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Preface

A new science emerges at the intersection of modern physics, computer sci-
ence, and material science. The struggle to further miniaturize is putting nano-
technology to the verge of creating single-electron and/or single-spin devices
that operate by moving a single electron (spin) and can serve as transistors,
memory cells, and for logic gates. These devices take advantage of quantum
physics that dominates nanometer size scales. The devices that utilize metal-
based hybrid nanostructures may possess significant advantages over those
exploiting purely semiconducting materials. First, the chemistry of metals is
typically simpler than that of semiconductors. Second, the electric properties
of metals are much less sensitive to the structural defects and impurities than
those of semiconductors. Next, metallic devices allow better electric and ther-
mal contacts. Another important plus point is that in metals the electron
de Broigle wavelength is smaller by many orders of magnitude as compared
to that in semiconductors. This makes metallic devices more promising with
respect to their size - down to the size of an atom. Further, high bulk and
interface thermal conductance in metallic devices are beneficial for the heat
withdraw. And, last but by no means the least, the high electron velocity
in metals promises to accelerate enormously operation rates with respect to
those in semiconductor-based devices. The final note is that metals can ex-
hibit strong ferromagnetism and/or superconductivity. While ferromagnetism
provides a new possibility for information storage and processing associated
via utilizing spin transfer and storage (the corresponding approach is often
referred to as spintronics), the superconductivity offers unique opportunities
for completely novel class of devices based on quantum coherence.

These devices allow utilizing new computational algorithms based on quan-
tum superposition of states, allowing simultaneous representing many different
numbers (so-called quantum computation). In a quantum computer infor-
mation is loaded as a string of ”qubits” (quantum mechanical representa-
tion of bits), which are quantum objects that can occupy different quantum
states. A material implementation of qubits requires finding a medium, which
can keep superpositional states from the destruction by interaction with the
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environment (decoherence effect), i.e. the medium which has a long enough
characteristic decoherence time. On the other hand, interaction effects are
crucial for reading off the result of computation. Hence, the main problem is
to find physical systems allowing coherent operation and a switchable interac-
tion with the environment. In this sense the superconductor devices exhibiting
properties of a single macroscopic quantum state are of prime interest.

The abovementioned aspects of nanoscale physics focusing along the prop-
erties of metallic and hybrid nanostructures became the focus of the NATO
Advanced Research Workshop held in St.-Petersburg, August 24 - 29, 2003;
the scientific contributions of this workshop are presented in this volume.

Significant attention is paid to hybrid nanostructures on the base of ferro-
magnets and superconductors including ferromagnet-superconductors hybrid
systems. In the latter systems the role of proximity effects is discussed in de-
tail. The possible developments in spintronics are demonstrated by studies of
current-induced magnetization switching in multilayered nanopillars and by
studies spin-dependent transport of electrons in shuttle-structures and mag-
netic point contacts. Important and unexpected results are presented for single
electron transport through the vortex core levels and for domain wall super-
conductivity in ferromagnetic superconductors and hybrid S/F structures.
Widely discussed are correlation effects in nanostructures; in particular, the
problem of the metal-insulator transition in 2D electron systems which - since
the existence of such a transition contradicts to conventional expectations of
scaling theory of localization is addressed. New realizations of two-channel
Kondo effect in single electron transistor and ratchet effects in Luttinger liq-
uids are reported.

A special attention is paid to the noise phenomenon in nanostructures. In
particular, non-Gaussian shot noise, higher cumulants of noise, shot noise in
transport through localized states were considered. It is demonstrated that
the detailed studies of noise, in particular studies of the shot noise, can
provide important information about the electron system involved. Several
issues concerning peculiarities of transport in nanostructures and nanoscale
devices are widely discussed in this volume: magnetoresistance caused by non-
Markovian effects, transport properties of granular metals at low tempera-
tures, and persistent currents in interacting Aharonov-Bohm interfereometers
under acoustic radiation can be mentioned to name the few. To summarize,
the investigations reported in this volume, will, by no doubts, signify the im-
portant step towards further understanding mechanisms of quantum transport
in nanoscale devices.

St. Petersburg, Andreas Glatz
June 2004 Veniamin Kozub

Valerii Vinokur
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Part I

Coherence and Correlation Effects



Phase Measurements in Closed
Aharonov-Bohm Interferometers

Amnon Aharony1, Ora Entin-Wohlman1, and Yoseph Imry2

1 School of Physics and Astronomy, Raymond and Beverly Sackler Faculty
of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
aharony@post.tau.ac.il

2 Department of Condensed Matter Physics, The Weizmann Institute of Science,
Rehovot 76100, Israel

Summary. We discuss measurements of the resonant quantum transmission ampli-
tude tQD = −i|tQD|eiαQD through a quantum dot (QD), as function of the plunger
gate voltage V . Mesoscopic solid state Aharonov-Bohm interferometers (ABIs) have
been used to measure the “intrinsic” phase, αQD, when the QD is placed on one of
the paths. In a “closed” interferometer, connected to two terminals, the conductance

G = 2e2

h
|tQD|2 through the ABI is an even function of the magnetic flux Φ = �cφ/e

threading the ABI ring. Therefore, fits of G to the 2-slit formula A + B cos(φ + β)
allow only jumps of β between 0 and π. Here we include the many reflections of the
electrons within the ABI ring, and replace the 2-slit formula by a new formula, which
allows to extract both |tQD| and αQD from the closed ABI data. Also, the relation
|tQD|2 ∝ sin2(αQD) allows a direct measurement of αQD(V ), without interferometry.

1 Introduction and Review of Experiments

Mesoscopic quantum dots (QDs) represent artificial atoms with experimen-
tally controllable properties [1, 2, 3]. Connecting a QD via two one-dimensional
(1D) ‘metallic’ leads to electron reservoirs, one can vary the attraction of
electrons to the QD by the ‘plunger gate voltage’, V . Measurements of the
conductance G through the QD, as function of V , show peaks whenever the
Fermi energy εF of the electrons crosses a bound state on the QD. The quan-
tum information on the resonant tunneling through the QD is contained in
the complex transmission amplitude, tQD = −i

√
TQDe

iαQD . It is thus of great
interest to measure the V -dependence of both the magnitude TQD and the
phase αQD.

Model calculations (e.g. [4]) predict that TQD exhibits resonances at the
bound state energies of the QD, while αQD exhibits an interesting variation

3
A. Glatz et al. (eds.), Theory of Quantum Transport in Metallic and Hybrid

Nanostructures 3–8.
c© 2006 Springer. Printed in the Netherlands.
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between 0 and π, growing gradually through each resonance, and dropping
sharply between consecutive resonances. The resonant dependence of TQD

on V has been confirmed by many experiments [1, 2], which measure the
conductance and take advantage of the Landauer formula [5], G = 2e2

h TQD.
However, the experimental measurement of αQD has only become accessible
since 1995 [6, 7], using the Aharonov-Bohm interferometer (ABI) [8].

The simplest method to measure the phase of a wave is based on the
two-slit interferometer [9]. In this geometry, a coherent electron beam is split
between two paths, going through two slits, and one measures the distribution
of electrons absorbed on a screen behind the two slits. Assuming that each
electron goes through one of the slits only once, without any reflection from
the slits or from the screen, and assuming complete coherence, the distribution
of electrons on the screen is given by T = |t|2, where t = t1 + t2 is the sum of
the (complex) amplitudes of the waves which went via the two slits.

In the two-slit ABI, a magnetic flux Φ in the area surrounded by the two
electronic paths creates a difference φ = eΦ/�c between the phases of the wave
functions in the two branches of the ring [10], yielding t = t1e

iφ + t2. (Gauge
invariance allows one to attach the AB phase φ to either branch). Writing
ti = |ti|eiαi , one thus has the ‘2-slit formula’, T = A + B cos(φ + α), where
α = α1 − α2.

Placing a QD on one path, and changing its plunger gate voltage V , would
vary the corresponding phase α1 ≡ αQD. If the 2-slit formula were valid, it
would allow the determination of the dependence of αQD on V . This was
the motivation of Yacoby et al. [6], who placed a QD on one path of a closed
mesoscopic ABI. Indeed, the measured conductance was periodic in φ, and the
detailed dependence of G on φ varied with V . However, close to a resonance
the data did not fit the simple 2-slit formula; they required more harmonics
in φ, e.g. of the form

T = A+B cos(φ+ β) + C cos(2φ+ γ) + . . . , (1)

with the conventions B, C > 0. Furthermore, the fitted phase β did not follow
the continuous variation with V (as would be implied from the 2-slit scenario,
where β = αQD + const). Instead, β exhibited discrete jumps by ±π.

These jumps follow from the Onsager relations. Unlike the 2-slit geometry,
the closed ABI requires many reflections of the electron waves from the ‘forks’
connecting the ring with the leads. Each such reflection adds a term to the
interference sum of amplitudes, and modifies the simple 2-slit formula. In
fact, unitarity (conservation of current) and time reversal symmetry imply
that G(φ) = G(−φ) [11], and therefore β (as well as γ etc.) must be equal to
0 or π. The additional reflections also explain the need for higher harmonics
near resonances. Below we include these many reflections, and replace the
2-slit formula by a new one – which can be used to extract αQD from the
closed interferometer data [12].

Later experiments [7] opened the interferometer, by adding ‘lossy’ chan-
nels which break unitarity. Indeed, fitting the conductance to Eq. (1) yielded
a phase β(V ) which was qualitatively similar to the calculated ‘intrinsic’
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αQD(V ). However, it turns out that β depends on the details of the coupling
to the open channels [13]; 2-slit conditions are recovered only after a careful
tuning of the relevant parameters! Although such tuning is possible [4], it re-
quires systematic studies of many configurations, and it leaves only a small
fraction of the original current through the ABI. Therefore, it is desirable to
have alternative ways to measure αQD, as discussed below.

2 Model for the QD

We model the QD by a site D on a tight binding 1D chain [14]. All the on-site
energies are zero, except εD ≡ V on the QD. Electron-electron interactions are
included only via an on-site Hubbard interaction U on the QD. The hopping
matrix elements Ji,i+1 on the chain are all equal to J , except on the bonds
connected to the QD, where they are J−1,D = JL and JD,1 = JR. For εD = 0,
U = 0 and JL = JR = J , one has the simple wave eigenstates |n〉 = eikna,
with eigenenergies εk = −2J cos ka (a is the lattice constant).

Following Ref. [14], the transmitted wave for n > 1 is |n〉 = tQDe
ikna, and

(at T = 0) [12]

tQD = −iγD sinαQDe
iαQD ≡ 2i sin |k|aJLJRgD(εk)/J, (2)

with the QD asymmetry factor γD = 2JLJR/(J2
L + J2

R) and the “intrinsic”
Green function on the QD, gD(εk) = 1/[εk − εD − ΣD(εk)]. Here, ΣD(εk)
is the self-energy on the QD, which contains contributions from the leads,
ΣD,ext = −ei|k|a(J2

L + J2
R)/J and from the electron-electron interactions on

the QD, ΣD,int. As εD ≡ V increases, αQD grows gradually from zero, through
π/2 (at the resonance), towards π.

Interestingly, for this one-dimensional model, normalizing the measured

TQD = |tQD|2 = γ2
D sin2(αQD) (3)

by its (V -independent) maximum max[TQD] ≡ γ2
D relates αQD with the

measured TQD. Assuming coherence, this method for measuring αQD di-
rectly from TQD eliminates the need for any complicated interferometry! In-
terestingly, this conclusion holds for any Breit-Wigner-like resonance, with
an energy-independent width. It also holds for a multi-level QD, with many
resonances. In the next section we discuss ways of extracting αQD indirectly,
from the closed AB interferometer measurements. Comparing results from
sin2(αQD) = TQD/γ

2
D ≡ TQD/max[TQD], from the closed interferometer [12]

and from the open one [4] (all with the same QD) should serve as consistency
checks for this conclusion.

3 Model for the closed AB interferometer

Our ABI is modeled by two paths between two ‘forks’: one path contains
the QD, with the bonds hoppings JL and JR, and the other path contains
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an interaction-free ‘reference’ site B, with bond hoppings J−1,B = IL and
JB,1 = IR and with a site energy ε0 ≡ V0, controlled by the gate voltage V0. A
magnetic flux Φ inside the AB ring is included by the replacement JR → JRe

iφ.
As explained in Ref. [12], one can use the equation-of-motion method to derive
the new fully “dressed” Green function on the QD,GD(ω) = 1/[ω−εD−Σ(ω)],
with the dressed self-energy Σ = Σint + Σext. Both terms in Σ differ from
their counterparts in the “intrinsic” ΣD, by contributions due to the reference
path. The resulting transmission amplitude is

t = ADtQDe
iφ +ABtB , (4)

where AD = gB(εk − ε0)GD(εk)/gD(εk) and AB = 1 +GD(εk)Σext(εk). Also,
tB = −iγB sin δBe

iδB = 2i sin |k|ILIRgB/J is the transmission amplitude of
the “reference” path (when JL = JR = 0, or |εD| → ∞), with the bare
reference site Green function gB = 1/[εk − ε0 + ei|k|(I2

L + I2
R)/J ], and the

asymmetry factor γB = 2ILIR/(I2
L + I2

R). Equation (4) looks like the 2-slit
formula. However, each of the terms is now renormalized: AD contains all the
additional processes in which the electron “visits” the reference site, and AB

contains the corrections to tB due to “visits” on the dot.
The Onsager relations, which require that T depends on φ only via cosφ,

imply that the ratio K ≡ ABtB/(ADtQD) ≡ x̃[GD(εk)−1 + Σext(εk)], with
the real coefficient x̃ = ILIR/[JLJR(εk − ε0)], must be real. This implies that
�[GD(εk)−1+Σext(εk)] ≡ �Σint ≡ 0, namely that the width of the resonance,
�GD(εk)−1, is fully determined by the non-interacting self-energy �Σext(εk).

An explicit calculation gives Σext(εk) = ΣD,ext(εk) +∆ext, where ∆ext =
e2i|k|gB(J2

LI
2
L +J2

RI
2
R +2JLJRILIR cosφ)/J2. The term proportional to cosφ

comes from the electron clock- and counterclockwise motion around the AB
“ring”. Similarly, one can write Σint(εk) = ΣD,int(εk) + ∆int, and thus
GD(εk)−1 = gD(εk)−1−∆, with ∆ = ∆ext +∆int. Hence, t = ADtD(eiφ +K).
Writing also AD = C/[1 − gD(εk)∆], with C = (εk − ε0)gB , we find

T = |C|2TD
1 +K2 + 2K cosφ

1 − 2�[gD∆] + |gD∆|2 . (5)

Although the numerator in Eq. (5) looks like the 2-slit formula, with β = 0
or π (depending on signK), the new physics is contained in the denominator –
which becomes important in the vicinity of a resonance. The central term in
this denominator depends explicitly on the phase of the complex number gD.
Since this number is directly related to tQD, via Eq. (2), one may expect to
extract αQD from a fit to Eq. (5), taking advantage of the dependence of the
denominator on cosφ.

For ∆ ≈ ∆ext, Eq. (5) becomes

T = |C|2TQD
1 +K2 + 2K cosφ

1 + 2P (z + cosφ) +Q(z + cosφ)2
, (6)
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where z = (J2
LI

2
L + J2

RI
2
R)/(2JLJRILIR), P = �[vtBtQD], Q = |vtB|2TQD,

and v = e2i|k|a/(2 sin2 |k|a) depends only on the Fermi wavevector k,
independent of any detail of the interferometer. A 5-parameter fit to the
explicit φ-dependence in Eq. (6) for given values of V and V0 then yields
|C|2TQD, K, z, P and Q, and thus cos(αQD + δB + 2|k|a) = P/

√
Q, from

which one can extract the V -dependence of αQD. Since the V -dependence
of TQD can also be extracted from the fitted values of either |C|2TQD or
Q, we end up with several consistency checks for the determination of αQD.
Additional checks arise from direct measurements of TQD and TB = |tB |2, by
taking the limits |V0| = |ε0| → ∞ or |V | = |εD| → ∞.

For small TB , or large |V0| = |ε0|, it is reasonable to conjecture that ∆int

is dominated by single visits of the electron at the reference site B. In that
case, we expect the proportionality ∆int ≈ w(z+cosφ), with a real coefficient
w. This yields the same dependence of T on cosφ as in Eq. (6), with a shifted
coefficient v. If w depends only weakly on V , then this shift has little effect
on the determination of αQD.

Interestingly, a plot of Eq. (6) versus V and φ [12] looks very similar to
the experimental plots in Ref. [17]. It would be very interesting to attempt
detailed quantitative fits of data to our predictions.

4 Concluding remarks

Basically, we presented three methods to measure the intrinsic scattering
phase of a quantum dot. The first method is based on Eq. (3), and does not
involve interferometry. The second is based on Eq. (6), which allows one to
extract information from measurements on the closed ABI. The third method,
described in Ref. [4], uses the open ABI, but requires conditions under which
this ABI behaves as a two-slit interferometer. As stated, a convincing approach
would be to use more than one method, with the same QD, and to obtain
consistent results.

Although Eq. (6) was justified only for non-interacting electrons or for the
limit of small TB , we expect it to be qualitatively correct over a broader range.
We emphasize that a successful fit of the φ-dependence to Eq. (6) justifies the
above assumptions. If the various procedures to determine αQD from Eq. (6)
yield the same V -dependence, this would again confirm our assumptions. A
failure of this check, or a more complicated dependence of the measured T on
cosφ, would require a more detailed treatment of the interactions.
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Summary. We discuss the concept of the Berry phase in a dissipative system. We
show that one can identify a Berry phase in a weakly-dissipative system and find the
respective correction to this quantity, induced by the environment. This correction is
expressed in terms of the symmetrized noise power and is therefore insensitive to the
nature of the noise representing the environment, namely whether it is classical or
quantum mechanical. It is only the spectrum of the noise which counts. We analyze a
model of a spin-half (qubit) anisotropically coupled to its environment and explicitly
show the coincidence between the effect of a quantum environment and a classical
one.

1 Introduction

Three papers published independently in 1932 by Zener, Landau and Stueck-
elberg [7, 22, 14] have introduced the phenomenon known today as Landau-
Zener tunneling. The idea is to consider a 2-level system, where the energy
of each level varies linearly with a classical variable (which, in turn, is varied
linearly in time). As function of time, t, the energy levels should intersect but
for the inter-level coupling ∆ which gives rise to an “avoided crossing” in the
spectrum, cf. Fig. 1. Using the spin notation, one can write the Hamiltonian
as Ĥ = αtSz + ∆Sx. Here S = σ/2, and σz, σx are Pauli spin-1/2 opera-
tors; α is the rate of change of the energy of the pseudo-spin at asymptotic

9
A. Glatz et al. (eds.), Theory of Quantum Transport in Metallic and Hybrid
Nanostructures 9–23.
c© 2006 Springer. Printed in the Netherlands.
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times. The avoided crossing gap is ∆. The probability of transition from,
say, the lower level at time −∞, to the upper level at time +∞ is given by
PLZ = exp[−(π/2)∆2/α].

Besides being ubiquitous in physics and chemistry, the Landau-Zener
framework appears to suggest a natural definition for the notion of adia-
baticity. The adiabatic limit is approached when PLZ << 1, i.e., α << ∆2.
The latter inequality involves a comparison of the rate of change (of the time
dependent term in the Hamiltonian) with the gap in the spectrum, ∆. This
notion of the adiabatic limit has become widespread. A closer look suggests
that, in general, adiabaticity cannot be associated with comparing the rate of
change to the gap. Indeed, on one hand any finite, discrete-spectrum system
is coupled, however weakly, to the rest of the universe. Hence the emerging
spectrum is, at least in principle, always continuous and gapless. The naive
view would then imply that the adiabatic limit cannot be approached. This,
on the other hand cannot be correct: if we consider a finite system with a
discrete spectrum, for which adiabaticity is well defined, it is inconceivable
that an infinitesimal coupling to the continuum (rendering the overall spec-
trum continuous) will change its physics in a dramatic way. The resolution of
this problem is provided by the observation that the criterion for adiabaticity
involves not only spectral properties but also the matrix elements of the
system-environment coupling.

To gain some insight into this problem we focus here on the analysis of
the Berry phase [1] in a weakly dissipative system. It is particularly timely
to address this issue now given the recent experimental activities in realiza-
tion of controlled quantum two-level systems (qubits), and in particular, the
interest in observing a Berry phase (BP) (see, e.g., [5]). For instance, the
superconducting qubits have a coupling to their environment, which is weak
but not negligible [10, 15, 4], and thus it is important to find both the condi-
tions under which the Berry phase can be observed and the nature of that
Berry phase.

In this paper we appeal to a simple analysis of the problem. We first, in
Section 3, consider a quantum-mechanical framework, where a perturbative
approach is taken. When the environment is replaced by a single oscillator,
a second-order perturbation analysis is straightforward and produces a result
which allows for a simple interpretation. We then generalize the calculation
for a host of environmental modes. In Section 4 we consider a toy model where
the environment is replaced by a classical stochastic force. The quantities of
interest, the Lamb shift and the Berry phase, are then calculated, and simple
heuristic arguments are given to interpret the results. To complete the analogy
with the analysis of the previous section, here the “single-oscillator environ-
ment” is replaced by a simple periodic classical force (of random amplitude).
In Section 5 we summarize the relation between the quantum mechanical
approach and the classical model in more general terms.
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2 The system: spin + environment

We begin in the conventional way by writing the Hamiltonian for the “uni-
verse” (system + environment) as

Ĥ = Ĥsyst + Ĥenv + V̂coupling (1)

The system is defined as the set of those quantum degrees of freedom that
one is interested to control and measure; the environment consists of all the
rest, namely those degrees-of-freedom we can neither control nor measure. The
coupling between the system and environment is Vcoupling. The properties of
the environment are controlled by macroscopic parameters, such as tempe-
rature. Our treatment below applies to a reservoir at either zero or a finite
temperature.

