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Preface

The atmosphere and the ocean form a coupled system which exchanges heat,
momentum and water at the air–sea interface. The interface is dynamic and
masses and energy are continually transferred across the air–sea interface. The
energy flow from the atmosphere to the ocean generates an aerodynamically
rough sea surface. If the energy flow is sufficiently intense, at some points
the surface waves will lose their stability and eventually break. Breaking is a
very localized and non-stationary phenomenon that is a source of vorticity and
turbulence. Dissipated energy becomes available for mixing the water layers
and for whitecapping of various scales. Whitecapping is a strongly nonlinear
process, which involves instability of the surface waves with space and time
scales several orders of magnitude smaller than those associated with gravity
wave motion. Whitecaps are usually formed at or near the crests of the larger
waves and occur in groups with successive crests breaking downwind of one
another.

Wave breaking is the dominant generator of the ‘primary’ marine aerosol (sea
salt) and it is a major factor in the air–sea exchange of gases (including carbon
dioxide). Most of the aerosol generated from natural waters is in the form of
jet and film drops from the bursting of air bubbles (Monahan and Van Patten,
1989). The enriched aerosols associated with the ejected droplets are very im-
portant in maintaining a source of salt-laden cloud condensation nuclei as well
as interfacial fluxes of trace constituents, including bacteria, viruses, heavy met-
als, radioactivity and organic material (Kerman, 1986). The aerosol droplets,
which can be very easily transported by wind over large distances, may trans-
fer water vapour, heat, pollutants and bacteria through the air–water interface.
Moreover, foam and bubbles at the surface alter the reflectivity properties of
the ocean surface. Therefore, accurate optical remote sensing of ocean produc-
tivity, measured for example by chlorophyll a, must account for the statistics
of breaking. The heat and mass transfer associated with aerosols are of vital
importance for aquatic life and water quality, and on a global scale they are
important factors for the Earth’s weather and climate changes.

Much of the uncertainty in sea aerosol production and gas transfer exchange
arises from weaknesses in the parameterization of wave breaking and related
processes. Due to the high complexity and highly nonlinear nature of the phe-
nomena, wave breaking remains a hydrodynamic process that is still not fully
known. Therefore, in this book, the mechanisms of wave breaking are discussed,
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taking advantage of modern theoretical and experimental achievements pub-
lished in the professional literature, and the author’s results. Special attention is
dedicated to selection of wave breaking criteria, and to development of the wave
breaking probability and estimation of the energy dissipation due to breaking.

Another objective of this book is to examine the relationship between wave
breaking and marine aerosol fluxes and gas transfer from the sea surface. The
philosophy of a close link between wave breaking and marine aerosol fluxes
is adopted in this book, which provides a very comprehensive and up-to-date
discussion of the fundamental scientific concepts of wave mechanics and their
applications. The amount of marine aerosol rising from the sea surface depends
on the coverage of the sea by breaking waves or whitecaps, and on the rate of
intensity of breaking. Wind speed, commonly used in the prediction of whitecap
coverage, is only one of the factors determining wave energy and the probabil-
ity of breaking occurrence. It is more appropriate to seek the linkage between
the percentage of sea surface covered by whitecaps and sea state characteris-
tics, such as the significant wave height Hs and peak frequency ωp, as well as
the relation of the energy dissipated during wave breaking and the amount of
aerosol fluxes. The combination of these relationships – namely, the percentage
of sea surface covered by whitecaps versus the probability of breaking and the
amount of aerosol fluxes versus energy dissipated during breaking – provides
an opportunity to quantify the aerosol fluxes rising from a given sea basin and
its possible seasonal variation.

In order to achieve both of these objectives, the evolution of scientific efforts,
theoretical and experimental, in breaking wave dynamics during the past is
reviewed. Moreover, the experimental results on marine aerosol fluxes in the
field and in the laboratory are discussed in detail.

The book is intended for professionals and researchers in the area of ocean
physics and meteorology, and as a useful book for graduate students, PhD
students, postdoctoral students and engineers working on ocean environmental
problems. The reader is assumed to have a working knowledge of calculus, and
a knowledge of hydrodynamic and aerodynamic concepts would be helpful.

The book structure can be summarized as follows: Chapter 1 deals with the
air–sea interaction in the global perspective, and the roles of surface wave
breaking and aerosol fluxes for air–sea processes are elucidated.

Chapters 2–7 are dedicated to wave breaking phenomena. In particular, in
Chapter 2 the mechanics of steep and breaking waves in deep water are ex-
amined, including instabilities of wave train, numerical modelling and onset of
breaking. Chapter 3 deals with statistics of ocean waves and the methodology
of the Gaussian and non-Gaussian sea surface description. The experimental
data on mechanisms of wave breaking collected in the field and the laboratory
are summarized in Chapter 4. In Chapter 5 the various breaking criteria are
discussed in detail. Chapter 6 is dedicated to the important problems of energy
dissipation due to wave breaking in deep waters. The experimental and theoret-
ical methods of estimation of energy loss are given in detail. Another attempt is
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made to provide some rationale behind existing methods, and to extend some
methods and provide some practical outcomes from these approaches. Finally,
experimental and theoretical methods of whitecap coverage prediction of the
sea surface are examined in Chapter 7.

Chapters 8–11 are focused on the fundamentals of marine aerosols, a review of
the existing experimental data on aerosol production, the estimation of aerosol
fluxes by various methods, the links of aerosol fluxes with sea state parameters
and the seasonal variation of aerosol fluxes in deep water seas.

In Appendix A, the mathematical formulae of the nonlinear surface represen-
tation and the relationships between spectral amplitudes are listed. In Appen-
dices B and C, useful information on modern methods of experimental data
analysis, namely the wavelet and the Hilbert transforms, are given. Finally
in Appendix D, practical expressions for sea state characteristics and spectral
moments are listed.

Some figures in the book have been adopted from previously published figures,
and this is indicated in the legends. Many thanks are due to all those who gave
permission to reproduce their original figures.

I apologize for the inevitable errors which may occur in this book, despite my
efforts to eliminate them. Please bring these errors to my attention.

I would like to express my thanks to the Institute of Oceanology for support
during the preparation of this book. I am grateful to Associate Professor Jacek
Piskozub and Doctor Tomasz Petelski for commentary and very valuable dis-
cussion on the marine aerosol fluxes phenomena. I also wish to acknowledge
the stimulating discussions provided by many colleagues and members of the
staff of the Institute. I am grateful to Danuta Pruszczak for her expertise in
preparation of the copy. Special thanks go to my wife Barbara for her support
and encouragement during the writing.
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Chapter 1

Basic processes near the air–sea
interface

1.1 Introduction

The ocean–atmosphere system is intrinsically coupled, although feedbacks ac-
ross the air–sea interface are often masked by temporal and spatial differences.
Interactions between the ocean and atmosphere occur at the air–sea interface.
The ocean surface forms a barrier to the exchange of heat, moisture, momen-
tum and trace constituents (Rogers, 1995). The fundamental processes that
connect the atmosphere and ocean are the energy input to the ocean by the
wind, the net freshwater flux, expressed as precipitation and evaporation, and
the net surface heat flux. The oceans play a substantial role in the changing
radiative balance of the Earth and the climate. In particular, they affect gas
and aerosol concentrations in the atmosphere as well as contemporary fluxes
from the atmosphere to the ocean and from the ocean to the atmosphere. The
energy from the atmosphere to the ocean surface enhances mixed layer during
the circulation of the upper ocean. On the other hand, energy from the ocean
affects atmospheric circulation, weather and climate. Among the influences of
the oceans is their effect on gas and aerosol concentrations in the atmosphere.
The global ocean is known to be a net sink of anthropogenic CO2 and hence
the oceans have effectively slowed the build-up of this greenhouse gas in the
atmosphere.

Recently, the importance of connecting small-scale process studies, investigat-
ing the exchange of heat, moisture momentum and trace constituents across
the air–sea interface, with the large-scale processes of global climate change and
ocean circulation has been highlighted. The small-scale exchange processes are
related to the global-scale problems via flux parameterizations measured at the
sea surface or from satellites. It is convenient to divide air–sea interaction stud-
ies into two categories: small- and large-scale ocean–atmosphere interactions.
From the large-scale perspective, quantifying and understanding the sources
and sinks in the coupled ocean–atmosphere system and corresponding fluxes is
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a key to determining the role played by the ocean in the global climate system.
Through the late 1950s, large-scale field programmes and open ocean mea-
surements of the fluxes were carried out, such as the Barbados Oceanographic
and Meteorology Experiment (BOMEX), Atlantic Trade Winds Experiment
(ATEX), Global Atmospheric Research Program Atmospheric Tropical Experi-
ment (GATE), Joint Air-Sea Interaction Experiment (JASIN), Marine Remote
Sensing Experiment (MARSEN), Storm Transfer and Response Experiment
(STREX), Humidity Exchange Over the Sea (HEXOS), Marginal Ice Zone
Experiment (MIZEX), Frontal Air-Sea Interaction Experiment (FASINEX),
TOGA COARE experiment, and the Surface of the Ocean, Fluxes and In-
teractions and Atlantic Stratocumulus Transition SOFIA/ASTEX experiment
(Rogers, 1995). The reader is referred to Geernaert (1990) for a more detailed
overview of these studies and their results.

For the purpose of this book, the connecting small-scale processes such as the
exchange of mass, heat, moisture, momentum and trace constituents across the
air–sea interface are the most important. An understanding of the processes at
the air–sea interface requires knowledge of how energy is transferred across the
stable layers connecting the interiors of the ocean and atmosphere with their
respective boundary layers.

1.2 Sea water

1.2.1 Water on Earth

The most important liquid on Earth is water. Water is a ubiquitous, life-
sustaining substance covering 71% of the Earth surface. Of the Earth’s total
water content, some 97.2% is contained in the oceans, 2.15% is stored in ice
sheets and glaciers, 0.62% is ground water, and only 0.03% flows through rivers,
streams and fresh-water lakes (Strahler and Strahler, 1992). For major portions
of the Atlantic, Pacific and Indian oceans, the average depth is nearly 4 km, but
it is the surface water, together with the very small amount of ground water,
that supports all life on land and in the oceans.

Evaporation from the oceans, which are the basic reservoirs of free water, is
approximately 419,000 km3/year, while evaporation from soil, plants and water
on the continents is only about 69,000 km3/year. The total quantity of the
evaporated water, 488,000 km3/year, must be returned annually to a liquid or
solid state through precipitation over the oceans and continents. Precipitation
over continents is about 37,000 km3/year greater than evaporation. This excess
of quantity flows over or under the ground to reach the sea. The hydrologic cycle
is pronounced evidence of the strong link between the atmosphere and ocean.
The input of energy from the atmosphere drives water motion in the form of
waves and currents. Moreover, through the ocean surface, oxygen and carbon
dioxide – gases vital for the growth of marine organisms – enter the ocean from
the atmosphere. In contrast to the upper ocean layer, at great ocean depths
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water motion is extremely slow and water temperature remains uniform and
low.

1.2.2 Sea water density

Water has many unique chemical and physical properties. Unlike most sub-
stances, which contract when frozen, water expands, allowing ice to float on
the surface of water basins. It is well known that water forms a necessary con-
stituent of the cells of all animals and plant tissues. Most of the water present
in living organisms acts as an irrigant, distributing nutrients and removing
waste products. The principal sea water state parameter is density, or mass
per unit volume. The density of water controls many fundamental processes
in the ocean, e.g. the hydrostatic equilibrium or motion of water particles and
propagation of internal waves, turbulence and mixing in water column, heat
transfer, concentration of plankton and sediment transport, locomotion of ma-
rine species, and many others. Even small alterations in the density of sea
water result in great changes in water flow and its thermal and chemical sta-
tus. Density is normally symbolized by ρ and in the SI system it is expressed
in kilograms per cubic metre (kg/m3). For example, the density of pure water
is approximately 1000 kg/m3, being 770 to 890 times that of air at sea level
(Massel, 1999).

The density of sea water is usually determined through its dependence on
pressure, p, temperature, T , and salinity, S. Pressure, p, has an insignificant
effect on the density of water for most applications, unless one is dealing with
water at great depths within the ocean. The density is much more dependent
on temperature, generally decreasing as the temperature increases. However,
the density of freshwater is not a monotonic function of temperature; water
density reaches a maximum at temperature of 3.98◦C under normal atmospheric
pressure. Normal atmospheric pressure at sea level is defined to be 1.01325 ×
105 Pa at 15◦C, in which 1 Pa is equal to 1 N/m2. This anomalous dependence
of the density of freshwater on temperature is a result of the specific molecular
structure of water (Dera, 1992).

Salinity is another factor which influences water density. Away from coasts,
the salinity of ocean water varies from 32 to 37 ppm (parts per million). The
variations in salinity result from differences in the relative rates of precipitation
and evaporation from the surface of the ocean. When the temperature, T ,
and pressure, p, are constant, density of sea water increases with salinity and
the relative change in the density of sea water is roughly proportional to the
change in salinity. At constant pressure and at salinity greater than ∼24.7 ppm,
the density of sea water increases monotonically with decreasing temperature
right down to the freezing point. At 0◦C, freshwater turns into ice, and its
density abruptly decreases from 999 to about 917 kg/m3. When sea water
freezes, its salt is extruded and sea ice floats like freshwater ice at the surface.
A difference of 1 ppm in salinity has an effect on the density of sea water which
is about five times greater than the change caused by a difference of 1◦C in
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temperature.
The general dependence of sea water density ρw(S, T, p) on salinity, S, tem-

perature, T , and pressure, p, is called the equation of state for sea water. There
have been many attempts to establish the relationship ρw(S, T, p) in the past
(for more details see Dera, 1992) and the modern algorithm of determination
of density for given salinity, S, temperature, T , and pressure, p, was developed
by the international group of experts on standards (UNESCO, 1987). Here,
only some values of ρw(S, T, p), frequently used in the book, are given (Massel,
1999):

ρw(0, 10◦, pnorm) = 999.702 kg/m3

ρw(35, 10◦, pnorm) = 1026.952 kg/m3

ρw(0, 20◦, pnorm) = 998.206 kg/m3

ρw(35, 20◦, pnorm) = 1024.763 kg/m3

in which pnorm denotes normal atmosphere.

1.2.3 Sea water viscosity

Viscosity is a property which is a measure of a fluid’s resistance to ‘deforma-
tion’ during motion. Within a fluid, momentum of rapidly moving particles is
exchanged with the momentum of relatively slower particles. Those exchanges
produce a shearing stress. In general we can write for shear stress τ

τ = μ
du

dz
, (1.1)

in which τ is shear stress acting on the horizontal (x, y) plane. The proportion-
ality coefficient, μ, between the shear stress, τ , and vertical shear of velocity,
du/dz, is the coefficient of dynamic molecular viscosity. It has units of newtons
× seconds per square metre (N s/m2). The dynamic molecular viscosity of sea
water depends on temperature, T , and salinity, S. Colder water is more ‘resis-
tant’ to motion than warmer water. The dependence of μ on salinity is weaker
than its dependence on temperature. A fluid which shows this direct propor-
tionality between the applied shear stress and the resulting rate of deformation
is called a ‘Newtonian’ fluid. Many biological materials, such as blood, synovial
fluid and mucus of various consistencies, cannot be treated as Newtonian fluids.
Some of them have a memory of previous shape and elasticity.

As force on an element of fluid varies with μ but the mass of that element
varies with ρ, the acceleration and hence the velocity field is determined by the
ratio μ/ρ, known as the coefficient of kinematic viscosity, ν

ν =
μ

ρ
, (1.2)

where ν has units of m2/s. For example, the kinematic viscosity for sea water
of salinity S = 35 ppm and of temperature T = 20◦C is 1.064×10−6 m2/s. It is
interesting to note that there is almost no liquid with viscosity lower than that
of water, and that νair ≈ 15 × νwater. Both coefficients, μ and ν, are physical



1.3 The state of matter near the interface 5

properties of fluid, independent of fluid motion. In the oceans and atmosphere,
eddies and turbulent motions in the flow can be so effective in moving parti-
cles among themselves that the effects of molecular diffusion are overwhelmed.
For such situations, the coefficient of kinematic viscosity, ν, is replaced by the
coefficient of turbulent viscosity, A, which is several hundred to many thou-
sand times larger. By analogy to molecular exchange, the turbulent viscosity
coefficients result from the hypothesis that the turbulent momentum flux is
proportional to the averaged turbulent flow velocity. Here we only note that
the estimates of the turbulent viscosity coefficient in the ocean vary enormously,
from 10 to 104 m2/s in the horizontal plane, and from 10−4 to 10−1 m2/s in the
vertical plane. The larger values can be found for the horizontal motion on an
oceanic scale such as the diffusion of mass or momentum associated with the
meandering flow of the Gulf Stream (Massel, 1999).

1.3 The state of matter near the interface

1.3.1 Surface tension

At the sea surface, the most important molecular forces are those related to
surface tension. Surface tension tends to reduce the area of free surfaces or
interfaces, and therefore it affects the shape of spray droplets and suspended
air bubbles. Surface tension γ is a force that is needed to bring molecules
from the interior to the surface, and it is expressed in newtons per metre.
At the air–water boundary, the surface tension is greater than that at the
boundary of air with most other fluids occurring in the natural environment.
The surface tension of sea water is slightly greater than that of fresh water at
the same temperature, and can be expressed as follows (Kraus and Businger,
1994)

γ = (75.63 − 0.144T + 0.221S) × 10−3 [N/m], (1.3)

where temperature T is specified in ◦C and salinity S in ppt.
If the interface can be represented by a surface z = ζ(x, y) which does not

deviate much from the plane z = 0, the relationship between increased pressure
Δp and the interface curvature takes the form

Δp = −γ∇2ζ. (1.4)

The influence of the surface tension becomes dominant if the volume of bubbles
and spray is relatively small. Then, the surface tension forces the bubbles and
droplets to form a sphere and relationship (1.4) becomes

Δp =
2γ

r
. (1.5)
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1.3.2 Characteristics of moist air

In stormy weather, spray, rain or fog droplets, salt particles, and other sus-
pended particulate matter affect to some extent the density of the moist air
mixture. The equation of state for the mixture of gases with partial pressure
pn and specific concentrations Cn is (Kraus and Businger, 1994)

p =
∑
n

pn = R1T
∑
n

Cn

mn

, (1.6)

in which T is the absolute temperature, mn are the molecular masses and R1

is the universal gas constant R1 = 8.31436 m2/(s K). Let us specify the vapour
content of air by the humidity mixing ratio r as follows

r =
ρv

ρa

, (1.7)

where ρv is the vapour density and ρa is the density of dry air. Therefore, the
equation of state for moist air becomes

p ≈ ρ
(
R1

ma

)
T

(
1 +

3

5

r

1 + r

)
, (1.8)

when ρ is the density of moist air and ma is the mean molecular mass of the
dry air mixture ma = 28.97. Then

R1

ma

= 287.04 J/(kg K). (1.9)

From (1.8) it follows that moist air is less dense than dry air of the same pressure
and temperature. The density of ideal gases with water vapour plays a role for
the definition of droplet radius r, as discussed in Chapter 8. It should be noted
that evaporation causes the interface to act as a source of water vapour in the
atmosphere and of salinity in the ocean. As the vapour diffuses easily through
air, the molecular sublayers, close to the interface, become anomalously saline
and dense, and spray droplets can be emitted from the surface with a higher
salinity than bulk sea water.

Another important quantity characterizing marine aerosol particles is the
potential temperature Θ, which is defined as the temperature that would be
acquired by the air when brought adiabatically to a standard pressure p0 of
105 Pa. The first law of thermodynamics yields the following expression for
temperature Θ

Θ = T

(
1000

p

)2/7

, (1.10)

when pressure is expressed in millibars.
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1.3.3 Sea surface temperature and the energy budget

The sea surface temperature (SST) cannot be measured directly. However, it
is known that SST is often a few tenths of a degree colder than the bulk tem-
perature of the ocean, which represents the ocean temperature some distance
below the surface, where the water is well mixed. To estimate the temperature
difference ΔT = Tb − T0, where Tb refers to bulk temperature and T0 is the
SST, we consider first the energy budget at the surface as follows

Qw = Fn + Qa + LE, (1.11)

in which Qw is the heat flux in the ocean, Qa is the sensible heat flux in the
atmosphere, LE is the latent heat flux, and Fn is the net irradiance. To define
the net irradiance, we denote the radiance as the radiation energy per unit time
coming from a specific direction and passing through a unit area perpendicular
to that direction. Hence the irradiance or radiant flux density, Fi, becomes the
radiant energy that passes through a unit horizontal area per unit time coming
from all directions above it (Dera, 1992; Kraus and Businger, 1994), and the
net irradiance can be presented as follows

Fn = Fe + Fi, (1.12)

where Fe is the irradiance from below per unit area. To evaluate flux Qw and
temperature difference ΔT , all terms in (1.11) need to be considered. In par-
ticular, Kraus and Businger (1994) suggest the following expression for ΔT

ΔT = − 13Qw

cp ρw u∗
, (1.13)

where cp is the specific heat at constant pressure and u∗ is the friction velocity.
For example, under the assumption of light wind conditions when u∗ ≈ 0.1 m/s,
we obtain ΔT ≈ 0.2◦C. It should be noted that formula (1.13) is valid at night
when the short-wave radiation is zero, and Qw = 200 W/m2 is approximately
the daily solar radiation absorbed in the ocean at middle latitudes. However,
when short-wave absorption near the surface is no longer negligibly small, the
above expression cannot be applied.

The heat resulting from short-wave absorption is distributed over the ocean
mixed layer by the turbulent mixing. Mixing induces some heat transport down-
ward, which increases the temperature of the mixed layer, while the part of heat
transported upward contributes to Qw(0) and consequently increases the SST.

Another factor influencing the SST is evaporation and precipitation. When
precipitation is greater than evaporation, water salinity decreases. The oppo-
site is true for areas with dominant evaporation. It should be noted that the
lower salinity and resulting lower density may suppress turbulence; however,
the resulting stable layer will be sooner or later eroded by the wind-generated
turbulence.



8 1 Basic processes near the air–sea interface

1.3.4 The liquid–gas interface and role of wave breaking

The air–sea boundary is not a simple continuous surface. In fact, bubbles in the
water and droplets in the air extend the area of interaction between the two
fluids. For bubbles and spray droplets, the Reynolds number is usually equal
to unity or less. Therefore, the inertial acceleration is negligibly small and the
motion through a fluid at rest is governed only by the buoyancy and viscosity.
According to Batchelor (1967), the terminal fall velocity of small droplets is

wd ≈ −2

9

ρw

ρa

gr2

νa

. (1.14)

On the other hand, the terminal velocity of rising of a clean small bubble
becomes

wb ≈ 1

3

gr2

νw

. (1.15)

Symbols νa and νw in the above expressions denote the kinematic viscosity of
air and water, respectively. Air bubbles that rise through the sea collect surface-
active material such as algae and bacteria on their surface. The resulting rise
velocity of such ‘dirty’ bubbles becomes smaller than that of ‘clean’ bubbles
with the same radius. Thorpe (1992) and Wu (1992) reported some empirical
formulae for the rise velocity of dirty bubbles as a function of their diameter.

Water waves are generated by wind when wave heights grow with wind speed,
its fetch and time of action. However, the heights of wind-induced waves do not
increase infinitely, but are limited by the breaking phenomenon or energy dissi-
pation due to bottom friction. Wave breaking occurs whenever a momentarily
high crest reaches an unstable condition. The free surface breaks up as fluid
appears to erupt from a point just forward of the crest and air is entrained,
forming bubbles. The most obvious expression of breaking at the sea surface in
deep ocean is whitecaps caused by entrained air. Wave breaking and resulting
whitecaps are observed when the wind speed is greater than approximately
3 m/s. There is a lack of a universal feature identifying breaking with a large
variety of scales of observed whitecaps, extending from O(1 m) up to O(100 m).
Wave breaking is an intermittent process in space and time and its frequency
depends on the severity of the sea. Nevertheless this process, occurring only
over a small fraction of the ocean surface, is very significant as wave breaking
over the ocean plays an important role in controlling many physical processes at
the air–sea interface. In particular, the importance of wave breaking in air–sea
interactions includes the following phenomena (Melville, 1996):

• reducing the height of surface waves,

• being a source of vorticity and turbulence,

• dissipating wave energy and transferring it to turbulent mixing,

• generating ocean currents using a part of wave momentum flux,
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• enhancing gas and heat transfer via surface turbulence and bubble en-
trainment,

• generating sound at the ocean surface that can be used as a diagnostic
tool for air–sea interaction studies and

• providing passive and active microwave signatures that may prove useful
in remote sensing of the ocean.

The air entrainment associated with a breaker produces bubbles that are carried
below the surface for possible dissolution or gaseous accretion depending on the
size distribution of the bubble cloud and the saturation level of gas in the water.
This mechanism provides an exchange process for the transfer of gases between
the atmosphere and ocean (Csanady, 1990). When they return to the surface,
the bubbles either remain stabilized in a foam patch or rupture, carrying a thin
skin enriched with particles collected by impact scavenging during their rise
(Blanchard, 1983).

1.3.5 Transport of gases across the interface

Turbulent mixing is the main factor for diffusion in the water body and adjacent
atmospheric layer. Close to the interface turbulent motion is suppressed and
the exchange of mass is mostly dependent on molecular diffusivity. The transi-
tion from one layer to another is continuous, but the resistance to the transfer
of gases in particular sublayers is different, and the thin diffusive sub-layers
provide the largest resistance to the transfer. The second factor, affecting the
transition between the layers, is the 800-fold difference in the density of water
and air. In fact the air–water boundary can be considered as the boundary flow
of fluids over a solid porous wall, which helps to formulate the well justified
scheme of heat and mass transfer at such interfaces. Donelan and Wanninkhof
(2002) summarized the physical and chemical background to processes of gas
transfer through the air–sea interface. This paper is an introductory paper in
the recently published monograph Gas Transfer at Water Surface (Donelan
et al., 2002) presenting progress in the theoretical and experimental efforts to
understand and describe the fundamentals of gas transition between the atmo-
sphere and oceans. The monograph is an excellent source of modern knowledge
on this subject.



Chapter 2

Mechanics of steep and breaking
waves

2.1 Introduction

Gravity surface waves, due to the nonlinear character of their motion, undergo
various types of modulation on the way of propagation. Depending on the basic
wave parameters, the shape of wave profile can vary, from very gentle to very
steep. However, the steepening of the wave profile is not unlimited and for
some wave parameters waves lose their stability and break. As in this book
we are focusing on the wave breaking, it is quite appropriate to discuss first
the mechanics of steep waves in some detail as steep waves represent an initial
phase to breaking waves, both regular waves and irregular wind-induced waves.

In this chapter, historical and more recent attempts to describe the evolution
of steep waves are discussed. In the past, a lot of attention has been given to
the limiting forms of steep gravity waves. Though the theory of water waves of
low or moderate steepness is well developed, the situation is still very different
for surface waves whose steepness is such that the waves are close to breaking,
despite great efforts made in the last 30 years, starting with the theoretical and
numerical studies of Longuet–Higgins and Fox (1977, 1978), Cokelet (1977),
Williams (1981) and others (see Section 2.2 for a more detail).

The experimental and numerical study of Lake et al. (1977) showed that
evolution of a nonlinear wave train, in the absence of dissipative effects, ex-
hibited the Fermi-Pasta-Ulam recurrence phenomenon, when the modulation
periodically increases and decreases, and the wave form returns periodically to
its previous form. Modulation was caused by the growth of the two dominant
sidebands of the Benjamin–Feir instability at the expense of the carrier. The
measurements showed a marked asymmetry between the upper and lower side-
bands, which leads to the lower sideband increasing to an amplitude greater
than that of the primary wave. The onset of the asymmetry corresponds to the
onset of wave breaking.
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In Section 2.3, a more recent summary of theoretical results on nonlinear
wave evolution is presented. In particular, Tulin and Waseda (1999) pointed
out the usefulness of the nonlinear Schrödinger equation (NSE) proposed by
Zakharov (1968) to study the stability of wave motion.

In Section 2.4, the numerical methodology to represent the time history of
space-periodic irrotational, nonlinear and unsteady free surface waves is ad-
dressed. More specifically, the mechanism of onset of wave breaking for mod-
ulating waves and a universal threshold of some wave parameters determining
onset of breaking are proposed.

2.2 Theory of the almost-highest waves

All theoretical studies of wave hydrodynamics which are relevant to non-bre-
aking waves are formulated for irrotational flow. However, for surface waves
whose steepness is such that the waves are close to breaking the theory needs
some modification. A possible limiting form for the crest of a gravity wave in
which the free surface forms a sharp corner with a 120◦ internal angle was
suggested by Stokes (1880). In a frame of reference travelling with the phase
speed the fluid at the crest is at rest. This satisfies the kinematic breaking
criterion that the fluid velocity matches or exceeds the phase velocity. To define
the limiting flow we take polar coordinates (r, θ) with the origin at a distance
a above the wave crest (see Fig. 2.1). Let us further assume that the crest is
formed by two intersecting straight lines which are tangents to the real water
surface curvature.

The velocity potential in the region of the crest in the polar coordinate system
(r, θ) becomes (Massel, 1989)

φ(r, θ) = Brn sin(nθ), (2.1)

where B and n are the coefficients to be evaluated. As the surface is a stream-
line, the tangential velocity component becomes

uθ = −1

r

∂φ

∂θ
= 0. (2.2)

0

θ
x

r

A P

-z

Figure 2.1: Travelling coordinate system in the physical plane.
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Therefore, from (2.1) we have

∂φ

∂θ
= cos(nθ) = 0 at θ = θ0, (2.3)

or

nθ0 =
π

2
. (2.4)

At the free surface, pressure must be a constant. Taking this constant to equal
zero, the Bernoulli equation simplifies as follows

1

2

(
u2
r + u2

θ

)
+ gz = 0, (2.5)

where ur and uθ are the normal and tangential velocity components, respec-
tively, and z = −r cos θ is the surface ordinate. Substituting velocities ur = −∂φ

∂r

and uθ = −1
r

∂φ
∂θ

into (2.5) yields

1

2
n2B2r2n−3 = g cos θ0 = const. (2.6)

Since the right-hand side of (2.6) is a constant, the power of r must be zero,
namely

2n− 3 = 0 or n =
3

2
. (2.7)

Thus from (2.4) we have

θ0 = 60◦ and 2θ0 = 120◦. (2.8)

Using now (2.6) we obtain the value of the coefficient B equal to 2
3
g

1
2 .

The final form of the velocity potential now becomes

φ(r, θ) =
2

3
g

1
2 r

3
2 sin

(
3

2
θ
)
. (2.9)

Solution (2.9) suggests that the profile approaches 120◦ corner flow with the
velocity and acceleration components as follows (Massel, 1989)

ur =−∂φ

∂r
= −g

1
2 r

1
2 sin

(
3

2
θ
)

uθ =−1

r

∂φ

∂θ
= −g

1
2 r

1
2 cos

(
3

2
θ
)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.10)

and

ar =ur
∂ur

∂r
+

uθ

r

∂ur

∂θ
− u2

θ

r

aθ =ur
∂uθ

∂r
+

uθ

r

∂uθ

∂θ
+

uruθ

r

⎫⎪⎪⎪⎬
⎪⎪⎪⎭. (2.11)
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Table 2.1: Wave steepness for kinematically limited deep water
waves (adapted from Massel, 1989)

Author H
L

ka C
C0

Miche (1944) 0.142 0.461 1.10

Chappelear (1961) 0.1428 0.4486 1.10

Schwartz (1974) 0.1412 0.4436 1.0922

Longuet–Higgins (1976) 0.1411 0.4433 1.0923

Cokelet (1977) 0.1411 0.4433 1.0921

Longuet–Higgins and Fox (1977) 0.14107 0.4432 1.0923

Williams (1981) 0.141063 0.4432 1.09228

Substituting (2.10) into (2.11) we obtain

aθ = 0 (2.12)

and

ar =
1

2
g sin2

(
3

2
θ
)

+
3

2
g cos2

(
3

2
θ
)
− g cos2

(
3

2
θ
)
, (2.13)

or

ar =
1

2
g. (2.14)

The particle acceleration near the crest is directed radially downward from the
crest with a magnitude of 1

2
g in the coordinate system given in Fig. 2.1.

The solution (2.9) refers only to the steepest possible waves. When r > 0, the
crests are still rounded. Longuet–Higgins and Fox (1977) showed that near the
summit of a steep progressive gravity wave, a smooth local flow exists which
satisfies the free-surface conditions and which tends to Stokes’ corner flow when
the radial distance r becomes large compared with the quantity a = v2

2g
, where

v is the particle velocity at the crest in a reference frame moving with the wave
speed.

Numerical calculations indicate that the free surface crosses its asymptote
at about r

a
= 3.32 and r

a
= 68.5, then approaches it in very slowly damped

oscillations. Between the two crossings of the asymptote, the maximum angle
of slope slightly exceeds 30◦ and the computed value is 30.37◦. This small
deviation from Stokes’ 30◦ asymptote angle provides the vertical acceleration
of a particle at the crest equal to 0.388 g. In the far field, as r

a
→ ∞, the

acceleration tends to the value of 0.5 g, appropriate to Stokes’ corner flow.
For deep water waves, a commonly quoted property of the ‘highest’ wave is

wave steepness, i.e. the ratio of H
L

, in which H is the wave height and L is the
wavelength. The values obtained theoretically by various authors have been
collected in Table 2.1. The steepness ka was calculated from H

L
as follows

H

L
=

2ak

2π
=

ka

π
, (2.15)
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where a is the wave amplitude and k is the wave number. For completeness in
Table 2.1, the ratio of nonlinear phase velocity C to the velocity C0, calculated
by the small amplitude wave theory was added. It should be noted that in the
limiting steepness

(
H
L

)
≈ 0.141, the wavelength should be considered as the

Stokes limiting wavelength, which is about 20% greater than that of ordinary
sinusoidal waves of the same frequency. Thus, for the limiting wave height we
have

H ≈ 0.141L = 0.141(1.2
g

2π
T 2) = 0.027 g T 2, (2.16)

where

L = 1.2
g

2π
T 2. (2.17)

Equation (2.16) is a very well known breaking criterion for regular waves. Com-
parison of this criterion with experimental data will be discussed in the follow-
ing chapters.

Let us assume for a moment that a wave is described by the linear expression

ζ = a cos(kx− ωt). (2.18)

Therefore, the limiting vertical acceleration according to (2.14) becomes

aω2 =
1

2
g, (2.19)

and the corresponding slope of the limiting Stokes wave is

εmax = tan
(
π

6

)
=

1√
3

= 0.577. (2.20)

It should be noted that the exact maximum slope of the limiting Stokes wave,
corresponding to angle 30.37◦, found by Longuet–Higgins and Fox (1977), is
slightly bigger

εmax = tan(30.37◦) = 0.586. (2.21)

Using the linearized theory of small-amplitude for obviously nonlinear steep
waves can be considered as an approximation only. For example, applying the
linear dispersion relation and using (2.19) we find the maximum wave steepness
in deep water to be

εmax = (ak)max =
aω2

g
= 0.500, (2.22)

which compares with the actual value (2.20) or (2.21), and with the predic-
tion of the nonlinear theory of Longuet–Higgins and Fox which provides the
maximum steepness εmax = 0.4432 (see Table 2.1). So we are now in error by
12%.

Moreover, the ratio of wave height to wavelength would be

H

L
=

2a

L
=

ak

π
=

aω2

πg
=

1

2π
= 0.159, (2.23)

corresponding to the value of 0.141, given above. Hence by adopting Stokes’
criterion of (2.19) we may be in error by about 10%.
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2.3 Instabilities of uniform wave trains

Theoretical and experimental studies provide convincing evidence that regular
two-dimensional wave trains in deep water are liable to a number of instabili-
ties which lead to wave breaking without external forcing, for an initial wave
train which is steep enough. From Longuet–Higgins’ (1978a,b) analytical stud-
ies on normal-mode perturbations of steep gravity waves it follows that there
are two distinct types of instability. At low wave steepness, ‘subharmonic’ in-
stabilities of the horizontal scales greater than the basic wavelength and with
fairly low rates of growth appear. At higher wave steepness there are appar-
ently local ‘superharmonic’ instabilities, having the horizontal scale less than
the fundamental wavelength, leading directly to wave breaking. Between these
two types of instabilities is an intermediate range of wave steepness where the
unperturbed wave train is neutrally stable.

If we introduce a small disturbance in the form of two modes with ‘sideband’
frequencies, adjacent to the fundamental frequency, the sideband modes will
be forced to increase exponentially due to nonlinear interaction mechanisms,
and primary wave motion becomes unstable due to this form of disturbance.
Such instability of periodic wave trains is known as Benjamin-Feir instability.
Benjamin and Feir (1967) examined a primary, deep-water wave of finite am-
plitude a and frequency ω superimposed by two ‘sidebands’ of infinitesimal
amplitude εa and of frequencies ω(1± δ), respectively, where ε and δ are small
quantities. They found that motion becomes unstable and the sidebands tend
to grow in amplitude at the expense of the primary wave, provided that

2(ak)2 > δ2. (2.24)

The rate of growth of the sidebands is given by (Longuet–Higgins, 1978b)

d(ln ε)

dt
= 2ωδ2

(
a2

a2
0

− 1

) 1
2

, (2.25)

where a0 denotes critical amplitude resulting from (2.24). The growth of side-
bands causes a slow modulation of the wave envelope with a spatial wave num-
ber Δk related to δ by the group velocity

δω

Δk
=

ω

2k
= Cg. (2.26)

However, the asymptotic theory of Benjamin and Feir (1967) is valid only
asymptotically for sufficiently small values of wave steepness ak and the mod-
ulation frequency δ. In particular, Longuet–Higgins (1978b) found that sub-
harmonic instabilities of the Benjamin-Feir type are confined to waves whose
‘steepness’ ak lay within a certain finite range with the upper limit at ak ≈ 0.37.
The growth rate is about 14% per period, which value occurs at ak ≈ 0.32. As
ak increases beyond ≈ 0.346, wave modes become stable again. A comparison
of the calculated growth rates showed good agreement with the observations
reported by Benjamin (1967) in the wave steepness range 0.07 < ak < 0.17.
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Local or superharmonic instabilities having the same horizontal scale as the
fundamental wave, or less, appear first when ak ≈ 0.41. Their rates of growth
are much higher than for the ‘subharmonic’ case and these instabilities lead
directly to the overturning of the free surface and to wave breaking. Unlike
Benjamin–Feir instability, superharmonic instability is not symmetric in the
sidebands, but arises as a function of the upper sideband and the primary
wave, being strongly localized near breaking.

The experimental and numerical study of Lake et al. (1977) showed that
evolution of a nonlinear wave train, in the absence of dissipative effects, ex-
hibited the Fermi-Pasta-Ulam recurrence phenomenon, where the modulation
periodically increases and decreases, and the wave form returns periodically to
its previous form. Modulation was caused by the growth of the two dominant
sidebands of the Benjamin-Feir instability at the expense of the carrier. For
small steepness, the original three-wave system was almost recovered. When
the initial steepness is large enough, wave trains experience strong modula-
tions followed by demodulations; however, the spectral peak is downshifted to
a lower sideband. This is the frequency downshift phenomenon.

As we are mostly interested in breaking waves, the data on wave trains lead-
ing directly to wave breaking are very valuable. In particular, Melville (1982)
undertook a laboratory experiment with waves generated by a hydraulically ac-
tuated servo-controlled paddle driven by a sinusoidal signal generator. For ak
in the range 0.16–0.29, a uniform deep-water wave train undergoes a Benjamin-
Feir instability with the modulation frequency predicted by Longuet–Higgins
(1978b). The measurements showed a marked asymmetry between the upper
and lower sidebands, which leads to the lower sideband increasing to an am-
plitude greater than that of the primary wave. The onset of the asymmetry
corresponds to the onset of wave breaking. This asymmetry extends to the
higher harmonics of the primary wave, and there is a marked reduction of the
energy in these upper sidebands in the breaking region. For ak ≥ 0.31, a full
three-dimensional instability dominates the Benjamin-Feir instability and leads
rapidly to breaking.

A more recent summary of theoretical results on nonlinear wave evolution
was presented by Tulin and Waseda (1999), who pointed out the usefulness
of the NSE. The NSE well describes the recurrence process, while the fre-
quency downshift phenomenon is not predicted by solutions of this equation.
Dysthe (1979) and Trulsen and Dysthe (1996) extended the NSL equation to
broader bandwidths, and a further useful modification of the Zakharov equation
was proposed by Krasitskii (1994) through his reduced four-wave interaction
model. Fully nonlinear computations by Tulin and Waseda (1999) showed that
Krasitskii’s Hamiltonian type equation predicts correctly the major features of
the increase of energy in the lower sideband relative to the upper sideband.
They found that the spectral peak downshifting to a lower sideband appears
despite the absence of breaking. This fact demonstrates the role of the balance
between momentum losses and energy dissipation in the shifting of energy be-
tween sidebands.
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Tulin and Waseda (1999) found that most of the experiments on wave in-
stability were conducted for a range of steepnesses, but with a single fixed or
naturally determined modulational frequency. This means that the monochro-
matic wave-generator motion was not modulated, and this modulation natu-
rally evolved from background noise. To examine the evolution of wave groups
with much wider parameter range, Tulin and Waseda performed an experiment
for waves with wavelengths of 1–4 m, initial steepnesses ε = ka = 0.1−0.28 and
normalized sideband frequency differences δω

εω
= (0.1−1.5). Two types of exper-

iments have been considered, i.e. the ‘unseeded’ experiment where modulation
evolves naturally from background noise and the modulational frequencies are
naturally determined, and the ‘seeded’ experiment where modulation is im-
posed at the wave generator, which provides the opportunity to change not
only the sideband frequencies but also the initial sideband amplitudes and the
strength of modulation.

In the ‘seeded’ experiment, the wave train in its initial stage is represented
as follows (Tulin and Waseda, 1999)

ζ = ac sin(ω0 t) + b+ sin(ω+ t + ϕ+) + b− sin(ω− t + ϕ−), (2.27)

in which ω0 is the carrier frequency, ω+ and ω− are the upper and lower sideband
wave frequencies, respectively, ϕ+ and ϕ− are the corresponding phases and b+
and b− denote the amplitudes of the upper and lower sideband perturbations,
which satisfy the following relation

a2
0 = a2

c + b2+ + b2−, (2.28)

in which a0 is the amplitude of the equivalent wave train with initial steepness
ε = a0k.

The modulational instability is a result of interaction among the above three
monochromatic wave trains of the following frequencies: carrier (ω0), upper
(ω+) and lower (ω−) sidebands satisfying the following conditions

2ω0 = ω+ + ω−
ω± = ω0 ± δω
2k0 = k+ + k− + Δk

⎫⎪⎬
⎪⎭, (2.29)

where Δk is a slight mismatch of the wave number from Phillips’ four wave
resonance conditions (Phillips, 1977).

The corresponding initial growth rate

βx =
d(ln a0)

d (kx)
(2.30)

is predicted by Benjamin and Feir (1967) in the form

βx = βBF = ε2 δ̂(2 − δ̂2)1/2, (2.31)

where δ̂ = δω
εω0

. The instability requires that 0 < δ̂ ≤
√

2, and the maximum

growth appears when δ̂ = 1.0 and ϕ+ = ϕ− = −π
2
.
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Krasitskii’s (1994) four-wave reduced equation yields the growth rate in the
form

βK = ε2 (C+C−)1/2 sinϕ, (2.32)

in which

C+ =
(
ω0

2k0

)(
ω−
2k−

)1/2 (
ω+

2k+

)−3/2

T1123, (2.33)

C− =
(
ω0

2k0

)(
ω+

2k+

)1/2 (
ω−
2k−

)−3/2

T1123, (2.34)

cosϕ = 0.5

{
Δk

ε2k
−

[
ω0

2k0

(
k+

ω+

)
T1212

+
ω0

2k0

(
k−
ω−

)
T1313 − 2T1111

]}
(C+C−)−1/2 , (2.35)

where T1111, T1212 and T1123 are the normalized interaction coefficients given in
Krasitskii (1994).

In Fig. 2.2, the most unstable modulational frequency, resulting from vari-
ous theoretical solutions, is presented as a function of initial steepness ε. The

Longuet-Higgins
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Dysthe
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Figure 2.2: The most unstable modulational frequency as a function of wave
steepness ε (adapted from Waseda and Tulin, 1999).
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Figure 2.3: Growth rate of the sidebands for two-wave steepnesses (adapted
from Waseda and Tulin, 1999).

comparison indicates that Krasitskii’s solution agrees very well with the exact
theory of Longuet–Higgins (1980), in which the frequency of the fastest grow-
ing instabilities have been determined precisely. In Fig. 2.3 the growth rate of
the sidebands is shown for waves of frequency ω0 = 1 Hz and initial steepness
ε = 0.133 and 0.175. The experimental data of Waseda and Tulin (1999) have
been compared with the theoretical predictions of Benjamin and Feir (1967)
and Krasitskii (1994). Clearly Benjamin and Feir’s theory overestimates the
growth rate but Krasitskii’s solution agrees very well with measurements.

Waseda and Tulin (1999) also reported some results on the influence of wind
on the growth rate. They found that in the ‘unseeded’ case (modulation nat-
urally evolves from background noise), the growth rates increase for all wind
speeds. However, above 8.5 m/s, the growth rate started to decrease, while
still being larger than without wind. The estimated growth rates agree very
well with prediction by Krasitskii’s theory. In the case of seeded experiments,
the wind induces the change of the inviscid growth for a given modulational
frequency and change of this frequency is a function of the wave’s age. A combi-
nation of both effects determines the enhancement or suppression of the modu-
lational instability. For moderate and old wind sea waves, say when u∗/C < 0.2,
in which u∗ is the friction velocity and C is the phase speed the net effect of
wind on modulational instability is small.

Tulin and Waseda conducted two separate series of experiments on the evolu-
tion of wave groups with breaking effects. In the first one, waves of 1.2 m length,
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Figure 2.4: Disintegration of the regular wave train in the laboratory channel
(adapted from Massel, 2001b).

steepness ε = 0.133 and normalized sideband frequency differences δ̂ = 0.785
were used. In the second series, wavelength was equal to 2.3 m with steepness
ε = 0.12 − 0.28 and δ̂ = 0.1 − 1.5. They found that waves did not break in
a strictly two-dimensional pattern across the tank, and spatially periodic pat-
terns were observed when alternate breaking occurred at the sides and then at
the tank centre. The wave steepness of ε = 0.133 corresponds closely to the
values typically appearing in the ocean. The effect of breaking increases the
asymmetry (b−− b+). The energy residing largely in the carrier wave is divided
roughly between the original carrier and the lower sideband. The evolution of
longer waves indicates that near peak modulation the lower sideband ampli-
tude exceeds the upper sideband amplitude. The amplitudes of both sidebands
start to deviate earlier than the onset of breaking. In particular, asymmetric
development of sidebands was seen earlier for the case of recurrence without
breaking. This means that the asymmetric growth of the sidebands does not
require the appearance of breaking. The energy difference between the lower
sideband and the upper sideband remains large when breaking is present but
returns to zero when no breaking occurs. The dependence of maximum wave
steepness at breaking εmax = kH

2
on the initial steepness ε is almost linear in

the ε ranges from 0.1 to 0.3 when the steepness kH
2

changes from 0.25 to 0.35
with some scatter.

Figure 2.4 shows the simple case of the ‘unseeded’ laboratory experiment on
mechanically generated waves (Massel, 2001b). Two stations in the wave flume,
1 and 6, were located at 4 m and 49 m from the wavemaker, respectively.
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Incident waves of height H = 0.06 m and frequency ω0 = 8.76318 rad/s were
generated in water depth of 0.4m, thus steepness ka = 0.235. The compar-
ison of both records clearly indicates that an initially sinusoidal wave train
(see Fig. 2.4a) undergoes substantial modifications with a strong grouping at
station 6 (see Fig. 2.4b). This signal disintegration is also seen in the spectral
structure of both records (see Fig. 2.4c and d for stations 1 and 6, respectively)
when wave energy, initially concentrated at the wavemaker frequency ω0, after
propagating a distance of 45 m, redistributes over a broad spectrum.

It should be noted that Huang et al. (1999) argued that the commonly used
Fourier spectrum is a very poor method to analyse the downshift phenomenon
and shift of peak of the frequency spectrum as the Fourier spectrum is not
sensitive to local change of frequency. On the other hand, the frequency down-
shift during wave evolution is not a slowly varying process, but rather a sudden
jump. This fact creates the main difficulty for theoretical analysis by NSE type
models and their modifications which are based on a slowly varying phase, fre-
quency and amplitude. Therefore, Huang et al. (1999) suggested using analysis
based on the Hilbert Transform in which a variation of frequency can be defined
much more precisely and locally. More information on the Hilbert Transform
is given in Chapter 4 and Appendix C.

Another form of instability, leading to wave breaking, was observed by Duncan
et al. (1994a,b) and considered theoretically by Longuet–Higgins (1990, 1994).
In this case, spilling breakers with wavelengths of 2m or more were generated.
Parasitic capillary waves tend to form on the forward face of the wave, at a point
some way ahead of the crest. The flow beneath the capillaries separates and
the crest quickly becomes turbulent. The fluid in the crest advances down the
forward face of the wave without any overturning of the free surface. Longuet–
Higgins argued that the parasitic capillaries produce a rectified vorticity which
is swept back into the crest of the wave. The resulting shear flow is unstable
and breaks into shear waves and then into turbulence. In the final stage, as
was observed by Koga (1982), flow appeared to separate from the free surface
along a line making angles of 10◦ to 50◦ with the horizontal line. This line
forms a boundary between the relatively smooth flow ahead of the separation
line, and a rough, apparently turbulent region behind the line. Koga’s obser-
vations are compared with a theoretical model of local flow separation in the
immediate neighbourhood of the point of separation, and several features of the
flow separation near the crests of steep waves are in agreement with Longuet–
Higgins’ (1994) model.

It should be noted that in the natural conditions, better known instabilities
such as whitecaps develop on the forward face of progressive gravity waves
having a wavelength greater than a few metres superimposed very short wave-
lengths, less than about 10 cm, with pockets of air in the waves troughs. All
these instabilities contributing to the variable amplitude and short crests of
deep-water waves make the attempts to develop simple breaking criteria, such
as are known for waves on beaches, very difficult (see Chapter 5 for more
details).
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2.4 Numerical modelling of steep waves and

their evolution to breaking

2.4.1 Note on second-order mechanically generated
waves

Many computational studies have been motivated by experiments in wave
flumes. However, laboratory studies of surface waves are complicated due to
contaminations contributed to the wave motion by wavemakers, as simple har-
monic motion produces a wave train not only with the wavemaker’s frequency
but also with its higher harmonics. Massel (1996b) examined a possible maxi-
mum wave height in a regular mechanically generated wave train propagating
over constant water depth. When restricting ourselves to the second order of
approximation, surface elevation can be written in the form

ζ(x, t) = a cos(kx− ωt) + a(2)Scos 2(kx− ωt) + a(2)F cos(lx− 2ωt + π), (2.36)

in which a is the amplitude of the first harmonic, a(2)S is the second bound har-
monic and a(2)F is the second free harmonic. The corresponding wave numbers
k and l satisfy the following dispersion relations:

ω2 = gk tanh(kh) and 4ω2 = gl tanh(lh). (2.37)

It is most likely that waves start to break at points in which ζ(x, t) = ζmax.
To find the distance x = xmax and time t = tmax, corresponding to the wave
breaking, we adopt a coordinate system moving with phase speed C = ω

k
. In

this system (2.36) takes the form

ζ(x, t) = a + a(2)S + a(2)F cos[(l − 2k)x + π]. (2.38)

Thus

xmax =
(2n− 1)π

l − 2k
and tmax =

(2n− 1)πk

(l − 2k)ω
. (2.39)

From the above relationships it follows that the repetition distance Lr between
two succeeding maxima of the wave profile is

Lr =
2π

l − 2k
. (2.40)

It should be noted that the distance Lr also depends slightly on wave amplitude
(Longuet–Higgins, 1977), but for simplicity this dependence was here omitted.

Due to higher harmonics generation, the kinematic breaking criterion at x =
xmax and t = tmax takes the form (Massel, 1996b)

u(xmax, tmax) = C, (2.41)
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Figure 2.5: Comparison of theoretical and experimental maximum wave
heights (adapted from Massel, 1996b).

or

gka

ω

cosh k(ζmax + h)

cos kh
+

3

4
ωka2 cosh 2k(ζmax + h)

sinh 4(kh)

+
gla(2)F

2ω

cosh l(ζmax + h)

cosh(lh)
= C, (2.42)

in which u is the horizontal component of the orbital velocity at the wave
crest. Comparison of the maximum wave height resulting from the above con-
dition with the experimental one is shown in Fig. 2.5. Discrepancies between
experiments and theory are less than 20%.

2.4.2 Numerical modelling of steep wave evolution

In computational studies, steep waves are usually formed by applying a point
pressure disturbance at the wave surface or are obtained from sufficiently en-
ergetic initial conditions. Longuet–Higgins and Cokelet (1976) in their pio-
neer study developed a new method for following the time-history of space-
periodic irrotational, nonlinear and unsteady free surface waves. Basically the
method involves solving an integral equation along the fluid surface to deter-
mine the spatial dependence of the motion and the new normal component
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of velocity at each time step. The potential theory is used by adopting a Eu-
lerian form and the marked particle of the Lagrangian description by follow-
ing the quality of the particles and their Eulerian velocity potential through
time. When the application of surface pressure is raised to an energy level
exceeding the maximum for a steady progressive wave, the wave develops in
time, ultimately turning over and plunging towards the forward face of the
wave.

Other unsteady numerical computations, available in the literature, all follow
Longuet–Higgins and Cokelet (1976) in using the boundary integral method.
However, in these solutions, more robust, more accurate, and more efficient
integration schemes have been developed and analytical solutions for free-
surface flows approaching plunging breakers have been proposed. For example,
Longuet–Higgins (1983a) gave a semi-Lagrangian representation of the jet in
the form of a Dirichlet hyperbola which is ejected from the crest of a break-
ing wave. Peregrine et al. (1980) discovered from numerical computations that
the water rising up the front of the wave into the jet is subject to large ac-
celeration with maxima around 5 g, where g is the gravitational acceleration.
Moreover, New (1983) found that a certain region of the surface profile be-
neath the overturning crest of a plunging breaker can be well approximated
by an ellipse with axes in the ratio

√
3. Another solution for the same re-

gion was proposed by Longuet–Higgins (1982). It should be noted that all
these models accounted for only a limited part of the wave profile. To over-
come this limitation, Greenhow (1983) developed a solution combining both
the ellipse model of New and the jet model of Longuet–Higgins. This model
describes the forward face, loop under overturning wave, front jet and rear
of the wave in a fairly realistic way. Comparison of Greenhow’s model with
the numerical breaking-wave profiles of Vinje and Brevig (1980) shows a good
agreement.

In the previous section we found that the subharmonic instabilities of the
Benjamin-Feir type were found to be confined to waves with steepness ak
within a finite range with the upper limit ak ≈ 0.37, and local or superhar-
monic instabilities appear when ak ≈ 0.41 and they lead directly to break-
ing. Longuet–Higgins and Cokelet (1978) carefully examined the growth rates
of each type of instability, employing their time-stepping method (Longuet–
Higgins and Cokelet, 1976) where waves are treated as theoretically free waves
under the simplest possible conditions of constant and uniform pressure at the
free surface. Calculations confirmed that ‘local’ superharmonic instabilities lead
directly to wave breaking with final overturning (see figures 15 and 18 in their
paper). In two computational examples they found also that waves of even
lower amplitude than ak = 0.25 will develop subharmonic instabilities to the
point of breaking with a shortening of the individual wavelength. The crest pro-
files for the overturning wave when ak = 0.41 and ak = 0.25 are very similar,
suggesting that the dynamics of the final stage of overturning are determined
mainly by local conditions near the wave crest.
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Dommermuth et al. (1988) reported the results of high-resolution experiments
and computations to study steep and overturning gravity waves produced by
a piston wavemaker in a wave flume. In the numerical simulation, a refined
mixed Eulerian–Lagrangian scheme under the assumptions of potential flow
was used. Similarly to the approach of Longuet–Higgins and Cokelet (1976),
a dynamically controlled time-stepping procedure was applied to capture the
large accelerations in the breaking waves. The numerical simulation compared
extremely well with the experimental measurements for free-surface elevations,
and for horizontal and vertical velocities below and above the still-water level.
This good agreement confirms the validity and usefulness of nonlinear potential-
flow computations for predicting steepening and overturning waves in the ocean.

The steepening and breaking of deep water waves was also a subject of nu-
merical studies by Schultz et al. (1994). The solution of the initial boundary
value problem was described by a complex potential w(z) = φ+ iψ, in which φ
is the velocity potential and ψ is the stream function in the complex plane z.
At every time step, unknown boundary values of velocity potential φ are found
using the Cauchy integral theorem. To study breaking onset, three different ex-
perimental configurations have been considered, i.e. converging sidewalls, a sub-
merged disturbance and wave focusing. When the complex potential became
known along the domain boundary, the solution was stepped forward in time
using the Bernoulli equation and the kinematic boundary conditions, in a way
similar to Vinje and Brevig (1980). This solution enabled the development of
breaking onset criteria based on the square root of the potential energy calcu-
lation rather than on peak-to-peak wave height (or steepness) determination.
Schultz et al. (1994) concluded that the rms potential energy computed over
a local wavelength provides significantly less scatter for the various breaking
scenarios they investigated. They also suggested an absolute breaking criterion
as the ratio of potential energy/total wave energy exceeding 0.52. However,
this kind of criterion does not appear to be valid in rotational flows, where
the ratio potential energy/total wave energy has been shown to vary signifi-
cantly as a function of the strength of background vorticity (Teles da Silva and
Peregrine, 1988). Moreover Millinazzo and Saffman (1990) reported significant
changes to the wave shape and hence the potential energy in the presence of
a surface shear layer. Therefore, it is unlikely that a criterion involving a po-
tential energy threshold can be valid universally. It can be seen that this kind
of criterion also fails to explain the nature of instability.

The observed strong connection between sideband instability and wave break-
ing was supported by numerical calculations of Cointe and Boudet (1991). They
studied the correlations between wave breaking and wave grouping, since there
is growing evidence that wave groups at sea are a consequence of sideband
instability when the dispersive properties of surface waves leads to modulation
of the wave envelope (Tulin and Li, 1992). The observed connections are sum-
marized in Fig. 2.6. More information on the influence of wave groups on wave
breaking will be given in the next section.
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Figure 2.6: Schematic connections of wave breaking to sideband instability,
wave grouping and waveform deformation (adapted from Tulin and Li, 1992).

2.4.3 Onset of breaking for modulating surface waves

The above sections showed the mathematical progress made in studying the
nonlinear modulational processes in model equations. In some of these studies,
the onset of wave breaking was also included (see for example Longuet–Higgins
and Cokelet (1976), Peregrine et al. (1980), Greenhow (1983) and Tulin and
Li (1992)). The results of these studies have served to draw more attention
to the problem of deformation of steep waves. Underlying issues involved an
understanding what determines the onset of wave breaking and whether it
is controlled by a universal threshold of some wave parameter or parameters.
Banner and Tian (1998) approached this problem through a detailed numerical
study of the fully nonlinear two-dimensional problem on a periodic spatial
domain. They used the free-surface code developed by Dold and Peregrine
(1986) to study the evolution of wave groups composed of a fundamental carrier
wave with small upper and lower sideband components, using as parameters
the initial carrier wave steepness (ak)0 and N , the number of waves in one
modulational length. Their initial wave group had the structure of a uniform,
finite-amplitude, steady deep-water wave train whose linear approximation is
ζ = a cos(kx).

Dold and Peregrine showed that for a given N an initial carrier wave steep-
ness threshold (ak)0 differentiates wave groups of two modes of behaviour, i.e.
recurrence of the initial state without breaking or the rapid onset of breaking.
According to Banner and Tian (1998), the recurrence occurs when the relative
growth rates of the mean momentum and energy densities at their envelope
maxima reach the threshold of 0.2 and then begin to decrease immediately. On
the other hand, breaking occurs when these relative growth rates are sustained
at around this threshold level during the final interval of order of the half wave
period, just prior to breaking. The common feature of the observed evolution is
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the fact that either for breaking or recurrence towards the original wave group,
the evolution induced by the nonlinear group dynamics is accompanied by a sys-
tematic mean convergence of the energy density towards the local maximum of
the evolving wave group. However, in contrast to the strong dependence of the
evolution on the parameter space {N, (ak)0}, the actual steepness at breaking
(ak)break has no clear trend with N .

Song and Banner (2002) provided a detailed analysis of the wave group com-
posed of a fundamental carrier wave with small upper and lower sideband com-
ponents with the primary goal of identifying the difference between evolution
to recurrence and to breaking onset. They found that the local energy and its
growth rate within the wave group evolves in a complex fashion, with a fast os-
cillation superimposed on a longer mean trend. This trend reflects a systematic
mean energy convergence toward (or away from) the maximum energy region
within the wave group, which results finally in breaking or recurrence behaviour.

To distinguish breaking from recurrence, Song and Banner (2002) proposed
the non-dimensional growth rate as in the form

δ =
1

ωc

D < χ2
l >

Dt
, (2.43)

in which ωc is the initial mean carrier wave frequency and < χ2
l > is the local

average of the square value of the steepness of carrier waves

χ2
l =

E

ρg
k2 (2.44)

and E is the depth-integrated local wave energy density given as the sum of
the kinetic and potential energy of the fluid particles along the vertical profile
at x and a given time t (Song and Banner, 2002)

E(x, t) =

ζ∫
−h

1

2
ρ(u2 + w2)dz +

1

2
ρgζ

2
, (2.45)

where u and w are the x and z velocity components, h is the still water depth
and ζ = ζ(x, t) is the free surface elevation and

D

DT
≡ ∂

∂t
+ �u× grad. (2.46)

The detailed methodology for computing δ is described by Song and Banner
(2002). In particular, their calculations indicate that the threshold value δth =
(1.30−1.50)×10−3 can be used as the basis for distinguishing recurrence cases
from breaking cases, independently of the group structure or number of waves
N in the group. Breaking occurs whenever δ(t) exceeds δth, while the minimum
value of δ(t) for recurrence cases remains below δth. Thus we have:

δth < (1.30 − 1.50) × 10−3 − recurrence case,

δth > (1.30 − 1.50) × 10−3 − breaking case.
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In the second part of the paper, Banner and Song (2002) investigated the
influence of wind forcing and surface shear on the threshold value of the non-
dimensional growth rate δth. The wind forcing was introduced into the free
surface dynamic boundary condition in the Dold and Peregrine (1986) model
as an additional surface distribution of pressure, being in phase with the wave
slope as follows:

pw(x, t) = αwρau
2
∗
∂ζ(x, t)

∂x
, (2.47)

in which u∗ is the friction velocity, ρa is the air density and αw is an em-
pirical constant. This constant was specified using its relationship with the
non-dimensional spectral wind wave growth rate γ, normalized by the wave
frequency f

γ

f
= 2παw

(
ρa

ρw

)(
u∗
C

)2

, (2.48)

where C is the wave phase speed.
The experimental data reported by Komen et al. (1994) showed that for

u∗
C

∼ 0.2, the constant αw becomes αw ∼ 32.5. It should be noted that inverse
wave age in range 0.05 < u∗

C
< 0.2 corresponds to wind sea situations, from

very young to very old sea, while the range u∗
C

> 0.2 is relevant to short fetch
wave tank conditions. Computations for wave age u∗

C
in the range (0.05, 0.2)

showed that wind forcing only marginally modifies the geometry of the wave
surface, and the critical threshold range of (1.30 − 1.50) × 10−3 for δth, found
for zero surface forcing, is also applicable for the wind forcing case.

Banner and Song applied the surface layer current of order 0.03 × V10 (V10

is the mean wind speed at the reference height of 10 m above the mean sea
level), decreasing linearly over a depth of one significant wave height Hs, to
simulate the influence of a uniform surface shear. The presence of the shearing
current destabilizes the wave group from recurrence to breaking and accelerates
its onset. However, the onset of breaking is still determined by the threshold δth

value given above. Including the wind forcing and surface layer shear results in
only small changes from the irrotational motion and the corresponding breaking
threshold δth is still applicable for wind forcing and shear current, typical for
open ocean conditions. This confirms the previous conclusion that the nonlinear
hydrodynamic energy fluxes within wave groups dominate the evolution to
recurrence or breaking even in the presence of other mechanisms. However, to
clarify the importance of surface drift for the process of wave group evolution,
in the next sections we examine the influence of surface drift on incipient wave
breaking from a different perspective.



Chapter 3

Spectral and statistical
properties of ocean waves

3.1 Introduction

The fundamental property of surface waves induced by wind is their irregularity.
The prediction of wave parameters can be achieved through stochastic analysis
only. This analysis can be developed in two basic domains, i.e. frequency and
probability domains. Frequency analysis mainly deals with an evaluation of the
distribution of wave energy among various frequencies and directions. In this
chapter we start with the basic properties of frequency analysis of the time
series to interpret the frequency spectra of ocean surface waves. In general,
the resulting shape of the frequency spectrum depends on the external wave
generation conditions (wind speed, wind fetch and duration, water depth, swell
presence, and storm stage) as well as on internal mechanisms in the wave
field (nonlinear interaction between wave components, energy dissipation due
to wave breaking or bottom friction). However, the spectrum shape is not
arbitrary and some fundamental properties of energy distribution apply for all
spectra. The wave spectral energy reaches its maximum at frequency ω = ωp

and decreases for both lower and higher frequencies. Usually the reduction in
the low-frequency range is faster than that for the high-frequency band. The
lowest frequency for wind-induced gravity waves is estimated at approximately
0.03 Hz (0.2 rad/s). Energy at frequencies lower than this value is for surf beat,
seiches or tides (Massel, 1996a).

The highest frequency of wind-induced gravity waves corresponds to the min-
imum phase velocity of 23 cm/s at a minimum wavelength of 1.7 cm (in clean
water at 20◦C). Thus, the highest frequency is 13.6 Hz (85 rad/s). For higher
frequencies, the restoring force is predominantly the result of surface tension,
which is typical for capillary waves. The limiting frequencies given above are
theoretical approximations only. In practice we consider a much smaller fre-
quency band of gravity, wind-induced waves.
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Furthermore, spectra often show regularity, such as power-law regions, where
S (ω) ∼ ω−n for some power n. A good example of such regularities is provided
by the saturation range (or equilibrium range) in the wave spectrum, when
a spectrum shows ω−5 (or ω−4) dependence. The saturation range expresses
some equilibrium between energy loss, mainly due to breaking, and the same
rate of energy acquired by waves from the wind. To include the most energetic
part of the spectrum, a variety of power functions multiplied by some exponen-
tial functions have been proposed. This variety of the spectra is mostly a result
of various experimental time series which are the base for spectrum formulation
and which reflect various wave generation conditions.

Due to the complicated energy transfer from the atmosphere to the sea, the
resulting surface waves are multidirectional. Only part of the wave energy is
aligned with the wind direction. Because of the limitation of observational
methods, knowledge of directional spreading is relatively poor compared to the
frequency spectrum.

