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Preface

A new science emerges at the intersection of modern physics, computer sci-
ence, and material science. The struggle to further miniaturize is putting nano-
technology to the verge of creating single-electron and/or single-spin devices
that operate by moving a single electron (spin) and can serve as transistors,
memory cells, and for logic gates. These devices take advantage of quantum
physics that dominates nanometer size scales. The devices that utilize metal-
based hybrid nanostructures may possess significant advantages over those
exploiting purely semiconducting materials. First, the chemistry of metals is
typically simpler than that of semiconductors. Second, the electric properties
of metals are much less sensitive to the structural defects and impurities than
those of semiconductors. Next, metallic devices allow better electric and ther-
mal contacts. Another important plus point is that in metals the electron
de Broigle wavelength is smaller by many orders of magnitude as compared
to that in semiconductors. This makes metallic devices more promising with
respect to their size - down to the size of an atom. Further, high bulk and
interface thermal conductance in metallic devices are beneficial for the heat
withdraw. And, last but by no means the least, the high electron velocity
in metals promises to accelerate enormously operation rates with respect to
those in semiconductor-based devices. The final note is that metals can ex-
hibit strong ferromagnetism and/or superconductivity. While ferromagnetism
provides a new possibility for information storage and processing associated
via utilizing spin transfer and storage (the corresponding approach is often
referred to as spintronics), the superconductivity offers unique opportunities
for completely novel class of devices based on quantum coherence.

These devices allow utilizing new computational algorithms based on quan-
tum superposition of states, allowing simultaneous representing many different
numbers (so-called quantum computation). In a quantum computer infor-
mation is loaded as a string of ”qubits” (quantum mechanical representa-
tion of bits), which are quantum objects that can occupy different quantum
states. A material implementation of qubits requires finding a medium, which
can keep superpositional states from the destruction by interaction with the
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environment (decoherence effect), i.e. the medium which has a long enough
characteristic decoherence time. On the other hand, interaction effects are
crucial for reading off the result of computation. Hence, the main problem is
to find physical systems allowing coherent operation and a switchable interac-
tion with the environment. In this sense the superconductor devices exhibiting
properties of a single macroscopic quantum state are of prime interest.

The abovementioned aspects of nanoscale physics focusing along the prop-
erties of metallic and hybrid nanostructures became the focus of the NATO
Advanced Research Workshop held in St.-Petersburg, August 24 - 29, 2003;
the scientific contributions of this workshop are presented in this volume.

Significant attention is paid to hybrid nanostructures on the base of ferro-
magnets and superconductors including ferromagnet-superconductors hybrid
systems. In the latter systems the role of proximity effects is discussed in de-
tail. The possible developments in spintronics are demonstrated by studies of
current-induced magnetization switching in multilayered nanopillars and by
studies spin-dependent transport of electrons in shuttle-structures and mag-
netic point contacts. Important and unexpected results are presented for single
electron transport through the vortex core levels and for domain wall super-
conductivity in ferromagnetic superconductors and hybrid S/F structures.
Widely discussed are correlation effects in nanostructures; in particular, the
problem of the metal-insulator transition in 2D electron systems which - since
the existence of such a transition contradicts to conventional expectations of
scaling theory of localization is addressed. New realizations of two-channel
Kondo effect in single electron transistor and ratchet effects in Luttinger lig-
uids are reported.

A special attention is paid to the noise phenomenon in nanostructures. In
particular, non-Gaussian shot noise, higher cumulants of noise, shot noise in
transport through localized states were considered. It is demonstrated that
the detailed studies of noise, in particular studies of the shot noise, can
provide important information about the electron system involved. Several
issues concerning peculiarities of transport in nanostructures and nanoscale
devices are widely discussed in this volume: magnetoresistance caused by non-
Markovian effects, transport properties of granular metals at low tempera-
tures, and persistent currents in interacting Aharonov-Bohm interfereometers
under acoustic radiation can be mentioned to name the few. To summarize,
the investigations reported in this volume, will, by no doubts, signify the im-
portant step towards further understanding mechanisms of quantum transport
in nanoscale devices.

St. Petersburg, Andreas Glatz
June 2004 Veniamin Kozub
Valerii Vinokur
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Coherence and Correlation Effects



Phase Measurements in Closed
Aharonov-Bohm Interferometers

Amnon Aharony', Ora Entin-Wohlman', and Yoseph Imry?

1 School of Physics and Astronomy, Raymond and Beverly Sackler Faculty
of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
aharony@post.tau.ac.il

2 Department of Condensed Matter Physics, The Weizmann Institute of Science,
Rehovot 76100, Israel

Summary. We discuss measurements of the resonant quantum transmission ampli-
tude top = —iltgp|e’*@P through a quantum dot (QD), as function of the plunger
gate voltage V. Mesoscopic solid state Aharonov-Bohm interferometers (ABIs) have
been used to measure the “intrinsic” phase, agp, when the QD is placed on one of
the paths. In a “closed” interferometer, connected to two terminals, the conductance
G = %“QDF through the ABI is an even function of the magnetic flux @ = hicg/e
threading the ABI ring. Therefore, fits of G to the 2-slit formula A + B cos(¢ + 3)
allow only jumps of 8 between 0 and w. Here we include the many reflections of the
electrons within the ABI ring, and replace the 2-slit formula by a new formula, which
allows to extract both |top| and agp from the closed ABI data. Also, the relation
[top|? o sin?(agp) allows a direct measurement of agp(V), without interferometry.

1 Introduction and Review of Experiments

Mesoscopic quantum dots (QDs) represent artificial atoms with experimen-
tally controllable properties [1, 2, 3]. Connecting a QD via two one-dimensional
(1D) ‘metallic’ leads to electron reservoirs, one can vary the attraction of
electrons to the QD by the ‘plunger gate voltage’, V. Measurements of the
conductance G through the QD, as function of V, show peaks whenever the
Fermi energy ep of the electrons crosses a bound state on the QD. The quan-
tum information on the resonant tunneling through the QD is contained in
the complez transmission amplitude, top = —i/Zgpe'*2P. It is thus of great
interest to measure the V-dependence of both the magnitude 7gp and the
phase agp.

Model calculations (e.g. [4]) predict that 7gp exhibits resonances at the
bound state energies of the QD, while agp exhibits an interesting variation

3
A. Glatz et al. (eds.), Theory of Quantum Transport in Metallic and Hybrid
Nanostructures 3—8.
© 2006 Springer. Printed in the Netherlands.
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between 0 and 7, growing gradually through each resonance, and dropping
sharply between consecutive resonances. The resonant dependence of 7gp
on V has been confirmed by many experiments [1, 2], which measure the

conductance and take advantage of the Landauer formula [5], G = %TQ D-
However, the experimental measurement of agp has only become accessible
since 1995 [6, 7], using the Aharonov-Bohm interferometer (ABI) [8].

The simplest method to measure the phase of a wave is based on the
two-slit interferometer [9]. In this geometry, a coherent electron beam is split
between two paths, going through two slits, and one measures the distribution
of electrons absorbed on a screen behind the two slits. Assuming that each
electron goes through one of the slits only once, without any reflection from
the slits or from the screen, and assuming complete coherence, the distribution
of electrons on the screen is given by 7 = |t|?, where t = t; + t5 is the sum of
the (complex) amplitudes of the waves which went via the two slits.

In the two-slit ABI, a magnetic flux @ in the area surrounded by the two
electronic paths creates a difference ¢ = e®/hc between the phases of the wave
functions in the two branches of the ring [10], yielding t = t1e'® + t5. (Gauge
invariance allows one to attach the AB phase ¢ to either branch). Writing
t; = |t;]e*®, one thus has the ‘2-slit formula’, 7 = A + Bcos(¢ + «), where
o= 1 — Q9.

Placing a QD on one path, and changing its plunger gate voltage V', would
vary the corresponding phase a; = agp. If the 2-slit formula were valid, it
would allow the determination of the dependence of agp on V. This was
the motivation of Yacoby et al. [6], who placed a QD on one path of a closed
mesoscopic ABI. Indeed, the measured conductance was periodic in ¢, and the
detailed dependence of G on ¢ varied with V. However, close to a resonance
the data did not fit the simple 2-slit formula; they required more harmonics
in ¢, e.g. of the form

T =A+ Bcos(¢p+3)+Ccos(20+7) + ..., (1)

with the conventions B, C' > 0. Furthermore, the fitted phase 8 did not follow
the continuous variation with V' (as would be implied from the 2-slit scenario,
where 8 = agp + const). Instead, § exhibited discrete jumps by +.

These jumps follow from the Onsager relations. Unlike the 2-slit geometry,
the closed ABI requires many reflections of the electron waves from the ‘forks’
connecting the ring with the leads. Each such reflection adds a term to the
interference sum of amplitudes, and modifies the simple 2-slit formula. In
fact, unitarity (conservation of current) and time reversal symmetry imply
that G(¢) = G(—¢) [11], and therefore 3 (as well as v etc.) must be equal to
0 or 7. The additional reflections also explain the need for higher harmonics
near resonances. Below we include these many reflections, and replace the
2-slit formula by a new one — which can be used to extract agp from the
closed interferometer data [12].

Later experiments [7] opened the interferometer, by adding ‘lossy’ chan-
nels which break unitarity. Indeed, fitting the conductance to Eq. (1) yielded
a phase (V) which was qualitatively similar to the calculated ‘intrinsic’
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agop(V). However, it turns out that 3 depends on the details of the coupling
to the open channels [13]; 2-slit conditions are recovered only after a careful
tuning of the relevant parameters! Although such tuning is possible [4], it re-
quires systematic studies of many configurations, and it leaves only a small
fraction of the original current through the ABI. Therefore, it is desirable to
have alternative ways to measure agp, as discussed below.

2 Model for the QD

We model the QD by a site D on a tight binding 1D chain [14]. All the on-site
energies are zero, except ep = V on the QD. Electron-electron interactions are
included only via an on-site Hubbard interaction U on the QD. The hopping
matrix elements J; ;41 on the chain are all equal to J, except on the bonds
connected to the QD, where they are J_; p = Jr, and Jp; = Jr. For ep =0,
U =0and J, = Jg = J, one has the simple wave eigenstates |n) = e?*na
with eigenenergies €, = —2J coska (a is the lattice constant).

Following Ref. [14], the transmitted wave for n > 1 is |n) = tope’*™®, and

(at T =0) [12]
top = —iyp sinagpe'®?P = 2isin |klaJ Jrgp(er)/J, (2)

with the QD asymmetry factor yp = 2J.Jg/(J; + J%) and the “intrinsic”
Green function on the QD, gp(ex) = 1/[ex — ep — Xp(ex)]. Here, X'p(ex)
is the self-energy on the QD, which contains contributions from the leads,
Epext = —eFla(J2 4+ J2)/J and from the electron-electron interactions on
the QD, X'p int. As ep = V increases, agp grows gradually from zero, through
/2 (at the resonance), towards 7.

Interestingly, for this one-dimensional model, normalizing the measured

Top = ltopl® = vp sin®(agp) (3)

by its (V-independent) maximum max[7gp] = 73 relates agp with the
measured 7gp. Assuming coherence, this method for measuring agp di-
rectly from Top eliminates the need for any complicated interferometry! In-
terestingly, this conclusion holds for any Breit-Wigner-like resonance, with
an energy-independent width. It also holds for a multi-level QD, with many
resonances. In the next section we discuss ways of extracting agp indirectly,
from the closed AB interferometer measurements. Comparing results from
sin?(agp) = Top /73 = Top/ max|[Tgpl, from the closed interferometer [12]
and from the open one [4] (all with the same QD) should serve as consistency
checks for this conclusion.

3 Model for the closed AB interferometer

Our ABI is modeled by two paths between two ‘forks’: one path contains
the QD, with the bonds hoppings J;, and Jg, and the other path contains
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an interaction-free ‘reference’ site B, with bond hoppings J_1 p = I; and
Jp,1 = Ir and with a site energy €y = Vj, controlled by the gate voltage V5. A
magnetic flux @ inside the AB ring is included by the replacement Jr — Jge'®.
As explained in Ref. [12], one can use the equation-of-motion method to derive
the new fully “dressed” Green function on the QD, Gp(w) = 1/[w—ep—X(w)],
with the dressed self-energy X' = X1 + Yept. Both terms in X differ from
their counterparts in the “intrinsic” X'p, by contributions due to the reference
path. The resulting transmission amplitude is

t:ADtQD6i¢+ABtB, (4)

where Ap = gB(fk — EO)GD(Gk)/gD(Ek) and Ag =1+ GD(Gk)Eezt(Gk)~ AISO,
tg = —iypsindge’®® = 2isin|k|ILIrgp/J is the transmission amplitude of
the “reference” path (when Jp, = Jg = 0, or |ep| — o0), with the bare
reference site Green function gp = 1/[e, — eo + €*I(I7 + I%)/J], and the
asymmetry factor vg = 2I1,1gr/(I? + I%). Equation (4) looks like the 2-slit
formula. However, each of the terms is now renormalized: Ap contains all the
additional processes in which the electron “visits” the reference site, and Ap
contains the corrections to tg due to “visits” on the dot.

The Onsager relations, which require that 7 depends on ¢ only via cos ¢,
imply that the ratio K = ABtB/(ADtQD) = f[GD(Gk)_l + Eea:t(@c)]a with
the real coefficient & = I Ig/[JLJJr(€x — €0)], must be real. This implies that
S[Gp () + Tewi(er)] = Sint = 0, namely that the width of the resonance,
SGp(ex)™t, is fully determined by the non-interacting self-energy ezt (ex)-

An explicit calculation gives Xepi(€x) = Xp ext(€r) + Aext, where Agyy =
Xl gp(J2 12 + J3I% + 2J1 JrIL IR cos ¢)/J?. The term proportional to cos ¢
comes from the electron clock- and counterclockwise motion around the AB
“ring”. Similarly, one can write Xint(ex) = Xpint(er) + Aint, and thus
GD(Ek)_l = gD(Gk)_l — A, with A = Ay + Ajye. Hence, t = ADtD(€i¢+K).
Writing also Ap = C/[1 — gp(ex)4], with C = (e — €0)gp, we find

1+ K2 +2Kcoso
1 —2R[gpA] + [gpA|*

T =|CPTp ()

Although the numerator in Eq. (5) looks like the 2-slit formula, with 5 = 0
or 7 (depending on signkK), the new physics is contained in the denominator —
which becomes important in the vicinity of a resonance. The central term in
this denominator depends explicitly on the phase of the complex number gp.
Since this number is directly related to tgp, via Eq. (2), one may expect to
extract agp from a fit to Eq. (5), taking advantage of the dependence of the
denominator on cos ¢.

For A ~ A..t, Eq. (5) becomes

1+ K2+ 2K cos ¢
14+ 2P(z + cos ¢) + Q(z + cos ¢)2’

T =|C*Top
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where z = (J%I% + JI%IIQ;{)/(QJLJRILIR), P = %[UtBtQD], Q = |’UtB|2TQD,
and v = e%*l2/(2sin® |k|a) depends only on the Fermi wavevector k,
independent of any detail of the interferometer. A 5-parameter fit to the
explicit ¢-dependence in Eq. (6) for given values of V' and Vj then yields
|IC|*Top, K, z, P and @, and thus cos(agp + 6p + 2|kla) = P//Q, from
which one can extract the V-dependence of agp. Since the V-dependence
of Top can also be extracted from the fitted values of either |C|?*7gp or
Q, we end up with several consistency checks for the determination of agp.
Additional checks arise from direct measurements of 7gp and 7 = |t B|%, by
taking the limits |Vo| = || — o0 or |V | = |ep| — 0.

For small 7g, or large |Vy| = |eo|, it is reasonable to conjecture that Ay
is dominated by single visits of the electron at the reference site B. In that
case, we expect the proportionality A, = w(z+cos ¢), with a real coefficient
w. This yields the same dependence of 7 on cos ¢ as in Eq. (6), with a shifted
coefficient v. If w depends only weakly on V, then this shift has little effect
on the determination of agp.

Interestingly, a plot of Eq. (6) versus V' and ¢ [12] looks very similar to
the experimental plots in Ref. [17]. It would be very interesting to attempt
detailed quantitative fits of data to our predictions.

