JR/ and W D diag fwg : (6.12)

MCA can now be performed as the analysis of triplet:
�
R�1ZR;W�1;M

�
, where

ZR is the centered non-normalized version of R, and provides the same solution as
standard MCA (within a constant scaling factor).

PCA and MCA are equivalent when all variables have exactly two levels
(Greenacre 1984; Lebart et al. 1984). For example “yes” vs. “no” which would
be coded as [1 0] and [0 1], respectively. The equivalence holds in the following
case. Traditional MCA—as performed via CA—would be applied to the complete
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disjunctive matrix (which represents all levels), whereas PCA would be applied
to a strictly binary table where each variable is represented by only 1 column. In
this case, for example, “yes” is denoted with a 1 whereas “no” is denoted with a 0
(essentially, just half of the usual table for MCA).

6.2.4 Partial Least Squares Correlation

Partial Least Squares Correlation (PLSC) (Abdi and Williams 2013; Krishnan et al.
2011; McIntosh et al. 1996; Bookstein 1994) exists under a wide varieties of other
monikers such as: the SVD of two covariance fields (Bretherton et al. 1992), PLS-
SVD (Wegelin 2000), canonical covariance analysis (Tishler et al. 1996), co-inertia
analysis (Dray 2014), or the specifically named—though broadly applicable—
“multivariate analysis of genotype-phenotype associations” (Mitteroecker et al.
2016); but PLSC probably best traced back to Tucker’s inter-battery factor analysis
(Tucker 1958)—a method that analyzes the information common to two data tables
measured on the same set of observations. Given two matrices, X and Y, each
containing I rows (observations) with (respectively) J columns (X’s variables) and
K columns (Y’s variables), the matrices ZX and ZY are the centered and unitary
normed versions of X and Y. With ZR D ZT

XZY, PLSC is then defined as the
analysis of the triplet .ZR;WY;WX/ where (typically) WX D IJ and WY D IK ,
PLSC extracts the information common to X and Y by computing two sets of latent
variables defined as:

LX D ZXWXU and LY D ZYWYV (6.13)

In PLSC, associated latent variables have maximal covariance. Specifically, call u`
and v` the linear transformation coefficients for ZX and ZY respectively. A latent
variable for each matrix is defined as lX D ZXWXu` and lY D ZYWYv` where

arg max
u;v

�
lXTlY

� D arg max
u;v

cov .lX; lY/ ; (6.14)

under the constraints that u` and v` have unit norm:

u`TWXu` D 1 D v`TWYv`: (6.15)

After the `-th pair of latent variables are extracted, the subsequent ones are extracted
under the additional constraint of orthogonality:

lX`
TlY

`
0

D 0 when ` ¤ `0

: (6.16)

Each successive lX and lY is stored in LX and LY, respectively, where

LT
XLY D UTWXZT

XZYWYV D UTWXZRWYV D UTWXU�VTWYV D �;

(6.17)
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because UTWXU D IL D VTWYV (where L is the rank of ZR). The latent variables
of PLSC maximize the covariance as expressed by the singular values (for proofs,
see Bookstein 1994; Tucker 1958).

6.2.5 Partial Least Squares-Correspondence Analysis

Recently, we presented a PLSC method designed specifically for the analysis
of two categorical data matrices: Partial Least Squares-Correspondence Analysis
(PLSCA)—a technique that combines features of PLSC and CA (Beaton et al. 2013,
2016). PLSCA can be expressed as follows: X and Y are disjunctive matrices where
R D XTY is a contingency table. CA, as defined in Sect. 6.2.3.2, is applied to R.
The latent variables in PLSCA are computed according to Eq. 6.13, where:

ZX D I
1
2 X�1X (6.18)

ZY D I
1
2 Y�1Y (6.19)

where X and Y are (respectively) the sums of X and Y, and where WX and WY (cf.
Eq. 6.13) are computed from Eqs. 6.7 and 6.8 (i.e., M and W).

6.3 PLSC for Mixed Data Types

Though introduced in Beaton et al., here we establish a more efficient framework for
PLSC that applies to mixed data types. We formalize this approach with respect to
one table of continuous data and one table of categorical data. Categorical data can
be treated as continuous data and analyzed with PCA to produce identical results to
a MCA (see Sect. 6.2.3.3).

6.3.1 Escofier-Style Transform for PCA

In 1979, Brigitte Escofier presented a technique to analyze continuous data with
CA to produce the same results as PCA (within a scaling factor) (Escofier 1979).
Escofier showed that a quantitative variable, say x (i.e., a column from the matrix X)
that is centered with unitary norm, can be analyzed with CA if it is expressed as two
vectors: 1�x

2
and 1Cx

2
(see Table 6.2). Incidentally, dividing each set by 2 with this

Escofier-style coding is superfluous when using the stochastic version of CA (see
Sect. 6.2.3.2).

Call ZX the centered and unitary norm version of X with I rows and J observa-
tions, where B� D 1 � ZR and BC D 1C ZR where

B D 	B� BC


; (6.20)
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Table 6.2 Example of Escofier’s coding scheme of continuous data to perform
a CA on continuous data. xj denotes the j vector from a matrix X where xi;j

denotes a specific value at row i and column j. This coding scheme is similar to
the thermometer coding scheme often used for ordinal data in MCA

(a) Continuous data

x1 . . . xJ

Subj.1 x1;1 . . . x1;J
Subj.2 x2;1 . . . x2;J
. . . . . . . . . . . .

Subj.I-1 xI�1;1 . . . xI�1;J

Subj.I xI;1 . . . xI;J

(b) Escofier-style transform

�x1 +x1 . . . �xJ +xJ

Subj.1 1�x1;1
2

1Cx1;1
2

. . . 1�x1;J
2

1Cx1;J
2

Subj.2 1�x2;1
2

1Cx2;1
2

. . . 1�x2;J
2

1Cx2;J
2

. . . . . . . . . . . . . . . . . .

Subj.I-1 1�xI�1;1

2

1CxI�1;1

2
. . . 1�xI�1;J

2

1CxI�1;J

2

Subj.I 1�xI;1

2

1CxI;1

2
. . . 1�xI;J

2

1CxI;J

2

The matrix B—which has the properties of a disjunctive table, see Table 6.1—can
then be analyzed with CA (as in Sect. 6.2.3.2) which is equivalent to a PCA via the
analysis of the triplet:

�
1
IJ ZX; JIJ ; III

�
.

There is one exception to the equivalence between these two methods: in the
Escofier-style approach, the number of columns in B is 2J, where J is the number
of columns in X. Each variable from X has essentially been duplicated in B much
like “thermometer coding” (a.k.a. doubling or fuzzy coding Greenacre 2014) a là
ordinal data analysis with MCA. Thermometer coding expresses each variable by
two points that are equidistant from 0 (i.e., the mean).

6.3.2 Escofier-Style Transform for PLSC

To formalize PLSC for mixed data types, we first define PLSC approach for 2
continuous data matrices—X and Y—but in the Escofier framework (Sect. 6.3.1
and also see Table 6.2). Let us call BX the Escofier-style transform of X and BY the
Escofier-style transform of Y. If we use the standard form of PLSC, we decompose
BR D BT

XBY, where:

BR D
2

4

�
BT

X�BY�
� �

BT
X�BYC

�

�
BT

XCBY�
� �

BT
XCBYC

�

3

5 : (6.21)

Because BX and BY are each in the Escofier-style (i.e., pseudo-categorical), this
problem can be treated as one tailored for PLSCA (i.e., PLSC for the two categorical
matrices; see Sect. 6.2.5). The PLSCA of BT

XBY is equivalent to the PLSC (see
Sect. 6.2.4) of ZX and ZY (within scaling factors). There are three items used to
define equivalence between these approaches: (1) singular values, (2) component
scores (for both rows and columns), and (3) latent variables.
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Call (respectively) �ZR and �BR the singular values from a standard PLSC (of
ZX and ZY) and the singular values from an Escofier-style PLSCA (of BX and BY).
We use the Escofier style approach as the preferred method because, as an extension
of CA, it provides a natural dual representation of the rows and columns. To
transition between the two approaches, we do the following:

�BR D
1

I
p

JK
�ZR : (6.22)

The transition between component scores is also defined as follows:

FJBR D
1

I
J

p
J2K

	�FJZR FJZR



(6.23)

FKBR D
1

I
K

p
K2J

	�FKZR FKZR



: (6.24)

And finally, the transition between latent variables are:

LBX D
p

IJ LZX (6.25)

LBY D
p

IK LZY ; (6.26)

where the latent variables for the “standard” approach are defined as in Sect. 6.13,
and the computation of latent variables for the Escofier-approach are defined as
those for PLSCA in Sect. 6.2.5.

We have to duplicate the component scores from the standard PLSC and multiply
by �1 because the Escofier-style transform is a “thermometer” style coding of the
data (equidistant above and below 0; see Table 6.2). Given these properties, we
can compute the standard PLSC with equivalence to the PLSCA via the GSVD as
follows. First define ZX� and ZY�:

ZX� D J�1
r
1

I
ZX (6.27)

ZY� D K�1
r
1

I
ZY (6.28)

ZR� D ZT
X�ZY�; (6.29)

where (1) ZX and ZY are centered and normed matrices of (respectively) X and Y,
(2) I are the number of rows (observations) in X and Y, and (3) J and K are
the number of columns (variables) for X and Y. To produce the same results
as the Escofier-style PLSC approach, the GSVD is described by the triplet:
.ZR�;KIK ; JIJ/. Thus, for continuous data, we can transition between the standard
approach to PLSC (see Sect. 6.2.4) and the Escofier-style approach to PLSCA (see
Sect. 6.2.5).
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6.3.3 Mixed Data and PLSC

The Escofier-style transformed matrix (see Table 6.2) is similar to a fully disjunctive
matrix; and, because PLSC and PLSCA are equivalent when using Escofier-style
pseudo-categorical matrices, we can use PLSCA to analyze mixed data types (i.e.,
one matrix of continuous data and one matrix of categorical data).

Call BY the Escofier-style transform of a continuous data matrix Y and call X a
fully disjunctive data matrix (as in Table 6.1). Because both matrices are in a pseudo-
categorical or categorical format we can define R D XTBY as a pseudo-contingency
table since this R is the cross-product between a categorical matrix and a pseudo-
categorical matrix. In fact, R expresses some of the properties we would expect from
a contingency table but maintains the properties of X and BY: the column sums of
R are equal to one another—just as in BY and are also proportional to the column
sums of BY. This is also true for the row sums of R and the column sums of X. Thus,
the relationship between X and BY can be analyzed with PLSCA (see Sect. 6.2.5)
and the properties that define PLSC still hold (see Sects. 6.2.4 and 6.2.5).

However, there is a minor drawback to this approach: The continuous data
matrix, Y, represents each variable twice in BY (see Sect. 6.2) and this could be
problematic for very large data sets (e.g., neuroimaging, genomics). Thus, we
now define a mixed data approach to PLS closer to PLSC, but that keeps key
properties of CA (i.e., dual representation, distributional equivalence, emphasis on
rare occurrences). Call Y a data matrix, with J columns, of continuous data where
ZY is centered and normalized. Call X a fully disjunctive matrix, with K columns
from N variables, where ZX is centered but not normalized. Both X and Y have I
rows (i.e., observations). First we define the data matrices derived from X and Y:

ZX� D N�1

r
1

I
ZX (6.30)

ZY� D K�1

r
1

I
ZY: (6.31)

Next, we define weights associated to each set (where X is the sum of X):

wX D X�11IX and WX D diag fwXg ; (6.32)

and WY D KIK . PLSC can then be performed on ZY� and ZX� where WX and WY

are constraints for the GSVD. The GSVD step of PLSC in this case would analyze
the triplet:

�
R;WY;W�1X

�
with R D ZT

X�ZY�. This approach is derived, in part,
from MCA where MCA is treated as a centered, non-normalized, weighted PCA
(see Sect. 6.2.3.3) and the standard approach to PLSC (see Sect. 6.2.4). We also
imposed particular constraints on this formulation so that the results here would
be equivalent to those done on X and BY obtained with PLSCA. However, there is
also a drawback to this reformulation: supplemental projections are more difficult to
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compute than in the CA approach. Therefore, we define MiMoPLS in one, final, way
that combines the simplicity of the PLSCA approach with the minimally required
data in the PLSC approach.

First, X is the complete disjunctive matrix where BYC D ZY C 1 (see Eq. 6.21
and Sect. 6.3.3), and R D XTBYC. The total sum of BYC is equal to IK, where I is
the number of observations and K is the number of columns in Y and we then use
CA (see Sect. 6.2.3.2) where both wX and WX are obtained from Eq. 6.32, and where
WY D K�1IK where wY D diag fWYg. Next we define the observed, expected, and
deviations matrices (with R being the sum of all elements of R):

OR D R�1R (6.33)

ER D wXwT
Y (6.34)

ZR D OR � ER: (6.35)

The GSVD step then correspond to the analysis of the triplet
�
ZR;W�1Y ;W�1X

�
.

Finally, the latent variables are computed as:

LX D
�

I
1
2 X�1X

�
W�1X U (6.36)

LX D
�

I
1
2 B�1ZY

�
W�1Y V; (6.37)

where ZY is the column centered and normalized version of Y, and where X and B
are (respectively) the sums of X and BYC. Recall that X is equal to IN, where N is
the number of variables in X, and B is equal to IK and this makes Eq. 6.36 analogous
to the computation of the “observed” values in CA (see Sect. 6.2.3.2).

We now have an approach of analyzing mixed data types that (1) is in the PLSC
fashion, (2) maintains the properties of PLSCA and CA (e.g., dual representation,
simple supplemental projections), and (3) does not duplicate the representation of
the continuous data matrix.

6.4 An Application to Alzheimer’s Disease

We illustrate MiMoPLS with a data set—from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI)—that contains brain imaging data obtained from
diffusion tensor imaging (DTI)—as measured with fractional anisotropy (FA)—
and genetic data obtained from single nuclear polymorphisms (SNPs). These data
come from Phase 1 of the ADNI database (adni.loni.usc.edu). ADNI was launched
in 2003 as a public-private funding partnership and includes public funding by
the National Institute on Aging, the National Institute of Biomedical Imaging
and Bioengineering, and the Food and Drug Administration. The primary goal

adni.loni.usc.edu


6 Imaging Genetics with MiMoPLS 85

of ADNI has been to test a wide variety of measures to assess the progression
of mild cognitive impairment and early AD. The ADNI project is the result of
efforts of many co-investigators from a broad range of academic institutions and
private corporations. Michael W. Weiner, MD (VA Medical Center and University
of California San Francisco) is the ADNI PI. Subjects have been recruited from over
50 sites across the U.S. and Canada (for up-to-date information, see www.adni-info.
org).

Participants include 29 individuals from the ADNI2 cohort classified into 4
groups: control (N D 9; CON), early mild cognitive impairment (N D 11;
eMCI), late mild cognitive impairment (N D 4; `MCI), and Alzheimer’s Disease
(N D 5; AD). All participants were genotyped with genome-wide SNPs (Illumina
HumanOmniExpress). SNPs underwent standard preprocessing (SNP & participant
call rates were � 90 %, Hardy-Weinberg disequilibrium 	 1 � 10�6, and minor
allele frequency 	5 %). From the genome-wide data, we extracted 386 SNPs that,
according the literature and aggregate sources (Bertram et al. 2007), should be
associated with AD. We also extracted 35,062 voxels (of FA values) from 48 white
matter tracts according to the JHU-ICBM-DTI-81 mask (see Fig. 6.1) (Oishi et al.
2008). We analyzed these data to identify the genetic contributions to white matter
changes in an AD related population.

We present the analysis first with the descriptive component maps (Fig. 6.2). For
illustrative purposes, we limit discussion to only the first two components. We can
note that there is a higher variability of genotypes (top left; Fig. 6.2) than the FA
values (top right; Fig. 6.2). Interpretation of these maps are done as they would be
in CA: a genotype that is close to particular voxels is considered more related to
those voxels than is the average genotype.

The latent variables suggest two interpretations of the components. First, Compo-
nent 1 largely reflects the differences between `MCI (left side of Component 1) and
AD (right side of Component 1), whereas Component 2 is characterized by {CON
& eMCI} vs. {`MCI & AD}. This pattern suggests that Component 1 separates
real AD pathology from possible misdiagnoses, whereas Component 2 appears to
characterize non-pathological to pathological features. Further, we can interpret the

Fig. 6.1 Masks to identify
white matter regions in a
common (MNI) space. The
left figure illustrates all the
voxels included, whereas the
right figure illustrates the
separate tracts within this
mask

www.adni-info.org
www.adni-info.org
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Fig. 6.2 Top figures show the individual participants’ scores (latent variables) with respect to the
genotypes (left) and FA values (right). The average of each participant group is labeled with a large
square, whereas participants are labeled with small circles. Bottom figures show the component
scores of the genotypes (left; colored by major homozygote, heterozygote, and minor homozygote),
and the voxels (right; colored by tract)

latent variables (bottom; Fig. 6.2) as we would in both CA and in PLSC. Participants
whose scores are closer to particular genotypes or FA values are more associated
with those features than the average participant. Furthermore, we can include more
meaningful information (e.g., group averages) to better understand the relationship
between genotypes and white matter integrity. Doing so indicates that the CON
group is associated with the upper left quadrant, the AD group is associated with the
lower right quadrant, the eMCI group is associated with the upper right quadrant,
and the `MCI group is associated with the lower left quadrant. Thus, we can infer
that particular genotypes and voxels are more associated to these groups than others.
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SNP-alleles
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Fig. 6.3 Bootstrap ratios identify items that significantly contribute to the component structure

However, given that there are so many genotypes and voxels, we use inferential
methods to eliminate non-significant genotypes and voxels.

One approach is to use the bootstrap (Efron 1979; Hesterberg 2011) and to
compute bootstrap ratio values (BSRs) (Beaton et al. 2016; Krishnan et al. 2011)
which are t-like statistics computed from the mean and standard deviation of the
bootstrap distribution. With BSRs, we can reduce the number of items to interpret
by selecting only the items that significantly contribute to the component structure
(see Fig. 6.3): Here we only show items whose BSR magnitude is larger than 2:50.
SNPs are labeled by the gene with which they are most associated, the voxels are
plotted in standard MNI brain maps.

We first interpret the brain images (because more is known about white matter
integrity than genetics in these populations); they provide a baseline from which
a genetic relationship can be inferred. Component 1 (Fig. 6.4; lower left) shows
small clusters in bilateral superior corona radiata and posterior internal capsule
(blue colored voxels), whereas there are large clusters throughout anterior white
matter tracts (i.e., genu and body of corpus callosum, internal and external capsule,
and corona radiata; denoted with red voxels). Component 2, generally only has
negative BSR values. The voxels (denoted in red) trace a path from lateral temporal
lobe, to longitudinal tracts leading to frontal regions (i.e., internal and external
capsuale, and corona radiata). Taken in context with the latent variables (Fig. 6.2),
changes in white matter in anterior tracts are more associated with AD, whereas
longitudinal tracts are more associated with `MCI. This pattern suggests that early
biomarkers indicate the progression from `MCI to AD and, overall, as indicated
by Fig. 6.4 that particular markers are associated with specific clinical groups: For
example, UCK2 heterozygotes are more associated with `MCI whereas UCK2
major homozygotes are more associated with AD. Component 2 identifies fiber
paths that interconnect temporal, parietal, and frontal regions—all regions often
implicated in the progression of Alzheimer’s pathology. Taken in context with the
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Fig. 6.4 All genotypes have been renamed to show which gene they are most associated with.
genotypes colored by major homozygote, heterozygote, or minor homozygote (top left) and their
respective genes (top right). Bootstrap ratio values are plotted in the voxels (bottom) to indicate
their location and the strength of their contribution

latent variables (Fig. 6.2), this pattern suggest that there are substantial changes
in these regions in late stage (`MCI) and pathological (AD) groups. Finally
Fig. 6.4 shows that a heterozygote of a SNP associated with ZNF423 and the
minor homozygote of a SNP associated with APOE—a pattern that confirms the
importance of these two genes routinely associated with AD.

6.5 Conclusion

This article presents a new approach to PLS that integrates mixed-data types.
Our presentation included continuous (brain imaging) and categorical (SNPs) data,
but the method can be easily extended to ordinal data (via thermometer coding,
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see Sect. 6.3.1). Though we present MiMoPLS via PLSC, MiMoPLS can easily
be extended to other PLS approaches (e.g., regression, path-modeling). Future
work includes regularization and sparsification designed specifically for block-wise
categorical data (Takane and Hwang 2006) and two-way sparsification of the SVD
(Allen 2013).
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Chapter 7
PLS and Functional Neuroimaging: Bias
and Detection Power Across Different
Resampling Schemes

Nathan Churchill, Babak Afshin-Pour, and Stephen Strother

Abstract Correlation Partial-Least Squares (PLSC) provides a robust model for
analyzing functional neuroimaging data, which is used to identify functional brain
networks that show the largest covariance with task stimuli. However, neuroimag-
ing data tend to be high-dimensional (i.e., there are far more variables P than
samples N), with significant noise confounds and variability in brain response.
It is therefore challenging to identify the significant, stable components of PLSC
analysis. Empirical significance estimators are widely used, as they make minimal
assumptions about data structure. The most common estimator in neuroimaging
PLS is Bootstrapped Variance (BV), which tests whether bootstrap-stabilized
mean component eigenvalues (i.e., covariance) are significantly different from a
permuted null distribution; however, recent studies have highlighted issues with
this model. Two alternatives were proposed that instead focus on reliability of
the PLSC saliences (i.e., singular vectors): a Split-half Stability (SS) model that
measures the consistency of reconstructed components for split-half data, and
Split-half Reproducibility (SR) which measures the reliability across independent
split-half analyses. We compare BV, SS, and SR estimators on functional Magnetic
Resonance Imaging (f MRI) data, for both simulated and experimental datasets. The
SS and SR methods have comparable sensitivity in detecting “brain” components
for most simulated and experimental conditions. However, SR shows consistently
greater sensitivity for “task” components. We demonstrate that this is due to
relative bias in the SS model: both “brain” and “task” components have biased
null distributions, but for the low-dimensional “task” vectors, this bias becomes
sufficiently high that it is often impossible to distinguish a significant effect from
the null distribution.
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7.1 Introduction

Functional neuroimaging techniques such as functional Magnetic Resonance Imag-
ing (f MRI) provide information about how brain function is related to experimental
stimuli. However, these data are extremely high-dimensional (i.e., the number of
voxels P greatly exceeds the number of samples N), and significant noise confounds
are often present. Moreover, brain responses exhibit both within- and between-
subject variability. It is therefore a challenge to detect functional brain networks
that have a significant, reliable relationship with experimental conditions.

Partial Least Squares Correlation (PLSC) provides a robust linear model (Wold
1985; Krishnan et al. 2011), which can be used to identify the brain networks that
exhibit greatest covariance with the task conditions. The general PLSC problem, for
data matrices X and Y, is to find linear projections u and v such that:

arg max
u;v

.cov .Xu;Yv//2 under the constraints jjujj D jjvjj D 1 (7.1)

for which multiple solution algorithms have been developed (Rosipal and Krämer
2006). PLSC—the preferred method in brain imaging—applies the Singular Value
Decomposition to the matrix product R D XTY, decomposing into R D ULVT

with sets of paired components uk and vk (left and right singular vectors of R,
respectively). For functional neuroimaging, the columns of X and Y are almost
always centered and normalized to unit variance, and therefore R is almost always
a cross-correlation matrix between X and Y. This approach estimates the shared
information between variable sets (e.g., brain regions and experimental stimuli),
rather than defining an explicit predictive relationship and is often used to identify
brain networks that are modulated across different task conditions.

The PLSC approach provides a unique solution for a given data-set, but this
is not guaranteed to reflect significant, generalizable covariance relationships.
There are no straightforward analytic approaches to significance estimation in
neuroimaging PLSC, partly due to the challenges of modeling unknown, data-
dependent autcorrelations. Moreover, analytic estimators are often insensitive to
true data dimensionality in multivariate network analysis (Yourganov et al. 2011).
As an alternative, empirical resampling techniques are widely used to evaluate
the significance of PLS components. Using this highly flexible approach, the test
statistic of interest is compared against an empirical null distribution, obtained by
randomly permuting variable labels.

The most well-established neuroimaging approach is to test the significance of
Bootstrap-stabilized mean covariance estimates, (i.e., the diagonal elements, kk,
of the singular value matrix L; see McIntosh et al. (1996), Krishnan et al. (2011),
and Abdi et al. (2013) for details). This approach provides a simple, interpretable
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statistic, but two recent publications have highlighted issues with the Bootstrapped
variance (BV) model. Kovacevic et al. (2013) pointed out that this variance-driven
approach is highly sensitive to outliers, and Churchill et al. (2013) demonstrated that
Bootstrapped analysis of high-dimensional neuroimaging data can provide highly
biased parameter estimates. Both Kovacevic et al., and Churchill et al., also noted
that covariance magnitude provides no information about the underlying stability
of brain and behavioral saliences (i.e., loadings on brain voxels and experimental
conditions, stored in component matrices U and V), even though knowing this
stability is crucial when interpreting results.

Both articles proposed alternatives to the Bootstrapped Variance (BV) model,
based on split-half cross-validation. Kovacevic et al. (2013) proposed a test of split-
half stability (SS), which measures how consistently PLS reconstructs U on data
split-halves, using V estimated on the full dataset (and vice-versa). This test is based
on PLS parameters estimated from the full data set, which maximizes detection
power, but introduces an unknown estimation bias. Churchill et al. (2013) proposed
a split-half reproducibility (SR) approach, which compares U and V estimated on
independent data split-halves. It has lower detection power but minimizes bias in
parameter estimates. It is unknown which model is best able to discriminate the test
statistic from the null distribution for PLSC analysis of f MRI data. In this paper,
we compare BV, SS, and SR testing approaches for (1) simulations over a range of
different parameter settings, and (2) experimental task data.

7.2 Methods

7.2.1 PLSC in Task fMRI

We evaluate resampling methods for a standard task PLSC model, defined as
follows. For s D 1; : : : ; S subjects, we obtain a set of V � 1 brain images, acquired
during C different task conditions. We compute the average image per condition,
and thereby obtain a V � C subject matrix Ds. Finally, we compute the average
matrix across subjects Davg, and perform singular value decomposition (SVD) of
this matrix as Davg D ULVT . Matrices U and V provide a set of orthonormal basis
vectors, where the kth pair of column vectors uk and vk form the “brain” and “task”
components respectively, and covariance scaling is given by diagonal element kk

of singular matrix L.

7.2.2 Resampling and Empirical Significance

Bootstrapped Variance (BV): In order to compute a stable estimate of the
covariance statistic kk, we resample on subject matrices Ds with replacement,
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and perform PLSC on the bootstrapped average matrix D�avg; this process produces
eigenvalue estimates �kk. We compute the median �kk value over 1000 bootstrap
samples, to obtain a stable estimate.

Split-half Stability (SS): for this model, we estimate the stability of uk and vk

component vectors. Beginning with the full dataset Davg we compute component
matrices U and V. Subjects are then randomly split into two equal-size groups and
we obtain split-half matrices Dsp1 and Dsp2. For each split (i D 1; 2), we compute
the “reconstruction” of each singular matrix, based on the other PLSC parameters
estimated on the full-data matrix:

Usp.i/ D Dsp.i/VL�1 (7.2)

and

Vsp.i/ D DT
sp.i/UL�1 : (7.3)

We then compute the correlations between split-half estimates of the “brain”
and“task” saliences rbrain;k D �.usp1;k;usp2;k/ and rtask;k D �.vsp1;k; vsp2;k/ respec-
tively. These values reflect the sensitivity of brain and task saliences to subject
heterogeneity. We obtain the median rbrain and rtask values over 100 resampling
iterations to stabilize parameter estimates.

Split-half Reproducibility (SR): this model instead estimates the reproducibility
of uk and vk vectors between independent data splits. As with SS, subjects are
randomly split into two equal-size groups and we obtain split-half matrices Dsp1 and
Dsp2, but for each split (i D 1; 2), we compute the independent split-half estimates:

Dsp.i/ D Usp.i/Lsp.i/VT
sp.i/ : (7.4)

We then calculate the correlation between independent split-half estimates of the
“brain” and “task” saliences rbrain;k D �.usp1;k;usp2;k/ and rtask;k D �.vsp1;k; vsp2;k/.
These values quantify the reproducibility of salience patterns between indepen-
dently analyzed data split-halves. We account for potential mismatch between
components by performing constrained Procrustes matching of components in
Vsp.i/ relative to full-data V, and components in Usp.i/ relative to full-data U. This
procedure permutes and sign-flips components of the split-half data in order to
minimize a sum-of-squares cost function. We compute the median rbrain and rtask

over 100 resampling iterations to stabilize parameter estimates.

For all three models, we compute p-values based on an empirical estimate of the null
distribution. We randomly permute condition labels for all subjects’ mean matrices
Ds, as we assume approximate independence between the mean conditions. We
then calculate the test statistics of �k , r�brain;k, or r�task;k on the randomized data.
This process is repeated for 1000 resamples in order to generate an empirical
null distribution. We compute empirical p-values based on the fraction of the null
distribution that exceeds the test statistic (median �k , r�brain;k, or r�task;k of the un-
permuted data), and this provides a 1-tailed significance test.
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7.2.3 Data

7.2.3.1 Simulated Dataset

We simulated f MRI data for a single-slice brain image, with additive Gaussian
noise, based on the model developed by Lukic et al. (2002). This model consisted
of a 100 � 100 pixel image, with a background structure of “grey matter” along the
rim and in the center of the image, and “white matter” in between. The amplitude
of background signal in “grey matter” was 4 times higher than in “white matter.”
The images were spatially smoothed by convolving with a 2D Gaussian kernel
(FWHM D 2 pixels). After smoothing, the standard deviation of noise was 5 % of
the background signal. Images contained 12 Gaussian activation loci in grey matter,
which were added to the smoothed noisy background image. The FWHM of the
activations varied between 2 and 4 pixels.

For each simulation run, we simulated 3 task salience vectors, by random
sampling of a K � 1 Gaussian vector, orthogonalized relative to all previously-
sampled salience vectors. We simulated spatial salience vectors (i.e., a brain network
associated with the task salience) by randomly assigning positive, negative, or zero
expression of the task salience to each of the 12 activation loci. For this model,
we varied four parameter settings: signal variance in “activated” regions, as the
proportion of noise variance V D 0 to 4; number of subjects S D 10 to 80; and
number of task conditions C D 6 to 20. We also simulated a confound of data
heterogeneity, by randomly permuting condition labels on a subset of subjects, to
create a percentage of “null” data Pnull D 0 % to 60 %.

We generated 100 simulation datasets for each parameter setting, and computed
empirical p-values on the BV, SS and SR resampling models for each simulation
dataset. We then displayed the median p-value across simulation runs, for a single
latent variable.

7.2.3.2 Experimental Dataset

Twenty-seven young normal subjects (20–33 years, 15 females) were scanned with
f MRI while performing a block-design task with three different conditions: in Task-
A, numbers 1–14 are pseudo-randomly displayed on a viewing screen and in Task-B,
numbers 1–7 and letters A–G are displayed. Subjects used an MR-compatible tablet
to draw a line connecting items in sequence (1-2-3-4-) or (1-A-2-B-), connecting
as many as possible during a 20s interval, while maintaining accuracy (Tam et al.
2011). A Control stimulus was presented after each block, in which participants
traced a line from the center of the screen to a dot (randomly placed at a fixed radius
from the center of the screen) repeated 10 times. Subjects performed two repetitions
of Task-A and Task-B, interleaved with a set of four Control blocks.

We used a 3 Tesla f MRI scanner to acquire axial, interleaved, multi-slice echo
planar images of the whole brain during task performance (3:1 � 3:1 � 5mm
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voxels, TE/TRD 30/2000 ms). The resulting 4D f MRI time series were preprocessed
using standard tools from the AFNI package, including rigid-body correction
of head motion (3dvolreg), physiological noise correction with RETROICOR

RETROICOR (3dretroicor), temporal detrending using Legendre polynomials
and regressing out estimated rigid-body motion parameters (3dDetrend)

For each subject, we computed the average of each repetition of Task-A and
Task-B, as well as the averages of Control blocks 1C2 and 3C4. This created a set
of P�6matrices with six different conditions, showing “early” and “late” responses
to the three different task conditions. We displayed empirical resampling and null
distributions for a single PLSC component, under the BV, SS and SR models.

7.3 Results

7.3.1 Simulated Results

Figure 7.1 depicts the median p-values for brain components rbrain, along with BV
for comparison. Darker colours indicate lower p-values and thus greater sensitivity.
All models show comparable performance as a function of signal variance V .
However, the BV and SS models have lower sensitivity compared to SR, for fewer
subjects S and conditions C, and a greater percentage of null data Pnull. Figure 7.2
displays the median p-values for task components rtask, and BV for comparison. The
empirical p-values for SS are considerably higher for “task” compared to “brain,”
whereas they are comparable for SR. Moreover, SS estimates are less sensitive than
SR for a range of simulation parameters values. Figure 7.3 depicts sample empirical

8

empirical
p-values

BV SS SS SSSR SR SRBV BV SS SRBV

12

16

20

201.0

2.0

3.0

4.0

40

60

80

50%

%”null” subjects (Pnull)number of conditions (C)number of subjects (S)signal variance (V)

30%

10%

0%

0.10

0.08

0.06

0.04

0.02

0

Fig. 7.1 Heat maps showing empirical p-values for the high-dimensional “brain” PLSC com-
ponent of simulated data, for a range of simulated parameter settings, under split-half stability
(SS) and split-half reproducibility (SR) models. We show bootstrap variance (BV) p-values of
eigenvalue �

k for comparison purposes. For each parameter setting, median p-value is computed
across 100 simulated data-sets
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Fig. 7.3 Empirical histograms showing distributions of between-split correlations rbrain and rtask

for a single simulated dataset with settings V D 1:0; S D 50;C D 10;Pnull D 0%. We show
the distribution over 1000 splits (blue; sampling distribution) and the sampling distribution for
permuted labels over 1000 splits (red; null distribution). A blue arrow denotes the median of the
sampling distribution (i.e., our test statistic which is compared against the null). The pink band
denotes the 95% CI on the null. We show the distributions for “brain” and “task” components, for
the split-half stability model (a–b), and the split-half reproducibility model (c–d)
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Fig. 7.4 Empirical histograms showing distributions of between-split correlations rbrain and rtask

for the experimental data-set. We show the distribution over 1000 splits (blue; sampling distribu-
tion) and the sampling distribution for permuted labels over 1000 splits (red; null distribution). A
blue arrow denotes the median of the sampling distribution (i.e. our test statistic which is compared
against the null). The pink band denotes the 95% CI on the null. We show the distributions for
“brain” and “task” components, for the split-half stability (a–b), and the split-half reproducibility
(c–d) models

distributions for SS and SR models. The SS model has upward bias in both sampling
and null distributions. But for the “task” component, the bias is sufficiently high
that we cannot distinguish null from alternative, as the upper bound on the null
distribution’s 95 % confidence interval (pink shading) is rtask > 0:99.

7.3.2 Experimental Results

Figure 7.4 depicts the empirical sampling distributions for “brain” and “task”
components of the experimental data-set, for SS and SR models. As with the
synthetic data, the high-dimensional “brain” distributions are comparable for SS and
SR models. Whereas the low-dimensional “task” distribution is much more biased
for SS, as the test statistic is not significantly different from the null.
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7.4 Discussion and Conclusions

In this paper, we evaluated three different approaches to computing significance
of PLSC components in functional neuroimaging data. These approaches included
bootstrapped variance (BV), split-half stability (SS), and split-half reproducibility
(SR). In general, the SS and SR models had comparable sensitivity to high-
dimensional “brain” components, but SR was consistently more sensitive to low-
dimensional “task” components, particularly in weaker-signal simulations. Unex-
pectedly, the BV model outperformed SS in some cases, including a low number of
task conditions C and high percentage of null subjects Pnull, whereas SS performed
better for low sample sizes S. In addition, all of the resampling models showed
relatively high tolerance to signal heterogeneity, as median p-values were below :10
for up to 30 % of the null data. This points towards the robustness of PLSC as an
analytic tool.

From a detection standpoint, our results show that it is generally more important
to ensure independence between split-halves (as in SR)—because doing so min-
imizes estimation bias—rather than to maximize sample power (as in SS). As a
potential alternative, PLSC split-half resampling could be performed as part of
a multi-level PCA decomposition, as implemented in Strother et al. (2002) for
multivariate classification. This would allow for improved split-half stability with
relatively small bias across splits.

We focused on estimating significance, based on the reliability of parameter esti-
mates; in this case, the correlation of saliences between splits. This is appropriate,
since we are using PLSC to estimate shared information between brain and task
condition. A number of alternative metrics have been developed to assess goodness
of fit under the predictive Regression PLS model, such as predicted sum of squares
(PRESS) (Abdi 2010; Abdi and Williams 2012). In future work, it will be important
to also compare different test statistics, to see which provide optimal sensitivity to
covariance structure.

References

Abdi, H.: Partial least squares regression and projection on latent structure regression (PLS
Regression). Wiley Interdiscip. Rev.: Comput. Stat. 2, 97–106 (2010)

Abdi, H., Williams, L.: Partial least square methods: partial least square correlation and partial
least square regression. In: Reisfeld, B., Mayeno, A. (eds.) Methods in Molecular Biology:
Computational Toxicology, pp. 549–579. Springer, New York (2012)

Abdi, H., Chin, W., Esposito Vinzi, V., Russolilo, G., Trinchera, L.: New Perspectives in PLS and
Related Methods. Springer, New York (2013)

Churchill, N.W., Spring, R., Kovacevic, N., McIntosh, A.R., Strother, S.C.: The stability of
behavioral PLS results in ill-posed neuroimaging problems. In: Abdi, H., Chin, W., Esposito
Vinzi, V., Russolilo, G., Trinchera, L. (eds.) New Perspectives in PLS and Related Methods,
pp. 171–183. Springer, New York (2013)



102 N. Churchill et al.

Kovacevic, N., et al.: Revisiting PLS resampling: comparing significance vs. reliability across
range of simulations. In: Abdi, H., Chin, W., Esposito Vinzi, V., Russolilo, G., Trinchera, L.
(eds.) New Perspectives in PLS and Related Methods, pp. 159–170. Springer, New York (2013)

Krishnan, A., Williams, L.J., McIntosh, A.R., Abdi, H.: Partial least squares (PLS) methods for
neuroimaging: a tutorial and review. NeuroImage 56, 455–475 (2011)

Lukic, A.S., Wernick, M.N., Strother, S.C.: An evaluation of methods for detecting brain
activations from functional neuroimages. Artif Intell. Med. 25, 69–88 (2002)

McIntosh, A.R., et al.: Spatial pattern analysis of functional brain images using partial least
squares. NeuroImage 3, 143–157 (1996)

Rosipal, R., Krämer, N.: Overview and recent advances in partial least squares. Subspace, latent
structure and feature selection. In: Saunders, C. (ed.) Proceedings SLSFS, LNCS. Springer,
Berlin (2006)

Strother, S.C., Anderson, J., Hansen, L.K., Kjems, U., Kustra, R., Sidtis, J., Frutiger, S., Muley,
S., LaConte, S., Rottenberg, D.: The quantitative evaluation of functional neuroimaging
experiments: the NPAIRS data analysis framework. Neuroimage 15, 747–771 (2002)

Tam, F., Churchill, N.W., Strother, S.C., Graham, S.J.: A new tablet for writing and drawing during
functional MRI. Hum. Brain Mapp. 32, 240–248 (2011)

Wold, H.: Partial Least Squares. Encyclopedia of Statistical Sciences, vol. 6, pp. 581–591. Wiley,
New York (1985)

Yourganov, G., et al.: Dimensionality estimation for optimal detection of functional networks in
BOLD fMRI data. NeuroImage 56, 531–543 (2011)



Chapter 8
Estimating and Correcting Optimism Bias
in Multivariate PLS Regression: Application
to the Study of the Association Between Single
Nucleotide Polymorphisms and Multivariate
Traits in Attention Deficit Hyperactivity
Disorder

Erica Cunningham, Antonio Ciampi, Ridha Joober, and Aurélie Labbe

Abstract In studies involving genetic data, the correlations between X and Y
scores obtained from PLS regression models can be used as measures of association
between genome-level measurements, X, and phenotype-level measurements, Y.
These correlations may be overestimated due to potential overfitting (i.e., they may
be vulnerable to optimism bias). We evaluate the optimism bias through simulations
and examine the effect of increasing sample size and strength of correlation. We
assess the effectiveness of bootstrap-based and permutation-based bias correction
methods. We also investigate the selection of the appropriate number of components
for PLS regression. We include an analysis of genetic data consisting of genotypes
and phenotypes related to Attention Deficit Hyperactivity Disorder (ADHD).
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8.1 Introduction

Partial least square (PLS) regression has become a useful and increasingly popular
tool in genomics. Given two sets of measurements Y and X, multivariate PLS
determines two sets of orthogonal linear combinations of variables (called latent
variables) T D .t1; t2; : : :/ and U D .u1;u2; : : :/, such that the covariances
between the latent variables cov.tk;uk/ are maximized (Abdi 2010). In genomic
studies, the correlations between the latent variables (denoted %k’s) are often
used as measures of association between genome-level measurements, X, and
phenotype-level measurements, Y. Because these correlations are parameters of
central scientific interest, it is important to study the statistical properties of their
PLS estimates because they are likely to be vulnerable to optimism bias (i.e., they
may overestimate their actual values due to potential overfitting).

Our primary objective is to evaluate the optimism bias in the correlations %k D
cor.tk;uk/ through simulations. We examine the effect of increasing sample size and
the strength of the correlation, and we assess the effectiveness of bootstrap-based
and permutation-based bias correction methods. We also investigate the choice of
the number of components for PLS regression. The simulations are inspired by a real
data analysis problem: the association between Single Nucleotide Polymorphisms
(SNPs, genotype), and a number of behavioral and cognitive measurements (pheno-
type). We finish with a data analysis of genotypes at SNPs in two genes known to be
associated with ADHD, NET/SLC6A2 (Kim et al. 2006) and TPH2 (Sheehan et al.
2005), and phenotypes consisting of behavioral and cognitive measurements related
to ADHD.

8.2 Methods

The following describes the simulations and the real data analysis. All PLS models
were fitted using the pls package in R (Mevik and Wehrens 2007).

8.2.1 Simulations to Evaluate the Bias

We consider a set of 16 traits which can be divided into two known components
and 39 SNPs which are known to belong to two genes. As the basis for the
simulations, we use the ADHD example where SNPs in one gene are associated with
behavior and where SNPs in another gene are associated with cognition. A linear
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combination of 30 SNP variables defines a genetic score t1 and a linear combination
of 7 behavioral traits defines a behavior phenotype score u1; similarly, a linear
combination of 9 (distinct) SNP variables defines another genetic score t2 and a
linear combination of 9 cognitive traits defines a cognitive phenotype score u2.
The coefficients of these linear relationships are called loadings.

The relationship between genotype and phenotype is embodied in %1 and %2, the
correlations between t1 and u1, and t2 and u2, respectively. We have implemented
several biologically motivated scenarios by varying the values of the correlations
and of the loadings, as illustrated in Fig. 8.1. Each scenario was further divided into
four sub-scenarios which vary the amount of information provided by the SNPs or
traits:

1. All SNPs and all traits are informative (have a non-zero loading coefficient)
2. All SNPs and half of the traits from each category are informative

X score
t1

Y score
u1

behavioral trait 1

behavioral trait 4

behavioral trait 7

Gene 1, SNP 1

Gene 1, SNP 15

Gene 1, SNP 30

X score
t2

Y score
u2

cognitive trait 1

cognitive trait 5

cognitive trait 9

Gene 2, SNP 1

Gene 2, SNP 5

Gene 2, SNP 9

ρ1 = 0.2

ρ2 = 0.2

(a) Scenario A
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cognitive trait 5
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Gene 2, SNP 5

Gene 2, SNP 9

ρ1 = 0.2

ρ2 = 0.2

(b) Scenario B
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(c) Scenario C
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(d) Scenario D
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(e) Scenario E

Fig. 8.1 Five main simulation scenarios. (a) Gene 1 is associated with behavioral traits and Gene
2 is associated with cognitive traits. (b) Genes 1 and 2 are associated with behavioral and cognitive
traits. (c) Gene 1 is associated with behavioral and cognitive traits. (d) Gene 1 is associated with
behavioral traits. (e) Neither gene is associated with behavioral and cognitive traits
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3. Half of the SNPs from each gene and all traits are informative
4. Half of the SNPs from each gene and half of the traits from each category are

informative.

The X and Y scores T D .t1; t2/ and U D .u1;u2/ were generated as a sample
of size 300 from a multivariate normal distribution. The variance–covariance matrix
was constructed using the true correlations %1 D cor.t1;u1/ and %2 D cor.t2;u2/ as
specified by each scenario. The X and Y matrices were then constructed as

X D TP> C E

Y D UQ> CG; (8.1)

where P and Q are matrices containing X and Y loadings, respectively (set to be
0.5 or 0 based on the scenario), and the columns of E and F are N .0; 	2/. The
simulations were repeated for three values of 	 : 0.1, 1.0, and 1.5.