For our purposes it is sufficient to represent the environment by a single
operator X which couples to a spin. The Hamiltonian then becomes

Ĥ = − 1
2 µgB · σ̂ − 1

2Xσz + Ĥenv . (2)

Hereafter we put µg = 1. Below we express our results in terms of the statis-
tical properties (correlators) of the environment’s noise, X(t). Depending on
the physical situation at hand, one can choose to model the environment via a
bath of harmonic oscillators [6, 3]. In this case the generalized coordinate of the
reservoir is defined as X =

∑
λixi, where {xi} are the coordinate operators

of the oscillators and {λi} are the respective couplings. Eq. 2 is then referred
to as the spin-boson Hamiltonian [8]. Another example of a reservoir could
be a spin bath [11] 5. However, in our analysis below we do not specify the
type of the environment. We will only assume that the reservoir gives rise to
markovian evolution on the time scales of interest. More specifically, the evo-
lution is markovian at time scales longer than a certain characteristic time
τc, determined by the environment 6. We assume that τc is shorter than the
dissipative time scales introduced by the environment, such as the dephasing
or relaxation times and the inverse Lamb shift (the scale of the shortest of
which we denote as Tdiss, τc 	 Tdiss). We further assume that τc 	 tP, the

5 For any reservoir in equilibrium the fluctuation-dissipation theorem provides
the relation between the symmetrized and antisymmetrized correlators of the
noise: SX(ω) = AX(ω) coth(ω/2T ). Yet, the temperature dependence of SX

and AX may vary depending on the type of the environment. For an oscillator
bath, AX (also called the spectral density JX(ω)) is temperature-independent,
so that SX(ω) = JX(ω) coth(ω/2T ). On the other hand, for a spin bath SX

is temperature-independent and is related to the spins’ density of states, while
AX(ω) = SX(ω) tanh(ω/2T ).

6 This time may be given by the correlation time of the fluctuations, but in general
is a more subtle characteristic of the spectrum related to its roughness near qubit’s
frequencies. Note further that for singular spectra τc may be ill defined and the
perturbative analysis may fail. See, e.g., [2, 12, 13, 9, 21, 19].
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characteristic variation time of the field B(t). Moreover, under these condi-
tions we may consider only lowest-order (in the system-environment coupling)
contributions to the quantities of interest: energy shifts, BP and relaxation
rates. Indeed, if one divides the evolution time interval into short domains
(	 tP), longer than τc but shorter than Tdiss, fluctuations at different do-
mains are uncorrelated and their effect can be analyzed separately. At the
same time, for each domain (	 Tdiss) the effect of the noise is weak. Thus, to
the leading order corrections to the dynamics may be described as corrections
to the rates (energies) of the spin dynamics, which may be estimated pertur-
batively. We also consider an underdamped spin, with the dissipative times
longer than the period of the coherent dynamics, Tdiss 
 1/B. This implies
that the time windows alluded to above consist of numerous oscillations, in
other words they are 
 1/B.

We have chosen an anisotropic spin-environment coupling, ∝ σz. This is a
realistic model, e.g., for many designs of solid-state qubits, where the different
components of the “spin” are influenced by entirely different environmental
degrees of freedom [10, 15, 4]. While our analysis can be generalized to account
for multiple-directional fluctuating fields [20], here we focus on unidirectional
fluctuations (along the z axis).

Another remark to be made concerns the possibility to observe a (weak)
dissipative correction to Berry phase in spite of the dephasing and relaxation
phenomena. While the respective time scales (T1, T2 and the inverse of the
correction to the Berry phase) scale similarly with the strength of fluctuations
(inversely proportionally to the noise power), they are dominated by different
frequency domains. Indeed, the dephasing and relaxation are known to be
dominated by resonant fluctuations with frequencies close to B (for the relax-
ation and the corresponding contribution to dephasing) and 0 (for the pure
dephasing), cf. Eq. (15) below. In contrast, as we shall see below, the Lamb
shift and the correction to the Berry phase accumulate contribution from the
entire range of frequencies. Thus, one may think of (engineering) a system
with an environment whose fluctuations at ν ∼ B and ν ∼ 0 are suppressed.
In this case, one can easily observe an observable correction to the Berry phase
at times when the dephasing and relaxation are still negligible.

3 Quantum-mechanical analysis

In this section we consider a two-level system coupled to an environment which
we treat as a quantum-mechanical system. We begin with a discussion of the
Lamb shift and then show, in Subsection 3.3, how the results for the Lamb
shift may be used to find the environment-induced correction to the Berry
phase and the relaxation times.
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3.1 Lamb shift as level repulsion

Consider first, for illustration, a simple system of the spin coupled to a single
oscillator, with the Hamiltonian

H = − 1
2Bσz − 1

2cσx(a† + a) + ω0a
†a, (3)

where c is the coupling constant. Let |n〉 denote the n-th level of the oscillator;
the second-order corrections to the energies of the states |↑, 0〉 and |↓, 0〉 are

E
(2)
↑ = −|〈↑, 0| V |↓, 1〉|2

ω0 +B
= −1

4
c2

ω0 +B
, (4)

and

E
(2)
↓ = −|〈↓, 0| V |↑, 1〉|2

ω0 −B
= −1

4
c2

ω0 −B
, (5)

where V ≡ (c/2)σx (a† + a) is the perturbation. This results in the following
correction to the level spacing E↓ − E↑:

E
(2)
↓ − E

(2)
↑ =

c2

2
B

B2 − ω2
0

. (6)

This correction (the Lamb shift) has different signs for fast (ω0 > B) and
slow (ω0 < B) oscillators. As one can see from Eqs. (4), (5), this result can be
understood in terms of the level repulsion [21]: the perturbation couples the
level |↑, 0〉 to |↓, 1〉 and |↓, 0〉 to |↑, 1〉. The levels of the latter pair are closer,
and the coupling has a stronger effect on their energies. They repel each other
due to the coupling, thus reducing the distance between |↑, 0〉 and |↓, 0〉 for
ω0 > B and increasing it for ω0 < B.

3.2 Second-order perturbative analysis

In this section we find the Lamb shift using the lowest-, second-order perturba-
tive analysis. In the Hamiltonian (2) we treat the coupling term V = − 1

2Xσz

as a perturbation: H = H0 + V. The eigenstates of H0 are |α, i〉, where
α =↑B/↓B denotes the eigenstates of the spin without dissipation, with the
spin direction parallel or antiparallel to the filed B, and i denotes eigenstates
of the environment. The perturbation theory gives for the corrections to their
eigenenergies:

E
(2)
α,i = −

∑
β,j

|〈α, i| V |β, j〉|2

E
(0)
β + E

(0)
j − E

(0)
α − E

(0)
i − i0

. (7)

For V = − 1
2Xσz we notice that 〈↑B |σz |↑B〉2 = 〈↓B |σz |↓B〉2 = cos2 θ and

〈↑B |σz |↓B〉2 = 〈↓B |σz |↑B〉2 = sin2 θ, and find for the environment-averaged
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quantities E(2)
α ≡

∑
i ρi E

(2)
α,i (see the discussion of these quantities at the end

of this subsection):

E
(2)
↑ = −cos2 θ

4

∑
i,j

ρi | 〈i|X |j〉 |2

E
(0)
j − E

(0)
i − i0

− sin2 θ

4

∑
i,j

ρi | 〈i|X |j〉 |2

B + E
(0)
j − E

(0)
i − i0

. (8)

The correction to E↓ is obtained by substituting B → −B into the above
equation. Now using the identity

1
E − i0

= i
∫ ∞

0

dt e−i(E−i0)t , (9)

we rewrite Eq. (8) as

E
(2)
↑ = − i

4

∫ ∞

0

dt 〈X(t)X(0)〉
(
cos2 θ + sin2 θe−iBt

)
e−0t, (10)

where we have used the relation

〈X(t)X(0)〉 =
∑
i,j

ρi 〈i|X |j〉 〈j|X |i〉 e−i(Ej−Ei)t . (11)

In terms of the the Fourier transform 〈X2
ν 〉 ≡

∫
dt 〈X(t)X(0)〉 eiνt we obtain

E
(2)
↑ = −1

4
cos2 θ

∫
dν

2π
〈X2

ν 〉
ν − i0

− 1
4

sin2 θ

∫
dν

2π
〈X2

ν 〉
ν +B − i0

. (12)

For the Lamb shift E
(2)
Lamb ≡ �e(E(2)

↓ − E
(2)
↑ ) this gives a principal value

integral

E
(2)
Lamb = 1

2 sin2 θ P
∫

dν

2π
SX(ν)
B − ν

= B sin2 θ P
∫ ∞

0

dν

2π
SX(ν)
B2 − ν2

, (13)

where

SX(ν) ≡ 1
2 (〈X2

ν 〉 + 〈X2
−ν〉) = 1

2

∫
dt 〈[X(t), X(0)]+〉 eiνt . (14)

Thus the Lamb shift is expressed in terms of the symmetrized correlator SX

and is insensitive to the antisymmetric part of the noise spectrum.
As one can see from Eq. (13), in agreement with the discussion in the

previous section, the high-frequency noise (ν > B) reduces the energy gap
between the spin states [8], while the low frequency modes (ν < B) increase
the energy gap.

Similarly, from Eq. (12) one can evaluate the dephasing time:

1
T2

= −�m(E(2)
↑ + E

(2)
↓ ) =

cos2 θ
4

SX(ν = 0) +
sin2 θ

4
SX(ν = B) . (15)
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This expression correctly reproduces the contribution of the transverse fluc-
tuations (∝ sin2 θ) to the dephasing rate, but underestimates the longitudinal
contribution (∝ cos2 θ) by a factor of two (cf. Ref. [2, 12, 16]). One can show
that an accurate evaluation of this contribution, as well as the analysis of the
relaxation, requires taking into account corrections to the eigenstates, and not
only to the eigenenergies (7). More precisely, our calculation of the corrections
to the eigenenergies in this subsection corresponds to evaluation only of the
four left diagrams in Fig. 7 of Ref. [9]; the term i0 in the denominators allows
one to find also the outgoing transition rates from the eigenstates (and the
respective contribution, ∝ sin2 θ, to dephasing) but only the part of the ‘pure-
dephasing’ rate, ∝ 1

4 cos2 θ. Analysis of the two remaining diagrams in Fig. 7
and those in Fig. 6 allows one to find also the pure dephasing rate (as well
as the incoming transition rates, the latter though do not require an extra
evaluation due to probability conservation).

3.3 From Lamb shift to Berry phase

So far we have analyzed the environment-induced correction to the level split-
ting (the Lamb shift). Using the results above one can evaluate also the
environment-induced correction to the Berry phase for a slow cyclic varia-
tion of the magnetic field B [17, 18, 20, 19].

Indeed, consider the simplest case of conic variations of the field around
the z-axis (to which the environment is coupled), as shown in Fig. 1: the
field varies at a constant rate, with the low angular velocity ωB, and traverses
the circle after the period tP ≡ 2π/ωB. The analysis of the spin dynamics
is considerably simplified by going to the frame, rotating with the angular
velocity ωBẑ, where ẑ is the unit vector along the z-axis. In this frame the
spin is subject to the fluctuating field Xẑ and the field B + ωBẑ, which is
stationary. Thus, in this frame one can use the results of the analysis above
to obtain the Lamb shift, if one substitutes B by B + ωBẑ. In other words,
the correction to the Lamb shift associated with the variation of the field B
in time, is given by taking the derivative ωB∂Bz

of the Lamb shift (13) and
multiplying by the period of variation, tP . After a full period the basis of the
rotating frame makes a complete circle and returns to its initial position, i.e.
coincides with the laboratory frame’s basis. Hence the phases accumulated in
the rotating and laboratory frames coincide, and it is sufficient to evaluate it
in the rotating frame. Thus, one finds the environment-induced correction to
the Berry phase to be

δΦBP = 2π
∂ELamb(B)

∂Bz
. (16)

Taking the derivative of Eq. (13), we find:

δ(2)ΦBP = cos θ sin2 θ P
∫

dν
SX(ν)(2ν − 3B)

2B(B − ν)2
. (17)
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X(t)

θ

B

ωB
z

Fig. 1. Conic variations of the field around the z-axis (to which the environment is
coupled). (see text)

(Notice the convention: this expression gives the correction to the relative
Berry phase between the spin-up and spin-down states, rather than to the
phases of each of these states.) As for the Lamb shift, the contributions of
the high- and low-frequency fluctuations are of opposite signs. For the Berry
phase the contribution changes sign at ν = 3B/2.

In passing we note that this analysis can be generalized to an arbitrary
(but adiabatic) path B(t), this enables one to see that the correction to the
Berry phase is geometric, but that its geometric nature is very different from
the Berry phase of an isolated spin-half [20].

In Section 4 we shall find exactly the same expression for the Lamb shift
and therefore for the Berry phase in the case of classical environment.

3.4 High-frequency noise: renormalization of the transverse B-field

Consider now the influence of the high-frequency fluctuations in the envi-
ronment only (ν 
 B). Since the frequencies of the fluctuations are much
higher than the typical spin-dynamics frequencies, one may eliminate these
high-frequency fluctuations using the adiabatic (Born-Oppenheimer) approxi-
mation, as described, e.g., by Leggett et al. [8].

Indeed, consider the spin-boson model, with the Hamiltonian

H = − 1
2 (B +Xẑ)σ + Henv , (18)

where X =
∑

i ci (a
†
i + ai ) and Henv =

∑
i ωi a

†
iai . Let us ignore the low-

frequency oscillators and focus on those at high frequencies ν 
 B. These fast
oscillators adjust almost instantaneously to the slowly varying spin state. For
the last two terms of the Hamiltonian (18) two lowest-energy states are

∣∣∣↑̃〉 =

|↑〉
∏

i

∣∣∣g↑i 〉 and
∣∣∣↓̃〉 = |↓〉

∏
i

∣∣∣g↓i 〉. Here
∣∣∣g↑i 〉 denotes the ground state of the

ith oscillator corresponding to the spin state |↑〉, i.e. the ground state of
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ωi a
†
iai + ci (a

†
i + ai ), and

∣∣∣g↓i 〉 is defined similarly; further eigenstates of the
last two terms are separated by a gap ∼ ν.

Consider now the matrix elements of the first term − 1
2Bσ in this two-state

low-energy subspace; one finds that its transverse component is suppressed by
the factor∏

i

〈
g↑i

∣∣∣ g↓i 〉 =
∏

i

exp(−c2i /2ω2
i ) = exp

(
−
∫ ∞

0

dν

2π
JX(ν)
ν2

)
, (19)

where JX(ν) ≡ π
∑

i c
2
i δ(ν − ωi) is the spectral density of the oscillator bath.

At a finite temperature T each high-frequency oscillator remains in its thermal
equilibrium state (subject to the spin state), rather than the ground state, and
on the rhs of Eq. (19) the spectral density JX(ν) is replaced by the thermal
noise power SX(ν) = JX(ν) coth(ν/2kBT ).

Thus the role of the high-frequency oscillators is to suppress the transverse
field component (in other words, the transverse g-factor). If we are interested
only in the contribution to the level spacing (the Lamb shift), one should
consider only the longitudinal (‖ B) part of the renormalization, i.e. multiply
the result by sin θ, to obtain Eq. (13).

3.5 Effective-action analysis

One can study the spin dynamics integrating out the environment and us-
ing the effective action for the spin. We derive the effective action using
the Feynman-Vernon-Keldysh technique. For the interaction −Xsz with the
z-component of the spin, the effective action (the influence functional) reads

iΦinfl = −1
2

∫
CK

dt

∫
CK

dt′ sz(t) · sz(t′) [ iGX(t, t′) ] , (20)

where we assumed the Gaussian statistics of X, and defined the Green function
GX as iGX(t, t′) = 〈TCK

X(t)X(t′)〉. The time ordering here refers to the
Keldysh time contour CK , and in Eq. (20) we integrate over CK ; accordingly
each of the time dependent variables assumes a ‘Keldysh index’ u, d indicating
the upper/lower branch of this contour.

After the Keldysh rotation one obtains the influence functional in terms
of the classical and quantum components, sc

z ≡ (su
z + sd

z)/2 and sq
z ≡ su

z − sd
z :

Φinfl = −
∫

dtdt′
[
sq

z(t)G
R
X(t− t′)sc

z(t
′) +

1
4
sq

z(t)G
K
X(t− t′)sq

z(t
′)
]
, (21)

in terms of the retarded and Keldysh Green functions, GR
X ≡ −iθ(t − t′)

〈[X(t), X(t′)]−〉 and GK
X ≡ −i〈[X(t), X(t′)]+〉 = −2iSX(t− t′).

For classical noise X the commutator in the definition of GR vanishes, and
one finds
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Φclass
infl =

i
2

∫
dt

∫
dt′ sq

z(t)SX(t− t′) sq
z(t

′) . (22)

The results (13), (17) for the Lamb shift and the Berry phase involve only
SX and not the antisymmetrized correlator. Hence for the analysis of these
quantities it should be sufficient to use the functional (22). Alternatively, one
may consider a problem with a classical random field X(t) to reproduce these
results. In the next section we perform the corresponding analysis.

4 The Classical Model

In this section we analyze the dynamics of a spin subject to a classical ran-
dom field and derive the equation of motion for the spin dynamics (the spin-
evolution operator), averaged over the fluctuations. Following the discussion
of the case with quantum fluctuations, we first analyze the dynamics in a
stationary field B and a random field; exactly as in the quantum case one can
reduce the analysis of the dissipative corrections to the Berry phase accumu-
lated over a conic loop to the problem with a stationary field by going over
to a rotating frame.

As we have demonstrated above, in the quantum problem the results for
the corrections to the phase and dephasing, associated with the controlled
dynamics of the magnetic field, involve only the symmetric part of the noise
correlator, one expects that the results for these quantities in the classical
problem, expressed in terms of the noise power, would coincide with the quan-
tum results. Indeed, we find this relation below.

Specifically, we analyze the following problem: a spin S is coupled to a
controlled magnetic field B (stationary for now, but to be varied slowly in
a Berry-phase experiment) and a randomly fluctuating field X(t), which we
treat as a random variable with the correlation function given by SX(t). Its
dynamics is governed by the Larmor equation:

Ṡ = [B + X(t)] × S . (23)

This equation can be used to describe the dynamics of either a classical spin
or the average spin value (i.e. the density matrix) of a spin-1/2.

As we discussed in the Introduction, we assume that the noise is weak and
short-correlated, i.e., that considerable dissipative contributions to the spin
dynamics arise on time scales much longer than the typical correlation time
τc of the noise. Below we discuss the influence of the low- and high-frequency
fluctuations on the (classical) spin dynamics and recover the results of the
quantum analysis above. Further, using the result for the low-frequency con-
tribution we obtain the correction to the Berry phase from the environmental
fluctuations at all frequencies.
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4.1 Low-frequency noise: Lamb shift

Consider first the effect of a slowly fluctuating random field X = Xẑ. Similar
to the quantum-mechanical analysis in Section 3 we begin with the case of har-
monic fluctuations (of random amplitude) and purely transverse noise (B =
Bx̂, i.e. θ = π/2). Consider fluctuations X = cν cos(νt) at a low frequency
ν 	 B, during a time interval δt. To evaluate the evolution operator, we an-
alyze the dynamics in a reference frame (ξ̂, η̂, ζ̂) fluctuating together with the
field (with the ζ-axis along B + X(t) and the η-axis, for instance, orthogonal
to B and X). Since the fluctuating angular velocity of this frame’s rotation is
negligible, ∼ cνν/B 	 cν , the effective magnetic field in this frame |B+X(t)|ζ̂
points along the ζ-axis. Thus the dynamics reduces to rotation about this axis
by the angle φ(t) =

∫ t+δt

t
dτ |B + X(τ)| ≈

∫ t+δt

t
dτ(B + X2(τ)/2B), where

B = |B|. Averaging the transverse spin component Sx + iSy ∝ eiφ(t) one finds
a lowest-order contribution to the phase factor, δt〈X2〉/2B, i.e. a Lamb shift
c2ν/4B (we assumed δt much longer than the period of oscillations, 1/ν).

In principle, the evolution in the laboratory frame differs from that in the
rotation frame. Transformation to/from the rotation frame at the beginning
and the end of the time interval introduces corrections to the evolution opera-
tor or order cν/B. This is however a negligible boundary contribution. Indeed,
for a sufficiently long time interval δt 
 1/cν the phase shift due to the Lamb
shift, of order c2νδt/B, is much larger (but still small, as long as δt 	 B/c2ν).

Similar results hold for more general low-frequency fluctuations, non-
harmonic and with arbitrary direction θ. Indeed, in the same rotating frame
the dynamics reduces to rotation about the ζ-axis by the angle φ(t) =∫ t+δt

t
dτ |B +X(τ)| ≈

∫ t+δt

t
dτ(B+X‖(τ)+X2

⊥(τ)/2B), where X‖ = X cos θ,
X⊥ = X sin θ are the longitudinal and transverse components of X (relative
to B). Averaging the transverse spin component ∝ eiφ(t) one finds, apart from
dephasing, a lowest-order contribution to the phase factor, δt〈X2

⊥〉/2B, and
hence the Lamb shift

δE = sin2 θ

∫
dν

4π
SX(ν)
B

, (24)

where θ is the angle between B and the direction ẑ of the noise. This result
coincides with the low-frequency contribution in Eq. (13).