4 Concluding remarks

Basically, we presented three methods to measure the intrinsic scattering
phase of a quantum dot. The first method is based on Eq. (3), and does not
involve interferometry. The second is based on Eq. (6), which allows one to
extract information from measurements on the closed ABI. The third method,
described in Ref. [4], uses the open ABI, but requires conditions under which
this ABI behaves as a two-slit interferometer. As stated, a convincing approach
would be to use more than one method, with the same QD, and to obtain
consistent results.

Although Eq. (6) was justified only for non-interacting electrons or for the
limit of small 75, we expect it to be qualitatively correct over a broader range.
We emphasize that a successful fit of the ¢-dependence to Eq. (6) justifies the
above assumptions. If the various procedures to determine agp from Eq. (6)
yield the same V-dependence, this would again confirm our assumptions. A
failure of this check, or a more complicated dependence of the measured 7 on
cos ¢, would require a more detailed treatment of the interactions.
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Summary. We discuss the concept of the Berry phase in a dissipative system. We
show that one can identify a Berry phase in a weakly-dissipative system and find the
respective correction to this quantity, induced by the environment. This correction is
expressed in terms of the symmetrized noise power and is therefore insensitive to the
nature of the noise representing the environment, namely whether it is classical or
quantum mechanical. It is only the spectrum of the noise which counts. We analyze a
model of a spin-half (qubit) anisotropically coupled to its environment and explicitly
show the coincidence between the effect of a quantum environment and a classical
one.

1 Introduction

Three papers published independently in 1932 by Zener, Landau and Stueck-
elberg [7, 22, 14] have introduced the phenomenon known today as Landau-
Zener tunneling. The idea is to consider a 2-level system, where the energy
of each level varies linearly with a classical variable (which, in turn, is varied
linearly in time). As function of time, ¢, the energy levels should intersect but
for the inter-level coupling A which gives rise to an “avoided crossing” in the
spectrum, cf. Fig. 1. Using the spin notation, one can write the Hamiltonian
as H = atS, + AS,. Here S = /2, and o,,0, are Pauli spin-1/2 opera-
tors; « is the rate of change of the energy of the pseudo-spin at asymptotic

9
A. Glatz et al. (eds.), Theory of Quantum Transport in Metallic and Hybrid
Nanostructures 9-23.
© 2006 Springer. Printed in the Netherlands.
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times. The avoided crossing gap is A. The probability of transition from,
say, the lower level at time —oo, to the upper level at time 400 is given by
Pz = exp[—(m/2)A%/a].

Besides being ubiquitous in physics and chemistry, the Landau-Zener
framework appears to suggest a natural definition for the notion of adia-
baticity. The adiabatic limit is approached when Py << 1, ie., a << A2,
The latter inequality involves a comparison of the rate of change (of the time
dependent term in the Hamiltonian) with the gap in the spectrum, A. This
notion of the adiabatic limit has become widespread. A closer look suggests
that, in general, adiabaticity cannot be associated with comparing the rate of
change to the gap. Indeed, on one hand any finite, discrete-spectrum system
is coupled, however weakly, to the rest of the universe. Hence the emerging
spectrum is, at least in principle, always continuous and gapless. The naive
view would then imply that the adiabatic limit cannot be approached. This,
on the other hand cannot be correct: if we consider a finite system with a
discrete spectrum, for which adiabaticity is well defined, it is inconceivable
that an infinitesimal coupling to the continuum (rendering the overall spec-
trum continuous) will change its physics in a dramatic way. The resolution of
this problem is provided by the observation that the criterion for adiabaticity
involves not only spectral properties but also the matrix elements of the
system-environment coupling.

To gain some insight into this problem we focus here on the analysis of
the Berry phase [1] in a weakly dissipative system. It is particularly timely
to address this issue now given the recent experimental activities in realiza-
tion of controlled quantum two-level systems (qubits), and in particular, the
interest in observing a Berry phase (BP) (see, e.g., [5]). For instance, the
superconducting qubits have a coupling to their environment, which is weak
but not negligible [10, 15, 4], and thus it is important to find both the condi-
tions under which the Berry phase can be observed and the nature of that
Berry phase.

In this paper we appeal to a simple analysis of the problem. We first, in
Section 3, consider a quantum-mechanical framework, where a perturbative
approach is taken. When the environment is replaced by a single oscillator,
a second-order perturbation analysis is straightforward and produces a result
which allows for a simple interpretation. We then generalize the calculation
for a host of environmental modes. In Section 4 we consider a toy model where
the environment is replaced by a classical stochastic force. The quantities of
interest, the Lamb shift and the Berry phase, are then calculated, and simple
heuristic arguments are given to interpret the results. To complete the analogy
with the analysis of the previous section, here the “single-oscillator environ-
ment” is replaced by a simple periodic classical force (of random amplitude).
In Section 5 we summarize the relation between the quantum mechanical
approach and the classical model in more general terms.
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2 The system: spin 4+ environment

We begin in the conventional way by writing the Hamiltonian for the “uni-
verse” (system + environment) as

7:{ = Hsyst + ﬂenv + ]}coupling (1)

The system is defined as the set of those quantum degrees of freedom that
one is interested to control and measure; the environment consists of all the
rest, namely those degrees-of-freedom we can neither control nor measure. The
coupling between the system and environment is Veoupling. The properties of
the environment are controlled by macroscopic parameters, such as tempe-
rature. Qur treatment below applies to a reservoir at either zero or a finite
temperature.

For our purposes it is sufficient to represent the environment by a single
operator X which couples to a spin. The Hamiltonian then becomes

H=-LugB 6 —1X0. + Hen . (2)

Hereafter we put pg = 1. Below we express our results in terms of the statis-
tical properties (correlators) of the environment’s noise, X (t). Depending on
the physical situation at hand, one can choose to model the environment via a
bath of harmonic oscillators [6, 3]. In this case the generalized coordinate of the
reservoir is defined as X = ) A\;x;, where {z;} are the coordinate operators
of the oscillators and {);} are the respective couplings. Eq. 2 is then referred
to as the spin-boson Hamiltonian [8]. Another example of a reservoir could
be a spin bath [11] ®. However, in our analysis below we do not specify the
type of the environment. We will only assume that the reservoir gives rise to
markovian evolution on the time scales of interest. More specifically, the evo-
lution is markovian at time scales longer than a certain characteristic time
T, determined by the environment 6. We assume that 7. is shorter than the
dissipative time scales introduced by the environment, such as the dephasing
or relaxation times and the inverse Lamb shift (the scale of the shortest of
which we denote as Tgiss, Te < Taiss). We further assume that 7. < tp, the

5 For any reservoir in equilibrium the fluctuation-dissipation theorem provides
the relation between the symmetrized and antisymmetrized correlators of the
noise: Sx(w) = Ax(w)coth(w/2T). Yet, the temperature dependence of Sx
and Ax may vary depending on the type of the environment. For an oscillator
bath, Ax (also called the spectral density Jx(w)) is temperature-independent,
so that Sx(w) = Jx(w)coth(w/2T). On the other hand, for a spin bath Sx
is temperature-independent and is related to the spins’ density of states, while
Ax (w) = Sx (w) tanh(w/2T).
This time may be given by the correlation time of the fluctuations, but in general
is a more subtle characteristic of the spectrum related to its roughness near qubit’s
frequencies. Note further that for singular spectra 7. may be ill defined and the
perturbative analysis may fail. See, e.g., [2, 12, 13, 9, 21, 19].
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characteristic variation time of the field B(¢). Moreover, under these condi-
tions we may consider only lowest-order (in the system-environment coupling)
contributions to the quantities of interest: energy shifts, BP and relaxation
rates. Indeed, if one divides the evolution time interval into short domains
(< tp), longer than 7. but shorter than Tgiss, fluctuations at different do-
mains are uncorrelated and their effect can be analyzed separately. At the
same time, for each domain (< Tyiss) the effect of the noise is weak. Thus, to
the leading order corrections to the dynamics may be described as corrections
to the rates (energies) of the spin dynamics, which may be estimated pertur-
batively. We also consider an underdamped spin, with the dissipative times
longer than the period of the coherent dynamics, Tyiss > 1/B. This implies
that the time windows alluded to above consist of numerous oscillations, in
other words they are > 1/B.

We have chosen an anisotropic spin-environment coupling, « o,. This is a
realistic model, e.g., for many designs of solid-state qubits, where the different
components of the “spin” are influenced by entirely different environmental
degrees of freedom [10, 15, 4]. While our analysis can be generalized to account
for multiple-directional fluctuating fields [20], here we focus on unidirectional
fluctuations (along the z axis).

Another remark to be made concerns the possibility to observe a (weak)
dissipative correction to Berry phase in spite of the dephasing and relaxation
phenomena. While the respective time scales (77, T5 and the inverse of the
correction to the Berry phase) scale similarly with the strength of fluctuations
(inversely proportionally to the noise power), they are dominated by different
frequency domains. Indeed, the dephasing and relaxation are known to be
dominated by resonant fluctuations with frequencies close to B (for the relax-
ation and the corresponding contribution to dephasing) and 0 (for the pure
dephasing), cf. Eq. (15) below. In contrast, as we shall see below, the Lamb
shift and the correction to the Berry phase accumulate contribution from the
entire range of frequencies. Thus, one may think of (engineering) a system
with an environment whose fluctuations at v ~ B and v ~ 0 are suppressed.
In this case, one can easily observe an observable correction to the Berry phase
at times when the dephasing and relaxation are still negligible.

3 Quantum-mechanical analysis

In this section we consider a two-level system coupled to an environment which
we treat as a quantum-mechanical system. We begin with a discussion of the
Lamb shift and then show, in Subsection 3.3, how the results for the Lamb
shift may be used to find the environment-induced correction to the Berry
phase and the relaxation times.
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3.1 Lamb shift as level repulsion

Consider first, for illustration, a simple system of the spin coupled to a single
oscillator, with the Hamiltonian

H=—-1Bo, — ico,(a" + a) + woa'a, (3)

where c is the coupling constant. Let |n) denote the n-th level of the oscillator;
the second-order corrections to the energies of the states |1,0) and ||, 0) are

oLy 1 &

E(Q) - - = 4
T wo+ B 4 wy+ B’ )
and ) ,
0 VIT, 1) 1 ¢
E(2)2_|<l7 ) =
! wo — B 4 wy—B’ (5)

where V = (¢/2) 0, (a’ + a) is the perturbation. This results in the following
correction to the level spacing F| — Ej:

(2) _ 62 B

@)
B — B} TE—w

(6)

This correction (the Lamb shift) has different signs for fast (wy > B) and
slow (wy < B) oscillators. As one can see from Egs. (4), (5), this result can be
understood in terms of the level repulsion [21]: the perturbation couples the
level |1,0) to ||,1) and |,0) to |T,1). The levels of the latter pair are closer,
and the coupling has a stronger effect on their energies. They repel each other
due to the coupling, thus reducing the distance between |1,0) and ||,0) for
wo > B and increasing it for wy < B.

3.2 Second-order perturbative analysis

In this section we find the Lamb shift using the lowest-, second-order perturba-
tive analysis. In the Hamiltonian (2) we treat the coupling term V = —%X O
as a perturbation: H = Ho + V. The eigenstates of Hy are |«,i), where
a =1p/lp denotes the eigenstates of the spin without dissipation, with the
spin direction parallel or antiparallel to the filed B, and ¢ denotes eigenstates
of the environment. The perturbation theory gives for the corrections to their
eigenenergies:

1V 18,4)
E?=-% [, 1| VB, . o
a,t (0) (0) (0) 0) _
= EY + B —EP — B —i0
For V = —1Xo, we notice that (1p|o.|15)° = (I5|o.|l5)> = cos?6 and
3

= (15|0. 15)° = sin?6, and find for the environment-averaged

(I1slo=|lB)
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quantities ESY = > pi E& 2 (see the discussion of these quantities at the end
of this subsection):

E® — 7cos20 pi | (i| X |5) | B sin? 6 pi | (i] X |7) 2 |
T 4 i.j EJ(O) _ EZ(O) —i0 4 r B+ E](O) _ EZ(()) 0

(®)

The correction to E| is obtained by substituting B — —B into the above
equation. Now using the identity

1 oo . .
—; dt —i(E—i0)t
E—i0 | /0 ¢ ’ )

we rewrite Eq. (8) as

i o i
E%Q) = _Z/o dt (X (t)X(0)) (cos® 0 + sin® ge*P*) e, (10)

where we have used the relation

= i (i X [) (G X [iy e (Fam Bt (11)
In terms of the the Fourier transform (X72) = [ dt (X (0)) et we obtain
@ _ 1 o, [dv (XD) 1, /dv (x2)
B =—= 0 - 0| ———. 12
T 4COS /27ru—10 4Sln 2r v+ B —i0 (12)
For the Lamb shift Eﬁza)mb = ?Re(Ef) — E%Z)) this gives a principal value
integral
(2) - 2 dl/ SX o 2 dV SX
ELamb 0 P/ 277 B — - ¢ P/ 27'(' B2 ’ (13)
where
Sx() = (XD + (12,) = [ar(X®.XOL) e ()

Thus the Lamb shift is expressed in terms of the symmetrized correlator Sy
and is insensitive to the antisymmetric part of the noise spectrum.

As one can see from Eq. (13), in agreement with the discussion in the
previous section, the high-frequency noise (v > B) reduces the energy gap
between the spin states [8], while the low frequency modes (v < B) increase
the energy gap.

Similarly, from Eq. (12) one can evaluate the dephasing time:

cos 9 sin’
Sx( 0) +

— (2) (2)y _
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This expression correctly reproduces the contribution of the transverse fluc-
tuations (o sin? #) to the dephasing rate, but underestimates the longitudinal
contribution (o cos? §) by a factor of two (cf. Ref. [2, 12, 16]). One can show
that an accurate evaluation of this contribution, as well as the analysis of the
relaxation, requires taking into account corrections to the eigenstates, and not
only to the eigenenergies (7). More precisely, our calculation of the corrections
to the eigenenergies in this subsection corresponds to evaluation only of the
four left diagrams in Fig. 7 of Ref. [9]; the term i0 in the denominators allows
one to find also the outgoing transition rates from the eigenstates (and the
respective contribution, o sin? 6, to dephasing) but only the part of the ‘pure-
dephasing’ rate, icos2 0. Analysis of the two remaining diagrams in Fig. 7
and those in Fig. 6 allows one to find also the pure dephasing rate (as well
as the incoming transition rates, the latter though do not require an extra
evaluation due to probability conservation).

3.3 From Lamb shift to Berry phase

So far we have analyzed the environment-induced correction to the level split-
ting (the Lamb shift). Using the results above one can evaluate also the
environment-induced correction to the Berry phase for a slow cyclic varia-
tion of the magnetic field B [17, 18, 20, 19].

Indeed, consider the simplest case of conic variations of the field around
the z-axis (to which the environment is coupled), as shown in Fig. 1: the
field varies at a constant rate, with the low angular velocity wg, and traverses
the circle after the period tp = 27/wp. The analysis of the spin dynamics
is considerably simplified by going to the frame, rotating with the angular
velocity wpZ, where Z is the unit vector along the z-axis. In this frame the
spin is subject to the fluctuating field Xz and the field B 4+ wgZ, which is
stationary. Thus, in this frame one can use the results of the analysis above
to obtain the Lamb shift, if one substitutes B by B + wgZ. In other words,
the correction to the Lamb shift associated with the variation of the field B
in time, is given by taking the derivative wpdp. of the Lamb shift (13) and
multiplying by the period of variation, tp. After a full period the basis of the
rotating frame makes a complete circle and returns to its initial position, i.e.
coincides with the laboratory frame’s basis. Hence the phases accumulated in
the rotating and laboratory frames coincide, and it is sufficient to evaluate it
in the rotating frame. Thus, one finds the environment-induced correction to
the Berry phase to be

aEEILaLmb(-B)
(] =2 1
0bpp OB. (16)
Taking the derivative of Eq. (13), we find:
) Sx(v)(2v — 3B)
2 2
6( )@BP = cos fsin Q’P/dum (17)
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Fig. 1. Conic variations of the field around the z-axis (to which the environment is
coupled). (see text)

(Notice the convention: this expression gives the correction to the relative
Berry phase between the spin-up and spin-down states, rather than to the
phases of each of these states.) As for the Lamb shift, the contributions of
the high- and low-frequency fluctuations are of opposite signs. For the Berry
phase the contribution changes sign at v = 3B/2.