Because the X variables represent SNP genotypes—which are often coded as
counts of minor alleles taking values 0, 1, or 2—the simulated X variables were then
converted to discrete variables. This conversion was performed by first obtaining the
genotype frequencies at each SNP under study in the real data. These genotype
frequencies were used as percentiles from the standard normal distribution to
discretize X.

We applied multivariate PLS regression to each sample, and obtained the
estimates of the correlations %1 and %2 (denoted, respectively O%1 and O%2). Some
investigation revealed that the computed O%i D cor.Oti; Oui/ seemed to be constrained
in some way to always be positive. We introduced an algorithm that allows for the
possibility of a negative correlation and changes the sign of the correlation when
appropriate. The algorithm is as follows: if cor.ti; Oti/ and cor.ui; Oui/ have different
signs, then the sign of O%i is switched, where ti and ui are the true scores used to
generate the simulated data, Oti and Oui are the PLS estimates of these scores, and
i D 1; 2 is the component number. After applying the sign change algorithm, the
differences between O%i and the true values were obtained and the bias was calculated
by averaging these differences over 500 replications.

After completing the 20 simulation scenarios (5 main scenarios with 4 sub-
scenarios each), further simulations were performed by increasing the number of
subjects in each sample from 300 to 1000 and the strength of the correlation between
scores from 0.2 to 0.5. These additional simulations were run for Scenario A, where
one gene is associated with behavioral traits and the second gene is associated with
cognitive traits, with all SNPs and all traits informative.

8.2.2 Simulations to Correct the Bias

In an attempt to correct for the optimism bias, simulations incorporating bootstrap-
based and permutation-based bias correction methods were conducted based on a
scenario that most closely represented the real dataset. In this scenario, SNPs in one
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gene are associated with behavioral traits and SNPs in the other gene are associated
with cognitive traits. We considered two situations: one where the true correlations
%1 and %2 were both 0.2 and a second where both correlations were 0.

To further reflect the real dataset, the P matrix of X loadings was set up to
represent a situation in which all SNPs in one gene contributed to the X score t1
and half of the SNPs in the other gene contributed to the X score t2. Similarly, the
Q matrix of Y loadings was constructed to reflect a situation in which all behavioral
traits contributed to the Y score u1 and half of the cognitive traits contributed to the
Y score u2. The X and Y variables were simulated as described above using 	 D 1
with 200 samples and multivariate PLS models were fitted to each sample.

8.2.2.1 Bootstrap-Based methods

We bootstrapped the residuals (Efron and Tibshirani 1993) from the fitted PLS
models to obtain O"boot and applied PLS regression to X and Yboot D X Ǒ C O"boot,
where Ǒ is the matrix of coefficient estimates from the PLS model fitted on X
and Y. The correlation estimates for cor.t1;u1/ and cor.t2;u2/ were obtained, and
denoted (respectively) O%1;boot and O%2;boot. A similar approach for the sign change was
applied here: Let Oti;boot and Oui;boot be the estimated scores obtained from a PLS model
fitted on X and Yboot, where i D 1; 2 is the component number. If cor.Oti;boot; Oti/ and
cor. Oui;boot; Oui/ had different signs, then the sign of O%i;boot was changed.

The bootstrapped correlation estimates were averaged over the 200 bootstrap
samples to get NO%1;boot and NO%2;boot and the bias estimates for each repetition were
calculated as:

bBiasa;boot D NO%a;boot � O%a;boot; (8.2)

where a D 1; 2 is the component index and O%a;boot is the correlation estimate
obtained from the PLS model for X and Y simulated in that repetition. The bias
estimates were used to get bias-corrected estimates of the correlations for each
repetition:

O%C;a;boot D O%a;boot �bBiasa;boot (8.3)

for a D 1; 2. We then recalculated the bias by subtracting the true correlations %1
and %2 from the bias-corrected estimates O%C;1;boot and O%C;2;boot and averaging them
over the 200 repetitions.

8.2.2.2 Permutation-Based Methods

We permuted the observations of the Y variables to obtain Yperm and applied
PLS regression to X and Yperm. The correlation estimates were computed and
denoted O%1;perm and O%2;perm, respectively. We applied the sign change algorithm to the
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estimates and averaged over 200 samples to get an estimate of the bias, bBiasa;perm.
Bias-corrected correlation estimates were then obtained as:

O%C;a;perm D O%a;perm �bBiasa;perm; (8.4)

where a D 1; 2.

8.2.3 Selecting the Number of Components

To examine the choice of the number of components used in fitting a PLS model,
we simulated data as before, based on the model with one gene associated with
behavioral traits and the other gene associated with cognitive traits, such that the
true number of components was 2. We investigated three scenarios: (1) N D 300,
%1 D %2 D 0:2, (2) N D 1000, %1 D %2 D 0:2, and (3) N D 300, %1 D %2 D 0:5.

For univariate PLS models, one approach to selecting the appropriate number of
components K is to choose K as the number of components for which the minimum
cross-validation mean square error of prediction (MSEP) is achieved (Denham
2000). To extend this to multivariate PLS models, we may obtain the number of
components at which the minimum MSEP is attained for each Y variable, and
choose K as the maximum of these numbers.

We fit PLS models to the simulated data using leave-one-out cross-validation
and recorded the number of components chosen using this modified minimum rule
for 1000 repetitions of each of the 3 scenarios described above. We restricted the
number of components to be between 0 and 10 inclusive.

8.2.4 Real Data Analysis

The real dataset used is a subset of a larger dataset from a study of genetic and
environmental risk factors for ADHD in children. The dataset is comprised of
genotype and phenotype information on 323 children from different families. The
genetic data consists of genotypes at 39 SNPs in two genes known to be associated
with ADHD, NET/SLC6A2 and TPH2.

The phenotypes of interest are 16 scores from behavioral and cognitive testing.
Prior to the PLS regression analysis, the phenotype variables were adjusted for
the covariates age, sex, ADHD clinical subtype, and maternal smoking during
pregnancy by fitting separate multiple linear regression models for each phenotype
variable as the outcome and the four covariates as the predictors. The residuals from
these models were used as the adjusted phenotypes for the PLS analysis.
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A PLS regression model was fitted using 30 SNPs in the NET/SLC6A2 gene
and 9 SNPs in the TPH2 gene as the X variables and the 7 behavioral traits and 9
cognitive traits as the Y variables. The model was fitted using leave-one-out cross-
validation and 10 components. We applied the modified minimum rule to choose
the appropriate number of components.

8.3 Results

The following presents the results obtained for the bias evaluation simulations, bias
correction simulations, selection of the number of components, and the real data
analysis.

8.3.1 Evaluating the Optimism Bias

Figure 8.2 presents the results of the simulations to evaluate the bias. In each plot,
the bias is shown for %1 D cor.t1;u1/ in black and %2 D cor.t2;u2/ in gray for
3 different values of 	 . Along the x axis are the four sub-scenarios based on how
many SNPs in each gene and traits in each category are informative. The points
indicating the amount of bias for each of the four sub-scenarios are joined with a
line for clarity.

Figure 8.3 presents the bias results for the correlations �1 (solid lines) and �2
(dashed lines) when running simulations with an increased sample size or a larger
true correlation. The black lines indicate the bias with �1 D �2 D 0:2 and a
sample size of 300. The dark grey lines represent the situation where the sample
size was increased to 1000 and the light grey lines represent the situation where
the correlations were increased to 0.5. Again, the points for the four sub-scenarios
are joined with lines for visual interpretability.

8.3.2 Correcting the Optimism Bias

Table 8.1 presents the results of incorporating the bootstrap-based and permutation-
based bias correction methods into the simulations. The results are shown for
the two cases considered: the first with %1 D %2 D 0:2 and the second with
%1 D %2 D 0.
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Fig. 8.2 Bias in the correlations. (a) Gene 1 is associated with behavioural traits and Gene 2 is
associated with cognitive traits. (b) Genes 1 and 2 are associated with behavioral and cognitive
traits. (c) Gene 1 is associated with behavioral and cognitive traits. (d) Gene 1 is associated with
behavioral traits. (e) Neither gene is associated with behavioral and cognitive traits

8.3.3 Choosing the Number of Components

Figure 8.4 presents the results of the selection of the number of components for the
three scenarios considered. The histograms show the number of iterations out of
1000 for which each number of components was chosen, for three values of 	 .

8.3.4 Real Data Analysis

In Table 8.2, the number of components selected for each of the 16 Y variables is
shown, chosen as the number of components at which the MSEP is at its minimum.
Applying the modified minimum rule to the real data results in a choice of two
components.

Assuming that two components is the appropriate choice, we obtain the correla-
tions between the estimated scores t1 and u1, and t2 and u2, shown in Table 8.3.
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Fig. 8.3 Bias in the correlations when sample size or strength of the correlation increases

Table 8.1 Bias in correlations between X scores (t1 and t2) and Y scores (u1 and u2) in
simulations

Simulated correlation Estimated bias Bootstrap-corrected bias Permutation-corrected bias

%1 D cor.t1; u1/ D 0:2 0.100 0.096 0.014

%2 D cor.t2; u2/ D 0:2 0.005 0.100 0.013

%1 D cor.t1; u1/ D 0 �0.122 0.454 0.363

%2 D cor.t2; u2/ D 0 0.046 0.401 0.305

8.4 Discussion

It can be seen from Fig. 8.2 that bias is indeed present in the correlation estimates
and is sometimes substantial. Consider, for example, scenario A, where we see a
bias of approximately 0.2 when the true correlations are %1 D %2 D 0:2. This result
indicates that the PLS correlation estimates are on average twice as large as the
true correlation values, and consequently we would not be able to make any valid
inference based on the correlation estimates we obtain. With this magnitude of bias,
there is potential for false positives, as the X and Y variables will appear to be more
highly correlated than they actually are. Only in scenario E, where neither gene is
associated with the traits, does there appear to be minimal bias.

Considering Fig. 8.3, we see that with a larger sample size the bias decreases to
almost 0. This result suggests that PLS regression estimates the correlation well
when the sample size is large. With N D 1000, the amount of bias does not
change much as 	 changes. When the strength of the correlation increases to 0.5,
the correlation is now slightly underestimated by PLS.
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Fig. 8.4 Frequencies of components chosen by the minimum rule over 1,000 iterations. (a) N D
300, %1 D %2 D 0:2. (b) N D 1; 000, %1 D %2 D 0:2. (c) N D 300, %1 D %2 D 0:5

Table 8.2 Number of components selected for each Y variable

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.3 Correlation estimates from the real data

Correlation of interest Estimate

%1 D cor.t1; u1/ (NET/SLC6A2 and behavioral traits) 0.199

%2 D cor.t2; u2/ (TPH2 and cognitive traits) 0.214

The bias correction results presented in Table 8.1 indicate that the permutation-
based method is more successful than the bootstrap-based approach. However, in
some cases neither method works to reduce the bias and instead the bias is increased.
The explanation for this inconsistency requires further investigation.

From Fig. 8.4, the modified minimum rule chooses the correct number of
components in most cases when 	 is small. With higher values of 	 , the incorrect
number of components is chosen much more frequently. By increasing %, the correct
number of components is selected more often for 	 D 1 and 	 D 1:5 than with
lower %. With an increase in N, the correct number of components is chosen often
for all three values of 	 , although 1 component is still frequently chosen for 	 D 1:5,
and models with more than 4 components are even more rare than in the previous
two scenarios.
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The results of the bias evaluation suggest that when using PLS for a real
genetic association study, the correlation estimates may indicate that the asso-
ciations between the genotypes and phenotypes are stronger than they actually
are. Consequently, researchers should be cautious of the correlation estimates they
obtain from an analysis using PLS and be wary of the potential for false positives.
There is some indication that with a large enough sample size, the bias is minimal
and the appropriate number of components can be chosen fairly reliably using the
modified minimum rule shown here.
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Chapter 9
Discriminant Analysis for Multiway Data

Gisela Lechuga, Laurent Le Brusquet, Vincent Perlbarg, Louis Puybasset,
Damien Galanaud, and Arthur Tenenhaus

Abstract A multiway Fisher Discriminant Analysis (MFDA) formulation is
presented in this paper. The core of MFDA relies on the structural constraint
imposed to the discriminant vectors in order to account for the multiway structure of
the data. This results in a more parsimonious model than that of Fisher Discriminant
Analysis (FDA) performed on the unfolded data table. Moreover, computational
and overfitting issues that occur with high dimensional data are better controlled.
MFDA is applied to predict the long term recovery of patients after traumatic
brain injury from multi-modal brain Magnetic Resonance Imaging. As compared to
FDA, MFDA clearly tracks down the discrimination areas within the white matter
region of the brain and provides a ranking of the contribution of the neuroimaging
modalities. Based on cross validation, the accuracy of MFDA is equal to 77%
against 75% for FDA.
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Keywords Discriminant analysis • Multiway fisher discriminant analysis
(MFDA) • Overfitting • Brain imaging

9.1 Introduction

In standard multivariate data analysis, an individuals� variables data table is usually
considered. However, from a practical viewpoint this simple data structure appears
to be somehow restricted. An example is found in multi-modal brain Magnetic
Resonance Imaging (MRI) where K neuroimaging modalities (each characterized
by J voxels), are collected on a set of I patients. In that context, an individuals �
voxels � modalities data table can be considered and yields a three-way dataset
(or tensor). A three-way dataset can be considered in terms of a stack of matrices
as illustrated in Fig. 9.1. Most data analysis methods in their primary definition do
not take into account this natural three-way structure. Indeed, such structure is lost
by considering a I � JK unfolded version leading potentially (i) to a procedure that
destroys the integrity of the structure of the data and (ii) to a very large parameter
vector to estimate. These two aspects can yield a lack of relevant interpretations of
the resulting model and additional structural constraints are required.

Many two-way data analysis methods have been extended to the multiway
configuration. For instance PARAFAC proposed by Harshman (1970) is a gener-
alization of Principal Component Analysis. PARAFAC relies on the maximization
of a variance criterion but explicitly takes into account the multiway structure of
the input data by imposing a special Kronecker structure on the weight vectors.
A second approach is the Multi-linear Partial Least Squares Regression (N-PLS)
proposed by Bro (1998) which is a generalization of the classic PLS regression
method to multiway data. N-PLS relies on the maximization of a covariance
criterion but has the same PARAFAC structural constraint on the weight vectors.
N-PLS relies on SVD decomposition and is particularly well suited to the high
dimensional setting. In this paper, a multiway formulation of Fisher Discriminant
Analysis (MFDA) is presented. The structural constraint that is imposed to N-PLS
and PARAFAC weight vectors constitutes the starting point of MFDA.

This paper is organized as follows: Fisher Discriminant Analysis (FDA) and its
multiway counterpart (MFDA) are presented in Sect. 9.2. In Sect. 9.3, MFDA is

i=1,...,I
Mode A
individuals

Mode B
j=1,...,J
variables

Mode C
k=1,...,K
modalities

i=1,...,I

j=1,...,J
k=1,...,K

Fig. 9.1 Structure of the three-way dataset
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illustrated on a multi-modal Magnetic Resonance Brain Imaging (MRI) dataset in
order to predict the long-term recovery, of patients that suffered from traumatic brain
injury. A comparison between MFDA and FDA is discussed in Sect. 9.4.

9.2 Multiway Fisher Discriminant Analysis

Let X be the individuals � variables � modalities tensor and Xu the associated
unfolded matrix where all the I � J two-way matrices are collected next to each
other in an I � JK matrix. In addition, let y be the qualitative variable that encodes
the class membership of each individual. Let Y be the matrix of dummy variables
indicating the group memberships.

9.2.1 Regularized Fisher Discriminant Analysis

FDA consists in finding a projection vector w such that the between class variance
is maximized relative to the within-class variance. Regularized FDA is defined by
the optimization problem:

w� D arg max
w

w>SBw
w>ST wC w>Rw

; (9.1)

where SB D .Xu/> Y.Y>Y/�1Y>Xu D .Xu/>HBXu is the between covariance
matrix and ST D .Xu/> Xu is the total covariance matrix. A regularization term
w>Rw is added to improve the numerical stability when computing the inverse of
ST in high dimensional setting (I � JK). R is usually equal to the identity.

w� is obtained as the first eigenvector of .ST C R/�1SB.
Additional structural constraints should be added to the optimization prob-

lem (9.1) in order to account for the three-way structure of the data.

9.2.2 MFDA Criterion

Structural constraints are imposed in such way that the weight vector w will be
decomposed in two vectors as w D wK ˝ wJ. wK is a weight vector associated
with the K modalities while wJ is the weight vector related to the J variables. This
structural constraint results in a more parsimonious model (J C K instead of J � K
parameters to estimate), and allows to study separately the effects of the variables
and the modalities. A possible reformulation of FDA that takes into account the
three-way structure of the data is introduced through the optimization problem:

argmax
w

.wK ˝ wJ/
>SB.wK ˝ wJ/

.wK ˝ wJ/>ST.wK ˝ wJ/C .wK ˝ wJ/>R.wK ˝wJ/
: (9.2)
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where the matrix R D RK ˝ RJ is introduced to avoid numerical issues as in (9.1).
RK is of dimension K �K and RJ is of dimension J � J. The choices of R and  are
illustrated in Sect. 9.3.

9.2.3 MFDA Algorithm

The optimization problem (9.2) is solved by considering the following identities:

w>SBw D w>J

 
KX

kD1
.wK/k X::k

!>
HB

 
KX

kD1
.wK/k X::k

!
wJ (9.3)

D w>K

0

@
JX

jD1
.wJ/j X:j:

1

A
>

HB

0

@
JX

jD1
.wJ/j X:j:

1

AwK (9.4)

w>STw D w>J

 
KX

kD1
.wK/k X::k

!>  KX

kD1
.wK/k X::k

!
wJ (9.5)

D w>K

0

@
JX

jD1
.wJ/j X:j:

1

A
>0

@
JX

jD1
.wJ/j X:j:

1

AwK (9.6)

and

.wK ˝ wJ/
>R.wK ˝ wJ/ D .w>J RJwJ/.w>K RKwK/ (9.7)

Solving the optimization problem (9.2) with respect to wJ while maintaining
wK fixed, is achieved with a joint use of Eqs. (9.3) and (9.5). Similarly, solving
the optimization problem (9.2) with respect to wK while maintaining wJ fixed,
is achieved with a joint use of Eqs. (9.4) and (9.6). The MFDA algorithm that solves
optimization problem (9.2) is described in Algorithm 9.1. This algorithm starts
by assigning random initial values for wJ or wK and then iterates a sequence of
FDA problems. More specifically, each update boils down to perform FDA on either
XJ D PK

kD1 .wK/k X::k or XK D PJ
JD1 .wJ/j X:j:. From the expressions of XJ and

XK , it becomes clear that .wJ/j reflects the influence of the jth variable while .wK/k
the influence of the kth modality. Notice that XJ (resp. XK) is a I � J (resp. I � K)
matrix as compared to the I � JK unfolded matrix Xu.

Algorithm 9.1 yields w1 D w1
K ˝ w1

J corresponding to the first discriminant
axis. Subsequent discriminant axes can be determined by imposing orthogonality
constraints as detailed hereinafter.
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Algorithm 9.1: Computation of the first multi-way FDA axis

Require: � > 0; w.0/
K

q 0

repeat

XK DPK
kD1

�
w.q/

K

�

k
X::k, K D

�
w.q/

K

�
>

RKw.q/
K

w.qC1/
J  argmax

wJ ;kwJkD1

w>

J X>

K HBXKwJ

w>

J X>

K XKwJCK w>

J RJ wJ
 FDA.y;XK ; K/

XJ DPJ
jD1

�
w.qC1/

J

�

j
X:j:, J D

�
w.qC1/

J

�
>

RJw.qC1/
J

w.qC1/
K  argmax

wK ;kwK kD1

w>

K X>

J HBXJ wK

w>

K X>

J XJwK CJ w>

K RK wK
 FDA.y;XJ ; J/

q qC 1
until kw.q�1/

K � w.q/
K k < �

return .w.q/
K ; w.q/

J /

9.2.4 Additional Constraints

At the end of Algorithm 9.1, one discriminant vector w1 D w1
K˝w1

J is obtained. The
following C�1 axes (where C is the number of classes): ws

J ; ws
K ; s D 2; : : : ;C�1,

are obtained subject to orthogonality constraints expressed as follows:

.ws/>Œw1 : : :ws�1� D 0 ” .ws
K ˝ ws

J/
>.wc

K ˝ wc
J/ D 0 8c 2 Œ1; : : : ; s � 1�

.ws>
K wc

K/.w
s>
J wc

J/ D 0 8c 2 Œ1; : : : ; s � 1� (9.8)

From Eq. (9.8), orthogonality can be obtained by either imposing ws>
K wc

K D 0 or
ws>

J wc
J D 0. The construction of the next discriminant axes is derived below for the

constraint ws>
J wc

J D 0.

9.2.5 Second Discriminant Axis

Considering H D span
˚
w1

J


and PH?

the projection matrix over H?. The
orthogonality condition is equivalent to say that there exists a non unique v 2 R

J

such that w2
J D

PH?
v

kPH?
vk . The orthogonality constraint on w2

J yields the optimization

problem:

max
wK ;v

.wK ˝ .PH?
v//>SB.wK ˝ .PH?

v//
.wK ˝ .PH?

v//>ST.wK ˝ .PH?
v//C .wK ˝ .PH?

v//>R.wK ˝ .PH?
v//
;

(9.9)

subject to kwKk D 1 and kvk D 1 which is also a MFDA problem due to the
following identities:
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w>SBw D .wK ˝ .PH?
v//>X>HBX.wK ˝ .PH?

v//

D
 

KX

kD1

�
w2

K

�
k .X::kPH?

/v

!>
HB

 
KX

kD1

�
w2

K

�
k .X::kPH?
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!

D
0

@
KX

jD1

�
w2

J

�
j
.X:j:PH?

/v

1

A
>

HB

0

@
JX

jD1

�
w2

J

�
j
.X:j:PH?

/v

1

A

We emphasize that PH?
is of rank J � 1 but does not pose any computational issues

because PH?
D I � PH with PH D H.H>H/�1H> D w1

J.w
1
J/
>. It comes that the

projection is now advantageously replaced by a deflation:

X::kPH?
D X:k � .X::kw1

J/.w
1
J/
>:

9.2.6 Subsequent Discriminant Axes

The sth discriminant axis is obtained using the same deflation strategy considering
the vector space

H D span
˚
w1

J ;w
2
J ; : : : ;w

s�1
J


:

Let X0 be the three-way data obtained from the previous step. Since X0::k has already
been projected over

span
˚
w1

J ;w
2
J ; : : : ;w

s�2
J

?
;

the vector ws�1
J is thus obtained using Algorithm 9.1 on the deflated version of X0

which is obtained from the following deflation:

X0::k .D X::kPH?
/ X0::k � .X0::kws�1

J /.ws�1
J />:

9.3 Application to Traumatic Brain Injury

Traumatic brain injury is one of the leading causes of death and disability in
the industrialized world, generally requiring prolonged rehabilitation (Grubb et al.
1996).

In the scope of this paper MFDA is applied to a multi-modal brain MRI data
set in order to predict, in the long term, the recovery of patients that suffered from
traumatic brain injury. The I horizontal slices characterize the patients i D 1; : : : ; I,
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the J lateral slices are related to the voxels j D 1; : : : ; J and the K frontal slices
correspond to the different modalities k D 1; : : : ;K. From this the data can be
structured into the tensor X D ˚

Xijk

1�i�I;1�j�J;1�k�K

of order 3. Due to the high
dimensionality of the dataset, a kernel version of FDA is used (Mika et al. 1999).
The optimal value for the regularization parameter  is tailored through a leave-one-
out cross-validation procedure. The R matrix is set to be the identity.

9.3.1 Data Description

The multi-modal MRI diffusion images were acquired on individuals divided into
3 classes: 39 controls, 65 coma patients with a positive outcome and 39 coma
patients with a negative outcome (I D 143). Four diffusion images (K D 4), namely
fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (L1) and radial
diffusivity (Lt), images were acquired from the entire brain of both patients and
controls. Each volumetric image has 91�109�91 voxels which were then reshaped
into a 1�902; 629 vector (J D 902; 629). The resulting tensor X considered as input
for MFDA is of dimensions 143�902; 629�4, whereas the resulting unfolded tensor
Xu is of dimensions 143 � 3; 610; 516.

9.3.2 FDA Applied to the Entire Brain

A linear kernel version of FDA (Mika et al. 1999) applied to Xu results in 8
weight matrices (4 for each eigenvector). A leave-one-out cross-validation yields
the optimal regularization parameter to be  D 400 with an accuracy of 76 %.
Moreover, the resulting FA weights matrix obtained by considering the segment
of the eigenvectors corresponding to FA are shown in Fig. 9.2. These images are
difficult to interpret since there is no focalized region used for the discrimination.
We mention that other modalities (i.e., other segments) could be visualized but do
not give additional discriminative information (results not shown).

9.3.3 MFDA Applied to the Entire Brain

MFDA applied to X results in 2 weight matrices associated with w1
J and w2

J which
integrate all the modalities. This yields a single volumetric image that integrate the
4 modalities instead of one for each modality in FDA. After performing a leave-
one-out cross-validation, the optimal regularization parameter for MFDA is found
to be  D 104 with an accuracy of 71 %. Table 9.1 shows the contribution of each
modality for the construction of the single volumetric image. FA has the highest
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Fig. 9.2 Entire brain. FA segment of the FDA weights vectors (w1
FA, w2

FA) for  D 400. (a) FDA
analysis FA, 1st eigenvector. (b) FDA analysis FA, 2nd eigenvector

Table 9.1 Entire brain.
MFDA weights vectors
(w1

K , w2
K )

Modality w1
K w2

K

FA 0.9887 �0.0066

MD 0.0036 0.5703

L1 0.0046 0.6094

Lt 0.0031 0.5508
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Fig. 9.3 Entire brain. MFDA weights vectors (w1
J , w2

J) for  D 10; 000. (a) w1
J . (b) w2

J

weight in the discrimination for w1
K . For w2

K , all modalities but FA have been taken
into account in the same proportion.

Figure 9.3 shows an example of MFDA weights w1
J and w1

J obtained on the
entire brain (same plane as for FDA). Contrary to FDA, MFDA clearly locates
the discriminative voxels in the white matter (in red). Since specific and smooth
regions are selected, MFDA model is easier to interpret. In addition, w2

J is reported
in Table 9.1 and shows that all the modalities participate in the same proportion
to the construction of the MFDA model. These results are consistent with the
ones obtained by Sidaros et al. (2008) and Galanaud et al. (2012) regarding the
importance of FA when assessing long-term recovery.
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MFDA exhibits that the discriminating voxels are located, within the main white
matter bundles, more specifically in the posterior limb of the internal capsule.
Indeed, traumatic brain injury is characterized by the presence of diffuse axonal
injury mainly located within deep and axial white matter bundle as found by
Galanaud et al. (2012). For this reason, a second analysis based only on the white
matter region is applied giving a 143 � 20; 764� 4 tensor to analyze.

9.3.4 FDA and MFDA Applied to the White Matter

In Fig. 9.4, training and testing accuracies for FDA are reported for different values
of . The optimal regularization parameter for FDA is equal to  D 400 with an
accuracy of 75 %. The associated confusion matrix is shown in Table 9.2. We note
that the most frequent error is done between the positive and negative outcome,
and that the distinction between patients and controls is very accurate. In Fig. 9.5,
training and testing accuracies for MFDA are reported. The optimal regularization
parameter is  D 100 with an accuracy of 77 %. The associated confusion matrix is
shown in Table 9.3.

The resulting weights obtained when analyzing the white matter are presented in
Fig. 9.6, together with the corresponding wK values in Table 9.4. These results are
consistent with the ones obtained using the entire brain, where modality FA serves
as the most discriminant modality.
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Fig. 9.4 FDA leave-one-out cross validation
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Table 9.2 FDA confusion matrix with  D 400

FDA Predicted

Observed Controls Positive outcomes Negative outcomes

Controls 39 0 0

Positive outcomes 6 49 10

Negative outcomes 0 20 19
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Fig. 9.5 MFDA leave-one-out cross validation

Table 9.3 MFDA confusion matrix with  D 100

MFDA Predicted

Observed Controls Positive outcomes Negative outcomes

Controls 37 2 0

Positive outcomes 0 49 16

Negative outcomes 0 15 24

9.4 Discussion

In this paper, we propose a multiway formulation of FDA that considers the intrinsic
tensor structure of the data. MFDA was applied to multi-modal MRI diffusion
images to predict the long term recovery of patients with traumatic brain injury, for
which good accuracy rates were obtained, from 71 % for MFDA to 76 % for FDA,
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Fig. 9.6 White matter. MFDA weights vectors (w1
J , w2

J ) for  D 100. FA segment of the FDA
weights vectors (w1

FA, w2
FA) for  D 400. (a) FDA analysis FA, 1st eigenvector. (b) MFDA analysis,

w1
J . (c) FDA analysis FA, 2nd eigenvector. (d) MFDA analysis, w2

J

Table 9.4 White matter.
MFDA weights vectors
(w1

K , w2
K )

Modality w1
K w2

K

FA 0:8017 �0:0681
MD �0:2224 �0:5327
L1 0:2319 �0:8072
Lt �0:5040 �0:2448

when using the entire brain. This loss in accuracy for MFDA is compensated by an
improvement in the interpretability of the obtained classifier. This improvement is
due to the introduced a priori structure that has been taken into account during the
modelisation process. When analyzing the white matter we obtain a 75 % accuracy
for FDA and 77 % for MFDA. MFDA separates the influence of spatial positions
and the influence of the different modalities.

Another observation is that the FDA weights give higher importance to the
borders of the brain, when the majority of the discriminant information should be
found in the white matter since there is evidence that damage in this region is a
distinctive feature of traumatic brain injury (Galanaud et al. 2012) as shown in the
MFDA results. The MFDA weight matrices seem to supply more information on the
location of the discrimination regions, as shown in Fig. 9.3. Moreover, FDA results
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in 8 weight matrices (J �K classifier), complicating the interpretability, as opposed
to only 2 weight matrices (J C K classifier) obtained with MFDA which integrate
all the modalities.

Future perspectives include an improvement of the accuracy of the classification
of the positive and negative outcomes. In order to further improve the interpretability
of the classifier a sparse MFDA algorithm is under development for reducing the
number of active variables in the MFDA model.
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Chapter 10
Structured Variable Selection for Regularized
Generalized Canonical Correlation Analysis

Tommy Löfstedt, Fouad Hadj-Selem, Vincent Guillemot, Cathy Philippe,
Edouard Duchesnay, Vincent Frouin, and Arthur Tenenhaus

Abstract Regularized Generalized Canonical Correlation Analysis (RGCCA)
extends regularized canonical correlation analysis to more than two sets of variables.
Sparse GCCA (SGCCA) was recently proposed to address the issue of variable
selection. However, the variable selection scheme offered by SGCCA is limited
to the covariance .� D 1/ link between blocks. In this paper we go beyond the
covariance link by proposing an extension of SGCCA for the full RGCCA model
.� 2 Œ0; 1�/. In addition, we also propose an extension of SGCCA that exploits
pre-given structural relationships between variables within blocks. Specifically, we
propose an algorithm that allows structured and sparsity-inducing penalties to be
included in the RGCCA optimization problem.
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10.1 Introduction

Regularized Generalized Canonical Correlation Analysis (RGCCA) (Tenenhaus
and Tenenhaus 2011) is a generalization of regularized canonical correlation
analysis (Vinod 1976) to more than two sets of variables. RGCCA relies on a sound
theoretical foundation with a well-defined optimization criterion (as is customary
in multiblock data analysis) and at the same time allows the incorporation of prior
knowledge or hypotheses about the relationships between the blocks (e.g., as in PLS
path modeling).

Sparse GCCA (SGCCA) (Tenenhaus et al. 2014) was recently proposed to
address the issue of variable selection. The RGCCA criterion was modified to
include L1 penalties (with L1 being the degree 1 norm of a vector defined such
that the L1-norm of vector x is jjxjj1 D P jxij) on the outer weights vectors in
order to promote sparsity. For technical reasons, concerning the RGCCA algorithm,
the variable selection offered by SGCCA is limited to the covariance link between
blocks (i.e., with all �k D 1).

In this paper we go beyond the covariance link and allow any � 2 Œ0; 1�. More
specifically, we present an extension of SGCCA that allows variable selection to be
performed for the full RGCCA model. In addition, we also propose an extension of
SGCCA that exploits a pre-given structural relationships between variables within
blocks. This is achieved by introducing structured and sparsity-inducing penalties
in the model. Such penalties have recently become popular in machine learning and
related fields (Hadj-Selem et al. 2016) and encourage the resulting models to have a
particular structure.

Structured penalties have previously been considered in a two-block setting
with canonical correlation analysis (Chen and Liu 2011). However, to combine
such structured penalties with RGCCA poses new optimization challenges that we
propose to tackle. Specifically, we propose a general multiblock algorithm that
allows structured and sparsity-inducing penalties to be included in the RGCCA
model.

10.2 Method

We consider K data matrices, X1; : : : ;XK . Each n � pk data matrix Xk is called a
block and represents a set of pk centered variables observed on n observations. The
number and the nature of the variables usually differ from one block to another but
the observations are the same across all the blocks.

Let C D 	
ckj



be an adjacency matrix, where ckj D 1 if blocks Xk and Xj are
connected, and ckj D 0 otherwise. RGCCA investigates the relationships between
these blocks, while taking into account the structural connection between blocks
defined by the adjacency matrix. For that purpose, RGCCA is defined by the
following optimization problem
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minimize
wk2Rpk ; kD1;:::;K'.w1; : : : ;wK/ D �

KX

kD1

KX

jD1
ckjg

�
cov

�
Xkwk; Xjwj

��
(10.1)

subject to �kkwkk22 C .1� �k/var.Xkwk/ D 1; k D 1; : : : ;K; (10.2)

where wk are the weight vectors (also called “outer” weight vectors), Xkwk are the
block components, jj:jj2 is the L2 (a.k.a., “Euclidean”) norm (i.e., jjxjj2 D

p
x>x),

and g is called the inner-weighting scheme and is usually the identity (Horst’s
scheme), the absolute value (Centroid scheme), or the square function (Factorial
scheme).

The regularization parameters �k 2 Œ0; 1� provide a way to maximize either the
correlation (�k D 0) or the covariance (�k D 1). A trade-off between covariance and
correlation is achieved for all other values of �k 2 .0; 1/.

In the framework of SGCCA, all �k, for k D 1; : : : ;K, are assumed to be equal
to 1. This means that variable selection is only possible for the covariance link in
Eq. 10.1. Also, L1 constraints are added on the weight vectors w1; : : : ;wK and yield
the SGCCA optimization problem which is defined as:

minimize
wk2Rpk ; kD1;:::;K'.w1; : : : ;wK/ (10.3)

subject to kwkk1 	 sk and kwkk22 D 1; k D 1; : : : ;K;

where sk > 0 is the radius of the L1 ball and determines the amount of sparsity for
wk; the smaller sk is, the larger the degree of sparsity for wk.

However, the L1 constraint is blind to any structure between the variables in Xk,
and is thus not able to account for cases such as groups or similarities between
variables in the RGCCA model. We therefore add structured penalties to the
objective function, that account for such structured prior knowledge or assumptions.
The general optimization problem considered in this paper is

minimize
wk2Rpk ; kD1;:::;K'.w1; : : : ;wK/C

KX

kD1
!k˝k.wk/ (10.4)

subject to kwkk1 	 sk; k D 1; : : : ;KI
�kkwkk22 C .1 � �k/var.Xkwk/ 	 1; k D 1; : : : ;K (10.5)

where ˝k are the structured penalties with regularization parameters !k. For
technical reasons, we must constrain the inner-weighting function to the identity
g.x/ D x (i.e., to Horst’s scheme). Note that the equality in Eq. 10.2 has been
changed to an inequality in Eq. 10.5 because the algorithm presented below requires
the constraints to be convex. This is not a relaxation, however, because the Karush-
Kuhn-Tucker conditions require all constraints to be active at the solution, and it is
always possible to find constraint parameters sk such that both constraints are active
for each block (Witten et al. 2009).
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When the structured penalties,˝k, are convex, Eq. 10.4 is a multiconvex function
with convex constraints. However, the structured penalties are usually non-smooth
and non-separable (i.e., they cannot be written as a separable sum). Therefore we
cannot minimize the penalties together with the smooth loss function by using
a smooth minimization algorithm, and would thus have to resort to non-smooth
minimization algorithms such as, for example, proximal methods. However, there is
no explicit solution for computing the proximal operator of the structured penalties
without the separability condition and it is therefore difficult to find a minimum in
the general case. Solutions exist for some particular structured penalties, but they
are tailored towards a particular formulation, and can not be used for the general
problem that was defined in Eq. 10.4. We therefore adapt a very efficient smoothing
technique proposed in Nesterov (2004) to resolve both the non-smoothness and non-
separability issues for a very wide and general class of structured penalties. This
smoothing technique is presented in the next section.

10.2.1 Nesterov Smoothing

The structured penalties, ˝k, considered in this paper are convex but possibly
non-differentiable. The functions ˝k must fit Nesterov’s framework, as described
in Hadj-Selem et al. (2016), and are therefore required to have the form

˝k.wk/ D max
˛2Kk

h˛ jAkwki;

where Kk is a compact convex set and Ak a linear operator between two finite-
dimensional vector spaces. The Nesterov smoothing of ˝k is then defined as

b̋k.�k;wk/ D h˛�k jAkwki � �k

2
k˛�k k22;

for all wk 2 R
pk , with �k a positive real smoothing parameter and where ˛�k D

arg max˛2Kk

˚h˛ jAkwki � �k
2
k˛k22


:

Using Nesterov’s smoothing on the functions˝k yields

lim
�k!0

b̋k.�k;wk/ D ˝k.wk/:

An immediate consequence is that, since the functions b̋k are convex and differen-
tiable, they may (for a sufficiently small value of �k) be used instead of ˝k. The
gradients of the Nesterov smoothed functions b̋k.�k;wk/ are rwk

b̋k.�k;wk/ D
A>k ˛�k : It can be shown that these gradients are Lipschitz continuous with Lipschitz
constant L

�rwk
b̋k.�k;wk/

� D kAkk22=�k, where kAkk2 is the spectral norm of Ak.
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10.2.2 Reformulating the Objective

The Nesterov’s smoothing technique allows us to have a smooth objective function
with convex constraints. We rephrase the constraints as a single indicative constraint
over a convex set. The optimization problem thus becomes

minimize
wk2Rpk ; kD1;:::;K

Of .w1; : : : ;wK/ D '.w1; : : : ;wK/C
KX

kD1
!k b̋k.�k;wk/ (10.6)

subject to wk 2 Wk D fx j x 2Pk \Skg; k D 1; : : : ;K;

where Pk D fx j x 2 R
pk ^ kxk1 	 skg and Sk D fx j x 2 R

pk ^ �kkxk22 C .1 �
�k/Var.Xkx/ 	 1g. Note that in general Wk ¤ fg because we have, al least, 0 2 Wk.

The gradient of the objective function in Eq. 10.6 with respect to wk is

rwk
Of .w1; : : : ;wK/ D �

KX

jD1
ckj g0

�
cov.Xkwk; Xjwj/

�
„ ƒ‚ …
D1, because g.x/Dx

1

n � 1X>k XjwjC
KX

kD1
!kA>k ˛�k ;

(10.7)
where cov.Xkwk; Xjwj/ D 1

n�1w>k X>k Xjwj (i.e., the unbiased sample covariance).

10.3 Algorithm

The optimization problem in Eq. 10.6 is characterized by a multiconvex objective
function with an indicative constraint over a convex set. This suggests an opti-
mization procedure that minimizes the objective function one parameter vector at
a time and treats the other parameter vectors as constants during this minimization.
If each update improves the function value, gradually the function will be (locally)
optimized over the entire set of parameter vectors. This principle is called block
relaxation (De Leeuw 1994). The corresponding Algorithm 10.2 is related to the
algorithm presented in Witten et al. (2009). However, several details need to be
introduced before we discuss the proposed algorithm.

10.3.1 Projection Operators

At each iteration of the algorithm, and for each block, orthogonal projections onto
the convex sets Wk are required. The projection onto the set Wk is the unique point
that minimizes the problem
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projWk
.x/ D arg min

y2WkDPk\Sk

ky � xk2: (10.8)

The projection onto the intersection of these two sets can be computed using
Dykstra’s projection algorithm (Combettes and Pesquet 2011), stated in Algo-
rithm 10.1. The sequence .x.s//s2N generated by Algorithm 10.1 converges to the
unique solution of Eq. 10.8. Three key points need to be detailed in order to
make Algorithm 10.1 understandable: (i) the projection onto P (Line 3), (ii) the
projection onto S (Line 5), and (iii) the stopping criterion (Line 7). These 3 points
are discussed below.

Algorithm 10.1: Dykstra’s projection algorithm

Require: x.0/, P, S , " > 0
Ensure: x.s/ 2P \S
1: p.0/  0,;

q.0/  0
2: for s D 0; 1; 2; : : : do

3: y.s/ D projP.x.s/ C p.s//
4: p.sC1/ D x.s/ C p.s/ � y.s/

5: x.sC1/ D projS .y.s/ C q.s//
6: q.sC1/ D y.s/ C q.s/ � x.sC1/

7: if max
�kx.sC1/ � projP.x.sC1//k2; kx.sC1/ � projS .x.sC1//k2

� � " then break

8: end for

Projection onto S . The S constraint is a quadratic constraint

�kkwkk22 C .1 � �k/Var.Xkwk/ D �kw>k wk C 1 � �k

n � 1 w>k X>k Xkwk D w>k Mkwk;

where Mk D �kIpk C 1��k
n�1 X>k Xk is a positive-semidefinite matrix. The projection

operator onto Sk is defined as

projSk
.x/ D arg min

y2Rpk

ky � xk22 C �k y>Mky D �Ipk C 2�k Mk
��1

x; (10.9)

with �k the smallest k such that y>Mky 	 1. It is not feasible to numerically find
�k directly from Eq. 10.9, especially when the number of variables is large. We have
therefore devised an efficient algorithm that rephrases the problem and then uses the
Newton-Raphson method to compute �k from a simple univariate auxiliary function
that only depends on the eigenvalues of Mk.

Projection onto P . The projection onto an L1 ball of radius sk is achieved by using
the soft thresholding operator (Parikh and Boyd 2013) defined as
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�
projPk

.x/
�

i
D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

xi � �k ; if xi > 
�
k ;

0; if jxij 	 �k ;
xi C �k ; if xi < ��k :

(10.10)

where �k satisfies
Ppk

iD1 max.0; jxij � �k / D sk. For details concerning the
determination of �, see for example van den Berg et al. (2008).

Stopping Criterion. Since the projection on Line 6 of Algorithm 10.2 is
approximated by Algorithm 10.1, we are actually performing an inexact projected
descent (Schmidt et al. 2011).

At step s of Algorithm 10.2, after projection onto W with Algorithm 10.1, the
following inequality must be respected to ensure convergence to the minimum of
the objective function (Schmidt et al. 2011):

Algorithm 10.2: Algorithm for structured variable selection in RGCCA

Require: Of , rOf , wk D w.0/
k 2 Wk, " > 0

Ensure: w.s/
k 2 Wk such that " 2 @Of .w.s/

1 ; : : : ;w
.s/
K /

1: repeat
2: for k D 1 to K do
3: w.1/

k D w.0/
k D wk

4: for s D 1; 2; : : : do

5: y D w.s/
k C k�2

kC1

�
w.s/

k � w.s�1/
k

�

6: w.sC1/
k D projWk

�
y� tkrw

.s/
k

Of �w.s/
1 ; : : : ; y; : : : ;w

.s/
K

��

7: if kw.sC1/
k � yk2 � tk" then break

8: end for
9: wk D w.sC1/

k
10: end for
11: until kwk � projWk

�
wk � tkrwk

Of �w1; : : : ;wK

�� k2 < tk", for all k D 1; : : : ;K

��x.sC1/ � projW
�
x.sC1/

���
2
< ".s/;

where ".s/ must decrease like O
�
1=i4Cı

�
, for some ı > 0 and i the iteration count for

the inner-most loop (which is actually an application of the fast iterative-shrinkage-
thresholding algorithm (FISTA) with optimal convergence speed for first-order
methods).

Since we cannot compute
��x.sC1/ � projW

�
x.sC1/

���
2

directly (this is essentially
the problem we are trying to solve) and since W is the intersection of S and P ,
we approximate it by

max
�
kx.sC1/ � projS .x

.sC1//k2; kx.sC1/ � projP.x
.sC1//k2

�
:
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10.3.2 Algorithm for Structured Variable Selection in RGCCA

We are now ready to describe the full RGCCA accelerated projected gradient
method. This algorithm is presented in Algorithm 10.2.

The step sizes, tk, appearing in the FISTA loop, are computed (Hadj-Selem

et al. 2016) such that tk D
�P

f L.rwk f /
��1

; where the sum is over the Lipschitz

constants of the gradients in the loss function in Eq. 10.6 (i.e., the Lipschitz
constants of the gradients in Eq. 10.7). If some gradient is not Lipschitz continuous,
or if the sum of Lipschitz constants is zero, the step size can also be found efficiently
using backtracking line search.

Finally, the main stopping criterion on Line 11 is actually performing a step of
the iterative soft-thresholding algorithm (ISTA). Thus, the stopping criterion stems
from the subgradient definition and optimality condition of proximal operators (Qin
et al. 2013).

