

i

Pro PHP Application

Performance
Tuning PHP Web Projects for

Maximum Performance

■ ■ ■

Armando Padilla
and Tim Hawkins

ii

Pro PHP Application Performance: Tuning PHP Web Projects for Maximum
Performance

Copyright © 2010 by Armando Padilla and Tim Hawkins

All rights reserved. No part of this work may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval system, without the prior written permission of the
copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2898-1

ISBN-13 (electronic): 978-1-4302-2899-8

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use
the names, logos, and images only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Frank Pohlmann
Development Editors: Jim Markham and Michelle Lowman
Technical Reviewer: Aaron Saray
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan
Parkes, Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke,
Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Jennifer L. Blackwell
Copy Editor: Mary Ann Fugate
Compositor: MacPS, LLC
Indexer: Becky Hornyak
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/info/bulksales.

iii

I dedicate this book to
my family, friends, and my dog, Snoopy.

—Armando Padilla

To my partner, Ester, who always gets the raw end of my endeavors, and puts up with the single-word
answers and stunted conversation while I concentrate on the writing.

—Tim Hawkins

iv

Contents at a Glance

■Contents .. v�

■About the Authors ... xii�

■About the Technical Reviewer .. xiii�

■Acknowledgments .. xiv�

■Introduction .. xv

■Chapter 1: Benchmarking Techniques .. 1�

■Chapter 2: Improving Client Download and Rendering Performance 25�

■Chapter 3: PHP Code Optimization .. 55�

■Chapter 4: Opcode Caching ... 83�

■Chapter 5: Variable Caching .. 109�

■Chapter 6: Choosing the Right Web Server ... 131�

■Chapter 7: Web Server and Delivery Optimization .. 165�

■Chapter 8: Database Optimization ... 189�

■Appendix A: Installing Apache, MySQL, PHP, and PECL on Windows 209�

■Appendix B: Installing Apache, MySQL, PHP, and PECL on Linux 227�

■Index ... 233�

v

Contents

■Contents at a Glance .. iv�

■About the Authors ... xii�
■About the Technical Reviewer .. xiii�
■Acknowledgments .. xiv�

■Introduction ... xv

■Chapter 1: Benchmarking Techniques .. 1�

The PHP Application Stack .. 2�

Benchmarking Utilities .. 3�

Defining the Request/Response Lifecycle ... 3�

Apache Benchmark ... 4�

Installing Apache Benchmark .. 5�

Running Apache Benchmark .. 6�

Making Sense of the Response .. 7�

AB Option Flags .. 10�

AB Gotchas ... 15�

Siege ... 15�

Installing Siege .. 15�

Running Siege .. 16�

Examining the Results ... 17�

Siege Option Flags ... 19�

Testing Many URLs .. 19�

�

■ CONTENTS

vi

Affecting Your Benchmark Figures ... 20�

Geographical Location ... 20�

The Traveling Packets .. 20�

Response Size .. 21�

Code Complexity .. 22�

Browser Behavior ... 22�

Web Server Setup .. 22�

Summary ... 24�

■Chapter 2: Improving Client Download and Rendering Performance 25�

The Importance of Optimizing Responses .. 27�

Firebug .. 28�

Installing Firebug ... 28�

Firebug Performance Tabs ... 28�

The Console Tab ... 30�

The Net Tab .. 32�

YSlow .. 33�

YSlow v2 Rulesets .. 34�

Installing YSlow .. 35�

Starting YSlow ... 36�

Page Speed ... 39�

Installing Page Speed .. 39�

Page Speed at Work ... 39�

Optimization Tools .. 42�

JavaScript Optimization ... 42�

JavaScript Placement .. 43�

Minification of JavaScript .. 46�

Minification Tools .. 47�

YUI Compressor ... 47�

Closure Compiler ... 48�

 ■ CONTENTS

vii

Reduce Resource Requests ... 49�

Use Server-Side Compression ... 49�

Image Compression .. 49�

Smush.it .. 50�

Summary ... 52�

■Chapter 3: PHP Code Optimization .. 55�

PHP Best Practices .. 55�

The PHP Economy .. 57�

require vs. require_once .. 58�

Calculating Loop Length in Advance .. 60�

Accessing Array Elements Using foreach vs. for vs. while .. 63�

File Access ... 64�

Faster Access to Object Properties .. 67�

Looking Under the Hood Using VLD, strace, and Xdebug .. 68�

Reviewing Opcode Functions with VLD .. 69�

Using strace for C-level Tracing ... 71�

Identifying Bottlenecks ... 73�

Xdebug 2: PHP Debugging Tool .. 73�

Validating Installation ... 75�

Installing the GUI-Based Tool ... 77�

Summary ... 80�

■Chapter 4: Opcode Caching ... 83�

Reviewing Our Roadmap ... 83�

The PHP Life Cycle .. 84�

Opcode Caching Tools ... 86�

Alternative PHP Cache ... 86�

XCache ... 95�

Caching with XCache ... 97�

XCache Settings ... 97�

■ CONTENTS

viii

eAccelerator ... 99�

eA Settings ... 104�

Summary ... 107�

■Chapter 5: Variable Caching .. 109�

Application Performance Roadmap .. 109�

The Value of Implementing Variable Caching ... 110�

A Sample Project: Creating the Table ... 112�

Fetching the Records ... 114�

Calculating a Database Fetch .. 115�

APC Caching .. 119�

Adding Data to Cache ... 120�

Benchmarking APC .. 121�

Memcached .. 123�

Installing Memcached .. 124�

Starting Memcached Server .. 124�

Using Memcached with PHP .. 125�

Summary ... 129�

■Chapter 6: Choosing the Right Web Server ... 131�

Choosing Which Web Server Package Is for You .. 132�

Security and Stability Are Important to You ... 132�

Availability of Engineers with Detailed Knowledge Is Important to You ... 133�

Your Site Is Predominantly Static Content ... 133�

You Are Hosting in a Managed Service .. 133�

You Are Using Unusual PHP Extensions ... 133�

Usage Figures for Web Servers ... 133�

Web Server Request Handling .. 134�

Web Server Hardware ... 136�

Classifying Web Servers ... 136�

Apache HTTPD .. 137�

 ■ CONTENTS

ix

Apache Daemon Command Line .. 138�

Apache Multi-processing Modules ... 140�

Understanding Apache Modules ... 141�

Adding Dynamic Apache Modules .. 142�

Removing Dynamic Apache Modules ... 143�

Final Words on Apache ... 144�

lighttpd .. 144�

Installing lighttpd ... 144�

lighttpd Configuration Settings .. 148�

Comparing Static Load Content ... 149�

Installing PHP on lighttpd ... 150�

Nginx ... 153�

Installing Nginx .. 153�

Windows Installation .. 157�

Nginx As a Static Web Server ... 158�

Installing FastCGI PHP .. 160�

NGinx Benchmarking ... 162�

Summary ... 163�

■Chapter 7: Web Server and Delivery Optimization .. 165�

Determining the Performance of Your Web Server ... 166�

Using ApacheTop, a Real-Time Access Log File Analyzer ... 166�

Understanding the Memory Footprint of Your Application .. 168�

Optimizing Processes in Apache ... 170�

Controlling Apache Clients (Prefork MPM) ... 170�

Optimizing Memory Use and Preventing Swapping ... 171�

Other Apache Configuration Tweaks ... 172�

Using .htaccess Files and AllowOverride ... 172�

Using FollowSymlinks .. 173�

Using DirectoryIndex .. 173�

■ CONTENTS

x

Hostname Lookup Off ... 174�

Keep-Alive On .. 174�

Using mod_deflate to Compress Content ... 174�

Scaling Beyond a Single Server .. 176�

Using Round-Robin DNS .. 176�

Using a Load Balancer ... 176�

Using Direct Server Return .. 179�

Sharing Sessions Between Members of a Farm .. 180�

Sharing Assets with a Shared File System .. 181�

Sharing Assets with a Separate Asset Server .. 182�

Sharing Assets with a Content Distribution Network ... 182�

Pitfalls of Using Distributed Architectures .. 184�

Cache Coherence Issues .. 184�

Cache Versioning Issues .. 184�

User IP Address Tracking ... 185�

Domino or Cascade Failure Effects .. 186�

Deployment Failures .. 187�

Monitoring Your Application .. 187�

Some Monitoring Systems for You to Investigate .. 187�

Summary ... 188�

■Chapter 8: Database Optimization ... 189�

About MySQL ... 190�

Understanding MySQL Storage Engines ... 191�

MyISAM: The Original Engine ... 192�

InnoDB: The Pro’s Choice ... 192�

Choosing a Storage Engine .. 193�

Understanding How MySQL Uses Memory .. 194�

InnoDB vs. MyISAM Memory Usage ... 194�

Per Server vs. per Connection (Thread) Memory Usage .. 195�

Locating Your Configuration File ... 197�

 ■ CONTENTS

xi

Mysqltuner.pl: Tuning Your Database Server’s Memory .. 197�

Possible Issues with Our Example Server .. 201�

Tuning InnoDB .. 202�

Finding Problem Queries ... 203�

Analyzing Problem Queries ... 204�

Recommendations for PHP Database Applications ... 205�

Maintaining Separate Read and Write Connections ... 206�

Using “utf8” (Multi-byte Unicode) Character Set by Default .. 206�

Using “UTC” Date Format .. 207�

Summary ... 208�

■Appendix A: Installing Apache, MySQL, PHP, and PECL on Windows 209�

Installing Apache .. 209�

Post–Apache Installation .. 215�

Installing MySQL ... 216�

Configuring MySQL .. 219�

Installing PHP .. 222�

Getting PHP5 and MySQL to Talk ... 223�

Creating a phpinfo() Script .. 223�

Installing PECL .. 224�

■Appendix B: Installing Apache, MySQL, PHP, and PECL on Linux 227�

Fedora 14 .. 227�

Component Versions and Locations ... 229�

Ubuntu 10.10 ... 230�

Component Versions and Locations ... 231�

Tasksel ... 231�

PECL .. 232

■Index ... 233

�

■ CONTENTS

xii

About the Authors

■ Armando Padilla has worked within the web technology industry for 13 years,
participating and leading every aspect of a LAMP-based web application. His
PHP experience began in 1998, when he created a small PHP web page for Thomas
Jefferson High School (Los Angeles). Armando’s most recent work has been for Yahoo!
as a senior engineer working on high-profile and high-traffic applications, such as the
Winter 2010 Olympics, 2010 FIFA World Cup, and Yahoo News mobile applications.
Armando now spends much of his time dabbling with new web technologies, reading
PHP/Zend–related books, and being with his family.

■ Tim Hawkins produced one of the world’s first online classifieds portals in 1993,
loot.com, before moving on to run engineering for many of Yahoo EU’s non-media-
based properties, such as Search, Local Search, Mail, Messenger, and its social
networking products. He is currently managing a large offshore team for a major US
e-tailer, developing and deploying next-generation e-commerce applications. He
loves hats and hates complexity.

xiii

About the Technical Reviewer

■ Aaron Saray has been madly in love with PHP since 2001. As a Zend Certified
Engineer, Milwaukee PHP users group organizer, author, and technical editor, Aaron
continues to remain active in the PHP community. He continues to push out new
open source software as well as keep a web development blog on
http://aaronsaray.com.

■ CONTENTS

xiv

Acknowledgments

It’s without saying that I want to thank the Apress staff, Jennifer Blackwell as well as Michelle Lowman,
for giving me the opportunity to write this book. I also want to thank the countless developers and
system admins who assisted in answering my many, many late-night questions about the subject matter.
Thank you.

—Armando Padilla

I would like to acknowledge Rasmus Lerdorf, who started this whole PHP thing, and who taught me
some neat tricks with APC, as well as my ex-colleagues at Yahoo Europe, who taught me to think big.

—Tim Hawkins

xv

Introduction

If you’re like me, you’re picking up this book at your local bookstore or reading this introduction online,
trying to get a “feel” for the book. You’re either a PHP engineer curious to dive headfirst into the nuances
of building a large application, or someone who has just been tasked to support a high-traffic PHP
application. This book is for you, the PHP developer who has a good understanding of PHP and is not a
newcomer to the language—the PHP developer who wants to understand the “whys” and the tool sets to
trace and “look under the hood” of your PHP script.

The goal of the book is to give you the complete picture of all the components that need to be
identified when optimizing your PHP application. From the JavaScript to the web server software the
application is running, this book covers each of these topics.

The book is separated into two general sections, the front end and back end of a web application.
The first part of the book covers the front end, helping you identify bottlenecks the browser encounters
during rendering and how to remove these bottlenecks. This initial section also covers the use of PHP
best coding practices and how to apply caching using the many tools available. The second part of the
book covers the back end, teaching you about the many types of web server software, how to optimize
the software, and tips on optimizing your database.

Overview
The following is a detailed chapter breakdown.

Chapter 1 – Benchmarking Techniques
We begin by establishing the tools that are required to measure our application’s performance. The tools
you will learn to install, read results, and apply are Apache Benchmark (ab) as well as Siege, two of the
most popular benchmarking tools in the industry. You will learn how to run simulated load tests using
concurrency as well as simulated loads for a specific length of time.

Chapter 2 – Improving Client Download and Rendering
Performance
Application performance is not only about your PHP code. In this chapter, we focus on how browsers
render content. You will learn the tools available to benchmark JavaScript, measure the amount of data
the browser is attempting to load, as well as view how efficiently the browser is loading the content. You
will learn to do this by using and installing Firebug, Page Speed, and Yahoo!’s YSlow. Using these tools,
we optimize a simple web page by identifying performance improvements for JavaScript, Image. You are
not required to be an expert at JavaScript while reading this chapter.

 ■ INTRODUCTION

xvi

Chapter 3 – PHP Code Optimization
We begin to jump into the PHP code within this chapter. You will learn about PHP best coding practices
when it comes to performance. You will learn about constructing a faster-running for loop, how to
include files using the optimal PHP function, and, most importantly, how to use and install VLD, strace,
and Xdebug. Once VLD and strace are installed, you will analyze Opcode, as well as the Apache C-level
processes that your PHP script requires to run. Using Xdebug on the other, we will identify bottlenecks
within the PHP code itself.

Chapter 4 – Opcode Caching
Knowing the PHP life cycle is important to optimizing, so you will learn about the life cycle within this
chapter. You will learn the steps PHP takes during a user request and identify areas where we can
optimize using Opcode cachers. You will learn how to install and configure Opcode cachers such as APC,
XCache, and eAccelerator, all the while benchmarking our before and after scripts to see the gains from
caching our Opcode.

Chapter 5 – Variable Caching
Building on the information about aching covered in Chapter 4, you will be introduced to variable
caching tools, such as Memcached, as well as using APC to store information. You will learn to install,
configure, and implement a simple example to get you familiar with the software, as well as a real-world
example using a database result set.

Chapter 6 - Choosing the Right Web Server.
Until recently there was only one game in town, anybody considering a large-scale deployment would
use the defacto standard, Apache. Recently however some new and exciting alternatives have come to
the fore. In this chapter we will look at Apache in detail, and stack it up against newcomers Lighttpd and
Nginx.

Chapter 7 - Apache Web Server Optimization
Out of the box Apache is a very capable web server package, but with a little tuning and some tricks of
the trade we can increase its performance and durability and really make it sing. In this chapter we will
also look at some of the secrets of scaling out to support higher traffic and user loads.

Chapter 8 - Database Optimization.
In most web applications, the database server plays a major role. In this chapter we will look at
optimizing the mysql database server, providing methods and tools that will allow you to keep your
system in tip top shape.

C H A P T E R 1

■ ■ ■

1

Benchmarking Techniques

The phone rings and a voice on the other end yells, “Hey! Why can’t this application
support 200 concurrent users?” You take a deep breath, and in your most senior PHP tone
you mutter, “Odd, I’ll take a look at what’s happening and provide a solution.” Flash back
to a few weeks prior to this conversation. You were tasked to build a database-driven PHP
application, and by all accounts the requirements outlined a simple PHP application. As a
seasoned PHP developer, you began to write code, creating the basic architectural layers,
the PHP back end, the CSS, the JavaScript, and because you’re well-versed in Photoshop,
you also created the graphical layout, and released the application to production.

As your application became popular and more users visited your web site, an
increased number of complaints arrived. All the messages shared a similar issue—the site
is either unresponsive or too slow. Now, you look at your code and wonder how you can
squeeze the last ounce of bottlenecks and slow code out of it, and whether the code is
even the culprit. You finally arrive at the question, how well is the web application
performing when 50, 100, 200, or 300 concurrent users request a web document you host?
And, how can you even test your application under such traffic load?

In this chapter, we’ll review in depth two benchmarking open source tools that will
not only help answer those questions but will also help measure the change in
performance while applying performance enhancements to an application throughout
the book. The tools we’ll use are Apache Benchmark (ab) and Siege.

You will learn how to install both tools, learn how to read their results, and use the
tools to request different types of content, from simple HTML to large images. Finally,
you will also come away with a foundation on how the HTTP request/response lifecycle is
processed and what a request does behind the scenes, and learn the primary areas of
concern that cause latency (a.k.a lag) during a request for hosted resources.

But first, let’s explore the PHP application stack and the approach I will take
throughout the book.

CHAPTER 1 ■ BENCHMARKING TECHNIQUES

2

The PHP Application Stack
Each PHP application has a stack, which, when visualized, resembles Figure 1–1.

Figure 1–1. PHP application stack and breakdown of the book’s chapters

Most PHP applications are shown to the user within a browser, using front-end code
in the form of JavaScript (JS), Cascading Style Sheets (CSS), Flash, other front-end
technologies, and resources such as images. The front end, shown in the topmost block of
our PHP application stack, helps users navigate through the web application and trigger
the PHP layer. The PHP layer contains business logic specific to the application and will
typically interact with either a database or a web service to fetch dynamic data, if it uses
an external storage system. Finally, all web-based PHP applications share something in

CHAPTER 1 ■ BENCHMARKING TECHNIQUES

3

common: they must be installed on a web server—such as Apache, or Nginx—that is
installed on an operating system.

 What Figure 1–1 also depicts is the breakdown of what is covered in the book. Each
layer within the PHP application can be optimized and is the basis of all subsequent
chapters. From the front end to the web server, this book will touch on each layer shown
in the figure, but we need a tool to measure not only how well our current, unmodified
application is performing, but also how well it’s performing once we apply the
performance enhancements to it. Apache Benchmark, as well as Siege, provides that.

Benchmarking Utilities
ab and siege belong to a group of web server benchmarking tools that provide statistics
on how well a web server responds during varied simulated user requests. They allow us
to simulate any arbitrary number of users requesting a specific web document on a web
server and, most importantly, allow us to simulate a simultaneous visit by any number of
users (concurrent requests) to a hosted document on a web server.

For example, each tool provides information about the following:

• Total time a single request took to respond

• Total response size from the server

• Total number of requests a web server can handle per second

What these tools do not do is test functionality. These tools only test requests for a
single web document running on a specific web server.

ab and siege were chosen for the following reasons:

• Easy to use: Both ab and siege have only one line to type with a small
number of options to use. This means there’s a low learning curve in
getting started.

• Easy installation: Both are extremely easy to install, and require
minimum setup time.

• Command-line based: Most developers use a command line on either
a Unix or Windows server.

Defining the Request/Response Lifecycle
Let’s take a quick dive into what a HTTP request/response does by examining its lifecycle.
First, we need to understand what an HTTP request is and what an HTTP request does,
since it is the request’s lifecycle that these tools use to help measure the performance of
your application.

CHAPTER 1 ■ BENCHMARKING TECHNIQUES

4

HTTP requests are the actions a user or a tool takes when attempting to fetch content
from a web server. A typical HTTP request contains information about the Host the
request is trying to reach, browser information, and other information useful to the web
server. Figure 1–2 illustrates the process of a HTTP request/response from a user’s
personal computer.

Figure 1–2. HTTP request lifecycle

This figure follows a simple user HTTP request for content from a web server. The
request originates from the user’s machine, encounters the user’s home router (if any),
ISP Gateway, and DNS, where it looks up the IP associated with the requested domain
name, reaches the web server with the designated IP, and finally requests that the web
application generate the specific content.

The second portion of the lifecycle is the HTTP response. Once the request reaches a
web server, the web server prepares the response by fetching and formatting the data the
user requested; the web server then packages up the data into multiple packets, and
sends the packets to the user along the same path the user’s request followed, but in
reverse order. If the data is large enough, the packet is sent in multiple packets, checked
for errors during transit, and reconstructed by the browser before the browser can begin
its rendering process. All these steps must happen before the browser renders your web
page.

Each of these steps incurs a cost to your end user in the form of a slow performing
web page. The tools we will cover next will allow us to test our application’s response
time and thereby test its optimized state.

Apache Benchmark
The Apache Benchmark (or ab) tool, one of the most widely known benchmarking tools,
is part of the default Apache installation and provides the ability to load-test a web server
by simulating any number of requests to a specific URL. The ab tool provides the
following information:

• Total data size transferred (bytes)

• Total requests per second the web server can support under the
simulated traffic

• Maximum time a request took to complete (milliseconds)

• Minimum time a request took to complete (milliseconds)

CHAPTER 1 ■ BENCHMARKING TECHNIQUES

5

ab also allows you to run many different load simulations, such as the following:

• Simultaneous requests to a web document

• Requests over a specific amount of time

• Requests with Keep-Alive turned on

Most importantly, Apache Benchmark works independently of the Apache web
server, allowing you to run ab while having the web server inactive on the machine you
are running the tool from.

Installing Apache Benchmark
In the next two sections, we’ll go over how to install the required files to run the ab tool on
both Windows as well as Unix-based systems.

Unix and Mac Installation
If you’re on a *nix OS, you have many options to install Apache. You can install from
ports, yum, apt-get, or simply download the source and install. The complete list of
installation commands is shown in Table 1–1.

Table 1–1. Installing Apache Web Server Using Repository

Repository Command

yum yum install apache2

ports sudo port install apache2

apt-get apt-get install apache2

Mac users can use MacPorts and execute the ports-based command shown in Table
1–1 within a terminal.

Windows Installation
Windows users can open a browser and load the URL, http://httpd.apache.org/. Once
the page loads, click the “Download from a mirror” link on the left-hand side of the page,
locate the appropriate download package for your system, the Windows 32 Binary
version, and download. At the time of writing, the most current version of Apache is 2.2.X.

Once the package downloads, go ahead and install the software anywhere on your
system by running the installation wizard. I installed Apache in the default location,
C:\Program Files\Apache Software Foundation, but you can install anywhere on your

CHAPTER 1 ■ BENCHMARKING TECHNIQUES

6

system. The location you choose here will be the APACHE_HOME reference going forward.
Now, open the directory <APACHE_HOME>\Apache2.2\bin. You should see a collection of
files and directories similar to Figure 1–3.

Figure 1–3. Windows Apache installed bin directories

You have successfully installed the ab tool—now let’s use it.

Running Apache Benchmark
The first benchmark test we’re going to run is a simple test on the domain
www.example.com. The main purpose of the initial test is to get you familiar with the syntax
of the tool, review all the available options, and review a complete response.

The makeup of all ab commands follows this structure:

ab [options] [full path to web document]

Using the ab syntax, we are going to simulate a single request. Open a command/shell
terminal and type the following:

ab –n 1 http://www.example.com/

The command shown utilizes a single option within the options section, the number
of requests to perform on the URL specified using the flag n. In this example, the total
number of requests allows ab to request the web document once, though the value of n
can be any arbitrary number lower than 50,000. By default, n is set to 1.

CHAPTER 1 ■ BENCHMARKING TECHNIQUES

7

The next section of the command is the URL section. Referencing the ab command
you just executed, the URL is http://www.example.com/. If we had chosen to test a
document such as test.php (does not exist) within the domain, the URL to test would
have been http://www.example.com/test.php instead.

Let’s return to the command/shell terminal used to execute the ab command. By now
you have executed the command, and your screen is full of numbers and general data
returned by the ab tool. You should have an output similar to Figure 1–4.

Figure 1–4. ab response for the URL http://www.example.com

■ Caution When testing other machines, please be courteous and limit both the amount of requests made to
the web server and your testing. You don’t want to harm any unsuspecting servers and get into real trouble.

Making Sense of the Response
If you’ve never seen the response in the output just shown, or even if you have, the
response can be a bit overwhelming. We’re going to point out the important items for us
and the items that will let us know how well we are doing while optimizing our code
throughout the book.

Referring back to Figure 1–4, the data is broken into four major sections, shown in
Figure 1–5.

CHAPTER 1 ■ BENCHMARKING TECHNIQUES

8

Server Information

Document Information

Connection Information

Connection Metrics Breakdown
Figure 1–5. Sections of an ab result

Server Information
The server information section contains the software the web server is running. In our
example, it’s the software Apache version 2.2.3. The data is contained in the first field,
Server Software. The value for this field can change depending on the web server
software the web site is using. The value for this field might also return something you’re
unfamiliar with, due to security practices web administrators use.

The next two fields, Server Hostname and Server Port, contain the hostname we ran
our simulation on and the port number the web server is listening on.

CHAPTER 1 ■ BENCHMARKING TECHNIQUES

9

Script Information
The second section of an ab response contains information concerning the web
document the simulation ran against. Document Path contains the document that was
requested, while Document Length contains the sum of all HTML, images, CSS, JS, and
anything within the response in bytes.

Connection Information
The Connection Information section contains the bulk of the information. It answers
questions such as, “How long did a request take to receive a response?”, “How much data
was returned?”, and most importantly, “How many users can the web server support
when processing the document?”

Table 1–2 provides a complete list and description of data for this section. For now,
let’s focus on the highlighted rows, which contain the fields that matter most to us
throughout the book.

Table 1–2. ab Response Description

Field Description Example Value

Concurrency Level Total number of concurrent requests made 1,2,3,…,n, where n is
any arbitrary number

Time taken for tests Total time taken to run 000.000 seconds

Complete requests Total number of requests completed out of the total
requests simulated

1,2,3,…,n, where n is
any arbitrary number

Failed requests Total number of requests that failed out of the total
requests simulated

1,2,3,…,n, where n is
any arbitrary number

Write errors Total number of errors encountered while using
writing data.

1,2,3,…,n, where n is
any arbitrary number

Non-2xx responses Total number of requests that did not receive a HTTP
Success response (200)

1,2,3,…,n, where n is
any arbitrary number

Total transferred Total data transferred in response for entire
simulation—size includes Header data.

725 bytes

HTML transferred Total size of the content body transferred for the
entire simulation

137199 bytes

Requests per second Total number of requests supported per second 5.68 [#/sec] (mean)

Time per request Total time taken to satisfy a single request 176.179 milliseconds

Time per request Total time taken to satisfy a single request across all
concurrent requests

176.179 milliseconds

Transfer rate Total number of Kbytes received per second 766.27 [Kbytes/sec]

CHAPTER 1 ■ BENCHMARKING TECHNIQUES

10

The HTML transferred, Requests per second, and Time per request are the key fields
for us. These fields give us a glimpse into the amount of data the web server has sent back
for a single request, the total number of requests the web server can handle in a single
second, and the total elapsed time in which a single request successfully requested data
and received a response from the web server.

Our goal is to successfully lower the HTML transferred, increase the Requests per
second, and lower the Time per request values throughout this book.

Connection Metrics Breakdown
The final section contains a table with Connect, Processing, Waiting, and Total fields.
These fields tell us how much time the requests took within each of these process
statuses. We are mostly interested in the Total field and its min and max columns. These
two columns provide data on the minimum and maximum length of time a request took
to respond. Let’s now look at the optional flags ab provides us.

AB Option Flags
ab has a number of useful optional flags, which allow you to format the response into
HTML tables, set cookies, set basic authentication information, and set the content type,
among other options. A complete list of optional flags is shown in Table 1–3.

Table 1–3. Optional Flags

Flag Description

-A
<username>:<password>

Used to supply server authentication information. Username and password
are separated by “:”. String sent as base64 encoded.

-c <concurrency
number>

Number of requests to simulate at a time. 1 is set by default. Number
cannot be greater than n value.

-C cookie-name=value Repeatable flag containing cookie information

-d Hides “percentage served within XX[ms] table”

-e Path to .csv file to create. The file contains the results of the benchmark
run broken down into two columns, Percentage and Time in ms.
Recommended over “gnuplot” file.

-g Path to “gnuplot” or TSV file to create. Output of benchmark will be saved
into this file.

-h Displays list of options to use with ab

CHAPTER 1 ■ BENCHMARKING TECHNIQUES

11

Flag Description

-H custom-header Sends customized valid headers along with the request in the form of a
field-value pair

-i Performs a HEAD request instead of the default GET request

-k Turns on Keep-Alive feature. Allows multiple requests to be satisfied with
a single HTTP session. This feature is off by default.

-n requests Total number of requests to perform

-p POST-file Path to file containing data used for an HTTP POST request. Content should
contains key=value pairs separated by &.

-P username:password Base64 encoded string. String contains basic authentication, username,
and password separated by “:”.

-q Hides progress output when performing more than 100 requests

-s Uses an https protocol instead of the default http protocol—not
recommended

-S Hides the median and standard deviation values

-t timelimit When specified, the benchmark test will not last longer than the specified
value. By default there is no time limit.

-v verbosity-level Numerical value: 2 and above will print warnings and info; 3 will print
HTTP response codes; 4 and above will print header information.

-V Displays the version number of the ab tool

-w Prints the results within a HTML table

-x <table-attributes> String representing HTML attributes that will be placed inside the <table>
tag when –w is used

-X proxy[:port] Specifies a Proxy server to use. Proxy port is optional.

-y <tr-attributes> String representing HTML attributes that will be placed inside the <tr> tag
when –w is used

-z <td-attributes> String representing HTML attributes that will be placed inside the <td> tag
when –w is used

CHAPTER 1 ■ BENCHMARKING TECHNIQUES

12

For our goal of optimizing our PHP scripts, we need to zero in on only a handful of
options. These are the following:

• n: Number of requests to simulate

• c: Number of concurrent requests to simulate

• t: Length of time to conduct simulation

We’ve run a simulation using the n flag after initially installing ab. Now let’s use the
other flags and see how our initial benchmarking figures of the www.example.com site hold
up.

Concurrency Tests
Depending on your web application, a user’s time on the application can range anywhere
from a few seconds to a few minutes. The flow of incoming users can fluctuate drastically
from small amounts of traffic to high traffic volumes, due to the awesomeness (if that’s
even a word) of your site or some malicious user conducting a DOS attack. You need to
simulate a real-world traffic volume to answer the question, how will your site hold up to
such traffic?

We’re going to simulate a concurrent test, where ten concurrent requests are made to
the web server at the same time, until 100 requests are made. A caveat when using the c
flag is to have the value used be smaller than the total number of requests to make, n. A
value equal to n will simply request all n requests concurrently. To do so, we execute this
command.

ab –n 100 –c 10 http://www.example.com/

After running the command, you should have a response that looks similar to Figure
1–6.

CHAPTER 1 ■ BENCHMARKING TECHNIQUES

13

Figure 1–6. Concurrent simulation results for www.example.com

With a simulated concurrent request, we can look at the Request per second field and
notice that the web server can support 22.38 requests (users) per second. Analyzing the
Connection Metrics’ Total min and max columns, we notice that the quickest response
was 94 milliseconds, while the slowest satisfied request was 547 milliseconds under the
specified traffic load of ten concurrent requests.

But we know that traffic doesn’t simply last one, two, or three seconds—high volume
traffic can last for minutes, hours, and even days. Let’s run a simulation to test this.

Timed Tests
You’re noticing that each day, close to noon, your web site experiences a spike in traffic
that lasts for ten minutes. How well is your web server performing in this situation? The
next flag you’re going to use is the t flag. The t flag allows you to check how well your web
server performs for any length of time.

CHAPTER 1 ■ BENCHMARKING TECHNIQUES

14

Let’s simulate ten simultaneous user visits to the site over a 20-second interval using
the following command:

ab –c 10 –t 20 http://www.example.com/

The command does not contain the n flag but by default is included and set by ab to a
value of 50,000 when using the t option. In some cases, when using the t option, the max
request of 50,000 can be reached, in which case the simulation will finish.

Once the ab command has completed its simulation, you will have data similar to that
shown in Figure 1–7.

Figure 1–7. Benchmark results for www.example.com/ with ten concurrent users for 20
seconds

The results in this simulation point to a decrease in performance when ten
concurrent users request the web document over a period of 20 seconds. The fastest

CHAPTER 1 ■ BENCHMARKING TECHNIQUES

15

satisfied request took 328 milliseconds, while the longest was 1859 milliseconds (1.8
seconds).

AB Gotchas
There are a few caveats when using ab. If you look back at the command you just
executed, you’ll notice a backward slash at the end of the domain name. The backslash is
required if you are not requesting a specific document within the domain. ab can also be
blocked by some web servers due to the user-agent value it passes to the web server, so
you might receive no data in some cases. As a workaround for the latter, use one of the
available option flags, -H, to supply custom browser headers information within your
request.

To simulate a request by a Chrome browser, you could use the following ab
command:

ab -n 100 -c 5 -H "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWeb
Kit/534.2 (KHTML, like Gecko) Chrome/6.0.447.0 Safari/534.2" http://www.example.com

Siege
The second benchmarking tool we’ll use is Siege. Like ab, Siege allows you to simulate
user traffic to your web-hosted document, but unlike ab, Siege provides you the ability to
run load simulations on a list of URLs you specify within a text file. It also allows you to
have a request sleep before conducting another request, giving the feeling of a user
reading the document before moving onto another document on your web application.

Installing Siege
Installing Siege can be done by either downloading the source code from the official web
site, www.joedog.org/index/siege-home or http://freshmeat.net/projects/siege, or
using a repository such as port or aptitude using one of the commands shown:

sudo port install siege

or

sudo aptitude install siege

By using one of the commands, Siege will automatically install all necessary packages
to run successfully. As of this writing, the latest stable version of Siege is 2.69.

Unfortunately, Windows users will not be able to use Siege without the help of
Cygwin. If you are using Windows, download Cygwin and install the software before
attempting to install and run Siege. Once Cygwin has been installed, use the steps
outlined within this section to install Siege.

CHAPTER 1 ■ BENCHMARKING TECHNIQUES

16

If you decided to install using the source, you might have had trouble downloading
the packages. If you’re having trouble downloading the package, open a terminal window
and type in the following.

wget ftp://ftp.joedog.org/pub/siege/siege-latest.tar.gz

The command will download the package onto your system. Once the package has
been completely downloaded, execute the following commands:

• tar xvfz siege-latest.tar.gz

• cd siege-2.69/

• ./configure

• make

• sudo make install

The commands shown will configure the source, create the install package, and
finally install the package on your system. Once installed, change your directory location
to /usr/local/bin/. You should see the Siege script within this directory.

Now, let’s go ahead and run a simple test on the domain www.example.com to see a
sample result.

Running Siege
Our first example will be a simple load test on www.example.com. Like ab, Siege follows a
specific syntax format.

siege [options] [URL]

Using the Siege format, we will simulate a load test with five concurrent users for ten
seconds on the web site www.example.com. As a quick note, the concept of concurrency
while using Siege is called transactions. So the test we will simulate is having the web
server satisfy five simultaneous transactions at a time for a period of ten seconds using
the Siege command:

siege –c 5 –t10S http://www.example.com/

The command utilizes two option flags: the concurrent flag c as well as the time flag t.
The concurrent flag allows us to test a request by X (in this example, 5) users
simultaneously visiting the site. The number can be any arbitrary number as long as the
system running the test can support such a task. The t flag specifies the time in either
seconds (S), minutes (M), or hours (H), and should not have any spaces between the
number and the letter.

Once the command runs, you should see output similar to Figure 1–8.

CHAPTER 1 ■ BENCHMARKING TECHNIQUES

17

Figure 1–8. Siege response on www.example.com with five concurrent requests for ten seconds

Examining the Results
Like the ab results, the results for the Siege tool are broken down into sections;
specifically, the result set has two sections to work with:

• Individual request details

• Test metrics

Individual Request Details
The individual request details section displays all the requests that the tool created and
ran. Each line represents a unique request and contains three columns, as shown in
Figure 1–9.

Figure 1–9. Siege request data

This output contains a sample of requests from the initial Siege command you ran.
The columns represent the following:

• HTTP response status code

• Total time the request took to complete

• Total amount of data received as a response (excluding header data)

CHAPTER 1 ■ BENCHMARKING TECHNIQUES

18

Test Metrics
The test metrics section contains information on the overall load test. Table 1–4 lists and
describes all the fields, which you can look over. We are interested only in Data
transferred, Transaction rate, Longest transaction, and Shortest transaction. We will
focus on these specific attributes of the results because they are the indicators that
outline how well our optimization has helped our application.

Table 1–4. Siege Test Metrics Section Description

Field Name Description Example Value

Transactions Total number of transactions completed 102 hits

Availability Amount of time the web document was able to be requested 100.00%

Elapsed Time Total time test took to complete 9.71 secs

Data transferred Total size of data in response—does not include header data 0.0.4M

Response time Average response time encountered through the entire test 0.02 secs

Transaction rate Total number of transactions to satisfy per second 10.50 trans/sec

Throughput Total time taken to process data and respond 0.00 MB/sec

Concurrency Concurrency is average number of simultaneous
connections, a number that rises as server performance
decreases.

5

Successful transactions Total number of successful transactions performed
throughout the test

102

Failed transactions Total number of failed transactions encountered throughout
the test

0

Longest transaction Longest period of time taken to satisfy a request 0.03

Shortest transaction Shortest period of time taken to satisfy a request 0.02

The Data transferred section contains the total size of the response each request
received in megabytes. The Transaction rate helps us understand how many concurrent
transactions (simultaneous requests) can be satisfied when the web server is under the
load specified by the command we ran. In this case, the web server can satisfy 10.50
transactions per second when a load of five concurrent requests for a length of ten
seconds is being placed on the web server.

CHAPTER 1 ■ BENCHMARKING TECHNIQUES

19

The Shortest transaction and Longest transaction fields tell us the shortest period
of time (in seconds) taken to satisfy a request and the longest period of time (also in
seconds) taken to satisfy a request.

Siege Option Flags
Siege also contains a wide range of optional flags, which can be accessed by using the
following command if you are ever interested:

siege –h

Testing Many URLs
Let’s focus on two new flags: the “internet” flag (i) and the “file” flag (f).

When using the t and i flags, we allow Siege to randomly select a URL within a text
file and request the web document. Though it does not guarantee that all the URLs within
the text file will be visited, it does guarantee you a realistic test, simulating a user’s
movements through your web site.

To specify the file to use, we use the flag f. By default, the file used by Siege is located
within SIEGE_HOME/etc/urls.txt, but you are allowed to change the path by setting the
flag equal to the location of the text file.

URL Format and File
You’re now going to use the two commands to perform the next test. Create a test file
anywhere on your system. I placed my file under HOME_DIR/urls.txt and placed the three
URLs into the file, following the Siege URL format shown in Listing 1–1. The complete
sample urls.txt file is shown in Listing 1–2.

Listing 1–1. Siege URL Format Structure

[protocol://] [servername.domain.xxx] [:portnumber] [/directory/file]

Listing 1–2. urls.txt File

http://www.example.com/
http://www.example.org/
http://www.example.net/

The three URLs are in three different domains. You normally would not have it in this
fashion but, rather, would have a list of web documents to request within the same
domain.

Now let’s run the test with the following command:

siege –c 5 –t10S –i –f HOME_DIR/urls.txt

As you can see, the output looks very similar to that shown in Figure 1–8, with the
only difference being that the URLs to test were randomly selected from the urls.txt file.

CHAPTER 1 ■ BENCHMARKING TECHNIQUES

20

Now that you’ve run both ab as well as Siege, you might be wondering what affects
these numbers. Let’s now look into that.

Affecting Your Benchmark Figures
There are five major layers that ultimately affect your response times and affect the
benchmarking figures:

• Geographical location and network issues

• Response size

• Code processing

• Browser behavior

• Web server configuration

Geographical Location
The geographical location of your web server is important to the response time the user
experiences. If your web server is located in the United States, yet your users are located
in China, Europe, or Latin America, the distance the request is required to travel to reach
its destination, wait for the web server to fetch the document, and then travel back to the
user located in one of these countries will affect the perceived speed of your web
application.

The issue is about the total number of routers, servers, and in some cases oceans the
request must travel through in order to reach its destination—in this case, your web site.
The more routers/servers your users must go through, the longer the request will take to
reach the web application and the longer the web application’s response will take to
reach the user.

The Traveling Packets
Packets also incur cost in some instances. As stated earlier, when a web server’s response
is sent back to the user in packets, small chunks of manageable data, the user’s system
must check for errors before reconstructing the message. If any of the packets contain
errors, an automatic request is made to the web server requesting all the packets, starting
with the packet the error was found in—which forces you to think about the size of your
data. The smaller the data, the lower the number of packets the server needs to create and
send back to the user.

CHAPTER 1 ■ BENCHMARKING TECHNIQUES

21

Response Size
Let’s examine how the size of the data affects the time it takes for the data to reach its
destination. If our web site renders 1MB of content to the page, that means that the web
server needs to respond to the request by sending 1MB of data to the user—that’s quite a
few packets! Depending on the connection rate of the user, making the request would
take much longer than responding with a much smaller content size.

To illustrate this point, we are going to benchmark a request for a large image and a
request for a small image and compare the response times.

The ab command to fetch a large image is the following:

ab -n 1 http://farm5.static.flickr.com/4011/4225950442_864042b26a_s.jpg

The ab command to fetch a small image is:

ab -n 1 http://farm5.static.flickr.com/4011/4225950442_864042b26a_b.jpg

When we analyze the response information shown in Figures 1–10 and 1–11, three
items stand out: the Document Length, the Total min, and Total max times. A request for
the smaller image took less time to satisfy compared to a request for the larger image, as
shown in both the Total max and Total min values. In other words, the smaller the data
size requested by the user, the faster the response.

Figure 1–10. Response to request for small image

CHAPTER 1 ■ BENCHMARKING TECHNIQUES

22

Figure 1–11. Response to request for large image

In later chapters, you will learn how to reduce the response size by analyzing the
content of your web application to determine what and where you can minimize and
optimize, be it images, JavaScript files, or CSS files.

Code Complexity
The logic a document must execute also affects the response. In our initial testing, this
was not an issue because we were testing a very simple, static, HTML page, but as we add
PHP, a database to interact with, and/or web services to invoke, we inadvertently increase
the time it takes to satisfy a request because each external interaction and PHP process
incurs a cost. In later chapters, you will learn how to reduce the cost incurred by these
executions.

Browser Behavior
Browsers also play a role in the way users perceive the responsiveness of a site. Each
browser has its own method of rendering JavaScript, CSS, and HTML, which can add
milliseconds or even seconds to the total response time the user experiences.