In the probability domain, wave parameters are considered as elementary
random events. The digitized data of a particular parameter usually form a set
of random realizations of a random variable, when the time sequence of the
parameter is not taken into account. The final results in this approach are
expressed in terms of probability density functions for such parameters as wave
surface elevation, wave height, wave period and wave slope. In the next sections
we follow mainly the approach of Massel (1996a).

3.2 Spectral properties of ocean waves

3.2.1 Frequency spectra of ocean waves

3.2.1.1 Spectral moments and spectral width parameters

The frequency function S(ω) represents a distribution of wave energy in the
frequency domain. Thus,

∫ ∞

0
S(ω) dω = σ2

ζ = m0. (3.1)

The variance σ2
ζ is also called the zero moment of the spectrum. In general, the

spectral moments mn are defined as

mn =
∫ ∞

0
ωnS(ω) dω. (3.2)

The first few moments are of special importance for the spectral description
of ocean waves. For example, the first moment m1 determines the mean wave
frequency and mean wave period, i.e.

ω̄ =
m1

m0

and T̄ =
2π

ω̄
= 2π

m0

m1

. (3.3)
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An alternative estimate of the mean frequency (period) also exists. It is called
the average frequency of up-crossing of the mean level ω̄0 (and average period
T̄0)

ω̄0 =

√
m2

m0

and T̄0 =
2π

ω̄0

= 2π

√
m0

m2

. (3.4)

As well as moments mn, the central spectral moments m̃n are also used. They
are defined as

m̃n =
∫ ∞

0
(ω − ω̄)nS(ω)dω. (3.5)

Thus,

m̃0 = m0, m̃1 = m1 − ω̄m0 = 0, m̃2 = m2 −
m2

1

m0

. (3.6)

The central moment m̃2 is a measure of concentration of the spectral wave
energy around frequency ω̄. When we normalize m̃2 in (3.6) by product (ω̄2m̃0),
we obtain non-dimensional parameter ν2 as follows

ν2 =
m̃2

ω̄2 m̃0

=
m0 m2

m2
1

− 1. (3.7)

Parameter ν2 is a convenient, lower-order quantity which is a measure of the
spectral width. Equation (3.7) clearly indicates that when all wave energy is
concentrated in the single frequency ω = ω̄, then ν2 → 0. When wave energy
is broadly distributed among frequencies, then ν2 increases. In typical storm
conditions, the spectral width parameter ν is approximately equal to 0.3. The
relationships between the spectral moments and sea state parameters, such as
the significant wave height, peak frequency, wind speed and wind fetch are
discussed in Appendix D.

Another measure of spectral width appears when developing the statistics of
wave amplitude (see Section 3.3). The corresponding spectral width parameter
was first defined by Cartwright and Longuet–Higgins (1956) as

ε2 =
1

2m0 m4

∫ ∞

0

∫ ∞

0
S(ω1)S(ω2)

(
ω2

1 − ω2
2

)2
dω1dω2, (3.8)

or

ε2 =
m0m4 −m2

2

m0m4

. (3.9)

It follows that

0 < ε2 ≤ 1.

When the wave spectrum S(ω) is extremely narrow, say S(ω) = σ2
ζ δ(ω − ωp)

where δ( ) is the Dirac’s delta, then ε2 → 0.
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Figure 3.1: Wave profiles corresponding to narrow (a) and wide spectra (b).

Typical wave profiles, corresponding to narrow and wide spectra, are shown
in Fig. 3.1. It is seen that waves of a narrow spectrum have almost the same
frequency but gradually varying amplitudes. The upper and lower envelopes co-
incide exactly with crests and troughs, and form a pair of symmetrical curves
with respect to the mean value. In such a case, the positive and negative max-
imum excursions of the wave surface are equal to each other, and equal to
wave amplitude. In the case of a wide spectrum, waves of many frequencies are
present and these ride on each other to produce local maxima below mean sea
level as well as above it.

3.2.1.2 Typical spectral forms

(1) Saturation spectrum: The growth of waves under the influence of wind is
not infinite. The energy supplied by the wind is balanced by wave interactions
which transfer energy from a given frequency band to other frequencies, and by
energy dissipation. In deep water, the dissipation frequently takes the form of
‘whitecaps’ of a scale smaller than the wavelength. More details on whitecaps
are given in Chapter 7.

Another form of the limitation of wave growth is related to the formation
of capillary waves just in front of sharp primary wave crests. These capillary
waves extract energy from primary waves of high curvature (Phillips, 1977).
We also note that the surface drift layer produced by wind stress enhances
wave breaking at a greatly reduced wave amplitude. More information on wave
breaking in deep water is given in subsequent chapters.
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The occurrence of any such mechanism is an indication of a stage of saturation
of wave components in which a balance between energy supplied by wind and
that lost by dissipation is achieved. Therefore, the saturation range should
be exclusively described by local physical parameters that govern the extreme
configuration of waves, i.e. gravitational acceleration (g), friction velocity of
the wind over the wave surface (u∗) and local frequency (ω). Phillips (1958),
using dimensional arguments, found that

S(ω) = f

(
ωu∗
g

)
g2ω−5. (3.10)

When the surface drift is unimportant, i.e. when ωu∗
g

� 2 in which u∗ =
(

τ
ρa

)1/2

and τ is mean tangential stress, (3.10) yields

S(ω) = βg2ω−5
(
ωp � ω � 2g

u∗

)
, (3.11)

in which β is a constant (β = 1.23 × 10−2).
Although (3.11) may have been found useful as a first approximation to the

high-frequency part of the spectrum, the accurate representation of more careful
measurements by Toba (1973) showed that his wind-tunnel data were better
expressed by a spectrum of the form

S(ω) ∼ u∗gω
−4. (3.12)

This form has been confirmed in field observations by Kawai et al. (1977) and
Donelan et al. (1985). Taking these facts into account Phillips (1985) suggested
that the ‘ideas underlying (3.11) are found to be no longer viable’ and should
be replaced by a more accurate form (3.12).

(2) Deep water ocean: the Pierson–Moskowitz spectrum: Spectral forms dis-
cussed so far are restricted to the saturation range only, when ω > ωp. To
include the most energetic part of the spectrum, a variety of power functions
multiplied by exponential functions have been proposed. A general form of the
spectral density function was suggested as

S(ω) = Aω−p exp
[
−B ω−q

]
, (3.13)

in which A,B, p and q are free parameters. The spectral moments defined by
(3.2) are given now as follows

mr = AB(r−p+1)/q

(
1

q

)
Γ

(
p− r − 1

q

)
, (3.14)

in which Γ(x) is a gamma function (Abramowitz and Stegun, 1975).
Probably the most popular spectrum among all proposed forms is that pro-

posed by Pierson and Moskowitz (1964), who, using the field data and theoret-
ical discoveries of Phillips (1958) and Kitaigorodskii (1962), showed that

S(ω) = βg2 ω−5 exp

[
−B

(
g

ωV19.5

)4
]
, (3.15)
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where β = 8.1 × 10−3, B = 0.74 and V19.5 is a wind speed at an elevation of
19.5 m above the sea surface.

Thus, the shape of the wave spectrum is controlled by a single parameter–
wind speed V19.5. The spectrum of (3.15) was proposed for fully developed sea,
when phase speed is approximately equal to wind speed. The experimental data
given by Pierson and Moskowitz yield

V19.5ωp

g
= const = 0.879 and

V19.5ωp

2πg
= 0.13, (3.16)

where ωp is the peak frequency. After substitution into (3.15) we obtain

S(ω) = βg2 ω−5 exp

⎡
⎣−5

4

(
ω

ωp

)−4
⎤
⎦ . (3.17)

Some mathematical problems arise when calculating the spectral fourth mo-
ment using (3.17). This moment, which physically denotes the mean-squared
acceleration measured at a Eulerian point, is unbounded. To remedy this short-
coming, a cutoff frequency is usually imposed, i.e.

m4 =
∫ ωc

0
ω4S(ω) dω, (3.18)

in which ωc = nωp and n is usually taken as n > 3.

(3) Fetch-limited sea: the JONSWAP spectrum: The JONSWAP spectrum is
based on an extensive wave measurement programme (Joint North Sea Wave
Project) carried out in 1968 and 1969 in the North Sea (Hasselmann et al.,
1973). The JONSWAP spectrum as a function of non-dimensional frequency
ω̂ = ω

ωp
takes the form

S (ω̂) =
βg2

ω4
p

ω̂−5 exp
(
−5

4
ω̂−4

)
γr, (3.19)

in which γ is the peak enhancement factor of the standard value of 3.3, and
function r takes the form

r = exp

[
−1

2

(ω̂ − 1)2

σ2
0

]
, (3.20)

in which

σ0 =

{
0.07 when ω < ωp

0.09 when ω ≥ ωp.
(3.21)

The Phillips constant β and peak frequency ωp are given by Hasselmann et al.
(1973) as follows

β = 0.076

(
gX

V 2
10

)−0.22

(3.22)
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Figure 3.2: Comparison of the Pierson–Moskowitz and the JONSWAP spectra:
(a) fetch limited conditions and (b) fully developed sea.

and

ωp = 7π
(

g

V10

)(
gX

V 2
10

)−0.33

. (3.23)

The Pierson–Moskowitz spectrum can be obtained as a special case of the
JONSWAP spectrum when the peak enhancement factor γ is equal to 1. In
Fig 3.2 the Pierson–Moskowitz spectrum and the JONSWAP spectrum are
compared for two different regimes. The first figure illustrates fetch limited
conditions when fetch X = 25 km and wind velocity V10 = 10 m/s. The re-
sulting peak frequency and wave development parameters are ωp = 1.64 rad/s,
and ωpV10/g = V10/Cp = 1.673 (Cp is a phase velocity corresponding to the
peak frequency). The second figure presents the spectra for a fully developed
sea (X = 200 km, V10 = 10 m/s, ωp = 0.862 rad/s and ωpV10

g
= 0.879).

The Pierson–Moskowitz spectrum applies only for the fully developed case. On
the other hand, the JONSWAP spectrum, extrapolated to the fully developed
limit, retains its enhanced peak, which is in contrast to a much broader fully
developed spectrum.

(4) Donelan et al. spectrum fitted to ω−4 power at high frequencies: Donelan et
al. (1985) fitted a set of spectra obtained from Lake Ontario to ω−4 power at
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high frequencies and proposed the frequency spectrum S(ω) in the form

S(ω) = αd g
2ω−4ω−1

p exp

[
−

(
ωp

ω

)4
]
γr1

d , (3.24)

where

γd =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1.7 for 0.83 <
V10

C
< 1

1.7 + 6 log
(
V10

C

)
for 1 ≤ V10

C
< 5

, (3.25)

αd = 0.006
(
V10

C

)0.55

for 0.83 <
V10

C
< 5, (3.26)

r1 = exp

[
−(ω − ωp)

2

2σ2
d ω

2
p

]
, (3.27)

σd = 0.08

[
1 + 4

(
V10

C

)3
]

for 0.83 <
V10

C
< 5, (3.28)

V10

C
=

V10 ωp

g
. (3.29)

and

ωp = 11.6
(

g

V10

)(
gX

V 2
10

)−0.23

. (3.30)

Representation (3.24) gives a better fit to the experimental data in the equilib-
rium range (1.5− 3)ωp. However, it should be noted that the popular prediction
model WAM imposes an ω−5 tail for ω ≥ 3ωp (WAMDI, 1988). The wind speed
V10 is assumed to be a wind component of the 10m height in the mean direc-
tion of propagation of the waves at the spectral peak. Another forms of the
frequency spectra for deep water as well as for coastal zones were discussed by
Massel (1996a), Druet (2000) and others.

3.2.2 Directional spectral functions

Due to energy transfer from the atmosphere to the sea and due to wave-wave
interactions the resulting surface waves are multidirectional. Only part of the
wave energy is aligned with the wind direction. More specifically, wave energy
associated with the frequencies ω ≈ ωp is primarily propagated in the direction
of the wind, whereas wave energy associated with lower or higher frequencies is
distributed over a range of directions. Wave multidirectionality is also a result
of the superposition at a given point of various wave trains, which may be
generated by different remote atmospheric forcing systems.
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Directional spreading is a fundamental property of a random wave field and is
a key element for understanding ocean wave mechanics, as well as generation,
propagation and breaking. Information about the directional distribution of
wave energy is required for the proper prediction of various oceanographic
and geomorphological phenomena in shallow and in deep waters (Massel and
Brinkman, 1998).

Due to the limitation of observational methods, knowledge of the directional
spectrum is relatively poor compared to the frequency spectrum. The basic
approach to the two-dimensional spectrum Ŝ(ω,Θ) is to multiply the frequency
spectrum S(ω) by an empirically determined directional spreading function
D(Θ). A more general expression for Ŝ, which includes a variety of commonly
used directional spreading representations, can be written as (Niedzwecki and
Whatley, 1991)

Ŝ(ω,Θ) = S(ω)D (Θ;ω, p1, p2, . . .) , (3.31)

in which p1, p2, . . . represent the various parameters associated with the various
directional spreading functions.

Historically, the first attempt to model directional energy spreading was sug-
gested by Pierson et al. (1955) in the form of the cosine type function (Fig. 3.3)

D(Θ) =
2

π
cos2 Θ, −π

2
≤ Θ ≤ π

2
. (3.32)

From (3.32) it follows that in the wind direction about 64% of wave energy is
propagated. In a direction normal to wind direction, waves do not propagate.
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Figure 3.3: Directional spreading function (3.32).
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This directional spreading function gives the same directional divergence of all
frequency components.

On the basis of a field study with a pitch-and-roll buoy, Longuet–Higgins et al.
(1961) proposed a more elaborate form of the cosine type spreading function
as (Massel, 1996a)

D(Θ; s) =
22s−1

π

Γ2(s + 1)

Γ(2s + 1)
cos2s

(
Θ − Θ0

2

)
, −π ≤ Θ ≤ π, (3.33)

or

D(Θ; s1) =
1√
π

Γ
(
1 +

s1

2

)

Γ

[
(1 + s1)

2

] cos2s1 (Θ − Θ0) , −π

2
≤ Θ ≤ π

2
, (3.34)

in which Θ0 is the main peak frequency direction, s and s1 are the empirical
functions of

(
V10

C

)
and Γ(x) is a gamma function (Abramowitz and Stegun,

1975).
Various representations have been proposed in the past for s or (s1). All of

them show the wave frequency dependent nature of the directional spreading
function D. For example, Krylov et al. (1966) found that

D(Θ;ω) = 21.8/ω∗
Γ
[
2
(

1.8
ω∗

+ 1
)]

Γ2
(

1.8
ω∗

+ 1
) [cos (Θ − Θ0)]

1.8/ω∗ . (3.35)

So s1 = 1.8
ω∗

and ω∗ = ω
ω̄
. Hence, the low-frequency components (ω � ω̄) possess

very narrow directional spreading, concentrated around main direction, Θ0,
while the high-frequency components (ω > ω̄) are spread in a wider directional
band. In the vicinity of the spectral maximum (ω∗ ≈ 0.9), the directional
spreading function D ∼ cos2 Θ.

In most of the experiments, the characteristic asymmetry in frequency de-
pendence of parameter s was observed. The parameter s reaches its maximum
value for peak frequency and decreases both for lower and higher frequencies.
The decreasing trends are different, and more rapid decrease is observed in the
low-frequency range. Using the cloverleaf buoy data, Mitsuyasu et al. (1975)
suggest the following dependence for s in (3.33)

s

sp

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
ω̃

ω̃p

)5

for ω̃ ≤ ω̃p

(
ω̃

ω̃p

)−2.5

for ω̃ ≥ ω̃p,

(3.36)

where ω̃ = ωV10

g
, ω̃p = ωpV10

g
, and sp = 11.5 ω̃−2.5

p .
It should be noted that parameter s increases when ωp decreases. Hence, the

directional distribution becomes narrower with the development of waves.
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Similar dependence of parameter s on wave frequency was found during the
JONSWAP experiment (Hasselmann D. et al., 1980). They defined parameter
s as follows

s = sp

(
ω

ωp

)μ

, (3.37)

in which

sp = 6.97 ± 0.83

μ = 4.06 ± 0.22

⎫⎬
⎭ for ω < ωp, (3.38)

and

sp = 9.77 ± 0.43

μ = −(2.33 ± 0.06) − (1.45 ± 0.45)
(
V

C
− 1.17

)
⎫⎪⎬
⎪⎭ for ω ≥ ωp. (3.39)

The parameterization (3.37), proposed by Hasselmann D. et al. (1980), is based
on the assumption that the spectral shape for ω ≤ ωp is governed by nonlinear

interactions when we should expect dependence of s on the ratio
(

ω
ωp

)
.

Field observations show that the crosswind component constitutes a signifi-
cant portion of the ocean surface mean square slope of the order of 88% (Hwang
and Wang, 2002). However, such a high level of the crosswind component is
not satisfactorily explained by the above-mentioned models of wave directional
distributions. In fact, the directional spectral analysis of the three-dimensional
surface topography obtained from an airborne scanning lidar system indicates
that the present unimodal directional distribution exists only in a narrow wave
number range near the spectral peak. For wave components shorter than the
peak wavelength, the directional distribution becomes bimodal (Zakharov and
Shrira, 1990). Such distribution results from nonlinear wave–wave interactions
(Hwang and Wang, 2002). It was shown by Young et al. (1995) that using the
bimodal directional distribution function provides the calculated average ratio
between crosswind and upwind slope components being in good agreement with
field measurements.

3.2.3 Wave energy balance in spectral form

In order to develop an energy balance equation we assume for a moment that
the dispersion relation does not depend on time, but is rather a slowly changing
function of space coordinates. It can also depend on local properties such as
water depth, current velocity or ambient density current, i.e.

ω = Ω
[
�k, f

(
�x, h, �U, ρ, . . .

)]
. (3.40)

If the medium itself is moving with velocity �U , the frequency of waves passing
a field point is

ω = Ω
(
�k, �x

)
= σ + �k × �U = [gk tanh(kh)]1/2 + �k × �U. (3.41)
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Usually the quantity ω is called the observed or apparent frequency, while σ is
the intrinsic frequency, whose functional dependence on �k is known as a classical
dispersion relation

σ2 = gk tanh(kh). (3.42)

It is well known that the number of wave crests passing a given point per unit
time is determined by the kinematical conservation equation (Massel, 1989)

∂�k

∂t
+ ∇hω = 0,

∂ki
∂xj

− ∂kj
∂xi

= 0, i, j = 1, 2. (3.43)

Substituting (3.40) into (3.43) gives

∂ki
∂t

+ Cgj

(
�x,�k, t

) ∂kj
∂xi

= − ∂Ω

∂xi

, (3.44)

in which Cgj = ∂Ω
∂kj

is group velocity.

Equation (3.44) can be rewritten as

dki
dt

= − ∂Ω

∂xi

and
dxi

dt
=

∂Ω

∂ki
. (3.45)

Equations (3.45) are identical to the Hamilton equations in mechanics. The

vectors �x should be interpreted as coordinates and vectors �k represent the mo-
menta, and the frequency Ω

(
�k, �x, t

)
is taken to be the Hamiltonian (Whitham,

1974; Massel, 1989).
For free surface waves, the mean densities of potential and kinetic energy are

equal. Therefore, 2Ψ̂
(
�k, �x, t

)
is the mean spectral density of total wave energy

in the unit volume d�k × d�x in phase space
(
�k, �x

)
at a given time t in which

Ψ̂
(
�k, �x, t

)
is the wave number spectrum. According to Liouville’s theorem, this

energy should be conservative during volume evolution

∂Ψ̂

dt
+

∂Ω

∂ki

∂Ψ̂

∂xi

− ∂Ω

∂xi

∂Ψ̂

∂ki
= 0, (3.46)

when (3.45) is used.
If the wave field is subjected to processes of generation, dissipation, nonlinear

interaction between spectral components and other possible interactions with
atmospheric boundary layer and various ocean movements (currents, internal
waves, etc.), (3.46) should be supplemented by a source–sink term at the right-
hand side, i.e.

∂Ψ̂

dt
+

∂Ω

∂ki

∂Ψ̂

∂xi

− ∂Ω

∂xi

∂Ψ̂

∂ki
= Q

(
�k, �x, t

)
, (3.47)

in which Q =
∑

iQi.
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The first term at the left-hand side of (3.47) expresses the local evolution of
the spectrum in time, while the second term represents the evolution of the
spectrum for the horizontally non-homogeneous wave field. This term shows
that energy is transported at the group velocity. The third term reflects the
effects of refraction and shoaling due to a non-horizontal bottom or due to
current. The spectral energy balance equation is also known as the radiative
transfer equation or the transport equation.

In oceanographic practice the two-dimensional spectrum Ŝ (ω,Θ; �x, t) is fre-

quently used, rather than the wave number spectrum Ψ̂
(
�k; �x, t

)
. To evaluate

spectrum Ŝ (ω,Θ; �x, t), we adopt the following variables transformation

kx = χ (ω, �x) cos Θ, ky = χ (ω, �x) sin Θ, (3.48)

where function χ (ω, �x) = k is a solution of the dispersion relation

ω2 = gk tanh(kh). (3.49)

Variables transformation yields the following relationship between Ŝ (ω,Θ; �x, t)

and Ψ̂
(
�k; �x, t

)
spectra

Ψ̂
(
�k; �x, t

)
= JŜ (ω,Θ; �x, t) = f (ω,Θ; �x, t), (3.50)

in which J is a Jacobian of the transformation, i.e. (Massel, 1996a)

J =
∂(ω,Θ)

∂(kx, ky)
=

[
∂(kx, ky)

∂(ω,Θ)

]−1

. (3.51)

Thus,

J =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∣∣∣∣∣∣∣∣∣

∂χ

∂ω
cos Θ, −χ sin Θ

∂χ

∂ω
sin Θ, −χ cos Θ

∣∣∣∣∣∣∣∣∣

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

−1

=
Cg

χ
, (3.52)

where Cg is the group velocity corresponding to a particular wave frequency.
After substituting (3.50) into (3.47) we obtain (Krasitskii, 1974)

∂

∂t
(CCgŜ) + Cg cos Θ

∂

∂x
(CCgŜ) + Cg sin Θ

∂

∂y
(CCgŜ) +

+
Cg

C

[
sin Θ

∂C

∂x
− cos Θ

∂C

∂y

]
∂

∂Θ
(CCgŜ) = CCg Q̂ (ω,Θ, �x, t) , (3.53)

in which Q̂ =
∑

i Q̂i.
Equation (3.53) can apply for a dispersion relation not depending on time,

when an ambient current is uniform in space. If waves propagate on a non-
stationary and non-uniform current �U (�x, t), the intrinsic frequency σ may vary
in space and time. In such a case, the spectral energy density will not be
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conserved. Bretherton and Garrett (1969) showed that the quantity called wave

action density N =
Ψ̂(�k;�x,t)

σ
is conserved in a moving medium. Therefore, instead

of (3.47), we apply a more general principle of conservation of wave action
density N in the form

∂N

∂t
+

∂Ω

∂ki

∂N

∂xi

− ∂Ω

∂xi

∂N

∂ki
=

Q

σ
. (3.54)

In order to illustrate the relationship between wave action density N and energy
density Ψ̂ let us consider the example of a steady unidirectional wave train in
deep water on a variable current U(x) (source term Q ≡ 0). Then, (3.54)
reduces to

∂

∂x

[
Ψ̂

(
U + Cg

σ

)]
= 0. (3.55)

For gravity waves in deep water σ = g/C and Cg = 1
2
C. Thus,

Ψ̂
(
U +

1

2
C
)
C = const =

1

2
Ψ̂0C

2
0 . (3.56)

Although the flux of wave action is constant, the flux of wave energy is not.
For example, as C decreases in an adverse current, the energy flux of the
wave motion increases because of the work done by ‘radiation stress’ (Longuet–
Higgins and Stewart, 1964; Massel, 1989).

The basic difficulty in solving (3.47) or (3.54) is evaluation of the function

Q. In general, Q is a function of wave number �k and a functional of Ψ̂, i.e.
Q = Q

(
�k, Ψ̂

)
. Function Q can also be dependent on other parameters which

are functions of �x and t (for example, wind velocity). The reader should consult
Massel (1996a) for an in-depth discussion.

3.3 Statistical properties of ocean waves

3.3.1 Probability density functions of surface ordinates

In this section, an overview of the statistical properties of ocean waves with
a special emphasis on extreme events is presented. We start with the central
limit theorem (Ochi, 1990), stating that observed sea surface displacement ζ(t)
is normally distributed with mean ζ and variance σ2

ζ . Thus, the probability
density function f(ζ) takes the form (Massel, 1996a)

f(ζ) =
1√

2πσζ

exp

[
−(ζ − ζ)2

2σ2
ζ

]
. (3.57)

The mean and variance are the first and second central moments of the prob-
ability density μ1 and μ2, respectively

μ1 = ζ = E[ζ] =

∞∫
−∞

ζf(ζ)dζ, (3.58)
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and

μ2 = σ2
ζ = E[(ζ − ζ)2] =

∞∫
−∞

(ζ − ζ)2f(ζ)dζ. (3.59)

In practical applications, the standardized Gaussian probability density func-
tion is also used

f(ξ) =
1√
2π

exp
(
−1

2
ξ2

)
, (3.60)

which is obtained from (3.57) by transformation of variables

ξ =
ζ − ζ̄

σζ

(3.61)

and

f(ξ) = f [g(ξ)]
∣∣∣dg(ξ)

dξ

∣∣∣ and g(ξ) = σζ ξ + ζ̄ . (3.62)

It can be shown that all odd numbered central moments of the Gaussian random
variable are equal to zero, while even numbered moments are

μ2n = 1 · 3 · 5 · · · (2n− 1)σ2n
ζ , (3.63)

where

μn =
∫ ∞

−∞
(ζ − ζ̄)

n
f(ζ) dζ. (3.64)

The distribution (3.60) is usually abbreviated as N(0, 1), as the first two mo-
ments of the standardized probability density function are 0 and 1, respectively.
In general, the moments of the standardized Gaussian probability density func-
tion (3.60) may be written as

m̂n =
∫ ∞

−∞
ξnf(ξ)dξ. (3.65)

Thus,

m̂n =

{
1 · 3 · 5 · · · (n− 1) for even numbered moments
0 for odd numbered moments

(3.66)

and

m̂n =
μn

σn
ζ

. (3.67)

To describe deviation of the observed distribution from the Gaussian distri-
bution, the third and fourth central moments are used to determine so-called
skewness and kurtosis, i.e.
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skewness

γ1 =
μ3

σ3
ζ

, (3.68)

and kurtosis

γ2 =
μ4

σ4
ζ

, (3.69)

where

μn =

∞∫
−∞

(ζ − ζ)nf(ζ)dζ. (3.70)

Skewness and kurtosis are quantities of a higher order and are related to non-
linearities in the wave field. In particular, skewness is a statistical measure of
the vertical asymmetry of the sea surface, characterized by the sharp crests
and rounded troughs of waves. Kurtosis is a measure of the peakedness of the
distribution. It should be mentioned that for a purely Gaussian distribution
γ1 = 0 and γ2 = 3. Sometimes so-called excess of kurtosis (γ2 − 3) is used
to characterize the deviation from normal distribution. A positive value of the
excess of kurtosis corresponds to a distribution with a peak sharper than the
Gaussian one.

Equation (3.70) is the theoretical expression valid for infinite time series. If
number of data N is finite, the estimates for the third and fourth moments are
(Massel, 1996a)

μ3 = E[(x− x)3] =
N2

(N − 1)(N − 2)
m̃3 (3.71)

and

μ4 = E[(x− x)4] =
N(N2 − 2N + 3)m̃4 − 3N(2N − 3)m̃2

(N − 1)(N − 2)(N − 3)
, (3.72)

where

m̃n =
1

N

N∑
i=1

(xi − x)n. (3.73)

Equations (3.71) and (3.72) represent unbiased and consistent estimates of the
true central moments.

Instinctively a relationship between surface slope, spectrum shape and surface
skewness should be expected. In particular, for an extremely narrow spectrum,
Srokosz and Longuet–Higgins (1986) showed that

γ1 = 6π
σζ

Lp

, (3.74)

where Lp is the wavelength corresponding to the peak frequency.
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When the frequency spectrum S(ω) has the form

S(ω) =

{
αω−n, ω > ωp, n > 3
0, ω < ωp,

(3.75)

the same authors found

γ1 =
6(n− 1)

n− 2
π

(
σζ

Lp

)
. (3.76)

In particular, for the so-called Phillips spectrum, S(ω) ∼ ω−5, we obtain γ1 =

8π
(
σζ

Lp

)
.

3.3.2 Numerical simulation of Gaussian and
non-Gaussian sea surface

There are basically three approaches to obtain the data for an estimation of the
statistical characteristics of wind-induced waves. In the first approach the wave
staffs or wave buoys are installed and wave records are collected. The second
approach is based on remote sensing techniques and use of various satellites
sensors. However, both these approaches are expensive. To overcome this, in
current oceanographic and laboratory practice numerical simulation techniques
are becoming more and more popular. In particular, in the laboratory simulated
time series are served as an input to the wave generators.

Usually the irregular records of sea surface ordinates of a given duration are
represented in the form of many independent harmonics travelling in various
directions, i.e.

ζ(x, t) =
N∑

m=1

N∑
n=1

Amn, cosψmn, (3.77)

in which

ψmn = km(x cos θn + y sin θn) − ωmt + εmn, (3.78)

when the wave number km satisfies the dispersion relation

ω2
m = gkm tanh(kmh); km = |km|. (3.79)

The deterministic spectral amplitudes Amn are related to the one-dimensional
energy spectrum Sζ(ωm, θn) by the following formula (Massel and Brinkman,
1998)

Sζ(ωm, θn) =
1

2

A2
mn

ΔωΔθ
, (3.80)

in which Δω and Δθ are the discrete frequency and angle intervals, respectively.
The random phase εmn is assumed to be uniformly distributed in the range
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(−π, π), and M and N are the number of frequencies and directions taken for
simulation. If the numbers of frequencies M and directions N are high enough,
simulated linear process ζ will become Gaussian distributed, with zero skewness
and excess of kurtosis (Massel, 1996a; Massel and Brinkman, 1998).

There are essentially two procedures for carrying out the numerical simulation
of time series of sea surface, pressure or orbital velocities. In both methods the
amplitudes of the component waves have to be derived from the spectrum to
be simulated. The first method is based on the assumption that the harmonic
amplitudes are deterministic quantities given by the formula (3.80). However,
the amplitudes of elementary waves are in fact random variables also and this
is assumed in the second method of random sea simulation. In the following,
both methods will be discussed shortly.

3.3.2.1 Simulation of linear random sea with random phases only

The simplest representation of a confused sea is the summation of many in-
dependent harmonics travelling in various directions as given by (3.77). The
angles θ are usually specified at a constant interval. The preferred number of
directional components should be greater than 30. Frequencies ωm should be
selected as non-correlating and non-harmonic forming (e.g. specified at non-
constant intervals) to prevent wave profiles from repeating themselves with the
period of 2M data points. Although no definite figure can be specified, the num-
ber of frequency components should be very large, typically some thousands
when steep, extreme waves are considered. For example, Stansberg (1998) in
his numerical synthesis procedure of time history of 4.5-h duration of storm
used over 16,000 frequencies.

3.3.2.2 Simulation of linear random sea with random phases and
amplitudes

In the second simulation method, the amplitudes of elementary wave compo-
nents are also treated as random variables. Following Massel and Brinkman
(1998) let us rewrite (3.77) as follows

ζ(x, t) =
M∑

m=1

N∑
n=1

[bmn cosψmn − cmn sinψmn], (3.81)

in which amplitudes bmn and cmn are

bmn = Amn cos(εmn), cmn = Amn sin(εmn). (3.82)

Due to random phases εmn, amplitudes bmn and cmn are independent random
variables which should be generated from a Gaussian distribution with common
variance σ2

mn = S(ωm)D(θn)Δωm Δθn. Therefore, the sum of (3.81) is used to
produce the final simulated record. Massel and Brinkman (1998) used M = 155
frequencies, non-uniformly distributed in the frequency band 0.5ωp < ω < 3ωp,
and N = 180 directions (Δθ = 2◦) to simulate the target JONSWAP spectrum
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Figure 3.4: Comparison of target JONSWAP spectrum and frequency spec-
trum resulting from random simulation (adapted from Massel and Brinkman,
1998).

(wind speed V = 8 m/s, wind fetch X = 100 km and water depth h = 3 m).
The frequency spectrum calculated by both methods conformed closely to the
target one (see Fig. 3.4). Moreover, the product M × N = 27, 900 of inde-
pendent elementary waves produced a surface elevation which is very close to
a Gaussian process. They showed that the scattering of simulated probability
density for wave height, resulting from both methods, with reference to the
theoretical Rayleigh distribution, is approximately the same (see Fig. 3.5). In
addition, both methods produce very similar period distributions, but both
distributions are very different from the theoretical one developed, for example
by Longuet–Higgins (1983b) – see Section 3.3.9. It should be noted that Tucker
et al. (1983) pointed out that the first method with deterministic amplitude
Amn may incorrectly reproduce the distribution of wave group lengths.

3.3.2.3 Simulation of non-Gaussian random sea

Steep surface waves which are close to breaking typically display a vertical
skewness in terms of higher crests and shallower, more rounded troughs. Field
and laboratory experiments have shown that the largest crest heights devi-
ate systematically from the Rayleigh model, while extreme peak-to-peak wave
heights are usually reasonably well predicted by the Rayleigh theory (Massel,
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Figure 3.5: Comparison of probability density function of wave height result-
ing from simulation with Rayleigh distribution (adapted from Massel and
Brinkman, 1998).

1996a). The observations of recent years provide evidence that for large waves
in storm conditions, nonlinear effects should be taken into account. In order
to simulate the non-Gaussian sea, a better description of large steep waves is
needed. In the professional literature, a few second-order random wave models
exist (Longuet–Higgins, 1962; Massel, 1973; Krylov et al. 1976; Hudspeth and
Chen, 1979; Sharma and Dean, 1981; Biesel, 1982; Stansberg, 1998). In all of
them, to the second approximation, the surface elevation ζ(t) takes the form

ζ(t) = ζ(1)(t) + ζ(2)(t), (3.83)

in which ζ(1)(t) is given by (3.77) and a second-order contribution becomes
(Massel, 1973)

ζ(2)(x, t) =
N∑

n=1

N∑
m=1

gknkm
2ωnωm

AnAm

×
[
M (+) cos(ψm + ψn) + M (−) cos(ψm − ψn)

]
, (3.84)

in which

|km ± kn| =
[
k2
m + k2

n ± 2kmkn cos(θm − θn)
]1/2

; |kn| = kn, |km| = km (3.85)
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and

ψm ± ψn = (ωm ± ωn)t− [x(kn cos θn + km cos θm)

+y(kn sin θn + km cos θm)]. (3.86)

Amplitudes M (+) and M (−) are given in Appendix A.
Stansberg (1998) reported some results of nonlinear second-order numerical

simulation of a random two-dimensional sea when θ = 0. He used N = 4096
frequencies. The 4.5-h records of various sea states have been simulated, all of
which are of the JONSWAP type with peak period Tp = 14 s and significant
wave height Hs = 5, 10, 15 or 20m, while the spectral shape factor γ = 1.0,
2.0, 3.0 and 4.0. The statistically expected skewness and kurtosis resulting
from simulations were compared with theoretical values of γ1 and γ2, suggested
by Longuet–Higgins (1963), and Marthinsen and Winterstein (1992), showing
a good agreement, except for 10% lower values for the simulations in the steep-
est sea states. Broad-banded spectra show higher skewness than narrow-banded
ones.

3.3.3 Probability density function of extreme wave
displacements

For a rough sea the most important statistical characteristics are the expected
number of maxima and their probability distribution (Rice, 1944; Cartwright
and Longuet–Higgins, 1956; Middleton, 1960; Tikhonow, 1966; Ochi, 1990;
Massel, 1996a). In particular, Cartwright and Longuet–Higgins (1956) showed
that the probability distribution of positive maxima of the surface elevation
becomes

f (+)
max(ξ) =

2

1 +
√

1 − ε2

{
ε√
2π

e−ξ2/2ε2 +
√

1 − ε2ξe−ξ2/2Φ

(√
1 − ε2

ε
ξ

)}
, (3.87)

in which ε2 is given by (3.9). Φ(z) is a cumulative distribution function of the
standardized normal probability density, also known as the probability integral
(Abramowitz and Stegun, 1975)

Φ(z) =
1√
2π

z∫
−∞

e−t2/2dt =
1

2

[
1 + erf(

z√
2
)

]
, (3.88)

where the error function erf(z) has the form

erf(z) =
2√
π

z∫
0

exp(−t2) dt. (3.89)

Let us define the non-dimensional ξ value as

ξ =
ζmax√
m0

. (3.90)
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Figure 3.6: Probability density function of positive maxima as a function of
parameter ε (adapted from Massel, 1996a).

The probability density function f (+)
max(ξ) for various values of ε is shown in

Fig. 3.6. In two special cases, the probability density function f (+)
max(ξ) simplifies

considerably. In particular for ε = 0, which corresponds to a narrow-band
random process (Massel, 1996a), (3.87) yields

f (+)
max(ξ) = ξ e−ξ2/2, (3.91)

which is the Rayleigh probability density function for normalized positive max-
ima of the sea surface elevation. On the other hand if ε = 1, the sea surface
displacement represents the wide-band process and (3.87) becomes

f (+)
max(ξ) =

√
2

π
eξ

2/2, (3.92)

which is a truncated normal distribution.
The probability density functions of all extreme crests (positive and negative)

are (Cartwright and Longuet–Higgins, 1956)

fmax(ξ) =
ε√
2π

e−ξ2/2ε2 +
√

1 − ε2ξe−ξ2/2 Φ

(√
1 − ε2

ε
ξ

)
, −∞ < ξ < ∞. (3.93)

The function (3.93) is illustrated in Fig. 3.7 for various values of ε. Again for
a narrow-band process, (3.93) simplifies to the Rayleigh probability density
function (3.91), and for a wide-band process we obtain a normal probability
density function

fmax(ξ) =
1√
2π

e−ξ2/2. (3.94)

Stansberg (1998) compared the average simulated extreme crest heights with
the theoretical estimations suggested by Winterstein (1988). He used the
Hermite transformation to modify the Gaussian/Rayleigh estimates. The the-
oretical predictions compare quite well with simulated values. Moreover, the
comparisons confirm about 15% increase in the extreme crest of a typical 100-
year storm with reference to the Rayleigh estimate.
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Figure 3.7: Probability density function of positive and negative maxima as
a function of parameter ε (adapted from Massel, 1996a).

3.3.4 Structure of extreme waves

The formulae (3.87) and (3.93) determine the probability of occurrence of ex-
treme wave crests of a given height and at a given location. This probability
depends on the sea severity described by variance m0 and on the bandwidth pa-
rameter ε. Although we cannot predict where or when in a random sea extreme
crests or troughs will appear, Boccotti (1981, 1989) and Phillips et al. (1993a,b)
discovered the expected configuration of the sea surface in the vicinity of sea
surface maxima, say when ζ(x, t) > γσζ , in which γ is large. In particular,
they obtained the expected profile of the surface displacement surrounding an
extreme crest as follows

ζ(x + r, t + τ)

ζ(x, t)|ζ > γσζ

= ρ(r, τ), (3.95)

in which ρ = ρ(r, τ) is the correlation function between two sea surface ordi-
nates, i.e. ζ1 = ζ(x, t) and ζ2 = ζ(x+r, t+τ). Thus, the expected spatial config-
uration of extreme waves is approximately proportional to the two-dimensional
spatial autocorrelation function of the wave field as a whole. Near the crests
of extreme waves, the variance about the expected profile is very small. With
increasing distance r or time τ from the crest, the variance increases, but al-
ways remains less than or equal to σ2

ζ . The comparison of (3.95) with buoy data
obtained during the surface wave dynamics experiment (SWADE) showed the
agreement to be remarkably good.

3.3.5 Probability density function of local surface slopes
of short and long crested waves

Wind-induced waves are basically three-dimensional and they exhibit same di-
rectional spreading against the wind direction (Massel, 1996a). This directional
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spreading plays an important role when we try to use the limiting wave steep-
ness as the wave breaking criterion (see Chapter 5). Therefore, it will be useful
to examine the influence of the energy directional distribution on the proba-
bility density function for the local surface slope ∂ζ(x,t)

∂x
for wind-induced wave

having different directional spectral characteristics.
Let us define εl as a local surface slope in the direction θ1. Therefore, for two

slope components along x and y axes we have

∂ζ

∂x
= εl cos θ1;

∂ζ

∂ζ
= εl sin θ1, (3.96)

in which angle θ1 increases from x axis in an anticlockwise direction.
Longuet–Higgins (1957) found that the two-dimensional probability density

function f(εl, θ1) takes the form

f(εl, θ1) =
εl

2π
√

Δ
×

× exp

{
−ε2

l (m02 cos2 θ1 − 2m11 sin θ1 cos θ1 + m20 sin2 θ1)

2Δ

}
, (3.97)

in which

m20 =

(
∂ζ

∂x

)2

; m02 =

(
∂ζ

∂y

)2

; m11 =
∂ζ

∂x

∂ζ

∂y
(3.98)

and

Δ =

∣∣∣∣∣ m20 m11

m11 m02

∣∣∣∣∣. (3.99)

The overbar is a symbol of the statistical averaging.
If the x axis is parallel to the main wave direction, the moment m11 is equal

to zero and (3.97) becomes

f(εl, θ1) =
εl

2π
√

Δ
exp

{
−ε2

l (m02 cos2 θ1 + m20 sin2 θ1)

2Δ

}
, (3.100)

with Δ = m20m02.
To determine the variances m02 and m20 we assume sea surface ordinates in

a form of the Fourier-Stjeltjes integral (Massel, 1996a)

ζ(x, y, t) =

∞∫
−∞

π∫
−π

exp[ik(x cos Θ + y sin Θ) − iωt] dA(ω,Θ), (3.101)

in which Θ is the direction of a particular wave spectral component. For the
surface slope components along the x and y axes we can write

ζx =
∂ζ

∂x
=

∞∫
−∞

π∫
−π

(ik cos Θ) exp[ikx cos Θ + y sin Θ) − iωt] dA(ω,Θ) (3.102)
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and

ζy =
∂ζ

∂y
=

∞∫
−∞

π∫
−π

(ik sin Θ) exp[ikx cos Θ + y sin Θ) − iωt] dA(ω,Θ). (3.103)

The spectral amplitude A(ω,Θ) is related to the two-dimensional energy spec-
trum Ŝ(ω,Θ) as

dA(ω,Θ) dA∗(ω′ ,Θ′) = Ŝ(ω,Θ)δ(ω − ω
′
)δ(Θ − Θ

′
) dω dω

′
dΘ dΘ

′
, (3.104)

in which δ( ) is Dirac’s delta and (∗) denotes the complex conjugate value.
Using (3.98) and the known relation (Lighthill, 1975)

∞∫
−∞

δ(x− y) dy = f(x), (3.105)

we obtain the variances of surface slopes in the form

m20 = σ2
ζx =

∞∫
−∞

π∫
−π

k2 cos2 Θ Ŝ(ω,Θ) dω dΘ

m02 = σ2
ζy =

∞∫
−∞

π∫
−π

k2 sin2 Θ Ŝ(ω,Θ) dω dΘ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ . (3.106)

When the deep water dispersion relation ω2 = gk is applied, moments become

m20 = σ2
ζx =

∞∫
−∞

π∫
−π

ω4

g2 cos2 Θ Ŝ(ω,Θ) dω dΘ

m02 = σ2
ζy =

∞∫
−∞

π∫
−π

ω4

g2 sin2 Θ Ŝ(ω,Θ) dω dΘ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ . (3.107)

Let us present the two-dimensional spectrum Ŝ(ω,Θ) in the form of the prod-
uct of the frequency spectrum S(ω) and an empirically determined directional
spreading function D(Θ)

Ŝ(ω,Θ) = S(ω)D(Θ). (3.108)

After substituting (3.108) into (3.107) we obtain

m20 = σ2
ζx = 1

g2

∞∫
−∞

ω4 S(ω)dω
π∫

−π
cos2 ΘD(Θ) dΘ

m02 = σ2
ζy = 1

g2

∞∫
−∞

ω4 S(ω) dω
π∫

−π
sin2 ΘD(Θ) dΘ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭. (3.109)

Taking into account that the integral against frequency is simply the fourth
spectral moment, we can rewrite (3.109) as follows

m20 = σ2
ζx =

m4

g2

π∫
−π

cos2 ΘD(Θ) dΘ =
m4

g2
Ic

m02 = σ2
ζy =

m4

g2

π∫
−π

sin2 ΘD(Θ) dΘ =
m4

g2
Is

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
, (3.110)



56 3 Statistical and spectral properties of ocean waves

where

m4 =

∞∫
−∞

ω4 S(ω) dω (3.111)

and

Ic =

π∫
−π

cos2 ΘD(Θ) dΘ, (3.112)

Is =

π∫
−π

sin2 ΘD(Θ) dΘ. (3.113)

It should be noted that

m20 + m02 = σ2
ζx + σ2

ζy =
m4

g2

π∫
−π

D(Θ) dΘ =
m4

g2
. (3.114)

After substituting m02 and m20 into (3.100) we obtain

f(εl, θ1) =
εl

2π m4

g2

√
Ic Is

exp

⎧⎨
⎩− ε2

l
m4

g2

Is cos2 θ1 + Ic sin2 θ1

2 Ic Is

⎫⎬
⎭, (3.115)

or

f(εl, θ1) =
εl

2πm̃4

√
Ic Is

exp

{
− ε2

l

m̃4

Is cos2 θ1 + Ic sin2 θ1

2Ic Is

}
, (3.116)

where

m̃4 =
m4

g2
. (3.117)

For a fixed value of θ1, the root mean square slope can be estimated from
(3.115) as follows (Longuet–Higgins, 1957)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞∫
0
ε2
l f(εl, θ1)dεl

∞∫
0
f(εl, θ1)dεl

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1/2

=
{

2IcIs

Is cos2 θ1 + Ic sin2 θ1

}1/2

. (3.118)

Therefore, the maximum rms slope of 2Ic appears in the direction θ1 = 0, i.e.
in the principal direction. The minimum slope of 2Is is in the direction at right
angles to the principal direction (θ1 = π/2).

For the limiting case of uniform direction spreading is

D(Θ) =
1

2π
(3.119)
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Figure 3.8: Probability density function of surface slopes in the direction of
wave propagation for two directional spreadings of wave energy and for m4

g2 = 1.

and

Ic = Is =
1

2
. (3.120)

Therefore, the probability density function (3.116) becomes

f(εl, θ1) =
εl

π m̃4

exp

(
− ε2

l

m̃4

)
. (3.121)

After integration against angle θ1 we have

f(εl) = 2
εl

m̃4

exp

(
− ε2

l

m̃4

)
. (3.122)

Thus, for a short crested uniformly distributed wave field, the surface slope
distribution is the Rayleigh distribution and it does not depend on the direction
θ1.

For further calculations we adopt the directional spreading function in a fre-
quently used form (3.33), namely

D(Θ; s) =
22s−1

π

Γ2(s + 1)

Γ(2s + 1)
cos2s

(
Θ

2

)
, −π ≤ Θ ≤ π. (3.123)

For s = 1 in (3.123), when D(Θ) = 1
π

cos2
(

Θ
2

)
, the functions Ic = Is =

1
2
. Therefore, the probability density function f(εl, θ1) becomes the same as
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function (3.121)! This means that the probability density of local slopes for

short crested waves with the directional spreading D(Θ) = 1
π

cos2
(

Θ
2

)
also

does not depend on the direction θ1.
The probability density function (3.115) for s = 1 and s = 5, and for m4

g2 =
m̃4 = 1 and θ1 = 0 is given in Fig. 3.8. The maximum of probability appears
for slope 0.71 when s = 1, and for slope 0.87 when s = 5. Both probability
densities exhibit the Rayleigh type function.

Integrating (3.115) against θ1 we obtain the probability density function for
surface slopes, regardless of direction θ1, in the form

f(εl) =
εl

m4

g2

√
Ic Is

exp

⎡
⎣− ε2

l

4m4

g2 Ic Is

⎤
⎦ I0

⎡
⎣ε2

l (Ic − Is)

4m4

g2 Ic Is

⎤
⎦ , (3.124)

in which I0(x) is the modified Bessel function of the zero order and imaginary
argument (Abramowitz and Stegun, 1975).

Let us make the following variable transformation in (3.124)

ξ =
εl(

m4

g2

)1/2
=

εl

(m̃4)1/2
. (3.125)

After substituting the above relation into (3.124) we obtain

f(ξ) =
ξ√
IcIs

exp

[
− ξ2

4IcIs

]
I0

[
ξ2

4

Ic − Is

IcIs

]
. (3.126)

Again, in two extreme cases, the above expression simplifies considerably. Namely
for uniform direction spreading we have

f(ξ) = 2ξ exp(−ξ2). (3.127)

For a wave field with short crests uniformly distributed in all directions θ1, the
surface slope distribution corresponds to the Rayleigh distribution. The same
is true for the directional spreading D(Θ) = 1

π
cos2

(
Θ
2

)
.

On the other hand, when all spectral components propagate along the x axis,
the directional spreading is simply

D(Θ) = δ(Θ − Θ0), (3.128)

where Θ0 = 0. From (3.112) and (3.113) we have

Ic = 1

Is = 0

⎫⎬
⎭ . (3.129)

Thus, ξ2

4
Ic−Is
Ic Is

→ ∞ and the asymptotic approximation of the Bessel function
I0() now becomes (Abramowitz and Stegun, 1975)

I0

[
ξ2

4

Ic − Is

IcIs

]
≈ 1√

2π

exp
[
ξ2

4
Ic−Is
Ic Is

]
ξ
2

√
Ic−Is
Ic Is

. (3.130)
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Figure 3.9: Probability density function for sea surface slope for different di-
rectional spreadings of wave field

Using above relation in (3.126) yields

f(ξ) =

√
2

π
exp

(
−1

2
ξ2

)
. (3.131)

The above equation indicates that in a two-dimensional random wave field,
when crests are very long, surface slopes are normally distributed (truncated
normal distribution).

In Fig. 3.9 the probability density function f(ξ) is illustrated for various
values of directional spreading parameter 2s, namely for 2s = 0, 2, 4, 6, 12
and 20, as well as for extreme narrow directional spreading (3.128). It should
be noted that the probability density functions for the normalized slope ξ for
spreading parameter 2s = 0 and 2s = 2 are the same as in both cases the
parameters Ic = Is = 1

2
. The dashed line in Fig. 3.9 denotes the probability

density function for an extremely narrow wave field, when Ic−Is
Ic Is

→ ∞.

3.3.6 Probability density function of wave heights

Wave amplitude can be detected in the simplest way under the assumption
of a narrow-band spectrum in which the positive and negative maximum ex-
cursions of wave surface process are equal to each other, and equal to wave
amplitude. However, this is not usually the case for real ocean surface waves.
A typical record of ocean waves for a non-narrow-band spectrum is given in
Fig. 3.10. It is clear that the envelopes of the process are not symmetrical
curves. Therefore, the positive and negative amplitudes are different. In order
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Figure 3.10: Definition of zero-down-crossing waves.

to overcome this uncertainty, in physical oceanography the crest-to-trough ex-
cursion is used and wave height is defined as the sum of the two values of
the upper and lower amplitudes. Only for a narrow-band spectrum is the wave
height equal to twice the upper (or lower) amplitude.

It should be noted that the definition of individual wave height depends
entirely on the choice of the trough occurring before or after the crest. Here we
will adopt the zero-down-crossing method when the wave trough occurs before
the wave crest (Fig. 3.10).

Consider the unidirectional wave motion of a narrow-band frequency spec-
trum at a given point

ζ(t) =
∞∑
i=1

ai cos (ωit− εi) . (3.132)

Using frequency ωp, which corresponds to the spectrum peak, we can rewrite
(3.132) as

ζ(t) = Ac(t) cos (ωpt) − As(t) sin (ωpt) , (3.133)

in which

Ac(t) =
∑∞

i=1 ai cos [(ωi − ωp) t− εi]

As(t) =
∑∞

i=1 ai sin [(ωi − ωp) t− εi]

⎫⎬
⎭. (3.134)

Because of the narrowness of the process, the amplitudes Ac(t) and As(t) are
very slowly varying functions of time. Hence

ζ(t) = A(t) cos [ωpt + ϕ(t)] , (3.135)

where

A(t) =
√
A2

c(t) + A2
s (t), (3.136)

ϕ(t) = tan−1 [As(t)/Ac(t)] , (3.137)
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and

Ac(t) = A(t) cosϕ(t), As(t) = A(t) sinϕ(t). (3.138)

It should be noted that, in the case of a narrow-band spectrum, the amplitude A
is equal to the amplitude of the wave envelope, which varies slowly in time. In
virtue of the central limit theorem, Ac and As are Gaussian processes with
mean value equal to zero and variance σ2

ζ as

E
[
A2

c

]
= E

[
A2

s

]
= E

[
ζ2

]
= σ2

ζ . (3.139)

It can be shown that E [AcAs] = 0. Thus, ζc and ζs are independent variables
and the two-dimensional probability density function becomes

f2 (Ac, As) = f (Ac) f (As) =
1

2πσ2
ζ

exp

[
−A2

c + A2
s

2σ2
ζ

]
, (3.140)

or

f2 (A,ϕ) =
A

2πσ2
ζ

exp

(
− A2

2σ2
ζ

)
. (3.141)

Finally, the one-dimensional probability densities for amplitude A and phase
ϕ are obtained through integration of (3.141), with respect to phase ϕ and
amplitude A, respectively

f(A) =
∫ π

−π
f2 (A,ϕ) dϕ =

A

σ2
ζ

exp

(
− A2

2σ2
ζ

)
, (3.142)

and

f(ϕ) =
1

2π

∫ ∞

0

A

σ2
ζ

exp

(
− A2

2σ2
ζ

)
dA =

1

2π
. (3.143)

Equation (3.142) represents the well-known Rayleigh distribution for wave am-
plitude. Result (3.143) indicates that for a narrow-band process, the phase is
uniformly distributed in the range (π, π).

As mentioned above, in physical oceanography and ocean engineering, the
wave height H is preferred to wave amplitude A. The assumption of a narrow-
band spectrum leads to the conclusion that H ≈ 2A. The transformation of
variable A to H in (3.142) gives the Rayleigh distribution in terms of wave
height H

f(H) =
H

4σ2
ζ

exp

(
−H2

8σ2
ζ

)
, (3.144)

or

f(ξ) =
1

4
ξ exp

(
−1

8
ξ2

)
, (3.145)

in which ξ = H
σζ

.



62 3 Statistical and spectral properties of ocean waves

The moments of wave height can be presented as follows

E [Hm] = Hm = 23m/2 σm
ζ Γ

(
1 +

m

2

)
. (3.146)

In particular, the mean wave height H̄ and the root-mean-square wave height
Hrms are obtained from (3.146), if m = 1 and m = 2, respectively

H̄ =
√

2πσζ , Hrms = 2
√

2σζ =
2√
π
H̄. (3.147)

Using (3.147), the distribution (3.144) can be rewritten as

f(H) =
2H

H2
rms

exp

(
− H2

H2
rms

)
, (3.148)

or

f(ξ) = 2ξ exp
(
−ξ2

)
, (3.149)

in which ξ = H
Hrms

, and

f(H) =
π

2

H

H̄2
exp

[
−π

4

(
H

H̄

)2
]
. (3.150)

Although various wave height relations based on the Rayleigh distribution can
be found elsewhere (for example Massel, 1989), here we only discuss one specific
wave height frequently used in practice, namely the significant wave height Hs.
The wave height Hs is defined as the average of the highest one-third of wave
heights. Assuming a narrow-band wave spectrum, we calculate the threshold
wave height H∗ which has the probability of exceedance of 1

3
which corresponds

to value H∗ = H
σζ

≈ 3.0 (see Fig. 3.11).

Using (3.148) we have

Pr {H > H∗} =
∫ ∞

H∗

2H

H2
rms

exp

[
−
(

H

Hrms

)2
]
dH =

1

3
. (3.151)
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Figure 3.11: Determination of significant wave height Hs.
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Thus,

H∗ =
√

ln3Hrms = 1.048Hrms. (3.152)

According to the definition, the significant wave height corresponds to the
centre of gravity of the shaded area in Fig. 3.11. The balance of moments
with respect to the origin yields

1

3
Hs =

∫ ∞

H∗
H f(H) dH, (3.153)

or

Hs =

{
3
√
π

2
erfc

(√
ln 3

)
+
√

ln 3

}
Hrms ≈ 1.416Hrms, (3.154)

where the complementary error function erfc(z) is given by (Abramowitz and
Stegun, 1975)

erfc(z) =
2√
π

∫ ∞

z
exp−t2 dt. (3.155)

Using the second relation of (3.147), the significant wave height can be ex-
pressed as

Hs = 1.416Hrms = 4.004σζ = 1.6 H̄. (3.156)

Except for Hs, being the mean of the highest one-third of wave height, sig-
nificant wave height is commonly estimated from wave records using relation
(3.156) when standard deviation is calculated from the frequency spectrum
S(ω). This significant wave height is usually noted as Hm0 , i.e.

Hm0 = 4.004
√
m0. (3.157)

In other words, Hm0 is an energy-based significant wave height, determined as
four times the square root of the area contained under the energy spectrum
S(ω). Height Hm0 is approximately equal to Hs except when waves are very
steep. In situations where Hm0 is equal to Hs, either can be used. However,
when Hm0 differs from Hs, it cannot be used directly to estimate wave height
statistics.

Above analysis (3.151) can be generalized to evaluate the average of the
highest 1/N th wave heights H̄1/N , based on the Rayleigh distribution, i.e.

H̄1/N =

{
N
√
π

2
erfc

(√
lnN

)
+
√

lnN

}
Hrms. (3.158)

In Table 3.1 the values of H̄1/N are listed for selected values of N .
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Table 3.1: Characteristic wave heights based on the Rayleigh
distribution

N H̄1/N/Hrms H̄1/N/H̄ H̄1/N/σζ Remarks

500 2.680 3.023 7.580
200 2.503 2.823 7.078
100 2.359 2.662 6.671 Highest 1/100th wave
50 2.206 2.488 6.239
25 2.042 2.303 5.775
10 1.800 2.030 5.090
5 1.591 1.795 4.499
3 1.416 1.597 4.004 Significant wave
1 0.886 1.000 2.505 Mean wave

3.3.7 Probability density function of wave amplitudes
of non-Gaussian sea

In Section 3.3.1, the Gaussian distribution was used to describe the proba-
bility density of the surface ordinates. However, surface waves that are close
to breaking typically display a vertical skewness in terms of higher crests and
shallower, more rounded troughs. The exact theoretical form of the distribu-
tion of nonlinear wave crests is not known under general conditions. There have
been some attempts to approximate the distributions of nonlinear wave crests.
For example, a deep water approximation based on Edgeworths form of the
Gram-Charlier distribution was derived by Longuet–Higgins (1964). The ap-
proximations by Tayfun (1980), Huang et al. (1983) and Kriebel and Dawson
(1993) predict the observed properties of laboratory generated waves as well as
the field data quite well for the narrow-band sea model. Tayfun and Al-Humond
(2002) predicted the least upper bound distribution for nonlinear wave ampli-
tudes. They showed that the probability density function for non-dimensional
amplitude takes the form

f(y) =
2

Δ

(
1 − 1√

1 + 2 Δy

)
exp

⎡
⎣−

(√
1 + 2 Δy − 1

Δ

)2
⎤
⎦, (3.159)

in which

y =
A

Arms

(3.160)

and

Δ = Arms k̄. (3.161)

The root-mean-square wave amplitude Arms becomes

Arms = (2m0)
1/2 (3.162)
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and the spectral-mean wave number k̄ is

k̄ =
ω2

g
and ω2 =

m2

m0

. (3.163)

Therefore,

k̄ =
m2

g m0

. (3.164)

It should be noted that the frequency ω0 =
√
ω2 is called the root-mean-square

frequency.
After substituting (3.162) and (3.164) into (3.161) we obtain

Δ = Arms k̄ =
√

2
m2

g
√
m0

. (3.165)

The quantity Δ is a measure of the root-mean-square surface steepness. In the
dimensional form, the probability density (3.159) becomes

f(A) =
2

B1 Arms

B2 exp
(
−B2

2

)
, (3.166)

in which

B1 =

√
1 + 2 Δ

(
A

Arms

)
(3.167)

and

B2 =

√
1 + 2 Δ

(
A

Arms

)
− 1

Δ
. (3.168)

In Fig. 3.12, the probability density f(A) is shown for a random wave field
characterized by the JONSWAP spectrum. Waves are induced by wind of veloc-
ity V10 = 8m/s and fetch X = 100 km. Resulting parameters are: peak period
Tp = 5.61 s, significant wave height Hs = 1.64m, Arms = 0.58m and Δ = 0.11.
Due to small value of Δ used in the calculations, the difference between both
probability densities is also small, with the largest discrepancy around the wave
amplitude A ≈ 0.75Arms.

For comparison, in the same figure, the probability density for linear waves
is given. This function results from (3.166) as follows√

1 + 2Δ
(

A

Arms

)
≈ 1 + Δ

(
A

Arms

)
− 1

2
Δ2

(
A

Arms

)2

+ · · · . (3.169)

For Δ → 0, from (3.166) results the Rayleigh distribution, i.e.

f(A) =
2A

A2
rms

exp

[
−

(
A

Arms

)2
]
, (3.170)

or

f(y) = 2y exp(−y2). (3.171)



66 3 Statistical and spectral properties of ocean waves

X = 100 km
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Figure 3.12: Comparison of wave amplitude probability density for non-
Gaussian field and Rayleigh’s distribution.

3.3.8 Joint probability density function of wave
amplitudes and wave periods for narrow
bandwidth waves

There are a lot formulae on the two-dimensional probability density of wave
parameters. Extended comments on them can be found in the book by Mas-
sel (1996a). For our purpose, the Longuet–Higgins (1983b) probability density
function for wave height and wave period is used

f̃(R, τ) =
2√
πν

(
R

τ

)2

exp

{
−R2

[
1 +

(
1 − 1

τ

)2

/ν2

]}
L(ν), (3.172)

where

R =
A

(2m0)1/2
; τ =

T

T
, (3.173)

L(ν) =
2
√

1 + ν2

1 +
√

1 + ν2
, (3.174)

T =
2π

ω̄
= 2π

m0

m1

. (3.175)

A denotes the wave amplitude, T is the wave period and ν the parameter of
spectrum width given by (3.7).
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For further analysis we transform the two-dimensional probability density
f̃(R, τ) into probability f(ρ, τ), where ρ = 2A

Hs
= H

Hs
. Therefore, we have

f(ρ, τ)dρ = f̃(R, τ)dR, (3.176)

or

f(ρ, τ) = f̃(R, τ)
dR

dρ
. (3.177)

After some algebra we obtain

f(ρ, τ) =
8√
2π ν

(
ρ

τ

)2

exp

{
−2ρ2

[
1 +

(
1 − 1

τ

)2

/ν2

]}
L(ν), (3.178)

where the relationship

Hs = 4
√
m0 (3.179)

is used. In Fig. 3.13 the non-dimensional probability function f(ρ, τ)/fmax is
illustrated for ν = 0.4.

The position of the maximum value of f(ρ, τ) is found from the condition
that ∂f/∂ρ and ∂f/∂τ both vanish. Hence we find

ρ =
1√

2(1 + ν2)
; τ =

1

1 + ν2
. (3.180)
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Figure 3.13: The non-dimensional probability function f(ρ, τ)/fmax for ν =
0.4.
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The value of f(ρ, τ) at this point is

fmax = f(ρ, τ) = 0.587(ν + ν−1)L(ν). (3.181)

It should be noted that the probability density functions (3.172) and (3.178)
are valid for the sufficiently narrow spectrum when ν2 � 1.0. An advantage
of using these functions is their dependence on the lowest spectral moments
m0,m1 and m2, which can be calculated for the most typical spectral density
functions.

3.3.9 Probability density function of wave periods

The probability density function of period T , regardless of wave height H, is
found by integrating probability density function f̃(R, τ) with respect to R
over 0 < R < ∞. Using the Longuet–Higgins distribution (3.172) we obtain

f(τ) =
4
√

2πCL

τ 2

[
1 +

1

ν2

(
1 − 1

τ

)2
]−3/2

, (3.182)

in which

CL =
1

4
√

2πν
[
1 + (1 + ν2)−1/2

] . (3.183)

Function (3.182) is shown in Fig. 3.14 for some representative values of ν. The
distribution is asymmetric in accordance with observations. It depends on the
three lowest moments m0,m1,m2 of the spectral density function (by using
spectral width parameter ν). The mode of the distribution decreases with ν as

τm =
2√

9 + 8ν2 − 1
. (3.184)

In particular, the mean of the distribution is theoretically infinite, since for
large values of τ the density f(τ) behaves like τ−2. However, using the exact
value of the average frequency of up-crossings of the mean level, it can be found
that mean zero-crossing wave period T̄0 is

T̄0 =
T̄√

1 + ν2
= 2π

√
m0

m2

, (3.185)

in which

T̄ = 2π
m0

m1

(3.186)

is the mean wave period. For comparison, in Fig. 3.14 the empirical distribution
proposed by Davidan et al. (1985) was shown

f(τ) = 3Aτ 2 exp
(
−Aτ 3

)
, (3.187)

in which A = Γ3
(

4
3

)
≈ 0.712. This distribution, based on a large set of data,

is included in the Russian oceanographic tables.
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Figure 3.14: Probability density function for wave period for ν = 0.2, 0.4 and
0.6 – solid lines; distribution according to Davidan et al. (1985) – dashed line
(adapted from Massel (1996a)).

3.3.10 Joint probability density function of wave
amplitudes and wave periods for finite bandwidth
waves

Due to complex atmospheric systems and nonlinear wave generation processes,
wave energy is usually distributed over a finite and not necessarily narrow fre-
quency band. Therefore, the assumption that bandwidth parameter ν � 1 used
in Longuet–Higgins’model for the joint probability density function of wave am-
plitudes and wave periods, is not satisfied. To avoid this restriction, Papadimi-
trakis (2005) proposed a new joint probability density applicable for narrow as
well as for finite bandwidth spectra. His model is based on the solution of Yuan
et al. (1986) and it is expressed in terms of wave amplitude A and frequency ω

f(A,ω) = E1(ω)A2 exp[−E2(ω)A2], (3.188)

E1(ω) =
4√

2π α2
2(χ + 1)

√
χ2 − 1m0

3
2 ω0

(3.189)

and

E2(ω) =
1

2m0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩1 +

[
1 − 1

α2

(
ω
ω0

)2
]2

(χ2 − 1)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭, (3.190)
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where

ω0 =

√
m2

m0

and χ =

√
m0 m4

m2
2

. (3.191)

Coefficient α2 is a positive coefficient dependent also on χ, ω0 and spectral peak
frequency ωp. In fact, it is a ratio of the expected number of wave extremes
and number of zero-crossings per unit time. It can serve also as a measure
of the spectrum bandwidth being related to the parameter ε, introduced by
Cartwright and Longuet–Higgins (1956) and given by (3.9). It can be shown
that

χ2 =
1

1 − ε2
. (3.192)

Thus, for a narrow band spectrum ε = 0 and χ = 1, while for an extremely
broad spectrum we have ε = 1 and χ becomes unbounded.