4.2 From low frequencies to all frequencies

The expression (24) and the symmetry of the problem suggests a way to find
the contribution of all, not only slow, modes in the environment to the Lamb
shift (and later to the Berry phase). Indeed, we discuss weak short-correlated
noise, i.e. such that its contribution to the dynamics on time scales or order
τc is small. Contributions from different time intervals ∼ τc are uncorrelated
and add up independently. Hence in the evaluation of the (real and imaginary)
contribution of such a short interval to the evolution frequencies (the Lamb
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shift, the dephasing and relaxation rates) it is enough to consider the lowest
non-vanishing, i.e. second order.

The symmetry of the problem can be used to analyze the structure of
such a second-order contribution. The spin-rotational symmetry (about the
B-field’s direction) and the time-translational symmetry imply that (i) the
longitudinal and transverse fluctuations, X⊥ and X‖, do not interfere and may
be considered separately; (ii) it is convenient to expand the transverse fluctu-
ating field in circularly polarized harmonic modes, and the latter contribute
independently.

The longitudinal noise gives rise to the pure dephasing (and only the low
frequencies � 1/T2 contribute), without affecting the level splitting. As for
the transverse noise, for a single circularly polarized mode at frequency ν
it is convenient to analyze its contribution in the spin frame, rotating at
frequency ν around the field B. In this frame the Larmor field is B− ν in the
direction of B, and the fluctuating circularly polarized mode is slow. Applying
to this mode Eq. (24), going back to the laboratory frame and adding up
contributions of all modes we arrive at the expression for the correction to the
Larmor frequency:

δE = sin2 θP
∫

dν

4π
S(ν)
B − ν

. (25)

It is thus this result which needs to be compared with the quantum correction
(Lamb shift) of the previous section. Symmetrization of the integral in Eq. (25)
w.r.t. to ν brings it to the form of Eq. (13). Notice that regularization of
this expression via the introduction of +i0 in the denominator allows us also
to recover the imaginary part of the Lamb shift, i.e. a contribution to the
dephasing rate.

Φ(t)

X(t)

Φ(t)

B

B
Bav

z

B(t)

Fig. 2. (see text)
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4.3 High frequencies

Although Eq. (25) describes the contribution of all frequencies, it is interest-
ing to discuss specifically the limit of high frequencies. In this subsection we
provide an argument which parallels the result of subsection 3.4: the high-
frequency fluctuations (ν 
 B) suppress the transverse (⊥ ẑ) component of
the B-field.

Indeed, to solve for the dynamics in the presence of high-frequency fluc-
tuations in a fixed direction, X(t)ẑ, and the static field B, let us analyze the
dynamics in the frame that rotates about the ẑ-axis with angular velocity
X(t), i.e. differs from the lab frame by a rotation by the fluctuating angle
Φ(t) =

∫ t

0
X(τ)dτ . The rotation of this frame is chosen to exactly compensate

for the field X(t)ẑ, and the Larmor field B(t) in this frame is just the B-field,
but now fluctuating due to the frame’s rotation as shown in Fig. 2. The spin
dynamics is governed by the Larmor equation Ṡ = B(t)×S, and the value of
the spin changes considerably only on time scales of order 1/B, during which
many fluctuations occur. Looking at the dynamics on intermediate time scales,
between 1/ν and 1/B, one finds that the spin dynamics is governed by the
value of the B-field averaged over fast fluctuations. The averaging affects only
the horizontal (orthogonal to z) component of the B-field. The direct evalua-
tion shows that the horizontal component is suppressed exactly by the factor

exp[−
∞∫
0

(dν/2π)SX(ν)/ν2] (cf. Eq. (19)). For instance, for a single mode at

frequency ν we have X(t) = 2Xν cos(νt) and Φ(t) = 2Xν sin(νt)/ν; then the
transverse component of the field is suppressed by the factor 1− 〈Φ2〉/2, and
〈Φ2〉/2 = 〈X2

ν 〉/ν2. This evaluation of the dynamics in the rotating frame
relies on the small parameter B/ν.

The spin-evolution operator (before averaging) Ôlab(t, t′) in the laboratory
frame is related to that in the rotating frame, Ôlab(t, t′) = Ôz(−Φ(t))Ôrot(t, t′)
Ôz(Φ(t′)), via the transformation Oz(Φ(t)) from the lab frame to the rotating
frame. However, this transformation Ôz(Φ(t)) at the beginning and at the end
of the evolution is close to the identity operator, and taking it into account
adds only a boundary effect, which does not grow with the size of the time
interval and is therefore negligible.

4.4 Berry phase under classical noise

To find a dissipation-induced correction to the Berry phase we may use the
same approach as in Section 3.3: first, we find the Lamb shift for a stationary
field B and then evaluate the Berry phase using the relation (16). In this way
we find the same expression (17) for the Berry phase.
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5 Conclusions

In this paper we have derived expressions for the environment-induced correc-
tion to the Berry phase, for a spin coupled to an environment. On one hand,
we presented a simple quantum-mechanical derivation for the case when the
environment is treated as a separate quantum system. On the other hand, we
analyzed the case of a spin subject to a random classical field. The quantum-
mechanical derivation provides a result which is insensitive to the antisym-
metric part of the random-field correlations. In other words, the results for the
Lamb shift and the Berry phase are insensitive to whether the different-time
values of the random-field operator commute with each other or not. This ob-
servation gives rise to the expectation that for a random classical field, with
the same noise power, one should obtain the same result. For the quantities
at hand, our analysis outlined above involving classical randomly fluctuating
fields has confirmed this expectation.

Furthermore, we provided simple arguments, which allow one to under-
stand the contribution of fluctuations in various frequency ranges (below and
above the Larmor frequency).
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Summary. We investigate transport in a granular metallic system at large tunnel-
ing conductance between the grains, gT � 1. We show that at low temperatures,
T ≤ gT δ, where δ is the single mean energy level spacing in a grain, the coherent
electron motion at large distances dominates the physics, contrary to the high tem-
perature (T > gT δ) behavior where conductivity is controlled by the scales of the
order of the grain size. The conductivity of one and two dimensional granular met-
als, in the low temperature regime, decays with decreasing temperature in the same
manner as that in homogeneously disordered metals, indicating thus an insulating
behavior. However, even in this temperature regime the granular structure remains
important and there is an additional contribution to conductivity coming from short
distances. Due to this contribution the metal-insulator transition in three dimen-
sions occurs at the value of tunnel conductance gC

T = (1/6π) ln(EC/δ), where EC is
the charging energy of an isolated grain, and not at the generally expected gC

T ∝ 1.
Corrections to the density of states of granular metals due to the electron-electron
interaction are calculated.

1 Introduction

A great deal of research in the current mesoscopic physics focuses on under-
standing properties of granular metals(see [1, 2, 3]). The interest is motivated
by the fact that while their properties are generic for a wealth of strongly cor-
related systems with disorder, granular metals offer a unique experimentally
accessible tunable system where both the interaction strength and degree of
disorder can be controlled.

The key phenomenon revealing the most of the underlying physics is
transport, where the effects of interactions play a crucial role. The processes
of electron tunneling from grain to grain that govern electron transfer, are
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accompanied by charging the grains involved after each electron hop to
another grain. This may lead to a Coulomb blockade, and one justly expects
this effect to be of the prime importance at least in the limit of weak coupling.
It makes it thus clear, on a qualitative level, that it is the interplay between
the the grain-to-grain coupling and the electron-electron Coulomb interaction
that controls transport properties of granular metals; yet, despite the signifi-
cant efforts expended, a quantitative theory of transport in metallic granular
systems is still lacking.

A step towards formulation such a theory was made recently in [[3]]. It
was shown that depending on the dimensionless tunneling conductance gT one
observes either exponential-, at gT 	 1, or logarithmic, at gT 
 1 tempera-
ture dependence of conductivity. The consideration in [[3]] was based on the
approach developed by Ambegaokar, Eckern and Schön (AES) [5] for tunnel
junctions. This technique however, as shown in [4], applies only at tempera-
tures T > gT δ, where δ is the mean energy level spacing in a single grain. At
low temperature region, T ≤ gT δ, the effects of the electron coherent motion
at distances much exceeding the single grain size a must be included; this
important regime is not described by the AES approach [4].

Although experimentally the low temperature regime is well within the
experimental reach [1, 2], it has never been addressed theoretically so far.
The important question whether the system is a metal or becomes an insula-
tor, in other words, whether the conductivity of the granular metals at large
conductances remain finite in the limit of T → 0 is still open.

In this paper we investigate the low-temperature conductivity of granu-
lar samples focusing on the case of large tunneling conductance between the
grains, gT 
 1. To this end we develop a technique that goes beyond the AES
approach and includes effects of coherent electron motion at distances larger
than the size of the grain. Without the Coulomb interaction the granular sys-
tem would be a good metal in the limit, gT 
 1, and our task is to include
the charging effects into the theory. We find that at temperatures, T ≤ gT δ
properties of the granular metal depend on the dimensionality of the array,
and corrections to the conductivity and density of states due to the effects
of Coulomb interaction are similar to those obtained in Ref. [7] for a homo-
geneous metal. Thus at low temperatures the systems behaves essentially as
a homogeneous metal contrasting the case of large temperatures, T 
 gT δ
considered in Ref. [3].

This in particular means that at large conductances the 3D system is a
good metal. On the other hand, at gT 	 1 a granular sample is in the insulat-
ing state. Therefore a 3D system should exhibit a metal-insulator transition
at the critical value of the conductance gT , such that samples with conduc-
tances gT > gC

T are metals and their conductivity remains finite at T → 0
while samples with gT < gC

T are insulators and their conductivity vanishes at
T → 0.
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2 Results

The main results of our work are as follows: (i) We find the critical value gC
T of

the tunnel conductance at which the metal-insulator transition in 3D occurs

gC
T = (1/6π) ln(EC/δ), (1)

where EC is the charging energy of an isolated grain. (ii) We find the ex-
pression for the conductivity of a granular metal that includes corrections
due to Coulomb interaction and holds for all temperatures as long as these
corrections are small. The corresponding answer can be conveniently written
separating the correction due to the contribution from the large energy scales
ε > gT δ from that coming from the low energy scales ε < gT δ. Denoting
corrections as δσ1 and δσ2 respectively we have

σ = σ0 + δσ1 + δσ2, (2)

where σ0 = 2e2gTa
2−d, with a being the size of a single grain is the classical

Drude conductivity for a granular metal (spin included). Correction δσ1 in
Eq. (2) contains the dimensionality of the array d only as a coefficient and is
given by the following expression [3],

δσ1

σ0
= − 1

2πdgT
ln

[
gTEC

max (T, gT δ)

]
. (3)

On the contrary the correction δσ2 in Eq. (2) that is important only at tem-
peratures T < δgT strongly depends on the dimensionality of the array

δσ2

σ0
=

⎧⎪⎪⎨⎪⎪⎩
α

12π2gT

√
T

gT δ d = 3,

− 1
4π2gT

ln gT δ
T d = 2,

− β
4π

√
δ

TgT
d = 1.

(4)

Here α =
∫∞
0

dxx−1/2[1− coth(x)+x/ sinh2(x)] ≈ 1.83 and β =
∫∞
0

dxx−3/2

[coth(x) − x/ sinh2(x)] ≈ 3.13 are the numerical constants. For a 3d granular
system a temperature independent term of the order 1/gT has been subtracted
in the first line in Eq. (4).

Corrections δσ1 and δσ2 are of a different origin: the correction δσ1 comes
from the large energy scales, ε > gT δ where the granular structure of the
array dominates the physics. On the other hand, correction δσ2 in Eq. (4) is
similar to that obtained for homogeneous metals long ago [7] and comes from
the low energy scales, ε ≤ gT δ, where the coherent electron motion on the
scales larger than the grain size a dominates the physics.

It is important to note that in the low temperature regime all temperate
dependence of conductivity comes from the correction δσ2. At the same time,
in this regime the correction δσ1, though being temperature independent, still
exists and can be even larger than δσ2.
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When deriving Eqs. (2) we neglected possible weak localization corrections
that may originate from quantum interference of electron waves. This approxi-
mation is legitimate if a magnetic field is applied as in Ref. [1] or dephasing
is strong due to inelastic processes.

3 Model and Derivation

Now we turn to the description of our model and the derivation of Eqs. (2):
We consider a d−dimensional array of metallic grains with the Coulomb inter-
action between electrons. The motion of electrons inside the grains is diffusive
and they can tunnel from grain to grain. In principle, the grains can be clean
such that electrons scatter mainly on grain surfaces. We assume that the
sample in the absence of the Coulomb interaction would be a good metal. For
large tunneling conductance we may also neglect the nonperturbative charging
effects (discretness of the electron charge) [6], which are exponentially small
(as exp(−#gT )). Although we assume that the dimensionless tunneling con-
ductance gT is large, it should be still smaller than the grain conductance,
g0, such that gT < g0. This inequality means that the granular structure is
still important and the main contribution to the macroscopic resistivity comes
from the contacts between the grains.

The system of weakly coupled metallic grains can be described by the
Hamiltonian

Ĥ = Ĥ0 + Ĥc +
∑
ij

tij [ ψ̂†(ri) ψ̂(rj) + ψ̂†(rj) ψ̂(ri)], (5)

where tij is the tunneling matrix element corresponding to the points of con-
tact ri and rj of i-th and j−th grains. The Hamiltonian Ĥ0 in Eq. (5) describes
noninteracting isolated disordered grains. The term Ĥc describes the Coulomb
interaction inside and between the grains. It has the following form

Ĥc =
e2

2

∑
ij

n̂i C
−1
ij n̂j , (6)

where Cij is the capacitance matrix and n̂i is the operator of electron number
in the i-th grain. In the regime under consideration one can neglect the coordi-
nate dependence of a single grain diffusion propagator. The electron hopping
between the grains can be included using the diagrammatic technique deve-
loped in Refs. [8, 4], which we outline below.

The electron motion in a random impurity potential within a single grain
can be considered using the standard diagrammatic techniques described, for
example in Ref. [9]. Electron hopping between the grains can be considered in
a similar way assuming that tunneling matrix elements between neighboring
grains are random variables obeying the Gaussian statistics and correlated as
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a) b)

Fig. 1. Self energy of the election Green function averaged over impurity potential
inside the grains and over tunneling elements between the grains. Averaging over
the impurity potential is represented by the dotted line (a) while tunneling elements
are represented by crossed circles (b).

〈tk1,k2 tk3,k4〉 = t2 (δk1,k3 δk2,k4 + δk1,k4 δk2,k3), (7)

where t is related to the average intergranular conductance as gT = 2πt2/δ2.
The average electron Green function is defined by the Dyson equation where
the self energy, shown on Fig. 1 has two contributions: The first contribution
(a) corresponds to scattering inside a single grain while the second (b) is due
to processes of scattering between the neighboring grains. Both this processes
result in a similar contribution ∼ sign(ω) to the electron self-energy, thus on
the level of single particle electron Green function intergranular scattering
results only in a small renormalization of the relaxation time τ

τ−1 = τ−1
0 + 2dgT δ, (8)

where τ0 is the electron mean free time in a single grain.
The next step is to consider the diffusion motion of electron through a

granular metal: Diffusion motion inside a single grain is given by the usual
ladder diagram that results in the diffusion propagator

D0(Ω) =
1
|Ω| , (9)

where Ω is the Bosonic Matsubara frequency. Coordinate dependence in (9)
was neglected since we assume the zero dimensional limit for a single grain.
Tunneling between the grains is accounted for in a similar way, such that the
total diffusion propagator is given by the ladder diagrams shown on Fig 2a.
This results in the following expression:

D(Ω, q) =
1

|Ω| + δεq
, (10)

where εq = 2gT

∑
a(1 − cosqa) with a being the lattice vectors. For small

quasimomenta q 	 a−1 we have εq → gT δa
2q2 such that the diffusion propa-

gator (10) describes the diffusion motion on the scales much larger than the
granular size with effective diffusion coefficient D = gTa

2δ.



32 I. S. Beloborodov et al.

= +

= +

= +

(a)

(b)

(c)

D0 D0

Fig. 2. These diagrams represent (a) Dyson equation for diffusion propagator, (b)
interaction vertex dressed by impurity and intergranular scattering, (c) Screened
Coulomb interaction.

Similar ladder diagrams describe the dressing of interaction vertex as it
shown in Fig. 2b. The dressed vertex can be used to obtain the polariza-
tion operator, that defines effective dynamically screened Coulomb interaction
(Fig 2c):

V (Ω, q) =
[
C(q)
e2

+
2εq

|Ω| + δεq

]−1

. (11)

The conductivity of the granular metals is given by the analytical continuation
of the Matsubara current-current correlator. In the absence of the electron-
electron interaction the conductivity is represented by the diagram (a) in
Fig. 3 that results in high temperature (Drude) conductivity σ0 which is
defined below Eq. (2). First order interaction corrections to the conductivity
are given by the diagrams (b-e) in Fig. 3. These diagrams are analogous to
ones considered in Ref. [7] for the correction to the conductivity of homo-
geneous metals. We consider the contributions from diagrams (b,c) and (d,e)
separately: The sum of the diagrams (b,c) results in the following correction
to the conductivity

δσ1

σ0
= − 1

2πdgT
Im

∑
q

∫
dω γ(ω) εq Ṽ (ω,q). (12)

where γ(ω) = d
dωω coth ω

2T , and the potential Ṽ (ω,q) is the anaclitic con-
tinuation of the screened Coulomb potential with dressed interaction vertices
attached at both ends

Ṽ (ω,q) =
2EC(q)

(εqδ − iω) (4 εqEC(q) − iω)
. (13)
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Fig. 3. Diagrams describing the conductivity of granular metals: the diagram (a)
corresponds to σ0 in Eq. (2) and it is the analog of Drude conductivity. Diagrams
(b)-(e) describing first order correction to the conductivity of granular metals due to
electron-electron interaction. The solid lines denote the propagator of electrons and
the dashed lines describe effective screened electron-electron interaction. The sum
of the diagrams (b) and (c) results in the conductivity correction δσ1 in Eq. (2).
The other two diagrams, (d) and (e) result in the correction δσ2.

The above expression was simplified using that the charging energy EC(q) =
e2/2C(q), expressed in terms of the Fourier transform of the capacitance ma-
trix C(q) is much larger than δ. Performing the integration over the frequency
and summing over the quasimomentum q in Eq. (12) with the logarithmic
accuracy we obtain the correction (3). One can see from Eq. (12) that the
contribution δσ1 in Eq. (3) comes from the large energy scales, ε > gT δ such
that at low temperatures the logarithm is cut off on the energy scale of the
order of gT δ.

To obtain the total correction to the conductivity of granular metal the
two other diagrams, (d) and (e) in Fig. 3 should be taken into account. These
diagrams result in the following contribution to the conductivity

δσ2

σ0
= − 2gT δ

πd

∑
q

∫
dω γ(ω) Im

Ṽ (ω,q)
∑

a sin2(qa)
εqδ − iω

. (14)

In contrast to the contribution δσ1 in Eq. (12), the main contribution to the
sum over the quasimomentum q in Eq. (14) comes from the low momenta,
q 	 1/a. In this regime the capacitance matrix, C(q) in Eqs. (13) and (14)
has the following asymptotic form

C−1(q) =
2
ad

⎧⎨⎩
ln(1/qa) d = 1,
π/q d = 2,
2π/q2 d = 3.

(15)

Using Eqs. (13-15), we obtain the result for the correction δσ2 in Eq. (4).
This correction has a physical meaning similar to that of the Altshuler-Aronov
correction [7] derived for homogeneous disordered metals.

Comparing our results in Eqs. (2) with those obtained in Ref. [3] using
the AES functional we see that the correction to the conductivity obtained
in Ref. [3] is equivalent to the correction δσ1 in Eq. (2), which corresponds
in our approach to the sum of diagrams (b) and (c) in Fig. 3. The correction
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δσ2 in Eq. (2) becomes important only at low temperatures, T < gT δ where
AES functional is not applicable. While in our approach both corrections to
the conductivity must be small δσ1, δσ2 	 σ0 the method of Ref. [3] gives a
possibility to show that for T 
 gT δ the dependence of the conductivity is
logarithmic so long as σ/e2a2−d 
 1.

It follows from Eq. (4) that at low temperatures, T < gT δ, for a 3d granular
array, there are no essential corrections to the conductivity coming from the
low energies since the correction δσ2 is always small. This means that the
result for the renormalized conductance, g̃T of Ref. [3] (see also [10]) for 3D
samples within the logarithmic accuracy can be written as

g̃T (T ) = gT − 1
6π

ln
[

gTEC

max (g̃T δ, T )

]
, (16)

such that it is valid for all temperatures as long as the renormalized con-
ductance, g̃T 
 1. One can see from Eq. (16) that for bare conductance,
gT 
 (1/6π) ln(gTEC/δ) the renormalized conductance, g̃T is always large
and the system remains metallic down to zero temperatures. In the opposite
limit gT < (1/6π) ln(gTEC/δ), the system flows when decreasing the tempe-
rature to the strong coupling regime, g̃T ∼ 1 that indicates the onset of the
insulating phase. We see that with the logarithmic accuracy the critical value
of the conductance gC

T is given by Eq. (1).
The result for the bare critical conductance in Eq. (1) agrees with the

estimate for gC
T that follows from the consideration of Coulomb blockade

phenomena in a single grain [12]: the contribution of Coulomb blockade to
thermodynamic quantities in the regime of strong coupling is controlled by
the factor ∼ exp[−πg(T )], where g(T ) = gT − (1/Zπ) ln(gTEC/T ) with Z
being the number of contacts. Coulomb blockade effects become strong at
g(T ) ∼ 1. Taking T ∼ gT δ and Z = 6 we estimate the bare conductance as
gC

T ∼ (1/6π) ln(gTEC/T ) that coincides with Eq. (1).
Corrections to the density of states (DOS) can be obtained in a similar

way by considering the diagrams shown on Fig 4. The diagram (b) results
only in the energy shift, and therefore is not important, while the diagram (a)
results in the following contribution

δν(ε)
ν0

= − 1
4π

∑
q

Im
∫

dω
tanh[(ε− ω)/2T ]

(εqδ − iω)[εq − iω/4EC(q)]
. (17)

Here ν0 is the DOS for noninteracting electrons, εq and EC(q) were defined
below Eqs. (12 ) and (13) respectively. Using Eq. (17) for a 3D granular array
we obtain

δν3

ν0
= − A

2πgT
ln

[
ECgT

max (ε̃, gT δ)

]
, (18)

where A = gTa
3
∫
d3q /(2π)3 ε−1

q ≈ 0.253 and ε̃ = max{T, ε}. For ε̃ 
 gT δ
the correction to the DOS (18) coincides with the one obtained in Ref. [3]



Electron Transport in Granular Metals 35

(a) (b)

Fig. 4. Diagrams representing the first order corrections to the single particle
density of states ν(ε).

using AES approach. It follows from Eq. (18) that for a 3D array of grains,
as in case with conductivity, the main contribution to the DOS comes from
the large energy scales, ε > gT δ.