In passing we note that this analysis can be generalized to an arbitrary
(but adiabatic) path B(¢), this enables one to see that the correction to the
Berry phase is geometric, but that its geometric nature is very different from
the Berry phase of an isolated spin-half [20].

In Section 4 we shall find exactly the same expression for the Lamb shift
and therefore for the Berry phase in the case of classical environment.

3.4 High-frequency noise: renormalization of the transverse B-field

Consider now the influence of the high-frequency fluctuations in the envi-
ronment only (v > B). Since the frequencies of the fluctuations are much
higher than the typical spin-dynamics frequencies, one may eliminate these
high-frequency fluctuations using the adiabatic (Born-Oppenheimer) approxi-
mation, as described, e.g., by Leggett et al. [8].

Indeed, consider the spin-boson model, with the Hamiltonian

H=-1(B+X2)o + Henv, (18)

where X = "¢, (aj +a;) and Heny = D, w; a;rai. Let us ignore the low-
frequency oscillators and focus on those at high frequencies v > B. These fast
oscillators adjust almost instantaneously to the slowly varying spin state. For

the last two terms of the Hamiltonian (18) two lowest-energy states are ’T> =

I IL gI> and ‘1> =1L gzl> Here gj> denotes the ground state of the

ith oscillator corresponding to the spin state |1), i.e. the ground state of
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w; a;rai +c (a;-r +a;), and ’gzl> is defined similarly; further eigenstates of the
last two terms are separated by a gap ~ v.
Consider now the matrix elements of the first term —%Ba’ in this two-state
low-energy subspace; one finds that its transverse component is suppressed by
the factor

I1¢s!

i

of) = lewietoty <o (= [ 7 2557). 19

27 12

where Jx (V) = 7>, ¢?6(v — w;) is the spectral density of the oscillator bath.
At a finite temperature T each high-frequency oscillator remains in its thermal
equilibrium state (subject to the spin state), rather than the ground state, and
on the rhs of Eq. (19) the spectral density Jx(v) is replaced by the thermal
noise power Sx (v) = Jx (v) coth(v/2kgT).

Thus the role of the high-frequency oscillators is to suppress the transverse
field component (in other words, the transverse g-factor). If we are interested
only in the contribution to the level spacing (the Lamb shift), one should
consider only the longitudinal (|| B) part of the renormalization, i.e. multiply
the result by sin 6, to obtain Eq. (13).

3.5 Effective-action analysis

One can study the spin dynamics integrating out the environment and us-
ing the effective action for the spin. We derive the effective action using
the Feynman-Vernon-Keldysh technique. For the interaction —Xs, with the
z-component of the spin, the effective action (the influence functional) reads

i, = _% /C K /C s (0) (1) (O (1,1 (20)

where we assumed the Gaussian statistics of X, and defined the Green function
Gx as iGx(t,t') = (Tc, X)X (¢')). The time ordering here refers to the
Keldysh time contour Ck, and in Eq. (20) we integrate over C; accordingly
each of the time dependent variables assumes a ‘Keldysh index’ u, d indicating
the upper/lower branch of this contour.

After the Keldysh rotation one obtains the influence functional in terms

of the classical and quantum components, s¢ = (5% + 5?)/2 and s? = s* — s%:

1 S2OGR (= 1)sit)|, (21)

1
Dipg = — / dtdt’ {sg(t)G)R((t —t)sS(t) + —
in terms of the retarded and Keldysh Green functions, G} = —if(t — t')
(X (8), X(#)]-) and G = —i{[X(8), X(¢)]1) = ~2iSx (t — 1').
For classical noise X the commutator in the definition of G vanishes, and
one finds
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d =y [ [ ar s sx ) sue). (22)

The results (13), (17) for the Lamb shift and the Berry phase involve only
Sx and not the antisymmetrized correlator. Hence for the analysis of these
quantities it should be sufficient to use the functional (22). Alternatively, one
may consider a problem with a classical random field X (¢) to reproduce these
results. In the next section we perform the corresponding analysis.

4 The Classical Model

In this section we analyze the dynamics of a spin subject to a classical ran-
dom field and derive the equation of motion for the spin dynamics (the spin-
evolution operator), averaged over the fluctuations. Following the discussion
of the case with quantum fluctuations, we first analyze the dynamics in a
stationary field B and a random field; exactly as in the quantum case one can
reduce the analysis of the dissipative corrections to the Berry phase accumu-
lated over a conic loop to the problem with a stationary field by going over
to a rotating frame.

As we have demonstrated above, in the quantum problem the results for
the corrections to the phase and dephasing, associated with the controlled
dynamics of the magnetic field, involve only the symmetric part of the noise
correlator, one expects that the results for these quantities in the classical
problem, expressed in terms of the noise power, would coincide with the quan-
tum results. Indeed, we find this relation below.

Specifically, we analyze the following problem: a spin S is coupled to a
controlled magnetic field B (stationary for now, but to be varied slowly in
a Berry-phase experiment) and a randomly fluctuating field X (), which we
treat as a random variable with the correlation function given by Sx(¢). Its
dynamics is governed by the Larmor equation:

S=[B+X(t)xS. (23)

This equation can be used to describe the dynamics of either a classical spin
or the average spin value (i.e. the density matrix) of a spin-1/2.

As we discussed in the Introduction, we assume that the noise is weak and
short-correlated, i.e., that considerable dissipative contributions to the spin
dynamics arise on time scales much longer than the typical correlation time
7. of the noise. Below we discuss the influence of the low- and high-frequency
fluctuations on the (classical) spin dynamics and recover the results of the
quantum analysis above. Further, using the result for the low-frequency con-
tribution we obtain the correction to the Berry phase from the environmental
fluctuations at all frequencies.
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4.1 Low-frequency noise: Lamb shift

Consider first the effect of a slowly fluctuating random field X = X 2. Similar
to the quantum-mechanical analysis in Section 3 we begin with the case of har-
monic fluctuations (of random amplitude) and purely transverse noise (B =
Bz, i.e. 0 = 7w/2). Consider fluctuations X = ¢, cos(vt) at a low frequency
v < B, during a time interval §t. To evaluate the evolution operator, we an-
alyze the dynamics in a reference frame (é 7, CA ) fluctuating together with the
field (with the (-axis along B 4+ X (t) and the n-axis, for instance, orthogonal
to B and X). Since the fluctuating angular velocity of this frame’s rotation is
negligible, ~ ¢,v/B < ¢,, the effective magnetic field in this frame | B+ X (t)|¢
points along the (-axis. Thus the dynamics reduces to rotation about this axis
by the angle ¢(t) = [/ dr|B + X(7)| ~ [/ dr(B + X?(r)/2B), where
B = | B|. Averaging the transverse spin component S + S, e'*(®) one finds
a lowest-order contribution to the phase factor, 6¢(X?)/2B, i.e. a Lamb shift
c2/AB (we assumed dt much longer than the period of oscillations, 1/v).

In principle, the evolution in the laboratory frame differs from that in the
rotation frame. Transformation to/from the rotation frame at the beginning
and the end of the time interval introduces corrections to the evolution opera-
tor or order ¢, /B. This is however a negligible boundary contribution. Indeed,
for a sufficiently long time interval 6¢ > 1/¢, the phase shift due to the Lamb
shift, of order ¢28t/B, is much larger (but still small, as long as §t < B/c?).

Similar results hold for more general low-frequency fluctuations, non-
harmonic and with arbitrary direction . Indeed, in the same rotating frame
the dynamics reduces to rotation about the (-axis by the angle ¢(t) =

O 4r| B+ X (1) = [T dr(B+ X (r) + X2 (7)/2B), where X|| = X cos,
X = X sin@ are the longitudinal and transverse components of X (relative
to B). Averaging the transverse spin component o €'?(*) one finds, apart from

dephasing, a lowest-order contribution to the phase factor, 6t(X?)/2B, and
hence the Lamb shift v Sx ()

0E =sin®p [ L2XY 24

sin / i B (24)

where 0 is the angle between B and the direction Z of the noise. This result
coincides with the low-frequency contribution in Eq. (13).

4.2 From low frequencies to all frequencies

The expression (24) and the symmetry of the problem suggests a way to find
the contribution of all, not only slow, modes in the environment to the Lamb
shift (and later to the Berry phase). Indeed, we discuss weak short-correlated
noise, i.e. such that its contribution to the dynamics on time scales or order
T. is small. Contributions from different time intervals ~ 7. are uncorrelated
and add up independently. Hence in the evaluation of the (real and imaginary)
contribution of such a short interval to the evolution frequencies (the Lamb
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shift, the dephasing and relaxation rates) it is enough to consider the lowest
non-vanishing, i.e. second order.

The symmetry of the problem can be used to analyze the structure of
such a second-order contribution. The spin-rotational symmetry (about the
B-field’s direction) and the time-translational symmetry imply that (i) the
longitudinal and transverse fluctuations, X ; and X, do not interfere and may
be considered separately; (ii) it is convenient to expand the transverse fluctu-
ating field in circularly polarized harmonic modes, and the latter contribute
independently.

The longitudinal noise gives rise to the pure dephasing (and only the low
frequencies < 1/T% contribute), without affecting the level splitting. As for
the transverse noise, for a single circularly polarized mode at frequency v
it is convenient to analyze its contribution in the spin frame, rotating at
frequency v around the field B. In this frame the Larmor field is B — v in the
direction of B, and the fluctuating circularly polarized mode is slow. Applying
to this mode Eq. (24), going back to the laboratory frame and adding up
contributions of all modes we arrive at the expression for the correction to the
Larmor frequency:

dv S(v)
Ar B—v’
It is thus this result which needs to be compared with the quantum correction
(Lamb shift) of the previous section. Symmetrization of the integral in Eq. (25)
w.r.t. to v brings it to the form of Eq. (13). Notice that regularization of
this expression via the introduction of +i0 in the denominator allows us also
to recover the imaginary part of the Lamb shift, i.e. a contribution to the
dephasing rate.

§E = sin® 973/ (25)

Fig. 2. (see text)



Berry Phase with Environment: Classical versus Quantum 21
4.3 High frequencies

Although Eq. (25) describes the contribution of all frequencies, it is interest-
ing to discuss specifically the limit of high frequencies. In this subsection we
provide an argument which parallels the result of subsection 3.4: the high-
frequency fluctuations (v > B) suppress the transverse (L %) component of
the B-field.

Indeed, to solve for the dynamics in the presence of high-frequency fluc-
tuations in a fixed direction, X (¢)Z, and the static field B, let us analyze the
dynamics in the frame that rotates about the Z-axis with angular velocity
X(t), i.e. differs from the lab frame by a rotation by the fluctuating angle
&(t) = fot X (7)dr. The rotation of this frame is chosen to exactly compensate
for the field X (¢)Z, and the Larmor field B(t) in this frame is just the B-field,
but now fluctuating due to the frame’s rotation as shown in Fig. 2. The spin
dynamics is governed by the Larmor equation § = B(t) x S, and the value of
the spin changes considerably only on time scales of order 1/B, during which
many fluctuations occur. Looking at the dynamics on intermediate time scales,
between 1/v and 1/B, one finds that the spin dynamics is governed by the
value of the B-field averaged over fast fluctuations. The averaging affects only
the horizontal (orthogonal to z) component of the B-field. The direct evalua-

tion shows that the horizontal component is suppressed exactly by the factor
o0

exp[— [(dv/2m)Sx (v)/v?] (cf. Eq. (19)). For instance, for a single mode at
0

frequency v we have X (t) = 2X, cos(vt) and &(¢t) = 2X, sin(vt)/v; then the

transverse component of the field is suppressed by the factor 1 — (#?)/2, and

(@2)/2 = (X2)/v?. This evaluation of the dynamics in the rotating frame

relies on the small parameter B/v.

The spin-evolution operator (before averaging) Otab, (t,t') in the laboratory
frame is related to that in the rotating frame, Ojap (£, ') = O, (—=B(#))Orot (¢, ')
O.(®(t')), via the transformation O, ($(t)) from the lab frame to the rotating
frame. However, this transformation O, (®(t)) at the beginning and at the end
of the evolution is close to the identity operator, and taking it into account
adds only a boundary effect, which does not grow with the size of the time
interval and is therefore negligible.

4.4 Berry phase under classical noise

To find a dissipation-induced correction to the Berry phase we may use the
same approach as in Section 3.3: first, we find the Lamb shift for a stationary
field B and then evaluate the Berry phase using the relation (16). In this way
we find the same expression (17) for the Berry phase.
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5 Conclusions

In this paper we have derived expressions for the environment-induced correc-
tion to the Berry phase, for a spin coupled to an environment. On one hand,
we presented a simple quantum-mechanical derivation for the case when the
environment is treated as a separate quantum system. On the other hand, we
analyzed the case of a spin subject to a random classical field. The quantum-
mechanical derivation provides a result which is insensitive to the antisym-
metric part of the random-field correlations. In other words, the results for the
Lamb shift and the Berry phase are insensitive to whether the different-time
values of the random-field operator commute with each other or not. This ob-
servation gives rise to the expectation that for a random classical field, with
the same noise power, one should obtain the same result. For the quantities
at hand, our analysis outlined above involving classical randomly fluctuating
fields has confirmed this expectation.

Furthermore, we provided simple arguments, which allow one to under-
stand the contribution of fluctuations in various frequency ranges (below and
above the Larmor frequency).
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Summary. We investigate transport in a granular metallic system at large tunnel-
ing conductance between the grains, gr > 1. We show that at low temperatures,
T < grd, where § is the single mean energy level spacing in a grain, the coherent
electron motion at large distances dominates the physics, contrary to the high tem-
perature (T" > grd) behavior where conductivity is controlled by the scales of the
order of the grain size. The conductivity of one and two dimensional granular met-
als, in the low temperature regime, decays with decreasing temperature in the same
manner as that in homogeneously disordered metals, indicating thus an insulating
behavior. However, even in this temperature regime the granular structure remains
important and there is an additional contribution to conductivity coming from short
distances. Due to this contribution the metal-insulator transition in three dimen-
sions occurs at the value of tunnel conductance g% = (1/67) In(E¢/d), where Ec is
the charging energy of an isolated grain, and not at the generally expected g% x 1.
Corrections to the density of states of granular metals due to the electron-electron
interaction are calculated.

1 Introduction

A great deal of research in the current mesoscopic physics focuses on under-
standing properties of granular metals(see [1, 2, 3]). The interest is motivated
by the fact that while their properties are generic for a wealth of strongly cor-
related systems with disorder, granular metals offer a unique experimentally
accessible tunable system where both the interaction strength and degree of
disorder can be controlled.

The key phenomenon revealing the most of the underlying physics is
transport, where the effects of interactions play a crucial role. The processes
of electron tunneling from grain to grain that govern electron transfer, are

27
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Nanostructures 27-37.
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accompanied by charging the grains involved after each electron hop to
another grain. This may lead to a Coulomb blockade, and one justly expects
this effect to be of the prime importance at least in the limit of weak coupling.
It makes it thus clear, on a qualitative level, that it is the interplay between
the the grain-to-grain coupling and the electron-electron Coulomb interaction
that controls transport properties of granular metals; yet, despite the signifi-
cant efforts expended, a quantitative theory of transport in metallic granular
systems is still lacking.

A step towards formulation such a theory was made recently in [[3]]. It
was shown that depending on the dimensionless tunneling conductance gr one
observes either exponential-, at gr < 1, or logarithmic, at gr > 1 tempera-
ture dependence of conductivity. The consideration in [[3]] was based on the
approach developed by Ambegaokar, Eckern and Schon (AES) [5] for tunnel
junctions. This technique however, as shown in [4], applies only at tempera-
tures T' > grd, where J is the mean energy level spacing in a single grain. At
low temperature region, T' < grd, the effects of the electron coherent motion
at distances much exceeding the single grain size a must be included; this
important regime is not described by the AES approach [4].

Although experimentally the low temperature regime is well within the
experimental reach [1, 2], it has never been addressed theoretically so far.
The important question whether the system is a metal or becomes an insula-
tor, in other words, whether the conductivity of the granular metals at large
conductances remain finite in the limit of 7' — 0 is still open.