Web Server Setup
Finally, the web server and its configuration can add to the amount of time the request
takes to respond. By default (out of the box), most web servers do not contain the most
optimal settings and require skilled engineers to modify the configuration files and kernel
settings. To test a simple enhancement to a web server, we need to jump ahead of
ourselves a bit and test the web server while the Keep-Alive setting is turned on. We will
get to a much more detailed discussion concerning web server configurations in a later
chapter.

CHAPTER 1 ■ BENCHMARKING TECHNIQUES

23

The Keep-Alive setting, when turned on, allows the web server to open a specific
number of connections, which it can then keep open to satisfy additional incoming
requests. By removing the overhead of demanding the web server to open a connection
for each incoming request and then closing that connection once the request has been
satisfied, we speed up our application and decrease the amount of processing the web
server must do, thereby increasing the number of users we can support.

Let’s capture baseline data we can compare. Run the following command:

ab –c 5 –t 10 http://www.example.com/

Follow it with this command:

ab –c 5 –t 10 –k http://www.example.com/

The command contains the Keep-Alive flag k. This flag allows the web server to keep
the five concurrent connections open and allow other connections to go through them,
thereby reducing the time the web server takes in creating new connections. The side-by-
side comparison is shown in Figures 1–12 and 1–13.

Figure 1–12. Results for ab test of five concurrent periods of ten seconds

Figure 1–13. Results for ab test using Keep-Alive

CHAPTER 1 ■ BENCHMARKING TECHNIQUES

24

Comparing both figures and referencing the Requests per second, Total min, and
Total max, we can clearly see that using Keep-Alive drastically increases the number of
requests per second the web server can satisfy and also increases the response time.

With a solid foundation of the measuring tools we will use to rate our success in
optimizing our code, it’s time to start optimizing for performance.

Summary
In this chapter, the goal was to give you a look at the tools available for conducting
benchmarking tests and point out the important features of each tool used for our
specific purpose of optimization in the following chapters.

The tools you learned to use, install, and analyze data were the Apache Benchmark
and the Siege tools. You also learned about the four major items that affect the
benchmarking figures and, in turn, affect the response time of your user’s request.
Finally, you learned about the HTTP request lifecycle and how knowing what goes on
within the HTTP request can also help you optimize.

C H A P T E R 2

■ ■ ■

25

Improving Client Download

and Rendering Performance

In the previous chapter, you learned how to measure response time and determine how a
web page would respond during different traffic loads, using the tools Apache Benchmark
(ab) and Siege. With these results, you could determine if your web server could serve
sufficient amount of pages while under duress and determine how fast (or slow) the
response would be. If only life were this easy and everyone used a terminal to view a web
page, we could retain these results and skip this chapter. Unfortunately, reality is much
more complicated than that, and it comes in the form of a web browser. You will now
focus on the initial component, and a key component to any online PHP application, the
front-end side of your application. In this chapter, we will focus on the performance of
your application from the user’s browser.

As shown in Figure 2–1, the front end is the first layer of our PHP application, and the
component we will cover in this chapter. We need to optimize this component right
away, since it is the first technology the user will encounter when visiting your
application.

CHAPTER 2 ■ IMPROVING CLIENT DOWNLOAD AND RENDERING PERFORMANCE

26

Figure 2–1. PHP application component stack

In this chapter, we analyze the response from the web server from the perspective of a
web browser. Specifically, we analyze the response a web server sends when a browser
requests a web page using the tools available within the browser, Firefox.

There are several tools we will focus on in this chapter. The first set of tools (Firebug,
YSlow, and Page Speed) will help us analyze the response by providing the following:

• An in-depth look at the response from a web server

• Profile front-end logic within your JavaScript

• An itemized list of resources that the browser will fetch

• The length of time the browser took to fetch and receive the resource

• Suggestions on how to optimize the response

CHAPTER 2 ■ IMPROVING CLIENT DOWNLOAD AND RENDERING PERFORMANCE

27

The second set of tools (YUI Compressor, Closure Compiler, and Smush.it) will help
us optimize the response. Briefly, the tools help us compress both JavaScript and CSS
files, and compress images required within your web page.

In both cases, you will learn how to install the tools and read the results. Once you
have installed the tools, we will apply a few of the suggestions to optimize our response
from the server.

The Importance of Optimizing Responses
Let me start off by saying that this chapter will not require you to know a great deal of
JavaScript (JS), Cascading Style Sheet (CSS), or image optimization. There are many great
JS and CSS optimization books in the market if you’re interested in the topic; you’re here
to optimize PHP! In the context of this book, we will look at what affects rendering time in
the web browser and touch on high-level optimization techniques that you can quickly
apply with great success within your web page. What this chapter will require you to
know is what each of the technologies offer on a web application, where they are placed
within a web page, and to know that a response from a web server may (more than often,
it does) contain references to these resources. That’s it.

So why dedicate a complete chapter to understanding how to measure and optimize
these technologies and the response from a web server? Because without optimizing the
response, the user will continue to feel that your web page is not fast enough.

For example, a user loads a web page where the total size of the page is 3MB. The
response contains 30 un-cacheable large images, bloated CSS, and numerous JavaScript
files that your web page does not require. Regardless of the effort and progress you make
in optimizing your PHP code, the user will continue to download 3MB as a response
before viewing the web page. On a standard DSL cable modem (1 Mbs), a 3MB file will
take one minute. According to a Juniper Research survey, the average length of time a
user waits for a web page to load is up to four seconds. At one minute, that’s 56 seconds
too many and the loss of a user.

CHAPTER 2 ■ IMPROVING CLIENT DOWNLOAD AND RENDERING PERFORMANCE

28

Firebug
As any web developer/designer will tell you, Firebug has saved his or her life more than a
handful of times when creating cross browser applications—I know it has for me. Firebug
is a plug-in widely used by web developers that provides detailed information about a
web page’s DOM, CSS, JavaScript, and, most importantly for response optimization,
resource request information. The plug-in retrieves information about the specific web
page you’re currently on and presents the information within its different tabs.

■ Note Firebug contains many helpful tabs for web designers that are beyond the scope of this book. If you
would like to read more about the tool, go to http://getfirebug.com/ for a complete list of features
Firebug offers.

Installing Firebug
At the time of this writing, the latest version of Firebug was 1.5.X, which could be installed
only on Firefox 3.5–3.6 browsers. Although there is a “light” version (FirebugLite) of the
plug-in, which contains a limited subset of the functionality for other browsers, I
recommend the full version.

To install the plug-in, open your Firefox browser and load either the Firebug home
page or the Mozilla Add-ons Firebug page using the URLs shown here:

• Firebug home page: http://getfirebug.com/

• Mozilla Add-ons Firebug page: https://addons.mozilla.org/en-
US/firefox/addon/1843/

Once the web page loads, click the “Install Firebug for Firefox” or “Add to Firefox”
button, followed by the “Allow” button when prompted by the install window. Once
Firebug is installed, you will need to restart your browser for the plug-in to be used.

Firebug Performance Tabs
Once Firebug has been successfully installed, open Firebug by clicking the bug icon in the
lower right-hand corner of the browser window, as shown in Figure 2–2.

CHAPTER 2 ■ IMPROVING CLIENT DOWNLOAD AND RENDERING PERFORMANCE

29

Figure 2–2. Starting Firebug on Firefox

This will start Firebug and open the console window. As you’ll notice, there are quite
a number of tabs you can use that can provide insight into any web page’s structure, as
well as style. We’re going to focus on two tabs: Console and Net, shown in Figure 2–3.

Figure 2–3. Firebug Console and Net tabs location

CHAPTER 2 ■ IMPROVING CLIENT DOWNLOAD AND RENDERING PERFORMANCE

30

The Console Tab
The Console tab displays all JavaScript log messages, warnings, or errors issued by the
web page you’re currently on. In some cases, web developers use this same window to
trace through their JavaScript by issuing console.log() JavaScript. This tab also provides
a means to profile JavaScript that is executed on the page, as we will soon see.

The JavaScript profiling results are displayed within a table containing nine columns.
A complete list of the columns and full description of each is shown in Table 2–1.

Table 2–1. Firebug JavaScript Profiler Column Descriptions

Column Name Description

Function Function that is invoked

Calls Total number of calls made to the specific function on the page

Percent Percentage of time spent within the function in respect to the collection of functions
invoked

Own Time Amount of time spent within the specified function, in milliseconds

Time Time spent executing function (milliseconds)

Avg Average time spent executing function (milliseconds)—Calls Column/Time Column

Min Minimum time spent executing the function (milliseconds)

Max Maximum time spent executing the function (milliseconds)

File Static file that contains the function called

Along with the information presented in the table, the JavaScript profiler also
contains the total number of function calls made as well as the overall time spent in the
JavaScript, as shown in Figure 2–4.

Running JavaScript Profiler on a Web Page
Let’s profile a simple web page. Load the Google home page, www.google.com, with the
Firebug console open. Once the page completely loads, click Console, Profile, and type
in a word (I used “php”) to invoke the Ajax. Click Profile once more to stop profiling and
display the results. You should see something similar to Figure 2–4.

CHAPTER 2 ■ IMPROVING CLIENT DOWNLOAD AND RENDERING PERFORMANCE

31

Figure 2–4. Firebug JavaScript Profiler results for Google.com

Referencing the Profiler’s results table, we can quickly see that there were 439 calls to
JavaScript functions and the total time executing the collection of functions was 49.09 ms.
We also can see that the function that takes longer to execute is the mb function and 32
percent of the overall time is spent within this function. Since we are not going into detail
on how to optimize JavaScript code within this book, we will stop here and let you know
that you can now walk up to our JavaScript developer with some useful metrics to both
isolate the potential bottleneck and pinpoint where to start optimizing the JavaScript
code.

CHAPTER 2 ■ IMPROVING CLIENT DOWNLOAD AND RENDERING PERFORMANCE

32

The Net Tab
The Net tab takes a deeper look into the network calls a browser makes once a response is
returned by the web server. The Net tab displays the results within a table containing the
items listed in Table 2–2, as well as the following:

• Total number of requests

• Total size of response

• Total length of time taken to receive and render response

• Response Header information

Table 2–2. Firebug Net Tab Column Description

Column Name Description

URL Resource (content) fetched as well as the HTTP request used

Status HTTP Response Code

Domain Domain name resource was fetched from

Size Total size of resource

Timeline Color-coded bar representing when the resource was requested by the browser

Using the Net tab on a web page, we load the Google home page once more and
receive the results shown in Figure 2–5.

Figure 2–5. Net results for Google.com

The table contains an itemized list of calls made by the browser to resources the
browser requires for rendering. Using your mouse, you can hover over each of the
resources in the Timeline column to see a detailed breakdown of what the browser was
doing while retrieving the specific resource, as well as what each color represents. Table
2–3 describes what each of the colors represents.

CHAPTER 2 ■ IMPROVING CLIENT DOWNLOAD AND RENDERING PERFORMANCE

33

Table 2–3. Net Results Description of Colors

Color Description

Purple Browser Waiting for Resource

Grey Receiving Resource

Red Sending Data

Green Connecting

Blue DNS Lookup

Reading the results from top to bottom, we begin with a redirect. I entered the URL
google.com instead of www.google.com and was redirected to www.google.com. The
redirection took 70ms to complete, and while the redirection was occurring, the browser
was waiting for a response and receiving no data. This is the initial row shown in Figure
2–6. After 70ms, the browser was redirected but asked to wait an additional 64ms before
receiving data. Keep in mind that as the browser waits, so is your user waiting on
something to render to the browser’s window. At the 322ms mark, the browser blocks all
actions while the JavaScript executes and 72 ms later begins to receive content, shown in
the third row in Figure 2–6. Skipping a few resources, we look at the last item, and based
on results, we determine that the last resource was fetched 807ms later.

With the information the Net tab provides us, we can begin to not only save on the
number of resources called but also reduce the size of the response, among other things.
Performance engineers have established a few rules we can apply to our web pages to
speed up the rendering process for our users. Let’s use a tool that utilizes these rules to
help us grade how well a web page conforms to these rules within the next section.

YSlow
YSlow is a web page performance analyzing tool created by the Yahoo Performance
group. The tool is a Firebug add-on and must be used within Firefox. Unlike Firebug,
YSlow uses a set of rules, which a web page is graded against. Currently there are two
versions of the rules, the default YSlow v2 rules, which grade a web page on all 22 rules, as
well as the Classic v1 rules, which grade a web page on 13 of the 23 rules.

CHAPTER 2 ■ IMPROVING CLIENT DOWNLOAD AND RENDERING PERFORMANCE

34

YSlow v2 Rulesets
YSlow v2’s 22 web optimization rules cover the following:

• CSS optimization

• Image optimization

• JavaScript optimization

• Server optimization

Using the 22 rules, YSlow calculates a letter grade for each of the rules as well as an
overall letter grade on how well the entire web page is optimized. A letter grade of “A”
indicates that the web page for the most part follows the 22 rules and is optimized for
performance. On the other hand, a letter grade of “F” indicates that the web page is not
optimized.

Along with the rules, YSlow also provides references to online tools that can be used
to optimize CSS, JavaScript, and HTML. We will use some of these tools later in the
chapter.

Since the rule sets are instrumental within the plug-in, let’s review some of them now.

CSS Optimization Rules
Beginning with CSS optimization, a quick snapshot of the rules used follows here:

• Place the CSS styles at the top of the HTML document.

• Avoid certain CSS expressions.

• Minify the CSS files.

By following these three rules, you can both reduce the size of the CSS document by
removing any white spaces (minifying) and speed the rendering process within the
browser when placing the CSS file at the top of the HTML document.

Image Optimization Rules
All web sites these days have images for design purposes, and optimizing these images
can decrease the load time for the web page by following some of these rules that YSlow
grades against:

• Use desired image sizes instead of resizing within HTML using width
and height attributes.

• Create sprites when possible.

CHAPTER 2 ■ IMPROVING CLIENT DOWNLOAD AND RENDERING PERFORMANCE

35

The first rules allow us to reduce the response size by using an image size fitted for the
web page. The second rule reduces the total number of images the browser is required to
fetch by combining the images within a page into, in some cases, a single file.

JavaScript Optimization
As noted in the beginning of this chapter, we can optimize JavaScript. Here are three rules
YSlow uses to check JavaScript:

• Place JavaScript at the bottom of the HTML.

• Minify JavaScript.

• Make JavaScript external.

Once again, we look to optimize the size of the response as well as the method in
which the browser renders the content for the user. By placing the JavaScript at the
bottom of the HTML document, we allow the browser to render the HTML and not
become blocked by the loading and execution of the JavaScript. This was seen in our
previous example while using the Firebug-Net tab within the Google home page.

By minifying the JavaScript, like minification in CSS, we remove white spaces, thereby
reducing the file size and reducing the size of the response.

Server Optimization
YSlow checks the Server Response Headers within this criterion for a few items such as
the following:

• Whether the server utilizes Gzip/bzip2 compression

• Whether DNS lookups are reduced

• Whether ETags are implemented

The rules used were only a sample of the 22 rules used by YSlow. For a complete list of
the rules along with a complete description, let’s install YSlow now and start grading web
pages.

Installing YSlow
YSlow is available only for Firefox on both Windows and Unix systems. As of this writing,
YSlow 1.5.4 was available in stable form on the Mozilla web site,
https://addons.mozilla.org/en-US/firefox/addon/5369/.

Once on the web page, click the “Add to Firefox” button, and once the plug-in installs,
restart your browser. That’s all there is to it.

CHAPTER 2 ■ IMPROVING CLIENT DOWNLOAD AND RENDERING PERFORMANCE

36

Starting YSlow
There are two ways to start YSlow. You can either click the YSlow logo on the bottom
right-hand corner of the browser, as shown in Figure 2–6, or you can open the Firebug
console and click the YSlow tab, as shown in Figure 2–7. Open the YSlow console now,
and let’s grade the Google home page.

Figure 2–6. Opening YSlow using YSlow icon

Figure 2–7. Opening YSlow from Firebug console

CHAPTER 2 ■ IMPROVING CLIENT DOWNLOAD AND RENDERING PERFORMANCE

37

The Grade Tab
We’re going to continue using the Google home page. Load the home page,
www.google.com. Once the Google home page loads, click “Run Test” within the YSlow
tool, and if the Grade tab is not already selected, click it. You will see a screen similar to
that shown in Figure 2–8.

Figure 2–8. Google.com YSlow results

Based on the YSlow tool, Google’s home page has an overall grade of “A” and a
performance score of 94/100.

YSlow contains six result filters, Content, Cookie, CSS, Images, JavaScript, and Server.
The filter tabs are shown right below the page grade, and when clicked, each of these
filters contains rules that describe the type of optimization to be done, why it’s beneficial,
and the overall grade given to the page for the specific filter.

Referring back to the results shown in Figure 2–8, Google received a “D” in
implementing a Content Delivery Network and a “C” in including the “Expires” header
setting, which allows a web page to cache images and content in the browser’s cache for
later use.

CHAPTER 2 ■ IMPROVING CLIENT DOWNLOAD AND RENDERING PERFORMANCE

38

Statistics Tab
The Statistics tab, like the Grade tab, provides a bit more insight into how we can improve
the rendering performance. The Statistics tab contains information regarding cache
usage and provides a very easy way to understand how caching can play an important
role in optimizing rendering. Figure 2–9 contains the statistics results for Google.com.

Figure 2–9. Google statistics results graphs

Note the pair of graphs. One graph describes the total number of resources requested
as well as the total size requested when the cache is empty (the user initially visits the web
page). The second graph on the right displays the same information when the cache is full
(primed cache).

The results are two resource requests fewer, and a 65.4KB reduction in size. With a
primed cache, the browser will download less of the web page from the web server and
fetch the cached content stored locally, thereby increasing the speed at which the web
page loads. We will further look into caching in Chapters 4 and 5, later in the book.

Tools Tab
The next tab is the Tools tab. This tab contains a list of tools that help us optimize the
JavaScript, CSS, and images we use on our web page. We will refer back to this tab later in
the chapter—for now, let’s hold off on it.

While YSlow provides a grade and insight on how well we apply optimization
techniques within a web page, I primarily use it to grade and read information about a
particular performance tweak and how the tweak works. What YSlow lacks is additional
information on where I can save on size and what files can be updated. It is not as

CHAPTER 2 ■ IMPROVING CLIENT DOWNLOAD AND RENDERING PERFORMANCE

39

transparent as one would like it to be, and it acts as a black box of sorts. Let’s take a look
at a similar tool that acts as a white-box tool—Google’s Page Speed.

Page Speed
Google’s Page Speed is also a plug-in for Firefox/Firebug, and like YSlow, Page Speed
provides a score on how well a web page has implemented optimization techniques.
Unlike YSlow, Page Speed provides information on what files it analyzed, how to optimize
the files, where to optimize within your web page, and metrics on how much you can
improve by optimizing.

Installing Page Speed
To install Page Speed, load the URL http://code.google.com/speed/page-
speed/download.html, click “Install Page Speed 1.X”, follow the instructions on the install
window, and once the add-on is installed, restart Firefox.

Page Speed at Work
Start up Page Speed by clicking the Firebug icon in the lower right corner of the browser.
Once the console is open, you will notice two tabs, “Page Speed” and “Page Speed
Activity,” as shown in Figure 2–10.

CHAPTER 2 ■ IMPROVING CLIENT DOWNLOAD AND RENDERING PERFORMANCE

40

Figure 2–10. Page Speed tabs in Firebug

Click “Page Speed”, load the Google.com home page, and then click the “Analyze
Performance” button. You should see results similar to Figure 2–11.

CHAPTER 2 ■ IMPROVING CLIENT DOWNLOAD AND RENDERING PERFORMANCE

41

Figure 2–11. Page Speed results for Google.com

Page Speed scores Google’s home page with an 89/100, and displays a list of rules
used to test the single page. Here is why we use Page Speed as a tool for performance
optimization on the front end. Click “Remove unused CSS”, for example. Page Speed
identifies which CSS elements are not in use and estimates that 3.3KB of the file can be
removed, reducing the file size by 46.5 percent. Again, reducing the size of the response
as well as reducing the number of resources fetched increases the rendering performance
for your user.

CHAPTER 2 ■ IMPROVING CLIENT DOWNLOAD AND RENDERING PERFORMANCE

42

Optimization Tools
With the exception of the Tools tab within YSlow, the tools covered did not provide a
means to implement optimization on JS, CSS, or images on a page. The tools were simply
a means to measure our resources and, in what we’re about to learn, measure how well
we have optimized these resources.

JavaScript Optimization
The first thing every developer needs to understand is that your end user is not bound to
a single browser. A user can use and will use any of the myriad of browsers in the market
today: Internet Explorer (IE) 6/7/8, Firefox, Chrome, Opera, and Safari, just to name a
few.

When it comes to JavaScript, each of the available browsers handles JavaScript using
its own proprietary JavaScript engine. To date, the Chrome 6 browser has implemented
V8, a C++ engine installed directly on Chrome using ECMAScript as outlined in ECMA-
262, third edition, with additional information available on the V8 web site,
http://code.google.com/p/v8/. Safari 4 uses SquirrelFish, a bytecode engine
(http://webkit.org/blog/189/announcing-squirrelfish/), Firefox 3.5+ uses
TraceMonkey (https://wiki.mozilla.org/JavaScript:TraceMonkey), and Opera uses
Carakan.

By having each browser use its own JavaScript engine, you are guaranteed that your
application’s JavaScript performance will perform differently. A user using one browser
might experience a faster load time compared to someone using an alternative browser.
Thankfully for us, there are benchmarks we can run to test which browser has a faster
JavaScript engine.

Using the SunSpider JavaScript benchmark tests,
http://www2.webkit.org/perf/sunspider-0.9/sunspider.html, we can compare each of
the major browsers running a set of JavaScript functions. The test does not run any
special APIs or interaction with the DOM. It tests only core JavaScript functionality such
as cryptography, date, math, string, and regular expression functionality, to name a few.
The results of running the test on five types of browsers—IE 8, Firefox, 3.6, Chrome 7,
Safari 5, and Opera 10—are shown in Figure 2–12.

CHAPTER 2 ■ IMPROVING CLIENT DOWNLOAD AND RENDERING PERFORMANCE

43

0
200
400
600
800

1000
1200
1400
1600

JavaScript Comp.

Ti
m

e
(m

s)

Chrome 7.0.517
Firefox 3.6.11
Opera 10.63
Safari 5.0.2
IE 8

Chrome 7.0.517 78.2 55.2 79.6 4 32.4 52.4 59 13.2 121

Firefox 3.6.11 264.4 94.2 240.8 71.8 94.6 256.6 109 101.8 397

Opera 10.63 85.8 26.8 85.4 9.4 57.4 96.6 73 30.2 241

Safari 5.0.2 97.8 68.6 119.2 12.4 63.8 100.4 97.8 48.2 373

IE 8 903 1052.6 1339 232.2 635.8 645.4 846.6 228.6 1322.2

3d bitops access controlflow crypto date math regexp string

Figure 2–12. SunSpider benchmark results

The graph shown in Figure 2–12 presents the results from the SunSpider benchmark
on five of the major browsers. Based on the results of the five browsers running on a
Windows XP, Pentium 4 3.20Ghz system, Chrome has the fastest JavaScript engine, which
means your JavaScript will perform faster within this browser.

JavaScript Placement
As previously mentioned, the placement of JavaScript is important when your application
is loading on a browser. The reason for the importance of placement of the JavaScript
comes from the way a browser reacts when encountering <script> tags. Each time a
<script> tag is encountered, the browser blocks all further rendering of the page, thereby
placing your users and their ability to see content on hold (Listing 2–1). By moving all
JavaScript toward the bottom of your HTML file, you are allowing the HTML to render
much sooner (Listing 2–2).

Listing 2–1. Poor Placement of a JavaScript File

<html>
<head>
<title>JavaScript Example</title>

<script type="text/javascript">
function addItems()
{

 var items = ['Apache', 'Nginx', 'Lighty'],
 localDoc = document; //local document object
 var node = '',
 i = 0,
 li = '';

 node = localDoc.getElementById('webservers');

CHAPTER 2 ■ IMPROVING CLIENT DOWNLOAD AND RENDERING PERFORMANCE

44

 for(i; i<items.length; i++)
 {
 li = document.createElement('li');
 li.innerHTML = items[i];
 node.appendChild(li);
 }

}
</script>

</head>
<body>
<div id="main">

 <h3>Technology List</h3>
 <ul id="techlist">
 Javascript
 CSS
 Images
 PHP

 <ul id="webservers">

</div>

<script type=”text/javascript”>
addItems();
</script>
</body>
</html>

Listing 2–2. Optimized JavaScript Placement

<html>
<head>
<title>JavaScript Example</title>
</head>
<body>
<div id="main">

 <h3>Technology List</h3>
 <ul id="techlist">
 Javascript
 CSS
 Images
 PHP

 <ul id="webservers">

CHAPTER 2 ■ IMPROVING CLIENT DOWNLOAD AND RENDERING PERFORMANCE

45

</div>

<script type="text/javascript">
function addItems()
{

 var items = ['Apache', 'Nginx', 'Lighty'],
 localDoc = document; //local document object
 var node = '',
 i = 0,
 li = '';

 node = localDoc.getElementById('webservers');
 for(i; i<items.length; i++)
 {
 li = document.createElement('li');
 li.innerHTML = items[i];
 node.appendChild(li);
 }

}

addItems();
</script>
</body>
</html>

The HTML and JavaScript code shown in Listings 2–1 and 2–2 contains a list of web
technologies using the ul and li HTML tags. The HTML also contains an empty div tag,
which is updated by the JavaScript. The JavaScript contains a single function that creates
a DOM element, places each of the web servers inside a li tag, and appends the li to the
empty web server’s ul tag.

Using Firebug, Listings 2–1 and 2–2 were tested, and the results are shown in Figures
2–13 and 2–14.

Figure 2–13. Firebug net results for Listing 2–1

CHAPTER 2 ■ IMPROVING CLIENT DOWNLOAD AND RENDERING PERFORMANCE

46

Figure 2–14. Firebug net results for Listing 2–2

Both Figure 2–13 and Figure 2–14 use no cache and simulate a user’s initial page
request. While Figure 2–13 renders the page in 269ms, the code shown in Listing 2–1
renders the page in 267ms. Also the amount of time the browser blocks rendering is
reduced from 101ms to 86ms using Listing 2–2. The JavaScript presented, as well as the
HTML, is minimal and represents a simplified web page. The improvement will have
better effect in heavier HTML/JavaScript pages you create.

Minification of JavaScript
Reducing the response size increases the performance simply by reducing the length of
time the browser needs to wait for the content payload to arrive. The content payload
contains every resource required by the browser for the web page. The smaller payload,
the faster the download. Minifying reduces the size of a JavaScript file by removing white
spaces from the JavaScript file, removing unused code, removing comments, shrinking
the size of variables, and in some minification tools, removing unnecessary code.

Using the JavaScript shown in Listing 2–3, we can demonstrate the process of
minification. The JavaScript code shown extends the code shown in Listing 2–2 by adding
comments and moving the functionality of the for loop into an additional function. The
JavaScript code is also removed from the HTML and placed into a separate file, listing
2_8.js.

Listing 2–3. Add Additional Items to an Unordered List Using JavaScript

/**
 * Add Items within the items array to a ul
 * html tag
 */
function addItems()
{

 var items = ['Apache', 'Nginx', 'Lighty'],
 node = '',
 i = 0,
 li = '';

 node = document.getElementById('webservers');
 appendList(items, node);

CHAPTER 2 ■ IMPROVING CLIENT DOWNLOAD AND RENDERING PERFORMANCE

47

}

/**
 * Foreach item within the array, create a li node
 * and append to the node provided.
 */
function appendList(items, node)
{
 for(i; i<items.length; i++)
 {
 li = document.createElement('li');
 li.innerHTML = items[i];
 node.appendChild(li);
 }
}

Using one of the available minification tools such as YUI Compressor, we can reduce
the file size from 525bytes to 278bytes. The final minified file can be seen in Listing 2–4.

Listing 2–4. Output File from YUI Compressor

function addItems(){var items=["Apache","Nginx","Lighty"],node="",i=0,li="";�
node=document.getElementById("webservers");appendList(items,node);}function�
 appendList(items,node){for(i;i<items.length;i++){li=document.createElement("li");�
li.innerHTML=items[i];node.appendChild(li);}}

Of course, the resulting minified file size isn’t that great. Going from 573bytes to
255bytes wouldn’t be considered the origins of the bottleneck, but let’s take a real-world
JavaScript file, such as the JavaScript framework JQuery. The JQuery home page offers
two versions of its framework, an unminified version of JQuery with a file size of 155KB
and a minified version with a size of only 24KB, which is 131KB less and an 84.51 percent
reduction in size.

Minification Tools
We will cover two JavaScript minification tools, YUI Compressor by Yahoo! and Closure
Compiler by Google. Using both tools, we will compress the JQuery JavaScript framework.

YUI Compressor
Yahoo’s YUI Compressor can be used from the YSlow add-on for Firebug or can be
downloaded and operated using its Java (.jar) version of the tool. As of this writing, the
latest stable release of the tool, 2.4.2, is available for both Linux and Windows systems,
and can be downloaded from the official YUI Compressor web site,
http://developer.yahoo.com/yui/compressor/. If you do not wish to download the tool,
you can open Firebug, click YSlow, click Tools, and then click “All JS Minified”. The only

CHAPTER 2 ■ IMPROVING CLIENT DOWNLOAD AND RENDERING PERFORMANCE

48

drawback to this approach is the need to copy and paste the results into a file of your
own.

Once the tool has downloaded, unzip its contents. The jar file will be located within
the build directory, build/yuicompressor-2.4.2.jar. To minify a JavaScript file, you can
use the command shown in Listing 2–5.

Listing 2–5. Minifying Using YUI Compressor

java –jar yuicompressor-2.4.2.jar –o js-mini.js js-to-minify.js

The command shown in Listing 2–6 executes the YUI Compressor jar file and utilizes
the output flag –o. The output flag specifies the location of the desired minified file. The
second file presented in Listing 2–6 is the location of the file to minify. In this example,
the file to minify is within the current working directory containing the name js-to-
minify.js. To see a complete list of available options, run the command java –jar
yuicompressor-2.4.2.jar –h.

Using the tool, let’s compress the uncompressed JQuery file from the JQuery web site.
Unminified, the development file is 155KB, running this command:

Listing 2–6. Minifying JQuery Using YUI Compressor

java -jar yuicompressor-2.4.2.jar -o jquery-min.js jquery.js

This produces a new file—jquery-mini.js—with the file size of 78KB.

Closure Compiler
An alternative tool to use is the Google Closure Compiler tool. The tool takes a JavaScript
file as an input and “compiles from JavaScript to better JavaScript,” as the official web
site, http://code.google.com/closure/compiler, points out. The Closure Compiler can be
used in three ways:

• Using a Java jar file that can be downloaded to your local hard drive

• Via the online tool on the official web site

• Using its RESTful APIs

For additional information, you can visit the official web site.
For the following example, you should download the zip file that includes the tool. To

do so, visit the official site, click the “Download the application” link under the “How do I
start?” box on the right, and unpackage the content of the download. Once the content
has been unpacked, make sure you have the .jar file present; we will use it to compress
the JQuery file.

Using the unaltered JQuery file, let’s use Closure Compiler on the file. Running the
command shown in Listing 2–7 yields the file jquery-min-cc.js with a file size of 71KB.

CHAPTER 2 ■ IMPROVING CLIENT DOWNLOAD AND RENDERING PERFORMANCE

49

Listing 2–7. Compressing JQuery with Closure Compiler

java -jar compiler.jar --js jquery.js --js_output_file jquery-min-cc.js

Reduce Resource Requests
Reducing the number of requests to a web server reduces the number of times the
browser must fetch a resource across the Internet. When dealing with JavaScript, this can
be easily achieved by combining JavaScript files that are required by your web page into a
single file. The caveat here is to make sure the files being merged together are merged in
the correct order, where the functionality required by one file is present before the file
that uses the functionality.

Use Server-Side Compression
File compression is another method of reducing the size of JavaScript as well as CSS files.
Using compression on an already minified JavaScript or CSS file can reduce the size even
further. The most widely used compression to date is GZip. Using a 368.6KB file, we
compare the uncompressed, minified, and minified+gzip files and present the results in
Table 2–4.

Table 2–4. Comparative Results of Using Compression

Compression Size

None 368.6KB

Minified 88.2KB

Minified+gzip 30.05KB

The results show the minified+gzip version of the file is much smaller than the other
two files. This topic will be covered in greater length in Chapter 8.

Image Compression
Not all image compressions are alike and should be used to meet specific needs of your
web page. When using images, the type of compression used is important in affecting the
amount of information the browser is required to download before it begins loading the
page. Using the right compression can decrease the size of the response.

We briefly covered this in Chapter 1 by comparing the response size and time using
an ab benchmarking test on a small image and a large image, with the results showing
that a larger image increased the response time due to its size. The general rule when
using the different file types, JPEG, GIF, and PNG, is to use GIF for logos and small icons

CHAPTER 2 ■ IMPROVING CLIENT DOWNLOAD AND RENDERING PERFORMANCE

50

within a page, JPEGs for photographs or high-quality images, and finally PNGs for
everything else. If you’re already using this rule, you can take it one step further by
compressing the images using a web compression tool such as Yahoo’s Smush.it.

Smush.it
Smush.it is a lossless compression tool created by Yahoo! to reduce the file size of your
images even further. The tool is available at www.smushit.com and allows you to either
upload your files or reference them using a list of URLs (Figure 2–15). There is a file size
restriction of 1MB.

Figure 2–15. Smush.it home page

As an introduction to Smush.it, we will use the small 300�300 image shown in Figure
2–16.

Figure 2–16. Original 300�300 image used on a web page

CHAPTER 2 ■ IMPROVING CLIENT DOWNLOAD AND RENDERING PERFORMANCE

51

The original file is a 100KB JPEG. After using Smush.it on the image, the resulting
JPEG was reduced to 98.46KB, a reduction of 1.96 percent, as shown in Figure 2–17.

Figure 2–17. Using Smush.it to compress the original image

The difference is minimal, using a single image in this case. But what if you had a web
site with 15 images? How much could you save by making a small reduction to each
image like this? Using Firebug and YSlow, we can test such a case. Using the CNN home
page, I ran the Smush.it tool from YSlow by opening Firebug, clicking YSlow, clicking the
Tools tab, and finally the “All Smush.it” link. The results are shown in Figure 2–18.

CHAPTER 2 ■ IMPROVING CLIENT DOWNLOAD AND RENDERING PERFORMANCE

52

Figure 2–18. Results of running Smush.it on the CNN home page

The results demonstrate the total reduction in KB, and in this case, the CNN home
page benefits from using Smush.it. There is a 26.4 percent reduction in size for the
complete set of images on the home page, which equals 91.59KB removed from the
response.

With both guidelines and tools to measure how well we are optimizing our web page
on the front end, and tools to implement optimization, we can now move one layer down
and look at the PHP code that powers the web page user’s view by using profiling tools for
PHP and applying the latest best practices in the next chapter.

Summary
This chapter introduced three additional performance-measuring tools: Firebug, YSlow,
and Page Speed. Using the three tools, you learned how to open each of the tools using
the quick-open icons on Firefox and within Firebug. You learned how to begin and read
the results of the profiling tools while using a small JavaScript example as well as the
JavaScript code used within the Google home page. Using Firebug’s Net tab, you also
learned how to read its output while understanding the behavior of a browser when

CHAPTER 2 ■ IMPROVING CLIENT DOWNLOAD AND RENDERING PERFORMANCE

53

encountering a <script> tag. You also learned how to grade your web page’s performance
using the YSlow 22–rule grading criteria, and Page Speed’s criteria.

With the tools for measuring how well your web page is performing under your belt,
you also learned how to implement performance tweaks on JavaScript and images. The
performance tweaks covered were minification of JavaScript using the tools YUI
Compressor and Google’s Closure Compiler. You learned about the benefits of
combining JavaScript files into a single file to reduce resource requests, compared server-
side compressions using Gzip, and used the image compression tool Smush.it to
compress both an example image as well as the images from CNN’s home page to
understand how much we reduce the response size using such a tool.

C H A P T E R 3

■ ■ ■

55

PHP Code Optimization

Opcode caching, data caching using Memcached, and optimizing your database are all
great optimization tricks you will learn once you’re done with this book. But before
reaching those chapters, we need to learn how to apply the best coding practices.
Knowing when to use a specific PHP function over another and making small incremental
changes in your code can change the performance of your PHP code.

In previous chapters, we focused on the tools to optimize the rendering of content
and reduce the amount of data the user was required to download, using Firebug, Page
Speed, and YSlow. In many cases, optimizing the response and the content returned to
the user is enough to make most of your users happy. More than often, though, you want
to go the extra mile and optimize the PHP code itself.

I’m going to sound cliché for a bit and reference an old Chinese proverb. “Give a man
a fish and you feed him for a day. Teach a man to fish and you feed him for a lifetime.” I
raise the proverb because that’s my intention in this chapter. Yes, we will review and
apply the latest best practices, but I will go a step further and teach you how to become a
PHP optimization fisherman! You will learn why specific function calls are faster than
others by installing and analyzing results from the Vulcan Logic Dumper (VLD). You will
learn how to install and use strace to review the system-level operations a PHP script
invokes when it’s called from the Apache web server. Finally, you will be able to spot
bottlenecks within your code using the results from Xdebug, a profiling tool that you will
learn how to install and use in this chapter.

PHP Best Practices
Recently I’ve seen many great applications miss the mark in speed by not applying some
of the basic best practices you’re going to learn in this chapter. Some of these techniques
have been tried and tested, and have withstood the test of time for years. So, yes, I’m
surprised when they are not applied.

To get a better understanding as to how long one of the best practices has been
around, Rasmus Lerdof (yes, the creator of PHP) to this day includes a complete section
on using the PHP function require instead of require_once, which he initially covered in
2004, within his PHP optimization talks. Yet to this day, very few applications implement
it. But you’re in luck because we’re going to cover it.

CHAPTER 3 ■ PHP CODE OPTIMIZATION

56

■ Tip For a list of PHP related performance notes, please see http://talks.php.net/index.php/PHP.

We’re going to cover the following best optimization practices using PHP 5.3.2. Since
PHP has gone through many performance-tuning enhancements, older versions of PHP
will benefit from these coding practices.

• Using require vs. require_once

• Calculating the length of a for loop in advance

• Comparing looping for vs. foreach vs. while to access array elements

• Accessing files using file_get_contents

There are other optimization techniques, such as using a comma instead of a period
to concatenate strings, as shown in Listing 3–1, or using double quotes instead of a single
quote when the string contains a variable, as shown in Listing 3–2. But the performance
gains to these are extremely minimal, so we will cover them briefly here only as an
example.

Listing 3–1. Using a Comma to Concatenate a String

<?php
echo "Hi "."there. "."how are "."you?"; //Slow
echo "Hi ","there. ","how are ","you?"; //Faster…slightly

Listing 3–2. Using Double Quotes When a String Contains a Variable

<?php
$name = "Snoopy Padilla";
echo 'Hi there, '.$name; //Slower
echo "Hi there, $name"; //Faster..slightly

Once again, these options should not be the primary focus when optimizing your PHP
code.

Focusing on our PHP performance roadmap, PHP best practices are the initial
module within our PHP layer, as shown in Figure 3–1.

CHAPTER 3 ■ PHP CODE OPTIMIZATION

57

Figure 3–1. PHP performance roadmap

The PHP layer contains other modules such as variable/data caching and Opcode
caching, which we’ll cover in other chapters, but we will focus on the small changes we
can make to our PHP code in this chapter.

Before we begin, you need to learn about the PHP economy and the trade-off
between the cost of calling a function and its response time.

The PHP Economy
Depending on your PHP script, you may have many calls to internal PHP functions,
customized functions, and even instantiating and calling methods within objects. Within
the PHP economy, each of these function calls incur a cost, where some function calls are
more expensive to call and execute than others. When the script is ready for use in a
production setting, you’re in essence ready to pay off your cost with the “currency,”
response time.

CHAPTER 3 ■ PHP CODE OPTIMIZATION

58

The higher the cost incurred (many function calls), the higher your response time will
be. In a nutshell, the more function calls you make, the slower your application will be.

require vs. require_once
The age-old question, to use require or require_once? After this section, you’ll know
which one to use based on its performance.

require and require_once are both PHP functions that allow developers to import
external PHP files for use within a specific script. Depending on the complexity of the
application, you could make a single or several require_once/require calls. By using
require instead of require_once, you can increase the performance of your application.

require is faster than require_once due to the high number of operational stat calls
made when importing the PHP script. If the file you requested is located within the
directory /var/shared/htdocs/myapp/models/MyModels/ClassA.php, the operating system
will make a stat call within each of the directories before it reaches ClassA.php. In this
example, that is a total of six stat calls. While require also issues stat calls, they are fewer
in number. So, the fewer function calls there are, the faster your code becomes.

We’re going to use the code shown in Listing 3–3 to compare both approaches. Listing
3–3 uses four files that are required and imported using the require_once PHP function.

Listing 3–3. Base that Loads Four External Class Files

<?php
require_once("ClassA.php");
require_once("ClassB.php");
require_once("ClassC.php");
require_once("ClassD.php");

echo "Only testing require_once.";

The required classes are shown in Listing 3–4 and contain no additional functionality
other than declaring themselves.

Listing 3–4. Classes A–D

<?php
class A
{
}

class B
{
}

class C
{
}

class D

CHAPTER 3 ■ PHP CODE OPTIMIZATION

59

{
}

Each of the empty classes helps us simulate a PHP script that requires additional

external PHP files to use within the main script. By excluding any additional function
calls, we focus on the loading of the files using require_once().

Place each of the classes into separate files, ClassA.php, ClassB.php, ClassC.php,
ClassD.php, and save the files next to the code shown in Listing 3–3. Restart your web
server, and using the ab tool covered in Chapter 1, run the ab command shown in Listing
3–5.

Listing 3–5. ab Command to Test require_once and require Functions

ab –c 10 –n 100000 localhost/index.php

The ab command shown in Listing 3–5 simulates 100,000 requests with five
concurrent requests at a single time. Once the command terminates, you should see
results similar to those shown in Figure 3–2.

Figure 3–2. ab –n 100000 localhost/index.php results

Using require_once() along with the ab command, we see the resulting data indicates
a response time of 99ms. Our results also indicate that the script can support 100.63
requests/second.

CHAPTER 3 ■ PHP CODE OPTIMIZATION

60

Let’s now change the require_once() function calls to require(), as shown in Listing
3–6. Restart the web server, and re-run the ab command shown in Listing 3–5. Your
results should look similar to Listing 3–6.