10.4 Example

The proposed method is illustrated on a 3-block data-set. The objective is to predict
the location of pediatric brain tumors from a 53�15;702 gene expression (GE) data
matrix X1 and a 53�41;996 genome-wide array of comparative genomic hybridation
(CGH) data matrix X2 (Philippe et al. 2012). A 53�3 dummy matrix X3 encodes the
locations of the tumors. The tumors are divided into three locations: Diffuse Intrinsic
Pontine Gliomas (DIPG, i.e., these tumor are localized in brain stem), central nuclei
(Midline) and supratentorial (Hemisphere).

The design was chosen to be oriented towards the prediction of the location: X1

and X2 are connected to X3 (c13 D c23 D 1/, but there is no connection between X1

and X2 and therefore (c12 D 0). Tenenhaus et al. (2014) have shown on similar data
that this design yields the best prediction performances among all possible designs.
The regularization constants, �k, were obtained from the Schäfer and Strimmer
formula (Schäfer and Strimmer 2005), and were �1 D 1, �2 D 0:3. The dummy
matrix, X3, had but one constraint, namely the S constraint with �3 D 1.

An L1 and a group L1;2 (Qin et al. 2013) constraint were associated with GE. An
L1 and a total variation constraint (Michel et al. 2011) were associated with X2 to
smooth the often noisy CGH data. The associated parameters were found by grid
search in a seven-fold cross-validation scheme for maximizing R2

X3
, defined as

R2
X3
D R2

X1!X3
� R2

X2!X3
D
 
1� k

OX1!3 �X3k2F
kX3k2F

! 
1 � k

OX2!3 � X3k2F
kX3k2F

!

(10.11)

where k � kF is the Frobenius norm and OXk!3 is the prediction of X3 from
the model associated with Xk. The predictions were computed in the standard
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way using the inner relation as OXk!3 D Tk.T>k Tk/
�1T>k T3W>3 ; where Tk D

ŒXkwk;1j � � � jXkwk;A� is the matrix containing the A components associated with Xk

and W3 D Œw3;1j � � � jw3;A� is a matrix containing the A weight vectors associated
with X3. Therefore, R2

X3
is the combined prediction rate from the models of X1 and

X2, forcing both blocks to predict X3 well.
The regularization constant for group L1;2 was !1 D 0:8 and the L1 norm

constraint had a radius of s1 D 18. This selected roughly 2 % of the variables in X1

in the first component, and roughly 4 % in the second component. The regularization
constant for total variation was !2 D 0:005, and the L1 norm constraint had a radius
of s2 D 10. This selected roughly 11 % of the variables in X2 in the first component,
and roughly 13 % in the second component.

Therefore, the optimization problem for this example was

min
wi2Rpi

Of .w1; : : : ;wK/ D �cov.X1w1;X3w3/ � cov.X2w2;X3w3/

C 0:8 � b̋GL.�1;w1/C 0:005 � b̋TV.�2;w2/;

subject to kw1k1 	 18; kw1k22 	 1
kw2k1 	 10; 0:3 � kw2k22 C 0:7 � var.X2w2/ 	 1

kw3k22 	 1;

in which �1 D �2 D 5 � 10�4. Two components were extracted using the
deflation rule

Xk  Xk � Xkwkw>k
w>k wk

:

10.5 Results

The final model had an R2
X3
D R2

X1!X3
� R2

X2!X3
D 0:51 � 0:47 D 0:24 (means

of seven-fold cross-validation). This is similar to the prediction rates reported
in Tenenhaus et al. (2014) but in this case with an additional structure imposed
to the weight vectors.

The locations were predicted using three different approaches: From X1 only,
from X2 only and from both X1 and X2. The block X1 was able to predict
42=53 
 79% of the locations correctly; X2 was able to predict 38=53 
 72% of
the locations correctly; and 49=53 
 92% of the locations were correctly identified
when predicting from both X1 and X2 simultaneously (these are cross-validated
values).

To evaluate the stability of the signatures, we decided to use Fleiss’ � indica-
tor (Fleiss 1971). The number of times a variable is selected or not selected is
counted across the 100 bootstrap samples. These frequencies are summarized by
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the Fleiss’ � score and measures the agreement among the bootstrap samples. The
higher the value of �, the more stable the method is with respect to sampling. Fleiss’
� was 0:63 for the first component of X1, and 0:54 for the second component; 0:47
for the first component of X2 and 0:23 for the second component.

The group L1;2 penalty selected 98:7 out of the 199 identified groups in
the first component and 146:5 in the second (bootstrap averages). Groups were
considered “strong” if they had a high ratio between the number of selected gene
expressions within the group over the total number of selected gene expressions.
Among the top ranking groups were: “Axon guidance” (hsa04360)—a function
which implies a relation to DIPG, because of the abundance of axons in the brain
stem—and Alzheimer’s disease (hsa05010)—a result which implies a relation to a
supratentorial tumor (in the hemispheres) because Alzehiemer disease affects the
cortex and the hippocampus.

Among the groups that were excluded from the model were the Citrate cycle
(TCA cycle) (hsa00020). Citrate seems to be abundant in DIPG (unpublished
results), but its occurrence in other locations is unknown and so it could be similarly
found in the other locations or cancer types.

10.6 Discussion and Conclusions

We propose a promising approach for taking into account prior information within
RGCCA. The proposed optimization problem subsumes many well-known multi-
block-based methods as special cases. Examples include PLS-R, PCA, RGCCA,
SGCCA, but with the addition of sparse and structured penalties. This generalized
RGCCA method was applied to chromosomal imbalances and gene expression data
to predict the location of brain tumors. We used a group L1;2 penalty for GE data
and a total variation penalty for the CGH data. Both data sets were also subject to
an L1 and a quadratic constraint. The obtained results illustrate the benefit of adding
sparse and structured constraints.
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Chapter 11
Supervised Component Generalized Linear
Regression with Multiple Explanatory Blocks:
THEME-SCGLR

Xavier Bry, Catherine Trottier, Fréderic Mortier, Guillaume Cornu,
and Thomas Verron

Abstract We address component-based regularization of a multivariate
Generalized Linear Model (GLM). A set of random responses Y is assumed to
depend, through a GLM, on a set X of explanatory variables, as well as on a
set T of additional covariates. X is partitioned into R conceptually homogeneous
blocks X1; : : : ;XR, viewed as explanatory themes. Variables in each Xr are assumed
many and redundant. Thus, generalized linear regression demands regularization
with respect to each Xr. By contrast, variables in T are assumed selected so as to
demand no regularization. Regularization is performed searching each Xr for an
appropriate number of orthogonal components that both contribute to model Y and
capture relevant structural information in Xr. We propose a very general criterion
to measure structural relevance (SR) of a component in a block, and show how to
take SR into account within a Fisher-scoring-type algorithm in order to estimate the
model. We show how to deal with mixed-type explanatory variables. The method,
named THEME-SCGLR, is tested on simulated data, and then applied to rainforest
data in order to model the abundance of tree-species.
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Keywords Component-based regularization • Generalized linear model (GLM)
• Regularization

11.1 Data, Model and Problem

A set of q random responses Y D fy1; : : : ; yqg is assumed to depend on p numeric
regressors, partitioned into R blocks X1; : : : ;XR, with: 8r; Xr D fx1r ; : : : ; xpr

r g,
plus one block T of additional covariates. X and T may include the indicator
variables of nominal explanatory variables. Every Xr contains an unknown number
of structurally relevant dimensions important to predict Y. Variables in T are
assumed to have been selected so as to preclude redundancy, while variables in
Xr’s have not: T gathers all explanatory variables to be kept as such in the model,
whereas dimension reduction and regularization are needed in the Xr’s. Each Xr is
thus to be searched for an appropriate number of orthogonal components that both
capture relevant structural information in Xr and contribute to model Y.

Let X WD ŒX1; : : : ;XR�. Each yk is modeled through a GLM taking X [ T as
regressor set. The y’s are assumed independent conditional on X[T, but their linear
predictors are constrained to lean on a small set of unknown common directions,
which implies that all y’s be included in a single model. The conceptual model
stating that Y depends on X[T, and that structurally relevant dimensions should be
identified in the Xr’s, will be referred to as Thematic Model and denoted by symbolic
equation: Y D hX1; : : : ;XRITi (cf Fig. 11.2 for an example).

In the particular context of R D 1 with T empty, Bry et al. (2012, 2013) intro-
duced a technique named Supervised Component Generalized Linear Regression
(SCGLR), extending the work by Marx (1996). The basic principle of SCGLR is to
replace the weighted least squares step of the Fisher Scoring Algorithm (FSA) with
an extended partial least squares step. That way, component-based regularization
was introduced into generalized linear regression. The interest of operating at
FSA level is that, since the FSA mimics MLE, estimation weights keep consistent
with the component-model being estimated. In this work, we propose to extend
SCGLR by:

1. Introducing additional covariates.
2. Extending the notion of structural relevance of a component, so as to track

various kinds of structures.
3. Extending SCGLR to the multiple-explanatory-block situation.

Notations:

˘E := orthogonal projector on space E, with respect to some metric to be
specified.
hXi := space spanned by the column-vectors of X.
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11.2 Adapting the FSA to Estimate a Multivariate
GLM with Partially Common Predictor

Consider that y1; : : : ; yq depend on linear predictors, the X-parts of which are
collinear:

8k D 1; : : : ; q W �k D X�kuC Tık

Denote component f D Xu. Mark that f is common to all the y’s and does not depend
on k. For identification, we impose u0Au D 1, where A may be any symmetric
positive definite (p.d.) matrix. In view of the conditional independence assumption
and independence of units, the likelihood is:

l.yj�/ D
nY

iD1

qY

kD1
lk.ykij�ki/

The classical FSA in GLM’s (see Nelder and Wedderburn 1972) can be viewed
as an iterated weighted least squares on a linearized model, which reads here, on
iteration Œt�:

8k D 1; : : : ; q W zŒt�k D X�kuC Tık C �Œt�k (11.1)

where �Œt�k is an error term and the working variables are obtained as: zŒt�k D
X�Œt�k uŒt� C TıŒt�k C

�
@�k
@�k

�Œt�
.y � �Œt�k /. Denoting g the link function, we have: @�k

@�k
D

diag .g0.�k;i//iD1;n and Wk D diag
�
g0.�k;i/

2v.�k;i/
�

iD1;n, where � and v are the
expectation and variance of the corresponding GLM.

In this model, it is assumed that: 8k: E.�k/ D 0; V.�Œt�k / D W Œt��1
k . In our context,

model (11.1) is not linear, owing to the product �ku. So, it must be dealt with through
an Alternated Least Squares step, estimating in turn the following two linear models:

zŒt�k D ŒX Ou� �k C Tık C �Œt�k

zŒt�k D ŒX O�k� uC Tık C �Œt�k

Let ˘ k
hf ;Ti be the projector onto hf ;Ti with respect to Wk. The estimation of

model (11.1) may be viewed as the solution of the following program:

Q W min
f2hXi

X

k

kzk �˘ k
hf ;Tizkk2Wk

, Q0 W max
u0AuD1

 .u/ ;

where  .u/ D
X

k

kzkk2Wk
cos2Wk

.zk ; hXu;Ti/ (11.2)
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In order to later deal with multiple Xr’s, we have yet to replace Q0 by another
equivalent program:

Q00 W max
8j; u0

j AjujD1
 .u1; : : : ; uR/

where A1; : : : ;AR are any given p.d. matrices, and

 .u1; : : : ; uR/ D
X

k

kzkk2Wk
cos2Wk

.zk ; hX1u1; : : : ;XRuR;Ti/ (11.3)

 .u1; : : : ; uR/ is a goodness-of-fit measure, now to be combined with some
structural relevance measure to get regularization.

11.3 Structural Relevance (SR)

Consider a given weight matrix W, e.g. W D n�1In, reflecting the a priori
importance of units. Let X be an n � p variable block endowed with a p � p metric
matrix M, the purpose of which is to “weight” variables appropriately (informally,
PCA of .X;M;W/ must be relevant, see Sect. 11.4.3.2 for details). Component
f D Xu is constrained by: kuk2

M�1 D 1 (M�1 will thus be our choice of the
aforementioned matrix A). We may consider various measures of SR, according
to the type of structure we want f to align with.

Definition 11.1. Given a set of J symmetric positive semi-definite (p.s.d.) matrices
N D fNj I j D 1; : : : ; Jg, a weight system ˝ D f!j I j D 1; : : : ; Jg, and a scalar
l � 1, we define the associated SR measure as:

�.u/ WD
0

@
JX

jD1
!j.u

0Nju/
l

1

A

1
l

Various particular measures can be recovered from this general formula.

Example 11.1. Component Variance:

�.u/ D V.Xu/ D kXuk2W D u0.X0WX/u ;

implying J D 1; !1 D 1 and N1 D X0WX. This quantity is obviously maximized
by the first eigenvector in the PCA of .X;M;W/.

Example 11.2. Variable Powered Inertia (VPI): We impose kfk2W D 1 through M D
.X0WX/�1. For a block X consisting of p standardized numeric variables xj:
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Fig. 11.1 Polar representation of the Variable Powered Inertia according to the value of l

�.u/ D
0

@
pX

jD1
!j�

2l.Xu; xj/

1

A

1
l

D
0

@
pX

jD1
!j.u

0X0Wxjxj0WXu/l

1

A

1
l

;

implying J D p and 8j; Nj D X0Wxjxj0WX.
For a block X consisting of p categorical variables Xj, each of which is coded

through the set of its centered indicator variables (less one to avoid singularity of
Xj0WXj), we take:

�.u/ D
0

@
pX

jD1
!j cos2l.Xu ; hXji/

1

A

1
l

D
0

@
pX

jD1
!jhXuj˘XjXuilW

1

A

1
l

;

where:˘Xj D Xj.Xj0WXj/�1Xj0W. Here, we have J D p and 8j; Nj D X0W˘Xj X.
VPI is the measure we stick to, from here on. The role of l is easy to understand in

the case of numerical variables. For l D 1, we get the part of X’s variance captured
by component f , which is also maximized by the first eigenvector in the PCA of
.X;M;W/. More generally, tuning parameter l allows to draw components towards
more (greater l) or less (smaller l) local variable bundles. Figure 11.1 graphs � l.u/
in polar coordinates (z.�/ D � l.ei� /ei� I � 2 Œ0; 2��) for various values of l in the
elementary case of 4 coplanar variables x with 8j; !j D 1. Note that � l.u/ was
graphed instead of �.u/ so that curves would be easier to distinguish. One can see
how the value of l tunes the locality of bundles considered.

11.4 THEME-SCGLR

We shall first consider the simpler case of a single explanatory block (R D 1), and
then turn to the general case.
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11.4.1 Dealing with a Single Explanatory Block

In this sub-section, we consider the thematic model Y D hXITi.

11.4.1.1 The Criterion and Program

In order to regularize the regression corresponding to program Q0 at step k of the
FSA, we consider program:

R W max
u0M�1uD1

S.u/ with S.u/ D  .u/1�s�s.u/ (11.4)

where  .u/ is given by (11.2) and s is a parameter tuning the relative importance of
the SR with respect to the goodness of fit. Taking s D 0 equates the criterion with
the goodness of fit, while at the other end, taking s D 1 equates it with the mere
SR. The product form of the criterion is a straightforward way to make the solution
insensitive to “size effects” of �.u/ and  .u/.

11.4.1.2 Analytical Expression of S.u/

hXu;Ti D h QXu;Ti

with QX WD ˘T?
X

h QXi?hTi ) ˘h QXu;Ti D ˘h QXui C˘hTi

) cos2Wk
.zk ; h QXu;Ti/ D 1

kzkk2Wk

�
hzkj˘h QXuizkiWk C hzkj˘hTizkiWk

�

Now:

hzkj˘h QXuizkiWk D z0kWk˘h QXuizk D u0 QX0Wkzkz0kWk QXu

u0 QX0Wk QXu

Let: Ak WD QX0Wkzkz0

kWk QX
kzkk2Wk

; Bk WD QX0Wk QX ; ck WD hzkj˘
hTi

zkiWk

kzkk2Wk

. We have:

 .u/ D
X

k

�
u0Aku

u0Bku
C ck

�
(11.5)

From (11.1) and (11.5), we get the general matrix form of S.u/.
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11.4.1.3 Rank 1 Component

THEME-SCGLR’s rank 1 component is obtained by solving program (11.4) instead
of performing the current step of the modified FSA used to estimate the multivariate
GLM of Sect. 11.2. We give an algorithm to maximize, at least locally, any criterion
on the unit-sphere: the Projected Iterated Normed Gradient (PING) algorithm (cf.
appendix). For component 1, PING is used with D D 0.

11.4.1.4 Rank h > 1 Component

The role of each extra-component must be clear. We adopt the local nesting principle
(LocNes) presented in Bry et al. (2012). Let Fh WD ff 1; : : : ; f hg be the set of the first
r components. According to LocNes, extra component f hC1 must best complement
the existing ones plus T, i.e. Th WD Fh [ T. So f hC1 must be calculated using Th as
a block of extra-covariates. Moreover, we must impose that f hC1 be orthogonal to
Fh, i.e.:

Fh0Wf hC1 D 0 (11.6)

To ensure (11.6), we add it to program (11.4). To calculate component f hC1 D Xu,
we would now solve:

R W max
u0M�1uD1

Dh0

uD0
S.u/

where Dh WD X0WFh. Again, the PING algorithm allows to solve this program.

11.4.2 Dealing with R > 1 Explanatory Blocks

Consider now the complete thematic equation: Y D hX1; : : : ;XR I Ti

11.4.2.1 Rank 1 Components

Estimating the multivariate GLM of Sect. 11.2 led to currently solving program Q00.
Introducing SR in it, we will now solve:

R00 W max
8r; u0

rM�1
r urD1

 .u1; : : : ; uR/
1�s

RY

rD1
�s.ur/ (11.7)
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where  .u1; : : : ; uR/ is given by (11.3). Equation (11.7) can be solved by iteratively
maximizing in turn the criterion on every ur. Now, we have:

8r W cos2Wk
.zk ; hX1u1; : : : ;XRuR;Ti/ D cos2Wk

.zk ; hXrur; QTri/

where QTr D T [ ffsI s ¤ rg. So, (11.7) can be solved by iteratively solving:

R00r W max
u0

rM�1
r urD1

 .ur/
.1�s/�s.ur/

using QTr as additional covariates. Section 11.4.1 already showed how to solve this
program.

11.4.2.2 Rank h > 1 Components

Suppose we want Hr components in Xr. 8r 2 f1; : : : ;Rg;8l < Hr, let Fl
r WD

ff h
r I h D 1; : : : ; lg. LocNes states that f hC1

r must best complement the “existing”
components (by “existing”, we mean components with rank< hC1 ones in Xr plus
all components of all other blocks) plus T, i.e.: Th

r WD Fh
r [s¤r FHs

s [ T. So, the
current value of f hC1

r is calculated solving:

Rh
r
00 W max

u0

rM�1
r urD1

Dh
r

0

urD0

 .ur/
.1�s/�s.ur/

where Dh
r WD X0rWFh

r and taking Th
r as additional covariates.

Informally, the algorithm consists in currently calculating all Hr components in
Xr as done in Sect. 11.4.1, taking T [s¤r FHs

s as extra-covariates—and then loop on
r until overall convergence of the component-system is reached.

11.4.3 Further Issues

11.4.3.1 Models with Offset

In count data, units may not have the same “size”. As a consequence, the
corresponding variables may not have the same offset. Models with offset call for
elementary developments, which are not included here.
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11.4.3.2 Dealing with Mixed-Type Covariates

In practice, covariates are most often a mixture of numeric and categorical variables.
This situation is dealt with by adapting matrix M. Consider a particular block
X D 	

x1; : : : ; xK ;X1; : : : ;XL



(the block-index is omitted here), where: x1; : : : ; xK

are column-vectors coding the numeric regressors, and X1; : : : ;XL are blocks of
centered indicator variables, each block coding a categorical regressor (Xl has ql�1
columns if the corresponding variable has ql levels, the removed level being taken
as “reference level”). In order to get a relevant PCA of .X;M;W/, we must consider
the metric block-diagonal matrix:

M WD diag
n
.x1
0
Wx1/�1; : : : ; .xK 0WxK/�1; .X10WX1/�1; : : : ; .XL0WXL/�1

o

The regressor matrix is then transformed as follows: QX D XM
1
2 and QX is used in

THEME-SCGLR in place of X.

11.4.3.3 Coefficients of Original Variables in Linear Predictors

Let QX WD Œ QX1; : : : ; QXR� and M be the block-diagonal matrix having .Mr/rD1;:::;R as
diagonal blocks. Once the components f h

r have been calculated, a generalized linear
regression of each yk is performed on ŒF;T�, where F WD fFHr

r g1�r�R, yielding
linear predictor: �k D �k C Tık C F�k D �k C Tık C QXU�k D �k C Tık C Xˇk,
where ˇk D M

1
2 U�k.

11.5 Model Assessment

11.5.1 Principle

Assessment of a model M is based on its predictive capacity on a test-sample
in a cross-validation routine. The latter uses an error indicator e suitable to each
response-type. It is measured on and averaged over test-samples, yielding an average
cross-validation error rate CVER(M) allowing to compare models.

11.5.2 Error Indicators

To every type of y may correspond one or more error indicators. For instance, for
a binary output y � B.p.x; t//, AUC denoting the corresponding area under ROC
curve, we would advise to take:
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e D 2.1� AUC/

Whereas for a quantitative variable, we had rather consider indicators based on the
mean quadratic error, such as:

e D 1

n

nX

iD1

.yi � OE.yijxi; ti//2

OV.yijxi; ti/

But these error indicators are not necessarily comparable across the y’s, and must
yet be pooled into an overall indicator. We propose to use geometric averaging, since
it allows relative compensations of indicators.

11.5.3 Backward Component Selection

Let M.h1; : : : ; hR/ denote the model of Y based on h1 (resp. . . . hR) components in
X1 (resp. . . . XR). Starting with “large enough” numbers of components in every
block allows to better focus on components proper effects, minimizing the risk
of confusion between effects. But, to ensure having “large enough” numbers, one
should start with “too large” ones, hence an over-fitting model. So, some high-
rank components should be removed. This is enabled by LocNes, in that it makes
every component complement all lower-rank ones in its block, and all components
in other blocks. Thus, every new component should improve the overall quality
of prediction of the y’s, unless it contributes to over-fitting. Consider the loss
in CVER.M.h1; : : : ; hR// related to the highest rank component in Xr: f hr

r . It is
measured through:

� .r; hr/ D CVER.M.h1; : : : ; hr � 1; : : : ; hR// � CVER.M.h1; : : : ; hr; : : : ; hR//

11.5.3.1 Backward Selection Algorithm

Starting with too large component numbers fHrgr, we consider in turn the removal
of every higher rank component in every block. We remove the one with the higher
� .r; hr/. This is iterated until � .r; hr/ becomes negative.

11.5.4 Model Selection

Models not only differ by the number of components in each block, but also by the
choice of SR. Let us first split the observation sample S into two subsamples S1 and
S2. S1 has to be large relative to S2, because S1 is used to determine (calibrate, test
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and validate) the best model for each choice of SR and select the one leading to the
smallest error, when S2 is only used to validate this best SR.

Consider a set SSR D fs1; : : : ; sLg of SR measures. Given S1, one gets for each
s 2 SSR, through backward selection, a sequence of nested models, the CVER
of which are calculated. The model M�.s/ exhibiting the lowest value is selected.
Then, M�.s/ is used to predict the y’s on validation sample V and its average error
rate (AER) is calculated on V . M�.s/ is validated when this AER is close enough to
its CVER. CVER’s of all M�.s/ are then compared and the value s� leading to the
best performance is selected. Finally, M�.s�/ is validated on S2.

11.6 Applications to Data

We shall first sum up the results of tests performed on data simulated so as
to emphasize the role of parameters. Then, we shall describe an application to
rainforest-data.

11.6.1 Tests on Simulated Data

We considered n D 100 units, and thematic model given by:

Y D hX1;X2;X3ITi (11.8)

Each Xr contained 3 variable-bundles of tunable width: B1r , B2r , B3r , respectively
structured about 3 latent variables a1r ; a

2
r ; a

3
r , having tunable angles. Moreover, each

Xr contained a large number of noise-variables. Only a1r ; a
2
r played any role in the

model of Y, so that B3r be a nuisance-bundle, with as many variables in it as to
“make” the block’s first PC by itself. The role of a1r was made more important than
that of a2r , so that every f 1r should align to a1r . Every Xr was made to contain 100
variables. T was made of a random categorical variable having 3 levels. Y contained
50 conditionally independent indicator variables, known to be the worst type in
GLM-estimation.

The simulation study led to no convergence problem except when the ha1r ; a2r i’s
were much too close between blocks, which is only fair, since the influences of
blocks can then theoretically not be separated. It demonstrated that the estimation
results are not very sensitive to s, except in the vicinity of values 0 and 1. It also
showed that l is of paramount importance to identify the truly explanatory bundles:
l D 1 tends to make f 1r very close to PC1 (so, a3r ) in Xr, whereas taking l � 2 allows
f 1r to focus on a1r .
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11.6.2 Application to Rainforest Data

We considered n D 1000 8 � 8 km2 plots sampled in the Congo Basin rainforests,
and divided it 5 times into 800 plots for calibration and 200 for prediction and
cross-validation. Responses Y were counts of q D 27 common tree species. Each
count was assumed to be Poisson-distributed conditional on 41 covariates, the plot’s
surface standing as offset. Covariates were partitioned into 3 sets: one containing all
geographic variables (topography and climate), one containing satellite measures of
photosynthetic activity over a year, and finally, an extra-covariate: the geologic type
of the plot (cf. Fig. 11.2).

With l D 1 and s D 1=2 (even balance between GoF and SR), 2 components
were found necessary in both X1 and X2 to model Y. While components in X1 are
easy to interpret in terms of rain-patterns, components in X2 are not (cf. Fig. 11.3).

It appears on Fig. 11.3 that, in X2, components may have been “trapped” by PC’s,
so, we raised l to 4. The new components are shown on Fig. 11.4. It appears that one

Fig. 11.2 Thematic model of
tree species in the Congo
basin

Fig. 11.3 Correlation scatterplots of the blocks’ first 2 components for l D 1
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Fig. 11.4 Correlation scatterplots of the blocks’ first 2 components for l D 4

photosynthetic pattern is more important than the other (even if ultimately, they are
both important), and the corresponding bundle attracts f 12 , letting the other bundle
attract f 22 . The model obtained with l D 4 also having a lower CVER, it was retained
as the final model.

11.7 Conclusion

THEME-SCGLR is a powerful trade-off between Multivariate GLM estimation
(which cannot afford many and redundant covariates) and PCA-like methods
(which take no explanatory model into account). Given a thematic model of
the phenomenon under attention, it provides robust predictive models based on
interpretable components. It also allows, through the exploration facilities it offers,
to gradually refine the design of the thematic model.
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Appendix: The Projected Iterated Normed Gradient
(PING) Algorithm

Consider program:

max
u0M�1uD1

D0uD0
h.u/

Putting v D M�1=2u, g.x/ D h.M1=2x/ and C D M�1=2D, this is strictly
equivalent to:

RC W max
v0vD1
C0vD0

g.v/

Applying the first order conditions to the Lagrangian, we get that the solution
satisfies the stationary equation:

v D ˘C?

� .v/

k˘C?

� .v/k

where˘C?

WD I�C.C0C/�1C0. This gives the basic iteration of the ING algorithm:

mŒtC1� D ˘C?
� .vŒt�/

k˘C?
� .vŒt�/k

vŒtC1� D mŒtC1� (11.9)

It can be shown that this iteration follows a direction of ascent. Now, picking a
point on a direction of ascent does not guarantee that g actually increases, since
one may “go too far”. But staying “close enough” to the current starting point
on the arc .vŒt�;mŒtC1�/ guarantees that g increases. We may thus replace (11.9)
with vŒtC1� D arg maxv2.vŒt�;mŒtC1�/

g.v/, the search for this maximum being obtained
through a unidimensional maximization procedure.
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Chapter 12
Partial Possibilistic Regression Path Modeling

Rosaria Romano and Francesco Palumbo

Abstract This paper introduces structural equation modeling for imprecise data,
which enables evaluations with different types of uncertainty. Coming under
the framework of variance-based analysis, the proposed method called Partial
Possibilistic Regression Path Modeling (PPRPM) combines the principles of PLS
path modeling to model the network of relations among the latent concepts, and
the principles of possibilistic regression to model the vagueness of the human
perception. Possibilistic regression defines the relation between variables through
possibilistic linear functions and considers the error due to the vagueness of human
perception as reflected in the model via interval-valued parameters. PPRPM trans-
forms the modeling process into minimizing components of uncertainty, namely
randomness and vagueness. A case study on the motivational and emotional aspects
of teaching is used to illustrate the method.

Keywords Structural equation modeling (SEM) • Possibilistic regression (PR) •
Partial possibilistic regression path modeling (PPRPM)

12.1 Introduction

Structural equation models (SEMs) include various statistical methodologies that
aim to estimate a network of causal relationships among latent variables (LVs)
defined by blocks of manifest variables (MVs) (Bollen 1989). The SEM research
paradigm is grounded on psychometric (covariance-based, CBSEM) and chemo-
metric research tradition (variance-based, VBSEM). With increasing popularity
in several areas, under the variance-based framework estimation methods (Wold
1975), Partial Least Squares Path Modeling (PLSPM) represents a statistical
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approach to SEM (Tenenhaus et al. 2005). PLSPM formulates the causality
dependencies between LVs in terms of linear conditional expectation and estimates
the LVs through a system of interdependent equations based on simple/multiple
regressions.

As with classical least squares regression, in PLSPM the process of data analysis
is represented by the simple equation: data D modelC error (Judd and McClelland
2009). In a very general definition, error, which is also called uncertainty, refers to
the information that is not explained by the model itself. In statistical thinking the
error component corresponds to randomness, and is related to the natural variability
of the analyzed phenomena. However, there are other sources of uncertainty
besides randomness (Coppi 2008): for example, human judgments are subjective
measurements that are generally affected by vagueness (Zadeh 1973).

Vagueness characterizes phenomena that are vague in their own nature, which
means they have no objective measurement scales. Indeed, concepts such as
satisfaction, trust, happiness, stress, etc. well define the underlying phenomenon; yet
they cannot be quantified. Research methodology generally defines these concepts
in terms of LVs measured through MVs that are equally measured on subjective
perception scales. Different approaches have been proposed to cope with vagueness
in regression analysis. For the sake of simplicity they can be grouped into two broad
categories: Fuzzy Least Square Regression (FLSR) and Possibilistic Regression
(PR). Two papers can be considered seminal for each of them, while many others
have proposed further developments. Diamond’s papers (1988; 1990) introduced
the FLSR approach (see also Coppi et al. 2006), which is closer to the traditional
statistical approach. In fact, following the Least Squares line of thought, the aim
is to minimize the distance between the observed and the estimated fuzzy data.
This approach has been extended to interval data analysis (Blanco-Fernndez et al.
2011; Billard and Diday 2000; Marino and Palumbo 2002) and to symbolic data
analysis (see Lima Neto and de Carvalho 2010). The paper by Tanaka et al. (1982)
and that by Tanaka (1987) introduced the PR approach. For an exhaustive overview
of possibilistic data analysis, we refer the reader to the book by Tanaka and Guo
(1999). In PR the error term is embedded in the interval parameters that model the
vagueness in the relation among the variables and the solutions are defined through
numerical optimization.

In a previous work, following the PLSPM approach, Romano and Palumbo
(2013) proposed a new method termed Partial Possibilistic Regression Path Model-
ing (PPRPM). PPRPM aims to explain at best the residual variance in any regression
inside the model, but it is based on the use of PR to model relations among the LVs.
This paper shows how PPRPM can properly gear randomness as well vagueness in
path models.

PPRPM is a method to analyze phenomena whose description requires the
analysis of a complex structure of relations among the variables inside the system,
and where there is an additional source of complexity arising from the involvement
of influential human beings. This is achieved by combining the principles of PLSPM
(Tenenhaus et al. 2005) and PR (Tanaka and Guo 1999). Such a combination was
proposed by Palumbo and Romano (2008) and Palumbo et al. (2008). The novelty
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of PPRPM consists in the use of quantile regression (Koenker and Basset 1978;
Davino et al. 2013) to model the relations between each LV and its respective block
of indicators. This choice of combining PR and quantile regression allows us to have
a robust measure of the latent variables (measurement model), on the one hand, and
to take into account the imprecision inherent in systems where human estimation is
influential and the observations cannot be described accurately, on the other.

Under the Judd and McClelland paradigm 2009, VBSEM considers the error
component as the sum of the error due to MVs, termed measurement model error
and the error due to LVs, termed structural model error. VBSEM reaches the
solution by alternately minimizing the two components, whereas CBSEM focuses
on the whole covariance structure considering the error as a whole.

Like PLSPM, the PPRPM approach independently considers the measurement
model error and structural model error. However, it assumes that the randomness can
be referred to the measurement model and the vagueness to the structural model and
it uses different methods to minimize the error. In this partial approach it is assumed
that the randomness component can only be referred to the measurement model,
whereas the uncertainty component is part of the model itself.

In PPRPM the process of data analysis is represented by the equation: data D
possibilisticmodel C randomness. Unlike the classical statistical paradigm, where
only randomness is considered an additional element to the deterministic relation
among the variables, PPRPM also considers vagueness as being reflected in the
structural interval-valued model parameters.

In the following, we will first introduce the PR and SEM, and then we will present
the basic PPRPM algorithm. A case study on a meta-cognitive questionnaire for
teachers will be illustrated. The paper will end with the main conclusions.

12.2 Possibilistic Regression

The purpose of PR is to explain a dependent variable as an interval output in terms of
the variation of explanatory variables. Specifically, PR defines the relation between
one dependent variable y and a set of M predictors x1; xm; : : : ; xM, observed on N
statistical units, through a linear function holding interval valued coefficients

y D Q!1x1 C : : :C Q!mxm C : : :C Q!MxM; (12.1)

where Q!m denotes the generic interval-valued coefficient. Interval-valued coeffi-
cients are defined in terms of midpoint and spread: Q!m D fcmI amg and will be
referred to as interval coefficients in the rest of the paper. There are no restrictive
assumptions on the model. Unlike statistical regression, the deviations between data
and linear models are assumed to depend on the vagueness of the parameters and not
on measurement errors (Kim et al. 1996). This means that in PR there is no external
error component but the spread of the coefficients embeds all uncertainty, such that
PR minimizes the total spread of the interval coefficients
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min
am

PM
mD1

�PN
nD1 amjxnmj

�
; 8 m D 1; : : : ;M; (12.2)

under the following linear constraints

PM
mD1 cmxnm C .1 � ˛/PM

mD1 amjxnmj � yn ;

PM
mD1 cmxnm � .1 � ˛/PM

mD1 amjxnmj 	 yn ; 8n D 1; : : : ;N; (12.3)

satisfying the following conditions: (i) am � 0; (ii) cm 2 R; (iii) xn1 D 1.
Constraints in (12.3) guarantee the inclusion of the whole given data set in

the estimated boundaries. The degree of possibility ˛ is a subjective measure that
depends on the context: increasing the ˛ coefficient expands the estimated intervals
(see Tanaka and Guo 1999 on the choice of ˛).

Wang and Tsaur (2000) provided a suitable interpretation of the regression
interval. The basic idea was to find a representative value of the interval among the
infinite values enclosed within the interval boundaries. Let y

n
and yn be the lower

and upper bound of the estimated value Qy�n . The authors proved that in models with
symmetric coefficients the mean value of Qy�n is given by

Lyn D
y

n
C yn

2
;

and that it is equal to the value occurring with the higher possibility level (˛ D 1)
denoted by Qy1n. In other words, Qy1n is the best representative value of the possibilistic
interval and, more generally, the regression line QY1 has the best ability to interpret
the given data. Starting from these results the following quantities were defined.

• Total Sum of Squares (SST)
a measure of the total variation of yn in Qy�n

SST DPN
nD1

�
yn � y

n

�2 CPN
nD1 .yn � yn/

2 (12.4)

• Regression Sum of Squares (SSR)
a measure of the variation of Qy1n in Qy�n

SSR DPN
nD1

�
Qy1n � y

n

�2 CPN
nD1

�
yn � Qy1n

�2
(12.5)

• Error Sum of Squares (SSE)
an estimate of the difference when Qy1n is used to estimate yn

SSE D 2PN
nD1

�Qy1n � yn
�2

(12.6)

Thus, using (12.4) and (12.5), an index of confidence is built, which is similar
to the traditional R2 in statistics. The index is defined as: IC=SSR/SST, with



12 Partial Possibilistic Regression Path Modeling 159

0 	 IC 	 1, and gives a measure of the variation of Y between Y and Y. The higher
the IC, the better the QY1 used to represent the given data. A high value of IC means
that a well estimated PR is modeled and can support a better prediction.

12.3 Modeling Uncertainty in Structural
Equation Modeling

SEMs allow simultaneous use of both latent and observed variables within one
framework. The basic structural equation model can be described as

y D�y�C �; (12.7a)

x D�x� C ı; (12.7b)

� DB�C � � C �; (12.7c)

where y is a (p�1)-dimensional vector containing p endogenous observed variables,
x is (q � 1)-dimensional vector with q exogenous observed variables, � is an
(r� 1)-dimensional vector containing r endogenous latent variables, � is an (s� 1)-
dimensional vector containing s exogenous latent variables; � and ı are error vectors,
respectively, in (p�1) dimensions and (q�1) dimensions, and � is a residual vector
of (r � 1) dimensions; �x and �y are respectively loading matrices in (p � r) and
(q � s) dimensions, and B and � are respectively coefficient matrices of (r � r)
and (r � s) dimensions. Both, Eqs. (12.7a) and (12.7b) form the measurement
equation (also referred to as outer relations or measurement model), and Eq. (12.7c)
is called as the structure equation (also referred to as inner relation or structural
model). Focusing on the error terms, � represents the error in the inner relations,
i.e. disturbance in the prediction of the endogenous latent variables from their
respective explanatory latent variables, whereas � and ı represent imprecision in
the measurement process. Let us denote ˚ as the covariance matrix (s � s) of
�, � as the covariance matrix (r � r) of �, and �� (p � p) and �ı (q � q) are
respectively covariance matrices of � and ı. Let � be the unknown parameter vector
including �x; �y;B; �; ˚; �;��;�ı , which is estimated in the modeling process.
If the assumed model (see Eqs. in 12.7) is true, in the sense of explaining the
covariation of all the indicators, its inherent population covariance matrix ˙.�/
shall be equal to the population covariance matrix of manifest variables denoted
by ˙ , [i.e., ˙.�/ D ˙]. Because ˙ is unknown, it is usually replaced by the
empirical covariance matrix C. As a consequence, the modeling process of SEM
is converted into the estimation of unknown parameter � in ˙.�/. Typically using
a Maximum Likelihood (ML) function, the covariance-based procedure provides
optimal estimations of the model parameters under the assumptions that indicators
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follow a multivariate normal distribution and that observations are independent of
one another. The parameters are estimated by minimizing the following discrepancy
function

FML D log j˙.�/j C trace .C˙�1.�// � log jCj � .pC q/: (12.8)

Since in covariance-based approaches there is a unique minimization function
related to the ability of the model to reproduce the sample covariance matrix, it
is possible to have a global measure of fit that is defined as

min.C �˙.�//: (12.9)

CBSEMs consider the three residual terms �, ı, and � in a unique minimization
problem such that all the parameters are estimated simultaneously.

In VBSEMs the three residual terms �, ı, and � play a crucial role in the modeling
process. In practice, PLSPM aims to minimize the sum of residual variances of
all the dependent variables in the model, both latent and observed ones, rather
than explain the covariance structure of all the indicators. Hence, PLSPM is more
strongly oriented to prediction than to parameter estimation. The logic behind
the PLSPM is to partially estimate parameters by minimizing in each step of the
procedure a residual variance with respect to a subset of the parameters being
estimated given proxies or fixed estimates for other parameters (Chin 1998). For
this reason PLSPM uses a three-stage estimation algorithm: first it performs an
iterative scheme of simple/multiple regressions until the solution converges to a set
of weights that are used for estimating the latent variables scores, and then uses these
scores for obtaining loadings and path coefficients, using OLS regressions. PLSPM
lacks a global optimization criterion but separately minimizes the following residual
variances

min .trace .��/I trace .�ı/I trace .�//: (12.10)

PPRPM differs from both CBSEM and VBSEM in that elements in coefficient
matrices, (i.e., B and � in Eq. 12.7c) are interval-valued, yet vector residual � is
no longer covered in the model. PPRPM treats differently the vagueness in the
prediction of the LVs (error term in the structural model) and the imprecision in
the measurement of MVs (error term in the measurement model). The first type
of error is assumed to depend on the indefiniteness/vagueness of the parameters
which govern the system structure, not on its measurement errors. PPRPMs give
rise to possibilistic regressions that account for the imprecise nature or vagueness
in our understanding of phenomena, which is manifested by yielding interval path
coefficients of the structural model. The second type of error is still considered as
a measurement error, but the estimation process minimizes the sum of the absolute
values and not the squares, considered in the PLSPM approach. The minimization
problem in (12.10) therefore does not include the structural residual variance
trace .�/, which is part of the modeling process of the structural model through
the PR, and becomes
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uT� C uTı; (12.11)

where u is a p � 1 unitary vector.

12.4 Partial Possibilistic Regression Path Modeling

In PPRPM, an iterative procedure permits the LV scores and the outer weights to be
estimated, while path coefficients are obtained from PR between the estimated LVs.
Since in PLSPM notation there is no difference between endogenous and exogenous
LVs or between their respective MVs, in the following any block of MVs is referred
to as Xh and each LV as �h.

The algorithm computes the latent variables’ scores alternating the outer and
inner estimation till convergence (Jöreskog 1970). The procedure starts on centered
(or standardized) MVs by choosing arbitrary weights wph. In the external estimation,
the h-th latent variable is estimated as a linear combination of its own MVs

vh /PPh
pD1 wphxph D Xhwh; (12.12)

where vh is the standardized outer estimation of the latent variable �h and the symbol
/ means that the left-hand side of the equation corresponds to the standardized
right-hand side. In the internal estimation, the latent variable is estimated by
considering its links with the other adjacent h0 latent variables

#h /Ph0

ehh0vh0 ; (12.13)

where #h is the standardized inner estimation of the latent variable �h and the inner
weights, according to the so-called centroid scheme (Tenenhaus et al. 2005), are
equal to the sign of the correlation between vh and vh0 (with h; h0 D 1; : : : ;H). These
first two steps allow us to update the outer weights wph. In PPRPM the weight wph

is the regression coefficient in the quantile regression of the p-th manifest variable
of the h�th block xph on the inner estimate of the h-th latent variable #h

xph D wph#h C �ph: (12.14)

The quantile regression is an extension of the classical estimation of the conditional
mean to the estimation of a set of conditional quantiles (Koenker and Basset 1978;
Davino et al. 2013)

Q� .xphj#h/ D #hwph.�/C �ph; (12.15)
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where 0 < � < 1 and Q� .:j:/ denotes the conditional quantile function for the �-th
quantile. In particular, PPRPM considers only the case in which � D 0:5, i.e. the
median is the single chosen quantile.

The algorithm iterates till convergence. After convergence, structural (or path)
coefficients are estimated through PR among the estimated LVs

� j D Q̌0j CPhW�h!�j
Q̌
hj�h; (12.16)

where �j (j D 1; : : : ; J and J < H) is the generic endogenous (dependent) latent

variable and Q̌hj is the generic interval path coefficient in terms of midpoint and
range Q̌hj D fchjI ahjg, or equivalently Œˇ

hj
; ˇhj� D Œchj ˙ ahj�, interrelating the

h-th exogenous (independent) variable to the j-th endogenous one (with h ¤ j).
The higher the midpoint coefficient the higher the contribution to the prediction
of the endogenous LV. At the same time, the higher the spread coefficient the higher
the vagueness in the relation among the considered LVs.

An important aspect to note is that in PPRPM the model can be validated
using the same criteria defined in the PLSPM framework. In particular, this applies
to the assessment of the measurement model, which can be validated by means of
the communality index (Tenenhaus et al. 2005). However, this reasoning cannot be
extended to the validation of the structural model, and even less to the global model.
In PPRPM each individual structural equation is modeled by PR which includes
the error term in the parameters; thus no residuals are provided. The quality of the
model is here measured by the IC index presented in Sect. (12.2).