To avoid the difficulties with determination of the high spectral moments
due to noise tail of the spectrum, the low-pass filtering technique was used.
In particular, Papadimitrakis applied the Glazman (1986) approach where the
filtered moments are defined as follows:

m0 =

π∫
−π

∞∫
0

Z2(ω, Tc) Ŝ(ω, θ)dω dθ, (3.193)

m1 =

π∫
−π

∞∫
0

Z2(ω, Tc)ωŜ(ω, θ)dω dθ, (3.194)

m2 =

π∫
−π

∞∫
0

Z2(ω, Tc)ω
2Ŝ(ω, θ)dω dθ, (3.195)

m4 =

π∫
−π

∞∫
0

Z2(ω, Tc)ω
4Ŝ(ω, θ)dω dθ, (3.196)

in which

Z(ω, Tc) =
sin

(
ω Tc

2

)
ω Tc

2

(3.197)

and Tc is the cutoff period. The filter function (3.197) removes from the spec-
trum all components with periods shorter than Tc. According to Papadimi-
trakis, the cutoff period should be in the range Tc < (0.1− 0.2)Tp, where Tp is
the spectral peak period.

The coefficient α2 was introduced to satisfy the condition that the expected
energy density of the finite bandwidth spectrum should theoretically be equal
to half of the amplitude squared. Calculations show that

α2 =
(
ωp

ω0

)
7

2 +

√
[25 + 21

√
(χ2 − 1)]

. (3.198)
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Figure 3.15: Probability density function for normalized amplitude and fre-
quency of wind waves.

It should be noted that for χ = 1, α2 should also be equal to 1. However, from
(3.198) it follows that α2 =

(
ωp

ω0

)
. The field and laboratory data indicate that

usually this ratio ≈ 1.15 − 1.20.
The probability density f(A,ω) reaches a maximum at point (Amax, ωmax),

when

Amax =

{
χ2 − 1

χ2 + 1 − (3χ2 + 1)1/2

}1/2 √
m0

2
(3.199)

and

ωmax =
{
α2

[
−1 +

(
3χ2 + 1

)1/2
]}1/2

ω0. (3.200)

In Fig. 3.15 the normalized probability density given by (3.188) is shown for
wind waves generated by wind of speed V10 = 10m/s and fetch of 50 km. The
amplitudes and frequencies are normalized against the ωmax and Amax values,
respectively. The JONSWAP spectrum with enhancement factor γ = 7 was
adopted. As a result the following characteristic parameters were obtained:
Hs = 1.65 m, ωp = 1.30 rad/s, ε = 0.564, ν = 0.265 and χ = 1.21.
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3.3.11 Probability density function of the highest wave
in a record

The steady wave theory indicates that the maximum or limit wave height will
depend at least on the local water depth and the local wave period. However
in a real sea state, due to the variability of wave period and the irregularity of
the profile of each individual wave, the highest wave height will not reach the
theoretical limit wave height, Hlimit. The highest wave height will be depen-
dent on temporal evolution of the intensity of the sea state and on statistical
variability within the sea state. Thus, in a real sea state, Hmax is a random
variable and its complete description is provided by the probability distribu-
tion. Assuming that the occurrence of wave height is an independent event
and that the wave spectrum is narrow-banded, the probability density function
and cumulative distribution function for the highest wave Hmax in a stationary
record of N waves become (Massel, 1996a)

fHmax(Hmax) = NfH(Hmax) [FH(Hmax)]
N−1 (3.201)

and

FHmax(Hmax) = [FH(Hmax)]
N , (3.202)

where fH(Hmax) is the probability density function of individual wave height,
and FH(Hmax) is the corresponding cumulative distribution function.

Usually, the functions (3.201) and (3.202) are normalized with root-mean-
square wave height of the stationary record Hrms. Therefore, we obtain

fρmax(ρmax) = N fρ(ρmax)[Fρ(ρmax)]
N−1 (3.203)

and

Fρmax(ρmax) = [Fρ(ρmax)]
N , (3.204)

in which ρ = H/Hrms.
When the Rayleigh distribution is used for individual waves, i.e.

fρ(ρmax) = 2ρmax exp(−ρ2
max) (3.205)

and

Fρ(ρmax) = 1 − exp(−ρ2
max), (3.206)

equations (3.203) and (3.204) yield

fρmax(ρmax) = 2Nρmax exp(−ρ2
max)[1 − exp(−ρ2

max)]
N−1 (3.207)

and

Fρmax(ρmax) = [1 − exp(−ρ2
max)]

N . (3.208)



3.3 Statistical properties of ocean waves 73

A normalized mean and the most probable maximum wave heights for large N
take the forms (Massel and Sobey, 2000)

ρmax =
Hmax

Hrms

≈
√

lnN +
γ

2

1√
lnN

(3.209)

and

ρmax

∣∣∣∣∣
max prob.

=
Hmax

Hrms

∣∣∣∣∣
max prob.

≈
√

lnN for large N and large ρmax, (3.210)

in which γ = 0.57722 . . . . is Euler’s constant.
That the Rayleigh distribution overpredicts the probabilities of the higher

waves in a record has long been recognized (Myrhaug and Kjeldsen, 1986;
Sobey et al., 1990). Observations from a data set of 20-min record segments
during a tropical cyclone Victor in March 1986 on Australia’s North West Shelf
showed that the ratio of Rayleigh’s theory over measurement is 1.062 ± 0.101,
being mean ± standard deviation.

There are numerous theoretical and empirical alternatives to the Rayleigh
model, but none can be identified as the model of choice. Massel and Sobey
(2000) found that the theoretical models share the same fundamental basis
as the Rayleigh model, namely the theory of Gaussian random noise. With
the exception of the ‘Epstein/Naess’ model (Massel and Sobey, 2000), all the
alternatives in the literature retain the independent wave assumption and fo-
cus attention on the population distribution for individual wave heights. The
Epstein/Naess model retains the ‘lag 1’ correlation between consecutive waves.
These models predict trends in general agreement with the Rayleigh model and
average values are consistently lower than that of the Rayleigh model. Though
most are tightly grouped, there is no especially compelling argument to identify
any one of these models for universal application.

In contrast to the above alternatives, Massel and Sobey (2000) introduced
a simulation methodology to retain the essential features of the theoretical
background in Gaussian random noise but to avoid further compromising as-
sumptions in the interpretation of wave height in the amplitude domain. A prob-
ability distribution for the highest wave can be associated directly with an em-
pirical or measured variance spectrum. Spectral shape has an influence on the
location and width of the predicted distributions. Sharper spectral forms are
associated with higher maximum waves.



Chapter 4

Experimental insights into
mechanisms of wave breaking

4.1 Introduction

In spite of many years of theoretical efforts to gain insight into the mechanics
of breaking waves, a more complete understanding of wave breaking and its
onset as well as energy dissipated during breaking is still lacking (Banner and
Grimshaw, 1992).

Most of the information on wave breaking which has been collected in the
past is a result of experimental observations in the field and in laboratory
tanks. The visual recording of wave breaking occurrence is probably the most
reliable method. Also other methods have been reported in the literature based
on measurements of surface elevation, velocities and accelerations. Some of
these techniques are often laborious and not sufficiently efficient to be applied
in practice. Banner and Peregrine (1993) provide an overview of deep water
breaking wave detection technology. Although it is generally recognized that
an individual wave-breaking event usually starts when water particle velocity
at the wave crest reaches the velocity of wave propagation, surface fluid veloc-
ity is difficult to measure in the field. Therefore, indirect methods have been
developed to detect and quantify wave breaking. They are related to various
surface geometry signatures including a jump in the slope of the water surface
at the breaker, an optical contrast of the sea surface associated with breaking,
void fraction, whitecap coverage, subsurface turbulence, underwater sound, in-
frared properties of the surface, microwave backscatter, radar reflectivity and
others. Some of these techniques will be described in this chapter, but other
methods, particularly optical methods, related to whitecapping will be left for
discussion in Chapter 7.

In recent years some modern indirect methods of wave breaking detection,
based on processing of the recorded sea surface oscillations, have been pro-
posed. Among the most promising methods, such approaches as application
of the wavelet transform (Liu, 1994; Liu and Mori, 2001; Massel, 2001b) and
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the phase-time method based on the Hilbert transform (Huang et al. 1999,
Zimmermann and Seymour, 2002) are the most promising.

4.2 Definitions of parameters of steep and

breaking waves

In general, the breaking process can be characterized by various measurable
quantities such as (Hwang et al., 1989):

• onset of breaking

• time scale of breaking

• length scale of breaking

• intensity of breaking

• phase of breaking inception, and

• multiplicity of breaking.

Following Hwang et al. let us provide short definitions of the above quantities:

Onset of breaking – definition of the onset of breaking is twofold. In experi-
mental studies it means that observed waves exceed some threshold behaviour,
related to foam formation on the sea surface and high curvature of the wave
crest. In numerical calculation, wave breaking onset is associated with a thresh-
old linked for example to nonlinear wave group hydrodynamics.

Probability of breaking occurrence – defined as the ratio between the number
of breaking waves and the total number of waves recorded (Longuet–Higgins
and Smith, 1983; Ochi and Tsai, 1983; Hwang et al., 1989).

Time scale of breaking Δtb – the breaking duration, defined as the time in-
terval during which the threshold variable exceeds the critical value.

Vertical length scale of breaking Δζb – elevation jump defined as the difference
in surface elevations during breaking.

Horizontal length scale of breaking Δlb – length of breaking wave usually
derived from the measured breaking duration (Δtb) and the period of the cor-
responding breaking wave (Tb). Using the fact that Cb = g

2π
Tb is the phase

speed of the breaking wave, the quality lb = Cb Δtb = g
2π
Tb Δtb is the horizon-

tal length scale of a breaking patch (Phillips, 1985).

Intensity of breaking – quantity which determines the energy loss during
breaking. It can be measured by two other measurable or calculable quantities,
namely the elevation jump Δζb, being proportional to the potential energy loss,
and ΔQb = u2 + w2, representing the kinematic energy loss during breaking
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(u and w are the horizontal and vertical components of the particle velocity at
the sea surface, respectively).

Phase of breaking inception – a phase angle θb relative to the wave crest of
the first point where the threshold variable exceeds the critical value.

Multiplicity of breaking – number of breaking events divided by the number of
breaking waves. This index is related to the event when two or more breakings
occur during one wave.

Forms of breaking waves in deep water are generally classified into two types
(Massel, 1989):

plunging – the whole front face of the wave steepens until vertical; the crest
curls over the front face and falls into the base of the wave, sometimes by the
projection of a small jet.

spilling – white water appears at the wave crest and spills down the front of
the wave. The upper 25% of the front may become vertical before breaking.

Experimental studies on two-dimensional wave breaking fall into four main
categories in which the first three categories are related to mechanically gener-
ated waves, while the last one is related to waves generated by air flow above
the water surface (Griffin et al., 1996):

(a) the focusing of essentially two-dimensional waves in the lateral direction,

(b) the towing of a submerged object, such as a hydrofoil, to produce steady
breakers,

(c) the focusing of variable-length waves from a modulated wavemaker to pro-
duce unsteady breakers, and

(d) the overturning of an irregular wave train to produce unsteady breakers.

It should be noted that the common global wave steepness defined as εg = H
gT 2 ,

where H is the total wave height and T is the wave period, does not define steep
asymmetric waves close to breaking in a random sea uniquely. Several asymmet-
ric waves can be observed with the same global steepness εg, but with very dif-
ferent steepness of the wave crests. To evaluate the complex three-dimensional
sea surface pattern, many wave parameters describing the geometry of individ-
ual waves are in use. Usually these parameters are based on a zero-downcross
analysis, such as crest front steepness, vertical asymmetry parameter, hori-
zontal asymmetry parameter, front inflection point steepness, maximum crest
curvature and others. In particular, to account for the asymmetry of waves
Myrhaug and Kjeldsen (1986) introduced three main parameters characteriz-
ing single asymmetric waves in a given time series – see Fig. 4.1
– crest front steepness εf :

εf =
ζc(

g

2π

)
T × T ′

, (4.1)
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Figure 4.1: Basic definitions for irregular steep wave according to Myrhaug and
Kjeldsen (1986).

– vertical asymmetry λv:

λv =
T ′′

T ′ , (4.2)

– horizontal asymmetry parameter λh:

λh =
ζc

H
, (4.3)

where ζc is the crest elevation, T ′ and T ′′ are times defining the position of the
wave crest relative to the zero-crossing points in the time domain, and T is the
zero-downcross wave period. The parameter εf can be interpreted as the mean
crest front inclination in the time domain. For a regular sinusoidal wave, (4.1)–
(4.3) give εf = 8π ζc

gT 2 = 4π εg = 2εH, where εH = H
L

, λv = 1 and λh = ζc
H

= 1
2
.

It should be noted that the λh parameter describes asymmetry with respect to
the current horizontal axis at the mean water level. Therefore, a trend in the
mean values has to be removed.

Using times T ′ and T ′′, another vertical asymmetry parameter λ′
v can be

obtained following Goda (1985)

λ′
v =

T ′

T ′ + T ′′ =
1

1 + λv

. (4.4)

The inspection shows that λ′
v is bounded between 0 and 1. For symmetric

sinusoidal waves λ′
v = 1

2
.

It is not practical to use local geometry parameters to characterize a long
time series of steep irregular waves. The geometry of irregular surface ele-
vation should be given by some statistical or spectral parameters. The most
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appropriate is so-called significant wave steepness defined as follows

εs =
Hs

gT 2
p

, (4.5)

in which Hs is the significant wave height and Tp is the spectral peak period.

4.3 Field observations on wave breaking

4.3.1 Wave gauge method

Wave breaking in the field may be a result of direct wind forcing, wave–wave
interaction, or wave instabilities. Longuet–Higgins and Smith (1983) reported
probably the first direct, instrumental measurements of breaking waves through
detecting the small jumps or discontinuities in surface elevation associated with
spilling or plunging breakers. Observations of surface elevation were made with
a capacitance wire wave recorder attached to a free floating spar buoy. It was
assumed that any progressive wave in which inclination of the surface exceeds
the critical value tan θcr = 0.586 (θcr = 30.37◦) must be breaking. This threshold
angle θcr follows from the extension of Stokes’ theory given by Longuet–Higgins
and Fox (1977) – see Section 2.2.

In Longuet–Higgins and Smith’s experiment the experimental slope was esti-
mated as follows

θ = arctan
(
R

C

)
, (4.6)

in which R = Δζ
Δt

and C is the phase velocity.
Records were obtained in wind speeds ranging from 1 to 14 m/s. The observed

values of
(
R
C

)
lie somewhat above the critical value tan θcr. At wind speed of

14 m/s the number of ‘jumps’, indicating either steep or breaking waves, was of
the order of 1 every 100 wave periods. This number is consistent with previous
theoretical estimates (Longuet–Higgins, 1969) and with visual observations of
whitecap coverage.

However, it should be mentioned that the ‘jump meter’ technique was de-
signed for detecting larger waves and many small breaking waves were ignored.
It is reasonable to suggest that small breaking waves occur more often than
large breaking waves. Hence Longuet–Higgins and Smith’s count would be much
lower than all of the other methods described below in this section.

Weissman et al. (1984) developed a detection scheme that uses the energy
in a very high frequency band (18–32 Hz) to test for turbulence at the surface
with some suitable threshold for breaking events. Application of the method
to data collected on Lake Washington showed that the temporal intermittency
of wave breaking (fraction of time spent in breaking regions) for wind speed
5.9 m/s and fetch 7 km was found to be only 1.2%. However, the fraction of
high-frequency energy in those regions was 12%. Elevations of the breaking
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crests were much less than expected and the mean crest height was a quarter
of the values predicted by nonlinear theories of steady waves.

Thorpe (1993) distinguished two scales of wave breaking. The first, small-scale
breaking, is related to the formation of small-scale ripples of capillary-gravity
waves formed on the crest or leading face of steep gravity waves and producing
flow separation (see Section 2.3 for a discussion in more detail). However, the
more familiar breaking occurs on a larger scale when plunging or spilling waves
manifest themselves as whitecaps. Sometimes the results of observations of
wave breaking are presented as a frequency of wave breaking Nbr defined as
the number of waves breaking at a fixed position in a given time divided by
the number of waves of the dominant wave frequency that pass in the same
period of time. The breaking frequency Nbr is plotted in Fig. 4.2 as a function
of wind speed V10 divided by dominant phase speed C0. In particular, Thorpe
and Humphries (1980) and Thorpe (1992) made observations of the frequency
of breaking wind waves in a loch at a fetch of about 20 km for winds from 3
to 28m/s, using a capacitance wire probe. Their results are denoted in this
figure by circles and squares, respectively. In the same figure, the results of
Longuet–Higgins and Smith (1983) (denoted by LH+S), Weissman et al. (1984)
(denoted by W+A+K), Holthuijsen and Herbers (1986) (denoted by H+H) and
Katsaros and Atakturk (1992) (denoted by points) are added for comparison.
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Figure 4.2: Number of breaking waves per wave, Nbr, versus wind speed divided
by wave speed of dominant waves (adapted from Thorpe, 1993).
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Holthuijsen and Herbers data lie well above the others, possibly due to wave
refraction in shallow water. On the other hand, Longuet–Higgins and Smith’s
data are slightly higher, maybe because they include steep but not breaking
waves or are affected by the influence of swell. In general, the remaining data
points satisfy the following relationship

Nbr = (4.0 ± 2.0) × 10−3
(
V10

C0

)3

, (4.7)

denoted in Fig. 4.2 by dashed lines.
Myrhaug and Kjeldsen (1986) determined the wave steepness and wave asym-

metry parameters, defined above, in 58 full-scale time series recorded during
22 gales in deep water on the Norwegian continental shelf. It should be noted
that they considered a wave to be ‘extreme’ when H > 5 m, εf > 0.25 and
εH > 0.1, and they showed that εf is larger than 2εH for most extreme waves.
For wave steepness in the range 0.1 < 2εH < 0.25, crest front steepness εf was
between 0.2 and 0.32, with a mean value of about 0.26. Moreover, it was ob-
served that λv > 1 and λh > 0.5 for most waves when εf > 2εH. In particular,
the vertical asymmetry parameter λv showed a large scatter between 1.0 and
3.0, while the horizontal asymmetry parameter λh was concentrated around a
value of 0.65. Therefore, the crests of extreme waves are usually asymmetric
with shallow and relatively long troughs followed by high and relatively short
crests.

It should be noted that for limiting second-order symmetric Stokes waves,
εf equals 0.28. Cokelet (1977) using 120 Pade terms in his precise numeri-
cal calculations for the steepest monochromatic deep water waves obtained
εf = 0.408 and λh = 0.757, when the mean water level is used as a reference
level.

If we assume that the wave field is uniform, consisting of two-dimensional
waves with the period of the dominant waves, we can regard Nbr, given in
Fig. 4.2, as an estimate of the fraction of the breaking crest length of any one
wave. This result is consistent with the theoretical prediction of Phillips (1985),
who showed that the number of breaking waves passing a fixed point per unit
time is proportional to the cube of the friction velocity in the air, which is
equivalent to the cube of the wind speed (see Section 6.3 for more details).

At present, there is no consensus on distinguishing between the extremes ap-
pearing in a homogeneous wave population and cases of exceptional high waves.
These high waves result from totally different generation mechanisms. Kharif
and Pelinovsky (2003) provided a review of physical mechanisms of rogue wave
generation, such as focusing, wave–current interaction and modulational insta-
bility. These mechanisms have been supported by the classical nonlinear evolu-
tion equations, i.e. the nonlinear Schrödinger equation, the Davey–Stewartson
system, the Korteweg–de Vries equation, the Kadomtsev–Petviashvili equation
and the Zaharov equation. However, in order to distinguish between rogue
waves and other extreme waves usually appearing in a random wave field,
a simpler criterion should be applied.
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The appearance of extreme, very rare wave events in the ocean, sometimes
called rogue waves or freak waves is usually discussed in connection with damag-
ing maritime structures as well as with sinking ships. However, extreme waves
are also a demonstration of very severe ocean conditions and generation of in-
tensive marine aerosol fluxes from the ocean surface to the atmosphere. A very
comprehensive summary of extreme event statistics and numerical modelling
of extreme waves was given by Massel (1996a) and Olagnon and Athanas-
soulis (2001). Moreover, Olagnon and van Iseghem (2001) recently provided
a summary of characteristics of extreme waves recorded in the North Sea (Frigg
field). Only sea states (9850 events) with significant wave height Hs, larger than
2 m were considered and a few selected extreme waves (128 events) were filtered
out for Hs > 2 m and ζcmax > 5 m, and these waves are classified as freak waves.
Olagnon and Iseghem found that crest front steepness εf of ‘normal’ extreme
waves is higher than that of the maximal waves but the difference is not signif-
icant. The same conclusion has been drawn for wave asymmetry parameters.

4.3.2 Visual method

Holthuijsen and Herbers (1986) using video technique observed whitecaps pass-
ing a fixed location in the North Sea at a water depth of 17.5 m. During obser-
vation the significant wave height, Hs, varied from 1.3 to 2.0 m with average
peak period Tp = 5s and significant wave steepness ranged from εs = 0.0053
to εs = 0.0081. Wave breaking events over a wide range of length scales, regis-
tered synchronously with the buoy signal, have been detected. Joint probabil-
ity analysis of heights and periods of breaking and non-breaking waves showed
considerable overlapping, and clear resolving of breakers on the basis of in-
dividual wave steepness was not possible. Ocean observations by Holthuijsen
and Herbers (1986) suggest that none of the local wave geometry parameters
(εf , λv, λh) should be used with confidence to discriminate spilling breakers from
non-breaking steep waves. The steepness and asymmetry of waves in the ocean
were smaller than those observed in laboratory experiments.

Holthuijsen and Herbers reported that the fraction of breaking waves during
their field experiment varied from 10 to 16% within the observed range of wind
speeds of 8–12 m/s. Two-thirds of breaking events were observed to occur in
one-third of the wave groups, and breaking occurred most commonly in the
centre of a group. The observed values of the fraction of breaking waves are
consistent with the observations of Weissman et al. (1984), but they are much
larger than those of Longuet–Higgins and Smith (1983), who used a different
operational definition of a breaking wave. A comparison of Holthuijsen and
Herbers data with the theoretical predictions is outlined in Chapter 5.

Katsaros and Atakturk (1992) used continuous video to record the breaking
events together with registration at the wire wave probe on Lake Washington.
A detailed analysis provided the number of plunging, spilling, and microscale
breakers for each of the sixty-six 17-min records. They correlated the spilling
and plunging breakers with five different atmospheric parameters and found
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the following relationship for the probability of breaking Fbr (ratio between the
number of breaking waves and the total number of waves examined)

Fbr = −2.47 + 32.87u2
∗ + 42.37

u∗
Cp

, (4.8)

in which u∗ is the friction velocity and Cp is the wave phase velocity at the
spectral peak. The second term describes the influence of wind stress while the
third one reflects the stage of wave development (wave age).

Banner et al. (2000) reported the results of observation of breaking waves in
three geographically different water basins: the Black Sea, the Southern Ocean
and Lake Washington. The collected data covered a wide range of dominant
wavelengths from 3m up to 300m and wind speeds in the range 5-20 m/s. In all
cases, the wave breaking events were detected visually. In particular, the Black
Sea experiment involved visual surveillance of waves passing over a wave probe,
with collected breaking events labelled electronically by an observer. In total,
16 records have been used in analysis with significant wave height up to 1.3m
and spectral peak period up to 6 s. During the Southern Ocean experiment,
nadir video images of the ocean surface were recorded from a research aircraft
flying at altitudes of 250 and 680m. The video recorder images were processed
and the number of breakers passing through a chosen point on the screen was
counted. However, only breakers propagating with speeds close to the phase
speed of the spectral peak were considered.

Banner et al. introduced a definition of dominant waves as waves of a fre-
quency within the spectral band of 0.7fp to 1.3fp, in which fp is the peak wave
frequency. Hence the dominant wave steepness εd becomes

εd =
Hdkp

2
, (4.9)

in which kp is the spectral peak wave number and wave height Hd is given by

Hd = 4

√√√√√√
1.3fp∫

0.7fp

S(f)df, (4.10)

in which S(f) is the frequency spectrum of wind waves and εd represents an
average wave field parameter which determines the mean fraction of breaking
waves in a defined frequency band. The authors found that εd varies from 0.040
up to 0.126, and threshold value of εd equal to or higher than 0.055 corresponds
to breaking events. It should be noted that steepness εd is related to significant
wave steepness εs, defined by (4.5) as

εd = 2π2Hd

Hs

εs. (4.11)

Another method of visual observation of wave breaking was proposed by Jes-
sup et al. (1997). It was found that a net upward heat flux from the ocean
to the atmosphere is generated mainly by molecular conduction through the
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skin layer at the ocean surface (see Section 1.3). The skin temperature of the
ocean is less than the bulk temperature immediately below by a few tenths of
a degree Celsius. However, when the cool skin layer is momentarily disrupted
by a breaking wave, the skin temperature of the resulting turbulent wake is ap-
proximately equal to the bulk temperature. After that, when the wake subsides,
the skin layer recovers and the skin temperature returns to its original, lower
value. Jessup et al. showed that the time needed for the skin layer to recover
is of the order of 10 s, depending on the ambient heat flux and strength of the
wave breaking event. Therefore, basically infrared measurements of skin-layer
recovery may provide a method for remotely monitoring free-surface turbulence
under conditions of constant heat flux. The authors used an infrared imager
and found that the time required for the skin layer within the wake to re-
cover is proportional to the speed of the breaking crest. Faster-moving waves
dissipate more energy, resulting in longer skin-layer recovery time τ . More-
over, experiments showed that the skin temperature deviation (normalized by
its maximum) increases rapidly as the whitecap passes and then decays as the
skin layer recovers. The skin-layer recovery time τ is usually defined as the time
lapsed from the appearance of the maximum skin temperature deviation and
the level of 0.3 of this deviation. Therefore the skin-layer recovery rate Rl can
be expressed as follows

Rl =
ΔT

τ
, (4.12)

where ΔT is the temperature deviation.
The value of Rl is related to the rate of heat transfer per unit area required to

establish the skin layer as Qr = (ρwcpδ)Rl, in which ρw is the density of water,
cp is the specific heat of water, and δ is the thermal boundary layer thickness,
usually taken as 0.5mm for the observed wind conditions.

Jessup et al. (1997) showed that correlation between Qr and the rate of en-
ergy dissipation per unit crest length for quasi-steady and unsteady breaking
waves E is rather high. This implies that the skin-layer recovery rate Rl pro-
vides a measure of energy dissipation due to breaking. Such a conclusion was
supported by field as well as by complementary laboratory measurements of
individual, mechanically generated breaking waves, ranging in size from spilling
to plunging breakers. It is expected that airborne applications of this technique
should provide remote measurements of energy dissipation due to wave break-
ing, which are necessary to improve wave prediction models used for operational
sea-state forecasting.

4.3.3 Air entrainment method

One the most obvious and characteristic features of wave breaking in the open
sea is the entrainment of air by the breakers, which generates in turn a series of
bubble plumes beneath and behind the breaking waves. Therefore, the presence
of breaking waves can be detected by direct measurement of the near-surface
void fraction, which is expressed as the percentage of air content in the water
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Figure 4.3: Fraction of breaking waves and void fraction as a function of wind
speed (V10) (adapted from Su and Cartmill, 1992).

by means of a floating vertical array on which several void fraction meters are
usually installed at various depths. Such techniques have been used by Su and
Cartmill (1992). They reported the results of void fraction measurements during
the SWADE experiment (Weller et al., 1991). According to Su and Cartmill,
each ‘void fraction event’ may be interpreted as one ‘breaking wave event’,
under the assumption that a breaking wave is a wave which entrains air into
the water that becomes a plume of bubbles with a measurable void fraction to
a depth of about 30 cm below the surface. It is clear that this definition will
exclude all micro-breaking by capillary waves and gravity-capillary waves with
smaller wavelengths. In Fig. 4.3 the observed fraction of breaking waves and
void fraction as a function of wind speed, V10, collected by Su and Cartmill
(1992), are shown. There is a surprisingly good overall agreement between the
fraction of wave breaking and air entrainment due to breaking. This suggests
that the quantitative measure of void fraction may serve as a reliable technique
for detecting breaking waves and their intensity.

Gemmrich and Farmer (1999) presented observations of breaking frequency
and scales of breaking waves using four 4-electrode conductivity cells measuring
effective conductivity within a volume of roughly spherical shape and 0.09 m
radius. The sensors followed the surface closely with the nominal depth of the
shallowest sensor adjusted for deployments between 0.12 and 0.24 m. From the
conductivity record an approximate air fraction due to air bubbles entrain-
ing into the top of the water column was calculated. Available theory relating
conductivity to air fraction breaks down for large values (>0.5). However, cal-
ibrations in a tank suggest that for air fractions up to 0.25, the conductivity
sensors can be used. A precise threshold is still arbitrary, depending on the
precise depth of measurements and the vertical gradient of air fraction. As
the instrument was equipped with flux-gate accelerometers and tilt meters,
the surface elevation was estimated by double integration in frequency space.
The experiments have been conducted at three different locations: the Strait
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of Georgia, the Gulf of Alaska and the North-East Pacific at wind speeds up
to 18 m/s.

To distinguish breaking waves, Gemmrich and Farmer defined a breaking
event as an event in which the air fraction exceeds 0.08 at the top sensor. Anal-
ysis of experimental data showed that the average air fraction reaches a maxi-
mum value of 0.2 and it is higher than 0.08 for about 0.3 s. These higher values
of volumetric fractions >0.2 are restricted to the upper layer ∼0.2 m. In gen-
eral, in the open ocean ∼2% of breaking events showed deeper air penetration,
presumably associated with plunging, while 98% of breaking waves are related
to shallow air entrainment, characteristic for spilling type breaking waves.

Breaking waves exist over a wide range of scales, mostly being shorter than
dominant waves, with median value Tbr

Tp
∼ 0.54, in which Tp is the period of

the spectrum peak and Tbr is the period of breaking waves. It should be noted
that breaking waves are generally not the highest waves.

Even using a single breaking criterion – exceedance of 8% of the air fraction
– the experiments did not confirm the dependence of the fraction of breaking
waves per dominant wave on wind speed or wave age. On the other hand, the
driving parameter for breaking is the energy transfer from the wind to the wave
field. A roughly linear dependence was obtained for this energy transfer and
breaking frequency, normalized by the effective frequency of waves associated
with dissipation of wave energy. The air fraction value as an indicator of wave
breaking was also suggested by Lamarre and Melville (1991) and Melville et al.
(1992)– see Section 4.4.4.5.

4.3.4 Acoustic method

It is well known that breaking contributes significantly to the ambient under-
water noise spectrum, which can be measured with hydrophones. Knudsen et
al. (1948) in their pioneering measurements demonstrated that the ambient
noise spectrum N(f) in the 100–25 kHz range correlates with sea state, which
can be expressed in the form

log V = m(f)N(f) + n(f), (4.13)

where V is the wind speed in m/s, f is the frequency in Hertz, m(f) and n(f)
are coefficients, and the noise spectrum level in dB is given as follows

N(f) = 10 log

(
p2(f)

p2
ref

)
, (4.14)

in which p2(f) is the ambient noise power spectrum, and p2
ref = 1μPa2/1 Hz.

This technique is commonly known as weather observations through ambient
noise (WOTAN). Felizardo and Melville (1995) collected the coefficients m
and n obtained from various field measurements. Moreover they reported the
results of the field experiment conducted off the coast of Oregon to measure
ambient noise, wind speed and the wave field from the research platform FLIP.
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The experiment suggests that the correlation between noise spectrum N(f)
and rms wave amplitude of the local wind sea is comparable to that between
wind speed V and N(f). Also a good correlation was found between the rms
wave slope ε and N . Felizardo and Melville (1995) demonstrated that the mean
square acoustic pressure p2, which is a measure of the radiated acoustic power,
was found to be proportional to the total wave energy dissipation in some
power, say ∼En

diss, where n = 0.5 − 0.8. This relationship will be discussed in
Chapter 6 in more detail.

Farmer and Vagle (1988) distinguished the ambient sound and fluctuations
caused by wave breaking using moored WOTAN sensors. To obtain data in open
ocean without being tied to a particular location, Farmer and Ding (1992) de-
ployed drifting instruments equipped with four broad-band hydrophones, each
one mounted at the end of a motor-driven arm which involves tracking of dis-
crete sound sources associated with breaking waves in both space and time.
Ding and Farmer (1994) showed that despite the limitations of this instru-
ment, they were able to obtain an empirical relationship between breaking wave
statistics and wind conditions such as duration, velocity, spacing and breaking
probability. The wind dependence of breaking wave properties was shown to
be very scattered, which implies that the observed breaking wave properties
depend on more than just one or two parameters. The spectral and coherence
properties of radiated sound allow detection of additional features of breaking
events. However, to exploit fully the hydrophone records for development of
a wave breaking model, information on wave directionality is required.

4.4 Laboratory experiments on wave breaking

To avoid the difficulties of field measurements, many studies on wave break-
ing have been carried out in laboratory wave flumes, aimed at duplicating, as
closely as possible, the natural processes. Modelling of breaking phenomena in
the laboratory tank allows accurate control over the input wave parameters.
Also, more precise instrumentation can be used with direct control and main-
tenance during experiments. As the turbulent flow generated at breaking is
non-stationary, turbulent statistics can only be determined by ensemble aver-
ages of many repeats of the experiment under identical initial and boundary
conditions, which is impossible to obtain in the field. On the other hand, some
disadvantages of laboratory simulations are reflections due to a finite-length
channel and the problem of scaling the results to full natural scale. A large
number of experiments on wave breaking have been reported in the profes-
sional literature, but only the most important will be discussed in this section.

4.4.1 Bonmarin’s (1989) experiment

A very extensive laboratory study on a steep wave reaching breaking was
reported by Bonmarin (1989). In the experiment, visualization and picture
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acquisition techniques were applied to detect the evolution of a progressive
mechanically generated wave of initial steepness equal to 0.28, near to but less
than the value 0.29. As mentioned in Section 2.3, the steepness 0.29 is close to
the upper limit of a regime where Benjamin–Feir instability dominates and the
approach to breaking is essentially two-dimensional. Bonmarin determined the
onset of breaking by means of an easily observed visual criterion: for a plung-
ing breaker, it corresponds to the occurrence of a vertical crest front, and for
a spilling breaker, it corresponds to foam occurrence. The reported results of the
experiment are related to wave evolution to breaking, geometrical properties at
breaking onset, crest evolution after breaking onset, including the overturning
phenomenon, the splash-up phenomenon and degenerated forward flow.

In particular, the results on the water jet and splash-up phenomena are very
worth mentioning as these phenomena play an important role in the generation
of marine aerosol fluxes. Bonmarin observed that the elevation of the splash of
water is as high as the original plunging crest. The first splash-up occurs after
the collision between the falling water jet and the undisturbed water surface
and forms two vortices, one revolving clockwise, the other anticlockwise. After
the first splash-up, the flow can either directly degenerate into chaotic motion
or displays successive splash-up cycles and less active vortices. The air trapped
under the falling water jet and air trapped between the falling jet and the
vortex occurring at the rear of the splash-up are the sources of the underwater
noise.

Bonmarin found that the evolution of the wave from an initial symmetric
form to an asymmetric one was clearly displayed by changes in the values of
asymmetry parameters λv and λh. The observed evolution of the horizontal
asymmetry λh results from the changing of the relative values of crest elevation
and trough depth. Initially the horizontal asymmetry parameter λh was close
to the value 0.50, and then it very quickly increased and reached a value close
to 0.90. The vertical asymmetry results from the increase of the crest front
steepness, and the time evolution of parameter λv is characterized by a strong
increase before breaking after which it rapidly decreases within the breaking
region. For the initial profile both above quantities, as well as the crest front
steepness εf , have similar values.

Bonmarin observed that uniform or shear currents, at least at breaking on-
set, do not significantly affect wave asymmetry. Also, the observed breakers
did not correspond exactly to the theoretical definitions of plunging breakers
or of spilling breakers. Therefore, it will be useful to classify them into four
categories: breakers that display very distinctly all the characteristics of the
theoretical plunging definition are called ‘typical plunging breakers’ in contrast
to breakers where the plunging effect is only distinctly dominating. A simi-
lar criterion was applied to spilling breakers. The values of the vertical and
horizontal asymmetry parameters, as well as values of crest front steepness at
breaking onset observed by Bonmarin, are summarized in Table 4.1.

Additionally, experimental values of λv, λh and εf , obtained by various au-
thors, are compared with the theoretical values of Longuet–Higgins and Cokelet
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Table 4.1: Values of parameters λv, λh and εf at breaking onset, according to
Bonmarin (1989)

Min. Max. Mean Value for
Breaker type value value value symmetric wave

(a) Horizontal asymmetry
parameter λh

typical plunging 0.65 0.93 0.77 0.5
plunging 0.62 0.93 0.76 0.5
spilling 0.59 0.91 0.75 0.5
typical spilling 0.60 0.80 0.69 0.5

(b) Vertical asymmetry
parameter λv

typical plunging 0.97 3.09 2.14 1.0
plunging 0.78 2.52 1.61 1.0
spilling 0.78 2.37 1.38 1.0
typical spilling 0.81 1.72 1.20 1.0

(c) Crest front steepness
parameter εf

typical plunging 0.31 0.85 0.61 –
plunging 0.29 0.77 0.47 –
spilling 0.24 0.68 0.41 –
typical spilling 0.31 0.51 0.38 –

(d) Crest front angle θ
(◦)
f

typical plunging 17.22 40.36
plunging 16.17 37.60
spilling 13.49 34.21
typical spilling 17.22 27.02

(1976) in Table 4.2. The order of asymmetry of the theoretical profiles and
the experimental one are very similar. The asymmetry depends on the type of
breaking and it is more pronounced for a plunging than for a spilling
breaker.

4.4.2 Rapp and Melville’s (1990) experiment

The experiments reported by Bonmarin were mainly concentrated on plunging
breakers (43% of all breakers) and only 27% of breakers have been classified as
spilling breakers. The role of the growth rate of waves prior to breaking in pre-
dicting breaking was examined and a detailed survey of momentum and energy
balance, as well as decay of turbulence and dissipation estimates, was made in
the very extensive laboratory tests of Rapp and Melville (1990). Their tests on
unsteady breaking were particularly concerned with simulation of breaking of



90 4 Experimental insights into mechanisms of wave breaking

Table 4.2: Comparison of various experimental mean values
of parameters λh, λv and εf with theoretical prediction by
Longuet–Higgins and Cokelet (1976), according to
Bonmarin and Kjeldsen (2001)

Parameters λh λv εf

Theory (akinitial = 0.25) 0.77 1.83 0.59

Bonmarin’s (1989) experiment
(akinitial ≈ 0.28) 0.76 1.87 0.54

Peltzer and Griffin (1992)
experiment (akinitial = 0.24) 0.76 1.43 0.50

Symmetric wave 0.5 1.0 0.28

waves with frequency around the peak of the wind-wave spectrum. Rapp and
Melville argued that wind forcing is not important for waves near the peak of
the spectrum. For these waves, breaking can be reproduced by simulation of
the wave-wave interaction mechanism by generating a unidirectional frequency
modulated wave packet, providing a focusing of wave energy at a predetermined
time and location in the wave flume.

The technique used in the tests is based on linear reduction of the wave fre-
quency and the resulting increase of group velocity, which leads to a dispersive
focusing of the waves (‘chirp’ pulse technique). The direct effects of breaking
were then confined to a finite region of the wave flume. Rapp and Melville
(1990) used measurements of the free surface displacements to estimate the
momentum and energy fluxes into and out of the breaking region. In particu-
lar, they found that the loss of excess momentum flux and energy flux is in the
range of 10% for single spilling breakers to about 25% for plunging breakers.
This loss of excess momentum flux was defined simply as the difference be-
tween the upstream and downstream levels where the momentum flux is nearly
constant at x. A sharp rise of the loss of excess momentum flux was observed
for steepness akc greater than 0.25. The wave number kc corresponds to the
central frequency ωc = 1

2
(ω1 + ωN), in which ω1 and ωN are the frequencies

of first and last components of the wave packet, respectively, and kc value is
defined by the linear dispersion relation

ω2
c = gkc tanh(kch). (4.15)

Studying the local wave parameters at breaking, Rapp and Melville found that
the front steepness varied throughout the breaking process and the actual mea-
sure of crest front steepness at breaking depends upon how the break point is
defined. They found that crest front steepness εf (see (4.1)) varied between
0.2 and 1.0. This scatter indicates that for such a very localized process, the
horizontal length in εf is still too coarse to predict breaking, especially if there
are short waves riding on long waves.
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A substantial part of Rapp and Melville’ experiment was dedicated to flow
visualization of mixing in the breaking region. It was done by photographing the
mixing of a dye patch floated on the water surface. The aerated region in spilling
breaking waves was similar to a turbulent gravity current modelled by Longuet–
Higgins and Turner (1974). In particular, the spatial evolution of mixing and
the maximum depth, D, of dye excursion was determined. The mixing due to
breaking carries the dye down kcD ≈ 0.3 for spilling and kcD ≈ 0.5 for plunging
breakers within half wave period from breaking. The next passing waves carry
the dye down additionally reaching a maximum depth of the order kcD ≈ 1.1
for spilling breakers and kcD ≈ 1.7 for plunging breakers. This corresponds to
the depths of two to three wave heights and horizontal lengths of approximately
one wavelength within five wave periods of breaking.

The detailed velocity measurements showed that the mean surface current is
in the range (0.02–0.03)C, where C is the phase wave velocity. This current to-
gether with a deeper return flow forms a rotational region of approximately
one wavelength where the observed horizontal velocity can be represented
as

u =<u>+u′, (4.16)

in which u′ is the fluctuation from the ensemble mean < u >. The same rep-
resentation is valid for the vertical velocity w. Measurements showed that the
volume integrated turbulent kinetic energy contribution from both velocities,
i.e. u′2 and w′2 decay at t−1 power law, when the time origin is the time of ob-
served breaking. Using this dependence, Rapp and Melville (1990) found that
the dissipation rate per unit mass becomes

Ediss ≈ t−5/2, (4.17)

and that 96–98% of the energy goes into turbulence being dissipated within
four wave periods.

In the Rapp and Melville experiment, the presence of so-called ‘radiant up-
stream waves’ was noted. The laboratory measurements of this fine space-time
structure phenomenon were performed by Rosenberg and Ritter (2005). It was
found that the breaking splash is the main source of short surface wave gen-
eration and the main backscatter from breaking waves has a Doppler velocity
close to the phase velocity of these waves.

4.4.3 Ocean Basin Experiment

Massel et al. (2001) carried out a control experiment on propagation of steep
and breaking long- and short-crested waves in water of constant depth in the
Ocean Basin in Trondheim (Norway). Regular waves and waves characterized
by the JONSWAP spectrum with different directional spreadings were repro-
duced. Water depth was kept constant at 2.5 m. The main measuring profile,
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Figure 4.4: Arrangement of instruments during Ocean Basin Experiment in
Trondheim (adapted from Massel et al., 2001).

consisting of 12 wave staffs, 4 video cameras (VHSC camera, 2 BETA cameras
and digital camera) and 4 hydrophones, was located perpendicularly to the
multi-flap wave-maker BM3 – see Fig. 4.4. The cameras situated 5 m above the
still water level were synchronized with the wave staffs. Two cameras covered
the same basic recording area of 3.8 m × 3.1 m and two other cameras covered
the areas located further from the multi-flap wave-maker. The hydrophones
were located at 0.5 and 1 m below still water level. The parameters of gener-
ated waves, generator type and recording time are listed in the Table 4.3. In
this table the following notations are used: reg. – regular waves, irr – irregular
waves, BM3 – multi-flap wave-maker and BM2 – double-flap wave-maker. It
should be noted that the second double-flap wave-maker (BM2) was situated
along the shorter side of the basin, being parallel to the main measuring profile.
The methodology of the experiment and preliminary results were described by
Massel et al. (2001).

Among the generated waves, three main groups can be distinguished depend-
ing on the initial significant wave steepness εs: in tests 4150–4500, a steepness of
0.0122 (akp = 0.2408) was used, while in tests 5100–5500, a steepness of 0.0104
(akp = 0.2053) was applied, and finally in tests 6100–6500, waves with lower
steepness of 0.0091 (akp = 0.1796) were generated. Additionally five different
directional spreadings were applied, ranging from a unidirectional wave train
up to frequently observed directional distribution, proportional to cos2 Θ.

The crest front steepness εf , vertical asymmetry λv and horizontal asymmetry
λh, defined by Myrhaug and Kjeldsen (1986), have been calculated using the
data recorded at particular wave staffs. In Table 4.4, the mean and maximal
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Table 4.3: Wave parameters used in the Ocean Basin Experiment

Type Main direction Record
Test of of wave Hs Tp Type of Directional time
no. wave propagation (m) (s) γ generator spreading (min)

1 4100 irr 0 0.11 1.0 7.0 BM3 unidir 23
2 4150 irr 0 0.12 1.0 7.0 BM3 unidir 23
3 4200 irr 0 0.12 1.0 7.0 BM3 ∼ cos40 Θ 23
4 4300 irr 0 0.12 1.0 7.0 BM3 ∼ cos20 Θ 23
5 4400 irr 0 0.12 1.0 7.0 BM3 ∼ cos10 Θ 23
6 4500 irr 0 0.12 1.0 7.0 BM3 ∼ cos2 Θ 23

7 5100 irr 0 0.16 1.25 7.0 BM3 unidir 23
8 5200 irr 0 0.16 1.25 7.0 BM3 ∼ cos40 Θ 23
9 5300 irr 0 0.16 1.25 7.0 BM3 ∼ cos20 Θ 23
10 5400 irr 0 0.16 1.25 7.0 BM3 ∼ cos10 Θ 23
11 5500 irr 0 0.16 1.25 7.0 BM3 ∼ cos2 Θ 23

12 6100 irr 0 0.20 1.5 7.0 BM3 unidir 23
13 6200 irr 0 0.20 1.5 7.0 BM3 ∼ cos40 Θ 23
14 6300 irr 0 0.20 1.5 7.0 BM3 ∼ cos20 Θ 23
15 6400 irr 0 0.20 1.5 7.0 BM3 ∼ cos10 Θ 23
16 6500 irr 0 0.20 1.5 7.0 BM3 ∼ cos2 Θ 23

17 7100 reg 0 0.16 1.0 – BM3 unidir 23
18 7150 reg 0 0.25 1.25 – BM3 unidir 23
19 7200 reg 0 0.35 1.5 – BM3 unidir 23
20 7250 reg 0 0.19 1.0 – BM3 unidir 23
21 7300 reg 0 0.30 1.25 – BM3 unidir 23

22 7400 bichr −15/+15 0.06/0.06 0.95/1.05 – BM3 unidir 23
23 7425 bichr −15/+15 0.08/0.08 0.95/1.05 – BM3 unidir 23
24 7450 bichr −15/+15 0.06/0.06 0.95/1.05 – BM3 bi-dir 23

25 7600 reg 0 0.3 1.25 – BM2 unidir 5
26 7650 reg 0 0.4 1.5 – BM2 unidir 5
27 7700 reg 0 0.6 2.0 – BM2 unidir 5
28 7725 reg 0 0.35 1.25 – BM2 unidir 5

29 7800 irr 0 0.3 1.5 7.0 BM2 unidir 20
30 7850 irr 0 0.3 1.5 3.0 BM2 unidir 20

values of εf , λv and λh were collected for wave staffs 1, 5 and 12 and for three
different wave steepnesses of the unidirectional wave trains. For short-crested
waves, characterized by the directional spreading ∼ cos2 Θ, these parameters
are collected in Table 4.5.

It should be noted that when recording surface oscillations at a given point
we are not able to estimate the local spatial steepness εl = ∂ζ

∂n
, where n is

a given direction. In order to avoid the difficulties with determining the local
slope from a record at a given point, Myrhaug and Kjeldsen (1986) proposed
the crest front steepness parameter εf . This parameter does not provide a local
slope but a mean slope of the crest front considered as a straight line which joins
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Table 4.4: Mean and maximum values of εf , λv and λh

for unidirectional wave trains at wave staffs 1, 5 and 12

Initial steepness (εs)
Parameters 0.0122 0.0104 0.0091

Wave staff 1

εf 0.170 0.151 0.129

ε
(max)
f 0.812 0.663 0.408

λv 1.115 1.150 1.161

λ(max)
v 5.090 8.286 7.553

λh 0.561 0.505 0.558

λ
(max)
h 0.987 0.995 0.998

Wave staff 5

εf 0.148 0.139 0.122

ε
(max)
f 1.018 0.915 0.462

λv 1.104 1.109 1.193

λ(max)
v 4.357 8.444 6.000

λh 0.554 0.555 0.555

λ
(max)
h 0.947 0.989 0.987

Wave staff 12

εf 0.108 0.107 0.104

ε
(max)
f 0.569 0.639 0.619

λv 1.064 1.124 1.152

λ(max)
v 3.733 5.36 7.059

λh 0.548 0.546 0.548

λ
(max)
h 0.999 0.999 0.999

a wave crest and the preceding zero crossing point (see Fig. 4.1). In Fig. 4.5,
the probability of exceeding a particular crest front steepness is shown for
three different initial wave steepnesses εs of short-crested waves recorded at
the wave staff 5 of 17.5 m from the wave maker, and with directional spreading
proportional to cos2 Θ. The figure shows that the probability does not differ
substantially for particular initial wave steepnesses. Tables 4.4 and 4.5 demon-
strate that the εf values decrease with the distance from the wave maker, while
its maximum value depends strongly on the initial wave steepness. It should
be mentioned that the probability density of the local steepness εl has been
developed theoretically in Section 3.2.5.

Two other parameters suggested by Myrhaug and Kjeldsen (1986), namely
λv and λh, characterize the nonlinearity of wave motion. For linear waves being
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Table 4.5: Mean and maximum values of εf , λv and λh

for short-crested waves at wave staffs 1, 5 and 12

Initial steepness (εs)
Parameters 0.0122 0.0104 0.0091

Wave staff 1

εf 0.181 0.174 0.141

ε
(max)
f 0.873 0.791 0.918

λv 1.127 1.185 1.235

λ(max)
v 6.571 6.692 6.700

λh 0.546 0.549 0.546

λ
(max)
h 0.997 0.978 0.991

Wave staff 5

εf 0.147 0.136 0.119

ε
(max)
f 0.743 0.708 0.495

λv 1.117 1.123 1.178

λ(max)
v 5.300 6.889 7.273

λh 0.547 0.541 0.543

λ
(max)
h 0.992 0.998 0.995

Wave staff 12

εf 0.120 0.115 0.097

ε
(max)
f 0.473 0.476 0.319

λv 1.122 1.122 1.173

λ(max)
v 4.000 5.167 8.500

λh 0.555 0.541 0.540

λ
(max)
h 0.999 0.998 0.975

a superposition of simple sinusoidal components, the mean vertical asymmetry
λv is usually equal to 1.0, while the horizontal asymmetry λh is very close to
1/2. As shown in Tables 4.4 and 4.5, the mean vertical asymmetry λv becomes
in all cases greater than one, while the mean horizontal asymmetry λh exceeds
1/2. Both these values indicate that the observed wave motion is nonlinear.

Teιgowski (2004) estimated the probability of breaking by comparying the
results obtained from the algorithm, based on the limiting vertical acceleration
and video observations during the Ocean Basin Experiment. The probability
of breaking was defined as the ratio of the number of breaking waves and the
total number of waves. This ratio, presented versus the significant wave height
Hs and peak wave period Tp, did not exceed 10%. Video records exhibited
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Figure 4.5: Probability of exceedance of crest front steepness for three initial
wave steepnesses.

irregular spilling breakers appearing on the basin surface and wave energy
slowly attenuated along the wave of propagation.

In Fig. 4.6 the energy variation along the main transect is shown for unidirec-
tional wave trains of three different steepnesses εs. Similar energy attenuation
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Figure 4.6: Wave energy attenuation along the transect for unidirectional wave
train.
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Figure 4.7: Wave energy attenuation along the transect for short-crested waves.

for wave trains characterized by directional spreading ∼ cos2 Θ is illustrated in
Fig. 4.7. Both figures demonstrate that attenuation of wave energy with dis-
tance is not uniform. For short-crested waves, the energy attenuation gradient
varies from 0.162 to 0.387 J/(m2m−1), while for long-crested waves attenuation
is much smaller, being in the range of 0.044–0.122 J/(m2m−1). A comparison
of these results with theoretical ones is left to Chapter 6.

4.4.4 Other experiments

4.4.4.1 Simulation of steep random waves in wave tanks

Ochi and Tsai (1983) reproduced several series of irregular waves with different
spectra in a wave tank using pre-programmed tapes yielding relatively high
waves leading to breaking and corresponding to severe storms in the North
Atlantic. The wave height-wave period relationship at time of breaking of ir-
regular waves was obtained from measurements of over 40 incident waves about
to break. Typical significant wave height was 8 cm and peak period was 0.95 s.
They found that the probability of occurrence of breaking waves depends to
a great extent on the shape of the wave spectrum, and that the fourth mo-
ment of the spectrum is a dominant parameter which influences the occurrence
of breaking. The probability of breaking varied from 1.5 to 6.0%. The most
probable probability of breaking increases from 1 to 13% when significant
wave steepness εs = Hs

gT 2
p

varies from 3.9 × 10−3 to 4.75 × 10−3. The wave

height measured by Ochi and Tsai for the breaking of steep nonlinear waves
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in a channel provides the following threshold value for the global limiting wave
steepness εg

εg =
H

gT 2
= 0.020. (4.18)

Laboratory experiments on wave breaking in deep-water random seas, repre-
sented by the JONSWAP spectrum with enhancement factor γ  7.0, were
reported by Dawson et al. (1993). Waves were generated at one end of a 116-m
wave tank, and wave breaking was observed approximately 30 m from the wave-
maker. Frequencies ranging from near zero to approximately twice the peak
spectral frequency were considered in increments of 2π/100 rad/s. In wave
generation procedure, for each frequency, the corresponding spectral-density
amplitude was used with a random phase chosen from a uniform distribution
to define a sinusoidal component of the wave-maker command. While the wave-
maker command was formed by linear superposition of sinusoidal components
with random phase from a uniform distribution, the actual components com-
prising the sea state were different because of nonlinear effects, and final crest
amplitudes become greater than trough amplitudes.

Breaking waves have been identified by correlating the time history with
a video record of the test and with marker signals on the output from the wave
probe. Observed relative number of crest amplitudes of non-breaking waves
exceeding specified levels showed a good agreement with a modified Rayleigh
distribution of crest amplitudes (see Section 5.5) that accounts approximately
for nonlinear effects in seas with a narrow frequency band. It should be pointed
out that the classical Rayleigh distribution predicts lower probability of spe-
cific amplitude threshold levels appearing. In the experiment, five independent
records with the significant wave height Hs in the range 36.9–55.2 cm, and
with the peak period about 2.83 s were obtained. Inspection of the time his-
tory shows the nonlinear effect of increased crest amplitude in comparison with
trough values. It was also seen that the highest waves were not always the ones
that broke on the probe. The observed probability of breaking was found to
be a function of the significant wave steepness εs. For 0.005 < εs < 0.011, the
probability of breaking Fbr changes in the range 0.06% < Fbr < 6%.

Caulliez (2002) reported the results of a statistical analysis of some geometric
properties of breaking wind waves observed in the large Marseille-Luminy wind-
wave facility. In particular, the relationship of the breaking events and the
instantaneous slope was examined. The slope was defined as

ε(t) = − 1

C

∂ζ(t)

∂t
, (4.19)

where C is the phase speed of the dominant frequency. A wave breaking was
detected everywhere the water surface slope at the crest exceeded the value
0.586 in magnitude, i.e. when the time derivative signal had a value higher than
0.586C (see Eq. (2.21), resulting from the Longuet–Higgins and Fox (1977)
theory.
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Caulliez (2002) distinguished two types of breaking: waves at the inception
of breaking (‘near-breaking region’) when waves are characterized by a well-
defined single-value profile, and waves with a steep but corrugated wave front
(‘fully developed breaking’) when ∂ζ(t)

∂t
presents several peaks crossing the thresh-

old value and separated from each other by very short time intervals. For the
‘near-breaking region’ case, the wave front was inclined by about 45◦, that is an
angle much larger than 30.37◦, predicted by Longuet–Higgins and Fox (1977).
In the case of ‘fully developed breaking’, the wave front angle reaches about 32◦

only. However for both cases, the profiles of wind waves do not depend on wave
scale and initial wave generation, which suggests that the physical mechanisms
leading to breaking are universal and only weakly dependent on wind forcing
at the wave crest.

Another interesting conclusion resulting from Caulliez’s experiment is the
linear relation between so-called wave breaking intensity Ib and breaking rate
Rd. The breaking intensity Ib is defined as the average jump height over a time
sequence weighted by the average breaking frequency (this is the average num-
ber of waves breaking per second). On the other hand, the breaking rate Rd

is defined as the ratio of the sum of the breaking jump duration and the total
duration of the time sequence. Above experimental findings will be compared
with various theoretical developments in Chapters 5 and 6.

4.4.4.2 Chirp pulse generation approach

Griffin et al. (1996) in their laboratory experiments studied the spatial evolution
of the crest front steepness εf and the vertical asymmetry parameter λv along
the wave channel. The method of wave packet generation employed in the
experiments was based on the chirp pulse generation technique for focusing the
wave energy at a desired location in the channel. It was found that the crest
front steepness εf evolves in space before the breaking point and the value of
εf at breaking point depends on the initial wave steepness ak. The observed
maximum crest front steepness for spilling breakers was equal to εf = 0.32,
while for plunging breakers εf reached a value of 0.62.

Vertical asymmetry parameter λv, initially very close to 1.0, varies moderately
and decreases slightly when the spilling breaker is generated. For the plunging
breaker, the λv parameter becomes larger with λv = 2 just before breaking,
and then decreases to about λv ≈ 1.7 at the breaking point. This value corre-
sponds to λv = 1.83, obtained by Longuet–Higgins and Cokelet (1976) in their
numerical calculations for a plunging breaker. In Kjeldsen’ (1990) experiments,
λv was in the range (0.9–2.2). On the other hand Duncan et al. (1994b) found
that λv varied between 1.3 and 1.7 at breaking, for spilling and plunging break-
ers, respectively, while the horizontal asymmetry parameter λh changed only
slightly as the breaking evolved from the incipient stage towards fully plunging
(0.72 < λh < 0.80).

Moreover, Griffin et al. discussed the wave breaking associated with wave
steepness in the absence of wind. The potential energy density averaged over
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a wavelength, defined as follows

Epot =
1

L

{
ρg

2

∫ L

0
ζ2(x)dx

}
, (4.20)

was found to be approximately half of the potential energy of the highest
symmetric Stokes wave as computed by Cokelet (1977), and approximately
75 to 90% of the total potential energy was concentrated in the crest region at
breaking.

4.4.4.3 Image processing technique

Lader et al. (1998) published laboratory experimental data on breaking wave
geometry using zero-downcrossing analysis as well as the image processing
technique. Three different cases of two-dimensional deep water breaking waves
were examined, namely plunging breaker, spilling breaker and an intermediate
breaker. The last one was defined as a breaker that is initiated by a microscale
plunging event, and evolves further as a spilling breaker. Experiments con-
firmed that the crest front steepness experiences a large increase up to breaking
and the wave becomes vertically asymmetric for spilling breakers. Experiments
demonstrated also that for the plunging breaker, horizontal asymmetry factor
λh increases significantly.

Processing of the images obtained from camera records provides a good oppor-
tunity for more detailed description of wave surface steepness. In particular, it
appears that at the front inflection point (where ∂2ζ

∂x2 = 0), steepness εinf =
∣∣∣ ∂ζ
∂x

∣∣∣
increases up to 1 and its evolution is similar for spilling and plunging breakers.
The point on the wave crest with the highest second derivative was referred
to as the maximum crest curvature point, at which curmax =

∣∣∣∂2ζ
∂x2

∣∣∣. The curmax

value was equal to 10m−1 for spilling breakers and 20m−1 for plunging break-
ers. Moreover, observation indicated that for spilling breakers foam generation
starts at the maximum crest curvature point.

Let us now assume that dx = C dt, where C is the phase velocity. Therefore,
curmax becomes

curmax =

∣∣∣∣∣∂
2ζ

∂x2

∣∣∣∣∣ =
1

C2

∣∣∣∣∣∂
2ζ

∂t2

∣∣∣∣∣ =
1

C2
a(E)

z (4.21)

and

a(E)
z = C2 curmax, (4.22)

in which a(E)
z is the Eulerian vertical acceleration (also called the apparent ac-

celeration) at the maximum crest curvature point. Taking into account that
phase velocity for plunging, intermediate and spilling breakers in the experi-
ment were equal to 1.75, 1.51 and 1.62m/s, respectively, and using values of
curmax resulting from the experiments, we can estimate values of the Eulerian
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acceleration a(E)
z as:

a(E)
z ∼ 5 g for plunging breakers

a(E)
z ∼ 6.6 g for intermediate breakers

a(E)
z ∼ 2.7 g for spilling breakers.

All these values of a(E)
z are very high. More detailed discussion on the nature

of Eulerian and Langrangian vertical accelerations at the breaking point are
given in Chapter 5.

Stansell and MacFarlane (2002) performed laboratory experiments to obtain
horizontal components of fluid particle velocity at the surface crests of breaking
and non-breaking waves to examine the applicability of the kinematic break-
ing criterion. Waves were produced at one end of the flume by a computer-
controlled wave paddle and surface elevation ζ(x, t) was composed as the sum
of N linear waves, each of amplitude an, wave number kn, frequency ωn and
initial phase ϕn as

ζ(x, t) =
N∑

n=1

an cos(knx− ωnt + ϕn). (4.23)

A series of capacitance wave gauges were placed at intervals of 0.1 m along the
wave flume and surface elevation was recorded at intervals of 1/16 s. In addition
to the surface elevation measurements, fluid particles in the wave crests were
measured using the particle image velocimetry (PIV) technique. The water
was seeded with neutrally buoyant pollen grains that were illuminated by the
pulsating light sheet. As the velocities were measured close to, but not at,
the fluid surface, extrapolation of the measured velocities to the surface was
needed. This was done by using a fitting function, and the phase speed was
measured in the same reference frame as the fluid velocities.

The experiment included six tests with one plunging breaker, two spilling
breakers and three non-breaking waves. Analysis of the experimental data
shows that the greatest ratio of horizontal fluid particle velocity in the crest
to local phase speed for the rounded crest of a plunging breaker is about 0.81,
being significantly less than the common kinematic breaking criterion. For both
of the spilling breakers the maximum horizontal fluid particle velocity at the
tip of the crest is about 6% less than the local phase speed, implying that the
kinematic breaking criterion is closer to being satisfied. In all waves analysed
in the experiment, the local phase speed has its lowest minimum in the vicinity
of the point of the wave where one would expect the surface velocity to be
the greatest. The various definitions of phase speed used in the Stansell and
MacFarlane experiment are discussed in Section 5.4.

4.4.4.4 Amplitude modulated wave packet approach

Kway et al. (1998) simulated a variety of deep water breaking waves through
wave-wave interactions in frequency and amplitude modulated wave packets.
Based on a study of single breaking events it was found that the amplitude of
the wave crest ζc normalized by the characteristic wave number k varies from
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kζc = 0.4 to 0.6 for plunging waves, which is higher than kζc = 0.4432 for
limiting regular symmetric waves (see Section 2.2). The value of kζc for spilling
breakers was in the range of 0.5, suggesting that wave steepness alone was an
unreliable indicator of the type of wave breaking.

4.4.4.5 Air entrainment method

Evolution of the entrained air and determination of whether the moments of
the void-fraction field are related to wave parameters have been discussed by
Melville et al. (1992) and Lamarre and Melville (1991). In their laboratory stud-
ies, the instrument enabled measurement of the void-fraction down to a thresh-
old of 0.3% and to within 3 cm of the surface. The characteristic wavelength
of the wave generated in the flume was 2 m. The authors computed the total
volume of air V normalized by the initial volume of air entrained, V0. Volume
V0 was determined from video images of a cylinder of air formed as the surface
impacted on itself (Melville et al., 1992). The area of formed air bubble plume
A within the 0.3% threshold was measured and the mean void-fraction α was
calculated by dividing the total volume of air by the area. The normalized
air volume V /V0 is shown in Fig. 4.8a as a function of normalized time lag
(t− tbr)/T , when the breaking time tbr is taken as a reference. The three wave
trains, with varying steepness ak, have been fitted by simple power law

V

V0

= 2.5 exp
[
−3.9

t− tbr

T

]
. (4.24)
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Figure 4.8: Air entrainment characteristics induced by wave breaking: (a) nor-
malized air volume V

V0
; (b) bubble plume cross-sectional area A, normalized by

V
V0

; (c) mean void-fraction α; (d) normalized bubble plume potential energy
Ep

Ediss
(adapted from Melville et al., 1992).



4.4 Laboratory experiments on wave breaking 103

From the figure it can be seen that only a few percent of the initial air en-
trainment remains in the water column after one wave period. In Fig. 4.8b, the
normalized bubble plume cross-sectional area A is shown. The data for this
figure are simply obtained from the relationship for V /V0 in order to avoid
extrapolation of the data for A directly. So, let us present the total volume of
air as follows

V = Abα, (4.25)

in which A is the area of the bubble plume, b is the wave flume width and α
is the mean void-fraction of air. The normalized bubble plume cross-sectional
area is given as

A
V0

b

=
bA

V0

. (4.26)

Melville et al. (1992) presented function Ab
V0

= f
(
t−tbr

T

)
in the form (see

Fig. 4.8b)

Ab

V0

= 325
(
t− tbr

T

)2.3

exp
[
−3.9

t− tbr

T

]
. (4.27)

It follows that the area of bubble plume increases rapidly and then decreases
as bubbles are lost.

The interesting relationship between mean void fraction (α) and normalized

time lag
(
t−tbr

T

)
is given in a double logarithmic scale in Fig. 4.8c. The α value

varies during about one period after breaking onset from 10% to 1%. The data
are presented by a power law with α = 100% for t ≈ 0, as one would expect
for the initial air pocket.

The wave energy which goes into entraining the air is equal to the work done
against buoyancy forces by the water in mixing down the air

Ep = ρwgb
∫
A

αz dA, (4.28)

in which α is the void fraction, z is the distance to the water surface.
The normalized Ep

Ediss
, where Ediss is the total energy loss during breaking,

gives the fraction of the dissipated energy which goes into entraining the air.
The data given in Fig. 4.8d suggest that

Ep

Ediss

= 0.7 exp

[
−3.6

(t− tbr)

T

]
. (4.29)

4.4.4.6 Acoustic method

Control laboratory experiments are specially suitable for examining the appli-
cability of acoustic methods for detection of breaking waves. Passive acoustic
detection of breaking is not a new technology and several papers have reported
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Figure 4.9: Relationship between mean square acoustic pressure p̃ac and the
energy dissipation Ediss for three different incident wave frequencies (adapted
from Melville et al., 1992).

on direct measurements of sound generation by breaking waves. The individual
bubbles which break off from the initial volume of air entrained oscillate and
generate sound. The departure of the acoustic signal above the background
noise level was found to be strongly related to the onset of breaking. The du-
ration of the hydrophone signal is compared to the wave period and the sound
terminates at the same time as the air entrainment at the leading edge of the
breaker.