Listing 3–6. Optimized Code Using require

<?php
require("ClassA.php");
require("ClassB.php");
require("ClassC.php");
require("ClassD.php");

echo "Only testing require_once.";

Referring to the new results shown in Figure 3–3, we have an increase in the number
of requests per second, from 100.63 to 105.44. The results also indicate that our code
decreased the response time, from the initial 99.37ms to 94.84ms, a decrease of 5ms.

Figure 3–3. ab results using require function

Calculating Loop Length in Advance
Calculating the length of the loop before we arrive at the loop is another optimization
technique we can use.

CHAPTER 3 ■ PHP CODE OPTIMIZATION

61

The code shown in Listing 3–7 is a simple for loop that will loop through the array,
$items, and calculate a numerical value ten times. To identify where we can optimize,
and in this case make fewer function calls, you need to analyze what the code is doing
step-by-step.

Listing 3–7. Un-optimized for Loop

<?php
$items = array(1,2,3,4,5,6,7,8,9,10);
for($i=0; $i<count($items); $i++)
{
 $x = 10031981 * $i;
}

Using the code shown in Listing 3–7 and focusing on the for loop logic, PHP executes
the for loop in the following way:

1. Initialize $i to 0, start our loop at index 0, check the length of the array
using count(), increment $i by 1.

2. Once iteration 0 is complete, start at index 1, check the length of the
array using count(), increment $i by 1.

3. Once iteration 1 is complete, start at index 2, check the length of the
array using count(), increment $i by 1.

The code continues until we reach the end of the elements within the array. The
problem lies when the iteration begins anew. The function call, count(), must be called to
determine the length of the array each time the iteration begins on a new index. In the
code shown in Listing 3–7, count() is called ten times, nine times too many. These are
unnecessary calls that can be replaced with a single call to count() before we reach the
for loop. The updated, optimized code is shown in Listing 3–8.

Listing 3–8. Optimized for Loop

<?php
$items = array(1,2,3,4,5,6,7,8,9,10);
$count = count($items);

for($i=0; $i<$count; $i++)
{
 $x = 10031981 * $i;
}

In Listing 3–8, the code produces the same outcome as Listing 3–7, yet the number of
function calls made is reduced from ten to one. The fewer calls made, the faster your PHP
script becomes.

Using the PHP function microtime(), we can determine exactly how much faster
using nine fewer count() function calls is. Using the code shown in Listing 3–7, we add an
additional for loop to execute the code 100,000 times, which represents 100,000 users

CHAPTER 3 ■ PHP CODE OPTIMIZATION

62

requesting the PHP script. The changes introduced to the code shown in Listing 3–7 are
shown in bold in Listing 3–9.

Listing 3–9. Un-optimized for Loop Benchmarking–Ready Code

<?php
$items = array(1,2,3,4,5,6,7,8,9,10);

$start = microtime();
for($x=0; $x<100000; $x++){

 for($i=0; $i<count($items); $i++)
 {
 $j = 100381*$i;
 }

}
echo microtime()-$start;

After executing the code ten times and taking the average of the results, the total time
to execute the for loop 100,000 times was 0.046ms.

Restart your web server and now test the code shown in Listing 3–10, which contains
the optimized for loop.

Listing 3–10. Optimized for Loop Benchmarking–Ready Code

<?php
$items = array(1,2,3,4,5,6,7,8,9,10);
$count = count($items);

$start = microtime();
for($x=0; $x<100000; $x++){

 for($i=0; $i<$count; $i++)
 {
 $j = 100381*$items[$i];
 }

}
echo microtime()-$start;

Again we’re going to run the code ten times to fetch the average. Using this code, we
see our average execution time of the for loop is .0095ms, a change of .036ms. The
optimized code is faster by .036ms.

CHAPTER 3 ■ PHP CODE OPTIMIZATION

63

Accessing Array Elements Using foreach vs. for vs. while
The method in which we access data from an array can be optimized by using a foreach
loop instead of either a while or for loop. Optimizing how we access data is important
due to the number of web applications that pull data from a database or an XML file and
must loop through each record to display data to the user. To demonstrate the
optimization, we will use the code shown in Listing 3–11.

Listing 3–11. Using foreach on Code Shown in Listing 3–8

<?php
$items = array_fill(0, 100000, '12345678910');

$start = microtime();
reset($items);
foreach($items as $item)
{
 $x = $item;
}
echo microtime()-$start;

Listing 3–11 creates an array, $items, containing 100,000 elements, with each element
containing a 155-byte string representing your typical data from a database. The code
then sets the start time and uses a foreach loop to access each element within the array,
and finally we display the time, in milliseconds. The code shown in Listing 3–11 is
executed ten consecutive times, and after calculating the average of each execution time,
the result is 0.0078ms.

Using Listing 3–11 as our foundation, we need to modify the code to use a while loop
instead of a foreach loop. The code shown in boldface in Listing 3–12 indicates our
modifications to accomplish this.

Listing 3–12. Using while Loop in Listing 3–11 Code

<?php
$items = array_fill(0, 100000, '12345678910');

$start = microtime();
reset($items);
$i=0;
while($i<100000)
{
 $x = $items[$i];
 $i++;
}
echo microtime()-$start;

CHAPTER 3 ■ PHP CODE OPTIMIZATION

64

Once again, after restarting our web server and running the code ten times, we
calculate the average execution time. Using a while loop to access individual elements of
the array on average took .0099ms.

Our final loop comparison is the for loop. Using the code shown in Listing 3–13, we
follow the same process in benchmarking the loop by restarting our web server, executing
the code ten times, and taking the average results.

Listing 3–13. Using a for Loop in Listing 3–11

<?php
$items = array_fill(0, 100000, '12345678910');

$start = microtime();
reset($items);
for($i=0; $i<100000; $i++)
{
 $j = $items[$i];
}
echo microtime()-$start;

The results for all three loop benchmarks are shown in Table 3–1. Using the results
shown in the table, accessing array elements using a foreach loop proves to be the best
approach.

Table 3–1. PHP Loop Average Execution Times for 100,000-Element Array

Loop Type Average Execution Time

foreach .0078ms

while .0099ms

for .0105ms

File Access
PHP contains four methods to fetch data from a file: fread(), file_get_contents(),
file(), and readfile(). file_get_contents(), readfile(), and fread() return data as a
string, while file() returns the data within the file as an array, where each line within the
file is an element in the array. Though all four can read the file contents, only
file_get_contents places the file in memory for faster read/write access, called memory
mapping. Using memory mapping, file_get_contents boosts its performance when
reading small files on systems that support it.

We will compare both methods, fread() as well as file_get_contents(), on two
scenarios, returning data as a string on a small 3.9KB file, and then returning the data
from a large 2.3MB file (Listing 3–14).

CHAPTER 3 ■ PHP CODE OPTIMIZATION

65

Listing 3–14. Fetching Content from a 3.9KB File Using fread()—Accessing 100000 Times

<?php
$fileToFetch = "<YOUR_3.9KB_FILE_STORED_LOCALLY>";

//Access the file 100000 times
$start = microtime();

for($i=0; $i<100000; $i++)
{
 $fileContent = file_get_contents($fileToFetch);
}

$end = microtime()-$start;
echo $end.'ms
';

Listing 3–14 sets the variable $fileToFetch to a small file we are using for this test
containing 3.9KB of data stored locally. Replace the <YOUR_3.9KB_FILE_STORED_LOCALLY>
to the path of your locally stored file if you plan to run the code yourself. The code sets
our start time using microtime() and uses a for loop to run the code, which uses
file_get_contents() to access the file and read its content 100,000 times. Finally we
calculate the execution time and display it on screen.

Once the PHP code is done executing ten times, we calculate the average execution
using each run’s result. Using file_get_contents had an average execution time of
0.3730ms.

Let’s now modify the code shown in Listing 3–14 to use fopen as well as fread() to
access and read the data from the same 3.9KB file. The updated code is shown in Listing
3–15.

Listing 3–15. Fetching Content from a 3.9KB File Using file_get_contents()—Accessing
100,000 Times

<?php
$fileToFetch = "<YOUR_3.9KB_FILE_STORED_LOCALLY>";

//Access the file 100000 times
$start = microtime();

for($i=0; $i<100000; $i++)
{

 $fileHandler = fopen($fileToFetch, 'r');
 $fileContent = fread($fileHandler, filesize($fileToFetch));

}

$end = microtime()-$start;
echo $end.'ms
';

CHAPTER 3 ■ PHP CODE OPTIMIZATION

66

The code shown in boldface contains two lines that use the fopen() method to create
a read file handler, which is then used by the next line in the method fread(). Running
this code ten times and calculating its average execution time results in an execution time
of 0.1108ms. Comparing fread() with file_get_contents(), using fread() to read data is
.2622ms faster or a 70 percent performance improvement.

Comparing the same functions on a large 2.3MB file using the codes shown in Listings
3–16 and 3–17, we see that file_get_contents has the better performance, with an
average execution time of 0.012ms, while fread() has an average execution time of
0.019ms. It is a small benefit, but every bit counts. Table 3–2 compares the average
execution times of the four methods.

Listing 3–16. Fetching Content from a 2.3MB File—Accessing Only Once

<?php
$fileToFetch = "<YOUR_2.3MB_FILE_STORED_LOCALLY>";

$start = microtime();

$fileHandler = fopen($fileToFetch, 'r');
$fileContent = fread($fileHandler, filesize($fileToFetch));

$end = microtime()-$start;
echo $end.'ms
';

Listing 3–17. Fetching Content from a 2.3MB File—Accessing Only Once

<?php
$fileToFetch = "<YOUR_2.3MB_FILE_STORED_LOCALLY>";

$start = microtime();

$fileContent = file_get_contents($fileToFetch);

$end = microtime()-$start;
echo $end.'ms
';

Table 3–2. Average Execution Time Results for Different File Types

File Read Type Average Execution Time Type of File

file_get_contents() 0.3730ms Small

fread() 0.1108ms Small

file_get_contents() 0.012ms Large

fread() 0.019ms Large

CHAPTER 3 ■ PHP CODE OPTIMIZATION

67

Faster Access to Object Properties
This is one of the few topics in this chapter that I was reluctant to write about because it
goes against proper object-oriented coding practice, encapsulation. Since the performance
gain can reach up to 100 percent, I will let you decide whether to implement it.

With PHP 5.0 and above, you were given the ability to use classes, and as you created
complicated objects using a class, you also created class properties, such as the code
shown in Listing 3–18.

Listing 3–18. Benchmarking Person Class Using Encapsulation

<?php
class Person
{
 private $_gender = NULL;
 private $_age = NULL;

 public function getGender()
 {
 return $this->_gender;
 }

 public function getAge()
 {
 return $this->_age;
 }

 public function setGender($gender)
 {
 $this->_gender = $gender;
 }

 public function setAge($age)
 {
 $this->_age = $age;
 }

}

$personObj = new Person();

$start = microtime();
for($i=0; $i<100000; $i++)
{
 $personObj->getGender();
}
echo microtime()-$start.'ms';

CHAPTER 3 ■ PHP CODE OPTIMIZATION

68

As Listing 3–18 demonstrates, the class, Person, contains the class properties, age as
well as gender. It also contains two methods, an accessor and a mutator (getter and
setter). This class design incorporates encapsulation when we create the methods and set
the properties to private. The code also contains our test. The code runs a for loop
100,000 times to instantiate a Person object and access the gender property using its
accessor, getGender().

Running the code shown in Listing 3–18 ten times produces the average execution
time of 0.0443ms. Let’s remove encapsulation now and retest using the code shown in
Listing 3–19.

Listing 3–19. Benchmarking Person Class While Accessing Class Property Directly

<?php
class Person
{

 public $_gender = NULL;
 public $_age = NULL;

}

$personObj = new Person();

$start = microtime();
for($i=0; $i<100000; $i++)
{
 //Average: 0.0205617ms
 $personObj->_gender;
}

echo microtime()-$start.'ms';

The average execution time for the code shown in Listing 3–19 is 0.0205ms, 0.0238ms
faster or a 53 percent performance improvement without using encapsulation.

Benchmarking code while applying different functions is a good way to test which
function works best for you. The only downside is we still have yet to know why one
function is faster than another. To gain this insight, we need to look into the Opcode and
analyze what functions are executing and how many operations have been called. To
accomplish this, we introduce VLD and strace.

Looking Under the Hood Using VLD, strace, and Xdebug
You’re now at the “learn how to fish” stage. In this section, we look at the Opcode each
PHP script is compiled down to before it is executed by your web server. It is the
operations within the Opcode that each function in your PHP script is translated into in
order for your system to properly execute the script—operations such as ECHO,
CONCAT, ADD_VAR, ASSIGN, just to name a few. In the next chapter, we will go into
detail on how PHP becomes Opcode, but for now, let’s just focus on analyzing it. Using

CHAPTER 3 ■ PHP CODE OPTIMIZATION

69

the Vulcan Logic Dumper (a.k.a Disassembler), we will analyze different functions’
behavior at the system level.

Reviewing Opcode Functions with VLD
Written by Derick Rethans and available only for Unix-based systems, VLD is a plug-in for
the Zend Engine that displays all Opcodes a script uses when executed. VLD allows us to
look under the hood as to what each function is doing and which system calls it’s making,
and most importantly it allows us to compare what may seem like a similar PHP function
on the surface, lighter vs. heavier function calls.

Installing VLD
Many of the tools covered in this chapter will require you to have PECL installed. If you
haven’t installed PECL yet, install it—it will save you time and effort in setting up your
tools. If you have PECL, let’s install the beta version of the tool, vld-0.10.1 as of this
writing, by executing the PECL command shown in Listing 3–20.

Listing 3–20. Installing VLD Using PECL

pecl install channel://pecl.php.net/vld-0.10.1

Once VLD is installed, you’ll need to add the vld.so file to your php.ini file using the
string extension=vld.so. Open your php.ini file, add in the string, and save the changes.

To become accustomed to the tool, we’re going use the simple optimization
technique we briefly touched on in the beginning of this chapter, using a ‘,’ instead of a ‘.’
when concatenating a string. We will compare the system calls made between the code
shown in Listing 3–21 and Listing 3–22, where both code snippets use echo to print
identical strings using not-so-identical concatenation values.

Listing 3–21. Echo Using “.”

<?php
echo "Hello"." "."World!";

Listing 3–22. Echo Using “,”

<?php
echo "Hello"," ","World!";

Save the code shown in Listing 3–21 to a file, echo1.php, and save the code shown in
Listing 3–22 to a file named echo2.php. Run VLD using the following commands inside a
shell-terminal:

php –dvld.active=1 echo1.php
php –dvld.active=1 echo2.php

You should see outputs similar to those shown in Figure 3–4 as well as Figure 3–5 after
executing each of the commands.

CHAPTER 3 ■ PHP CODE OPTIMIZATION

70

Figure 3–4. echo1.php VLD output

Figure 3–4 contains information about the Opcode executed each time the PHP script
shown in Listing 3–21 runs. The output contains the number of ops (operations)
performed, output of all variables set (compiled vars), and a table containing the line
number within your PHP code where the operation was executed, the number of times
the operation was executed (#), and the name of the operation executed (op).

By referencing the output provided by VLD, we focus on a number of key items,
number of ops, as well as the execution sequence. The number of ops specifies the total
number of operations executed at the Opcode level while running. In this example, the
total number of operations executed is five. Moving down the results and referencing the
table, we can see the complete list of system-level functions executed. To echo “Hello
World!” took two CONCAT (concatenation calls) and one ECHO call. Let’s now review the
VLD output for the code that uses commas to concatenate the string. The output is shown
in Figure 3–5.

Figure 3–5. echo2.php VLD output—using commas to concatenate string

Referring to the number of ops in Figure 3–5, we see the same number of operation
calls as Figure 3–4. The difference is the use of only ECHO operations instead of CONCAT
operations. Figure 3–5 contains only ECHO calls that are less expensive than CONCAT
calls.

CHAPTER 3 ■ PHP CODE OPTIMIZATION

71

VLD can be used to dump the Opcode of your PHP script regardless of how large or
small your script is. Using the code shown in Listing 3–11, the Opcode generated is shown
in Figure 3–6.

Figure 3–6. Opcode for PHP code shown in Listing 3–11

Using strace for C-level Tracing
Another tool we will use is strace. strace allows you to trace the C-level functions called
during an Apache request, including PHP-level processes.

To test the tool, you’re going to use one of the sample optimization techniques
already covered, using require instead of require_once or include_once. In the following
section, you’ll learn how to install strace on your system.

Installing strace
One of the requirements to use strace is a Unix-based system and having the rights to
restart Apache at your whim. I will assume you already have a development Apache
installation, so we’re going to install strace now. You have three options to install strace:

• Downloading the source from
http://sourceforge.net/projects/strace and building the files
directly on your system

CHAPTER 3 ■ PHP CODE OPTIMIZATION

72

• Installing using apt-get: apt-get install strace

• Installing using yum: yum install strace

Using the second and third options is recommended for its easy installation process.
Once you have strace installed, let’s hook strace to Apache. You must start Apache by
executing this command:

apache2clt –X –k [restart OR start].

This will start Apache in the debug mode, as well as start Apache using a single
process instead of creating children.

Once Apache has started, you will need to bind strace to the Apache process by
locating the Apache process ID. To do this, open a shell window and execute this
command:

ps auxw | grep www-data

Finally, using the following command, you can bind strace to Apache. Once these
steps are done, keep the terminal window open and visible. While running the next steps,
the window will display a steady stream of strace output while a HTTP request is satisfied
by Apache.

strace –p <processeID>

To get accustomed to using strace, load the URL http://<your dev environment
running strace>/<code with require_once_usage>.php. You should see output similar to
that shown in Figure 3–7.

Figure 3–7. Snippet of strace output for require_once usage

The snippet shown in Figure 3–7 outlines the C-level operations made by our PHP
script. Focusing on a single require_once method call, we identify the lines 2, 3, 4 shown
in Figure 3–7. These lines highlight the C-level operations executed to satisfy a
require_once call. The two lstat calls import ClassA.php into your PHP file.

CHAPTER 3 ■ PHP CODE OPTIMIZATION

73

Now load the URL containing the code shown in Listing 3–6: http://<your dev
environment running strace>/<code with require_usage>.php. Once again you should
see a response similar to that shown in Figure 3–8.

Figure 3–8. Snippet of strace output for require usage

Figure 3–8 contains a snippet of the C-level operations made to include ClassA.php,
and like Figure 3–7, much of the output is identical with the exception of one missing
lstat operation. Based on the strace output, the additional lstat call for
/var/www/ClassA.php will not be called there by speeding up the inclusion of the file and
increasing performance to your PHP script.

Identifying Bottlenecks
Bottlenecks should be one of the key concerns when writing code. They are layers within
your application that take up the most resources in both time and processing relative to
the rest of your application. More than often, web applications tend to have their
bottlenecks within the database connection layer, connecting to web services, or I/O
functions such as opening XML files stored locally. In this section, we will use a tool that
helps us identify these bottlenecks within our code.

Xdebug 2: PHP Debugging Tool
Xdebug is a debugger and profiler tool for PHP. Along with additional debugging
information, Xdebug provides developers additional information such as the following:

CHAPTER 3 ■ PHP CODE OPTIMIZATION

74

• Memory consumption of your PHP script

• Total number of calls made to a function

• Total time spent within the function

• Complete stack trace for a function

Now let’s install the tool, run it on a number of examples, and spot bottlenecks within
our code.

Installing Xdebug
There are two methods of installing Xdebug on your system—using PECL or building
from the source. I will cover the PECL method of installing the tool since it is the much
faster approach and the one with fewer pitfalls. To continue you will need PHP 5.0 and
above and PECL installed. With both items installed, run the command shown in Listing
3–23.

Listing 3–23. Installing Xdebug Using PECL

pecl install xdebug

Once you install Xdebug, you need a way to allow PHP to profile your script each time
it runs. There are two methods to do this.

• Updating the php.ini file

• Adding the declaration at the beginning of the PHP script

We will cover both—the first for users with complete access to their PHP
environment, and the latter for users who do not have access to the php.ini file.

Updating the PHP.ini File
To automatically run Xdebug, you’ll need to turn on the extension. Open the php.ini file
and add the property zend_extension_ts, shown in Listing 3–24. The text contains the
absolute path to the Xdebug thread-safe extension file required to load.

Listing 3–24. Installing the Xdebug Extension

[PHP_Xdebug]
zend_extension_ts="FULL PATH TO php_xdebug file"

Additionally, you will also need to specify five Xdebug specific properties described in
Table 3–3 within your php.ini file before using Xdebug.

CHAPTER 3 ■ PHP CODE OPTIMIZATION

75

Table 3–3. Xdebug Properties

Xdebug Property Description

xdebug.profiler_enabled Turns on (1) or off (0) the profiler.

xdebug.profiler_output_dir Directory to place cachegrind files. Default set to /tmp.

xdebug.profiler_append Overwrite files (1) when new request is made on PHP script. By
default this setting is turned off (0).

xdebug.profiler_output_name File name used.

xdebug.profiler_enable_triggerEnable profiler to start using a GET/POST or COOKIE variable,
XDEBUG_PROFILE. Xdebug.profiler_enable must be set to 0.

Copy the data shown in Listing 3–24 and Listing 3–25 into your PHP.ini file and restart
your web server.

Listing 3–25. PHP.ini Properties

xdebug.profiler_enable = 1
xdebug.profiler_enable_trigger = 1
xdebug.profiler_output_dir="ABSOLUTE PATH TO XDEBUG LOGS DIRECTORY"
xdebug.profiler_append=On
xdebug.profiler_output_name = "cachegrind"

Validating Installation
Once your environment is set up, check if the extension is installed by creating a
phpinfo() file. If the extension was successfully installed, you should see the Xdebug
information shown in Figure 3–9.

Figure 3–9. phpinfo print-out with Xdebug installed

Running Our First Profiler
You won’t get a sense of how powerful Xdebug is until you apply it to some PHP code.
We’re going to profile a small snippet of code to become familiar with the process of
running Xdebug, as well as analyze some of its output (Listing 3–26).

CHAPTER 3 ■ PHP CODE OPTIMIZATION

76

Listing 3–26. Example PHP Code

<?php
function bar($items)
 {
 for($i=0; $i<count($items); $i++)
 {
 if(isInt($items[$i]))
 {
 echo 10*20*$items[$i];
 }
 }
 }

function isInt($value)
{
 if(is_int($value))
 {
 return true;
 }
 else
 {
 return false;
 }
}

$ints = array(1,2,"E",4,5,6,"T",8,9,"o");
$ints2 = array(0,1,2,3,4,5,6,7,8,9);

bar($ints);
bar($ints2);

echo "Done!";

The code shown in Listing 3–26 contains two functions, bar() and isInt(). The
function bar() accepts an array as a parameter, checks if the value is an integer by calling
the isInt() function, and if the value is an int, we multiply the value with 10 and 20. We
do this 20 times, which is also the total number of elements contained within the arrays,
$ints and $ints2.

Run the foregoing code with the Xdebug settings turned on, and then check the
directory used within the xdebug.profiler_output_dir property. You should have a single
file present.

Open the file you see in the directory. You will see a file similar to that shown in
Listing 3–27. The files are cachegrind output files, and as you can tell, they seem a bit
cryptic. We need a tool that takes the output file and gives us legible information.

CHAPTER 3 ■ PHP CODE OPTIMIZATION

77

Listing 3–27. Example of the Xdebug Profiling Output File

version: 0.9.6
cmd: C:\Program Files\Apache Software Foundation\Apache2.2\htdocs\index.php
part: 1

events: Time

fl=php:internal
fn=php::count
4 1

fl=php:internal
fn=php::is_int
15 1

fl=C:\Program Files\Apache Software Foundation\Apache2.2\htdocs\index.php
fn=isInt
6 110
cfn=php::is_int
calls=1 0 0
15 1
…

Installing the GUI-Based Tool
As a stand-alone tool, Xdebug is great as a debugger but requires an additional tool to be
a potent profiling tool. There are two versions of the GUI-based tool—a Windows version,
WinCacheGrind, and a Linux (KDE) KDECacheGrind, which can also be installed on
Windows using Cygwin.

Unlike KDECacheGrind, WinCacheGrind contains a limited number of features and
contains a few bugs. Also, WinCacheGrind lacks the graphs that help us visualize how
each function call is made and the amount of time spent in each call.

Installing WinCacheGrind
Installing the Windows version, WinCacheGrid, is easy to do. Download the executable
file at Sourceforge, from http://sourceforge.net/projects/wincachegrind/. Once the
download is completed, double-click the executable file and you’re ready to load the files.

Installing KCacheGrind
For Linux users using KDE, download the tar.gz file from
http://kcachegrind.sourceforge.net/html/Download.html. Once it’s downloaded, un-
package the content into a directory of your choosing and run the commands shown in
Listing 3–28.

CHAPTER 3 ■ PHP CODE OPTIMIZATION

78

Listing 3–28. KCacheGrind Installation Commands

./configure
make
make install OR sudo make install

You’re done.

Analyzing Data
With the cachegrind file created while running the code in Listing 3–27, open the file
using one of the tools—WinCacheGrind or KCacheGrind. I will be using WinCacheGrind.

Based on the information provided by the cachegrind output file, the total time taken
to process the PHP script was 4.4ms and the PHP script made 64 total function calls.

The first view we will look at contains the function calls made (Figure 3–10), the
average time spent within the function, the cumulated average time, the total time within
the function, total cumulated time, and the total number of times the function was called.

Figure 3–10. Function profile information for Listing 3–26

Figure 3–10 contains five total function calls that also include our root, or top-level
main function, which invokes the other functions. Based on the information collected, the
count() function is called 22 times, isInt() 20 times, and is_int 20 times. Based on these
figures, we can quickly identify the functions that contain a high frequency of calls. Another
bit of information we could find using this view is the total time a function took to
complete. In this example, the php::count() function had the highest frequency of calls.

With the WinCacheGrind tool still open, click the php::is_int function. You should
see the window view shown in Figure 3–11. The window contains the time spent within
the function, the accumulated time, the callee, the file that called the function, and finally
the stack trace.

CHAPTER 3 ■ PHP CODE OPTIMIZATION

79

Figure 3–11. php::is_int function call results

The data shown in Figure 3–11 is broken up into six columns. We’re going to look at
the last column, “Stack trace.” Since each row represents a unique call to the function, we
want to determine how the callee arrived at the function. Based on the data, the flow
went from the main PHP flow, to the bar() function, and finally arrived at the function
isInt(). That’s a total of three hops to reach our desired function, which checks only
whether the value is an integer.

Before you begin refactoring with the goal of reducing hops by consolidating
functions, ask yourself if this is worth the effort. Most of the time, functions are broken up
into manageable code snippets that help you accomplish a specific task. Combining
functional logic will only lead to a mess—so think before you refactor.

In this case, for our example, let’s refactor and re-run the script to generate a new
output file. The updated code is shown in Listing 3–29.

Listing 3–29. Optimized Code—Consolidating Function Logic as Well as Calculating Count
Before the Loop

<?php
function bar($items)
{
 $count = count($items);
 for($i=0; $i<$count; $i++)
 {
 if(is_int($items[$i]))
 {
 echo 10*20*$items[$i];
 }
 }
}

$ints = array(1,2,"E",4,5,6,"T",8,9,"o");
$ints2 = array(0,1,2,3,4,5,6,7,8,9);

CHAPTER 3 ■ PHP CODE OPTIMIZATION

80

bar($ints);
bar($ints2);

echo "Done!";

Listing 3–29 contains the optimized code that moves the function isInt() into the
bar() function, as well as places the count() function outside of the for loop. Once you
execute the code shown and place the resulting cachegrind output into the GUI tool, the
cumulative time should stand out.

The cumulative time is now 1.9ms instead of 4.4ms, and the total number of function
calls made dropped from 64 to 44, a very high reduction.

We also removed the overhead of taking three hops to simply check whether the value
was an integer. We now make two hops before we invoke the is_int() function, as shown
in Figure 3–12.

Figure 3–12. Stack trace to reach is_int function

Xdebug can provide a great amount of insight into your PHP script and fine-tune any
application to make it fly. With a few best practices under our belt, let’s start to look at
how we can optimize even further using cache.

Summary
This chapter built on top of the foundation of both tools you can use to profile your PHP
application, and it also looked into the current PHP best practices, which can increase the
performance of your application, such as the following:

• Using require over require_once

• Calculating the length of a for loop in advance

• Using foreach instead of while and for when accessing elements
within an array

• Using fread() for small file data access and file_get_contents for
large files

• Accessing object properties faster

CHAPTER 3 ■ PHP CODE OPTIMIZATION

81

You also learned how to dig deeper using VLD to analyze the PHP Opcode, and
installed and used strace to look at system calls each function makes and determine
which function has a better performance. You also learned about Xdebug—how to install
it and use the GUI-based tools WinCacheGrind and KDECacheGrind.

We are now going take a deep dive into Opcode—how it’s generated, what it is, and
how to cache it.

C H A P T E R 4

■ ■ ■

83

Opcode Caching

Removing any unnecessary process when a request is made to a PHP script is now our
goal when speeding up our PHP scripts. By removing a process that does not have to
routinely execute during the PHP life cycle, we optimize our application to respond faster
to any of our users’ requests.

In the previous chapter, we briefly touched on Opcode by analyzing it. Within this
chapter, we will take a deeper look at Opcode by reviewing each step of the PHP life cycle
in detail and identifying what happens to a PHP script that is executed by the Zend
engine. You will also learn about Opcode caching and how caching is used to speed up
the PHP life cycle. Finally you’ll learn about caching tools, such as the following:

• Alternative PHP Cache (APC)

• XCache

• eAccelerator

We will install each of the caching solutions on both Windows and Unix and provide
benchmarking figures to identify the benefits of using Opcode caching. We will also
spend some time reviewing each of the caching solution’s settings, which will provide
valuable insight as to how we can tweak settings to get even better performance from our
PHP application.

Reviewing Our Roadmap
Before continuing we need to take a high-level view of where we’re at within our PHP
application optimization picture. Figure 4–1 contains the map we started the book with,
which shows each layer of most PHP applications today. Within this map, we have moved
deeper and deeper into the modern PHP application, and now we are at the PHP Opcode
caching section, identified in Figure 4–1 as the shaded region.

CHAPTER 4 ■ OPCODE CACHING

84

Figure 4–1. PHP application optimization map

Opcode is a very important component of PHP, and we need to understand how it’s
generated before we begin to cache it. In the previous chapter, we identified what Opcode
was but not how it was generated. Let’s do that now and also review the PHP life cycle in
detail.

The PHP Life Cycle
Each time a request for a PHP script is made, be it from the command line or from a web
server, PHP must take the required five steps identified as boxes shown in Figure 4–2. The
Zend engine must fetch the file from the file system, scan its lexicon and the expressions,
parse the file, create the machine code to execute (called Opcode), and finally execute the
Opcode.

CHAPTER 4 ■ OPCODE CACHING

85

Figure 4–2. PHP life cycle

The PHP life cycle is extremely quick, but it must go through each step outlined in
Figure 4–2 each time a request for a script is made. As each request arrives for a specific
PHP script, the Zend engine must recreate the Opcode for the file, even though nothing
has changed within the PHP script. This is necessary for the initial request of the script
but unnecessary in subsequent requests. By implementing Opcode caching, we can
remove the following three steps to reduce the PHP life cycle, thereby improving
performance of our application:

1. Lexicon Scan

2. Parse

3. Create Opcode

The final, optimized PHP life cycle is shown in Figure 4–3.

Figure 4–3. PHP life cycle with Opcode caching

■ Note The theory of caching shouldn’t be foreign to you, but if it is, don’t worry. In a nutshell, caching is the
technique of placing data into shared memory to be later fetched at a much faster rate than actually fetching
the data from the hard disk.

CHAPTER 4 ■ OPCODE CACHING

86

Figure 4–3 contains two paths a request may take when calling a PHP script: the initial
path taken by the initial request to the script as well as the path taken by any subsequent
requests to the script. During the initial user request, the same path shown in Figure 4–2
is taken but with an extra two steps before performing a Lexicon scan. The additional step
the Zend engine performs is a check within the cache for the generated Opcode. If the
Opcode was not previously generated, it continues with the Lexicon scan until it reaches
the creation of the Opcode. Once the Opcode has been generated, it’s placed inside the
Opcode cache and then processed. This step allows any subsequent request for the PHP
script to fetch the Opcode from shared memory rather than create it. In this path, the
process takes two more steps before analyzing and may be a bit slower for the initial
request of the PHP script.

The true benefits occur in the subsequent requests within the second path a request
takes. During this path, we start at the request to the .php file, followed by a check within
shared memory to determine if the Opcode has successfully been cached. Since the initial
request created the Opcode and placed the Opcode in cache, the Zend engine retrieves
the Opcode from cache and uses that. This allows the PHP life cycle to remove the three
steps, Lexicon Scan, Parse, and Create Opcode, shown in Figure 4–3, from its steps to
satisfy a user’s request.

Let’s now look at the caching tools available to PHP.

Opcode Caching Tools
In the next sections, we’re going to cover three Opcode caching technologies that have
been used effectively in production PHP projects: Alternative PHP Cache (APC), XCache,
and eAccelerator (eA). Though some of these Opcode caching solutions are not restricted
to caching only Opcode, such as APC, we will focus only on caching Opcode within this
chapter.

Alternative PHP Cache
Alternative PHP Cache (APC) is a PECL extension that is available for both Unix and
Windows servers. APC installs directly on the Zend engine to provide a caching system
that redirects the request to the cached Opcode if it’s present and has not expired. APC
uses shared memory and a mapping table to fetch the Opcode for a specific PHP script.

Installing APC
As stated before, APC is available for both Windows and Unix-based systems. At the time
of this writing, the version for APC was at 3.1.3 and is available for installation using
PECL. We will use PECL to install APC and recommend checking if you have PECL
installed on your system before continuing. If you do not have PECL installed on your
system, a complete step-by-step guide to installing PECL is provided within the appendix.

CHAPTER 4 ■ OPCODE CACHING

87

Unix Installation
If you have PECL installed, installing APC is very easy to accomplish. On a Unix-based
system, open a shell and run the command sudo pecl install apc. This will allow PECL
to fetch the required packages and their dependencies from the Internet.

Once the installation is complete, you will be required to update the php.ini file that
you are currently using, be it the php.ini that your web server loads or the php.ini file
that your command line tool uses. Open the php.ini file and add in the line shown in
Listing 4–1. This allows PHP to load the APC extension as a PHP extension, as well as set
two APC settings, which we will discuss later in this section. Save the changes to the file,
and restart the web server so the changes can take effect.

■ Caution While writing this book, I came across an issue while trying to install APC on Linux at this specific
step. If you encounter an error similar to the following, you can try building the package from source.

'/tmp/pear/temp/APC/php_apc.c:959: error: duplicate 'static'
make: *** [php_apc.lo] Error 1
ERROR: `make' failed'

Or you can install the beta version of APC using the following command.

sudo pecl install apc-beta

Listing 4–1. Loading APC Extension in PHP

extension=apc.so
apc.enabled=1
apc.stat=1

To make sure APC was correctly installed, open up your favorite editor and create a
phpinfo script, which generally looks like Listing 4–2.

Listing 4–2. Simple phpinfo Script

<?php
phpinfo();

If APC was correctly installed, you should see the PHP extension, APC, settings loaded
within the phpinfo page, as shown in Figure 4–4.

CHAPTER 4 ■ OPCODE CACHING

88

Figure 4–4. APC extension displayed within phpinfo page

Windows Installation
Installing on a Windows-based machine is a bit trickier. For those of you not on a
Windows-based machine, it’s OK to skip to the next section. Windows users must find a
precompiled (.dll) APC extension for their specific system. Trying to run the PECL install
command will more than likely error out with the message shown in Listing 4–3.

Listing 4–3. Windows PECL Installation Attempt

running: msdev APC.dsp /MAKE "APC - Release"
ERROR: Did not understand the completion status returned from msdev.exe.

I have found this link to be useful: http://downloads.php.net/pierre/. It contains the
.dll file you will need. For this example, I downloaded the package hp_apc-3.0.19-5.2-
Win32-VC6-x86.zip and unzipped its content. Once the content was unzipped, I placed
the file php_apc.dll into the PHP extensions folder. Using the default PHP directory
location while installing PHP, the full location is C:\Program Files\PHP\ext. If the
directory is not present, you can identify the location to the extensions directory by
referring to the php.ini file’s setting, extension_dir. The directory specified here is used
by PHP to load any external module/extension.

Finally, open the php.ini file in use and append the lines shown in Listing 4–4 at the
bottom of the file. Save the changes and restart your web server.

Listing 4–4. Windows php.ini APC Settings

extension=php_apc.dll
apc.enabled=1
apc.stat=1

Listing 4–4 will load the .dll file as well as set two APC settings, which we will review
in greater detail later in this chapter. The extension setting must contain the full path to
the .dll file if it is not present in the PHP ext directory.

To verify the installation, create a phpinfo PHP script containing the code shown in
Listing 4–3 and load the page using a web browser. If APC was installed correctly, you
should see an entry similar to Figure 4–4.

CHAPTER 4 ■ OPCODE CACHING

89

Using APC
Using APC is simply a matter of creating your PHP script as you normally do and allowing
users to request the script. The initial request to the script will prime the cache, meaning
that when the initial request for the script is done or a change to the original PHP script
has been made, the Zend engine will create the Opcode in the background and store the
generated Opcode within shared memory using APC. APC works in the background of
your code and contains no special functions to cache the generated Opcode (though
there are functions to cache variable data, which we’ll cover in Chapter 5) by the Zend
engine.

Let’s now run an example using the code shown in Listing 4–5 to determine the
benefits of using APC within our application. The code shown in Listing 4–5 creates an
array with 10,000 elements and then displays the data on the screen.

Listing 4–5. Sample Code to Test Using ab

<?php
$max = 10000;
$x = 0;
$array = array();
while($x < $max)
{

 $array[x] = $x;
 $x++;
}

foreach($array as $z)
{
 echo "$z
";
}

We need to check on the improvement APC adds when applied to our PHP script. By
taking two tests—the initial test to simulate the speed of our application while APC is
turned off and a secondary test to determine the change in performance while APC is
turned on—we can accomplish this. We will test this by simulating 1,000 requests with 5
concurrent requests using ab, as shown in Listing 4–6.

Listing 4–6. ab Command to Test APC

ab -n 1000 -c 5 http://localhost/test.php

Before running the ab simulation, we need to disable APC by setting the apc.enabled
setting to “0” followed by restarting the web server so the changes can take effect. Make
sure that APC is off by loading the phpinfo page and verify that the APC settings are no
longer present.

After executing the command five times, I took the best result, shown in Figure 4–5.

CHAPTER 4 ■ OPCODE CACHING

90

Figure 4–5. ab results for Listing 4–4 while using no Opcode caching

The result shown indicates that the web server can satisfy the simulated load within
30.06 milliseconds and can satisfy 249.18 requests per second, and on average each
concurrent request was satisfied in 4.013 milliseconds. Now let’s do the same with APC
turned on.

Open your php.ini file once more, and update the apc.enabled setting by changing
the 0 to a 1. This will enable APC. Restart the web server as well to allow your web server
to load the new settings. Run the ab command once more—you should see results similar
to Figure 4–6.

Figure 4–6. ab results for Listing 4–4 while using Opcode caching

CHAPTER 4 ■ OPCODE CACHING

91

The benefits of using APC should be clear. Instead of satisfying 249.18 requests per
second with no Opcode caching, our web server can now satisfy 254.20 requests per
second with Opcode caching. The web server response time has also decreased. With the
initial figure using the default APC settings, we increased performance by a fraction. To
determine if we can do better in speed, we need to look into the APC settings in depth and
determine what default APC settings can be turned off or on to boost performance.

APC Settings
APC provides developers settings that can be used to control APC from within the php.ini
file. We encountered a few of these settings while setting up APC, as shown in Listing 4–1
and Listing 4–4. In each of the listings, we set the apc.enabled and apc.stat settings.

The apc.enabled setting allows us to turn off or on APC by using an integer value of 0
or 1. By default the setting is set to 1. apc.stat, on the other hand, allows APC to check for
any modifications of the PHP script, which has been cached each time the script is
requested, regardless of whether it’s an initial request or subsequent request. This, of
course, is an overhead on the caching life cycle of the Opcode, and in most cases it’s a
safe bet to turn apc.stat off. Keep in mind that turning this setting off will force you to
restart your web server each time you make a change to a PHP script that is cached.

Additional settings are shown in Table 4–1, which contains the most widely used
settings as well as their description. The complete list of settings can be found at
www.php.net/apc.

Table 4–1. Widely Used APC Settings

Setting Name Description

apc.cache_by_default Turns on caching by default. A value of 1 is used for “on” state. A value of 0
is used for “off” state.

apc.filters Files to cache or not cache based on a comma-separated POSIX regular
expression. A regular expression containing a + at the beginning will force
APC to not cache any file matching the regular expression. A regular
expression containing a – at the beginning will force APC to cache any file
matching the expression.

apc.stat Turns off or on APC’s check of modification of the PHP script that has been
requested. The process occurs each time the script is called. If the setting is
set to off, any modifications made to the PHP script will require a web
server restart, which will clear the cache and allow the change to reflect. A
value of 0 will turn off stat. A value of 1 will turn on stat. By default the
setting is set to 1.

apc.enabled Turns off or on APC caching. A value of 1 will turn on APC. A value of 0 will
turn off APC. By default a value of 1 is set.

apc.shm_size Sets the shared memory size APC is allowed to use. Value is in megabytes.

CHAPTER 4 ■ OPCODE CACHING

92

Setting Name Description

apc.shm_segments

Sets the total number of shared memory segments to use.

apc.include_once_override Turns on or off optimization of include_once and require_once. When
on, the setting will reduce the additional system calls made by these PHP
internal functions. A value of 1 will turn on the setting. A value of 0 will turn
off the setting. By default this setting is turned off.

apc.optimization Sets the optimization level. Setting the value to 0 will turn off optimization,
while setting a high value will increase optimization.

apc.num_files_hint Sets the number of files you believe will need to be cached. By default 1000
is set. A value of 0 is used when unsure of the number. Setting a number
close to the figure will tend to provide some performance improvements.

apc.ttl Sets the expiration time in seconds for files stored in cache. When the
expiration time is reached, the files meeting the expiration time will be
removed from cache.

apc.write_lock When turned on, forces a single process to cache a specific script. Used on
heavy traffic web servers or applications that must cache many files.

Using some of the new settings outlined in the table, we’re going to tweak the original
settings once again by opening the php.ini file and setting the APC settings shown in
Listing 4–7.