Using Eq. (17) for a 2d array we obtain the following result for the correc-
tion to the DOS

δν2

ν0
= − 1

16gTπ2

{
2 ln2(gTEC/ε̃) ε̃ 
 gε̃δ,

ln gT δ
ε̃ ln gE4

C

ε̃δ3 + 2 ln2 EC

δ ε̃ 	 gT δ.
(19)

Using the relation between the tunneling conductance, gT and the diffusion
coefficient, D = gTa

2δ one can see that the temperature (energy) dependence
of the DOS for ε̃ 	 gT δ given by Eq. (19) coincides up to the constant term
with the result for the correction to the DOS of the homogeneous metal [7].

The logarithmic behavior (3) of the conductivity is in a good agreement
with experimental findings [1, 2]. It would be very interesting to extend the
resistivity measurements to the low temperature regime where we predict the
temperature dependence (4). A similar logarithmic dependence of resistivity
on temperature was recently found in high-Tc compounds La2−ySryCuO4 and
Bi2Sr2−xLaxCuO6+δ in a very strong magnetic field [11, 13]. A possible gran-
ularity of these samples was suggested in Ref. [3]. Recently the microscopic
granularity was directly experimentally observed in the superconducting state
of Bi2Sr2CaCu208+δ by the STM probe [14]. If we accept that samples stud-
ied in [11, 13] are indeed microscopically granular, we can compare the results
of the experiments with our predictions. When doing so it is convenient to
scale three dimensional conductivity to the conductivity of CuO planes, σplane.
According to our predictions

dσplane/d lnT = (e2/π�) k, (20)

where the coefficient k = 1/2π in the low temperature- and k = 1/d in the high
temperature regimes. While in the low temperature regime the application of
Eq. (20) is legitimate only under the assumption that electrons in different
CuO plane are incoherent, in the high temperature regime the behavior of
conductivity according to Eq. (3) is logarithmic for any dimension. In this
regime the real dimensionality d should be replaced by d = Z/2, where Z is
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the (average) number of the contacts of each grain with all the adjacent grains.
Describing the data shown in Fig. 3 of Ref. [13] by our log dependencies at
temperature T ≈ 5K we extract k � 0.4, for Sr concentration of y = 0.08 for
La2−ySryCuO4 [15]; for the Bi2Sr2−xLaxCuO6+δ compound we find k � 0.2
for x = 0.84 La concentration, and k � 0.3 for x = 0.76. For each particular
curve the values k extracted from Fig. 3 of Ref. [13] increase with temperature
(especially in case of LSCO), this is in a complete agreement with our results
provided that the “coherent-incoherent” crossover occurs at about T ∼ 5K.
At higher temperatures k noticeably exceeds 1/2π, supporting the idea of a
granularity of doped cuprates.

4 Conclusions

In conclusion, we have investigated transport properties of granular metals
at large tunneling conductance and obtained corrections to the conductivity,
Eqs. (2,3,4) and DOS, Eqs. (18,19) due to electron-electron interaction. We
have shown that at temperatures, T > gT δ the granular structure of the
array dominates the physics. On the contrary at temperatures, T ≤ gT δ the
large-scale coherent electron motion is crucial. Comparison our results with
experimental data supports the assumption about a granular structure of
doped high-Tc cuprates.
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Summary. We measure the dynamic resistance of a Co/Cu/Co trilayer nanopillar
at varied magnetic field H and current I. The resistance displays the usual behavior,
almost symmetric in H, both when magnetization switching is hysteretic at small
I, H, and reversible at larger I, H. We show differences in the I, H magnetization
stability diagram measured by holding I fixed and varying H and vice versa. We
also show how the peak in dV/dI associated with telegraph noise in the reversible
switching regime, is calculated from the telegraph noise variations with I. Lastly,
we show data for a similar sample that displays behavior asymmetric in H, and a
negative reversible switching peak instead of a usual positive one.

1 Introduction

Current-induced switching of magnetization has generated much excitement
due to its potential for magnetic random access memory. In spite of the appa-
rent success of the spin-torque model [1] in describing many of the experi-
ments, the basic physical processes involved in the switching are not yet
fully understood. Most experimental studies of current-driven magnetization
switching in magnetic nanopillars have been made on Co/Cu/Co trilayers at
room temperature (295 K) [2, 3, 4, 5, 6, 7, 8, 9, 10]. For magnetically uncou-
pled samples, switching at low current I and magnetic field H is hysteretic,
but becomes reversible at large enough I in one direction. This reversibility
is associated with telegraph noise switching [11]. In this paper we examine
several subtleties of switching in Co/Cu/Co that have not been previously
described. First, the I vs. H switching (magnetization stability) diagrams are
slightly different when measured by varying H while holding I fixed and vice
versa. Second, we show how the reversible switching peak can be calculated
from the measurements of telegraph noise dwell times vs. I. Third, we show
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data for an unusual sample, where a positive reversible switching peak is re-
placed by a negative one.

2 Measurements and Results

Our samples were fabricated with a multistep process described elsewhere [10].
The samples had structure Co(20)/Cu(10)/Co(2.5), where thicknesses are in
nm. To minimize dipolar coupling between the Co layers, only the Cu(10)/
Co(2.5) layers were patterned into a nanopillar with approximate dimensions
140× 70 nm. We measured differential resistance, dV/dI, at 295 K with four-
probes and lock-in detection, adding an ac current of amplitude 20 µA at

Fig. 1. Data for sample 1. (a) H-dependence of dV/dI at specified values of I; (b)
I-dependence of dV/dI at specified values of H. It denotes the excitation thresh-
old current. In (a),(b), thick curves: scan from left to right, thin curves: scan in
opposite direction, and curves are offset for clarity. (c) Magnetization stability dia-
gram extracted from H scans such as shown in (a). Upward(downward) triangles:
P→AP(AP→P) switching. Open symbols: scan from left to right, solid symbols:
reverse scan direction. (d) Magnetization stability diagram extracted from I scans
such as shown in (b). Upward(downward) triangles: P→AP(AP→P) switching. In
(c),(d) AP, P denote the stability region of the respective configurations, P/AP is a
bistable region.
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8 kHz to the dc current I. Positive current flows from the extended to the
patterned Co layer. H is in the film plane along the easy axis of the nanopillar.

Figs. 1(a,b) show field- and current-switching data, consistent with prior
studies [2, 10, 11]. Starting, for example, at I = 0 and large negative H,
the magnetizations of the thick and thin Co layers are parallel (P). As H is
increased from a large negative value, the magnetization of Co(20) switches
first at small positive H into a high resistance antiparallel (AP) state, and the
patterned Co(2.5) switches at larger switching field, Hs(I = 0), determined
by its shape anisotropy. For I = −1 mA, Fig. 1(a) shows reduced Hs(I),
and the hysteretic switching disappears at I < −1 mA. I > 0 increases the
range of H for the AP configuration. At I > 4 mA, the hysteretic switching
steps in dV/dI turn into reversible peaks (I = 5 mA shown). Fig. 1(b) shows
that hysteretic asymmetric current-driven switching between the AP state at
I > 0 and the P state at I < 0 at H = 0, changes to reversible peaks both
at large H > 0 and H < 0. These peaks are the same as those in Fig. 1(a) at
large I > 0. The P state resistance grows above a threshold It, marked on the
H = 0.6, 1.4 kOe curves. A similar, more pronounced threshold in Py/Cu/Py
nanopillars has been associated with the onset of large amplitude magnetic
excitations [11]. At small H, the switching from P to AP state occurs at
Is ≈ It. The small variation of It between 0.6 kOe and 1.4 kOe in Fig. 1(b) is
determined by the balance between the current-driven excitation and weakly
H-dependent magnetic damping rate.

Figs. 1(c,d) show the Co(2.5) nanopillar magnetization stability diagrams
extracted from H and I scans such as those in Figs. 1(a,b), respectively. (We
show only the switching of the thin Co layer in Fig. 1(c), to avoid clutter
and facilitate comparison with Fig. 1(d).) Both scan directions give similar
stability regions, with a minor difference in the line separating the bistable
and P-stable regions. At small I > 0, the stability line in Fig. 1(c) is almost
vertical, giving a sharp knee at I = 0, whereas in Fig. 1(d) it curves smoothly
at I ≈ 0. Vertical lines are poorly reproduced by I-scans, so Fig. 1(c) better
captures the singular behavior at I ≈ 0. This knee has been attributed to
the effect of spontaneous current-driven magnon emission, generally small
compared to stimulated emission [12].

The reversible switching peaks in dV/dI that at large I,H replace the hys-
teretic steps, are due to random telegraph noise switching between the P and
AP states [11]. Fig. 2(a) shows the variations of average dwell times τP (τAP )in
the P(AP) state with I. τP decreases as I increases, but τAP increases. For a
fixed H, τAP << τP at small I, so dV/dI is close to the resistance of the P
state, RP , and τAP >> τP at large I, giving dV/dI ≈ RAP , the resistance in
the AP state. We now show how the variations in Fig. 2(a) give a peak in the
differential resistance at τP ≈ τAP . For a given H, the average voltage across
the sample is

V (I) = I

[
RAP τAP +RP τP

τP + τAP

]
, (1)



42 S. Urazhdin et al.

Fig. 2. Data for sample 1. (a) Variation of the average dwell times in the AP state
τAP (upward triangles) and P state τP (downward triangles) with I at H = 0.48 kOe,
(b) Circles: dV/dI vs. I at H = 0.5 kOe. Solid curve: a calculation, as described in
the text.

where τP (I) ≈ τ0 exp[−α(I − I0)], τAP (I) ≈ τ0 exp[β(I − I0)], as follows from
Fig. 2(a). I0, τ0 are defined by τAP (I0) = τP (I0) = τ0. Differentiating Eq. 1
with respect to I, we find

dV

dI
≈ τAPRAP + τPRP

τP + τAP
+ I(α+ β)(RAP −RP )

τP τAP

(τP + τAP )2
.

The first term on the right is just the resistance V/I, giving a step for
the reversible transition from the P to the AP state. The second term has a
maximum value I0(α + β)(RAP − RR)/4 at τP = τAP . This term gives rise
to a peak in dV/dI at I = I0, which can be much higher than RAP . The
solid line in Fig. 2(b) is calculated from the data in Fig. 2(a), and Eq. 2, for
I0 = 4.8 mA, and α+β = 19.2 mA−1 extracted from fig. 2(a). The calculation
agrees well with the data shown as circles.

From the above analysis, we conclude that the reversible switching peak
positions characterize the points (H, I) where τP = τAP , thus giving an indi-
rect measure for telegraph noise variation with I,H [13]. We have shown [11]
that the telegraph noise period decreases approximately exponentially when
I is increased and H is adjusted to remain along the reversible switching line.
The presence of telegraph noise near the reversible switching line means that
both AP and P states are unstable in that region. Thus, the stability dia-
grams, Figs. 1(c,d), should be modified to include this unstable region. This
instability is indirectly manifested in the rise of RP at I > It. However, the
measurements of dV/dI at I above the reversible switching peak give values
very close to RAP . Fig. 2 and our analysis show that, because τP is exponen-
tially smaller than τAP , the resistance can become close to RAP , even though
the AP state is unstable.
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Fig. 3. Data for sample 2. (a) H-dependence of dV/dI at specified values of I,
(b) I-dependence of dV/dI at specified values of H. (c) Magnetization stability dia-
gram extracted from I scans such as shown in (b). Upward(downward) triangles:
P→AP(AP→P) switching. A H = −0.5 kOe section shown with dashed line, (d)
MR curves at I = 8 mA, at the specified in-plane angles between H and the nom-
inal easy axis of the nanopillar. AP, P denote the stability region of the respective
configurations, P/AP is a bistable region. In (a),(b),(d), thick curves: scan from left
to right, thin curves: scan in opposite direction, curves are offset for clarity.

In most samples, both I and |H| increase along the reversible switching line
close to the transition from hysteretic to reversible switching. The behavior at
larger I varies: in some samples, the reversible switching peak disappears, or
splits into several peaks. These peaks are usually asymmetric in H, showing
the importance of inhomogeneous and tilted magnetization states, affected
both by sample imperfections and the Oersted field of the current. Fig. 3
shows data for a sample nominally identical to that of Fig. 1. The hysteretic
MR at I = 0, and current-driven switching at H = 0 (Figs. 3(a,b)), are similar
to those in Figs. 1(a,b). The I = 8 mA MR curve in Fig. 3(a) is asymmetric,
showing a positive peak at H > 0 like those in the 5 mA curve in Fig. 1(a), but
a negative peak at H < 0. Similarly, in the current scans of Fig. 3(b), the peak
at H = 0.5 kOe is consistent with those at −0.7, 0.6 kOe in Fig. 1(b), while the
−0.5 kOe scan shows a small hysteresis in current switching with a negative
peak at larger I. By comparing the 8 mA resistances to the left of the negative
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peak and to the right of the positive peak in Fig. 3(a), we conclude that
the negative peak corresponds to complete AP→P switching. The resistance
increase to the right of the negative peak in Fig. 3(b) is consistent with the
previously noted current-driven excitations in the P state [11]. Fig. 3(c) shows
the stability diagrams extracted from I scans such as those in Fig. 3(b), where
we mark both the positive and negative peaks as reversible switching points.
This plot clearly shows the asymmetry of behaviors with respect to reversal of
H. For H > 0 the stability diagram is similar to those of Figs. 1(c,d). For H <
0 in Fig. 3(c), the reversible switching line has a positive slope, i.e. the negative
peaks appear at decreasing I as the magnitude of H is increased. A dashed
H = −0.5 kOe line crosses both a bistable region (hysteretic switching), and a
reversible switching line. The positive slope of the reversible line is consistent
with α+ β < 0, giving a negative peak in Eq. 2.

Fig. 3(d) shows H-scans at I = 8 mA with varied angles θ between the
nominal easy nanopillar axis and H directed in the sample plane. The θ = 0
curve has a positive peak at H > 0 and negative peak at H < 0. The peaks in
the θ = ±20◦ curves are nearly symmetric, and positive for both directions of
H. The θ = ±30◦ curves are asymmetric again, and have double peaks for one
of H directions. These data show that the details of switching are sensitive to
the sample shape defects, misalignment of the nanopillar easy axis with H,
and are also affected by the Oersted field of the current and magnetization
pinning. We note that only the last two factors (possibly in combination with
the first two) give asymmetry between the behaviors at H < 0 and H > 0.

3 Conclusions

To summarize, we focused on four phenomena in Co/Cu/Co nanopillars at
295 K. First, we provided evidence (although not as clear as in Py/Cu/Py [11])
of a threshold current It for excitations that occur in the reversible switching
regime, but at lower I than the reversible switching peak. Second, we showed
that the sharp knee at I = 0, visible in a magnetization switching diagram
obtained by fixing I and varying H, is lost in a similar plot obtained by fixing
H and varying I. Third, we showed that the reversible switching peak shape
can be derived from measurements of the variation of telegraph noise with I.
Fourth, in Fig. 3 we showed an example of a switching diagram asymmetric
in H, more complex than the symmetric one in Fig. 1. We attribute the
complexity to a combination of sample shape asymmetry, the Oersted field,
and possible misalignment of H. Of particular interest in Fig. 3(b) is the
negative peak, associated with re-entrance of the P state at high I > 0.
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Summary. The interplay between electrical and mechanical properties of sus-
pended, doubly clamped carbon nanotubes in the Coulomb blockade regime is stu-
died theoretically. In this geometry, the capacitance between the nanotube and the
gate depends on the distance between them. We find that the tube position changes
in discrete steps every time an electron tunnels onto it. Edges of Coulomb diamonds
acquire a (small) curvature. Eigenfrequencies are modified by Coulomb blockade in
a discrete fashion.

1 Introduction

Recently, a great interest appeared in nanoelectromechanical systems (NEMS),
which convert electrical current into mechanical motion on a nanoscale and
vice versa. The ultimate goal of the NEMS research is development of com-
mercial applications like sensors and actuators at a nanoscale. Currently, the
fundamental side of NEMS is being extensively explored, with new physical
phenomena being revealed.

The development follows two main lines. One is shuttling mechanism for
transport, proposed by the Gothenburg group [1] and subsequently developed
further [2, 3, 4]. One considers a single-electron transistor with the mobile
central island. In the original proposal, the island moves due to electrostatics
interaction with the electrodes and transports charge in a discrete fashion. In
the subsequent experimental realizations [5, 6] the island was attached to a
cantilever and moved under the external ac perturbation. The experiments
[6], in which the role of the island was taken by a fullerene molecule, were
especially influential, and generated much of theoretical interest to the sub-
ject. Very unusual behavior, in particular, negative differential resistance, was
observed and has become a subject for the subsequent theoretical research
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[7, 8]. A number of other questions not yet accessible experimentally, like
destruction of the quantum-mechanical coherence in the moving island [9]
and a possibility of superconducting phase coherence across the shuttle [10]
is at the focus of theoretical research.

Another direction is represented by suspended structures. Doubly-clamped
suspended single- and multi-wall carbon nanotubes have been previously fabri-
cated, and their transport [11], acoustoelectric [12], thermal [13], elastic [14],
and emission [15] properties have been measured. Recently, experiments in
the Coulomb blockade regime started. Coulomb blockade regime is interest-
ing since it gives access to the quantum properties of the system and probes
non-equilibrium phenomena. In Delft, Jarillo-Herrero et al. [16] fabricated
suspended single-wall carbon nanotubes (SWNT) over a back-gate and mea-
sured the Coulomb stability diagram. LeRoy and Lemay [17] performed STM
measurements on SWNT suspended over a trench. Höhberger et al. [18] pre-
sented Coulomb blockade measurements in suspended silicon quantum dots.
Although the experiments are still under way, and the results are at this stage
inconclusive, some resonances were observed which could be identified with
inelastic processes due to vibrations of the structures. For this reason, it nec-
essary to analyze the properties of suspended structures in Coulomb blockade
regime. In this article, which is based on Ref. [19], we start such an analy-
sis by discussing the ground state properties of suspended SWNT. Current
in this system is essentially non-linear and thus requires a consideration of
non-equilibrium situation. This will be done elsewhere [20].

This article is organized as follows: Next Section describes the model with
inclusion of the influence of initial stress. We concentrate on the case where
the junction capacitances are zero so that analytical expressions are obtained.
We then describe the influence of nanoelectromechanical effects on Coulomb
blockade. Section 4 discusses the eigenmodes and the influence on the initial
strain on them. We end with some remarks on the limitations of our model.

2 Displacement, stress, and energy

2.1 Equilibrium position

We consider a SWNT (modeled as a rod of length L along the x-axis), freely
suspended between source and drain electrodes, in the vicinity of a gate (see
Fig. 1). The nanotube is attached to the electrodes via tunneling contacts. An
electrostatic force (gate voltage) bends the tube; the deviation from a straight
line is denoted by z(x) with 0 < x < L. The elastic energy of the bent tube
is [21]

Wel[z(x)] =
∫ L

0

dx

{
EI

2
z′′2 +

[
T0

2
+
ES

8L

∫ L

0

z′2dx

]
z′2

}
, (1)
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VG

L

z

c(z)
R

x

V,CL CR

Fig. 1. A schematic drawing of a suspended nanotube capacitively coupled to a
gate and clamped on both sides to metal pads that serve as tunnel contacts. A
voltage V is applied to the left pad.

where E, I = πr4/4, and S = πr2 are the elastic modulus, the inertia moment
and the cross-section, respectively. Here, r is the (external) radius of the tube.
The first term in Eq. (1) is the energy of an unstressed bent rod; the two other
terms describe the effect of the stress force T̃ = T0 +T . Here T0 is the residual
stress which may result e.g. from the fabrication, and the induced stress T is
due to the elongation of the tube caused by the gate voltage,

T =
ES

2L

∫ L

0

z′2dx. (2)

To write down the electrostatic energy, we consider the case when the ca-
pacitance of the tube to the gate dominates those of the barriers (see Fig. 1),
CL, CR 	 CG. The capacitance to the gate per unit length is c(z). Approxi-
mating the gate by an infinite plane at a distance R from the nanotube, we
obtain

c(z) =
1

2 ln 2(R−z)
r

≈ 1
2 ln 2R

r

+
z(x)

2R ln2 2R
r

, (3)

where the Taylor expansion restricts validity to z 	 R. The electrostatic
energy of the system reads

West[z(x)] =
(ne)2

2CG[z]
− neVG ≈

(ne)2 ln 2R
r

L
− (ne)2

L2R

∫ L

0

z(x)dx− neVG. (4)

For a moment, we assume T0 = 0. Minimizing the energy,

Wn[z(x)] = Wel[z(x)] +West[z(x)],
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with respect to z, one finds the equation determining the tube position [21],

IEz′′′′ − Tz′′ = K0 ≡ (ne)2

L2R
, (5)

where K0 is the electrostatic force per unit length, which we approximate
by a constant. Higher-order terms are small for z 	 R. To solve Eq. (5) we
have to assume that the stress force T is constant, and find it later from the
self-consistent condition (Eq. (2)).