In this paper we investigate the low-temperature conductivity of granu-
lar samples focusing on the case of large tunneling conductance between the
grains, gr > 1. To this end we develop a technique that goes beyond the AES
approach and includes effects of coherent electron motion at distances larger
than the size of the grain. Without the Coulomb interaction the granular sys-
tem would be a good metal in the limit, gr > 1, and our task is to include
the charging effects into the theory. We find that at temperatures, T' < grd
properties of the granular metal depend on the dimensionality of the array,
and corrections to the conductivity and density of states due to the effects
of Coulomb interaction are similar to those obtained in Ref. [7] for a homo-
geneous metal. Thus at low temperatures the systems behaves essentially as
a homogeneous metal contrasting the case of large temperatures, T > grd
considered in Ref. [3].

This in particular means that at large conductances the 3D system is a
good metal. On the other hand, at gr < 1 a granular sample is in the insulat-
ing state. Therefore a 3D system should exhibit a metal-insulator transition
at the critical value of the conductance gr, such that samples with conduc-
tances gr > gg are metals and their conductivity remains finite at 7" — 0
while samples with gr < gqq are insulators and their conductivity vanishes at
T — 0.
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2 Results

The main results of our work are as follows: (i) We find the critical value g$ of
the tunnel conductance at which the metal-insulator transition in 3D occurs

g7 = (1/67) In(Ec/d), (1)

where E¢ is the charging energy of an isolated grain. (ii) We find the ex-
pression for the conductivity of a granular metal that includes corrections
due to Coulomb interaction and holds for all temperatures as long as these
corrections are small. The corresponding answer can be conveniently written
separating the correction due to the contribution from the large energy scales
€ > grd from that coming from the low energy scales ¢ < grd. Denoting
corrections as do; and dog respectively we have

o =09+ doy + doo, (2)

where 0y = 2e2g7a®~%, with a being the size of a single grain is the classical
Drude conductivity for a granular metal (spin included). Correction dop in
Eq. (2) contains the dimensionality of the array d only as a coefficient and is
given by the following expression [3],

(50’1 1 gTEC
— = In .
max (T, grd)

3)

oo B 2mdgr

On the contrary the correction dos in Eq. (2) that is important only at tem-
peratures T' < dgr strongly depends on the dimensionality of the array

a T

(50’2 1272 gr EJ d= 37

— 1 g —

Sl g d=2, (4)
B [ —

Here a = [ dzz~'/2[1 — coth(z) + 2/ sinh®(z)] ~ 1.83 and 3 = [~ dz 2~/
[coth(z) — 2/ sinh®(x)] &~ 3.13 are the numerical constants. For a 3d granular
system a temperature independent term of the order 1/gr has been subtracted
in the first line in Eq. (4).

Corrections do; and dos are of a different origin: the correction do; comes
from the large energy scales, ¢ > ¢grd where the granular structure of the
array dominates the physics. On the other hand, correction dos in Eq. (4) is
similar to that obtained for homogeneous metals long ago [7] and comes from
the low energy scales, ¢ < grd, where the coherent electron motion on the
scales larger than the grain size a dominates the physics.

It is important to note that in the low temperature regime all temperate
dependence of conductivity comes from the correction doo. At the same time,
in this regime the correction do, though being temperature independent, still
exists and can be even larger than dos.



30 1. S. Beloborodov et al.

When deriving Egs. (2) we neglected possible weak localization corrections
that may originate from quantum interference of electron waves. This approxi-
mation is legitimate if a magnetic field is applied as in Ref. [1] or dephasing
is strong due to inelastic processes.

3 Model and Derivation

Now we turn to the description of our model and the derivation of Egs. (2):
We consider a d—dimensional array of metallic grains with the Coulomb inter-
action between electrons. The motion of electrons inside the grains is diffusive
and they can tunnel from grain to grain. In principle, the grains can be clean
such that electrons scatter mainly on grain surfaces. We assume that the
sample in the absence of the Coulomb interaction would be a good metal. For
large tunneling conductance we may also neglect the nonperturbative charging
effects (discretness of the electron charge) [6], which are exponentially small
(as exp(—#gr)). Although we assume that the dimensionless tunneling con-
ductance gr is large, it should be still smaller than the grain conductance,
go, such that gr < gg. This inequality means that the granular structure is
still important and the main contribution to the macroscopic resistivity comes
from the contacts between the grains.

The system of weakly coupled metallic grains can be described by the
Hamiltonian

ﬁ:ﬁoJrﬁchZ tij [0 (ri) (ry) + b1 () d(rs)], (5)

ij
where t;; is the tunneling matrix element corresponding to the points of con-
tact r; and r; of i-th and j—th grains. The Hamiltonian Hy in Eq. (5) describes

noninteracting isolated disordered grains. The term H, describes the Coulomb
interaction inside and between the grains. It has the following form

2
H. = % > ni Gt iy, (6)
i

where Cj; is the capacitance matrix and 7; is the operator of electron number
in the i-th grain. In the regime under consideration one can neglect the coordi-
nate dependence of a single grain diffusion propagator. The electron hopping
between the grains can be included using the diagrammatic technique deve-
loped in Refs. [8, 4], which we outline below.

The electron motion in a random impurity potential within a single grain
can be considered using the standard diagrammatic techniques described, for
example in Ref. [9]. Electron hopping between the grains can be considered in
a similar way assuming that tunneling matrix elements between neighboring
grains are random variables obeying the Gaussian statistics and correlated as
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: > ® »&Q
a) b)

Fig. 1. Self energy of the election Green function averaged over impurity potential
inside the grains and over tunneling elements between the grains. Averaging over
the impurity potential is represented by the dotted line (a) while tunneling elements
are represented by crossed circles (b).

<tk171€2 tks,k4> =1 (5161,163 6162,164 + 5k1,k4 5k2,k3)7 (7)

where ¢ is related to the average intergranular conductance as gr = 27t?/62.
The average electron Green function is defined by the Dyson equation where
the self energy, shown on Fig. 1 has two contributions: The first contribution
(a) corresponds to scattering inside a single grain while the second (b) is due
to processes of scattering between the neighboring grains. Both this processes
result in a similar contribution ~ sign(w) to the electron self-energy, thus on
the level of single particle electron Green function intergranular scattering
results only in a small renormalization of the relaxation time 7

7t =75t + 2dgrd, (8)

where 73 is the electron mean free time in a single grain.

The next step is to consider the diffusion motion of electron through a
granular metal: Diffusion motion inside a single grain is given by the usual
ladder diagram that results in the diffusion propagator

Do(£2) = ﬁ (9)

where (2 is the Bosonic Matsubara frequency. Coordinate dependence in (9)
was neglected since we assume the zero dimensional limit for a single grain.
Tunneling between the grains is accounted for in a similar way, such that the
total diffusion propagator is given by the ladder diagrams shown on Fig 2a.
This results in the following expression:

1

D(R,q) = ——
(£2,q) e,

(10)

where e, = 297> ,(1 — cosqa) with a being the lattice vectors. For small
quasimomenta ¢ < a~! we have ¢, — grda®q? such that the diffusion propa-
gator (10) describes the diffusion motion on the scales much larger than the
granular size with effective diffusion coefficient D = gra?6.
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(a) % = Dy + |Do %

Fig. 2. These diagrams represent (a) Dyson equation for diffusion propagator, (b)
interaction vertex dressed by impurity and intergranular scattering, (c) Screened
Coulomb interaction.

Similar ladder diagrams describe the dressing of interaction vertex as it
shown in Fig. 2b. The dressed vertex can be used to obtain the polariza-
tion operator, that defines effective dynamically screened Coulomb interaction
(Fig 2c¢):

-1

C(q) n 2,
e? [2] + deq

The conductivity of the granular metals is given by the analytical continuation
of the Matsubara current-current correlator. In the absence of the electron-
electron interaction the conductivity is represented by the diagram (a) in
Fig. 3 that results in high temperature (Drude) conductivity oo which is
defined below Eq. (2). First order interaction corrections to the conductivity
are given by the diagrams (b-e) in Fig. 3. These diagrams are analogous to
ones considered in Ref. [7] for the correction to the conductivity of homo-
geneous metals. We consider the contributions from diagrams (b,c) and (d,e)
separately: The sum of the diagrams (b,c) results in the following correction
to the conductivity

V(R2,q) = (11)

(50’1 1 ~
o = —QdeTImzq:/dw'y(w) gq V(w,q). (12)
where y(w) = ‘Lwcoth £, and the potential V(w,q) is the anaclitic con-

tinuation of the screened Coulomb potential with dressed interaction vertices
attached at both ends

- _ 2Ec(q)
V) = =) UeqFol@ — )

(13)
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(a) (b) (©)

Fig. 3. Diagrams describing the conductivity of granular metals: the diagram (a)
corresponds to oo in Eq. (2) and it is the analog of Drude conductivity. Diagrams
(b)-(e) describing first order correction to the conductivity of granular metals due to
electron-electron interaction. The solid lines denote the propagator of electrons and
the dashed lines describe effective screened electron-electron interaction. The sum
of the diagrams (b) and (c) results in the conductivity correction do1 in Eq. (2).
The other two diagrams, (d) and (e) result in the correction dos.

The above expression was simplified using that the charging energy Fo(q) =
e?/2C(q), expressed in terms of the Fourier transform of the capacitance ma-
trix C(q) is much larger than §. Performing the integration over the frequency
and summing over the quasimomentum q in Eq. (12) with the logarithmic
accuracy we obtain the correction (3). One can see from Eq. (12) that the
contribution do; in Eq. (3) comes from the large energy scales, ¢ > grd such
that at low temperatures the logarithm is cut off on the energy scale of the
order of grd.

To obtain the total correction to the conductivity of granular metal the
two other diagrams, (d) and (e) in Fig. 3 should be taken into account. These
diagrams result in the following contribution to the conductivity

602 _ QQT(SZ/CZLU’Y ( aQ)Z sin (qa) (14>

0o €qd — iw

In contrast to the contribution do; in Eq. (12), the main contribution to the
sum over the quasimomentum q in Eq. (14) comes from the low momenta,
¢ < 1/a. In this regime the capacitance matrix, C(q) in Eqgs. (13) and (14)
has the following asymptotic form

X 9 In(1/qa) d=1,
C(a)=— 4 7/q d=2, (15)
“ 21/ q* d=3.

Using Egs. (13-15), we obtain the result for the correction dog in Eq. (4).
This correction has a physical meaning similar to that of the Altshuler-Aronov
correction [7] derived for homogeneous disordered metals.

Comparing our results in Eqgs. (2) with those obtained in Ref. [3] using
the AES functional we see that the correction to the conductivity obtained
in Ref. [3] is equivalent to the correction doy in Eq. (2), which corresponds
in our approach to the sum of diagrams (b) and (c) in Fig. 3. The correction
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009 in Eq. (2) becomes important only at low temperatures, T < grd where
AES functional is not applicable. While in our approach both corrections to
the conductivity must be small §oq,dos < o the method of Ref. [3] gives a
possibility to show that for T' > gré the dependence of the conductivity is
logarithmic so long as o/e?a?~% > 1.

It follows from Eq. (4) that at low temperatures, T < grd, for a 3d granular
array, there are no essential corrections to the conductivity coming from the
low energies since the correction doy is always small. This means that the
result for the renormalized conductance, gr of Ref. [3] (see also [10]) for 3D
samples within the logarithmic accuracy can be written as
1 [ grEc }

gr(T) = gr — —1
gr(T) = gr " max (G706, T)

o (16)

such that it is valid for all temperatures as long as the renormalized con-
ductance, gr > 1. One can see from Eq. (16) that for bare conductance,
gr > (1/6m)In(grEc/J) the renormalized conductance, gr is always large
and the system remains metallic down to zero temperatures. In the opposite
limit gr < (1/67)In(grEc/d), the system flows when decreasing the tempe-
rature to the strong coupling regime, gr ~ 1 that indicates the onset of the
insulating phase. We see that with the logarithmic accuracy the critical value
of the conductance ¢$ is given by Eq. (1).

The result for the bare critical conductance in Eq. (1) agrees with the
estimate for g that follows from the consideration of Coulomb blockade
phenomena in a single grain [12]: the contribution of Coulomb blockade to
thermodynamic quantities in the regime of strong coupling is controlled by
the factor ~ exp[—mg(T)], where g(T) = gr — (1/Z7)In(9rEc/T) with Z
being the number of contacts. Coulomb blockade effects become strong at
g(T) ~ 1. Taking T ~ g7 and Z = 6 we estimate the bare conductance as
g% ~ (1/67) In(grEc/T) that coincides with Eq. (1).

Corrections to the density of states (DOS) can be obtained in a similar
way by considering the diagrams shown on Fig 4. The diagram (b) results
only in the energy shift, and therefore is not important, while the diagram (a)
results in the following contribution

ov(e) 1 tanh[(e — w)/2T]
vo dm ;Im /dw (eqd — iw)[eq — iw/4Ec(q)] | "

Here vy is the DOS for noninteracting electrons, eq and Ec(q) were defined
below Eqgs. (12 ) and (13) respectively. Using Eq. (17) for a 3D granular array
we obtain

ovs A 1{ Ecgr } (18)

Vo - " 2mgr max (€, grod)
where A = gra® [d3q/(2m)3eg" ~ 0.253 and & = max{T,e}. For £ > gré
the correction to the DOS (18) coincides with the one obtained in Ref. [3]
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(a)é é ‘ (b)

Fig. 4. Diagrams representing the first order corrections to the single particle
density of states v(e).

using AES approach. It follows from Eq. (18) that for a 3D array of grains,
as in case with conductivity, the main contribution to the DOS comes from
the large energy scales, € > grd.

Using Eq. (17) for a 2d array we obtain the following result for the correc-
tion to the DOS

oy 1 2In*(grEc /) €>> ged, (19)
Vo 169772 | In 9%5 In g£§? +2In* Ee £ < gré.

Using the relation between the tunneling conductance, gr and the diffusion
coefficient, D = gra®d one can see that the temperature (energy) dependence
of the DOS for £ <« grd given by Eq. (19) coincides up to the constant term
with the result for the correction to the DOS of the homogeneous metal [7].

The logarithmic behavior (3) of the conductivity is in a good agreement
with experimental findings [1, 2]. It would be very interesting to extend the
resistivity measurements to the low temperature regime where we predict the
temperature dependence (4). A similar logarithmic dependence of resistivity
on temperature was recently found in high-T.. compounds Las_,Sr,CuO4 and
BigSra—_y La;CuOgys in a very strong magnetic field [11, 13]. A possible gran-
ularity of these samples was suggested in Ref. [3]. Recently the microscopic
granularity was directly experimentally observed in the superconducting state
of BiySraCaCus0s45 by the STM probe [14]. If we accept that samples stud-
ied in [11, 13] are indeed microscopically granular, we can compare the results
of the experiments with our predictions. When doing so it is convenient to
scale three dimensional conductivity to the conductivity of CuO planes, opigne-
According to our predictions

dopiane/dInT = (e* /7h) k, (20)

where the coefficient k¥ = 1/27 in the low temperature- and k = 1/d in the high
temperature regimes. While in the low temperature regime the application of
Eq. (20) is legitimate only under the assumption that electrons in different
CuO plane are incoherent, in the high temperature regime the behavior of
conductivity according to Eq. (3) is logarithmic for any dimension. In this
regime the real dimensionality d should be replaced by d = Z/2, where Z is
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the (average) number of the contacts of each grain with all the adjacent grains.
Describing the data shown in Fig. 3 of Ref. [13] by our log dependencies at
temperature T~ 5K we extract k ~ 0.4, for S concentration of y = 0.08 for
Lag_ySryCuOy4 [15]; for the BigSro_gLayCuOgys compound we find k ~ 0.2
for x = 0.84 La concentration, and k£ ~ 0.3 for x = 0.76. For each particular
curve the values k extracted from Fig. 3 of Ref. [13] increase with temperature
(especially in case of LSCO), this is in a complete agreement with our results
provided that the “coherent-incoherent” crossover occurs at about 1" ~ 5K.
At higher temperatures k noticeably exceeds 1/2m, supporting the idea of a
granularity of doped cuprates.