Listing 4–7. Example Use of Configuration Settings

;APC
extension=apc.so
apc.enabled=on
apc.shm_size=16
apc.include_once_override=1
apc.write_lock=1
apc.optimization=9
apc.stat=0
apc.num_files_hint=5

The settings along with their values shown in Listing 4–7 turn on APC using the
apc.enabled setting, set the size of the shared memory size to 16 megabytes, turn on
include_once optimization, turn on write locking, set the optimization level, turn off
modification time checking using apc.stat, and set the total number of files to cache to 5
using the APC setting apc.num_files_hint. Save the php.ini file, restart your web server,
and verify the new settings have been set using the phpinfo page, as shown in Figure 4–7.

CHAPTER 4 ■ OPCODE CACHING

93

Figure 4–7. Opimized APC settings

APC Admin Tool
APC makes it easy for developers to view how our APC cache is doing by providing an
admin tool with information regarding the settings APC is currently running, the total size
allocated for caching, the amount in use, the total number of scripts cached along with
their names, and the ability to check for updates all within a nice web interface.

CHAPTER 4 ■ OPCODE CACHING

94

Installing the Admin tool
To install the web interface, each APC installation includes an apc.php file. The file is the
only item that is required to run the web interface and must simply be installed within the
web server to access it.

If you installed APC from source or if you’re on a Windows machine, you will need to
download the installation package. The file is located within the package. On the other
hand, if you were following along and installed from a distribution source, the file can be
located using either the find command or the locate Unix command. You may also try
the path /usr/share/php/apc.php.

Once you locate the file, copy and paste the file into your web server. This will allow
you to access the PHP script from the Web using a browser by visiting the URL
http://YOUR_HOST/apc.php, where YOUR_HOST can be either localhost or the host you’re
currently using for development work.

The next step will be to update the script itself by updating the ADMIN_PASSWORD
constant variable located within the PHP script. By setting the password, you will be able
to log into the web interface containing additional functionality, such as clearing the
cache. Save the changes and restart your web server. Load the URL
http://YOUR_HOST/apc.php, and you should see the web interface shown in Figure 4–8.

Figure 4–8. APC admin tool home page

The home page contains general cache information, such as the version of both APC
and PHP the web server is running, the web server software name, the type of shared
memory, file caching information, memory usage information, and other useful data you
might need. The home page also contains five buttons on the top of the page. Each of
these sub-sections provides additional information, such as which scripts have been

CHAPTER 4 ■ OPCODE CACHING

95

cached, shown in Figure 4–9, user cached entries information, a check for any updated
version section, and when logged in, a section to clear the Opcode cache as well as a list of
pre-directory entries, which is also shown in Figure 4–9.

Figure 4–9. APC admin tool while logged in and within the System Cache Entries section

APC is a great Opcode caching tool, but it’s not the only tool out there. To become
good at performance, we must look at alternative tools and determine which one will
work best for our requirements. The next tool we’ll look at is XCache.

XCache
XCache is another Opcode caching tool that is used by PHP. XCache, like APC, uses
shared memory to store the Opcode and uses this cached Opcode to satisfy a request for a
PHP script.

Like APC, XCache is also available for both Unix-based systems and Windows. As of
this writing, XCache 1.2.X is the most stable release, and XCache 1.2.2 will be the version I
will use to test Opcode caching as well as install.

Unix Installation
XCache is available to download and install from any repository and is also available from
the official site, http://xcache.lighthttpd.net, when attempting to install from source. I
suggest trying to install from a repository before installing from source, using one of the
commands shown in Table 4–2. This will automatically download and install any
dependencies your system may require.

Table 4–2. Unix Commands to Install XCache from a Repository

Distribution Command

Red Hat/Fedora yum install xcache

Debian/Ubuntu sudo apt-get install php5-xcache

CHAPTER 4 ■ OPCODE CACHING

96

Once XCache has been installed, make sure to restart your web server as well as verify
XCache was properly loaded using a phpinfo script. If the extension was properly
installed and loaded, you should see output similar to that shown in Figure 4–10.

Figure 4–10. XCache extension information within phpinfo page

Windows Installation
Installing on a Windows system takes a few more steps compared to installing on a Unix
system. You will need the compiled extension that matches both your Windows and PHP
versions. Since PECL does not contain a Windows installation for XCache, we’re going to
look for the proper .dll file within the official XCache web site. Load the web site,
http://xcache.lighttpd.net/pub/ReleaseArchive, and download the package for your
specific PHP version. As an example, to install XCache using a PHP 5.3 installation, we
download the latest XCache binary file, XCache-1.3.0-php-5.3.0-Win32-VC9-x86.zip.

Once the file has been successfully downloaded, unzip the package and copy the
php_xcache.dll file into the ext directory. Open the php.ini file, and append the text
shown in Listing 4–8 to allow PHP to load the php_xcache.dll file as a thread-safe
extension.

Listing 4–8. Windows XCache Settings

[XCache]
Zend_extension_ts=php_xcache.dll

Restart your web server, and load the phpinfo script on your browser to make sure the
extension was properly loaded. If the extension was properly installed, you should see the
XCache extension settings as shown in Figure 4–10.

CHAPTER 4 ■ OPCODE CACHING

97

Caching with XCache
Applying XCache to any PHP application is, like APC, easy. There are no functions that
are required to use to create and store Opcode, and a simple request is enough to create
and store the Opcode. To determine how effective XCache Opcode caching is, we’re going
to use the code shown in Listing 4–4, the ab command shown in Listing 4–5, and both the
non-APC results as well as the APC results, Figure 4–5 and Figure 4–6 respectively.

After executing the ab command, the results are shown in Figure 4–11.

Figure 4–11. ab results for Listing 4–4 using XCache

Comparing our new result to Figure 4–5, our application under no Opcode caching,
there are a full ten requests satisfied per second. We also see that the response is much
faster on average.

XCache Settings
XCache also contains a nice set of configuration settings that gives us the ability to
customize XCache. The complete list of settings is shown in Table 4–3, and it is extremely
important to understand each of the settings for each of the Opcode caching tools
covered in this chapter because some settings could possibly speed or slow the process.

CHAPTER 4 ■ OPCODE CACHING

98

Table 4–3. XCache Configuration Settings

Setting Description

xcache.admin.user (String) Admin authentication username. By default it’s set to “mOo”.

xcache.admin.pass (String) Admin authentication password. By default it’s set to “<empty
string>”. Should be md5(your_password).

xcache.admin.enable_auth (String) Enables or disables authentication for admin site. By default
it’s “on.”

xcache.test (String) Enable or disable testing functionality.

xcache.coredump_dir (String) Directory to place core dump when a crash is encountered.
Must be writable by PHP. Leave empty to disable.

xcache.cacher (Boolean) Enable or disable Opcode caching. Default is on.

xcache.size (int) Size of shared cache to use. If using 0, caching will not be used.

xcache.count (int) Number of “chunks” to split cache into. Default set to 1.

xcache.slots Hash table hints. The higher the number, the faster the search within
the hash table is made. The higher the value, the more memory is
required.

xcache.ttl (int) Time to live value for Opcode file. By leaving value as 0, it will
cache indefinitely.

xcache.gc_interval (Seconds) Interval garbage collection is triggered. By default it’s set to
0.

xcache.var_size (int) Variable size

xcache.var_count (int) Variable count

xcache.var_slots Variable data slot setting

xcache.var_ttl (Seconds) Time to live value for variable data. By default it’s set to 0.

xcache.var_maxttl (Seconds) Max time to live when dealing with variables

xcache.var_gc_interval (Seconds) Garbage collection time to live

xcache.readonly_protection (Boolean) Used when ReadonlyProtection is turned on. Beware this
slows down tool but is safer.

CHAPTER 4 ■ OPCODE CACHING

99

Setting Description

xcache.mmap_path (String) File path used for read-only protection. It will restrict two
groups of PHP to share the same /tmp/cache directory.

xcache.optimizer (Boolean) Enable or disable optimization. By default this setting is off.

xcache.coverager (Boolean) Enables coverage data collection. When enabled it will slow
down the processes.

xcaceh.coveragedump_directory (String) Directory location to place data collection information. By
default /tmp/pcov is used.

eAccelerator
The final Opcode caching tool we will look at is eAccelerator (eA), which works much like
APC and XCache. eA was created by Dmitry Stogov and was originally part of the Turck
MMcache project. Like APC and XCache, eA stores cached content within shared memory
but also allows for a separate option to store cached data on disk.

The most stable version of the tool as of this writing is 0.9.6.1, and it will be used for
the remainder of this chapter to demonstrate its installation process as well as measure
performance improvements when using PHP. eA 0.9.6.1 is suitable for PHP 4 and all
versions of PHP 5, and can be installed on both Windows and Unix-based systems. The
full documentation as well as source can be downloaded from its official web site,
www.eaccelerator.net.

We are going to install eA on both a Unix and a Windows system before diving into
boosting PHP performance using this tool. If you’re on a Unix system, continue reading,
otherwise skip to the “Windows Installation” section.

Unix Installation
Installing eA on a Unix system can be accomplished by executing one of the commands
shown in Table 4–4 within a shell, or it can be installed by downloading and installing the
source code from the official web site. In this section, I will be taking the latter approach,
but feel free to install using the distribution commands as well—there is no difference.

Table 4–4. Commands to Install eA Using Distributions

Distribution Command

Red Hat/Fedora yum install php-eaccelerator

Ubuntu sudo apt-get install php5-eaccelerator

CHAPTER 4 ■ OPCODE CACHING

100

Open a shell and run the commands shown in Listing 4–9. The commands will
download the source code from the eAccelerator web site and unpack the bz2 file using tar.

Listing 4–9. eA Download and Unpacking Commands

wget http://bart.eaccelerator.net/source/0.9.6.1/eaccelerator-0.9.6.1.tar.bz2
tar xvjf eaccelerator-0.9.6.1.tar.bz2

Once the source code is unpacked, place the content in your preferred location and
execute the commands shown in Listing 4–10 within the directory containing the source
code.

Listing 4–10. eA Installation Commands

phpize
./configure
make
sudo make install

As soon as the command is complete, you should have two directories presented
within the output, as shown in Figure 4–12. One path contains the location of the libraries
installed, and the second path contains the path to the shared location. You will need
these two directory locations for the next steps, if you’re installing as a Zend extension.

Figure 4–12. eA installation output

CHAPTER 4 ■ OPCODE CACHING

101

Creating the Cache Folder
As mentioned earlier, there are two options to store cached content. We can either store
the cache within shared memory or use the disk by saving the cache within a locally
stored directory. By setting the value of eaccelerator.keys to either shm_and_disk,
shm_only, or disk_only, we can specify these options. Using the default value,
shm_and_disk, eA will initially attempt to store cached content within shared memory, but
if there is no space within shared memory, eA will place the cached content on the disk.
Using the other two options, shm_only and disk_only, will force eA to use only the
specified location.

We are going to use the default value, so we need a location to place the cached
Opcode. By default eA will attempt to store the content within the directory,
/tmp/eaccelerator. It is recommended that this location be changed and removed from
the /tmp directory because the directory is cleared each time the system is rebooted. eA
recommends creating a directory within the /var/ location, with the complete directory
location being /var/cache/eaccelerator.

Create the directory location by running the command mkdir –p
/var/cache/eaccelerator, which creates the complete directory path followed by
changing the directory security rights using the command chmod 0777
/var/cache/eaccelerator.

Once the eA has been installed and a cache directory has been created, you are ready
to integrate eA into PHP.

Installing eAccelerator As a PHP Extension
There are several methods to use when installing eA. We can install eA as a PHP
extension, as a zend_extension, or as a zend_extension_ts (thread safe). Within this book,
we will install eA as a PHP extension.

To allow PHP to use eAccelerator, we must update the php.ini file. Locate the php.ini
file you are currently using, and append the text shown in Listing 4–11.

Listing 4–11. php.ini Settings for eA

extension="eaccelerator.so"
eaccelerator.shm_size="16"
eaccelerator.cache_dir="/var/cache/eaccelerator"
eaccelerator.enable="1"
eaccelerator.optimizer="1"
eaccelerator.check_mtime="1"
eaccelerator.debug="0"
eaccelerator.filter=""
eaccelerator.shm_max="0"
eaccelerator.shm_ttl="0"
eaccelerator.shm_prune_period="0"
eaccelerator.shm_only="0"
eaccelerator.compress="1"
eaccelerator.compress_level="9"

CHAPTER 4 ■ OPCODE CACHING

102

Listing 4–11 contains a list of settings that need to be defined before running eA. The
.so file to load along with 13 eA settings are some of the ideal settings to set, but you are
not limited in setting only these. A complete list of settings along with their descriptions is
shown in Table 4–5. We will go over these settings in greater detail later in this section.

Making Sure eA Is Installed
To make sure eA was successfully installed takes two steps. The initial step is to use a
phpinfo script to identify if the PHP extension was successfully installed. Once you create,
save, and load the phpinfo script within a browser, you should see the eA information
present within the page, as shown in Figure 4–13.

Figure 4–13. eA phpinfo() settings

The second step is to make sure the caching directory structure has been created
successfully. This will test if the permission levels on the caching directory are set
properly. If you have been following along, open the directory
/var/cache/eaccelerator—otherwise open the cache directory you have specified within
the eaccelerator.cache_dir setting within the php.ini file. If everything was set up
correctly, you should see a collection of directories named 0,1,2,3,...,9. The directories
shown here will contain the files created by eA when saving to disk. Let’s go ahead and
use eA for caching Opcode.

The next section will describe how to install eA within Windows. Skip to the next
section to begin benchmarking and identifying the benefits of using eA.

CHAPTER 4 ■ OPCODE CACHING

103

Windows Installation
The official eAccelerator web site contains an up-to-date list of web sites that provide the
compiled version of many eA binaries for each version of PHP you might be running on
Windows. To install eA on Windows, you need to download one of the binary files that
match your installed PHP version using the URL
http://eaccelerator.net/wiki/InstallFromBinary.

Click one of the links, and download the appropriate .dll file you need for your PHP
version. Once the file has downloaded, place it inside the PHP extensions folder. You are
not required to place the file in this location, but it’s a good practice to keep all your
extensions in the same location. If you installed PHP in the default location using the
installation wizard from the php.net web site, the location of the extension folder will be
C:\Program Files\PHP\ext. If you have a custom directory, place the file there.

Creating the eA Directory
eA provides us with two methods of storing the cached content: storing it to shared
memory or storing the content within a specific directory on the web server. Using the
default behavior, we will allow eA to initially attempt to store the data within shared
memory. But if there is no free space within shared memory, eA will store the content
within a directory that we will create now.

Create the directory cache\eaccelerator within the location C:\Program Files\Apache
Software Foundation\Apache2.2. This will allow other applications to also use the cache
directory and will keep it secure by not allowing access from the Web. Once the directory
has been successfully installed, you need to make changes to the php.ini file.

Updating php.ini
Open the php.ini file your web server is using, append the eA settings shown in Listing 4–
12, save the changes, and restart your web server. The settings shown in Listing 4–12 will
allow PHP to load the .dll file using the zend_extension_ts key as well as set a few
settings to get our eA running. The settings presented here are only suggestions and can
be replaced with settings that you find useful. We will review each of the settings
presented in Listing 4–12 later in this section. The complete list of eA settings available to
you is shown in Table 4–5.

Listing 4–12. php.ini eA Settings for Windows

[PHP_eA]
zend_extension_ts="C:\Program Files\PHP\ext\eAccelerator0961_5.3.3_ts.dll"
eaccelerator.shm_size="16"
eaccelerator.cache_dir="C:\Program Files\Apache Software Foundation\Apache2.2\cache"
eaccelerator.enable="1"
eaccelerator.optimizer="1"
eaccelerator.check_mtime="1"
eaccelerator.debug="0"
eaccelerator.filter=""

CHAPTER 4 ■ OPCODE CACHING

104

eaccelerator.shm_max="0"
eaccelerator.shm_ttl="0"
eaccelerator.shm_prune_period="0"
eaccelerator.shm_only="0"
eaccelerator.compress="1"
eaccelerator.compress_level="9"

If all the settings were set correctly and the .dll file was located when restarting the
web server by PHP you should see output similar to that shown in Figure 4–13 when
creating and loading a phpinfo file.

With eA properly set up, let’s look at the settings available to us and make a few
changes to the initial setup.

eA Settings
eA, like other Opcode caching software, contains many settings that allow you to control
eA. eA allows us to set up the size of the shared memory to use and the expiration time for
files stored within cache, and even allows us to cache only specific files using the filter
setting, just to name a few. We encountered some of the settings while installing eA, and
using the same list of settings we will focus on some of the key settings outlined in both
Listing 4–7 and Listing 4–8. Along the way, we will also update our installation to increase
our performance.

The initial setting we’ll look at is eaccelerator.check_mtime, which allows eA to check
the modified times between the cached content and its non-cached content counterpart.
If the modified times do not match, eA attempts to cache the updated file. When turned
on, this setting forces eA to run this check each time a request for a file is made, even if
there has been no update. Of course, this is an overhead on the request due to the
comparison of the modified times, so we should turn this off. The drawback when turning
this setting off will be restarting eA each time there is an update to your PHP scripts.

The next setting we want to look at is the eaccelerator.filter setting. This setting
helps us narrow down the type of files your eA should cache. If you wanted to cache only
.phtml files, for example, you would set the value of the key to *.phtml. On the other hand,
we can negate this behavior by placing a ‘!’ before the pattern, such as !*.phtml *.php. The
value allows eA to cache only files that contain the extension .php but not files with the
extension .phtml.

Controlling the size of the cache as well as knowing how to treat cached content when
there is no additional space available can be accomplished using the next three settings:
eaccelerator.shm_max, eaccelerator.shm_ttl, and eaccelerator.shm_prune_period.
eaccelerator.shm_max sets the amount of space available eA can use for caching. This
setting is measured in megabytes, and when exhausted, the next two settings,
eaccelerator.shm_ttl and eaccelerator.shm_prune_period, will be used.

eaccelerator.shm_ttl and eaccelerator.shm_prune_period determine which content
will be removed when the shm_max size has been reached. The first setting,
eaccelerator.shm_ttl, contains the last access time, in seconds. If a file is not requested
after eaccelerator.shm_ttl seconds, the content will be removed from cache when there

CHAPTER 4 ■ OPCODE CACHING

105

is no additional space. On the other hand, eaccelerator.shm_prune_period contains the
length of time content should remain in cache.

There are additional settings you can use within the php.ini file, and they are shown
in Table 4–5. The table contains the setting name, a short description of when to use the
setting, as well as its default settings. I recommend you read through the table and
determine which features you should turn off or on.

Table 4–5. eA Settings

Setting Description Default Value

eaccelerator.shm_size Sets the shared memory size. Size is in
megabytes.

0 megabytes

eaccelerator.cache_dir Sets the location of the cached directory. eA
places the precompiled code, session data, as
well as content within this directory when disk
caching is turned on.

/tmp/eaccelerator

eaccelerator.enable Turns off or on eA. Using 0 turns eA off. Using 1
turns eA on.

On, 1

eaccelerator.optimizer When on may speed up code execution. The
optimizer runs when the script is compiled. Use 1
to turn on optimization. Use 0 to turn off
optimization.

On, 1

eaccelerator.debug Turns on logging for eA. Log messages are placed
inside the file specified within the
eaccelerator.log_file setting. Using 1 turns
on logging. Using 0 turns off logging.

Off, 0

eaccelerator.log_file Specifies the location of the file that eA will use to
log messages. When a log file is not specified, any
log entries will be placed in stderr or within the
Apache log file, if the Apache web server is used.

No value present.

eaccelerator.name_space String to append to the beginning of keys
generated by eA.

Web server’s
hostname

eaccelerator.check_mtime Allows eA to check if the file has been modified
since last cached each time the script is
requested.

On, 1

eaccelerator.filter Specify which files to cache or not cache.
Example: ‘*.php’ will cache all files that end with
a .php extension. To exclude patterns, use ‘!’ in
front of the pattern.

“”, Cache all php
files.

CHAPTER 4 ■ OPCODE CACHING

106

Setting Description Default Value

eaccelerator.shm_max Sets the max size of content to place in cache.
Any file that is larger than the size specified will
not be cached. Size is in bytes. A value of 0 will
disable max size and allow any size.

0, Max size off.

eaccelerator.shm_ttl When max space within shared memory has been
reached, the file that has not been accessed in the
time specified by this setting will be removed.
Value is an integer in seconds. A value of 0 will set
no expiration time.

Off, 0

eaccelerator.shm_prune_period When max space within shared memory has been
reached, the file that was created shm_prune_
period seconds ago will be removed. When a
value of 0 is used, no cache will be removed.

Off, 0

eaccelerator.shm_only Enable or disable saving cached scripts on disk.
Using a value of 0 will allow disk caching.

On, 0

eaccelerator.compress Enable or disable compression. A value of 1 will
enable compression. A value of 0 will turn off
compression.

On, 1

eaccelerator.compress_level Set the compression level for cache. A value of 9
will use max compression.

9 max compression

eaccelerator.keys Set the type of caching for this type of caching.
Possible values are shm_and_disk (will store in
both shared memory and disk), shm (shared
memory storage, if available, otherwise on disk),
shm_only (shared memory storage only),
disk_only (disk caching only), none (no
caching).

shm_and_disk

eaccelerator.sessions Set the type of caching for this type of caching.
Possible values are shm_and_disk (will store in
both shared memory and disk), shm (shared
memory storage, if available, otherwise on disk),
shm_only (shared memory storage only),
disk_only (disk caching only), none (no
caching).

Shm_and_disk

CHAPTER 4 ■ OPCODE CACHING

107

Setting Description Default Value

eaccelerator.content Set the type of caching for this type of caching.
Possible values are shm_and_disk (will store in
both shared memory and disk), shm (shared
memory storage, if available, otherwise on disk),
shm_only (shared memory storage only),
disk_only (disk caching only), none (no
caching).

Shm_and_disk

eaccelerator.admin.name Username used for the eA admin tool N/A

eaccelerator.admin.password Password used for the eA admin tool N/A

Summary
Chapter 4 covered the PHP life cycle, which gave you an overview on how Opcode is
generated. You also learned how Opcode caching can increase performance by removing
three steps within the PHP life cycle during subsequent requests to the file. With the
foundation established in Chapter 3 and now Chapter 4 concerning Opcode, we learned
about the tools available for us in caching Opcode. We installed, benchmarked the
benefits of caching Opcode, and reviewed each setting to identify which settings can be
modified to boost performance with the following caching tools:

• APC

• XCache

• eAccelerator

Specifically we covered turning off file modification checks for both APC and eA due
to the extra process taken when creating Opcode as well as optimization levels we can use
within APC. Finally, we reviewed and installed the APC admin tool, which allows us to
control and view memory consumption and PHP files that have been cached, and
provides easy access to clear the Opcode cache, all within a web interface.

In the next chapter, we will look at caching content, eliminating heavy processes like
connecting to a database, and fetching content for each use request.

C H A P T E R 5

■ ■ ■

109

Variable Caching

Modern, rich web applications all contain some type of method that allows users to
interact with the application. The most popular method these days is updating a status
within your favorite social network web application. In almost all cases, these user
interactions are saved within an external non-volatile storage solution, and in almost all
cases, the saved content is redisplayed to users within a listing page.

Within such a request, there are countless areas to improve, from the database
software that we will cover in Chapter 9, to the way we connect to the database, and to the
way we handle the results of such a process. In this chapter, we focus on optimizing the
fetching of content and how to reuse the results from a database query, a heavy
algorithm, or any arbitrary data using cache.

We’re going to cover two different caching softwares, APC and Memcached. You will
learn how to install Memcached (you installed APC in Chapter 4), apply variable caching
using code examples, and benchmark their impact on an application we will create. The
application will utilize a MySQL database to store 10,000 records, a medium-sized record
set, and our application will display these records on a page. We will also take a high-level
view of where caching occurs within a request for a web application to further
understand where caching comes into the picture.

Application Performance Roadmap
We’re moving away from the PHP life cycle of caching the Opcode, the logic and code of
your PHP script, and moving into caching data that the user has requested. By doing so,
we move deeper into our application stack to find bottlenecks that can be removed
entirely or partially. Within the application stack shown in Figure 5–1, this chapter will
focus on variable caching, shown in the gray box.

CHAPTER 5 ■ VARIABLE CACHING

110

Figure 5–1. Application stack

Variable caching, as mentioned previously, allows us to cache arbitrary data and not
PHP logic or source code, which is done by Opcode caching. Variable caching is a means
to cache the results of the PHP logic within methods, database query calls, and generally
any data results from a process.

The Value of Implementing Variable Caching
The importance of variable caching can be seen at a high level by using a generic web
application. Most web applications to date use some type of non-volatile storage solution
in the form of a database (includes the cloud), and/or a flat file. Consequently, when
fetching data from these external sources, you end up with a slower-running application
(refer to “The PHP Economy” section in Chapter 3). To understand, we need to refer to
Figure 5–2.

CHAPTER 5 ■ VARIABLE CACHING

111

Figure 5–2. Fetching data from a database without cache

Figure 5–2 contains the typical application flow of a PHP script fetching data from a
database. The figure begins by opening the connection to a database, running an
arbitrary SQL statement, fetching the results found by the SQL statement, closing the
connection to the database, and finally displaying the content to the user via an HTML
page. In this example, there are bottlenecks in each of the steps outlined. The database
software might be un-tuned to run its optimal settings, the table used by the SQL
statement might not be optimized, or the database drivers might not be the most
optimal—there simply are too many areas to worry about. Without cache a user
encounters each of these bottlenecks when requesting the PHP script and each time a
performance hit is incurred. By using cache to store the results of the SQL statement, the
performance hit is negated.

PHP performance improves by using cache and by the extra steps taken on behalf of
the application flow. Referring to Figure 5–3, our simple application flow now contains
extra steps each request must make. There are two steps that both our initial request and
subsequent requests must make. On our initial request, the application checks cache to
determine if data has been stored for the database query. Because it is an initial request,
there is no data to fetch from cache and a cache-miss is triggered. A cache-miss is
encountered when there is no cached data found. Due to the cache-miss, the normal
steps of opening a connection to the database, executing a SQL statement, fetching
results from the query, etc. are taken. Within this sequence, the second new step is
encountered. Once the data is fetched from the result set, the data is placed into cache for
subsequent user requests to use.

Figure 5–3. Fetching data from cache

CHAPTER 5 ■ VARIABLE CACHING

112

The benefits of using cache can be seen when analyzing subsequent user requests to
the PHP script. Using Figure 5–3 once again, we follow the application flow of subsequent
user requests. When the user loads the PHP script, the initial step to check for data within
cache triggers a cache-hit; cached data is found and remains valid. With a cache-hit
triggered, a number of steps are ignored, specifically, opening the connection to the
database, executing the SQL statement, fetching the data from the result set, adding the
data to cache, and closing the database connection. Instead we fetch the data from
shared memory, a much faster and optimal way to fetch content since there are no
external drivers, network issues, and software to deal with.

This approach isn’t limited to fetching data from a database exclusively. As stated
before, we can apply caching to data stored in flat files, and results of a process-intensive
function/method. In the next sections, we will create a small application that utilizes a
database to apply the application flow outlined in Figure 5–3.

A Sample Project: Creating the Table
To get the full effect of using cache, we’re going create a small database-driven web
application. The application will simply display 10,000 records stored within a database
using an HTML table. By creating a very simple application, we will easily see how
applying a caching solution will help with performance. We will benchmark the
application while it has no database layer, followed by benchmarks with a database layer,
and finally benchmark the application while using cache. Let’s start by creating and
prepping our database and table.

Installing a database is not the primary focus of this book, so I will not cover the topic
in detail here. But instructions on how to install MySQL can be found in Appendix A. I
suggest installing a database now since you will also require a database in Chapter 8. You
can download the free installer from www.mysql.com. For the remainder of this example, I
will use MySQL 5.1 for testing.

Using the SQL statement shown in Listing 5–1, create the database along with a single
table, called chapter5, which contains a single int column, num.

Listing 5–1. SQL Statement to Create a Database and Table

CREATE DATABASE pro_php_perf;
USE pro_php_perf;
CREATE TABLE chapter5 (num int(8) NOT NULL);

Once the database and table have been successfully created, we will need to seed our
table with 10,000 records. Using the code shown in Listing 5–2, copy and execute the
code.

CHAPTER 5 ■ VARIABLE CACHING

113

Listing 5–2. PHP to Insert 10,000 Numerical Values into the Table

<?php
/**
 * Insert 10,000 random numerical values into table.
 *
 */
$username = 'YOUR_USERNAME_HERE';
$password = 'YOUR_PASSWORD_HERE';
$host = 'YOUR_DB_HOST_HERE';
$dbName = 'YOUR_DATABASE_NAME_HERE';

//Open connection.
$dbHandler = mysqli_connect($host, $username, $password, $dbName)
 or die('Connection error: '.mysqli_error());

//Connect to db.
mysqli_select_db($dbHandler, $dbName)
 or die ('Could not connect to db: '.mysqli_error());

//Add in 10000 records into db.
$i=0;
while($i<10000)
{
 //Generate random number
 $num = rand(1,1000000);

 //Insert into table
 $statement = "INSERT INTO chapter5 (num) VALUES ($num)";
 mysqli_query($dbHandler, $statement)
 or die ('Error executing statement: '.mysqli_error());

 ++$i;
}

//Close connection.
mysqli_close($dbHandler);

The code shown in Listing 5–2 sets the connection information and uses the mysqli
PHP functions to open a connection to the database, insert 10,000 random numerical
values using the INSERT statement, and finally close the connection. Once the code is
executed, make sure the data is present within the table by running the SQL statement
shown in Listing 5–3.

Listing 5–3. SQL Statement That Counts the Number of Records in the Table

SELECT COUNT(num) FROM chapter5;

If everything looks OK, continue on. If you run into any issues, make sure you have
updated the connection information to match your database user settings and check for
any SQL errors.

CHAPTER 5 ■ VARIABLE CACHING

114

Fetching the Records
With the seed data in the table, it’s time to create the code to fetch all, yes all, 10,000
records from the table as shown in Listing 5–4. We’re first going to measure the
performance of the PHP code without using the database layer and only iterate though an
array containing 10,000 elements. This will help us measure the cost incurred when using
the database.

Listing 5–4. PHP Code with No Database Overhead

<?php
$records = array_fill(0, 10000, 50000);

$table = "<table border='1'><tr><td>Array Elements</td></tr>";

//Display the data.
foreach($records as $record)
{

 $table .= "<tr><td>$record</td></tr>";

}

$table .= "</table>";

echo $table;

Listing 5–4 contains the PHP code as well as the HTML markup to display our records
but contains no database connection and fetching overhead. Instead the code creates
10,000 elements within the $records array, followed by a foreach loop that loops through
the elements within the array and displays the data using an HTML table.

Our initial benchmark will analyze the code shown in Listing 5–4 and will be our
baseline measurement for further results. Using the ab command shown in Listing 5–5,
we will simulate a traffic load of 1000 requests with 5 concurrent requests.

Listing 5–5. ab Command

ab –n 1000 –c 5 http://localhost/Listing5_4.php

Once the command has executed, you should see an ab result similar to that shown in
Figure 5–4.

CHAPTER 5 ■ VARIABLE CACHING

115

Figure 5–4. ab results for code shown in Listing 5–2

The results indicate the web server can satisfy 266.06 req/sec, and each request can
be satisfied in 18.79ms when a database layer is not present. The results also indicate that
across our concurrent requests, the request was satisfied in 3.75ms. Let’s now add the
database layer and benchmark.

Calculating a Database Fetch
We will now benchmark the PHP script shown in Listing 5–6. The code shown will use a
database layer to not only connect to a database but also fetch all records within the table
we created, table chapter5. The code, however, will not display or create the HTML table
from the result set. Instead we will continue to utilize the $records array. This will allow
us to benchmark the overhead of using a database.

Update your code as shown in Listing 5–6.

Listing 5–6. PHP Script That Fetches 10,000 Records from a Table

<?php
/**
 * Benchmark Database overhead
 *
 */
$username = 'YOUR_USERNAME_HERE';
$password = 'YOUR_PASSWORD_HERE';
$host = 'YOUR_DB_HOST_HERE';
$dbName = 'YOUR_DATABASE_NAME_HERE';

//Open connection.
$dbHandler = mysql_connect($host, $username, $password, $dbName)
 or die('Connection error: '.mysql_error($dbHandler));

CHAPTER 5 ■ VARIABLE CACHING

116

//Connect to db.
mysql_select_db($dbName, $dbHandler)
 or die ('Could not connect to db: '.mysql_error($dbHandlder));

//Fetch the records from the Database.
$statement = "SELECT num FROM chapter5 ORDER BY num DESC";
$results = mysql_query($statement, $dbHandler)
 or die ('Could not run SQL: '.mysql_error($dbHandler));

//Close connection.
mysql_close($dbHandler);

$records = array_fill(0, 10000, 50000);

$table = "<table border='1'><tr><td>Array Elements</td></tr>";

//Display the data.
foreach($records as $record)
{

 $table .= "<tr><td>$record</td></tr>";

}

$table .= "</table>";

echo $table;

Listing 5–6 begins by setting our connection information. If you’re following along,
change the values within these settings to your personal database settings. The code
opens the database connection, creates the SQL statement to fetch all values in
descending order, closes the database connection, populates the $records array with
10,000 elements, and finally invokes a foreach loop that will eventually display all the
results within an HTML table. Running the ab command shown in Listing 5–5 on the
updated code produces the results shown in Figure 5–5.

CHAPTER 5 ■ VARIABLE CACHING

117

Figure 5–5. ab results for Listing 5–4

The new results show a significant performance hit. The web server can support only
208.96 requests per second, and the time in which a request can be satisfied is 23.92ms.
Compared to the results shown in Figure 5–4, when the database connectivity and record
fetching are introduced, it reduces the requests per second by 21.46 percent, or 58 fewer
requests per second and a 27.32 percent increase in the response time. What this shows is
the cost associated with fetching data from an external source, in this case, a database.

Before moving on, let’s now update the code to fully use the result set and use its
content to display the data within an HTML table. The complete code is shown in Listing
5–7.

Listing 5–7. Fetching and Displaying All 10,000 Records from Database

<?php
/**
 * No Database overhead.
 *
 */
$username = 'root';
$password = 'password';
$host = 'localhost';
$dbName = 'pro_php_perf';

//Open connection.
$dbHandler = mysql_connect($host, $username, $password, $dbName)
 or die('Connection error: '.mysql_error($dbHandler));

//Connect to db.
mysql_select_db($dbName, $dbHandler)
 or die ('Could not connect to db: '.mysql_error($dbHandlder));

//Fetch the records from the Database.

CHAPTER 5 ■ VARIABLE CACHING

118

$statement = "SELECT num FROM chapter5 ORDER BY num DESC";
$results = mysql_query($statement, $dbHandler)
 or die ('Could not run SQL: '.mysql_error($dbHandler));

//Close connection.
mysql_close($dbHandler);

//Add to collection
$records = array();
while($record = mysql_fetch_object($results))
{

 $records[] = $record->num;

}

//Display
$table = "<table border='1'><tr><td>Array Elements</td></tr>";

foreach($records as $record)
{

 $table .= "<tr><td>$record</td></tr>";

}

$table .= "</table>";

echo $table;

Benchmarking the full implementation using the ab command shown in Listing 5–5,
once again the results are shown in Figure 5–6.

CHAPTER 5 ■ VARIABLE CACHING

119

Figure 5–6. ab results for Listing 5–7 code

Adding the full logic to the sample application we’ll be using reduces the total
number of requests per second to 73.46, and a request is satisfied in 68.067ms. Not a very
ideal set of numbers—that’s a 65 percent decrease in total requests per second and a 184
percent increase to satisfy a single request. Let’s go ahead and use APC to improve these
numbers.

APC Caching
In Chapter 4, we implemented APC to exclusively cache PHP Opcode. In this chapter, we
will use APC to store information. To do so, we’re going to focus on a subset of internal
PHP APC methods shown in Table 5–1. Before we begin, make sure you have the APC
PHP extension fully installed. The complete steps to install APC are shown in Chapter 4.

Table 5–1. APC Functions

Function Parameters Description

apc_add() apc_add(String key, Mixed
var, int Expiration Time)

Adds content into cache using specific key if key does not
already exist.

apc_fetch() apc_fetch(Mixed key) Fetches content of a specific key within cache. Returns
false if key not found.

acp_store() apc_store(String key, Mixed
var, int Expiration Time)

Stores a value in cache using a specific key. Will replace
value if key exists.

CHAPTER 5 ■ VARIABLE CACHING

120

Function Parameters Description

apc_exists() apc_exists(mixed keys) Checks if the key is present in cache. Returns true if key
exists, false otherwise.

apc_delete() apc_delete(String key) Removes a specific key from cache. Returns true if
successful, false otherwise.

■ Note Additional APC functions can be found at www.php.net/apc.

The functions outlined in the table allow us to add data into shared memory, fetch
data from shared memory using a specific key, check to determine if the key is present,
and finally remove content from cache that is associated to a specific key.

Adding Data to Cache
Using some of the functions outlined in Table 5–1, we’re going to create a small page
counter, shown in Listing 5–8, before applying it to our database-driven web application.

Listing 5–8. Page Counter: Adding Content to APC Cache

<?php
/**
 * Example visitor counter using APC.
 *
 **/
if(!$counter = apc_fetch('myCounter'))
{
 $counter = 1;
 //Add the new value to memcached
 apc_add('myCounter', $counter, 120);

}
else
{

 $counter++;

 //Update the counter in cache
 apc_store('myCounter', $counter, 120);

}

echo "Your visitor number: ".$counter;

CHAPTER 5 ■ VARIABLE CACHING

121

Using Listing 5–8 as only an example to introduce us to using APC data caching, the
code contains a working page counter that keeps a running count of users visiting this
PHP script within two minutes of the initial visit. The page counter begins by calling
apc_fetch() to both fetch and check if the specified key, myCounter, exists within cache. If
the key does not exist, the $counter variable is set equal to 1, and a new key, myCounter, is
inserted into shared memory, APC cache. On the other hand, if the key is found, it simply
fetches the data currently in cache, increments the value by 1, and uses apc_store() to
update the data stored within the myCounter key. Finally, we present the visitor count to
the user.

In this example, we also make use of the third parameter, apc_add(). By specifying an
integer value of 120 seconds (2 minutes), we request the cache information to remain
valid for 2 minutes. Once the data has expired, the cache key will update during a request.

Let’s apply caching using APC to our sample database-driven application.

Benchmarking APC
Using the APC functions you just learned, we are going to apply them to our database-
driven application by placing the functions where our bottlenecks are within the code,
connecting, and fetching data from the database. Update the code as shown in Listing 5–9.

Listing 5–9. APC Caching Applied to Listing 5–7 Code

<?php
/**
 * Listing 5.7 with APC applied.
 */
$username = 'YOUR_USERNAME_HERE';
$password = 'YOUR_PASSWORD_HERE';
$host = 'YOUR_DB_HOST_HERE';
$dbName = 'YOUR_DATABASE_NAME_HERE';

if(!$records = apc_fetch('orderedNumbers'))
{

 //Open connection.
 $dbHandler = mysql_connect($host, $username, $password, $dbName)
 or die('Connection error: '.mysql_error($dbHandler));

 //Connect to db.
 mysql_select_db($dbName, $dbHandler)
 or die ('Could not connect to db: '.mysql_error($dbHandlder));

 //Fetch the records from the Database.
 $statement = "SELECT num FROM chapter5 ORDER BY num DESC";
 $results = mysql_query($statement, $dbHandler)
 or die ('Could not run SQL: '.mysql_error($dbHandler));

CHAPTER 5 ■ VARIABLE CACHING

122

 //Close connection.
 mysql_close($dbHandler);

 //Place into array.
 $records = array();
 while($record = mysql_fetch_object($results))
 {

 $records[] = $record->num;

 }

 //Add to cache for 2 minutes
 apc_store('orderedNumbers', $records, 120);

}

//Display
$table = "<table border='1'><tr><td>Array Elements</td></tr>";

foreach($records as $record)
{

 $table .= "<tr><td>$record</td></tr>";

}

$table .= "</table>";

echo $table;

■ Note If you’ve been following each code example in the book, make sure you have removed the ; from
your php.ini file to turn on APC and then restarted your web server.

The code has only minor updates shown in bold. Like the code shown in Listing 5–7,
we have added the apc_add() as well as the apc_fetch() functions. Using the code, let’s
use ab once again and determine what APC caching offers in terms of performance. The
results for our ab simulation are shown in Figure 5–7.

CHAPTER 5 ■ VARIABLE CACHING

123

Figure 5–7. ab results for APC cache enabled

Figure 5–7 displays our results for the ab run. Comparing the results shown in Figure
5–7 with those shown in Figure 5–6, we see an improvement in the number of requests
the server can satisfy and a decrease in the speed in which the web server can satisfy a
single request. The number of users the server can now satisfy increased by 72.51 percent,
while the total time to satisfy a single request decreased by 42 percent. Using APC
improved the performance of our application.

The drop in time and the increase in the number of users now supported can be
attributed to a fetch from memory rather than the recurring three-step process of
opening the database connection, executing the SQL statement, and fetching the data. By
fetching the data, your users no longer have to execute these steps until after two
minutes, in this example. To further improve the performance of our script, we can also
cache the HTML that is generated, allowing the complete table to be fetched from
memory.

APC is not the only tool out there that can help in caching data. Memcached is
another tool that can be used.

Memcached
Unlike other caching tools covered in this chapter and in Chapter 4, Memcached was the
original caching solution for PHP. Memcached was originally developed by Brad
Fitzpatrick for the web application Livejournal in 2003 and then found great backing
within the open source community. It now has wide use in major web applications such
as Wikipedia, Flickr, Twitter, and YouTube, just to name a few.

In the following sections, we will cover the install process, review the PHP
Memcached functions, and fine-tune our setup to get the most from it.

CHAPTER 5 ■ VARIABLE CACHING

124

Installing Memcached
Memcached’s stable release is currently at version 1.4.5 and can be found and
downloaded from the web site www.memcached.org. There are two methods to install
Memcached. You can either download the source .tgz file from the listed web site, or use
a distribution port using apt-get or yum.

If you’re on a system that has apt-get installed, run the command apt-get install
php5–memcached.

The command will install all necessary dependencies and packages for Memcached.
Restart your web server and verify PHP successfully loaded the Memcached extensions by
creating a phpinfo() PHP script, and load the file using your web browser. If everything
was installed correctly, you should see the Memcached PHP settings as shown in Figure
5–8.

Figure 5–8. Memcached info within phpinfo page

The alternative method to install Memcached is by using the source. Download the
source and execute the commands shown in Listing 5–10 within a terminal.

Listing 5–10. Installing Memcached from Source

./configure
make
make install

Once Memcached has been installed, restart the web server and load a phpinfo script
to make sure all was installed correctly. You should see the Memcached settings as shown
in Figure 5–8.