The solution of Eq. (5) with the appropriate boundary conditions (for the
doubly-clamped rod z(0) = z(L) = z′(0) = z′(L) = 0) has the form

zn(x) =
K0L

2Tξ

[
sinh ξL

cosh ξL− 1
(cosh ξx− 1) − sinh ξx+ ξx− ξ

x2

L

]
, (6)

with ξ = (T/EI)1/2. Substituting this into Eq. (2), a relation between the
stress T and the external force K0 is obtained. In the limiting cases, it reads

T =
{
K2

0L
6S/(60480EI2), T 	 EI/L2,

(ES/24)1/3(K0L)2/3, T 
 EI/L2.
(7)

The first line corresponds to weak bending of the tube: The energy associated
with the bending exceeds the energy of the stress. Generally, it is realized for
z < r. The second line describes strong bending, when the tube displacement
is large (r < z 	 R,L).

For the displacement of the tube center zmax
n = zn(L/2) we find

zmax
n = 0.003 (ne)2L2

Er4R , T 	 EI
L2

(
n 	 Er5R

e2L2

)
;

zmax
n = 0.24 (ne)2/3L2/3

E1/3r2/3R1/3 , T 
 EI
L2

(
n 
 Er5R

e2L2

)
.

(8)

For a SWNT with r = 0.65 nm, E = 1.25 TPa, L = 500 nm and R = 100 nm
(to be referred to as the E-nanotube) the crossover from weak to strong bend-
ing, T ∼ EI/L2, occurs already at n ∼ 5 ÷ 10. In the strong-bending regime,
the displacement of the E-nanotube is (in nanometers) zmax

n = 0.24n2/3. For
the same setup in the situation when the role of a gate is taken by an STM-
tip (R ∼ 5nm) and addition of one electron drives the tube into the strong-
bending regime. Note that state-of the art silicon submicron devices always
stay in the weak-bending limit.

2.2 Charge and energy

For comparison with experiments, we have to relate the charge ne to the gate
voltage by minimizing the energy. The expression for the energy (elastic plus
electrostatic) of the tube at equilibrium in the limiting cases reads
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Fig. 2. Calculated displacement as a function of gate voltage for the E-nanotube:
r = 0.65 nm, E = 1.25 TPa, L = 500 nm and R = 100 nm. At VG ≈ 0.5V , there
is a crossover from weak bending with a V 2

G-dependence to strong bending with a
V

2/3
G dependence.

W eq
n ≡ Wst − δW =

(ne)2

L
ln

2R
r

− neVG (9)

−
{

0.0009(ne)4L/(Er4R2), T 	 EI/L2;
0.08(ne)8/3/(Er2R4L)1/3, T 
 EI/L2.

The first two terms represent the electrostatic energy of a straight tube, and
the third one is due to the elastic degrees of freedom (stress, bending, and
change of CG due to displacement). This nonlinear, nanomechanical term
for E-nanotube is a small correction: It becomes of the same order as Wst

if n ∼ 3000 in which case Eq. (3) is not valid anymore. However, for the
STM-setup (R = 5nm) the nanomechanical term becomes essential already
at n ∼ 10. Thus, for this set-up nanomechanical corrections have to be taken
into account even for the ground state energy.

The negative sign of the nanomechanical contribution is easily understood:
As the gate voltage changes, the movable tube adjusts not only its charge,
but also its position, which leads to a lower energy as compared to the fixed-
position system.

The value of n which minimizes the energy is

n = Int

(
VGL

2e ln(2R/r)
+

1
2

+ δn

)
,

with Int denoting the integer part of the expression. The small correction δn

in the strong-bending regime is proportional to V 5/3
G . Thus, the tube displace-

ment zmax changes in discrete steps when VG is varied as shown in Fig. 2.
The envelope is proportional to V 2

G (weak bending) or V 2/3
G (strong bending).
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2.3 Thermal fluctuations

The preceding considerations are restricted to the case of zero temperature. To
understand the role of the temperature, we now evaluate the effect of thermal
fluctuations on the equilibrium position of the tube.

The variance of the position of the tube center at a given charge n can be
generally represented as a functional integral,

var zn ≡
〈
[z(L/2) − zn(L/2)]2

〉
=

∂2

∂J2

∫
Dz(x) exp [−Wn[z]/kBΘ + Jz(L/2)]

∣∣∣∣
J=0

×
[∫

Dz(x) exp (−Wn[z]/kBΘ)
]−1

, (10)

where Θ is the temperature. Except for n = 0, the functional integral in Eq.
(10) is not Gaussian and has to be linearized around the equilibrium solution
zn(x), Eq. (6). The remaining Gaussian integral can be calculated, and we
arrive at

var zn = kBΘζ(L/2), (11)

where ζ(x) solves the equation

EIζ ′′′′ − ES

2L

∫
z′2n dx ζ ′′ − ES

L
z′′n

∫
ζ ′z′ndx = δ(x− L/2). (12)

In the two limiting cases of weak and strong bending, the solution of Eq.
(12) yields

var zn =
{
kBΘL

3/192EI, n = 0
kBΘL/8T, n 
 Er5R/e2L2 , (13)

where the stress T is still given by the lower line of Eq. (7). Thus, the fluc-
tuations in the tube position are expected to grow linearly with temperature.
However, their magnitude is small. For the E-nanotube, at 100K the fluctu-
ations in the n = 0 state are of the order of 0.1 nanometer, and at least an
order of magnitude less in the strong-bending regime.

Thermal fluctuations in the position of a suspended carbon nanotube were
recently measured in Ref. [22].

3 Coulomb effects

Since the nanotube is attached to the electrodes by tunneling contacts, it is
in the Coulomb blockade regime. We define the energy to add the nth elec-
tron to the tube as Sn = Wn −Wn−1. Then, if the nanotube contains n > 0
electrons, the conditions that current can not flow (is Coulomb blocked) are
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Sn < 0, eV < Sn+1. In quantum dots, Sn depends linearly on the bias V and
gate Vg voltages. Thus, in the VG−V plane regions with zero current are con-
fined within Coulomb diamonds, that are identical diamond-shape structures
repeating along the VG–axis.

In a suspended carbon nanotube, in addition to the purely Coulomb en-
ergy, we also have the nanomechanical corrections. Generally, these correc-
tions make the relations between V and VG, which describe the boundaries
of Coulomb blockade regions, non-linear. Consequently, the Coulomb “dia-
monds” in suspended nanotubes are not diamonds any more, but instead have
a curvilinear shape (with the exception of the case CL = CR = 0). Their size
is also not the same and decreases with |VG|. Thus, the mechanical degrees of
freedom affect the Coulomb blockade diamonds. However, since these effects
originate from the nanomechanical term which is typically a small correction,
its influence on Coulomb diamonds is small as well. For the E-nanotube, these
effects do not exceed several percents for typical gate voltages.

4 Eigenmodes

The eigenfrequency of a particular eigenmode is a directly measurable [12]
property. In future experiments on suspended tubes we expect that the eigen-
modes influence tunneling (“phonon-assisted tunneling”) in a similar way as
observed for a single C60 molecule [6]. Below, we demonstrate that the effect
of the electrostatic interactions on the elastic properties (specifically, eigen-
frequencies) is strong and changes the behavior qualitatively.

To find the eigenmodes, we apply a gate voltage with a large dc (single
gate) and a small ac component. The displacement z(x, t) is time-dependent,
which provides an external force −ρSz̈ to Eq. (5), where ρ equals 1.35 g/cm3.
Eq. (5) must be solved first with a constant stress, and then the stress is
found self-consistently. The tube displacement has a small ac component δz
on top of a large static one. The self-consistency procedure is essentially the
same and again leads to Eq. (7). Thus, the dc component of the gate voltage
determines the stress T and it therefore controls the eigenmodes.

The frequencies of the (transverse) eigenmodes are found from the require-
ment that the equation

IEδz′′′′ − Tδz′′ − ρSω2δz = 0 (14)

with the boundary condition δz(0) = δz(L) = δz′(0) = δz′(L) = 0 has a
non-zero solution. This yields the following equation for the frequency ω,

cosh y1 cos y2 −
1
2
y2
1 − y2

2

y1y2
sinh y1 sin y2 = 1, (15)

y1,2 =
L√
2

(√
ξ4 + 4λ2 ± ξ2

)1/2

, λ =

√
ρS

EI
ω.



54 Ya. M. Blanter

In the following, we restrict ourselves to the fundamental (lowest frequency)
eigenmode ω0. In the limiting cases, the solutions of Eq. (15) are

ω0 =

√
EI

ρS

{
22.38L−2 + 0.28ξ2, ξL 	 1;
πξL−1 + 2πL−2, ξL 
 1. (16)

The second terms on the rhs represent small corrections to the first ones.
The frequency dependence ω0 ∝ L−2 is associated with a loose string, while

ω0 ∝ L−1 means that the string is tied like in a guitar. Our results show that
the behavior of the tube crosses over from “loose” to “tied” as VG increases.
For the fundamental mode, the crossover occurs at ξL ∼ 1, corresponding
to the crossover from weak to strong bending. The middle curve in Fig. 3
shows the frequency of the fundamental mode as a function of gate voltage
(zero residual stress). The arrow denotes the cross-over from weak to strong
bending.

The gate voltage dependence of the frequency is a stepwise function, as
shown in the inset of Fig. 3. Steps occur whenever an additional electron
tunnels onto the tube. For the E-nanotube, their height is ∼5 MHz, which
is measurable. Note, that the present submicron silicon devices are always
in the weak-bending regime so that corrections due to the second term in
Eq. (16) are too small to be measured. Furthermore, one should realize that
frequency quantization is only observable if the frequency itself is greater than
the inverse tunneling time for electrons.

We now consider the effect of a residual stress (T0 �= 0). First, we obtain
the stress by solving Eqs. (2), (5) (in the latter, T is replaced by T + T0). In
particular, for a negative stress T + T0 < 0, T0 ∼ −EI/L2, Eq. (2) acquires
several solutions. This signals Euler instability: the tube bends in the absence
of an external force.

If the residual stress is large, T0 
 EI/L2, the tube always acts like a
tied string (upper curve in Fig. 3). The frequency depends weakly on VG

for low voltages, and above T ∼ T0 (denoted with the arrow) grows with
an envelope ∝ V

2/3
G . For negative T0 the picture is qualitatively different

(lower curve in Fig. 3). Whereas for large gate voltages the envelope is still
proportional to V

2/3
G , the frequency dives below the value for an unstressed

tube (22.38(EI/ρS)1/2L−2, represented by the thin solid line in Fig. 3), when
the overall stress becomes negative. It further drops to zero at the Euler
instability threshold.

The qualitative difference between the various regimes means that by mea-
suring the gate voltage dependence of ω0 one can determine the sign of T0

and get a quantitative estimate. On the other side, the gate effect can be used
to tune the eigenfrequencies. We also mention that in the absence of charging
effects, the steps vanish but the overall shape of the curves in Fig. 3 remains
the same.
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Fig. 3. Gate voltage dependence of the frequency ω0 of the fundamental mode for
three different values of the residual stress. Numbers are taken for the E-nanotube
(see Fig. 2). The fundamental mode of an unstressed tube is 140 MHz (thin horizon-
tal line). The inset is an enlargement of the T0 = 0 curve of the main figure showing
step-wise increases of ω0 whenever an additional electron tunnels onto the tube.

5 Discussion

The presented model is simplified in many respects. Mechanical degrees of
freedom are introduced via classical theory of elasticity: The nanotube (mode-
led by a rod) is considered as incompressible and without internal structure.
This is justified, since so far the theory of elasticity has described all existing
experiments on carbon nanotubes well. Creation of defects in SWNT starts at
deformations of order of ten percents. We have neglected damping, which is
also expected to originate from the creation of the defects and to be irrelevant
in this range. We also disregarded quantum effects (cotunneling and finite
spacing of quantum levels of electrons in the tube). These issues need to be
clarified for a detailed comparison with the experimental data, and will be a
subject for future research.

Our main result is that the nanotube can be manipulated by the gate
voltage, which determines its deformation and stress, and modifies the eigen-
modes. Though the eigenmodes of nanotube ropes have been measured in
Ref. [12] four years ago, the strain dependence of the eigenmodes was only
recently reported in Ref. [15]. It demonstrates this effect for singly-clamped
multi-wall carbon nanotubes. We expect that our predictions will soon be
tested in experiments on doubly-clamped SWNTs.
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Summary. The differential resistance of submicron-size ferromagnet/supercond-
uctor interface structures shows asymmetries as a function of the current through
the ferromagnet/superconductor interface. These asymmetries are a consequence
of spin-polarized electron transport from the ferromagnet to the superconductor,
coupled with the Zeeman-splitting of the superconducting quasiparticle density of
states. They are sensitive to the orientation of the magnetization of the ferromagnet,
as the magnetic field required to spin-split the quasiparticle density of states can be
provided by the ferromagnetic element itself.

1 Introduction

There has been continuing interest in the past few years in heterostructures
that combine ferromagnetic (F) and superconducting (S) elements. This inter-
est can be broadly divided into two categories: the superconducting proximity
effect in ferromagnets, and spin-polarized electron transport between ferro-
magnets and superconductors. In the first category are included earlier work
on FS multilayers [1], more recent work on critical currents in SFS junctions
[2], and long-range superconducting proximity effects in ferromagnets adjacent
to superconductors [3, 4]. Some of this work is discussed in other contributions
in this volume. In the second category is included spectroscopic studies of FS
point contacts [5], extending the pioneering work of Tedrow and Meservey
[6] in FS junctions mediated by an insulating tunnel barrier (I) to systems
with higher transparency FS interfaces. Point contact FS spectroscopy has
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been used to determine the degree of spin-polarization P in the ferromagnet
by examining in detail the differential conductance of the FS junction as a
function of the voltage bias applied across it [7], and analyzing the results in
terms of a spin-polarized extension of the Blonder, Tinkham, Klapwijk (BTK)
[8] theory of transport across a normal-metal/superconductor junction. Other
theoretical studies have focused on the excess resistance of FS junctions asso-
ciated with spin accumulation at the interface [9, 10].

In the work of Tedrow and Meservey on FIS junctions, a magnetic field
was applied to the thin film device in order to Zeeman-split the quasi-particle
density of states in the superconductor. The finite spin-polarization P in the
ferromagnet showed up directly as different peak heights in the FIS tunneling
characteristics. In the more recent work on point contact FS spectroscopy,
a large magnetic field could not be applied, as this would rapidly suppress
superconductivity in the bulk superconductors used in the experiments, so
that the analysis of the current-voltage characteristics depends on a subtle
interplay between P and the FS interface transparency. This restriction does
not apply to mesoscopic FS devices made from thin films, where a magnetic
field can be applied parallel to the plane of the superconducting thin film as in
the original experiments of Tedrow and Meservey, splitting the quasi-particle
density of states without substantially suppressing superconductivity in the
film. As in the FIS case, the finite spin-polarization in the ferromagnet is
expected to show up as asymmetric peaks in the differential conductance as
a function of voltage bias, as recently discussed by Mélin [11].

In this paper, we report measurements of the low temperature differential
resistance of mesoscopic FS junctions. We observe asymmetries in the differen-
tial resistance even in the absence of an external magnetic field. These asym-
metries are associated with spin-polarized tunneling into the superconductor,
with the splitting of the quasi-particle density of states in the superconductor
arising from the magnetic field generated by the ferromagnetic elements.

2 Sample fabrication and measurement

The samples for our experiments were fabricated by multi-level electron-beam
lithography onto oxidized silicon substrates. A number of samples correspond-
ing to two different geometries were measured, but we present here results on
only a few representative samples. Figure 1(a) and (b) show scanning electron
micrographs of our samples corresponding to the first and second types. The
first device type (Fig. 1(a)) consists of an elliptical Ni particle in contact with
a superconducting Al film. The shape and size of the Ni particle, which was
patterned and deposited first, ensures that it is single-domain, and that its
magnetization lies along the major axis of the ellipse, as we have shown in
previous experiments [12]. Four Au wires were then deposited to make contact
with the Ni particle, and allowed us to make four-terminal measurements of
the resistance of the Ni particle to characterize its electrical and magnetic
properties. The Al film was then deposited in the final lithography step. Two
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of the Au probes were placed within 20-50 nm of the FS interface, enabling
us to measure the resistance of the interface by itself, with very little con-
tribution from the ferromagnet. All interfaces were cleaned with an ac Ar+

etch prior to deposition of the Au and Al films. The thickness of the Ni films
was ∼30 nm, and the Al and Au films ∼50-60 nm. Control samples of Ni, Al
and Ni/Al interfaces were also fabricated in order to characterize the proper-
ties of the films and interfaces. From low temperature measurements on these
samples, the resistivity of the Ni film was estimated to be ρNi ∼ 6.6 µΩcm,
and that of the Al film ρAl ∼ 8.4 µΩcm, corresponding to electronic diffusion
coefficients DNi ∼ 76 cm2/s and DAl ∼ 26 cm2/s respectively. The second
set of samples (Fig. 1(b)) were simple FS crosses, that enabled us to measure
the four-terminal resistance of the FS interface directly. In this second device
type, both Ni and permalloy (NiFe) were used as the ferromagnet.

Fig. 1. Scanning electron micrographs of representative device of the first type (a),
and the second type (b). (a) is scaled to 1µmx1µm. The leads used to measure the
four-terminal resistance are marked. The current leads were used to send both the
ac and dc current.

The measurements were performed down to 0.26 K in a 3He sorption insert
with standard ac lock-in techniques. The insert was placed in a dewar with
a superconducting split-coil magnet, which allowed us to apply a magnetic
field in the plane of the Ni particle, along its easy axis in the case of the first
device type, and along the length of the ferromagnetic wire in the case of
the second device type. The application of the field in this direction has two
advantages: first, the critical field of the superconductor is much greater than
if the field were to be applied perpendicular to the plane of the sample, and
second, the field direction is along the easy axis of magnetization of the ferro-
magnet. We concentrate here on the differential resistance and conductance
of the FS interfaces as a function of bias current; the temperature dependence
of the resistance of these devices has been described in detail in an earlier
publication [4], and will not be discussed here. In order to measure the dif-
ferential resistance of a low resistance FS interface, we use a four-terminal
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configuration with the probe configurations as shown in Fig. 1, with a small
(∼ 10 − 50 nA) ac current superposed on a dc bias current.

3 Experimental results and discussion

Figure 2 shows the differential resistance of a permalloy/Al (Py/Al) cross
similar to that shown in Fig. 1(b) at a temperature of T = 290 mK, as a
function of the dc current through the FS junction, at two different values of
magnetic field. As the current is increased from |Idc|= 0, the resistance first
increases, reaches a peak at a current of |Idc| � 1 µA, and then shows two
dips in the resistance before approaching the normal state resistance at higher
values of Idc. The dips in dV/dI, corresponding to peaks in the differential
conductance dI/dV , are asymmetric, in that the amplitude of the dips is
different. As the applied external field H is increased, the features become
sharper, and more symmetric. At larger values of H (not shown in Fig. 2),
the positions of the peaks and dips move down to lower values of |Idc|. Note
that this behavior is strikingly different from what is observed in the FS
point contact experiments. Indeed, apart from the absence of the multiple
peak structure, the resistance of the devices goes down rather than up as one
moves away from Idc = 0.
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Fig. 2. Differential resistance dV/dI of a Py/Al cross, similar to the one in Fig.
1(b), as a function of dc current Idc, at an external magnetic field of (a) H = 0, and
(b) H = 0.1002 T. T = 290 mK.

In order to understand this behavior, we consider charge transport across
the FS junction in the framework of a spin-polarized BTK model [5, 7]. In the
conventional BTK model [8], the current across a NS junction with a voltage
V applied across it is given by

INS = 2N(0)evFS

∫ ∞

−∞
[f(E − eV ) − f(E)] [1 +A(E) −B(E)] dE, (1)
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where N(0) is the density of states at the Fermi energy, vF is the Fermi
velocity of the electrons, S is the cross-sectional area of the interface, f is the
Fermi function, and A(E) and B(E) are the BTK coefficients that represent
the probability for Andreev reflection and normal reflection of electrons from
the NS interface. Their functional forms have been discussed in detail by BTK
[8], and we shall not reproduce them here. We only note that A(E) and B(E)
depend on the transparency of the NS interface, characterized by the BTK
parameter Z. Z= 0 corresponds to a perfectly transparent interface, while
Z → ∞ corresponds to a tunnel barrier. For Z= 0, A(E)= 1 for E < ∆,
the energy gap of the superconductor, and gradually reduces to zero as Z
increases.