Melville et al. (1992) showed that the dominant microwave signal occurs prior
to wave breaking and it is not from the whitecapping but from the steepening
unbroken wave just prior to impact. The relationship of dimensionless mean
square acoustic pressure and energy dissipated due to wave breaking Ediss is
shown in Fig. 4.9 when the dimensionless mean square acoustic pressure is
defined as follows

p̃ac =
p2
ac

(ρwC2)
, (4.30)

where pac is the acoustic pressure and C is the phase wave speed.
Dissipated energy is determined by the mean square surface displacement

upstream and downstream of wave breaking. The proportionality between p̃ac
and Ediss is clearly seen from the figure.

Teιgowski (2004) attempted to describe, using the spectral parameters, the
consecutive phases of noise generated by breaking events and to estimate the
mean radiated acoustic energy generated by breaking waves versus the rate of
energy dissipation in a breaking wave. Noise generated by breaking waves was
recorded by hydrophones located below the water surface (see Massel et al.,
2001).
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Spectral analysis of the noise signal showed strong dependence of spectral
width and spectral skewness on the phase of the breaking event. In the initial
phase, the decrease in spectral skewness is caused by oscillating bubbles created
at the wave front. During fragmentation of the air cavity formed by the plunging
jet, small bubbles are created by the division of large ones, and the group
of small bubbles oscillates with low frequencies. These oscillations cause an
increase in spectral skewness.

The relationship between the acoustic energy generated by a breaking wave
and the energy dissipated during breaking is valuable information for predicting
the whitecap percentage in a given sea state, and subsequently for estimating
the aerosol fluxes (Loewen and Melville, 1991). Assuming the simple dipole
model for the source emitting the noise of the breaking wave, the total acoustic
energy obtained by integrating the radiated intensity over a hemisphere of
radius R0 becomes (Ding and Farmer, 1994)

Eac =
2πR2

0

ρwCs

t∫
0

p2
ac(t) dt, (4.31)

in which R0 is the radius centred at the point where the dipole intersects the
pressure release surface, pac is the acoustic pressure radiated by the breaking
event, Cs is the sound speed in water and t is the time of the breaking event.

For the wave parameters used in the experiment (Massel et al., 2001), the
acoustic energy of breaking waves varied between 9.0× 10−7 and 1.2× 10−5 J .
Following Melville (1994), Teιgowski (2004) estimated the mean value of the
rate of energy dissipation per unit length along the wave crest ≈ 9.6 × 10−3,
and obtained the ratio of acoustic energy to the dissipated energy in breaking
waves varying from 1.0 × 10−7 to 4.1 × 10−7. This value corresponds to the
value of (0.6 × 10−8 − 4.0 × 10−8) given by Ding and Farmer (1994) and the
value of (0.3 × 10−8 − 2.3 × 10−8) of Carey et al. (1993). Higher values of
(0.8 × 10−7 − 1.09 × 10−6) were obtained by Kolaini and Crum (1994).

4.5 Physical simulation of extreme ocean

waves in large scale

The experiments described in the above sections are dedicated to mostly quali-
tative as well as quantitative observations of the shape evolution and instability
mechanisms leading to wave breaking. However, they were not concerned par-
ticularly with the extreme wave environment. The prediction and reproduction
of extreme ocean waves is a complex task as they are very rare events and dif-
ficult to observe in the real ocean. Also, fully nonlinear theoretical models for
random extreme waves still do not exist, although there are several theoretical
approaches that include many linear and nonlinear components and properties
of ocean waves.



106 4 Experimental insights into mechanisms of wave breaking

0.00 0.02 0.04 0.06 0.08

0.4

0.3

0.2

0.1

0.0

Pierson-Moskowitz spectrum
JONSWAP spectrum
12, 15 or 18 hrs test data
3 hrs tests

H / Ls p

1γ

Figure 4.10: Skewness γ1 as a function of the average wave steepness (adapted
from Stansberg, 2000).

Therefore, the scale reproductions of ocean waves in laboratory basins are es-
sential for better understanding of the extreme wave phenomena and the impact
of the severe wave environment on ships and coastal and offshore structures.
Usually in laboratory tests linear random signals (see simulation techniques
described in Chapter 3) are given as the input to the wavemaker. After some
wavelengths of propagation, nonlinear effects in the wave field appear, and ex-
treme high waves can be formed. As the extremes are rare events, laboratory
studies require rather long records. Stansberg (2000) indicate that although a
3 hour record may be sufficient for most standard testing purposes, data sets of
12, 15 or 18 h tests are required for the study of statistics of extremes. He re-
ported results of experiments in the Ocean Basin at MARINTEK (Trondheim),
in which typical Norwegian storm sea states (Hs ∼ 8 − 16 m, Tp ∼ 10 − 18 s)
have been reproduced in model scale 1:55–1:70 with duration of 3 h as well as
in the form of 4, 5 or 6 independent 3 h realisations. In Figs. 4.10 and 4.11 the
statistical skewness γ1 and excess of kurtosis (γ2 − 3) are shown as a function

of wave steepness
(
Hs

Lp

)
when Lp is the wavelength corresponding to the wave

peak period Tp. For nonlinear second-order random waves, skewness γ1 and
excess of kurtosis (γ2 − 3) are no longer zero. Vinje and Haver (1994) for the
Pierson–Moskowitz spectrum showed that

γ1 = 5.41

(
Hs

Lp

)
(4.32)

and

γ2 − 3 = 3γ2
1 . (4.33)
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Figure 4.11: Excess of kurtosis (γ2−3) as a function of the average wave steep-
ness (adapted from Stansberg, 2000).

It is observed that the theory predicts lower values of γ1 and (γ2 − 3) for the
narrow (JONSWAP) spectrum than for the broad-banded Pierson–Moskowitz
spectrum. Experimental values of the statistical skewness γ1 and theoretical
ones resulting from second-order theory for steepness up to Hs

Lp
= 0.04 are in

good agreement. For higher steepnesses, skewness γ1 remains almost constant
and equal to γ1 ≈ 0.2− 0.23. On the other hand, the excess of kurtosis (γ2 − 3)
compares well with (4.33). It should be noted that lower kurtosis values are
observed for multidirectional waves than for unidirectional waves.

From Fig. 4.12, the extreme crest heights ζc, normalized by the standard
deviation σζ of the process ζ(t), are higher than that resulting from nonlin-

0.00 0.02 0.04 0.06 0.08

6.0

5.5

5.0

4.5

4.0

3.5

Rayleigh model
theory Kriebel & Dawson 1993

12, 15 or 18 hrs test data

3 hrs tests

ζ
/σ

C
ζ

H / Ls p

Figure 4.12: Normalized maximum crest heights ζc/σζ as a function of the
average wave steepness (adapted from Stansberg, 2000).
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ear prediction of Dawson et al. (1993) (see Section 5.5). It is also clear that
the Rayleigh distribution is unacceptable for prediction heights ζc. However,
the experimental results, not shown here, indicate that a normalized extreme
peak-to-peak wave height shows reasonable agreement with the Rayleigh dis-
tribution.

It can be shown that the expected maximum crest height E [ζcmax ] deducted
under the second-order random wave assumption is (Stansberg, 2000)

E [ζcmax ] = E [ζcmax ]Rayleigh

{
1 +

1

2
kpE [ζcmax]Rayleigh

}
, (4.34)

where

E [ζcmax ]Rayleigh =
[
(2 lnN)1/2 + 0.577 (2 lnN)−1/2

]
, (4.35)

in which N is the number of independent amplitudes in a record.
Experiments in the Ocean Basin Experiment showed that (4.35) provides

lower values of E [ζcmax ] than experimental ones and the Rayleigh model is
clearly again under-predicting.

4.6 Detection of breaking in a given wave

record

4.6.1 Introduction

Wave breaking is an intermittent process in a wave field evolving in time. During
breaking substantial modification in the spectral structure of surface waves
appears. Traditional research on the statistics of ocean waves is limited to global
quantities such as the Fourier spectra. These quantities provide very valuable
information on the general properties of waves but give no insights into the
initiation of breaking and its intensity. Particularly because of evolution in time
and because of the intermittency of the breaking process, the common Fourier
transform approach is not adequate for a description of a local wave. Although
the Fourier spectrum is valid under extremely general conditions, there are
some crucial restrictions of Fourier spectral analysis, namely the system must
be linear and the data must be strictly periodic or stationary. In fact, the
stationarity requirement is not particular to Fourier spectral analysis, but is
a general one for most of the processing methods of available data.

Usually in practice we only have data for finite time spans and application of
rigorous definitions of stationarity in the wide and narrow sense is not possible.
It should be noted that Fourier spectral analysis requires linearity. Although
many natural phenomena can be approximated by linear systems, the breaking
event is a highly nonlinear which cannot be presented as a superposition of
linear systems. In particular Fourier spectral analysis uses linear superposition
of trigonometric functions and many harmonic components are needed to sim-
ulate the deformed profiles of breaking, nonlinear waves. Due to the fact that
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the form of data on breaking waves deviates from a pure sine or cosine func-
tion, the Fourier spectrum will contain spurious harmonics that cause energy
spreading. Therefore, Fourier spectral analysis is of limited use.

Recently, several approaches have been devised to process highly nonlinear
and nonstationary signals. The most promising are wavelet transform anal-
ysis (WT) and the phase-time method (PTM) based on the Hilbert trans-
form. These two time–frequency approaches, described below, present effective
methods towards better understanding of nonlinear and nonstationary wave
processes.

4.6.2 Wavelet transform approach (WT)

The wavelet transform (WT), developed during the last two decades, is an
ideal tool for the study of measured time series data of nonstationary, transient
phenomena such as breaking waves. Details on WT can be found in many books
and articles. An introduction to WT and its application to wave phenomena
was published recently by Massel (2001b) and a brief summary of the wavelet
transform methodology is presented in Appendix B.

For a real time series, not necessarily stationary, the time localization cannot
be extracted from a frequency spectrum. However, this can be done through
the wavelet transform, which can be considered as a broadened extension of
the commonly used Fourier transform. Both methods transform the function
representing the process in one domain to some different domain. In the case
of the wavelet transform, this domain is the frequency and the time domain.
What new information is provided by the wavelet transform? First of all,
this approach provides a better insight into the inherently nonstationary wave
process governed by intermittent wave groups (Liu, 2000a,b). Spedding et al.
(1993) found that the wavelet transform is a very useful tool to obtain a space-
scale decomposition of a two-dimensional surface wave field resulting from the
wave-wave interaction in an unsteady wave field. Although their analysis was
preliminary in nature, the careful application of a two-dimensional complex
wavelet transform allows a quantitative, whole-field, unsteady analysis to be
performed. There are also some attempts to apply the wavelet transform to
separate gravity waves generated by simultaneous forcing sources acting either
at the same location but at different frequencies or at the same frequency but
over different time periods and at different locations. In particular, Pairaud and
Auclair (2005) applied so-called combined wavelet and principal component
analysis (WEof) for the extraction of external gravity waves and internal grav-
ity wave lower modes in the case of a flat bottom and constant Brunt-Väisälä
frequency.

In contrast to the Fourier transform, wavelet transform analysis allows ex-
ceptional localization both in the time domain via translation τ of the wavelet,
and in the frequency domain via dilation scales b of the mother wavelet (see
Appendix B for definitions of both quantities). As was found by Massel (2001b),
in wave mechanics Morlet’s wavelet is a good candidate for the mother wavelet.



110 4 Experimental insights into mechanisms of wave breaking

Figure 4.13: Contours of |WT | for a superposition of three sinusoidal signals.

The final expression for wavelet transform of signal ζ(t) takes the form

WT (τ, b) =
1√
b

∞∫
−∞

exp

[
−1

2

(
t− τ

b

)2
]

exp
[
i
2π

b
(t− τ)

]
ζ(t) dt. (4.36)

For illustration, in Fig. 4.13 the function |WT (τ, b)| is shown for a superposition
of three sinusoidal signals

ζ(t) = sin
(

2πt

2

)
+ sin

(
2πt

5

)
+ sin

(
2πt

10

)
. (4.37)

The maxima of the absolute values of wavelet |WT (τ, b)| are concentrated
in the periods of three components. Moreover, they are distributed in time
according to the periodicity of the resulting wave field.

The relationship between the scale b and the Fourier period T is discussed in
detail in a paper by Massel (2001b). It was shown that for the Morlet wavelet,
used in this chapter, we have

b =
c +

√
c2 + 2

4π
T ≈ 1.0125T, (4.38)

in which c = 2π.
In Fig. 4.14 a piece of random wave record (Test 4150 from the Ocean Basin

Experiment – Massel et al., 2001) is shown. A corresponding Fourier spectrum
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Figure 4.14: Part of a record of mechanically generated waves in the Ocean
Basin Experiment (Test 4150).

is given in Fig. 4.15. The peak period Tp of the mechanically generated waves
is equal to 1 s; however, due to imperfect mechanical generation and due to
nonlinear wave interactions, the energy peak slightly shifted. In contrast to the
Fourier spectrum, the wavelet shown in Fig. 4.16 provides good localization
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Figure 4.15: Fourier spectrum corresponding to wave record given in Fig. 4.14.
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Figure 4.16: Contours of the |WT (τ, b)| for wave record given in Fig. 4.14.

of the wave energy in time. The highest energy for the high elevation around
t ∼ 291 s is clearly seen. This energy corresponds to the wave component of
period ∼ 1.16 s. On the other hand, the second peak of the Fourier spectrum
with the period ∼ 1.05 s corresponds to the group of high waves seen in Fig. 4.14
for time interval from 300 to 305 s, which is also confirmed in Fig. 4.16.

4.6.3 Phase-time method

Another method to better localize the wave breaking is the phase-time method
(PTM) based on the Hilbert transform. As shown in Appendix C, the surface
elevation ζ(t) and its Hilbert transform ξ(t) form so called analytic signal

η(t) = ζ(t) + iξ(t), (4.39)

where

ζ(t) =
∞∑
n=0

[an cos(nωt) + bn sin(nωt)], (4.40)

ξ(t) =
∞∑
n=0

[an sin(nωt) − bn cos(nωt)]. (4.41)

Due to phase lag, equal to (−π/2), between signal ζ(t) and its Hilbert trans-
form, ξ(t), can be interpreted as the ‘horizontal’ component of the surface
elevation. The analytic signal η(x, t) can be rewritten in the form

η(t) = A(t) exp[iθ(t)], (4.42)
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and

A(t) =
√
ζ2(t) + ξ2(t) and θ(t) = arctan

(
ξ(t)

ζ(t)

)
, (4.43)

where A(t) is the local wave amplitude and θ(t) is the local phase function.
Representation (4.42) yields the local wave member kl(t) and instantaneous

angular frequency ωl(t) as follows

kl(t) =
∂θ(t)

∂x
(4.44)

and

ωl(t) =
∂θ(t)

∂t
. (4.45)

Therefore, the local wave speed becomes

Cl(t) =
ωl(t)

kl(t)
. (4.46)

The above definitions indicate that in principle the local phase velocity can be
obtained from the signal-point measurements.

Additionally, the local horizontal and vertical velocity components at the free
surface can be approximated as follows

u(t) =
∂ξ(t)

∂t

w(t) =
∂ζ(t)

∂t

⎫⎪⎪⎪⎬
⎪⎪⎪⎭. (4.47)

As the original signal and its Hilbert transform are both time domain signals,
we can decompose the phase function θ(t), given in (4.43), into its mean value
θ and time varying component δ(t) as

θ(t) = θ(t) + δ(t) (4.48)

or

θ(t) = ω0t + δ(t), (4.49)

in which the mean phase θ(t) is simply a product of the mean frequency ω0 and
time t. In the PTM approach, the phase is unwrapped and the varying part of
the phase angle δ(t) is obtained by subtracting the linear component θ(t) from
total phase θ(t).

It should be noted that the instantaneous frequency ωl can be derived directly
from (4.43) as follows

ωl =

∂ξ

∂t
ζ − ∂ζ

∂t
ξ

ζ2 + ξ2
. (4.50)
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In a real situation, breaking events occur only at the crests of waves, where
∂ζ
∂t

∼ 0 and ξ is small, due to 90◦ phase shift of ξ(t). Therefore, (4.50) simplifies
as follows

ωl ≈
1

ζ

∂ξ

∂t
(4.51)

or

ωl ≈

∞∑
n=0

(nω)[an cos(nωt) + bn sin(nωt)]

∞∑
n=0

[an cos(nωt) + bn sin(nωt)]
. (4.52)

For a single frequency wave train we have

ζ(t) = a cos(ω0t), ξ(t) = a sin(ω0t) and ωl = ω0. (4.53)

As the cosine and sine are smaller than one, the numerator of (4.52) increases
rapidly with the frequency and ωl will be large at any time when there is a con-
centration of high frequency components at the measurement point. Therefore,
an increase in ωl appears when wave breaking involves a nonlinear capture
of high frequency components. This fact is a basis for the PTM method of
detection of breaking.

Zimmermann and Seymour (2002) conducted a laboratory experiment to de-
velop and validate a deep water breaking wave detection model based on the
rapid growth of the instantaneous frequency. Experimental setup includes mea-
surement of surface variations at 11 equally spaced wave staffs arranged in two
parallel arrays and recording of breaking events by multiple video cameras.
For every test, the time of each breaking wave was noted on the video record
and corresponding wave gauge was notified where breaking occurred. The wave
breaking detection model includes, as a first step, an elimination of extraneous
large peaks in the frequency variation signal by removing the events associ-
ated with near-zero wave elevations as breaking never occur at these points.
It was assumed that for ζ(t) < 1.5σζ ≈ 0.38Hs, the frequency variations are
filtered out. This means that for surface elevation below threshold value of
0.38Hs all frequency variations are set to zero. Inspection of the filtered record
at each breaking event showed a consistent frequency variation pattern related
to incipient breakers, namely a very high and sharp peak.

The important parameter for successful application of PTM is the sampling
rate of the time series. The laboratory results as well as field data indicate
that the method requires sampling the surface elevation at rates greater than
typically employed. The best results are obtained at sampling rates of 25–50
times the peak frequency. Zimmermann and Seymour (2002) concluded that
prediction of breaking in deep water by the PTM method is correct in about
95% of cases with false detection limited to about 5%.

Figure 4.17 illustrates a sharp increase in the instantaneous frequency for par-
ticularly steep waves which are very close to breaking. The dashed line denotes
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Figure 4.17: Part of a record of steep waves (a) and corresponding instanta-
neous frequency (b).

the wave-maker frequency. From the figure it follows that the highest departure
of the frequency is not necessary related to the highest surface elevation, but
rather with the highest slope.

Griffin et al. (1996) in their experiment found that the variation of the lo-
cal frequency down the wave channel was nearly constant for steep but non-
breaking waves, increasing slightly for spilling breakers and growing rapidly for
fully plunging breakers. This conclusion is in contradiction with the results of
Zimmermann and Seymour (2002). However, it should be noted that the ex-
periment of Griffin et al. (1996) involved a coincident arrival of packets at one
point in order to obtain breaking, whereas the experiments mentioned above
are based on random waves which can break anywhere in the basin.
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4.7 Summary of experimental data

4.7.1 Global breaking wave characteristics

Due to the complexity of the breaking process, robust and sufficiently precise
threshold values determining the onset of breaking do not exist. However, the
global as well as local wave breaking parameters are the most useful. In the
previous sections it was shown that a wave approaching breaking point becomes
highly asymmetric with an increasingly steeper crest front. Also, there are
a number of investigations showing a wide range of critical wave heights at the
onset of breaking (Ochi and Tsai, 1983; Bonmarin, 1989; Dawson et al., 1993).
Schultz et al. (1987) and Ramberg and Griffin (1987) found that the global
wave steepness at breaking is

εg =
H

gT 2
= 0.021. (4.54)

Tulin and Li (1992), reviewing the results of short wave tank experiments, con-
firmed that the average value of maximum wave steepness is 0.021, although the
scatter in the data of these experiments was substantial. It should be noted that
this value is smaller than the Stokes limiting steepness of 0.027. In Table 4.6
laboratory measurements of the limiting wave height H of paddle-generated
deep water waves as a function of the gT 2 value are collected from the data
of Bonmarin (1989) and Griffin et al. (1996). All experimental limiting wave
heights are lower than that from the Stokes limit – see Fig. 4.18. The best fit
to all data given in the figure provides the following value for limiting εg

εg =
H

gT 2
= 0.019. (4.55)

Table 4.6: Mean values of global limiting wave steepness εg = H
gT 2 for paddle-

generated waves.

Legend Breaker type

Reference for Fig. 4.18 Plunging Spilling

Stokes (theoretical limits) – 0.027
Ochi and Tsai (1983) diamonds 0.020 –
Ramberg and Griffin (1987) triangles – 0.021 (1)
Bonmarin (1989) half-solid squares 0.022 (2) 0.021 (4)

0.020 (3) 0.020 (5)
Rapp and Melville (1990) box area – 0.017–0.21 (4)
Griffin et al. (1996) box area 0.018-0.021(2) 0.017–0.018 (4)

The numbers in parentheses are defined as follow: 1 – spilling and slightly
plunging, 2 – typical plunging, 3 – plunging, 4 – typical spilling, and 5 – spilling
(adapted from Bonmarin, 1989 and Griffin et al., 1996).
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Figure 4.18: Global limiting wave height H of paddle-generated waves as
a function of the period parameter gT 2 (adapted from Bonmarin, 1989 and
Griffin et al., 1996).

The criterion resulting from the above experiments can be compared with
Longuet–Higgins’ (1985b) limiting wave steepness (see for example Table 5.1)
(ak)lim = 0.4432 what gives H

gT 2 = 0.022 which is close to the estimates given
in Table 4.6.

Moreover, the experimental data reported by Myrhaug and Kjeldsen (1986)
indicate that wave front slope εf ≈ 0.26. Therefore, approximately

εf =
ζc

C T ′ ≈
Abr

C T
4

=
4A

CT
, (4.56)

when the time T
′
was taken approximately as T

4
. Thus

A =
εf

4
CT =

εf gT
2

8π
≈ 0.0103 gT 2 and

H

gT 2
= 0.020, (4.57)

which again is the same order as both above criteria.
The results of Xu et al. (1986) from wave channel experiments for wind-

induced incipient breaking due to wind speed varying from 7 to 16 m/s are
summarized in Fig. 4.19. The straight line corresponds to the best fit to the data
and yields an identical expression as in (4.55). The scatter of the data about
the line is about ±15%. Xu et al. found that the breaking probability, defined as
the ratio between the number of breaking waves and the total number of waves
recorded, increased rapidly with wind velocity as ≈ V 2.2

10 . The probability was
defined as the mean passage rate past a fixed point of dominant wave breaking
events per dominant wave period. The experimental results from the Black Sea
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Figure 4.19: Global limiting wave height of wind-generated waves as a function
of the period parameter gT 2 (adapted from Griffin et al., 1996).

Table 4.7: Local breaking threshold quantities based on numerical calculations

References Threshold characteristics Breaker type

Theory:2nd order Stokes wave εf = 0.28; λh = 0.50 plunging
λv = 1.00 plunging

Cokelet (1977) εf ≥ 0.408; λh ≥ 0.757 plunging

Longuet–Higgins and Cokelet (1976) λv = 1.83 plunging

Table 4.8: Local breaking threshold quantities based on field experiments

References Threshold characteristics Breaker type

Longuet–Higgins and Smith (1983) surface inclination θcr ≥ 30.37

Myrhaug and Kjeldsen (1986) 0.2 < εf < 0.32; εf = 0.26
1.0 < λv < 3.0; λv ≈ 0.65

Holthuijsen and Herbers (1986) 0.0053 < εs < 0.0081

Kway et al. (1998) 0.265 < εf < 0.304 plunging

Gemmrich and Farmer (1999) volumetric air fraction ≥ 0.08
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Table 4.9: Local breaking threshold quantities based on laboratory experi-
ments

References Threshold characteristics Breaker type
Ochi and Tsai (1983) εg = 0.020; 0.0039 < εs < 0.00775 plunging
Xu et al. (1986) εg = 0.019 spilling
Ramberg and Griffin (1987) εg = 0.021 spilling

Bonmarin (1989) 0.65 < λh < 0.93; λh = 0.77 plunging
0.97 < λv < 3.09; λv = 2.14 plunging
0.31 < εf < 0.85; εf = 0.61 plunging
17.22◦ < θf < 40.36◦ plunging
0.60 < λh < 0.80; λh = 0.69 spilling
0.81 < λv < 1.72; λv = 1.20 spilling
0.31 < εf < 0.51; εf = 0.38 spilling
17.22◦ < θf < 27.02◦ spilling

Rapp and Melville (1990) 0.017 < εg < 0.021; kcD ≈ 0.3 spilling
0.2 ≤ εf ≤ 1.0; spilling
kcD ≈ 0.5 plunging

Kjeldsen (1990) 0.9 < λv < 2.2
Peltzer and Griffin (1992) λh ≈ 0.76 λv ≈ 1.43

εf ≈ 0.50
Duncan et al. (1994a,b) λv ≈ 1.3 spilling

λv ≈ 1.7 plunging
0.72 < λh < 0.80 plunging

Griffin et al. (1996) 0.018 < εg < 0.021 plunging
0.017 < εg < 0.018 spilling
εf ≈ 0.32; λv ≈ 1.0 spilling
εf ≈ 0.62; 1.7 < λv < 2.0 plunging

Lader et al. (1998) curmax =
∣∣∣ ∂2ζ
∂x2

∣∣∣ ≈ 10−1 spilling

curmax =
∣∣∣ ∂2ζ
∂x2

∣∣∣ ≈ 20−1 plunging

a
(E)
z ≈ 5g plunging

a
(E)
z ≈ 6.6g intermediate

a
(E)
z ≈ 2.7g spilling

Kway et al. (1998) kζc ≈ 0.4 − 0.6 plunging
kζc ≈ 0.5 spilling

Tulin and Waseda (1999) 0.25 < Hmk
2 < 0.35

0.05 < δω
ω < 1.5

Massel et al. (2001) 0.319 < ε
(max)
f < 1.018; 0.097 < εf < 0.181 spilling

3.733 < λ
(max)
v < 8.500; 1.064 < λv < 1.235 spilling

0.975 < λ
(max)
h < 0.999; 0.505 < λh < 0.561 spilling

Bonmarin and Kjeldsen a
(L)
z ≈ (1.5 − 2.2)g

(2001) εf = 0.39; λv = 1.20; λh = 0.69 fully spilling
εf = 0.62; λv = 2.13; λh = 0.77 fully plunging

Zimmermann and Seymour ωl > ω
(t)
l ≈ 0.85ωp

(2002)
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and Lake Washington (described in Section 4.3.2) showed that this breaking
probability of dominant waves is well correlated with the steepness εd. The
threshold value for εd around 0.055− 0.06 determines whether dominant wave
breaking occurs or not. Up to the threshold value of εd = 0.055, the probability
of breaking is zero, but it increases quadratically for εd > 0.055. This conclusion
reflects the hypothesis that nonlinear hydrodynamic processes associated with
wave groups are more important for the breaking process than wind speed or
wave age (Banner et al., 2000). Moreover, Banner et al. (2002) confirmed that
a similar threshold dependence in terms of an appropriate spectral parameter
exists also for breaking probability of shorter wind waves of frequencies up
to 2.48 times the spectral peak frequency. This correlation is characterized
by robust threshold behaviour, similar to that existing for dominant waves.
Thus also for high frequency waves, nonlinear wave hydrodynamics are more
important than wind forcing for breaking wind waves.

4.7.2 Local breaking wave characteristics

To characterize the local behaviour of steep waves approaching breaking three
main parameters have been suggested, namely crest front steepness εf , vertical
asymmetry λv and horizontal asymmetry λh. Definitions of these quantities
are given in (4.1), (4.2) and (4.3). Numerically and experimentally determined
values of εf , λv and λh are summarized in Tables 4.7, 4.8 and 4.9.

The largest scatter is observed for the λv value, particularly for the plunging
breaker, and the most stable behaviour is exhibited by the horizontal asym-
metry λh. The crest front angle θf for a plunging breaker varies from 17.22◦

to 40.36◦ with mean value close to the Stokes angle 30◦. However, for spilling
breakers this angle is smaller than 30◦, and varies from 17.22◦ to 27.02◦.



Chapter 5

Wave breaking criteria and
probability of breaking

5.1 Introduction

Breaking waves are usually associated with steep waves that occur in a given
sea. Several criteria have been proposed for the detection of wave breaking
events in the past with somewhat arbitrary thresholds. In general they can
be divided into two classes, the first related to some characteristics of the
surface elevation at a point, and the second to observations of air entrainment,
whitecaps or ambient noise. The first set of simple criteria of the limiting form
of wave motion was established by Stokes more than one hundred years ago
(Stokes 1847, 1880). According to Stokes, the necessary criteria to start an
individual wave breaking are:

(a) the particle velocity of fluid at the wave crest equals the
phase velocity,

(b) the crest of the wave attains a sharp point with an angle
of 120◦,

(c) the ratio of wave height to wavelength is approximately 1/7,
(d) particle acceleration at the crest of the wave equals

to 0.5 g.

The above criteria for breaking of regular waves in deep water have been ad-
dressed from various viewpoints in a series of papers by Longuet–Higgins (1969,
1976), Cokelet (1977) and others. A wave-breaking criterion based on crest-to-
trough wave height was examined by Melville and Rapp (1988), Ochi and Tsai
(1983), Huang et al. (1992), Xu et al. (1986), Bonmarin (1989), Dawson et
al. (1993) and Griffin et al. (1996). Some of them questioned this criterion,
in part because peak-to-peak wave heights vary significantly during breaking.
However, probably no breaking criterion can be simple and precise.

In the previous chapter, a large variety of numerical calculations as well as
field and laboratory experiments on the evolution and breaking of waves were
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presented. They offer selected wave field characteristics, the threshold of which
can serve as local indicators of wave breaking. All of these values have been col-
lected in Tables 4.7–4.9. The tables indicate clearly that our present knowledge
on the wave breaking phenomenon is based mostly on experimental insights
and some threshold quantities have at present only theoretical value. They sig-
nificantly expand our knowledge of the problem; however, some of them are
not suitable for practical use, as they need many non-measurable factors for
their determination.

In this chapter, the probability of breaking, Fbr, appearing at a given point is
discussed. When the surface of breaking waves passes a fixed point with vary-
ing speed, the probability of breaking will change, even for a two-dimensional
stationary and homogeneous wave field. Therefore, there is a need for conver-
sion of the temporal fraction of the breaking surface to the spatial one. Usually
this conversion is based on linear wave theory. This theory provides some con-
venient measures of incipient wave breaking such as kinematic, geometric and
dynamic criteria of wave breaking. In particular, a wave starts to break when
the horizontal fluid velocity at the surface u exceeds the phase velocity C (kine-
matic criterion). In terms of the kinematic criterion, this position represents
the stagnation point of the streamlines of fluid particles relative to the waves
form. Downstream from this point, fluid particles tend to escape from the water
surface. They can either be ejected into air to become droplets or curl down to
trap air into water. Such events are associated with exchanges of mass, momen-
tum and energy across the air–water interface. It should be noted that during
breaking, the wave steepness ak, usually becomes O(1) and u

C
> 1. Therefore,

wave breaking should be considered as a strongly nonlinear process. It should
be noted that detailed velocity measurements at the crest are quite limited in
number and are difficult to obtain as well (Melville and Rapp, 1988; Kjeldsen,
1990; Stansell and MacFarlane, 2002).

In limiting regular waves, the crest attains a sharp point with an angle of
120◦ and the particle acceleration at the crest is equal to 0.5 g. However, near-
limiting waves have rounded crests with a very small radius of curvature. It
was shown (Longuet–Higgins and Fox, 1977) that the local crest profile of such
waves approaches a self-similar form and the maximum surface slope can exceed
the 30◦ slope of the limiting wave, ultimately reaching a value of about 30.37◦,
when the vertical acceleration at the crest is not 0.5 g. It should be pointed out
there are two different vertical accelerations depending on the measurement
procedure, i.e. the apparent acceleration measured by a fixed vertical probe,
and the real acceleration of the fluid particles, as measured by a small, free-
floating buoy following the sea surface (Longuet–Higgins, 1985b).

For irregular waves we apply the Snyder and Kennedy (1983) hypothesis,
which states that the stability of the gravity wave flow is controlled by the level
of some ‘threshold’ variable defined on the surface of the fluid. This ‘thresh-
old variable’ is the vertical acceleration. The threshold acceleration criterion is
applied at the wave crest for the one-dimensional case and everywhere on the
sea surface for the two-dimensional case. In fact, Longuet–Higgins (1985b) and
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Srokosz (1986) suggested to use the wave crest acceleration as global breaking
criteria. Moreover, Schultz et al. (1994) proposed a simple potential energy cri-
terion, although experimentally or computationally this criterion is a function
of many parameters.

5.2 Limiting wave steepness criterion

5.2.1 Global and local limiting wave steepness

Breaking criteria based on global or local wave steepness seem to be very logical
and appropriate for such phenomena as sea surface wave motion. As was shown
in Chapter 4, wave steepness can be expressed in terms of global or local wave
parameters. Global steepness usually involves characteristic wave height and
wavelength, while local steepness depends on the spatial (time) derivative of
the sea surface ordinates. In oceanology practice, breaking criteria are usually
expressed in terms of global wave steepness when a crest-to-preceding-trough
value for wave height is used. On the other hand, studies on the local wave
steepness threshold indicate that this approach is not robust when applied
to the onset of wave breaking at sea when the separation between breaking
and non-breaking is not sharp, but rather diffuse. For an irregular wave field,
the most complete representation of breaking criteria, based on limiting wave
steepness, is that in the form of the probability density. It is our aim to use
this methodology for global as well as for local criteria.

5.2.2 Probability of wave breaking based on the global
limiting wave steepness criterion

Under the assumption that low steepness swell waves have little effect on the
dynamics of breaking of dominant local wind waves, so-called dominant steep-
ness εd was defined by (4.9) in the form

εd =
1

2
Hdkp, (5.1)

where

Hd = 4

{∫ 1.3ωp

0.7ωp

S(ω)dω

} 1
2

, (5.2)

in which ωp is the peak frequency. In order to determine wave height Hd, the
integral in (5.2) should be calculated from a known spectral density S(ω). If
we use the JONSWAP spectrum (3.19), from (5.2) we obtain

Hd =
4g

ω2
p

√
β
√
Id, (5.3)
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in which

Id =
∫ 1.3

0.7
ω̂−5 exp

(
−5

4
ω̂−4

)
γrdω̂. (5.4)

For typical peak enhancement factors the integral Id is

Id =

⎧⎪⎨
⎪⎩

0.1280 for γ = 1.0
0.2330 for γ = 3.3
0.3730 for γ = 7.0

(5.5)

Therefore, the dominant steepness εd becomes

εd =
2g

ω2
p

√
βIdkp = 2

√
βId, (5.6)

where

kp =
ω2

p

g
. (5.7)

Using (3.22), the steepness εd can now be rewritten in the form

εd = aγ

(
gX

V 2
10

)−0.11

, (5.8)

where

aγ =

⎧⎪⎨
⎪⎩

0.1973 for γ = 1.0
0.2661 for γ = 3.3
0.3367 for γ = 7.0

(5.9)

Parameter εd reflects not only the mean steepness of dominant waves, but also
the fundamental role of nonlinear group dynamics in determining breaking
onset. In particular, wave breaking appears when (Banner et al., 2000)

εd ≥ 0.055, (5.10)

or

εd = aγ

(
gX

V 2
10

)−0.11

≥ 0.055. (5.11)

Hence, the probability of breaking for the wave field modelled by the JON-
SWAP spectrum is non-zero when

gX

V 2
10

≤

⎧⎪⎨
⎪⎩

1.1 × 105 for γ = 1.0
1.7 × 106 for γ = 3.3
1.4 × 107 for γ = 7.0

(5.12)

The breaking probability Fbr for dominant waves is defined as the mean passage
rate past a fixed point of dominant wave breaking events per dominant wave
period. As dominant waves are taken within the spectral band of 0.7ωp to
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1.3ωp, they contain the spectral components determining the group structure
of the dominant wave field. Large values of εd can be reached for restricted fetch
when wind velocity is relatively small. Such a situation is usually reproduced
in wave tank experiments. In field conditions, fetches and wind velocity are
larger than in laboratory experiments, and the resulting limiting dominant
wave steepness εd is smaller. It should be noted that the threshold (5.11) is not
a criterion for breaking of individual waves, but it represents an average wave
field parameter for determination of the mean fraction of breaking waves in the
appropriate frequency band.

Additionally, Banner et al. (2000) showed that the probability of breaking of
dominant waves increases close to quadratically for εd > 0.055 when

Fbr = a (εd − 0.055)b, (5.13)

in which a is in the range (13.0÷ 37.2), with mean value of 22.0 and b is in the
range (1.78 ÷ 2.30), with mean value of 2.01.

5.2.3 Probability of wave breaking based on the local
limiting wave steepness criterion

The slope criterion of wave breaking requires that the surface wave will break
when the local surface slope in the n-direction exceeds the threshold slope εth,
i.e.

∂ζ

∂n
≥ εth. (5.14)

Longuet–Higgins and Fox (1977) showed that εth = 0.586 and the critical local
angle θ of the sea surface with the horizontal plane is θ = 30.37◦. Hence the
probability of breaking waves propagating in n-direction becomes

Fbr =
∫ ∞

εth

f(εl) dεl. (5.15)

Let us consider first the case of laboratory waves generated in the wave channel
when all spectral components propagate along the x-axis (long-crested waves
case). Then the probability density f(ξ) for non-dimensional slope ξ = gεl√

m4
is

given by (3.131). After substituting this equation into (5.15) and integrating,
we obtain

Fbr = 2Q(ξth), (5.16)

where ξth = εth√
m̃4

= gεth√
m4

and Q(ξth) is given by (Abramowitz and Stegun, 1975)

Q(x) =
1√
2π

∞∫
x

e−
t2

2 dt = 1 − Φ(x), (5.17)
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in which Φ(x) is given by (3.88). Therefore, we have

Fbr = 2Q(ξth) = 2 [1 − Φ(ξth)] . (5.18)

The limiting crest front steepness εf can serves as a good approximation of
the real limiting steepness εth. As was shown in Chapter 4, the crest front
limiting steepness in laboratory tests varied in the range of 0.31 < εf < 0.51
(with a mean value of εf = 0.38) for spilling breakers, and in the range of
0.31 < εf < 0.85 (with a mean value of εf = 0.61) for plunging breakers. Thus,
let us assume that

ξth =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.38√
m̃4

for spilling breakers

0.61√
m̃4

for plunging breakers

(5.19)

In Fig. 5.1 the probability Fbr is shown as a function of normalized spec-
tral moment m̃4 for long-crested spilling and plunging breakers, when thresh-
old steepness εf = 0.38 and εf = 0.61 are used, respectively. From the figure
it follows that at the same wave intensity, expressed by the moment m̃4, the
probability of spilling breakers is higher than the probability of plunging break-
ers. This is a consequence of the higher threshold of the limiting steepness for
plunging breakers. In Fig. 5.2, the influence of the limiting steepness of long-
crested spilling breakers on the probability of breaking is shown. The lower and
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Figure 5.1: Probability of breaking as a function of normalized spectral mo-
ment m̃4 = m4

g2 for long-crested spilling and plunging breakers (solid lines).
Dashed line – short-crested waves.
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Figure 5.2: Probability of breaking of long-crested spilling breakers as a func-
tion of normalized spectral moment m̃4 = m4

g2 for two limiting steepnesses.

higher limiting wave steepnesses εf , obtained in laboratory tests, i.e. εf = 0.31
and εf = 0.51, have been used in this figure.

To describe the probability of breaking of short-crested ocean waves we use
the standard directionality function D(Θ) = 2

π
cos2 Θ, when the integrals Ic =

Is = 1
2

and the probability density function f(ξ) is given by (3.127). After
substituting this equation into (5.15) and integrating we obtain

Fbr = exp
(
−ξ2

th

)
= exp

(
− ε2

th

m̃4

)
. (5.20)

The function (5.20) is also shown in Fig. 5.1 for εf = 0.26 (see Table 4.8),
indicating that probability of breaking of short-crested waves becomes higher
than for long-crested waves for the same wave field intensity.

To express the formulae (5.18) and (5.20) in terms of spectral density, we
assume that surface waves are characterized by the JONSWAP spectrum (3.19)
and its moments. Let us first discuss the case of wind blowing along a narrow
sea basin when the waves can be considered long-crested. Using the relationship
(D.7) for γ = 3.3, we get probability of breaking given by (5.18), where

ξth = 2.778εth

(
gX

V 2
10

)0.11

(5.21)

Probability of breaking (5.18) is shown in Fig. 5.3 versus non-dimensional fetch(
gX
V 2
10

)
for threshold steepness equal to εth = εf = 0.38 for spilling breakers.
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Figure 5.3: Probability of breaking as a function of non-dimensional wind fetch
for long- and short-crested waves.

In a similar way, after substituting (D.7) into (5.20) we get the probability
of breaking for short-crested waves, when D(Θ) = 2

π
cos2 Θ, in the form

Fbr = exp

⎡
⎣−7.714ε2

th

(
gX

V 2
10

)0.22
⎤
⎦ . (5.22)

Function (5.22) is added in Fig. 5.3 for εth = εf = 0.26.

5.3 Limiting vertical acceleration criterion

5.3.1 Definition of particle accelerations in the wave field

Before carrying out a discussion on the vertical acceleration criterion, a dis-
tinction should be made between two vertical accelerations of water particles
(Longuet–Higgins, 1985b, 1986). The first one is known as the apparent (or Eu-
lerian) vertical acceleration and it is related to recording of the water surface
oscillations by a fixed vertical probe

a(E)
z =

∂2ζ(x, t)

∂t2
=

∂w(x, ζ, t)

∂t
, (5.23)

in which ζ(x, t) is the surface wave profile and w is the vertical component of
velocity. The above equation shows that the acceleration is a measure of the
curvature of the free surface.

On the other hand, the real (or Lagrangian) acceleration is measured ideally
by a small, free-floating buoy. In particular, for plane waves propagating in x
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direction we obtain:

a(L)
z (x, ζ, t) =

Dw

Dt
=

∂w

∂t
+u

∂w

∂x
+w

∂w

∂z
=

∂w

∂t
+u

∂u

∂z
−w

∂u

∂x
at z = ζ, (5.24)

where horizontal and vertical velocity components u and w are given at the sea
surface. In the linearized theory both acceleration definitions are equal, but in
steep waves of finite amplitude they are different.

5.3.2 Limiting vertical acceleration for regular waves

5.3.2.1 Fenton’s fifth-order Stokes theory

We consider now the accelerations for purely theoretical wave profiles result-
ing from two theoretical solutions. The first result follows from the Stokes
expansion method. So, let us assume that a regular, plane wave is propagating
over constant water depth in x-direction. The corresponding velocity potential
Φ(x, z, t) of the fifth-order takes the form (Fenton, 1985)

Φ(x, z, t) = C0

(
g

k3

)1/2 5∑
i=1

εi
i∑

j=1

Aij cosh[jk(z + h)] sin[j(kx− ωt)], (5.25)

in which the dimensionless wave amplitude ε = k
(
H
2

)
, ω is the wave frequency

and h is the water depth. The coefficients Aij, and C0 can be found in Fenton
(1985).

From potential Φ(x, z, t), the following formulae for wave parameters result:

– surface elevation

ζ(x, t) =
1

k

{
ε cosψ + ε2 B22 cos 2ψ + ε3 B31(cosψ − cos 3ψ)

+ε4(B42 cos 2ψ + B44 cos 4ψ) + ε5[−(B53 + B55) cosψ

+ B53 cos 3ψ + B55 cos 5ψ]} + 0(ε6), (5.26)

in which coefficients Bij are also given by Fenton (1985).

– horizontal velocity component

u(x, z, t) = C0

(
g

k3

)1/2 5∑
i=1

i∑
j=1

Aij ε
i jk cosh[jk(z + h)] cos(jψ) (5.27)

– vertical velocity component

w(x, z, t) = C0

(
g

k3

)1/2 5∑
i=1

i∑
j=1

Aij ε
i jk sinh[jk(z + h)] sin(jψ), (5.28)

where

ψ = kx− ωt. (5.29)

The wave number k is given by the formula

− 2π

T
√
gk

+ C0(kh) + ε2C2(kh) + ε4C4(kh) = 0. (5.30)
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Figure 5.4: Surface elevation, Eulerian and Lagrangian accelerations for regular
waves.

For deep water, (5.25)–(5.28) simplify considerably and in particular for the
velocity potential we obtain

Φ(x, z, t) =
(
g

k3

)1/2 5∑
i=1

εi
i∑

j=1

A
(d)
ij exp(jkz) sin[j(kx− ωt)]. (5.31)

Now the coefficients A
(d)
ij are not functions of (kh) but constants – see Fenton

(1985).
In particular for surface elevation we have

ζ(x, t) =
1

k

{
ε cosψ +

1

2
ε2 cos 2ψ +

3

8
ε3(cos 3ψ − cosψ)

+
1

3
ε4(cos 2ψ + cos 4ψ)

+
1

384
ε5(−422 cosψ + 297 cos 3ψ + 125 cos 5ψ)

}
. (5.32)

From (5.31) we obtain two components of velocity as follows

u(x, z, t) =
(
g

k3

)1/2 5∑
i=1

εi
i∑

j=1

(jk)A
(d)
ij exp(jkz) cos[j(kx− ωt)], (5.33)

w(x, z, t) =
(
g

k3

)1/2 5∑
i=1

εi
i∑

j=1

(jk)A
(d)
ij exp(jkz) sin[j(kx− ωt)]. (5.34)

After substitution of all required functions into (5.23) and (5.24), we are able
to determine the accelerations a(E)

z and a(L)
z . In Fig. 5.4, the apparent a(E)

z and
real a(L)

z accelerations at the wave surface are compared for a regular wave
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of height H = 0.6 m and period T = 1.92 s propagating in water of depth
h = 10.0m. From (5.30), wavelength becomes equal to L = 6.3 m. Therefore,
we have L

h
= 0.63 (almost deep water wave) and ε = kH

2
= 0.30. It should

be noted that minimum apparent acceleration at the wave crest is much lower
than minimum real acceleration, namely a(E)

z /g = −0.708 and a(L)
z /g = −0.275,

respectively. On the other hand, the positive accelerations change only slightly
for points lying in the wave trough. It should also be noted that both acceler-
ations are symmetric against the wave crest profile, which should be expected
for a symmetric wave profile.

5.3.2.2 Longuet–Higgins’ solution for steep waves

The second method results from the parametric equations for a free surface
written by Longuet–Higgins (1985a) in the form

kζ = 1
2
a0 +

∞∑
n
an cos(n θ)

kx = θ +
∞∑
n
an sin(n θ)

⎫⎪⎪⎬
⎪⎪⎭ , (5.35)

where θ = kΦ/C.
In contrast to standard methods, when the coefficients an are expanded in

powers of a small parameter being a measure of wave steepness ε, Longuet–
Higgins showed that it is much simpler to determine coefficients an by direct
solution of the quadratic relations between the Fourier coefficients as

a0 + a1 a1 + 2a2 a2 + 3a3 a3 + ·· = −C2

a1 + a0 a1 + 2a1 a2 + 3a2 a3 + ·· = 0
a2 + a1 a1 + 2a0 a2 + 3a1 a3 + ·· = 0
a3 + a2 a1 + 2a1 a2 + 3a0 a3 + ·· = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , (5.36)

According to Longuet–Higgins (1985a), to find numerical solution to equation
(5.36) it is convenient to manipulate the first of above equations, the only
one containing C2, and then use Newton’s method of approximation. After
calculating the coefficients an, all wave parameters can be given. In particular,
the minimum values of apparent and real accelerations for the case shown in
Fig. 5.4 equal a(E)

z /g = −0.779 and a(L)
z /g = −0.278, which are very close to

the fifth-order Stokes solution.

5.3.2.3 Relationship between Eulerian and Langrangian
acceleration

As follows from (5.23), the Eulerian acceleration can be easily determined by
twice differentiating in time the sea surface ordinate. On the other hand, de-
termination of the Lagrangian acceleration requires full knowledge not only of
the surface elevation but also both components of orbital velocities. Therefore
for practical prediction of the true Lagrangian acceleration it will be useful to
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Table 5.1: Maximum (at wave trough) and minimum (at wave crest) values of
non-dimensional apparent (Eulerian) acceleration a(E)

z /g

Maximum Minimum

accor. accor.
accor. Longuet–Higgins accor. Longuet–Higgins

H

gT 2
ε = ak Stokes V (1985b) Stokes V (1985b)

0.0051 0.1 0.0830 0.0833 −0.1244 −0.1251

0.0105 0.2 0.1430 0.1420 −0.3303 −0.3357

0.0166 0.3 0.1977 0.1831 −0.7082 −0.7795

0.0200 0.35 0.2338 0.1971 −1.0127 −1.2814

0.0237 0.40 0.2860 0.2050 −1.4304 −2.6753

0.0268 0.4432 0.3464 0.2032 −1.8660 −∞

examine the relationships of both accelerations. To establish these relationships
we use the data published by Longuet–Higgins (1985b), as well as the formulae
resulting from the fifth-order Stokes expansion.

We are mostly interested here in the almost-highest waves. According to
Cokelet (1977) and Williams (1981), the highest wave in deep water has steep-
ness ε = kH

2
= 0.4432. Longuet–Higgins and Fox (1977) showed that in this

case, the minimum real acceleration of a particle at the crest equals −0.388g,
while the maximum real acceleration (at wave trough) becomes +0.3011g.

In Tables 5.1 and 5.2, the comparison of maximum and minimum values
of the apparent and real accelerations, calculated from fifth-order Stokes ap-
proximation and by Longuet–Higgins (1985b) method, is shown. It is interest-
ing to note that a better agreement between both approaches exists for real

Table 5.2: Maximum (at wave trough) and minimum (at wave crest) values of
non-dimensional real (Lagrangian) acceleration a(L)

z /g

Maximum Minimum

accor. accor.
accor. Longuet–Higgins accor. Longuet–Higgins

H

gT 2
ε = ak Stokes V (1985b) Stokes V (1985b)

0.0051 0.1 0.0986 0.0989 −0.0988 −0.0991
0.0105 0.2 0.1903 0.1908 −0.1923 −0.1931
0.0166 0.3 0.2664 0.2662 −0.2748 −0.2784
0.0200 0.35 0.2944 0.2930 −0.3057 −0.3175
0.0237 0.40 0.3128 0.3073 −0.3183 −0.3548
0.0268 0.4432 0.3188 0.3011 −0.2976 −0.388
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Table 5.3: Ratio of the minimum (at wave crest) values of real and

apparent accelerations
(

a
(L)
z

a
(E)
z

)
min (

a
(L)
z

a
(E)
z

)
min

H

gT 2
ε = ak accor. Stokes V accor. Longuet–Higgins (1985b)

0.0051 0.1 0.7942 0.7922
0.0105 0.2 0.5822 0.5752
0.0166 0.3 0.3880 0.3571
0.0200 0.35 0.3019 0.2478
0.0237 0.40 0.2225 0.1326
0.0268 0.4432 0.1595 0.0000

acceleration, maybe except for the almost-highest waves. For the apparent ac-
celeration, differences between the two solutions are greater, again especially
for very steep waves. The above discrepancies for very steep waves result from
the fact that the accuracy of fifth-order Stokes wave theory is insufficient to
reproduce properly the kinematics and dynamics of the flow close to the wave
crest of the highest waves.

In Tables 5.3 and 5.4, the ratios
(

a
(L)
z

a
(E)
z

)
min

at the wave crest and(
a
(L)
z

a
(E)
z

)
max

at the wave trough, resulting from the fifth-order Stokes approxi-
mation and Longuet–Higgins’ (1985b) methods are shown. For the minimum
acceleration, at the wave crest, both methods provide very similar results except
for the steepest waves. The Longuet–Higgins method yields infinite value of the

apparent acceleration and the ratio
(

a
(L)
z

a
(E)
z

)
min

is equal to 0. For maximum accel-

erations at the wave trough, there is a substantial difference between predictions
resulting from the Stokes fifth-order approximation and Longuet–Higgins’s

Table 5.4: Ratio of the maximum (at wave trough) values of real

and apparent accelerations
(

a
(L)
z

a
(E)
z

)
max(

a
(L)
z

a
(E)
z

)
max

H
gT 2 ε = ak accor. Stokes V accor. Longuet–Higgins (1985b)

0.0051 0.1 1.1879 1.1873
0.0105 0.2 1.3307 1.3437
0.0166 0.3 1.3475 1.4538
0.0200 0.35 1.2592 1.4865
0.0237 0.40 1.0937 1.4990
0.0268 0.4432 0.9203 1.4818
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Figure 5.5: Ratio of real and apparent minimum accelerations at the wave crest
in terms of ak.

approach. The ratios are also illustrated in Figs. 5.5 and 5.6. These figures
have some practical value as they provide a way to calculate the real acceler-
ation at the wave crest and wave trough using a known value of the apparent
acceleration which is easy to obtain from double time differentiation of the
surface ordinates.

5.3.3 Limiting vertical acceleration for irregular waves

5.3.3.1 Experimental data on Lagrangian acceleration

Experimental data on true Langrangian acceleration are very rare. In one such
experiment, Kjeldsen (1990) used a special wave-follower system consisting of
a carriage perfectly synchronised with the wave, which kept a current meter sub-
merged in the crest while the wave propagated over a distance of 15–20 m, be-
coming more asymmetric and finally breaking as a plunging breaker. Altogether
225 experimental runs were performed. Moreover, a Lagrangian technique has
been used to simulate wave crest kinematics at the free steep wave surface. This
technique took advantage of the Hilbert transform approach (see Appendix C)
and showed reasonable agreement with the observations.

Bonmarin and Kjeldsen (2001) reported results of measurements of accelera-
tion on the surface of a plunging crest using small floating tracers. Acceleration
up to −1.5g was measured when the plunging crest met the floating tracer, and
maximum acceleration of the order of −2.2g was measured in the overturning
region. Due to the finite size of the tracers the true acceleration of the fluid
particles will probably be slightly higher.
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5.3.3.2 Best fit of the fifth-order Stokes profile to the
experimental profile

For a wave profile which is not very different from a regular one, all wave pa-
rameters can be determined through the best fitting selected theoretical profile
to the initial one. We illustrate this approach for the almost regular wave profile
obtained in the experiment carried out in the Ocean Basin Experiment (see Sec-
tion 4.4.3). In the experiment the mechanically generated regular waves were
periodic; however, their profile was not exactly regular for many reasons. In
particular, nonlinear interaction between elementary wave components, distur-
bances in mechanical generation, and irregularities in the wave flume geometry
result in a wave profile which can be regarded as ‘almost’ regular only.

In Fig. 5.7, a steep wave profile is shown. The recorded wave has a height
H = 0.378m and period T = 1.25 s. Thus, the global wave steepness becomes
εg = 0.0247. Wave profile is asymmetric with a steep front slope. Surpris-
ingly, the resulting Eulerian apparent acceleration (normalized against gravity
acceleration g) is unrealistically high. The unrealistically high value of the ac-
celeration probably results from very irregular, small ripples propagating on the
crest of the almost breaking wave. These ripples are clearly seen in the record
as the sampling frequency was very high, namely fs = 80Hz. With such a fast
sampling rate, not only is the rising and falling sea surface recorded; also foam,
aerated water portion and any, sometimes random, water particles are marked
by wave staff. All these facts demonstrate water instability, namely whitecaps
or bubbly roller formation, particular on the forward face of a progressive grav-
ity wave. At wavelengths less than about 10 cm, a capillary-gravity wave can
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Figure 5.6: Ratio of real and apparent maximum accelerations at the wave
trough in terms of ak.
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Figure 5.7: Profile of steep, breaking ‘almost’ regular experimental wave and
Eulerian accelerations.

trap pockets of air in the wave troughs. Practical criteria of wave breaking
cannot be based on the instantaneous records of such a multiphase medium
producing a very noisy signal.

Therefore, it is useful to filter out all random, chaotic components by suit-
able smoothing technique. For example, an almost regular wave, as given in
Fig. 5.7, can be simply represented in the form of the Fourier series when
high harmonics are neglected. In our case, when T = 1.25 s (ω = 1.6π rad/s),
only the first eight harmonics were retained. This means that the components
with frequencies ωn > 8ω = 12.8π (or with wave periods Tn < 0.16 s and
wavelengths Ln < 0.04 cm) were filtered out. In Fig. 5.7, the normalized Eu-
lerian acceleration corresponding to such a smoothed profile is shown. It is
found that the filtration of very high frequencies yields a substantial reduction
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of the apparent acceleration. The minimum acceleration is now of the order of
−2.26g, which is much smaller than the acceleration for incident raw data, equal
to −5.13g.

To determine the real Lagrangian acceleration we fit the adopted theoretical
profile ζs(t), for which this acceleration can be calculated, to the experimental
profile ζ(t) as close as possible. To achieve the best fit, we have to minimize
the quadratic error of fitting γ as follows

γ =
N∑
i=1

[ζ(i) − ζs(i)]
2 = min, (5.37)

where i = 1, 2, . . . , N are points equally distributed over the selected wave
period. The profile ζs(t) is represented by the fifth-order Stokes profile (5.26)
with phase ψ = ϕ − ωt, where phase lag ϕ corresponds to the shifting of the
experimental wave profile with respect to time t = 0. Requirement (5.37) results
in two equations

∂γ

∂ϕ
= 0 and

∂γ

∂ε
= 0. (5.38)

After calculation for the profile given in Fig. 5.7, we obtain ϕ = 2.073 and
ε = 0.4096. In Fig. 5.8, a comparison of the best-fit fifth-order Stokes ex-
pansion and initial profile ζ(t) is given. In the same figure, the Eulerian and
Lagrangian accelerations corresponding to the best-fit fifth-order Stokes profile
are shown. The Eulerian acceleration is still high, equal to about −1.5g, while
the Lagrangian acceleration at the wave crest is equal to −0.326g. Such high
values of the accelerations indicate that a given wave is about to break, which
was confirmed by the very high value of global wave steepness, εg = 0.0247,
and video film.

The best fit of the fifth-order Stokes profile to the experimental profile pro-
vides an effective and reliable method to calculate the values of local wave pa-
rameters, in particular the vertical accelerations at the wave crest of a breaking
wave, only when the initial profile is almost regular. In the case of a very ir-
regular wave profile, the multi-scale methodology described in the next section
may be useful.

5.3.3.3 Two-scale methodology for short wave components riding
on the surface of long waves

As was mentioned in Section 4.3.2, Holthuijsen and Herbers (1986) observed
breaking at much lower wave steepness than that observed in laboratory tanks.
The fact that under field conditions waves break at low steepness was also
confirmed by Su and Green (1985). They showed that less steep initial waves
require a larger fetch to evolve to breaking. On the other hand, the limited
laboratory fetch would require relatively steep waves to be generated in order to
observe breaking near the end of the wave flume. The low steepness associated
with wave breaking in field conditions may be explained by superimposing
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Figure 5.8: Fifth-order Stokes profile fitted to the experimental profile ζ(t) and
corresponding accelerations.

a sequence of a relatively short gravity waves riding on the back of a longer
wave. Longuet–Higgins (1985b) pointed out that such superposition may induce
a high downwards acceleration which causes the waves to break at a lower value
of steepness than do steady waves.

In general, any experimental profile can be treated as a result of superposition
of two types of harmonics, namely bound waves and free waves. This partition is
very clearly seen when a wave train is mechanically generated in the wave flume
(Massel, 1981). The bound harmonics do not follow the dispersion relation and
all harmonics propagate with the same speed as the first basic harmonic. A fifth-
order Stokes wave profile (5.26) is a good example of the superposition of bound
wave harmonics. In contrast to bound harmonics, each free harmonic satisfies
the dispersion relation and propagates with different speed.
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We use the distinguishing between the bound and free components to cal-
culate the required accelerations at the crest of the observed wave profile,
assuming that relatively short gravity waves ride on the back of a longer wave.
The longer wave is represented by the best-fit fifth-order Stokes profile ζs(t),
while the remaining residual profile ζrez(t) = ζ(t) − ζs(t) is given by a se-
quence of short harmonics. Due to the fact that the shorter waves have phases
different to that of the longer Stokes profile, it is expected that minimum La-
grangian acceleration is not associated with the crest of the incident wave profile
ζ(t). Therefore, let us calculate the required acceleration for the profile section
tmax − Δt < t < tmax + Δt around the maximum of the longer component
ζs(tmax). The real (Lagrangian) acceleration at the surface of the longer wave
segment can be represented as follows:

a(L)
z (t) = a

(L)
l (t) = αl(t) g or a(L)

z (t)/g = αl(t), (5.39)

where a
(L)
l (t) is the Lagrangian acceleration associated with the longer wave

and the effective value of gravity becomes

g′e(t) = [1 + αl(t)] g. (5.40)

Therefore, the real acceleration at the surface of the short wave (when only one
harmonic is taken into account) is

a
(L)
s,1 = αs,1 g

′
e(t) = αs,1[1 + αl(t)] g. (5.41)

The relative real acceleration αs,1(t) for simple harmonic can be calculated from
(5.24), in which the velocity gradients are calculated from the linear theory.
Thus, the resulting total normalized real acceleration at the surface of the
short wave becomes

a(L)
z (t)/g = [a

(L)
l (t) + a

(L)
s,1 (t)]/g = αl(t) + αs,1(t)[1 + αl(t)]. (5.42)

It should be added that the effective value of gravity at the surface of the
shorter wave now becomes

g′′e (t) = [1 + αs,1(t)] g
′
e = [1 + αl(t)][1 + αs,1(t)] g. (5.43)

Suppose now that on the surface of the short wave there is an even shorter one.
Analysis similar to that given above yields

a
(L)
s,2 (t) = αs,2(t) g

′′
e = αs,2(t)[1 + αl(t)][1 + αs,1(t)] g. (5.44)

Therefore, resulting real acceleration becomes

a(L)(t) = a
(L)
l + a

(L)
s,1 + a

(L)
s,2

= {αl(t) + αs,1(t)[1 + αl(t)] + αs,2(t)[1 + αl(t)][1 + αs,1(t)]} g (5.45)

and

g′′′e (t) = [1 + αs,2(t)] g
′′
e = [1 + αl(t)][1 + αs,1(t)][1 + αs,2(t)] g. (5.46)
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The above methodology can be extended to a sequence of similar gradually
decreasing wavelengths, namely

a(L)(t) = αl(t) g + {αs,1(1 + α1) g+

αs,2(1 + αl)(1 + αs,1) g +

αs,3(1 + αl)(1 + αs,1)(1 + αs,2) g +

αs,4(1 + αl)(1 + αs,1)(1 + αs,2)(1 + αs,3) g + · · ·} . (5.47)

Similar analysis can also be applied for Eulerian acceleration.
Due to the fact that the effective value of gravity increases with the superpo-

sition of short waves, breaking waves can exist under less stringent conditions
than needed for breaking initiation (Ramberg and Griffin, 1987). Therefore, it
may be stated that the Longuet–Higgins criterion (2.14) represents an upper
bound to the actual value. In the case of random seas, wave components can
combine and instantaneously produce a high breaking wave having an associ-
ated value greater than this critical threshold.

5.3.3.4 A local Fourier approximation

In the methods discussed above, the accelerations resulting from regular wave
theory are used to approximate the unknown acceleration at the surface of ir-
regular waves. The usefulness of such an approach is strongly dependent on the
level of ‘irregularity’ of wave profile. When the irregular profile can be approx-
imated by a regular profile closely, the resulting acceleration can be estimated
with reasonable accuracy (see Section 5.3.3.2). Otherwise the calculated accel-
eration is only a crude approximation of the real one.

An alternative method to determine the accelerations at the wave surface is
to formulate the boundary value problem for wave motion and subsequently
calculate the accelerations. However, there is no existing method that can ac-
commodate the complete problem. Usually such a boundary value problem is
formulated assuming wave periodicity in time and in space.

A review of the available approximate theories to represent a complete irregu-
lar wave, from crest (through) to following crest (through) or from zero-crossing
to following zero-crossing is given by Sobey (1992). From this review it follows
that a full solution of the Laplace equation under periodic lateral boundary
conditions is numerically possible but time-consuming. However, in fact we are
not interested in wave parameters at any time within the wave period. Instead
we are interested in the wave characteristics at the wave crest where most likely
breaking can occur. This region of our interest coincides with the region of max-
imum uncertainty in wave theory predictions. Therefore, it will be more useful
to concentrate on methodologies that seek only to represent the local (close
to the wave crest) behaviour of waves. Such local methodology compromises
applicability in a global sense to achieve as exact as possible a representation
of wave motion in a local sense. In particular, in a local Fourier approxima-
tion methodology, the field equation throughout the fluid domain, the bottom
boundary condition at the bed and the free surface boundary conditions at the
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water surface should be satisfied within a time window of duration τ , which is
small in comparison with the local zero-crossing period. The description of the
local Fourier approximation method given below is mainly due to Sobey (1992).

So, let us consider the irrotational motion of a homogeneous, incompressible
and inviscid fluid under a free surface in a constant water depth h. The origin is
located at the mean water level and the vertical axis z is positive upward. The
flow can be described by a velocity potential Φ(x, z, t) satisfying the Laplace
equation with kinematic and dynamic boundary conditions at the wave surface
and at the sea bottom, i.e.

∇2Φ(x, z, t) = 0, (5.48)

w − ∂ζ

∂t
− u

∂ζ

∂x
= 0 at z = ζ(x, t), (5.49)

∂Φ

∂t
+

1

2
(u2 + w2) + gζ = 0 at z = ζ(x, t), (5.50)

∂Φ

∂z
= 0 at z = −h, (5.51)

where u and w are the horizontal and vertical components of wave velocity,
and ζ is the wave surface ordinate.

It is convenient to represent locally the unknown velocity potential Φ in the
following form

Φ(x, z, t) =
M∑
j

Aj
cosh[jk(z + h)]

cosh(jkh)
sin[j(kx− ωt)], (5.52)

in which Aj are the unknown amplitudes, k and ω are the wave number and
wave frequency, accordingly.

Usually in laboratory experiments only time series of wave oscillations at
a given point are available. To estimate the unknown spatial gradient of the
surface elevation ζ in (5.49), local phase velocity

(
ω
k

)
was applied to relate the

spatial and temporal gradients, i.e.