Starting Memcached Server
Turn on Memcached by specifying the amount of memory to allocate to it as well as its
port to run on. By default Memcached listens on port 11211, but you can change this
behavior using the –p parameters. Execute the command /usr/bin/memcached –m 512 –p
11211 to begin Memcached.

CHAPTER 5 ■ VARIABLE CACHING

125

Using Memcached with PHP
PHP has bundled a list of Memcached methods within the PHP Memcached class. We will
focus on the subset of methods listed in Table 5–2 to get you familiar with the tool. The
methods shown allow you to add content to the cache, fetch content from the cache,
update content within cache, flush all the content, and delete a specific item from cache.

Table 5–2. Memcached Methods

Method Parameters Description

Memcached::add() add(String key, mixed Value, int
Expiration Time in seconds)

Adds a new key/value into cache. Will fail if
key present.

Memcached::get() get(String key, Callback function,
float cas_token)

Get content from cache for a specific key.
Returns false if key is not present.

memcached::set() set(String key, Mixed value, int
Expiration Time in seconds)

Set the content for a specific key. Unlike
add(), it will not fail if key is present.

memcached::flush() flush(int time) Removes all keys and content from cache.

memcached::delete() delete(String key, int Time in
seconds)

Removes a specific key from cache. If time is
present, any attempt to add the key into
cache will be ignored until time expires.

■ Note The complete list of Memcached available methods can be found within the PHP documentation at
www.php.net/memcached.

Connecting to Memcached Server
Before we save data into our new Memcached server, we need to open a connection to it,
much like opening a connection to a database or creating a handler to a file. Listing 5–11
contains a simple PHP 5 code example that connects to the Memcached server running
locally.

CHAPTER 5 ■ VARIABLE CACHING

126

Listing 5–11. Connecting to Memcached Server

<?php
/**
 * Example visitor counter using Memcached.
 *
 **/
$memHost = 'localhost';
$memPort = 11211;

$memCached = new Memcached();
$memCached->addServer($memHost, $memPort);

We store the server we plan to connect to in the $memHost variable, and place the port
the Memcached server is listening on in the $memPort variable. We then instantiate the
Memcached class and use its method addServer() to add the localhost server into the
Memcached server pool.

Adding Data into Cache
As in the previous APC section, you're going to use the visitors counter code shown in
Listing 5–8 as an introduction to using the Memcached functions. The updated visitor
counter code is shown in Listing 5–12.

Listing 5–12. Using Memcached for a Page Counter

<?php
/**
 * Example visitor counter using Memcached.
 *
 **/
$memHost = 'localhost';
$memPort = 11211;

$memCached = new Memcached();
$memCached->addServer($memHost, $memPort);

if(!$counter = $memCached->get('myCounter'))
{
 $counter = 1;
 //Add the new value to memcached
 $memCached->add('myCounter', $counter, 120);

}
else
{

 $counter++;

 //Update the counter in cache

CHAPTER 5 ■ VARIABLE CACHING

127

 $memCached->set('myCounter', $counter, 120);

}

echo "Your visitor number: ".$counter;

The logic is identical to Listing 5–8: we check if the cache has a value for myCounter
using an if-else statement. If the cache does contain a value, we increment the value and
store the new value into cache. Otherwise we initialize the content to store and place the
value into a new key within cache.

While using Memcached, we begin by creating the Memcached object, adding a
Memcached server using the method addServer(), identify if there is data within shared
memory using the Memcached method get(), and if there is no data present, we initialize
the data using the $counter variable and add the data into a new key, myCounter, along
with the initial value of 1, using Memcached::add().

Benchmarking Memcached
Using the code shown in Listing 5–7, we’re going to benchmark the results when we apply
Memcached to it. Listing 5–13 contains the updated code.

Listing 5–13. Implementing Memcached to Listing 5–5 Code

<?php
$username = 'YOUR_USERNAME';
$password = 'YOUR_PASSWORD';
$host = 'YOUR_HOST';
$dbName = 'YOUR_DB';

$memHost = 'localhost';
$memPort = 11211;

$memCached = new Memcached();
$memCached->addServer($memHost, $memPort);

if(!$records = $memCached->get('myRecords'))
{
 //Open connection.

 $dbHandler = mysql_connect($host, $username, $password, $dbName)
 or die('Connection error: '.mysql_error($dbHandler));

 //Connect to db.
 mysql_select_db($dbName, $dbHandler)
 or die ('Could not connect to db: '.mysql_error($dbHandlder));

 //Fetch the records from the Database.
 $statement = "SELECT num FROM chapter5 ORDER BY num DESC";
 $results = mysql_query($statement, $dbHandler)
 or die ('Could not run SQL: '.mysql_error($dbHandler));

CHAPTER 5 ■ VARIABLE CACHING

128

 //Close connection.
 mysql_close($dbHandler);

 $records = array();
 while($record = mysql_fetch_object($results))
 {

 $records[] = $record->num;

 }

 //Add the data into Memcached
 $memCached->add('myRecords', $records, 120);
}

//Display
$table = "<table border='1'><tr><td>Array Elements</td></tr>";

foreach($records as $record)
{

 $table .= "<tr><td>$record</td></tr>";

}

$table .= "</table>";

echo $table;

Using the ab command shown in Listing 5–5 the results show an increase in
performance when using a caching solution. Caching makes your application support
more users and speeds up your script. In these new results, shown in Figure 5–9, the
request per second jumped to 215.46, an increase of 193 percent from the application
using no cache. The time per request also decreased from 68.06ms to 23.20ms, a 65
percent performance improvement in regards to speed.

CHAPTER 5 ■ VARIABLE CACHING

129

Figure 5–9. ab results for Listing 5–13

Summary
This wraps the focus on the PHP code itself. As you'd expect from reading Chapter 2,
optimization isn’t just about PHP—it’s about all the layers PHP runs on. To push our app
to the best performance possible, we started with the tool sets to measure, followed by
the client-side JavaScript and CSS optimization, and then used caching for PHP. With
Chapter 4 and Chapter 5 introducing and applying a caching solution for not only our
Opcode but also large sections of data that is required for our application to run, we have
covered the foundation of what caching is and what it can do within our PHP application.

In Chapter 5, we focused on APC as well as Memcached. You learned the terminology
behind caching, used the built-in PHP functions to store, retrieve, and clear cache from
APC, installed and used Memcached, and most importantly created small experiments to
test how well APC as well as Memcached increased performance. In the remaining
chapters, we’ll focus on the software our application runs on.

C H A P T E R 6

■ ■ ■

131

Choosing the Right Web Server

Since it is the responsibility of the web server software to look for any incoming requests,
delegate what the request is trying to accomplish to the PHP engine, and finally send a
response, a portion of the measured speed of our PHP application is tightly coupled with
the performance of your web server software. Therefore, we need to prevent the web
server from slowing down our application by eliminating unnecessary processing.

This chapter will help you understand how a web server works “under the hood” and
will help you to determine which of the major web server packages would be the best one
to use for your application. We will look at the ever-popular Apache web server with
mod_php, and examine some more recent newcomers—lighttpd as well as Nginx. We will
be analyzing why each of the alternatives are beneficial to use, and how to install FastCGI
PHP on each one. We will also look at few simple benchmarks for each server type,
covering both static and PHP content.

Before we get too far, though, we will look at some general guidelines in selecting an
appropriate web server package, along with some aspects of web servers that are
common to all types, such as usage, request handling, and hardware.

But first, to get our bearings, please refer to Figure 6–1, which shows that we are now
in the web server component of the application performance roadmap.

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

132

Figure 6–1. PHP Application component stack

This section of the application stack is important because the speed at which our web
server performs will impact how slow a response to the user will be. Now, let’s move on to
some of the common considerations of all web servers.

Choosing Which Web Server Package Is for You
There are no hard rules that allow you to decide which package you should use. We will,
however, attempt to give you a few pointers that will help you make the choice.

Security and Stability Are Important to You
Apache is without a doubt the most “exercised” web server package available. This
popularity means that there is a continuous stream of stability and security patches being
produced to track any exploit that is discovered. If you need to be able to guarantee the

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

133

security of your installation and track that as new exploits are discovered, then Apache is
probably the best bet.

Availability of Engineers with Detailed Knowledge Is Important to
You
Nginx and lighttpd, while mainstream, are not as well known in the community as the
venerable Apache server. If you rely on being able to locate and hire engineers with guru-
level web server skills, then Apache is again probably the best bet.

Your Site Is Predominantly Static Content
If you are running a photo or video hosting site, then the enhanced static object serving
performance that lighttpd or Nginx can bring to the table is probably a good reason to
take a long, hard look at these newer alternatives.

You Are Hosting in a Managed Service
Many managed hosting services are traditional in the components that they provide for
hosting applications. Before committing yourself to a design that relies on servers other
than Apache, check with your hoster to see if it is supported.

You Are Using Unusual PHP Extensions
Most PHP extension writers assume that PHP will be running on Apache with mod_php.
Testing of extensions under FCGI, which is the mechanism used by lighttpd and Nginx to
host the PHP interpreter, is often not done. Before committing to using these alternative
web server packages, check that all the PHP extensions your application requires work
correctly in FCGI mode.

Usage Figures for Web Servers
One of the factors that should be considered when choosing a web server package is its
popularity. If a web server is popular, it means there are a lot of people using it, shaking
out bugs, providing support services, etc. Web servers that are lower in the popularity
stakes may not have the same exposure as their more popular brethren (see Table 6–1).

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

134

Table 6–1. Web Server Package Popularity (Source: Netcraft 2010)

Vendor Product Web Sites

Hosted (millions)

Percent

Apache Apache 111 54

Microsoft IIS 50 24

Igor Sysoev Nginx 16 8

Google GWS 15 7

lighttpd lighttpd 1 0.46

Before dismissing servers such as Nginx or lighttpd, you should, however, understand
that because of their nature, and reputation for use as fast static asset servers, they are
often used as “supporting servers” for larger domains, serving just static assets (images,
.css, .js), and will not necessarily register in the Netcraft figures.

Web Server Request Handling
Web servers have to perform a set of well-defined processes on an incoming request as
specified by the HTTP specifications. In order to produce the required output, this
sequence of events is known as the “Request Processing Pipeline,” as it describes a
sequence or pipeline of actions that need to be performed to handle a request.

Although the details of how this occurs in each web server package vary greatly, they
all generally follow the same pattern.

• Request Listener: This component is responsible for picking up an
inbound network connection from the browser, and reading the
request from the socket.

• Request Parsing: Takes the request and parses it into a data structure
that can be easily interpreted by the rest of the web server
components; most web servers expose this parsed data as a “Request
Object” to applications running on it. It is also responsible for
decoding things such as the cookie jar and making it available as a
dictionary of values.

• Input Filter: This component is responsible for any transformations
that need to be applied to the request. If the web server is capable of
performing any URL rewriting, then it is typically done at this stage.

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

135

• URI Mapping: This is where the URIs in the input request are mapped
to physical directories and files in the web server. Any security,
location, or directory options are applied at this stage.

• Request Handling: The web server picks up the contents of the page
from the disk. It could be a cached file if the web server supports
object caching.

• Output Filter: For dynamic languages like PHP, this is where the
source of the file is transformed into the output HTML, or where
compression is applied if relevant. Other output encodings such as
chunking can also be applied at this point.

• Output Transmission: The final stage in the pipeline; oversees the
transmission of the contents back to the user’s web browser

Figure 6–2 shows a typical request to a hosted document.

Figure 6–2. The request processing pipeline

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

136

As the browser performs a request for a hosted document at a specific URL, the web
server will listen for any incoming requests under a specific port number. When the web
server encounters a request for a PHP file, it will either open a connection, if it hasn’t
already reached its limit, or satisfy the request with any of the current open connections.
The web server will then process the request with the PHP engine, send the response, and
finally close the connection once it’s done. Along the process, there are other items that a
web server can perform, such as logging the request within the access log writing error
logs, if any, and compressing the data before it’s sent to the browser.

The process described can quickly become a speed bottleneck if connections must be
opened and closed numerous times or if “other” steps outlined are non-essential yet
consume valuable CPU time.

Though these steps can take fractions of a second, they all add up, and it is not until
these steps have completed that the user’s browser receives the results. If we could speed
this process up by removing some of the steps or reducing the number of times some of
the steps are done, we could speed up the response and thereby increase the application
speed.

Web Server Hardware
Hardware does matter. If you have non-optimal hardware and expect to keep thousands
of visitors at once satisfied, the changes in this chapter might not make much of a
difference. But by the same token, I’m also not suggesting you run out and get the cream-
of-the-crop hardware. What I am saying is buy what you can afford and use this book to
squeeze the last bit out of the hardware. By configuring your web server with optimal
settings and using your current hardware, it can save you money.

With that said, having spare RAM allows you to create additional processes to handle
incoming requests, and having more than one CPU can increase the performance of your
web server. Since there are different types of web server systems in the market, we are
going to look into the different types of web servers in the following sections.

Classifying Web Servers
Not all web servers are alike. As stated before, your hardware setup depends on how you
will run your web server. Some web servers have multiple CPUs, containing GB of RAM,
while other web servers contain a single CPU with very limited RAM. Due to these
different permutations of server hardware, there are two different types of web servers
worthy of further discussion:

• Prefork/Fork

• Threaded

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

137

Apache is the most well-known web server and is generally deployed as a prefork web
server, although other models are available (see the “Apache Multi-processing Modules”
ahead). A prefork web server allows the web server to create a separate process (fork)
based off an original process. Web servers that operate as a prefork server type tend to
create a pool of processes for incoming users to use. This type of web server has been
recommended for single CPU servers. A complete description of each type of web server
can be found in Table 6–2. This type of web server is also recommended for any
application that is making use of linked libraries, such as database integration, text
processing, etc., as many of these third-party extensions are not proven to be thread-safe,
and could result in issues when run under heavy load.

On a single CPU, when comparing prefork to threading and to workers, there is
favorable performance in the preforking server type. As the concurrency level increases,
preforking remains at a constant, while the other server types increase. Once again this all
depends on the type of server you are using and its configuration.

Table 6–2. Web Server Types

Web Server Type Description

Prefork Process-based web server; for each incoming request, a forked process is used to
satisfy the request.

Threaded Thread-based web server; for each incoming request, a thread is used to satisfy the
request.

Next we’ll discuss the similarities and differences of these two types of servers.
Depending on the strengths of each style, your hardware and your serving need may
determine which style you choose to configure Apache as.

Apache HTTPD
The Apache web server is by far the most widely used web server for both development
and production environments. The most up-to-date version of the Apache web server at
the time of writing is version 2.2, and is available for Unix and Windows systems. What
makes Apache appealing is the array of settings you are allowed to tweak within its
configuration file. By default the configuration file contains settings that can get you off
and running with your application, but when your site experiences an increase in traffic,
some of these settings might not be ideal.

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

138

■ Note There is often some confusion about the naming used for the Apache service and the configuration
files it uses. For Debian-based distributions, such as Ubuntu, the package is called “apache2,” which is used
in both its service name and the name of its configuration file, “apache2.conf.” For Red Hat–based
distributions, such as Fedora, etc., the process name is “httpd” and has a corresponding configuration file of
“httpd.conf.” This difference is maintained throughout, including the names of directories used for
configuration, logging, etc. We will refer to “apache2” in this text, but on Red Hat–derivative systems please
substitute “httpd.”

There are two ways of installing Apache: from a package, or from source. We will examine
how to install from packages for the two most common distribution families, Debian
(SUSE, Ubuntu) or Red Hat (Red Hat, CentOS, Fedora).

Appendix A has full instructions for installing Apache as part of a full LAMP stack on
windows, while Appendix B provides the same instructions for installing on Linux servers
or workstations.

Apache Daemon Command Line
We are going to briefly look over the command-line options before diving into modifying
the configuration file. By using the command-line option, we can gain insight into which
modules are loaded, check the web server type, and test whether the changes we will
make to our configuration file are valid, among others. Table 6–3 contains the full list of
command-line options available to you.

Table 6–3. Apache 2 Command-Line Arguments

Argument Description

-D name Set name to use within the <IfDefine name> directives

-d directory Set a ServerRoot

-f file Set a ServerConfigFile

-C “directive” Process directive before reading configuration files

-c Process directive after reading configuration files

-e level Show startup errors of loglevel “level”

-E file Log startup errors to file “file”

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

139

Argument Description

-v Show version number

-V Show compile settings

-h Show available command-line options

-l List compiled-in modules

-L List available configuration directives

-t -D DUMP_VHOSTS Show parsed settings, currently only VHOSTS

-S A shortcut for -t -D DUMP_VHOSTS

-t -D DUMP_MODULES Show loaded modules

-M A shortcut for -t -D DUMP_MODULES

-t Run syntax check on configuration files

One of the reasons to know the commands is to understand what has been installed if
you did not install the web server. To check the modules, run the command apache2ctl –
M. You should receive a listing of all of the modules loaded in your system, i.e., core.c,
prefork.c, and http_core.c. This also provides us with additional information regarding
the type of web server Apache is currently configured to run as, such as prefork.

By default Apache installs the most important files within its installed directory. On a
Unix system, that directory is /etc/apache2, while for Windows users, the directory is
C:\Program Files\Apache Software Foundation\Apache2.2—that’s if you used the default
installation values.

Within this directory, you will find apache2.conf. This file contains a list of
configuration settings from the directory where your files will be loaded, DocumentRoot,
to the number of users your web server can support at a single moment. By making
modifications to some of the settings, discussed in the following section, you can
configure the web server to match your needs.

Later, in Chapter 7, we will also look at the settings that can be changed to optimize
your web server to achieve higher performance.

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

140

Apache Multi-processing Modules
Apache uses a set of multi-processing modules (MPMs) to determine what process and
memory model it will use to handle each request. Requests are first placed into the
request queue and then dispatched to the processes that will handle them via the MPM.
Apache is shipped with a set of MPMs for different OS architectures and processing
models.

Make sure your system is using the correct MPM by first identifying which modules
it’s loading using apache2ctl –M or httpd –M. Within the output, you should see one of the
modules shown in Table 6–4.

Table 6–4. List of Available MPM Within Apache

Operating System MPM

BeOS BeOS

Netware Mpm_netware

OS/2 Mpmt_os2

Unix Prefork, Perchild, Threadpool, Worker

Windows Mpm_winnt

If your system is not running the correct module, this setting is changed during
compile time using the –with-mpm=<MPM Value>.

The possible Unix MPMs available are as follows:

• Prefork: Apache pre-creates a set of child processes.

• Perchild: A variant of Prefork that allows setting of separate process
permissions for the child processes.

• Threadpool: Apache uses multithreading to implement request
handlers—not recommended for most Unix systems because of the
lack of guaranteed thread safety.

• Worker: A hybrid of Prefork and Threadpool, where each child process
supports multiple threads.

On Unix-based systems, there is almost a 99 percent use of the Prefork MPM, with
some use of the Worker MPM in specialist applications. Any multithreaded MPM is
generally not recommended because many libraries bound to Apache and the PHP
interpreter are not certified to be thread-safe, and may produce erratic results when

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

141

executed in a multithreaded environment. For the purposes of brevity, we will restrict
discussion to the Prefork MPM.

The Prefork MPM
Prefork is by far the most common form of MPM in general use, and is the default
installed in most Unix Apache distributions. On startup Apache will create a fixed number
of child processes to handle requests, will route requests to each of the child processes as
required, and will grow and shrink the pool of children between defined limits as the
number of requests hitting your server goes up and down.

Apache will recycle child processes in the pool up to a maximum number of requests
per child, at which point it will tear down the child and spawn a new one to replace it.
This mechanism is designed to stop processes that have developed memory or other
corruptions from becoming permanently locked into the system. Once a child has
processed its quota of requests, it dies and is reborn.

Understanding Apache Modules
MPMs are loadable components that control how requests are dispatched and handled,
and which memory/process model is used to handle the requests. Apache modules
actually perform the processing of the requests. Apache has a built-in module called
core_module that handles the basic function of serving static content. It is responsible for
locating the object to be served on the disk, and sending it back to the client.

Apache uses a set of “hooks” at each stage that allows dynamically loaded or
compiled-in modules to insert themselves into the chain of execution and add additional
functionality. Figure 6–3 shows how an Apache module attaches itself to the processing
pipeline and either adds or replaces components in the standard core processing.
Generally Apache modules are named after their loadable file name, i.e., mod_php,
mod_rewrite, or mod_deflate.

Multiple modules can be loaded and invoked in each request, each module placing
itself in the correct part of the processing chain to allow it to handle the output of a
previous module.

For example, mod_php, the module that converts PHP source into HTML output, can
pass its output via the output filter stage to mod_deflate, the module that compresses the
output using gzip compression. Each provides an output filter stage that is chained
together in the correct order.

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

142

Figure 6–3. Apache module attachment to processing pipeline

Adding Dynamic Apache Modules
There are several ways to enable dynamic modules, depending on how your system has
deployed Apache. In general the way that a module is enabled is to add a “LoadModule”
statement to your Apache configuration file. However, there are several “conventions”
that can be used that make this easier, and your particular installation may have used one
or the other.

Using a conf.d Directory
Red Hat–based distributions have a directory called /etc/httpd/conf.d, which is included
into the configuration file immediately after the LoadModule section. Any file with the
extension .conf placed into this directory is included automatically when Apache starts.
This allows you to maintain separate files in this directory that has both the
“LoadModule” line and any default global directives needed to configure the module.

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

143

Using a Module Management Helper
Debian-based distributions like Ubuntu have a mechanism that extends the example of
the separate module configuration directory just described, and adds a tool for managing
its contents. The directory /etc/apache2/mods-available contains individual
configuration files for each module that is available in the distribution. A second
directory, /etc/apache/mods-enabled, contains symlinks to the modules in
/etc/apache2/mods-available. To enable a module, for example, mod_rewrite, a module
for mapping URLs, you would execute the following command.

$sudo a2enmod rewrite

This will create the required symlinks in the /etc/apache2/mods-enabled directory.

Removing Dynamic Apache Modules
While adding the correct modules to your installation of Apache is important, keeping the
list of modules short and using only the modules you need to run your application is
important. Once again using the –M, you can check which modules are installed or you
can check the configuration file. Using a Windows Apache configuration, you can check
the list of modules by looking for the word “LoadModule” within the file. To remove the
module look for a “LoadModule” line with the name of the module you want to disable to
the right, and just place a comment marker code ‘#’ on the start of the line, so that it is not
loaded any further. It’s probably not a good idea to delete the line, as you may wish to
restore the module at a later date, commenting it out of the file is a far safer approach.
 Once you’re done, save the changes and restart Apache.

Removing a Module Using a conf.d Directory
If your distribution is using a conf.d directory, then this makes it easy to remove a
module, simply by renaming the file to something like mod_rewite.conf.bak, and
restarting Apache.

Removing a Module Using a Module Management Helper
On Debian (Ubuntu) distributions, use the module helper to unlink the modules
configuration file.

$sudo a2dismod rewrite

Then restart Apache.

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

144

Final Words on Apache
Apache is without a doubt the most comprehensive web server package available today; it
has a strong following and is used extensively across the Internet to provide most of the
biggest sites.

It is a good comprehensive all-rounder, with excellent support; however, that
comprehensiveness comes at a price. It is not the fastest solution available. If your
application does not need the flexibility and extensive support that Apache brings, then
one of the other web servers we will now examine may be the one for you.

lighttpd
lighttpd can be best summed up with the description that appears as the very first
paragraph of the web site that supports its distribution (www.lighttpd.org):
Security, speed, compliance, and flexibility—all of these describe lighttpd (pron.
lighty), which is rapidly redefining efficiency of a web server, as it is designed and
optimized for high-performance environments. With a small memory footprint
compared to other web servers, effective management of the CPU load, and advanced
feature set (FastCGI, SCGI, Auth, Output-Compression, URL-Rewriting, and many
more), lighttpd is the perfect solution for every server that is suffering load problems.

lighttpd was originally written by Jan Kneschke as an experimental system to explore
the “c10K” problem, or how to create a web service that could support 10,000 concurrent
connections on a single server. Because of this, it has earned a reputation as being a fast
web server for static content.

Installing lighttpd
Installing lighttpd is done using either a package from a repository or the source code
available on the web site. There are two versions of the web server; one is Unix-based and
the other is a Windows binary. I will go over the process of installing the web server for
each system. Skip to the section that best suits you—you will not lose any information in
doing so.

lighttpd on Unix
As previously stated, lighttpd is available for most Unix-based systems within a
repository. It’s currently available for Debian, Ubuntu, OpenSUSE, and others, just to
name a few. The full list of repositories and the commands to install the package is shown
in Table 6–5.

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

145

Table 6–5. Available Repositories for lighttpd Installation

Repository Command

Zypper zypper install lighttpd

Aptitude apt-get install lighttpd lighttpd-doc

Yum yum install lighttpd

Emerge emerge lighttpd

I’m going to do a fresh install on my Ubuntu system by using the Aptitude repository
by running the command on the second row.

By default lighttpd is installed with the following features if you install using the
repository:

• IPv6

• Zlib

• Bzip2

• Crypt

• SSL

• mySQL

• Memcached

• SQLite

Furthermore you can take a close look at the web server’s configuration and other
settings by using the command lighttpd –V. A complete list of lighttpd commands is
shown in Table 6–6; they will come in when modifying the configuration file.

The directories that you should be made aware of are the log, www, and the
configuration directories. In my installation, the www, or the directory where all web
applications will need to be placed, is located at /var/www. The log directory is located at
/var/log/lighttpd/, and the directory that contains the web server’s configuration
settings is located at /etc/lighttpd/.

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

146

lighttpd on Windows
Until recently the lighttpd version for Windows required the system to also have Cygwin
installed. Most recently a binary version of the web server installation became available
on the web site http://en.wlmp-project.net/downloads.php. The site has the latest stable
release, 1.4.X, and it is available for Windows 2000, XP, 2003, Vista, and 2008, as well as
Windows 7.

For a fast and seamless install, download the setup wizard and follow the steps
shown. Once you have installed the web server, you will have a directory with the items
shown in Figure 6–4.

Figure 6–4. lighttpd directory structure

The contents of the directory contain a number of files that are important.
LightTPD.exe allows you to start the web server. The htdocs directory is the location to
place your web application, the logs directory contains the error and access logs, and the
conf directory contains all the available configuration options.

To start the web server, open the directory bin and double-click the Service-
Install.exe file. (It’s important to note that this will install a service, and thereby start
lighttpd every time the operating system boots.)

The file will open a command-line prompt and run through a set of items as shown in
Figure 6–5.

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

147

Figure 6–5. Windows install process window

Once the process is done, press any key and open the URL http://localhost/ to see
the welcome lighttpd page shown in Figure 6–6.

Figure 6–6. Windows lighttpd welcome page

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

148

lighttpd Configuration Settings
Because the configuration file is the primary location where we will spend much of our
time in this section, we need to get familiar with it as well as the tools to test our
configuration changes. You’re going to learn the lighttpd command-line commands next.

Open a shell window, and type in lighttpd –h. On Windows-based systems, type in
LightTPD.exe –h. This will display a list of available commands you can run. For example,
to load a different configuration file, you could use the –f flag. By using the flag, you can
load any configuration file located anywhere in your system. To view the version of
lighttpd, you could use the –v flag. The complete list of commands is shown in Table 6–6.

Table 6–6. Command-Line Options for lighttpd

Flag Description

-f <name> Full path to configuration file

-m <name> Full path to module directory

-p Display parsed configuration file

-t Test the configuration file used with –f

-D Don’t go to background

-v Version

-V List of compile time options

-h Help menu

Let’s now go over the configuration file. The configuration file contains all the
available options to boost the performance for lighttpd. It contains information such as
where the web directory is located, which files to process using PHP or exclude, which
module to load on startup, and which port to listen on, just to name a few.

Open the configuration file. The default settings within the configuration file are just a
small snapshot of the full array available. server.modules contains a comma-separated
list of modules to use. By default mod_access, mod_alias, mod_accesslog, and mod_compress
are installed. Keeping the list short is key to keeping our application performing
optimally. The server.document-root settings contain the full path to the web directory,
and server.errorlog contains the full path to the web server’s error log. Some of settings
that are not placed into the configuration file are server.max-connections, server.max-
fds, and server-max-keep-alive-idle. Using these settings, we can set the total number
of maximum connections, set the maximum number of file descriptors (file handlers),
and maximum number of seconds an idle connection is dropped.

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

149

The complete list of configuration settings is shown at
http://redmine.lighttpd.net/projects/lighttpd/wiki/Docs:ConfigurationOptions.

Comparing Static Load Content
We want to optimize our web server, so we need to know how fast it is out of the box. To
do so, I’m going to run a benchmark on lighttpd, using my machine running Ubuntu with
the same specifications previously mentioned at the beginning of the book. This is the
same machine I’ve been running the other benchmarks on, making sure to restart the
web server each time I run a test.

I will be running the following ab test, which simulates 1,000 requests with 500
concurrent requests at a time on both Apache and lighttpd. The goal is to select the web
server that will run our application at an optimal speed.

Listing 6–1 shows the command line used to run the benchmark test.

Listing 6–1. ab Test Command Simulating 1,000 Connections with 500 Concurrent
Requests

Ab –n1000 –c 500 http://localhost/

The results of the simulated load on lighttpd are shown in Figure 6–7.

Figure 6–7. Benchmark results on static HTML file

Why are we testing static content? If you have a server cluster of four servers, one
server (notably the lightweight server) can serve all your images and static content while
the remaining three servers can share the load in server PHP content.

Now let’s compare the web server running a PHP script. To do so, we need to install
PHP using FastCGI.

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

150

Installing PHP on lighttpd
Installing PHP on lighttpd is straightforward and can be accomplished using the CGI or
FastCGI PHP versions. I suggest going with the FastCGI version for obvious reasons (it’s
in the name).

FastCGI PHP is available for both Unix and Windows, and I will go over both
methods. To start we’ll look at the Unix version to install. Windows users, go ahead and
skip to the next section on installing FastCGI PHP in that environment. Unix users, you’ll
need to install the php5-cgi package available in most of the repositories. You can run the
command shown in Listing 6–2 if you are using Ubuntu or Debian.

Listing 6–2. Installing FastCGI PHP Using Aptitude

apt-get install php5-cgi

If the package encountered no issues, you should have a new directory within your
/etc/php5 directory. Open the /etc/php5/cgi/php.ini file, append the text shown in
Listing 6–3, and save the changes. This change is required to make sure that the fcgi
version of PHP sets the value of php variable $_SERVER[‘PATH_INFO’] correctly, some
applications make use of this variable and the default behavior was to replicate an old
bug in early fcgi implementations.

Listing 6–3. Turn on FastCGI Within the php.ini File

#[FastCGI PHP]
cgi.fix_pathinfo = 1

Now we need to configure the web server to process all files using FastCGI when it
encounters files with .php extensions. Open the lighttpd.conf file located in the conf
directory. In my installation, the file is located in the /etc/lighttpd/ directory. Open the
file, and append the text in Listing 6–4.

Listing 6–4. Update to lighttpd.conf Adding FastCGI Module

…
server.modules = (
 …
 "mod_fastcgi"
)
…

Within the same file, append the text shown in Listing 6–5 at the end of your file.

Listing 6–5. fastcgi.server Settings

…
fastcgi.server = (."php" => ((
 "bin-path" => "/path/to/your/php-cgi",
 "socket" => "/tmp/php.socket"

))
…

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

151

Listing 6–5 sets the fastcgi.server setting. The text states that all .php files should use

the php-cgi binary located at the location set in the “bin-path”. Save the file and restart
the server.

Verifying PHP Installation
To verify the installation was a success, create a phpinfo.php PHP file and place it inside
the web-root directory. Request the file from within a browser, and if everything was
successful, you should see something similar to Figure 6–8.

Figure 6–8. lighttpd phpinfo page

Benchmarking PHP Content
Using the code shown in Listing 6–6, we’re now going to run our ab test and fetch results.
These results will help us not only compare the results using the default settings of each
web server, but also gauge how well our tweaks in the next section are working.

The ab command I will use for this test is shown in Listing 6–1, and the code is shown
in Listing 6–6.

Listing 6–6. Code Snippet to Test

<?php
$max = 10000;
$x = 0;
$array = array();

while($x < $max)
{

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

152

 $array[$x] = $x;
 $x++;
}

foreach($array as $z)
{
 echo "$z
";
}

After running the test five times, I took the highest results, which are shown in Figure
6–9.

Figure 6–9. ab results for Listing 6–6 on a lighttpd server

The results shown in Figure 6–8, show that the server achieved a maximum requests
per second value of 253.47 and the average time per request was 1,972.640 milliseconds
(1.9 seconds). While these are impressive figures for a single server, let’s see how we can
tweak the servers settings to get even better performance.

Setting Tweaks
We are going to increase the number of file descriptors, remove the overhead fetching a
file, and set the number of PHP processes we need for our system.

The first thing we need to do is increase the number of file descriptors. A file
descriptor is a file handler that allows a user/request to access a specific file within the
server. If the web server runs out of file descriptors, it will return errors to the user, and
your error logs will fill up quickly with the following logs:

(server.1345)socket enabled again
(server.1391)sockets disabled, connection limit reached.

To remove this issue, we increase the value of server.max-fds. By default lighttpd has
this value set to 1,024 (in most cases). With 1,024 file descriptors, our server can handle
only 512 connections (1,024/2 = 512). It’s recommend by the lighttpd web site to increase
this value to 2,048 on busy servers. This will allow for 1,024 max connections. To increase
the maximum file descriptors, use the server.max-fds property, server.max-fds=2,048,
and also set server.max-connections=1,024.

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

153

The next configuration change we can do is remove the overhead of our server calling
stat() numerous times per request by either disabling, caching, or using FAM to control
the stat calls. Using the server.state-cache-engine parameter, we can set the value to
disable, simple, or fam.

Nginx
The final HTTP web server we’re going to cover is Nginx (engine-x). Nginx not only is an
HTTP web server but can also operate as a reverse proxy and an IMAP/POP3 mail server.
The goal of installing Nginx is to determine how well a PHP script will perform under this
web server. Nginx was created by Igor Sysoev in 2002, according to its official web site,
www.niginx.org. It also hosts 6.55 percent of the worldwide domains and touts
Wordpress.com and Hulu as users. To date the latest stable release of the web server is
version 0.7.x. Previous releases remain available as well, and it is available for both
Windows and Unix systems.

Nginx is an asynchronous web server, unlike Apache, which is a process-based web
server. What this means is Nginx will spawn very few or no threads to support concurrent
requests, unlike the Apache web server, which will require a new thread for each
concurrent request. Due to this, one of the most stellar features Nginx provides is its low
use of RAM under heavy traffic loads.

Installing Nginx
Nginx is available for both Windows and Unix, and both versions can be found within the
official web site. I’m going to first install the web server on a Unix-based system, followed
by a Windows-based system. You can skip to the section your system is running without
losing any valuable information. In both cases, we will refer to the Nginx web site,
http://wiki.nginx.org.

Nginx on Unix
Most of the packages we have installed are available in repositories at this point. We will
now be installing Nginx in an Ubuntu-based system by running the apt-get command
shown in Table 6–7 within a shell. Refer to the table, and use the appropriate command
for your OS.

Table 6–7. Commands to Install Nginx

OS Command

Red Hat/Fedora yum install nginx

Ubuntu/Debian apt-get install nginx

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

154

After executing the command for your system, you should have the required packages
installed correctly. If you run into problems, read over the output, since many times it will
contain information concerning which packages were missing or what issues were
encountered.

Installing from source is also an option. For those of you who wish to install Nginx
from source, open your browser and load the page http://wiki.nginx.org/NginxInstall.
There are three options—stable, development, and legacy. Once you select the
appropriate package to download, download it, expand it in your local drive, and run the
commands shown in listing 6–7.

Listing 6–7. Installing Nginx from Source Commands

./configure [compile-time options]
make
sudo make install

Nginx should now be installed on your system and ready for use.

Compile-Time Options
By default installing Nginx using one of the repository commands will install the
configuration settings shown in Listing 6–8.

Listing 6–8. Default Configuration Settings

conf-path=/etc/nginx/nginx.conf
 --error-log-path=/var/log/nginx/error.log
 --pid-path=/var/run/nginx.pid
 --lock-path=/var/lock/nginx.lock
 --http-log-path=/var/log/nginx/access.log
 --http-client-body-temp-path=/var/lib/nginx/body
 --http-proxy-temp-path=/var/lib/nginx/proxy
 --http-fastcgi-temp-path=/var/lib/nginx/fastcgi
 --with-debug
 --with-http_stub_status_module
 --with-http_flv_module
 --with-http_ssl_module
 --with-http_dav_module
 --with-http_gzip_static_module
 --with-http_realip_module
 --with-mail
 --with-mail_ssl_module
 --with-ipv6
 --add-module=/build/buildd/nginx-0.7.65/modules/nginx-upstream-fair

The default configuration contains valuable information such as the path to our error
logs, the path to the access logs, configuration file, SSL support, mail support, and server
status page enabled, just to name a few. To change these settings, you have two options:
make modifications to the configuration file specified in the conf-path, or recompile
using some of the compile-time options. A list of the most used compile-time options is

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

155

shown in Table 6–8 as well as a description of the configuration options installed by
default. The complete list is available on the web site
http://wiki.nginx.org/NginxInstallOptions.

Table 6–8. Nginx Compile-Time Settings

Setting Description

--prefix=<path> Relative path all other settings will use; by default it’s set to
/usr/local/nginx.

--conf-path=<path> Location to the configuration file; defaults to
<prefix>/conf/nginx.conf

--pid-path=<path> Path to the nginx.pid; defaults to <prefix>/logs/nginx.pid

--error-log-path=<path> Path to the error log used; defaults to
<prefix>/logs/error.log

--http-log-path=<path> Path to the access log used; defaults to
<prefix>/logs/access.log

--user=<user> Default user Nginx will run as; defaults to “nobody”

--group=<group> Default group Nginx will run under; defaults to “nobody”

--lock-path=<path> Path to lock file

--http-client-body-temp-
path=<path>

Path to the HTTP client temporary request file; defaults to
<prefix>/client_body_temp

--http-proxy-temp-path=<path> Path to HTTP temporary proxy files; defaults to
<prefix>/proxy_temp

--http-fastcgi-temp-
path=<path>

Path to FastCGI temporary files; defaults to
<prefix>/fastcgi_temp

--without-http Turns off HTTP server

--with-debug Turns on debug logs

--with-
http_stub_status_module

Turns on server status page

--with-http_flv_module Turns on flv module

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

156

Setting Description

--with-http_ssl_module Turns on ssl module

--with-http_dav_module Turns on dav module

--with-
http_gzip_static_module

Turns on gzip module

--with-http_realip_module Turns on realip module

--with-mail Turns on IMAP4/POP3/SMTP proxy module

--with-mail_ssl_module Turns on mail ssl module

--add-module=<path> Third-party modules located within the path specified

Verifying Installation and Starting Up Nginx
To start Nginx, execute the command shown in Listing 6–9 within a shell. A list of
additional command-line options can be found in Table 6–9.

Listing 6–9. Starting Nginx

Nginx

Once the web server is running, load the URL http://localhost/. You should see a
page similar to that shown in Figure 6–10.

Figure 6–10. Welcome screen for Nginx

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

157

Table 6–9. Nginx Command-Line Options

Option Description

-s [stop|quit|reopen|reload] Allows you to stop, quit, reopen, or reload Nginx web server

-h List of options available for use

-v Display version number

-V Display configuration options

-t Test a configuration file; useful when making changes

-p <prefix> Sets the prefix path

-c <filepath> Sets the configuration file to use

-g <directives> Sets global directives

■ Caution If you have any other web server turned on, make sure you turn it off at this point.

Windows Installation
Nginx is available in binary format for Windows systems. Like the Unix version, Nginx is
available in three versions—stable, development, and legacy. The latest stable release is
0.7.67 and can be found at http://ngingx.org/en/download.html , Download the file to a
suitable directory, preferably one that does not contain a space in its pathname and
unzip it. C:\nginx is probably a good location to use.

Once the content has been unzipped, you should have the directory structure shown
in Figure 6–11.

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

158

Figure 6–11. Windows Nginx directory structure

Within the directory, you will find the nginx.exe executable, with six different
directories:

• conf

• contrib

• docs

• html

• logs

• temp

The conf directory contains the configuration file, which contains Nginx settings as
well as FastCGI settings. The html directory is where you will place your application. The
logs directory contains all the logs Nginx outputs, and the temp directory will contain any
temporary files Nginx needs to create.

To start the server, simply double-click the nginx.exe file located within the directory
and wait for it to load. Once the web server has started, make sure the web server was
installed correctly by visiting the URL http://localhost/ within a browser. Verify that
Figure 6–9 is shown.

Nginx As a Static Web Server
With Nginx now installed, let’s now compare Nginx and Apache web servers and see
which web server will perform best for our application. We will test the default
installation of Apache against the default installation of Nginx on an Ubuntu system by
running the command shown in Listing 6–10.

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

159

Listing 6–10. ab Command

ab –n 1000 –c 500 http://localhost/

The command shown in Listing 6–10 will test our servers by requesting the static
HTML page 1,000 times while maintaining 500 concurrent connections. Given this load,
the results for the Apache web server are shown in Figure 6–12, and the results for Nginx
are shown in Figure 6–13.

Figure 6–12. ab results for Apache web server

Figure 6–13. ab results for Nginx web server

We are interested in two items within the results: time per request and requests per
second. For our optimization focus, we focus on time per request. Nginx web server
decreases the response time of a static file from 2,103.724 milliseconds (2 seconds) (using
Apache) to 36.939 milliseconds, a decrease of 2.06 seconds.

For those interested in getting the biggest bang for your buck on each of your web
servers, Nginx also allows you to satisfy additional users. Referring back to the results for
the requests per second, Nginx can satisfy 13,535.83 users, while Apache can satisfy
237.67 users. That’s an increase of 13,298. Since we’re testing these results using only
static content, let’s now see how well Apache and Nginx measure up while running PHP
using their default settings. To do so, we need to install PHP on Nginx.

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

160

■ Note This is not an invitation to a “my web server is better than your web server” conversation. These are
only benchmark tests on my local machine, as well as using each of the web server’s default settings.

Installing FastCGI PHP
To use PHP with Nginx, we need to use the FastCGI version of PHP. In order to install the
FastCGI version of PHP, you will need to install the php5-cgi package as well as spawn-
fcgi onto your system. For Unix users, use the command shown in Listing 6–11.

Listing 6–11. Command to Install php5-cgi

apt-get install php5-cgi
apt-get install spawn-fcgi

Once the package has been installed, you should have the path /etc/php5/cgi
available. Move into the directory, and open the php.ini file. Make the modifications
shown in Listing 6–12 at the bottom of the file. This change is required to make sure that
the fcgi version of PHP sets the value of php variable $_SERVER[‘PATH_INFO’] correctly,
some applications make use of this variable and the default behavior was to replicate an
old bug in early fcgi implementations.