4 Conclusions

In conclusion, we have investigated transport properties of granular metals
at large tunneling conductance and obtained corrections to the conductivity,
Egs. (2,3,4) and DOS, Egs. (18,19) due to electron-electron interaction. We
have shown that at temperatures, ' > grd the granular structure of the
array dominates the physics. On the contrary at temperatures, T' < grd the
large-scale coherent electron motion is crucial. Comparison our results with
experimental data supports the assumption about a granular structure of
doped high-T, cuprates.
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Summary. We measure the dynamic resistance of a Co/Cu/Co trilayer nanopillar
at varied magnetic field H and current I. The resistance displays the usual behavior,
almost symmetric in H, both when magnetization switching is hysteretic at small
I, H, and reversible at larger I, H. We show differences in the I, H magnetization
stability diagram measured by holding I fixed and varying H and vice versa. We
also show how the peak in dV/dI associated with telegraph noise in the reversible
switching regime, is calculated from the telegraph noise variations with I. Lastly,
we show data for a similar sample that displays behavior asymmetric in H, and a
negative reversible switching peak instead of a usual positive one.

1 Introduction

Current-induced switching of magnetization has generated much excitement
due to its potential for magnetic random access memory. In spite of the appa-
rent success of the spin-torque model [1] in describing many of the experi-
ments, the basic physical processes involved in the switching are not yet
fully understood. Most experimental studies of current-driven magnetization
switching in magnetic nanopillars have been made on Co/Cu/Co trilayers at
room temperature (295 K) [2, 3, 4, 5, 6, 7, 8, 9, 10]. For magnetically uncou-
pled samples, switching at low current I and magnetic field H is hysteretic,
but becomes reversible at large enough I in one direction. This reversibility
is associated with telegraph noise switching [11]. In this paper we examine
several subtleties of switching in Co/Cu/Co that have not been previously
described. First, the I vs. H switching (magnetization stability) diagrams are
slightly different when measured by varying H while holding I fixed and vice
versa. Second, we show how the reversible switching peak can be calculated
from the measurements of telegraph noise dwell times vs. I. Third, we show
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data for an unusual sample, where a positive reversible switching peak is re-
placed by a negative one.

2 Measurements and Results

Our samples were fabricated with a multistep process described elsewhere [10].
The samples had structure Co(20)/Cu(10)/Co(2.5), where thicknesses are in
nm. To minimize dipolar coupling between the Co layers, only the Cu(10)/
Co(2.5) layers were patterned into a nanopillar with approximate dimensions
140 x 70 nm. We measured differential resistance, dV/dI, at 295 K with four-
probes and lock-in detection, adding an ac current of amplitude 20 pA at
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Fig. 1. Data for sample 1. (a) H-dependence of dV/dI at specified values of I; (b)
I-dependence of dV/dI at specified values of H. I; denotes the excitation thresh-
old current. In (a),(b), thick curves: scan from left to right, thin curves: scan in
opposite direction, and curves are offset for clarity. (¢) Magnetization stability dia-
gram extracted from H scans such as shown in (a). Upward(downward) triangles:
P—AP(AP—P) switching. Open symbols: scan from left to right, solid symbols:
reverse scan direction. (d) Magnetization stability diagram extracted from I scans
such as shown in (b). Upward(downward) triangles: P—AP(AP—P) switching. In
(¢),(d) AP, P denote the stability region of the respective configurations, P/AP is a
bistable region.
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8 kHz to the dc current I. Positive current flows from the extended to the
patterned Co layer. H is in the film plane along the easy axis of the nanopillar.

Figs. 1(a,b) show field- and current-switching data, consistent with prior
studies [2, 10, 11]. Starting, for example, at I = 0 and large negative H,
the magnetizations of the thick and thin Co layers are parallel (P). As H is
increased from a large negative value, the magnetization of Co(20) switches
first at small positive H into a high resistance antiparallel (AP) state, and the
patterned Co(2.5) switches at larger switching field, H (I = 0), determined
by its shape anisotropy. For I = —1 mA, Fig. 1(a) shows reduced H(I),
and the hysteretic switching disappears at I < —1 mA. I > 0 increases the
range of H for the AP configuration. At I > 4 mA, the hysteretic switching
steps in dV/dI turn into reversible peaks (I = 5 mA shown). Fig. 1(b) shows
that hysteretic asymmetric current-driven switching between the AP state at
I > 0 and the P state at I < 0 at H = 0, changes to reversible peaks both
at large H > 0 and H < 0. These peaks are the same as those in Fig. 1(a) at
large I > 0. The P state resistance grows above a threshold I;, marked on the
H = 0.6,1.4 kOe curves. A similar, more pronounced threshold in Py/Cu/Py
nanopillars has been associated with the onset of large amplitude magnetic
excitations [11]. At small H, the switching from P to AP state occurs at
I =~ I;. The small variation of I; between 0.6 kOe and 1.4 kOe in Fig. 1(b) is
determined by the balance between the current-driven excitation and weakly
H-dependent magnetic damping rate.

Figs. 1(c,d) show the Co(2.5) nanopillar magnetization stability diagrams
extracted from H and I scans such as those in Figs. 1(a,b), respectively. (We
show only the switching of the thin Co layer in Fig. 1(c), to avoid clutter
and facilitate comparison with Fig. 1(d).) Both scan directions give similar
stability regions, with a minor difference in the line separating the bistable
and P-stable regions. At small I > 0, the stability line in Fig. 1(c) is almost
vertical, giving a sharp knee at I = 0, whereas in Fig. 1(d) it curves smoothly
at I = 0. Vertical lines are poorly reproduced by I-scans, so Fig. 1(c) better
captures the singular behavior at I =~ 0. This knee has been attributed to
the effect of spontaneous current-driven magnon emission, generally small
compared to stimulated emission [12].

The reversible switching peaks in dV/dI that at large I,H replace the hys-
teretic steps, are due to random telegraph noise switching between the P and
AP states [11]. Fig. 2(a) shows the variations of average dwell times 7p(74p)in
the P(AP) state with I. 7p decreases as I increases, but 74p increases. For a
fixed H, Tap << 7p at small I, so dV/dI is close to the resistance of the P
state, Rp, and Tap >> 7p at large I, giving dV/dI ~ Rap, the resistance in
the AP state. We now show how the variations in Fig. 2(a) give a peak in the
differential resistance at 7p &~ T4p. For a given H, the average voltage across
the sample is

Raptap + RpTp

Vi) =1 | SRS, (1)
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Fig. 2. Data for sample 1. (a) Variation of the average dwell times in the AP state
Tap (upward triangles) and P state 7p (downward triangles) with I at H = 0.48 kOe,
(b) Circles: dV/dI vs. I at H = 0.5 kOe. Solid curve: a calculation, as described in
the text.

where 7p(I) =~ 19 exp[—a(I — Iy)], Tap(I) = 1o exp|[B(I — Ip)], as follows from
Fig. 2(a). Iy, 1o are defined by 74p(Iy) = 7p(Iy) = 79. Differentiating Eq. 1
with respect to I, we find

dV  TapRap +TpRp TPTAP
LalPy 4 I(a+ B)(Rap — Rp)—FTA
dI Tp + Tap (a+BH)(Bar P)(TP+TAP)2

The first term on the right is just the resistance V/I, giving a step for
the reversible transition from the P to the AP state. The second term has a
maximum value Iy(a + B)(Rap — Rgr)/4 at 7p = T4p. This term gives rise
to a peak in dV/dI at I = Iy, which can be much higher than Rqp. The
solid line in Fig. 2(b) is calculated from the data in Fig. 2(a), and Eq. 2, for
Ip = 4.8 mA, and a+ 3 = 19.2 mA~! extracted from fig. 2(a). The calculation
agrees well with the data shown as circles.

From the above analysis, we conclude that the reversible switching peak
positions characterize the points (H,I) where 7p = T4p, thus giving an indi-
rect measure for telegraph noise variation with I, H [13]. We have shown [11]
that the telegraph noise period decreases approximately exponentially when
I is increased and H is adjusted to remain along the reversible switching line.
The presence of telegraph noise near the reversible switching line means that
both AP and P states are unstable in that region. Thus, the stability dia-
grams, Figs. 1(c,d), should be modified to include this unstable region. This
instability is indirectly manifested in the rise of Rp at I > I;. However, the
measurements of dV/dI at I above the reversible switching peak give values
very close to R4p. Fig. 2 and our analysis show that, because 7p is exponen-
tially smaller than 74p, the resistance can become close to R4p, even though
the AP state is unstable.
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Fig. 3. Data for sample 2. (a) H-dependence of dV/dI at specified values of I,
(b) I-dependence of dV/dI at specified values of H. (c) Magnetization stability dia-
gram extracted from I scans such as shown in (b). Upward(downward) triangles:
P—AP(AP—P) switching. A H = —0.5 kOe section shown with dashed line, (d)
MR curves at I = 8 mA, at the specified in-plane angles between H and the nom-
inal easy axis of the nanopillar. AP, P denote the stability region of the respective
configurations, P/AP is a bistable region. In (a),(b),(d), thick curves: scan from left
to right, thin curves: scan in opposite direction, curves are offset for clarity.

In most samples, both I and |H| increase along the reversible switching line
close to the transition from hysteretic to reversible switching. The behavior at
larger I varies: in some samples, the reversible switching peak disappears, or
splits into several peaks. These peaks are usually asymmetric in H, showing
the importance of inhomogeneous and tilted magnetization states, affected
both by sample imperfections and the Oersted field of the current. Fig. 3
shows data for a sample nominally identical to that of Fig. 1. The hysteretic
MR at I = 0, and current-driven switching at H = 0 (Figs. 3(a,b)), are similar
to those in Figs. 1(a,b). The I = 8 mA MR curve in Fig. 3(a) is asymmetric,
showing a positive peak at H > 0 like those in the 5 mA curve in Fig. 1(a), but
a negative peak at H < 0. Similarly, in the current scans of Fig. 3(b), the peak
at H = 0.5 kOe is consistent with those at —0.7, 0.6 kOe in Fig. 1(b), while the
—0.5 kOe scan shows a small hysteresis in current switching with a negative
peak at larger I. By comparing the 8 mA resistances to the left of the negative
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peak and to the right of the positive peak in Fig. 3(a), we conclude that
the negative peak corresponds to complete AP—P switching. The resistance
increase to the right of the negative peak in Fig. 3(b) is consistent with the
previously noted current-driven excitations in the P state [11]. Fig. 3(c) shows
the stability diagrams extracted from I scans such as those in Fig. 3(b), where
we mark both the positive and negative peaks as reversible switching points.
This plot clearly shows the asymmetry of behaviors with respect to reversal of
H. For H > 0 the stability diagram is similar to those of Figs. 1(c,d). For H <
0 in Fig. 3(c), the reversible switching line has a positive slope, i.e. the negative
peaks appear at decreasing I as the magnitude of H is increased. A dashed
H = —0.5 kOe line crosses both a bistable region (hysteretic switching), and a
reversible switching line. The positive slope of the reversible line is consistent
with a + 8 < 0, giving a negative peak in Eq. 2.

Fig. 3(d) shows H-scans at I = 8 mA with varied angles 6 between the
nominal easy nanopillar axis and H directed in the sample plane. The § = 0
curve has a positive peak at H > 0 and negative peak at H < 0. The peaks in
the 6 = +20° curves are nearly symmetric, and positive for both directions of
H. The 6§ = £30° curves are asymmetric again, and have double peaks for one
of H directions. These data show that the details of switching are sensitive to
the sample shape defects, misalignment of the nanopillar easy axis with H,
and are also affected by the Oersted field of the current and magnetization
pinning. We note that only the last two factors (possibly in combination with
the first two) give asymmetry between the behaviors at H < 0 and H > 0.

3 Conclusions

To summarize, we focused on four phenomena in Co/Cu/Co nanopillars at
295 K. First, we provided evidence (although not as clear as in Py/Cu/Py [11])
of a threshold current I; for excitations that occur in the reversible switching
regime, but at lower I than the reversible switching peak. Second, we showed
that the sharp knee at I = 0, visible in a magnetization switching diagram
obtained by fixing I and varying H, is lost in a similar plot obtained by fixing
H and varying I. Third, we showed that the reversible switching peak shape
can be derived from measurements of the variation of telegraph noise with I.
Fourth, in Fig. 3 we showed an example of a switching diagram asymmetric
in H, more complex than the symmetric one in Fig. 1. We attribute the
complexity to a combination of sample shape asymmetry, the Oersted field,
and possible misalignment of H. Of particular interest in Fig. 3(b) is the
negative peak, associated with re-entrance of the P state at high I > 0.
Acknowledgements.— We acknowledge support from the MSU CFMR,
CSM, the MSU Keck Microfabrication facility, the NSF through Grants DMR
02-02476, NSF-EU 98-09688, and NSF-EU 00-98803, and Seagate Technology.
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Summary. The interplay between electrical and mechanical properties of sus-
pended, doubly clamped carbon nanotubes in the Coulomb blockade regime is stu-
died theoretically. In this geometry, the capacitance between the nanotube and the
gate depends on the distance between them. We find that the tube position changes
in discrete steps every time an electron tunnels onto it. Edges of Coulomb diamonds
acquire a (small) curvature. Eigenfrequencies are modified by Coulomb blockade in
a discrete fashion.

1 Introduction

Recently, a great interest appeared in nanoelectromechanical systems (NEMS),
which convert electrical current into mechanical motion on a nanoscale and
vice versa. The ultimate goal of the NEMS research is development of com-
mercial applications like sensors and actuators at a nanoscale. Currently, the
fundamental side of NEMS is being extensively explored, with new physical
phenomena being revealed.

The development follows two main lines. One is shuttling mechanism for
transport, proposed by the Gothenburg group [1] and subsequently developed
further [2, 3, 4]. One considers a single-electron transistor with the mobile
central island. In the original proposal, the island moves due to electrostatics
interaction with the electrodes and transports charge in a discrete fashion. In
the subsequent experimental realizations [5, 6] the island was attached to a
cantilever and moved under the external ac perturbation. The experiments
[6], in which the role of the island was taken by a fullerene molecule, were
especially influential, and generated much of theoretical interest to the sub-
ject. Very unusual behavior, in particular, negative differential resistance, was
observed and has become a subject for the subsequent theoretical research
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[7, 8]. A number of other questions not yet accessible experimentally, like
destruction of the quantum-mechanical coherence in the moving island [9]
and a possibility of superconducting phase coherence across the shuttle [10]
is at the focus of theoretical research.

Another direction is represented by suspended structures. Doubly-clamped
suspended single- and multi-wall carbon nanotubes have been previously fabri-
cated, and their transport [11], acoustoelectric [12], thermal [13], elastic [14],
and emission [15] properties have been measured. Recently, experiments in
the Coulomb blockade regime started. Coulomb blockade regime is interest-
ing since it gives access to the quantum properties of the system and probes
non-equilibrium phenomena. In Delft, Jarillo-Herrero et al. [16] fabricated
suspended single-wall carbon nanotubes (SWNT) over a back-gate and mea-
sured the Coulomb stability diagram. LeRoy and Lemay [17] performed STM
measurements on SWNT suspended over a trench. Hohberger et al. [18] pre-
sented Coulomb blockade measurements in suspended silicon quantum dots.
Although the experiments are still under way, and the results are at this stage
inconclusive, some resonances were observed which could be identified with
inelastic processes due to vibrations of the structures. For this reason, it nec-
essary to analyze the properties of suspended structures in Coulomb blockade
regime. In this article, which is based on Ref. [19], we start such an analy-
sis by discussing the ground state properties of suspended SWNT. Current
in this system is essentially non-linear and thus requires a consideration of
non-equilibrium situation. This will be done elsewhere [20].

This article is organized as follows: Next Section describes the model with
inclusion of the influence of initial stress. We concentrate on the case where
the junction capacitances are zero so that analytical expressions are obtained.
We then describe the influence of nanoelectromechanical effects on Coulomb
blockade. Section 4 discusses the eigenmodes and the influence on the initial
strain on them. We end with some remarks on the limitations of our model.