∂ζ

∂t
+

ω

k

∂ζ

∂x
= 0. (5.53)

Thus, the surface boundary conditions take the form

w +

(
k

ω

)
u
∂ζ

∂t
=

∂ζ

∂t

∂Φ

∂t
+

1

2

(
u2 + w2

)
+ gζ = 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (5.54)

It should be noted that the following quantities are unknown in the system
(5.48–5.51): A, k, ω and x of which there are M. For calculation, the variable
kx was chosen because the wave number k and horizontal coordinate x appear
in the equations only in the form of product kx. These unknowns are valid only
locally in a small segment of the wave profile, and Sobey (1992) suggested
that the length of the segment is typically equal to τ ≈ 0.1T . In his paper he
presented examples of practical implementation of above approach.
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5.3.4 Limiting vertical acceleration criterion in presence
of surface drift

When a wave breaks, the crest of the wave rolls forward at the phase veloc-
ity. Thus, the breaking crest contributes greatly to the mass and momentum
transport. Phillips and Banner (1974) modelled this effect and found the wind-
induced drift current to have a influence on the incipient breaking

Abr =
αg

ω2

(
1 − Cdr

C

)2

, (5.55)

where Abr is the maximum wave amplitude, C is the phase velocity, Cdr is the
velocity of the surface drift at the point where the wave profile crosses the mean
water level. Coefficient α accounts for the fact that magnitude of the downward
crest acceleration of the breaking wave is not exactly 1

2
g. After neglecting the

drift, (5.55) becomes

Abr =
αg

ω2
. (5.56)

When α = 0.5, this result agrees with Stokes’ criterion of wave breaking. Thus,
for a regular wave of amplitude A and frequency ω we have

Aω2 ∼ 1

2
g (5.57)

and the maximum amplitude Abr becomes

Abr =
g

2ω2
. (5.58)

For an irregular wave, the frequency ω is characterised by the root-mean-square

frequency ω0 =
(
ω2

)1/2
and from (5.55) we obtain

Abr =
αg

ω2
0

(
1 − Cdr

C0

)2

, (5.59)

where C0 is the characteristic phase velocity of the wave corresponding to the
characteristic frequency ω0. Velocity of the Eulerian mean surface drift Cdr is
usually fixed at one half of the friction velocity of the wind u∗, namely

Cdr ≈ 0.5u∗, (5.60)

where

u∗ =
√
C10 V10, (5.61)

in which C10 is the drag coefficient.
Precise and systematic insight into the dependence of C10 can be obtained

through the similarity approach (Massel, 1996a). However, for the purpose of
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our analysis we use the following simpler expression for C10, suggested by Wu
(1980, 1982)

C10 ≈ (a + bV10) 10−3, (5.62)

where a = 0.8 and b = 0.065. Therefore, we get

Cdr = 0.5
√
C10V10 = α2V10, (5.63)

in which α2 = 0.5
√
C10. In the wind velocity range 6 m/s < V10 < 20 m/s, the

coefficient α2 varies from 0.0172 to 0.023.
Hence (5.59) now becomes

Abr =
αg

ω2
0

(
1 − α2

V10

C0

)2

=
αg

ω2
0

(
1 − α2

ω0V10

g

)2

. (5.64)

To find the value of the coefficient α, let us use the experimental results of
Ochi and Tsai (1983) when the maximum breaking wave height for the random
mechanically generated wave train (V10 = 0) satisfied the condition

Hbr ≥ 0.020 gT 2. (5.65)

Combining (5.64) and (5.65) for V10 = 0, we obtain

0.010T 2
0 =

αg

ω2
0

(5.66)

and

α = 0.04π2 ≈ 0.395. (5.67)

The above value predicts that the downward acceleration at the wave crest is
≈ 0.395g, which is very close to the theoretical value of 0.388g given by
Longuet–Higgins (1985b).

Using this α value in (5.64) we obtain

Abr =
0.04π2g

ω2
0

(
1 − α2

V10

C0

)2

, (5.68)

or

Abr =
0.04π2g

ω2
0

(
1 − α2

V10ω0

g

)2

. (5.69)

In Table 5.5, the maximum breaking wave amplitude Abr for selected wind
velocities V10 and wind fetches X is given. The frequency ω0 is calculated under
the assumption that the wave field is described by the JONSWAP spectrum
(Hasselmann et al., 1973) and ω0 = ωp given by (3.23) and the coefficient
α2 = 0.02. In the brackets, maximum amplitudes for the non-wind case are
given. Reduction of breaking amplitude due to surface drift is of the order of
(3–10)%, and the limiting wave steepness ka equals ≈ 0.35 − 0.37.
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Table 5.5: Maximum breaking wave amplitude Abr for peak
frequency ωp

Wind velocity V10 (m/s)

X (km) 6 8 10 16

10 0.52 (0.55) 0.62 (0.67) 0.71 (0.78) 0.95 (1.08)
20 0.83 (0.88) 1.00 (1.06) 1.15 (1.24) 1.54 (1.71)
100 2.45 (2.53) 2.97 (3.08) 3.44 (3.59) 4.65 (4.94)

Phillips and Banner (1974) observed that short wind generated waves are also
suppressed when a train of long, mechanically generated waves propagate in the
wind direction. The corresponding reduction of the spectral energy density can
be as high as 60% when the steepness of long waves is (ak)l = 0.05 (Mitsuyasu,
1966). The spectral energy density can even be reduced by a factor of about 2.5
when the slope (ak)l = 0.105 (Donelan, 1987). Phillips and Banner attributed
this fact to enhanced short wave breaking due to modulation by the long wave.
Some discussion of this mechanism can be found in a paper by Wright (1976).
Recently Chen and Belcher (2000) made an attempt to explain the observed

phenomena through the analysis of the partition between long wave-induced τl

stresses and turbulent τt stresses, when

τtot = τl + τt = const = ρa u2
∗. (5.70)

The following relationship for turbulent wind stress has been obtained

τt

τtot

= 1 − τl

τtot

≈ 1

1 + 1
2
(al kl)2αp

, (5.71)

in which αp is the asymmetric pressure coefficient. Recalling some empirical
relations for the development of pure wind waves (with no long waves) under
steady wind, the ratio of energy density of wind waves with (E) and without
long waves (E0) becomes

E

E0

=
(

τt

τtot

)1.36

, (5.72)

and the corresponding ratio of the wind wave growth rates at the spectral peak
frequency is

γ(ωp)

γ0(ω0p)
=

(
τt

τtot

)0.571

. (5.73)

A higher exponent in (5.72), larger than the exponent in (5.73), yields strong
reduction in the energy density. For a long wave steepness of ≈0.1, the energy
density of wind waves is reduced by up to 40%, while the growth rate at the
peak frequency is reduced only by up to 20%. To compare the theoretical results
with the experiments of Phillips and Banner (1974) and Mitsuyasu (1966),
the value of the asymmetric pressure coefficient αp = 80 and αp = 160 was
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selected, respectively. The model showed a reasonable agreement with both
sets of laboratory data. However, the implementation of the results for ocean
waves showed that the reduction of spectral wind wave energy in the presence of
swell is very weak and therefore very difficult to observe. This is mostly because
the ratio Cl

u∗
(Cl is the phase velocity of long waves) in natural conditions is

usually larger than 25 and the asymmetry coefficient becomes small, typically
αp ≈ 1.0. This value yields a reduction in the spectral energy density of less
than 5%.

5.3.5 Probability of wave breaking based on the limiting
vertical acceleration criterion

As was shown in Section 2.2, near-limiting waves have rounded crests with
a small radius of curvature, while the vertical acceleration at the crest is smaller
than 0.5 g, but equals 0.39 g approximately. To extend this result to the case
of breaking of irregular waves, let us assume that the downward acceleration
at the crest of the wave is greater than αg for breaking to occur, i.e.∣∣∣∣∣d

2ζ

dt2

∣∣∣∣∣ > αg, (5.74)

in which α is a constant. According to Snyder et al. (1983), α varies from 0.4
to 0.52, while the laboratory experiments of Ochi and Tsai (1983) provide the
value α ≈ 0.4.

The starting point for calculation of probability of wave crests breaking in
a given wave train is the probability density function of maxima (crests) with
a downward acceleration greater than αg, which can be expressed as follows
(Cartwright and Longuet–Higgins, 1956; Massel, 1996a)

fmax (ζmax) =

∫−αg
−∞ f3

(
ζmax, 0, ζ̈

)
ζ̈dζ̈∫∞

0

∫−αg
−∞ f3

(
ζmax, 0, ζ̈

)
ζ̈dζ̈dζ

, 0 ≤ ζ ≤ ∞, (5.75)

in which

f3

(
ζmax, ζ̇, ζ̈

)
=

1

(2π)3/2
√
m2Δ̃

exp
{
− 1

2Δ̃

[
m4 ζ

2
max

+ 2m2 ζmax ζ̈ + m0 ζ̈
]
− 1

2m2

ζ̇2
}
, (5.76)

where Δ̃ = m0m4 −m2
2. The dots over variables denote differentiation in time.

Integration of (5.75) with respect to vertical acceleration ζ̈ yields the probability
density for a breaking wave crest of elevation ξ (Srokosz, 1986; Massel, 1998)

fmax(ξ; |ζ̈| > αg) =
1√
2π

{
ε exp

[
−1

2
γ2 − 1

2ε2

(
ξ −

√
1 − ε2 γ

)2
]
+

+
√

1 − ε2 ξ exp
(
−1

2
ξ2

) ∞∫
u

exp
(
−1

2
x2

)
dx

⎫⎬
⎭, (5.77)
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Eq. (3.93)
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Figure 5.9: Probability density function of wave crests that are breaking when
acceleration is greater than αg (adapted from Massel, 1996a).

in which

ξ =
ζ√
m0

; γ =
αg√
m4

; u =
1

ε

(
γ −

√
1 − ε2ξ

)
. (5.78)

The probability (5.77) is illustrated in Fig. 5.9 as a function of the non-
dimensional moment m4

α2g2 . The α and ε values were taken as 0.4 and 0.6, re-

spectively. For comparison in the same figure, the probability density (3.93)
is shown for the value of ε = 0.6. Equation (3.93) corresponds to a value of
α = 0 (m4/α

2g2 = ∞) and implies that all the crests reach breaking conditions.
The probability that a crest of any height will break is simply an integral of

probability fmax(ξ; |ζ̈| > αg), i.e.

F
(1)
br =

∫ ∞

0
fmax(ξ; |ζ̈| > αg)dξ. (5.79)

After substitution of (5.77) into (5.79) we obtain (Srokosz, 1986)

F
(1)
br = exp

(
−(αg)2

2m4

)
. (5.80)

Function F
(1)
br represents the probability that breaking will occur at a crest point

on the sea surface. It can be shown that as m4 → ∞, F
(1)
br → 1 (see Fig. 5.10).

The formula (5.80) is of practical importance for the two-dimensional case of
waves propagating in a wave flume as it determines the relative number of
breaking wave crests in the wave train. Probability F

(1)
br is independent of any

assumption on the spectral width, assuming that moment m4 exists.
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br and breaking wave coverage of

sea surface F
(2)
br as a function of m4/α

2g2.

The probability that at least one wave in a record of time duration t and
number of waves equal to N becomes unstable and starts to break is (Massel,
1998)

F
(1)
br =

1

N
≈ T

t
, (5.81)

in which T is the mean wave period. In low energy regimes all observed waves
are stable and the probability F

(1)
br is equal to zero. However, for a sufficiently

long time t, there will be some non-zero chance that the maximum wave will
become unstable and start to break. The corresponding spectral moment m4

becomes

m4 = − α2g2

2 ln(F
(1)
br )

(5.82)

and
∞∫
0

ω4S(ω)dω = − α2g2

2 ln(F
(1)
br )

, (5.83)

or
∞∫
0

ω4S(ω)dω = − α2g2

2[lnT − ln t]
. (5.84)

Equations (5.83) and (5.84) represent necessary conditions for spectral density
S(ω) to provide a moment m4 sufficient to initiate wave instability and breaking
for a given value of α.
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The probability F
(1)
br should be distinguished from that of Snyder and Kennedy

(1983), which deals with the fraction of the sea surface covered by breaking wa-
ter. According to this concept, wave breaking occurs in regions of fluid where
the surface motion (not only in the wave crest vicinity) requires the down-
ward acceleration to exceed the dynamical threshold αg. Snyder and Kennedy
(1983) found that this definition of breaking yields the percentage of sea surface
covered by whitecaps in the form

F
(2)
br = 1 − Φ

(
αg√
m4

)
, (5.85)

where Φ is the probability integral given by (3.88). For very small waves, m4 →
0 and F

(2)
br → 0. During a strong storm, m → ∞ and F

(2)
br → 1/2. This means

that half of the sea surface, where acceleration of the water elements is directed
downwards and is greater than the critical one, is covered by breaking waves –
see Fig. 5.10.

To illustrate the dependence of probability of breaking F
(1)
br on wind condi-

tions, let us substitute a value for the moment m4 following from the JONSWAP
spectrum. Hence after substituting (D.7) into (5.80) and using (3.22) we obtain
the probability of breaking in the form

F
(1)
br = exp

⎡
⎣−3.858α2

(
gX

V 2
10

)0.22
⎤
⎦. (5.86)

Function (5.86) for a few values of parameter α was illustrated in Fig. 5.11. The
fetch dependence of probability of breaking is substantial. For a given fetch X,
a small value of

(
gX
V 2
10

)
is associated with a higher wind velocity and a higher
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Figure 5.11: Probability of breaking (in %) against the non-dimensional wind
fetch.
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value of the Phillips constant β. The small value of
(
gX
V 2
10

)
also provides a high

value of ωp (or small Tp value). This finally yields a higher value of moment m4

and higher probability of breaking. In this figure, experimental data collected
by Xu et al. (2000) in the Bohai Bay were added. The close agreement between
experimental data and theoretical formula (5.86) exists for α ≈ 0.35.

The probability of breaking resulting from the downward threshold accelera-
tion principle can also be presented as a function of significant wave steepness
(4.5)

εs =
Hs

gT 2
p

. (5.87)

After substituting Hs = 4
√
m0 we obtain

εs =
4
√
m0

gT 2
p

. (5.88)

The m0 moment resulting from the JONSWAP spectrum becomes (see (D.4))

m0 = 0.3048βg2ω−4
p . (5.89)

After substituting the Phillips constant β, the resulting significant wave steep-
ness is

εs = 0.01542

(
gX

V 2
10

)−0.11

. (5.90)

Combining (5.86) and (5.90) yields

F
(1)
br = exp

[
−9.1733 · 10−4

(
α

εs

)2
]
. (5.91)

Function (5.91) for various values of constant α is presented in Fig. 5.12. These
curves represent the relationship between the probability of breaking of a wave
of any height and sea state characterised by the significant wave steepness. The
resulting probability of breaking F

(1)
br increases with the significant wave steep-

ness εs, and lower value of α produces more rapid growth of the probability F
(1)
br .

In the figure the range of significant wave steepnesses observed by Holthuijsen
and Herbers (1986), namely 0.0053 < εs < 0.0081, is given. It should be noted
that for this steepness range, the calculated probability of breaking varies from
2% to 12% when α = 0.4 is assumed. This result is in full agreement with the
Holthuijsen and Herbers observation (see Section 4.3.2).

5.4 Kinematic breaking criterion

The kinematic breaking criterion finding that the horizontal water velocity
exceeds the speed of the crest is the traditional and most natural breaking
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Figure 5.12: Dependence of probability of breaking on significant wave steep-
ness for four values of α.

criterion. The equivalence of horizontal particle velocity at the wave crest and
phase speed is a logical conjecture for a limiting periodic wave with a sharply
pointed crest. Viewing the wave from a reference frame in which the surface
profile is stationary, the flow at the tip of the crest must be a stagnation point,
and the velocity of a fluid particle at the tip must be equal to the speed of
the wave profile. However, the numerical calculations cited in Section 2.4 lead
to the conclusion that a Stokes wave becomes unstable before it reaches its
limiting form where the equivalence of phase speed and fluid particle speed
appears. The existence of crest instabilities is essentially a local property of the
wave crest. Therefore, the previously global phase speed of the wave will be
replaced by the local phase speed.

However, the relationship between the local phase speed and the fluid particle
velocities on the surface of an unstable wave is not well understood. Therefore,
the application of the kinematic criterion for irregular breaking crests, changing
their shape in time, appears to be very difficult as we need proper definitions
of particular wave parameters, local in space and time. Below we present a
methodology for determining these parameters following mainly Stansell and
MacFarlane (2002). According to the simplest approach, the phase speed of an
irregular wave is approximately equal to an equivalent linear regular wave as
follows

C =
ω

k
. (5.92)
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Application of this definition requires that the values of wave period T and
wave length L are constant over the time and space scale of any particular
wave of interest. As usually only the time series of the surface profile is known,
the wave number k should be obtained from the dispersion relation

ω2 = gk. (5.93)

Thus, the phase speed is totally defined by the wave frequency as

C =
g

ω
. (5.94)

Using the definition (5.94) for a wave that is about to break is not satisfactory
as the phase speed is identical at all points between consecutive zero-down-
crossings of the wave. On the contrary, when the wave starts to break and its
front face becomes vertical, the speed of the breaking crest is usually greater
than the speed of the trough preceding it. In other words, the phase speed of
an evolving wave is a local quantity.

A slightly improved definition of phase speed can be based on the speed of
the position of the surface elevation maximum associated with the wave crest
of interest. So we have

C(t) =
dxc(t)

dt
(5.95)

in which xc(t) denotes the x-coordinate of the surface maximum of the crest.
This phase speed is only valid at the locus of the crest maximum. Therefore,
it is instantaneous only in time, not in space.

The desired local phase speed can be obtained as a ratio of an instantaneous
frequency ω(x, t), with an instantaneous wave number k(x, t), i.e.

C(x, t) ≡ ω(x, t)

k(x, t)
. (5.96)

A convenient way to define ω(t, x) and k(x, t) is provided by the theory of
analytic functions and the technique of the Hilbert transform. This method,
described in Appendix C in detail, has been used in Section 4.6.3 to detect
waves breaking in a given wave record, when the incipient breakers are asso-
ciated with consistent instantaneous frequency variations. However, to obtain
the phase speed according to (5.96) we have to extend the definition of the
Hilbert transform for a two-dimensional wave ζ(x, t) as follows (Stansell and
MacFarlane, 2002)

ξt(x, t) = Ht[ζ(x, t)] = P

∞∫
−∞

ζ(x, t1)

π(t− t1)
dt1 (5.97)

and

ξx(x, t) = Hx[ζ(x, t)] = P

∞∫
−∞

ζ(x1, t)

π(x− x1)
dx1. (5.98)
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Now the corresponding analytical signals take the forms

ηx(x, t) = ζ(x, t) + i ξx(x, t) = Ax(x, t) exp(i θx(x, t)) (5.99)

and

ηt(x, t) = ζ(x, t) + i ξt(x, t) = At(x, t) exp(i θt(x, t)), (5.100)

where

Ax(x, t) =
√
ζ2(x, t) + ξ2

x(x, t) and θx(x, t) = arctan

(
ξx(x, t)

ζ(x, t)

)
(5.101)

and

At(x, t) =
√
ζ2(x, t) + ξ2

t (x, t) and θt(x, t) = arctan

(
ξt(x, t)

ζ(x, t)

)
. (5.102)

The local frequency ω(x, t) now becomes

ω(x, t) =
∂θt(x, t)

∂t
(5.103)

or

ω(x, t) =
1

ζ2(x, t) + ξ2
t (x, t)

[
ζ(x, t)

∂ξt(x, t)

∂t
− ξt(x, t)

∂ζ(x, t)

∂t

]
. (5.104)

As shown in Appendix C, application of the Hilbert transform for definition
of the instantaneous frequency should be done with care, particularly with
wideband spectra. For such cases, sometimes the obtained frequency becomes
zero or even negative, which should be regarded as an unphysical result. Usually
such cases are associated with maxima in ζ(x, t) occurring below, or minima
occurring above mean water level. To avoid such unwanted frequencies, Huang
et al. (1998) proposed a methodology based on so-called intrinsic mode function
(IMF) – see Appendix C.

The local wave number k(x, t) can obtained in a similar way. Thus, we have

k(x, t) =
∂θx(x, t)

∂x
(5.105)

or

k(x, t) =
1

ζ2(x, t) + ξ2
x(x, t)

[
ζ(x, t)

∂ξx(x, t)

∂x
− ξx(x, t)

∂ζ(x, t)

∂x

]
. (5.106)

Substitution (5.104) and (5.106) into (5.96) yields the phase speed as

C(x, t) =
ζ2(x, t) + ξ2

x(x, t)

ζ2(x, t) + ξ2
t (x, t)

⎧⎨
⎩ζ(x, t)∂ξt(x,t)

∂t
− ξt(x, t)

∂ζ(x,t)
∂t

ζ(x, t)∂ξx(x,t)
∂x

− ξx
∂ζ(x,t)

∂x

⎫⎬
⎭. (5.107)

It can be shown that for linear waves

ξx(x, t) = Hx[ζ(x, t)] = −ξt(x, t) = −Ht[ζ(x, t)]. (5.108)
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Substitution of the above relationship into (5.107), results in a simplified form
for phase velocity as follows:

C(x, t) =
ζ(x, t) ∂ξt(x,t)

∂t
− ξt(x, t)

∂ζ(x,t)
∂t

ξt(x, t)
∂ζ(x,t)

∂x
− ζ(x, t) ∂ξt(x,t)

∂x

. (5.109)

Stansell and MacFarlane (2002) performed experiments to test the breaking
criterion, stating that the horizontal fluid particle velocity at the surface of
a crest exceeds the local phase speed of the crest prior to breaking. For each of
the waves studied (plunging breakers, spilling breakers and nonbreaking waves)
they found that the phase speeds calculated from linear waves give poor approx-
imation to the values obtained by using any of the local phase speed definitions.
The observed ratio of u(ζ, x, t)/C(x, t) was at all times smaller than one. Thus,
the kinematic breaking criterion was not satisfied for all three definitions used
for phase speed. In particular, the criterion is far from satisfied for plunging
breakers. For spilling breakers, the criterion is closer to being satisfied. More-
over, it should be concluded that the condition u(ζ, x, t)/C(x, t) > 1 in a wave
crest, at or before the first occurrence of a vertical tangent to the forward face,
may be a sufficient condition for breaking but it is not a necessary condition.

5.5 Probability of wave breaking for

modulated second-order Stokes waves

Dawson et al. (1993) considered seas with narrow-banded frequencies and nar-
row distribution for nonlinear crest amplitudes to derive an expression for
the probability of breaking. The narrow-banded random sea can be conve-
niently represented approximately by a modulated second-order Stokes wave
with slowly varying amplitude and phase. According to Tayfun (1980, 1981),
the expression for the free-surface elevation ζ(t) at time t and at a given point
takes the form

ζ(t) = A cos(ωt + ϕ) +
k

2
A2 cos 2(ωt + ϕ), (5.110)

where A = A(t) is the modulated amplitude, ϕ = ϕ(t) is the phase, and ω
and k are the mean frequency and wave number, respectively. For breaking
waves we are particularly interested in the amplitude or envelope function for
nonlinear wave crests r(t) when

r = A +
k

2
A2 and A ≈ r − k

2
r2. (5.111)

To obtain the probability density function for the nonlinear amplitude f(r),
the following transformation of random variables is applied:

f(r) = f(A)
dA

dr

∣∣∣∣
A=f(r)

, (5.112)
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in which f(A) is the Rayleigh probability density of amplitude for a Gaussian
wave field

f(A) =
A

σ2
ζ

exp

(
− A2

2σ2
ζ

)
=

16A

H2
s

exp

(
−8

A2

H2
s

)
. (5.113)

Using (5.111) and (5.113) in (5.112), Dawson et al. (1993) obtained

f(r) = 16
r

H2
s

(
1 − 3

2

εkr

Hs

)
exp

[
−8

r2

H2
s

(
1 − εkr

Hs

)]
, (5.114)

where εk is the characteristic steepness parameter for the narrow-band sea

εk =
Hsω

2

g
= kHs, (5.115)

in which ω is the mean frequency.
In (5.114), the Rayleigh distribution is retained and the additional term rep-

resents a correction that includes explicitly a measure of the average wave
steepness defined by the parameter εk. For r = A and εk = 0, the Rayleigh
probability density f(a) for linear waves appears. On the other hand, when
r
Hs

= 2
3
ε−1
k , the function f(r) = 0. The probability of occurrence of crest eleva-

tions equal to or greater than some threshold level rth is given by

Frth = B

{
exp

[
−8

(
rth

Hs

)2 (
1 − εkrth

Hs

)]
− exp

(
−32

27

1

ε2
k

)}
, (5.116)

in which

B =

[
1 − exp

(
−32

27

1

ε2
k

)]−1

. (5.117)

The coefficient B is the normalization factor for the distribution of (5.114). It
should be noted that for εk of 0.35 or less it is essentially equal to unity and the
last term in (5.116) is also negligible for this range of values of εk. Therefore,
(5.116) simplifies as follows

Frth = exp

[
−8

(
rth

Hs

)2 (
1 − εkrth

Hs

)]
, (5.118)

Let us now express the breaking criterion in terms of the downward acceleration
threshold∣∣∣∣∣d

2ζc
dt2

∣∣∣∣∣ ≥ Aω2 = αg, (5.119)

where α is constant. As was shown above in this chapter, the experimental value
for α is equal to about 0.4 and the value of 0.5 given by Stokes may represent
an upper bound to the actual value. Using the above breaking criterion in
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Figure 5.13: Comparison of the theoretical probability of breaking with the
experimental Dawson et al. (1993) data.

terms of the critical threshold level for nonlinear crest elevation, rth = gα
ω2 , the

probability of breaking Fbr becomes (Dawson et al., 1993)

Fbr = B

{
exp

[
−8

(
α

εk

)2

(1 − α)

]
− exp

(
−32

27
ε−2
k

)}
. (5.120)

When the characteristic steepness εk is equal to 0.35 or less, probability of
breaking Fbr simplifies as follows

Fbr ≈ exp

[
−8

(
α

εk

)2

(1 − α)

]
. (5.121)

In contrast to Srokosz’s (1986) solution (5.80), result (5.121) depends indirectly
only on the zero and first spectral moments through dependence of εk on the
significant wave height and mean wave frequency. By visual inspection, the rel-
ative number of wave breaking events recorded on the wave probe in laboratory
experiments, using a JONSWAP-type sea, has been counted for various char-
acteristic wave steepnesses εk, and the value of α was estimated as 0.391. The
value of α = 0.391 is interpreted as an average condition for active breaking
rather than the condition for impending breaking.

Function (5.120) is presented in Fig. 5.13. In the same figure the experimen-
tal Dawson et al. (1993) values are shown. These data correspond to the five
cases studied. In particular, for the significant wave height Hs = 0.552m and
frequency ω = 3.08 rad/s, (εk = 0.53), 95 waves of a total 1580 waves were bro-
ken, resulting in the probability of breaking equal 6%. For the smallest waves
(Hs = 0.369 m, ω̄ = 3.91 rad/s, εk = 0.36) only seven breakers of total 1180
waves were observed, and the probability of breaking is equal 0.6%.



Chapter 6

Energy dissipation due to wave
breaking

6.1 Introduction

Despite great efforts, present knowledge of breaking wave statistics and the
related energy dissipation is fragmentary. Our ability to quantify wave break-
ing processes is inhibited by the absence of good quantitative measures of the
distribution of breaking. Numerical models developed during the last 30 years
on wind wave mechanics have been based on the transport or spectral bal-
ance equation incorporating three dynamical processes: energy input from the
wind, wave–wave interactions and dissipation by wave breaking. The first two
are distinct dynamical processes that have attracted considerable theoretical,
experimental and observational attention, and they are considered in principal
calculable. In contrast, dissipation still remains a problem. In his pioneering
work, Hasselmann (1974) proposed a dissipation source function that incor-
porated only some general physical constraints together with many empirical
data modified over the years. He argued that although wave breaking is locally
a highly nonlinear process, it is in general weak in mean and the spectral dis-
sipation should be a quasi-linear function of S(ω) with a damping coefficient
proportional to the square of the frequency ω. Another approach taken by
Kitaigorodskii (1983, 1992), Zakharov and Zaslavskii (1982, 1983) and others,
was based on the weak turbulence theory of wind waves. It was assumed that
energy input from the wind occurs to the largest waves and that dissipation is
concentrated at the smallest scales. This theory provides spectral shapes close
to those observed, except for shapes over frequencies that are large compared
with those of the spectral peak. Komen et al. (1984) revised the Hasselmann
solution and developed an expression for the damping coefficient by numerical
simulations on the form of this coefficient to reproduce the characteristics of
the Pierson–Moskowitz spectrum in the high frequency range.

Phillips (1985) proposed the equilibrium range theory for wind-generated
gravity waves in which all three processes are comparable. Under steady wind
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conditions, a quasi-equilibrium develops at high frequencies. The net energy
supplied by the other processes determines the number density and distribu-
tion characteristics of the breaking events. Phillips based his theory on Toba’s
spectrum form S(ω) ≈ u∗gω

−4 and rates of momentum and energy loss from
the wave field by breaking. The resulting amount of energy lost was found to be
proportional to the integral of the function ≈ ω11S3(ω) over the high frequency
range.

The physical arguments suggest that the loss of energy during breaking should
be equal to the difference between the square of the current wave amplitude
and square of the limiting wave amplitude which corresponds to the stable
condition after breaking. This rationale is behind the Longuet–Higgins (1969)
solution for the energy loss during wave breaking for a very narrow frequency
spectrum. In Section 6.3 this approach was extended to the two-dimensional
probability density function f(A,ω).

6.2 Experiments on the rates of energy

dissipation in breaking waves

The experiments on wave breaking reported in Chapter 4 provide several esti-
mates of rates of energy dissipation due to breaking. In particular, Bonmarin
(1989) in his measurements of breaking shows the wavelength decreasing by
approximately 20%, the wave height decreasing by approximately 50%, and
the steepness of the forward face of the wave decreasing by approximately 75%
during breaking. Rapp and Melville (1990) concluded that more than 90% of
the total energy lost from the wave field is dissipated within four wave periods
after the inception of breaking, and the active breaking itself lasted for a time
comparable to the wave period.

Here we give some additional experimental data on the rate of energy dis-
sipation in breaking waves obtained from a different perspective. Thus, let us
consider a section of length L of the crest of one wave. The rate of energy
loss associated with this section of the simplified two-dimensional wave field is
ELNbr, where Nbr is the number of breaking waves per wave given by (4.7).
If L0 is the wavelength of the dominant wave, the rate of energy loss per unit
surface area becomes (Thorpe, 1993)

Edissrate =
ELNbr

LL0

=
ENbr

L0

= (1.9 ± 1.1) × 10−4 ρw

(
V10

C0

)3 C5
br

gL0

(6.1)

or

Edissrate = (3.0 ± 1.8) × 10−5 ρw

(
Cbr

C0

)5

V 3
10 [J/m2 s], (6.2)

in which Cbr is the phase speed of the breaking waves measured relative to
the underlying flow. The characteristic phase speed of the breaking waves Cbr

has been estimated in a few laboratory experiments. Oakey and Elliot (1982)
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concluded that if the energy lost from a breaking wave supports the turbulence
in the mixed layer, Cbr/C = 0.25. A similar value was obtained by Thorpe
(1993). If we use the estimates of dissipation rates for spilling unsteady waves,
there is a surface layer an order of magnitude shallower than the mixed layer
in which the dissipation rates are one to two orders of magnitude higher and
Cbr/C ≈ 0.40 − 0.63.

Duncan (1981) found that the velocity of the breaking front provides a useful
tool to define the energy loss from the waves to turbulence per unit length of
front. In a continuing active breaker in deep water, the breaking zone extends
down the forward face of the wave over a fixed fraction of its amplitude and
its shape is geometrically similar for waves of different scales, which implies
that the breaking waves themselves are geometrically similar. In particular,
the wavelength, the crest-to-trough amplitude and the vertical extent of the
breaking region were all proportional to the phase-speed squared, i.e.

Lbr = 5.765
C2

br

g
, (6.3)

abr = 0.6
C2

br

g
, (6.4)

L sin θ =
abr

1.6
= 0.375

C2
br

g
. (6.5)

It should be noted that the inclination of a breaking wave’s forward face θ
ranges from 10 to 14.7◦. The breaking region thickness, divided by its length,
was found to be the same for all conditions, and the cross-sectional area of the
breaking zone was proportional to the square of the local wavelength, or to(

C2
br

g

)2

.

The measurements on breaking waves produced by towing a submerged, two-
dimensional hydrofoil showed that the breaking region produced a shearing
force along the forward face of the wave. The force was equal to the component
of the region’s weight in the direction of the stress. The weight of the breaking
zone per unit length of the front exerts a tangential force per unit length which

is proportional to
C4

br

g
. This force acts on the incoming stream of the speed

of Cbr. Therefore, the rate of energy loss per unit length of front becomes

bρw

(
C5

br

g

)
, where b is a numerical constant. In particular Duncan (1981) found

Edissrate ∼ 0.009ρw
C5

br

g sin θ
[J/m s], (6.6)

where θ is the angle of inclination of the breaking region to the horizontal. The
inclination θ of the breaking region was in the range 12.5±2.5◦. Therefore (6.6)
can be rewritten as

Edissrate = (0.044 ± 0.008)
ρwC

5
br

g
. (6.7)
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Moreover, Duncan (1983) in his measurements of 1983 showed that the inclina-
tion of the forward face of the breaking wave changes significantly with changes
in the depth of submergence of the hydrofoil and the dissipation rate per unit
length becomes

Edissrate = 0.0075
ρwC

5
br

g sin θ
. (6.8)

Melville and Matusov (2002) by their measurements of wave breaking using
aerial imaging found that the distribution of the length of a breaking front
per unit area of sea surface is proportional to the cube of the wind speed and
decays exponentially with Cbr and proportionality constant b is in the range
O(10−3 − 10−2), being dependent on the steepness of the waves. They argue
that breaking can be measured by remote techniques, and that the distribution
of the average length of a breaking crest is directly relevant for ocean-surface
processes. In particular, wave dissipation is proportional to V 3

10 and dominated
by intermediate scale waves. On the other hand, the fraction of the ocean mixed
by breaking waves per unit time, being also proportional to V 3

10, is dominated
by the shorter breaking waves.

In general, surface waves are characterized by an amplitude as well as a phase
speed and dispersion relationship. Therefore, the rate of dissipation would not
depend only on the phase speed of the wave. To get some insight into the rate of
dissipation due to unsteady breaking, Rapp and Melville (1990) examined the
relationship between the total energy dissipated and an integral slope parame-
ter. Their dye measurements (see Section 4.4.2) showed that there is a layer of
enhanced dissipation at the surface having a thickness D of the order of wave
height and a length comparable to the wavelength L and the dissipation rate
per unit length of crest Edissrate is given by

Edissrate ≈
ρwũ

3

l

DL

2
, (6.9)

in which l is some integral length scale. Scaling all the lengths and velocities
with the wave variables ũ = χCbr and L = 2πC2

g
, (6.9) can be rewritten as

follows (Melville, 1994)

Edissrate ≈
ρwπ

g
(χCbr)

3 C2
br. (6.10)

Rapp and Melville (1990) estimated a numerical constant χ to be in the range
0.1–0.17. Therefore, the dissipation rate per unit length of crest becomes

Edissrate ≈ (3.2 × 10−3 ÷ 1.6 × 10−2)
ρwC

5
br

g
, χ = 0.1, 0.17 (6.11)

Also Phillips et al. (2001) suggested using the velocity of breaking waves as
a measure of breaking scale. The speed of breaking events as determined by
Ding and Farmer (1994) was in the range 0.4–0.7 of the wind speed. As in a fully
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developed sea the dominant wave phase speed C is close to the wind speed, it
means that the mean breaking event speed Cbr is considerably smaller than C.
This result implies the importance of higher frequency components which are
those components propagating at lower speed than the dominant waves. They
reported the results of a set of X-band radar measurements, backscattered from
the sea surface with very high spatial and temporal resolution when radar cross
sections were of the order of 1m2. They found that the observed fastest breaking
events had line-of-sight speeds of about 0.6 of the dominant wave speed. Phillips
et al. (2001) determined the distribution of wave energy dissipation by breaking
and momentum flux to the water by breaking waves. In particular, using the
experimental data on the average shape of broken area, the distribution Λ(C)
of the length of breaking front per unit area of surface with respect to speed was
determined. The analysis was based on the assumption that a single breaking
event, being initiated at some point on the wave crest, spreads laterally so
that its average length is of an order of half its ultimate length, which is equal
to the width of the broken patch. According to Thorpe (1993), the expected
ultimate length is about 0.7Cτ , where C is the speed of wave crest and τ is
duration. Therefore, the expected length of breaking front to be observed at
an arbitrary instant is αCτ(τ/T ), in which T is the total observation time and
α is the numerical constant. If we now consider all events in the speed range
C,C + ΔC, then the expected total length of breaking fronts at any instant
of the observation time period becomes αΣCτ(τ/T ), where the summation is
over all events in that speed interval. Moreover, if A represents the swath area
of the sea surface under observation, then the average length of breaking front
per unit area per unit speed interval is (Phillips et al., 2001)

Λ(C) ≈ αC(Στ 2)/(ATΔC). (6.12)

This function plays an important role in the statistical mechanics of breaking
waves controlling the generation of turbulence in the upper mixed layer, the
momentum flux from waves to the upper layer and the rate of exchange of
gases across the air–sea interface. The function Λ(C) has been calculated by
Phillips et al. (2001) from the measured statistics of breaking events with use of
(6.12). They showed that faster, generally larger breaking events make smaller
contributions to the total length of a breaking front than do slower, smaller
events. This is due to the increased frequency of the latter. However, the most
interesting result of the Phillips et al. experiment is related to the distribution
of wave energy lost by wave breaking. As was shown above, the rate of energy
loss per unit length of breaking front is proportional to bρw

C5

g
. Making use of

the data on Λ(C), Phillips et al. (2001) argued that the distribution of wave
energy dissipation by breaking can be expressed as follows:

Ediss

b
≈ αρw

C5

g
Λ(C). (6.13)

The resulting distribution is broadbanded over the range of event speeds above
about 3m/s. Therefore, there is no support for the basic assumption of the
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weak turbulence theory of wind waves that the energy dissipation from waves
is concentrated at the smallest scales.

Wave energy at a given frequency, reduced due to wave breaking, may also
change because of the input from wind and possible energy transfer to or from
waves of different frequencies. These facts complicate the direct measurements
of energy dissipation due to wave breaking in nature. On the other hand, the
measurements in the laboratory flumes provide an alternative to get some in-
sights into the energy lost during wave breaking. When no wind is present
in the wave flume and the energy transfer among different wave frequencies
is negligible due to the small length scale of the wave breaking, the differ-
ences in energy before and after an isolated breaker can be viewed as the
dissipation due to wave breaking. Rapp and Melville (1990) by comparing the
spectra measured before and after an isolated breaker found that major en-
ergy loss occurs at the ‘second harmonic’ band and the low-frequency waves
propagate through breaking without significant loss of energy. They reported
that even though the wave was not breaking, the spectra at different loca-
tions changed significantly at high and low frequencies. Melville (1996) pointed
out that spectra at low frequency displayed a slight increase downstream of
the breaking region. He suggested that this fact may be a result of change
in the gradients of the radiation stress accompanying breaking. This means
that breaking is not just a sink of wave energy, but can also be a source for
waves of low frequencies. A similar conclusion has been obtained by Kway et al.
(1998).

Meza et al. (2000) conducted laboratory studies to quantify the energy dis-
sipation as a function of wave frequency, caused by various types of isolated
breakers. They found that significant changes in both high- and low-frequency
bands of the wave spectra, measured at different locations along a wave staffs,
even in the absence of wave breaking, are possibly due to the presence of bound-
wave components which interfere with the changes due to wave breaking in the
same frequency bands. Due to the nonlinear nature of surface waves, the free-
wave components interact among themselves. In particular, when relatively
low-frequency free-wave components overtake relatively high-frequency free-
wave components near the location of breaking, the interaction among them
produces bound-wave components and energy at very high and low-frequency
bands significantly increases just before breaking (Rapp and Melville, 1990;
Kway et al., 1998). However, when the low-frequency free-wave components
surpass the high-frequency components downstream of breaking, the interac-
tions between free-wave components disappear and so do the corresponding
bound-wave components. Thus, occurrence and disappearance of bound-wave
components along the wave flume can make the spectra at different locations
quite different. Moreover, because the phase velocities of a free-wave and bound-
wave component of the same frequency are different, the resultant amplitude
and spectra change from one location to another.

In other words, the presence of bound-wave energy contaminates the measure-
ments of energy loss and gain due to wave breaking through a direct comparison
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of the wave spectra measured before and after breaking. Therefore it is desirable
to decouple the contributions of the bound-wave components from the mea-
sured elevation. Meza et al. decoupled the bound-wave components using the
hybrid wave model developed by Zhang et al. (1996). In the absence of bound-
wave components, the free-wave spectra of steep wave trains become almost
steady when no wave breaking appears. The dependence of energy dissipation
on wave frequency can now be more accurately determined simply by compar-
ing the free-wave amplitude spectra before and after an isolated breaker. The
authors found that wave breaking in the irregular wave train mainly consumes
energy of frequencies significantly higher than the spectral peak frequency. The
wave components of frequencies close to the spectral peak frequency lose or gain
an insignificant amount of energy during breaking, although their energy is the
greatest among all wave components. Wave components of frequencies below
the spectral peak gain a small portion of energy lost by the wave components
of high frequencies.

Ding and Farmer (1994) reported the statistics of breaking surface waves in
the open ocean obtained from observations during the Surface Wave Processes
Program with a novel acoustic instrument tracking individual breaking events.
The observations confirm the fact that wave breaking occurs at multiple scales.
The mean breaking event speed Cbr is found to be in the order of 45%–75%
of the phase speed of the dominant wind wave due to the contribution of
breaking of small scale waves. Their data were also used to obtain statistical
insights into breaking event density, duration and velocity. Event density is
defined here as the number of events per unit time, and experiments showed
that the event density lies in the range 0.2 ÷ 1.1 (×10−3m−2/s) for these data.
Moreover, the dominant breaking wave scale increases with increasing wind,
resulting in a decrease in the total number of breaking waves detected per unit
area. However, the data show no significant dependence on wave age, possibly
because the sea states were essentially fully developed.

To quantify the whitecap coverage, Ding and Farmer introduced so-called
active acoustic coverage, the fraction of the sea surface swept by active acoustic
events during their lifetime. The mean area swept by each individual event is
given by LDLc ≈ 2L̄2

D, in which LD is the distance a breaking event travels and
Lc is the cross dimension ≈ 2LD. Therefore, the active acoustic coverage AC
becomes

AC =
2L̄2

D

l̄2s
, (6.14)

where l̄s is the mean spacing of the breaking events. Ding and Farmer found
that AC is a function of the inverse fourth moment m−1

4 of the frequency spec-
trum. This dependence appears to agree closely with the Snyder and Kennedy
(1983) model when we choose the proportionality coefficient α to the gravity
acceleration to be 0.082. However, this value is extremely low compared with
that found in the laboratory by Ochi and Tsai (0.40) and that of Snyder et al.
(1983) when 0.25 < α < 0.40. The low value of α is due to the sensitivity of
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the acoustic system to detection of breaking events that do not show up for
the same duration, and due to underestimation of moment m4.

The rate of turbulent kinetic energy dissipation Edissrate in the upper oceanic
layers is of great importance for mixing of near surface waters, mass transfer
across the interface, dispersal of buoyant pollutants and the thermocline devel-
opment. Measurements of dissipation close to the surface obtained in a large
lake, under conditions of strong wind, were reported by Terray et al. (1996).
They found that the conventional estimates of the dissipation rate of turbulent
kinetic energy, based on the wall layer analogy, i.e. u3

∗
κz

, where u∗ is the friction
velocity in the water, z is the depth, and κ is von Kármán constant 0.4, are too
small by an order of magnitude in moderate and strong winds. Instead they
propose a wave-dependent scaling of dissipation in the form

EdissrateHs

u2
∗C

= 0.3
(

z

Hs

)−2

, (6.15)

in which Hs is the significant wave height and C is the effective phase speed
related to wind input in terms of this speed and the wind stress τa, namely

τaC

ρw

≈ u2
∗C. (6.16)

This scaling confirms that energy flux from the wind depends on the wave
spectrum and its development.

6.3 Theoretical models of wave energy

dissipation

As we showed in the preceding chapters, direct measurements of the total dis-
sipation due to wave breaking in the field are not yet feasible. Also there have
been several attempts to explore the wave breaking process in the laboratory
tests and by mathematical modelling. In Chapter 2, theoretical and numerical
works were discussed. However, those attempts were focused on the breaking
of a single wave. If we are dealing with a random wave field, the energy dis-
sipation potentially would be estimated from the energy budget expressed in
the wind-wave evolution models. In this section, three different approximate
methods are considered, namely: equilibrium range model, whitecap model for
fully developed wind sea and probability model.

6.3.1 Equilibrium range model

In this approach, the fundamental assumption is that the whitecapping pro-
cess is essentially local in the wave number space. The wave breaking process
is highly nonlinear in wave steepness, but this nonlinearity has no effect un-
til some limiting steepness is achieved. At that time waves become unstable
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and break, producing a whitecap and inducing a substantial energy loss. For
a wave spectrum which is smooth and continuous, the breaking energy loss
may be associated at a particular wave number or at a range of wave numbers
surrounding it. The evolution of the surface wave field can be represented in
the form of an energy balance equation as follows (Phillips, 1985)

ρwg

(
∂S

∂t
+ Cg

∂S

∂x

)
= Sw + Snl − Sdiss. (6.17)

The components with wave numbers, large compared with that of the spectral
peak, approach a state of statistical equilibrium determined by a balance among
the wave-wave interactions, action input from the wind and energy loss by
breaking, i.e.

Sw + Snl − Sdiss = 0, (6.18)

where Sw is the rate of spectral input from the wind, Snl denotes the net
spectral flux of energy action through the wave numbers �k by resonant wave-
wave interactions and Sdiss is the energy loss by breaking. With an assumption
that all of these processes are important in the equilibrium range, and that the
wave number and wave frequency spectra take the forms suggested by Toba
(1973), we obtain (Hanson and Phillips, 1999)

Ψ(�k) = β1(cos Θ)s u∗g
−1/2k−7/2, (6.19)

and

S(ω) = α1gu∗ω
−4 = 4β1I(s)u∗gω

−4, (6.20)

in which u∗ is the friction velocity in the air, I(s) is a spreading function given
by

I(s) =

π/2∫
−π/2

(cos Θ)sdΘ = B
(

1

2
,
1

2
(s + 1)

)
, (6.21)

in which B(m,n) is the beta function (Abramowitz and Stegun, 1975), the
Θ is the angle between the wave number and the wind and value of s may
be deduced from observational data. The numerical constant β1 is related to
Toba’s constant α1 and I(s) as follows

β1 =
α1

4I(s)
. (6.22)

Phillips (1985) argued that the lower and upper bounds of the directional
spreading parameter s are 0.5 and 2, respectively, while the α1 value ranged
from 0.06 to 0.11 in experimental data reviewed by Phillips. The above as-
sumptions result in the spectral energy dissipation term in (6.17) as follows

Sdiss(ω) =
γ1I(3s)ρw

16[I(s)]3g3
ω11 S3(ω) [J/m2]. (6.23)
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Integration of the above equation provides the total energy dissipation rate as
(Hanson and Phillips, 1999)

Edissrate =
γ1I(3s)ρw

16[I(s)]3g3

∞∫
ωp

ω11 S3(ω)dω [J/m2s], (6.24)

in which

γ1 ≈
0.04

β2
1

= 0.04

(
α1

4I(s)

)−2

. (6.25)

It should be noted that as the directional distributions are now routinely mea-
sured, the terms I(s) and I(3s) could be replaced with observational data. The
integral in (6.24) will converge as long as the spectral slope of S(ω) is steeper
than ω−4 as ω → ∞. Hence when we apply the equilibrium range spectrum
form (6.20), we obtain the total energy dissipation rate expressed in terms of
wind and wave parameters (Hanson and Phillips, 1999)

Edissrate = 4γ1β
3
1I(3s)ρwu

3
∗

∞∫
ωp

ω−1dω [J/m2s]. (6.26)

The lower limit of the equilibrium range was assumed to be the spectral peak
frequency. In order to avoid the infinite value of the above integral, we introduce
the upper frequency limit ωu. Then, integrating in (6.26) yields

Edissrate = 4γ1 β
3
1I(3s)ρw u3

∗ ln

(
ωu

ωp

)
[J/m2s] (6.27)

As the dynamic processes controlling wave breaking are specific to gravity
waves, the influence of surface tension should be neglected and frequency ω
should be restricted to the range ωu �

(
4g3

γ

)
, where γ is the ratio of surface

tension to water density. However, Phillips (1985) argued that this upper limit
should be determined by the presence of wind drift which suppresses the for-
mation of high frequency waves travelling at the same velocity. Using this argu-
ment, the upper limit of frequency becomes ωu =

√
r1

g
u∗

, where r1 is a constant
of order one. The total rate of wave energy dissipation is controlled largely by
the coefficient γ1 β

3
1I(3s). Felizardo and Melville (1995) indicate that the value

of this coefficient is in the range (3.7 − 8.0) × 10−4.
In Fig. 6.1, the total energy dissipation rate, according to (6.27), is shown

for wind speed 2 < V10 < 20 m/s and two wind fetches X = 20 and 100 km.
For calculation the following values of parameters were used: s = 2, α1 = 0.08,
γ1 β

3
1I(3s) = 0.000498 and r = 0.16. The set of two lines shows almost linear

dependence of the total dissipation rate on the wind speed in the log–log scales
scheme. The influence of the wind fetches is very weak and the rate is almost
identical for the chosen fetches.
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Figure 6.1: Dependence of the total dissipation rate Edissrate on the wind speeds
and wind fetches according to Phillips’ (1985) model. Toba’s type spectrum
assumed.

Hanson and Phillips (1999) estimated the total rate of wave energy dissipation
in the equilibrium range directional spectra in the Gulf of Alaska and found
that these estimates were fairly well correlated with the wind speed as follows

Edissrate = 4.28 × 10−5 V 3.74
10 , (6.28)

with a correlation coefficient of r = 0.82. The function (6.28) was added in
Fig. 6.1 for comparison showing a reasonably good agreement. However, Han-
son and Phillips stressed that wind history, expressed in terms of wind speed
acceleration and attenuation, can significantly influence wind sea growth and
its substantial dissipation.

Additionally in Fig. 6.2 the total energy dissipation rate resulting from (6.24)
is shown for the JONSWAP spectrum (3.19) for wind fetches 5 < X < 300 km
and for four wind speeds V10 = 5, 10, 15, 20 m/s. The directional spreading was
assumed to be proportional to cos2Θ, while parameters α1 = 0.08 and γ1 = 248.
In the log–log reference scheme, the dependence of total energy dissipation rate
on the wind fetch for a given wind speed is almost linear.

The total energy dissipation rate for the Donelan et al. (1985) spectrum
(3.24), which exhibits ω−4 behaviour at high frequencies, is shown in Fig. 6.3
for comparison. It should be noted that all spectra provide similar energy dis-
sipation rates and exhibit similar dependence on wind speed.

Let us now consider the energy balance equation for a stationary wave field
characterized by a one-dimensional spectrum (Komen et al., 1994)

ρwgCg
∂S

∂x
= Sw + Snl − Sdiss. (6.29)
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Figure 6.2: Dependence of the total dissipation rate Edissrate on wind speeds
and wind fetches according to Phillips (1985) model. JONSWAP spectrum
assumed.

In particular we assume that waves are generated by wind in some restricted
water basin or by a wave-maker in a wave tank, and subsequently propagate
outside. The energy generation factor is absent and the nonlinear interactions
between wave components are weak when dimensions of the water basin are lim-
ited or when the time of wave propagation is restricted. Therefore, the energy
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Figure 6.3: Dependence of the total dissipation rate Edissrate on wind speeds
and wind fetches according to Phillips (1985) model. Donelan et al. (1985)
spectrum assumed.
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balance in the region outside the generation area can be further simplified as
follows:

ρgCg
∂S

∂x
= −Sdiss(ω). (6.30)

Thus, the spectral energy density gradient takes the form

ρg
dS(ω)

dx
= −2ωp

g
Sdiss(ω). (6.31)

Substitution of (6.23) in (6.31) and integration against ω, yields the linear
energy attenuation with a distance x

E(x) = E0 − bx = E0

(
1 − b

E0

x

)
, (6.32)

in which E0 is the wave energy at point x = 0 and b is the energy attenuation
gradient given as

b =
γ1I(3s)ρwωp

8[I(s)]3g4

ωu∫
ωp

ω11 S3(ω)dω (6.33)

Equation (6.32) indicates that the energy attenuation along the x axis due to
breaking depends totally on the wave parameters at the initial point x = 0. For
illustration, the energy attenuation gradient, b, for wind fetch X = 50 km and
the wind speed in the range 2 < V10 < 20 m/s for two different wave spectra,
namely the JONSWAP and Toba’s type spectra, is shown in Fig. 6.4. In Fig. 6.5,
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Figure 6.4: Energy attenuation gradient versus wind speed for the JONSWAP
and Toba’s type spectra.
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Figure 6.5: Comparison of experimental wave energy attenuation with theo-
retical solutions (6.32) and (6.37).

the comparison of function (6.32) with experimental data collected during the
Ocean Basin Experiment (Massel et al., 2001) is shown. Test 6500 with the
following parameters at the initial wave staff 1 (see Fig. 4.4) was chosen: Hs =
0.23,ωp = 4.08 rad/s and E0 = 34.09 J/m2. Mechanically generated waves
corresponded closely to the JONSWAP spectrum with peak enhancement γ =
7.0, and directional energy spreading was characterised by function cos2Θ. The
approximate solution, exhibiting linear wave energy attenuation, agrees well
with the observed energy attenuation. However, it should be noted that the
approximate solution (6.32) is a local solution when energy attenuation depends
on the energy E0 at some reference point. Still, it can serve as a predictive tool
for energy distribution in the breaking wave field of the spatial scale, say of
a dozen wavelengths, corresponding to the spectral peak frequency.

Let us now assume that the energy attenuation depends on the local frequency
spectrum which due to energy dissipation is a function of distance x too. Using
(6.23), equation (6.31) takes the form

∂S(ω;x)

∂x
+ b1S

3(ω;x) = 0, (6.34)

in which

b1 =
γ1I(3s)ωpω

11

8[I(s)]3g5
. (6.35)

Solution of (6.34) becomes

S(ω;x) =
S(ω;x0)√

1 + 2b1(x− x0)S2(ω;x0)
, (6.36)
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where S(ω;x0) is the known spectrum at initial location x = x0. Integration of
(6.36) against frequency ω provides the wave energy dependence on distance x
as follows

E(x) = ρwg
∫

S(ω;x)dω (6.37)

Function (6.37) was included in Fig. 6.5 for comparison. The solution (6.37)
results in nonlinear energy attenuation with distance x. However, when compar-
ing the equilibrium model with experimental data it should be noted that there
is some uncertainty about proper selection of parameters α1, β1 and γ1 which
correspond to the frequency spectrum with ω−4 dependence in the equilibrium
range.

6.3.2 Whitecap model of wave energy dissipation for
fully developed wind-sea spectrum

The whitecap model, originally developed by Hasselmann (1974), was used in
the wave prediction model WAM (Komen et al., 1994). The starting point of the
model is the assumption that the space and time scales of the whitecapping
process are small compared with the characteristic wavelengths and periods
of the waves, which implies that the whitecapping process is highly local in
physical space and time. Moreover, from Duncan’s (1981) experiments (see
Chapter 4) it follows that the whitecaps and underlying waves are in geometric
similarity. This similarity implies that a combination of the pressure exerted by
the whitecap on the surface of the waves and induced energy decay as well as the
attenuation of short waves by passage of large whitecaps yields the dissipation
function in the form (Komen et al., 1984)

Sdiss = Cdissρg

(
α̂

α̂PM

)m (
ω

ω

)n

ωS(ω), (6.38)

in which Cdiss, m, and n are fitting parameters, ω is the mean radian frequency
and α̂/α̂PM is a measure of the overall steepness of the wave field. It should be
noted that for m = 0 and n = 1, the expression (6.38) agrees with Hasselmann’s
(1974) result.

Komen et al. (1984) showed that quasi-stationary solutions of the energy
transfer equation can exist, provided the dissipation parameters lie in a certain
region of the parameters’ space. In particular, they suggested the following
values: Cdiss = 3.33 × 10−5 and m = n = 2. Additionally, two functions α̂ and
α̂PM in (6.38) were assumed to have the forms

α̂PM = 4.57 × 10−3, α̂ =
m0 ω

4

g2
. (6.39)

After substituting (6.39) into (6.38) we obtain

Sdiss = 1.59ρg

(
m0ω

4

g2

)2 (
m0

m1

)
ω2S(ω) [J/m2] (6.40)
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or

Sdiss = 1.59ρg

(
m4

1

g2m3
0

)2 (
m0

m1

)
ω2S(ω). (6.41)

Therefore, the energy dissipation rate due to wave breaking can be expressed
as follows

Edissrate = ρg
∫

Sdiss(ω) dω [J/m2 s]. (6.42)

Substitution of (6.41) into (6.42) and integration gives

Edissrate = 1.59ρg

(
m4

1

g2m3
0

)2 (
m0m2

m1

)
[J/m2 s] (6.43)

or

Edissrate = 1.59ρg

(
m0ω

4

g2

)2 (
m0m2

m1

)
. (6.44)

Using that m0 =
H2

s

16
and ε =

Hs

gT
2 , equation (6.44) can be rewritten as follows

Edissrate = 1.59π8ρg ε4
(
m0m2

m1

)
. (6.45)

Applying the definition for the spectral width parameter ν (see (3.7)), we can
present the above relationship as

Edissrate = 1.59ρg(ν2 + 1)m1

(
m4

1

g2m3
0

)2

. (6.46)

It should be noted that for extremely narrow spectra, when ν → 0 and S(ω) ≈
σ2
ζδ(ω−ωp), in which δ( ) is Dirac’s delta function and σ2

ζ is the variance of the
spectrum, (6.46) becomes

Edissrate = 1.59ρgm1

(
m4

1

g2m3
0

)2

. (6.47)

On the other hand for storm waves, the value of ν is usually of the order of
0.3 ÷ 0.4. Thus, (6.46) can be presented in the form

Edissrate ≈ (1.73 ÷ 1.84)ρg m1

(
m4

1

g2m3
0

)2

. (6.48)

In Fig. 6.6, the total dissipation rate resulting from (6.44) is shown for wind
speeds 5 < V10 < 20 m/s and for wind fetch in the range 5 < X < 300 km,
when the wave field is represented by the JONSWAP spectrum. Comparison of
this figure with Fig. 6.2 showed that Komen et al.’s (1984) approach provides
a smaller dissipation rate than that resulting from Phillips’ (1985) model.
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Figure 6.6: Dependence of the total dissipation rate Edissrate on wind speeds
and wind fetches according to Komen et al. (1984) model. JONSWAP spectrum
assumed.

Komen et al.’s (1984) formulation can also be applied for prediction of energy
dissipation of waves escaping from generation area. Using the arguments given
above, we obtain

∂S(ω;x)

∂x
+ b2S(ω;x) = 0, (6.49)

in which

b2 =
3.18ωpω

2

gω

(
m0ω

4

g2

)2

. (6.50)

Solution of (6.49) becomes

S(ω;x) = S(ω;x0) exp[−b2(x− x0)], (6.51)

where S(ω;x0) is the known spectrum at initial location x = x0. From equation
(6.50) it follows that the energy attenuation gradient b2 depends on the mean
wave steepness ε and on the peak frequency ω.

Integration of (6.51) against frequency ω provides the wave energy depen-
dence on distance x as follows

E(x) = ρg
∫

S(ω;x)dω. (6.52)

6.3.3 Probability model of wave energy dissipation for
very narrow frequency spectrum

This model is a consequence of the philosophy of the limiting wave amplitude
which is reached close before breaking. The particular wave breaks in such
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a way that its amplitude decreases from the present A value to Abr value,
representing the critical saturation level. For a narrow frequency spectrum,
when all energy is concentrated around one frequency ω = ωp, the distribution
of wave amplitude A is the Rayleigh distribution, namely

f(A) =
2A

A2
rms

exp

[
− A2

A2
rms

]
, (6.53)

in which Arms is the root-mean-square amplitude. Therefore, the current wave
energy density is

E =
1

2
ρgA2

rms = ρg
∫ ∞

0
S(ω)dω. (6.54)

Let us assume now that all waves of amplitude greater than the critical am-
plitude Abr will break. Therefore, the mean local loss of energy per wave cycle
and per unit horizontal area becomes (Longuet–Higgins, 1969)

Ediss =
∫ ∞

Abr

1

2
ρg

(
A2 − A2

br

)
f(A)dA =

1

2
ρgA2

rms exp

(
− A2

br

A2
rms

)
. (6.55)

The integral (6.55) is schematically presented in Fig. 6.7 in which Ediss rep-
resents energy dissipated and converted into turbulence, locally around the sea
surface point, at which the amplitudes Arms and Abr are known. The limiting
wave amplitude Abr can be determined from the threshold vertical acceleration
at the crest of breaking waves. Using (5.64) and neglecting the influence of
surface drift we obtain

Abr =
αg

ω2
0

, (6.56)

Ediss

Abr0 A

Abr
2

A2 A2
br

-

A
2

f(A) A
2

f(A)

Figure 6.7: Schematic representation of energy dissipation for narrow
spectrum.
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in which ω0 is the root-mean-square frequency. Therefore, if the frequency spec-
trum S(ω) is known, we have

ω2
0 =

∫∞
0 ω2S(ω)dω∫∞

0 S(ω)dω
=

m2

m0

. (6.57)

Let us express the root-mean-square amplitude Arms in the form

Arms =
√

2σζ =
√

2m0. (6.58)

After substituting (6.56), (6.57) and (6.58) into (6.55), we obtain the mean local
loss of energy per wave cycle and per unit horizontal area in the form

Ediss = ρgm0 exp

(
− b3
ρgm0

)
, (6.59)

in which

b3 =
1

2
ρg

(
αg

ω2
0

)2

. (6.60)

Let us now consider the energy dissipation along the main wave direction.
Equation (6.59) provides the local energy dissipated per wave cycle and per
unit horizontal area. However, as during one wave cycle the wave moves a
distance of one wavelength L0 = 2πg

ω2 , the loss of energy per unit distance along
the wave propagation (6.59) becomes

Edissrate =
ω2

2πg
ρgm0 exp

(
− b3
ρgm0

)
, (6.61)

Therefore the governing equation for the spectral energy density gradient is

dE(x)

dx
+

ω2

2πg
E(x) exp

(
− b3
E(x)

)
= 0. (6.62)

It should be noted that in equation (6.62) the attenuation of energy due to
wave breaking is explicitly taken into account. However, equation (6.62) does
not have a closed solution and therefore we solve it numerically. If we know the
energy at some point xi, the predicted energy at point xi+1 becomes

Ei+1 = Ei

[
1 − ai exp

(
− bi
Ei

)
Δx

]
, (6.63)

in which ai =
(

ω2

2πg

)
, bi = 1

2
ρg

(
αg
ω2

0

)2
and Δx is a distance between points xi and

xi+1 in metres.
In Fig. 6.8, the comparison of wave energy observed at the particular wave

staffs distributed along the main profile during the Ocean Basin Experiment
(Massel et al., 2001) with theoretical results expressed in (6.63) is shown. In
all tests mechanically generated waves correspond to the JONSWAP spectrum
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Figure 6.8: Comparison of experimental energy attenuation with theoretical
attenuation resulting from Longuet–Higgins’ approach.

with enhancement parameter γ = 7.0 and directional distribution ≈cos2 Θ.
The initial wave train characteristics were assumed at the wave staff 1 located
at 3.45m from the wave generator (see Fig. 4.4).

As was shown in Section 5.3.3.3, the presence of shorter waves riding on the
surface of a long wave results in less stringent conditions for wave breaking ini-
tiation. To illustrate this fact, we examined the data from the Ocean Basin Ex-
periment (Test 6500). The root-mean-square wave period Trms increases along
the main transect, being equal to 1.391 s at wave staff 1 and increasing up to
1.447 s at wave staff 12. Using the methodology described in Section 5.3.3.3 we
first calculated the Eulerian and Lagrangian accelerations, assuming that the
‘longer’ components can be identified with regular waves of root-mean-square
wave height and period. The results of calculations are collected in Table 6.1,
which shows that resulting accelerations of the ‘longer’ component are much
lower than the limiting ones, associated with breaking. On the other hand, the
best fitting of (6.63) to the experimental data indicates that the mean Eulerian
acceleration corresponding to the observed wave breaking along the transect
is equal to 0.281 g. Comparing this value with accelerations given in Table 6.1
yields the conclusion that the onset of wave breaking appears in spite of lower
acceleration of the fundamental wave components. Therefore, as was argued
in Section 5.3, generation of additional accelerations due to high frequency
components riding on the longer waves may be responsible for irregular wave
breaking with smaller downward acceleration.
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Table 6.1: Eulerian and Lagrangian accelerations corresponding to the longer
wave component of the root-mean-square wave height and period

Wave Distance

staff from Trms Hrms |a(E)
l |/g |a(L)

l |/g
no wave-maker (s) (m)

1 3.45 1.391 0.1720 0.266 0.169
2 6.95 1.395 0.1671 0.253 0.164
3 10.45 1.405 0.1657 0.245 0.160
4 13.95 1.422 0.1604 0.226 0.152
5 17.45 1.409 0.1535 0.219 0.149
6 20.95 1.411 0.1523 0.215 0.147
7 24.45 1.394 0.1431 0.205 0.142
8 27.95 1.412 0.1390 0.190 0.135
9 31.45 1.424 0.1387 0.185 0.133
10 34.95 1.419 0.1352 0.181 0.131
11 38.45 1.446 0.1371 0.175 0.128
12 41.95 1.447 0.1314 0.166 0.123

6.3.4 Probability model for wave energy dissipation
based on two-dimensional probability density
function f(A, T )

For wider wave spectra, the dependence of the limiting amplitude Abr on fre-
quencies other than the frequency corresponding to spectrum peak should be
taken into account. Therefore instead of (6.55) it should be

Ediss =
1

2

∞∫
0

∞∫
Abr(T )

ρg(A2 − A2
br(T )) f(A, T ) dAdT. (6.64)

When wave amplitude A, corresponding to the particular period T , is greater
than the critical value Abr(T ), wave energy is dissipated in an amount pro-
portional to the difference (A2–A2

br) for a given wave period. If A ≤ Abr(T )
at a given period, no energy is dissipated. This formulation is an extension of
the Longuet–Higgins (1969) approach for a very narrow spectrum concentrated
around peak period Tp when f(A, T ) = f(A) δ(T–Tp), where δ() is Dirac’s func-
tion. To evaluate the amount of energy dissipated during breaking, we apply
the two-dimensional probability density f(A, T ) proposed by Longuet–Higgins
(1983b). After transferring function (3.172) into (A, T ) coordinate space we
obtain

f(A, T ) = a1(T )A2 exp [−b1(T )A2], (6.65)



178 6 Energy dissipation due to wave breaking

in which

a1(T ) =
T L(ν)√

2π ν m
3/2
0 T 2

(6.66)

and

b1(T ) =
1 +

(
1 − T

T

)2
/ν2

2m0

. (6.67)

Substitution of (6.65) into (6.64) gives

Ediss =
ρg

2

∞∫
0

a1(T )

∞∫
Abr(T )

[A2 − A2
br(T )]A2 exp [−b1(T )A2] dAdT. (6.68)

To evaluate the integral against amplitude A, let us rewrite it as follows

IA(T ) =

∞∫
Abr(T )

A4 exp[−b1(T )A2]dA− A2
br(T )

∞∫
Abr(T )

A2 exp[−b1(T )A2]dA. (6.69)

Substituting x = A2 and dA = dx
2
√
x
, we obtain (Gradshteyn and Ryzhik, 1980)

IA(T ) =
1

2

∞∫
A2

br

x3/2 exp [−b1(T )x]dx− A2
br(T )

2

∞∫
A2

br

x1/2 exp[−b1(T )x]dx

=
1

2
b1(T )−5/2 Γ

(
5

2
, b1(T )A2

br

)

−1

2
A2

br b1(T )−3/2 Γ
(

3

2
, b1(T )A2

br(T )
)
, (6.70)

in which Γ(α, x) is the incomplete gamma function (Abramowitz and Stegun,
1975)

Γ(α, x) =

∞∫
x

e−t tα−1 dt. (6.71)

The energy dissipated due to breaking per unit horizontal surface area now
becomes

Ediss =

∞∫
0

Ediss(T )dT =
ρg

2

∞∫
0

a1(T ) IA(T ) dT [J/m2]. (6.72)

Before we take integration in (6.72), let us consider first the expression for
Ediss(T ). This is the amount of energy dissipated due to breaking per unit time
and unit horizontal area for a particular wave period T . To evaluate the limiting
wave amplitude Abr(T ) we can use the Phillips and Banner (1974) criterion
for onset of breaking in presence of drift current. From Section 5.3.4 we find

Abr(T ) = 0.01 gT 2

(
1 − 2πα2

V10

gT

)2

. (6.73)
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Figure 6.9: Energy dissipated for particular frequencies at wave staff 1 in
Test 6500.