Listing 6–12. Modifying the php.ini File

Cgi.fix_pathinfo=1

Once both packages are installed, we need to start up the FastCGI process. To do so,
run the command in Listing 6–13.

Listing 6–13. Starting FastCGI

/usr/bin/spawn-fcgi –a 127.0.0.1 –p 9000 –u www-data –g www-data –f /usr/bin/php5-cgi –P�
 /var/run/fastcgi-php.pid

The command shown in Listing 6–13 uses six optional commands. The first, -a,
specifies the IP of the host we will run the process on. Since I’m running the process
locally, I entered the local IP. The second option, -p, specifies the port number to listen
on. The third option specifies the user the process will run as, the fourth option is the
group the process belongs to, the fifth option specifies the location to the binary file, and
the last option specifies the location of our .pid file to use.

Once the process spawned successfully, you will need to update the Nginx
configuration file. To do so, open the Nginx configuration file, located at
/etc/nginx/sites-available/default. Remove the commented-out FastCGI information,
which is similar to the text in Listing 6–14.

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

161

Listing 6–14. Removing the Commented-Out FastCGI Information

location ~\.php$ {

 fastcgi_pass 127.0.0.1:9000;
 fastcgi_index index.php;
 fastcgi_param SCRIPT_FILENAME /var/www/nginx-default$fastcgi_script_name;
 include fastcgi_params;

}

The snippet of code shown specifies Nginx to use the FastCGI for any .php files using
the FastCGI process listening in 127.0.0.1:9000. Save the changes and restart the server.

Verifying FastCGI Installation
Create a phpinfo page and place it into the /var/www/nginx-default/ directory. Once
done, load the file http://localhost/info.php. You should see Figure 6–14.

Figure 6–14. PHP information page with FastCGI PHP installed

If everything was properly installed, you should see “CGI/FastCGI” as the value for
the Server API row, as shown in Figure 6–14.

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

162

NGinx Benchmarking
To test how well a script will perform, we’ll use the previously tested code shown
throughout this book, shown in Listing 6–15.

Listing 6–15. PHP Snippet to Test

<?php
$max = 10000;
$x = 0;
$array = array();

while($x < $max)
{
 $array[$x] = $x;
 $x++;
}

foreach($array as $z)
{
 echo "$z
";
}

The code creates an array of 10,000 elements and then displays them on the screen.
Running the same ab command on both Apache and Nginx produces the results shown in
Figure 6–15 and Figure 6–16.

Server Software: Apache/2.2.16
Server Hostname: localhost
Server Port: 80

Document Path: /test.php
Document Length: 88890 bytes

Concurrency Level: 500
Time taken for tests: 16.961 seconds
Complete requests: 1000
Failed requests: 0
Write errors: 0
Total transferred: 89081000 bytes
HTML transferred: 88890000 bytes
Requests per second: 58.96 [#/sec] (mean)
Time per request: 8480.315 [ms] (mean)
Time per request: 16.961 [ms] (mean, across all concurrent requests)
Transfer rate: 5129.12 [Kbytes/sec] received

Figure 6–15. ab results for Listing 6–15 running on an Apache web server using default
settings

CHAPTER 6 ■ CHOOSING THE RIGHT WEB SERVER

163

Server Software: nginx/0.7.67
Server Hostname: localhost
Server Port: 80

Document Path: /test.php
Document Length: 88890 bytes

Concurrency Level: 500
Time taken for tests: 9.152 seconds
Complete requests: 1000
Failed requests: 0
Write errors: 0
Total transferred: 89048000 bytes
HTML transferred: 88890000 bytes
Requests per second: 109.27 [#/sec] (mean)
Time per request: 4575.926 [ms] (mean)
Time per request: 9.152 [ms] (mean, across all concurrent requests)
Transfer rate: 9502.00 [Kbytes/sec] received

Figure 6–16. ab results for Listing 6–15 on an Nginx server using default settings

The results shown in Figure 6–15 once again show two important items that we need
to look at when dealing with optimization: requests per second and time per request. In
this result, the time per request for the apache server stood at 8,480.315 milliseconds or
8.5 seconds. That would mean that a user would wait for almost ten seconds for a
response from the server before the browser could begin displaying the data. When we
compare that figure to the Nginx results shown in Figure 6–16, Nginx had a time per
request of 4,575.926 milliseconds or 4.5 seconds, which is 50 percent faster.

Summary
Chapter 6 took you another step down into the PHP application. You learned about the
different types of servers: prefork, threaded, and event. You also learned about why
hardware is important in serving content to the user at a much faster rate.

The chapter also covered topics such as useful Apache configuration settings and
commands, and how to remove steps within the Apache process to speed up load time.
We also touched on two of the most popular alternative web servers, lighttpd and Nginx.
You learned to install, configure, and run a few ab tests to test how well they withstood
your application requirements.

You are encouraged to use the information presented in this chapter to determine
which web server package would be best for your particular application. You are also
encouraged to experiment and verify that the choice you have made is the correct one
using some of the mechanisms outlined here.

C H A P T E R 7

■ ■ ■

165

Web Server and Delivery

Optimization

One of the most important components of your application is the web server it is hosted
on. No matter how much you optimize your application, if your web server is not
optimized too, you are not going to get the full performance that you may be looking for.

In this chapter, we are going to learn how to create an “application profile” for our
web service and use that profile to ensure our web servers are correctly configured.

We will look at how to overcome some common problems that result in a reduction in
performance, by eliminating unnecessary file operations.

There may also come a time where the performance levels you require exceed the
performance or throughput that a single web server can deliver, so you may need to scale
up by dividing your application across multiple servers. We will examine some of the
requirements of an application that enable it to grow so it can run on a farm of Apache
web servers operating as a cluster.

We will also examine some of the methods you can use to partition your application
to achieve higher performance levels.

Monitoring is also an important requirement for a professionally hosted application;
we will look at some of the systems available that you can install to make sure you are
always aware of the status of your system.

Finally we will look at some infrastructure choices and services you can use to speed
delivery of your content, and help you understand what some of the common pitfalls are,
and how to overcome them.

■�Note�We are still locked into the web server layer, so please refer back to Figure 6-1 for a visual of where
this falls in the application stack model.

CHAPTER 7 ■ WEB SERVER AND DELIVERY OPTIMIZATION

166

Determining the Performance of Your Web Server
In Chapter 1, we saw how to use benchmarking tools to determine the performance of
your web service. The method outlined works well for static tests, and will give you a good
idea about how well your service should run. But load testing is not suitable for frequent
use on a production server, and we often need to determine how our server is performing
under real-world load before making decisions about optimization. ApacheTop is the
main tool we will use to inspect the performance of our web server.

Using ApacheTop, a Real-Time Access Log File Analyzer
ApacheTop can be installed via apt-get on Debian systems, and is available in .rpm form
for Red Hat/CentOS/Fedora systems. You can install ApacheTop on a Debian-based
(Ubuntu) system with the following command:

$sudo apt-get install apachetop

Installation on Red Hat/CentOS/Fedora is available via a source install. Use the
following instructions.

mkdir ~/maketemp
cd ~/maketemp
wget http://www.webta.org/apachetop/apachetop-0.12.6.tar.gz
sudo yum install readline-devel
sudo yum install ncurses-devel
sudo yum install pcre-devel
tar xvzf apachetop-0.12.6.tar.gz
cd apachetop-0.12.6
./configure
make
sudo make install

ApacheTop is a real-time access log analyzer; it behaves in a similar fashion to tailing
the access log, but provides a level of analysis, too.

Start up ApacheTop by specifying the path to your web server access log file, as shown
in Listing 7–1.

CHAPTER 7 ■ WEB SERVER AND DELIVERY OPTIMIZATION

167

Listing 7–1. ApacheTop Output

$sudo apachetop -f /var/log/apache2/access_log

ApacheTop will display the accumulated request rate since it was started for all 2xx,
3xx, 4xx, and 5xx status codes; it will also provide those same stats for the last 30 seconds,
allowing you to determine if load is rising or falling. It also provides a breakdown of the
top URLs being hit and the rate at which they are being hit. This information is useful for
working out which pages you should focus your optimizations on first.

You can change the period that ApacheTop accumulates results for in the R display by
using the -T n command-line option. This allows you to change the period from the
default 30 seconds to a longer period if you have a low-traffic web server. The aim is to get
a representative amount of traffic displayed so you can determine the top ten URLs hit on
your site and what their frequency is.

Use the “?” key once ApacheTop has finished loading to display a list of commands
that can be used to modify the display, switch from URLs to referrers, zoom in, and
examine detail statistics for a single URL.

 The most notable feature that will help with determining the distribution of top URLs
in your site is the filter mechanism; for example, if you type “f”, “a”, “u” (for
filter=>add=>url) and then type “.php”, ApacheTop will then restrict the URLs displayed
to those ending with “.php”.

It is suggested that you spend some time with ApacheTop to get to know the profile of
your application and work out what the top pages being hit are, so you can focus your

CHAPTER 7 ■ WEB SERVER AND DELIVERY OPTIMIZATION

168

optimization effort where it will generate the most benefit. You should be aware of what
your top ten pages are by usage. Make sure you have identified what these pages are, and
what percentage of use they get.

For example, you might find you get something like that shown in Table 7–1.

Table 7–1. Top Ten URLs by Requests for an Example Application

Page Requests Percentage (rounded)

/ (home page) 2,000 33

/news.php 1,500 25

/blog.php 1,000 17

/video.php 600 10

/topuser.php 400 6

/message.php 150 2

/message_send.php 100 2

/message_read.php 90 2

/user_profile.php 80 2

/feedback.php 15 1

Totals 5,935 100

This kind of map will tell you where all the “action” is in your application and let you
know where you will need to focus your attention.

Understanding the Memory Footprint of Your Application
Using ApacheTop, we have built an understanding of what the “profile” of our
application is. Now we need to work out what the memory footprint is, so you can either
ensure you have sufficient memory installed in your web servers, or configure the server
to avoid swapping.

If you have a common footer included in your application, you can add a comment
that allows you to visualize the peak memory usage of each of the high-profile pages you
identified previously.

Add something like the following:

<!-- Memory usage: <?php echo memory_get_peak_usage(1); ?> -->

CHAPTER 7 ■ WEB SERVER AND DELIVERY OPTIMIZATION

169

This will place a comment at the end of each page that shows how much memory was
used to create the page. Access each of your pages that you identified as your high-profile
pages, use view source to get the value, and record the peak memory used. The weighted
average is the percentage expressed as a factor times the request memory usage (33
percent => 0.33), as shown in Table 7–2.

Table 7–2. Adding the Memory Consumption and Weighting to Our Top Ten URLs

Page Requests Percentage

(rounded)

Per request

mem

Weighted

average

mem

/ (home page) 2,000 33 10MB 3.3MB

/news.php 1,500 25 15MB 3.75MB

/blog.php 1,000 17 16MB 2.72MB

/video.php 600 10 8MB 0.8MB

/topuser.php 400 6 17MB 1.02MB

/message.php 150 2 9MB 0.18MB

/message_send.php 100 2 6MB 0.12MB

/message_read.php 90 2 8MB 0.16MB

/user_profile.php 80 2 14MB 0.28MB

/feedback.php 15 1 3MB 0.03MB

Totals 5,935 100 106MB 12.36MB

What this tells us is that for a normal mix of traffic, the weighted average memory
consumption per request is 12.36MB. So if you had a web server that had 1GB of RAM,
and you were reserving 200MB for the operating system, etc., then the amount of memory
left over for the application would be 800MB. Dividing this value by the weighted average
gives 800/12.36 = 64.72. This is the number of concurrent requests in the top ten that you
can process at the same time without running the risk of exhausting memory and causing
the system to swap.

It should be noted that we have used the top ten here as a general rule of thumb. If
you find that the percentage of requests for your URLs has not fallen off to a small
number—say, 1 percent—at the end of your table, then you may need to extend the table
to include a larger number of URLs. ApacheTop automatically ignores any query string
parameters after a URL when creating its sorted-by-request view, so variations in the

CHAPTER 7 ■ WEB SERVER AND DELIVERY OPTIMIZATION

170

URLs due to query strings won’t create a lot of extra entries. The intention is not to
provide a 100 percent accurate assessment for all of the possible URLs in your system,
which could run to many hundreds of pages on a large site, but to rather to provide
sufficient coverage of the major paths.

Optimizing Processes in Apache
In Chapter 6, we saw how the Apache web server processes requests and uses the MPM to
dispatch the requests to your application.

In this section, we will see how we can optimize the settings for the Prefork MPM (the
most common MPM) to ensure it does not overuse memory and start swapping.

Controlling Apache Clients (Prefork MPM)
The request handling behavior just described for the Prefork MPM is controlled by a
number of configuration directives. The default values shown in Table 7–3 are from the
Ubuntu distribution of Apache; other distributions may have chosen alternative values
for their defaults.

Most distributions set these values in the main httpd.conf configuration file;
however, some distributions such as Ubuntu place them in a separate file in the “extra”
subdirectory in the Apache configuration folder. For example, on Ubuntu they are found
in /etc/apache2/conf/extra/httpd-mpm.conf. You may also need to uncomment an
include file line in httpd.conf to get them to load.

CHAPTER 7 ■ WEB SERVER AND DELIVERY OPTIMIZATION

171

Table 7–3. Apache Directives for Controlling Prefork MPM Behavior

Directive Description Default value

StartServers This directive controls the number of clients that
Apache will spawn when it starts up. Because there is
a cost to creating a client, it is a good idea to have
sufficient clients available to handle your idle-level
traffic.

5

MinSpareServers Normally Apache will kill clients if the number of
requests falls back and it cannot justify having them
around. This directive sets a lower limit on the
number of clients Apache will keep alive. It should not
be any lower than StartServers.

5

MaxSpareServers This directive sets the point at which Apache will start
discarding clients. If it has ten more clients active than
the number of concurrent requests it is currently
handling, then it will start killing and discarding them
until it has reached the MinSpareServers value.
Setting this value too low will cause Apache to thrash
client processes, so be careful with this setting.

10

MaxClients The MaxClients directive sets the maximum number
of child processes Apache will spawn, and hence the
maximum number of simultaneous or concurrent
requests that it can handle.

150

MaxRequestsPerChild This directive sets the maximum number of requests
that a child process will handle before it is killed and
respawned. If set to 0, then the process is permanent
and will never die.

0

Optimizing Memory Use and Preventing Swapping
OK, now you have all the information you need to set up your MPM configuration. From
the earlier section, we saw that we can support a maximum of 65 concurrent requests on
our 1GB server, with the mix of pages that we saw being used in real life.

The first directive we should change is MaxClients, which should be set to 65, so that
we don’t overrun our memory.

To ensure that we are not thrashing clients in when the system is running at load, we
should probably set the StartServers to half that, i.e., 30, and set MinSpareServers to 30,
too. Finally set MaxSpareServers to 40, a good value to prevent client thrashing.

CHAPTER 7 ■ WEB SERVER AND DELIVERY OPTIMIZATION

172

Other Apache Configuration Tweaks
The Apache web server is replete with configuration options to control every aspect of its
behavior. The default delivery configuration of Apache is designed to provide a
convenient configuration “out of the box,” but many of the defaults delivered in the
distribution configuration files may have performance costs that you can avoid if you
don’t need the particular capability.

It is a good idea to understand how many of these “convenience functions” work at
the request level so that you can determine their impact on the performance of your
application, and whether you should avoid the use of the functions provided.

Using .htaccess Files and AllowOverride
In Chapter 3, you saw how the use of the require_once function introduced extra calls to
the operating systems “lstat” function, slowing down delivery of pages. A similar
overhead exists with enabling the “AllowOverride” directive to allow the use of .htaccess
files.

.htaccess files are sort of per request “patches” to the main Apache configuration,
which can be placed in any directory of your application to establish custom
configurations for the content stored at that location and the directories below it.

“AllowOverride” instructs Apache to check the directory containing the script or file it
is intending to serve, and each of its parent directories, for the existence of an “.htaccess”
file that contains the additional Apache configuration directives affecting this current
request. However, if “AllowOverride” has been enabled, then even if you are not using
.htaccess files, this check is still made to determine if the .htaccess file is present,
incurring multiple operating system call overheads.

If you are using .htaccess files, then consider moving the configuration directives
into the main Apache configuration file, which is loaded once only when the HTTP server
is started up, or a new HTTPD client is started, instead of on every request. If you need to
maintain different directives for different directories, then consider wrapping them in the
<Directory ….> … </Directory> tags to retain the ability to control specific directories.

The use of .htaccess files may be forced upon you if you are using some limited forms
of shared hosting, and don’t have access to the full Apache configuration file. But in
general to maximize performance, you should avoid use of both the files and the
configuration directive; indeed you should strive to ensure that the directive is turned off
to ensure the maximum performance gain.

In the following listings, we created a simple static server vhost mapped to
www.static.local, and created a three-level-deep path in the docroot of dir1/dir2/dir3.
In the deepest directory, we placed a file called pic.jpg, of about 6KB in size. Listing 7–2
shows the performance of the system under siege with the AllowOverride option set to
“None,” whereas Listing 7–3 shows the results of the same test with AllowOverride set to
“All.”

CHAPTER 7 ■ WEB SERVER AND DELIVERY OPTIMIZATION

173

Listing 7–2. Static Object Serving with AllowOverride Directive Disabled

$siege -c 300 -t 30S http://www.static.local/dir1/dir2/dir3/pic.jpg
…….
Lifting the server siege... done.
Transactions: 15108 hits
Availability: 100.00 %
Elapsed time: 29.66 secs
Data transferred: 100.01 MB
Response time: 0.00 secs
Transaction rate: 509.37 trans/sec
Throughput: 3.37 MB/sec
Concurrency: 12.99
Successful transactions: 15108
Failed transactions: 0
Longest transaction: 0.14
Shortest transaction: 0.00

Listing 7–3. Static Object Serving with AllowOverride Directive Enabled

$siege -c 300 -t 30S http://www.static.local/dir1/dir2/dir3/pic.jpg
…….
Lifting the server siege... done.
Transactions: 14440 hits
Availability: 100.00 %
Elapsed time: 29.67 secs
Data transferred: 95.58 MB
Response time: 0.02 secs
Transaction rate: 486.69 trans/sec
Throughput: 3.22 MB/sec
Concurrency: 11.87
Successful transactions: 14440
Failed transactions: 0
Longest transaction: 1.06
Shortest transaction: 0.00

The results show an approximate 5 percent difference in performance by serving
static objects with the option turned off, as opposed to it being enabled.

Using FollowSymlinks
Like the AllowOverride directive just described, the FollowSymlinks option requires extra
OS calls to determine if a symlink is present. Turning it off if it is not needed can provide a
small benefit in performance.

Using DirectoryIndex
Another place where it is possible to unintentionally create extra OS system calls on each
request is the DirectoryIndex directive. This directive specifies a space-delimited list of
default files that are to be used when the request URL refers to a directory instead of a

CHAPTER 7 ■ WEB SERVER AND DELIVERY OPTIMIZATION

174

specific file. Apache searches for the default file in the order they are specified in the
directive. Make sure that the most relevant name for your particular application is placed
first in this list. For example, for a PHP application, this option should be as follows:

DirectoryIndex index.php index.html

If you have the files in the wrong order, then your web server would be performing an
unnecessary search for index.html on each request for a directory. This is particularly
important with your home page, which will see the majority of your traffic, and is
inevitably an indirect reference to index.php.

Hostname Lookup Off
We covered DNS lookup earlier in the book. DNS lookup will take a domain name and
look up its mapped IP. This process occurs each time the IP is not present, and it
increases latency due to this check.

Most Apache distributions have this turned off by default, but if not, it can have a
significant detrimental effect. To turn off this feature, we need to make a change to the
configuration file’s HostnameLookup key. The directive might already be set to “Off,” but if
it’s not, change it to “Off” and restart the server.

Keep-Alive On
Keep-Alive enables your web server to support persistent connections. By turning on the
Keep-Alive directive, Apache can support multiple HTTP requests for each TCP
connection. This is an important directive to set because Apache does not use RAM when
opening a connection and closing a connection when Keep-Alive is turned on. By
removing this overhead, again we speed up our application.

To turn on Keep-Alive, open the configuration file and locate the Keep-Alive directive.
In some cases, the directive might already be set to “On.” If it’s not set, simply set the
value to “On,” save the changes, and restart Apache.

Using mod_deflate to Compress Content
The HTTP protocol allows for the use of compressed transfer encodings. As well as

speeding up the delivery of compressible files such as html, js or css files, it can also
reduce the amount of bandwidth used to deliver your application. If you have a
significant amount of traffic and are paying for outbound bandwidth, then this capability
can help to reduce costs.

mod_deflate is a standard module shipped with the Apache 2.x server, and it is easy to
set up and use. To enable the module, make sure the following line is uncommented in
your Apache configuration file. Note the particular path may vary from the one shown
here, but the principle is the same.

LoadModule deflate_module /usr/lib/apache2/modules/mod_deflate.so

CHAPTER 7 ■ WEB SERVER AND DELIVERY OPTIMIZATION

175

For Debian-based distributions such as Ubuntu, there is a mechanism for enabling
modules that does not require editing of the configuration file. Use the following
command to enable the mod_deflate module.

$sudo a2enmod deflate

Then restart your Apache server to load the module. To configure the module to
compress any text, HTML, or XML sent from your server to browsers that support
compression, add the following directives to your vhost configuration.

AddOutputFilterByType DEFLATE text/html text/plain text/xml

There is, however, one gotcha. Some older browsers declare support for compressed
transfers, but have broken support for the standards, so the following directives will
prevent mod_deflate from compressing files that are sent to these problematic clients.

BrowserMatch ^Mozilla/4 gzip-only-text/html
BrowserMatch ^Mozilla/4\.0[678] no-gzip
BrowserMatch \bMSIE !no-gzip !gzip-only-text/html

To test if the compression is working correctly, restart your server, access your home
page using Firefox and Firebug, and check using the Net panel that the HTML generated
by your home page PHP is being transferred using gzip content encoding.

Figure 7–1 shows the Firebug Net panel after configuring mod_deflate and accessing a
URL that returns a text/HTML file. The “Content-Encoding” field in the response header
shows that the content is indeed compressed.

Figure 7–1. Firebug showing a Content-Encoding value of gzip

CHAPTER 7 ■ WEB SERVER AND DELIVERY OPTIMIZATION

176

Scaling Beyond a Single Server
No matter how much optimization you apply to your application or your system
configuration, if your application is successful, then you will need to scale beyond the
capacity of a single machine. There are a number of “requirements” your application
must meet in order to operate in a distributed mode. While the prospect of re-
engineering your application for operating in a “farm” of web servers may at first seem a
little daunting, fortunately there is a lot of support in PHP and the components in the
LAMP stack to support distribution.

In this section, you see some of those requirements and how to achieve them simply
and easily.

Using Round-Robin DNS
The simplest way of distributing traffic between multiple web servers is to use “round-
robin DNS.” This involves setting multiple “A” records for the hostname associated with
your cluster of machines, one for each web server. The DNS service will deliver this list of
addresses in a random order to each client, allowing a simple distribution of requests
among all of the members of the farm.

The advantages of this mechanism are that it does not require any additional
hardware or configuration on your web system. The disadvantages are as follows:

• If one of your web servers fails, traffic will still be sent to it. There is no
mechanism for detecting failed servers and routing traffic to other
machines.

• It can take some considerable time for any changes in the
configuration of your system to “replicate” through the DNS system. If
you want to add or remove servers, the changes can take up to three
days to be fully effective.

Using a Load Balancer
A load balancer is a device that distributes requests among a set of servers operating as a
cluster or farm. Its role is to make the farm of servers appear to be a single server from the
viewpoint of the user’s browser.

Figure 7–2 shows the typical layout of a system using a load balancer to aggregate
together the performance of more than one web server.

CHAPTER 7 ■ WEB SERVER AND DELIVERY OPTIMIZATION

177

Figure 7–2. Typical distributed web application

There are many kinds of load balancers available, both hardware- and software-
based. Generally load balancers fall into four categories.

• Totally software-based solutions: Solutions such as the Linux Virtual
Server project (www.linuxvirtualserver.org) allow you to operate a
load balancing service directly on each server of your web farm. One
drawback of this solution is that it requires a custom configuration of
the network interfaces on each web server, so it will not work with
many cloud-based or managed hosting solutions.

• Software solutions using a separate load balancing server: You can run
a software load balancer on a separate machine that “fronts” your web
farm. Products such as HAProxy, Squib, and Apache running with
mod_proxy allow you to build your own load balancing appliances.

• Physical load balancing appliances: An alternative to rolling your own
load balancing appliance is to use a commercial device such as that
supplied by F5, Coyote Point, Cisco, and Juniper. These devices often
provide many other facilities such as caching, SSL termination, and
I/O optimization.

• Load balancing services: Many cloud-based solutions provide load
balancing services that allow you to map a single IP address to
multiple web servers. The Amazon Elastic Load Balancer is a service
that is provided to support balancing of requests between instances
hosted in the Amazon EC2 cloud.

CHAPTER 7 ■ WEB SERVER AND DELIVERY OPTIMIZATION

178

Load balancers can provide more sophisticated distribution of load than our simple
round-robin DNS solution just described. Typically they can provide the following
distribution methods.

• Round-robin: Similar to the DNS distribution approach

• Least connections: Requests are sent to the web server with the least
number of active connections.

• Least load: Many load balancers provide a mechanism for them to
interrogate the web server to determine its current load, and will
distribute new requests to the least loaded server.

• Least latency: The load balancer will send the request to the server that
has shown the fastest response using a moving average monitor of
responses. This is a way of determining load without polling the server
directly.

• Random: The load balancer will route the request to a random server.

In addition the load balancer will monitor the web servers for machines that have not
responded to requests, or don’t give a suitable response to the status or load monitoring
requests directed at them, and will consequently mark those servers as “down” and stop
routing requests to them.

Another capability frequently supported by many commercial and open source load
balancers is support for “sticky sessions.” The load balancer will attempt to keep a
particular user on the same server where possible, to reduce the need to swap session
state information between machines. However, you should be aware that the use of sticky
sessions could result in uneven distribution of load in high-load situations.

Load balancers can also provide help when you get spikes in load that exceed even
the capacity of your entire web server farm. Load balancers often provide the ability to
define an “overflow” server. Each server in the farm can be set up with a maximum
number of connections, and when all the connections to all your servers are in use,
additional requests can be routed to a fixed page on an overflow server.

The overflow server can provide an information page that tells the user that the
service is at peak load and ask him or her to return later, or if it is a news service, for
example, it may contain a simple HTML rendering of the top five news items. This would
allow you to deal with situations like 9/11, or the Michael Jackson story, where most news
services were knocked offline by the huge demand for information from the public. A
static HTML version of your news page can be served to a very large number of
connections from a simple static server.

You can also use the overflow server to host a “site maintenance” page, which can be
switched in to display to users when you have to take the whole farm offline for updates
or maintenance.

CHAPTER 7 ■ WEB SERVER AND DELIVERY OPTIMIZATION

179

Using Direct Server Return
As your traffic grows and you add more and more servers to your web server farm,
another performance issue can surface that limits the rate at which you can deliver pages.
In the simple distributed web application just described, both the requests from the
user’s browser and the responses from your web server have to pass through your load
balancing solution. The Linux Virtual Servers solution does not suffer from this limitation
by the nature of its design, but most of the other solutions do.

A technique has been developed called direct server return (DSR), which bypasses the
load balancing system for web server responses, and writes the response directly from the
web server to the user’s browser. This sleight of hand is done at the networking level, so
your application is not aware of the difference. It means, however, that the load balancer
is dealing only with the requests, which tend in the most part to be small compared to the
responses.

Figure 7–3 shows the flow of data when the server farm is configured to use direct
server return (DSR).

Figure 7–3. Distributed web application with direct server return

Again, like the Linux Virtual Server solution, this solution requires a special
configuration of your web server’s network interface, and specific support from the load
balancer to pass across information allowing that direct return connection to be formed.
So it is not suitable for cloud-based or virtual hosting solutions, which typically have
limited opportunity for changing the way they interface with the hardware.

Because the configuration of DSR is highly specific to each load balancing solution
and vendor, it is beyond the scope of this book to describe the setup and configuration.

CHAPTER 7 ■ WEB SERVER AND DELIVERY OPTIMIZATION

180

However, you should discuss it with your hosting provider if you feel it would benefit your
circumstances.

Sharing Sessions Between Members of a Farm
For a simple static web site, sessions are not required, and no special action needs to be
taken to ensure they are correctly distributed across all the machines in a farm. However,
if your site supports any kind of logged-in behavior, you will need to maintain sessions,
and you will need to make sure they are correctly shared.

By default PHP sets up its sessions using file-based session stores. A directory on the
local disk of the web server is used to store serialized session data, and a cookie (default is
PHPSESSID) is used to maintain an association between the client’s browser and the
session data in the file.

When you distribute your application, you have to ensure that all web servers can
access the same session data for each user. There are three main ways this can be
achieved.

1. Memcache: Use a shared Memcache instance to store session data.
When you install the Memcache extension using PECL, it will prompt
you as to whether you wish to install session support. If you do, it will
allow you to set your session.save_handler to “Memcache” and it will
maintain shared state.

2. Files in a shared directory: You can use the file-based session state
store (session.save_handler=”files”) so long as you make sure that
session.save_path is set to a directory that is shared between all of
the machines. NFS is typically used to share a folder in these
circumstances.

3. Database: You can create a user session handler to serialize data to
and from your back-end database server using the session ID as a
unique key.

Before using a specific sharing strategy, you need to check that support for that
method is supported in your PHP build. Use phpinfo to list the details of the session
extension available on your installation.

Check to make sure that a suitable “Register Save Handler” is installed for the method
you have chosen. Figure 7–4 shows what to expect in your phpinfo page, if your
Memcache extension is installed correctly and the Memcache save handler has been
correctly registered.

CHAPTER 7 ■ WEB SERVER AND DELIVERY OPTIMIZATION

181

Figure 7–4. Session extension segment in phpinfo

Sharing Assets with a Shared File System
Aside from the PHP files that make up your application, you will often need to serve other
assets, such as images, videos, .css files, and .js files. While you can deploy any fixed
assets to each web server, if you are supporting user-generated content and allowing
users to upload videos, images, and other assets, you have to make sure they are available
to all your web servers. The easiest way to do this is to maintain a shared directory
structure between all your web servers and map the user content storage to that

CHAPTER 7 ■ WEB SERVER AND DELIVERY OPTIMIZATION

182

directory. Again, like in the case of shared session files, you can use NFS to share a mount
point between machines.

In services like Amazon EC2, you can use an external S3 bucket to store both fixed and
user-contributed assets. As S3 supports referencing stored files with a simple URL, the S3
bucket can also be used to serve the files without placing the burden of doing so on your
web servers.

Sharing Assets with a Separate Asset Server
Another strategy for dealing with shared assets is to place them onto a separate system
optimized for serving static files. While Apache is a good all-round web serving solution,
its flexibility and complexity mean it is often not the best solution for high-performance
distribution of static content. Other solutions, such as lighttpd and Nginx, can often
deliver static content at a considerably higher rate. We saw how more efficient lighttpd
and nginx were when serving static content in chapter 6.

Sharing Assets with a Content Distribution Network
A content distribution network (CDN) is a hierarchically distributed network of caching
proxy servers, with a geographical load balancing capability built in. The main purpose is
to cache infrequently changing files in machines that are as close as possible to the user’s
browser. To that end, each network maintains a vast network of caching servers
distributed into key points around the Internet.

The geographical DNS system locates a cache server that is closest to your web site
user, and pulls through and caches a copy of the static asset while serving it to the user.
Subsequent requests for that asset are serviced from the closest cached copy without the
request being sent all the way back to your web server. By serving these requests from the
CDN cache server closest to your user, you can gain a considerable boost in the rendering
time of your page.

Figure 7–5 shows a simplified diagram of how a CDN caches content close to your
users. You have control over which components of your site are cached and which are
passed straight through to your system.

CHAPTER 7 ■ WEB SERVER AND DELIVERY OPTIMIZATION

183

Figure 7–5. Example of geographical distribution via a CDN

Some typical CDN systems include the following:

• Akamai: One of the best-known and most extensive CDN solutions,
not really suitable for small to medium sites because of its costs.

• CD Networks: Like Akamai, this content distribution network is
designed for large-scale deployments.

• Limelight: Another well-known CDN system, Limelight also provides
remote storage of assets as well as distribution.

CHAPTER 7 ■ WEB SERVER AND DELIVERY OPTIMIZATION

184

• Amazon CloudFront: A simple CDN integrated with Amazon EC2/S3,
notable for its contract-free pay-as-you-go model; not quite as
extensive as previously mentioned solutions

Pitfalls of Using Distributed Architectures
Distributing your application across multiple servers can lead to some issues that you
should be aware of in your planning. Here we will try to define some of the most common
problems that can occur.

Cache Coherence Issues
It is common in many applications to maintain application-level caches—for example,
caching RSS feeds. If the caching mechanism is not shared between all members of your
web server farm, you may see some cache coherence effects.

If you use a shared cache mechanism such as Memcache, which each member is
connected to, then you will not experience any effects. But if your caching mechanism
uses local resources on each web server, such as the local file system or APC caching, then
it is possible that the data cached in each machine will not be synchronized.

This can result in inconsistent views being presented to a user as he or she is switched
from server to server. Somebody refreshing the home page may see the cached RSS feed
in a different state depending on which server he or she is connected to.

Wherever possible you should use shared caching mechanisms on web server farms,
or ensure that data that is cached in local caches has a long data persistence, to minimize
the effects.

Cache Versioning Issues
If you are using a CDN to distribute and cache static or user-generated assets, then you
need to make sure that if you change the contents of any of the files being distributed,
you either change the file name or issue any command required to flush the CDN of the
old version of the file. If you don’t do this, then when you release the new version of your
application, you may find that users will see your new page design but with your old
images, .js files, or .css files.

Another common way of mitigating these problems is to name assets with a version
number—for example, /assets/v5/img/logo.jpg—and increment the version number on
each release. You don’t need to make separate copies of each version. A simple rewrite
rule will make Apache ignore the difference, but will force a CDN to re-cache the asset.

You can make your web server ignore the version element of the URL using the
mod_rewrite rule shown below.

CHAPTER 7 ■ WEB SERVER AND DELIVERY OPTIMIZATION

185

RewriteEngine on
RewriteRule ^/assets/v[.A-Za-z0-9_-]+/(.*) /assets/$1 [PT]

Now any request to the following URLs will access the same asset at
/assets/img/logo.jpg.

/assets/v1/img/logo.jpg
/assets/vtesting/img/logo.jpg
/assets/v1234/img/logo.jpg

To use this in your code, just generate all of your asset URLs using a global version
number that you increment on each release, such as the following:

If you are using a version control system like subversion to manage your code, you
could even consider using the version number of your application repository as the
version number.

Another popular method of implementing asset versioning is to use a query string–
based version number, i.e., add a “?nnn” to the end of an asset file reference. However,
this method does not work with all CDN systems; in particular, CloudFront ignores query
strings on URIs.

For example, using the query string method, you would create the versioned logo
reference using the following insert. Using this method, you do not need to use a rewrite
rule, but it is not guaranteed to work with all CDN systems.

User IP Address Tracking
One hazard of using a distributed server farm with a load balancer in front of a set of
servers is that the IP addresses that each web server “sees” as the source of the request is
not the client browser IP address, but the address of the load balancing system. This can
have several drawbacks.

It should be noted that many content distribution networks have the same problem,
in that they mask the IP address of the client’s browser. Solutions in these cases will be
specific to the network you are using.

The problems you may encounter are:

• If you use a log file analyzer to provide stats for your marketing or
product management group, the log file analyzer can become
confused by the lack of the client IP address, and can fail to calculate
the correct number of unique users and visits to your site. Most load
balancers and proxies can be configured to insert an “X-Forwarded-
For” header into the request they pass onto the web server, which
contains the true IP address of the user’s browser. The web server can
then be configured to use that value instead of the normal IP address
in its log files, restoring the stats system’s ability to discriminate
unique users.

CHAPTER 7 ■ WEB SERVER AND DELIVERY OPTIMIZATION

186

• If you are using firewall rules or other application-specific
mechanisms to block or track IP addresses in each web server, then
again they can become confused by the absence of a direct source IP
address. While application-based mechanisms can use a similar
method as just described to acquire the true IP address, firewall rules
such as address blocking generally cannot use the data sent by the
CDN or the load balancer, because they operate at the network-layer
level, and don’t understand HTTP headers. Fortunately most solutions
include the ability to define rules outside the web server, in the service
or device itself; however, the methods used are specific to the solution
and are outside the scope of this book.

For cases where there is an “X-Forwarded-For” header inserted, you can change the
format of the standard Apache access log to include it instead of the network IP address
by using the following definition inside your vhost description. Place it immediately
before the directives that define your log file.

LogFormat "%{X-Forwarded-For}i %l %u %t \"%r\" %s %b \"%{Referer}i\" \"%{User-agent}i\""
forwarded
CustomLog "logs/mysite-access_log" forwarded

If you want all of your hosts to use this format without having to decleare each one
seperately, then add it into your httpd.conf file immediately before your vhosts are
defined.

LogFormat "%{X-Forwarded-For}i %l %u %t \"%r\" %s %b \"%{Referer}i\" \"%{User-agent}i\""
combined

Domino or Cascade Failure Effects
When you use a farm of web servers, you have to pay a lot of attention to the load factors
on your servers. There is a condition called “domino failure effect” that can happen if you
do not take care in correctly scaling the number of machines you use to match the load
you need to support.

Imagine you have a web server farm consisting of two servers, each being loaded to 60
percent of its capacity, based on load average and concurrent requests, etc.

A failure of one of these two machines would result in the transfer of the entire load
on that machine to the other server. This would leave the last machine trying to deal with
a load of 120 percent of its total capacity, and it is likely to trigger a failure of that
machine, too. This is where the domino effect kicks in.

When you design a web farm, you have to make sure that the farm can tolerate the
failure of one or a number of machines depending on its size. If you use two machines,
then you must monitor the loading factors, and if the load exceeds 50 percent, you should
be planning to add an additional machine to the mix. At all times, you must be able to
support the capacity being handled by the maximum machines that you plan to support
simultaneous failure of being transferred to the rest of the farm, otherwise you are
vulnerable to this failure mode.

CHAPTER 7 ■ WEB SERVER AND DELIVERY OPTIMIZATION

187

Remember also that it’s not just failure you need to plan for. One of the big
advantages of using multiple machines is that you have the opportunity to perform
rolling upgrades or maintenance, taking each machine offline in turn.

Deployment Failures
If you have a single server, then deployment failures are immediately obvious—your site
or service does not work. But with a web farm, it’s possible to have a machine where, for
one reason or another, a deployment or update does not work, and unless you test each
and every machine after any change, you may not immediately pick up on it.

You service may appear to function correctly when viewed from the load balancer,
especially if your load balancer is attempting to keep connections with Keep-Alive on
them routed to the same server. But another user may see random or permanent failures
depending on which server he or she is connected to. Make sure that your deployment
procedures include a step to check out each server independently. To that end, it is often
a good idea to have a DNS entry mapped to each individual server (i.e., www1.example.com,
www2.example.com) so that you can perform this validation step.

Monitoring Your Application
Once you have your application deployed and operating smoothly, you have to keep it
that way. You could just use the procedure we described at the start of this chapter to re-
access your application periodically and determine if you need to scale your application
hardware up. A better solution is to install a monitoring system.

Having a real-time monitoring system installed allows you to see at a glance how your
application is performing. Most monitoring systems are also capable of triggering “alerts”
if any parameter of your system moves outside limits that you set. So as well as providing
you with confidence that your system is operating well, they can also operate as an early
warning system to alert you of trouble.

For example, if one of your web servers drops out, you can have the monitoring
system send you an e-mail or SMS message alerting you to the problem.

Some Monitoring Systems for You to Investigate
We could write a whole book about monitoring systems. Since the subject of installing
and setting up a good monitoring solution is beyond the scope of this book, we will
confine ourselves to listing some of the more popular open source solutions and allow
you to choose between them.

• Ganglia: A real-time monitoring system especially suitable for
monitoring arrays or farms of servers, as well as providing
performance statistics about individual servers, Ganglia is capable of
“rolling up” statistics to provide combined statistics for a group of

CHAPTER 7 ■ WEB SERVER AND DELIVERY OPTIMIZATION

188

servers operating in a farm. More information can be found at
http://ganglia.sourceforge.net/.

• Cacti: Another well-recommended real-time monitoring tool,
notable for its very large number of available “probes” for
monitoring every part of your application stack; more information
can be found at www.cacti.net/.

• Nagios: The grandfather of open source monitoring systems,
extremely good at system availability monitoring—huge library of
“probes”; more information can be found at www.nagios.org/.

Summary
In this chapter, we have learned how to determine the request profile of our application,
and from that determine its memory footprint. We have used that information to limit the
processes on our system to prevent disk swapping.

We have also examined some configuration file tweaks that can improve
performance, especially when serving static objects, a fact often overlooked by engineers
focused on PHP performance.

We have also looked at what we can do when our performance needs overflow the
capacity of a single server, and some of the requirements of operating in a distributed
fashion.

Additionally we have looked at what options exist for offloading the responsibility for
serving static assets such as images, .js files, and .css files.

Finally we have described some of the monitoring tools available from the open
source community, to allow you to keep a close eye on both the health and performance
of your web server, so that you can rest assured that you will have advanced warning of
any developing problems.

C H A P T E R 8

■ ■ ■

189

Database Optimization

There have probably been tens of thousands of pages written on the subject of database
optimization, a good portion of them relating to MySQL. In one chapter of this book, we
will never be able to cover the entire breadth of this subject.

Instead we will focus on what is relevant to you as a PHP programmer, and see if we
can provide some tools and rules of thumb that make sure that you can deal with the
basics, and not create any problems of performance with your application that may
require expensive surgery at a later date to rectify.

In this chapter, we will learn about how MySQL uses memory, and show you a tool
that allows you to optimize the configuration of your MySQL server to maximize its
performance. We will also look at how you can determine if your CPU or disk system is
running out of steam.

Finally, you’ll see how to spot bad queries, determine how they are being handled,
and optimize your indexes to eliminate unnecessary disk I/O.

As we can see in Figure 8–1, the database layer is one of the last layers of the
application before we hit the OS. Because of its foundation position in the application,
the whole application’s performance will often hinge on the performance of the database
server. Hence it is vitally important to shield it from excessive load and ensure it is
optimized to run as efficiently as possible.