12.5 An Empirical Evidence: The MESI Questionnaire

The case study presents research carried out in the administrative area of Naples,
which set itself the objective of investigating some dimensions that affect the quality
of teaching in high schools (Palumbo et al. 2014). In particular, we examined
the motivational and emotional aspects of teachers depending on the type of high
school, their working position, gender and the socio-cultural context in which the
teacher operates. The tool used to conduct this study was the questionnaire known
as MESI (Motivation, Emotions, Strategies, Teaching) (Moè et al. 2010), which
consists of six scales that investigate job satisfaction, practices, teaching strategies,
emotions, self-efficacy, and incrementality. The idea is that effective teachers are
those with a high sense of self-efficacy, satisfied with their work and able to
sustain themselves through the activation of positive emotions in the workplace
and in their personal life. The questionnaire was administered to 216 teachers
working in high schools of the province of Naples. Fifteen high schools joined the
research, divided into three different categories: Liceo (5), Technical Institute (6)
and Professional Institute (4). In the following, the focus will be only on some of
the scales composing the questionnaire: job satisfaction, emotions, and self-efficacy.
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The first scale (satisfaction) is used to assess how job satisfaction is perceived
from the point of view of the teachers. It consists of five items on a 7-point Likert
scale (1 D strongly disagree, 7 D strongly agree). The second scale (emotions)
comprises two subscales each of which measures what emotions teachers experience
when they teach (teach-emotions) and what emotions they experience in the role of
teacher (role-emotions). The scale comprises a total of 30 items, each of which is
constituted by a specific positive or negative emotion, and for each the teacher’s
frequency in experiencing the emotion is recorded on a 5-point scale (1 D hardly
ever, 5 D almost always). In this study, we will focus only on the positive emotions
measured by 13 items, the same for both subscales. Finally, the third scale (self-
efficacy) explores the perception of self-efficacy of teaching by presenting a number
of situations. Originally, it consisted of 24 items to which the teacher had to respond
with a 9-point scale (1 D not at all, 9 D very much), how she/he felt able to
deal with certain situations. However, a reduced subset of items is used in this
study (9 items). According to theoretical assumptions, we propose an empirical
framework (see Fig. 12.1) for analyzing the relationships among the subscales
composing the MESI. PPRPM was adopted to check the research framework.
An exploratory analysis of the observed indicators shows how the distribution
of the subjective measurements is typically highly skewed (see Fig. 12.2). Thus,
the choice of adopting the quantile regression in the measurement model seems
appropriate for such type of data. Indicator reliability is assessed by looking at
the standardized loadings in Table 12.1, where it is shown that all indicators are
highly correlated with the respective constructs. To assess construct reliability,
we calculate Dillon-Goldstein’s � (DG.rho) and the communality indexes. As we
show in Table 12.1, both indexes for all constructs are above the cut-off value of
0.7 and 0.5, respectively. This means constructs are homogeneous and capture on
average 64 %, 59 %, 47 % and 49 % of the variance of their indicators in relation to
the amount of variance due to measurement error. Consistent with the communality,
the satisfaction and self-efficacy scales present the highest loadings.

The results of the structural model are shown in Fig. 12.3, where interval path
coefficients are reported in terms of midpoints and spreads. As can be seen, there

Fig. 12.1 Structural model of the MESI questionnaire
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Fig. 12.2 Boxplots of the observed indicators

is no relation between satisfaction and self-accuracy, since the path coefficient is
equal to 0.Teach-emotions is positively related to satisfaction with a path coefficient
equal to 0.69, which means that when a teacher is satisfied he/she feels more
frequently positive emotions while teaching. Both satisfaction and teach-emotions
are good predictors of role-emotions, with path coefficients equal to 0.39 and
0.22, respectively. In other words, when a teacher is satisfied he/she feels positive
emotions more frequently also in his/her role as a teacher. In addition, the increase
in positive emotions while teaching also increases positive emotions in the role
of teacher. It is worth noting that some relations indicate a certain imprecision.
This holds for the relationship between satisfaction and teach-emotions, whose path
coefficient has a spread equal to 0.23, and the relationship between the latter and the
role-emotion, whose path coefficient has a spread of 0.16.

In Table (12.2) the results of the PPRPM are compared with those of the classical
PLSPM. In particular, the table shows the values of the path coefficients and of
the goodness of fit indexes. As can be seen, PPRPM results are consistent with
the results obtained on the classical single-valued parameter model. The weak
relationship between satisfaction and self-efficacy highlighted by a path coefficient
close to zero in the PPRPM approach, is underlined by the low value of the R2 index
in PLSPM. The coefficient between satisfaction and teach-emotions is very similar
in the two approaches, but PPRPM also provides information on the vagueness of
the relation. In other words, the spread of the coefficient shows that the variation
in the opinions of the respondents with respect to these two scales is not sufficient
to arrive at a precise measurement of the dependent relationship between the two
scales. Finally, both approaches show that role-emotions depend on the satisfaction
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Table 12.1 Indicator and construct reliability

LV MV Standardized loadings DG.rho Communality

Satisfaction Item1 0.817 0.899 0.641

Item2 0.750

Item3 0.867

Item4 0.836

Item5 0.726

Self-efficacy Item6 0.675 0.934 0.586

Item7 0.841

Item8 0.647

Item9 0.816

Item10 0.713

Item11 0.758

Item12 0.829

Item13 0.854

Item14 0.726

Teach-emotions Item15 0.724 0.917 0.469

Item16 0.756

Item17 0.535

Item18 0.419

Item19 0.626

Item20 0.572

Item21 0.700

Item22 0.709

Item23 0.741

Item24 0.778

Item25 0.784

Item26 0.756

Item27 0.701

Role-emotions Item28 0.737 0.926 0.493

Item29 0.735

Item30 0.502

Item31 0.420

Item32 0.697

Item33 0.609

Item34 0.769

Item35 0.728

Item36 0.798

Item37 0.763

Item38 0.805

Item39 0.829

Item40 0.692
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Fig. 12.3 Structural model results of the MESI questionnaire

and teach-emotions, but the PPRPM approach highlights the fact that there is a
greater margin of vagueness in the second relation (higher spread).

Table 12.2 PLSPM and PPRPM structural model results

Relations PLSPM path R2 PPRPM path IC

Satisfaction > self-efficacy 0.22 0.05 {0.00; 0.00} 0.77

Satisfaction > teach-emotions 0.60 0.36 {0.69; 0.23} 0.88

Satisfaction > role-emotions 0.29 0.58 {0.39; 0.00} 0.80

Teach-emotions > role emotions 0.55 {0.22; 0.16}

12.6 Conclusion and Perspectives

The present work presented the use of PPRPM for handling different types of
uncertainty in the SEM context. After discussing the methodological aspects, the
work focused on a case study and interpretation of the findings. It was shown that
the use of PPRPM highlights the component of uncertainty inherent in subjective
evaluations, besides the classical randomness. On-going research concerns the pos-
sibility of considering all structural equations simultaneously, such that the interval
path coefficients would be estimated by optimizing a single objective function based
on the spreads of all the coefficients inside the structural model.
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Chapter 13
Assessment and Validation in Quantile
Composite-Based Path Modeling

Cristina Davino, Vincenzo Esposito Vinzi, and Pasquale Dolce

Abstract The paper aims to introduce assessment and validation measures in
Quantile Composite-based Path modeling. A quantile approach in the Partial Least
Squares path modeling framework overcomes the classical exploration of average
effects and highlights how and if the relationships among observed and unobserved
variables change according to the explored quantile of interest. A final evaluation
of the quality of the obtained results both from a descriptive (assessment) and
inferential (validation) point of view is needed. The functioning of the proposed
method is shown through a real data application in the area of the American
Customer Satisfaction Index.

Keywords Quantile composite-based path modeling • PLS-PM • Quantile
regression

13.1 Introduction

Quantile Composite-based Path modeling (QC-PM) has been recently introduced
(Davino and Esposito Vinzi 2014; Davino 2014; Davino and Esposito Vinzi 2016)
as a complementary approach to the classical methods used to analyzed a network of
relationships between unobserved and observed variables. In this framework, Partial
Least Squares path modeling (PLS-PM) (Wold 1985; Tenenhaus 1998; Tenenhaus
et al. 2005; Esposito Vinzi et al. 2010) is a consolidated method. Basically, PLS-
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PM algorithm consists of an iterative procedure in which simple and multiple
ordinary least squares (OLS) regressions are applied. In several applications it can
be advisable to broaden the analysis beyond the estimation of average effects in
the network of relationships among variables. A QC-PM aims to highlight how and
if the relationships among observed and unobserved variables as well as among
the unobserved variables change according to the explored quantile of interest,
thus providing an exploration of the whole dependence structure. To this purpose
Quantile regression (QR) and Quantile Correlation (QC) are introduced in all the
estimation phases of a PLS-PM algorithm.

In this paper we go through the assessment and the validation of the QC-PM.
The goodness of fit measures typically used in PLS-PM are extended to QC-PM
and a non parametric approach is used to validate the significance of the estimates.
QC-PM is applied to real data in the area of the American Customer Satisfaction
Index (American Customer Satisfaction Index 2000; Anderson and Fornell 2000).

The paper is organized as follows. Sections 13.2 presents the basic notations and
the methodological framework. Section 13.3 is devoted to the description of the
dataset used in the real data application. In Sects. 13.4, 13.5, and 13.6, QC-PM is
introduced and the measures for assessing and evaluating the estimation results as
well as the real data application results are presented.

13.2 Basic Notations and Methodological Framework

The methodological framework of the paper is represented by PLS-PM (Wold
1985; Tenenhaus 1998; Esposito Vinzi et al. 2010) and QR (Koenker 2005; Davino
et al. 2013). The former is a consolidated method used to analyze a network of
relationships between concepts that cannot be directly measured, while the latter is
proposed as alternative methodology in the estimation procedure of PLS-PM. QC
(Li et al. 2014) is also exploited and it will be described in Sect. 13.4.

PLS-PM aims at studying the relationships among Q blocks X1; : : : ; Xq; : : : ;XQ

of manifest variables (MVs), each one summarized by an unobservable variable �q,
.q D 1 : : :Q/, that is usually called latent variable (LV).

The general model consists of a measurement (or outer) model that specifies the
relationships between MVs and LVs and a structural (or inner) model that specifies
the relationships of LVs among each other. In the measurement model each MV
xpq (p D 1; : : : ;Pq; q D 1; : : : ;Q) of the q-th block (Pq is the number of MVs in
the q-th block) is assumed to be generated as a linear function of its LV �q and its
measurement error variable �pq (Lohmöller 1989),

xpq D pq0 C pq�q C �pq (13.1)

where pq0 is a location parameter and pq is the loading coefficient.
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In the structural model, LVs that depend on other LVs are called endogenous LVs.
LVs that appear as predictors in every structural equation are called exogenous LVs.
A generic endogenous LV, �m .m D 1 : : :M/, is linked to corresponding latent
predictors by the following multiple regression model:

�m D ˇm0 C
X

q!m

ˇmq�q C �m (13.2)

where ˇmq is the so-called path coefficient capturing the effects of the predictor �q

on the dependent LV �m, and �m is the inner residual variable.
As a vehicle for the estimation of the parameters of the model, the scores of the

qth LV are estimated as a linear combination of the corresponding MVs through the
so-called weight relationship:

O�q D
pqX

pD1
wpqxpq (13.3)

where wpq are the outer weights and measure the contribution of each MV to the
corresponding LV.

The outer weights wpq are estimated by an iterative procedure alternating outer
and inner estimation steps. In the outer estimation step each outer LV approximation
is obtained as a standardized weighted aggregate (vq) of its own manifest variables,
i.e. vq / Pp wpqxpq D Xqwq (outer estimation). Generally, two different schemes
are utilized for the computation of the outer weights (Esposito Vinzi and Russolillo
2012). In the mode A scheme (also called outward directed or reflective scheme)
each MV is regressed on the corresponding so-called inner approximation, zq. In the
mode B scheme (also called inward directed or formative scheme) the weights are
computed as the regression coefficients in the multiple regression of zq on its own
MVs xpq .p D 1; : : : ;Pq/. Then, the weights are normalized such as var.Xqwq/ D 1.

In the inner estimation step, each inner LV approximation is obtained as a
weighted linear combination of the outer approximation of the connected LVs. Two
LVs are connected if there exists a link between the two blocks: an arrow goes
from one variable to the other in the Path diagram, independently of the direction
(Esposito Vinzi and Russolillo 2012).

One of the schemes for the estimation of the inner weights is named path
weighting scheme and it exploits the direction of the links between LVs. Such a
scheme differently computes the weights according to the role played by a given LV
with respect to the other LVs it is connected to. The LVs connected to a generic
endogenous LV �m are divided into two groups: the predecessors of �m (�q!m),
which are LVs explaining �m, and the successors, which are LVs explained by �m

(�q! m). The weights among the mth LV and its successor LVs are determined
by their correlations while for its predecessor LVs the weights are the coefficients
of a multiple regression, �m D �!mˇ, where �!m is the matrix of the all �m’s
predecessor LVs. Possible alternatives are the centroid and the factorial scheme.
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These schemes are based respectively on the sign and the value of the correlations
between LVs. Therefore, they disregard the direction of the links between LVs.

An extension of OLS to the estimation of a set of conditional quantile functions
is represented by QR. For a given quantile � , a QR model can be formulated as
follows:

Q� .OyjX/ D X Ǒ .�/ (13.4)

where y is the response variable observed on n individuals, X D Œ1;Xp� is a matrix
with p regressors and a vector of ones for the intercept estimation, 0 < � < 1 and
Q� .:j:/ denotes the conditional quantile function for the � th quantile.

Although different functional forms can be used, the paper will refer to linear
regression models. In a QR, no probabilistic assumptions are required for the error.
The parameter estimates in QR linear models have the same interpretation as those
of any other linear model. As a consequence, the estimated values of the response
variable conditioned to given values of the regressors, reconstruct the conditioned
quantile of the dependent variable.

13.3 Dataset Description

The proposed methodology is applied to a real dataset concerning the ACSI
(American Customer Satisfaction Index 2000; Anderson and Fornell 2000).1 This
index was established in 1994 and it is the only national cross-industry measure
of customer satisfaction in the United States. The index measures the satisfaction
of U.S. household consumers with the quality of products and services offered
by both foreign and domestic firms with significant share in U.S. markets. Our
application refers to the food processing sector including 1617 observations. The
customer satisfaction is driven by three factors (customer expectations, perceived
value and perceived quality) and has loyalty as outcome. The complaints LV
has been excluded because the number of complaints was very small (1 %). The
relationships among the five LVs are represented in the path diagram in Fig. 13.1.
Each LV is measured through a set of MVs measured on a scale from 1 to 10
(see Table 13.1).

A preliminary analysis of the MV right tails is advisable before estimating a QC-
PM because data deriving from customer satisfaction surveys are often characterised
by a very high concentration of the responses on the upper values or even the
maximum of the used scales. The deriving effect is an absence of variability in a
given part of the distribution which is not interesting to explore. This information is
not evident exploring the MV means while it is highlighted by the quantile values
(Table 13.1).

1http://www.theacsi.org/

http://www.theacsi.org/
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Fig. 13.1 Structural model describing driving factors and outcomes of customer satisfaction

In Fig. 13.2, the distribution of the maximum quantile for each MV is shown.
It represents a threshold value because it limits the part of the variable distribution
with variability from that with constant values. In the ACSI dataset all the MVs
show a considerable percentage of customers expressing an evaluation equal to 10.
We notice, for example, that it is not interesting to explore the variable WRONGQ
from the 0.41 quantile forward because all the quantile values will be equal to 10.

Even if the maximum quantile value is different for each MV, QC-PM cannot
be performed beyond the minimum threshold quantile which corresponds to 0.41,
as for each quantile of interest QC-PM applies regression models for all the
equations of the model. The requirement to confine the analysis at a lower quantile
cannot be considered a limit of the proposed method, because QC-PM aims at
the exploration of the different parts of the dependent variables distribution when
they are characterised by different and not constant effects of the regressors.
Moreover Table 13.1 shows that this choice is not detrimental to the treatment and
interpretation of other MVs, because the maximum quantile is able to catch the
most satisfied customers (values equal or greater than 7) and all the values of the
quantiles greater than the maximum quantile are quite similar. It is worth noticing
that this question only arises in case of discrete MVs.

13.4 QPLS-PM: Methodology and Results

In QC-PM (Davino and Esposito Vinzi 2014, 2016) all the estimation steps are
carried out using a quantile approach. In particular, a QC-PM introduces, for each
quantile � of interest, either a QR or QC in both the inner estimation and the outer



174 C. Davino et al.

T
ab

le
13

.1
LV

s
an

d
M

V
s

of
th

e
A

C
SI

da
ta

se
ta

nd
m

ea
ns

an
d

m
ai

n
qu

an
ti

le
va

lu
es

LV
M

V
L

ab
el

M
ea

n
�
D0

.1
�
D0

.2
5

�
D0

.4
1

�
D0

.5
�
D0

.7
5

�
D0

.9

C
us

to
m

er
E

xp
ec

ta
tio

ns
ab

ou
to

ve
ra

ll
qu

al
it

y
O

V
E

R
A

L
L

X
8

6
8

8
9

10
10

E
xp

ec
ta

ti
on

s
E

xp
ec

ta
ti

on
s

ab
ou

tc
us

to
m

iz
at

io
n

C
U

ST
O

M
X

9
7

8
9

9
10

10

E
xp

ec
ta

tio
n

ab
ou

tr
el

ia
bi

li
ty

W
R

O
N

G
X

8
3

7
9

9
10

10

Pe
rc

ei
ve

d
Q

ua
li

ty
M

ee
ti

ng
pe

rs
on

al
re

qu
ir

em
en

ts
C

U
ST

O
M

Q
9

7
8

9
9

10
10

T
hi

ng
s

w
en

tw
ro

ng
W

R
O

N
G

Q
9

6
9

10
10

10
10

Pe
rc

ei
ve

d
V

al
ue

Pr
ic

e
gi

ve
n

Q
ua

li
ty

PQ
8

5
7

7
8

9
10

Q
ua

li
ty

gi
ve

n
Pr

ic
e

Q
P

8
6

7
8

8
9

10

C
us

to
m

er
C

us
to

m
er

Sa
ti

sf
ac

ti
on

SA
T

IS
9

7
8

9
9

10
10

Sa
ti

sf
ac

ti
on

O
ve

ra
ll

Q
ua

li
ty

O
V

E
R

A
L

L
Q

9
7

8
9

9
10

10

C
on

fir
m

at
io

n
to

E
xp

ec
ta

ti
on

s
C

O
N

FI
R

M
8

5
6

8
8

9
10

C
lo

se
to

id
ea

lp
ro

du
ct

/s
er

vi
ce

ID
E

A
L

8
5

7
8

8
9

10

C
us

to
m

er
L

oy
al

ty
R

ep
ur

ch
as

e
In

te
nt

io
n

R
E

PU
R

8
6

8
9

9
10

10



13 Assessment and Validation in Quantile Composite-Based Path Modeling 175

0.41

OVERALLX OVERALLQCUSTOMX WRONGX WRONGQ PQ QP SATIS CONFIRM IDEAL REPURCUSTOMQ
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0
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Fig. 13.2 Maximum quantile for each MV

estimation as well in the estimation of the path coefficients and loadings. Hence, for
each quantile of interest � we have estimates for all the parameters of the model.

According to the choice adopted in the various estimation phases, different
versions of the QC-PM are available.

In the outer estimation, simple (Mode A) or multiple (Mode B) QR allows to
compute the LV scores for each quantile of interest.

The inner estimation exploits the outer LV scores defined as the linear combi-
nation of the outer weights and the MVs belonging to each block. The way the
inner weights are computed depends on the adopted weighting scheme. If the path
weighting scheme is chosen, the inner weights linking and endogenous mth LV to
its predecessors are computed through a QR:

Q�

� O�mj�!m

�
D �!m

Ǒ .�/ (13.5)

where �!m is the matrix of the �m’s predecessor LVs. Instead, the weights among
the mth LV and its successor LVs are determined using the QC proposed by Li et al.
(2014). Since in the quantile framework even the correlation is a not symmetric
measure, the use of QC distinguishes between predecessors and successors. Let �m

and �q!m be respectively a LV and one of its predecessor LVs, the former plays the
role of the dependent variable and the latter is the regressor. The QC proposed by Li
et al. (2014) and adapted in the QC-PM framework, is defined as:

qcor� D
qcov�

˚
�m; �q!m


q
.� � �2/ var

�
�q!m

� (13.6)

where

qcov�
˚
�m; �q!m

 D cov
˚
I
�
�q!m � Q� .�q!m/ > 0

�
; �m


; (13.7)

Q� .�/ is the � th unconditional quantile, and I .�/ is the indicator function.
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QC is also proposed as an alternative to the Pearson correlation coefficient if
either the centroid or the factorial scheme is adopted.

A new mode (named Mode Q) is introduced in the outer estimation. In Mode Q
weights are obtained by computing QC between LVs and their own MVs (Davino
and Esposito Vinzi 2014). Since QC is an asymmetric correlation coefficient, Mode
Q allows us to handle both outwards-directed and inwards-directed measurement
models. Once convergence is reached and LV scores are computed, the path
coefficients related to endogenous LVs are estimated by means of QR.

The ACSI application is carried out using standardised MVs, the factorial
scheme in the inner estimation and the outwards-directed relationship in the outer
estimation. In both the estimation phases QR is used. Table 13.2 shows the outer
weights estimated using Mode Q in an outwards-directed measurement model.
Significant weights at ˛ D 0:10 are in bold (details about the validation of the
coefficients are postponed to Sect. 13.6).

Differences in the weights sizes can be appreciated using a graphical represen-
tation. Figure 13.3 (left-hand side) depicts, for the customer satisfaction LV, the
PLS-PM and QC-PM normalised outer weights with respect to the average values
of the corresponding MVs. Labels 10, 25 and 41 refer to QC-PM weights for
quantiles equal to 0.10, 0.25 and 0.41, respectively. PLS-PM weights are pointed
out with the MV names. QC-PM and PLS-PM weights related to the same MV
are vertically aligned with respect to the MV average. According to the PLS-PM
results, it is not possible to identify how to improve satisfaction because IDEAL
and CONFIRM show the lowest average values but also the lowest weights. QC-
PM complements such a result suggesting that an improvement of the judgment
on IDEAL and CONFIRM has a higher impact on the most satisfied customers.
Moreover, as regards to CONFIRM, the impact is irrelevant on the most unsatisfied
customers.

Table 13.3 shows the path coefficients obtained using the factorial scheme
in PLS-PM and in QC-PM for a selected grid of quantile of interest (� D
Œ0:1; 0:25; 0:41�). Significant coefficients at ˛ D 0:1 are in bold (details about the
validation of the coefficients are postponed to Sect. 13.6).

A graphical representation of the path coefficients is more effective in high-
lighting differences among PLS-PM and QC-PM results and among QC-PM path
coefficients at different quantiles. Figure 13.3 (right-hand side) shows the path
coefficients of the customer satisfaction LV, the horizontal axis refers to the
estimated quantile, the vertical axis to the corresponding coefficient and each
segment represents the QC-PM coefficients of each LV impacting on the customer
satisfaction LV. Full circles refer to the PLS-PM path coefficients while stars
represent significant QC-PM path coefficients for each quantile of interest. For the
sake of interpretation, PLS-PM results are vertically alligned to the last considered
quantile (0.41). It is worth noting that path coefficients vary in the extreme parts of
the distribution, meaning that the impact of a given LV changes for either very low
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Fig. 13.3 Normalised outer weights with respect to the MV averages of the customer satisfaction
LV (left-hand side) and QC-PM path coefficients for a set of selected quantiles (right-hand side)

Table 13.3 Path coefficients from a classical PSLPM and from a QC-PM for a
selected set of quantiles (� D Œ0:1; 0:25; 0:41�)

LV MV PLS-PM � D 0:1 � D 0:25 � D 0:41

Quality
Intercept 0.000 �0.930 �0.300 0.004

Expectation 0.585 0.757 0.822 0.708

Value
Intercept 0.000 �1.106 �0.502 �0.110
Expectation 0.174 0.152 0.162 0.216
Quality 0.401 0.462 0.433 0.410

Satisfaction

Intercept 0.000 �0.674 �0.317 �0.083
Expectation 0.253 0.268 0.253 0.239
Quality 0.435 0.472 0.444 0.398
Value 0.328 0.363 0.360 0.378

Loyalty
Intercept 0.000 �0.877 �0.301 �0.045
Satisfaction 0.604 0.868 0.828 0.687

and very high satisfied customers. For example, considering the expectation LV, its
effect decreases moving from the first 10 % of the distribution to the last considered
quantile.

13.5 Model Assessment

The assessment of QC-PM is performed exploiting the main indexes proposed in
the PLS-PM framework (Esposito Vinzi et al. 2010; Gotz et al. 2010; Henseler and
Sarstedt 2013): communality and average communality, multiple linear determi-
nation coefficient (R2), redundancy index, average redundancy index and global
criterion of goodness of fit (GoF) for the structural model. It is worth noticing
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that QC-PM is estimated for each quantile � of interest thus it provides a set of
assessment measures for each estimated model.

At first, we consider the correlations among MVs and LVs. The results are
expected to show higher correlations between a LV with its own block of MVs than
with other LVs representing different blocks of MV (cross-correlations). The aim
is to measure if the concept underlying each LV differs from the other theoretical
concepts. In Table 13.2 (last four columns) PLS-PM and QC-PM correlations
between MVs and LVs are shown. QC-PM correlations are computed as QCs where
each MV plays the role of dependent variable in the block it belongs to. The results
are satisfactory for all the LVs (for the sake of brevity cross-correlations are not
shown but they are in all cases lower than the correlations). It is worth noting the
change of the correlation values across the quantiles. For example, the correlation
of CUSTOMX to the Expectation LV is higher in the lower part of the distribution
(� D 0:1) and even greater than the PLS-PM loading.

In the PLS-PM framework, the communality index measures the amount of the
variability of a MV explained by its LV, and it is obtained as the square of the
correlation between each MV and its LV. Therefore, for a generic xpq MV belonging
to the qth block, the communality is equivalent to the R2 of the simple regression
xpq D ˛0 C ˛1�q. In a quantile framework, an index analogous to the R2 of the
classical regression analysis is the pseudoR2 index (Koenker and Machado 1999).
For each considered quantile � , it compares a residual absolute sum of weighted
differences using the selected model (RASW) (corresponding to the residual sum of
squares in classical regression) with a total absolute sum of weighted differences
(TASW) (corresponding to the total sum of squares of the dependent variable in
classical regression) using a model with only the intercept (Davino et al 2013).

Let us consider the simplest regression model with one explanatory variable:

Q� .Oyjx/ D Ǒ0.�/C Ǒ1.�/x: (13.8)

For each considered quantile � , RASW is the corresponding minimizer:

RASW .�/ D
X

yi� Ǒ0.�/C Ǒ1.�/xi

�
ˇ̌
ˇyi � Ǒ0.�/ � Ǒ1.�/xi

ˇ̌
ˇ

C
X

yi< Ǒ0.�/C Ǒ1.�/xi

.1 � �/
ˇ̌
ˇyi � Ǒ0.�/ � Ǒ1.�/xi

ˇ̌
ˇ (13.9)

where �� is the so-called check function which weights positive and negative
residuals asymmetrically, respectively with weights equal to .1 � �/ and � .

The TASW is:

TASW .�/ D
X

yi��
�
ˇ̌
ˇyi � O�

ˇ̌
ˇC

X

yi<�

.1 � �/
ˇ̌
ˇyi � O�

ˇ̌
ˇ : (13.10)
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and the obtained pseudoR2 can be computed as follows:

pseudoR2 .�/ .y; x/ D 1 � RASW .�/

TASW .�/
: (13.11)

As RASW .�/ is always less than TASW .�/, the pseudoR2 .�/ ranges between 0
and 1. For each considered quantile, the corresponding pseudoR2 indicates whether
the presence of the covariates influences the considered conditioned quantile of the
response variable. It is worth noticing that pseudoR2 is not a symmetric measure so
that it assumes a different value inverting the role of the variables.

In QC-PM, for a generic xpq MV of the qth block and a quantile � of interest, the
communality expresses the quality of each simple regression xpq D ˛0 C ˛1�q, at
the specific quantile, in terms of weighted residuals and can be defined as:

Compq.�/ D pseudoR2 .�/ .xpq; �q/ (13.12)

The model assessment can also be carried out for the generic qth block with
pq MVs (Comq) or for the whole measurement part of the model (Com) through
averages respectively of the communalities related to the block and to all the MVs
(weighted by the number of MVs in each block):

Comq.�/ D 1

pq

pqX

pD1
pseudoR2 .�/ .xpq; �q/; Com.�/ D 1P

q pq

X

q

pqComq.�/

(13.13)

Table 13.4 shows the indexes for the measurement model assessment provided
by PLS-PM and QC-PM. The highest values across the quantiles with respect
to a given MV are in italics, while QC-PM communality values higher than
PLS-PM corresponding ones are in bold, even though we recommend not to
compare communalities from QC-PM to those from PLS-PM as they are based
on different residuals. Unsatisfactory communalities are to be taken into account
in the interpretation of the results (like a warning on the use of the results related
to that quantile) but they do not lead to the elimination of a MV unless all the
communalities (from all the estimated QC-PMs and from PLS-PM) related to that
MV are unsatisfactory.

With respect to the structural model, the pseudoR2 index is proposed just like the
essential criterion in PLS-PM, the coefficient of determination of the endogenous
LVs (Chin 1998). A pseudoR2 index is computed for each structural equation
and each of them measures the amount of variability of a given endogenous
LV explained by its predecessor LVs. The average of all the pseudoR2 indexes
(pseudoR2.�/) provides a synthesis of the evaluations regarding the structual part
of the model.

Another important index is the redundancy because it is able to take into account
also the contribution of the MVs related to the qth endogenous LV thus linking the
prediction performance of the measurement model to the structural one (Amato et al.
2004). In the QC-PM framework the redundancy of a generic qth endogenous LV is
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Table 13.4 Measurement model assessment indexes

Communality

LV MV PLS-PM �=0.1 �=0.25 �=0.41

Expectation OVERALLX 0.680 0.503 0.494 0.520

CUSTOMX 0.799 0.759 0.639 0.563

WRONGX 0.161 0.016 0.232 0.209

ComExpectation 0.546 0.426 0.455 0.431
Quality CUSTOMQ 0.892 0.851 0.768 0.670

WRONGQ 0.438 0.550 0.464 0.450

ComQuality 0.665 0.701 0.616 0.560
Value PQ 0.779 0.516 0.587 0.616

QP 0.881 0.749 0.774 0.731

ComValue 0.830 0.632 0.681 0.674
Satisfaction SATIS 0.768 0.617 0.590 0.515

OVERALLQ 0.716 0.537 0.533 0.462

CONFIRM 0.486 0.235 0.328 0.385

IDEAL 0.510 0.356 0.381 0.402

ComSatisfaction 0.620 0.436 0.458 0.441

Com 0.646 0.517 0.526 0.502

proposed as:

Redq.�/ D Comq.�/ � pseudoR2.�/. O�qI O�!q/ (13.14)

where O�!q is the matrix of the predictor LVs for the qth LV.
An overall assessment of the quality of the structural part is provided by the

average redundancy (Red.�/) obtained as a mean of the redundancies associated to
the set of endogenous LVs.

With respect to the goodness-of-fit of the model, it is worth noticing that PLS-
PM is not based on the optimization of a global function. Tenenhaus et al. (2004)
have solved the lack of a global goodness-of-fit measure by proposing an index, the
GoF, able to take both the measurement and the structural part of the model into
account.

In QC-PM the absolute GoF is obtained as geometric mean of the average
communality and the average pseudoR2:

GoF.�/ D
q

Com.�/ � pseudoR2.�/ (13.15)

The first and the second term in Eq. 13.15 measure the predictive performance
respectively of the measurement and the structural model (Amato et al. 2004;
Esposito Vinzi et al. 2008). Further research will be devoted to the extension of
the relative GoF to the QC-PM.



182 C. Davino et al.

Table 13.5 shows the indexes for the structural model assessment provided by
PLS-PM and QC-PM (in italics the highest values across the quantiles with respect
to a given MV). Notwithstanding the interesting variability of the indexes across
the quantiles, the overall assessment of the structural part shows rather low values
of the R2, pseudoR2 and consequently redundancy values. This is probably due to
the presence of endogenous LVs explained by few (or even one) LVs (Chin 1998).
Moreover, in case of the QC-PM, it is well known that the typical determination
index is not a satisfactory assessment index (Koenker and Machado 1999).

Further developments will regard the exploration of different goodness of fit
measure in the quantile framework and the adjustment to the QPLS-PM of further
assessment indexes proposed in PLS-PM framework (Henseler et al. 2009) (e.g. the
average variance extracted (Fornell and Larcker 1981), the Stone-Geisser’s Q2 using
blindfolding procedures (Stone 1974), the relative GoF Amato et al. 2004).

13.6 Model Validation

The evaluation of the statistical significance of the coefficients related to the differ-
ent quantiles can be carried out exploiting the asymptotically normal distribution
of the QR estimators as well as the bootstrap approach classically used in PLS-PM
and QR.

QR estimators are asymptotically normal distributed with different forms of the
covariance matrix depending on the model assumptions (independent and identi-
cally distributed errors or non-identically distributed errors) (Koenker and Basset
1978, 1982a,b). Resampling methods (Efron and Tibshirani 1993) can represent
a valid alternative to the asymptotic inference (among many see Kocherginsky
et al. 2005) because they allow the estimation of parameter standard errors without
requiring any assumption in relation to the error distribution. Several bootstrap
procedures have been proposed in the QR framework. The simplest and widespread
is the xy-pair method or design matrix bootstrap (Parzen et al. 1994). The model
parameters are estimated through the average of the bootstrap values. The standard
error of the vector of parameter bootstrap estimates represents an estimate of the QR
standard error useful in confidence intervals and hypothesis tests.

A bootstrap approach is also applied to obtain a variability measure of the QR
estimates obtained choosing Mode Q in the measurement model and/or factorial or
centroid scheme in the structural model.

In future work, a jackknife approach could be explored especially in case of small
samples to estimate the standard errors of the parameter estimators and statistical
tests could be introduced in a QPR-PM to test if coefficients at different quantiles
can be considered statistically different (Gould 1997).



13 Assessment and Validation in Quantile Composite-Based Path Modeling 183

T
ab

le
13

.5
St

ru
ct

ur
al

m
od

el
as

se
ss

m
en

t
in

de
xe

s

R
ed

un
da

nc
y

R
2

ps
eu

do
R
2

LV
M

V
PL

S-
PM

�
=

0.
1

�
=

0.
25

�
=

0.
41

PL
S-

PM
�

=
0.

1
�

=
0.

25
�

=
0.

41

Q
ua

li
ty

C
U

ST
O

M
Q

0.
29

9
0.

20
4

0.
22

9
0.

18
4

W
R

O
N

G
Q

0.
14

6
0.

13
2

0.
13

8
0.

12
4

R
ed

Q
ua

li
ty

0.
22

3
0.

10
2

0.
13

6
0.

11
8

0.
33

5
0.

24
0

0.
29

8
0.

27
5

V
al

ue
PQ

0.
19

4
0.

09
3

0.
10

6
0.

09
5

Q
P

0.
22

0
0.

13
4

0.
14

0
0.

11
2

R
ed

Va
lu

e
0.

20
7

0.
12

6
0.

11
2

0.
08

6
0.

25
0

0.
18

0
0.

18
1

0.
15

3

Sa
ti

sf
ac

ti
on

SA
T

IS
0.

50
6

0.
31

0
0.

29
3

0.
22

1

O
V

E
R

A
L

L
Q

0.
47

2
0.

27
0

0.
26

4
0.

19
8

C
O

N
FI

R
M

0.
32

0
0.

11
8

0.
16

3
0.

16
5

ID
E

A
L

0.
33

6
0.

17
9

0.
18

9
0.

17
2

R
ed

Sa
ti

sf
ac

ti
on

0.
40

9
0.

31
7

0.
33

7
0.

28
9

0.
65

9
0.

50
2

0.
49

6
0.

42
9

L
oy

al
ty

R
E

PU
R

0.
36

4
0.

27
5

0.
29

7
0.

28
2

R
ed

Lo
ya

lt
y

0.
36

4
0.

12
0

0.
13

6
0.

12
4

0.
36

4
0.

27
6

0.
29

7
0.

28
2

M
ea

n
0.

30
1

0.
16

6
0.

18
0

0.
15

4
0.

40
2

0.
29

9
0.

31
8

0.
28

5



184 C. Davino et al.

References

Amato, S., Esposito Vinzi, V., Tenenhaus, M.: A global goodness-of-fit index for PLS structural
equation modeling. Oral Communication to PLS Club, HEC School of Management, France
(2004)

American Customer Satisfaction Index: LLC. Food processing sector (2000)
Anderson, E.W., Fornell, C.: Foundations of the American customer satisfaction index. J. Total

Qual. Manag. 11(7), 869–882 (2000)
Chin, W.W.: The partial least squares approach to structural equation modeling. In: Mar-

coulides, G.A. (ed.) Modern Methods for Business Research, pp. 295–358. Lawrence Erlbaum
Associates, Mahwah (1998)

Davino, C.: Combining PLS path modeling and quantile regression for the evaluation of customer
satisfaction. Ital. J. Appl. Stat. 26, 93–116 (2014) (published in 2016)

Davino, C., Esposito Vinzi, V.: Quantile PLS path modeling. In: Book of Abstract of the 8th
International Conference on Partial Least Squares and Related Methods, Paris (2014)

Davino, C., Esposito Vinzi, V.: Quantile Composite-based Path Modelling, Advances in Data
Analysis and Classification. Theory, Methods, and Applications in Data Science (2016) DOI
10.1007/s11634-015-0231-9

Davino, C., Furno, M., Vistocco, D.: Quantile Regression: Theory and Applications. Wiley,
Chichester (2013)

Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman Hall, New York (1993)
Esposito Vinzi, V., Russolillo, G.: Partial least squares algorithms and methods. WIREs Comput.

Stat. 5, 1–19 (2012)
Esposito Vinzi, V., Trinchera, L., Squillacciotti, S., Tenenhaus, M.: REBUS-PLS: a response-based

procedure for detecting unit segments in PLS path modelling. Appl. Stoch. Models Bus. Ind.
24(5), 439–458 (2008)

Esposito Vinzi, V., Chin, W.W., Henseler, J., Wang, H.: Handbook of Partial Least Squares:
Concepts, Methods and Applications. Springer, Berlin/New York (2010)

Fornell, C., Larcker, D.F.: Structural equation models with unobservable variables and measure-
ment error: algebra and statistics. J. Mark. Res. 18(3), 328–388 (1981)

Götz, O., Liehr-Gobbers, K., Krafft, M.: Evaluation of structural equation models using the partial
least squares (PLS) approach. In: Esposito Vinzi, V., Chin, W.W., Henseler, J., Wang, H. (eds.)
Handbook of Partial Least Squares: Concepts, Methods, and Applications. Springer, Berlin
(2009)

Gould, W.: sg70: interquantile and simultaneous-quantile regression. Stata Tech. Bull. 38, 14–22
(1997)

Henseler, J., Sarstedt, M.: Goodness-of-fit indices for partial least squares path modeling. Comput.
Stat. 28, 565–580 (2013)

Henseler, J., Ringle, C.M., Sinkovics, R.R.: The use of partial least squares path modeling in
international marketing. Adv. Int. Mark. 20, 277–319 (2009)

Kocherginsky, M., He, H., Mu, Y.: Practical confidence intervals for regression quantiles. J.
Comput. Graph. Stat. 14(1), 41–55 (2005)

Koenker, R.: Quantile Regression. Cambridge University Press, Cambridge/New York (2005)
Koenker, R., Basset, G.W.: Regression quantiles. Econometrica 46, 33–50 (1978)
Koenker, R., Basset, G.W.: Robust tests for heteroscedasticity based on regression quantiles.

Econometrica 50, 43–61 (1982a)
Koenker, R., Basset, G.W.: Tests for linear hypotheses and L1 estimation. Econometrica 46, 33–50

(1982b)
Koenker, R., Machado, J.: Goodness of fit and related inference processes for quantile regression.

J. Am. Stat. Assoc. 94, 1296–1310 (1999)
Li, G., Li, Y., Tsai, C.L.: Quantile correlations and quantile autoregressive modeling. J. Am. Stat.

Assoc. 110(509), 233–245 (2015)



13 Assessment and Validation in Quantile Composite-Based Path Modeling 185

Lohmöller, J.B.: Latent Variable Path Modeling with Partial Least Squares. Physica-Verlag,
Heidelberg (1989)

Parzen, M.I., Wei, L., Ying, Z: A resampling method based on pivotal estimating functions.
Biometrika 18, 341–350 (1994)

Stone, M.: Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. 36,
111–147 (1974)

Tenenhaus, M.: La Régression PLS: Théorie et Pratique. Technip, Paris (1998)
Tenenhaus, M., Amato, S., Esposito Vinzi, V.: A global goodness-of-fit index for PLS structural

equation modelling. In: Proceedings of the XLII SIS scientific meeting, pp. 739–742 (2004)
Tenenhaus, M., Esposito Vinzi, V., Chatelin, Y.-M., Lauro, C.: PLS path modeling. Comput. Stat.

Data Anal. 48(1), 159–205 (2005)
Wold, H.: Partial least squares. In: Kotz, S., Johnson, N.L. (eds.) Encyclopedia of Statistical

Sciences. John Wiley, New York (1985)



Part IV
Advances in Partial Least Square

Regression



Chapter 14
PLS-Frailty Model for Cancer Survival
Analysis Based on Gene Expression Profiles

Yi Zhou, Yanan Zhu, and Siu-wai Leung

Abstract Partial least squares (PLS) and gene expression profiling are often used
in survival analysis for cancer prognosis; but these approaches show only limited
improvement over conventional survival analysis. In this context, PLS has mainly
been used in dimension reduction to alleviate the overfitting and collinearity issues
arising from the large number of genomic variables. To further improve the cancer
survival analysis, we developed a new PLS-frailty model that considers frailty as a
random effect when modeling the risk of death. We used PLS regression to generate
K PLS components from genomic variables and added the frailty of censoring as
a random effect variable. The statistically significant PLS components were used
in the frailty model for survival analysis. The genomic components representing
the frailty followed a Gaussian distribution. Ten-fold cross-validation was used
to evaluate the risk discrimination (between high risk and low risk) and survival
prediction based on two breast cancer datasets. The PLS-frailty model performed
better than the traditional PLS-Cox model in discriminating between the high and
low risk clinical groups. The PLS-frailty model also outperformed the conventional
Cox model in discriminating between high and low risk breast cancer patients
according to their gene expression profiles.
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Keywords PLS regression • Microarray • Genomic • Cancer • PLS frailty

14.1 Introduction

With the advent of DNA microarray technology in biomedical research, gene
expression profiles are increasingly being used to predict cancer survival (Pawitan
et al. 2004; Van De Vijver et al. 2002). In survival analysis, Cox regression (Cox
1972) is the tool of choice for analyzing the prognostic outcomes of patients in
the presence of censoring. Cox regression estimates the regression parameters by
maximizing Cox’s partial likelihood but it only works when the number of patients
is smaller than the number of covariates (Lee et al. 2013). However, in DNA
microarray experiments, the number of genomic variables is typically much larger
than the number of patients and this configuration causes collinearity and model
overfitting. One way to palliate these problems is to implement effective dimension
reduction methods on gene expression data prior to the analysis.

Partial least square (PLS) method is often applied to reduce the dimensionality
of gene expression data and it has the additional benefit of modeling the relations of
numerous genomic variables and observations. PLS assumes that the observed data
is generated by a small number of latent variables (Rosipal and Krämer 2006), these
latent variables were used, for example, by Nguyen and Rocke (2002) in a Cox
regression model for diagnostic prediction, but these authors did not consider the
censoring information when generating PLS components. Park et al. (2002) used
PLS in generalized linear models to link the genomic variables and reformulated
binary survival response from Poisson regression, but the number of dimensions
increased with the number of iterations. Li and Gui (2004) proposed an algorithm to
construct the PLS components by estimating the coefficients of the Cox regression
model. Bastien (2004) used Cox regression to obtain PLS components, but the
computational scheme of the coefficients of the genomic variable was complex
and computationally intensive. In related work Lee et al. (2013) proposed a sparse
PLS procedure to select genomic variables for dimension reduction; and Lambert-
Lacroix et al. (2011) combined PLS and ridge penalized Cox regression for genomic
variables selection.

By contrast with these previous attempts, our goal was to build a simple model
for survival prediction from gene expression data. We favored a PLS regression
model for this goal because it is simple, can efficiently analyze gene expression
data with numerous (colinear) variables, and generates only a few genomic latent
components based on the structure of predictors and response variables (Wold
et al. 2001). Considering the possible random effects from gene expression profiles,
shared frailty model is used by adding frailties into Cox regression. The frailties are
unobserved covariates representing excess risk of early death (Therneau et al. 2003).
In our PLS regression implementation, we used survival rates as the dependent
variable and added the frailty of censoring as covariates. In our PLS-frailty model,
we used genomic PLS components to represent frailty, and rejected the assumption
of Cox regression that the survival times are independent of each other (Ripatti and
Palmgren 2000).
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14.2 Methods

14.2.1 Partial Least Squares Frailty Model for Survival Data

Our PLS-frailty model included (1) PLS regression with frailty of censoring to
obtain PLS components, (2) univariate Cox regression to select PLS components
with statistical significance, and (3) multivariate Cox regression with frailty for
survival prediction.

14.2.1.1 Partial Least Square Regression with Frailty

Let X1;X2; : : : ;XP represent P genomic variables, S.Si; i D 1; 2; : : : ;N/ is the
survival rate vector of N patients from follow-up times. PLS regression generates
K PLS components, denoted as T1;T2; : : : ;TK .K � P/. The PLS components are
regarded as predictors of S with weights C1;C2; � � � ;CK (see, Eq. (14.1), below) and
also linear combinations of X1;X2; : : : ;XP with weights W1;W2; : : : ;WK . A frailty
factor of censoring with weight WjC1 is added as a random effect variable into the
PLS regression (Eq. (14.2)) as:

S D
KX

jD1
CjTj C F (14.1)

Tj D
PX

mD1
WjXm CWjC1frailty(censor); (14.2)

where F is the residual of S. The tuning parameter K is set to ten. The model can
be tested as cross-validation. PLS regression computations were performed by the
plsr function in the R package pls (http://cran.r-project.org/web/packages/pls/
index.html), and the frailty term was added by the frailty function in the R package
“survival” (http://cran.r-project.org/web/packages/survival/index.html).