The process of Andreev reflection involves a spin-up electron of energy E
coupling with a spin-down electron of energy −E to form a Cooper pair in
the superconductor. If the normal metal is replaced by a ferromagnet with a
finite polarization P , not all electrons of one spin species will be able to find
a corresponding electron of the opposite spin species in order to form Cooper
pair. Hence, the probability of Andreev reflection will be reduced by a factor
of (1-P ), where we define the polarization P by

P =
N↑(EF ) −N↓(EF )
N↑(EF ) +N↓(EF )

, (2)

N↑(EF ) and N↓(EF ) being the density of states for the up-spin electrons
and down-spin electrons respectively [13]. The equation of BTK can then be
modified to [7]

INS = 2N(0)evFS

∫ ∞

−∞
[f(E − eV ) − f(E)](

(1 − P ) [1 +Au(E − gµH) −Bu(E − gµH)]

+P [1 −Bp(E + gµH)]
)
dE, (3)

where the original BTK coefficients A(E) and B(E) are modified to unpolar-
ized (Au, Bu) and polarized (Ap, Bp) versions, with Ap= 0. This modification
is required to maintain current conservation across the FS interface [7], and
involves a simple renormalization of the coefficients. In addition to the for-
mulation of Ref. [7], we have also added the contribution to the energy of the
quasiparticles from Zeeman splitting due to an external field H.

Figure 3(a) shows the results of our calculations of the normalized differ-
ential resistance using Eqn.(3) with H = 0, for a number of different combina-
tions of Z and P . For Z = 0 and P = 0, we recover the usual BTK result, in
that the resistance at zero bias drops to half the normal state value. For Z = 0
and P = 0.5, the resistance at zero bias is exactly the same as the normal
state resistance, while for Z = 0.5 and P = 0, it is slightly larger. As both Z
and P are increased, the resistance of the sample rises above the normal state
resistance RN , but Z and P affect the differential resistance in different ways
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at higher bias. It is clear that the zero bias resistance is sensitive to both Z and
P , so one cannot determine both independently by examining only the zero
bias resistance; the entire curve needs to be fit. Figure 3(b) shows the results
of similar calculations, but now with an applied magnetic field H = 0.2∆.
The effect of the finite field is to cause a splitting in the structure of dV/dI
near V � ∆/e due to the Zeeman effect. The splitting can be seen even for
P = 0, but results in a substantial asymmetry of the curve when P �= 0.
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Fig. 3. Numerical simulations of the differential resistance of a FS interface, from
the theory described in the text. (a) H = 0, (b) H = 0.2∆. The values for Z and P
are noted in the figure, and the temperature is T = 0.05∆.

Comparing the results of these simulations to the data from the Py/Al
cross shown in Fig. 2, we note that there are some similarities, but substan-
tial differences in even the qualitative behavior. First, the resistance in the
simulations invariably decreases as the bias is shifted from 0, except for the
case Z = 0. In the experiment, the trend is opposite; the resistance increases
as the bias is shifted from 0. This behavior is also reflected in the zero-bias
resistance as a function of temperature in this sample, where a large increase
in resistance is observed as one cools to below the transition temperature.
Second, at higher bias, two sharp dips appear in the data, which are not sym-
metric. These are similar to the dips seen in Fig. 3(b), which are associated
with Zeeman splitting of the quasi-particle density of states. However, in the
experiment, this structure is seen even at zero applied external field. On the
other hand, it should be noted that the field H can result from a combina-
tion of the externally applied field and the self-field of the ferromagnet, which
can be substantial near the ferromagnet. At the superconductor, the direction
of the externally applied field may be opposite that of the self-field of the
ferromagnet, resulting in a decrease in H as the external field is increased.
This apparently is the case for the sample of Fig. 2; as the external field is
increased from 0 to 0.1 T, the two dips in dV/dI become sharper and the
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spacing between them decreases, exactly as one would expect if the actual
field at the superconductor decreased. We have seen similar behavior in other
devices as well.

Fig. 4. Differential resistance dV/dI of the sample shown in Fig. 1(a), as a function
of dc current Idc, at different values of the applied magnetic field H. The temperature
T = 300 mK.

The data shown in Fig. 2 was taken using the probe configuration shown in
Fig. 1(b), and corresponds to a four-terminal measurement of the differential
resistance of the FS interface alone. Figure 4 shows the differential resistance
dV/dI of the sample of Fig. 1(a) as a function of dc current Idc at six different
values of the external magnetic field H, applied along the major axis of the
elliptical Ni particle, at T = 300 mK. Unlike the FS crosses, the four-terminal
probe configuration used to measure this device (shown in Fig. 1(a)) includes
a small portion of the Ni as well as the Al. All the curves show an initial
decrease in resistance as Idc is increased in either direction from zero, then
an increase at |Idc| � 5µA, and finally, all curves approach the normal state
resistance RN at larger values of |Idc|. For low values of H, the peaks in dV/dI
are very sharp. As H is increased, the peaks decrease in amplitude, and move
to lower values of |Idc|. In other devices we have measured, the peaks increase
in amplitude and move to higher values of |Idc| as H is increased from 0
initially, and then decrease in amplitude and move to lower values of |Idc|
as H is increased further. This is simply due to the fact that the externally
applied field can either add to or subtract from the field generated by the
ferromagnetic element at the superconductor. It should be noted that the
peaks, especially at low magnetic fields, are not symmetric with respect to
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the applied current; the peak at negative current is higher than the peak at
positive current. This asymmetry is a manifestation of the injection of spin-
polarized carriers into the superconductor.

The nature of the peaks is qualitatively different from those seen in the
FS crosses, and in the simulations shown in Fig. 3, in that they are much
sharper. In fact, such peaks can be seen in the FS cross devices if one includes
a portion of the superconductor in the four-terminal measurement. Similar
peaks have been observed in NS devices as well [14], where they are associ-
ated with an excess resistance from a non-equilibrium charge imbalance in the
superconductor. Injection of quasiparticles into the superconductor results in
a difference between the quasiparticle chemical potential µqp and the Cooper
pair chemical potential µcp. µcp rises to its bulk value within a supercon-
ducting coherence length ξS of the interface; µqp relaxes to µcp over a much
longer length scale λQ∗ , called the charge imbalance length. In diffusive sys-
tems, λQ∗ =

√
DτQ∗ , where D is the diffusion coefficient. Near Tc, the charge

imbalance time τQ∗ is given by [15]

τQ∗ =
4kBT

π∆(T,H)

√
τin

2Γ
, (4)

where τin is the inelastic scattering time, and Γ is given by

Γ =
1
τs

+
1

2τin
(5)

and τs gives the contribution from orbital pair breaking. The excess resistance
arises from the difference between µcp and µqp. If the superconducting probe
is placed a distance x from the interface, an excess resistance ∆R will be
measured, where ∆R = (λQ∗ − x)ρS , ρS being the resistance per unit length
of the superconductor. λQ∗ diverges when ∆ → 0, and this divergence gives
rise to the peak in resistance seen in NS structures just below Tc.

For a particle with an energy E, the effective gap seen is ∆ − E. At low
temperatures, we can take into account the excess resistance due to charge im-
balance by introducing an effective voltage dependent charge imbalance time
τQ∗ � T/(∆ − eV ), and adding a resistance RQ∗= ρAlλQ∗ to the resistance
calculated in the spin-polarized BTK model described above.

The solid line in Fig. 5 shows the result of our calculation including both
spin-polarized BTK in a finite magnetic field as described above, and charge
imbalance. For comparison, we also show the result for only spin-polarized
BTK. These numerical calculations were performed by calculating the cur-
rent through the FS interface for a particular voltage V0, adding the charge
imbalance voltage Vci, and taking the derivative d(V0 + Vci)/dI numerically.
The numerical calculations reproduce the large peaks seen in dV/dI at cur-
rents corresponding to the gap, i.e., I � (∆/eRN ). Unlike the BTK case,
no splitting of the peaks near the gap is observed in the solid line in Fig. 5
(the dashed line, which shows the BTK case, does have a small splitting at
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negative I that is difficult to observe because of the scale of the plot). Closer
examination of the position of the charge-imbalance peaks, however, shows
that the peak at positive current is slightly greater than ∆/eRN , while the
peak at negative current is slightly less than −∆/eRN ; the shift corresponds
to the Zeeman splitting of the quasiparticle density of states. Only one spin
species gives rise to a peak for positive current; the other spin species gives
rise to the corresponding peak for negative current. Thus, the difference in the
height of the peaks is an indication of the degree of spin polarization in the
ferromagnet. If we take the difference between the two peaks heights, divided
by the sum of heights of the peaks taken from the normal state resistance,
we obtain a value of 0.25, which is close to the value of P = 0.3 used in the
simulation. A similar analysis performed on the experimental data of Fig. 4
gives a spin polarization of P=0.23, in good agreement with the expected
value of the spin polarization for Ni.

Fig. 5. Numerical simulation of the differential resistance of a FS interface, including
charge imbalance, as described in the text. Solid line, spin-polarized BTK model with
charge-imbalance; dashed line, spin-polarized BTK model without charge imbalance.
The other parameters used in the simulation are P = 0.3, Z = 0.3, and H = 0.1∆.

4 Conclusions

The differential resistance of mesoscopic ferromagnet/superconductor junc-
tions shows a number of features associated with the injection of spin-polarized
carriers into the superconductor. In particular, large peaks are observed at
currents corresponding to the superconducting gap voltage. These peaks are
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not symmetric with respect to the current, in that their amplitudes are
different. The peaks are associated with the excess resistance arising from
quasiparticle charge imbalance in the superconductor, and the difference in
their heights is directly related to the degree of spin polarization in the ferro-
magnet.
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Summary. A theory of recently discovered anomalous low-field magnetoresistance
is developed for the system of two-dimensional electrons scattered by hard disks of
radius a, randomly distributed with concentration n. For small magnetic fields the
magentoresistance is found to be parabolic and inversely proportional to the gas
parameter, δρxx/ρ ∼ −(ωcτ)2/na2. With increasing field the magnetoresistance be-
comes linear δρxx/ρ ∼ −ωcτ in a good agreement with the experiment and numerical
simulations.

1 Introduction

It is well known that in the Boltzmann-Drude approach the longitudinal re-
sistivity ρxx of a degenerate two-dimensional (2D) electron gas does not de-
pend on the transverse magnetic field B. Therefore, the known mechanisms of
magnetoresistance (MR) involve either quantum interference effects or classi-
cal non-Markovian memory effects, which are not captured in the Boltzmann
picture. The MR, arising from quantum effects was discussed in a great num-
ber of works (see for review Ref. [1]). The role of classical memory effects was
underappreciated for a long time, though several theoretical works pointed out
at the importance of such effects for magnetotransport [2, 3, 4]. The interest
to the problem of classical MR has sharply increased in recent years, starting
with Ref. [5], where it was shown that effects of ”classical localization” may
lead to the exponential suppression of electron diffusion at large B. This work
was followed by a series of works [6, 7, 8, 9, 10, 11, 12, 13, 14], discussing
different aspects of classical 2D magnetotransport in strong magnetic fields.

In this paper we focus on a mechanism of low field classical MR spe-
cific for systems of strong scatterers. This mechanism is connected to the
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memory effects due to backscattering events. The corresponding corrections
to the conductivity are small in the parameter a/l, where a is the charac-
teristic size of the scatterers and l is the mean free path. Nevertheless, the
dependance of these corrections on the magnetic field turns out to be very
sharp, resulting in the MR anomaly. The anomaly was discovered in recent
numerical simulations [15] where the MR in a system of 2D electrons scatter-
ing on randomly distributed hard disks was studied. This system is usually
referred to as the Lorenz gas and is the simplest model of the 2D electron gas
with strong scatterers. In the following we restrict our considerations to this
model. The generalization of our results to other models of strong disorder is
straightforward. Magnetotransport in the Lorenz gas is characterized by two
dimensionless parameters: β = ωcτ, and the gas parameter β0 = a/l = 2na2.
Here a is the disk radius, n is disks’ concentration, ωc is the cyclotron fre-
quency, τ = l/vF is the mean free time and l = 1/2na is the mean free path.
The anomaly was observed in the case β 	 1, β0 	 1. Both the numerical
simulations and the qualitative analysis of [15] indicated that at zero tempera-
ture, T, the MR can be expressed in terms of a dimensionless function f(z) via

δρxx

ρ
= −β0f

(
β

β0

)
, (1)

where ρ is the resistivity for B = 0. Numerical results [15] suggest that
f(z) ∼ z as z → 0, yielding δρxx/ρ ∼ −|ωc|τ. The latter expression is in
a very good agreement with experimental measurements of MR in a random
antidot arrays [16]. It is anomalous in two senses. First, it has a non-analytic
dependence on the magnetic field. Second, it does not vanish in the limit of
vanishing β0, which is normally regarded as the expansion parameter for the
corrections to the Drude-Boltzmann picture. This intriguing behavior calls for
a rigorous analytical theory of the effect, which would establish Eq. 1 and
enable one to derive the analytical expression for function f . In this letter we
present a theory of the anomaly and give an expression for f(z). We find that
for z � 1, f(z) is linear in agreement with numerical experiment, but at very
small z � 0.05 crosses over to a quadratic dependence. Thus, for β → 0, Eq.
1 yields δρxx/ρ ∼ −β2/β0. The limit β0 → 0 should be taken with care. While
the small β expansion seems to be singular as a function of β0, the region of
β where this expansion is valid shrinks as β0 → 0. For z → ∞, f saturates at
some constant value. Therefore, the full variation of δρxx/ρ is of the order β0.
In other words, the anomalous MR is strong but it exists in a small region of
magnetic fields.

In [15] a mechanism of MR connected with memory effects arising in
backscattering events was proposed. It has a close relation to the well known
non-analyticity of the virial expansion of transport coefficients [17, 18, 19,
20, 21], which we briefly recall. For B = 0 the leading nonanalytic correc-
tion to resistivity, δρ, is due to the processes of return to a scatterer after
a single collision with another scatterer [Fig. 1(a)]. The relative correction,
δρ/ρ, is proportional to the corresponding backscattering probability, given
by the product of e−r/ldφdr/l (which is the probability to reach scatterer 2
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Fig. 1. Backscattering process responsible for leading nonanalytic contribution to
the resistivity at B = 0 (a). For B �= 0, the overlap area, SB , between two corridors
is small at large B (b). For φ = 0, SB decreases with B (c). For φ �= 0 and small B
the values of SB − S0 for time reversed trajectories have opposite signs (d,e).

without collision and scatter in the angle dφ) and the probability p to re-
turn without collisions from 2 to 1 (here l is the mean free path). Assuming
p = exp(−r/l) and integrating over intervals 0 < φ < a/r, a < r < ∞, one
obtains [17, 18, 19, 20, 21] δρ/ρ ∼ β0 ln(1/2β0).

In Ref. [15] it was shown that the probability p is actually larger than
exp(−r/l) because the passage of a particle from 1 to 2 ensures the existence
of a corridor of width 2a free of the centers of the disks. This reduces the scat-
tering probability on the way back, yielding p(r, φ) = exp(−r/l + nS0(r, φ)),
where S0(r, φ) = 2ar − r2|φ|/2 is the area of the overlap of the two corridors
[Fig. 1(a)]. For example, for φ = 0, we have S0 = 2ar and p = 1. Physically,
this means that the particle is unable to scatter, since it travels back along
the same path. Taking into account the effect of “empty corridor”, we get

δρ

ρ
∼

∫ ∞

a

dr

l

∫ a/r

0

dφ e−(2r/l)+nS0 ≈ β0 ln
(

C

2β0

)
, (2)

where C is a constant of the order of unity. Thus, for B = 0 this effect simply
changes the constant in the argument of the logarithm.

The key idea suggested in [15] was that for B �= 0 the area of the overlap
of the two corridors, SB, sharply depends on B, resulting in the observed MR.
Indeed, it is seen from Fig. 1(b) that for β � β0, SB → 0, resulting in sharp
negative MR

δρxx

ρ
∼

∫ ∞

0

dr

l

∫ a/r

0

dφ e−2r/l
(
enSB − enS0

)
. (3)

The following qualitative explanation of the observed linear MR was presented
in Ref. [15]. The value n(SB − S0) was estimated for φ = 0 [Fig. 1(c)] to the
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first order in B as −nr3/Rc = −r3/2alRc, where Rc is the cyclotron radius.
Assuming that this estimate also works at φ �= 0 and expanding enSB − enS0

to the first order in B, one gets δρxx/ρ ∼ −l/Rc = −ωcτ.
In fact, the physical picture of the phenomenon is more subtle. The con-

tribution of any trajectory with φ �= 0 is cancelled in the first order in B by
the contribution of the time-reversed trajectory, since the values of SB − S0

are opposite for these paths [ Fig. 1(d), (e)]. The cancellation does not oc-
cur only at very small φ ∼ β. The integration in Eq. 3 over φ < β yields
δρxx/ρ ∼ −β2/β0. Larger values of φ also give a quadratic in β contribution to
the MR. This contribution is positive and comes from the second order term in
the expansion of enSB −enS0 in B. It follows from our results [Eqs. (1),(9)] that
the contribution of small angles is dominant resulting in a negative parabolic
MR [22]. We find that the parabolic MR crosses over to linear at very small
β ≈ 0.05β0, which explains why the parabolic MR was not seen in numerical
simulations [15] and experiment [16].

2 Calculations

Next we sketch our calculations. We consider the Lorentz gas at T = 0,
assuming that β 	 1, β0 	 1. In this case [23], δρxx/ρ = −(D −D0)/D0,
where D0 = vF ltr/2 is the Drude diffusion coefficient for B = 0, ltr = 3l/4 =
3/8na is the momentum relaxation length and D is given by

D =
1
2

∫ ∞

0

dt〈v(0)v(t)〉 =
1
2

∫
drdv〈G〉vv0. (4)

Here G = G(v,v0, r) is the Fourier transform (at ω = 0) of the retarded
Green’s function of the Liouville equation and 〈. . . 〉 stands for the averaging
over the positions of the disks. The equation for G reads(

L̂0 − T̂− − T̂+

)
G = δ(r)δ(v − v0), (5)

where L̂0 = v∂/∂r−ωc[v× ∂/∂v] is the Liouville operator of the free motion
in the magnetic field. The interaction with disks is written in Eq. 5 in the
form of a collision integral [18, 24]. The scattering operators T̂± transform
arbitrary function f(r,v) as follows,

T̂+f(r,v) = pF

∫
dv′σ(ϕ)δ(ε− ε′)n+f(r,v′),

T̂−f(r,v) = −pF

∫
dv′σ(ϕ)δ(ε− ε′)n−f(r,v), (6)

where n± =
∑

i δ(r − Ri ± a). Here Ri are the positions of the disks, delta-
function δ(ε−ε′) provides the energy conservation, pF is the Fermi momentum,
σ(ϕ) = (a/2)| sin(ϕ/2)| is the differential cross-section of one disk and ϕ is the
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Fig. 2. Scattering of a particle on a hard disk.

angle between v′ and v. The vector a = a(v′,v) = a(v′−v)/
√

2(v2 − v′v) is
pointing from the center of a disk to the scattering point at the disk surface
[Fig. 2]. Physically, operator T̂+ describes influx of particles with velocity v
at the point Ri − a, while operator T̂− describes the outflux of particles with
velocity v at the point Ri + a. The Boltzmann equation is obtained from Eq.
5 by averaging the Liouville operator over the positions of the disks, yielding
〈T̂+〉f(r,v) = pFn

∫
dv′σ(v,v′)δ(ε − ε′)f(r,v′), 〈T̂−〉 = −1/τ. Here n =

〈n±〉 is the concentration of the disks and 1/τ = nv2a is the inverse full
scattering time. Introducing now δT̂± = T̂± − 〈T̂±〉 and writing a formal
solution of (5), Ĝ = (δ + L̂0 − T̂− − T̂+)−1 as a series in δT̂±, we get

〈Ĝ〉 = Ĝ0 +
∑

α,γ=±
Ĝ0〈δT̂αĜ0δT̂

γ〉Ĝ0 + · · · , (7)

where Ĝ0 = (δ+ L̂0 +1/τ −〈T̂+〉)−1 is the Green’s function of the Boltzmann
operator (here δ → 0). Eq. 7 gives a regular way to calculate correlations,
which are absent in the Boltzmann picture.

Fig. 3. Diagrams, corresponding to the process shown in Fig. 1(a). Diagram (a)
does not take into account effect of “empty corridor” and should be renormalized
by (b).

Consider first the case B = 0. Substituting the first term in the right
hand side of Eq. 7 into Eq. 4, we get D = D0. The second term in Eq. 7
describes the memory-effect due to diffusive returns. As discussed above, the
main contribution comes from returns after a single scattering. This process is
described by the diagram Fig. 3(a). The dashed line corresponds to the pair-
ings 〈δT̂αδT̂ γ〉 (α, γ = ±), external wavy lines to the diffusion propagators
Ĝ0. The internal line corresponds to the Boltzmann propagator truncated at
one scattering Ĝ−〈T̂+〉Ĝ−, where Ĝ− = (L0 +1/τ)−1 is the ballistic propaga-
tor and 〈T̂+〉 stands for one scattering event (G− are shown by solid lines and
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Fig. 4. Backscattering process is parameterized by the angles ϕ0, ϕf . The magnetic
field changes the backscattering angle φ = φ0 +φf +r/Rc. The solid (dashed) line in
(a) represents electron trajectory for B = 0 (B �= 0). Different processes contributing
to MR are shown in (b)-(e).