In the wind speed range 6 < V10 < 20, the coefficient α2 varies from 0.0172 to
0.023. Assuming that wind velocity V10 is known, and substituting (6.73) into
(6.72), we get a final expression for the energy dissipated due to breaking. The
function Ediss(T ) is illustrated in Fig. 6.9 versus frequency ω for Test 6500 (wave
staff 1) of the Ocean Basin Experiment when V10 = 0. From the figure it follows
that the energy loss is almost exclusively from wave components at frequencies
higher than the spectral peak frequency. This conclusion is in full agreement
with results of experiments conducted by other investigators. Integration in
(6.72) yields the energy dissipated per unit horizontal area. If should be noted
that the above approach can also be applied to the two-dimensional probability
density for a finite bandwidth wave field (see Section 3.3.10).

6.4 Summary of formulae for wave energy

dissipation

As demonstrated above, wave dissipation is the most important dynamic factor
in breaking waves. On the other hand, the estimating the amount of energy
lost during breaking is a very difficult task despite the many experimental and
theoretical efforts described above. In Tables 6.2 and 6.3 a summary of known
experimental data and theoretical results is provided. The tables indicate that
basically we have distinguished two approaches to estimate the energy loss
due to breaking of random surface waves. The equilibrium Phillips’ estimate
and Komen et al. estimate are based on measurements of the surface wave
spectrum. As pointed out by Felizardo and Melville (1995), this approach has
the weakness that at low wind speeds where there is no breaking, the value
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Table 6.2: Summary of experimental data on wave energy dissipation due to
wave breaking

Quantity Mathematical expression Source

Number of breaking Nb = (4.0 ± 2.0) × 10−3
(
V10

C0

)3
Eq. (4.7)

waves/wave Thorpe (1993)
Rate of energy loss per Edissrate = (3.0 ± 1.8) Eq. (6.2)

unit surface [J/m2 s] ×10−5ρ
(
Cbr

C0

)5
V 3

10 Thorpe (1993)

Rate of energy Edissrate ∼ 0.009ρw
C5

br

g sin θ
Eq. (6.6)

loss per unit crest Duncan (1981)

length [J/m2 s] Edissrate ∼ 0.0075ρw

5
br

g sin θ
Eq. (6.8)

Duncan (1983)
Edissrate ∼ (3.2 × 10−3 ÷ 1.6 Eq. (6.11)

×10−2)ρw
C5

g
Rapp and

Melville (1990)
Rate of total Edissrate = 4.28 × 10−5V 3.74

10 Eq. (6.28)
energy dissipation Hanson and
in the equilibrium Phillips (1999)
range [J/m2 s]

Table 6.3: Summary of theoretical formulae for wave energy dissipation due to
wave breaking

Quantity Mathematical expression Source

Rate of total energy Edissrate = γ1ρwI(3s)
16[I(s)]3g3 Eq. (6.23)

dissipation in the × ∫∞
ωp

ω11S3(ω)dω Hanson and

equilibrium range [J/m2/s] Phillips (1999)
Edissrate Eq. (6.43) based on

= 1.59ρgm0m2

m1

(
m4

1

g2m3
0

)2
Komen et al. (1984)

Rate of energy dissipation Edissrate = 1.59ρgm1

(
m4

1

g2m3
0

)2
Eq. (6.47)

for extremely narrow
spectrum [J/m2/s]

Energy dissipation for very Ediss Eq. (6.55)

narrow spectrum [J/m2/s] = 1
2
ρgA2

rms exp
(
− A2

br

A2
rms

)
Energy dissipation for Ediss = 1

2
ρg

∫∞
0 a1IA(T )dT Eq. (6.72)

two-dimensional probability
density f(A, T ) [J/m2/s]
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of the wave spectrum is still nonzero. Therefore, these models provide nonzero
estimates of dissipation from wave breaking even in the absence of breaking
waves. However, after rearranging the governing relationships of both models,
the total dissipation of the wave field can be computed from integral wind wave
field characteristics. This fact will be used extensively in Chapter 10 where the
linkage between sea state and aerosol fluxes will be discussed.

The third estimate discussed above follows from the idea of limiting wave
amplitude being reached close before breaking. The dissipated energy is simply
the difference between current wave energy and that corresponding to the lim-
iting wave amplitude. However, it should be noted that this model developed
by Longuet–Higgins (1969) is valid for a very narrow frequency spectrum.



Chapter 7

Whitecap coverage of the sea
surface

7.1 Introduction

Breaking waves appearing in the form of whitecaps represent a very familiar
yet poorly understood feature of the wind-driven sea surface. They are formed
when large numbers of bubbles produced by a wave rise to the surface, and
the bright white area of a whitecap arises from multiple light scattering by
elements of size comparable to or greater than the wavelength of visible light.
These elements are clusters of proximate, closely packed bubbles at or near the
surface. In this book, the concept of statistically steady fractional coverage, i.e.
the percentage of the sea surface covered by whitecaps at a given time, with
a close relationship between the wave breaking area and whitecap coverage, is
used. It includes the determination of the energy dissipation rate at breaking
and the relationships between energy loss and gas and aerosol transfer.

The percentage of whitecap coverage is usually parameterized in terms of the
wind speed when this speed is greater than about 4 m/s. Below this speed,
whitecaps are not observed. As the wind blows over the water surface, at any
instant of time the fronts of the breaking waves define a distribution of isolated
line or segments of the wave surface. The scales of breaking waves may cover
a very wide range, from very short gravity waves in which the breaking is un-
steady and turbulent, to actual whitecaps in which the breaking waves generate
turbulence and extensive patches of foam. There is clearly some association of
the breaking events with waves of different scales, but it is difficult to make the
association in an unambiguous way if we consider only the surface configura-
tions at one given instant. A breaking crest may indeed be a local maximum in
the instantaneous surface configuration but there is no guarantee that a local
wavelength of the breaking wave can be defined precisely.

There is no doubt that a correlation between wind speed and whitecap cover-
age exists, but the premise that whitecaps are a function of wind speed alone is
unacceptable. Whitecaps are generated by wave breaking, but there are other
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processes that contribute to wave breaking, for example wave–wave interac-
tions, current–wave interactions and others. Moreover, numerous meteorologi-
cal and environmental factors affect wind energy input, sea state, and frequency
of breaking waves, which in turn influence the extent and lifetime of whitecaps
(Wu, 1979). Therefore, wind speed alone cannot fully parameterize the complex
event of wave breaking, either explicitly or implicitly.

There is an extensive body of research on whitecaps, as they have been in-
vestigated due to their importance for a variety of geophysical processes such
as marine aerosol production, gas exchange between the oceans and the at-
mosphere, air–sea exchange of heat and moisture, transport and transforma-
tion of organic matter (Lewis and Schwartz, 2004). In this chapter we provide
the experimental and theoretical arguments for the necessity of including more
complex mechanisms controlling wave breaking and the resulting whitecap cov-
erage. For the purpose of our analysis, we define whitecap coverage Fcov as the
spatial fraction of sea surface covered by whitecaps, i.e.

Fcov =
Sw

Sref

, (7.1)

where Sw is the sum of individual areas covered by whitecaps formed within
the reference sea surface Sref at an instant of time. The area Sref should be
sufficiently large to contain a sufficient number of whitecaps, and it should be
sufficiently restricted to satisfy the requirement of spatial uniformity of the wave
field. It should be noted that Fcov may be different from the dominant wave
breaking probability because it integrates whitecap contributions of all wave
scales and may include residual foam cover. This is different to more common
point measurements such as obtained by Longuet–Higgins and Smith (1983)
and Hwang et al. (1989). Also this methodology differs from observations of
whitecap coverage which is in fact an indirect measure of breaking waves.

7.2 Experimental data on whitecap coverage

Whitecap coverage Fcov has been reported as a function of wind speed and
other meteorological quantities by several investigators. Usually the whitecap
coverage ratio is determined from photographs of the sea surface taken from
aircraft, towers and ships. A typical method for determination of Fcov from
video tapes involves digitizing videos and determining the fraction of pixels that
exceed a given threshold for brightness. However, there is some inconsistency
over the terms used to describe the various whitecap structures. For example,
Ross and Cardone (1974) distinguished ‘actively forming whitecaps and large
new foam patches’ from ‘thin foam and foam streaks’. Similarly, Koepke (1984,
1986) distinguished ‘whitecaps (foam patches)’ and ‘foam streaks’. The division
of whitecaps into the categories proposed by Monahan and Woolf (1988, 1989)
is examined in more detail below in this section.

Thus, there are some difficulties in determining Fcov objectively. In particular
they include the oblique angle at which the photograph was taken, shadowing
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of sea surface by large waves, inability of the measurement system to resolve
all white areas, lack of contrast because of sea colour and variable sky re-
flectance, and small number statistics arising from the measurement data. As
was mentioned by Lewis and Schwartz (2004), whitecap coverage determined
by photographs typically is greater than that determined by video by one or
two orders of magnitude. An important factor which influences Fcov strongly
is the sampling methodology. Unfortunately, this problem is not usually dis-
cussed by the authors. There is some possibility of bias due to taking pictures
only when whitecaps are present. On the other hand, some investigators took
pictures at fixed intervals, without regard to the instantaneous presence or
absence of whitecaps. The obvious bias is introduced due to the fact that pho-
tographs and videos are restricted to daytime and to conditions where visibility
is not substantially reduced. Finally, some questions may arise regarding the
representativeness of measurements due to limited areas of observation and
restricted meteorological conditions.

Key studies are those of Toba and Chaen (1973), Wu (1979), Koepke (1984),
Marks (1987), Bortkovskii (1987), Stramska and Petelski (2003) and Monahan
et al. (1988) in several large-scale studies (BOMEX+, JASIN, STREX,
MIZEX83, MIZEX84, HEXPILOT, and HEXMAX). In particular, Monahan
(1971) collected 71 observations of whitecapping at locations on the Atlantic
Ocean and adjacent salt water basins. The basic motivation for this study was
to obtain observations suitable for direct comparison with the several existing
contradictory descriptions of wind dependence of salt water whitecaps. The
optimal power-law expression for the dependence of oceanic whitecap coverage
fraction Fcov on 10 m elevation wind speed V10 is usually given in the form

Fcov = a V b
10. (7.2)

The least squares fitting method based on Monahan (1971) data suggests that
a = 1.35 × 10−5, b = 3.4 for 4 m/s < V10 < 10 m/s. Cardone (1970) using the
results from fresh-water whitecap observations and assuming that the fraction
of the water surface covered by whitecaps is directly related to the rate of energy
transfer from the air flow to the fully developed sea, obtained a = 1.2 × 10−5,
b = 3.3 for 4 m/s < V10 < 10 m/s. Toba and Chaen’s (1973) observations
of the whitecaps in the East China Sea and the coastal waters of Japan yield
the following values of coefficients: a = 1.55 × 10−6, b = 3.75. Combining the
Atlantic Ocean data collected by Monahan (1971), and the Pacific Ocean data
of Toba and Chaen (1973), Wu (1979) found that: a = 1.7 × 10−6, b = 3.75.

Monahan and O’Muircheartaigh (1981) reanalysed the previous data using
the ordinary least squares fitting (OLS) and robust weight fitting (RWF) meth-
ods and they found

Fcov = 2.95 × 10−6 V 3.52
10 for OLS method (7.3)

and

Fcov = 3.84 × 10−6 V 3.41
10 for RWF method (7.4)
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Figure 7.1: Fraction Fcov of the ocean covered by whitecaps as a function of
wind speed V10. Explanation of the symbols is given in the text (adapted from
Monahan and O’Muircheartaigh, 1981).

These expressions fit the combined data set better than any of the previously
published fittings – see Fig. 7.1. It should be noted that in the figure the open
circles represent whitecap coverage values from the 1978 JASIN experiment,
the filled circles mean whitecap coverage from specific observations of Mona-
han (1971), while the open squares denote whitecap coverage values from Toba
and Chaen (1973). However, the proposed parameterization requires some com-
ments. Fitting the data to the expression (7.2) in a least square sense results
in the fit being dominated by the largest values of Fcov (or V10). For example,
if the uncertainty in Fcov is proportional to the mean value, then for b = 3.52,
the value of Fcov corresponding to V10 = 15.0m/s would be nearly 48 times
greater than that for V10 = 5.0 m/s, and its contribution to the total error

error2 =
∑[

F exp
cov − aV b

10

]2
(7.5)

would be more than about 2000 times greater. Therefore, it seems to be quite
appropriate that high values of Fcov should be weighted more than low values of
Fcov. The whitecap coverage value of 10−5 or 10−6 makes little difference in the
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existing aerosol concentration, whereas the aerosol production corresponding
to Fcov will probably dominate the marine aerosol concentration.

If we restrict the fit to Fcov greater than a certain minimum value, the final
result will be affected considerably. For example, fitting only data with Fcov >
10−4 to the expression (7.2) yields an exponent b = 3.3, whereas fitting all
nonzero values yields b = 4.7. A similar difference was observed by Hanson
and Phillips (1999). They examined the video data of Monahan and obtained
b = 3.6 for Fcov > 5×10−5, whereas for the complete data set the value b = 5.2
was obtained.

Marks (1987) considered the data collected during a cruise on the research
vessel ‘Polarstern’ in the North Atlantic and Greenland Sea (polar expedition
Arkis–III). The whitecap coverage was recorded by a modern video camera
system mounted about 15 m above the sea surface. The final result is given by
the following relationship

Fcov = 2.54 × 10−6 V 3.58
10 . (7.6)

The rate of energy supplied by the wind is closely related to the wind stress
and the atmospheric stability conditions. Consequently, the percentage of sea
surface covered by breaking waves should be related to the energy flux from
the wind as (Wu, 1988b)

Fcov ∼ dE

dt
∼ τV10 ∼ (ρu2

∗)u∗ ∼ u3
∗, (7.7)

in which dE
dt

is the rate of energy supplied by the wind per unit area of the sea
surface. Using Eq. (5.61) we can rewrite Eq. (7.7) in the form

Fcov ∼
(√

C10 V10

)3

∼ C1.5
10 V 3

10. (7.8)

Wu (1979) suggested that C10 ∼ V 0.5
10 ; therefore, Eq. (7.8) yields

Fcov ∼ V 3.75
10 . (7.9)

As was noted by Lewis and Schwartz (2004), the hypothesis of proportionality
between Fcov and the energy flux from wind has not been well established.
These two quantities may be related but any such relation involves not only the
fraction of the energy flux that goes into wave breaking but also the relation
between Fcov and the energy expended in wave breaking. Also it should be
noted that the power in (7.9) is based on the proportionality of the wind stress
coefficient C10 and the square root of the wind speed.

Wu (1982) proposed a linear relationship between C10 and V10 – see equation
(5.62). However, this function would result in the relationship Fcov = f(V10),
which is not a power law. When the drag coefficient C10 from numerous ex-
periments is fitted to power laws (Wu, 1980), exponents between 0.08 and 0.74
are obtained, and these values would result in exponents for the wind speed
dependence of whitecap coverage Fcov = f(V10) ranging from 3.1 to 4.1.
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The wind-stress coefficient C10 varies with atmospheric stability conditions.
Therefore the use of the wind friction velocity u∗, rather than wind speed
V10, can be considered as an upgrade of analysing the whitecap data. Using
this argument, Wu (1988b) averaged the sets of data from BOMEX, JASIN,
STREX and MIZEX experiments and proposed an empirical law in the form

Fcov = 0.2u3
∗ and Fcov = 2.0V 3.75

10 , (7.10)

in which Fcov is expressed in ppm, V10 in m/s and u∗ in cm/s. Observations
indicated that there were no systematic variations of the whitecap coverage
with water temperature for other than near-zero temperatures.

A very similar result was obtained by Hanson and Phillips (1999). They
excluded very small coverage (Fcov < 10−5), when scatter becomes very large
and unsystematic, and found the following relationship for the Gulf of Alaska

Fcov = 2.04 × 10−7 × V 3.61
10 . (7.11)

Xu et al. (2000) conducted field measurements at the oil platform in Bohai
Bay. The whitecaps were observed by photography from the top of the platform
at about 46m above the sea level covering an area of 80 × 89m2 of sea surface.
The fraction of whitecap coverage from 10 pictures, taken at intervals of 30 s,
was averaged to give one whitecap coverage value corresponding to a given
wind speed and wind fetch. The wind speed varied from 9 to 18m/s, and wind
fetch ranged from 60 to 170 km. The observed whitecap coverage was greater
than 1.5% and smaller than 7.0%.

Stramska and Petelski (2003) reported results of recording of whitecaps in
the north polar waters of the Atlantic. Field data were collected during three
cruises on the R/V Oceania operated by the Institute of Oceanology in Sopot
(Poland). The study area extended between the northern part of the Norwegian
coast (Tromsø) and Svalbard. Field data for the polar regions are very scarce
despite the frequent periods of strong winds and storms. To group them in
a coherent series, the co-authors followed Monahan and distinguished two types
of whitecaps, stage A (young) and stage B (older) whitecaps. Stage A whitecaps
are the crests of actively breaking waves with an albedo of 0.5 or greater, lasting
only a few seconds, after which they decay into stage B whitecaps. Stage B
whitecaps are of lower albedo with foam that is visible on the sea surface for
some short time after the wave breaks. Knowledge of stage A whitecaps is
relevant to the study of wave evolution and energy dissipation by breaking
waves. On the other hand, information on total whitecap coverage (including
stage A and B whitecaps) is of interest for studies on global albedo, global
climate models, and on the atmospheric corrections for satellite ocean colour
remote sensing. Some investigators postulate that videos record only stage A
whitecaps, whereas photographs detect both stage A and stage B whitecaps.
In particular, Monahan et al. (1988) reported that the ratio

Fcov,A

Fcov,B
for various

wind speeds falls within an estimated range of 0.001–0.2.
Stramska and Petelski (2003) pointed out that although their estimates of

the total whitecap coverage were dominated by type B whitecaps, it was not
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possible to objectively classify the photographs into type A or B. Therefore,
the total whitecap coverage was considered. The regression line for data points
for the total fraction of whitecap coverage satisfies the following relationship

Fcov = 4.18 × 10−5(V10−4.93)3 (7.12)

and

Fcov = 8.85 × 10−7(u∗−15.34)3. (7.13)

The use of u∗ instead of V10 did not significantly reduce the scatter of data
points. Moreover, Stramska and Petelski (2003) concluded, comparing the re-
sults on whitecap coverage in cold and warm waters, that there is no evidence
to support the notion that the differences between their data and the data of
Monahan (1971) and Toba and Chaen (1973) can be explained by the effect
of sea surface temperature on Fcov. This conclusion was supported by Lewis
and Schwartz 2004). They summarized available data and noted that although
there is some indication that Fcov is generally greater at high sea temperatures
than at low sea temperatures, due to the large scatter in data it is difficult to
quantify the dependence of Fcov on sea temperature, and little is known about
the physical basis for this dependence.

A very important conclusion resulting from Stramska and Petelski’s (2003)
observations is that whitecap coverage depends on the history of wave field
development. They distinguished three sea states, namely developed sea, unde-
veloped sea and decreasing sea. In terms of mechanics of wave generation, all
of these states are related to the wind fetch X and wind duration t, or more
precisely to non-dimensional quantities such as gX

V 2
10

and gt
V10

. As was shown in

Fig. 7.2, at any given wind velocity V10, the fully developed seas (denoted by
crests) are generally characterized by greater whitecap coverage than undevel-
oped seas (denoted by closed triangles), and seas corresponding to decreasing
winds (denoted by diamonds). Examples of fully developed seas are the regions
of trade winds, where winds vary on smaller time scales. On the other hand,
highly variable atmospheric conditions, as in the north polar regions, result in
lower whitecap coverage. The least squares fitting provides the following re-
lationships (in %) for whitecap coverage for developed and undeveloped seas,
respectively (see Fig. 7.2)

F (dev)
cov = 0.005 × (V10 − 4.47)3 (7.14)

and

F (undev)
cov = 0.00875 × (V10 − 6.33)3. (7.15)

The data reported by Stramska and Petelski (2003) were also added in Fig. 7.1
for comparison.

As mentioned above, Cardone (1970) argued that wave dissipation estimates
resulting from modelled wind seas were better correlated with whitecap fraction



190 7 Whitecap coverage of the sea surface

4 6 8 10 12 145 7 9 11 13

wind speed V10 (m/s)

0.001

0.01

0.1

1

10

0.002

0.004
0.006
0.008

0.02

0.04
0.06
0.08

0.2

0.4
0.6
0.8

2

4
6
8

w
h

it
ec

ap
s 

co
ve

ra
g

e 
(%

)

Eq. ( 7.14)

Eq. (7.15)

Figure 7.2: Oceanic whitecap coverage as a function of wind speed in the north
polar waters: crests – developed sea, closed triangles – undeveloped sea, dia-
monds – decreasing wind (adapted from Stramska and Petelski, 2003).

estimates than with wind speed only. This suggestion is also supported by the
fact that the V10 exponent of 3.74 in Eq. (6.28), reported by Hanson and Phillips
(1999) and relating the energy dissipation and wind speed, is nearly identical to
that given by Wu (1988b) in (7.10) for the experimental relationship between
Fcov and wind speed. Therefore we can write

Fcov ∼ Edissrate ∼ u3
∗ ∼ V 3.75

10 . (7.16)

The above sequence of relationships suggests that Fcov ∼ Edissrate. However,
examination of the dependence of experimental whitecap coverage Fcov with
the rate of energy dissipation shown by Hanson and Phillips (1999) yields the
conclusion that the best fit is obtained for the whitecap power-law model when

Fcov = 3.4 × 10−3 × E1.5
dissrate. (7.17)

The authors noted that scatter of Fcov with Edissrate is much smaller than that
with V10. Moreover, the use of wave dissipation rate in place of wind speed
removes the uncertainty caused by atmospheric forcing variability. The reason
that the power of 1.5 on Edissrate was used, rather than a power of unity, as
implied by Eq. (7.16), is that not all of dissipation is represented by Fcov,
especially for breaking at very small scales. These open ocean results support
the laboratory findings of Lamarre and Melville (1991) – see Section 4.4.4.5.
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Anguelova et al. (2005) argued that existing measurements of whitecap cov-
erage from photographs do not provide enough information to quantify the
dependence of Fcov on other variables, in addition to wind speed, environmen-
tal and meteorological factors. They propose a method using passive microwave
satellite measurements to retrieve Fcov on a global scale under various condi-
tions encountered in world oceans. This method relies on changes of ocean sur-
face emission at microwave frequencies induced by the presence of whitecaps.
Ocean surface emissivity, e, is a composite of two contributions: emissivity due
to the rough sea surface, er, in places free of whitecaps, and emissivity due to
foam, ef , in foam-covered areas. Thus we have (Anguelova et al., 2005)

e = er(1 − Fcov) + efFcov (7.18)

Assuming that all emissivities can be calculated, we obtain for whitecap cov-
erage as

Fcov =
e− er

ej − er

. (7.19)

The composite ocean emissivity, e, is retrieved from satellite-measured bright-
ness temperature, TB, while emissivities of rough surface and foam, er, and
ef , are computed using theoretical or empirical expressions. In particular, the
recent launch of the polarimetric microwave radiometer WindSat provides a
possibility to obtain more precise value of the surface emissivity e. The emis-
sivity of rough sea surface, er, can be obtained from a so-called two-scale model
describing the changes of ocean emissivity for winds up to 10–12m/s due to
Bragg scattering from short gravity and capillary waves riding on long waves
with a Gaussian distribution of slopes. Moreover, emissivity of foam, ef , is ob-
tained from the full radiative transfer model for the emission of a foam layer
with depth profile of the void fraction.

Kerman and Szeto (1994), using the modern geometrical concepts of
Mandelbrot, showed that the cumulative probability function of the intensity is
self-similar for sufficiently large intensities occupying about 10% of an imaged
area. They applied a box-counting technique to images obtained from flights
and they found that the estimated fractal dimension decreases from about 2.25
for a 10% areal coverage to about 1.7 for 0.1% coverage.

For further work, it will be of interest to compare oceanic and fresh water
whitecap coverage. Therefore following Monahan (1971), let us assume that
under identical meteorological conditions the rate R of whitecap production
per unit area of water surface and the initial area A0 of individual whitecaps
are the same for salt and fresh water. Thus, the whitecap area formed per unit
time and unit area becomes A0R. The whitecap area A(t), at time t from its
formation is given by

A(t) = A0 exp
(
− t

τ

)
, (7.20)
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where τ is the time constant. Hence the rate at which individual area decay
per unit and unit area becomes

dA(t)

dt
= −A(t)

τ
, (7.21)

and for the whitecap area decay (per unit time and unit area) we obtain Fcov

τ
,

where Fcov is the total area of whitecaps per unit area of sea surface.
In steady state conditions, the rate of whitecap area formation is equal to the

rate of whitecap area decay, i.e.

A0R =
Fcov

τ
(7.22)

and

Fcov = A0Rτ (7.23)

Monahan and Zieltow (1969) found that the time constant τ for salt water is
about 1.5 times the time for fresh water. This means that for the same meteo-
rological conditions, the fraction of sea surface covered by whitecaps should be
1.5 times the fraction of a fresh water surface covered by whitecaps.

Little systematic investigation of lifetimes and sizes of oceanic whitecaps has
been reported, and known results vary significantly. Maximum areas of in-
dividual whitecaps of up to 40 m2 at V10 = 14m/s were observed, although
mean areas were generally smaller, namely 1.4 and 2.2 m2 for wind speeds of
5–11m/s and 11–14m/s, respectively (Lewis and Schwartz, 2004). On the other
hand, the mean areas of individual crests and foam strips increased from 0.5
to 1.2 m2 and from 20 to 30 m2, respectively as wind speed increased over this
range.

It is generally recognised that whitecap coverage is negligibly small for wind
speeds less than 3m/s. For wind speed above 9m/s, the mechanical tearing
away of wave crests, resulting in the formation of spume lines, becomes an im-
portant, additional mechanism of white water formation. All these facts suggest
strongly that the use of a more complex form for function Fcov(V10) than a sim-
ple power law is required to describe precisely the dependence of Fcov upon
V10.

During Ocean Basin Experiment (Massel et al., 2001), the whitecaps cover-
age due breaking waves (without wind) was estimated using image processing
methods applied to video records. Whitecaps were observed as a separate region
in the picture after thresholding and eliminating individual pixels. In particu-
lar, the ‘saturation’ component of the film frame enhances the whitecap area
in the most effective way. Video recordings were first converted from RGB to
HSV (High-Saturation-Value) format, and substantially whitecaps were deter-
mined as proportional to the nnmber of black pixels in the converted picture.
This method applied to all frames of the video stream (25 frames per second)
provided the average whitecaps area in the measured time period of about
10 minutes. The resulting whitecaps coverage was no greater than 0.1%, and
only for highest waves it exceeds 1% (Teιgowski, 2004).
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7.3 Theoretical models of whitecap coverage

7.3.1 Whitecap coverage model based on the Phillips
theory for equilibrium range

Estimation of the wave breaking area and resulting whitecap coverage is a com-
plicated task as our present understanding of most aspects of wave breaking
remains fragmentary. In this section we present theoretical models based on
various breaking criteria. Most of them exhibit close links between whitecap
coverage and wave breaking probability.

In particular, expressions on the spectral properties of wind generated waves,
proposed by Phillips (1985) – see Section 6.2 – provide a way to determine
the degree of whitecap coverage or the fraction of surface area covered by
bubbles. Only breaking zones with a rate of energy release bC5/g exceeding
some threshold value will contribute to formation of whitecaps. If we assume
that the bubbles, once generated, persist for an average time, T , on the surface,
then the whitecap coverage becomes

Fcov =
∫

CΛ(C)TdC, (7.24)

in which Λ(C) is the average length of breaking front per unit area and per
unit speed interval given in (6.12). Using the formula for expected number of
breaking waves passing a given point proposed by Phillips (1985), the whitecap
coverage from (7.24) yields

Fcov ≈ β3b−1I(3p)T C−4
T g u3

∗, (7.25)

in which the speed CT is the slowest speed of fronts capable of producing white-
caps, b is the numerical constant estimated by Duncan from his experiments
as approximately 0.06 and function I(3p) is given by (6.21). It should be noted
that the above estimate exhibits the whitecap coverage dependence on wind
speed, which is close to that found empirically by Wu (1988b) and by Stramska
and Petelski (2003).

7.3.2 Whitecap coverage model based on the limiting
steepness criterion

Let us assume for a moment that long-crested waves propagate in one direction,
along the x-axis, and lcov is the sum of the individual lengths occupied by
whitecaps at some instant of time. If we consider a square sea area with a side
of length equal lcov, then for a two-dimensional wave field, the ratio lcov/l (l
is the length of a sufficiently long line oriented in the x direction) becomes
a measure of the whitecap surface coverage, i.e.

lcov
l

≈ Fcov. (7.26)
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The slope criterion of wave breaking requires that the surface wave will break
when the local surface slope εl exceeds the threshold slope εth, i.e.

εl =
∂ζ

∂x
≥ εth (7.27)

Thus the probability of breaking, identified with the spatial fraction of sea
surface covered by whitecaps Fcov, becomes

Fcov =
∫ ∞

εth

f(εl) dεl. (7.28)

In Chapters 2 and 4 theoretical and experimental data on the limiting surface
slope were collected, and in Chapter 5 the probability density of the surface
slope was given for two different wave regimes, i.e. long-crested and short-
crested waves, when breakers can be of the spilling and plunging form. Here we
assume that fully developed sea short-crested waves are characterized by the
Pierson–Moskowitz spectrum (3.17) and spilling breakers predominate. There-
fore, substituting (3.122) into (7.28) and taking into account the relationship
(D.7), we obtain

Fcov = exp

⎡
⎣−8.265ε2

th

(
gX

V 2
10

)0.22
⎤
⎦ = exp

⎡
⎣−0.5587

(
gX

V 2
10

)0.22
⎤
⎦ , (7.29)

when εth = εf = 0.26 (see Table 4.8) and a4 = 1.5919 (see Table D.1) are
used. In a similar way, for fetch limited areas, when the JONSWAP spectrum
(γ = 3.3) applies, we get

Fcov = exp

⎡
⎣−7.714ε2

th

(
gX

V 2
10

)0.22
⎤
⎦ = exp

⎡
⎣−0.5215

(
gX

V 2
10

)0.22
⎤
⎦ , (7.30)

Functions (7.29) and (7.30) are illustrated in Fig. 7.3. Higher whitecap cover-
age is associated with lower values of the non-dimensional fetch gX

V 2
10

. However,

the influence of the spectral form is not substantial. In Fig. 7.3, experimental
data reported by Xu et al. (2000) are added. Values of experimental whitecap
coverage are slightly higher than those predicted by (7.29) and (7.30).

Assuming for a moment that the wind fetch in formula (7.29) is known, Fcov

becomes a function of wind speed only. This function is shown in Fig. 7.4 for
wind fetches X = 10, 25, 50, 100, 200, 300, 500 and 1000 km. In the same figure,
the experimental data, reanalysed by Monahan and O’Muircheartaigh (1981),
as well as the data reported by Stramska and Petelski (2003), are given. Despite
scattering, the computed whitecap coverage provides realistic values under the
assumption of an adopted wind fetches range as the true fetches are unknown.
A closer comparison shows that small whitecap coverage appears only for the
case of decreasing winds in the north polar waters (Stramska and Petelski,
2003).
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Figure 7.3: Dependence of whitecap coverage, based on the limiting steepness
criterion, on the non-dimensional fetch for the Pierson–Moskowitz and JON-
SWAP spectra.
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Figure 7.4: Whitecap coverage, based on the limiting steepness criterion, as
a function of wind speed for chosen wind fetches. Experimental data from Figs.
7.1 and 7.2 are added for comparison.
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7.3.3 Whitecap coverage model based on the vertical
acceleration criterion

Let us now examine another breaking criterion and assume that for breaking
to occur the downward acceleration at the crest of the wave has to be greater
than αg, i.e.∣∣∣∣∣d

2ζ

dt2

∣∣∣∣∣ > αg, (7.31)

in which α is a constant. In particular, Snyder et al. (1983) have found that α
varies from 0.4 to 0.52, and laboratory experiments of Ochi and Tsai (1983) pro-
vided the value α ≈ 0.4. According to the Snyder and Kennedy (1983) philoso-
phy, wave breaking occurs on the sea surface everywhere the downward accelera-
tion exceeds the dynamic threshold value αg. Therefore the occurrence of break-
ing coincides with the occurrence of whitecaps. Therefore from (5.85) we have

Fcov = 1 − Φ(x) = 1 − 1√
2π

∫ x

−∞
exp

(
−1

2
t2
)
dt, (7.32)

in which the argument x is given by

x =
αg√
m4

. (7.33)

After substituting a moment m4 for the Pierson–Moskowitz spectrum (D.7)
and using β, given by (3.22), the equation (7.32) yields

Fcov = 1 − Φ

⎧⎨
⎩2.8373α

(
gX

V 2
10

)0.11
⎫⎬
⎭. (7.34)

The whitecap coverage given by Eq. (7.34) depends on the α value which should
be determined a priori. To estimate the range of α value variation, we use the
Monahan (1971) data in which the tests with negligible whitecap coverage
(data noted as Fcov = 0.0) have been neglected. For the remaining data, the α
values giving the optimal agreement of the theoretical Fcov value with the ex-
perimental ones were determined (Fig. 7.5). It was found that the α values are
in the range of 0.21 < α < 0.44, with the mean value of 0.27, which supports
the conclusion that relationship (7.34) is capable of representing the whitecap
coverage under the condition that the α value is known (Massel, 2001a).

In general the coefficient α is not constant and it depends on the intensity
and type of breaking. Therefore, it should be considered as a function of local
hydrodynamic and meteorological conditions. In Fig. 7.6 the whitecap coverage
is given as a function of the non-dimensional fetch with α = 0.27. Experimen-
tal data reported by Xu et al. (2000) were added for comparison. Values of
experimental whitecap coverage are higher than those predicted by (7.34). Ad-
ditionally in Fig. 7.7, the comparison of the theoretical formula (7.34) with
experimental data for particular fetches is given. In all cases, the coefficient
α = 0.32 was assumed. This value is slightly greater than the mean value
α = 0.27, resulting from Monahan’s data, in order to take into account Stram-
ska and Petelski’ data.
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Figure 7.5: The best fitting α value based on Monahan’s data.
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Figure 7.6: Whitecap coverage, based on the threshold downward acceleration
criterion, as a function of non-dimensional fetch for the Pierson–Moskowitz
spectrum.
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Figure 7.7: Whitecap coverage based on the threshold downward acceleration
criterion as a function of wind speed for chosen wind fetches. Experimental
data from Figs. 7.1 and 7.2 are added for comparison.

7.3.4 Whitecap coverage model based on the geometry
of spilling breakers

The whitecaps appear at the wave crest, usually in the form of spilling breakers.
Sometimes a so-called roller is formed on the top of the wave crest. The roller
is represented by a rotating mass of water, moving with phase speed in the
direction of wave propagation (Massel, 1996a). According to Monahan’s (1971)
classification, the whitecaps for fresh and young seas are concentrated in the
small section of the wave crests. They belong to so-called class A of whitecaps.
A schematic representation of the breaking crest is given in Fig. 7.8.

Using the rationale presented in Section 6.3.3, we assume that due to break-
ing, wave amplitude decreases to the value Abr representing the critical satu-
ration level. Thus, the portion of the amplitude loss in a unit cycle becomes
(Huang, 1981)

ΔA =

∞∫
Abr

(A− Abr)f(A) dA =
2

A2
rms

∞∫
Abr

A(A− Abr) exp

(
− A2

A2
rms

)
dA (7.35)

or

ΔA = 2Arms I1

(
Abr

Arms

)
, (7.36)
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Figure 7.8: Schematic representation of the breaking wave crest.

where

I1

(
Abr

Arms

)
=

∞∫
Abr
Arms

x
(
x− Abr

Arms

)
exp(−x2) dx. (7.37)

After integration we obtain

ΔA = 2Arms I1

(
Abr

Arms

)
=

= 2Arms

{
1

2
Γ

(
3

2
,
A2

br

A2
rms

)
−

(
Abr

Arms

)
Γ

(
1,

A2
br

A2
rms

)}
, (7.38)

in which Γ(α, x) is the incomplete gamma function (Abramowitz and Stegun,
1975).

Now let us use a simple geometrical argument that

ΔA
lbr

2

≈ 2Arms

Lrms

2

(7.39)

or

lbr

Lrms

≈ ΔA

2Arms

= I1

(
Abr

Arms

)
. (7.40)

Assuming for a moment a narrow directional wave spreading when almost all
waves propagate in one direction, we find that the whitecap coverage per metre
square becomes

Fcov =
lbr

Lrms

= I1

(
Abr

Arms

)
. (7.41)

Thus, the whitecap coverage depends totally on the ratio of the amplitude
at breaking Abr and Arms amplitude. From the relationship (6.56), (6.57) and
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Figure 7.9: Dependence of whitecap coverage, resulting from the geometry of
spilling breakers, on the non-dimensional fetch for the Pierson–Moskowitz spec-
trum. Four different values of α are selected.

(6.58), this ratio takes the form

Abr

Arms

=
αg√

2

√
m0

m2

. (7.42)

Using the moments m0 and m2 for the Pierson–Moskowitz spectrum (D.5) and
expression for β (3.22) we obtain

Abr

Arms

= 2.8945α

(
gX

V 2
10

)0.11

. (7.43)

In Fig. 7.9 the whitecap coverage is given as a function of the non-dimensional
fetch for four different values of the coefficient α. Experimental data reported
by Xu et al. (2000) are added for comparison. These data indicate that the
α coefficient in the Bohai Bay experiment (Xu et al., 2000) was even smaller
than 0.2 when the argument of the geometry of spilling breakers is used. The
dependence of whitecap coverage on the α value is very strong. In particular,
changing the α value from 0.2 to 0.5 for gX

V 2
10

= 500.0 results in a decrease in

whitecap coverage by 1000 times, from about 8% to 0.002%. Fig. 7.10 illustrates
the comparison of the theoretical formula (7.43) with experimental data for
particular fetches, when in all cases the coefficient α = 0.27 is assumed. The
predicted values of whitecap coverage for wind fetches varying from 10 km to
1000 km are smaller than those observed reported by Monahan, and Stramska
and Petelski.
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Figure 7.10: Whitecap coverage, based on the geometry of spilling breakers,
as a function of wind speed for selected wind fetches. Experimental data from
Figs. 7.1 and 7.2 are added for comparison.

7.3.5 Whitecap coverage model for the non-Gaussian
wave field

For any waves with an amplitude greater than Abr, breaking will occur and
whitecaps appear at the sea surface. Hence the probability of whitecap coverage
can be presented as follows

Fcov =

∞∫
Abr

f(A) dA. (7.44)

Surface waves which are very steep, close to breaking, are characterized by
the probability density function f(a) for wave amplitude which is different
from the Rayleigh distribution. This difference is attributed to the presence
of nonlinearities in the wave motion. To include the effects of nonlinearities,
Tayfun and Al-Humond (2002) proposed the distribution f(A) as was given by
(3.159). Let us rewrite it as follows

f(A) = B3 exp(−B2
2), (7.45)

where

B2 =
g
√
m0√

2m2

(B4 − 1), (7.46)
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B3 =
g

m2

B4 − 1

B4

, (7.47)

B4 =

√
1 +

2m2

gm0

A. (7.48)

For waves of small amplitudes, the nonlinear effects can be neglected. Thus
when 2m2

gm0
A → 0, functions B2, B3 and B4 become

B4 ≈ 1 +
m2

gm0

A, (7.49)

B2 ≈
A√
2m0

=
A

Arms

, (7.50)

B3 ≈
g

m2

m2A
gm0

1 + m2A
gm0

=
A

m0

=
2A

A2
rms

. (7.51)

After substituting (7.49), (7.50) and (7.51) into (7.45) we obtain

f(A) =
2A

A2
rms

exp

[
−

(
A

Arms

)2
]
, (7.52)

which is the Rayleigh distribution.
In general, if the moments m0 and m2 are determined for the Pierson–

Moskowitz spectrum, we obtain

B2 = 2.894(B4 − 1)

(
gX

V 2
10

)0.11

, (7.53)

B3 =
25.65 g

V 2
10

(
gX

V 2
10

)0.22
B4 − 1

B4

, (7.54)

B4 =

√
1 + 3.062

Ag

V 2
10

. (7.55)

To determine the whitecap coverage in (7.44), let us estimate the limiting
amplitude Abr from the vertical acceleration criterion, i.e.

Abr =
αg

ω2
0

=
αgm0

m2

=
0.653αV 2

10

g
, (7.56)

when the Pierson–Moskowitz spectrum is taken into account. After substitut-
ing (7.45) into (7.44) we get the whitecap coverage induced by a nonlinear
wave field. In Fig. 7.11 the whitecap coverage (7.44) is presented as a function
of the wind speed and wind fetch. In the calculations, the Pierson–Moskowitz
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Figure 7.11: Whitecap coverage as a function of wind speed for selected wind
fetches based on the non-Gaussian wave amplitude distribution. Experimental
data from Figs. 7.1 and 7.2 are added for comparison.

spectrum and the coefficient α = 0.32 were assumed. The predicted white-
cap coverage for a broad range of wind speeds and wind fetches realistically
encompasses all experimental data.

In Section 5.5, the probability of breaking for modulated second-order Stokes
waves, developed by Dawson et al. (1993), was presented. The resulting formula
(5.120) on the probability of breaking depends on the characteristic steepness
parameter εk and normalized threshold acceleration parameter α. Applying
the arguments for a narrow directional wave field, we can argue that the per-
centage of surface covered by whitecaps identifies the probability of breaking
given by (5.120). To examine the implementation of this formula for predic-
tion of wave breaking for real field conditions, we represent the characteristic
steepness parameter εk in terms of the non-dimensional fetch

(
gX
V 2
10

)
. From (3.3)

and (3.156) we obtain the characteristic breaking parameter εk in terms of the
spectral moments as follows

εk =
Hs ω̄

2

g
=

4

g
m

−3/2
0 m2

1. (7.57)

After evaluating moments m0 and m1 for the JONSWAP spectrum with the
peak enhancement factor γ = 7.0, formula (7.57) becomes

εk = 3.406β1/2 = 0.939

(
gX

V 2
10

)−0.11

. (7.58)
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Figure 7.12: Whitecap coverage as a function of non-dimensional wind fetch
resulting from the Dawson et al. solution. Experimental data from Dawson
et al. and Xu et al. are added for comparison.

Application of (5.120) and (7.58) yields the opportunity to represent the proba-

bility of breaking as a function of the non-dimensional fetch
(
gX
V 2
10

)
. The resulting

function is illustrated in Fig. 7.12. The experimental data show a good agree-
ment with the theoretical function (5.120). The field data reported by Xu et
al. (2000) were also added for comparison.

7.4 Summary of data and theoretical formulae

on whitecap coverage

In Table 7.1, available experimental data on whitecap coverage and proposed
parameterizations are collected. These parameterizations are based on the re-
lationships between whitecap coverage and wind speed. In general, the white-
cap coverage is approximately proportional to the power cube of the wind
speed. The comparison of the observed whitecap coverage with the theoretical
predictions developed in this chapter and shown in Figs. 7.4, 7.7, 7.10, 7.11
and 7.12 indicates that all used breaking criteria, i.e. limiting steepness crite-
rion, threshold downward acceleration criterion and criterion resulting from the
non-Gaussian wave amplitude distribution, provide rather good approximation
to the experimental whitecap coverage. The approach based on the geome-
try of spilling breakers resulted in whitecap coverage slightly smaller than the
observed coverage (see Fig. 7.10). However, due to the lack of precise knowledge
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Table 7.1: Summary of experimental data on whitecap coverage and their
parameterisation

Relationship Mathematical expression Source

Whitecap coverage as Fcov = a× V b
10:

a function of wind a = 1.35 × 10−5, b = 3.4 Monahan (1971)
speed V10 a = 1.2 × 10−5, b = 3.3 Cardone (1970)

a = 1.55 × 10−6, b = 3.75 Toba and Chaen
(1973)

a = 1.70 × 10−6, b = 3.75 Wu (1979)

a = 2.95 × 10−6, b = 352
a = 3.84 × 10−6, b = 3.41

} Monahan and
O’Muircheartaigh
(1981)

a = 2.54 × 10−6, b = 3.58 Marks (1987
a = 2.0, b = 3.75 Wu (1988b)
a = 2.04 × 10−7, b = 3.61 Hanson and
(for Fcov in ppm, V10 in m/s) Phillips (1999)

Whitecap coverage as a = 0.2, b = 3.0 Wu (1988b)
a function of friction (for Fcov in ppm, u∗ in cm/s)
velocity u∗

Whitecap coverage as
a modified function of
wind speed V10 or
friction velocity u∗

Fcov = a(V10 − c)b

a = 4.18 × 10−5, b = 3, c = 4.93
Fcov = a(u∗ − c)b

a = 8.85 × 10−7, b = 3, c = 15.34

⎫⎪⎪⎬
⎪⎪⎭

Stramska and
Petelski (2003)

Whitecap coverage as Fcov = a× Eb
diss Cardone (1970)

a function of the rate a = 3.4 × 10−3, b = 1.5 Hanson and
of energy dissipation Phillips (1999)

of wind fetch, it is not possible to match the theoretical prediction with partic-
ular experimental data. Xu et al. (2000) examined the whitecap coverage for
wind fetches of 60, 120 and 170 km, and found that the Fcov value decreases
with increasing fetch at a given wind speed. Reported values were appreciably
lower than most values reported by other investigators at similar wind speeds.
They also showed that at a given wind speed the values of Fcov decrease with
wind fetch, although even for very large fetches the whitecap coverage becomes
very small but not zero.

The theoretical solutions based on the limiting steepness criterion, thresh-
old downward acceleration and non-Gaussian wave amplitude distribution ap-
proach cover almost all experimental data for V10 > 4 m/s and 10 km < X <
1000 km – see Figs. 7.4, 7.7, 7.11 and 7.12. In all these solutions, some ‘free’
coefficients exist which should be assumed ‘a priori’. In particular, for the limit-
ing steepness criterion, the limiting crest front steepness εf = 0.26 was assumed,
while the threshold downward acceleration was estimated as αg = 0.32 g. It
should be noted that all above theoretical solutions are very sensitive to the
selection of the εf and α values. In Fig. 7.13 all four attempts to determine
the whitecap coverage are presented in the form of function

(
gX
V 2
10

)
. Despite
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Figure 7.13: Whitecap coverage as a function of nondimensional wind fetch for
four different methods: 1 – limiting steepness criterion, 2 – threshold acceler-
ation criterion, 3 – geometry of spilling breakers approach, 4 – non-Gaussian
amplitude distribution approach.

some scattering, all methods show the same decreasing trends with the non-
dimensional wind fetch.

The ocean whitecaps coverage is closely linked with the environmental im-
pact of bubbles and spray. Blanchard (1963) published a distribution of this
coverage for both hemispheres and for particular seasons. Figures in his papers
clearly demonstrate the dominant role of the southern hemisphere in bubble and
spray production. In particular, they indicate that the most extensive white-
cap coverage appears during winter seasons, i.e. during December–February
in the Northern Hemisphere and during June–August in the Southern Hemi-
sphere. In both areas, whitecap coverage is about 6–8%. However, the absolute
value of the whitecap coverage within 10◦ zonal strips in both hemispheres
is quite different. In the Southern Hemisphere, due to the absence of conti-
nents and large wind fetches, the total whitecap area is much larger. For ex-
ample, in June–August at the latitudes 40–50◦ S, this area is as large as about
30 × 105 km2. It should be noted at these latitudes also during the ‘southern
summer’ the whitecap coverage remains large, about 22×105 km2. On the other
hand, in the Northern Hemisphere, the total whitecap area becomes smaller
and reaches about 10 × 105 km2 during December–February at the latitudes
50–60◦ N.



Chapter 8

Fundamentals of marine aerosols

8.1 Introduction

All non-gaseous particles suspended in the atmosphere are called aerosols.
Aerosols are mainly composed of droplets and crystals but also organic matter
particles and large ions. These constituents can be both natural and anthro-
pogenic, such as liquid seawater drops, dry sea salt particles, dust transport
from the deserts by wind, as well as particles resulting from human activities
related to industrial processes and agriculture, volcanic eruptions and mete-
orite destruction in the atmosphere. Particles forming aerosols attain sizes from
nanometres to several micrometres. Particle size classes are traditionally named
‘modes’, namely: ultrafine, Aitken, accumulation and coarse mode. Aerosol
emission from the global ocean is one of the major natural sources of aerosols in
the atmosphere. Because approximately 71% of the Earth’s surface is covered
by oceans, marine aerosols play an important role for various geochemical and
geophysical processes and for the Earth’s climate as a whole. It is estimated that
annual marigenic aerosols’ contribution varies from 0.3 × 1012 to 30 × 1012 kg,
corresponding to sea aerosol mass flux over the oceans of 0.03×10−3 kg/(m2 s1)
to 3 × 10−3 kg/(m2 s1) (Lewis and Schwartz, 2004).

Marine aerosol composition is formed in the planetary boundary layer of
the atmosphere over the open ocean. However, even in locations very distant
from land, marine aerosols are seldom composed solely of marigenic aerosols.
The reason for this fact is that the lifetime of the majority of aerosols in the
atmosphere is long enough to allow long-distance transport. In fact, aerosol
transport has to be considered on a global scale. However, there is a coarse
mode of aerosols, frequently called sea salt mode, that can be of local origin.

Two types of aerosol of oceanic origin are distinguished in the atmosphere.
In particular, marine primary aerosol is an aerosol directly emitted from the
sea surface, while secondary aerosol defines aerosol formed from gases emitted
from the ocean, which undergoes chemical transformation in the atmosphere.
Emission of primary aerosol is completely determined by the dynamics and
physical parameters of the sea surface. Contrary to that, emission of secondary
aerosol is influenced also by biological and chemical processes in the sea, not
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only by its dynamics. Marine aerosol particles interact with other atmospheric
gaseous and aerosol constituents by acting as sinks for a considerable number of
gases and by suppressing new particle formation. In this way they influence the
geochemical cycles of substances with which they interact. Presence of aerosols
affects the physics and chemistry of the marine atmosphere. Marine aerosols
also play a very important role for visibility, remote sensing and air quality. In
a global dimension, marine aerosols influence climate through scattering and
absorbing solar radiation, and serving as seed particles for cloud drops and
development of precipitation.

In this chapter we discuss the fundamentals of aerosol fluxes emitted from
the sea surface and their climate connection. To get a better understanding of
the mechanisms of aerosol production, it is useful to start with a discussion
of the basic physical mechanisms of air bubble production and their entrain-
ment in breaking waves. For the convenience of later analysis, the definitions of
aerosol particle sizes, concentration and spray generation functions are given.
Moreover, the characteristics of the basic types of aerosol droplets, namely jet
drops, film drops and spume drops, are discussed in detail. Finally, comments
on air–sea gas exchange enhanced by wave breaking and their connection with
climate formation are added.

8.2 Bubble entrainment in breaking waves

Breaking waves dissipate up to 40% of their energy and up to 50% of the en-
ergy loss is expended in entraining air bubbles and in creating a dense plume
of bubbles (Rapp and Melville, 1990). Laboratory and field measurements have
shown that bubbles are concentrated within clouds formed during breaking and
they are forced downward by turbulence. Bubbles penetrate to a depth about

a factor 6
(

C
V10

)−1
times the significant wave height Hs, and their concentra-

tion is typically coherent over a depth scale of Hs/2. Moreover, the measured
mean bubble radius decreases weakly with depth, being in the range from 30 to
80 μm. This value is typically about two thirds of the radius contributing most
to the void fraction. Moreover, the total surface area of the bubbles is on aver-
age comparable to that of the sea surface above them (Graham et al., 2004a,b).
From models simulating the generation of bubble clouds by sporadically break-
ing wind waves it follows that growing bubble clouds release entrained air back
to the surface at rates dependent on the largest of the eddies generated. The

estimated rate of bubble generation per unit sea surface is about 50 ε2

(
g
L5
p

)1/2

,

where ε is the ratio of the significant wave height Hs to energetically dominant
wavelength Lp. Bubbles are distributed over a volume equivalent to hemisphere
of radius R = 2Hs. Moreover, the persistent bubble clouds contribute to the
active whitecap fraction in a factor 500 ε4.

The most important property of the bubbles is their size distribution, which
is a controlling factor for air–sea gas flux, aerosol production, generation of
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ambient noise and scavenging of biological surfactants. Experimental data
(Monahan and Lu, 1990; Spiel, 1992; Cartmill and Su, 1993; Loewen et al.,
1996; Deane and Stokes, 2002; Leifer and de Leeuw, 2002; de Leeuw and Cohen,
2002; Stokes et al., 2002) have shown that the bubble spectrum evolves quite
rapidly in the first second or so after the active phase of air entrainment ceases.
This rapid evolution was denoted by Monahan and Lu (1990) as dense ‘alpha’
plumes in contrast to more diffuse ‘beta’ plumes.

Bubble formation generates sound during the so-called acoustic phase. The
recording of sound provides useful information on the mechanism of bubble
formation and their dimension distributions. Two primary mechanisms deter-
mine the bubble size distribution during the acoustic phase when newly created
bubbles produce pulses of sound. The first is jet and drop entrainment, which
is active during the entire acoustic phase and determines the slope of the size
distribution for bubbles smaller than the Hinze scale. The second mechanism is
related to the bubble fragmentation in turbulent and sheared flow. This mech-
anism operates when the wave cavity collapses and it determines the slope of
the distribution for bubbles larger than the Hinze scale. The Hinze scale is
determined by the turbulent dissipation rate within the breaking wave crest as
follows (Deane and Stokes, 2002)

aH = 2−8/5 E
−2/5
dissrate

(
γ We

ρw

)3/5

, (8.1)

in which γ is the fluid surface tension, ρw is the fluid density, Edissrate is the
energy dissipation rate, and We is the Weber number

We =

(
ρw

γ

)
u2d, (8.2)

where u is the turbulent velocity field on the scale of the bubble and d is the
bubble diameter. Deane and Stokes (2002) examined video images of a breaking
wave crest and distinguished two slopes corresponding to the two mechanisms
mentioned above. For larger bubbles (r > 1 mm) they found that the bubble
density per 1 μm radius increment and per m3 is proportional to r−10/3, while
for smaller bubbles, a r−3/2 power-law scaling with radius r results.

The multimode character of the bubble size distribution was also confirmed
during the LUMINY Wind-Wave Experiment (Leifer and de Leeuw, 2002).
Large variability was observed between bubble plumes in terms of density, dy-
namics, size and penetration depth. To take into account these factors, a special
bubble plume classification system was proposed by the authors. Bubble distri-
bution for radii <0.05 mm is proportional to r−2/3, while for radii r > 1.5 mm
the relationship has a form proportional to ∼r−5/3.

Typical oceanic bubble size spectra observed 30 cm below whitecaps, off the
coast of southern California, also disclosed a two-slope pattern. For smaller bub-
bles (r < 1 mm), the slope varies from (−1.8) to (−2.9), and for larger bubbles
this slope is in the range from (−4.9) to (−5.5) (Deane and Stokes, 2002; Stokes
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et al., 2002). The bubbles of radii less than 300 μm are at least 10 times more
numerous in open ocean whitecaps than in the laboratory. The differences be-
tween oceanic and laboratory bubble plumes have important implications for
air–sea gas flux estimation. As the smaller bubbles are more numerous in the
open sea, CO2 transport is actually dominated by these bubbles and the soluble
gas flux may be 2 to 4 times greater than that resulting from earlier estimates
(Stokes et al., 2002).

An open-ocean experiment on bubble size distributions was also reported
by de Leeuw and Cohen (2002). Their bubble measuring system, deployed
from buoys, provides bubble size distribution in the diameter range from 30 to
1000 μm. The resulting spectra possessed peaks at diameter of 50–80 μm while
the spectrum slope varied from (−1.8) to (−5). Often a second peak appeared
at diameter 200–300 μm. Moreover, some differences between deployments in
the North Sea and in the North Atlantic were observed, probably due to sea-
sonal variations.

It should be expected that the chemical composition of water alters the pro-
cess of microbubble formation. This problem is of special importance when
we try extrapolating the freshwater experimental results to the ocean environ-
ment. Cartmill and Su (1993) showed experimentally that the salinity changes
the nature of the bubbles produced and their evolution. For bubble radii greater
than 100 μm, there is an order of magnitude difference in the number of bub-
bles at a depth of 0.3m. This difference is much smaller for bubble radii less
than 100 μm. However, at water depth 0.73m, the difference in the number of
bubbles is of an order of magnitude over the entire range of observed radii. On
the other hand, bubble density spectrum slope, with (−3) power, fits the data
reasonably well in the 100–1200 μm range. The authors argued that observed
difference in the number of bubbles produced by saltwater versus freshwater
breaking waves is attributed to the coalescence of small bubbles in fresh water.

The size distributions of large bubbles entrained by mechanically generated
breaking waves in freshwater and saltwater were measured by Loewen et al.
(1996). They found that there were no significant differences observed between
the depth and size distribution of the bubbles in saltwater and freshwater.
Moreover, in both cases the size distribution was well represented by a power
law equation of the form N ∼ r−3.7.

8.3 Definitions of aerosol particle size,

concentrations, fluxes and spray

generation functions

8.3.1 Size-dependent number concentrations

In this section we summarize briefly the basic definitions used in the literature
to describe the fundamental parameters of marine aerosol production, removal



8.3 Definitions of aerosol particle sizes, concentrations and fluxes 211

and transportation. The size of particles and their concentration are central to
all aspects of aerosol behaviour. In particular, the number of aerosol particles
per unit volume at a given location and time in a unit linear interval for radius
r (r, r + dr) is given by

n(r) =
dN(r)

dr
, (8.3)

in which N(r) denotes the number concentration of all particles with radius r
less than the value of the argument. Therefore, the total number concentration
of all aerosol particles is

N(r0) =

r0∫
0

n(r)dr, (8.4)

in which N(r) is the cumulative distribution of the aerosol particles. Sometimes
the size-dependent number concentration n(r) is expressed in terms of the unit
logarithmic interval of radius r (log r, log r + d log r) – see for example Lewis
and Schwartz (2004). Therefore, we have

nl(r) =
dN(r)

d log r
= ln 10 r n(r). (8.5)

Several functional forms have been proposed to parameterize size distributions
of marine aerosol concentration. The most popular are three formulae, namely
power law type formula, gamma or modified gamma distribution, and lognormal
distribution. The power law type distribution takes the form proposed by Junge
(1953)

dN(r)

dr
=

a

ln 10
r−(b+1), (8.6)

in which b > 0. This distribution is also presented in the form

dN(r) = N0

(
r

r0

)−s

d log r. (8.7)

Junge distribution yields a monotonic decrease in increasing radius, r, and
cannot describe the size distribution for all particle sizes. Thus, it is necessarily
restricted in its radius range of applicability.

The popular gamma distribution and modified gamma distribution are

dN(r)

dr
= arb exp

(
−crd

)
, (8.8)

where a > 0, c > 0 and d > 0. The coefficients a, b, c and d are independent of
r but they may depend on some meteorological quantities. It should be noted
that for d = 1, the above distribution becomes the ordinary gamma distribu-
tion. Some widely used distributions such as those proposed by Nukiyama and
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Tanasawa (1938), when b = 2 and 0.33 < d < 0.50, and the popular Weibull
(1951) distribution can be fitted to the same form.

A similar distribution was proposed by Bortkovskii (1987) for droplets size
distribution in the near water atmospheric layer

dN(r)

dr
= 4

r2

rm

exp
(
−2

r

rm

)
, (8.9)

where rm is the average drop radius, being in the range 30.0 μm < rm < 60.0μm.
Fairall and Larsen (1984) reported that the density of number of sea salt

particle distribution may be presented by the following function

dN(r)

dr
= C1

(
r

a

)
exp

(
−C2(r/a)

b
)
, (8.10)

where r is the particle radius in μm, C1 is the parameter depending on wind
speed and on altitude above sea level, C2 is the numerical constant, b is the pa-
rameter depending on wind speed and a is the coefficient depending on relative
humidity.

Finally, lognormal distributions of the form

dN(r)

dr
=

1

ar
exp

⎧⎨
⎩−1

2

(
ln r

b

)2
⎫⎬
⎭ (8.11)

were used for a wide variety of applications, including marine and atmosphere
aerosol distribution, cloud drop size distribution and others.

8.3.2 Size-dependent mass concentrations

To distinguish one aerosol particle from another in a given set of conditions,
the mass of solute it contains, mdry, is used. In this way sea aerosol particle
is described solely by its solute mass. Hence the number concentration can be
presented in the form of dry particle mass, mdry, as follows (Lewis and Schwartz,
2004)

dN(mdry)

dmdry

=

(
r80

rdry

)3
n(r80)

4πρssr2
80

≈ 8n(r80)

4πρssr2
80

, (8.12)

in which

mdry =
4π

3
ρssr

3
dry, (8.13)

where ρss is the density of dry sea salt and the radius r80 denotes the radius
of the particle in equilibrium with the atmosphere at a given ambient relative
humidity of 80%.

Sea water droplets are hygroscopic, and therefore they change their equilib-
rium water content and radii under different atmospheric conditions; particu-
larly they depend on the ambient relative humidity. The mass fraction of sea
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salt, corresponding to this relative humidity in a sea water drop, is about 23%,
and the density is near 1.2 g/cm3. The ratio r80/rdry becomes nearly equal to
2.0, which was used in (8.12). It should be noted that for simplicity in the
following text, the radius r80 is presented simply as r.

The mass of solute contained in the particle now becomes

mdry =
4π

3
ρss r

3
dry ≈ 1

8

4π

3
ρss r

3 =
π

6
ρss r

3. (8.14)

It should be noted that the equivalent dry radius is not a physical quantity
because dry particles of aerosol have various shapes, not necessarily spheres.

The dry particle mass can be used to define the size-dependent number con-
centration. Using relationships (8.3) and (8.13) we obtain

dN(r)

dmdry

=
2n(r)

πρss r2
. (8.15)

In a similar way, the size-dependent aerosol dry mass concentration m(r) takes
the form

m(r) =
dM(r)

dr
=

π

6
ρss r

3n(r). (8.16)

Zhang et al. (2005) noted that the dry sea-salt particle size is not well defined
because water is present in sea-salt particles even at very low relative humidity
(RH). Therefore, it will be more appropriate to use the particle size at formation
as the reference state rather than the ‘dry’ particle size. They showed that
the ratio of the particle size at the local (RH) relative to the particle size
at formation is a function of relative humidity only. Assuming that there is
thermodynamic equilibrium of water between sea-salt particles and the ambient
environment and the effect of particle-surface curvature on water equilibrium is
negligibly small, conservation of solute within each particle exists. Under these
assumptions, the following relationships were obtained (Zhang et al., 2005)

r0

rRH

=
5∑

i=0

pi (RH)i for 45% < RH < 99%, (8.17)

in which r0 and rRH are the radii at formation and at ambient (RH), respec-
tively, pi are the fitting coefficients as follows

Coefficients pi

i 0 1 2 3 4 5

pi 28.376 −205.44 653.37 −1031.7 803.18 −247.08

Applying the above formula, we obtain for RH = 80%, r0/r80 = 1.97. In
general, values of the ratio r0/rRH match those from Fitzgerald’s (1975) results
when RH0 = 98% for rdry ≈ 30 μm. Zhang et al. (2005) demonstrated an
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application of the correction factor (8.17) to several spray generation functions
which are discussed in Chapter 9.

We note that Andreas (1992) proposed the relationship between the particle
radius at its formation, r0, and at a relative humidity of 80%, r80, in the form

r80 = 0.518r0.976
0 , (8.18)

where both radii are in micrometres. Roughly speaking, we can say that r0 is
approximately twice r80.

8.3.3 Aerosol fluxes

The rate of upward transport of marine aerosol particles from the ocean to the
atmosphere is one of the fundamental quantities of air–sea interaction processes.
This transport, averaged over temporal and spatial scales much greater than
those characterizing individual breaking waves and whitecaps, is known as the
size-dependent production flux fprod(r, z). Function fprod(r, z) depending on
a set of meteorological and environmental conditions denotes one-way flux of
particles from the ocean to the atmosphere at a given level z. The production
size-dependent flux differs from the size-dependent net vertical flux of marine
aerosol particles f(r, z) by the size-dependent flux of marine aerosol particles
deposited, fdep(r, z). Thus we have (Lewis and Schwartz, 2004)

f(r, z) = fprod(r, z) − fdep(r, z), (8.19)

when f(r, z) and fprod(r, z) are taken as positive upward, and fdep(r, z) is taken
as positive downward.