14.2.1.2 Univariate Cox Regression

Let the variable t .ti; i D 1; 2; : : : ; n/ denote the follow-up time vector of patients
and let the variable c .ci; i D 1; 2; : : : ; n/ represent the censoring time vector. The
right censored survival time is denoted .y; ı/ with yi D min.ti; ci/ and ıi.i D
1; 2; : : : ;N/ the indicator of event: ıi D 1 indicates death and ıi D 0 indicates
censoring. The individual PLS component, significant in univariate Cox regression

http://cran.r-project.org/web/packages/pls/index.html
http://cran.r-project.org/web/packages/pls/index.html
http://cran.r-project.org/web/packages/survival/index.html
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(Eq. (14.3)), is selected and denoted T1;T2; : : : ;Tq from T1;T2; : : : ;TK.q 	 K/.
The significant level ˛ was set to the value of p < :05. The coefficient of each
Tj.j D 1; 2; � � � ;K/ is computed by maximizing the Cox’s partial log-likelihood
(PL) such as

h.y/ D h0.y/ exp.Tjˇj/ (14.3)

and specified with h being the proportional hazard function, h0 the baseline hazard
function, and ˇj the coefficient of Tj.

14.2.1.3 Multivariate Cox Regression and Shared Frailty Model

Cox regression is a popular method in survival prediction (Gui and Li 2005).
According to PLS-Cox model (Nguyen and Rocke 2002), the PLS components
T1;T2; � � � ;Tq are used as covariates in the multivariate Cox regression model
(Eq. (14.4))

h.y/ D h0.y/ exp.
qX

jD1
Tjˇ/ (14.4)

and specified with ˇ being the coefficient vector. The shared frailty model (Therneau
et al. 2003) (see also Eq. (14.5)) is the extension of Cox regression. It treats
the frailty term as an additional covariate and produces estimates of the model
parameters faster. We use the last selected PLS component Tq to present the frailty
as a Gaussian distribution because Gaussian distribution is essential for models to
converge (Therneau et al. 2003). The estimates of coefficients are obtained from
penalized partial log-likelihood (PPL) as:

.y/ D 0 .y/ frailty
�
Tq
�

exp

0

@
qX

jD1
Tj˛

1

A : (14.5)

To make a distinction from the classic multivariate Cox regression, we specify
 the proportional hazard function and 0 the baseline hazard function, and ˛ the
coefficient vector. The coefficients used in the Cox regression model and the shared
frailty model can be easily computed using the coxph function and frailty function
in the R package survival.
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14.2.2 Datasets of Breast Cancer

14.2.2.1 NKI Breast Cancer Dataset

The breast cancer dataset collected at Netherlands Cancer Institute (NKI) contains
24,481 genomic variables, and follow-up times of 295 patients with or without
censoring. In previous work, van’t Veer et al. (2002) found that a model with 70
genes outperformed all clinical variables in predicting the likelihood of distant
metastases that occurred within five years. Without a predetermined gene expression
profiles, we selected 2,448 genomic variables at random. To explore whether the
genomic variables were associated with the follow-up times of the patients, we used
the global test of Goeman et al. (2005) as first screening for the results with p value
smaller than :05.

14.2.2.2 Stockholm Breast Cancer Dataset

Another breast cancer gene expression dataset was collected at the Karolinska
Hospital in Stockholm. This data-base contains 44,928 genomic variables collected
on 159 patients’ follow-up times with or without censoring. Pawitan et al. (2004)
used 64 genes to develop a prognostic model for breast cancer. We randomly chose
4,493 genomic variables for further analysis. The global test was used for pre-
screening to explore if there was some association between gene expression profiles
and survival times of patients.

14.2.3 Performance Evaluation

14.2.3.1 Performance in Discrimination

We applied the same dataset samples to both the PLS-frailty and PLS-Cox models
and compared the diagnostic outcomes. Because the baseline hazard function was
not estimated by PL or PPL, we decided to predict the linear prediction part
.
Pq

jD1 Tjˇ; or
Pq

jD1 Tj˛/ of the survival model, prognostic index (PI). The gene
expression dataset was split into a training dataset and a testing dataset. We built
a diagnostic model from the training dataset that we then used to predict PI in the
testing dataset. The patients in the testing dataset were clustered by the model into
two groups: the low risk group (PI 	 0/ and the high risk group (PI> 0/, and
the Kaplan-Meier survival curves of each group was then estimated. The log-rank
test was adopted to test the difference between survival rates. In order to assess the
quality of the predictive models, the dataset was randomly divided into ten blocks
for a ten-fold cross-validation scheme. The results of PLS-frailty and PLS-Cox
model in every testing dataset were compared.
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14.2.3.2 Performance in Prediction

The linear association between the patient survival rates and PI was used to assess
the prediction performance. We performed ten-fold cross-validation with the whole
dataset to compute, in both models, the prediction errors (PEs) in terms of root
mean squared prediction error (RMSPE). Each of the ten blocks was left out once
to fit the generalized linear model between survival rates and PIs, and the survival
rates of patients were computed in the left-out block to obtain the RMSPE for each
observation. Ten-fold cross-validation was performed by the cvTool function in
the R package cvTools. We got the RMSPEs (van Houwelingen and Putter 2011)
of the PLS-frailty and PLS-Cox models (denoted as ") and RMSPE of the null Cox
regression (denoted as "0), which had no genomic covariates, to calculate the relative
prediction error reductions (RPERs). These RPERs (computed as "0�"

"0
) were used

to compare the relative changes of PEs from the null Cox regression. Lower PEs
and higher RPERs indicated better prediction performance.

14.3 Results and Discussion

A total of 2,448 genomic variables were selected from 24,481 gene expression
profiles in the NKI dataset. The global test showed that the genomic variables
had high significant relations with the patient survival rates (statistics = 0.935,
p < :001). In the discrimination results from the testing data, the Kaplan-
Meier survival curves (Fig. 14.1) obtained in the ten-fold cross-validation showed
significant discrimination between the low risk and high risk groups in the PLS-
frailty model. The log-rank test results and p values are shown in Table 14.1. In
predicting the performance assessment from the overall dataset, we considered
age as a covariate along the genomic covariates in the survival models. After
the univariate Cox regression, the PLS-frailty model had four significant PLS
components and the PLS-Cox model had six. The ten-fold cross-validation showed
that PLS-frailty model did not outperform the PLS-Cox model in predicting the
survival rates with higher PEs and lower RPERs (Table 14.2).

A total of 4,493 genomic variables were selected as covariates from 44,928 gene
expression profiles in the Stockholm breast cancer dataset. The global test showed
significant association between the genomic variables and the patient follow-up
times (statistics D 0.86, p D :004). The Kaplan-Meier survival curves of the
testing data (Fig. 14.2) with the ten-fold cross-validation scheme showed that the
PLS-frailty model distinguished the low and high risk groups best. The log-rank
test statistics and p values are shown in Table 14.1. The genomic PLS components
from the overall dataset were used for prediction assessment. The univariate Cox
regression selected three significant PLS components in the PLS-frailty model and
four in the PLS-Cox model. Ten-fold cross-validation showed that the PLS-frailty
model outperformed the PLS-Cox model in terms of lower PEs and higher RPERs
(Table 14.3).
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Fig. 14.1 Kaplan-Meier survival curves between high risk group and low risk group in NKI
dataset in ten-fold cross-validation

14.4 Conclusion

Our proposed PLS-frailty model effectively represented the frailty as a random
effect to improve the survival prediction of breast cancer and significantly reduced
the number of dimensions of the genomic variables of gene expression profiles. As
a result, it outperformed PLS-Cox model in differentiating low risk from high risk
patients. Thus, the proposed PLS-frailty model would able to discriminate between
low risk and high risk patients to identify stratified patient populations and to inform
clinical decisions on precise and personalized treatments.
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Table 14.1 Ten-fold cross-validation of log-rank test results between high risk and low risk groups
in NKI dataset and Stockholm dataset

Run

NKI dataset Stockholm dataset

PLS-Cox PLS-frailty PLS-Cox PLS-frailty

Log-rank P value Log-rank P value Log-rank P value Log-rank P value

1 6.398 0:011� 16.773 < 0:001� 0.017 0:896 3.849 0:050

2 0.437 0:509 10.491 0:001� 3.798 0:051 6.717 0:010�

3 6.951 0:008� 25.526 < 0:001� 3.527 0:060 11.633 0:001�

4 0.846 0:358 17.052 < 0:001� 4.602 0:032� 4.602 0:032�

5 1.954 0:162 19.416 < 0:001� 1.097 0:295 4.213 0:040�

6 3.723 0:054 21.958 < 0:001� 1.195 0:274 1.067 0:302

7 1.059 0:303 14.044 < 0:001� 1.790 0:181 5.013 0:025�

8 2.130 0:144 13.545 < 0:001� 0.343 0:558 3.849 0:050

9 4.950 0:026� 19.378 < 0:001� 0.328 0:567 1.988 0:159

10 1.112 0:292 7.327 0:007� 0.475 0:491 9.338 0:002�

� p < :05:

Table 14.2 Ten-fold cross-validation of prediction errors (PEs) and
relative prediction error reductions (RPERs) in NKI breast cancer
dataset

Run
PE RPER

Null Cox PLS-Cox PLS-frailty PLS-Cox PLS-frailty

1 0.8087 0.0653 0.0703 0.9193 0.9130

2 0.8074 0.0656 0.0703 0.9188 0.9129

3 0.8132 0.0656 0.0707 0.9194 0.9131

4 0.8095 0.0657 0.0704 0.9189 0.9131

5 0.8064 0.0655 0.0702 0.9188 0.9129

6 0.8111 0.0656 0.0702 0.9192 0.9135

7 0.8123 0.0657 0.0704 0.9191 0.9133

8 0.8103 0.0656 0.0706 0.9190 0.9129

9 0.8119 0.0655 0.0701 0.9193 0.9136

10 0.8110 0.0654 0.0702 0.9193 0.9134
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Fig. 14.2 Kaplan-Meier survival curves between the high and low risk groups in the Stockholm
dataset obtained from ten-fold cross-validation
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Table 14.3 Ten-fold cross-validation of prediction errors (PEs) and
relative prediction error reductions (RPERs) in Stockholm breast cancer
dataset

Run
PE RPER

Null Cox PLS-Cox PLS-frailty PLS-Cox PLS-frailty

1 0.7558 0.0285 0.0205 0.9623 0.9729

2 0.7558 0.0290 0.0207 0.9616 0.9726

3 0.7558 0.0284 0.0203 0.9624 0.9731

4 0.7558 0.0286 0.0205 0.9622 0.9729

5 0.7558 0.0286 0.0205 0.9621 0.9729

6 0.7558 0.0284 0.0202 0.9624 0.9733

7 0.7558 0.0285 0.0203 0.9623 0.9732

8 0.7558 0.0288 0.0207 0.9620 0.9727

9 0.7558 0.0285 0.0205 0.9623 0.9729

10 0.7558 0.0284 0.0204 0.9624 0.9730
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Chapter 15
Functional Linear Regression Analysis Based
on Partial Least Squares and Its Application

Huiwen Wang and Lele Huang

Abstract Functional linear model with functional predictors and scalar response
is a simple and popular model in the field of functional data analysis. The slope
function is usually expanded on some basis functions, such as spline and functional
principal component (FPC) basis, and then the model can be converted into a
multivariate linear model. The FPC basis can keep most variance information of
the functional data, but the correlation with response is not considered. Motivated
by this, we use partial least square basis to expand the slope function. Meanwhile,
considering the functional predictors are not all significant and variable selection
procedure is implemented. In this process, group variable selection is introduced to
identify the significant predictors. Then the proposed method is used to analyse the
relationship between number of monthly emergency patients and some environmen-
tal factors in functional form, and some meaningful results are obtained.

Keywords Partial least squares regressions (PLSR) • Functional data analysis
• Basis function

15.1 Introduction

With the rapid development of modern technology in the era of big data, especially
the computer-related technique, data can be recorded densely over time (can be
seen in the continuum), such as the prices of financial products (stock, futures
and so on). Such type of data is termed functional or curve data. There are broad
application prospects for functional data in a wide range of areas, which promotes
the development of functional data analysis (FDA). There are vast literature on
FDA, such as Ramsay and Silverman (1997, 2002) and Ferraty and Vieu (2006).
In this paper, we discuss the estimation for functional linear model with functional
predictors and scalar response (see Ramsay and Dalzell 1991).
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Let Y be a real-valued random variable, fXj.t/ W t 2 Fg be a zero mean , second-
order stochastic process defined on .˝;B;P/ and EX2j .t/ < 1 for all t 2 F; 1 	
j 	 p. The sample paths of fXj.t/ W t 2 Fg are in L2.F/, the set of all square
integrable functions on F. To express different kinds of functional data, such as
curves, images and arrays, F can be subsets of R;Rp or other spaces. It’s assumed
that the scalar response Y is linearly related to the functional predictor Xj.t/ through
the relationship

Y D ˛ C
pX

jD1

Z

F
ˇj.t/Xj.t/dtC � (15.1)

where the intercept ˛ and � are scalars, � is a random error variable.
In the functional linear regression model (15.1), the infinite diemnsional func-

tional coefficients ˇj.t/s of functional predictors are to be estimated, which is much
different from traditional linear models where the unknown parameters are finite
dimensional. But there are also some connections. In fact, in semiparametric and
nonparametric regression models, functional forms appear and many estimators for
them are studied. With functional predictors in consideration, we have to convert
them based on basis expansion, then the next procedure is similar to multivariate
problems. At last we reconstruct functional coefficients according to the basis
function. During this procedure, it’s crucial to choose basis function sequences
and truncating parameter, see Cai and Hall (2006), Hall and Horowitz (2007), and
Crambes et al. (2009) for details.

We can express ˇj.t/;X.t/ in terms of orthonormal basis chosen independently
of the data. For example, Crambes et al. (2009) studied smoothing spline estimator
for functional linear models. But a drawback is that the given basis function
can not keep the information as much as possible. Then functional principal
components (FPC) basis has attracted much attention of many statisticians and
many theoretical results and practical applications are reported. These researches
include contributions to FPC analysis (Silverman 1996; Boente and Fraiman 2000;
Kneip and Utikal 2001; Hall and Hosseini-Nasab 2005; Hall et al. 2006; Jiang and
Wang 2010; Berrendero et al. 2011). Yuan and Cai (2010) and Cai and Yuan (2012)
obtained the optimal convergence rate of the estimator for slope function in the
framework of reproducing kernel Hilbert space. While other methods could be used,
the FPC technique is currently the most popular.

However, Delaigle and Hall (2012) pointed out that there is no reason why the
first FPCs capture the most important information about the regression function
and they proposed functional partial least square basis (FPLS) function. FPLS basis
function makes it reasonable to truncate the infinite dimensional functional slope
functions ˇj.t/ into finite dimensional space spanned by the first basis functions
while keeping information as much as possible.

It’s well known that including unnecessary predictors can degrade the efficiency
of the resulting estimation and yield less accurate predictions in the regression
setting. After projecting the functional data and functional coefficients Xj.t/; ˇj.t/
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into finite dimensional spaces, variable selection is necessary. Many methods
on variable selection in linear model have been proposed based on the idea of
penalization, see Tibshirani (1996), Fan and Li (2001), and Zou and Hastie (2005).
In the framework of FDA, if there are multiple functional predictors, functional
variable selection is needed. But the predictors are in functional form and the penalty
term can not be utilized directly. One feasible solution is to project these functional
predictors into lower dimensional spaces and then introduce group variable selection
methods see Lian (2013). Tutz and Gertheiss (2010) proposed blockwise procedure
to select sub-intervals in the domain of functional predictors and estimate the effect
on the response simultaneously. These functional variable selection methods do
not use data-driven basis functions, or in obtaining the data-driven basis they do
not consider the response. In this paper, we select functional variables based on
FPLS basis functions by the help of group variable selection techniques.

The remainder of the paper is organized as follows. Section 15.2 introduces
variable selection and estimation method based on FPLS basis function. The
application of the proposed method and some results are given in Sect. 15.3.
Section 15.4 is a simple summary.

15.2 FPLS Basis Function and Variable Selection

For selection and estimation, we first expand the predictors and their slope functions
on the basis functions, which are obtained by PLS method, and then grouped
variable selection method is utilized to select and estimate simultaneously.

15.2.1 PLS Basis Function

Preda and Saporta (2005) proved the existence of FPLS components as well as some
convergence properties towards the classical linear regression. Delaigle and Hall
(2012) gave the asymptotical properties of FPLS basis. In the functional setting,
if there is a single functional predictor, then the standard PLS basis is defined
iteratively by choosing  p in a sequential manner, to maximize the covariance
functional

�k. k/ D cov

�
Y � gk�1.X/;

Z
X k

�
(15.2)

subject to

jj kjj D 1;
Z Z

 j.s/K.s; t/ k.t/dsdt D 0; 1 	 j 	 k � 1;
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where gk�1.x/ D E.Y/ C Pk�1
jD1

R
F x j: According to Delaigle and Hall (2012),

if
R

EX2 < 1, then the function  k that maximizes �k in (15.2), expressed by
 1; � � � ;  k�1, is determined by

 k D c0ŒK.b �
k�1X

jD1
 j

Z
b j/C

k�1X

jD1
cj j�; (15.3)

where, for 1 	 j 	 k � 1, the constants cj are derived by solving the linear system
of k � 1 equations

Z Z
 jK p D 0; j D 1; � � � ; k � 1;

and where c0 is determined by jj kjj D 1; K is the covariance function defined by
K.s; t/ D cov.X.s/;X.t// D EŒX.s/X.t/�:

For each functional predictor, we can obtain the associated FPLS basis function
f jk.t/; k D 1; � � � ;mj; 1 	 j 	 pg: The functional predictor and corresponding
functional coefficients Xj.t/; ˇj.t/ can be expanded as

Xj.t/ 

mjX

kD1
�jk jk.t/

ˇj.t/ 

mjX

kD1
bjk jk.t/ (15.4)

Assume that samples .Yi;Xij.t//; j D 1; � � � ; p; i D 1; � � � ; n are observed, then the
model (15.1) can be rewritten as

Y 
 ˛ C
pX

jD1

mjX

kD1
�jkbjk

Yi 
 ˛ C
pX

jD1

mjX

kD1
O�ijk Objk (15.5)

where �jk D
R

xj jk; O�ijk D
R

xij O jk; and truncating parameter mj means that mj

FPLS scores are utilized.

Remark 15.1. Jacques and Preda (2014) proposed to approximate the density of
functional random variables and they considered the dependency of components
of functional data. In our problem, we concentrate more on multiple functional
data, not the components of the same functional data. Then we neglect the
correlation between components. In the further study, we should take this aspect
into consideration.
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15.2.2 Group Variable Selection and Estimation

In many regression problems, it is more meaningful to identify significant factors,
rather than individual predictors, where each factor is represented by a group of
predictor variables, and the details can be seen in Yuan and Lin (2006). In our
problem, the f�jkgmj

kD1 in (15.5) enter the model or should be removed wholly,
considering they denote the functional predictor Xj.t/:

We concern the following criterion:

Q. Ǒ/ D
nX

jD1
.Yi �

pX

jD1

mjX

kD1
O�ijk Objk/

2 C n
pX

jD1
Pj.jjObjjj1/; (15.6)

where Obj D ŒObj1; � � � ; Objmj �; jj�jj1 is L1 norm and jjObjjj1 D maxfjObj1j; � � � ; jObjmj jg. j

is the tuning parameter and in practice we allow different regularization parameters
for different coefficients. P is a penalty term and in this paper, P.t/ D jtj; which
means it is a Lasso-type penalty. Note that each Obj is a coefficient vector and this
criteria means group variable selection. The penalty term P can be in other forms,
such as SCAD (Fan and Li 2001) or elastic net (Zou and Hastie 2005).

15.2.3 Tuning Parameter Selection

In every regularized model fitting procedure, it is well known that tuning parameters
play an important role in the performance of the proposed model. Once the solution
path of the proposed group Lasso has been constructed, we should choose the
final estimator according to some criteria measuring the accuracy of prediction.
Specifically, the tuning parameter j and truncating parameter mj should be given.

To choose the optimal tuning parameters mj, AIC criteria is used and define
AIC(k) by

AICj.k/ D logŒ
nX

iD1
.Yi � OYi/=n�C 2k=n; (15.7)

where OYi is the fitted valued based on just one functional predictor Xj.t/: In fact,
some AICj.k/ may be near to zero, considering its correlation with the response.
Other criteria can also be used, such as AICc, BIC and so on.

As to the selection of j; there are several types of tuning methods, such as
the Schwarz information criterion (SIC) (Schwarz et al. 1978), the generalized
approximate cross-validation criterion (Yuan 2006) and k-fold cross-validation. Let
j D jjQbjjj�11 (where Qbj is the unpenalized least square estimator) and then we need
select . Similar to Bang and Jhun (2012), we use the following SIC-type objective
function
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log

0

@1
n

nX

iD1

�
Yi �

pX

jD1

mjX

kD1
O�ijk Objk

�2
1

AC log n

2n
jEj; (15.8)

where E D fi W Yi DPp
jD1

Pmj

kD1 O�ijk Objkg and jEj means the card of E.

15.3 Numerical Results

15.3.1 Simulation

In this section, we investigate the finite sample performances of the proposed
estimators with Monte Carlo simulation studies. For comparison, we also list the
results based on FPC.

Our design is similar to Matsui and Konishi (2011). The predictors X˛mi

corresponding to mth predictor Xm are generated according to the following rule:

X˛mi D �˛m.tmi/C �˛mi; �˛mi � N.0; 0:025r2�˛m/; ˛ D 1; � � � ; n;

where tmi is the observation time points, r�˛m D maxi.�˛m.tmi// � mini.�˛m.tmi//

and �˛m.t/ is assumed as follows:

X1 W �˛1.t/ D cos.2�.t � a1//C a2t; t 2 Œ0; 1�;
a1 � N.�5; 32/; a2 � N.7; 1/;

X2 W �˛2.t/ D b1 sin.2t/C b2; t 2 .0; �=3/;
b1 � U.3; 7/; b2 � N.0; 1/;

X3 W �˛3.t/ D c1t
3 C c2t

2 C c3tC c4; t 2 Œ�1; 1�;
c1 � N.�3; 1:22/; c2 � N.2; 0:52/; c3 � N.�2; 1/; c4 � N.2; 1:52/:

The scalar response Y is generated by Y˛ D
R 1
0
�˛1.t/ˇ1.t/dtC 	�˛; where ˇ1.t/ D

sin.2�t/, 	 D c.max.
R 1
0 �˛1.t/ˇ1.t/dt/�min.

R 1
0 �˛1.t/ˇ1.t/dt//; and 	 D 0:1; 0:3:

The distribution of �˛ is normal.

We considered the following error criteria: RMSE D
q

1
n1

Pn1
kD1Œ Ǒ.tk/ � ˇ.tk/�2,

where ftkg are equally spaced grid points; average number of correctly identified
nonvanishing coefficients (TP), average number of incorrectly identified nonvanish-
ing coefficients (FP). The ORMSE is oracle root of mean square error where the true
nonzero coefficients are assumed to be known and no shrinkage is applied.

By Table 15.1, we can know that both of these two methods can select the
nonzero variables, but the FPC method is opt to select more variables. The RMSE
based on PLS are smaller relatively, while the FPC method’s is a little larger.
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Table 15.1 Variable selection results for simulation

n 	 pls.RMSE pca.RMSE pls.TP pls.FP pca.TP pca.FP

50 0.1 Mean 0.0903 0.1156 1.0000 0.2600 1.0000 1.1400

Sd 0.0388 0.0449 0.0000 0.4845 0.0000 0.6360

0.3 Me 0.2410 0.3068 1.0000 0.3900 0.9800 0.7100

Sd 0.1364 0.1450 0.0000 0.5667 0.1407 0.6711

100 0.1 Mean 0.0687 0.0846 1.0000 0.2000 1.0000 0.9300

Sd 0.0300 0.0353 0.0000 0.4264 0.0000 0.6705

0.3 Mean 0.1997 0.2269 1.0000 0.5600 1.0000 0.7600

Sd 0.0811 0.0936 0.0000 0.6407 0.0000 0.6980

200 0.1 Mean 0.0524 0.0706 1.0000 0.2300 1.0000 0.9100

Sd 0.0214 0.0226 0.0000 0.4462 0.0000 0.5877

0.3 Mean 0.1498 0.1723 1.0000 0.6500 1.0000 0.7000

Sd 0.0672 0.0701 0.0000 0.5417 0.0000 0.6113

Fig. 15.1 The daily highest
temperature curves. Each
curve denotes the daily
highest temperature of one
month
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15.3.2 Environmental Data

It is a meaningful issue to study the relationship between people’s health and
the environmental factors. Here we make use of patients numbers in emergency
department of hospitals to measure people’s health and some meteorological data is
utilized to denote the environmental factors. Specifically, the data includes the total
patient numbers monthly of emergency department in 21 main hospitals of a big city
in China (which is a scalar response) and some environmental records, such as the
daily highest temperature, daily maximum air pressure, daily highest wind speed,
daily minimum relative humidity and hourly PM 2.5 (air pollutant) level (which are
all can be seen as functional data). The period lasts from January, 2011 to March,
2014. Figures 15.1, 15.2 and 15.3, show the smoothed daily highest temperature,
daily maximum air pressure and hourly PM 2.5 level curves, respectively. We
regularize the time domain to Œ0; 1�, which can avoid the problems caused by
different days in different months.

It is clear that the multivariate methods are not feasible here, considering the
sample size 39 is far less than predictors number (thousands). Besides, the day
numbers of these months are not all the same and the predictors are not recorded
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Fig. 15.2 The daily highest
press curves. Each curve
denotes the daily highest
press of one month
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Fig. 15.3 The daily highest
press curves. Each curve
denotes the daily highest
press of one month
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Fig. 15.4 The selection path
of variable selection based on
FPLS. Each color denoted
one gruop
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in the same frequency (daily or hourly). Meanwhile, there are many records about
the environment and selecting out significant ones to patient numbers is interesting.
The monthly total patient numbers are counting random variables and actually are
discrete, but the numbers are large. Thus here the transformation using logarithmic
scale is implemented and then they are treated as continuous random variables. The
Poisson regression model may be an alternative model.

The number of these five FPLS components according to AIC above are 2; 2; 1; 1
and 8, respectively. Now in our model, we have 14 variables in 5 groups. By the
SIC criteria above, we select  D 0:047 and just the functional coefficients of PM
2.5 are not zero, which can be seen in Fig. 15.4. To demonstrate the performance,
we plot the fitted values of different estimators with different predictors in Fig. 15.5.
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Fig. 15.5 The prediction with the selected PM 2.5 curve and with other curves

We can see that with just PM 2.5 as a functional predictor, the fitted values are good
and there is little explanation ability with other 4 predictors.

Statistically, we say the emergency patients number is correlated with the
functional PM 2.5 for the whole population from the view of large samples, but it
is not casual. We cannot say that some factors promotes the increase of emergency
patients. Besides, the patients number is not directly correlated with daily highest
temperature and other weather indices above. We just verify that the air pollution is
harmful to people’s health from the view of large samples in statistics. Furthermore,
we have to admit that just using these data above and just data of one city can not
obtain general conclusions. It is just for illustrating the effectiveness of our proposed
method.

15.4 Remarks and Conclusion

We propose a group regularization method for shrinkage estimation of multiple
functional linear regression models based on PLS basis function. To demonstrate
the effectiveness of the method, we apply it in analysing the relationship between
emergency patients number and weather record curves, providing an interesting
alternative perspective to the previously used kernel regression on this data.

We would like to end this paper by discussing some possible topics for future
study. In fact, in the PM 2.5 curves there are many outliers and how to deal
with functional data outliers by robust statistics will be an interesting issue.
Meanwhile, robust variable selection procedures will be appreciated in selecting
significant functional predictors. Besides, in a regression model with both scalar
and functional variables, how to estimate the coefficient and select the significant
variables simultaneously will be very meaningful.
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Multiblock and Multigroup PLS: Application
to Study Cannabis Consumption in Thirteen
European Countries
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Abstract We address the problem of investigating the relationships between (KC1)
blocks of variables (i.e., K blocks of independent variables and one block of
dependent variables), where the observations are a priori divided into several known
groups. We propose a simple procedure called multiblock and multigroup PLS
regression—which is a straightforward extension of multiblock PLS regression—
that takes into account the group structure of the observations. This method of
analysis is illustrated with a large, questionnaire based, survey exploring, in 2011,
the cannabis consumption of teenagers of thirteen European countries (the European
School Survey Project on Alcohol and other Drugs).
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16.1 Introduction

Often, in methods of multivariate data analysis such as Principal Component Analy-
sis (PCA), Partial Least Square (PLS) Regression and multiblock data analysis, the
observation are a priori divided into groups. In the literature, this group structure
is known by different names such as multilevel, hierarchical, nested data (Hox
2010), or even clustered data (Liang and Zeger 1986). Following Krzanowski (1984)
and Kiers and Ten Berge (1994), we call such data sets “multigroup” data.

In the case of two-block and multigroup data (denoted by X and Y), the classical
approaches to investigate the relationship between X and Y either (1) ignore the
group structure and perform a PLS regression of Y upon X or (2) analyze each group
separately with PLS regression. Clearly, these strategies are unsatisfactory because
with the first strategy, the total variance recovered by the latent variables mixes
both the between and the within-group variances and with the second strategy, it is
difficult to have an integrated vision of the data since the analysis does not provided
a common structure among the separate analyses. To palliate these problems in the
study of two-block and multigroup data, Eslami et al. (2013b) recently proposed a
simple strategy—called multigroup PLS (mgPLS)—that extends multigroup PCA
Eslami et al. (2013a) and predicts Y from X taking into account the groups
difference and conjointly seeks common parameters (e.g., common loading weights)
across the groups. As shown by Eslami et al. (2014a) mgPLS outperformed classical
PLS regression when used with multigroup data.

In addition to standard structure of the two-block and multigroup data, there is
often some external information associated with the independent variables (X) such
that X can be split into several known blocks of variables. These data-sets—called
multiblock and multigroup data—are quite commonplace, and can be illustrated by
an example from veterinary epidemiology where several measures are obtained
on animals that are divided into known groups corresponding to various farms,
where the independent blocks are related to different potential risk factors (breeding
factors, environment, feeding, farm management, : : : ) and the dependent data (Y)
relate to the outbreak of a disease. With this example, the aim would be to investigate
the relationships between the disease and the potential risk factors (organized into
meaningful blocks) beyond the diversity among the farms.

In this article we propose an original multivariate method to deal with multiblock
and multigroup data that are organized in several independent blocks of variables
and one block of dependent variable in presence of several groups of individuals
known a priori. The proposed method—called multiblock and multigroup PLS
(mbmgPLS)—extends mgPLS to the case of multiblock and multigroup data. This
is achieved by maximizing a criterion which explicitly shows that we seek, step
by step, common vectors of loading weights across the groups for each block
of variables, block and global components in the dependent variables that are
optimally linked to components from the independent variables. The solution of the
maximization criterion of mbmgPLS is given by means of an iterative algorithm.
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This paper is organized as follows. In Sect. 16.2.1 the notations and the aim
of the study are presented. The proposed multiblock and multigroup PLS method
is described in Sect. 16.2.3. Some alternative methods to study multiblock and
multigroup data are discussed in Sect. 16.3. Finally, in Sect. 16.4, mbmgPLS is
illustrated on the basis of a questionnaire aiming at studying the problem of cannabis
consumption among teenagers in thirteen countries. The survey was conducted in
2011 within the European School Survey Project on Alcohol and other Drugs (www.
espad.org). The discussion of the merits and limitations of the proposed approach
and the perspectives are outlined in Sect. 16.5.

16.2 Method

16.2.1 Notations and Aims

The datasets X and Y collect (respectively) P and Q quantitative variables measured
on the same set of N observations. In the case of multiblock setting, we have K
blocks of datasets denoted X.1/; : : : ;X.K/ corresponding to .P.1/; : : : ;P.K// variables
such that the total number of variables is equal to

P
k P.K/ D P. We define the

overall concatenated dataset as

X D 	X.1/j : : : jX.K/


:

In addition, the set of N observations is partitioned in M subsets of Nm observations
(N DPm Nm) such that the K blocks of the independent variables for the m-th group

of observations are denoted: X.1/
m ; : : : ;X

.K/
m , whereas the dependent variables of the

m-th group are stored in Ym. The structure of the data is illustrated in Fig. 16.1. We
also assume that all datasets X.k/

m (k D 1; : : : ;K) and Ym are centered.
Multiblock and multigroup PLS analysis seeks common loading weights denoted

a.k/ (for k D 1; : : : ;K) and b to investigate the relationships between the
.P.1/; : : : ;P.K// independent variables with the Q dependent variables. We denote
by a.k/m the vector of dimensions .P.k/ � 1/ of the loading weights specific to each
block k D .1; : : : ;K/ and each group m D .1; : : : ;M/. For a given block X.k/

(resp. Y), a common vector of loading weights a.k/ (resp. b) is sought. Thereafter,
the associated group and block scores t.k/m D X.k/

m a.k/ are computed in connection
with the common loading weights a.k/. For the independent blocks, the global
group component tm associated with the Nm individuals in group m D .1; : : : ;M/
is defined as a weighted sum of the block and group scores: tm D P

k !
.k/t.k/m .

This latter constraint allows us to link the blocks to each other. We denote by t the
global component of the N individuals formed by the vertical concatenation of the
group scores tm. This concatenation is possible because all the group components
tm share the same loading weights: t D Xa. This global component t can be used to
depict the N individuals. For the dependent data, group component um is calculated

www.espad.org
www.espad.org
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Fig. 16.1 Graphical display of multiblock and multigroup data

as um D Ymb. The global component u of the N individuals is formed by the
vertical concatenation of the group scores um: u D Yb. All the loading weights and
components are associated with a given dimension h D .1; : : : ;H/ where H is the
maximum dimension of the analysis. All these elements are illustrated in Fig. 16.1.

16.2.2 Preprocessing

Depending on the nature of the variables, different pre-treatments can be applied.
For instance, if the variables are not in the same scale unit, they can be standardized
to unit variance or norm before the analysis. Alternatively, in order to give the same
importance to all the groups, the variables can be standardized within each group.
However, such a choice requires that the sample size in each group is large enough to
ensure correct estimations of the group variances. In addition, in order to put all the
blocks on the same footing (i.e., same total variance), the data blocks are normalized

by dividing all the elements of block X.k/ by its norm defined as
q

trace
�
X.k/TX.k/

�
.

16.2.3 Multiblock and Multigroup PLS

We consider the multigroup context, where a dependent dataset, Y, is predicted
by several explanatory ones .X.1/; : : : ;X.K//, both these datasets being a priori
partitioned into the same M groups of individuals. We propose an original method
called multiblock and multigroup PLS (mbmgPLS). Multigroup and muliblock
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PLS seeks vectors of loading weights .a.1/; : : : ; a.K// and b which are respectively
common to all the groups within each independent block and dependent block. The
mbmgPLS method is based on a criterion that aims at maximizing the link between
the dependent group component um D Ymb and the independent group component
tm common to all the blocks. Formally, we seek to maximize the following criterion:

MX

mD1
Nmcov.tm;Ymb/ (16.1)

under the constraints

tm D
KX

kD1
!.k/X.k/

m a.k/;
KX

kD1
.!.k//2 D 1; ka.k/k D kbk D 1

Clearly, criterion (16.1) consists in determining for each group m D .1; : : : ;M/, a
global group score tm which is a linear combination of block and group components.
This global component is sought in such a way that it is tightly linked to a latent
component from Y. Moreover, within each X block and Y block, the loading weights
are considered to be identical across the various groups. The criterion (16.1) can be
written in terms of the common loading weights as follows.

MX

mD1
Nmcov.tm;Ymb/ D

MX

mD1

KX

kD1
!.k/cov.X.k/

m a.k/;Ymb/

D
MX

mD1

KX

kD1
!.k/.a.k//T.X.k/

m /
TYmb (16.2)

with
KX

kD1
.!.k//2 D 1; and ka.k/k D kbk D 1

In the case of one block of independent data (K D 1) with a group structure among
the individuals, mbmgPLS leads to mgPLS (Eslami et al. 2013b). If there is no group
structure among the individuals (M D 1), mbmgPLS leads to multiblock PLS (Wold
1984, 1966; Wangen and Kowalski 1988). If there is no group structure among the
individuals (M D 1) and if there is only one block (K D 1) of variables mbmgPLS
leads to standard PLS regression.

We propose an iterative algorithm to solve the maximization problem of mbmg-
PLS. The proposed algorithm for each dimension is presented in the following (see
Algorithm 16.1).

The convergence of the algorithm is guaranteed by the fact that at each stage
the parameters are computed so as to maximize the criterion at hand, the other
parameters being held constant. Thus, at each stage, the criterion increases and
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Algorithm 16.1: Algorithm for mbmgPLS for each dimension

[STEP-0] Initialization: Choose starting vectors of common loading weights a.k/ for
k D .1; : : : ;K/ and Y common loading weight vector b;

[STEP-1] Compute the weights !.k/ for k D .1; : : : ;K):

!.k/ D .a.k//T
P

m.X
.k/
m /T YmbqP

k..a.k//T
P

m.X
.k/
m /T Ymb/2

D .a.k//T.X.k//T YbpP
k..a.k//T .X.k//T Yb/2

[STEP-2] Compute the block and group scores t.k/m D X.k/
m a.k/ for m D .1; : : : ;M/ and

k D .1; : : : ;K/;
[STEP-3] Compute the global group scores tm DP

k !
.k/X.k/

m a.k/ for mD .1; : : : ;M/;
[STEP-4] Compute the dependent vector of common loading weights:

b D
P

m YT
mtm

kPm YT
mtmk

[STEP-5] Compute the dependent vector of group loading weights: bm D YT
mtm

kYT
m tmk

for
m D .1; : : : ;M/;
[STEP-6] Compute the dependent component u D Yb;
[STEP-7] Compute the common independent loading weights a.k/, for k D .1; : : : ;K/:

a.k/ D
P

m !
.k/.X.k/

m /T Ymb

kPm !
.k/.X.k/

m /T Ymbk
[STEP-8] Compute the block and group loading weights

a.k/m D .X.k/
m /T Ymb

k.X.k/
m /T Ymbk

for m D .1; : : : ;M/ and k D .1; : : : ;K/;
[STEP-9] Repeat the process starting from Step-1 until convergence (i.e., insignificant
variation in criterion

PM
mD1 Nmcov.tm;Ymb/ between two successive iterations).

because it is bounded, the process converges. It is noteworthy that in the course
of the algorithm we compute block and group loadings given by:

a.k/m D
.X.k/

m /
TYmb

k.X.k/m /TYmbk
for block k and group m and

bm D YT
mtm

kYT
mtmk

for group m. These vectors can be useful to highlight differences among the groups
as discussed in a subsequent section.



16 Multiblock and Multigroup PLS 219

A second order component and loading weights vectors can be determined by
means of a deflation strategy. The idea which is nowadays popular within the
framework of PLS regression is to remove from each block X.k/ (k D 1; : : : ;K)
and Y the information already accounted for by the first latent variable t. More
precisely, this consists in replacing the dataset X.k/ (resp. Y) by its residuals in the
orthogonal projection onto the subspace spanned by the global component t (i.e.,
.I�.ttT=tTt//X.k/) and .I�.ttT=tTt//Y; I being the identity matrix. By applying the
mbmgPLS algorithm to these new datasets, we obtain scores and loading weights for
the second dimension. Subsequent components and loading weights can be found
by reiterating this process.

16.2.4 Similarity Among Group and Common Loading Weights

In order to measure the similarity between the group loading vectors and the
common loading vector, we set up, for each group, a sequence of indices indexed by
the number of components retained in the model (Eslami et al. 2014b). Each index
ranges between 0 and 1 and reflects the extent to which the group vectors of loadings
and the associated common block vectors of loadings are similar. Specifically, let
Ak

m D Œa.k/1m ; : : : ; a.k/Hm � and Ak D Œa.k/1; : : : ; a.k/H� be (respectively) the group
and common loadings matrices. We will investigate whether these matrices lead
to similar vectors of loadings up to a given dimension h for h D .1; : : : ;H/. For this
purpose we consider the sequence of similarity indices given by Eq. (16.3).

Sh D 1

h

hX

rD1

ˇ̌
ˇ̌
�

a.k/rm

�T
a.k/r

ˇ̌
ˇ̌ D 1

h

hX

rD1

ˇ̌
ˇcos

�
a.k/rm ; a.k/r

�ˇ̌
ˇ for h D .1; : : : ;H/ (16.3)

16.3 Alternative Methods

The first alternative method stems from the idea that multiblock and multigroup
datasets can be considered as data with external information on the individuals,
and on the variables. The external information on the individuals is reflected by the
indicator matrix G (of size N�M) which indicates the membership of the individuals
to the various groups. Likewise, the external information on the variables is reflected
by the indicator matrices LX (of size K � P) and LY (of size K0 � Q) which reflects
the block structure. Thereupon, several methods have been proposed, related to the
framework of Canonical Correlation Analysis (Takane and Hwang 2002; Takane
et al. 2006), Redundancy Analysis (Takane and Jung 2006) and Co-Inertia Analysis
(Amenta 2008). These methods mainly consist of two steps: the first (external) step
aims at partitioning the datasets into several additive (orthogonal) parts according to
the external information, and the second (internal) one aims at applying a two-block
method to each pair of the decomposed matrices.
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Other alternative methods are dedicated to the prediction purpose with a stepwise
determination of common parameters. An extension of Ordinary Least Squares
and Partial Least Squares to the multiblock framework is proposed by Jorgensen
et al. (2007). This method aims at seeking common regression coefficients (to all
the groups) by means of an iterative algorithm where Y is explained both by the
design matrix G (group membership) and a summary of the explanatory datasets
.X.1/; : : : ;X.K// oriented towards the explanation of the within-group variation
of Y. However, because this method performs poorly in presence of correlation
between G and X and because the convergence of the iterative algorithm is not
guaranteed, sequential and orthogonalized PLS have been proposed by Måge et al.
(2008). The first step of this latter strategy of analysis consists in finding a common
subspace by means of Generalized Canonical Correlation Analysis. The second
step aims at orthogonalizing each explanatory block with respect to this common
space in order to identify specific information to each block. Although the method
is mainly devoted to seeking common regression coefficients, the components and
loading weights computed in the course of the algorithm can be used to depict the
relationship among the individuals and the variables. In the Structural Equation
Modeling framework, the method proposed by Chin et al. (2003) to incorporate
interaction effects in PLS Path Modeling is of particular interest for multigroup
and multiblock setting. It aims at modeling the relationships between a dependent
dataset Y and one or several explanatory datasets by taking account of the group
structure summed up with the design matrix G (group memberships). However,
this method may be time consuming particularly in presence of a large number of
groups, variables and blocks since the number of interaction terms highly increases.

Finally, Martin et al. (2002) proposed multigroup PLS as an extension of
the ideas of Flury (1984) based on the algorithm presented by Lindgren et al.
(1993). This method aims at finding common loadings to all the groups from a
pooled variance-covariance matrix. This method is interesting because the common
loading weights are proposed to depict the explanatory variables in a common
space. However, the method does not exhibit common dependent loading weights
associated with the dependent block, and is not based on a clear optimization
criterion.

16.4 Illustration

16.4.1 Data and Aims

The proposed method of analysis is illustrated on multiblock and multigroup data
from the analysis of the 2011 European School Survey Project on Alcohol and
Drugs (ESPAD) which aims at collecting data on alcohol and drugs following the
same protocol in various countries (www.espad.org). One aspect in the questionnaire
was the Cannabis Abuse Screening Test (CAST) (Legleye et al. 2011) chosen by

www.espad.org
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thirteen countries. The database consists of 5,204 teenagers who reported having
smoked cannabis in the previous 12 months. The multigroup structure of the
individuals derives from the fact that the data are sampled from 13 countries namely;
Belgium .N1 D 331/, Cyprus .N2 D 177/, Czech Republic .N3 D 1;013/, France
.N4 D 723/, Germany .N5 D 365/, Italy .N6 D 617/, Kosovo .N7 D 55/,
Latvia .N8 D 292/, Liechtenstein .N9 D 52/, Poland .N10 D 1; 113/, Romania
.N11 D 93/, Slovak Republic .N12 D 246/ and Ukraine .N13 D 127/. These
data are multiblock because they comprise five blocks: one block of dependent
variables and (K D 4) blocks of independent variables. The block of dependent
variables relates to the drug consumption, namely Y (Q D 6 variables; Table 16.1)
(Legleye et al. 2007). Four blocks of independent variables (K D 4) related to the
use and the context of cannabis, namely X.1/, X.2/, X.3/ and X.4/ respectively with
(P.1/ D 5), (P.2/ D 4), (P.3/ D 5) and (P.4/ D 2) variables (see Table 16.2). All
these variables are considered as quantitative variables and when the case applies,
the categorical variables were replaced by the indicator (or, 0=1) variables of their
categories. The main aim is to describe the link between the cannabis consumption
variables (CAST) and the independent variables in (K D 4) blocks which describe
the drug use and consumption context, beyond the diversity among the countries.