CHAPTER 8 ■ DATABASE OPTIMIZATION

190

Figure 8–1. PHP application component stack

About MySQL
MySQL is a relational database management system (RDBMS) designed to provide access
to data stored in various storage engines using Structured Query Language (SQL).

The MySQL source code is available under the GNU General Public License, but can
also be provided under a commercial license, which provides enterprise-level support.

MySQL has inspired many derivative projects that build on various aspects of the
project for specialist applications. Alternative projects include MariaDB, OurDelta,
Drizzle, and Percona Server (XtraDB).

Specialized distributions or patch-sets are provided by organizations such as
Percona, Google, and Facebook, which add extra scalability options to the standard
MySQL distribution.

MySQL is available on all mainstream operating systems: Linux, Windows, Mac OS X,
Solaris, FreeBSD, etc.

CHAPTER 8 ■ DATABASE OPTIMIZATION

191

Understanding MySQL Storage Engines
MySQL is a layered application, with various layers for handling communications, query
parsing, optimization, and finally data storage and access (Figure 8–2).

Figure 8–2. mysqld process and storage engines

One great MySQL feature is the ability to have multiple data storage and access layers
called “storage engines.” The default distribution ships with a number of them. The two
most well known are the “MyISAM” engine and the “InnoDB” engine.

The other engines are mainly designed for specialist functions and are of little general
interest, but MyISAM and InnoDB are heavily used in most installations and merit some
further description.

CHAPTER 8 ■ DATABASE OPTIMIZATION

192

Rather than focusing on the details of each, we will list only some of the main pros
and cons of each engine, as a means of helping you understand their strengths and
weaknesses, and choose which one you should use.

Unfortunately, it’s not just a simple case of saying “xxx” is better than “yyy” and
making a simple recommendation; there are multiple attributes of each of these engines
that make them more or less suited for certain applications.

 You will have to make this decision early on in your development cycle, which may
significantly alter the way you not only architect your system, but also set up and deploy
it too.

MyISAM: The Original Engine
MyISAM is the original storage engine that was developed alongside MySQL itself. It was
designed for fast retrieval of records in predominantly read-based workloads using a
single unique key per record. For sites that are perhaps 95–100 percent read-based, it is
without a doubt the best solution. However, it has a few wrinkles that you need to be
aware of, which are listed in Table 8–1.

Table 8–1. MyISAM Pros and Cons

Pros Cons

Fast unique key lookup times Table-level locking; if your application spends
more than 5 percent of its time writing to a table,
then table locks are going to slow it down.

Supports full-text indexing Non-transactional, no start => commit/abort
capability

Select count(*) is fast. Has durability issues; table crash can require
lengthy repair operations to bring it back online.

Takes up less space on disk

MyISAM is non-transactional, in that it cannot roll back failed transactions or failed
queries.

InnoDB: The Pro’s Choice
InnoDB is an ACID-compliant (atomicity, consistency, isolation, durability) storage
engine, which includes versioning and log journaling, and has commit, rollback, and
crash-recovery features to prevent data corruption. InnoDB also implements row-level
locking and consistent non-locking reads, which can significantly increase multi-user
concurrency and performance. InnoDB stores user data in clustered indexes to reduce

CHAPTER 8 ■ DATABASE OPTIMIZATION

193

disk I/O for the most popular query type, queries based on primary keys. To maintain
data integrity, InnoDB also supports foreign keys, referential integrity constraints.

You can implement InnoDB tables alongside tables from MyISAM, even within the
same database. Table 8–2 shows the main pros and cons of the InnoDB storage engine.

Table 8–2. InnoDB Pros and Cons

Choosing a Storage Engine
As stated before, the choice between MyISAM and InnoDB is a complex one; however, we
can give you some simple rules of thumb that will help make that choice easier. The
following sections provide just some of the reasons.

When Your Application Is Mostly Read (> 95 Percent)
If when you look at the ratio of reads to writes in your application, you discover that it is
predominantly read-only, with infrequent changes to its tables, then MyISAM is definitely
the way to go. It is faster in mostly read workloads, and the lack of extensive writes to the
tables minimizes performance issues due to MyISAM’s lack of row-level locking.

When You Need Transactions and Consistency Is Important
Again a no-brainer, InnoDB is definitely the right choice here. MyISAM has no support for
transactions, and cannot roll back failed updates to maintain consistency.

Pros Cons

Transactional; queries can be abandoned and
rolled back. Crashes don’t result in damaged data.

SELECT count(*) from xxxx queries are
considerably slower.

Has row-level locking; concurrent writes to
different rows of the same table don’t end up
being serialized.

No full-text indexing

Supports versioning for full ACID capability Auto Increment fields must be first field in table;
can cause issues with migration

Supports several strategies for online backup Takes up more disk space

Improves concurrency in high-load, high-
connection applications

Can be slower than MyISAM for some simpler
query forms, but excels at complex multi-table
queries

CHAPTER 8 ■ DATABASE OPTIMIZATION

194

When You Have a Complex Schema That Has a Lot of Joined Tables
Again InnoDB is the choice of champions here. InnoDB supports referential integrity
checks such as foreign key constraints, an important feature for ensuring large, complex
schemas remain intact.

Additionally the transactional capability of InnoDB ensures that if you are updating
multiple tables with constrained relationships, any problems with part of an update can
trigger a rollback of the entire update—again an important requirement for referential
integrity.

 When Non-stop Operation Is Important
The recommendation would be InnoDB if you need to have 24x7 uptime. MyISAM does
not have the journaling, versioning, and logging that protect the data from crashes, and
almost all MyISAM backup solutions require some form of downtime, even if only
momentary.

Understanding How MySQL Uses Memory
MySQL loves memory—it just drinks it up, and the more you give it, the better its
performance will be, up to a point. There is a point where you exceed the “working set” of
your data, and beyond that point you will see very little improvement, regardless of how
much memory you give it.

The “working set” is that set of data that is in common use, You may have a 15GB
database of news articles, but if people are searching back only a maximum of two weeks
from the current date in your search interface, then your “working set” would consist of
the amount of data represented by all the articles with a publication date less than 14
days old. Once that set of data can comfortably sit in memory, then you probably won’t
see any major performance gains, especially if you have a good set of indexes.

In order for MySQL to use all the memory you have installed in your system, you have
to configure it to use it.

In the next section, we will have a look at some of the directives that are used to
control memory usage, and hence directly affect performance.

InnoDB vs. MyISAM Memory Usage
The MySQL configuration file provides a plethora of directives that can be used to control
much of the memory footprint of your server. The information that can be set is broken
down into a number of general “classes” of directives.

• Directives that affect the size of buffers and caches that are common
to all storage engines

• Directives that affect only the MyISAM storage engine

CHAPTER 8 ■ DATABASE OPTIMIZATION

195

• Directives that affect only the InnoDB storage engine; generally these
directives start with “innodb_”.

• Directives that control limits for various resources, such as number of
connections, etc.

• Directives that define properties such as character sets, paths, etc.

If you have only one or the other storage engine in play, then you only have to worry
about optimizing the memory for that engine. But with MySQL, it is possible to mix
storage engines within the same server, even have tables inhabiting different engines
within the same database, so you may need to split your memory allocation among two
different engines. If you have a mixed storage set, and there are no good reasons to be
using the smaller of the two, then it is probably a good idea to convert the database to one
single storage engine in order to make things easier to manage. Mixed storage engines
also limit some of your options when it comes to performing backups, as we shall see
later.

Per Server vs. per Connection (Thread) Memory Usage
When configuring the size of memory buffers and caches in the configuration file, you
have to bear in mind that some memory structures are allocated per connection or thread
(see Figure 8–3). MySQL will use more memory as the number of connections made to it
rises, so it is vitally important to ensure that you are careful to minimize the number of
open connections from your applications to the database server.

Let us look at how MySQL splits memory allocations between dynamic (connection-
based) memory use and fixed (instance-based) memory use.

CHAPTER 8 ■ DATABASE OPTIMIZATION

196

Figure 8–3. Overview of where mysqld allocates memory

The amount of memory consumed per active connection (dynamic) is as follows:

per_connection_memory =
 read_buffer_size // memory for sequential table scans
 +read_rnd_buffer_size // Memory for buffering reads
 +sort_buffer_size // Memory for in mem sorts
 +thread_stack // Per connection memory
 +join_buffer_size // Memory for in mem table joins

The amount of memory consumed per server (fixed) is as follows:

per_server_memory =
 tmp_table_size // memory for all temp tables
 +max_heap_table_size // max size of single temp table
 +key_buffer_size // memory allocated for index blocks
 +innodb_buffer_pool_size // main cache for InnoDB data
 +innodb_additional_mem_pool_size // InnoDB record structure cache
 +innodb_log_buffer_size // log file write buffer
 +query_cache_size // compiled statement cache

The maximum memory that MySQL can consume is then defined as follows:

max_memory = (per_connection_memory * max_connections) + per_server_memory

From this you can easily see that if you have a lot of data, then you will need to
provide sufficient memory to ensure that as many operations as possible are placed into
memory, and don’t require expensive disk reads and writes. However, an often
overlooked aspect is that MySQL requires memory per connection, so if you have a lot of

CHAPTER 8 ■ DATABASE OPTIMIZATION

197

web servers connected to your MySQL server, each with a lot of active connections, then
you may have to provide sufficient memory to support them.

We will now move on to looking at how we can determine the amount of memory that
we need to allocate to these memory buffers.

Locating Your Configuration File
Before we look at optimizing the use of memory, you need to determine where your
MySQL configuration file is, so that you can apply any changes that the process outlines.
Unfortunately there are many different opinions about where this file should be located.

The standard MySQL daemon looks for its configuration file in the locations listed in
Table 8–3. If a file exists in multiple locations, then the files are loaded in top-to-bottom
order, with directives in the lower files taking priority over the higher ones.

Table 8–3. Standard Locations That MySQL Will Search for Configuration Files

File Name Intention

/etc/my.cnf Global database options

/etc/mysql/my.cnf Global database options (as of MySQL 5.1.15)

[SYSCONFDIR]/my.cnf Global database options

$MYSQL_HOME/my.cnf Server-specific options

[CUSTOM] The file specified with --defaults-extra-file=

~/.my.cnf User-specific options

Each file is laid out as a standard .ini file format, with sections such as “[mysqld]”
and directives within each section.

After changing the configuration file, you will need to restart your server for the
changes to take effect.

Mysqltuner.pl: Tuning Your Database Server’s Memory
In this section, we are going to work through an assessment of the performance of an
existing database server, and show you how, using a few simple techniques and tools, we
can determine if the server is correctly configured.

To perform this task, we are going to use a few common or easily available tools to
gather some information about the state of our target system.

CHAPTER 8 ■ DATABASE OPTIMIZATION

198

The first useful bit of information is the first part of the “top” display for this server. It
tells us more about how much load is on the server, if it is swapping, and how much of
the total memory the mysqld process is using (Figure 8–4).

top - 09:38:13 up 235 days, 2:39, 1 user, load average: 0.62, 0.56, 0.44
Tasks: 69 total, 1 running, 65 sleeping, 0 stopped, 3 zombie
Cpu(s): 4.3%us, 0.0%sy, 0.0%ni, 86.5%id, 9.0%wa, 0.0%hi, 0.2%si, 0.0%st
Mem: 17927580k total, 17851776k used, 75804k free, 185020k buffers
Swap: 0k total, 0k used, 0k free, 4989364k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
16570 mysql 15 0 12.9g 11g 6032 S 9 66.4 3567:29 mysqld
 1 root 15 0 10304 800 672 S 0 0.0 0:07.93 init

Figure 8–4. Top command output for a moderately loaded MySQL server

From the information just shown, we can see that the server is not particularly
loaded. The load factors are only 0.62, 0.56, and 0.44, which is very low for the load on this
machine.

The machine is not swapping at all, and the CPU and memory usage for mysqld are 9
percent and 66 percent respectively, again very good. It is not taking up much CPU, and
it’s using a reasonable amount of the system memory. If the system had been using
excessive CPU or memory (swapping), we would focus our attention on reducing the
maximum memory footprint of MySQL to prevent the overflow. This particular server is
fitted with 17.5GB of RAM.

Now let’s look at the I/O performance using the iostat tools. iostat should be
installable from your distribution’s software repositories, and should be available on all
distributions. We will use it with the -d -c and -x options, which enable device, CPU, and
extended stats. Figure 8–5 shows the output that is produced when running iostat against
our example server.

$ iostat -d -c -x 2
Linux 2.6.21.7-2.fc8xen-ec2-v1.0 (db64) Wednesday, 03 November, 2010

avg-cpu: %user %nice %system %iowait %steal %idle
 9.83 0.05 2.68 1.29 0.08 86.06

Device: rrqm/s wrqm/s r/s w/s ... await svctm %util
sda1 0.00 3.46 0.02 1.33 ... 0.99 0.09 0.01
sdb 0.77 7.26 1.14 2.29 ... 50.77 4.79 1.64

avg-cpu: %user %nice %system %iowait %steal %idle
 5.84 0.00 0.00 11.68 0.00 82.49

Device: rrqm/s wrqm/s r/s w/s ... await svctm %util
sda1 0.00 15.38 0.00 3.08 ... 0.00 0.00 0.00
sdb 0.00 9.74 1.03 17.44 ... 269.78 25.58 47.23

Figure 8–5. iostat -d -c -x 2 output for a moderately loaded MySQL server

CHAPTER 8 ■ DATABASE OPTIMIZATION

199

From the iostat report, we can see that the utilization (%util) of the drive that holds
the database files (sdb) is varying in the range of 1.64=>47.23 percent. Again this is not
particularly of concern. This value (%util) shows how much of the I/O performance of the
disk channel is being used during the sample. Our drives are not overloaded—that is also
confirmed by the %iowait value, which indicates the amount of time the system is waiting
for I/O operations to complete. This is in the range of 1.29=>11.68 percent, which again
tells us that all is OK—the system is not particularly I/O bound.

If you see high %util or %iowait values, you should look at the performance of your
drives, or look at opening up some of the MySQL memory buffers to reduce the amount
of times the MySQL server has to hit the disks. But this system does not exhibit any issues
with I/O performance, so we shall move on.

Now you can start to examine the internals of the MySQL server process itself. We will
introduce a very cool open source tool called mysqltuner.pl, which takes a lot of the hard
work out of configuring and checking a database server. While it is no substitute for
having a good in-depth knowledge of the tuning process, it is, however, a great way of
getting a fast “sanity” check for your server setup and spotting obvious cases of mis-
configuration. The script will also examine the recent usage of the machine and suggest
changes that would improve performance based on actual use.

You can run this script against your live server. It is not intrusive and does not impose
any significant load in itself, so you can use it to health check your machine on a regular
basis.

To install the script, you need to download it to your database server. The author of
the script has registered the domain mysqltuner.pl and made the script the equivalent of
the home page. So to download and install it, just follow the step here.

$wget mysqltuner.pl -O mysqltuner.pl
$chmod +x mysqltuner.pl

You should now be able to run the script as shown here. You will be prompted for a
username and password that have rights to your database server. Once entered, the script
will inspect your server and produce something similar to the output shown in Figure 8–6.

CHAPTER 8 ■ DATABASE OPTIMIZATION

200

$./mysqltuner.pl

 >> MySQLTuner 1.0.1 - Major Hayden <major@mhtx.net>
 >> Bug reports, feature requests, and downloads at http://mysqltuner.com/
 >> Run with '--help' for additional options and output filtering
Please enter your MySQL administrative login: root
Please enter your MySQL administrative password:
[!!] Successfully authenticated with no password - SECURITY RISK!

-------- General Statistics --
[--] Skipped version check for MySQLTuner script
[OK] Currently running supported MySQL version 5.0.45-log
[OK] Operating on 64-bit architecture

-------- Storage Engine Statistics ---
[--] Status: -Archive -BDB -Federated +InnoDB -ISAM -NDBCluster
[--] Data in MyISAM tables: 589M (Tables: 649)
[--] Data in InnoDB tables: 11G (Tables: 138)
[!!] Total fragmented tables: 32

-------- Performance Metrics ---
[--] Up for: 19d 21h 25m 22s (237M q [138.423 qps], 13M conn, TX: 688B, RX: 30B)
[--] Reads / Writes: 91% / 9%
[--] Total buffers: 10.1G global + 21.4M per thread (500 max threads)
[!!] Maximum possible memory usage: 20.5G (119% of installed RAM)
[OK] Slow queries: 0% (2K/237M)
[OK] Highest usage of available connections: 7% (39/500)
[OK] Key buffer size / total MyISAM indexes: 512.0M/204.4M
[OK] Key buffer hit rate: 100.0% (45M cached / 6K reads)
[!!] Query cache efficiency: 0.4% (487K cached / 112M selects)
[OK] Query cache prunes per day: 0
[OK] Sorts requiring temporary tables: 2% (133K temp sorts / 6M sorts)
[!!] Temporary tables created on disk: 38% (5M on disk / 14M total)
[OK] Thread cache hit rate: 99% (141 created / 13M connections)
[!!] Table cache hit rate: 1% (512 open / 36K opened)
[OK] Open file limit used: 29% (738/2K)
[OK] Table locks acquired immediately: 99% (4M immediate / 4M locks)
[!!] InnoDB data size / buffer pool: 11.1G/8.0G

-------- Recommendations ---
General recommendations:
 Run OPTIMIZE TABLE to defragment tables for better performance
 Reduce your overall MySQL memory footprint for system stability
 Temporary table size is already large - reduce result set size
 Reduce your SELECT DISTINCT queries without LIMIT clauses
 Increase table_cache gradually to avoid file descriptor limits
Variables to adjust:
 *** MySQL's maximum memory usage is dangerously high ***
 *** Add RAM before increasing MySQL buffer variables ***
 query_cache_limit (> 512M, or use smaller result sets)
 table_cache (> 512)
 innodb_buffer_pool_size (>= 11G)

Figure 8–6. Output from mysqltuner.pl on a moderately loaded server

CHAPTER 8 ■ DATABASE OPTIMIZATION

201

Under the hood, the tuner script is accessing the database server and running two
queries, “SHOW STATUS” and “SHOW VARIABLES.” The former returns statistics about
the current performance of the server, number of queries, efficiency of the caches, etc.
The latter retrieves the size of all the internal data structures. From these two sets of
information, the tuner script calculates the results just shown and uses a set of built-in
rules to make recommendations.

This server is a medium-sized database server, which is supporting a site with daily
user traffic of about 35,000 unique users per day, so it gets a fair number of queries.

While this server is performing fine, it still exhibits a number of issues, which we will
examine, and we will determine what can be done about them.

Possible Issues with Our Example Server
The preceding mysqltuner.pl report has highlighted two possible issues—one potentially
serious, and the other not so serious.

The first issue is that the system is configured to use too much memory. It claims that
it would use 119 percent of system RAM, but our inspection of the server memory usage
says we are using only 66 percent. So what gives?

The clues come from the following lines in the report.

[--] Total buffers: 10.1G global + 21.4M per thread (500 max threads)
[!!] Maximum possible memory usage: 20.5G (119% of installed RAM)

[OK] Highest usage of available connections: 7% (39/500)

Remember the formula we saw earlier for calculating maximum memory usage? Part
of that was a per connection value of 21.4MB. And since we have a configured maximum
number of connections of 500, that adds up to about 10.7GB. We also have a fixed
memory consumption of 10.1GB per server, so the total RAM that MySQL could consume
is 20.8GB, which is about 15 percent more than the 17.5GB of RAM that is actually
installed in the machine.

What this is saying is that if we allowed the number of connections to grow to its
maximum of 500, the machine would be forced to swap. But the maximum amount of
used connections is only 7 percent (39). The server has been running for 20 days, and the
maximum number of connections has never risen over 39. So the first action that we can
take is to reduce the maximum connections from 500 to 100, reducing the per connection
pool total to 2.14GB. Now the total of 12.24 GB fits comfortably into the system’s RAM of
17.5GB, and the risk of it going into a swap state is removed.

This now leaves us with about 4GB of RAM to spare, so the second improvement we
can make is to increase the innodb_buffer_pool from 8GB to 11GB, so that the whole
working set now fits into memory. As you can see, that was one of the recommendations
that the tuner script made.
innodb_buffer_pool_size (>= 11G)

Finally the tuner script recommends that we up two other buffers, so we will split the
final 1GB between the two, and we are done. Our server is back in tip-top shape.

CHAPTER 8 ■ DATABASE OPTIMIZATION

202

query_cache_limit (> 512M, or use smaller result sets)
table_cache (> 512)

It should, however, be noted that this tuning is based on the load and query mix that
the server has encountered so far. It would probably be a good idea to run the tuner once
a month so you can get early warning of a developing issue that may require a hardware
upgrade, such as adding extra RAM.

Tuning InnoDB
InnoDB in particular is sensitive to being configured with the correct amount of memory.
If you starve InnoDB of sufficient memory to buffer a reasonable amount of its data set in
memory, then its performance can deteriorate rapidly. Here we provide a couple of
simple examples of InnoDB memory settings that work well for a mid-range DB server.

The following settings are based on a 16GB database server, which is a pretty
common size.

• innodb_file_per_table: By default InnoDB creates a file per database
and manages the tables within it. This can mean it is difficult to
recover disk space if a table grows and then shrinks in size. Setting this
option will make InnoDB use a separate data store file per table. If you
want to change this setting on an existing database, then you should
back up the database, drop it, change the option, restart the server,
and then reload the database from the backup.

• innodb_buffer_pool_size=: If you are using only InnoDB tables, then
set this to about 70 percent of available memory. If you have a mixed
MyISAM/InnoDB setup, then back it up a little to give MyISAM some
space.�

• innodb_log_buffer_size=4M: This size would deal with most record
sizes and provide a reasonable performance. If you have large text
fields or blobs or have unusually large record sizes, then be prepared
to take it up a bit.

• innodb_log_file_size=256M: This is recommended and strikes a good
balance between the speed of recovering a database and having good
runtime performance.

• innodb_flush_log_at_trx_commit=2: This controls how often the log
file is flushed to disk. If you can tolerate the loss of a few records in the
event of a crash, then using a value of 2 eases up the number of disk
writes, speeds up performance, and reduces I/O load on the drives.

CHAPTER 8 ■ DATABASE OPTIMIZATION

203

Finding Problem Queries
Tuning the server configuration is only one way of improving performance. By far the
most common source of performance issues is badly structured queries or missing
indexes.

MySQL has a built-in mechanism for logging low performance queries to a log file, so
that they can be identified and optimized. To enable the slow query log on MySQL, you
have the following two lines to the server configuration file, under the “[mysqld]” section.

[mysqld]
log-slow-queries = /var/log/mysql/mysqld-slow.log
long_query_time=1

You can substitute your own path as required, but make sure that the MySQL process
can write to that folder. The long_query_time directive sets the threshold for execution
that categorizes a query as slow. The example given is one second, so any query that takes
longer than one second to run is logged to the slow query log file.

Let’s look at an example. In my database system, I have a table called “articles,” which
has an “article_title” field. My application needs to fetch the first ten article titles sorted
by title, so it can page through the articles ten at a time. The interface supports sorting by
each of the columns displayed in the admin tool, of which the article title is one. The
administrator has complained that when he switches to the sort-by-title view, the
application becomes slow and moving from page to page is painful.

While we can all probably guess what the issue is with this query, it is useful to walk
through the process of determining where the problem lies and correcting it, using tools
that would help if it were a more complex problem.

The query that the application issues to get the column view data for the first page is
as follows:

SELECT article_title from articles order by article_title limit 10;

When I run my query in the MySQL query tool, I get the results shown in Figure 8–7.
mysql> select article_title from articles order by article_title limit 10;
+--+
| article_title |
+--+
| " I want to beat Ferguson's United " |
| "...one more triumph for the crass stupidity rapidly replacing culture in this country..." |
| "A bad day at the office"... |
| "A case Metzelder will be no more" |
| "A Smarter (and Cost-Efficient) Way to Fight Crime" |
| "A Strike Fit To Win Any Game Of Football" |
| "A Win, A Win, My Kingdom For A Win" |
| "Action" Jackson Asiku will carry the hopes of two nations on Friday night |
| "Al Arabi Sports" logo unveiled |
| "All" or Nothing |
+--+
10 rows in set (6.92 sec)

mysql>

Figure 8–7. Example of a sorted article title query before optimization

CHAPTER 8 ■ DATABASE OPTIMIZATION

204

A time of 6.9 seconds—ouch, that’s not very good. It’s going to take a long time for our
article administrator to page through all the articles if this is the query that is feeding his
admin screen. So let’s look at our slow query log.

Time: 101103 23:03:00
User@Host: root[root] @ localhost []
Query_time: 6.920107 Lock_time: 0.000111 Rows_sent: 10 Rows_examined: 123675
SET timestamp=1288796580;
select article_title from articles order by article_title limit 10;

The slow query log is telling me that in order to locate my ten records and send them
to me, it had to read 123,675 records from the articles table (the entire contents of the
database table), and given that the page size of an article record is quite large because it
contains all the article text too, that is clearly a lot of data to read from the disk. In fact, in
our particular case, it amounts to almost 400MB of data in that table alone.

Normally you would use the slow query log file to find the queries that were causing
problems; in this case, we had already spotted the problem or had the problem reported
to us, and used the log to confirm our suspicions.

In the next section, we will use some tools built into MySQL to work out why the
query is so slow and determine how we can correct for it.

Analyzing Problem Queries
Having located our problem query, we can use a facility built into MySQL to show us the
steps that the MySQL server would take to retrieve the data. This should give us a good
clue about where the problem lies.

MySQL has a query analyzer that examines the query and, using information about
the table that it targets, some statistics about the table itself, and its list of indexes. The
result of this analysis is what is called an “execution plan,” the list of steps it will perform
to execute the query.

We can instruct MySQL to display the “execution plan” instead of running the query,
so we can see what it would have done. To do this, we use the “Explain” syntax. Adding
“Explain” to the front of any query will return a representation of the internal execution
plan.
mysql> explain select article_title from articles order by article_title limit 10;
+----+-------------+----------+------+---------------+------+---------+------+--------+----------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+----------+------+---------------+------+---------+------+--------+----------------+
| 1 | SIMPLE | articles | ALL | NULL | NULL | NULL | NULL | 123675 | Using filesort |
+----+-------------+----------+------+---------------+------+---------+------+--------+----------------+

So what have we learned from this? The important piece of information is the “using
filesort” and the reference to 123,675 rows, which basically means take a copy of all the
data in the table and sort it using quicksort so we can determine the first 10 records and
send those back.

Adding an index on the “article_title” field should improve performance significantly,
as the server would not have to create a temporary table and sort the contents. It would
be able to determine which records it had to deliver in the correct order, by traversing the

CHAPTER 8 ■ DATABASE OPTIMIZATION

205

first ten items in the index, which is ordered, instead of the data file, which is not. So we
added an index to the table with the following:

CREATE INDEX title_idx on articles (article_title);

And on re-running explain on our query, we can see that the sort is now using our
index.
mysql> explain select article_title from articles order by article_title limit 10;
+----+-------------+----------+------+---------------+-----------+---------+------+--------+----------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+----------+------+---------------+-----------+---------+------+--------+----------------+
| 1 | SIMPLE | articles | index| NULL | title_idx | 767 | NULL | 10 | Using index |
+----+-------------+----------+------+---------------+-----------+---------+------+--------+----------------+

You can see that the number of rows that have been read has reduced down to ten,
the same number that our query requests.

Now if we re-execute our query, we can see the effect of applying the index (Figure 8–8).
mysql> select article_title from articles order by article_title limit 10;
+--+
| article_title |
+--+
| " I want to beat Ferguson's United " |
| "...one more triumph for the crass stupidity rapidly replacing culture in this country..." |
| "A bad day at the office"... |
| "A case Metzelder will be no more" |
| "A Smarter (and Cost-Efficient) Way to Fight Crime" |
| "A Strike Fit To Win Any Game Of Football" |
| "A Win, A Win, My Kingdom For A Win" |
| "Action" Jackson Asiku will carry the hopes of two nations on Friday night |
| "Al Arabi Sports" logo unveiled |
| "All" or Nothing |
+--+
10 rows in set (0.00 sec)

mysql>

Figure 8–8. Example of our article title query after optimization

This was a vast improvement in the performance of the query. It’s now executing so
fast that MySQL is not able to display a value for the duration of the query. So now our
admin tool will zip from page to page in sort-by-article-title mode, and my administrator
is a happy man again and owes me a big favor.

Recommendations for PHP Database Applications
There are a couple of design issues that you really should consider before you start coding
your application. In many cases, developers tend to go with the defaults that come out of
the box on an initial MySQL setup. More often than not, the schema and configuration
choices made by the developer inevitably end up becoming the defaults for the
production system. Getting these wrong from the start can often mean an expensive
process of trying to fix them after your application has gone live, and you hit the
problems for the first time.

CHAPTER 8 ■ DATABASE OPTIMIZATION

206

Maintaining Separate Read and Write Connections
It is a good idea to initially create two database connections, one for read and one for
write, and allow different database servers to be connected to them. If you have only one
server, then set them to be the same as each other.

Then as you are coding your application, any query that changes data (UPDATE,
INSERT, DELETE, etc.), you make against the write connection, and any query that is a
pure SELECT or read, you make against the read connection.

If you have to scale your application, you can separate out the database servers to
different machines and connect them via replication. But for that to work, you have to
make sure all writes are directed to your master server, and all reads are directed to a
suitable slave server.

By using two connections, you make it easy to reconfigure your application to
support a number of different scaling options, using one or more slaves to increase query
bandwidth. Building this in from the start takes very little effort, but significantly
increases your options later on.

Using “utf8” (Multi-byte Unicode) Character Set by Default
In this day and age, you should be writing all your applications using the “utf8” character
set for storage and for page rendering. The overhead in storage density is minimal, and
for ordinary ASCII text, there is no overhead at all. But if you have to support storage of
any alternative languages to English, or handle foreign names and places in your data set,
then you will need to have the capability. Converting a good-sized database from the
default ISO-8859-1 format to “utf8” after you have launched your service is a daunting
and time-consuming task. Give yourself a break and use “utf8” everywhere from the very
start.

You can force all new database, tables, and text fields to be created by default in
“utf8” by setting some parameters in the MySQL configuration file.

[mysqld]
collation_server=utf8_unicode_ci�
character_set_server=utf8
skip-character-set-client-handshake

The last directive instructs the server not to perform negotiation for the character set
with the clients. By setting this option, you can ensure that all your clients and
connections are set to operate in “utf8” without having to specifically configure this on
the my.cnf files of each of the servers connecting to this database server. It is a good way
of ensuring consistent behavior from all the services interacting with your MySQL server,
and to make sure you don’t have character set conversion being applied on all data being
read from or written to this server, which would impact performance.

Another indirect advantage you get by defaulting the character set, and turning off
negotiation, is that you then don’t need to send a “set NAMES utf8” statement to the
connection to ensure it switched to utf8. While this statement is very small and does not
take long to execute, it requires a round trip to and from the server, and many PHP

CHAPTER 8 ■ DATABASE OPTIMIZATION

207

frameworks issue it automatically before every query if you set the database connection
to utf8. With the configuration just shown, you can avoid the need to set the connection
character set, and avoid the repetitive sending of the statement.

The preceding directives also determine what happens if you create a database or
table schema without any specific character-set schema attributes. Any entity created
without the “[DEFAULT] CHARACTER SET utf8” attribute will automatically be set to
“utf8” regardless. Watch out, however, if you are using a tool to manipulate your
schemas, such as phpMyAdmin. Be careful that it does not apply its own defaults and
create schema attributes that override the default choices you have just set.

Using “UTC” Date Format
Likewise it is a good idea to use a common date format to store all date/time values. By
doing so, it is easy to compare dates and times without worrying about time zones.
Converting dates to and from UTC to a local time zone is easy in PHP.

In order to set MySQL to operating in UTC time zone, you have to make sure that the
time zone support is installed in your MySQL instance. This is a database of information
about specific time zones that is usually not installed by default.

To install time zone support in MySQL, first you have to find your OS time zone
database. On most Linux systems, it can be found in /usr/share/zoneinfo. Once you have
located the time zone database, you can use the “mysql_tzinfo_to_sql” utility supplied
with MySQL to convert the time zone information into an SQL script suitable for loading
into your MySQL system.

$ mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -u root mysql
Warning: Unable to load '/usr/share/zoneinfo/Asia/Riyadh87' as time zone. Skipping it.
Warning: Unable to load '/usr/share/zoneinfo/Asia/Riyadh88' as time zone. Skipping it.
Warning: Unable to load '/usr/share/zoneinfo/Asia/Riyadh89' as time zone. Skipping it.

You may see some warnings as just shown, which can safely be ignored.
Having loaded the time zone database into MySQL, you can alter the MySQL

configuration file to specify UTC as the default time zone.
Open the configuration file, and add the following directive to the “[mysqld]” section

of the file.

[mysqld]
default-time-zone=UTC

Restart your MySQL server, and it should now default all date/time values to UTC. If,
for some reason, your MySQL server does not start, it is likely that the time zone database
did not load and it was unable to set the default time zone. Check your mysqld.log file for
any evidence that this is the case, and if it is, then double-check the installation of the
time zone info database. If you try to set the default time zone without installing the time
zone support database, then MySQL will not start.

PHP includes many functions for converting values to and from the UTC date format,
many of which are “locale”-sensitive, so it is easy to create user interfaces that allow the
user to set a preferred time zone, and have all dates/times displayed in his or her local
time zone.

CHAPTER 8 ■ DATABASE OPTIMIZATION

208

Summary
In this chapter, we have learned about the overall structure of the MySQL server, and how
it supports pluggable storage engines. We have learned about the characteristics of those
storage engines, and how to choose one that is relevant to our application. We have
examined how MySQL uses memory and learned some techniques for configuring
MySQL to make best use of the memory available to it. We have also learned how to
detect inefficient queries and learned a process for analyzing them and making
corrections.

Throughout this book, we have shown you how to diagnose performance problems at
each level of the application stack, from the PHP runtime, to the application code, to the
web servers and finally onto the database server itself. In each case, we have shown you
how to make changes to eliminate performance bottlenecks, or different coding strategies
that minimize the effects.

Writing fast, efficient, scalable code is not about applying a set of rules of thumb. It is
more about having a deeper insight into what is happening under the hood at each stage
of your app, and coding to avoid the bottlenecks that can choke your application.

We hope that the tools and techniques that we have outlined in this book will help
you shine a spotlight on the deeper, darker recesses of your applications, and develop a
more complete understanding of how to write great apps.

A P P E N D I X A

■ ■ ■

209

Installing Apache, MySQL, PHP,

and PECL on Windows

Throughout the book, we outlined methods of improving different web servers and
database configurations but stopped short of outlining a step-by-step guide to installing
these tools. This appendix will act as a reference to help you install the main technologies
shown here:

• Apache 2.2

• MySQL 5.0

• PHP 5.0

• PECL

Installing Apache
As of this writing, Apache has released version 2.2.x of its free web server. Using the web
site http://httpd.apache.org, click the “Download! from a mirror” link on the left-hand
side, as shown in Figure A–1.

APPENDIX A ■ INSTALLING APACHE, MYSQL, PHP, AND PECL ON WINDOWS

210

Figure A–1. Apache HTTP Server Project home page

Select from one of the mirror sites shown in Figure A–2.

Figure A–2. Apache Server Windows and Unix download links

Windows users should download the Windows installer file, apache_2.2.x-win32-x86-
no_ssl-r2.msi.

Once the file has completely downloaded, open the installer. The initial window will
be a security warning, and depending on your version of Windows, ignore it and click the
Run button to get into the installation.

The next window is the Apache setup window. For those of you that have a previous
version of Apache installed, you might receive another pop-up asking you to remove the
previous installation before you begin with the new one. If you do not want to upgrade,
skip these steps dealing with Apache. For everyone else, click the Next button in the initial
window, shown in Figure A–3.

APPENDIX A ■ INSTALLING APACHE, MYSQL, PHP, AND PECL ON WINDOWS

211

Figure A–3. Apache Installation Welcome window

Now select “I accept the terms in the license agreement,” and click Next in the
window shown in Figure A–4. Once you reach the next window, click the Next button
again.

Figure A–4. Apache Server Terms and Conditions window

APPENDIX A ■ INSTALLING APACHE, MYSQL, PHP, AND PECL ON WINDOWS

212

Soon we come to the window shown in Figure A–5. Here, we need to fill in all the
fields. Since this will be a web server operating on our desktop, we can add in any
network domain and server names into the “Network Domain” and “Server Name” fields
respectively. I chose to enter “localhost” for both of those fields. For the “Administrator’s
Email Address” field, enter your e-mail address, and click Next.

Figure A–5. Apache Server Information Setup window

Next we’re going to start installing the software, but we need to tell the Apache
installation wizard where to install it. The window shown in Figure A–6 allows us to do
just that. Click the Custom radio button, and then click Next.

APPENDIX A ■ INSTALLING APACHE, MYSQL, PHP, AND PECL ON WINDOWS

213

Figure A–6. Apache Setup Type window

In this screen, shown in Figure A–7, we click the Change button.

Figure A–7. Apache Custom Setup window

APPENDIX A ■ INSTALLING APACHE, MYSQL, PHP, AND PECL ON WINDOWS

214

For ease of use throughout this book, I recommend you change the location of the
installation directory to C:\Apache; of course, if you wish to save Apache in an alternative
location, that’s fine, too. For future reference, remember that C:\Apache will be referred to
as APACHE_HOME from here on out. Click OK and then click Next (see Figure A–8).

Figure A–8. Apache Change Current Destination window

Finally you’re at the last window. Click Install and watch it go. That’s all there is to it.
We have successfully installed a web server on our computer.

APPENDIX A ■ INSTALLING APACHE, MYSQL, PHP, AND PECL ON WINDOWS

215

Post–Apache Installation
If there were no errors during the installation of Apache, you should now see the Apache
Monitor icon in your task bar, as shown in Figure A–9. Right-click it and click “Open
Apache Monitor”. This is the tool that allows us to start and stop our web server.

Figure A–9. Windows task icon for the Apache Monitor

Let’s now make sure Apache is running on our computer. In order to do this, we need
to call Apache from our web browser, so pull up your favorite web browser and type in
the URL http://localhost. You should now see the Apache welcome home page, as
shown in Figure A–10. If you have any issues and can’t see the page, look in the Apache
error logs, located at APACHE_HOME/logs/error.log. Many times the problem can be found
here and be easily taken care of by simply reading the errors saved to these files

APPENDIX A ■ INSTALLING APACHE, MYSQL, PHP, AND PECL ON WINDOWS

216

Figure A–10. Apache Server welcome web page

Installing MySQL
Installing MySQL is also straightforward. Head to the web site www.mysql.com, and
download the latest software by clicking the Downloads(GA) link on the top menu bar.
Once you reach the screen shown in Figure A–11, click the “MySQL Server” link in the
left-hand menu bar.

Figure A–11. MySQL Downloads home page

You should be taken further down the page and should now scroll down until you
reach a portion of the page that looks like Figure A–12.

APPENDIX A ■ INSTALLING APACHE, MYSQL, PHP, AND PECL ON WINDOWS

217

Figure A–12. Mysql Windows download links

MySQL, like Apache, has given us the option to install the software in either Windows
or Unix. Windows users should download the Windows installer, Windows ZIP/Setup.EXE
(x86), and Unix users should download the appropriate installer for their Unix flavor by
selecting “UNIX OS” from the drop-down menu. Once you select a package, you will be
asked to log into your account. Click “No thanks, just take me to the downloads!” shown
in Figure A–13, and a list of mirror links will be displayed. Select one of the mirror links,
and start downloading.

APPENDIX A ■ INSTALLING APACHE, MYSQL, PHP, AND PECL ON WINDOWS

218

Figure A–13. Mysql Download Installer login window

As soon as the download has completed, open the .zip file and run the setup file to
start installing MySQL. On the initial welcome window, simply click Next.

In the Setup Type window, we’re presented with the option of setting up a typical
installation or a custom installation. Click the Custom radio button, and then click Next.
This will allow us to install MySQL in a directory of our choice.

As soon as the Custom Setup window is displayed, click Change and type in your
MYSQL_HOME directory. For simplicity we will install our MySQL files under the location
C:\mysql. Going forward in subsequent chapters, we will refer to this path as MYSQL_HOME.

Click OK and then click Next. Once you reach the “Ready to Install the Program”
window (Figure A–14), click Install and watch MySQL install. If you are prompted with
additional screens, click Next.

APPENDIX A ■ INSTALLING APACHE, MYSQL, PHP, AND PECL ON WINDOWS

219

Figure A–14. MySQL Ready to Install window

If there were no errors during the MySQL installation process, MySQL has been
installed on our computer and a configuration window will pop up. Let’s go through the
steps of configuring our instance of MySQL now.

Configuring MySQL
Configuring MySQL will only take a minute. On the initial first window, we click Next to
start the configuration process (Figure A–15).

APPENDIX A ■ INSTALLING APACHE, MYSQL, PHP, AND PECL ON WINDOWS

220

Figure A–15. MySQL Config Welcome window

In the window shown in Figure A–16, we will click the “Standard Configuration”
button to speed up the process of configuration and then click Next.

Figure A–16. MySQL Config Type window

APPENDIX A ■ INSTALLING APACHE, MYSQL, PHP, AND PECL ON WINDOWS

221

In the next screen, we need to accept the default setting, “Install as Windows Service,”
which is already selected for us (shown in Figure A–17), and click Next.

Figure A–17. MySQL Config Windows Options window

In one of the last windows we need to go through before completing the MySQL
configuration process, we set up a password for our setup. Enter a password for all two of
the fields, leaving “Modify Security Settings” checked, and then click Next (Figure A–18).

Figure A–18. MySQL Config Security Options window

APPENDIX A ■ INSTALLING APACHE, MYSQL, PHP, AND PECL ON WINDOWS

222

Finally, click the Execute button, and watch the check marks come up. If the
installation and configuration completed successfully, you will see a MySQL window with
four check marks in the small bubbles, indicating there were no errors, as shown in
Figure A–19. Congratulations—we’re done with the setup. Click Finish and relax.

Figure A–19. MySQL Processing Config window

Installing PHP
The PHP installer can be downloaded at www.php.net. Again, like most of the downloads
thus far, we have an option to download either a Unix installer or a Windows executable.
In this case, if you are using a Windows environment, download the .zip file, not the
Windows .exe installer. To find the .zip file, click the link for “Current PHP 5 Stable” on
the right of the page under the Stable Releases header, and look for the .zip package
under the Windows Binaries heading. Once you click that link, you will be presented with
a list of mirrors to download from. Click the link for a mirror in your country to begin the
download. The .zip file contains added extensions and libraries that we will need.

As soon as the PHP installer finishes downloading, extract the files to a directory of
your choosing. I’m installing the files in the directory C:\PHP5\, and I recommend you do
the same for ease of use throughout this book.