Function fdep(r, z) describes removal of aerosols by gravitational sedimenta-
tion, turbulent eddy diffusion, Brownian diffusion and removal through pre-
cipitation. It should be noted that processes responsible for the formation of
aerosol particles and the processes responsible for the removal of aerosol parti-
cles to the sea surface through dry deposition are fundamentally different and
controlled by different mechanisms. Therefore, it is essential to distinguish be-
tween the size-dependent flux fprod(r, z) and the size-dependent net flux f(r, z),
and to treat them separately. All above fluxes are related to a given horizontal
reference plane at an arbitrary elevation z. In particular, size-dependent dry de-
position flux fdep(r, z) is defined as the net downward flux through a horizontal
reference plane at elevation z in the absence of a surface source. On the other
hand, size dependent aerosol production flux through the level z is the number
of aerosol particles produced at the sea surface that attain level z above mean
sea level. For many purposes, the size-dependent net flux f(r, z) rather than
size-dependent production flux fprod(r, z) is desired. It is the measurable quan-
tity describing the rate, per unit area of the sea surface, at which the number
of aerosol particles of a given size above the level of measurement is changing.
On the other hand, the aerosol size-dependent production flux fprod(r, z) con-
stitutes a source of aerosol particles to the atmosphere, and it represents the
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effect of marine aerosols on climate change and atmospheric chemistry (Lewis
and Schwartz, 2004).

Beside the size-dependent production flux fprod(r, z), related to some reference
level above the sea surface, another flux is frequently discussed. It is the so-
called interfacial size-dependent production flux fprod(r, 0) defined as the rate
of upward transport of aerosol particles per unit area from the ocean surface
to the atmosphere. Therefore, similarly to (8.19) we have for the net flux at
z = 0

f(r, 0) = fprod(r, 0) − fdep(r, 0). (8.20)

The function fdep(r, 0) denotes now removal of aerosol particles at z = 0. Let
us form a ratio (Lewis and Schwartz, 2004)

Ψ(r, z) =
fprod(r, z)

fprod(r, 0)
. (8.21)

It is obvious that 0 ≤ Ψ(r, z) ≤ 1. The quantity Ψ(r, z) is equal to the prob-
ability that an aerosol particle of a given radius r produced at the sea surface
attains a level z. In particular, for small particles, Ψ is near unity as nearly all
of these particles formed at the sea surface attain a level z (say standard height
of 10m above sea surface). For increasing particle size, r, the ratio Ψ decreases
as many particles cannot attain level z.

The ratio Ψ is required to relate the aerosol fluxes produced due to bursting
of bubbles from whitecaps formed by breaking waves and those produced due to
higher wind speed tearing of drops from wave crests. There are formulations in
the literature, reviewed by Lewis and Schwartz (2004), showing that for aerosol
particles less than several micrometres, Ψ ≈ 1.0. When r ≥ 25 μm, the ratio
Ψ ≈ 0.0. For the particle size range 5 μ ≥ mr ≥ 25 μm, the ratio Ψ increases
with increasing wind speed.

8.3.4 Spray generation functions

As mentioned above, the size-dependent interfacial marine aerosol production
flux fprod(r) is defined as the rate of upward transport of aerosol particles
per unit area and unit time from the ocean to the atmosphere. Knowledge of
fprod(r) permits calculation of the total production fluxes, volume and mass
of aerosols. Some investigations (Andreas et al., 1995; Andreas, 1998; Petelski
and Piskozub, 2006) denote flux fprod(r) as the sea spray generation function
fsgf , quantifying the rate at which spray droplets of a given size are produced
at the sea surface. This notation will also be used here to distinguish the fluxes
from the size-dependent number concentrations. Thus, the sea spray generation
function fsgf in terms of a unit linear interval of radius r takes the form

fsgf(r) =
dF (r)

dr
, (8.22)



216 8 Fundamentals of marine aerosols

where F (r) denotes the cumulative distribution of the total size-dependent pro-
duction flux. In a similar way we define the size-dependent sea spray generation
function in a unit logarithmic interval of radius r as follows

fsgf(r) =
dF (r)

d log r
= ln 10 r

dF (r)

dr
= ln 10 r fsgf(r). (8.23)

Now the total flux of dry sea salt mass fdmass becomes

f
(tot)
dmass =

∫
fdmass(r)dr [kg/m2/s], (8.24)

in which the size-dependent dry mass flux fdmass(r) is

fdmass(r) =
π

6
ρssr

3fsgf(r). (8.25)

Andreas (1998) argues that to study the spray heat and moisture transfer,
so-called volume flux is more relevant and he defined it as follows

fvol(r) =
4πr3

3
fsgf(r). (8.26)

The volume flux is given in cubic metres per square metre of surface per second
per increment in droplet radius.

8.4 Mechanisms of aerosol production

8.4.1 Introduction

The presence of aerosol particles in the atmosphere has long been known. But
the exact processes by which aerosol particles are introduced into the atmo-
sphere from the ocean have only recently been established. Among several
aerosol production mechanisms, currently only two are believed to play a ma-
jor role in aerosol production. The first one is the bursting of bubbles formed
primarily by breaking waves (Blanchard, 1954; Wu, 1973, 1988a; Reinke et al.,
2001) – see Fig. 8.1. When the wind speed is sufficiently high, typically ≈ 5m/s
or greater at 10m above the ocean surface, the stress of the wind on the ocean
causes the water near the surface to move faster than the underlying water and
form a wave that breaks under the influence of gravity. This breaking wave
entrains bubbles into the ocean, and these bubbles subsequently rise, forming a
whitecap, and burst at the surface. Bursting bubbles, entrained by the breaking
of waves, play a crucial role in global air–sea gas exchange, and mediate various
physical, chemical and biological fluxes.

The other aerosol emission mechanism, also commonly regarded as an impor-
tant factor in mass exchange between the ocean and atmosphere, is the direct
driving of droplets by wind from the spume off the wave crests. The droplets
generated by this mechanism are named spume droplets or sometimes they are
also called spindrift or chop droplets (see Fig. 8.2). We have also to mention the
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Figure 8.1: Scheme of aerosol production: (a) bubbles dispersed in the wa-
ter body, (b) bubble approaching the water surface, (c) jet and film drop
generation.

mechanism of aerosol generation based on droplets hitting the sea surface and
throwing out in the form of so-called splash droplets. This mechanism is par-
ticularly intensive within the surf zone. Because splash droplets are secondary
to bubble droplets or spume droplets, they are usually included in one of these
categories.

A number of authors indicate atmospheric precipitation as a potential source
of aerosol emission from the sea. However, at the same time atmospheric

strong wind spume drops

Figure 8.2: Scheme of spume drop generation.
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precipitation is intensively removing aerosols from the atmosphere; hence its
role in aerosol transport from the sea is ambiguous. In this context, there are
some reports on an increase in sea salt concentration in the near water atmo-
spheric layer under rainfall (Marks, 1990). Fortunately it is not continuously
raining over the seas and the effect of rain can be easily eliminated from the
results of studies on aerosol generation from the sea surface.

8.4.2 Drops from bursting bubbles

Droplets emission from gas bubbles bursting on the surface of a liquid is a pro-
cess well recognised and extensively studied in laboratory experiments (Lewis
and Schwartz, 2004). However, a coherent theory has not been formulated and
this fact presents a primary obstacle in quantitative expression of the emission
flux from the sea. Gas bubble bursting results in two types of droplets emit-
ted into the atmosphere, namely: jet droplets – emitted in the form of a water
jet from bubble bottom, and film droplets – formed from the bubble mem-
brane, which extended over the sea surface. The process of bursting bubbles
and producing jets and film droplets, schematically presented in Fig. 8.1, can
be described as follows (Lewis and Schwartz, 2004): when a bubble arrives at
the liquid surface, it initially overshoots its equilibrium position. As the sea sur-
face is always covered by surface-active substances, the bubble relaxes within
several milliseconds to its equilibrium position. A portion of the bubble – the
bubble cavity – is situated below the equilibrium level of the surface due to
internal pressure within the bubble, induced by the surface tension of the film.
During relaxation time, the bubble film becomes thinner and ultimately bursts.
Bursting may yield fragments, known as film droplets, which are projected at
various angles with respect to the surface. Time of bursting is an order of tens
of microseconds and velocity of the produced film droplets may be of an order
of 10 m/s. The cavity formed by the bubble fills with water, due to surface
tension, with accelerations being 103 and 106 times the acceleration due to
gravity. This results in formation of a small vertical column, or jet, in the cen-
tre of the cavity left by the bubble. The jet is composed of a thin water layer
on the cavity surface. The thickness of this layer is of the order 5–10% of the
bubble diameter. The jet rises roughly one bubble diameter above the surface
and becomes unstable. Drops ejected above the viscous boundary layer entrain
upward into the atmosphere by turbulent eddies and contribute to the marine
aerosols. It is believed that bubbles with radius rbub ≤ 0.5mm produce only jet
droplets and bubbles with rbub ≥ 3.0mm only film droplets. For intermediate
size bubbles, both jet and film droplets can be produced; however, jet droplets
are generally larger than film droplets but film droplets are more numerous.

Woolf et al. (1987) used four properties of the aerosol production process to
indirectly classify film droplets and jet droplets, namely:

(1) elapsed time from wave breaking to droplets,

(2) site of production of the droplets relative to the active whitecap plume,
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(3) electrostatic charge per droplet and

(4) dependence of the number of droplets produced on seawater temperature.

The authors found that the bulk of the droplets produced in the radii range
0.25 μm < r < 2 μm are film droplets, while the majority of the droplets with
radii greater than 2 μm belong to the jet droplets type. However, both mecha-
nisms contribute equally to 2 μm radius droplets population.

8.4.2.1 Jet droplets

The detailed dynamics of a bursting bubble is very complicated from the physi-
cal and mathematical point of view. In consequence, there is almost a complete
absence of any theoretical descriptions of aerosol particle production in the
literature. One such attempt is the approximated analytical model for dynam-
ics of bubble-mediated jet droplet production, developed by Dekker and de
Leeuw (1993). The initial stage of the process is formation of a capillary sur-
face wave by a bursting bubble. Determination of the evaluation in time of
this initial capillary wave profile provides information on the local amplitude,
vertical velocity and acceleration of particles at the sea surface. Theoretical
analysis showed that the droplet is ejected just prior to the instant of maxi-
mum local acceleration. Moreover, energy balance allowed a prediction of the
droplet size and the ejection velocity. The authors reported a good agreement
with experimental data.

Current understanding on jet droplet generation is derived mostly from labo-
ratory experiments involving droplets from a stream of monodispersive bubbles
bursting individually at a calm water surface (Spiel, 1994). Laboratory tests
showed that the number of jet droplets produced per bubble Njet decreases
toward zero as the radius of bubble rbub increases. For bubbles of radius rbub,
in the range 0 < rbub < 3.0 mm, the number Njet can be parameterized by the
Blanchard (1983) formula

Njet = 7 exp(−0.65rbub). (8.27)

Moreover, the majority of experimental data summarized by Levis and Schwartz
(2004) are best fitted as

Njet = 10 exp(−1.4rbub). (8.28)

Loss of energy to friction during jet droplet production implies that a lower
limit of the radius r for very small jet droplets, below which there would be
insufficient energy left to produce a droplet (MacIntyre, 1968), should exist.
This means that the relation (8.28) may not be valid for rbub → 0, and probably
the mean number of jet droplets produced per bubble Njet first increases with
decreasing rbub, and then it decreases for very small rbub due to lack of sufficient
energy available for jet droplet production.

There are some data on the temperature and salinity dependence show-
ing that the number Njet decreases with increasing water temperature. This
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dependence is manifested through the viscosity, surface tension and density
which control the behaviour and shape of the jet. At lower temperature, due to
higher viscosity and higher surface tension, a longer jet is formed. In particu-
lar, Mårtensson et al. (2003) reported the results of laboratory experiments on
the submicrometer particles production by bursting bubbles. When the water
temperature increases, the number concentration decreases for Dp < 0.07 μm
(Dp is the dry diameter), wheras for Dp > 0.35 μm, this number increases. On
the other hand , the salinity effect suggests different droplet formation process
for droplets smaller and larger than 0.2 μm.

Lewis and Schwartz (2004) summarized available dependence of radii of jet
droplets r on bubble radius rbub for experiments when jet droplets were pro-
duced by single bubbles bursting at a calm liquid surface. Size of jet droplets
vary over a wide range, from r = 0.5 to 200 μm. Almost all data are concen-
trated within the radius band

0.025rbub < r < 0.1rbub. (8.29)

In particular, for the top and second droplets (i.e. for the first and second
droplets produced) when rbub ≥ 0.1 mm, the following relationship results

r = 0.075r1.3
bub, (8.30)

when r and rbub are expressed in mm.
Jet droplets produced by bubbles bursting in calm water or sea water reach

maximum heights up to 20 cm in still air for rbub ≈ 0.7−1 mm, which corre-
sponds to the jet droplets radii r ≈ 50 − 80 μm. For further increasing bubble
radius rbub, the ejection height decreases to zero for very large bubbles which
do not produce jet droplets. In a sequence of jet droplets produced by the
burst of a single bubble, the maximum height reached by later droplets are
significantly less than that of the top droplet. The maximum height h attained
by a jet droplet is determined by its radius, ejection velocity v0 and forces
acting on the droplet, i.e. gravity and drag forces. To reach maximum height,
jet droplets require very large velocity, up to tens of metres per second. There
is some experimental evidence that jet droplets with r ≈ 50 μm reached an
ejection velocity of at least 3m/s (Kientzler et al., 1954).

Several relationships between the maximum height h attained by a jet droplet
and rbub have been proposed. In particular, Stuhlman (1932) found that

h ≈ 36.79r1.5
bub for < 0.05 mm. (8.31)

In the above formula height h is given in cm and rbub in mm. When we use
(8.30), we can rewrite (8.31) as follows

h ≈ 730.65r1.15. (8.32)

Spiel (1992) presented evidence that air bubbles bursting at the surface of
water are Helmholtz resonators when the trapped gas tries to escape through
the hole in the top of the bubble. The size of the artificially produced single
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bubble was measured by determining the resonance frequency of the pulsating
bubble at the moment of pinch-off from the capillary according to the formula
(Longuet–Higgins et al, 1991)

r =

√
3γp

ρw

ω−1, (8.33)

where ω is the frequency, p is the ambient pressure and γ = 1.4 is the ratio of
specific heats of the bubble gas when the process is assumed to be adiabatic.
The estimated radius of jet droplets for the 491 μm radius bubbles ranged from
35 to 60 μm, while the vertical velocity ranged from 2.2 to 6.65 m/s. The esti-
mated size of jet droplets is in good agreement with that obtained by Blanchard
(1989).

In two companion papers, Spiel (1995, 1997) reported the results of his com-
prehensive laboratory experiments on the parameters of the birth of jet droplets
originating from bubbles bursting on the water surface. The results are valid
for bubble sizes rbub from 350 to 1500 μm. He found that the dependence of the
average jet droplet speed on bubble size is an exponential function of the form

vei = ai exp(bi rbub), (8.34)

where rbub is given in μm, vei is in m/s and i is droplet number in the sequence
when the top droplet is denoted by i = 1. Coefficients ai and bi depend on the
water temperature. Typical values of ai and bi are given in Table 8.1.

From Table 8.1 it follows that for the top drop vei ≈ 12.3 exp(−0.0016 rbub).
Extrapolating to small bubble size, we find that the maximum droplet ejection
speed approaches 12m/s as bubble size vanishes. On the other hand, for very
large bubbles, say rbub = 1500 μm, the ejection speed will be only 1.1m/s.
The time t for the top droplet to separate from the rising jet depends also
on the bubble radius in a similar exponential manner. Moreover, the variation
of average break-off height of the jet droplets with bubble size shows strong
dependence with rbub, although no fits to the data were possible.

The time for a jet droplet of a given radius to attain its maximum height and
to fall back to the sea surface determines the time period in which the jet droplet
may be taken upward by the moving eddies contributing to marine aerosol
production. Experiments have shown that jet droplets attain their maximum
heights before they undergo some change due to evaporation. The time required
for top jet droplets with radii r = 10, 15, 20 and 25 μm to reach their maximum

Table 8.1: Ejection velocity parameters
(adapted from Spiel, 1997)

Droplet ai bi × 10−3

1 12.12 ± 0.33 −1.39 ± 0.041
2 9.64 ± 0.39 −2.806 ± 0.080
3 6.53 ± 0.84 −2.916 ± 0.260
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heights 5, 8, 10 and 12 cm and fall back to the sea surface in still air equals
approximately 1, 0.7, 0.6 and 0.5 s, respectively. However, in real conditions
with nonzero wind speed, the maximum height attained by jet droplets becomes
lower, and therefore the time during which the droplets can be moved upward
becomes shorter. As a result, the mean number of jet droplets per bubble
that are taken upward and remain airborne contributing effectively to aerosol
production and formation of aerosol fluxes is much less than that given by the
formulae (8.27) and (8.28).

According to Cipriano et al. (1983) and Lewis and Schwartz (2004) there are
three basic factors providing a lower limit to the size of jet droplets which have
any appreciable probability of being entrained upward into the atmosphere,
namely: size of bubbles that burst at the surface, maximum height attained by
the droplet and energy available for jet droplet production. It should be noted
that small bubbles rise extremely slowly and frequently dissolve before they
arrive at the surface. Thus only a few such bubbles would arrive at the surface
to produce jet droplets. Moreover, jet droplets that are not ejected above the
height of the viscous sublayer are unlikely to be further entrained upward by
turbulence eddies. As follows from (8.31) and (8.32), the maximum ejection
height decreases with decreasing rbub, as does jet droplet size. The lower limit
of the size of top jet droplets that attain a given height can be presented as
follows (Lewis and Schwartz, 2004)

h ∼ 0.3r, (8.35)

in which h is given in cm, and r in μm. If bubbles produce more than one
droplet, heights of later droplets are considerably smaller than those of the top
droplet. Hence, they are less likely to be entrained upward.

8.4.2.2 Film droplets

In contrast to jet droplet generation, mechanisms producing film droplets still
remain unresolved. Several different approaches have been reported, including
a cloud of droplets, a single vertical line of droplets, a segment of a spherical
cap, and a family of droplets projected at a low angle (Lewis and Schwartz,
2004). Some film droplets, presumably formed by the shattering of the film
itself, are ejected vertically, while others, induced by the collision of the col-
lapsing film with the water surface, are ejected at a low angle to the horizon.
Experiments have shown that the radii of produced film droplets vary from
the very small value of 0.01 to 170 μm in distilled water (Afeti and Resch,
1990). A large fraction of the number of film droplets from bursting bubbles
have radii less than 1 μm. In particular, Cipriano et al. (1983) found experi-
mentally that a lot of bursting bubbles in sea water produced film droplets of
r < 0.02 μm.

Most of the experimental data suggest that number Nfilm generally increases
with increasing rbub. However, there are large discrepancies between the data,
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some of which are attributed to the experimental techniques used, for example
condensation chamber or diffusion chamber. Blanchard (1963) detected up to
over 100 droplets with radius r at least as small as 0.01 μm. Moreover, a large
peak in Nfilm (about 75) for sea water bubbles near rbub ∼ 1–1.5 mm has been
observed (Blanchard and Syzdek, 1988; Resch and Afeti, 1992). Such peaks
support the suggestion that multiple mechanisms are involved in the production
of film droplets. Comprehensive observations on film droplets were carried out
by Spiel (1998), especially for large bubbles.

Several formulae have been proposed to relate Nfilm with rbub and other quan-
tities such as the film area, Afilm, and radius, rfilm. However, sometimes the
utility of these expressions is questionable because of the extremely large range
of Nfilm for a given rbub. This is probably due to a number of factors affecting
film droplets production from the bubbles including temperature, contents of
solutions in water, surface-active materials, residence time of the bubble on the
liquid surface before it bursts, relative humidity and the speed of the air over
the surface, and used experimental techniques. The data on sizes and maxi-
mum ejection heights of film droplets show that these heights are considerably
smaller than those attained by jet droplets. Probably most aerosol droplets
with r < 1 μm belong to the film droplets category.

Wu (2001) parameterized the data of film droplets produced by individual
bubbles bursting at the surface of sea water by Blanchard and Syzdek (1988),
Resch and Afeti (1991) and Spiel (1998). These data cover four different but
overlapping size ranges. To represent the number of film droplets produced,
Wu suggested the power law representation

N = b rnbub, (8.36)

in which rbub is the bubble radius in millimetres. The data collected by par-
ticular authors provide the best fit when n = 2 and the coefficients b of the
particular data set are summarized in Table 8.2.
Beside the approximation (8.36) for total film droplets radii range, Wu (2001)
attempted to quantify the production of film droplets over specific radius
ranges. Assuming that formula (8.36) is valid in each subrange of film droplet

Table 8.2: Radii of bubbles and film droplets produced for three sets of data
(adapted from Wu, 2001)

bubble radius film droplet coefficient
Source of data (mm) radius (μm) b

Blanchard and 0.71–3.14 0.01–4.0 1.96
Syzdek (1988) 0.4–20 1.65

Resch and Afeti (1991) 0.52–5.0 20–250 2.16
Spiel (1998) 1.47–6.29 9.0–250 2.85
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radius he obtained

N(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1.96 r2
bub for 0.01 < r < 0.4

0.96 r2
bub for 0.4 < r < 9.0

0.69 r2
bub for 9.0 < r < 20.0

2.16 r2
bub for 20.0 < r < 250.0

(8.37)

In the above expressions, the radius r is given in μm. Hence, the probability
density of occurrence f(r) for film droplets having radius r can be parameter-
ized as follows

f(r) =

⎧⎪⎨
⎪⎩

0.066 r−1/2 for 0.01 < r < 30
10.9 r−2 for 30 < r < 100
1.09 × 105 × r−4 for 100 < r < 250

(8.38)

From the above expression it follows that the mean radius for the entire size
range 0.01–250 μm is 24.9 μm. It is interesting to note that only a very small
fraction (about 1%) of the film cap of a bubble is used to produce film droplets.

8.4.3 Spume droplets

When the wind stress is sufficiently strong, wave breaking can directly produce
droplets without the mediation of bubbles. This is in contrast to production by
bubble bursting which occurs away from the crest after the wave has broken.
This type of droplets, denoted as spume droplets, results from the mechanical
tearing of the sharpened wave crests by the wind. The wind speed threshold
for spume production is 7–11 m/s and corresponds to Beaufort Force 5. The
particular value of the wind speed depends on water temperature, the wave
field, and the turbulent intensity in the near-surface air. Spume droplets are
usually projected nearly horizontally and their radii range up to several hundred
micrometres. The formation of spume droplets has been little studied and does
not appear to be well understood (Anguelova et al., 1999).

Koga (1982) investigated the spume droplets formation process using multi-
colour photography. He observed that during very high winds the water sur-
face become irregular and small isolated projections occur, forming droplets
with radius up to 750 μm. Koga attributed the formation of these projections
to Kelvin-Helmholtz instability. However, Bortkovskii (1987) argued that this
mechanism does not play a major role in typical oceanic conditions.

Wu (2000) discussed two sets of measurements of de Leeuw (1986) and Smith
et al. (1993). In particular, the measurements of Smith et al. reflect two pro-
duction mechanisms: one component represents the production of film and jet
droplets by bursting bubbles, and the other of spume droplets by the wind
tearing of wave crests. The measured production for spume droplets compares
favourably in magnitude with that suggested by Wu (1993) on the basis of spray
measurements in a wind-wave tank and in the field. Averaging these data Wu
obtained that spectra were narrowly peaked at large radii and proportional to
r−8. The lower bound for this relationship is at radius r = 150 μm. For smaller
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radii, the spectrum behaves as r−2.8. However, the rate of increase of spume
droplets production with wind speed is very different. The total area of spume
droplets was found to be proportional to the energy flux from the wind, which
yields the dependence of this area on the function u3

∗ (Andreas et al., 1995). At
higher wind speeds droplets with radii in the range 10–300 μm could contribute
most of the heat fluxes.

8.5 Remarks on influence of marine aerosols

on climate

8.5.1 Atmosphere-ocean gas exchange due to bubbles
generated by wave breaking

The understanding of contemporary gas and aerosol fluxes is of great soci-
etal importance as we try to estimate and mitigate the influence of gases and
aerosols on the global radiation budget and climate. The importance of air–
sea gas transfer follows from the ocean’s role in taking up a large fraction
(30–40%) of fossil fuel-produced carbon dioxide, while the oceanic source of
NO to the atmosphere is approximately equal to the current rate of increase
of atmospheric NO. Current estimate shows that the oceans and terrestial sys-
tems play an approximately equal role in slowing the rise of atmospheric carbon
dioxide (IPCC, 2004).

Knowledge of gas, moisture and heat transfer at the ocean-atmosphere inter-
face is important for parameterization of coupling fluxes between ocean and
atmosphere, and subsequently for general circulation models used in long-term
climate models. Gas, moisture and heat exchange is particularly intensive for
a rough sea, over the breaking waves. However, the gas transfer velocity is usu-
ally presented as a function of global wind speed distribution. This approach
neglects the high variability of wind fields and the effects of local sea state char-
acteristics, such as breaking wave intensity, bubble production etc. Donelan and
Wanninkhof (2002) summarized the studies on the physical and chemical back-
grounds of the interfacial gas transfer from the point of view of input of gas
transfer on the global flux of carbon dioxide. They showed that presently much
work is devoted to estimating the global CO2 flux. However, despite great ef-
forts, there are significant differences in the results due to uncertainty in the
local estimates and lack of field measurements at high wind speeds. Different
parameterization yields global CO2 uptakes that differ by a factor of 3. Thus
they suggest applying an approach of determining regional fluxes over a short
time scale to determine the global uptake of CO2. Wanninkhof and McGills
(1999) using laboratory and field data discovered a cubic relationship between
gas exchange and wind speed. A long-term relationship leads to an increase in
the global oceanic CO2 uptake.

As was shown in the previous chapters, breaking waves eject spray into the
atmosphere. Spray evaporates and influences the balance of heat and moisture
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above the waves. It is quite reasonable to expect a substantial increase of the
air–sea gas exchange in a high sea when breaking waves are present (Woolf,
1993, 1997). Makin (1998) developed a model to account for the impact of
evaporating droplets on fluxes of sensible heat and humidity in a stratified
atmosphere over a stormy sea. He found that the impact of sea spray on heat
and moisture fluxes becomes significant for a wind speed of about 25m/s and
above. This increase in heat and humidity transfer for strong winds is related
to a drastic increase in air–sea gas exchange due to bubble transfer for high
winds. Bortkovskii (2002) estimates that due to bubble transfer, the air–sea gas
exchange during a storm can increase by a factor of 10. The dependence of the
trace gas exchange on the thermal stability at the air–sea interface was included
in the model proposed by Monahan and Spillane (1984) on the relationship
between the surface resistance for the transfer of trace gases across the air–sea
interface and the oceanic whitecap coverage.

It should be noted that microscale breaking of very short wind waves without
air entrainment is widespread over the oceans, and this type of wave breaking
and the near-surface turbulence enhances gas transfer. Zappa et al. (2002)
showed that up to 75% of the transfer across the air-water interface under
moderate wind speeds is a direct result of microbreaking.

In general, spray and bubbles do not have a significant effect on the density
and local dynamics of the surrounding medium. In stormy weather, bubbles
can change the average density by up to 0.5 ppt. That is equivalent to the
density change produced by a 2◦C increase in temperature. However, the effect
of spray and bubbles on vertical stability is overwhelmed by the mechanical
stirring due to wind stresses. It should be noted that the large-scale chemical
effects of bubbles and spray are much more significant than the dynamic effects.
Whitecap covered waters are usually supersaturated with oxygen and nitrogen,
and other gases (Keeling, 1993). Stramska et al. (1990) examined the influence
of the degree of saturation of seawater on the number and the size distribution of
the droplets produced during the decay of an individual oceanic whitecap. They
found that when the level of dissolved oxygen increased from 100% saturation
to 130%, the production of aerosol droplets by the whitecaps generated by
a standard laboratory breaking wave increased by a factor of 2.4. They argued
that the results obtained from their experiments are applicable to the global
ocean, as waves breaking on the sea surface can be regarded as an example of
the supersaturation mechanism. Therefore, the degree of saturation has to be
included in the various sea surface aerosol generation models.

Moreover, entrained air bubbles can influence chemical reactions occurring in
the sea. More corrosive marine atmosphere due to salt-water spray is a major
source of airborne condensation nuclei affecting the physics of precipitation and
the global climate (Kraus and Businger, 1994). Also, it should be noted that
bubbles rising to the surface collect any surface active material, dissolved or
particulate, of organic inorganic origin (Murphy et al., 1998; Heintzenberg et al.,
2000; Koch et al., 2000). In particular, it was suggested that the spray-borne
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transport of bacteria from the sea surface may cause an occasional health prob-
lems for people in coastal areas.

Blanchard (1963) argued that spray contributes to the electrification of the
atmosphere due to emission of a significant amount of positive charge upward
from the sea. On the other hand, sea spray is a dominant factor for the global
salt circulation and one of the major contributors to the mass of particulate
matter injected into the atmosphere globally. Various estimates provide the
annual contribution of the sea salt varying from 0.3 × 1012 kg to 30 × 1012 kg.
Assuming a mean oceanic salinity of 33 ppt, an annual flux of salt from the
global sea surface area of 4.01 × 1014 m2 must be associated with an upward
water flux of 7.5 × 10−4 kg/(m2 year1) to 7.5 × 10−2 kg/(m2 year1).

Existence of the bubble cloud entrained by wave breaking also has a strong
influence on ocean reflectance and on water light field characteristics. Stramski
and Teιgowski (2001) showed that remote sensing reflectance increases signif-
icantly due to bubble entrainment and the bubble cloud effect on ocean re-
flectance in such a way that the water patch containing bubbles will appear
greener or more yellowish than the surrounding waters with no bubbles. Thus,
the effects of bubbles on reflectance can be viewed as a source of unwanted noise
in the development of common ocean colour algorithms for retrieving in-water
constituents such as chlorophyll concentration.

The desire to have better parameterization and prediction of aerosols for as-
sessment of climate change, long-range forecasts, and better representation of
heat and moisture exchange in meteorological models has intensified the ef-
forts to include aerosols in climate and chemical models. The logic for such
parameterization is as follows (Andreas et al., 1995): droplet temperature de-
termines the rate at which spray droplets evaporate. Higher air temperatures
enhance larger spray moisture and latent heat fluxes. The spray sensible heat
transfer and the turbulent transfer are driven by the air–sea temperature dif-
ference. Therefore, the spray flux will be largest where the air–sea temperature
difference is largest, namely in high latitude. In the presence of spray, the near-
surface atmosphere is characterized by a droplet evaporation layer. This layer
is cooler and moister than the atmospheric surface layer would be without the
spray. Moreover, the vertical heat fluxes are no longer constant with height.
The Eulerian and Lagrangian models yield the conclusions that in high winds,
above about 15m/s, sea spray begins to contribute significantly to the air–sea
fluxes of heat and moisture.

8.5.2 Climate connections

The interaction between the ocean and atmosphere is critical to our understand-
ing of the earth’s climate. The ocean has a much greater heat storage capacity
than the atmosphere. In particular, the top two and half meters of the ocean
will store as much heat as the entire atmosphere, and therefore the ocean serves
as a giant thermal reservoir that can moderate and limit climatic excursions
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on the short-term and promote long-term climate changes (Rogers, 1995). The
ocean is also the major source of water and aerosols in the atmosphere, which
largely determines the radiative properties of the atmosphere, and hence the
climate-control of the earth system. All of the oceans are at least partly cloud
covered what modifies the temperature of the atmosphere and the ocean by ab-
sorbing outgoing longwave radiation from the surface and reflecting incoming
shortwave radiation. Changes in the temperature may change the amount and
type of cloud cover that, in turn, feeds back to the temperature of the ocean
and atmosphere.

In the last twenty years, recognition of the potential influence of natural and
anthropogenic aerosols in the marine environment on climate has substantially
increased. Charlson et al. (1987) described a regulatory feedback mechanism
for control of climate by marine phytoplankton. According to this hypothesis,
biogenic aerosol particles affecting cloud microphysical properties are the result
of emissions of dimethylsulphide (DMS) by marine phytoplankton. An increase
in the population of phytoplankton induces an increase in DMS emissions and
enhances concentrations of marine aerosol particles, which results in enhanced
cloud reflectivity and decreased insolation at the sea surface. This is due to
the fact that these gaseous trace species are oxidized in the atmosphere and
form sulphate as well as methylsulphonic acid, and condense on existing aerosol
particles serving as cloud condensation nuclei. This process increases multiple
scattering of sunlight within clouds and therefore increases cloud albedo. On
the other hand, decreased insolation of the sea surface induces a decreasing phy-
toplankton population. Thus, the overall process would constitute a regulatory
feedback system for biogenic control of climate.

The biogenic mechanism proposed by Charlson et al. (1987) in subsequent
years was advanced by other authors. In particular, Twomey (1991) showed that
increases in cloud drop concentrations by anthropogenic aerosol particles leads
to enhancement of cloud reflectivity, exerting a cooling influence on climate. In
terms of the research described in this book, the fundamental problem is related
to distinguishing the influences of anthropogenic aerosols from natural aerosols
in the marine atmosphere. In this context it is clear that accurate knowledge
of marine aerosols is essential to define the reference case in the absence of
influence of anthropogenic aerosols necessary to evaluate the forcing over the
industrial period as a difference relative to the present situation (Lewis and
Schwartz, 2004). In particular, accurate knowledge of marine aerosol physical
properties, such as number concentration and size-dependent and total fluxes,
is of special importance.



Chapter 9

Marine aerosol fluxes

9.1 General considerations

Particles of marine aerosol emitted from the sea surface are transported to
higher atmospheric layers by turbulent diffusion. At the same time, some por-
tion of aerosol particles is removed from the air by gravitational fallout. To
describe the balance of both fluxes, we express the aerosol particle concentra-
tion with a given radius r in the form

dN

dr
= n(r) = n(r) + n′(r), (9.1)

where n(r) is the mean value of particle concentration with a radius r and n′(r)
is the fluctuation component of the concentration. After analogous decompo-
sition of the velocity vector u = u + u′ into the mean value and fluctuation
component, the turbulent flux of particles, Ft, with a radius r may be expressed
as follows (Petelski, 2003)

dFt

dr
= n′(r)u′. (9.2)

The bar in (9.2) denotes stochastic averaging over a set of realizations. In
practice, time averaging is usually applied (over 1/2 h), which is justified by
the assumption of ergodicity of physical fields in the near-water atmospheric
layer. In a similar way, the size-dependent deposition flux,Fd, of particles with
a radius r may be formulated as follows

dFd

dr
= vd(r)n(r), (9.3)

where vd(r) is deposition velocity and n(r) is the particle concentration of
radius r.

In the case of open sea, we usually assume that aerosol fields are uniform
in space and stationary in time. Therefore, the transport equation for aerosol
particles of size r becomes

w
∂n(r, z)

∂z
=

∂

∂z
n′(r, z)w′ +

∂

∂z

(
vdn(r, z)

)
, (9.4)
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where w is the vertical component of the wind velocity. The vertical veloc-
ity component is negligible in the near-surface atmospheric layer, and (9.4)
simplifies as follows

n′(r)w′ + vd(r, z)n(r, z) = const. (9.5)

Equation (9.5) expresses the balance of the vertical, turbulent upward fluxes
and deposition fluxes in the near-water atmospheric layer under horizontally
uniform conditions. However, it should be noted that the assumption of hori-
zontal uniformity is not fulfilled even over an apparently uniform horizontal sea
surface, particularly for small aerosol particles, which can travel over long dis-
tances. Therefore, when seeking a relationship between sea surface state and
aerosol fluxes in the near-water atmospheric layer we must select such sizes
of droplets for which the condition of horizontal uniformity of both aerosol
concentration and sea surface are satisfied in the same scales.

To provide some estimate of the horizontal advection scale La for particles
of a radius r which guarantees horizontal uniformity, let us adopt La in the
form La = Vg(hm/vd(r)), where Vg is geostrophic wind speed and hm mixing
layer height. Deposition velocity for particles of radius r from 0.1 to 1.0 μm is
a very sharply increasing function, depending strongly on wind speed (Slinn
and Slinn, 1981). The value of this function increases from 0.01 to 3 cm/s, when
the wind speed is of the order of 10m/s, and mixing layer height is of the order
of 102 to 103 m. For particles of radius r = 1 μm, La takes values from 100 to
1000 km; however, for particles of r = 0.1 μm, La can be as large as 104 to
105 km.

9.2 Methods of determining size-dependent

sea spray generation functions

To evaluate whether sea spray droplets contribute to the air–sea fluxes, an es-
timation of the rate at which droplets of any given size is produced is required.
This estimation is represented in the form of the so-called sea spray generation
function ,fsgf , which quantifies the spray droplet production mechanism. As we
noted in Chapter 8, this function is also denoted as the sea aerosol produc-
tion flux (Lewis and Schwartz, 2004). Blanchard (1963) was one of the first to
determine the size-dependent oceanic interfacial production flux. He deduced
the spray generation function for wind speeds between 5 and 15 m/s using the
sea-salt distribution obtained by Woodcock (1953) in his measurements near
Hawaii.

Lewis and Schwartz (2004) reviewed in detail nine methods which at least po-
tentially can be used to determine the sea spray generation functions fsgf . They
include: the whitecap method, the dry deposition method, the eddy correlation
method, the bubble method, micrometeorological methods, the along-wind flux
method, the direct observation method, the vertical impaction method and the
wet deposition method.
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In this section we will describe only some of them, and additionally we present
a new method, named the vertical concentration method, proposed recently
by Petelski (2003, 2005) and Petelski and Piskozub (2006). For more details
of other methods, the reader should refer to the Lewis and Schwartz (2004)
monograph.

9.2.1 Whitecap method

The key assumption of the whitecap method is that the size-dependent sea
spray generation function f

(wc)
sgf (r) over the whitecap area is independent of the

nature and extent of the white area and of its mechanism of production. Thus,
it is the same for laboratory and for oceanic whitecaps. This means that in
some sense all white areas are equally productive. Therefore, the laboratory
or surf zone measurements of size-dependent production flux f

(wc)
prod(r) can be

approximately extrapolated to the ocean by multiplying by whitecap coverage
Fcov, discussed in Chapter 7, to give

f
(wc)
sgf (r) = f

(wc)
prod(r)Fcov. (9.6)

Several parameterizations for size-dependent aerosol production flux f
(wc)
prod(r)

have been proposed. In the continuous laboratory whitecap method, this func-
tion is usually defined as follows

f
(wc)
prod(r) =

p(r)

Awc

, (9.7)

where p(r) is the number of particles in a unit linear interval of r produced per
unit time from a laboratory whitecap of area A.

Size-dependent production flux over the whitecap area f
(wc)
prod(r) was deter-

mined from measurements of so-called continuous whitecaps, formed by a con-
tinuous waterfall or by bubbling air through a glass filter (Cipriano and
Blanchard, 1981), or by collision of two parcels of water which were caused to
move toward each other (Monahan et al., 1983, 1986; Stramska, 1987; Stramska
et al., 1990). The function developed by Monahan et al. predicts the production
rates of both bubble-derived film and jet droplets as well as mechanically pro-
duced spume droplets. Stramska (1987) indicated that this function predicting
spray production due to bursting bubbles provides very realistic results. How-
ever, the spume-production term predicts far too many spume droplets as was
mentioned by Andreas et al. (1995).

The final Monahan et al. (1983, 1986) expression for f
(wc)
prod(r) is as follows

f
(wc)
prod(r) = 8.2 × 105 r−2[1 + 0.057 r1.05] × 10γ, (9.8)

where

γ = 1.19 exp {−2.4[0.38 − log10(r)]
2}. (9.9)
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Figure 9.1: Size-dependent aerosol production flux resulting from the whitecap
method.

In his following paper, Monahan (1988) proposed a slightly different version of

function f
(wc)
prod(r)

f
(wc)
prod(r) = 1.257 × 106 r−3[1 + 0.057 r1.05] × 10γ, (9.10)

where

γ = 1.19 exp

⎧⎨
⎩−

[
0.38 − log10(r)

0.65

]2
⎫⎬
⎭ . (9.11)

Equations (9.8) and (9.10) represent production of aerosol in the range 0.8 μm <
r < 10 μm per unit surface and unit time.

Woolf et al. (1988) updated the Monahan model with whitecap simulation
tank data collected after Monahan et al. (1986) published their work, and

proposed the following formula for f
(wc)
prod(r)

f
(wc)
prod(r) = exp

[
16.1 − 3.43 log(r) − 2.49log(r)2 + 1.21log(r)3

]
(9.12)

Functions (9.8), (9.10) and (9.12) are presented in Fig. 9.1. All these functions
show almost monotonous decrease of the size-dependent aerosol production flux
f

(wc)
prod(r) per unit surface covered by whitecaps per μm increment and per unit

time for radii r range 0.8 μm < r < 10.0 μm.
Substituting (9.8) for f

(wc)
prod(r) and (7.4) for Fcov into (9.6), we obtain the

size-dependent sea spray generation function f
(wc)
sgf (r) over the whitecap area

suggested by Monahan et al. (1986)

f
(wc)
sgf (r) = 3.15V 3.41

10 r−2 [1 + 0.057 r1.05] × 10γ, (9.13)
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Figure 9.2: Size-dependent sea spray generation function over the whitecap
area in terms of a unit linear interval of radius r for three different wind speeds,
according to Monahan et al. (1986).

in which droplets radians r are given in μm and wind speed in m/s, while size-

dependent sea spray generation function f
(wc)
sgf (r) is expressed as the number of

particles in a unit linear interval of r produced per unit time and unit area (see
Fig. 9.2). Similar results can be obtained by using the size-dependent aerosol
production flux given in (9.10) or (9.12).

The total flux of the dry salt mass over the whitecap area resulting from the
relationship (8.24) is shown in Fig. 9.3 in terms of wind speeds from 5m/s to
15m/s. It should be noted that only the contribution of particles of radii r in
the range 0.8 μm < r < 20.0 μm were taken into account. For all approaches
the same expression for Fcov, namely (7.4), was used. The order of magnitude
of obtained sea salt mass flux corresponds well with values reported by Lewis
and Schwartz (2004), taking into account the limited range of the droplet radii
used in the calculations.

It should be noted that in the above expressions, the total flux of the dry sea
salt mass, shown in Fig. 9.3, is a function of wind speed only. To get a more
general relationship for the dry salt mass flux we use the expression (7.34) in
which the whitecap coverage, Fcov, resulting from the downward acceleration
criterion depends on the non-dimensional fetch gX

V 2
10

. When the size-dependent
production fluxes f

(wc)
prod(r) are still represented by the three different proposals

given above, we obtain the results as shown in Fig. 9.4, where the contribution
of droplets from 0.8 to 20.0 μm was taken into account. The dependence of total
flux on non-dimensional fetch provides an opportunity to examine separately



234 9 Marine aerosol fluxes

5 6 7 8 9 10 11 12 13 14 15
wind speed (m/s)

1.0E-010

1.0E-009

1.0E-008

1.0E-007

to
ta

l f
lu

x 
o

f 
d

ry
 s

ea
 s

al
t 

(k
g

//m
2 /

s)

whitecaps method

0.8 μm < r < 20.0 μm

Monahan et al. (1986)

Monahan (1988)

Woolf et al. (1988)
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the influence of wind speed and wind fetch on the produced aerosol fluxes. We
will use this opportunity in Chapter 10 to link the total salt fluxes with sea
state parameters, such as the significant wave height, Hs, and peak frequency
ωp.

The whitecap method allows a relatively straightforward determination of
the interfacial marine aerosol production flux. The assumption that the size-
dependent production flux per whitecap area f

(wc)
prod(r) is independent of the size

of the whitecaps is crucial to the whitecap method. This assumption implies
that all white areas of the ocean surface are equally efficient producers of marine
aerosols. However, there are some concerns over the practical implementation
of this method. In particular, there are large differences in the size of laboratory
and open ocean whitecaps, and it is not clear to what extent the process of
wave breaking in the laboratory accurately simulates that of oceanic waves.
Moreover, oceanic whitecaps are several orders of magnitude larger and are
manifested by bubble plumes that extend much deeper than those studied
in the laboratory. Moreover, droplet production may be modified by many
factors, such as thickness of the foam on the sea surface, clustering of bubbles,
screening by the overlying bubbles, and others. There is also some concern with
the fundamental hypothesis that aerosol production is directly proportional to
whitecap coverage. For more details on the properties of the whitecap method,
the reader should refer to the Lewis and Schwartz (2004) monograph.

9.2.2 Vertical concentration gradient method

The basic problem of experimental estimation of the aerosol fluxes emitted
from the sea surface is the requirement of sufficient particle concentration.
To overcome the difficulty, Petelski (2003) developed a method based on the
measured vertical gradients of particle concentration. This method requires
much lower average concentration at a given level. Therefore, it is particularly
suitable for coarse aerosol flux estimation when usually the concentrations are
not so high. To collect the required amount of data, Petelski measured particle
concentrations on board R/V Oceania using a laser particle counter CSASP-
100-HV moving vertically from 8 up to 20 m above sea level, while the ship
was drifting and when whitecaps were present. The technology of measurements
was described by Petelski (2005) and Petelski and Piskozub (2006) in detail.
Experimental data from cruises in the Norwegian and Greenland Seas for wind
speed range 5m/s < V10 < 12m/s and aerosol particle radius 0.25 μm < r <
7 μm showed that the size-dependent number concentration of particles N per
metre cube of air can be parameterized by the formula

N(r, z) = N∗(r) ln(z) + C, (9.14)

in which N∗(r) is the scale of particle concentration. From formula (9.14) it fol-
lows that the vertical concentration profiles may be approximated by straight
lines on plane (ln(z), n(z)), from which the scale N∗ can be obtained. It should
be noted that the scale N∗(r) has a negative value, indicating that there are
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negative gradients of aerosol particle concentration in the near water atmo-
spheric layer caused by emission from the sea surface.

Based on many years of observations in the polar waters of the North At-
lantic, Petelski (2005) showed also that local emission is not always the most
important factor influencing the composition of marine aerosol in the near
water atmospheric layer, even for coarse mode aerosols. In particular, higher
variations of N∗(r) value were observed for the smallest particle radii from
0.5 to 1.0 μm when the horizontal homogeneity conditions were not satisfied
and the advection flow influenced the measurements.

Following Petelski (2003) we show now that the formula (9.14) is confirmed
by the Monin–Obukhov self-similarity theory (Monin and Yaglom, 1965). Ac-
cording to Monin and Obukhov, horizontally uniform flow over a water surface
is fully defined by momentum flux τ , sensible heat flux Q and buoyancy pa-
rameter β = g/T , expressed by the following scaling parameters

friction velocity : u∗ = (τ/ρ)1/2, (9.15)

temperature : T =
−Q

κu∗
, (9.16)

and

length : L =
−u3

κβQ
− Monin − Obukhov scale, (9.17)

where κ is the von Kármán constant equal to 0.4.
Using these scales, all non-dimensional gradients of physical parameters,

within the layer of constant fluxes, are presented as functions of one non-
dimensional parameter, z/L. For example, we can write

κz

u∗

∂u

∂z
= ϕ1(z/L) and

z

T

∂θ

∂z
= ϕ2(z/L), (9.18)

in which θ is the potential temperature.
In the same way, for the non-dimensional number concentration gradient of

the particles ∂N
∂z

we obtain

z

N∗

∂N

∂z
= ϕ3(z/L), (9.19)

where the scale N∗(r) of the particle concentration is defined as

N∗(r) =
fprod(r)

u∗
, (9.20)

in which fprod(r) defines the size-dependent production flux. After integration
in (9.19) we have

N(z2) −N(z1) = N∗(r)[f(z2/L) − f(z1/L)], (9.21)



9.1 General considerations 237

where f is a primary function such as ∂f
∂z

= ϕ3(z/L)
z

. The relationship (9.20)
provides the size-dependent production flux in the form

fprod(r) = N∗(r)u∗ = N∗(r)
√
C10V10, (9.22)

when formula (5.61) for the drag coefficient C10 is used, and scale concentration
N∗(r) is determined from the experimental data. The flux fprod(r) denotes the
number of particles per unit area and unit time.

The exact form of function f is not known, although in the literature there are
several different proposals for this formula. In particular, the Monin–Obukhov
theory provides the asymptotic form for function f , when z/L → 0 (neutral sta-
bility), as follows: f → ln |z/L|. For most cases of atmospheric flow over the sea
surface, the formula given by (9.14) can be used. Petelski and Piskozub (2006)
reported that during all four measurement campaigns, the non-dimensional
stability parameter z/L ranged from −0.1 to +0.01, which is close to neutral
stability conditions, as those defined by Zilitinkevitch et al. (1978). As the ex-
act values of all parameters needed for determination of the scale L were very
difficult to obtain in field measurements, the authors assumed that only data
with a higher value of the correlation coefficient between measured functions
N(z) and ln(z) were taken into account. Particularly, using a two-side Pearson
80% confidence interval in the logarithmic data fitting it was shown that for
five measurement levels, the correlation coefficient was greater than 0.67.

In contrast to the whitecap and dry deposition methods, the sea spray gener-
ation function f

(vg)
sgf resulting from the vertical concentration gradient method

cannot be presented as a product of the wind speed term and particle radius
term, and Petelski and Piskozub (2006) found that this function takes the form

f
(vg)
sgf = exp[−(0.05V10 + 0.64)r + 7.17 + 0.52V10] (9.23)

or

f
(vg)
sgf = exp(7.17 + 0.52V10) exp[−(0.05V10 + 0.64)r], (9.24)

when the wind speed is given in m/s and radius r is in μm. Then the sea
spray generation function is expressed in number of particles per unit area and
unit time, per increment of r in μm. It should be noted that for a given wind
speed, the relationship (9.23) is a linear function in the plane (ln r, ln(f

(vg)
sgf ).

Petelski and Piskozub (2006) compared the suggested parameterization (9.23)
with their experimental data and with other parameterizations available in the
literature. The comparison showed that the spray generation functions resulting
from the whitecap and dry deposition methods provide smaller values of the
aerosol particle flux than the observed flux in the range of radii from 1 to 8 μm,
some of them by a factor of 6.

9.2.3 Dry deposition method

Vertical aerosol fluxes over deep seas are most frequently determined by measur-
ing aerosol concentrations at one level. Such a method, called the dry deposition
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Table 9.1: Dependence of dry deposition velocity vd on particle radius r for
wind speed V10 = 10 m/s (adapted from Lewis and Schwartz, 2004)

radius
r(μm) 1 2 5 10 15 20 25

deposition rel.
V10 = 10m/s vd(cm/s) 0.05 0.25 1.5 3 5 7 10

method, is based on a local balance between production and removal by dry
deposition with the assumption of horizontal uniformity and time stationarity
conditions

fsgf = vd
dN

dr
= vd n(r), (9.25)

in which fsgf = dF/dr is the sea spray generation function expressed in terms
of the number of particles of radii from r to r + dr, emitted in a unit of time
from a unit of sea surface area, n(r) is the size-dependent aerosol number con-
centration, measured in the field, usually at one level, and vd is the deposition
velocity. Equation (9.25) gives a rough approximation only and does not di-
rectly result from the transport equation. The aerosol vertical fluxes can be
balanced with an accuracy determined within the addition of an arbitrary con-
stant as the transport equation yields the balance of flux gradients, not the
fluxes themselves.

The dry deposition velocity is usually determined from one-dimensional mod-
els (see, for example Slinn and Slinn, 1980, 1981) assuming that the aerosol par-
ticles are sufficiently well mixed to a level above the levels of measurements.
Therefore, downward flux does not depend strongly on the level under consid-
eration. In Tables 9.1 and 9.2, the dry deposition velocities calculated from the
model of Slinn and Slinn (1980, 1981) are presented for particles of radii in the
range from 1 to 25 μm and for selected wind speeds. As can be seen from Ta-
ble 9.1, the dry deposition velocity vd increases with increasing radius r due to
increasing contribution from gravitational sedimentation. Moreover, Table 9.2
shows that for a given particle radius, the deposition velocity vd increases with
wind speed V10 due to more intensive vertical mixing and diffusion.

A widely used estimate for the effective marine aerosol production flux f
(dd)
sgf (r)

was proposed by Smith et al. (1993). In this proposal, aerosol number concen-
trations n(r) of particles with r in the range 0.09–23.5 μm were obtained from
over 700 hours of measurements from a 10m tower located 14m above mean
sea level at an island off the coast of Scotland, when the wind speed range
covered 1–34m/s. Due to the wide range of meteorological conditions taken
into account in the experiments, the spume production was probably reflected
in their results. Smith et al. (1993) give their sea spray generation function
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Table 9.2: Dependence of dry deposition velocity vd on wind speed V10 for
particle radius r = 1 μm and r = 3 μm (adapted from Lewis and Schwartz,
2004)

wind speed
V10 (m/s) 0 5 10 15 20 25

r = 1 μm deposition rel. 0.016 0.05 0.05 0.06 0.4 0.7
Vd (cm/s)

r = 3 μm deposition rel. 0.15 0.35 0.65 0.70 1.10 1.20
Vd (cm/s)

f
(dd)
sgf (r) in terms of droplets of relative humidity of 80% in the form

f
(dd)
sgf (r) =

2∑
i=1

Ai exp

{
−bi

[
ln

(
r

ci

)]2
}
, (9.26)

in which

log10 A1 = 0.0676V14 + 2.43

log10 A2 = 0.959
√
V14 − 1.476

⎫⎬
⎭ (9.27)

and

b1 = 3.1, c1 = 2.1 μm

b2 = 3.3, c2 = 9.2 μm

⎫⎬
⎭ (9.28)

for radii in the range 1 μm ≤ r ≤ 25 μm and for wind speed 0m/s < V14 <
34 m/s. The speed V14 can be transferred to the wind speed at the standard
10m as follows

V14 = V10

[
1 +

√
C10

κ
ln

(
14

10

)]
, (9.29)

where κ = 0.4 is the von Kármán constant and C10 is the drag coefficient (see
Section 5.3.4). Smith et al. (1993) applies for the C10 an expression proposed
by Large and Pond (1981) in the form

103C10 =

⎧⎨
⎩

1.20 for 4 ≤ V10 ≤ 11 m/s

0.49 + 0.065V10 for V10 ≥ 11 m/s.
(9.30)

The sea spray generation function (9.26) is illustrated in Fig. 9.5 for radius
range 1–20 μm and for three different wind speeds. Smith et al. (1993) suggest
that a smaller mode centred around 2 μm radius is associated with particles
generated by the bubble bursting mechanism, while the larger mode at 9 μm
reflects the contributions of spume droplets at higher wind speeds.
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Figure 9.5: Sea spray generation function according to Smith et al. (1993).

Andreas (1998) using the theoretical arguments given in another of his pa-
pers (Andreas et al., 1995) found that the above spray generation function
underpredicts film and jet-droplet production in comparison with the Mona-
han et al. (1986) function, while both functions provide roughly the same shape
(not values) for droplet radii in the range from 4 to 15 μm. Monahan’s function
is considered the best one available for predicting spray production by white-
cap bubbles for wind speeds up to 20m/s. Thus, Andreas (1998) suggested

that if we multiply the original Smith et al. (1993) functions f
(dd)
sgf (r) by 3.5, we

obtain the spray generation function that in the film and jet-droplet range is
comparable to the Monahan et al. (1986) function f

(wc)
sgf (r). Therefore, should

be

f
(wc)
sgf (r) = 3.5f

(dd)
sgf (r). (9.31)

As was pointed out by Andreas (1998), this function does not cover the range
of spume droplet production, which plays a very important role in transferring
heat and moisture across the air-sea interface. To formulate a reliable sea spray
generation function that would cover the relevant wide droplet radii range from
2 up to 250 μm, Andreas (1998) proposed some modification and an extrapola-
tion of the Smith et al. (1993) function. In particular, he suggested the following
sea spray generation function for range of particle radii 1 μm ≤ r ≤ 250 μm and
wind speed 0m/s ≤ V10 ≤ 32.5 m/s

f
(dd)
sgf (r) =

⎧⎪⎪⎨
⎪⎪⎩

3.5
2∑

i=1
Ai exp

{
−bi

[
ln

(
r
ci

)]2
}

for 1 ≤ r ≤ 10 μm

f̃sgf(r) for r ≥ 10 μm

(9.32)
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in which

f̃sgf(r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C1(V10)r
−1 for 10 ≤ r ≤ 37.5 μm

C2(V10)r
−2.8 for 37.5 ≤ r ≤ 100 μm

C3(V10)r
−8 for 100 ≤ r ≤ 250 μm

(9.33)

The coefficients C1, C2 and C3 depend on wind speed, and are calculated as
follows. First, the fsgf(r) value for r = 10 μm is calculated from (9.26) and
corresponding coefficient C1 is obtained from (9.33). Using C1 we calculate the
f̃sgf at 37.5 μm and subsequently the coefficient C2 from the second relation in
(9.33), and so on. It should be noted that in the original Andreas (1998) paper,
the spray generation function was presented in terms of radius r0 when

f
(dd)
sgf (r0) = f

(dd)
sgf (r)

dr

dr0

, (9.34)

in which

dr

dr0

= 0.506 r−0.024
0 . (9.35)

In our notation, r0 denotes the radius at formation while r is the radius at
relative humidity of 80%. The modified Smith et al. (1993) sea spray generation
function (9.32) is shown in Fig. 9.6 for 1 μm ≤ r ≤ 250 μm and three wind
speeds, i.e. V10 = 5, 10 and 15m/s.
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Figure 9.6: Modified sea spray generation function suggested by Andreas
(1998).



242 9 Marine aerosol fluxes

1 10 100

droplet radius (μμm)

0.0001

0.001

0.01

0.1

1

10

100

si
ze

-d
ep

en
d

en
t 

m
as

s 
fl

u
x

x
10

-1
2

(g
//μ

m
//m

2 /
s)

V10
= 15.0 m

//s

V10= 10.0 m
/s

V10
= 5.0 m

/s

Figure 9.7: The size-dependent dry mass flux corresponding to the sea spray
generation function suggested by Andreas (1998).

The corresponding size-dependent dry mass flux fdmass(r) (see (8.25)) for
three different wind speeds is illustrated in Fig. 9.7. The figure shows that the
highest contribution to the aerosol mass emitted to the atmosphere is due to
droplets of greater radius, around 100 μm.

When the dry deposition velocity vd proposed by Slinn and Slinn (1980,

1981) is used, the sea spray generation function f
(dd)
sgf (r) can be presented in

a canonical form of the sum of two lognormal functions as follows (Lewis and
Schwartz, 2004)

f
(dd)
sgf (r) = A1 exp

⎧⎪⎨
⎪⎩−1

2

⎡
⎣ ln

(
r

2.5

)
ln 1.49

⎤
⎦

2
⎫⎪⎬
⎪⎭ + A2 exp

⎧⎪⎨
⎪⎩−1

2

⎡
⎣ ln

(
r

10.7

)
ln 1.48

⎤
⎦

2
⎫⎪⎬
⎪⎭ (9.36)

or

f
(dd)
sgf (r) = A1 exp

⎧⎨
⎩−1

2

[
ln r − ln 2.5

ln 1.49

]2
⎫⎬
⎭ + A2 exp

⎧⎨
⎩−1

2

[
ln r − ln 10.7

ln 1.48

]2
⎫⎬
⎭ ,

(9.37)

where

A1 = exp[0.156V10 + 7.25], (9.38)

A2 = exp[2.21
√
V10 − 0.28]. (9.39)
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In equation (9.36), the mode at r = 2.5 μm consists of the droplets resulting
from bubbles bursting and the mode at r = 10.7 μm is related to the spume
droplets. Moreover, the droplet radius range of applicability of the above for-
mulae is 1 μm < r < 25 μm, with wind speeds up to 34m/s. It should be noted
that the wind speed dependence of the sea spray generation function is mani-
fested only in the values of coefficients A1 and A2. The function f

(dd)
sgf (r) does

not go to zero at zero wind speed due to the fact that the size-dependent par-
ticle concentration does not vanish at low wind speeds. Therefore, steady state
conditions in terms of local and temporal balance between removal through dry
deposition and production are not exactly achieved.

Another expression for the sea spray generation function f
(dd)
sgf (r), based on

the dry deposition method for level of 10m above sea surface, was developed by
Smith and Harrison (1998), using measurements in the eastern North Atlantic.
Their result is relevant for particles from 1 to 150 μm and wind speeds up to
about 20m/s, and the function f

(dd)
sgf (r) is also expressed as the sum of two

lognormal distributions as follows

f
(dd)
sgf (r) = A1 exp

⎧⎨
⎩−1

2

[
ln r − ln 4.2

ln 1.78

]2
⎫⎬
⎭ + A2 exp

⎧⎨
⎩−1

2

[
ln r − ln 50

ln 2.03

]2
⎫⎬
⎭,

(9.40)

in which

A1 = 1.7V 3.5
10 and A2 = 0.6 V3

10. (9.41)

Petelski and Piskozub (2006) parameterized the aerosol fluxes over the Arctic
seas in the form of a relationship resulting from the dry deposition method,
when the following size-dependent number concentration n(r) for coarse aerosol
was used (Petelski, 2005)

n(r) = exp(0.21V10 + 12.3 ± 2) exp(−0.58 r) (9.42)

and the deposition velocity was taken in the form suggested by Caruthers and
Choularton (after Smith et al., 1993)

vd =
vt(r)

1 − exp
[
−

(
vt(r)
Cd V10

)] , (9.43)

in which vt is the gravitational sedimentation velocity for a given particle radius
and Cd is the drag coefficient. After substituting (9.42) and (9.43) into (9.25)
they obtained

f
(dd)
sgf (r) =

vt(r)

1 − exp
[
−

(
vt(r)
Cd V10

)] exp(0.21V10 + 12.3 ± 2) exp(−0.58 r). (9.44)

As was shown by Petelski and Piskozub (2006), function (9.44) provides slightly
smaller aerosol fluxes than another formula of the authors (see (9.23), and
smaller than the fluxes measured by them in Arctic waters.
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9.2.4 Wet deposition mechanism

Wet deposition of marine particles refers to the transfer of particles from the
atmosphere to the surface by precipitation or by in-cloud and below-cloud scav-
enging. Some measurements (Twomey, 1955) showed that precipitation is a
very efficient mechanism in removing sea aerosol particles from the atmosphere
above sea surface. According to Lodge (1955), a decrease by nearly an order of
magnitude in the number concentration of sea aerosol particles with r > 3 μm,
after only a 10mm shower was observed. The efficiency of the wet deposition
mechanism for marine aerosol particles suggests that precipitation affects the
relationship between aerosol production and aerosol concentration. However,
despite numerous attempts to parameterize the rates of particle removal, these
rates remain very uncertain. The same conclusion is valid for in-cloud and
below-cloud scavenging, which refer to particles forming cloud drops that are
subsequently removed in precipitation through gravitational deposition. Due to
the lack of well defined and experimentally confirmed parameterization meth-
ods, wet deposition mechanisms will not be taken into account in this book.

9.2.5 Eddy correlation method

The eddy correlation or eddy covariance method is the most direct method to
determine turbulent fluxes (Panin, 1985; Nilsson et al., 2003). This method is
based on simultaneous measurements of instantaneous wind velocity compo-
nents and instantaneous values of the quantity which is to be determined. If we
assume that the vertical component of velocity w and size-dependent aerosol
particle concentration n(r) can be decomposed as follows

w = w + w′; n(r) = n(r) + n′(r), (9.45)

we can present the mean vertical flux associated with the aerosol particle con-
centration n in the form

n(r)w = n(r)w + n′(r)w′. (9.46)

To remove any mean flow in the vertical direction, a coordinate rotation is
applied allowing a determination of the vertical flux n′(r)w′ due to turbulent
diffusion only. The time over which measurements are averaged should be long
enough to avoid the influence of individual gusts or breaking waves on the re-
sults. Typically, this time is equal to about 30 min. Lewis and Schwartz (2004)
listed a set of other factors which should be taken into account during measure-
ments, namely the signal-to-noise ratio of the apparatus and its response time,
location of the wind speed sensor against the particle concentration sensor,
proper sampling method and others.

9.2.6 Comparison of flux estimates

In the preceding sections, selected proposals to determine the marine aerosol
fluxes were discussed. For later convenience, the final formulae of the sea spray
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generation functions resulting from these particular methods are summarized
as follows:

9.2.6.1 Whitecap method

Three different approaches, based on the concept of aerosol generation over
whitecap areas have been discussed above, namely:

- Monahan et al. (1986) approach resulting in formula (9.13)
- Monahan (1988) approach resulting in formulae (9.6) and (9.10)
- Woolf et al. (1988) approach resulting in formulae (9.6) and (9.12)

Functions f
(wc)
sgf (r, V10) denote the sea spray generation functions in terms of

a unit linear interval of radius r. They are applicable for droplet radii in the
range 0.8 μm < 8.0 μm and for wind speed 4.0 m/s < V10 < 20 m/s.

9.2.6.2 Vertical concentration gradient method

This method was proposed by Petelski and Piskozub (2006). The resulting
formula (9.23) is based on the Monin-Obukhov self-similarity theory.

9.2.6.3 Dry deposition method

There are few formulae resulting from the balance equation illustrating the
equality of the generation flux and deposition flux. In some of these formulae,
the deposition velocity is not always expressed explicitly:

- Smith et. al (1993) approach resulting in formula (9.26)
- Andreas (1998) approach resulting in formula (9.32)
- Slinn and Slinn (1981) approach (9.36)
- Smith and Harrison (1998) approach resulting in formula (9.40)
- Petelski and Piskozub (2006) approach resulting in formula 9.44)

9.2.6.4 Summary remarks

Andreas (1998) in his review compared the available prediction formulae for
sea spray generation functions. He found that the prediction functions differ
between them by as much as several orders of magnitude. A similar conclu-
sion follows also from the review presented in the Lewis and Schwartz (2004)
monograph. In particular, the uncertainty over the spray generation function
for high wind speeds is a major obstacle for formulation of the best suited
prediction methodology. High wind speed range is of special importance as
the spume droplets, generated at high wind speeds, are probably more impor-
tant than bubble-derived droplets in transferring heat and moisture across the
air-sea interface. This is because of the large number and volume of droplets
produced by the spume production mechanism, and the speed with which the
spume droplets exchange heat and moisture with the air.

Moreover, the observed discrepancies result from the fact that available spray
generation models are based on laboratory experiments, and obviously they
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do not reflect the aerosol generation conditions in real sea environments, al-
though some features are common for all prediction models. First of all, it was
confirmed that small aerosol particles, r ≈ 0.1–1 μm, provide the dominant
contribution to size-dependent production fluxes. These particles are mostly
due to the bursting of bubbles and these small droplets have long atmospheric
residence times and consequently they exhibit little correlation with local con-
ditions (Petelski, 2005). Medium sea aerosol particles, r ≈ 1–1.25 μm, are dom-
inant contributors to many atmospheric processes of interest. These particles
are mainly jet droplets resulting from bursting bubbles. There is a large vari-
ability in atmospheric residence times for them, ranging from hours to days.
The residence time of these particles is controlled by dry deposition as well
as by wet deposition when precipitation occurs. The best estimate for the sea
spray generation function for these particles’ range is that presented by the
whitecap and dry deposition methods, presented above in this chapter. Large
aerosol particles, r ≥ 20 μm, provide the dominant contribution of mass and
momentum. They belong to the jet droplet class as well as the spume droplet
class. However, due to the limited amount of data, little can be stated with
confidence concerning the production fluxes (Hoppel et al., 2002).