2 Displacement, stress, and energy
2.1 Equilibrium position

We consider a SWNT (modeled as a rod of length L along the z-axis), freely
suspended between source and drain electrodes, in the vicinity of a gate (see
Fig. 1). The nanotube is attached to the electrodes via tunneling contacts. An
electrostatic force (gate voltage) bends the tube; the deviation from a straight
line is denoted by z(z) with 0 < & < L. The elastic energy of the bent tube

is [21]
L EI T, ES [T
Welz(x :/ de{ =2 + ——l——/ 2dx| 2%, 1
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Fig. 1. A schematic drawing of a suspended nanotube capacitively coupled to a
gate and clamped on both sides to metal pads that serve as tunnel contacts. A
voltage V is applied to the left pad.

where E, I = 7r*/4, and S = 7r? are the elastic modulus, the inertia moment
and the cross-section, respectively. Here, r is the (external) radius of the tube.
The first term in Eq. (1) is the energy of an unstressed bent rod; the two other
terms describe the effect of the stress force T = Ty + T Here T is the residual
stress which may result e.g. from the fabrication, and the induced stress T is
due to the elongation of the tube caused by the gate voltage,

ES [*
T=—"— 2de. 2
o | (2)
To write down the electrostatic energy, we consider the case when the ca-
pacitance of the tube to the gate dominates those of the barriers (see Fig. 1),
Cp,Cr < Cg. The capacitance to the gate per unit length is ¢(z). Approxi-
mating the gate by an infinite plane at a distance R from the nanotube, we
obtain
B 1 1 z(x)
- 2(R—2) 2R 2 2R
2In 2822 2In 28 9RIn? 28

c(2) 3)

where the Taylor expansion restricts validity to z < R. The electrostatic
energy of the system reads

(ne)?

B (ne)?In % (ne)? L
- 2C¢l7]

L - L?R J,

West[z(x)] —neVg =~ z(x)dx —neVg. (4)

For a moment, we assume 7y = 0. Minimizing the energy,

Wal2(2)] = Walz(2)] + Wes[2(2)],
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with respect to z, one finds the equation determining the tube position [21],

(ne)?

TES" — T3 — Ko =
S £

(5)

where K is the electrostatic force per unit length, which we approximate
by a constant. Higher-order terms are small for z < R. To solve Eq. (5) we
have to assume that the stress force T is constant, and find it later from the
self-consistent condition (Eq. (2)).

The solution of Eq. (5) with the appropriate boundary conditions (for the
doubly-clamped rod z(0) = z(L) = 2/(0) = /(L) = 0) has the form

KoL sinh L x?
zn(z) =

= shéx — 1) — sinh —&— 6

5Te coshfL—l(COb Ex — 1) —sinh &z + &x §L ,  (6)
with ¢ = (T/EI)'/?. Substituting this into Eq. (2), a relation between the
stress T' and the external force K is obtained. In the limiting cases, it reads

7 [ KGLOS/(60480E1%), T < EI/L?, )
T\ (BS/24)Y3(KoL)?/3, T > EI/L>.

The first line corresponds to weak bending of the tube: The energy associated
with the bending exceeds the energy of the stress. Generally, it is realized for
z < r. The second line describes strong bending, when the tube displacement
is large (r < z < R, L).

For the displacement of the tube center z/"** = z,(L/2) we find

272 5]

zmer = 00030 L T < Bl (< BB, -
2/372/3 5

e = 0.4 40, T> Bl (n> 28

For a SWNT with r = 0.65 nm, £ = 1.25 TPa, L = 500 nm and R = 100 nm
(to be referred to as the E-nanotube) the crossover from weak to strong bend-
ing, T ~ EI/L?, occurs already at n ~ 5+ 10. In the strong-bending regime,
the displacement of the E-nanotube is (in nanometers) 2% = 0.24n%/3. For
the same setup in the situation when the role of a gate is taken by an STM-
tip (R ~ 5nm) and addition of one electron drives the tube into the strong-
bending regime. Note that state-of the art silicon submicron devices always
stay in the weak-bending limit.

2.2 Charge and energy

For comparison with experiments, we have to relate the charge ne to the gate
voltage by minimizing the energy. The expression for the energy (elastic plus
electrostatic) of the tube at equilibrium in the limiting cases reads
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Fig. 2. Calculated displacement as a function of gate voltage for the E-nanotube:
r = 0.65 nm, £ = 1.25 TPa, L = 500 nm and R = 100 nm. At V& ~ 0.5V, there
is a crossover from weak bending with a VZ-dependence to strong bending with a
VGQ/ 3 dependence.

2
2
(nz) In TR —neVg (9)

~ {0.0009(ne)*L/(Er*R?), T < EI/L?
0.08(ne)®? /(Er?R*L)'/3, T > EI/L.

Wl =Wy, — 6W =

The first two terms represent the electrostatic energy of a straight tube, and
the third one is due to the elastic degrees of freedom (stress, bending, and
change of Cg due to displacement). This nonlinear, nanomechanical term
for E-nanotube is a small correction: It becomes of the same order as Wy
if n ~ 3000 in which case Eq. (3) is not valid anymore. However, for the
STM-setup (R = 5nm) the nanomechanical term becomes essential already
at n ~ 10. Thus, for this set-up nanomechanical corrections have to be taken
into account even for the ground state energy.

The negative sign of the nanomechanical contribution is easily understood:
As the gate voltage changes, the movable tube adjusts not only its charge,
but also its position, which leads to a lower energy as compared to the fixed-
position system.

The value of n which minimizes the energy is

Vol 1
=7 D ————— —
n=Int (26 In(2R/T) tat 6n),

with Int denoting the integer part of the expression. The small correction dn

in the strong-bending regime is proportional to VG5/ 3 Thus, the tube displace-
ment zp,q. changes in discrete steps when Vi is varied as shown in Fig. 2.

The envelope is proportional to VZ (weak bending) or VGQ/ % (strong bending).



52 Ya. M. Blanter
2.3 Thermal fluctuations

The preceding considerations are restricted to the case of zero temperature. To
understand the role of the temperature, we now evaluate the effect of thermal
fluctuations on the equilibrium position of the tube.

The variance of the position of the tube center at a given charge n can be
generally represented as a functional integral,

var z, = <[Z(L/2) - Zn(L/Q)]2>

_ % / Dz (x) exp [~ W] /kO + J=(L/2)]

J=0
x [/ D2 (z) exp(Wn[z]/kB@)} _1, (10)

where O is the temperature. Except for n = 0, the functional integral in Eq.
(10) is not Gaussian and has to be linearized around the equilibrium solution
zn(z), Eq. (6). The remaining Gaussian integral can be calculated, and we
arrive at

var z, = kpO((L/2), (11)
where ((z) solves the equation

LS

BIC —
¢ 2L

/zfdx ¢’ - ETSZ,'{/Cz;Ldm =d(x — L/2). (12)

In the two limiting cases of weak and strong bending, the solution of Eq.
(12) yields

(13)

[ kp®L3/192EI, n=0
VA Zn =\ kpOL/ST,  n>> Er°R/e?L?’

where the stress T is still given by the lower line of Eq. (7). Thus, the fluc-
tuations in the tube position are expected to grow linearly with temperature.
However, their magnitude is small. For the E-nanotube, at 100K the fluctu-
ations in the n = 0 state are of the order of 0.1 nanometer, and at least an
order of magnitude less in the strong-bending regime.

Thermal fluctuations in the position of a suspended carbon nanotube were
recently measured in Ref. [22].

3 Coulomb effects

Since the nanotube is attached to the electrodes by tunneling contacts, it is
in the Coulomb blockade regime. We define the energy to add the nth elec-
tron to the tube as S,, = W,, — W,,_1. Then, if the nanotube contains n > 0
electrons, the conditions that current can not flow (is Coulomb blocked) are
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Sp < 0,eV < S,41. In quantum dots, S,, depends linearly on the bias V' and
gate V, voltages. Thus, in the Viz — V' plane regions with zero current are con-
fined within Coulomb diamonds, that are identical diamond-shape structures
repeating along the Vg—axis.

In a suspended carbon nanotube, in addition to the purely Coulomb en-
ergy, we also have the nanomechanical corrections. Generally, these correc-
tions make the relations between V and Vg, which describe the boundaries
of Coulomb blockade regions, non-linear. Consequently, the Coulomb “dia-
monds” in suspended nanotubes are not diamonds any more, but instead have
a curvilinear shape (with the exception of the case Cr, = Cr = 0). Their size
is also not the same and decreases with |V|. Thus, the mechanical degrees of
freedom affect the Coulomb blockade diamonds. However, since these effects
originate from the nanomechanical term which is typically a small correction,
its influence on Coulomb diamonds is small as well. For the E-nanotube, these
effects do not exceed several percents for typical gate voltages.

4 Eigenmodes

The eigenfrequency of a particular eigenmode is a directly measurable [12]
property. In future experiments on suspended tubes we expect that the eigen-
modes influence tunneling (“phonon-assisted tunneling”) in a similar way as
observed for a single Cgy molecule [6]. Below, we demonstrate that the effect
of the electrostatic interactions on the elastic properties (specifically, eigen-
frequencies) is strong and changes the behavior qualitatively.

To find the eigenmodes, we apply a gate voltage with a large dc (single
gate) and a small ac component. The displacement z(z,t) is time-dependent,
which provides an external force —pS# to Eq. (5), where p equals 1.35 g/cm?.
Eq. (5) must be solved first with a constant stress, and then the stress is
found self-consistently. The tube displacement has a small ac component §z
on top of a large static one. The self-consistency procedure is essentially the
same and again leads to Eq. (7). Thus, the dc component of the gate voltage
determines the stress T and it therefore controls the eigenmodes.

The frequencies of the (transverse) eigenmodes are found from the require-
ment that the equation

IESZ" —T62" — pSw?6z =0 (14)

with the boundary condition 6z(0) = 0z(L) = §2'(0) = 02/(L) = 0 has a
non-zero solution. This yields the following equation for the frequency w,

1 2 _ .2
kAt /1 sinhy; siny, =1, (15)
2 Y2

L 1/2 [ pS
_ 2 2 4 g2 _
Y1,2 = NG (\/f + 412+ £ ) , A= Fo

cosh y1 cosys —
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In the following, we restrict ourselves to the fundamental (lowest frequency)
eigenmode wy. In the limiting cases, the solutions of Eq. (15) are

-2 2 .
o — % {22.38L +0.28¢%, (L < 1; (16)

€LV 4 2nL72, L 1.

The second terms on the rhs represent small corrections to the first ones.

The frequency dependence wy o< L~2 is associated with a loose string, while
wp oc L™! means that the string is tied like in a guitar. Our results show that
the behavior of the tube crosses over from “loose” to “tied” as Vi increases.
For the fundamental mode, the crossover occurs at (L ~ 1, corresponding
to the crossover from weak to strong bending. The middle curve in Fig. 3
shows the frequency of the fundamental mode as a function of gate voltage
(zero residual stress). The arrow denotes the cross-over from weak to strong
bending.

The gate voltage dependence of the frequency is a stepwise function, as
shown in the inset of Fig. 3. Steps occur whenever an additional electron
tunnels onto the tube. For the E-nanotube, their height is ~5 MHz, which
is measurable. Note, that the present submicron silicon devices are always
in the weak-bending regime so that corrections due to the second term in
Eq. (16) are too small to be measured. Furthermore, one should realize that
frequency quantization is only observable if the frequency itself is greater than
the inverse tunneling time for electrons.

We now consider the effect of a residual stress (Tp # 0). First, we obtain
the stress by solving Eqs. (2), (5) (in the latter, T is replaced by T + Tp). In
particular, for a negative stress T + Ty < 0, Ty ~ —EI/L?, Eq. (2) acquires
several solutions. This signals Fuler instability: the tube bends in the absence
of an external force.

If the residual stress is large, Ty > EI/L?, the tube always acts like a
tied string (upper curve in Fig. 3). The frequency depends weakly on Vg
for low voltages, and above T' ~ Ty (denoted with the arrow) grows with
an envelope o Vé/ ®. For negative Ty the picture is qualitatively different
(lower curve in Fig. 3). Whereas for large gate voltages the envelope is still
proportional to Vé/ 3, the frequency dives below the value for an unstressed
tube (22.38(E1/pS)'/2L=2, represented by the thin solid line in Fig. 3), when
the overall stress becomes negative. It further drops to zero at the Euler
instability threshold.

The qualitative difference between the various regimes means that by mea-
suring the gate voltage dependence of wy one can determine the sign of Tj
and get a quantitative estimate. On the other side, the gate effect can be used
to tune the eigenfrequencies. We also mention that in the absence of charging
effects, the steps vanish but the overall shape of the curves in Fig. 3 remains
the same.
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Fig. 3. Gate voltage dependence of the frequency wo of the fundamental mode for
three different values of the residual stress. Numbers are taken for the E-nanotube
(see Fig. 2). The fundamental mode of an unstressed tube is 140 MHz (thin horizon-
tal line). The inset is an enlargement of the Ty = 0 curve of the main figure showing
step-wise increases of wy whenever an additional electron tunnels onto the tube.

5 Discussion

The presented model is simplified in many respects. Mechanical degrees of
freedom are introduced via classical theory of elasticity: The nanotube (mode-
led by a rod) is considered as incompressible and without internal structure.
This is justified, since so far the theory of elasticity has described all existing
experiments on carbon nanotubes well. Creation of defects in SWNT starts at
deformations of order of ten percents. We have neglected damping, which is
also expected to originate from the creation of the defects and to be irrelevant
in this range. We also disregarded quantum effects (cotunneling and finite
spacing of quantum levels of electrons in the tube). These issues need to be
clarified for a detailed comparison with the experimental data, and will be a
subject for future research.

Our main result is that the nanotube can be manipulated by the gate
voltage, which determines its deformation and stress, and modifies the eigen-
modes. Though the eigenmodes of nanotube ropes have been measured in
Ref. [12] four years ago, the strain dependence of the eigenmodes was only
recently reported in Ref. [15]. It demonstrates this effect for singly-clamped
multi-wall carbon nanotubes. We expect that our predictions will soon be
tested in experiments on doubly-clamped SWNTs.
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Summary. The differential resistance of submicron-size ferromagnet/supercond-
uctor interface structures shows asymmetries as a function of the current through
the ferromagnet/superconductor interface. These asymmetries are a consequence
of spin-polarized electron transport from the ferromagnet to the superconductor,
coupled with the Zeeman-splitting of the superconducting quasiparticle density of
states. They are sensitive to the orientation of the magnetization of the ferromagnet,
as the magnetic field required to spin-split the quasiparticle density of states can be
provided by the ferromagnetic element itself.

1 Introduction

There has been continuing interest in the past few years in heterostructures
that combine ferromagnetic (F') and superconducting (S) elements. This inter-
est can be broadly divided into two categories: the superconducting proximity
effect in ferromagnets, and spin-polarized electron transport between ferro-
magnets and superconductors. In the first category are included earlier work
on FS multilayers [1], more recent work on critical currents in SFS junctions
[2], and long-range superconducting proximity effects in ferromagnets adjacent
to superconductors [3, 4]. Some of this work is discussed in other contributions
in this volume. In the second category is included spectroscopic studies of FS
point contacts [5], extending the pioneering work of Tedrow and Meservey
[6] in FS junctions mediated by an insulating tunnel barrier (I) to systems
with higher transparency FS interfaces. Point contact FS spectroscopy has
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been used to determine the degree of spin-polarization P in the ferromagnet
by examining in detail the differential conductance of the FS junction as a
function of the voltage bias applied across it [7], and analyzing the results in
terms of a spin-polarized extension of the Blonder, Tinkham, Klapwijk (BTK)
[8] theory of transport across a normal-metal/superconductor junction. Other
theoretical studies have focused on the excess resistance of F'S junctions asso-
ciated with spin accumulation at the interface [9, 10].