〈T̂+〉 by the cross). This diagram yields δρ/ρ = −δD/D = (2β0/3) ln(1/2β0)
[17, 18, 19, 20, 21]. The terms of the N−th order in Eq. 7 contain N pairings
(N dashed lines) and are typically small as βN

0 . However, there is a series of
diagrams, shown in Fig. 3(b), whose contribution is of the order β0 [19]. The
internal dashed lines in this series only contain pairings 〈δT̂−δT̂−〉. Summing
the diagrams Fig. 3(b) together with Fig. 3(a), one gets an exact equation

δρ

ρ
=

nltr
4l

Re
∫ ∞

a

dr

r
e−2r/l

∫ 2π

0

dϕ0

∫ 2π

0

dϕfσ(ϕ0)σ(ϕf )

(1 − eiϕ0)(1 − eiϕf )enS0(r,φ0+φf ) =
2β0

3
ln

(
C

2β0

)
, (8)

instead of qualitative estimate Eq. 2. Here ϕ0, ϕf are the scattering angles
[Fig. 4(a)], φ0 ≈ (a/r) cos(ϕ0/2), φf ≈ (a/r) cos(ϕf/2) and C ≈ 1.8 Thus,
addition of the series Fig. 3(b) to Fig. 3(a) leads to the following renormal-
ization: ln(1/2β0) → ln(C/2β0). Physically, the series Fig. 3(b) accounts for
the effect of the “empty corridor”. The N−th order term in this series cor-
responds to N − 1 term in the Taylor expansion of the exp(nS0) in Eq. 8.
Four terms in the product (1 − eiϕ0)(1 − eiϕf ) = 1 − eiϕ0 − eiϕf + ei(ϕ0+ϕf )

correspond to four combinations of (±,±) at the ends of external dashed lines
in the diagrams shown in Fig. 3. They are connected with four different types
of correlation at a given point r. The diagram (+,+) [Fig. 4(b)] corresponds
to the process, where an electron has two real scatterings on a disk placed
at point r. The diagram (−,−) [Fig. 4(c)] does not correspond to any real
scattering at point r. It just allows us to calculate correctly the probability
for an electron to pass twice the region of the size a around point r without
scattering. To interpret the diagram (+,−), note that in the Boltzmann pic-
ture, which neglects correlations, the following process is allowed. An electron
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scatters on a disk and later on passes through the region occupied by this disk
without a scattering [Fig. 4(d)] The diagrams (+,−) correct the Boltzmann
result by substracting the contribution of such unphysical process. Analogous
consideration is valid for diagram (−,+) shown in Fig. 4[e].

3 Results

For B �= 0 the sum of diagrams shown in Fig. 3 can be expressed as an
integral over angles ϕ0, ϕf (scattering angles for B = 0). The only dif-
ference from Eq. 8 is that one should replace S0 → SB . For β 	 1
the overlap area can be calculated as SB(r, φ) =

∫ r

0
dxh(x), where h(x) ≈(

2a−
∣∣φx− x2/Rc

∣∣) θ (2a− ∣∣φx− x2/Rc

∣∣), θ is the Heaviside step function
and φ = φ0 + φf + r/Rc [Fig. 4(a)]. The value of δρxx/ρ is obtained from
Eq. 8 by replacing enS0 to enSB − enS0 . Introducing dimensionless variables
T = r/l, z = β/β0 we get Eq. 1, where function f(z) is given by

f(z) =
3
32

∫ ∞

0

dT

T
e−2T

∫ 2π

0

dϕ0

∫ 2π

0

dϕf

cos
(
ϕ0 + ϕf

2

)
sin2

(ϕ0

2

)
sin2

(ϕf

2

)
(esz − es0). (9)

Here

sz =
∫ T

0

dt

(
1 −

∣∣∣∣ζt− zt2

2

∣∣∣∣) θ

(
1 −

∣∣∣∣ζt− zt2

2

∣∣∣∣),
ζ =

cos(ϕ0/2) + cos(ϕf/2)
2T

+
zT

2
, s0 = sz→0. (10)

Function f(z) has the following asymptotics

f(z) =

⎧⎨⎩
0.33z2 for z � 0.05
0.032 (z − 0.04) for 0.05 � z � 2
0.39 − 1.3/

√
z for z → ∞.

(11)

Note that there is a parametrically small nonanomalous correction to Eq. 1
due to returns after multiple scatterings, δρ′xx/ρ ≈ −0.2β0β

2 [15]. To compare
the results of simulations [15] with the theoretical results in a wider region of
parameters β, β0, we substract δρ′xx/ρ from the numerical curves. Theoretical
and numerical [15] results are plotted in Fig. 5. in the universal units, δρxx/ρβ0

versus z = β/β0. It is seen, that the theoretical and numerical results are in
a very good agreement. The comparison with the experiment [16] is more
difficult, because of the 50% uncertainty in the sizes of the antidots. However,
a good agreement with the experiment can be achieved by appropriate choice
of a in the uncertainty interval [15].
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Fig. 5. The value of δρxx/ρβ0 from Eqs. (1), (9) (solid line) shown as a function of
β/β0 together with the results of numerical simulations [15] presented for different
values of β0 (triangles for β0 = 0.09 , boxes for β0 = 0.06 , circles for β0 = 0.03).
Data for all numerical curves are shown for β < 0.3. Inset: The crossover from
quadratic to a linear dependence at β/β0 ∼ 0.05. This crossover was not resolved in
numerical simulations.

Note finally that we fully neglected quantum effects. This is possible when
a 


√
λF l (λF is a Fermi wavelength). This criterion ensures that diffraction

effects on the edges of the disks are not relevant at the scales of the order of l.
In the opposite case, a 	

√
λF l, the diffraction should destroy the “corridor

effect”, does suppressing the anomalous MR. The detailed analysis of quantum
effects will be presented elsewhere.

4 Conclusions

In summary, we have proposed a theory of the negative anomalous MR in
the Lorenz gas. The analytical expression for the MR [Eqs. (1), (9), (11)] has
been derived.
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Summary. The orbital magnetic moment of electrons, (proportional to the persis-
tent current Ipc), arising from interference on an Aharonov-Bohm ring, is reviewed
when the electrons are also subject to an external radiation. Two cases are ana-
lyzed: (i) An isolated ring, where special doubly-resonant electron-boson processes
contribute to Ipc a term additional to the Debye-Waller exponent, which arises only
at non-zero temperatures T , and whose T -dependence is non-monotonic. (ii) A ring
opened to external electron reservoirs, where the electronic levels acquire a finite
life-time, and the modification of Ipc (beyond that of the Debye-Waller exponent)
exists even at T = 0. It is suggested that by controlling the intensity of the radi-
ation in a certain frequency range, the magnitude of these unique contributions to
the orbital moment can be tuned.

1 Introduction

The “ring current” driven by a constant magnetic field has been invoked as
early as 1936, [1] to explain the large orbital magnetic response of π electrons
moving on a benzene-type molecules. This ‘persistent current’, Ipc, results
from the modifications of the electronic interference pattern caused by an
Aharonov-Bohm phase, acquired by electrons moving on rings threaded by a
magnetic flux, and can be related to the orbital magnetic moment. The ana-
logy with the Josephson effect has been expanded in Refs. [2], whose discussion
of possible realizations of Ipc in small rings has sparked much interest and led
to a considerable experimental effort. [3] Much recent interest is focused on
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non-equilibrium, or time-dependent properties, [4] and attempts [5] to relate
this coherence effect with dephasing due to coupling to an equilibrium bath.

Indeed, when electrons are coupled to a boson source, the naive expec-
tation is that Ipc will diminish due to loss of coherence, as is manifested by
the overall Debye-Waller exponent. However, it is not the whole effect: The
coupling leads to an additional term. [6] At thermal-equilibrium this term
reduces further Ipc. However, at non-equilibrium, its magnitude may be tuned
by controlling the intensity of the boson field in a certain frequency range,
which is experimentally feasible. [7] I.e., by coupling the electrons to an out-
of-equilibrium radiation source, one may control their orbital magnetic re-
sponse. Such a relation between the radiation intensity and the magnetic
moment opens interesting possibilities for future nanodevices.

Although the term ‘electron-phonon coupling’ is used here, the discussion
applies equally to coupling with an electro-magnetic source. In any event,
in order to retain the coherence of the electrons at the given T , the system
has to be sufficiently small. At the same time, the strength of the acoustic
source is assumed to be such that the additional decoherence it causes is not
detrimental. The precise parameter windows in which this can be achieved
will be sensitive to acoustic mismatch, details of the sample geometries, etc.

2 The Holstein process

The effect of electron-phonon coupling on Ipc of an isolated ring has been
studied [6] by applying the Holstein theory of the Hall effect in hopping con-
duction. [8] He proposed that in order to capture this effect, which is odd
in the magnetic field, it is necessary to consider the interference of tunneling
amplitudes involving doubly-resonant electronic transitions. The mechanism
can be explained in terms of transition probabilities. Let Pij be the transition
probability from the electronic state localized around i (of energy εi) to that
localized around j. It is obtained by squaring the absolute value of the cor-
responding transition amplitude, Jij (which in the absence of the field can be
always chosen to be real). In the presence of a magnetic field, Jij is multiplied
by the magnetic phase acquired along the path i−j. However, Pij due to direct
hopping alone is then independent of the field. Upon adding to Jij the ampli-
tude for indirect tunneling, e.g., along the path i− �− j, where � denotes an
intermediate site, the resulting Pij becomes field-dependent. The dependence
is on the total (gauge-invariant) magnetic flux enclosed by the two paths, Φ
(measured in units of the flux quantum). However, it is an even dependence
and hence cannot lead to a dc Hall conduction. Hence, a phase π/2 is required
in the interference term, to yield an odd dependence on Φ in Pij .

Where will this phase come from? Holstein [8] argued that when electron-
phonon processes are included, the amplitude for the indirect path is

Ji−�−j ∼
∑
q′′

〈iq|V |�q′′〉〈�q′′|V |jq′〉
εi − ε� ± ωq′′ + iη

, η → 0+, (1)
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where ωq is the boson energy, and V is a matrix element that transfers
the electron between sites, and also may change the phonon states. As now
the intermediate state lies in a continuum, η leads to finite contribution when
there is a real, energy-conserving transition [9] between the initial and inter-
mediate states, which will appear with the required phase π/2. At least two
resonant electron-phonon processes are required, because the three electronic
energies are in general different: One phonon is needed to supply the energy
difference εi−εj between the initial and final electronic states, and the second
appears in the intermediate process.

Since Pij includes a term odd in Φ, detailed balance is broken even at
thermal equilibrium, Pij − Pji �= 0, and is odd in Φ. E.g., in a triad of three
sites, i, j, and �, Pij , (which includes also the indirect processes via �), and Pi�,
(also through j), are such that Pij + Pi� = Pji + P�i, so that charge balance
is maintained at i. However, since Pij �= Pji, there will be a net current
circulating around the triad, proportional to Pij − Pji, and therefore arising
from the Holstein process. That current is additional to the persistent current
flowing in this system in the absence of the coupling to the phonon source. In
fact, [6] it is always flowing in the reverse direction to the one with no phonons!
(The direction of the current is determined by delicate effects like the location
of the Fermi level with respect to the site energies, etc.) It has been therefore
termed ‘counter-current’, Icc. The doubly-resonant processes can be analyzed
also from the view-point of coherence. One of the two phonons is common to
both interfering paths, thus retaining their coherence, [6, 10] while the other is
absorbed and re-emitted by one of the paths, again retaining coherence with
the second. Hence, although the mechanism involves real, energy-conserving,
electron-phonon transitions, it still contributes in a non-trivial way to Ipc. It
necessitates ‘real’ phonon modes, namely, non-zero temperatures, T . Thus, Icc

will initially increase with T , and then, because of the Debye-Waller factor,
will decrease.

Taking the phonon source out of equilibrium at a certain frequency range
may lead to enhancement in Ipc. On a speculative level, one may visualize
shining the electrons with a high intensity beam of non-equilibrium phonons
with a narrow frequency range around, say, ω0. Icc, resulting from resonant
transitions, will be significantly affected only when ω0 is close to the differences
|εi − εj | or |εi − ε�|. The effect on the Debye-Waller factor will be small for a
narrow-band beam. In this way, Icc will initially increase with the intensity of
this radiation, until decoherence effects will take over and Ipc will disappear.

3 The persistent current in an ‘open’ ring

When the electronic system is ‘open’ the energy levels acquire a finite life-
time, and the the transitions no longer conserve the sum of electronic and
radiation energies. Nonetheless, the radiation introduces again a unique ef-
fect, which goes beyond that of the Debye-Waller exponent. [11] Imagine an
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Aharonov-Bohm ring, connected to two external electron reservoirs, kept at
slightly different chemical potentials µ� and µr, (i.e., the system is in the lin-
ear response regime). On one of the ring’s arms we place a ‘site’ denoted as
‘quantum dot’ at which the electrons are coupled to the radiation source. A
second, ‘reference’ site is placed on the other arm of the ring. The current
flowing into the ring splits into I1 (in the upper arm) and I2 (in the lower),
and the circulating current is defined as 2Ipc = (I1 − I2)|Φ − (I1 − I2)|−Φ, to
avoid spurious currents caused by asymmetries.

When the electrons are free of any interactions except on the dot, Ipc is
given in terms of the dot exact Green function, Gd, which includes all effects
of the problem. One finds [11]

Ipc =
∫

dω

iπ

f�(ω) + fr(ω)
2

[∂ΣA
ext

∂Φ
GA

d (ω) − cc
]
, (2)

where f�,r is the electron distribution on the two reservoirs. The superscripts
A (R) refer to the advanced (retarded) Green functions, and Σext is the self-
energy part of Gd that comes solely from the coupling of the dot to the electron
reservoirs. Both ΣA

ext and GA
d are even in Φ, and hence Ipc is odd in Φ.

When the interactions are confined to the dot alone, Σext can be obtained
straightforwardly since it pertains to non-interacting electrons. It is useful to
consider first the interaction-free case, in which G0

d(ω) = (ω−εd−Σext(ω))−1,
where εd is the dot energy level. By connecting to the electron reservoirs that
level becomes a resonance, with a finite width (inverse life-time) given by
�Σext. In that case, [12]

I0
pc =

∫
2dω
π

f�(ω) + fr(ω)
2

∂δ0(ω)
∂Φ

, (3)

where δ0 is the transmission phase of the dot, with tan δ0(ω) = −�ΣR
ext(ω −

εd−�ΣR
ext)

−1. Hence, in a steady-state situation, I0
pc is related to the variation

of δ0 with Φ, replacing that of the eigenenergies at equilibrium.
However, this ceases to hold when Gd contains also the self-energy part

due to interactions. Using an approximate solution [13] for Gd for an electron-
phonon interaction linear in the boson coordinates, one finds [11] that to
lowest-order in the electron-phonon coupling |αq|2, Ipc = I0

pc +∆Ipc, with

∆Ipc =
∫

dω

π

f�(ω) + fr(ω)
2

∑
q

[
A−

q

∂

∂Φ

(
δ0(ω + ωq) − δ0(ω − ωq)

)
+A+

q

∂

∂Φ

(
δ0(ω + ωq) + δ0(ω − ωq) − 2δ0(ω)

)]
, (4)

where A+
q = |αq|2

ω2
q

(1 + 2Nq), A−
q = |αq|2

ω2
q

(2nd − 1). Here nd is the dot occupa-
tion and Nq is the boson occupation, not necessarily the thermal-equilibrium
one. The acousto-induced current, ∆Ic, consists of a part which depends only
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on nd, and whose sign may change according to the relative location of εd
with respect to the Fermi energy, and a part dominated by the phonon occu-
pations via A+

q . [The term −2δ0(ω) there comes from the the Debye-Waller
exponent.] By shining a beam of phonons of a specific frequency, the magni-
tude of that term can be controlled experimentally, as long as the temperature
of the electrons and the intensity of the phonon source Nq are low enough to
retain electronic coherence. Both the precise magnitude of these effects and
their bounds depend on the detailed geometry of the dot and on the acoustic
mismatch.

It is instructive to examine the transmission phase in a simple case.
Characterizing the lower arm of the ring by its transmission (TB) and re-
flection (RB) coefficients, one has [11] �ΣA

ext = Γ 0
d [1 − TB cos2(Φ/2)] and

�ΣA
ext = −Γ 0

d

√
RBTB cos2(Φ/2), where Γ 0

d is the width of the resonance level
of the dot itself. This determines δ0: Unless at resonance itself, that phase,
and consequently Ipc, scales with Γ 0

d /|εd|. Moreover, ∆Ipc survives even at
zero temperature. When the voltage drop on the ring vanishes, and εd is
well below the Fermi level, i.e., nd = 1, the square brackets of ∆Ipc contain
δ0(ω+ωq)−δ0(ω), reflecting processes which begin by the emission of bosons.
This is quite different from the case of an isolated ring, where Γ 0

d = 0, and
only the resonances contribution remains, which vanishes at T = 0. Here the
effect comes from a single, virtual phonon, and will disappear as Γ 0

d /|εd| → 0.

4 Conclusions

We have considered the effect of coupling the electrons to a boson source on
their interference pattern in an Aharonov-Bohm ring, and in particular on
the orbital magnetic response. Both in the isolated ring and the ‘open’ one,
the naively-expected Debye-Waller exponent reduces the interference term (as
well as the ‘classical’ term), and hence the persistent current, as T is raised.
All boson modes contribute to that detrimental factor. In both cases, there
is an additional contribution, arising from a bounded range of phonon ener-
gies which is dictated by the electronic energies. For an isolated ring, that
contribution comes from boson modes whose frequencies satisfy the energy
conservation required for the electronic transitions. In the open ring the elec-
tronic energies are broadened; a single virtual boson suffices to produce the
new effect yielding a phonon-induced contribution to Ipc even at T = 0, which
is lower in the electron-phonon coupling.

Because this novel contribution to Ipc comes from a limited range of boson
frequencies, it is expected that by modulating the radiation intensity in that
range, it will be possible to manipulate the magnitude of Ipc. This will require
boson intensities low enough to retain coherence; However, since the unique
effect arises from a rather narrow region of frequencies it is hoped that such
an acousto-magnetic effect is feasible.
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M. Büttiker, Phys. Rev. B 66, 245321 (2002).

5. P. Mohanty, Ann. Phys. (Leipzig) 8, 549 (1999); P. Schwab, Eur. Phys. J. B18,
189 (2000); P. Cedraschi, V. V. Ponomarenko and M. Büttiker, Phys. Rev.
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Experimental Implementations
of the Superconductor-Insulator Transition
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Summary. Various experimental observations of the superconductor-insulator
transition are described and compared with two theoretical models: one based on
boson-vortex duality and the other where the superconducting fluctuations at low
temperatures in the magnetic field are calculated. The latter shows that the super-
conducting fluctuations in dirty but homogeneous superconductor act as grains in a
granular superconductor.

When superconductivity is destroyed by changing some of parameters,
either intrinsic (carriers density, level of disorder) or extrinsic (magnetic field)
ones, the material can turn not only into normal metal but into insulator as
well. We’ll discuss here magnetic-field-induced superconductor-insulator tran-
sitions (SIT). Magnetic field transfers the superconductor into insulator in the
case when the carrier density in the material is low and the level of disorder
is high, so that without the superconductivity the material would be in zero
field on the insulating side of the metal-insulating transition. The main sign
of SIT is the fan-like set of the resistance curves R(T ): they go down with
decreasing of the temperature at fields below the critical, B < Bc, and go up
at fields B > Bc.

The list of materials which displayed such type of behaviour contains amor-
phous MoxGe1−x [1] and MoxSi1−x [2] films, amorphous InOx films [3, 4],
ultrathin films of Be [5], crystalline films of Nd2−xCexCuO4+y [6, 7]. Two
typical examples of such sets of curves relevant to different limits are presented
in Figs. 1 and 2. In Nd2−xCexCuO4+y (Fig. 1) the growth of the resistance
with decreasing temperature on the non-superconducting side of the field-
induced transition was below ten percent so that it reminded more a metal
with quantum corrections to its conductivity than an insulator. In amorphous
InOx (Fig. 2), typical for insulator exponential temperature dependence of the
resistance resulted in almost tenfold increase of the resistance.
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All the above-listed experiments were interpreted as SIT in two-dimensional
(2D) electron systems. This interpretation for those systems where the growth
of the resistance was comparatively trifling was based on scaling hypothesis [8]
which asserts that there is no non-superconducting metallic state at zero tem-
perature in 2D. Hence any state of a film which does not display tendency
to become superconducting, i.e. which has negative derivative ∂R/∂T < 0,
should be accepted as insulating.

The theoretical grounds for existence of 2D-SIT which was suggested in
[9, 10] appealed to the boson–vortex duality model. It considered the super-
conducting phase as a condensate of Cooper pairs with localized vortices and
the insulating phase as a condensate of vortices with localized Cooper pairs.
The theory described only vicinity of the SIT and predicted existence of some
critical region on the (T,B)–plane where the behavior of the system was
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Fig. 1. Temperature dependence of the resistivity of Nd2−xCexCuO4+y films at
different magnetic fields [7]. At high fields the resistivity changes lie in the range of
10%; two upper curves cross at low temperatures.
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governed by competition of the quantum phase transition correlation length
ξ ∝ (B −Bc)−ν and thermal length LT ∝ T 1/z with z and ν being constants
called the critical exponents. All relevant quantities in this region are supposed
to be universal functions f of ratio of the lengths which can be written in the
form of scaling variable (B−Bc)/T 1/zν . For the resistivity in two dimensions
R� this dependence takes form [10]

R�(B, T ) = Rcf [(B −Bc)/T 1/zν ], (1)

where the critical resistance Rc is a constant.
Experimenalists managed to confirm existence of this so called finite-size

scaling practically in all cases when checking the existence of supposed SIT.
Fig. 3 presents a typical example. The question is whether the possibility to
depict the data by relation (1) is a cogent argument in favor of SIT.

Fig. 3. Scaling of the function R(T, B) for a sample MoxGe1−x [1]; the changes in
the upper branch lie within the range of 7%.

The insulating phase which appears as the result of such SIT is rather
specific; it contains pair correlations between the localized electrons as the
remnant of the superconducting pairing. Such insulator is called the Bose-
insulator [11] and the correlated electrons are called localized electron pairs.
Of course, existence of such phase should be confirmed experimentally.