APPENDIX A ■ INSTALLING APACHE, MYSQL, PHP, AND PECL ON WINDOWS

223

Getting PHP5 and MySQL to Talk
When all the files have been extracted, we need to modify the httpd.conf file that was
installed by Apache. Go to the directory APACHE_HOME/conf and open the file.

This file allows Apache to be manually configured. Since Apache by default does not
know how to interpret PHP files, we need to tell Apache what translator it needs to use
when a request for a .php file by our users is made. If we miss this step this far in the
process of installing our environment, any time we try to load a .php file on any browser,
the browser will either prompt us to download the file or in some cases simply display the
PHP code on the page. So let’s tell Apache what translator to use. In this case, the
translator is the PHP engine we finished installing. Toward the end of the file, type in this
text:

AddType application/x-httpd-php .php
PHPIniDir "C:/PHP/"
LoadModule php5_module "C:/PHP/php5apache2_2.dll"

■ Note By issuing the commands apachectl start, apachectl stop, or apachectl restart in the
Windows shell (Run cmd) or the Unix shell, we can start, stop, or restart Apache. Of course, you can also
click the Apache Monitor icon in the system tray and select Apache2 Stop or Apache2 Restart.

Save the file and restart Apache. This is done by using the Apache Service Monitor.
Bring up the Apache Service Monitor window, and click the Restart button on the right-
hand side. You will see a success message if everything went well.

To test out PHP installation, create a phpinfo PHP script by referring to the next
section, “Creating a phpinfo() Script.” If all went well, you should now see Apache
translating PHP into a web page that looks like Figure A–20.

Creating a phpinfo() Script
Throughout the book, we referred to a phpinfo() script that allows you to check if a PHP
extension was properly installed and if PHP configuration settings were set correctly. This
PHP script contains no more than three lines of code, shown in Listing A–1.

Listing A–1. phpinfo() Script Code

<?php
echo phpinfo();
?>

To create the phpinfo() script, open a text file and copy the code shown in Listing A–1.
Save the file as info.php and place it within your web server. If you have been following

APPENDIX A ■ INSTALLING APACHE, MYSQL, PHP, AND PECL ON WINDOWS

224

the installation instructions of Apache within the appendix, place the file within the
APACHE_HOME/htdocs location.

Load the .php file using a browser by loading the URL http://localhost/info.php to
view the PHP settings your current installed PHP installation is using. You will see an
HTML page with the information shown in Figure A–20.

Figure A–20. PHP info page

Scroll down the page, and review the different configuration settings and modules
your current PHP installation is using. You can find a list of modules installed and server
settings, as well as the location to the php.ini file loaded within this page.

Installing PECL
PECL is a PHP extension repository containing some of the best PHP extensions available
for PHP developers. They range from encryption to XML parsing, with the complete list of
extensions located on its official web site, http://pecl.php.net.

The majority of the extensions outlined in this book can be quickly and effortlessly
installed using PECL and its command-line tool. Here, we will install PECL on Windows
by initially installing PEAR, a package repository for PHP.

The initial step to installing PECL is to install PEAR. PEAR, as mentioned before, is a
package repository for PHP. To begin installing PEAR, you are required to have PHP
installed on your system. By now you should have PHP installed in your PHP_HOME
directory.

Open a command-line window by typing cmd into the Start->Run… window. Once the
window is open, navigate into the directory where you have PHP installed, and type in php
go-pear.bat. This will install PEAR as well as PECL for you. If there were no errors during

APPENDIX A ■ INSTALLING APACHE, MYSQL, PHP, AND PECL ON WINDOWS

225

installation, PECL should now be installed. To verify the installation, type pecl into the
command-line window. You should see the help menu, as shown in Figure A–21.

Figure A–21. PECL help menu

A P P E N D I X B

■ ■ ■

227

Installing Apache, MySQL, PHP,

and PECL on Linux

In Appendix A, we saw how to install a full WAMP stack on Windows. In this appendix, we
will show you how to install the equivalent LAMP stack on Linux.

Because there are many flavors and variations of Linux, we will focus on the two
largest distributions:

• RPM/yum–based in the form of Fedora 14, which is representative of
Red Hat–, CentOS-, and Fedora-based distributions

• Debian-based (Ubuntu 10.10)

By focusing on these two major platforms, we hope to cover the majority of Linux-
based development workstation setups, as the focus of the book is on the developer.

Fedora 14
Fedora is an RPM/yum–based Linux distribution, developed by the Fedora Project and
supported by Red Hat. Fedora shares a common packaging methodology and file system
layout with Red Hat RHEL and CentOS distributions, commonly used in high-reliability
web serving solutions.

Fedora 14, the latest incarnation, code-named “Laughlin,” was released on November 2,
2010.

The sequence of terminal commands shown in Listing B–1 can be used to create a
LAMP stack on Fedora 14, which has all of the components discussed in the book and
also includes all of the tools that have been described.

APPENDIX B ■ INSTALLING APACHE, MYSQL, PHP, AND PECL ON LINUX

228

Listing B–1. Installation Instructions for Fedora 14

$su -
Install Apache
$yum -y install httpd

Install Mysql
$yum -y install mysql-server
$yum -y install mysql

Install PHP
$yum -y install php
$yum -y install php-mysql
$yum -y install php-pecl-apc
$yum -y install php-gd
$yum -y install php-pecl-xdebug

Install phpinfo page on http://localhost/phpinfo.php
$echo “<?php phpinfo(); ?>” > /var/www/html/phpinfo.php

Install Memcache and php extension
$yum -y install memcached
$yum -y install php-pecl-memcache

Install Benchmarking and monitoring tools. Note: iostat is in systat package
$yum -y install apachetop
$yum -y install siege
$yum -y install systat

Set services to start at boot time
$chkconfig mysqld
$chkconfig memcachd
$chkconfig httpd

Start the services.
$service httpd start
$service mysqld start
$service memcached start
$exit

APPENDIX B ■ INSTALLING APACHE, MYSQL, PHP, AND PECL ON LINUX

229

Component Versions and Locations
The versions of the application components installed using the foregoing procedure on
Fedora 14 are shown in Table B–1. These versions were correct at the time of publication.
Later updates to the packages may result in versions that are greater than shown.

Table B–1. Fedora 14 Component Versions and Configuration File Locations

Component Property Value

Apache version Apache/2.2.17 (Fedora)

 Configuration directory /etc/httpd/conf

 Default Access Log /var/log/httpd/access_log

 Default Error Log /var/log/httpd/error_log

 Default document root /var/www/html

Mysql Version 5.1.52

 Configuration file /etc/my.cnf

 Default Socket /var/lib/mysql/mysql.sock

 Data Dir /var/lib/mysql

 Log File /var/log/mysqld.log

PHP Version 5.3.3

 Default PHP.ini file /etc/php.ini

 Configuration directory /etc/php.d

APPENDIX B ■ INSTALLING APACHE, MYSQL, PHP, AND PECL ON LINUX

230

Ubuntu 10.10
Ubuntu is a Linux distribution based on the Debian GNU/Linux distribution format. The
name Ubuntu means “humanity toward others” in the Bantu-based languages,
originating from South Africa.

Ubuntu is mainly intended as a desktop distribution, although server versions exist.
This focus on being a desktop distribution makes it an ideal developer’s workstation OS,
often integrating the latest development tools and IDEs. Many commercial tools are also
distributed specifically for Ubuntu.

Ubuntu version 10.10, code-named “Maverick Meerkat,” was released on October 10,
2010.

The sequence of terminal commands shown in Listing B–2 can be used to create a
LAMP stack on Ubuntu 10.10 that has all of the components discussed in the book and
also includes all of the tools that have been described.

Listing B–2. Installation Instructions for Ubuntu 10.10

Install Configuration manager
$ sudo apt-get install tasksel

Install basic LAMP stack
$ sudo tasksel install lamp-server

Install additional PHP extensions
$sudo apt-get install php-apc
$sudo apt-get install php5-xdebug

Install Benchmarking and monitoring tools. Note: iostat is in sysstat package
$sudo apt-get install apachetop
$sudo apt-get install systat
$sudo apt-get install siege

Install memcache and php extension
$sudo apt-get install memcached
$sudo apt-get install php5-memcache

Install Pear/Pecl
$sudo apt-get install php-pear

Create phpinfo page at http://localhost/phpinfo.php
$sudo bash -c “echo \”<?php phpinfo(); ?>\” > /var/www/phpinfo.php”

Restart web server to ensure all modules are loaded.
$sudo service apache2 restart

APPENDIX B ■ INSTALLING APACHE, MYSQL, PHP, AND PECL ON LINUX

231

Component Versions and Locations
The versions of the application components installed using the foregoing procedure on
Ubuntu 10.10 are shown in Table B–2. These versions were correct at the time of
publication. Later updates to the packages may result in versions that are greater than
shown.

Table B–2. Component Versions and Configuration File Locations for Ubuntu 10.10

Component Property Value

Apache version Apache/2.2.16 (Ubuntu)

 Configuration directory /etc/apache2

 Default Access Log /var/log/apache2/access_log

 Default Error Log /var/log/apache2/error_log

 Default document root /var/www

Mysql Version 5.1.49-1ubuntu8.1

 Configuration file /etc/mysql/my.cnf

 Default Socket /var/run/mysqld/mysqld.sock

 Data Dir /var/lib/mysql

 Log File /var/log/mysql/mysql.log

PHP Version 5.3.3-1ubuntu9.1

 Default PHP.ini file /etc/php5/apache2/php.ini

 Configuration directory /etc/php5/apache2/conf.d

Tasksel
The installation script in Listing B–2 makes use of a tool called “tasksel,” which is a tool
unique to Ubuntu. tasksel allows the installation of predefined sets of packages making
up particular configurations, one of which is a “LAMP server.” If you want to see the exact
list of packages installed in this configuration, then execute the following:

$ tasksel --task-packages lamp-server

APPENDIX B ■ INSTALLING APACHE, MYSQL, PHP, AND PECL ON LINUX

232

PECL
As mentioned in Appendix A, PECL is a PHP extension repository containing some of the
best PHP extensions available for PHP developers. They range from encryption to XML
parsing, with the complete list of extensions located on its official web site,
http://pecl.php.net.

Unix users, you’re in luck. As mentioned before, PEAR is required to be installed to
use PECL, and for Unix users, this is automatically installed when installing PHP version
4.3.0 or above. If you are certain that you have not installed PEAR, download the go-
pear.php file from http://pear.php.net/go-pear as go-pear.php and run the script within
a shell by running the command php go-pear.php. Once the installation is complete,
verify that PEAR and PECL were installed by running the commands pear and pecl within
a shell.

Index

■ ■ ■

233

■ A�
ab. See Apache Benchmark
accessing

array elements, 63–64
object properties, 67–68

admin tool (APC)
description of, 93
installing, 94–95

Akami, 183
AllowOverride directive, 172–173
Alternative PHP Cache (APC)

admin tool, 93–95
description of, 86
installing

on Unix, 86–88
on Windows, 88

running, 89–91
settings, 91–92
variable caching using

adding data to cache, 120–121
benchmarking APC, 121–123
overview of, 119–120

Amazon CloudFront, 184
analyzing problem queries, 204–205
Apache Benchmark (ab)

caveats for using, 15
concurrency tests, 12–13
description of, 3–5
installing

on Unix and Mac, 5
on Windows, 5–6

interpreting responses
connection information, 9–10
connection metrics breakdown, 10
overview of, 7
script information, 9
server information, 8

optional flags, 10–12
running, 6–7
timed tests, 13–14

Apache web server
Apache HTTP Server Project home page,

210
command-line arguments, 138–139
configuration tweaks

AllowOverride directive, 172–173
DirectoryIndex directive, 173
FollowSymlinks option, 173
HostnameLookup key, 174
.htaccess files, 172
Keep-Alive directive, 174
mod_deflate module, 175–176

description of, 137
download links, 210
features of, 132, 144
getting PHP5 and Apache to talk, 223
Installation Wizard

Change Current Destination window,
214

■ INDEX

234

Custom Setup window, 213
Information Setup window, 212
Setup Type window, 212
Terms and Consitions window, 211
Welcome window, 210

installing, 138, 209–215
Monitor icon, 215
multi-processing modules

adding dynamic modules, 142–143
attachment to processing pipeline,

141–142
overview of, 140–141
Prefork, 141, 170–171
removing dynamic modules, 143

as prefork type, 137
testing Nginx against, 158–159
usage figures for, 133–134
Welcome web page, 215

ApacheTop
installing, 166
memory footprint, 168–170
output, 166
top URLS by requests, 167–168

APC. See Alternative PHP Cache
application stack, 2–3
applications, monitoring, 187–188
array elements, accessing, 63–64
asset servers, sharing assets with, 182
asynchronous web servers, 153

■ B�
backslashes in Apache Benchmark, 15
benchmarking

APC, 121–123
code while applying different functions, 68
Memcached, 127–129
using lighttpd, 151–152
using Nginx, 162–163

benchmarking techniques
See also Apache Benchmark; Siege
layers affecting

browser behavior, 22
code complexity, 22
geographical location of web servers, 20

response size, 21–22
traveling packets, 20
web server setup, 22–24

overview of, 1
SunSpider JavaScript tests, 42

bottlenecks, identifying
GUI-based tool, using, 77–80
Xdebug, using, 73–77

browsers
behavior of, and benchmarking, 22
JavaScript and, 42

■ C�
cache folder (eA), creating, 101
cache-miss, triggering, 111
caching

See also Opcode caching; variable caching
coherence issues with distributed

architectures, 184
description of, 85
versioning issues with distributed

architectures, 184–185
Cacti, 188
calculating

database fetch, 115–119
loop length in advance, 60–62

cascade failure effects with distributed
architectures, 186–187

CD Networks, 183
CDNs. See content distribution networks
Chrome 6 browser, 42
classification of web servers, 136–137
C-level functions, tracing. See strace
Closure Compiler, 48
code complexity and benchmarking, 22
coding best practices

for accessing array elements, 63–64
for accessing object properties, 67–68
calculating loop length in advance, 60–62
for fetching data from files, 64–67
function calls, 57
overview of, 55–57
require vs. require_once, 58–60

commands, Apache Benchmark, 6

■ INDEX

235

commas, using to concatenate strings, 56
compressing

content with mod_deflate module, 175–176
files, 49
images, 49–52

concurrency tests
Apache Benchmark, 12–13
Siege, 16

conf.d directory, using
to add dynamic Apache modules, 142
to remove dynamic Apache modules, 143

Config Security Options window (MySQL), 221
Config Type window (MySQL), 220
configuration files of MySQL, locating, 197
configuration options for Apache web server

AllowOverride directive, 172–173
DirectoryIndex directive, 173
FollowSymlinks option, 173
HostnameLookup key, 174
.htaccess files, 172
Keep-Alive directive, 174
mod_deflate module, 175–176

configuring MySQL database, 219–222
Config Welcome window (MySQL), 219
Config Windows Options window (MySQL), 221
connecting to Memcached server, 125–126
connection information (Apache Benchmark),

9–10
connection metrics breakdown (Apache

Benchmark), 10
connections, read and write, maintaining

separate, 206
Console tab (Firebug), 30
content distribution networks (CDNs)

cache versioning issues and, 184–185
sharing assets with, 182–183

content of site and web server choice, 133
controlling Apache clients, 170–171
CSS optimization rules (YSlow), 34
Cygwin, installing Siege on Windows using, 15

■ D�
database optimization, 189–190
databases

fetching data from, 110–112
installing, 112
MySQL

analyzing problem queries, 204–205
configuring, 219–222
description of, 190
finding problem queries, 203–204
installing, 216–219
locating configuration files, 197
maintaining separate read and write

connections, 206
memory usage, 194–197
storage engines, 191–194
tuning InnoDB engine, 202
tuning server’s memory, 197–202
UTC date format, using, 207
utf8 character set, using by default,

206–207
for storing session data, 180
tables

calculating database fetch, 115–119
creating, 112–113
fetching records from, 114–115
storage engines and, 194

deployment failures with distributed
architectures, 187

direct server return, 179–180
directory cache/eaccelerator, creating, 103
DirectoryIndex directive, 173
distributed architectures, pitfalls of

cache coherence, 184
cache versioning, 184–185
deployment failures, 187
domino or cascade failure effects, 186–187
user IP address tracking, 185–186

distribution methods of load balancers, 178
domino failure effects with distributed

architectures, 186–187
double quotes, using when strings contain

variables, 56
Download Installer login window (MySQL), 217
download performance, 27
Downloads home page (MySQL), 216
download time, and average length waiting, 27

■ INDEX

236

dynamic Apache modules, adding and
removing, 142–143

■ E�
eAccelerator (eA)

description of, 99
installing

on Unix, 99–102
on Windows, 103–104

settings, 104–107
encapsulation, 67–68
engineer knowledge and web server choice, 133
engines, Zend, 84–86. See also storage engines

of MySQL
execution plans (MySQL), 204
external sources, fetching data from, 110–112

■ F�
farms of web servers

designing, 186
sharing sessions between, 180–181

FastCGI PHP
installing

on lighttpd, 150–151
on Nginx, 160–161

verifying installation of, 151, 161
Fedora 14, installing

component versions and locations, 229–230
instructions, 227

fetching
data from external sources, 110–112
data from files, 64–67
records from database tables, 114–115

file compression, 49
file_get_contents() method, fetching data from

files using, 64–67
file() method, fetching data from files using,

64–67
files, fetching data from, 64–67
finding problem queries, 203–204
Firebug

installing, 28
performance tabs

Console tab, 30

Net tab, 32–33
overview of, 28–29

running JavaScript profiler on web pages,
30–31

starting, 28
YSlow and, 33, 36

Firefox 3.5 browser, 42
firewall rules and IP addresses, 186
Fitzpatrick, Brad, 123
FollowSymlinks option, 173
for loop, accessing array elements using, 63–64
foreach loop, accessing array elements using,

63–64
fread() method, fetching data from files using,

64–67
front end, 2, 25
function calls, cost of, 57

■ G�
Ganglia, 187
geographical location of web servers, 20
Grade tab (YSlow), 37
GWS web server, usage figures for, 133–134

■ H�
hardware for web servers, 136
HostnameLookup key, 174
.htaccess files, 172
HTTP request/response lifecycle, 3–4
httpd. See Apache web server

■ I�
IIS web server, usage figures for, 133–134
image compression, 49–52
image optimization rules (YSlow), 34
InnoDB engine

memory usage by, 194–195
pros and cons of, 192–193
tuning, 202

installing
admin tool (APC), 94–95
Alternative PHP Cache

on Unix, 86–88
on Windows, 88

■ INDEX

237

Apache Benchmark
on Unix and Mac, 5
on Windows, 5–6

Apache web server, 138, 209–215
ApacheTop, 166
databases, 112
eAccelerator

on Unix, 99–102
on Windows, 103–104

FastCGI PHP
on lighttpd, 150–151
on Nginx, 160–161

Fedora 14
component versions and locations,

229–230
instructions, 227

Firebug, 28
KCacheGrind, 77
lighttpd

on Unix, 144–145
on Windows, 146–148

Memcached, 124
MySQL database, 216–219
mysqltuner.pl, 199
Nginx

on Unix, 153–157
on Windows, 157–158

Page Speed, 39
PEAR, 224, 232
PECL, 224, 226, 232
PHP, 222–223
Siege, 15–16
strace, 71
time zone support in MySQL, 207
Ubuntu 10.10

component versions and locations, 231
instructions, 230–231
tasksel tool, 231

VLD, 69
WinCacheGrind, 77
XCache

on Unix, 95–96
on Windows, 96

Xdebug, 74

YSlow, 35
iostat tools, 198–199
IP address tracking issues with distributed

architectures, 185–186

■ J�
JavaScript

minification of, 46–47
optimization of, 42–43
placement of, 43–46

JavaScript optimization rules (YSlow), 35
JavaScript profiler (Firebug), 30–31

■ K�
KCacheGrind

installing, 77
output, 78–80

Keep-Alive directive, 174
Keep-Alive setting, and testing web servers, 22
Kneschke, Jan, 144

■ L�
Lerdof, Rasmus, 55
lifecycle

HTTP request/response, 3–4
PHP, and Zend engine, 84–86

lighttpd web server
benchmarking PHP content, 151–152
comparing static load content, 149
configuration settings, 148–149
description of, 144
FastCGI PHP, installing on, 150–151
features of, 133
installing

on Unix, 144–145
on Windows, 146–148

setting tweaks, 152–153
usage figures for, 133–134

Limelight, 183
Linux

Fedora, installing on, 227–230
PECL, installing on, 232
Ubuntu, installing on, 230–231

■ INDEX

238

Linux Virtual Server project, 177, 179
listings

ab command
for fetching records from databases, 114
to test APC, 89
to test require_once and require

functions, 59
APC caching, 121–122
APC configuration settings, using, 92
APC extension, loading, 87
base that loads four external class files, 58
benchmarking

with lighttpd, 151
Memcached, 127–128
with Nginx, 162

benchmarking person class
using encapsulation, 67
while accessing class property directly,

68
classes A-D, 58
code

to test using ab, 89
with no database overhead, 114

database tables
counting number of records in, 113
creating, 112
fetching all records from, 117–118
fetching records from, 115–116
inserting values into, 112–113

eAccelerator
download and unpacking commands,

100
installation commands, 100

echo using “,”, 69
FastCGI

fastcgi.server settings, 150
installing php5-cgi file, 160
installing using Aptitude, 150
modifying php.ini file, 160
removing commented-out information,

160
starting, 160
turning on within php.ini file, 150
updating lighttpd.conf file to add, 150

Fedora 14 installation instructions, 227–229

fetching content from files
accessing only once, 66
file_get_contents() method, using, 65
fread() method, using, 64

for loop
for accessing array elements, 64
optimized, 61
optimized benchmarking-ready, 62
un-optimized, 61
un-optimized benchmarking-ready, 62

foreach loop, 63
installing

VLD using PECL, 69
Xdebug extensions, 74
Xdebug using PECL, 74

JavaScript
adding items to unordered list using,

46–47
minified file, 47

JavaScript file
optimized placement of, 44–45
poor placement of, 43–44

Memcached
connecting to server, 125
installing from source, 124

Nginx
default configuration settings, 154
installing from source commands, 154
starting, 156
testing against Apache, 158

optimized code using require function, 60
optimized code-consolidating function

logic, 79
page counter

using APC caching for, 120
using Memcached for, 126

PHP code example, 75
php.ini APC settings, 88
php.ini eA settings

for Unix, 101
for Windows, 103

PHP.ini properties, 75
phpinfo script, 87, 223

■ INDEX

239

Siege
URL format structure, 19
urls.txt file, 19

static object serving
with AllowOverride directive disabled,

172
with AllowOverride directive enabled,

173
strings

using commas to concatenate, 56
using double quotes when strings

contain variables, 56
test command simulating 1,000

connections with 500 concurrent
requests, 149

Ubuntu 10.10 installation instructions,
230–231

while loop, 63
Windows PECL installation of APC, 88
Windows XCache settings, 96
Xdebug profiling output, 76
YUI Compressor

minifying JavaScript using, 48
minifying JQuery using, 48

load balancers, 176–178
locating MySQL configuration files, 197
log file analyzers and IP addresses, 185
long-query-time directive (MySQL), 203
loop length, calculating in advance, 60–62

■ M�
Mac, installing Apache Benchmark on, 5
maintaining separate read and write

connections, 206
managed hosting services and web server

choice, 133
Memcached

adding data to cache, 126–127
benchmarking, 127–129
connecting to server, 125–126
description of, 123
installing, 124
methods, 125
running, 124
for storing session data, 180

memory footprint and ApacheTop, 168–170
memory usage by MySQL, 194–197
microtime() function, 61
minification of JavaScript, 46–47
minification tools

Closure Compiler, 48
YUI Compressor, 47–48

mod_deflate module, 175–176
modified times between cached content and

non-cached content, checking, 104
module management helper, using to add and

remove dynamic Apache modules, 143
monitoring applications, 187–188
multi-processing modules of Apache web

server
attachment to processing pipeline, 141–142
dynamic, adding and removing, 142–143
overview of, 140–141
Prefork, 141

MyISAM engine
memory usage by, 194–195
pros and cons of, 192

MySQL database
Config Security Options window, 221
Config Type window, 220
Config Welcome window, 219
Config Windows Options window, 221
configuring, 219–222
description of, 190
Download Installer login window, 217
Downloads home page, 216
installing, 216–219
locating configuration files, 197
maintaining separate read and write

connections, 206
per server vs. per connection memory usage

by, 195–197
problem queries

analyzing, 204–205
finding, 203–204

Processing Config window, 222
Ready to Install window, 218
storage engines

choosing, 193–194
InnoDB, 192–193

■ INDEX

240

memory usage by, 194–195
MyISAM, 192
overview of, 191–192

tuning
InnoDB engine, 202
server’s memory, 197–202

UTC date format, using, 207
utf8 character set, using by default, 206–207
Windows download links, 216

Mysqltuner.pl, tuning database server memory
using, 197–202

■ N�
Nagios, 188
naming of Apache service, 138
narrowing types of files eA caches, 104
Net tab (Firebug), 32–33
Nginx web server

benchmarking PHP content, 162–163
compile-time settings, 155–156
default configuration settings, 154
description of, 153
FastCGI PHP, installing on, 160–161
features of, 133
installing

on Unix, 153–157
on Windows, 157–158

starting, 156–157
as static web server, 158–159
usage figures for, 133–134

■ O�
object properties, accessing, 67–68
Opcode, analyzing

overview of, 68
with strace, 71–73
with VLD, 69–71

Opcode caching
admin tool (Alternative PHP Cache), 93–95
Alternative PHP Cache, 86–92
eAccelerator, 99–107
overview of, 83–84
PHP life cycle and, 85–86
tools for, 86

XCache, 95–99
Opera browser, 42
operating parameters and storage engines, 194
optimization tools, JavaScript

for minification, 46–47
for optimization, 42–43
for placement, 43–46

optimizing processes in Apache, 170–175
optimizing responses, 27. See also Firebug; Page

Speed; YSlow
optional flags

Apache Benchmark, 10–12
Siege, 19

overflow servers, 178

■ P�
packets and benchmarking, 20
page counter, creating

APC caching, 120
Memcached, 126

Page Speed
installing, 39
starting, 39–41

PEAR
installing, 224
PECL and, 232

PECL
installing, 224–226, 232
installing Alternative PHP Cache using,

86–88
installing VLD using, 69
installing Xdebug using, 74

per server vs. per connection memory usage,
195–197

performance of web servers
See also rendering performance; scaling

beyond single server
memory footprint, 168–170
monitoring applications and, 187–188
optimizing processes in Apache, 170–175
overview, 165–166
real-time access log file analyzer, 166–168

performance tabs (Firebug)
Console tab, 30

■ INDEX

241

Net tab, 32–33
overview of, 28–29

performance-measuring tools. See Firebug;
Page Speed; YSlow

PHP, installing, 222–223
PHP extensions

installing eAccelerator as, 101–102
web server choice and, 133

PHP layer, 2
PHP life cycle, 84–86
php.ini file

APC settings, 88
eAccelerator settings

for Unix, 101
for Windows, 103

modifying for FastCGI, 160
turning on FastCGI within, 150

phpinfo script, 87, 223–224
physical load-balancing appliances, 177
placement of JavaScript, 43–46
popularity of web servers, 133–134
Prefork MPM (Apache web server), 141,

170–171
prefork web servers, 137
process-based web servers, 153
Processing Config window (MySQL), 222

■ Q�
queries, problem

analyzing, 204–205
finding, 203–204

■ R�
readfile() method, fetching data from files

using, 64–67
reads in applications, and storage engines, 193
Ready to Install window (MySQL), 218
real-time access log file analyzer. See

ApacheTop
redirection, 33
rendering performance

Page Speed and, 39–41
YSlow and, 33–38

request handling by web servers, 134–136

request/response lifecycle, 3–4
require function vs. require_once function,

58–60
resource requests, reducing, 49
response size and benchmarking, 21–22
responses

Apache Benchmark, interpreting, 10
importance of optimizing, 27
optimizing with Firebug, 28–33

results
for Apache Benchmark

connection information, 9–10
overview of, 7
script information, 9
server information, 8

for Siege
individual request details, 17
test metrics, 18–19

round-robin DNS, 176
running

Alternative PHP Cache, 89–91
Apache Benchmark, 6–7
FastCGI, 160
Firebug, 28
JavaScript profiler (Firebug) on web pages,

30–31
Memcached, 124
mysqltuner.pl, 199
Nginx web server, 156–157
Page Speed, 39–41
Siege, 16–17
strace, 72
VLD, 69
XCache, 97
Xdebug, 74–77
YSlow, 36–37

■ S�
Safari 4 browser, 42
scaling beyond single server

direct server return, 179–180
load balancers, 176–178
round-robin DNS, 176

■ INDEX

242

sharing assets
with asset servers, 182
with content distribution networks, 182–

183
with shared file systems, 181

sharing sessions between members of
farms, 180–181

script information (Apache Benchmark), 9
security of Apache web server, 132
server information (Apache Benchmark), 8
server optimization rules (YSlow), 35
server-side compression, 49
sharing

assets
with asset servers, 182
with content distribution networks,

182–183
with shared file systems, 181

sessions between members of farms,
180–181

Siege
description of, 3, 15
installing, 15–16
optional flags, 19
results for

individual request details, 17
test metrics, 18–19

running, 16–17
testing URL format and file, 19–20

size of cache, controlling, 104
Smush.it compression tool, 50– 52
stability of Apache web server, 132
starting. See running
static web servers, Nginx as, 158–159
Statistics tab (YSlow), 38
sticky sessions, 178
Stogov, Dmitry, 99
storage engines of MySQL

choosing, 193–194
InnoDB, 192–193
memory usage by, 194–195
MyISAM, 192
overview of, 191–192

strace
installing, 71

output, 72–73
running, 72

strings
using commas to concatenate, 56
using double quotes when strings contain

variables, 56
SunSpider JavaScript benchmark tests, 42
syntax

Apache Benchmark, 6, 10–12
Siege, 16

Sysoev, Igor, 153

■ T�
tables

calculating database fetch, 115–119
creating, 112–113
fetching records from, 114–115
storage engines and, 194

tasksel tool, 231
test metrics (Siege), 18–19
testing

APC, 89
Nginx against Apache, 158–159
require_once and require functions, 59
URL format and file using Siege, 19–20
web servers, and Keep-Alive setting, 22

tests
concurrency, 12–13, 16
SunSpider JavaScript, 42
timed, and Apache Benchmark, 13–14

threaded web servers, 137
time zone support, installing in MySQL, 207
timed tests and Apache Benchmark, 13–14
Tools tab (YSlow), 38
top command output for MySQL server, 198
transactions and storage engines, 193
tuning

database server memory, 197–202
InnoDB engine, 202

■ U�
Ubuntu 10.10, installing

component versions and locations, 231
instructions, 230–231

■ INDEX

243

tasksel tool, 231
Unix

Alternative PHP Cache, installing on, 86–88
Apache Benchmark, installing on, 5
eAccelerator, installing on, 99–102
lighttpd, installing on, 144–145
Nginx, installing on, 153–157
XCache, installing on, 95–96

URL format and file, testing using Siege, 19–20
user IP address tracking issues with distributed

architectures, 185–186
UTC date format, using, 207
utf8 character set, using by default, 206–207

■ V�
variable caching

APC and
adding data to cache, 120–121
benchmarking APC, 121–123
overview of, 119–120

database tables
calculating database fetch, 115–119
creating, 112–113
fetching records from, 114–115

importance of, 110–112
Memcached

adding data to cache, 126–127
benchmarking, 127–129
connecting to server, 125–126
description of, 123
installing, 124
methods, 125
running, 124

overview of, 109–110
variables, using double quotes when strings

contain, 56
Vulcan Logic Dumper (VLD)

installing, 69
output, 70–71
running, 69

■ W�
web browsers

behavior of, and benchmarking, 22

JavaScript and, 42
web pages, running JavaScript profiler

(Firebug) on, 30–31
web servers

Apache HTTPD
command-line arguments, 138–139
configuration tweaks, 172–176
description of, 137
download links, 210
features of, 132, 144
getting PHP5 and Apache to talk, 223
Installation Wizard, 210–214
installing, 138, 209–215
Monitor icon, 215
multi-processing modules, 140–143
Prefork MPM, 170–171
Project home page, 210
testing Nginx against, 158–159
usage figures for, 133–134
Welcome web page, 215

ApacheTop and, 166–170
asynchronous vs. process-based, 153
choosing, 132–133
classifying, 136–137
farms of, 180–181, 186
geographical location of, 20
hardware, 136
lighttpd

benchmarking PHP content, 151–152
comparing static load content, 149
configuration settings, 148–149
description of, 144
features of, 133
installing on FastCGI PHP, 150–151
installing on Unix, 144–145
installing on Windows, 146–148
setting tweaks, 152–153
usage figures for, 133–134

Nginx
benchmarking PHP content, 162–163
description of, 153
features of, 133
installing on FastCGI PHP, 160–161
installing on Unix, 153–157

■ INDEX

244

installing on Windows, 157–158
as static web server, 158–159
usage figures for, 133–134

overview of, 131
performance of

memory footprint and, 168–170
monitoring applications and, 187–188
overview, 165–166
real-time access log file analysis,

166–168
pitfalls of distributed architectures

cache coherence, 184
cache versioning, 184–185
deployment failures, 187
domino or cascade failure effects,

186–187
user IP address tracking, 185–186

prefork, 137
process-based, 153
request handling, 134–136
scaling beyong single server

direct server return, 179–180
load balancers, 176–178
round-robin DNS, 176
sharing assets with asset servers, 182
sharing assets with content distribution

networks, 182–183
sharing assets with shared file systems,

181
sharing sessions between members of

farms, 180–181
setup of, and benchmarking, 22–24
static, 158–159
tasks of, 131
threaded, 137
usage figures for, 133–134

while loop, accessing array elements using,
63–64

WinCacheGrind
installing, 77
output, 78–80

Windows
Alternative PHP Cache, installing on, 88

Apache Benchmark, installing on, 5–6
eAccelerator, installing on, 103–104
lighttpd, installing on, 146–148
Nginx, installing on, 157–158
Siege, installing on, 15
XCache, installing on, 96

Windows download links (MySQL), 217
working set of data, 194

■ X�
XCache

description of, 95
installing

on Unix, 95–96
on Windows, 96

running, 97
settings, 97–99

Xdebug
description of, 73
installing, 74
running, 74–77

■ Y�
YSlow

description of, 33
Grade tab, 37
installing, 35
starting, 36–37
Statistics tab, 38
Tools tab, 38
v2 rulesets

CSS optimization, 34
image optimization, 34
JavaScript optimization, 35
server optimization, 35

YUI Compressor
description of, 47–48
output file from, 47

■ Z�
Zend engine, and PHP life cycle, 84–86

	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Overview
	Chapter 1 – Benchmarking Techniques
	Chapter 2 – Improving Client Download and Rendering Performance
	Chapter 3 – PHP Code Optimization
	Chapter 4 – Opcode Caching
	Chapter 5 – Variable Caching
	Chapter 6 - Choosing the Right Web Server.
	Chapter 7 - Apache Web Server Optimization
	Chapter 8 - Database Optimization.

	CHAPTER 1 Benchmarking Techniques
	The PHP Application Stack
	Benchmarking Utilities
	Defining the Request/Response Lifecycle
	Apache Benchmark
	Installing Apache Benchmark
	Unix and Mac Installation
	Windows Installation

	Running Apache Benchmark
	Making Sense of the Response
	Server Information
	Script Information
	Connection Information
	Connection Metrics Breakdown

	AB Option Flags
	Concurrency Tests
	Timed Tests

	AB Gotchas

	Siege
	Installing Siege
	Running Siege
	Examining the Results
	Individual Request Details
	Test Metrics
	Siege Option Flags
	Testing Many URLs
	URL Format and File

	Affecting Your Benchmark Figures
	Geographical Location
	The Traveling Packets
	Response Size
	Code Complexity
	Browser Behavior
	Web Server Setup

	Summary

	CHAPTER 2 Improving Client Download and Rendering Performance
	The Importance of Optimizing Responses
	Firebug
	Installing Firebug
	Firebug Performance Tabs
	The Console Tab
	Running JavaScript Profiler on a Web Page

	The Net Tab

	YSlow
	YSlow v2 Rulesets
	CSS Optimization Rules
	Image Optimization Rules
	JavaScript Optimization
	Server Optimization

	Installing YSlow
	Starting YSlow
	The Grade Tab
	Statistics Tab
	Tools Tab

	Page Speed
	Installing Page Speed
	Page Speed at Work

	Optimization Tools
	JavaScript Optimization
	JavaScript Placement
	Minification of JavaScript

	Minification Tools
	YUI Compressor
	Closure Compiler
	Reduce Resource Requests
	Use Server-Side Compression

	Image Compression
	Smush.it
	Summary

	CHAPTER 3 PHP Code Optimization
	PHP Best Practices
	The PHP Economy
	require vs. require_once
	Calculating Loop Length in Advance
	Accessing Array Elements Using foreach vs. for vs. while
	File Access
	Faster Access to Object Properties

	Looking Under the Hood Using VLD, strace, and Xdebug
	Reviewing Opcode Functions with VLD
	Installing VLD

	Using strace for C-level Tracing
	Installing strace

	Identifying Bottlenecks
	Xdebug 2: PHP Debugging Tool
	Installing Xdebug
	Updating the PHP.ini File

	Validating Installation
	Running Our First Profiler

	Installing the GUI-Based Tool
	Installing WinCacheGrind
	Installing KCacheGrind
	Analyzing Data

	Summary

	CHAPTER 4 Opcode Caching
	Reviewing Our Roadmap
	The PHP Life Cycle
	Opcode Caching Tools
	Alternative PHP Cache
	Installing APC
	Unix Installation
	Windows Installation

	Using APC
	APC Settings
	APC Admin Tool
	Installing the Admin tool

	XCache
	Unix Installation
	Windows Installation

	Caching with XCache
	XCache Settings
	eAccelerator
	Unix Installation
	Creating the Cache Folder
	Installing eAccelerator As a PHP Extension
	Making Sure eA Is Installed

	Windows Installation
	Creating the eA Directory
	Updating php.ini

	eA Settings

	Summary

	CHAPTER 5 Variable Caching
	Application Performance Roadmap
	The Value of Implementing Variable Caching
	A Sample Project: Creating the Table
	Fetching the Records
	Calculating a Database Fetch

	APC Caching
	Adding Data to Cache
	Benchmarking APC

	Memcached
	Installing Memcached
	Starting Memcached Server
	Using Memcached with PHP
	Connecting to Memcached Server
	Adding Data into Cache
	Benchmarking Memcached

	Summary

	CHAPTER 6 Choosing the Right Web Server
	Choosing Which Web Server Package Is for You
	Security and Stability Are Important to You
	Availability of Engineers with Detailed Knowledge Is Important to You
	Your Site Is Predominantly Static Content
	You Are Hosting in a Managed Service
	You Are Using Unusual PHP Extensions

	Usage Figures for Web Servers
	Web Server Request Handling
	Web Server Hardware
	Classifying Web Servers
	Apache HTTPD
	Apache Daemon Command Line
	Apache Multi-processing Modules
	The Prefork MPM

	Understanding Apache Modules
	Adding Dynamic Apache Modules
	Using a conf.d Directory
	Using a Module Management Helper

	Removing Dynamic Apache Modules
	Removing a Module Using a conf.d Directory
	Removing a Module Using a Module Management Helper

	Final Words on Apache
	lighttpd
	Installing lighttpd
	lighttpd on Unix
	lighttpd on Windows

	lighttpd Configuration Settings
	Comparing Static Load Content
	Installing PHP on lighttpd
	Verifying PHP Installation
	Benchmarking PHP Content
	Setting Tweaks

	Nginx
	Installing Nginx
	Nginx on Unix
	Compile-Time Options
	Verifying Installation and Starting Up Nginx

	Windows Installation

	Nginx As a Static Web Server
	Installing FastCGI PHP
	Verifying FastCGI Installation

	NGinx Benchmarking

	Summary

	CHAPTER 7 Web Server and Delivery Optimization
	Determining the Performance of Your Web Server
	Using ApacheTop, a Real-Time Access Log File Analyzer

	Understanding the Memory Footprint of Your Application
	Optimizing Processes in Apache
	Controlling Apache Clients (Prefork MPM)
	Optimizing Memory Use and Preventing Swapping

	Other Apache Configuration Tweaks
	Using .htaccess Files and AllowOverride
	Using FollowSymlinks
	Using DirectoryIndex
	Hostname Lookup Off
	Keep-Alive On
	Using mod_deflate to Compress Content

	Scaling Beyond a Single Server
	Using Round-Robin DNS
	Using a Load Balancer
	Using Direct Server Return
	Sharing Sessions Between Members of a Farm
	Sharing Assets with a Shared File System
	Sharing Assets with a Separate Asset Server
	Sharing Assets with a Content Distribution Network

	Pitfalls of Using Distributed Architectures
	Cache Coherence Issues
	Cache Versioning Issues
	User IP Address Tracking
	Domino or Cascade Failure Effects
	Deployment Failures

	Monitoring Your Application
	Some Monitoring Systems for You to Investigate

	Summary

	CHAPTER 8 Database Optimization
	About MySQL
	Understanding MySQL Storage Engines
	MyISAM: The Original Engine
	InnoDB: The Pro’s Choice
	Choosing a Storage Engine
	When Your Application Is Mostly Read (> 95 Percent)
	When You Need Transactions and Consistency Is Important
	When You Have a Complex Schema That Has a Lot of Joined Tables
	When Non-stop Operation Is Important

	Understanding How MySQL Uses Memory
	InnoDB vs. MyISAM Memory Usage
	Per Server vs. per Connection (Thread) Memory Usage

	Locating Your Configuration File
	Mysqltuner.pl: Tuning Your Database Server’s Memory
	Possible Issues with Our Example Server
	Tuning InnoDB

	Finding Problem Queries
	Analyzing Problem Queries
	Recommendations for PHP Database Applications
	Maintaining Separate Read and Write Connections
	Using “utf8” (Multi-byte Unicode) Character Set by Default
	Using “UTC” Date Format

	Summary

	APPENDIX AInstalling Apache, MySQL, PHP, and PECL on Windows
	Installing Apache
	Post–Apache Installation

	Installing MySQL
	Configuring MySQL

	Installing PHP
	Getting PHP5 and MySQL to Talk

	Creating a phpinfo() Script
	Installing PECL

	APPENDIX B Installing Apache, MySQL, PHP, and PECL on Linux
	Fedora 14
	Component Versions and Locations

	Ubuntu 10.10
	Component Versions and Locations
	Tasksel

	PECL

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