At present the only sea spray generation function which covers a wide radius
range from 2 to 500 μm and wind speed range from 0 to 32.5m/s is the Andreas
(1998) parameterization. This proposal is based on the combination of two
prediction methods. For small aerosol droplet radii r ≤ 10 μm, the prediction
is compatible with the Monahan et al. (1986) function, while for larger droplet
radii Andreas developed an extrapolation function for the spume domain using
the experimental data of Smith et al. (1993) collected in the field. Also, we
have to mention the data collected by Petelski (Petelski, 2005) and Petelski
and Piskozub (2006) in Arctic waters, as well as by Petelski et al. (2005) in the
open Baltic Sea. At present both data sets represent very valuable experimental
insight into sea aerosol production.



Chapter 10

Aerosol flux as a function of sea
state parameters

10.1 Introduction

As was discussed in the previous chapters as well as in Chapter 11, marine
aerosols play an important role for climatic, meteorological and chemical mod-
els. Such models require accurate representation of aerosol fluxes from the sea
surface to the atmosphere and from the atmosphere to the ocean. In modelling
aerosol generation and aerosol impact on the climate, two types of approach,
namely the diagnostic approach and the seasonal or synoptic scale approach,
can be distinguished. In the diagnostic approach we look for marine aerosol
fluxes at a given location and at a given time, while in the seasonal or synoptic
scale approach we seek to predict aerosol flux variation in the scale of months or
seasons for a given sea basin. In general, aerosol fluxes are complex functions of
wind speed, wind history, atmospheric stability and sea surface state. The sea
state is represented by surface wave statistics, surface wave spectra, intensity
of wave breaking and possibly other parameters such as ocean temperature
and surface active substances. However, many present representations of sea
spray generation functions use only wind speed as the governing parameter. It
should be stressed that a description of the sea surface state as a function of
wind speed only is highly insufficient. At a given wind speed, sea surface statis-
tical characteristics and wave spectra can be quite different as wave generation
mechanisms involve many other parameters, not only wind speed. For more
information on wave generation processes, the reader should refer to books by
Phillips (1977) and Massel (1996a).

A full set of parameters determining the sea state and the frequency spectra
of the surface waves contains (Massel, 1996a): density of air ρa, density of water
ρw, kinematic viscosity of air νa, kinematic viscosity of water νw, wind speed
V10, wind fetch X, duration of wind action t, water depth h and the Coriolis
parameter f . Under the assumption of irrotational wave motion and under
the dominant gravity force as well as under a restriction of the atmospheric
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boundary layer adhering only to the sea surface, the number of non-dimensional
combinations of parameters listed above can be reduced to the following

gX

V 2
10

,
gt

V10

,
gh

V 2
10

,
ωV10

g
. (10.1)

In the following we use the above non-dimensional combinations to express
the basic quantities controlling aerosol flux generation, such as whitecap cov-
erage and energy dissipation rate in terms of the sea state parameters. This
opens the opportunity to predict aerosol fluxes in terms of hydrodynamic and
meteorological factors.

10.2 Governing relationships

In the previous sections, various characteristic quantities, such as whitecap
coverage, energy dissipation rate, aerosol fluxes and others, were presented in
terms of non-dimensional wind fetch

(
gX
V 2
10

)
. However, wind fetch is a quality

very difficult to determine in natural conditions in sea basins of complicated
shape and bathymetry. Therefore, instead of the combinations given in (10.1),
we use parameters which are easier to measure and which are in some relations
with them.

In particular, for the diagnostic analysis, we assume that wind speed V10,
significant wave height Hs and period (frequency) of the spectral peak ωp (Tp)
are known. On the other hand, in the case of seasonal scale analysis usually
the historical or experimental values of wind speed V10 and significant wave
height Hs only are available. More complete data on significant wave height
Hs and peak frequency ωp for a given atmospheric field can be obtained only
from numerical models, for example from such as WAM4 (Komen et al., 1994).
Mean values, over months, seasons or years for the significant wave height Hs

and peak period Tp, are known for oceans and some regional seas (Massel,
1996a; Young and Holland, 1996; Paplińska and Reda, 2003). In particular,
Young and Holland in their atlas present results obtained from three years of
global data obtained from the GEOSAT satellite with an attempt to provide
some interpretation of the observed results. The monthly average data of the
significant wave height Hs and the spectral peak Tp for the Baltic Sea for
the period 1998–2001 were simulated by the WAM4 model with the initial
atmospheric forcing adopted from the UK Meteorological Centre (Paplińska
and Reda, 2003).

It should be noted that the significant wave height Hs is a characteristic
measure of wave energy, while Tp is a measure of characteristic wave period.
Both these parameters are functions of non-dimensional combinations given
above, i.e.

gHs

V 2
10

= f1

(
gX

V 2
10

,
gt

V10

)
(10.2)
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and

ωp V10

g
= f2

(
gX

V 2
10

,
gt

V10

)
, (10.3)

when we assume deep-water conditions.
If

(
gt
V10

)
is sufficiently large so the time does not influence Hs and ωp, but

rather it is
(
gX
V 2
10

)
that controls them, then we are dealing with fetch-limited

waves, when the combination
(

gt
V10

)
in (10.2) and (10.3) can be omitted. Con-

versely for the duration-limited case, the combination
(
gX
V 2
10

)
in functions f1 and

f2 should be omitted. When both the fetch and duration are sufficiently large
for Hs and ωp to reach limiting values, they will become dependent only upon
the wind speed V10 and the condition of a fully developed sea will exist.

In this section, the functional dependence of the whitecap coverage, energy
dissipation rate and aerosol fluxes on the sea state parameters will be discussed
and developed. To achieve this, let us express first the relationship between non-
dimensional wind fetch

(
gX
V 2
10

)
and significant wave height Hs and peak frequency

ωp. After substituting (D.5) into (D.10) we obtain

Hsω
2
p

g
=

√
1.216a0

(
gX

V 2
10

)−0.11

(10.4)

and

gX

V 2
10

= (1.216a0)
4.545

(
Hsω

2
p

g

)−9.09

. (10.5)

10.3 Dependence of energy dissipation rate

on sea state parameters

Most knowledge on wave dissipation is a result of laboratory and field ex-
periments. The available relationships for the rate of energy lost during wave
breaking are listed in Table 6.2. Moreover, in the past a number of theoretical
proposals were developed to estimate the energy loss. These proposals are sum-
marized in Table 6.3. Let us express now these theoretical formulae in terms
of sea state parameters. In particular, we parameterize the energy dissipation
rate and whitecap coverage in terms of significant wave height Hs and peak
frequency ωp. For a fully developed wind-sea spectrum, the rate of total energy
dissipation rate takes the form (see (6.43))

Edissrate = 1.59 ρg

(
m4

1

g2 m3
0

)2 (
m0 m2

m1

)
. (10.6)
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Figure 10.1: Energy dissipation rate according to Komen et al. (1984) model
for storm waves in the Baltic Sea on 9 August 1998.

Let the wave field be represented by the JONSWAP spectrum with standard
value of γ = 3.3. After substituting relationships (D.10) into the above expres-
sion we obtain

Edissrate =
1.59 ρg

212

(
a1

a0

)7 (
a2

a0

)(
Hs ω

2
p

g

)4

H2
s ωp. (10.7)

To illustrate this dependence we selected real storm conditions at a single point
in the Baltic Sea (54◦ 51.234

′
N, 17◦ 48.352

′
) when a deep-water wave field was

generated by a fast moving atmospheric front. On 9 August 1998, wave data
were recorded using the Datawell Waverider Buoy (Paplińska, 1999). The mea-
sured significant wave heights Hs and peak frequencies ωp during this day are
shown in Figs. 10.1–10.3 by closed circles and diamonds, respectively. The full
lines are the interpolated values. The calculated values of Edissrate correspond-
ing to the recorded significant wave heights Hs and peak frequencies ωp are
added to Fig. 10.1.

The dissipation energy rate resulting from Phillips’ concept of saturation
range is given by (6.24). This relationship is based on the assumption that the
spectral slope is proportional to function ω−4 as suggested by Toba (1973). For
our calculation, we apply the Donelan et al. (1985) formula (3.24) which can
be considered as a modification of the JONSWAP spectral model to account
for the ω−4 rather than the ω−5 rear spectrum face slope. Substituting (3.24)
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Figure 10.2: Energy dissipation rate according to Phillips’ (1985) concept for
storm waves in the Baltic Sea on 9 August 1998.
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Figure 10.3: Whitecap coverage for storm waves in the Baltic Sea on 9 August
1998. Whitecap coverage (1) denotes the values resulting from the limiting
steepness criterion, and whitecap coverage (2) denotes the values resulting from
the vertical acceleration criterion.
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into (6.24) we obtain

Edissrate =
γ1 I(3s)α

3
d

16[I(s)]3
ρwg

3

ω3
p

ωu
ωp∫
1

ω̂−1
[
exp

(
−ω̂−4

)
γr1

d

]3
dω̂, (10.8)

where ω̂ = ω
ω̂
. The parameter αd can be expressed as a function of significant

wave height Hs and peak period Tp in the form (Massel, 1996a)

αd = 200 g−1.572 m0.786
0 T−3.142

p , (10.9)

in which m0 = H2
s

16
.

To illustrate the application of formula (10.8) we assume that ωu

ωp
= 3, γd = 1.7

and σd = 0.08 in the power r1. After integration and rearranging in (10.8) we
obtain the energy dissipation rate in the form of the sea state parameters Hs

and ωp as follows

Edissrate = 1.55 × 10−5 γ1 I(3s)

[I(s)]3
ρw

(
g

ωp

)3 (
Hs ω

2
p

g

)4.716

. (10.10)

Estimation (10.8) was also applied for storm waves in the Baltic Sea recorded
on 8 August 1998 – see Fig. 10.2. Changing of the energy dissipation rate during
a storm in Figs. 10.1 and 10.2 is similar, but in the case of Phillips’ concept, the
energy dissipation value is about two times higher than for the fully developed
wind-sea spectrum according to Komen et al. (1984).

Both figures indicate that for longer waves (smaller ωp), the energy dissipation
rate depends strongly on the significant wave height, while for smaller waves,
the influence of wave steepness becomes more clearly seen.

Using a similar technique, we can also represent the energy loss resulting from
the very narrow frequency spectrum developed by Longuet–Higgins (1969). The
final result becomes

Ediss =
ρg

16
H2

s exp

⎧⎨
⎩8α2

(
a0

a2

)2
(
H2

s ω
4
p

g2

)−1
⎫⎬
⎭ . (10.11)

10.4 Dependence of whitecap coverage on sea

state parameters

Let us now parameterize the whitecap coverage Fcov in terms of wave height
Hs and frequency ωp. The first estimate of Fcov was based on the limiting wave
steepness criterion. When wave field is represented by the JONSWAP spectrum
we have (see Section 7.3.2)

Fcov = exp

⎡
⎣−0.5215

(
gX

V 2
10

)0.22
⎤
⎦ . (10.12)
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Equation (D.9) relates the non-dimensional fetch and significant wave height
Hs and peak frequency ωp as follows

β = 0.076

(
gX

V 2
10

)−0.22

=
H2

s ω
4
p

16a0 g2
(10.13)

in which a0 = 0.3048 for the enhancement peak parameter γ = 3.3. After
substituting (10.13) into (10.12) we obtain

Fcov = exp

⎧⎨
⎩−0.1933

(
Hs ω

2
p

g

)−2
⎫⎬
⎭ . (10.14)

The whitecap coverage Fcov is illustrated for the Baltic Sea storm waves on 9
August 1998 in Fig. 10.3 – see line denoted as ‘whitecaps coverege (1)’. The fig-
ure indicates that the most extensive whitecap coverage during the considered
storm is associated with relatively short waves whose heights increased fast. It
should be noted that the significant wave steepness εs = Hs

gT 2
p

during one day

of storm was in the range 0.0032–0.0065, which corresponds well with values
given by Holthuijsen and Herbers (1986).

Let us now develop an expression for the whitecap coverage Fcov using the
vertical acceleration criterion. From (7.34) for α = 0.32 we obtain

Fcov = 1 − Φ

⎡
⎣0.908

(
gX

V 2
10

)0.11
⎤
⎦ . (10.15)

Substitution of (D.9) into (10.15) with a0 = 0.2 for the Pierson–Moskowitz
spectrum gives

Fcov = 1 − Φ

⎡
⎣0.447

(
Hs ω

2
p

g

)−1
⎤
⎦ . (10.16)

Function (10.16) was added for comparison in Fig. 10.3 as line denoted ‘white-
caps coverege (2)’. Both breaking criteria yield very similar values of the white-
cap coverage for all stormy days in the Baltic Sea.

10.5 Dependence of aerosol flux on sea state

parameters

As mentioned in Chapter 9, the sea spray generation functions were most often
parameterized in terms of the local wind speed and droplet radii, under the
assumption that local wind speed is the dominant factor controlling the pro-
duction of aerosol particles at the sea surface and their subsequent entrainment
upward. It is accepted that wind speed is a factor that plays a major role in
forming breaking waves and spume droplets. On the other hand, it is clear that
the observed large scatter in value of whitecap coverage at a given wind speed
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raises concerns that wind speed alone is insufficient to fully characterize aerosol
production. Local sea state parameters, such as wave height and spectral peak
frequency, being to some extent dependent on past conditions, are typically not
reported with measurements. An exception is the whitecap method by Mon-
ahan et al. (1986) when the function f

(wc)
sgf (r) is presented in the form of the

product of size-dependent production flux f
(wc)
prod(r) and whitecap coverage Fcov.

Function f
(wc)
prod(r) is only a function of radius r, while the representation of

Fcov in terms of the significant wave height Hs and peak frequency ωp is given
by (10.14) and (10.16), when the limiting wave steepness and limiting verti-
cal acceleration criteria are applied, respectively. Using this fact, the sea spray
generation function resulting from the whitecap method can be parameterized
both in droplet radii and sea state parameters as follows:

- limiting steepness criterion

f
(wc)
sgf (r,Hs, ωp) = f

(wc)
prod(r) × exp

⎡
⎣−0.1933a0

(
Hs ω

2
p

g

)−2
⎤
⎦ (10.17)

- threshold vertical acceleration

f
(wc)
sgf (r,Hs, ωp) = f

(wc)
prod(r) ×

⎛
⎝1 − Φ

⎡
⎣0.447

(
Hs ω

2
p

g

)−1
⎤
⎦
⎞
⎠ (10.18)

The above relationships provide an opportunity to estimate the aerosol fluxes
generated from a given ocean basin during stormy weather. In particular, af-
ter integration of the above sea spray generation functions against radius r
according to (8.24) and using representation (9.12) for f

(wc)
prod(r), we obtain the

total flux of dry sea salt emitted from the sea. Results of such calculations are
given in Fig. 10.4 for a storm which was recorded on 9 August 1998 in the
Baltic Sea for both representations of the whitecap coverage Fcov. Variation of
the function f

(tot)
dmass in time corresponds closely to the variation of the whitecap

coverage because the integral of f
(wc)
prod(r) against r does not depend on time.

There are two peaks of the total flux value. The highest one at time t = 2 h
corresponds to the largest value of the whitecap coverage due to the higher
significant waves. The second peak at time t = 20 h is due to shortening of the
spectral peak periods, which yields increasing wave steepness.

Under steady state conditions in the open ocean it would be expected that
the sea state parameters would be determined solely by local wind speed. In
particular, Pierson and Moskowitz (1964) proposed for a fully developed sea
the formula given in (3.15) as follows

S(ω) = 0.0081 g2ω−5 exp

[
−0.74

(
g

ωV19.5

)4
]
, (10.19)

in which V19.5 is the wind speed at an elevation of 19.5m above the sea surface.
For a steady fully developed sea, Pierson and Moskowitz found experimentally
the following relationship for the peak frequency:

ωp = 0.879
g

V19.5

. (10.20)
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Figure 10.4: Total flux of dry sea salt mass f
(tot)
dmass for sea storm recorded on

9 August 1998 in the Baltic Sea for two different breaking criteria.

Another sea state parameter – significant wave height Hs – can be found from
the moment m0 of the spectrum (10.19) as follows

H2
s

16
= m0 = 2.736 · 10−3

(
V 2

19.5

g

)2

. (10.21)

Therefore, the significant wave height becomes

Hs = 4
√
m0 = 0.209

(
V 2

19.5

g

)
, (10.22)

in which wind speed V19.5 can be represented in terms of the wind speed at the
standard 10m level by a relationship similar to (9.29).

Equations (10.20) and (10.22) yield the significant wave steepness for a fully
developed sea as

εs =
Hs

gT 2
p

=
1

4π2

Hs ω
2
p

g
= 4.09 × 10−3. (10.23)

In Fig. 10.5 the total flux of dry sea salt f
(tot)
dmass defined in (8.24) is shown as

a function of wind speeds in range 4 < V10 < 20 m/s under the assumption
of fully developed sea conditions. The modified sea spray generation function
suggested by Andreas (1998) was used to quantify the size-dependent flux. As
should be expected, the aerosol flux increases with wind speed. The significant
wave height Hs and peak frequency ωp corresponding to a given wind speed are
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Figure 10.5: Total flux of dry sea salt f
(tot)
dmass as a function of wind speed under

the assumption of fully developed sea conditions.

added to the figure. To reach a constant value of the significant wave steepness
εs = 4.09 × 10−3, an increase of wave height Hs should be compensated with
a decrease of the peak frequency ωp.

Petelski and Chomka (1996) and Chomka and Petelski (1997) reported the
results of measurements and modelling of the mean aerosol emission fluxes in
the coastal zone during the BAEX Experiment at the Lubiatowo Station on
the southern coast of the Baltic Sea. They found that the aerosol fluxes varied
from 3.2 to 384 μg/(m2 s). Assuming that the length of the Polish coastline of
the Baltic Sea is about 500 km and the mean width of the coastal zone is 50 m,
they found that the mean annual emission from the coastal zone becomes about
150 tonnes per year. Moreover, it was found that the aerosol emission fluxes are
proportional to the average wave energy dissipation to the power 3/4 (Chomka
and Petelski, 1997). This relationship was based on the estimation of wave
energy dissipation in the coastal zone reported by Thornton and Guza (1983).
A comprehensive summary of the lidar measurements of the aerosol properties
over the coastal area has been recently published by Zieliński (2006).

In contrast to the coastal zone, where the wave energy dissipation area is
well defined, the determination of wave energy dissipation in deep water and
subsequent estimation of the aerosol fluxes is much more complicated. Marks
(1987) showed that the sea aerosol flux in μg/m3 for particles larger than 0.1 μm
and for wind speed V10 in the range 1 m/s < V10 < 12 m/s, is given by

fvol = 6.08 × exp(0.13V10). (10.24)

Moreover, using the sea salt aerosol concentration measured by the impactors,
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Marks obtained a relation between the aerosol flux and whitecap coverage in
the form

fvol = 10.23 + 15.72 × Fcov, (10.25)

where fvol is the aerosol volume flux in μg/m3 and the whitecap coverage is in
percent. If we eliminate the wind speed V10 from equations (7.6) and (10.24),
we obtain another relationship between whitecap coverage and sea aerosol flux

fvol = 6.08 exp
[
4.75F 0.28

cov

]
. (10.26)

10.6 Dimensional analysis of aerosol flux

from the sea surface

The present knowledge of the relationship between dynamics of breaking waves
and aerosol fluxes is mostly based on experiments. The experimental data are
scattered due to variability of conditions during natural and laboratory ex-
periments. However, in the situation when very well established theoretical
foundations of the problems are known, various combinations of experimental
data provide us with the possibility to establish the relationship between mea-
sured variables. The number of such combinations can be very large. When
several variables can be combined in the form of a single dimensionless vari-
able, the number of combinations can be significantly reduced. This approach is
the basis of dimensional analysis. Dimensional analysis is a rational method for
combining physical variables into dimensionless products. It gives qualitative
rather than quantitative relationships. After performing the dimensional anal-
ysis, theoretical or experimental judgement is needed to establish the required
relationships between dimensional variables.

The total flux of dry sea salt f
(tot)
dmass from the sea surface depends on the

following set of physical parameters: air density ρa, water density ρw, surface
tension of water σ, gravity acceleration g, and mean wave energy dissipation per
surface unit Edissrate. These six variables (n = 6) can be arranged in a dimension
matrix as follows (Massel, 1999; Petelski et al., 2005)

f
(tot)
dmass Edissrate ρa ρw σ g

kg 1 1 1 1 1 0
m −2 0 −3 −3 0 1
s −1 −3 0 0 −2 −2

(10.27)

The matrix is of order m = 3. According to the Buckingham theorem (Massel,
1999) there are n−m = 3 non-dimensional quantities, Π1, Π2, Π3, created from
the dimensional quantities mentioned above for which the following relationship
exists

Π1 = ψ ( Π2,Π3) (10.28)
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The resulting non-dimensional quantities Πn are as follows (Petelski et al.,
2005)

Π1 =
ρw

(
ρw

σg

)3/4
(Edissrate)

2

(f
(tot)
dmass)

3
; Π2 =

ρw

ρa

; Π3 =
ρwρa

(f
(tot)
dmass)

3 (Edissrate) . (10.29)

Combining (10.28) and (10.29) we obtain

f
(tot)
dmass = f(Π2,Π3)ρ

1/3
w

(
ρw

σg

)1/4

(Edissrate)
2/3 . (10.30)

If we assume that f(Π2,Π3) is a constant equal to A, the relation (10.30)
exhibits the dependence of the total flux of dry sea salt on the energy dissipation
rate with power 2/3 (Petelski et al., 2005).

When the energy dissipation rate Edissrate is determined by (10.7) based on
the Komen et al. (1984) approach, from (10.30) we obtain

f
(tot)
dmass = 5.32 × 10−3 A

(
ρ15

w g5

σ3

)1/12 [(
a1

a0

)7 (
a2

a0

)]2/3

×
(
Hs ω

2
p

g

)8/3 (
H2

s ωp

)2/3
, (10.31)

in which the surface tension σ ≈ 0.075 N/m (Lewis and Schwartz, 2004).
To determine unknown function A, we use the fact that at present the total

flux of the dry salt mass based on the sea spray function suggested by Andreas
(1998) – see (9.32) – is probably the most comprehensive representation of the
aerosol flux in terms of wind speed. Comparing (10.31) with (9.32) we obtain
coefficient A in the form

A = 108
(
0.7717 − 0.1421V10 + 0.0127V 2

10

)
, (10.32)

Substituting (10.32) into (10.31) yields the final expression for the total flux of
the dry sea mass resulting from the dimensional analysis for a fully developed
sea as follows

f
(tot)
dmass = 5.321 × 105

(
0.7717 − 0.1421V10 + 0.0127V 2

10

)

×
(
ρ5/4

w g5/12

σ1/4

)[(
a1

a0

)7 (
a2

a0

)]2/3 (
Hs ω

2
p

g

)8/3 (
H2

s ωp

)2/3
. (10.33)

Petelski et al. (2005) provide some arguments in favour of a similar dependence
of the aerosol flux on the energy dissipation rate for the Baltic Sea case.

10.7 Alternative representation of aerosol flux

We showed above that the dimensional arguments provide the dependence of
aerosol flux on energy dissipation in power of 2/3. Let us now find this power
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from the point of view of the physics of aerosol generation. First of all it is clear
that emission flux f

(tot)
(dmass) is proportional to the number of bursting bubbles

per sea surface unit

f
(tot)
(dmass) ≈ A1

π

6
ρss r

3
m Nb [number of droplets/m2s], (10.34)

where Nb is the number of bubbles per unit surface and unit time, rm is the
representative particle radius and A1 is the proportionality coefficient. The
number of bubbles with a representative radius rm should be related to the sea
surface covered by whitecaps formed by breaking waves. Thus we have

Nb = A2
ΔV

4
3
π r3

m

, (10.35)

in which ΔV is the volume of water discharged by a single breaking wave (m3)
and the representative radius rm is given in metres. In order to define the vol-
ume ΔV we assume that it is equal to the volume of the roller formed on the
surface of the breaking wave (Massel, 1996a). Using the rationale presented
in Section 6.3.3, we assume that due to breaking, current wave amplitude de-
creases to the value Abr representing the critical saturation level. Hence the
portion of the amplitude loss in a unit cycle becomes

ΔA = 2Arms I1

(
Abr

Arms

)
, (10.36)

where function I1(x) is given in (7.37). The length of the whitecapping area
lbr is proportional to the representative wavelength Lrms (see (7.41). Thus the
surface of a roller in the vertical plane, parallel to wave motion, becomes

ΔS = ΔA lbr = 2Arms Lrms I
2
1

(
Abr

Arms

)
, (10.37)

and for the volume of a roller formed by spilling breakers we obtain

ΔV = ΔSl, (10.38)

where l = 1m is a unit distance in the direction perpendicular to the direction
of wave motion. After substituting (10.37) into (10.35), the number of bubbles
Nb is

Nb =
3A2 Arms Lrms I

2
1

(
Abr

Arms

)
l

2πr3
m

. (10.39)

Thus, the total aerosol flux f
(tot)
dmass can be presented as follows

f
(tot)
dmass = A3

ρss
4
Arms Lrms I

2
1

(
Abr

Arms

)
l. (10.40)



260 10 Aerosol flux as a function of sea state parameters

In Chapter 6, a set of various estimates of the energy dissipated during wave
breaking was discussed. For the purpose of this analysis we apply the formula
suggested by Longuet–Higgins (1969) as follows

Ediss =
1

2
ρgA2

rms exp

(
− A2

br

A2
rms

)
. (10.41)

Using (10.41), equation (10.40) takes the form

f
(tot)
dmass ≈

√
2

4
A3

ρss
(ρw g)1/2

Lrms I
2
1

(
Abr

Arms

)
{
exp

(
− A2

br

A2
rms

)}1/2
(Ediss)

1/2. (10.42)

Longuet–Higgins’s formulation of energy dissipation due to wave breaking re-
sults in dependence of the aerosol flux on the root square of the energy dissi-
pation rate. This dependence is close to the dependence on power of 2/3 which
results from the dimensional analysis given above.



Chapter 11

Seasonal dependence of aerosol
fluxes in the Baltic Sea

11.1 Introduction

The Baltic Sea is a semi-enclosed European inland sea forming one of the
world’s largest brackish water areas. This ecosystem is characterized by fluctu-
ations in the natural environment connected with infrequent and sporadic flush-
ing of the deeper basins with more oxygenated water from outside. Dynamics
and variability of the processes affecting water mass exchange and renewal are
strongly related to meteorological forcing factors, especially the intensity, pat-
tern and frequency of the air pressure fronts migrating from the North Atlantic
(Mieιtus, 1998; Piechura et al., 2006).

In the second section, the resulting wind climate is shortly characterized on
the basis of historical data for some regions of the Baltic Sea. The available data
on wind-induced waves are described in Section 3. These data comprise observa-
tional as well as numerical simulated wave parameters. Wind and wave data are
the incident information for prediction of the sea aerosol budget for the Baltic
Sea. The calculation methodology is illustrated using the data for year 1999.
In particular, in Section 4, two methods of estimation of sea salt production
are used and compared for the very windy December of 1999. Surprisingly, the
whitecap method and dry deposition result in very similar monthly averaged
sea salt production for this month.

11.2 Wind field in the Baltic Sea

The Baltic Sea is located within the west wind zone where the proximity of the
Atlantic Ocean is totally decisive for the climate of this sea basin. The average
pressure distributions and winds over Europe in January and July show that
the average air flow is strong in winter and weak in summer. Winds of storm
force, more than 25m/s, are almost exclusively formed by deep cyclones occur-
ring mainly from September to March. Winds from the north and east are rare.
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Table 11.1: Average wind speed in (m/s) in four different basins of the Baltic
Sea (adapted from Defant, 1972)

Months
Year

Basin I II III IV V VI VII VIII IX X XI XII average

Kiel Bay 6.4 5.8 5.1 4.6 4.3∗∗ 4.4 4.4 4.8 5.3 5.7 6.1 6.6∗ 5.3
(54◦, 10◦E)

Transect
Rugia-Southern 7.9 6.4 6.2 5.3 4.6 4.5∗∗ 4.6 5.0 5.6 6.8 8.2 8.4∗ 6.1
Sweden
(55◦N, 14◦E)

Gotland–Gdańsk
Bay 7.9 8.5∗ 8.2 6.0 5.0 5.4 4.8∗∗ 6.3 6.5 7.6 8.2 8.4 6.9
(56◦N, 19◦E)

Entrance to
Bay of Finland 7.9 7.0 6.7 5.1 4.7∗∗ 5.0 5.2 6.1 6.6 8.2 9.1 9.2∗ 6.7
(59.5◦N, 23◦E)

Note: (*) denotes maximum value and (**) denotes minimum value.

The average wind speed over the Baltic Sea is about 6–9 m/s from October
to March with the maximum wind speeds in November and December. The
weakest winds, of about 4–5m/s, are observed from May to July. In Table 11.1,
the average wind speeds in (m/s) in four basins of the Baltic Sea are collected,
and the frequencies (in %) of the various wind speeds are given in Table 11.2.

Weak winds (0–3◦B) are more frequent from May to July (65–70%) and they
are rare (29–36%) in November and December. On the other hand the frequency

Table 11.2: Frequency (in %) of wind speeds in two basins of the Baltic Sea
versus Beaufort Scale

Months
Beaufort Year

Basin Scale I II III IV V VI VII VIII IX X XI XII average

Transect 0–3 41 36∗∗ 44 61 68 64 69∗ 54 54 44 36∗∗ 36∗∗ 50.6
Gotland- 4–5 31 36 38∗ 26 24∗∗ 26 24∗∗ 33 30 34 33 34 30.8
Bay of Gdańsk 6–7 23∗ 20 14 10 5∗∗ 8 6 10 12 16 21 22 13.9

8 5 8 4 3 3 2 1∗∗ 3 4 6 10∗ 8 4.8

Entrance 0–3 42 46 52 64 70∗ 67 65 58 52 34 30 29∗∗ 50.8
to Bay 4–5 32 35 35 31 24∗∗ 27 28 29 33 42∗ 40 41 33.1
of Finland 6–7 17 14 10 4∗∗ 5 4∗∗ 6 9 12 17 22∗ 21 11.7

8 9∗ 5 4 1∗∗ 1∗∗ 2 1∗∗ 4 3 6 8 9∗ 4.4

Note: (*) denotes maximum value and (**) denotes minimum value.
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Table 11.3: Frequency of the wind directions over the Baltic Sea (adapted from
Defant, 1972)
Location No
or region N NE E SE S SW W NW winds
Lightship ‘Kiel’

(54.5◦N, 10.3◦E)
January 5∗∗ 7 9 16 14 23∗ 18 7 1
April 6∗∗ 7 20 9 9 13 21∗ 11 4
July 5 4∗∗ 12 9 7 19 25∗ 15 4
October 5∗∗ 6 13 12 11 19 20∗ 11 3

Transect Gotland-
Bay of Gdańsk
(55◦–57◦N, 18◦–20◦E)

January 9 8∗∗ 8∗∗ 13 15 20∗ 16 10 1
April 13 14 9∗∗ 9∗∗ 9∗∗ 16∗ 16∗ 10 4
July 13 11 6 5∗∗ 7 18∗ 22∗ 13 5
October 9 8∗∗ 9 13 14 18∗ 15 12 2

Note: (*) denotes maximum value and (**) denotes minimum value.

of storm winds (>8◦B) is only 4–5%, and they appear predominantly from
October to March. Information on the wind directions over the Baltic Sea is
given in Table 11.3. The lightship ‘Kiel’ represents the region of the Western
Baltic Sea while the transect Gotland–Bay of Gdańsk is characteristic for the
Southern Baltic. In these regions, all through the year, the winds come from W
and SW directions, while in summer W winds predominate and SW winds are
more frequent in winter. Sometimes in both areas, NW and S winds appear.

11.3 Wave climate in the Baltic Sea

Strong wind blowing over the Baltic Sea, characterized above, induces waves
on all the sea area. The pattern of the wind field and the geometry of the
Baltic Proper suggest that the highest and longest waves appear near the en-
trance to the Gulf of Finland and off the eastern Baltic coast. As mentioned
by Broman et al. (2006), wave observations in the Baltic Sea extend back more
than 200 years. However, these data represent only visually estimated wave pa-
rameters in the near-coastal regions. Contemporary wave measurements in the
Baltic are concentrated mostly in the northern part of the sea and in the south-
ern part. In particular, in the northern Baltic Proper (close to Almagrundet
lighthouse), and at Ölands södra grund, a bottom-fixed device was installed,
while a waverider buoy was installed south of Gotland (Broman et al., 2006).
High-quality wave data were obtained in the areas around Finland (Kahma
et al., 1983). Valuable data on waves in the Baltic Sea were also reported by
Davidan et al. (1978, 1985), and in the southern part of the Baltic Sea, im-
portant data sets were obtained by Mårtensson and Bergdahl (1987), Gayer
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et al. (1995), Paplińska and Reda (2003). Paplińska (1999) published two se-
ries of wave records obtained from the waveriders located in two points in the
Southern Baltic at water depths of about 20m, namely in October–November
1997 (Pomeranian Bay, 54.13◦N; 15◦E) and in February–May 1998 (Lubiatowo
region, 54.8◦N; 17.8◦E).

Apart from the experimental data, several numerical wave simulations were
performed. For the purpose of this book, the numerical results obtained by
Paplińska and Reda (2003) will be used. In their calculations, the third genera-
tion of the WAM4 wave model was applied (WAMDI, 1988) with the following
set-up parameters:

– grid step of 0.15◦(∼16.7 km) in both the latitudinal and the longitudinal
directions, which results in 1312 grip points over the Baltic Sea

– output time step: 3 h

– frequency-direction grid: 24 frequencies and 24 directions

– propagation time step: 300 s

– source function time step: 150 s

The input data for the model are wind data. The atmospheric model is a
mesoscale version of the unified model of the United Kingdom. The wind data
were verified and assimilated for calculations every 3 h. The calculations were
performed in the Interdisciplinary Centre of Mathematical and Computational
Modelling at Warsaw University. In the report of Paplińska and Reda (2003),
the spatial distribution of the monthly average of the significant wave height
Hs = 4

√
m0 and peak period Tp were given for years 1998–2001. These values

of Hs and Tp will be used in the next section to estimate the monthly averages
of the marine aerosol production.

11.4 Seasonal dependence of the aerosol

budget over the Baltic Sea

Seasonal wind and wave data for the Baltic Sea provide an opportunity to
estimate the aerosol production in particular months over the Baltic surface.
First we use the average wind speeds in four basins of the Baltic as given in
Table 11.1 to calculate the total flux of dry sea salt, applying the Andreas
(1998) formula. Hence, we have

f
(tot)
dmass ≈

π

6
ρss

∫
r3fsgf(r)dr [kg/m2/s], (11.1)

where function fsgf(r) is given by (9.32). The resulting sea salt production
depends solely on the droplet radii r and wind speed V10. Fig. 11.1 shows the
monthly average of the total flux of dry sea salt for four different regions of the
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Figure 11.1: Seasonal variation of the total flux of dry sea salt over four differ-
ent region of the Baltic Sea.
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Figure 11.2: Distribution of the significant wave height over the Baltic Sea in
December 1999.
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Figure 11.3: Distribution of the peak period over the Baltic Sea in December
1999.

Baltic sea. The pattern of all curves is very similar. The highest aerosol fluxes
are in winter and the smallest ones are in summer.

Summarizing the fluxes over all year we obtain the annual average fluxes of
dry sea salt in these regions as follows

Kiel Bay – 1.256 g/m2/year
transect Rugia-Southern Sweden – 2.019 g/m2/year
transect Gotland-Bay of Gdańsk – 2.720 g/m2/year
entrance to Bay of Finland – 2.667 g/m2/year

To get more detailed information on aerosol production over the Baltic Sea,
we adopt the distribution of the significant wave height Hs and peak period
Tp reported by Paplińska and Reda (2003). For illustration, in Figs. 11.2 and
11.3, the distribution of average height Hs and period Tp for December 1999 is
shown. The reduced latitude and longitude are given versus the central point
of the following coordinates: 56◦N and 19.3◦E.

The total dry sea salt production was estimated using the sea spray generation
function (10.17) where the size-dependent production flux f

(wc)
prod(r) is given by

the Woolf et al. method (9.12) and whitecap coverage results from the limiting
wave steepness criterion for the JONSWAP spectrum.
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Figure 11.4: Monthly averaged sea salt production over the Baltic Sea in De-
cember 1999 (whitecap method).

Table 11.4: Monthly sea salt production in the Baltic Sea
in 1999 (in 10−6 kg/month)

Criterion for determination of whitecap coverage
Month limiting steepness limiting vertical acceleration

January 1.39 4.87
February 3.11 8.28
March 0.68 3.07
April 0.62 2.96
May 0.15 1.13
June 0.09 0.69
July 0.17 1.23
August 0.06 0.61
September 0.26 1.60
October 1.70 5.83
November 3.37 8.66
December 7.97 14.96
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Figure 11.5: Monthly averaged wind speed over the Baltic Sea in December
1999.

The distribution of the monthly average of the sea salt production for De-
cember 1999 in g/m2 is given in Fig. 11.4. Surprisingly, the highest values of
production are observed for shallow areas, up to 0.13 g/m2. This results directly
from the whitecap method when the whitecap coverage follows from the wave
limiting steepness, when

Fcov ∼
(
Hsω

2
p

g

)
∼ Hs

gT 2
p

. (11.2)

During December 1999, waves with relatively high steepness were observed in
the shallow areas. Therefore, according to the adopted definition of whitecaps,
the sea salt production should also be higher in these regions. Integrating the
distribution of the sea salt production over the sea surface area, we obtain
average total sea salt production over all the Baltic Sea in December 1999
equal to about 7.97× 106 kg/month. It should be noted that when the vertical
acceleration criterion is used to parameterize the whitecap coverage, the average
total sea salt production in December 1999 equals 14.96 × 106 kg/month. In
Table 11.4, the monthly sea salt production for all of year 1999 in the Baltic
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Figure 11.6: Monthly averaged sea salt production over the Baltic Sea in De-
cember 1999 (dry deposition method).

Sea is summarized. The highest sea salt production is observed during winter
and the smallest one observed during summer. Taking into account that the
surface of the Baltic Sea is about 384,700 km2, the monthly average of sea salt
production over the unit km2 is equal to 20.72–38.90 kg during stormy weather.
The above estimates of sea salt production are based on the whitecap method
when the whitecap coverage can be parameterized in terms of the sea state
parameters through the two wave breaking criteria, i.e. the limiting steepness
and the limiting vertical acceleration.

The table indicates that the sea salt production based on the limiting vertical
acceleration criterion is higher than that calculated using the limiting steepness
criterion. In particular, during winter months the ratio of both production rates
is about 2 and for smaller waves in summer, the difference between methods of
calculation is much higher.

More accurate estimation of the sea aerosol production requires the wind
field over the Baltic Sea. In Fig. 11.5, the distribution of the monthly average
of the wind speed in December 1999 is given. The wind speed was relatively
high and distributed over all the Baltic Proper. Using this wind field, the sea
salt production in December 1999 is calculated by the Andreas (1998) sea
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spray production function and it is shown in Fig. 11.6 in g/m2. It is inter-
esting to note that total sea salt production in December 1999 over all the
Baltic Sea becomes 5.95×106 kg/month. This result is not much different from
the production based on the whitecap method of 7.97 × 106 kg/month, given
above.
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Amplitudes M (+), M (−), P (+)

and P (−)

Coefficients M (+), M (−), P (+), P (−), Π(+), Π(−), Π
(+)
1 and Π

(−)
1 for amplitudes

of surface nonlinear wave given by (3.84) are as follows

M (+) = −(ωn + ωm) Π(+) − 1

2

[
ω2

n + ω2
m

ωnωm

]

× tanh(knh) tanh(kmh) − 1

2
cos(θn − θm) (A.1)

and

M (−) = (ωm − ωn) Π(−) − 1

2

[
ω2

n + ω2
m

ωnωm

]

× tanh(knh) tanh(kmh) − 1

2
cos(θn − θm) (A.2)

in which

Π(+) =
Π

(+)
1

(ωn + ωm)2 − g | �kn + �km | tanh(| �kn + �km | h)
(A.3)

Π(−) =
Π

(−)
1

(ωm − ωn)2 − g | �km − �kn | tanh(| �km − �kn | h)
(A.4)
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2
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(−)
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]
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(
ωnkm

kn

) [
1 − tanh2(kmh)
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Appendix B

Wavelet transform

B.1 Introduction

When the time localization of the spectral components is required, the trans-
form of time series which provides the time–frequency representation of the
signal should be developed. A transform of such type is the wavelet transform
which gives full time–frequency representation of the time series. In contrast
to the Fourier transform, the wavelet transform allows exceptional localization
in the time domain via translations of the so-called mother wavelet, and in
the scale (frequency) domain via dilations (Combes et al., 1989; Farge, 1992;
Kaiser, 1994; Torrence and Compo, 1998). The wavelet analysis is similar to
the Fourier analysis as it breaks a signal down into its constituents. Whereas
the Fourier transform breaks the signal into a series of sine waves of different
frequencies, the wavelet transform breaks the signal into its wavelets which are
scaled and shifted versions of the mother wavelet.

Wavelet transform is a relatively new technique and in recent years there
has been enormous interest in the application of wavelets. Wavelets have been
successfully implemented in signal and image processing, ordinary and partial
differential equation theory, numerical analysis and communication theory. The
intermittent nature of sea turbulence is a particularly suitable problem for
application of the wavelet transform to detect the intermittency of energy input
from wind to ocean surface (see, for example, papers by Farge, 1992, Shen and
Mei, 1994). In particular Shen and Mei (1994) developed the continuous wavelet
transform to analyse the energy balance in the equilibrium spectral subrange of
wind-generated gravity waves. Mori and Yasuda (1994), and Liu (1994) applied
the wavelet transform to detect wave growth and breaking in a time series. A
sudden surface jump associated with a breaking wave is regarded as a shock
wave and the wavelet spectrum is defined to detect the occurrence of surface
jumps.

Atmospheric cold fronts observed in the boundary layer represent relatively
sharp transition zones between air masses of different physical characteristics.
Application of the wavelet transform for identification of the energy cascade in



274 Appendix B Wavelet transform

atmospheric turbulence was discussed by Yamada and Ohkitani (1991), while
Meyers et al. (1993) demonstrated the usefulness of the wavelet transform in
studying dispersion of Yanai waves in a reduced gravity equatorial model,
and Torrence and Compo (1998) in their practical step-by-step guide used
the wavelet transform to give a quantitative measure of changes in El Niño-
Southern Oscillation (ENSO).

B.2 Definition of wavelets

The wavelet transform was proposed in papers of Morlet, Meyer, Grossman,
Mallat and others (Massel, 2001b). Wavelets are complex or real functions con-
centrated in time and frequency and having the same shape. In wavelet analysis,
the signal is multiplied with the wavelet, and the transform is separately com-
puted for different segments of the time domain signal. In general, the wavelet
transform of the signal, x(t), is defined as the following inner product

WT (τ, b) =< gτb | x >=
∫ ∞

−∞
x(t)g∗τb(t; τ, b)dt. (B.1)

The family of continuously translated and dilated wavelets is generated from
mother wavelet g(t)

gτb(t; τ, b) =
1√
b
g
(
t− τ

b

)
, (B.2)

where τ is the translation parameter, corresponding to the position of the
wavelet as it is shifted through the signal, and b is the scale dilation parameter
determining the width of the wavelet. The scale b > 1 dilates (or stretches out)
the signal, whereas scale b < 1 compresses the signal. The wavelet coefficients,
WT (τ, b), represent the correlation (in terms of the time-scale functions) be-
tween the wavelet and a localized section of the signal. If the signal has a major
component of the frequency corresponding to the given scale, then the wavelet
at this scale is close to the signal at the particular location and the correspond-
ing wavelet transform coefficient, determined at this point, has a relatively large
value. Therefore, the wavelet transform is a sort of microscope with magnifica-
tion 1/b and location given by parameter τ , while the optics of the microscope
are characterized by the function gτb(t; τ, b).

One of the most extensively used mother wavelets is Morlet’s wavelet

g(t) = exp
(
−1

2
t2
)

exp(ict). (B.3)

Equation (B.3) represents a plane wave of frequency c, modulated by a Gaussian
envelope of unit width. For calculations in this chapter only wavelet (B.3) is
used. In oceanographic applications, other mother wavelets, such as orthogonal
wavelets (Yamada and Ohkitani, 1991; Mori and Yasuda, 1994), Paul’s wavelet
or DOG wavelet (derivative of a Gaussian) (Torrence and Compo, 1998) are
also sometimes applied.
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Using the representation (B.2), the Morlet wavelet takes the form

gτb(t) =
1√
b

exp

[
−1

2

(
t− τ

b

)2
]

exp
[
ic
t− τ

b

]
. (B.4)

The frequency nature of the parameter c is clearly seen if we take c = 2π. Then
Eq. (B.4) becomes

gτb(t) =
1√
b

exp

[
−1

2

(
t− τ

b

)2
]

exp
[
i
2π

b
(t− τ)

]
. (B.5)

Now the term exp
[
i2π

b
(t− τ)

]
represents the plane sinusoidal wave of frequency

2π/b; thus the scale dilation b can be treated as a period.

B.3 Time and frequency resolution in wavelets

In wavelet analysis the signal is multiplied with a window (the wavelet). How-
ever, the window width has been changed as the transform is computed for
every single spectral component. This is the most significant characteristic of
the wavelet transform (Massel, 2001b). Changing the window width influences
the resolution of the transform, which is illustrated in Fig. B.1. Every box cor-
responds to the value of the wavelet transform in the translation-scale plane.
Although the widths and heights of the boxes change, their areas are constant
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Figure B.1: Resolution scheme in the time–frequency plane (adapted from
Massel, 2001b)
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(see two hatched boxes in Fig. B.1). Each box represents the same portion of
the time–frequency plane, but gives a different ratio of time and frequency. At
low frequency (high value of scale b), the height of the box is small, but its
width is large, i.e. the frequency resolution is better but time resolution is poor
(more ambiguity regarding the value of the exact time). On the other hand,
at higher frequencies (low scale b), the height of the boxes increases and the
width of the boxes decreases. This corresponds to a very narrow window when
the frequency resolution is getting poorer and the time resolution better.

The selection of the proper window width is related to what is known as
the Heisenberg uncertainty principle (Van Name, 1960). This principle, origi-
nally applied to the momentum and location of moving particles in quantum
mechanics, can also be applied to time–frequency information of a signal. We
do not know what spectral components exist at what instances of time. Nar-
row windows give a good time resolution, but poor frequency resolution. Wide
windows give good frequency resolution, but poor time resolution.

For a more detail discussion on wavelet transform application to oceanogra-
phy, the reader should consult the paper by Massel (2001b). In the following
section, we will examine some energy properties of wavelet transform only.

B.4 Energy properties of wavelets

First we should note that the wavelet transform conserves the total energy, i.e.∫ ∞

−∞
|x(t)|2 dt = C−1

∫ ∞

0

∫ ∞

0
| WT (τ, b) |2b−2dτdb, (B.6)

in which the coefficient C is given by

C−1 =
∫ ∞

−∞
(ω−1| G(ω) |2)dω (B.7)

and G(ω) is the Fourier transform of function g(t). Therefore, so-called time-
scale energy density becomes

E1(τ, b) =
| WT (τ, b) |2

b
. (B.8)

By integrating Eq. (B.8) versus scale b, we obtain the local energy density
(Farge, 1992):

E2(τ) = C−1
∫ ∞

0
E1(τ, b)

db

b
. (B.9)

On the other hand, the integration of Eq. (B.8) versus time τ , gives the global
wavelet energy spectrum E3(b) as

E3(b) =
∫ ∞

0
E1(τ, b)dτ. (B.10)
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Torrence and Compo (1998) noted that the smoothed Fourier spectrum ap-
proaches the global wavelet spectrum when the amount of necessary smooth-
ing decreases with increasing scale. Moreover, Percival (1995) showed that the
global wavelet spectrum provides an unbiased and consistent estimation of the
true power spectrum.

Finally, the total energy of the time series x(t) becomes

E = C−1
∫ ∞

0
E3(b)

db

b
. (B.11)

After substituting Eqs. (B.8) and (B.10) into Eq. (B.11) we get

E = C−1
∫ ∞

0

∫ ∞

−∞
E1(τ, b)

dτdb

b
= C−1

∫ ∞

0

∫ ∞

−∞
| WT (τ, b) |2dτdb

b2
, (B.12)

which confirms again the conservation of energy (B.6).



Appendix C

Hilbert transform and
instantaneous frequency

C.1 Definition of Hilbert transform

The Hilbert transform of a real-valued time domain signal ζ(t) is another real-
valued time domain signal ξ(t) such that

η(t) = ζ(t) + iξ(t) (C.1)

is an analytical signal, also in time domain. This is a substantial difference
when comparing with the Fourier transform which transforms signal ζ(t) into
a complex-valued frequency domain signal Z(f). To determine the function
ξ(t), let us assume that a real-valued function ζ(t) extends over the range
−∞ < t < ∞. Then its Hilbert transform becomes (Bendat and Piersol, 1986)

ξ(t) = H[ζ(t)] = P

∞∫
−∞

ζ(t)

π(t− t1)
dt1, (C.2)

in which P denotes the Cauchy principle value. Equation (C.2) indicates that
ξ(t) is the convolution integral of ζ(t) and 1

πt
.

A very useful property of the Hilbert transform is its linearity, as we have

H[a1ζ1(t) + a2ζ2(t)] = a1H[ζ1(t)] + a2Hζ2(t)]. (C.3)

Moreover, it can be shown that the Hilbert transform changes any cosine term
to a sine term and any sine term to a minus cosine term. Taking into account
that cos(ωt− π

2
) = sin(ωt) and sin(ωt− π

2
) = − cos(ωt), the Hilbert transform

in the time domain corresponds to a phase lag of (−π
2
) of all harmonic terms

of the Fourier spectrum.
If the signal ζ(t) is represented in the form of a series, we can write

ζ(t) =
∞∑
n=0

[an cos(nωt) + bn sin(nωt)] (C.4)
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and

ξ(t) =
∞∑
n=0

[an sin(nωt) − bn cos(nωt)]. (C.5)

C.2 Digital computation of Hilbert transform

Let us assume that we have a record of N values (n = 0, 1, 2, . . . , N − 1)
of function ζ(t) sampled at Δt. Thus the Fourier transform Z(kΔf) of ζ(t)
becomes

Z(kΔf) = Δt
N−1∑
n=0

ζ(nΔt) exp

(
−i

2πkn

N

)
, (C.6)

where Δf = 1
NΔt

. The values of Z(kΔf) are needed only from k = 0 up
to k = (N/2), where the Nyguist frequency occurs. Now using the values of
Z(kΔf) we can obtain the ξ(nΔt) values as follows

ξ(nΔt) = 2Δf �
⎡
⎣N/2∑
k=0

Z(kΔf) exp

(
i
2πkn

N

)⎤
⎦ , (C.7)

in which � denotes the imaginary part of the given value.

C.3 Stream function as a Hilbert transform

of velocity potential

Let the complex velocity potential w(z, t) = φ(z, t) + iψ(z, t) at any time
instant be an analytic function in the lower half plane of z (z = x + iy),
that is within the fluid region. Therefore, the contour integral in the lower half
plane along any closed path should be equal to zero, i.e.

∞∮
−∞

w(z1)

z − z1

dz1 = 0 (C.8)

for every fixed point z lying outside the path of integration. Exploring the
integral (C.8) we find that

∞∫
−∞

w(η)

x− η
dη = −iπw(x) for y = 0. (C.9)

The above integral has to converge for diminishing inner radius of the contour
even if the integrand is singular at x = η. Separating the real and imaginary
parts in Eq. (C.9) and using the Cauchy principal value notion we obtain

ψ(x) =
1

π
P

∞∫
−∞

φ(ξ)

x− ξ
dξ for y = 0 (C.10)
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and

φ(x) = − 1

π
P

∞∫
−∞

ψ(ξ)

x− ξ
dξ for y = 0. (C.11)

Thus, the stream function ψ(x) appears to be the Hilbert transform of the
velocity potential at the sea surface.

C.4 Instantaneous frequency

Now we rewrite (C.1) in the form

η(t) = A(t) exp(iθ(t)), (C.12)

in which A(t) is called the envelope signal of ζ(t) and θ(t) is called the instan-
taneous phase signal of ζ(t). Thus, we have

A(t) =
√
ζ2(t) + ξ2(t) (C.13)

and

θ(t) = arctan

(
ξ(t)

ζ(t)

)
= ω0t. (C.14)

Representation (C.12) provides the best local fit of an amplitude and phase
for varying trigonometric function of ζ(t). The “instantaneous frequency” ω is
now given by

ω =
dθ(t)

dt
. (C.15)

In contrast to the instantaneous envelope of the signal, the notion of the instan-
taneous frequency is somewhat controversial. When applying Fourier analysis,
we need at least one full oscillation to define the local frequency value. There-
fore a process shorter than a full wave cannot be considered in signal analysis.
To overcome this difficulty, Huang et al. (1998) provided a comprehensive dis-
cussion on the nature of the instantaneous frequency ω. They found that at
any given time, there is only one frequency value which can only represent
one component. To satisfy this requirement, some limitations on the data are
necessary. Probably the most obvious restriction is the assumption that the
process under consideration is of narrow band, when the bandwidth param-
eter ν (see Eq. 3.7) is much smaller than one, and the expected numbers of
extrema and zero crossings have to be equal. However, the bandwidth defini-
tion given by Eq. (3.7) has a global sense and it lacks precision. This means
that filtering the data within the bandwidth requirement does not necessar-
ily guarantee a meaningful instantaneous frequency. Sometimes non-physical
negative frequencies can appear (see for example Melville (1983)). In order to
avoid such difficulties Huang et al. (1998) suggested applying the Gabor (1946)
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statement that for any function to have a meaningful instantaneous frequency,
the real part of its Fourier transform has to have only positive frequency. Sub-
sequently Huang et al. modified this requirement by imposing the restriction
that the function should be symmetric with respect to the local zero mean, and
have the same numbers of zero crossings and extrema. To define the local zero
mean, the local mean of the envelopes determined by the local symmetry is
used. The first restriction is equivalent to the traditional narrow band require-
ments for a stationary Gaussian process. However, the second requirement in
fact modifies the classical global requirement to a local one in such a way that
the instantaneous frequency will not have the unwanted fluctuations induced
by asymmetric wave forms.

Huang et al. (1998) proposed the so-called intrinsic mode function (IMF)
satisfying both above conditions. In fact when we assume that η(t) is an intrinsic
mode function (IMF) and perform a Fourier transform on η(t), we obtain

F [η(t)] =

∞∫
−∞

A(t)eiθ(t)e−iωtdt =

∞∫
−∞

A(t)ei(θ(t)−ωt)dt. (C.16)

By the method of stationary phase it can be found that the maximum contri-
bution to F [η(t)] is given by the frequency satisfying the condition

d

dt
[θ(t) − ωt] = 0, (C.17)

and frequency ω becomes

ω =
dθ(t)

dt
, (C.18)

which is in agreement with Eq. (C.15)
It should be pointed out that we do not need a whole oscillatory period to

define the instantaneous frequency value. In fact it follows from Eq. (C.18) that
frequency ω can be defined for every point with the value changing from point
to point. To use the above definition of instantaneous frequency, we have to
transfer an arbitrary data set into IMF components from which an instanta-
neous frequency value can be obtained for each IMF component. The method
of reduction of the data into the IMFs is called empirical mode decomposition,
and it is described by Huang et al. (1998, 1999) in detail. Some application of
the empirical mode decomposition method to the surface waves transformation
in the surf zone was recently published by Veltcheva (2002).



Appendix D

Relationships between spectral
moments and sea state
parameters

D.1 Spectral moments as a function of

non-dimensional wind fetch

Many basic processes of wave breaking and aerosol flux generation are expressed
in terms of spectral moments. However, for practical use it is more convenient
to deal with observed or directly measured sea state parameters. Thus in this
appendix we develop the fundamental relationships linking moments with such
parameters as significant wave height Hs, peak frequency ωp, wind speed V10,
and wind fetch X.

In general, the moment mn of the frequency spectrum becomes

mn =
∫ ωh

ωl

ωn S (ω) dω = ωn
p

∫ ω̂h

ω̂l

ω̂nS (ω̂) dω̂, ω̂ =
ω

ωp

. (D.1)

To express the formulae (D.1) in terms of spectral densities, we assume that
surface waves are characterized by the Pierson–Moskowitz (3.17) or JONSWAP
(3.19) spectra. Theoretically, the lower and upper limits of integration in (D.1)
should be equal to 0 and ∞, respectively. However, the form of the Pierson–
Moskowitz and JONSWAP spectra, based on experimental data, indicates that
negligible energy is contained in the frequency band 0 < ω̂ < 0.5; thus we set
ω̂l = 0.5. The upper limit ω̂h, which is not necessarily equal to ∞, requires more
attention as its influence on spectral moments, especially for higher moments,
is substantial. After substitution of (3.19) into (D.1) we obtain the mn moment
as

mn = βg2ωn−4
p

∫ ω̂h

ω̂l

ω̂n−5 exp
(
−5

4
ω̂−4

)
γrdω̂, (D.2)
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Let us assume for a moment that ω̂l = 0, ω̂h = ∞, and γ = 1 (the Pierson–
Moskowitz spectrum). Hence, the moment mn becomes (Massel, 1998)

mn = βg2ωn−4
p ×

∫ ∞

0
ω̂n−5 exp

(
−5

4
ω̂−4

)
dω̂

=
βg2ωn−4

p

4
×

(
5

4

)n−4
4

× Γ
(

4 − n

4

)
, (D.3)

in which Γ(x) is a gamma function (Abramowitz and Stegun, 1975). Equation
(D.3) indicates that the fourth moment m4 becomes infinite as Γ(0) = ∞. The
only way to calculate this moment for practical applications is to impose some
threshold frequency ω̂h �= ∞. Taking into account the peak frequency values
observed in practice, it has been assumed that ω̂h = 6. Waves with frequency
ω = 6ωp can still be considered gravity waves, as the viscous effects are still
negligible.

Using (D.2), the moments mn from the spectral density functions (3.17) and
(3.19) take the form

mn = an(γ, ω̂l, ω̂h)βg
2ωn−4

p , (D.4)

in which the coefficients an are collected in Table D.1 for three different values
of the peak enhancement factor γ = 1, 3.3 and 7, ω̂l = 0.5 and ω̂h = 6. It
should be noted that the constants an for n = 0, 1, 2, 3 and for γ = 1.0 were
calculated by the exact formula (D.3), while other constants were obtained
through numerical integration in (D.2).
The function β is a measure of the energy content in the spectrum. From the
JONSWAP experiment, this function, known as the Phillips constant, depends
on the non-dimensional wind fetch

(
gX
V 2
10

)
given in (3.22). After substituting this

relationship into (D.4) we have

mn = 0.076an(γ, ω̂l, ω̂h)g
2 ωn−4

p

(
gX

V 2
10

)−0.22

. (D.5)

Table D.1: Constants an for spectral
moments mn

an Peak enhancement factor γ

1.0 3.3 7.0

a0 0.2000 0.3048 0.4448
a1 0.2592 0.3640 0.5056
a2 0.3963 0.4908 0.6345
a3 0.8572 0.8014 0.9476
a4 1.5919 1.7057 1.8551
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Moreover, if we assume the peak frequency ωp following from the same JON-
SWAP experiment (see (3.23)), relationship (D.5) takes the form

mn = 0.076an

(
7π

g

V10

)n−4

g2

(
gX

V 2
10

)1.1−0.33n

. (D.6)

It should be noted that for the moment m4, the above expression simplifies
considerably

m4 = 0.076a4 g
2

(
gX

V 2
10

)−0.22

(D.7)

showing that moment m4 does not depend on the wind speed V10, but only on
non-dimensional fetch

(
gX
V 2
10

)
.

D.2 Spectral moments as a function of

significant wave height and

peak frequency

In laboratory experiments, the non-dimensional fetch is not relevant. More suit-
able dependence is that on the significant wave height Hs and peak frequency
ωp. From (3.157) we have

H2
s = 16m0. (D.8)

After substituting (D.8) into (D.4) we obtain

β =
H2

s ω
4
p

16a0 g2
. (D.9)

Therefore, a general expression for the moments mn takes the form

mn =
an

16a0

H2
s ω

n
p. (D.10)
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Petelski, T., Piskozub, J. and Paplińska-Swerpel, B. (2005). Sea spray emission from
the surface of the open Baltic Sea. J. Geophys. Res., 110(C10)023.

Petelski, T. and Piskozub, J. (2006). Vertical coarse aerosol fluxes in the atmo-
spheric surface layer over the North Polar Waters and Atlantic. J. Geophys.
Res., 111(C06).

Pierson, W. J. and Moskowitz, L. (1964). A proposed spectral form for fully developed
wind seas based on the similarity theory of S.A. Kitaigorodskii. J. Geophys. Res.,
69: 5181–5190.

Phillips, O. M. (1958). The equilibrium range in the spectrum of wind-generated
waves. J. Fluid Mech., 4: 426–434.

Phillips, O. M. (1977). The Dynamics of the Upper Ocean. Second Edition. Cambridge
University Press, Cambridge, 336 pp.

Phillips, O. M. (1985). Spectral and statistical properties of the equilibrium range in
wind-generated gravity waves. J. Fluid Mech., 156: 505–531.

Philips, O. M. and Banner, M. L. (1974). Wave breaking in the presence of wind drift
and swell. J. Fluid Mech., 66: 625–640.



300 References

Phillips, O. M., Gu, D. and Donelan, M. A. (1993a). Expected structure of extreme
waves in a Gaussian sea. Part I: Theory and SWADE buoy measurements. J.
Phys. Oceanogr., 23: 992–1000.

Phillips, O. M., Gu, D. and Wash, E. J. (1993b). On expected structure of extreme
waves in a Gaussian sea. Part: SWADE scanning radar altimeter measurements.
J. Phys. Oceanogr., 23: 2297–2309.

Phillips, O. M., Posner, F. L. and Hansen, J. P. (2001). High range resolution radar
measurements of the speed distribution of breaking events in wind-generated
ocean waves: surface impulse and wave energy dissipation rates. J. Phys.
Oceanogr., 31: 450–460.

Piechura, J., Pempkowiak, J., Radziejewska, T. and Uścinowicz, Sz. (2006). What
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Zieliński, T. (2006). Physiacal properties of the near-water aerosol layer in coastal
areas. Monographs Series, No. 18. Institute of Oceanology, Sopot (Poland), 164
pp (in Polish).



306 References

Zilitinkievitch, S. S., Monin, S. S. and Chalikov, D. W. (1978). The interaction be-
tween the sea and the atmosphere. Stud. Mater. Oceanol., 22, 282 pp (in Pol-
ish).

Zimmermann, C. A. and Seymour, R. (2002). Detection of breaking in a deep water
wave record. J. Waterway, Port, Coastal and Ocean Eng., 128: 72–78.



Symbols and Notations

a wave amplitude
a(E) Eulerian (apparent) vertical acceleration
a(L) Lagrangian (real) vertical acceleration
a(2)F second free harmonic
a(2)S second bound harmonic
A wave amplitude
Abr maximum wave amplitude
Arms root–mean–square wave amplitude

b dilation scale

C phase velocity
Cbr phase speed of breaking waves
Cdr surface drift velocity
Cg group velocity
C0 phase speed of the dominant wave
C10 drag coefficient

D directional spreading function

e ocean surface emissivity
erf(x) error function
erfc(x) supplemented error function
E energy
Ediss spectral dissipation term
Edissrate rate of energy loss per unit surface area
E(x) average value of the random variable x

f probability density function, frequency
fdep size–dependent deposition flux
fdmass size–dependent dry mass flux
fp peak wave frequency [Hz]
fprod size–dependent production flux
fsgf sea spray generation function
fvol volume flux
f

(dd)
sgf sea spray generation function based on dry deposition method



308 Symbols and Notations

f
(vg)
sgf sea spray generation function based on vertical concentration

gradient method
f

(wc)
prod size–dependent production flux over whitecap area

f
(wc)
sgf sea spray generation function based on whitecap area
F probability (cumulative) distribution
Fbr probability of breaking waves
Fcov whitecap coverage
Fn net irradiance

g gravitational acceleration

h ejection height
H wave height
H mean wave height
Hd dominant wave height
Hm0 significant wave height based on frequency spectrum
Hrms root mean square wave height
Hs significant wave height

i imaginary unit
I0 modified Bessel function of zero order

J Jakobian of transformation

k wave number
k mean wave number

l wave number
L Monin–Obokhov scale, wavelength

mdr dry particle mass
mn spectral moments ofn-order

N number concentration of particles, wave action density
Nbr number of breaking waves
Nfilm number of film droplets
Njet number of jet droplets

p pressure

Qa heat flux in the atmosphere
Qw heat flux in the ocean

r radius, radius of droplet at ambient relative humidity 80%
rbub radius of bubble
rfilm radius of film droplets
rjet radius of jet droplets
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r0 radius of particle at its formation
R normalized wave amplitude

s empirical function
S frequency spectral density, salinity
Sdiss spectralenergy loss by breaking
Snl spectral flux of energy due to resonant wave–wave interactions
Sw spectral input from the wind

t time
T temperature, wave period
T mean wave period
Tp peak period
ΔT temperature difference

u horizontal component of velocity
u∗ friction velocity
U current velocity

V wind speed
V10 wind speed at level of 10m above sea surface
V19.5 wind speed at level of 19.5m above sea surface

w vertical component of velocity
wb terminal rising velocity of droplets
wd terminal fall velocity of droplets
We Weber number
WT wavelet transform

x horizontal axis of the rectangular coordinate system
X wind fetch

z vertical axis (directed upward when positive) of the rectangular
coordinate system

α empirical constant

β Phillips’s constant
βBF initial growth rate according to Benjamin and Feir
βK initial growth rate according to Krasitskii

γ peak enhancement factor, surface tension
γ1 distribution skewness
γ2 distribution kurtosis
Γ gamma function

δ delta function, growth rate, small quantity
δth threshold growth rate



310 Symbols and Notations

ε wave steepness
εd dominant wave steepness
εf crest front steepness
εg global limiting wave steepness
εk characteristic breaking parameter
εl local surface slope
εs significant wave steepness
ε2 spectral width parameter

ζ surface displacement
ζmax max. surface displacement
ζs fifth-order Stokes’ profile

η analytic signal

θ angle
θ(t) local phase function
Δθ discrete angle interval
Θ potential temperature

κ von Kármán constant

λh horizontal asymmetry parameter
λv vertical asymmetry parameter

μ coefficient of dynamic viscosity
μ3 statistical third moment
μ4 statistical fourth moment

ν coefficient of kinematic viscosity
νa coefficient of kinematic viscosity of air
νw coefficient of kinematic viscosity of water
ν2 spectral width parameter

ξ normalized surface displacement
ξ Hilbert transform of ζ

Π Buckingham theorem

ρ density
ρa air density
ρv vapour density
ρw water density
ρss density of dry sea salt

σζ standard deviation of surface displacement
σ2
ζ variance of surface displacement
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τ normalized wave period, shear stress, translation

φ velocity potential
Φ probability integral, velocity potential
ϕ phase angle

Ψ wave number spectrum

ω angular frequency
ωc mean carrier frequency
ωl local radial frequency
ωp peak radial frequency
Δω discrete frequency interval
� mean radial frequency

Ω frequency
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