For data prepossessing, all the variables were scaled. Moreover, in order to set
the .K D 4/ independent blocks on the same footing, blocks were divided by
the square root of their total variance. The proposed method and the associated
interpretations tools are performed using code programs developed in the free
software R (Development Core Team 2012).

16.4.2 Overall Interpretation of mbmgPLS Outputs

We applies mbmgPLS to investigate cannabis consumption (Y) by the use and
context variables (X.1/; : : : ;X.4/), taking into account the diversity between coun-
tries. Two dimensions were retained as they explained together 63% of the total
variance. The importance of the blocks in the determination of the successive global
components can be reflected by the squared values of block weights .!.k//2, for
(k D 1; : : : ; 4), where

P4
kD1.!.k//2 D 1. These values are shown in Table 16.3.

Table 16.1 Cannabis consumption: dependent variables Y

Abbreviation Dependent variables

CAST1 Have you smoked cannabis before midday?

CAST2 Have you smoked cannabis when you were alone?

CAST3 Did You have memory problems when you smoked cannabis?

CAST4 Do you have friends or relatives who told you to reduce or

stop cannabis consumption?

CAST5 Have you tried to reduce or stop the cannabis use without succeeding?

CAST6 Have you had problems because of your cannabis use

(argument, fight, accident, poor results at school, etc.)?
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Table 16.3 Percentage of
squared block weights .!.k//2

for the first five dimensions

Dim1 Dim2 Dim3 Dim4 Dim5

X.1/ 16.95 7.70 29.98 18.16 9.68

X.2/ 55.90 17.62 23.15 55.83 57.31

X.3/ 17.63 13.35 18.93 15.07 28.06

X.4/ 9.52 61.33 27.94 10.94 4.96

Fig. 16.2 Common loadings plot for the first two global components

For the first dimension the global component is mainly explained by the variables
from the block X.2/, whereas the second dimension is mainly related to the variables
from the block X.4/.

16.4.2.1 Interpretation at the Variable Level

The loadings plots associated with the (K D 4) independent blocks and Y block are
depicted in Fig. 16.2. The main finding is that five CAST variables, especially non-
recreational use CAST1 and CAST2 (smoking before midday and smoking alone),
are positively correlated with C25c and C25b (cannabis consumption in the previous
year or month) in block X.2/ and C34d (number of friends who take cannabis) in
block X.3/ and, to a lesser extent, with C09 (cigarette smoking) and C19a and C19b
(the frequency of drunkenness during life and year) and negatively linked with C26
(age when the teenagers start taking cannabis) in block X.2/.

The similarity between the group loading weights (associated with each country)
and common loading weights (across the countries) for each block for the first two
components is shown in Fig. 16.3. The results show that in general there is a high
similarity between the group loading weights (countries) and the common loading
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Fig. 16.3 Similarity index between group and block loading weights a.k/m (resp. bm) and common
block loading weights a.k/ (resp. b) for the first two (cumulative) global components of mbmgPLS
(h D 1 and 2)

Fig. 16.4 Graphical displays of group loading weights from Kosovo, Romania and Liechtenstein
for the first two components

weights expect for the countries ‘Lichtenstein,’ ‘Kosovo,’ and ‘Romania.’ Moreover,
in blocks X.1/, X.3/ and X.4/, ‘Cyprus’ is far from the common structure. It follows
that for each block, the common loading weights are good representations of their
associated group and block loadings. The particularity of ‘Kosovo,’ ‘Romania,’ and
‘Lichtenstein’ is illustrated in Fig. 16.4.
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16.5 Conclusion and Perspectives

In this paper we present a new method called multiblock and multigroup PLS
(mbmgPLS)—an extension of multigroup PLS—specifically tailored for the anal-
ysis of multiblock and multigroup data. In order to investigate the relationships
between the variables, this method finds common loadings for all the groups of
individuals for each block of variables and provides parsimonious models which
ensure a better stability than separate group analyses.

For future research, it would be interesting to develop and assess the prediction
ability of the proposed method and to compare its performance to other alternative
methods. The proposed multigroup method can also be extended to the case of
several levels of hierarchy within individuals (e.g., animals are nested within farms
and farms are nested within regions). Furthermore, it would be interesting to extend
mbmgPLS to the framework of several independent blocks .X.1/; : : : ;X.K// to
explain several dependent datasets .Y.1/; : : : ;Y.L//.
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Chapter 17
A Unified Framework to Study the Properties
of the PLS Vector of Regression Coefficients

Mélanie Blazère, Fabrice Gamboa, and Jean-Michel Loubes

Abstract In this paper we propose a new approach to study the properties of
the Partial Least Squares (PLS) vector of regression coefficients. This approach
relies on the link between PLS and discrete orthogonal polynomials. In fact
many important PLS objects can be expressed in terms of some specific discrete
orthogonal polynomials, called the residual polynomials. Based on the explicit
analytical expression we have stated for these polynomials in terms of signal and
noise, we provide a new framework for the study of PLS. We show that this approach
allows to simplify and retrieve independent proofs of many classical results (proved
earlier by different authors using various approaches and tools). This general and
unifying approach also sheds light on PLS and helps to gain insight on its properties.

Keywords Partial least squares regression (PLSR) • Orthogonal polynomial •
Krylov subspaces

17.1 Introduction

The PLS regression method, introduced and developped by S. Wold and his
coauthors in the early 1980s, is an alternative to Ordinary Least Squares (OLS)
when the explanatory variables are highly collinear or when they outnumber the
observations. This method has been successfully applied in a wide variety of fields
and has gained an increasing attention especially in chemical engineering and
genetics. The idea behind PLS is to first reduce the data to a well adapted low
dimensional space to then perform prediction. Originally, it is a sequential procedure
that leads to orthogonal latent components maximizing both the variance of the
predictors and the covariance with the response variable. Early references on PLS
are Helland (1988), Martens and Naes (1992) and Frank and Friedman (1993). For
more details on PLS we also refer to Helland (2001) and Rosipal and Krämer (2006).
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PLS has been mainly investigated but its properties are still little known. This is
mainly due to the fact that the PLS estimate depends in a non linear way of the
response. In Blazère et al. (2014), we have suggested a new way of thinking PLS
based on its connections with orthogonal polynomials. In this paper, we consider
again these connections to provide a general and unified framework for the study of
the PLS properties.

First, in Sect. 17.2, we set the framework and the notations. Then, we recall in
Sect. 17.3 the link between PLS and Krylov subspaces and also its connections
with orthogonal polynomials. In Sect. 17.4, we provide an explicit formula for
the PLS vector of regression coefficients which only depends on the noise on the
observations and on the spectrum of the design matrix. We show that this new
expression helps to gain more insight into PLS and sheds lights on this method.
We also give a new expression for the filter factors. Finally, in Sect. 17.5, we show
how it is obvious to then recover most of the main properties of the PLS filter factors
(Lingjaerde and Christophersen 2000; Butler and Denham 2000) and also the fact
that PLS globally shrinks the Least Squares estimator (De Jong 1995; Goutis 1996).

17.2 Framework

17.2.1 The Regression Model

We consider the classical linear regression model

Y D Xˇ C " (17.1)

where X is the .n; p/ matrix of design, Y D .Y1; : : :;Yn/
T 2 R

n is the vector of the
observed outcome and ˇ D .ˇ1; : : :; ˇp/

T 2 R
p is the unknown parameter vector.

The vector " D ."1; : : :; "n/
T 2 R

n contains the errors. To simplify we assume that
X and Y are centered in such a way that there is no intercept. We allow p to be
larger than n and we denote by r the rank of X. Of course r 	 min.n; p/. When
r is not equal to p (i.e. X is not full column rank), ˇ is not uniquely determined
by the linear predictor Xˇ. However, because PLS is a predictive tool and not an
estimation one, we are not really concerned by ˇ in itself but by Xˇ which remains
estimable. Therefore, even when p > n the PLS procedure is still valid and provides
an estimate of the response.

17.2.2 Singular Value Decomposition of the Design Matrix

An important and useful tool to study the properties of the PLS estimate is the
Singular Value Decomposition (SVD). The SVD of X is given by X D UDVT

where
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• U is a .n; n/ matrix whose columns u1; : : :; un form an orthonormal basis of Rn.
• V is a .p; p/ matrix and its columns v1; : : :; vp form an orthonormal basis of Rp.
• D 2 Mn;p is a matrix which contains .

p
1; : : :;

p
r/ on the diagonal and zero

anywhere else (i.e. dii D
p
i for i D 1; : : :; r and dij D 0 otherwise).

1; : : :; r represent the non-zero positive eigenvalues of the predictor sample
covariance matrix XTX. Without loss of generality we assume that 1 � 2 �
: : :: � r > 0.

Two important quantities in this paper are pi D .Xˇ/Tui; i D 1; : : :; n and Opi D
YTui; i D 1; : : :; n. We also denote by Q"i WD "Tui, i D 1; : : :; n and Q̌i WD ˇTvi, i D
1; : : :; p the projections of " and ˇ respectively onto the left and right eigenvectors
of X.

17.3 Connections Between PLS and Discrete Orthogonal
Polynomials

17.3.1 PLS and Krylov Subspaces

We recall that the minimum length least squares estimator is defined by

Ǒ
LS WD .XTX/�XTY D

rX

iD1

Opip
i
vi;

where Opi D YT ui. When some i are small the LS estimator has a high variance.
A solution can be to use Principal Components Regression. However, this method
fails when the principal components corresponding to small eigenvalues have high
correlations with Y. In this case an alternative can be to use the PLS method. As
mentioned before, this procedure takes into account the value of the response to
build a low dimensional space by maximizing both the variance of the predictors
and the covariance with the response variable. Then, the data are projected into
this lower space to sequentially build latent components. For the algorithmic
construction we refer to Wold et al. (1984) and to Frank and Friedman (1993). In
our work we do not consider the sequential construction of the PLS components. We
rather use that PLS is the minimization of least squares over some Krylov subspaces.

Proposition 17.1 (Helland 1988).

ǑPLS
k D argmin

b2K k.XT X;XT Y/
kY � Xbk2 (17.2)

where K k.XTX;XTY/ D ˚XTY; .XTX/XTY; : : :; .XTX/k�1XTY

, k D 1; : : :; r.

The space K k.XTX;XTY/ is called the kth Krylov subspace with respect to XTY
and XTX (Saad 1992).
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17.3.2 The Discrete Orthogonal Polynomials Approach

In this section, we recall the link between PLS and orthogonal polynomials we have
stated in a previous paper (see Blazère et al. 2014).

17.3.2.1 Link Between PLS and Discrete Orthogonal Polynomials

We denote by Pk the set of all polynomials of degree at most k and by Pk;1

the subset of Pk constituted by polynomials with constant term equals to one. To
simplify the notations we just denote by Ǒk the PLS estimate at step k.

From Proposition 17.1, it is easy to see that the PLS estimate has a polynomial
representation in terms of XTX. It is a straightforward consequence of the fact that
Ǒ
k 2 K k.

Proposition 17.2. For 1 	 k 	 r, we have

Ǒ
k D OPk.X

TX/XTY and kY � X Ǒkk2 D k OQk.XXT/Yk2 (17.3)

where OQk.t/ D 1 � t OPk.t/ 2Pk;1 satisfies OQk 2 argmin
Q2Pk;1

kQ.XXT/Yk2.

We call the sequence . OQk/1��r the residual polynomials. We can show that these
polynomials form a sequence of discrete orthogonal polynomials.

Proposition 17.3. OQ0 WD 1; OQ1; : : :; OQr is a sequence of discrete orthogonal
polynomials with respect to the measure d O�./ DPr

jD1 j.uT
j Y/2ıj :

Notice that the weights are positive and the magnitude of the point masses depends
both on the variation in X and on the correlation between X and Y along each
eigenvector direction.

17.3.2.2 Expression of the Residual Polynomials

An explicit formula for the residual polynomials
� OQk

�

1�k�r
easier to interpret and

well tailored to the study of the PLS properties can be stated.

Theorem 17.4. Let 1 	 k 	 r and

ICk D f.j1; : : :; jk/ W r � j1 > : : : > jk � 1g :
We have

OQk.x/ D
X

.j1;::;jk/2IC

k

" Op2j1 : : :Op2jk2j1 : : :2jk V.j1 ; : : :; jk/
2

P
.j1;::;jk/2IC

k
Op2j1 : : :Op2jk2j1 : : :2jk V.j1 ; : : :; jk/

2

#
kY

lD1
.1 � x

jl

/:

(17.4)
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where V.j1 ; : : :; jk/ denotes the Vandermonde determinant of .j1 ; : : :; jk/ and we
recall that Opi WD pi C Q"i with pi WD .Xˇ/Tui D

p
i
Q̌
i and Q"i WD "Tui.

This formula clearly shows how the disturbance on the observations and the
distribrution of the spectrum impact on the residuals. This expression of the residual
polynomials contains all the information necessary to study the PLS properties.

17.4 A New Expression for the PLS Estimate

17.4.1 An Explicit and Developed Formula

Using Proposition 17.2 and expanding XTX and XXT in terms of the right and left
eigenvectors of X, we can write the PLS estimate just in terms of the eigenelements
of X and the residual polynomials:

Ǒ
k D

rX

iD1

�
1 � OQk.i/

� Opip
i
vi: (17.5)

Of course we can state a similar expression for the linear predictor and the empirical
risk.

From this decomposition of Ǒk, we recover that the PLS estimate is a shrinkage
estimator. In addition, we have an alternative representation of the filter factors in
terms of the residual polynomials: f .k/i WD 1 � OQk.i/. Then, using Theorem 17.4,
we can expand the filter factors and provide a new expression as follow:

f .k/i WD
X

.j1;::;jk/2IC

k

Ow.j1;::;jk/
"
1 �

kY

lD1
.1 � i

jl

/

#
; (17.6)

where Owj1;::;jk WD
Op2j1 : : :Op2jk2j1 : : :2jk V.j1 ; : : :; jk/

2

P
.j1;::;jk/2IC

k
Op2j1 : : :Op2jk2j1 : : :2jk V.j1 ; : : :; jk /

2
:We can interpret the

weights . Ow.j1;::;jk//IC

k
as probabilities on polynomial Pk;1 supported by polynomials

having their roots in the spectrum of the design matrix. This is an alternative
representation to the one of Lingjaerde and Christophersen (2000) who consider the
following implicit expression for the filter factors to study the shrinkage properties
of PLS (see Theorem 1 in Lingjaerde and Christophersen 2000):

f .k/i D
.�
.k/
1 � i/: : :.�

.k/
k � i/

�
.k/
1 : : :�

.k/
k

(17.7)
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where .�.k/i /1�i�k are the eigenvalues of Wk.Wk
TXTXWk/Wk

T and Wk contains a
basis of K k. The interest of Formula (17.6) compared to (17.7) is that it clearly and
explicitly shows how the filter factors depend on the noise and the spectrum of X.
We can notice that they are completely determined by these last quantities.

17.4.2 Properties of the Filter Factors

From Eq. (17.6), we easily see that the PLS filter factors are polynomials of degree k
that strongly depend on the response in a non linear and complicated way (product
of the projections of the response onto the right eigenvectors and normalization
factor). Furthermore, because the PLS filter factors depend on the noise ", usual
results for linear spectral methods such as PCA or Ridge, cannot be applied in this
case. Contrary to those of PCA or Ridge regression, the PLS filter factors are not
easy to interpret. This is closely linked to the intrinsic idea of the method that takes
into account at the same time the variance of the explanatory variables and their
covariance with the response. However, we have a control of the distance of the
filter factors to one.

Proposition 17.5. For all k 	 r, we have

ˇ̌
ˇ1�f .k/i .i/

ˇ̌
ˇ 	

�
1�r

r

�n
0

@1C Op2i 2i
P

IC

k�1;i

Qk
lD1.Op2jl2jl/V.j1 ; : : :; jk�1 /

2

P
IC

k;i

Qk
lD1.Op2jl2jl/V.j1 ; : : :; jk /

2

1

A
�1

;

where ICk;i WD
˚
.j1; : : :; jk/ 2 ICk j jl ¤ i; l D 1; : : :; k.

So the highest are the i and Opi the closest to one is f .k/i and the largest is the amount
of expansion in this eigenvector direction. Actually, the PLS filter factors are not
only related to the singular values but also to the magnitude of the covariance
between the principal components and the response: what seems to be important
it is not the order of decrease fo i but the order of decrease of i Op2i .

We can also notice that a rough bound is j f .k/i j	 max
IC

k

ˇ̌
ˇ1 �Qk

lD1
�
1 � i

jl

�ˇ̌
ˇ for

all k 	 r and all 1 	 i 	 r. In addition, if we have 1.1� "/ < i < n.1C �/ then
a straightforward calculation leads to

j 1 � f .k/i j< �k:

17.5 Shrinkage Properties of PLS: New Proofs of Known
Results

In this section, we explain how we can easily recover (once Theorem 17.4 is stated)
most of the main known results on the PLS filter factors.
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17.5.1 Some Peculiar Properties of the PLS Filter Factors

In this section we investigate the shrinkage properties of the PLS estimate.

1. From Formula (17.6), we easily see that there is no order on the filter factors
and no link between them at each step. Furthermore, they are not always in
Œ0; 1�, contrary to those of PCR or Ridge regression which always shrink in all
the eigenvectors directions. In particular the PLS filter factors can be greater
than one and even negative. This is one of their very particular features. PLS
shrinks in some direction but can also expand in others in such a way that f .k/i
represents the magnitude of shrinkage or expansion of the PLS estimate in the
ith eigenvectors direction. Frank and Friedman (1993) were the first to notice this
peculiar property of PLS. This result was proved by Butler and Denham (2000)
and independently the same year by Lingjaerde and Christophersen (2000) using
Ritz eigenvalues.

The shrinkage properties of the PLS estimate were mainly investigated by
Lingjaerde and Christophersen (2000). From Formula (17.6), we easily recover
the main properties they have stated for the filter factors (but without using the
Ritz eigenvalues). It is for instance the case for the behaviour of the filter factors
associated to the largest and smallest eigenvalue. Indeed, if k 	 r and i D r then
0 <

Qk
lD1.1 � r

jl
/ < 1. Because

P
.j1;::;jk/2IC

k
Ow.j1;::;jk/ D 1, we can conclude

directly that 0 < f .k/r < 1.
On the other hand, if k 	 r and i D 1 then

( Qk
lD1.1� 1

jl
/ < 0 if k is odd

Qk
lD1.1� 1

jl
/ > 0 if k is even

so that

(
f .k/1 > 1 if k is odd
f .k/1 < 1 if k is even

:

This is exactly Theorem 3 of Lingjaerde and Christophersen (2000).
Hence, the filter factor associated to the largest eigenvalues oscillates around

one depending on the parity of the index of the factors. For the other filter factors
we can have either f .k/i 	 1 (PLS shrinks) or f .k/i � 1 (PLS expands) depending
on the distribution of the spectrum.

2. Notice that for orthogonal polynomials of a finite supported measure there exists
a point of the support of the discrete measure between any two of their zeros
(Baik et al. 2007). Moreover, the roots of these polynomials belong to the interval
whose bounds are the extreme values of the support of the discrete measure.
Therefore, from Proposition 17.3, we deduce that all the k zeros of OQk lie in
Œr; 1� and no more than one zeros lies in Œi; i�1�, where i D 1; : : :; r C 1

and by convention rC1 WD 0 and 0 WD C1. We immediately deduce that the
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eigenvalues Œr; 1� can be partitioned into kC 1 consecutive disjoint non empty
intervals denoted by .Il/1�l�kC1 that first shrink and then alternately expand or
shrink the OLS. In other words

(
f .k/i 	 1 if i 2 Il; l odd
f .k/i � 1 if i 2 Il; l even

:

This is Theorem 1 of Butler and Denham (2000). Notice that this result has been
also proved independently by Lingjaerde and Christophersen (2000) using the
Ritz eigenvalues theory (see Theorem 4).

3. Furthermore, we also recover Theorem 2 of Butler and Denham (2000):

Theorem 17.6. For i D 1; : : :; n

f .r�1/i D 1 � C

0

@Opii

rY

jD1;j¤i

.j � i/

1

A
�1

;

where C does not depend on i.

In addition we have the exact expression for the constant which is equal to

C D

2

64

0

@
rY

jD1
j

1

A
rX

lD1

0

B@p2l 
2
l

rY

jD1
j¤l

.l � j/
2

1

CA

�13

75

�1

(17.8)

Proof. Based on Formula (17.6), we have

f .r�1/i D 1 �
Qr

jD1;j¤i

�
Op2j j.j � i/

�1
�

V.1; : : :; r/
2

Pr
lD1

�Qr
jD1
j¤l

�
Op2j 2j

�
V.1; : : :; l�1; lC1; : : :; r/2

�

D1�

0

B@Op2i i

rY

jD1
j¤i

.j�i/

1

CA

�1
1

�Qr
jD1 j

�Pr
lD1

�
p2l 

2
l

Qr
jD1
j¤l
.l�j/2

��1 :

(17.9)

So the highest is Op2i i
Qr

jD1;j¤i.j � i/ the closest to one is f .r�1/i . Using similar
arguments, we can also provide an independant proof of Theorem 3 of Butler and
Denham (2000).
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In conclusion, we have showed that, based on our new expression of the PLS filter
factors, we easily recover some of their main properties. Our approach provides a
unified background to all these results.

Lingjaerde and Christophersen (2000) mentioned that, using their approach
based on the Ritz eigenvalues, it appears difficult to establish the fact that PLS
shrinks in a global sense. Butler and Denham (2000) also considered the shrinkage
properties of the PLS estimate along the eigenvector directions but again they did
not prove that the PLS estimate globally shrinks the LS one. With our approach we
are able to prove this fact too. This is the aim of the next section.

17.5.2 Global Shrinkage Property of PLS

As seen in the previous section, PLS expands the LS estimator in some eigen-
directions leading to an increase of the LS’s projected length in these directions.
However, PLS globally shrinks the LS in the sense that its Euclidean norm is lower
than the LS one.

Proposition 17.7. For all k 	 r, we have

k Ǒk k2	k ǑLS k2 :

This global shrinkage feature of PLS was first proved algebraically by De Jong
(1995) and a year later Goutis (1996) proposed a new independant proof based on
the PLS iterative construction algorithm by taking a geometric point of view. In
addition De Jong (1995) proved the more stronger following result:

Lemma 17.8. k Ǒk�1 k2	k Ǒk k2 for all k 	 r.

An alternative proof of Lemma (17.8) is given below using the residual polynomials.
Even if this proof follows the guidelines of an independent proof given by Phatak
and de Hoog (2002), we detail it to emphasize some of the powerful properties of
the residual polynomials.

Proof. The vectors XT OQ0.XXT/Y,. . . ,XT OQk�1.XXT/Y belongs to K k.XTX;XTY/
and are orthogonals (because . OQk/0�k�r is a sequence of orthogonal polynomials
with respect to the discrete measure O�). Therefore, they formed an orthogonal basis
for K k.XTX;XTY/. As Ǒk 2 K k.XTX;XTY/, we have

k Ǒk k2WD
k�1X

jD0

� ǑT
k XT OQj.XXT/Y

�2

k XT OQj.XXT/Y k2 :
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Further, because X Ǒk DPr
iD1.1 � OQk.i//Opiui, we may write

ǑT
k XT OQj.XXT/Y D

rX

iD1
.1 � OQk.i// OQj.i/Op2i D

rX

iD1
OQj.i/Op2i �

rX

iD1
OQk.i/Op2i

using that

rX

iD1
OQj.i/ OQk.i/Op2i D

rX

iD1
OQj.i/Op2i ; j 	 k: (17.10)

This is a very important property of the residual polynomials. This interesting

feature is due to the fact that OQk.XXT/XTY D
h
I � Ŏ k

i
Y where Ŏ k is the orthogonal

projector onto the space spanned by K k.XXT ;XXTY/. Then, based on Ŏ k Ŏ j D Ŏ j,
we get (17.10). Thus, we have

ǑT
k XT OQj.XXT/Y Dk Y � X Ǒj k2 � k Y � X Ǒk k2Dk X Ǒk k2 � k X Ǒj k2 :

Furthermore, for 1 	 l < k 	 r, we have k X Ǒl k2<k X Ǒk k2 (because X Ǒl and X Ǒl
are the orthogonal projection of Y onto two Krylov subspaces, the first one included
in the other). Therefore, we deduce

k Ǒk k2	
k�1X

jD0

�
k X ǑkC1 k2 � k X Ǒj k2

�2

k XT OQj.XXT/Y k2 WDk ǑkC1 k2 :

Finally, Proposition 17.7 follows from the fact that k Ǒr k2Dk ǑLS k2.

17.6 Conclusion

We have proposed a general and unifying approach to study the properties of
the Partial Least Squares (PLS) vector of regression coefficients. This approach
relies on the link between PLS and discrete orthogonal polynomials. The explicit
analytic expression of the residual polynomials sheds new light on PLS and helps to
gain insight on its properties. Furthermore, we have shown that this new approach
provides a better understanding for several distinct classical results.
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Chapter 18
A New Bootstrap-Based Stopping Criterion
in PLS Components Construction

Jérémy Magnanensi, Myriam Maumy-Bertrand, Nicolas Meyer,
and Frédéric Bertrand

Abstract We develop a new universal stopping criterion in components construc-
tion, in the sense that it is suitable both for Partial Least Squares Regressions (PLSR)
and its extension to Generalized Linear Regressions (PLSGLR). This criterion is
based on a bootstrap method and has to be computed algorithmically. It allows
to test each successive components on a significant level ˛. In order to assess its
performances and robustness with respect to different noise levels, we perform
intensive datasets simulations, with a preset and known number of components to
extract, both in the case N > P (N being the number of subjects and P the number
of original predictors), and for datasets with N < P. We then use t-tests to compare
the predictive performance of our approach to some others classical criteria. Our
conclusion is that our criterion presents better performances, both in PLSR and
PLS-Logistic Regressions (PLS-LR) frameworks.

Keywords Partial least squares regressions (PLSR) • Bootstrap • Cross-
validation • Inference
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18.1 Introduction

Performing usual linear regressions between an univariate response y D
.y1; : : : ; yN/ 2 R

N�1 and highly correlated predictors X D .x1; : : : ; xP/ 2 R
N�P,

with N the number of subjects and P the number of predictors, or on datasets
including more predictors than subjects, is not suitable or even possible. However,
with the huge technological and computer science advances, providing consistent
analysis of such datasets has become a major challenge, especially in domains such
as medicine, biology or chemistry. To deal with them, statistical methods have been
developed, especially the PLS Regression (PLSR) which was introduced by Wold
et al. (1983, 1984) and described precisely by Höskuldsson (1988) and Wold et al.
(2001).

PLSR consists in building K 6 rk.X/ orthogonal “latent” variables TK D
.t1; : : : ; tK/, also called components, in such a way that TK describes optimally
the common information space between X and y. Thus, these components are build
up as linear combinations of the predictors, in order to maximize the covariances
cov .y; th/ so that:

th D Xw�h D
PX

jD1
w�jhxj; 1 6 h 6 K (18.1)

where w�h D .w1h
�; : : : ;wPh

�/T is the vector of predictors weights in the hth
component (Wold et al. 2001) and .:/T represents the transpose.

Let K be the number of components. The final regression model is:

y D
KX

hD1
chth C � D

KX

hD1
ch

0

@
PX

jD1
w�jhxj

1

AC �; (18.2)

with � D .�1; : : : ; �N/
T the N by 1 error vector, verifying E .� jTK / D 0N ,

Var .� jTK / D 	2� � IdN and .c1; : : : ; cK/ the coefficients of regression of y on TK .
An extension to Generalized Linear Regression models, noted PLSGLR, has

been developed by Bastien et al. (2005), with the aim of taking into account the
specific distribution of y. In this context, the regression model is the following one:

g.�/ D
KX

hD1
ch

0

@
PX

jD1
w�jhxj

1

A ; (18.3)

with � the conditional expected value of y for a continuous distribution or the
probability vector of a discrete law with a finite support. The link function g depends
on the distribution of y.
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The determination of the optimal number of components K, which is equal to the
exact dimension of the link between X and y, is crucial to obtain correct estimations
of the original predictors coefficients. Indeed, concluding K1 < K leads to a loss
of information so that links between some predictors and y will not be correctly
modelled. Concluding K2 > K involves that useless information in X will be used
to model knowledge in y, which leads to overfitting.

18.2 Criteria Compared Through Simulations

18.2.1 Existing Criteria Used for Comparison

• In PLSR:

1. Q2: This criterion is obtained by Cross-Validation (CV) with q, the number of
parts the dataset is divided, chosen equal to five (5-CV), according to results
obtained by Kohavi (1995) and Hastie et al. (2009). For a new component th,
Tenenhaus (1998) considers that it improves significantly the prediction if:

p
PRESSh 6 0:95

p
RSSh�1 ” Q2

h > 0:0975:

2. BICdof: Krämer and Sugiyama (2011) define a dof correction in the PLSR
framework (without missing data) and apply it to the BIC criterion. We used
the R package plsdof, based on Krämer and Sugiyama (2011) work, to obtain
values of this corrected BIC and selected the model which realizes the first
local minimum of this BICdof criterion.

• In PLSGLR:

1. CV �MClassed: This criterion could only be used for PLS-Logistic Regres-
sions (PLS-LR). Through a 5-CV, it determines for each model the number
of predicted missclassified values. The selected model is the one linked to the
minimal value of this criterion.

2. p_val: Bastien et al. (2005) define a new component th as non-significant if
there is not any significant predictors within it. An asymptotic Wald test is
used to conclude to the significance of the different predictors.

18.2.2 Bootstrap Based Criterion

All the criteria described just above have major flaws including arbitrary bounds
dependency, results based on asymptotic laws or derived from q-CV which naturally
depends on the value of q and on the way the group will be randomly drawn. For this
purpose, we adapted non-parametric bootstrap techniques in order to test directly,
with some confidence level .1 � ˛/, the significance of the different coefficients ch

by extracting confidence intervals (CI) for each of them.
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The significance of a new component tH can not be tested by simulating the
usual conditional distribution given X of its regression coefficient linked to y since
it would be a positive one. Since tH maximizes Cov .y; tH jTH�1 /, we approached
the conditional distribution given TH�1 to test each new component. We define the
significance of a new component as resulting from its significance for both y and
X, so that the extracted number of components K is defined as the last one which is
significant for both of them.

Bootstrapping pairs was introduced by Freedman (1981). This technique relies
on the assumption that the originals pairs .yi; ti�/, where ti� represents the ith row of
TH , are randomly sampled from some unknown .H C 1/-dimensional distribution.
This technique was developed to treat the so called correlation models, in which
predictors are considered as random and � may be related to them.

In order to adapt it to PLSR and PLSGLR frameworks, we designed the following
double bootstrapping pairs algorithmic implementation, with R D 500, which will
be graphically reported as BootYT. To avoid confusions between the number of
predictors and the coefficients of the regressions of X on TH , we set M as the total
number of predictors.

• Bootstrapping .X;TH/: let H D 1 and l D 1; : : : ;M.

1. Compute the H first components .t1; : : : ; tH/.
2. Bootstrap pair .X;TH/, returning R bootstrap samples .X;TH/

br ; 1 6 r 6 R.

3. For each .X;TH/
br , do M least squares regressions xbr

l D ŒhD1�
H

P
�
Oplh

br :tbr
h

�
C Oıbr

lH .

4. 8plH, construct a .100 � .1 � ˛//% bilateral BCa CI, noted CIl D	
CIH

l;1;CIH
l;2



.

5. If 9l 2 f1; : : : ;Mg, 0 … CIl, then H D H C 1 and return to Step 1. Else,
Kmax D H � 1.

• Bootstrapping .y;TH/: let H D 1. Note that for PLSGLR, a generalized
regression is performed at Step 3.

1. Compute the H first components .t1; : : : ; tH/.
2. Bootstrap pair .y;TH/, returning R bootstrap samples .y;TH/

br ; 1 6 r 6 R.

3. For each pair .y;TH/
br , do the LS regression ybr DŒhD1�H

P �
Ocbr

h :t
br
h

�
C O�br

H .

4. Since cH > 0, construct a .100 � .1 � ˛//% unilateral BCa CI D 	CIH
1 ;C1

	

for cH.
5. While CIH

1 > 0 and H 6 Kmax, do H D H C 1, and return to Step 1. Else, the
final extracted number of components is K D H � 1.
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18.2.3 Simulation Plan

To compare these different criteria, datasets simulations have been performed
by adapting the simul_data_UniYX function, available in the R package plsRglm
(Bertrand et al. 2014).

Simulations were performed to obtain a three dimensions common space
between X and y, leading to an optimal number of components equal to three. They
were performed under two different cases, both in PLSR and PLSGLR framework.
The first one is the N > P situation with N D 200 and P 2 ˝200 D f7; : : : ; 50g.
The second one is the N < P situation where N D 20 and P 2 ˝20 D f25; : : : ; 50g.
For each fixed couple .	4; 	5/, which respectively represents the standard deviation
owned by the useless fourth component present in X and the random noise standard
deviation in y, we simulated 100 datasets with Pl predictors, l D 1; : : : ; 100,
obtained by sampling with replacement in ˝N .

18.3 PLSR Results

18.3.1 PLSR: Case N > P

Results are stored in three tables (one per criterion) of dimension 2255 � 100. The
first 1230 rows correspond to results for fixed couples of values .	4; 	5/, with 	4 2
f0:01; 0:21; : : : ; 5:81g and 	5 2 f0:01; 0:51; : : : ; 20:01g. The 1025 remaining rows
correspond to results for 	4 2 f6:01; 7:01; : : : ; 30:01g. Columns correspond to the
100 datasets simulated per couple.

We extract each row means and report them in Fig. 18.1 as a function of 	4 and 	5.
Each row variances were also extracted and reported in Fig. 18.2.

Considering the extracted number of components as a discriminant factor, we
conclude that the Q2 criterion is the less efficient criterion by being the most
sensitive one to the increasing value of 	5 so that it globally underestimates the
number of components. Comparing BICdof and BootYT, or advertising one of them
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Fig. 18.1 Left: Q2 row means. Center: BICdof row means. Right: BootYT row means
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is quite difficult in this large N case. BICdof has a low computational runtime and is
the less sensitive one to the increasing value of 	5. However, referring to Fig. 18.2,
the variability of results linked to the BICdof is globally higher than the one linked
to our new bootstrap based criterion, especially on datasets with large values of
	4. BootYT is more robust than the BICdof to the increasing noise level in X and
also directly applicable to the PLSGLR case. However, its computational runtime is
clearly higher since, for each dataset, it requires .K � ..Pl C 1/ � R// least squares
regressions.

18.3.2 PLSR: Case N < P

This small training sample size allows us to consider high-dimensional settings and
is very interesting since usually least squares regression could not be performed.

Results are stored in three tables of dimension 287 � 100, each row corresponds
to results for fixed couples of values .	4; 	5/, with 	4 2 f0:01; 1:01; : : : ; 6:01g and
	5 2 f0:01; 0:51; : : : ; 20:01g. Row means are represented as a function of 	4 and
	5 in Fig. 18.3 and graphical representations of row variances were performed in
Fig. 18.4.

In this particular case, based on Fig. 18.4, the BootYT criterion returns results
with low variability for fixed couple .	4; 	5/ contrary to the BICdof criterion,
which moreover is the most sensitive one to the increasing noise level in y. Q2

has a comparable attractive feature of stability but is less robust to noise level in y
than our new bootstrap based criterion. So, by considering the number of extracted
components as a discriminant factor, we conclude that the BootYT criterion is the
best one to deal with these N < P datasets.

However, we wanted to assess the predictive performances of each of these three
criteria. Thus, for each of the 287,000 simulated datasets, we simulated 80 more
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observations as test points and computed testing Normalized Mean Square Error
(NMSE). The normalisation was done by dividing the testing MSE of the obtained
model with the MSE linked to the trivial one (constant model equal to the mean
of the training data). Furthermore, as mentioned by Krämer and Sugiyama (2011)
(p. 702), “the large test sample size ensures a reliable estimation of the test error.”

In order to compare the predictive performances of the three criteria depending
on noise levels, we treat these predictive results for each couple of values .	4; 	5/
by testing the equalities of NMSE means with asymptotic t-tests with Welch-
Satterthwaite dof approximation (Welch 1947). All these tests were performed at
the alpha level equal to 0:05. Results of these t-tests are graphically reported in
Fig. 18.5.

Concerning BootYT vs Q2, the Q2 has a better predictive ability for some very
low values of 	5. This result is not surprising since, in this case, the Q2 criterion
returns numbers of components closer to three than BootYT does (Fig. 18.3).
However, tests results between the BICdof and the Q2 criterion are not concluding
to a significant better predictive performance of the Q2 criterion for small values of
	5 despite the BICdof globally overestimates the number of components in this case
(Fig. 18.3). In fact, due to the small values of 	5, the 80 supplementaries responses
we simulated almost follow the same model than the first 20 ones. Thus, predictive
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significant difference (green)

NMSE react in the same way than the training ones i.e. the higher the extracted
number of components is, the lower the predictive NMSE are. This fact lead us to
only focus on the extracted number of components when 	5 ' 0, leading the Q2

criterion to be the best one.
Finally, in all others cases, the BootYT criterion returns models with, at least,

comparable or better predictive abilities than the two others.

18.3.3 PLSR: Conclusion

In the N > P case, the BootYT criterion offers a better robustness to noise in
y than the Q2. It is also more robust to the increasing noise level in X than the
BICdof, which moreover has some variance issues for high values of 	4. We also
conclude the BootYT criterion as a good compromise between the two others
criteria, owning their advantages without their drawbacks. Concerning the N < P
case, our bootstrap-based criterion is globally the best one since it is less sensitive
than the others to the increasing noise level in y and is linked to low variance results,
leading to global better predictive performances.

18.4 PLS-LR Results

In this framework, due to the specific distribution of y and link-function g D
inv:logit, the increase of 	5 does not lead to a linear increase of noise level in y.
The bijectivity of g insures the presence of three common components between X
and y.
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18.4.1 PLS-LR: Case N > P

Results are stored in three tables of dimension 640 � 100, each row corresponds to
results for fixed couples of values .	4; 	5/, with 	4 2 f0:01; 0:51; 1:01; : : : ; 9:51g
and 	5 2 f0:01; 0:51; 1:01; : : : ; 15:51g. We graphically report row means as a
function of 	4 and 	5 as well as boxplots of row variances in Fig. 18.6.

Based on these graphics, the CV-MClassed performs well in estimating the
optimal number of components in average. However, this good property has to be
nuanced by the high variances linked to its results and which lead this criterion
to be used with caution. The BootYT and p_val criteria return similar results in
this asymptotic case. Both of them slightly underestimate the optimal number of
components but with the advantage of low variances of their results.

18.4.2 PLS-LR: Case N < P

Results are stored in three tables of dimension 400 � 100, each row corresponds to
results for fixed couples of values .	4; 	5/, with 	4 2 f0:01; 0:51; 1:01; : : : ; 9:51g
and 	5 2 f0:01; 0:51; 1:01; : : : ; 9:51g. We set the maximal value of 	5 to 9.51, and
not to 15.51 as for the N > P case, in order to save computational runtime since an
increasing value of 	5 does not really affect the choice of the number of extracted
components.

We graphically report row means as a function of 	4 and 	5 as well as boxplots
of row variances in Fig. 18.7.

The CV-MClassed criterion conserves the same property of well estimating in
average and issue of variability as in the N > P framework. Concerning the two
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others criteria, we observed a higher underestimating issue linked to the p_val
criterion than for the BootYT one. Furthermore, they both had low variability in
results they return.

In order to test their predictive performances, we simulated 80 more observations
for each simulated datasets (40 000), and computed the predictive NMSE linked to
each models established by the three criteria. Furthermore, since the binary response
obtained by the model is equal to 1 if the estimated response is over 0.5, 0 if not,
returning higher NMSE does not necessarily lead to higher number of missclassified
values. Thus, we also computed the number of predictive missclassified values
(M_classed) for each of these three criteria. Then, t-tests were computed for each
fixed values of .	4; 	5/. Results of these tests are graphically reported in Fig. 18.8.

The bootstrap-based criterion is never less efficient than the other criteria.
If there is globally no significant differences between bootstrapping pairs or
the p_val criterion concerning the predictive NMSE, BootYT is better than this
criterion concerning the predictive missclassified values. Then, there is few cases
where bootstrapping pairs is significantly better than the CV-MClassed criterion
concerning the predictive number of missclassified values. But, concerning the
predictive NMSE, the BootYT criterion is better than this last one by returning
significant smallest NMSE values, especially for high 	5 values.

The boostrap-based criterion is also the best one by having, at least, similar
predictive performances compared to the two others.

18.4.3 PLS-LR: Conclusion

Through these simulations, we can reasonably assume that the bootstrap-based
criterion is globally more efficient than the other ones. In the N > P case, it
offers a similar stability compared to the p_val criterion. However, it globally
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Fig. 18.8 t-tests results: BootYT better (red), no significant difference (green)

underestimates the optimal number of components when the CV-MClassed criterion
retains it on average but with high variability. Concerning the N < P case, the
BootYT criterion has better predictive performances than the two others studied
criteria in terms of predictive NMSE and predictive missclassified values. It
also keeps a quite low variability, which is really important for a future routine
implementation.

18.5 Discussion

Our new bootstrap based criterion requires huge computational runtime, so that
an optimization of the algorithm seems necessary. Furthermore, the development
of corrected dof in PLSGLR framework would also permit to develop a corrected
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BIC formulation in this framework. This corrected BIC could provide an interesting
alternative to the bootstrap-based criterion since it could save an important compu-
tational runtime conditionally to the fact that it would have at least similar properties
to those we conclude in Sect. 18.3.

However, this new criterion represents a reliable, consistent and universal
stopping criterion in order to select the optimal number of PLS components. It also
allows users to test the significance of a new component with a preset risk level ˛.

In the N > P PLSR framework, our simulations confirm the BICdof as being an
appropriate and well designed criterion. However, our new bootstrap-based criterion
is an appropriate alternative in the N < P case, since the BICdof criterion suffers
from overestimating issues for models with low random noise levels in y and returns
results linked to high variances. Furthermore, both BICdof and Q2 criteria are more
sensitive than the bootstrap-based criterion to the increasing noise level in y.

Concerning the PLSGLR framework, our simulations results lead to advertise
this new bootstrap-based criterion. Indeed, in this PLS-LR case, we show that
depending on the statistic we used (testing NMSE or predictive number of missclas-
sified values) to test its predictive ability, the bootstrap-based is never significantly
worse than both the CV-MClassed and p_val criteria.
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Chapter 19
Extension to the PATHMOX Approach to Detect
Which Constructs Differentiate Segments and
to Test Factor Invariance: Application to Mental
Health Data

Tomas Aluja-Banet, Giuseppe Lamberti, and Antonio Ciampi

Abstract In this paper we propose an extension to the PATHMOX segmentation
algorithm to detect which endogenous latent variables and predictors are responsible
for heterogeneity. We also address the problem of factor invariance in the terminal
nodes of PATHMOX. We demonstrate the utility of such methodology on real
mental health data by investigating the relationship between dementia, depression
and delirium.

Keywords PATHMOX • Latent variables • Segmentation

19.1 The PATHMOX Algorithm as Solution
to the Heterogeneity Problem

When collecting data for a specific study, the focus is the variables, which
correspond to the scientific questions raised by that study. However, in addition
to the main variables, it is usual to collect some background information, in the
form, for example, of socio-demographic variables such as sex, social status, or age.
In our context, these variables will be referred to as segmentation variables, since
they may be useful in identifying potential sources of heterogeneity. Resolving the
heterogeneity may mean to perform distinct analyses based on the main variables
for distinct segments of the data, defined in terms of the segmentation variables.
Often heterogeneity may be controlled by defining a priori segments according
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to domain knowledge. However, it is not always possible to proceed this way, as
domain knowledge may not be sufficient to suggest any a priori segmentation.
On the other hand, many segmentation variables may be available, which could
be used to identify and resolve heterogeneity by some appropriate algorithm.
One algorithm with this aim was developed in 2009 by Gastón Sánchez, known
as PATHMOX (Sanchez 2009). This technique, based on recursive partitioning,
produces a segmentation tree with a distinct path models in each node. At each
node PATHMOX searches among all splits based on the segmentation variables and
chooses the one resulting in the maximal difference between the PLS-PM models in
the children nodes. Our measure of goodness-of-split is an adaptation of Fisher’s F
for testing the equality of regression models (Lebart et al. 1979; Chow 1960), which
permits comparing structural models.We will call it F-global test. The algorithm can
be summarized as follows:

The algorithm repeats these three steps iteratively until of the following stop
conditions is verified: (1) the number of individuals in the group falls below a fixed
level; (2) the test’s p-values are not significant at a pre-specified threshold; (3) a
pre-specified maximum tree depth is attained. The conditions 1 and 3 are left to the
researcher, whereas condition 2 is related to the statistical test used as split criterion
in the algorithm. The output of PATHMOX is a binary tree, where each split is
defined such as the PLS-PM inner models of the children node are most significant
different. Notice that the outer model doesn’t intervene in the split criterion, so the
outer model is recalculated for every node. Also, PATHMOX is either adopted to
formative and reflective construct since it only compares the path coefficients of the
inner model.