In the work of Tedrow and Meservey on FIS junctions, a magnetic field
was applied to the thin film device in order to Zeeman-split the quasi-particle
density of states in the superconductor. The finite spin-polarization P in the
ferromagnet showed up directly as different peak heights in the FIS tunneling
characteristics. In the more recent work on point contact FS spectroscopy,
a large magnetic field could not be applied, as this would rapidly suppress
superconductivity in the bulk superconductors used in the experiments, so
that the analysis of the current-voltage characteristics depends on a subtle
interplay between P and the FS interface transparency. This restriction does
not apply to mesoscopic FS devices made from thin films, where a magnetic
field can be applied parallel to the plane of the superconducting thin film as in
the original experiments of Tedrow and Meservey, splitting the quasi-particle
density of states without substantially suppressing superconductivity in the
film. As in the FIS case, the finite spin-polarization in the ferromagnet is
expected to show up as asymmetric peaks in the differential conductance as
a function of voltage bias, as recently discussed by Mélin [11].

In this paper, we report measurements of the low temperature differential
resistance of mesoscopic FS junctions. We observe asymmetries in the differen-
tial resistance even in the absence of an external magnetic field. These asym-
metries are associated with spin-polarized tunneling into the superconductor,
with the splitting of the quasi-particle density of states in the superconductor
arising from the magnetic field generated by the ferromagnetic elements.

2 Sample fabrication and measurement

The samples for our experiments were fabricated by multi-level electron-beam
lithography onto oxidized silicon substrates. A number of samples correspond-
ing to two different geometries were measured, but we present here results on
only a few representative samples. Figure 1(a) and (b) show scanning electron
micrographs of our samples corresponding to the first and second types. The
first device type (Fig. 1(a)) consists of an elliptical Ni particle in contact with
a superconducting Al film. The shape and size of the Ni particle, which was
patterned and deposited first, ensures that it is single-domain, and that its
magnetization lies along the major axis of the ellipse, as we have shown in
previous experiments [12]. Four Au wires were then deposited to make contact
with the Ni particle, and allowed us to make four-terminal measurements of
the resistance of the Ni particle to characterize its electrical and magnetic
properties. The Al film was then deposited in the final lithography step. Two
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of the Au probes were placed within 20-50 nm of the F'S interface, enabling
us to measure the resistance of the interface by itself, with very little con-
tribution from the ferromagnet. All interfaces were cleaned with an ac Ar™
etch prior to deposition of the Au and Al films. The thickness of the Ni films
was ~30 nm, and the Al and Au films ~50-60 nm. Control samples of Ni, Al
and Ni/Al interfaces were also fabricated in order to characterize the proper-
ties of the films and interfaces. From low temperature measurements on these
samples, the resistivity of the Ni film was estimated to be py; ~ 6.6 pf2cm,
and that of the Al film p4; ~ 8.4 pf2cm, corresponding to electronic diffusion
coefficients Dy; ~ 76 cm? /s and Dy ~ 26 cm? /s respectively. The second
set of samples (Fig. 1(b)) were simple FS crosses, that enabled us to measure
the four-terminal resistance of the FS interface directly. In this second device
type, both Ni and permalloy (NiFe) were used as the ferromagnet.

Fig. 1. Scanning electron micrographs of representative device of the first type (a),
and the second type (b). (a) is scaled to 1umx1lum. The leads used to measure the
four-terminal resistance are marked. The current leads were used to send both the
ac and dc current.

The measurements were performed down to 0.26 K in a *He sorption insert
with standard ac lock-in techniques. The insert was placed in a dewar with
a superconducting split-coil magnet, which allowed us to apply a magnetic
field in the plane of the Ni particle, along its easy axis in the case of the first
device type, and along the length of the ferromagnetic wire in the case of
the second device type. The application of the field in this direction has two
advantages: first, the critical field of the superconductor is much greater than
if the field were to be applied perpendicular to the plane of the sample, and
second, the field direction is along the easy axis of magnetization of the ferro-
magnet. We concentrate here on the differential resistance and conductance
of the FS interfaces as a function of bias current; the temperature dependence
of the resistance of these devices has been described in detail in an earlier
publication [4], and will not be discussed here. In order to measure the dif-
ferential resistance of a low resistance FS interface, we use a four-terminal
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configuration with the probe configurations as shown in Fig. 1, with a small
(~ 10 — 50 nA) ac current superposed on a dc bias current.

3 Experimental results and discussion

Figure 2 shows the differential resistance of a permalloy/Al (Py/Al) cross
similar to that shown in Fig. 1(b) at a temperature of ' = 290 mK, as a
function of the dc current through the FS junction, at two different values of
magnetic field. As the current is increased from |I4.|= 0, the resistance first
increases, reaches a peak at a current of |[I4.| ~ 1 pA, and then shows two
dips in the resistance before approaching the normal state resistance at higher
values of Iy.. The dips in dV/dI, corresponding to peaks in the differential
conductance dI/dV, are asymmetric, in that the amplitude of the dips is
different. As the applied external field H is increased, the features become
sharper, and more symmetric. At larger values of H (not shown in Fig. 2),
the positions of the peaks and dips move down to lower values of |I.|. Note
that this behavior is strikingly different from what is observed in the FS
point contact experiments. Indeed, apart from the absence of the multiple
peak structure, the resistance of the devices goes down rather than up as one
moves away from Ig. = 0.

45 45 :

dv/di(Q)

| ]
0 5
Idc(uA)

Fig. 2. Differential resistance dV/dI of a Py/Al cross, similar to the one in Fig.
1(b), as a function of dc current I4., at an external magnetic field of (a) H = 0, and
(b) H =0.1002 T. T = 290 mK.

In order to understand this behavior, we consider charge transport across
the F'S junction in the framework of a spin-polarized BTK model [5, 7]. In the
conventional BTK model [8], the current across a NS junction with a voltage
V' applied across it is given by

Ivs = 2NO)eorS [ (B = ev) = (B +A(E) - BENIE, (1)
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where N(0) is the density of states at the Fermi energy, vp is the Fermi
velocity of the electrons, S is the cross-sectional area of the interface, f is the
Fermi function, and A(F) and B(FE) are the BTK coefficients that represent
the probability for Andreev reflection and normal reflection of electrons from
the NS interface. Their functional forms have been discussed in detail by BTK
[8], and we shall not reproduce them here. We only note that A(F) and B(E)
depend on the transparency of the NS interface, characterized by the BTK
parameter Z. Z= 0 corresponds to a perfectly transparent interface, while
Z — oo corresponds to a tunnel barrier. For Z= 0, A(E)= 1 for E < A,
the energy gap of the superconductor, and gradually reduces to zero as Z
increases.

The process of Andreev reflection involves a spin-up electron of energy E
coupling with a spin-down electron of energy —F to form a Cooper pair in
the superconductor. If the normal metal is replaced by a ferromagnet with a
finite polarization P, not all electrons of one spin species will be able to find
a corresponding electron of the opposite spin species in order to form Cooper
pair. Hence, the probability of Andreev reflection will be reduced by a factor
of (1-P), where we define the polarization P by

Ni(Er) + N\ (Ep)’

P

N;(Ep) and N|(Er) being the density of states for the up-spin electrons
and down-spin electrons respectively [13]. The equation of BTK can then be
modified to [7]

o0

Iys = 2N(0)evrS / [F(E - eV) — f(B)]

(1= P)[1 + Au(E — guH) — By(E — guH)]
+P[1 - By(E + guH)] )dE, (3)

where the original BTK coefficients A(E) and B(E) are modified to unpolar-
ized (A, By) and polarized (Ap, B,) versions, with A,= 0. This modification
is required to maintain current conservation across the FS interface [7], and
involves a simple renormalization of the coefficients. In addition to the for-
mulation of Ref. [7], we have also added the contribution to the energy of the
quasiparticles from Zeeman splitting due to an external field H.

Figure 3(a) shows the results of our calculations of the normalized differ-
ential resistance using Eqn.(3) with H = 0, for a number of different combina-
tions of Z and P. For Z = 0 and P = 0, we recover the usual BTK result, in
that the resistance at zero bias drops to half the normal state value. For Z =0
and P = 0.5, the resistance at zero bias is exactly the same as the normal
state resistance, while for Z = 0.5 and P = 0, it is slightly larger. As both Z
and P are increased, the resistance of the sample rises above the normal state
resistance Ry, but Z and P affect the differential resistance in different ways
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at higher bias. It is clear that the zero bias resistance is sensitive to both Z and
P, so one cannot determine both independently by examining only the zero
bias resistance; the entire curve needs to be fit. Figure 3(b) shows the results
of similar calculations, but now with an applied magnetic field H = 0.2A.
The effect of the finite field is to cause a splitting in the structure of dV/dI
near V ~ A/e due to the Zeeman effect. The splitting can be seen even for
P =0, but results in a substantial asymmetry of the curve when P # 0.

25

(1/R)dv/dl

7

z=0,p<05| |

@ o
4 32 10 1 2 3 44 3240 1 2 3 4
eV/A eV/A

Fig. 3. Numerical simulations of the differential resistance of a FS interface, from
the theory described in the text. (a) H =0, (b) H = 0.2A. The values for Z and P
are noted in the figure, and the temperature is 7' = 0.05A.

Comparing the results of these simulations to the data from the Py/Al
cross shown in Fig. 2, we note that there are some similarities, but substan-
tial differences in even the qualitative behavior. First, the resistance in the
simulations invariably decreases as the bias is shifted from 0, except for the
case Z = 0. In the experiment, the trend is opposite; the resistance increases
as the bias is shifted from 0. This behavior is also reflected in the zero-bias
resistance as a function of temperature in this sample, where a large increase
in resistance is observed as one cools to below the transition temperature.
Second, at higher bias, two sharp dips appear in the data, which are not sym-
metric. These are similar to the dips seen in Fig. 3(b), which are associated
with Zeeman splitting of the quasi-particle density of states. However, in the
experiment, this structure is seen even at zero applied external field. On the
other hand, it should be noted that the field H can result from a combina-
tion of the externally applied field and the self-field of the ferromagnet, which
can be substantial near the ferromagnet. At the superconductor, the direction
of the externally applied field may be opposite that of the self-field of the
ferromagnet, resulting in a decrease in H as the external field is increased.
This apparently is the case for the sample of Fig. 2; as the external field is
increased from 0 to 0.1 T, the two dips in dV/dI become sharper and the
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spacing between them decreases, exactly as one would expect if the actual
field at the superconductor decreased. We have seen similar behavior in other
devices as well.

70 ,

H=0T
60 |- o

dv/di(Q)

| (uA)

Fig. 4. Differential resistance dV/dI of the sample shown in Fig. 1(a), as a function
of dc current /4., at different values of the applied magnetic field H. The temperature
T = 300 mK.

The data shown in Fig. 2 was taken using the probe configuration shown in
Fig. 1(b), and corresponds to a four-terminal measurement of the differential
resistance of the F'S interface alone. Figure 4 shows the differential resistance
dV/dI of the sample of Fig. 1(a) as a function of dc current I, at six different
values of the external magnetic field H, applied along the major axis of the
elliptical Ni particle, at T'= 300 mK. Unlike the FS crosses, the four-terminal
probe configuration used to measure this device (shown in Fig. 1(a)) includes
a small portion of the Ni as well as the Al. All the curves show an initial
decrease in resistance as I, is increased in either direction from zero, then
an increase at |I4.| ~ 5uA, and finally, all curves approach the normal state
resistance Ry at larger values of |I;.|. For low values of H, the peaks in dV/dI
are very sharp. As H is increased, the peaks decrease in amplitude, and move
to lower values of |I4.|. In other devices we have measured, the peaks increase
in amplitude and move to higher values of |I4.| as H is increased from 0
initially, and then decrease in amplitude and move to lower values of |I.|
as H is increased further. This is simply due to the fact that the externally
applied field can either add to or subtract from the field generated by the
ferromagnetic element at the superconductor. It should be noted that the
peaks, especially at low magnetic fields, are not symmetric with respect to
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the applied current; the peak at negative current is higher than the peak at
positive current. This asymmetry is a manifestation of the injection of spin-
polarized carriers into the superconductor.

The nature of the peaks is qualitatively different from those seen in the
FS crosses, and in the simulations shown in Fig. 3, in that they are much
sharper. In fact, such peaks can be seen in the FS cross devices if one includes
a portion of the superconductor in the four-terminal measurement. Similar
peaks have been observed in NS devices as well [14], where they are associ-
ated with an excess resistance from a non-equilibrium charge imbalance in the
superconductor. Injection of quasiparticles into the superconductor results in
a difference between the quasiparticle chemical potential 14, and the Cooper
pair chemical potential picp. pep rises to its bulk value within a supercon-
ducting coherence length &g of the interface; 4, relaxes to p, over a much
longer length scale Aqg«, called the charge imbalance length. In diffusive sys-
tems, Ag+ = y/D7g~, where D is the diffusion coefficient. Near T, the charge
imbalance time 7¢+ is given by [15]

4/€BT Tin (4)
TQ* = ——— A\ =8
@7 xAT H)\ 21
where 7;, is the inelastic scattering time, and I" is given by

11
r=—+

Ts 2Tin

()

and 7, gives the contribution from orbital pair breaking. The excess resistance
arises from the difference between jio, and pg,. If the superconducting probe
is placed a distance x from the interface, an excess resistance AR will be
measured, where AR = (Ag+~ — )ps, ps being the resistance per unit length
of the superconductor. Ag- diverges when A — 0, and this divergence gives
rise to the peak in resistance seen in NS structures just below 7.

For a particle with an energy F, the effective gap seen is A — E. At low
temperatures, we can take into account the excess resistance due to charge im-
balance by introducing an effective voltage dependent charge imbalance time
T ~ T/(A — eV), and adding a resistance Rg«= paAg~ to the resistance
calculated in the spin-polarized BTK model described above.

The solid line in Fig. 5 shows the result of our calculation including both
spin-polarized BTK in a finite magnetic field as described above, and charge
imbalance. For comparison, we also show the result for only spin-polarized
BTK. These numerical calculations were performed by calculating the cur-
rent through the FS interface for a particular voltage V;, adding the charge
imbalance voltage V,;, and taking the derivative d(Vy + V.;)/dI numerically.
The numerical calculations reproduce the large peaks seen in dV/dI at cur-
rents corresponding to the gap, i.e., I ~ (A/eRy). Unlike the BTK case,
no splitting of the peaks near the gap is observed in the solid line in Fig. 5
(the dashed line, which shows the BTK case, does have a small splitting at
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negative I that is difficult to observe because of the scale of the plot). Closer
examination of the position of the charge-imbalance peaks, however, shows
that the peak at positive current is slightly greater than A/eRy, while the
peak at negative current is slightly less than —A/eRy; the shift corresponds
to the Zeeman splitting of the quasiparticle density of states. Only one spin
species gives rise to a peak for positive current; the other spin species gives
rise to the corresponding peak for negative current. Thus, the difference in the
height of the peaks is an indication of the degree of spin polarization in the
ferromagnet. If we take the difference between the two peaks heights, divided
by the sum of heights of the peaks taken from the normal state resistance,
we obtain a value of 0.25, which is close to the value of P = 0.3 used in the
simulation. A similar analysis performed on the experimental data of Fig. 4
gives a spin polarization of P=0.23, in good agreement with the expected
value of the spin polarization for Ni.
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Fig. 5. Numerical simulation of the differential resistance of a F'S interface, including
charge imbalance, as described in the text. Solid line, spin-polarized BTK model with
charge-imbalance; dashed line, spin-polarized BTK model without charge imbalance.
The other parameters used in the simulation are P = 0.3, Z = 0.3, and H = 0.1A.

4 Conclusions

The differential resistance of mesoscopic ferromagnet/superconductor junc-
tions shows a number of features associated with the injection of spin-polarized
carriers into the superconductor. In particular, large peaks are observed at
currents corresponding to the superconducting gap voltage. These peaks are
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not symmetric with respect to the current, in that their amplitudes are
different. The peaks are associated with the excess resistance arising from
quasiparticle charge imbalance in the superconductor, and the difference in
their heights is directly related to the degree of spin polarization in the ferro-
magnet.
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Summary. A theory of recently discovered anomalous low-field magnetoresistance
is developed for the system of two-dimensional electrons scattered by hard disks of
radius a, randomly distributed with concentration n. For small magnetic fields the
magentoresistance is found to be parabolic and inversely proportional to the gas
parameter, 6pge/p ~ —(weT)?/na?. With increasing field the magnetoresistance be-
comes linear §pzz/p ~ —w.T in a good agreement with the experiment and numerical
simulations.