19.1.1 Split Criterion: Testing the Equality
of Two PLS Path Models

To better understand the split criterion used in PATHMOX, let us consider a
structural model (Fig. 19.1) with two endogenous variables, �1 and �2, and two
exogenous variables �1, �2. Its generalization into more complex models is straight-
forward, with the inconvenient of complicating the notation

The structural equations for both endogenous constructs are:

�1 D ˇ1�1 C ˇ2�2 C �1 (19.1)

�2 D ˇ3�3 C ˇ4�4 C ˇ5�1 C �2 (19.2)

The disturbance terms �1 and �2 are assumed to be normally distributed with zero
mean and costant variance, that is, E.�1/ D E.�2/ D 0 and Var.�1/ D Var.�2/ D 	2.
It is also assumed that Cov.�1; �2/ D 0.
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Fig. 19.1 Path diagram of a
PLS model with two
endogenous variables

We can define the following matrices:

X1 D Œ�1; �2� a column matrix with the explicative latent variables of �1
(19.3)

B1 D Œˇ1; ˇ2� a vector of path coefficients for the regression of �1 (19.4)

X2 D Œ�1; �2; �1� a column matrix with the explicative latent variables of �2
(19.5)

B2 D Œˇ3; ˇ4; ˇ5�a vector of path coefficients for the regression of �2 (19.6)

Then, supposing that a node splits into two children nodes A and B performing a
split in nA observations belonging to the A segment and nB observations belonging
to the B segment .n D nA C nB/, we can test the null hypothesis H0 of equality of
path coefficients B1 and B2 for each structural equation in both segments A and B
against the alternative hypothesis H1 of having different path coefficients in each
segment as:
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Then, assuming that the random perturbations associated to the latent variables
are uncorrelated with equal variance, we can apply the Lemmas 1 and 2 of Lebart
et al. (1979, pp. 201:214). Hence, the F statistic measuring the discrepancy between
the two models is:

FGlobal D
.SSH0 � SSH1/

,
.p1 C p2/

SSH1

,
Œ2.n1 C n2/� 2.p1 C p2/�

(19.9)

where SSH0 and SSH1 stands for the corresponding sum of squares of residuals in
both models, follows, under the null hypothesis, an F distribution with p1 C p2 and
2.n1 C n2/� 2.p1 C p2/ degrees of freedom.

19.2 Extended PATHMOX

As we can see, the PATHMOX approach allows us to detect the existence of different
models for different subsets of a data-set without defining a priori segments:
segments are revealed as branches of the segmentation tree. However there are two
possible improvements in Algorithm 19.1:

1. The F-global test used as split criterion, is a global criterion that provides
only a global comparison of two PLS-PMs: it tests whether or not all the path
coefficients for two structural models are equal, but, when it detects a difference,
it does not provide which path coefficients are responsible for it.

2. The Pathmox approach does not assume factor invariance (i.e., it does not impose
equality of the measurement model across nodes). Therefore, at different nodes
the measurement models may also differ substantially. As a result the meaning
of the latent variables may vary from node to node. Although such an occurrence
is not necessarily undesirable, it is important to detect it to provide correct
interpretations.

Algorithm 19.1: PATHMOX
Step 1. Start with the global PLS path model at the root node
Step 2. Establish a set of admissible partitions for each segmentation variable in each node of

the tree
Step 3. Detect the best partition:

3.1. Compare all binary partitions in all segmentation variables
3.2. Apply the F-global test, calculating for each comparison a p-value
3.3. Sort the p-values in a descending order
3.4. Chose as the best partition the one associated to the lowest p-value
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To address the first issue we asses the significantly distinct regression equations
forming the PLS-PM model; to this purpose we have introduced the F-Block test
(Aluja et al. 2013a):

FBlock D
.SSH0 � SSH1/

,
p1

SSH1

,
2.n� p1 � p2/

(19.10)

On the other hand, when the previous test gives a significant results,we detect which
are the path coefficients responsible for the split by the F-coefficient test (Aluja et al.
2013a):

FCoeffcient D
.SSH0 � SSH1/

,
1

SSH1

,
2.n

PP
jD1 pj/

(19.11)

These tests are an adaptation of the F-global test, which makes it possible to
investigate the causes of the difference between PLS-PMs in greater depth;

Regarding the second issue, to overcome the problem of factor invariance, we
have suggested the invariance measurement test:

SSHO � SSH1 � �2.s�1/Ps
kD1 pk

(19.12)

where s is the number of the terminal nodes and pk is the number of manifest
variables in the block k. This test enables the analyst to verify the equality of the
coefficients of the measurement models in the terminal nodes (Aluja et al. 2013b)
i.e. if we can suppose the same measurement model for all the terminal nodes of the
tree, or if the latent variables are distinct depending of the node, so no comparison
can be done between the individuals of the identified subgroups. In our extension
of PATHMOX we have introduced these statistics in the tree construction to provide
aid to the interpretation of the PATHMOX’s results.

19.3 The Mental Health Data-Set

Using the new PATHMOX, we analyzed data on a cohort of 138 elderly patients
from seven Quebec long-term care facilities, observed between July 2005 and
January 2007. The data were assembled by a team of St. Marys Hospital Research
Centre and were previously analyzed to answer a number of specific research ques-
tions (Voyer et al. 2011). In this analysis data was collected at the first assessment
of the cohort, excluding participants with moderate-severe cognitive impairment
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Fig. 19.2 Path diagram of 3D latent variables relationship

and those with missing data, giving a sample size of 138. Our aim is to demonstrate
our approach by investigating the relationship between three constructs representing
three mental disorders that are common in elderly populations: dementia, delirium
and depression. A total of 27 variables were available, divided in two groups; one
group is formed by 24 manifest variables, which are the elements that define our
PLS-PM; and the other is formed by 3 segmentation variables: patients gender,
duration of hospitalizations, patients’s age. We defined a measurement model for
dementia based on the items of two well-known instruments: the Hierarchical
Dementia Scale (HDS) (Dastoor and Cole 1988) and the Mini Mental State
Examination MMSE (Folstein et al. 1975). Similarly, the items of the Cornell scale
to assess depression (Alexopoulos et al. 1988) and of the Delirium Index (Pompei
et al. 1995) as measure of delirium severity, were used to define the measurement
models for depression and delirium respectively.

19.3.1 Manifest and Latent Variables Relationship

In our model, the dementia construct is treated as a second order latent variable
estimated among HDS and MMSE (treated as first order latent variables). We
estimated it following the repeated indicator approach (Lohmoller 1989; Wold
1982). As we show in Fig. (19.2), we have considered dementia as antecedent
of depression and delirium, and depression, as antecedent of delirium. All latent
variables are formative as the corresponding indicators describe different facets of
the diseases; between HDS and MMSE and dementia we have considered a reflective
relation since these two indices reflect the presence or not of the disease in the
patients.

A description of the manifest variables used to estimate the latent variables is
shown in the following table (Table 19.1):



19 Extension to the PATHMOX Approach 259

Fig. 19.3 Unidimensionality validation

19.4 3 D PLS Global Model Validation

The first step of a PATHMOX analysis consists of the specification of the global
structural model describing the relationship between the variables of interest. In this
section we present the main results obtained with the classical PLS-PM approach.
We first discuss the validation of the outer model, and then we analyze the inner
model. For sake of interpretation we just present the results regarding the three latent
variables: dementia, depression and delirium

19.4.1 Outer Model

All constructs are specified as formative as said previously. In Fig. (19.3) we
can verify the multidimensionality of each constructs. For all constructs, the first
two eigenvalues are similar in magnitude, which suggest that the corresponding
indicators describe different aspects of the latent variables and show clear evidence
that they are not unidimensional.

In Fig. (19.4) we present the weights,1 expression of the contribution of each
manifest variable to the construct it is suppose to measure.

The most important weights are:

1The Bar-chart reveal that there are some weights with a value close to zero. In any case, as we have
all formative constructs we can’t delete any one of them due to each manifest variable contribute
to measure a different facet of the latent variables.
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Fig. 19.4 Bar-chart of the outer weights, we represent in block the most important indicator per
latent variable

• Dementia: DM_mmse_3 (What month of the year is this?), DM_mmse_19
(Copy this design) and DM_hds_12 (Recent memory sub-scale) and DM_hds_22
(Similarities sub-scale);

• Depression: corn_8 (Loss of interest; less involved in usual activities), corn_15
(Early morning awakening; earlier than usual for this individual), corn_19 (Mood
congruent delusions; delusions of poverty).

• Delirium: del_7(Memory impairment), del_4 (Disorganized thinking) and del_5
(Altered level of consciousness)

19.4.2 Discriminant Validity

Table (19.2) shows the correlations between manifest variables and constructs. It
should be noted that, as we would expect, the manifest variables (MV) are more
correlated with their own constructs (LV) than with the others.
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Table 19.2 Correlations between the manifest variables and the latent
constructs

LV MV Dementia Depression Delirium

Dementia

DM_mmse_3 0.56 0.01 0.31

DM_mmse_8 0.21 �0.07 0.15

DM_mmse_12 0.44 0.01 0.19

DM_mmse_19 0.55 0.21 0.30

DM_mmse_17 0.36 0.16 0.19

DM_mmse_11 0.26 �0.06 0.12

DM_mmse_16 0.43 �0.08 0.14

DM_hds_20 0.48 �0.02 0.19

DM_hds_12 0.54 �0.08 0.28

DM_hds_11 0.30 0.09 0.12

DM_hds_7 0.23 �0.03 0.14

DM_hds_22 0.71 �0.03 0.44

DM_hds_2 0.14 0.13 0.09

DM_hds_18 0.27 �0.03 0.14

DM_hds_6 0.16 0.04 0.17

Depression

corn_5 0.01 0.29 0.06

corn_15 �0.03 0.55 0.12

corn_8 0.05 0.68 0.13

corn_19 0.06 0.60 0.11

Delirium

del_7 0.37 0.09 0.67
del_5 0.22 0.11 0.43
del_4 0.26 0.05 0.46
del_9_10 0.15 0.12 0.33
del_8 0.15 0.15 0.34

19.4.3 Inner Model

The inner model validation is presented in Fig. (19.5):
We can see that when we analyze the depression construct, the effect of dementia

on depression is very low, path coeff. = 0:04 (found not significant) and the R2 is
practically zero. When we consider delirium construct we find an important effect
of dementia on delirium (path coeff. = 0:52) whereas the effect of depression on
delirium is lower (path coeff = 0:17); in this case the R2 is 0:31. Both coefficients
are significant.
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Fig. 19.5 Path diagram of
3D latent variables
relationship. In parentheses,
we show the significance’s
p-value of the path
coefficients

Table 19.3 F-block and
F-coefficients results

F-block test

Constructs Statistic P-value Significance

Depression 2.19 0.11 No

Delirium 3.79 0.01 Yes

F-coefficient test

Path coeff. Statistic P-value Significance

Intercept on delirium 1.56 0.21 No

Dementia on delirium 2.04 0.15 No

Depression on delirium 8.01 0.00 Yes

19.5 PATHMOX Tree

We can now investigate by a tree analysis whether or not the global PLS-PM model
is valid for the whole population. Our analysis suggest that the sample can be split
into two subsamples, each with a distinct PLS-PM. The tree-structure obtained by
PATHMOX is given in Fig. (19.6).

The partition is obtained by the segmentation variable duration of hospitaliza-
tions with F-global statistic of 1.91 and a corresponding p-value equal to .048.
The root node is split in two children nodes: the node two with 61 patients with
a duration of hospitalization less than one year (shorter term hospitalization) and
the node three with 95 patients with a duration of hospitalization more than one
year (longer term hospitalization).

19.5.1 Extended PATHMOX Analysis

As discussed above, the new extended version of PATHMOX also provides very
useful aid to interpretation through the F-block and F-coefficient tests. The results
of these tests as applied to our data are given in Table (19.3):

Note that the F-block test identifies the delirium construct as the one responsible
for the difference of the inner models at the two children nodes (F-block statistic
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Fig. 19.6 PATHMOX’s Segmentation Tree

Fig. 19.7 Path diagram of the two terminal nodes identified by PATHMOX. From left two the right
we find the path diagram of node 2: shorter term hospitalization patients and the path diagram of
node 3: longer term hospitalization patients

= 3.79, p D :01). The F-coefficient test identifies that it is the path coefficient
that links depression to delirium significantly different across the two children
nodes (F-coefficient statistic = 8.01, p < :01). Hence we can conclude that there
is existence of model heterogeneity at the inner model level due to the different
relationship between depression and delirium in the two detected segments. Further
details are contained in the following Fig. (19.7) representing the inner models at
the two terminal nodes.

For the shorter hospitalization node, we can see there is a large difference of the
path coefficient depression on delirium: 0.60 and significant (p < :01) for shorter
term hospitalization patients, but very small (�0:05) and not significant for the
longer term hospitalization patients.

Now we turn to the measurement models. The F-invariance test is highly sig-
nificant, with a Chi-square statistic of 93.39 with 50 degrees of freedom (p < :01).
This implies that the measurement models are different in the two terminal nodes
and the meaning of every latent variable is specific to its segment. Hence, the three
latent variables defined in these two segments are not directly comparable, since
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Fig. 19.8 Bar-chart of the weights difference of the two PATHMOX’s terminal nodes

we found a significant p-value of the invariance test. This can be illustrated from
the three bar-charts of Fig. (19.8), which graph the difference of the weights of two
PLS-PM model.The bars in red indicate greater differences. We can see that for the
measurement of dementia the greater difference are due to: DM_mmse_19 (Copy
this design), DM_hds_22 (Similarities subscale) and DM_hds_6 (Denomination
subscale); for the measurement of depression the greater difference are due to:
corn_5 (Agitation; restlessness, hand wringing, hair pulling) and corn_19 (Mood
congruent delusions; delusions of poverty, illness or loss); for the measurement of
delirium the greater difference are due to: del_4 (Disorganized thinking) and del_7
(Memory impairment).

In conclusion, this work demonstrates the ability of PLS-PM to investigate the
relationship between Dementia, Delirium, and Depression, and the usefulness of
PATHMOX as a tool for identifying heterogeneity as regards these relationships.

Granted that the invariance measurement test works well and is suitable for
detecting differences in the terminal nodes at measurement levels, this test is a global
criterion: we know if the weights of the terminal nodes are the same or not, but we
do not know which nodes or weights are responsible for the difference. Thus, an
interesting work would consider the possibility of extending the same logic of the
F-block and the F-coefficient test to a measurement model.

Further research would be the comparison of the segments found using the
PATHMOX approach with others approaches that allows to consider heterogeneity
in PLS-PM: REBUS (Esposito Vinzi et al. 2008) and FIMIX (Ringle et al. 2005),
among others, to analyze similarities and differences.
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Chapter 20
Multi-group Invariance Testing: An Illustrative
Comparison of PLS Permutation and
Covariance-Based SEM Invariance Analysis

Wynne W. Chin, Annette M. Mills, Douglas J. Steel, and Andrew Schwarz

Abstract This paper provides a didactic example of how to conduct multi-
group invariance testing distribution-free multi-group permutation procedure used
in conjunction with Partial Least Squares (PLS).To address the likelihood that
methods such as covariance-based SEM (CBSEM) with chi-square difference
testing can enable group effects that mask noninvariance at lower levels of analysis
problem, a variant of CBSEM invariance testing that focuses the evaluation on one
parameter at a time (i.e. single parameter invariance testing) is proposed. Using
a theoretical model from the field of Information Systems, with three exogenous
constructs (routinization, infusion, and faithfulness of appropriation) predicting the
endogenous construct of deep usage, the results show both techniques yield similar
outcomes for the measurement and structural paths. The results enable greater
confidence in the permutation-based procedure with PLS. The pros and cons of both
techniques are also discussed.

Keywords Multi-group Invariance Testing • Permutation Analysis • PLS •
Covariance Based SEM

W.W. Chin (�)
Department of Decision and Information Systems, C. T. Bauer College of Business,
University of Houston, Houston, TX 77204–6021, USA
e-mail: wchin@uh.edu

A.M. Mills
Department of Accounting and Information Systems, College of Business and Economics,
University of Canterbury, Ilam Christchurch 8140, New Zealand
e-mail: annette.mills@canterbury.ac.nz

D.J. Steel
Department of Management Information Systems, School of Business, University of
Houston-Clear Lake, Houston, TX 77058, USA
e-mail: steel@uhcl.edu

A. Schwarz
Louisiana State University, Baton Rouge LA, USA
e-mail: aschwarz@lsu.edu

© Springer International Publishing Switzerland 2016
H. Abdi et al. (eds.), The Multiple Facets of Partial Least Squares and Related
Methods, Springer Proceedings in Mathematics & Statistics 173,
DOI 10.1007/978-3-319-40643-5_20

267

mailto:wchin@uh.edu
mailto:annette.mills@canterbury.ac.nz
mailto:steel@uhcl.edu
mailto:aschwarz@lsu.edu


268 W.W. Chin et al.

20.1 Introduction

Multi-group invariance (MGI) testing is a technique that allows researchers to
determine whether parameters of a measurement model and/or the structural model
are equivalent (i.e. invariant) across two or more groups (Breckler 1990; Byrne
2010). For the measurement model, invariance testing indicates whether the items
used mean the same thing to respondents from different groups or populations
(Cheung and Rensvold 2002). If invariance cannot be established, it would be
difficult to determine if the differences observed are due to true differences or to
different psychometric responses to the items. For the structural model, MGI testing
indicates whether the structural paths are equivalent across groups. MGI testing
also provides a particularly strong test of the validity of the measurement model and
replicability of the structural model across settings.

Covariance-based SEM (CBSEM) using chi-squared difference testing is the
most common approach used to examine model invariance. However there is also
the distribution- free multi-group permutation procedure used in conjunction with
Partial Least Squares (PLS) (Chin 2003; Chin and Dibbern 2010). While some
studies using PLS-based approaches have samples that are suited to covariance-
based invariance testing, in many other situations the sample size may be too small
or the data distribution may violate the assumptions of CBSEM. This paper provides
a didactic introduction to how one performs both CBSEM and PLS invariance
testing. Using a theoretical model with three exogenous constructs (routinization,
infusion, and faithfulness of appropriation) predicting the endogenous construct of
deep usage, this study shows convergence of both techniques in terms of both the
measurement and structural paths. The pros and cons of the two procedures are also
discussed.

20.2 Multi-group Invariance Testing

Establishing the equivalence of measures is critical for research across many
disciplines including psychology, marketing, and information systems (Bagozzi and
Foxall 1995; Doll et al. 2004; Steenkamp and Baumgartner 1998; Malhotra and
Sharma 2008) that rely on latent constructs and comparison analyses. For example,
without measurement equivalence, conclusions based on measurement scales, such
as the meaning and interpretation of the latent constructs or determining differences
or equivalences across populations, at best may be ambiguous, or worse, invalid
(Steenkamp and Baumgartner 1998; Malhotra and Sharma 2008).

Multi-group invariance testing is therefore important for many reasons. It is
most often used to establish the reliability of measurement scales across groups
such as the Kirton Adaption-Innovation inventory (KAI) in psychology and end-
user computing satisfaction in information systems (Bagozzi and Foxall 1995; Doll
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et al. 2004) and for cross-validation (Steenkamp and Baumgartner 1998; Byrne
1993). It is also used for making comparisons within a study, whether this is to
assess theoretical differences between subgroups of the same population (Saeed and
Abdinnour-Helm 2008), across populations in the case of multicultural research
(Teo et al. 2009), and the equality of (or changes in) responses over time in the
case of longitudinal studies (Vandenberg and Lance 2000) to determine if samples
taken from different sources can be combined into a single dataset (Steenkamp and
Baumgartner 1998).

Despite its importance for validating models across groups and theory testing,
MGI testing is relatively uncommon. This may be due to several reasons such as
the relative unfamiliarity of researchers with different techniques for MGI testing,
the methodological complexities involved in MGI testing, and the relatively large
sample sizes needed for CBSEM MGI testing (Steenkamp and Baumgartner 1998;
Malhotra and Sharma 2008). For studies whose datasets violate the parametric
assumptions of CBSEM, many researchers now rely on distribution-free techniques
such as Partial Least Squares (PLS). However, the options for MGI testing in con-
junction with techniques such as PLS have been limited to date with many relying
on relatively naïve approaches for making group comparisons (Chin and Dibbern
2010). To address this gap this paper describes a distribution-free permutation
procedure that can be used with Partial Least Squares for multi-group analysis and
contrasts it to CBSEM MGI testing.

For studies that do conform to the parametric assumptions of CBSEM, there
are well-established techniques such as multi-group confirmatory factor analysis
for conducting MGI testing (Byrne 2010). Many follow traditional procedures that
begin with a global test of invariance in which sets of parameters (e.g. all factor
loadings, factor covariances, and/or structural paths) are constrained to be equal
across the groups. This is followed by a logically ordered series of increasingly
restrictive models as each test provides evidence of invariance (Byrne 2010).
However a major limitation is that this approach may yield conflicting results where
equivalences across groups are demonstrated at one level but rejected at another
level of analysis. For example, it is possible for invariance to be suggested at the
factor unit level when all loadings are constrained to be equal for that factor, yet
individual factor loadings can be found to be noninvariant. One reason is that within
a set of items, a group of invariant items may compensate or mask the noninvariance
of a single item. In addition to the issue of sets of parameters masking the assessment
of a single parameter, questions arise as to which set(s) of parameters (e.g. factor
loadings, factor covariances, means, structural paths, error variances/covariances)
should be tested, how they should be combined, and what is an appropriate order for
conducting the tests. While these decisions may be determined in part by the model
and hypotheses being tested, different combinations and test sequences coupled
with the practice of testing increasingly restrictive models can also lead to different
conclusions regarding equivalences across groups.

To address these limitations and reduce the complexity involved in MGI testing,
this study proposes a simplified procedure for identifying the constrained model
and sequencing CBSEM tests of multi-group invariance. Instead of combining
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one or more sets of parameters in a single test round, individual parameters
(e.g. single factor loading, factor variance, or structural path) within the set of
interest are constrained one at a time. We refer to this approach to MGI testing as
single parameter invariance testing (SPIT). Since this procedure does not evaluate
increasingly restrictive models, it addresses the inconsistencies that can arise when
non-equivalences are masked by group effects or the sequencing of the model tests.
This approach may also yield a more exacting test of invariance due to its ability to
more consistently identify instances of noninvariance at the level of the individual
parameter.

Using a theoretical model with three predictors (i.e., routinization, infusion,
and faithfulness of appropriation) linked to the post-adoption use of Information
Systems (IS), this paper illustrates how multi-group invariance testing can be
implemented using the two procedures above – a distribution-free permutation
procedure for PLS analysis and single parameter invariance testing for use with
CBSEM analysis. The results of both procedures in terms of the measurement and
structural paths are compared, and the pros and cons of each procedure discussed.

20.2.1 Traditional CBSEM Approach to MGI Testing

Multi-group invariance testing using covariance-based SEM is the most common
approach used to establish measurement and structural equivalence of the model
paths across groups (Byrne 2010; Doll et al. 2004; Malhotra and Sharma 2008).
This approach often begins with an examination of the measurement model and
estimation of the least restrictive (unconstrained) model for each group in the set,
followed by the same unconstrained model for all the groups as a whole (i.e.
the configural model). Equality constraints are then applied to sets of parameters
across the groups (e.g. factor loadings, factor variances/covariances, means, error
variances, structural paths) (Byrne 2010). Depending on the model and hypotheses
being assessed different sets of parameters (or a combination thereof) are con-
strained in a hierarchical manner, yielding a nested set of increasingly restrictive
models for testing. For example, tests for measurement invariance will often begin
by constraining multiple elements for the entire model or at the factor-level (e.g.
all the factor loadings) (Doll et al. 2004). The chi-square difference test is then
used to compare the model fit of the configural model with that of the constrained
model; statistically significant differences indicate that the model is noninvariant.
According to Byrne (2010) usually tests of individual parameters (e.g. a single
factor or factor loadings) are only conducted if model invariance is rejected. If the
constraints at the model level are noninvariant, all constraints are removed and a
series of tests of constraints at the factor level are performed. Those factors tested
and found noninvariant are then subjected to item level testing. A similar procedure
is used to assess the equivalence of the structural model.

A key disadvantage with beginning a series of multi-group invariance tests with
a globally constrained set of parameters (e.g. all factor loadings, factor variances,
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and/or structural paths) is that multiple constraints may mask non-invariance at a
lower level of analysis (e.g. for an individual parameter) by confounding the model
estimates and hence the estimation of the statistical significance of the changes of
model fit between the models. Essentially, sets of parameters that appear invariant
as a whole may include individual parameters (e.g. a single factor loading) that are
noninvariant, but whose identification is masked by the group effect.

To address these limitations, this study eschews the standard practice of setting a
block of parameters such as all the measurement model factor loadings to equality
across data groups. Instead, we recommend a simplified procedure for invariance
testing in which single parameters (e.g. factor loading or structural path) at a given
level of invariance (e.g. metric invariance, structural invariance) are constrained
one at a time in each round of tests. In other words for each round of invariance
testing the constraint applied in the previous round is removed and the next
parameter in the test sequence constrained. Hence, the constrained model in each
test round differs from the configural model by one constraint only or one degree
of freedom minimizing the types of errors discussed above and permitting more
precise isolation of noninvariant parameters.

We refer to this simplified approach in which constraints are applied to one
parameter at a time, as single parameter invariance testing (SPIT) and distinguish
this approach from omnibus tests of a given level of invariance (e.g. model or factor
level) in which the full set of parameters related to that level of invariance are
constrained all at once. We also distinguish this approach from what we refer to
as forward stepwise tests of invariance in which sets of parameters are constrained
in an additive manner yielding a series of increasingly restrictive models. This
would be the logical next step after running SPIT for all parameters; the parameter
with the smallest non-significant chi-square difference is then chosen first for
equality constraint. This is followed by another round of SPIT and the smallest
non-significant chi-square difference chosen for the next equality constraint with
that one parameter constrained. This may ultimately culminate in an omnibus test of
invariance with all items constrained. Alternatively, one may use backward stepwise
tests of invariance using a Lagrange Multiplier (LM) test to determine which of
the set of constraints should be released first followed by another LM test (Bentler
1992).

20.2.2 PLS Permutation-Based Approach to MGI Testing

The Partial Least Squares (PLS) approach has been popularized among researchers
in part because the sample size requirements are much smaller for complex models
than required for covariance-based techniques, and there are fewer assumptions
on data properties such as normality and heterogeneity. It is also considered a
more appropriate choice when the emphasis is on prediction. However, to date
the procedures used for multi-group comparisons have been relatively naive (Chin
and Dibbern 2010) being focused on discussions of the magnitude of differences
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between estimates or on t-test statistics when assessing differences (Keil et al. 2000).
However, such techniques can be problematic if sample sizes are dissimilar or the
data is not normally distributed (Chin and Dibbern 2010; Sarstedt et al. 2011). As
an alternative test of equivalence, this paper provides an example of a distribution-
free permutation procedure for performing multi-group comparisons with PLS and
illustrates how this can be applied to multi-group invariance testing.

The procedure for permutation testing based on random assignment as described
by Edgington (1987) and Good (2000) and outlined in Chin and Dibbern (2010) is
as follows:

1. A test statistic is computed for the data (e.g., contrasting experimental treatment/
control or non-experimental groupings).

2. The data are permuted (divided or rearranged) repeatedly in a manner consistent
with the random assignment procedure. With two or more samples, all observa-
tions are combined into a single large sample before being rearranged. The test
statistic is computed for each of the resulting data permutations.

3. These data permutations, including the one representing the obtained results,
constitute the reference set for determining significance.

4. The proportion of data permutations in the reference set that have test statistic
values greater than or equal to (or, for certain test statistics, less than or equal to)
the value for the experimentally obtained results is the p-value (significance or
probability value). For example, if the original test statistic is greater than 95 %
of the random values, then the null hypothesis can be rejected at p < :05.

As discussed by Chin and Dibbern (2010) this procedure is considered especially
suitable for small samples where the assumptions for parametric testing are not fully
satisfied (Good 2000), but may also be applied to large samples where the dataset
does not comply with the assumed distribution Noreen (1989).

20.3 Multi-group Invariance Testing: An Illustration

To illustrate the two procedures outlined above, this study examines a model derived
from the discipline of information systems (IS) that links three exogenous variables
representing types of post-adoption use (i.e., routinization, infusion, and faithfulness
of appropriation (FOA)) to deep use of an IS.

20.3.1 The Research Model

For firms to maximize the potential returns on their IS investments, the technologies
they have invested in must be used in ways that go beyond the initial acceptance
towards fully utilizing the systems in ways that support and enhance task, job and/or
organizational goals. In other words, when individuals engage in using systems



20 Comparing PLS Permutation and Covariance-Based SEM Analysis 273

more deeply to support their goals (i.e. deep usage), performance improvements are
likely (Chin and Marcolin 2001). This has led to an increased focus on post-adoption
use types such as continued use (Bhattacherjee 2001), routinization (Schwarz 2003),
infusion (Schwarz 2003; Sundaram et al. 2007), extended use (Hsieh et al. 2011) and
innovation with IT (Wang and Hsieh 2006).

Prior research further suggests that individual engagement in different types of
post-adoption use may lead to or impact other forms of use (Chin and Marcolin
2001; Saga and Zmud 1994; Wang and Hsieh 2006). For example, given the
temporal distinctions between use types researchers have shown that use of more
features of a system (i.e. extended use) may lead individuals to using systems in
innovative ways (i.e. emergent use) that support task performance (Wang and Hsieh
2006). Similarly, Sundaram et al. (2007) suggested that the more a person uses a
system (i.e. frequency of use), the more likely they will engage in use types reflected
in the integration of the technology into how they do their work (i.e. routinization),
and use the system in ways that enhance their productivity (i.e. infusion). Hence, it
is suggested that frequency of use precedes routinization which in turn may precede
infusion (Sundaram et al. 2007). Altogether, these findings are consistent with prior
work which suggests that understanding use types such as deep usage, that is, the
extent to which an individual will use different features of a technology to support
their work or tasks (Schwarz 2003) can begin with examining and integrating
different types of use as antecedents (Chin and Marcolin 2001). This study therefore
focuses on three use types which, over time, are likely to lead to individuals using
systems more deeply to support their work goals; these are routinization, infusion,
and faithfulness of appropriation.

When users adopt and use a system in ways that were envisioned or expected
by the organization (e.g. faithfulness of appropriation, routinization, infusion) it is
likely that over time they will find other ways of using the system, thereby making
greater and more extensive use of the system features to support their work. Persons
who use a technology deeply are therefore expected to go beyond basic features and
procedures that were prescribed by the organization to utilize system features more
fully and more intensely, in ways that will help them to do their job or task well and
enhance their performance (Chin and Marcolin 2001; Hsieh et al. 2011). Hence, it
is suggested that use behaviors such as routinization, infusion and faithfulness of
appropriation are likely to lead to deeper uses of a system that in turn support and
enhance how individuals perform in their jobs or tasks (See Fig. 20.1).

20.4 Research Design

Before proceeding to MGI testing, the sufficiency of the measures and of the
structural model is assessed. Equivalence of the measurement and structural paths in
the proposed research model (Fig. 20.1) is then evaluated using data gathered from
two distinct groups in a multi-group test of invariance.
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Routinization

Infusion

Faithfulness of
Appropriation

Deep Usage

Fig. 20.1 Research model

20.4.1 The Sample

A review of the literature shows many studies use subgroups of a dataset rather
than independent samples to assess invariance across groups. For example, in the
IS discipline except for cross-cultural studies (Teo et al. 2009; Deng et al. 2008)
many use a single demographic such as age, gender, application type and computing
experience (Doll et al. 2004; Saeed and Abdinnour-Helm 2008; Lai and Li 2005) to
segment a dataset into subgroups for MGI testing. Compared to using distinct and
independent samples, subgroups of the same population (or different populations
that are demographically similar) provide a weaker context for assessing multi-
group invariance as the datasets will have many characteristics in common. On the
other hand, studies that use datasets from distinct populations provide stronger
evidence for invariance (Teo et al. 2009; Deng et al. 2008).

For this study, data was drawn from two independent and distinct organizations.
SGA is a US state government agency which had implemented an electronic
document management system 3 years prior to the survey; 111 persons completed
the survey. FGA is a large US federal agency which had implemented a core
accounting and financial module (from SAP R/3) 4 months prior to the survey; 268
persons completed the survey. Although both organizations are in the public-sector,
other elements besides organization type and technology context distinguished the
groups. Demographically, SGA had fewer females (51.4 %) than FGA (60.3 %).
Respondents from SGA were also younger (56.6 % were 35 years or under
compared with 19.6 % at FGA) and had shorter organizational tenure with 26.7 %
having been with SGA for more than 5 years compared with 77.6 % at FGA.
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20.4.2 Measures

Constructs were measured using validated scales. Infusion and routinization were
assessed using 4 items each, from prior studies (Schwarz 2003; Sundaram et al.
2007); faithfulness of appropriation (FOA) used 5 items taken from Chin et al.
(1997); and deep usage used 3 items from Schwarz (2003). Responses were captured
using 7-point Likert scales anchored (1) Strongly Agree and (7) Strongly Disagree.

Since CBSEM tests of invariance assume the data is normally distributed,
skewness, kurtosis and multivariate kurtosis were evaluated using SPSS 20.0. The
results showed that across the samples the values for skewness ranged from �1.089
to 0.938, and for kurtosis from 0.697 to 1.202. Based on the rule of thumb that
skewness > 3 and kurtosis > 10 represent extreme non-normality these results
suggest the distribution of the individual variables is univariate normal (Byrne
2010). However even if the data are univariate normal, it is not necessarily the case
that the set of variables ‘as a whole’ are normally distributed – that is, they are
multivariate normal. Mardia (1970)’s normalized estimate of multivariate kurtosis
was therefore evaluated. The results show critical ratio (cr) statistics of 18.968 and
42.303 for SGA and FGA respectively indicating the data as a whole was non-
normal.

Next, the measurement model was examined in terms of convergent and discrim-
inant validity to determine whether the measures perform sufficiently across the
datasets. Using PLS-Graph, the results show the factor loadings for both samples
were above the recommended threshold of 0.70, ranging from 0.704 to 0.966
(Chin 2010). Also composite reliability (CR) ranged from 0.894 to 0.957 and
average variance extracted (AVE) from 0.738 to 0.834, exceeding the recommended
thresholds of 0.60 for CR and 0.50 for AVE (Chin 2010).

For discriminant validity to be demonstrated items should load more highly on
their own construct than other constructs (Chin 2010). One approach for assessing
discriminant validity is to determine whether the average variance extracted exceeds
the squared correlations among the constructs. The results show that for both sam-
ples the AVE exceeded the squared correlations, suggesting adequate discriminant
validity.

Evaluation of the structural model shows that the models account for 0.417 and
0.319 of the variance observed for SGA and FGA, respectively. Structural paths
linking routinization and infusion to deep usage were significant (at p < :05) for
both samples; however, faithfulness of appropriation (FOA) was not significant with
respect to deep usage.

20.5 Invariance Testing: Analysis and Results

This section demonstrates, and reports the results of, the two proposed procedures
for assessing MGI that is, a variant of multi-group invariance testing with CBSEM
which evaluates one parameter at a time (i.e. single parameter invariance testing),
and a permutation procedure using PLS.
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20.5.1 Multi-group Invariance Testing with Covariance-Based
SEM (with AMOS 20.0)

As with prior work (Byrne 2010), the procedure described here for multi-group
invariance testing begins with an estimate of the model for each group followed
by an estimate of the configural model. We then apply the SPIT procedure where
individual parameters (e.g. factor loading) are constrained one at a time and each
form of the constrained model is compared with the configural model. Equivalency
of the constrained model is then assessed using the chi-square difference test to
determine whether the constrained parameter is invariant. This procedure, as applied
to measurement and structural invariance testing of the conceptual model proposed
in Fig. 20.1, is detailed below.

As with prior research, invariance testing began with a test of the measurement
model. Although invariance testing can begin with or focus on different sets or com-
binations of parameters (e.g. factor loadings, means, factor variances/covariances,
error variances) tests of the measurement model typically begin with factor loadings
(Byrne 2010; Bollen 1989). For the purposes of demonstrating the proposed method,
the focus likewise was on factor loadings.

In this study, the starting model was the same for both groups; hence the same
model was estimated for each group separately. Tests began with an estimation of the
least restrictive model in which factor variances and error loadings are fixed to 1 for
identification, while the parameters to be estimated (i.e. factor loadings and factor
covariances) are not constrained (see Fig. 20.2). Since none of the factor loadings
are fixed in the unconstrained model this provides the same baseline for comparison
across each test. In other words, the only difference between the baseline and
any variant of the restricted model is the constrained element (in this case, the
constrained factor loading). This also permits comparability with the PLS analysis
which also sets the factor variance to a value of 1.

The results of model fitting of the unrestricted baseline model for SGA
are �2 = 243.409, CFI = 0.919, RMSEA = 0.116; and for FGA, �2 = 309.552,
CFI = 0.936, RMSEA = 0.090. The model fit for the group as a whole was also
estimated, yielding the following fit indices for the configural model: �2 = 552.961,
CFI = 0.930, RMSEA = 0.070. While the fit indices are reasonable, there may be
alternative models with better fit indices. However, since it is not the aim of this
paper to posit a model with the best fit, it is deemed appropriate to proceed with
invariance testing.

In this study the measurement model consists of 4 constructs with 16 indicators
altogether. Equality constraints were then imposed on each factor loading one at
a time in a logically ordered manner. For example, in this study beginning with
the leftmost construct in the model (see Fig. 20.2) we constrained the first factor
loading in the first construct and worked systematically through each factor loading
from left to right until all 16 factor loadings had been evaluated. It is important
to note that since only one constraint is applied at a time it does not matter which
parameter is constrained first or in which order the constraints are applied. However,
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Fig. 20.2 Measurement model using covariance-based SEM (with AMOS 20.0)

having a logical sequence for constraining individual parameters can help ensure
that parameters are not omitted from the test sequence.

Using this procedure, 16 alternative models were identified and a chi-square dif-
ference test applied to each model separately to determine whether the constrained
parameter was invariant across the groups. For example, for Model M1 the factor
loading for the first item Rout1 was constrained; the degrees of freedom (df ) for the
constrained model = 197 (compared with df = 196 for the baseline model); hence

df = 1. Estimation of M1 yielded a �2 statistic of 553.076 and a
�2 of 0.115 (i.e.

�2 D 553:076� 552:961 D 0:115); the p-value associated with the 
�2 of 0.115
and 
df = 1 was determined from the �2 distribution; thus p D :735. The non-
significant p-value for M1 suggests that Rout1 is invariant. The tests and evaluation
sequence were then repeated for each alternative model that is, M2: : :M16 (see
Table 20.1). Altogether the results (Table 20.1) show all the measures are invariant
(at p < :05) with the exception of Infus3 (where p D :049).

The masking effect of setting invariances simultaneously on factor or model
level loadings can be shown in this situation. For example, if we set all the factor
loadings equal, the 
�2 of 15.087 with 
df = 16 represents a p-value of .518
leading to a conclusion that all items are invariant. At this point, a researcher would
conclude that all single item loadings are invariant in contrast to the SPIT outcome
of noninvariant for Infus3.

Next, the structural model was evaluated. The approach used for structural
invariance testing is similar to that for the measurement model where each structural
path is constrained separately. Since the configural model comprises three paths,
three alternative models are identified. The results (Table 20.2) suggest all three
structural paths are invariant.
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20.5.2 Permutation-Based Multi-group Invariance Testing
with PLS

Following the procedure outlined earlier, three permutation analyses were con-
ducted using 1000, 2000 and 5000 permutations respectively. The proportion of data
permutations in the reference set that have test statistic values greater than or equal
to (or for some statistics, less than or equal to) the value for the obtained results
determines the p-value or the significance of the difference (Chin and Dibbern
2010).

The results (Table 20.1) showed the group parameter differences for the mea-
surement loadings ranged from 0.001 to 0.190. With the exception of Infus3 which
returned significant p-values (i.e. p < :05) of .039, .026 and .030, the p-values
for each permutation analysis ranged from .103 to .969, .105 to .967, and .111
to .963 for 1000, 2000 and 5000 permutations respectively. The non-significant
values returned for all the indicators except Infus3 suggest partial invariance for
the measurement model and matches those from the CBSEM analysis.

Next, the structural paths were evaluated. As with the procedures used to evaluate
the measurement model, the original parameter differences between groups are
compared to the permutated data sets. Original path differences of 0.111, 0.018
and 0.176 were obtained for the structural paths linking routinization, infusion, and
faithfulness of appropriation to deep usage respectively. The results (Table 20.2)
showed the p-values for the three permutation analyses (i.e. 1000, 2000 and 5000
permutations, respectively) for routinization (i.e. .256, .266, .266) infusion (.880,
.872, .879) and faithfulness of appropriation (FOA) (.103, .095, .103) were non-
significant demonstrating invariance of the structural paths.

Taken altogether, invariance testing of the measurement and structural paths
using CBSEM and PLS supported procedures showed full convergence of the
results. This outcome demonstrates the efficacy of the new PLS procedure as well
as its usefulness particularly in cases where the datasets do not comply fully with
the parametric assumptions for covariance-based SEM analysis.

20.6 Discussion and Conclusion

This paper provided a didactic introduction to how invariance testing can be con-
ducted using a multi-group distribution-free permutation approach in conjunction
with PLS. Attention was also given to the likelihood that common methods such
as covariance-based invariance testing using chi-square difference testing, can
enable group effects that mask noninvariance at lower levels of analysis, leading
to contradictory findings and possible false conclusions. To address this issue,
a variant of chi-square difference testing that focuses the testing procedure on
evaluating one parameter (rather than sets of parameters) at a time, that is single
parameter invariance testing was proposed and tested. By constraining and testing
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only one parameter at a time for invariance, this approach allows for more precise
identification of noninvariant parameters, and reduces the likelihood of noninvariant
parameters being covered over by group effects that arise from constraining multiple
parameters in each test round. Both procedures are demonstrated using example data
from the field of information systems to test invariance of both the measurement and
structural models.

Given the importance of invariance testing for knowledge contribution in fields
that rely on latent constructs, this paper contributes in two key areas. Method-
ologically, the paper highlights a procedure that can be used in conjunction with
PLS-based analyses for multi-group invariance testing. This addresses a key gap in
the current pedagogy given the popularity of PLS-based analyses as the technique
of choice in certain settings (e.g. when a dataset is characterized by small sample
size or non-normal distribution) and the lack of procedures that enable researchers
to test for invariance with PLS. Indeed, up until now researchers have relied on
covariance-based methods to assess multi-group invariance or, if using a PLS-based
procedure they opt not to demonstrate the invariance of their measures and structural
paths or rely on relatively naive means to compare groups (Chin and Dibbern
2010). There is a clear need for more suitable methods for analyzing invariance in
certain empirical settings. This paper therefore demonstrates a PLS-based approach
to assessing multi-group invariance.

Turning to CBSEM techniques, this study introduces a simplified variant of
CBSEM invariance testing, that is single parameter invariance testing (SPIT). This
procedure represents a simpler yet potentially more exacting test of invariance due
to its ability to identify instances of noninvariance at the level of the individual
parameter. It will also help address the inconsistencies that can arise when non-
equivalences are masked by group effects. Unlike common CBSEM techniques
(Byrne 2010; Doll et al. 2004; Steenkamp and Baumgartner 1998) the current
procedure recommends constraining one parameter at a time while all other non-
fixed parameters are freely estimated. This means that the results of single parameter
invariance testing are not affected by which parameter is constrained first or the
sequencing of the tests.

A comparison of CBSEM and PLS showed full convergence of the results for
both the measurement and structural models (Tables 20.1 and 20.2) enabling greater
confidence in the efficacy of the new PLS procedure. For the measurement model,
the CBSEM analysis suggested only one parameter (Infus3) was noninvariant.
Given the data was multivariate non-normal concerns could be raised about the
validity of these findings (Byrne 2010). However, the same pattern of findings was
also identified by the PLS analyses suggesting that multivariate non-normality was
not a major factor in the analyses and enabling greater confidence in the findings.
This further suggests the usefulness of the PLS procedure as a way to validate
the outcomes of CBSEM analyses where the data does not comply fully with the
assumptions for such analyses.

For the research model, the results demonstrate invariance of the four indicators
of systems use and their associated measures (i.e. routinization, infusion, faithful-
ness of appropriation and deep usage) across two independent samples. As far as
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we are aware prior studies have not focused on enhancing the credibility of these
measures. Establishing the invariance of key measures in IS research is important
not only for enabling greater confidence in our understanding of how technologies
are used by individuals in organizations, but also to enable meaningful comparisons
across settings and the cumulative development of knowledge which relies heavily
on the reliability of the latent variable measures used to capture key phenomenon.
This paper represents a step in this direction. Empirically, the results demonstrate
how engagement in one type of use can lead to deeper uses of information systems.
The results also confirm prior research which suggests that certain types of use will
impact other use types (Chin and Marcolin 2001) by providing evidence of these
linkages in the context of post-adoption deep usage.