1 Introduction

It is well known that in the Boltzmann-Drude approach the longitudinal re-
sistivity p.. of a degenerate two-dimensional (2D) electron gas does not de-
pend on the transverse magnetic field B. Therefore, the known mechanisms of
magnetoresistance (MR) involve either quantum interference effects or classi-
cal non-Markovian memory effects, which are not captured in the Boltzmann
picture. The MR, arising from quantum effects was discussed in a great num-
ber of works (see for review Ref. [1]). The role of classical memory effects was
underappreciated for a long time, though several theoretical works pointed out
at the importance of such effects for magnetotransport [2, 3, 4]. The interest
to the problem of classical MR has sharply increased in recent years, starting
with Ref. [5], where it was shown that effects of ”classical localization” may
lead to the exponential suppression of electron diffusion at large B. This work
was followed by a series of works [6, 7, 8, 9, 10, 11, 12, 13, 14], discussing
different aspects of classical 2D magnetotransport in strong magnetic fields.
In this paper we focus on a mechanism of low field classical MR, spe-
cific for systems of strong scatterers. This mechanism is connected to the
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memory effects due to backscattering events. The corresponding corrections
to the conductivity are small in the parameter a/l, where a is the charac-
teristic size of the scatterers and [ is the mean free path. Nevertheless, the
dependance of these corrections on the magnetic field turns out to be very
sharp, resulting in the MR anomaly. The anomaly was discovered in recent
numerical simulations [15] where the MR in a system of 2D electrons scatter-
ing on randomly distributed hard disks was studied. This system is usually
referred to as the Lorenz gas and is the simplest model of the 2D electron gas
with strong scatterers. In the following we restrict our considerations to this
model. The generalization of our results to other models of strong disorder is
straightforward. Magnetotransport in the Lorenz gas is characterized by two
dimensionless parameters: 3 = w.7, and the gas parameter 3y = a/l = 2na®.
Here a is the disk radius, n is disks’ concentration, w, is the cyclotron fre-
quency, 7 = l/vp is the mean free time and [ = 1/2na is the mean free path.
The anomaly was observed in the case 8 < 1, [y < 1. Both the numerical
simulations and the qualitative analysis of [15] indicated that at zero tempera-
ture, T, the MR can be expressed in terms of a dimensionless function f(z) via

ez _ 5o ( B
p B 60]0(50) @

where p is the resistivity for B = 0. Numerical results [15] suggest that
f(z) ~ z as z — 0, yielding 0pyy/p ~ —|wc|7. The latter expression is in
a very good agreement with experimental measurements of MR in a random
antidot arrays [16]. It is anomalous in two senses. First, it has a non-analytic
dependence on the magnetic field. Second, it does not vanish in the limit of
vanishing 3y, which is normally regarded as the expansion parameter for the
corrections to the Drude-Boltzmann picture. This intriguing behavior calls for
a rigorous analytical theory of the effect, which would establish Eq. 1 and
enable one to derive the analytical expression for function f. In this letter we
present a theory of the anomaly and give an expression for f(z). We find that
for z < 1, f(z) is linear in agreement with numerical experiment, but at very
small z < 0.05 crosses over to a quadratic dependence. Thus, for 8 — 0, Eq.
1 yields §pyz/p ~ —3?/Bo. The limit 3y — 0 should be taken with care. While
the small 8 expansion seems to be singular as a function of Gy, the region of
[ where this expansion is valid shrinks as fy — 0. For z — oo, f saturates at
some constant value. Therefore, the full variation of dp,,/p is of the order .
In other words, the anomalous MR is strong but it exists in a small region of
magnetic fields.

In [15] a mechanism of MR connected with memory effects arising in
backscattering events was proposed. It has a close relation to the well known
non-analyticity of the virial expansion of transport coefficients [17, 18, 19,
20, 21], which we briefly recall. For B = 0 the leading nonanalytic correc-
tion to resistivity, dp, is due to the processes of return to a scatterer after
a single collision with another scatterer [Fig. 1(a)]. The relative correction,
dp/p, is proportional to the corresponding backscattering probability, given
by the product of e~"/!d¢pdr/l (which is the probability to reach scatterer 2
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Fig. 1. Backscattering process responsible for leading nonanalytic contribution to
the resistivity at B = 0 (a). For B # 0, the overlap area, Sg, between two corridors
is small at large B (b). For ¢ = 0, Sp decreases with B (c). For ¢ # 0 and small B
the values of Sp — So for time reversed trajectories have opposite signs (d,e).

without collision and scatter in the angle d¢) and the probability p to re-
turn without collisions from 2 to 1 (here [ is the mean free path). Assuming
p = exp(—r/l) and integrating over intervals 0 < ¢ < a/r, a <r < 00, one
obtains [17, 18, 19, 20, 21] dp/p ~ BoIn(1/250).

In Ref. [15] it was shown that the probability p is actually larger than
exp(—r/l) because the passage of a particle from 1 to 2 ensures the existence
of a corridor of width 2a free of the centers of the disks. This reduces the scat-
tering probability on the way back, yielding p(r, ¢) = exp(—r/l + nSoy(r, ¢)),
where So(r, ¢) = 2ar — 1r?|¢|/2 is the area of the overlap of the two corridors
[Fig. 1(a)]. For example, for ¢ = 0, we have Sy = 2ar and p = 1. Physically,
this means that the particle is unable to scatter, since it travels back along
the same path. Taking into account the effect of “empty corridor”, we get

3p /°° dr /“/’“ ~@r1 ( c >
— ~ — d r/DnSo x5 Boln | — |, 2
p a ! 0 ¢ ‘ ﬂo " 2&0 ( )

where C'is a constant of the order of unity. Thus, for B = 0 this effect simply
changes the constant in the argument of the logarithm.

The key idea suggested in [15] was that for B # 0 the area of the overlap
of the two corridors, Sg, sharply depends on B, resulting in the observed MR.
Indeed, it is seen from Fig. 1(b) that for 8 = By, Sp — 0, resulting in sharp
negative MR

5me /oo dr /a/r —2r/l S S
—_— ~ — dg e 2/t (endp — gno), 3
P 0 L Jo ( ) )

The following qualitative explanation of the observed linear MR was presented
in Ref. [15]. The value n(Sp — Sp) was estimated for ¢ = 0 [Fig. 1(c)] to the
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first order in B as —nr®/R. = —r®/2alR,, where R, is the cyclotron radius.
Assuming that this estimate also works at ¢ # 0 and expanding e™%8 — ™%
to the first order in B, one gets dpy./p ~ —l/Re = —w,T.

In fact, the physical picture of the phenomenon is more subtle. The con-
tribution of any trajectory with ¢ # 0 is cancelled in the first order in B by
the contribution of the time-reversed trajectory, since the values of S — Sy
are opposite for these paths [ Fig. 1(d), (e)]. The cancellation does not oc-
cur only at very small ¢ ~ (. The integration in Eq. 3 over ¢ < (8 yields
Spuz/p ~ —B%/B. Larger values of ¢ also give a quadratic in 3 contribution to
the MR. This contribution is positive and comes from the second order term in
the expansion of ™52 —e™% in B. It follows from our results [Eqs. (1),(9)] that
the contribution of small angles is dominant resulting in a negative parabolic
MR [22]. We find that the parabolic MR crosses over to linear at very small
8 =~ 0.058y, which explains why the parabolic MR was not seen in numerical
simulations [15] and experiment [16].

2 Calculations

Next we sketch our calculations. We consider the Lorentz gas at T = 0,
assuming that 6 < 1, [y < 1. In this case [23], dpy./p = —(D — Dy)/ Do,
where Dy = vpli;/2 is the Drude diffusion coefficient for B =0, Iy, = 31/4 =
3/8na is the momentum relaxation length and D is given by

D= % /0 T at v (0)v(t) = % / drdv(G)vvo, (@)

Here G = G(v,vo,r) is the Fourier transform (at w = 0) of the retarded
Green’s function of the Liouville equation and (...) stands for the averaging
over the positions of the disks. The equation for G reads

(io T ﬁ) G = 5(r)d(v — vo), (5)

where Ly = v0/0r — w.[v x 8/8v] is the Liouville operator of the free motion
in the magnetic field. The interaction with disks is written in Eq. 5 in the
form of a collision integral [18, 24]. The scattering operators 7 transform
arbitrary function f(r,v) as follows,

T+ f(r,v) = pr / o' o()3(e — €yt F(r,v),

T f(r,v) = —pr / dv'o(9)d(c — € n= f(r,v), (6)

where n* =", §(r — R; & a). Here R; are the positions of the disks, delta-
function d(e—¢’) provides the energy conservation, pr is the Fermi momentum,
() = (a/2)]sin(p/2)] is the differential cross-section of one disk and ¢ is the
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Fig. 2. Scattering of a particle on a hard disk.

angle between v’ and v. The vector a = a(v’,v) = a(v/ —v)/+1/2(v? — v'v) is
pointing from the center of a disk to the scattering point at the disk surface
[Fig. 2]. Physically, operator T+ describes influx of particles with velocity v
at the point R; — a, while operator T~ describes the outflux of particles with
velocity v at the point R; + a. The Boltzmann equation is obtained from Eq.
5 by averaging the Liouville operator over the positions of the disks, yielding
(TH)f(r,v) = prn [dv'o(v,v')d(e — €) f(r, V'), (T~) = —1/7. Here n =
(n*) is the concentration of the disks and 1/7 = nv2a is the inverse full
scattering time. Introducing now oTE = 7% — <Ti> and writing a formal
solution of (5), G = (64 Lo — T~ —T7)"! as a series in 67%, we get

(G)=Go+ > Go(0T*GedT")Go+ -+, (7)

a,y=x

where Go = (6+ Lo+1/7— (T))~! is the Green’s function of the Boltzmann
operator (here 6 — 0). Eq. 7 gives a regular way to calculate correlations,
which are absent in the Boltzmann picture.

N=1 N=2,3,...

T f::\\
/ \ ! s A\
B (@) N (b)

Fig. 3. Diagrams, corresponding to the process shown in Fig. 1(a). Diagram (a)
does not take into account effect of “empty corridor” and should be renormalized

by (b).

Consider first the case B = 0. Substituting the first term in the right
hand side of Eq. 7 into Eq. 4, we get D = Dy. The second term in Eq. 7
describes the memory-effect due to diffusive returns. As discussed above, the
main contribution comes from returns after a single scattering. This process is
described by the diagram Fig. 3(a). The dashed line corresponds to the pair-
ings <6T‘1(5TA7> (a,y = %), external wavy lines to the diffusion propagators
Go. The internal line corresponds to the Boltzmann propagator truncated at
one scattering G_ (TH)G_, where G_ = (Lo+1/7)~" is the ballistic propaga-
tor and (1) stands for one scattering event (G_ are shown by solid lines and
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Fig. 4. Backscattering process is parameterized by the angles ¢o, ¢s. The magnetic
field changes the backscattering angle ¢ = ¢o+¢5 +7/Rc. The solid (dashed) line in
(a) represents electron trajectory for B = 0 (B # 0). Different processes contributing
to MR are shown in (b)-(e).

(T+) by the cross). This diagram yields 6p/p = —6D/D = (260/3) In(1/20,)
[17, 18, 19, 20, 21]. The terms of the N —th order in Eq. 7 contain N pairings
(N dashed lines) and are typically small as 3. However, there is a series of
diagrams, shown in Fig. 3(b), whose contribution is of the order 5y [19]. The
internal dashed lines in this series only contain pairings <5T =67 ~). Summing
the diagrams Fig. 3(b) together with Fig. 3(a), one gets an exact equation

5p nltr © dr o 2 2
£ = ZUR, —e72/ d d
PR e/a e /O wo | vro(po)o(ey)

. , 26 C
__igo _ ipr)nSo(r,goter) — 2P0 —
(1—e'0)(1 —e"%)e 3 In <250> ) (8)

instead of qualitative estimate Eq. 2. Here ¢g, ¢s are the scattering angles
[Fig. 4(a)], ¢o =~ (a/r)cos(vo/2), ¢;~ (a/r)cos(ps/2) and C' ~ 1.8 Thus,
addition of the series Fig. 3(b) to Fig. 3(a) leads to the following renormal-
ization: In(1/28y) — In(C/203p). Physically, the series Fig. 3(b) accounts for
the effect of the “empty corridor”. The N—th order term in this series cor-
responds to N — 1 term in the Taylor expansion of the exp(nSy) in Eq. 8.
Four terms in the product (1 — e*#0)(1 — %) = 1 — ei¥0 — ¢i¥s 4 eilvotey)
correspond to four combinations of (4, +) at the ends of external dashed lines
in the diagrams shown in Fig. 3. They are connected with four different types
of correlation at a given point r. The diagram (+,+) [Fig. 4(b)] corresponds
to the process, where an electron has two real scatterings on a disk placed
at point r. The diagram (—,—) [Fig. 4(c)] does not correspond to any real
scattering at point r. It just allows us to calculate correctly the probability
for an electron to pass twice the region of the size a around point r without
scattering. To interpret the diagram (4, —), note that in the Boltzmann pic-
ture, which neglects correlations, the following process is allowed. An electron
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scatters on a disk and later on passes through the region occupied by this disk
without a scattering [Fig. 4(d)] The diagrams (+, —) correct the Boltzmann
result by substracting the contribution of such unphysical process. Analogous
consideration is valid for diagram (—, +) shown in Fig. 4]e].

3 Results

For B # 0 the sum of diagrams shown in Fig. 3 can be expressed as an
integral over angles g, s (scattering angles for B = 0). The only dif-
ference from Eq. 8 is that one should replace Sy — Sp. For g <« 1
the overlap area can be calculated as Sp(r,¢) = [ dwh(xz), where h(z) ~
(Qa — |¢>:E — xz/RCD 0 (2(1 — ‘gbx — x2/R6|), 0 is the Heaviside step function
and ¢ = ¢o + ¢5 + r/R. [Fig. 4(a)]. The value of dp,,/p is obtained from
Eq. 8 by replacing e™% to ™58 — ™50 Introducing dimensionless variables
T =r/l, z= /By we get Eq. 1, where function f(z) is given by

3 o) dT 2T 2m
f(z) = */ fe‘QT/ dpo | dp
32 0 T 0 0 d

cos (s%-;—sOf) sin? (%) sin? (%) (e —e%). 9)
-2

T 2t?
Sz:/o dt(l 5 )9<1’Ct2

cos 2) + cos 2 2T
C _ (‘)00/ )2T ((pf/ ) + 77 S0 — Sz—0- (10)

Here

2t?

Function f(z) has the following asymptotics

0.3322 for z < 0.05
f(z) =< 0.032 (z — 0.04) for 0.05 <z <2 (11)
0.39 —1.3/4/z for z — oo.

Note that there is a parametrically small nonanomalous correction to Eq. 1
due to returns after multiple scatterings, 6o’ /p ~ —0.2804% [15]. To compare
the results of simulations [15] with the theoretical results in a wider region of
parameters (3, By, we substract dpl . /p from the numerical curves. Theoretical
and numerical [15] results are plotted in Fig. 5. in the universal units, dp,. /0080
versus z = [3/0p. It is seen, that the theoretical and numerical results are in
a very good agreement. The comparison with the experiment [16] is more
difficult, because of the 50% uncertainty in the sizes of the antidots. However,
a good agreement with the experiment can be achieved by appropriate choice
of a in the uncertainty interval [15].
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Fig. 5. The value of dpa./pBo from Egs. (1), (9) (solid line) shown as a function of
B/Bo together with the results of numerical simulations [15] presented for different
values of (o (triangles for By = 0.09 , boxes for Sp = 0.06 , circles for Sy = 0.03).
Data for all numerical curves are shown for < 0.3. Inset: The crossover from

quadratic to a linear dependence at 3/8o ~ 0.05. This crossover was not resolved in
numerical simulations.

Note finally that we fully neglected quantum effects. This is possible when
a > /Apl (Ar is a Fermi wavelength). This criterion ensures that diffraction
effects on the edges of the disks are not relevant at the scales of the order of [.
In the opposite case, a < v/Arl, the diffraction should destroy the “corridor
effect” , does suppressing the anomalous MR. The detailed analysis of quantum
effects will be presented elsewhere.

4 Conclusions

In summary, we have proposed a theory of the negative anomalous MR in
the Lorenz g