In summary, this paper provides a didactic example of a confirmatory test of
measurement and structural multi-group invariance in the context of post-adoption
use. It introduced a new approach to CBSEM invariance testing focusing on
single parameter invariance testing. The paper also demonstrated a procedure for
conducting multi-group invariance testing using a distribution-free permutation
approach with PLS. The results showed convergence of the findings across both
procedures. While this enables greater confidence in the permutation procedure as
recommended by Chin and Dibbern (2010) it would be useful to compare the results
for both procedures across varying levels of non-normality to see how the PLS
method performs. Also, the number of individual parameters being tested was rather
small. For more complex models, an adjustment for Type I error would be needed.
In our case, with an alpha setting of 0.05, the 19 individual tests conducted in this
paper would suggest on average one significant finding which was indeed what we
found. To compensate for potential Type I error, we would suggest a Bonferroni or
Sidàk type correction with a commensurate stricter alpha level for single parameter
invariance testing.
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Chapter 21
Brand Nostalgia and Consumers’ Relationships
to Luxury Brands: A Continuous and
Categorical Moderated Mediation Approach

Aurélie Kessous, Fanny Magnoni, and Pierre Valette-Florence

Abstract This study investigates the role of nostalgia in the consumer-brand rela-
tionships in the luxury sector. Results indicate that the nostalgic luxury car brands
(vs. futuristic luxury car brands) lead to stronger consumer-brand relationships.
Moreover, brand nostalgia has a direct positive effect on brand attachment and
separation distress. Brand attachment is also a partial mediator between brand
nostalgia and separation distress. In addition, the influence of two moderating
variables is examined. We show that past temporal orientation reinforces the
relationship between (1) brand nostalgia and brand attachment, and between (2)
brand nostalgia and separation distress. Finally, consumers’ need for uniqueness
reinforces the relationship between brand attachment and separation distress. On
a methodological side, the study shows the ability of the PLS approach to handle
higher order latent variables both in the context of continuous and categorical latent
moderated mediation variables.

Keywords Luxury brands • Consumer-brand relationships • Nostalgia

21.1 Introduction

Nowadays, consumers need reassurance and feel emotional about the past. This
retro trend especially prevails in the luxury sector, where brands play on the
traditional and classical themes. Although marketers widely use nostalgia, no study
has addressed to this date its impact in the luxury sector. Moreover, building a strong
consumer-brand relationship is very important in order to make a business profitable
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and increase customer lifetime value (Fournier 1998; Thomson et al. 2005). So, we
may ask ourselves whether the effects of nostalgia are equally positive with socially-
visible products from the luxury sector, imbued with symbolism and ostentation.

This chapter presents a comparison between consumer relationships with two
luxury car brands: nostalgic luxury car brand (Mini) vs. futuristic luxury car
brand (Infiniti). The main research question is, therefore, the following: How does
the relationship to brands vary according to the perceived nostalgic vs. futuristic
character of the luxury car brands? The relevance of this chapter is two-fold. On
the one hand, it contributes to a better explanation of the nature of the links that
consumers have with these two types of luxury car brands. On the other hand, it
exemplifies the usefulness of the Partial Least Square (PLS) approach for handling
both continuous and categorical moderated mediation variables.

Firstly, we briefly present the theoretical framework of research and the hypothe-
ses. Secondly, the methodology for the collection and analysis of data is provided.
Finally, we present the results of the study of a sample of 132 Mini owners and 123
Infiniti owners. In conclusion, we state the contributions, limits and research paths.

21.2 Conceptual Background and Hypotheses

In marketing, academics suggest multiple definitions of nostalgia. Holbrook and
Schindler’s definition (Holbrook and Schindler 1991, p. 330) is undoubtedly the
most cited

A preference (general liking, positive attitude, or favorable affect) toward objects (people,
places, or things) that were more common (popular, fashionable, or widely circulated) when
one was younger (in early adulthood, in adolescence, in childhood, or even before birth).
According to this logic, nostalgic brands are defined brands that were popular in the past
(and are still popular now), whereas the non-nostalgic brands as brands that are popular now
(but were less so in the past or did not exist in the past) (Loveland et al. 2010).

Nostalgia is also well studied in the consumer-brand relationship literature (i.e.,
Fournier 1998). Two factors define nostalgic attachment: self-concept connection—
which states the congruity between past, present, real or ideal self-image and those
that he/she has of the brand—and nostalgic connection—which deals with a transfer
of a person’s remembrances of the brand.

Attachment refers to an emotional bond and comes from interpersonal rela-
tionships (Bowlby 1969). The recent study of Park et al. (2010) illustrates that
two factors reflect brand attachment: brand-self connection and brand prominence.
Brand-self connection refers to the consumer’s degree of identification with a brand
and expresses the incorporation of the brand into their self-concept (Fournier 1998;
Escalas and Bettman 2003). Brand prominence can be considered as the salience of
the cognitive and affective bond that links the brand with the self. As an attachment
behavior, separation distress (i.e., emotional distress due to loss of proximity) is
also strongly predicted by brand attachment (Thomson et al. 2005; Park et al. 2010).
Separation distress refers to an emotional indicator of attachment inducing negative
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feelings (e.g., anxiety, depression, loss of self). This positive influence of brand
attachment on separation distress is also expected in our study. In addition, since
nostalgic connection deals with a transfer of a person’s remembrances of the brand
(Fournier 1998), brand nostalgia should also positively impact separation distress.

Temporal orientation refers to cognitive involvement focused on one of the
three time zones (i.e., past, present, future) that influences attitude and behavior.
Research in psychology leads us to consider temporal orientation as a moderator of
nostalgia. For instance, Sedikides et al. (2008) point out that nostalgia is a defense
mechanism, protecting individuals from certain existential problems. Consequently,
the influence of brand nostalgia on brand attachment and separation distress should
be stronger when consumers tend to be highly past oriented.

If uniqueness is a specific dimension of luxury brands (Vigneron and Johnson
1999), consumers’ need for uniqueness should be a relevant variable. According to
Tian et al. (2001, p.172), consumers’ need for uniqueness refers to

individuals’ pursuit of differentness relative to others that is achieved through the acqui-
sition, utilization, and disposition of consumer goods for the purpose of developing and
enhancing one’s personal and social identity.

Consumers’ need for uniqueness should influence the impact of brand attachment on
separation distress. Indeed, we can suppose that separation distress will be stronger
when consumers’ need for uniqueness is high because in this case, possession of
luxury brands highly contributes to develop the self-image and the feeling of being
unique.

The mains points of the literature review are summarized in the following set of
hypotheses and in Fig. 21.1.

• H1: Brand nostalgia has a direct positive effect on: (a) brand attachment; and (b)
separation distress.

• H2: Brand attachment has a direct positive effect on separation distress.

Brand
nostalgia

Brand
attachment

Separation
distress

Need for
uniqueness

Past
orientation

H1a H2

H1b

H3a H3b

H4

Fig. 21.1 Conceptual model
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• H3: Past temporal orientation reinforces the relationship between: (a) brand
nostalgia and brand attachment; and (b) brand nostalgia and separation distress.

• H4: Consumers’ need for uniqueness reinforces the relationship between brand
attachment and separation distress.

21.3 Methodology for Data Collection and Processing

We selected two luxury car brands: a nostalgic luxury car brand and a futuristic
luxury car brand. The first one, the Mini by BMW, has an old and nostalgic
connotation. It has a mythical history associated to the iconic 1959 Austin Mini
model. It was redesigned in 2009 by BMW but has kept its British appeal of elegance
and chic. The second one, “Infiniti” by Nissan, has, on the other hand, a new and
futuristic connotation. It appeared in the US in 1989 and entered the French market
in 2008. Performance, intuitive technologies and first-class comfort are the key
words guiding the production supervised by Sebastian Vettel, the Formula 1 world
champion. The scarcity of Infiniti car dealers in France enhances the rare, unique,
and exclusive character of this elitist brand.

The questionnaires were distributed online between June and October 2013, with
the support of two Mini dealerships in Marseilles, and three Infiniti dealerships in
the South-east of France (Marseilles, Cannes, and Lyons). A filter question was
used to select only respondents who were clients (ownership and/or purchasing of
brand products). The final sample comprised 255 clients, who were quasi-equally
distributed between the two brands. 132 Mini car owners and 123 Infiniti car
owners to responded to the survey in full. The sample is male (78 % men) and
relatively young (80 % under the age of 54). Then three manipulation checks were
conducted.

1. We verified that the respondents had perceived Mini and Infiniti as prestigious
brands. The degree of luxury associated with these brands was rated on a six-
point Likert scale by indicating the importance of the characteristics “luxury” and
“status” when purchasing the brand (Park et al. 2010), along with the items of
the luxury scale of Vigneron and Johnson (2004). As expected, Mini and Infiniti
are both perceived as luxury brands because means are fairly above 3.5 (MMini D
4:76; MInfiniti D 4:82).

2. Nostalgic vs. futuristic orientation of the two brands was also tested. Respon-
dents indicated the extent to which they viewed the brand as “retro” (�2) vs.
“futuristic” (C2). Infiniti was perceived as significantly more “futuristic” than
Mini (F.2; 253/D 76:542; p D :001; MMini D 0:00; MInfiniti D 1:14).

3. Finally, we verified that there were no significant differences between the two
brands in terms of subjective familiarity to control the possible effect of this
variable. Three items from Brucks (1985) were used to evaluate subjective
familiarity toward the brand (six-point Likert scale). As expected, Mini and
Infiniti were perceived as similar (F.2; 253/ D 2:361; p > 0:05; MMini D 4:88;
MInfiniti D 4:66).
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This research used six-point Likert scales for all scales. Brand attachment and
separation distress were measured with the scales proposed by Park et al. (2010).
Brand self-connection and brand prominence (i.e., the two attachment components)
were evaluated with four items (two items for brand self-connection and two items
for brand prominence). Two items measured separation distress (scale of Park et al.
2010). For brand nostalgia, we selected the three-dimensional scale (i.e., personal
memories, perceived brand oldness and historical memories) of Bartier (2013). We
used twelve items (six items for personal memories, three items for perceived brand
oldness and three items for historical memories). For past temporal orientation, we
selected three items from Usunier and Valette-Florence (2007). Finally, we used
eight items from Tian et al. (2001) to measure consumers’ need for uniqueness.

21.4 Data Analysis and Test of Assumptions

A PLS approach has been selected because of its minimal demands on sample size
and suitability to handle higher order latent constructs and violation of multivariate
normality (Bagozzi and Yi 1994). Moreover, the present study relies on rather small
sample sizes and the model is complex involving several second order reflective
latent variables. In this research, the estimation of the different PLS models follows
a two steps procedure.

First, although the measurement and structural models are simultaneously and
iteratively estimated within the PLS approach, the reliability and validity of the
measurement model should be firstly assessed. Once the adequacy of the construct
measurements is verified, the structural relationships among the constructs and
the quality of the overall model are then assessed (Fornell and Larcker 1981).
The adequacy of the reflective measurement model can be assessed by looking
at composite reliabilities, the convergent validity of the measures associated with
individual constructs, and discriminant validity (Henseler et al. 2009). Results are
displayed in Table 21.1. The causal model depicted in Fig. 21.1 encompasses first
and second order latent variables. First order latent variables are modeled by means
of reflective indicators whereas second order latent variables are conceptualized
in a molecular way (i.e. a reflective relationship between the second order latent
variables and their respective first order latent facets). All second order latent
variables were measured via replicated indicators of all the first order latent variables
they were connected with. The second order latent variables are respectively brand
attachment, nostalgia and need for uniqueness.

As for the first order reflective latent variables, all the indicators of convergent
validity and reliability are satisfied. As regards to the second order reflective latent
variables, convergent validity and reliability are fairly good as well. Finally, a test
of the discriminant validity (Fornell and Larcker 1981) shows that each first order
latent variable shares more variance with its respective indicators than with the other
latent variables it is correlated with.
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Table 21.1 Convergent validity and reliability indices. Second order
latent variables are in capitals

Latent variable Convergent validity Reliability

ATTACHMENT 0.781 0.834

Brand-self connection 0.891 0.942

Brand prominence 0.927 0.962

BRAND NOSTALGIA 0.568 0.740

Personal memories 0.728 0.941

Perceived brand oldness 0.818 0.931

Historical memories 0.682 0.865

Past orientation 0.803 0.924

NEED FOR UNIQUENESS 0.745 0.821

Creative choice counterconformity 0.698 0.920

Avoidance of similarity 0.710 0.918

Separation distress 0.870 0.931

Second, to assess the structural model a set of criteria should be verified.
Although PLS does not provide any global goodness-of-fit indices as those used
for covariance-based SEM, Tenenhaus et al. (2005) propose the geometric mean of
the average communality (measurement model) as well as the average R2(structural
model), as an overall Goodness-of-Fit (GoF) measure for PLS. In this research,
the absolute GoF value is 0:553, a value corresponding to an excellent adjustment
according to Wetzels et al. (2009) (GoF higher than 0.36 are large). Moreover, in line
with Henseler et al. (2009), the essential criterion is the coefficient of determination
(R2) of the endogenous latent variables. In our case, on average the R2 is 48.1 % for
the full causal estimated model.

A latent MANOVA and a step-down analysis were conducted. Since that from
the outset the latent variables define a causal model, we decided to conduct a latent
analysis of variance because it was necessary at that stage to delve deeper into the
joint effects of the nostalgic vs. futuristic orientation of the luxury car brand (Mini
vs. Infiniti) on the latent brand relationships variables encompassed by this research.
One main advantage of analyzing variance at the latent level using a structural
equations model is the ability to compare the strength of the effect between different
dependent latent variables and to perform a step-down analysis at the latent level.
When there is a causal relationships network among the dependent variables, step-
down analyses provide useful information as to whether the mean difference in
a dependent variable is due to the direct effect of the experimental manipulation
or its dependence on other variables (Bagozzi and Yi 1989).

A step-down analysis proceeds into two sequential steps. The first stage begins
with a latent MANOVA performed on all dependent variables. If the path estimates
point to a rejection of equal means, then the next step consists of testing the
dependent variables in the hypothesized causal network while partialling out all
remaining dependent variables as covariates. As a result, the researcher can then
assess the relative impact of the experimental manipulation, while taking into
account the causal order between all the dependent latent variables.
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Table 21.2 Latent MANOVA and step-down analysis results

Latent MANOVA Latent step-down analysis

Concepts Bootstrapped Mini (1) versus Mini (1) versus Brand Attachment
Path coefficients Infiniti (0) Infiniti (0) nostalgia

Brand nostalgia Direct effect 0:492� 0:492�

Total R2 25.27 % 25.27%

Attachment Direct effect 0:140�� 0:107�� 0:508�

Indirect effect 0:250�

Total R2 2.02 % 19.85 % 19.85 % 19.85 %

Separation distress Direct effect 0:176�� 0:0070 0:572� 0:357�

Indirect effect 0:370� 0:181��

Total R2 3.01 % 48.11 % 48.11 % 48.11 %

*: p < :001; **: p < :05

Table 21.2 shows the corresponding results. First, when a simple latent
MANOVA is performed, results show that the nostalgic vs. futuristic orientation of
the luxury car brand (Mini vs. Infiniti) has a significant influence on each of the
dependent variables. In others words, our results highlight a positive effect of the
nostalgic vs. futuristic orientation of the luxury car brand on brand nostalgia, brand
attachment and separation distress.

Second, the results in Table 21.2 show the causal relationships between brand
nostalgia, brand attachment and separation distress. As we can observe, brand
nostalgia has a direct positive impact on brand attachment (0.508) and separation
distress (0.572); supporting H2a and H2b. Brand nostalgia has also an indirect effect
on separation distress (0.181) and brand attachment influences directly separation
distress (0.357). These results support H3. Hence, brand attachment is a partial
mediator between brand nostalgia and separation distress.

In addition, the latent Step-Down analysis permits to deeper examine the causal
relationships. As we can see in Table 21.2, the direct influence of the nostalgic vs.
futuristic orientation of the luxury car brand is no longer statistically significant in
all. This means that all the effects are now due to the causal relationships between
the dependent variables. This result seems both theoretically and managerially
important. However, even if the nostalgic vs. futuristic orientation of the luxury
car brand doesn’t have any direct impact, it still has an important indirect effect.
Two points deserve attention. First, all the indirect effects are now greater than
when the nostalgic vs. futuristic orientation of the luxury car brand was solely
taken into account (for brand attachment for example, 0.107 vs. 0.250). This means
that the encompassed latent variables indirectly amplify the effect of the nostalgic
vs. futuristic orientation of the luxury car brand. Second, there is once again an
attenuation of the incidence of the brand orientation on the dependent variables. This
indirect effect is indeed greater for separation distress (0.370) than brand attachment
(0.250). Once again, this result puts the stress on the influence of brand nostalgia on
separation distress, either directly or indirectly.
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Finally, in order to study the joint effect of the two latent moderator variables,
we relied on the normalized product indicator approach, hence following recent
recommendations made by Henseler and Chin (2010) in the case of complex
moderation investigations (we recall that we jointly model 3 moderations through
either first or second order latent variables). Far and foremost, the past orientation
positively moderates attachment (ˇ D 0:204; p D :001). In other words, the past
orientation reinforces the impact of brand nostalgia on brand attachment; supporting
H4a. A similar effect arises as for the double moderation of the past orientation
and the need for uniqueness on separation distress. Once again, this is the past
orientation that has the greatest moderating incidence (ˇ D 0:194; p D :016),
compared to need for uniqueness (ˇ D 0:077; p D :046). The past orientation and
the need for uniqueness both reinforce the impact of either brand nostalgia or brand
attachment on separation distress; supporting H4b and H5. However, one can notice
that the moderating influence of the past orientation on brand nostalgia is almost
three times higher than the moderating influence of the need for uniqueness on band
attachment. In other words, brand nostalgia and past orientation seems the more
important to predict separation distress.

21.5 Discussion

First, this study highlights the importance and relevance of the use of nostalgia in
the luxury brand management. Brand nostalgia, brand attachment and separation
distress are stronger for the nostalgic luxury car brand (vs. futuristic luxury car
brands). A second main contribution is the moderating effect of past temporal
orientation between brand nostalgia and brand attachment, and brand nostalgia and
separation distress. Finally, on a methodological side, the study shows the ability
of the PLS approach to handle higher order latent variables both in the context of
continuous and categorical latent moderated mediation variables.

Nevertheless, some limitations should be noted. First, the research is focused
on only one product category (i.e., automobile) and two luxury brands (i.e., Mini
and Infiniti). Moreover, even though the two car brands are seen as luxury, more
prestigious car brands, such as for instance Jaguar, could be investigated. Further
research on different categories of products and luxury brands would be helpful to
achieve a generalizability of the findings. On the methodological side, other recent
approaches could be investigated as well. In that spirit, and taking into account the
relative small sample sizes, consistent PLS estimation (Dijkstra and Henseler 2015),
could be worth relying on. Moreover, formally testing the differences of parameter
estimates between the two luxury brands by means of a generalized structured
component analysis (GSCA), Hwang and Takane (2004) could give additional
insights on a theoretical level and hence prove to be very useful.



21 Brand Nostalgia and Consumers’ Relationships to Luxury Brands 293

References

Bagozzi, R.P., Yi, Y.: On the use of structural equation models in experimental designs. J. Mark.
Res. 26, 271–284 (1989)

Bagozzi, R.P., Yi, Y.: Advanced topics in structural equation models. In: Bagozzi, R.P. (ed.)
Advanced Methods of Marketing Research, pp. 1–52. Blackwell, Oxford (1994)

Bartier, A.L.: An initial step towards conceptualization and measurement of brand nostalgia.
In: Proceedings of the European Marketing Academy Conference, 42nd Annual Conference,
Istanbul (2013)

Bowlby, J.: Attachment and Loss, Volume 1: Attachment. Basic Books, New York (1969)
Brucks, M.: The effects of product class knowledge on information search behaviour. J. Consum.

Res. 12, 1–16 (1985)
Dijkstra, T., Henseler, J.: Consistent partial least squares path modeling. MIS Q. 39,

297–316 (2015)
Escalas, J.E., Bettman, J.R.: You are what they eat: the influence of reference groups on consumer

connections to brands. J. Consum. Psychol. 13, 339–348 (2003)
Fornell, C., Larcker, D.F.: Evaluating structural equation models with unobservable variables and

measurement error. J. Mark. Res. 18, 39–50 (1981)
Fournier, S.: Consumers and their brands: developing relationship theory in consumer research. J.

Consum. Res. 24, 343–373 (1998)
Henseler, J., Chin, W.: A comparison of approaches for the analysis of interaction effects

between latent variables using partial least squares path modeling. Struct. Equ. Model. 17,
82–109 (2010)

Henseler, J., Ringle, C.M., Sinkowics, R.R.: The use of partial least squares path modeling in
international marketing. Adv. Int. Mark. 20, 277–319 (2009)

Holbrook, M.B., Schindler, R.M.: Echoes of the dear departed past: some work in progress on
nostalgia. Adv. Consum. Res. 18, 330–333 (1991)

Hwang, H., Takane, Y.: Generalized structured component analysis. Psychometrika 69,
81–99 (2004)

Loveland, K.E., Smeesters, D., Mandel, N.: Still preoccupied with 1995: the need to belong and
preference for nostalgic products. J. Consum. Res. 37, 393–408 (2010)

Park, W.C., MacInnis, D., Priester, J., Eisingerich, A.B., Iacobucci, D.: Brand attachment and brand
attitude strength: conceptual and empirical differentiation of two critical brand equity drivers.
J. Mark. 74, 1–17 (2010)

Sedikides, C., Wildschut, T., Gaertner, L., Routledge, C.: Nostalgia as an enabler of self continuity.
In: Sani, F. (ed.) Self Continuity: Individual and Collective Perspectives, pp. 227–239.
Psychology Press, New York (2008)

Tenenhaus, M., Esposito Vinzi, V., Chatelin, Y.M., Lauro, C.: PLS path modeling. Comput. Stat.
Data Anal. 48, 159–205 (2005)

Thomson, M., MacInnis, D., Park, W.C.: The ties that bind: measuring the strength of consumer’s
emotional attachments to brands. J. Consum. Psychol. 15, 77–91 (2005)

Tian, K.T., Bearden, W.O., Hunter, G.L.: Consumers’ need for uniqueness: scale development and
validation. J. Consum. Res. 28, 50–66 (2001)

Usunier, J.C., Valette-Florence, P.: The time styles scale, a review of developments and replications
over 15 years. Time Soc. 16, 333–366 (2007)

Vigneron, F., Johnson, L.W.: A review and a conceptual framework of prestige-seeking consumer
behavior. Acad. Mark. Sci. Rev. 3, 1–17 (1999)

Vigneron, F., Johnson, L.W.: Measuring perceptions of brand luxury. J. Brand Manag. 11,
484–506 (2004)

Wetzels, M., Odekerken-Schroder, G., Van Oppen, C.: Using PLS path modeling for assessing
hierarchical construct models: guidelines and empirical illustration. MIS Q. 33, 177–195 (2009)



Chapter 22
A Partial Least Squares Algorithm Handling
Ordinal Variables

Gabriele Cantaluppi and Giuseppe Boari

Abstract The partial least squares (PLS) is a popular path modeling technique
commonly used in social sciences. The traditional PLS algorithm deals with vari-
ables measured on interval scales while data are often collected on ordinal scales.
A reformulation of the algorithm, named Ordinal PLS (OrdPLS), is introduced,
which properly deals with ordinal variables. Some simulation results show that
the proposed technique seems to perform better than the traditional PLS algorithm
applied to ordinal data as they were metric, in particular when the number of
categories of the items in the questionnaire is small (4 or 5) which is typical in
the most common practical situations.

Keywords Partial least squares path modeling (PLS-PM) • Robust Methods •
Ordinal Variables

22.1 Introduction

Partial Least Squares (PLS) path modeling is largely used in socio-economic studies
where path analysis is performed with reference to structural equation models with
latent variables. It often happens that data are measured on ordinal scales; a typical
example concerns customer satisfaction surveys, where responses given to a ques-
tionnaire are on Likert type scales assuming a unique common finite set of possible
categories. In several research and applied works, averages, linear transformations,
covariances and Pearson correlations are computed on the ordinal variables coming
from surveys. This practice can be theoretically justified by invoking the pragmatic
approach to statistical measurement (Hand 2009). A more accurate way would
require to adopt appropriate procedures in order to handle manifest indicators of
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the ordinal type (Stevens 1946). Within the LISREL covariance-based framework,
several approaches are suggested; in particular, Jöreskog (2005) and Bollen (1989)
make the assumption that to each manifest indicator there corresponds an underlying
continuous indicator.

In order to deal with ordinal variables within Partial Least Squares path mod-
elling, Jakobowicz and Derquenne (2007) use a procedure based on generalized
linear models, while (Russolillo 2012) and (Nappo 2009) use Optimal Scaling and
Alternating Least Squares. As observed by Russolillo (2012) in the procedure by
Jakobowicz and Derquenne (2007) a value is assigned to measure the impact of
each explanatory variable on each category of the response, while the researcher
may be interested in measuring the impact of each explanatory variable on the
response as a whole. The same issue characterizes the techniques illustrated by
Lohmöller (1989). The present proposal goes in this direction. Wold’s (1979) PLS
algorithm is presented in matrix form, starting from the covariance matrix of row
data. This allows us to deal with variables of the ordinal type in a manner analogous
to the covariance based procedures, according to Thurstone’s (1959) scaling, which
assumes the presence of a continuous underlying variable for each ordinal indicator
(Sect. 22.2). The polychoric correlation matrix can be defined; it is used in Sect. 22.3
to obtain parameter estimates within the PLS framework. In Sect. 22.4 simulation
results give evidence that the proposed solution is particularly appropriate in all
situations with a low number of scale points. This is the most common situation
encountered in questionnaire analysis, where items are usually measured on at most
4 or 5 alternative points.

22.2 The Model

A structural equation model with latent variables consists of two sets of equations:
the inner model, describing the path of the relationships among the latent variables,
and the measurement model or outer model, representing the relationships linking
unobservable latent variables to appropriate corresponding manifest variables.

The inner model is represented by the linear relations

Y D
�

Yexog

Yendog

�
D
�

I O
� B

� �
Yexog

Yendog

�
C
�

0
�

�
D DYC � (22.1)

where Yexog and Yendog are vectors of n exogenous and m endogenous latent random
variables, defining the vector Y D ŒY1; : : : ;Yn;YnC1; : : : ;YnCm�

0; � is a vector of
m error components. � and B are respectively .m � n/ and .m � m/ matrices
containing the structural parameters. Matrix B is assumed to be lower triangular
and the predictor specification, E.�jjY1; : : : ;YnCj�1/ D 0; j D 1; : : : ;m, is made.

The measurement model describes the relation between each latent variable Yj

in Y and a single block of pj manifest indicators, Xjh; h D 1; : : : ; pj, elements of
the .p � 1/ vector random variable X. Different types of measurement models are
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available, the reflective, the formative and the MIMIC (Esposito Vinzi et al. 2010;
Tenenhaus et al. 2005). We consider measurement models of the reflective type

X D 	YC ": (22.2)

In presence of ordinal indicators, we assume that to the set of ordinal variables
X there corresponds a p-dimensional unobservable continuous indicator X�, repre-
sented on an interval scale with a multinormal distribution function (Jöreskog 2005;
Bollen 1989; Bollen and Maydeu-Olivares 2007). Each observed ordinal indicator
Xjh can assume I categories and is related to the corresponding continuous indicator
X�jh by means of a non linear monotone function

Xjh D
˚
1 if X�jh 	 ajh;1I 2 if ajh;1 < X�jh 	 ajh;2I : : : I Ijh if ajh;Ijh�1 < X�jh



(22.3)

where ajh;1; : : : ; ajh;Ijh�1 are marginal threshold values defined as ajh;i D
˚�1.Fjh.i//, i D 1; : : : ; Ijh � 1, with ˚.�/ the distribution function of a standard
Normal random variable and Fjh.�/ the empirical distribution function of Xjh

(Jöreskog 2005); Ijh 	 I denotes the number of categories effectively used by the
respondents. For each pair of ordinal categorical variables, .Xh;Xk/, the polychoric
correlation is defined as the maximum likelihood estimate of the Pearson correlation
between the corresponding underlying Normal variables .X�h ;X�k /, Drasgow (1986).
Then, a polychoric correlation matrix can be obtained which will be used in the
PLS algorithm.

In presence of manifest indicators of the ordinal type, we therefore suggest
a slightly modified version of model (22.1)–(22.2), where manifest variables X,
in (22.2), are in a certain sense ‘replaced’ by underlying unobservable continuous
indicators X�

X X� D 	YC ": (22.4)

We do not write explicitly the dependence between X and X�, since for subject
s D 1; 2; : : : ;N the actual score x�ks for each indicator X�k cannot be identified;
we only assume that it belongs to the interval defined by the threshold values
in (22.3) having as image the observed category xks. It will be possible to obtain
point estimates for the parameters in D and 	, while only estimates of the threshold
values will be directly predicted with regard to the scores of the latent variables
Yj; j D 1; : : : ; nCm.

22.3 The Ordinal PLS Algorithm

Wold’s PLS algorithm consists of a first iterative phase giving as result the weights
which allow to define latent variables scores OY as composites, linear combinations
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of their respective manifest indicators. All unknown parameters in the model are
then estimated by applying OLS to the linear multiple regression sub-problems into
which the inner and outer models can be decomposed. In the algorithm presented
below, we will update the weights defining the composites OY according to the Mode
A method, which is appropriate with reflective measurement models (Esposito Vinzi
et al. 2010; Tenenhaus et al. 2005).

A square matrix T, of order .nCm/, indicating the structural relationships among
latent variables in the inner model can be defined, whose generic element tjk is given
unit value if the endogenous Yj is directly linked to Yk; tjk is null otherwise. T is the
indicator matrix of D by having set to 0 the elements on the main diagonal.

Wold (1979) presented two versions of the PLS algorithm; the first one starts
from raw data, while the second considers cross-products of manifest variables.
He suggested in Wold (1982) to implement computer programs starting from
product moments, see Rönkkö (2014) for an implementation in R. We propose
a procedure based on the polychoric correlation matrix across observed ordinal
manifest variables X, which corresponds to the Pearson correlation matrix across
the underlying continuous indicators X�.

The algorithm,1 see Fig. 22.1, starts from the polychoric correlation matrix of
manifest variables ˙ XX (covariance matrix if raw data are all on interval scales).

The procedure begins with an arbitrary choice of starting values for the weights
corresponding to the latent composites. All weights are collected in a matrix W.

Following a Gauss Seidel procedure, the following quantities are computed at
each iteration: the covariance matrix of outer estimates OY D XW of compos-
ites (22.5), the ‘standardizing’2 weights (22.6), the correlation matrix of outer
estimates of composites (or covariance if ‘standardizing’ weights are not com-
puted) (22.7), the cross covariances between manifest indicators and inner estimates
Z D XW of composites defined according to Wold’s centroid scheme (22.8)–
(22.9), the cross covariances between manifest indicators and outer estimates of
composites (22.10). C.s/

j and ˙ are defined in order to update the outer weights
according to the Mode A method (22.12). The symbol � in (22.6), (22.8), (22.11)
denotes the Hadamard product; � in (22.11) is the indicator function returning 1 for
elements in its matrix argument different from 0.

Observe that in this way the simultaneous updating of all composite weights
is performed, according to the PLS algorithm by Lohmöller (1989). The resulting
weights, defining each composite, are normalised in the sense that they sum up to
1, according to the “New Mode A” Regularized Generalized Canonical Correlation
Analysis (RGCCA) by Tenenhaus and Tenenhaus (2011).3

1A detailed description of the matrix PLS algorithm by Lohmöller (1989) Table 2.2, is reported in
Cantaluppi (2012).
2We use ‘standardizing’ to denote weights normalized in order to obtain standardized composites.
3The ‘standardizing’ operation in (22.6) is made according to Wold’s algorithm, but is not required
by “new Mode A”. In the latter case set SW.s/

k�1 D W.s/
k�1 in (22.7), (22.8), (22.9), (22.10), and

(22.11).
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Fig. 22.1 Flow chart for Wold’s, Tenenhaus and Tenenhaus’ and Lohmöller’s matrix PLS
algorithms

Relationship (22.13), where O and I are null and identity matrices, allows Gauss
Seidel procedure to be executed. In this way4 only weights pertaining to the first nCk
composites are updated and the weights of the latent composite OY.sC1/nCkC1 are obtained

at step k C 1, based on the weights of OY.sC1/1 ; : : : ; OY.sC1/nCk and OY.s/nCkC2; : : : ; OY.s/nCm. To
implement the Lohmöller’s algorithm only step k D 0 has to be performed in the
internal loop and one can proceed with next step s by setting W.sC1/

�1 DW.sC1/
0 .

Convergence is achieved when jjW.sC1/
�1 � WTEMPjj < ", the tolerance level.

According to Wold’s algorithm final ‘standardizing’ weights have to be obtained.
This is not required by the PLS algorithm for RGGCA, where weights are
normalized.

4The first n composites are exogenous. Their weights are computed at step 0 of the internal cycle.
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Composite values can be computed if raw data are available and OLS regressions
carried out to estimate model parameters. The inner regression models describe the
relationship between each endogenous composite OYj, j D n C 1; : : : ; n C m and a

subset of
n OY1; : : : ; OYj�1

o
defined according to the jth row of matrix D. OLS estimates

correspond to Rj˙
�1
OY OY j˙ OY OY where Rj˙ OY OY is the matrix defined by extracting from

˙ OY OY the rows and columns pertaining to the covariates of OYj and j˙ OY OY is the vector
containing the correlations between OYj and its covariates. OLS estimates in the
outer model are given by the elements in (22.10), when composite variables are
standardized.

By applying transformation (22.3) to the ordinal variables, threshold values
related to the underlying standard normal variables X�jh are available. A point

estimate of the composite OYj cannot be determined in presence of ordinal variables
for the generic subject. We can only establish an interval of possible values
conditional on the threshold values pertaining the continuous indicators X�jh that
underlie each ordinal manifest variable; a ‘category’ indication follows for Yj from
this interval, according to one of the 3 estimation methods presented in Cantaluppi
(2012), Sect. 6.3.

From now on we will refer to the proposed algorithm for ordinal manifest
variables with Ordinal Partial Least Squares (OrdPLS).

Optimality criteria described in Tenenhaus and Tenenhaus (2011) and Russolillo
(2012) are referred, for OrdPLS, to model (22.1), (22.4), defined among the
continuous indicators X� underlying the ordinal X. Also the causal predictive
properties, which characterize PLS, have to be referred for OrdPLS to the X�
variables. The use of the polychoric correlation matrix with ‘standardizing’ weights
is consistent with the METRIC 1 option performing the standardization of all
manifest indicators (Lohmöller 1989; Tenenhaus et al. 2005).

In Schneeweiss (1993) it is shown that parameter estimates obtained with the PLS
algorithm are negatively biased for the inner model. These estimates are related to
the covariances across latent composites, but OrdPLS is based on the analysis of
the polychoric correlation matrix. When the number of categories is sufficiently
high (8 or 9) polychoric correlation values are close to Pearson’s ones; while they
are usually larger than Pearson’s ones in presence of items with a low number of
categories (Coenders et al. 1997). For this reason we can expect a possible reduction
of the negative bias of the inner model estimates. A positive bias in the outer model
parameter estimates corresponds to the reduction in the bias of the inner model
parameter estimates for OrdPLS (Fornell and Cha 1994).

Scale reliability can be assessed by having recourse to methods based on
the polychoric correlation matrix for Cronbach’s ˛ (Zumbo et al. 2007). Dillon-
Goldstein’s rho (Chin 1998) will be inflated due to the positive bias in the outer
model parameter estimates.
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22.4 Simulation Results

Some simulations5 were performed to analyze the behavior of the procedure, in
particular when item scales have a low number of points. The OrdPLS methodology
was implemented in R6; procedures by Fox (2010) and Revelle (2012) are used to
compute polychoric correlation matrices, with minor changes to allow polychoric
correlations to be computed when the number of categories is larger than 8.
Simulations from the model

�1 D �11�1 C �1; �2 D ˇ21�1 C �22�2 C �23�3 C �2; �3 D ˇ32�2 C �3
were considered. Measurement models of the reflective type were assumed, with 3
manifest ordinal reflective indicators for each latent variable Xih D Xih�i C "ih,
Yih D Yih�i C ıih; i D 1; 2; 3; h D 1; 2; 3.

Latent exogenous variables �i were generated according both to the standard Nor-
mal distribution for all �i variables (first simulation design considering symmetric
Normal distributions for the latent variables) and Beta distributions with parameters
.˛ D 11; ˇ D 2/ for �1, .˛ D 16; ˇ D 3/ for �2, .˛ D 54; ˇ D 7/ for �3
which were then standardized (second simulation design which takes into account
the presence of skew distributions). Theoretical skewness indices �0:96, �0:80 and
�0:60 correspond to the three Beta distributions. The model parameters were fixed
to �11 D 0:9, �22 D 0:5, �23 D 0:6, ˇ21 D 0:5 and ˇ32 D 0:6. The  coefficients
were set to 0:8; 0:9; 0:95 in each measurement model. Error components were
generated from Normal distributions. Both the variances of the error components
�i in the inner model and those pertaining errors in the measurement models were
set to values ensuring the latent and manifest variables to have unit variance.

Manifest variables Xih and Yih were rescaled according to the rule SCALEDXih D
Xih�min.Xih/

max.Xih/�min.Xih/C0:01 � npointsC 0:5 with extrema computed over the sample realiza-
tions, being npoints the desired number of points common to all items. Values were
then rounded to obtain integer responses, corresponding to conventional ordinal
variables.

Simulations were performed by considering 4; 5; 7 and 9 categories in the scales.
500 replications for each instance, each with 250 observations were made.

We expected results from PLS applied to ordinal data, as they were of the interval
type, and OrdPLS to be quite similar in presence of 9 categories, since in this case
polychoric correlations are close to Pearson ones.

To compare the performance of the two procedures we considered the empir-
ical distributions of the inner model parameter estimate biases, see Table 22.1.
Results are reported only for the first simulation design with 4 points and Normal

5See Cantaluppi (2012) for an application of the OrdPLS methodology to the well-known ECSI
data set (Tenenhaus et al. 2005).
6The R package matrixpls, independently implemented by Rönkkö (2014), also performs PLS
starting from covariance matrices.
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Table 22.1 Bias distribution of the inner model parameter estimates (4 points, Normal
distribution) obtained with PLS and OrdPLS and distribution of the ratio between absolute
values of the biases: percentage points, mean and standard deviation

5 % 10 % 25 % 50 % 75 % 90 % 95 % mean sd

PLS

�11 �0.166 �0.158 �0.144 �0.125 �0.107 �0.094 �0.087 �0.126 0.025

�22 �0.128 �0.118 �0.095 �0.067 �0.039 �0.019 �0.004 �0.068 0.039

�23 �0.147 �0.131 �0.110 �0.084 �0.056 �0.033 �0.021 �0.083 0.038

ˇ21 �0.131 �0.119 �0.098 �0.072 �0.046 �0.023 �0.010 �0.072 0.038

ˇ32 �0.164 �0.149 �0.115 �0.083 �0.050 �0.022 �0.006 �0.084 0.049

OrdPLS

�11 �0.111 �0.103 �0.087 �0.070 �0.052 �0.039 �0.027 �0.070 0.025

�22 �0.101 �0.090 �0.065 �0.036 �0.004 0.019 0.035 �0.035 0.042

�23 �0.111 �0.095 �0.072 �0.044 �0.014 0.009 0.023 �0.044 0.042

ˇ21 �0.103 �0.091 �0.067 �0.039 �0.011 0.016 0.031 �0.039 0.042

ˇ32 �0.138 �0.111 �0.077 �0.044 �0.010 0.020 0.036 �0.046 0.052

Ratio of absolute biases OrdPLS over PLS geometric mean

�11 0.329 0.392 0.465 0.557 0.613 0.666 0.693 0.522

�22 0.073 0.166 0.376 0.594 0.755 1.090 3.803 0.531

�23 0.113 0.182 0.385 0.577 0.697 0.792 0.982 0.483

ˇ21 0.100 0.207 0.414 0.621 0.747 0.914 2.559 0.543

ˇ32 0.112 0.244 0.436 0.606 0.736 0.911 3.437 0.575

distribution, see Cantaluppi (2012) for more detailed results. Estimates obtained
with the PLS algorithm are negatively biased. Only for scales with 5; 7 and 9
categories we observed about 5 % of the trials with a small or negligible positive
bias for Normal distributed latent variables. The negative bias gets more evident
with decreasing number of scale points. The behavior is common both to Normal
and Beta situations. With OrdPLS about 10 % of the simulations always present
positive bias. Most percentage points of the bias distribution obtained with the
OrdPLS procedure are closer to 0 than with PLS. Averages biases are again closer to
0 with the OrdPLS algorithm. Percentage points for the two estimation procedures
in case of a 9 point scale are very close, as well as average values; in this case
polychoric and Pearson correlations give similar values.

The ratio between the absolute biases observed in each trial with OrdPLS and
PLS was also considered, in order to better compare the two procedures. The
distribution of the ratios is shown in the third sections of Table 22.1 giving evidence
that over 90 % of the trials have an absolute bias of OrdPLS lower than PLS, when
scales are characterized by 4 points. By comparing the 5 % and 95 % percentage
points for the distributions of ratios of absolute biases in case of the Normal
assumption with 4 point scales, we can observe the better behavior of OrdPLS: for
parameter �22 we have 5 % and 95 % percentiles of absolute ratios equal to 0.0728
and 3.8032. According to the latter value 5 % of the trials have an absolute bias in
OrdPLS estimates larger more than 3.8 times that of PLS. The former value shows
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how 5 % of the trials have an absolute bias of PLS larger more than 1=0:0728D 13:7
times than OrdPLS.

Geometric means have been computed to summarize ratios between absolute
biases of OrdPLS and PLS and in all situations (except for �11, 9 points, Beta
distribution) they are lower than 1. Their values increase with increasing number
of scale points and get close to 1 in presence of scales with 9 points and skew Beta
distribution of the latent variables.

In Sect. 22.3 we reminded that to the reduction in the bias attained by OrdPLS,
pertaining the inner model parameter estimates, there corresponds an increase in the
bias of the outer model parameter estimates. The bias is evident in Fig. 22.2 which
reports Box & Whiskers plots for the distribution of the bias of the inner and outer
model coefficients estimates from their theoretical values and the distribution of the
weights under the Normal assumption for scales with 4 points. According to the Box
& Whiskers Plots, OrdPLS estimates of normalized weights, which sum up to one
and give information about the strength of the relationship between each composite
and its manifest indicators, are characterized by a lower interquartile range.
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Fig. 22.2 Parameter estimates bias and weights distribution (4 points, normal distribution)
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22.5 Conclusion

The Ordinal PLS (OrdPLS) algorithm dealing with variables on ordinal scales
has been presented. It applies to unobservable underlying continuous indicators,
assumed to generate the observed ordinal categorical variables. It is based on the
use of the polychoric correlation matrix and shows better performance than the
traditional PLS algorithm in presence of ordinal scales with a small number of point
alternatives, by reducing the bias of the inner model parameter estimates.

A basic feature of PLS is the so-called soft modeling, requiring no distributional
assumptions on the variables appearing in the structural equation model. With the
OrdPLS algorithm the continuous variables underlying the categorical manifest
indicators are considered multinormally distributed. This can appear a strong
assumption but, as observed in Bartolomew (1996), every distribution can be
obtained as a transformation of the Normal one, which can thus suit most situations.
For instance, in presence of a manifest variable with a distribution skew to the left,
points on the right side of the scale will have higher frequencies and the underlying
continuous indicator should also be skew to the left; however, the transformation
considered, see (22.3), will work anyway since it assigns larger intervals to the
classes defined by the thresholds to which the highest points in the scale correspond.

Polychoric correlations are expected to overestimate real correlations when
scales present some kind of skewness. This can be regarded as a positive feature for
the OrdPLS algorithm when compared to the PLS algorithm applied to row data. It
can represent a possible correction of the negative bias with regard to the estimates
of the inner model parameters. The gain in the bias reduction is less evident for
scales with a high number of categories, for which polychoric correlation values
are closer to Pearson’s correlations. In these cases ordinal scales can be considered
as they were of the interval type, possibly according to the so-called pragmatic
approach to measurement (Hand 2009).

Increasing the number of the points of the scale can help the performance of the
traditional PLS algorithm when the scale is interpreted as continuous, but, as it often
happens, in presence of skew distributions many points of the scale are characterized
by low response frequencies, since the number of points that respondents effectively
use is quite restricted. Thus the administered scale actually corresponds to a scale
with a lower number of points and OrdPLS can anyway be useful in these situations.

A feature of the PLS predictive approach is that it gives direct estimation of
latent scores. The OrdPLS algorithm allows only thresholds to be estimated for
each composite, from which a ‘category’ indication for the latent variable follows
according to one of the 3 estimation methods presented in Cantaluppi (2012).

Simulations have been carried out to evaluate the properties of the algorithm also
in presence of skew distributions for latent variables. A reduction of the bias of the
inner model parameter estimates obtained with the traditional PLS algorithm was
observed. Results show also how the distributions of the weights obtained with Ord-
PLS have lower variability. Further research will consider a more detailed analysis
of the causal predictive properties of OrdPLS and a comparison with the Optimal
Scaling techniques proposed within the PLS framework by Russolillo (2012) and
Nappo (2009).
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