In most cases, the fan-like shape of the set of R(T,B = const) curves is
accompanied by the negative magnetoresistance in higher fields, on the insu-
lating side of the SIT but far enough from the critical region (Figs. 4 and 5).
This has a natural explanation. The pair correlations are done away with the
strong magnetic field and this results in raising of the carrier mobility. Simi-
lar effect is well known for granular superconductors [12, 13]: when Josephson
currents are absent by some reason so that the conductance is determined by
one-particle tunneling between the grains then the superconductivity of the
grains results in insulating behavior of the whole material. The magnetic field
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destroys the superconducting gap in the grains and hence restores metallic
properties of the material.

So, the localized pairs display themselves at the stage when they become
decoupled and contribute to the conductance. The negative magnetoresistance
serves as an indirect manifestation of the specific insulating state destroyed
by the field. However, as the theory [9, 10] relates only to the vicinity of the
SIT, the negative magnetoresistance happens beyond the range of its action.

Fig. 4. Set of isotherms R(T= const, B) of MoxSi1−x films [2].
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Fig. 5. Set of isotherms R(T=const, B) of amorphous InOx films [4]. (a) Magnetic
field normal to the film; (b) magnetic field parallel to the film. In the fields region I
the material remains superconducting, label III marks the region of negative mag-
netoresistance. The theory [9, 10] relates to the vicinity of the boundary between
the regions I and II in the geometry (a).

Finally, the situation looks as follows. Experiments concentrate on three
specific properties as signs of the SIT: fan-like temperature dependence; scal-
ing relation (1); negative magnetoresistance. The latter is very important
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indication of the pair localization but it does not follow from the theory [9, 10].
At the same time, the data which do not display explicitly the insulating be-
havior can be adjusted with this theory as well. Additional questions come
from the observation in amorphous InOx films [14] that all three crucial prop-
erties of the function R(T,B) remain the same with magnetic field parallel to
the film. This means that SIT is a kind of 3D-phenomenon in InO and should
be explained without reference to the boson–vortex duality.

From here follow main goals in the SIT problem: to find theoretical models
which would lead to the negative magnetoresistance; to trace how the specific
SIT properties appear in the field-induced superconductor–normal metal tran-
sition while the normal metal is shifted toward the insulating state; to find
out whether the low dimensions of the films is crucial or the SIT can happen
in 3D materials; to find the explanation for the pair localization alternative
to the boson–vortex duality. It seems that the first two goals are achieved.

The progress came from the recent paper by Galitski and Larkin [15]. They
succeeded in extending calculations of the quantum corrections due to su-
perconducting fluctuations for 2D superconductors to the low temperature
T 	 Tc(0) and high magnetic field B � Bc2(0). The corrections δσ include
Aslamazov–Larkin, Maki–Thompson and density-of-states (DOS) terms. In
the dirty limit δσ they can be written in explicit form by using digamma
function ψ(r)

δσ =
4e2

3πh

[
− ln

r

b
− 3

2r
+ ψ(r) + 4(rψ′(r) − 1)

]
, (2)

where r = (1/2γ′)(b/t), γ′ = eγ = 1.781 is the exponential of Euler’s con-
stant, and t = T/Tc0 	 1 and b = (B − Bc2(T ))/Bc2(0) 	 1 are reduced
temperature and magnetic field. The particular feature of this expression are
the negative terms. They originate from the depression of DOS at the Fermi-
level by fluctuative pairing of carriers. This becomes important if disorder and
magnetic field make ineffective the transport by Cooper pairs and finally lead
to the negative magnetoresistance.

Expression (2) can be compared with experiment. Fig. 6 presents such
comparison made in [7]. One can see remarkable resemblance — there is sep-
aration between low-field curves which “bend down”, and high-field curves
which “bend up”; there is also high field negative magnetoresistance at low
temperature. Detailed analysis in [7] confirms that the fluctuations may ex-
plain all the main features of the transport in those materials where the effect
is not two large and can be described in terms of the perturbation theory. In
practice, almost all the materials except InO fall into this group. For them,
superconducting fluctuations act as superconducting grains.

The theory [15] cannot be applied to InO directly. But just as the diver-
gence of the weak localization quantum corrections point to the Anderson
localization, quantum corrections here point to the SIT. This returns us to
the problem of low dimensions. Fluctuations are larger in the systems with
low dimensions, but the difference is only quantitative and we may expect SIT
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Fig. 6. Comparison from [7] of (a) the experimental set of curves for crystalline
Nd2−xCexCuO4+y films and (b) the set calculated from the theory [15].

on the basis of fluctuations in 3D as well. These expectations are supported
by the results of numerical simulations [16, 17]. According to [17], the attrac-
tive interaction leads to the insulating phase of localized pairs well within the
metallic phase of single-particle 3D Anderson model.

The last comment is about the finite-size scaling equation (1) related to
SIT. Certainly, expression (2) cannot be reduced to the form of equation (1)
and no genuine scaling exists. However, in a restricted region of values of T
and B representation of the theoretical curves in the form (1) can be done.
This was demonstrated in [7]. This means that the scaling presentation cannot
be the decisive argument in favor of a specific model.
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Summary. We study the low temperature phase diagram of one-dimensional
weakly disordered quantum systems like charge or spin density waves and Lut-
tinger liquids by a full finite temperature renormalization group (RG) calculation.
In the classical region, for vanishing quantum fluctuations those results are supple-
mented by an exact solution of the model in the case of strong disorder, described
by the ground state and the correlation function. Furthermore, by a mapping of the
problem onto a Burgers equation with noise, in the case of weak disorder, we can
derive an expression for the correlation length. At zero temperature we reproduce
the (quantum) phase transition between a pinned (localized) and an unpinned (de-
localized) phase for weak and strong quantum fluctuations, respectively, as found
previously by Fukuyama [12] or Giamarchi and Schulz [16].

At finite temperatures the localization transition is suppressed: the random po-
tential is wiped out by thermal fluctuations on length scales larger than the thermal
de Broglie wave length of the phason excitations. The existence of a zero temper-
ature transition is reflected in a rich cross-over phase diagram determined by the
correlation functions. In particular we find four different scaling regions: a clas-
sical disordered, a quantum disordered, a quantum critical, and a thermal region.
The results can be transferred directly to the discussion of the influence of disorder
in superfluids. Finally we extend the RG calculation to the treatment of a com-
mensurate lattice potential, which might lead to a new scenario for the unpinning
(delocalization) transition at zero temperature.

1 Introduction

The collective behavior of condensed modulated structures like charge or spin
density waves (CDWs/SDWs) [23, 22, 4], flux line lattices [2, 36] and Wigner
crystals [4] in random environments has been the subject of detailed investi-
gations since the early 1970s. These were motivated by the drastic influence
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of disorder: without pinning CDWs would be ideal superconductors whereas
type-II superconductors would show finite resistivity.

Here we study one-dimensional weakly disordered quantum systems like
charge or spin density waves and Luttinger liquids at low temperatures. Dis-
order and quantum fluctuations in 1D CDWs at zero temperature have been
considered previously (see, e.g., [12, 15, 16]) and an unpinning transition as
a function of the interaction strength was found. Finite temperature effects
were partially incorporated by truncating the renormalization group (RG)
flow at the de Broglie wave length of the phason excitations [16]. However, for
a complete study of the thermal to quantum crossover, quantum and thermal
fluctuations have to be considered on an equal footing [6, 7], which is the
main aim of this paper. Experimentally, quasi–1D behavior can be seen in
real materials, e.g., in whiskers [5], hairlike single crystal fibers like NbSe3,
with a transverse extension smaller than the correlation length or in chain
like crystals with weak interchain coupling. In the latter case there is a large
crossover length scale up to which 1D behavior can be observed [23, 4]. The
results obtained for the CDWs or SDWs have a large number of further appli-
cations on disordered quantum systems: they relate, e.g., to the localization
transition of Luttinger liquids [12, 16], superfluids [3, 11, 37], tunnel junc-
tion chains [28], Josephson coupled chains of these systems, if the coupling is
treated in mean-field theory [12], and CDWs in a lattice potential.

This paper is organized as follows: In section 2 we give a detailed introduc-
tion to our model and the used notation. We also briefly discuss the influence
of Coulomb interaction on the properties of the system. In section 3 the in-
fluence of disorder is studied in detail. Using an anisotropic momentum shell
renormalization group calculation, in which the full Matsubara sum over fre-
quencies is performed, we obtain flow equations for the effective strength of
the disorder, thermal and quantum fluctuations (i.e., the interaction strength
in the case of Luttinger liquids). These are discussed first in the case of zero
temperature and are in agreement with previously obtained results [12, 16]. At
finite temperatures the disorder is always renormalized to zero. In the classical
limit two more methods are applied: (i) at low temperatures and strong disor-
der the ground state of the model is calculated exactly. (ii) For weak disorder
and strong thermal fluctuations a second RG calculation is applied which is
based on the mapping onto a Burgers equation with noise. The main result of
this paper is the calculation of the low temperature quantum crossover dia-
gram for one-dimensional CDWs. Using all these findings, the complete phase
diagram, including the crossover regions, of the system is studied in section 4
with help of the density-density correlation function.

The influence of a commensurate lattice potential on a free density wave
is considered in section 5. The full finite temperature renormalization group
flow equation for this sine-Gordon type model are derived and resulting phase
diagram is discussed. Furthermore a qualitative picture of the combined ef-
fect of disorder and a commensurate lattice potential at zero temperature is
presented in section 6, including the phase diagram.
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2 Model

2.1 Charge and spin density

In this section we derive the effective Hamiltonian which will be the starting
point for our further treatment. The strategy of the calculation is therefore
separated into two steps. In the first step the system is treated in a mean-
field-(MF) type approximation applied to a microscopic Hamiltonian. This
leaves us with a slowly varying complex order parameter field for which we
derive an effective Hamiltonian. The second step involves the consideration of
the fluctuations of this order parameter.

Now we briefly summarize the result of the mean-field calculation. For a
detailed review we refer to the book [23]: Well below the mean-field condensa-
tion temperature TMF

c of the CDW, the underlying lattice will be periodically
distorted with a period λ which is related to the Fermi wave vector kF by
λ = π/kF . This distortion of the lattice leads to the formation of a gap in
the dispersion relation at k = ±kF which is (in one dimension) proportional
to the amplitude of the lattice modulation. For small displacements (which
are typically smaller than 1% of the interatomic spacing [42]), the increase
of the elastic energy is smaller than the gain of electronic energy due to the
formation of the gap and hence an instability is favored. The period of the
CDW depends on the band filling factor (via kF = π/λ) and is in general
at arbitrary band filling incommensurate with the undistorted lattice (with
lattice constant a).

In (quasi-)one–dimensional systems [22] also SDWs can be found, but in
contrast to CDWs they arise due to electron–electron and not to electron–
phonon interaction. A SDW can be considered to consist of two CDWs, one
for spin–up and another for spin–down electrons (see, e.g., Fig. 5 in [22]).
Therefore the spatial modulation of SDWs is characterized by a wave vector
Q = 2kF , as for CDWs.

The charge or spin density ρ(x, t) can be written in the form [22, 9, 45]

ρ(x, t) = (1 +Q−1∂xϕ(x, t))[ρ0 + ρ1 cos(pϕ(x, t) + pQx)] (1)

where ρ0 = Qf(T )/π and ρ1 = 2|∆|/(πgvF ). g is the dimensionless electron-
phonon coupling constant and vF the Fermi velocity. ρ1 is proportional to |∆|,
the CDW gap or the amplitude of the complex (mean field) order parameter

∆(x, t) = |∆(x, t)|eıϕ(x,t). (2)

f is the condensate density (Y = 1 − f is the so-called Yoshida function)
related to |∆| by [9, 45]

f(T ) =
πT

�

∑
ωn

(|∆|/�)2

(ω2
n + (|∆|/�)2)3/2

, ωn = 2πnT/�. (3)
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From this expression one finds that f(T ) approaches 1 for T → 0 (by inte-
gration) and f(T ) � 2(1 − T/TMF

c ) ∼ |∆|2 for T → TMF
c . TMF

c denotes the
mean-field transition temperature. For quasi one–dimensional systems ρ1 has
an additional factor ζ−2 (the inverse area perpendicular to the chain).

Note, that (1) is correct for arbitrary band filling and, to be more precisely,
is the particle density of the charge or spin carrying particles. Since 4kF

modulations of SDWs or CDWs are also possible [43], we introduce the factor
p in the argument of the modulating cosine function, i.e., for CDWs and SDWs
p is usually 1, but can also be 2 or greater.

In (1) we omitted higher harmonics proportional to cos (np(ϕ(x, t) +Qx))
with n ∈ {2, 3, . . .}, since these more strongly oscillating terms give close to the
zero temperature transition only small contributions in the renormalization
process, compared to the leading n = 1 contribution. They will therefore
be neglected throughout this paper. Note, that p is the integer describing
the ground ’oscillation’. The particle current density j follows from (2) as
j = −ρ0ϕ̇/Q.

2.2 Hamiltonian

In the following we use a minimal model for the low energy, long wave length
excitations of the condensed charge density wave. Since fluctuations in the
amplitude |∆| are suppressed, because they are massive, we take only fluc-
tuations of the phase ϕ (cf. eq. 2) into account. Clearly, such an approach
breaks down sufficiently close to the mean-field transition temperature TMF

c .
Neglecting fluctuations in |∆|, the Hamiltonian for our model is given by

Ĥ = Ĥ0 + Ĥu + Ĥw (4)

with

Ĥ0 ≡
L∫

0

dx
c

2

[(v
c

)2

P̂ 2 + (∂xϕ̂)2
]
, (4a)

Ĥu ≡
L∫

0

dxU(x)ρ(x) , U(x) =
Nimp∑
i=1

Uiδ(x− xi), (4b)

Ĥw ≡ −
L∫

0

dxW cos
(
qϕ̂(x)

)
, (4c)

Ĥ0 describes the phason excitations of the CDW, where c = �vF

2π f(T ) de-
notes the elastic constant. v = vF /

√
1 + (2|∆|/�ωpQ)2/(gf) is the effective

velocity of the phason excitations with ωpQ the phonon frequency. For CDWs
(2|∆|/�ωpQ)2/(gf) 
 1 is typically fulfilled and hence quantum fluctuations
are weak.
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P̂ is the momentum operator, corresponding to the phase ϕ̂, with the
standard commutation relation [P̂ (x), ϕ̂(x′)] = �

i δ(x− x′)
Ĥu results from the effects of impurities with random potential strength

Ui and positions xi. The potential strength is characterized by Ui = 0 and
UiUj ≡ U2

impδi,j , and includes a forward and a backward scattering term
proportional to ρ0 and ρ1, respectively. The disorder average of the impurity
potential U(x) follows then to be given by U(x) = 0 and

U(x)U(y) =
U2

imp

limp
δ(x− y) . (5)

We will further assume, that the mean impurity distance limp = L/Nimp

is large compared with the wave length of the CDW and, in most parts of the
paper, that the disorder is weak, i.e.,

1 	 limpQ 	 cQ/(Uimpρ1). (6)

In this case the Fukuyama–Lee length [13]

LFL =

(
c
√
limp

Uimpρ1p2

)2/3

(7)

is large compared to the mean impurity distance limp.
The last term in (4), Hw, includes the influence of a harmonic lattice

potential. This term will be discussed section 5 in greater detail.
Our model (4) includes the four dimensionless parameters

t = T/πΛc , (8a)
K = �v/πc , (8b)

u2 =
(Uimpρ1)2

Λ3πc2limp
, (8c)

w = W/πcΛ2 , (8d)

which measure the strength of the thermal (t), quantum (K) and disorder
fluctuations (u), and the periodic potential (w), respectively. Λ = π/a is a
momentum cut-off. Note, that for non interacting electrons, i.e., v = vF , K
takes the value 2 (and not 1 as in the usual Luttinger liquid notation). The
classical region of the model is given by K 	 t which can be rewritten as the
condition, that the thermal de Broglie wave length of the phason excitations
is small compared to a.

λT = �βv = K/(tΛ) (9)

At T = 0, K-values of the order 10−2 to 10−1 and 1, have been discussed
for CDWs and SDWs, respectively [23, 32]. It has to be noted however, that
the the expressions relating c and v to the microscopic (mean-field-like) theory
lead to the conclusion that K and t diverge by approaching TMF

c , whereas the
ratio K/t remains finite.
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2.3 Coulomb Interaction

We could also add a Coulomb interaction term to our model (4) which can be
written as

Ĥc =
1
2

∫
dx

∫
dx′ρ̂(x)Vc(x− x′)ρ̂(x′) , (10)

where Vc is the Coulomb potential. In all dimensions the unscreened potential
has the form e2/r, in the sense that we are dealing with quasi-one-dimensional
systems embedded in a 3D space. If we assume, that the quasi one-dimensional
system has the finite width ζ, Vc can be written as [34, 40]

V 0
c (x) =

e2√
x2 + ζ2

=
1
L

∑
k

eıkxV 0
c (k) with (11)

V 0
c (k) = 2e2K0(|ζk|) , (12)

where K0 is a modified Bessel function of second kind with K0(x) ≈ − ln(x)
for x 	 1.

In general the Coulomb potential is screened and can be written as [1]

Vc(k, ω) =
V 0

c (k)
1 + V 0

c (k)Π(k, ω) ,
(13)

with the momentum and frequency dependent polarization operator, defined
by Π(k, ω) = 〈ρ(0, 0)ρ(k, ω)〉.

If we only consider the static case ω = 0 we can distinguish two limiting
cases: First, if the typical range λeff of the screened Coulomb potential Vc is
much smaller than the mean electron distance, the potential can be assumed
to be a delta distribution and Hc can be approximated by

Ĥc ≈ �χ

2

∫
dx

(
f(T )
π

∂xϕ(x)
)2

+ . . . , (14)

with χ = 1
�

∫
dxVc(x). The cos-terms (. . .) from the density can be ne-

glected due to strong fluctuations. Therefore the Coulomb interaction gives
only an additional contribution to the elastic constant of the initial model:
c = �vF

2π f + �χ
π2 . For χ > 0 the Coulomb interaction is repulsive, which leads

to an increase of c and therefore a decrease of the dimensionless parameter
K, i.e., the quantum fluctuations will be reduced by repulsive Coulomb in-
teraction. In the case χ < 0 (attraction), K will be increased. Keeping this
consideration in mind, we will not further include Ĥc in the model explicitly.

In the other case – with weak screening – Vc(k) ≈ V 0
c (k) shows the disper-

sion given in (12) and in general, the details of the k-dependence are not only
up to the transverse extension ζ of the quasi one-dimensional system under
consideration but also to the screening length [3, 11, 46, 34].

However, the logarithmic k-dependence will only weakly affect our RG-
analysis, but may suppress phase transitions, as discussed later in section 3.2.

Coulomb interaction is also important if one considers multi-channel sys-
tems [30, 18] or the effect of the non–condensated normal electrons.
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3 Renormalization group treatment of disorder

3.1 Flow equations

In order to determine the phase diagram we adopt a standard Wilson-type
renormalization group calculation, which starts from a path integral formula-
tion of the partition function corresponding to the Hamiltonian (4). We begin
with the renormalization of the disorder term and set w = 0 in the following.
The system is transformed into a translational invariant problem using the
replica method, in which the disorder averaged free energy is calculated, using

F = −T ln Tre−S/� ≡ −T lim
n→0

1
n

(
Tre−S(n)/� − 1

)
, (15)

which defines the replicated action S(n). S(n) is given by

S(n) =
∑
α,ν

∫
τ

{
L0,αδαν +

1
2�

∫
τ ′

Hu[ϕα(τ)]Hu[ϕν(τ ′)]
}
, (16)

where L0 is the Lagrangian corresponding to Ĥ0,
∫

τ
≡

∫
�β

0
dτ and α, ν are

replica indices. Using (5) and consequently neglecting higher harmonics (2pQ-
modes) one finds

Hu[ϕα(τ)]Hu[ϕν(τ ′)] =
U2

impρ
2
1

2limp

L∫
0

dx

{
cos p

(
ϕα(x, τ) − ϕν(x, τ ′)

)
+

+
2ρ2

0

Q2ρ2
1

∂xϕα(x, τ)∂xϕν(x, τ ′)

}
. (17)

Together with (16) one obtains the following form

S(n)

�
=

1
2πK

∑
α,ν

LΛ∫
0

dx

K/t∫
0

dτ

{[
(∂xϕα)2 + (∂τϕα)2

]
δαν − (18)

1
2K

K/t∫
0

dτ ′
[
u2 cos p

(
ϕα(x, τ) − ϕν(x, τ ′)

)
+ σ∂xϕα(x, τ)∂xϕν(x, τ ′)

]}
,

with σ = 2u2(ρ0Λ/ρ1Q)2.
Note, that we introduced dimensionless spatial and imaginary time vari-

ables,

Λx → x ,

Λvτ → τ ,
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which will be used throughout the paper - beginning here. Furthermore all
lengths (e.g. correlation lengths, λT , LFL, limp, and L), wave vectors (e.g. k,
kF , and Q) and Matsubara frequencies are dimensionless accordingly, from
now on. Additionally we rescale the elastic constant for convenience to avoid
the appearance of Λ.

Λc → c ,

ωn=2πnt/K

kΛ=1

δΛ=dl

n=2

n=1

Fig. 1. Momentum “shell” in the space of (discrete)
Matsubara frequencies (ωn) and momenta (k). Only
modes of the phase ϕ in the stripe 1/b ≤ |k| ≤ 1 with
b = 1 + 0+ are integrate in one RG step.

Integrating over the high momentum modes of ϕ(x, τ) in a momentum
shell of infinitesimal width 1/b ≤ |k| ≤ 1 with the rescaling parameter b =
1 + 0+, but arbitrary frequencies (see Fig. 1) and rescaling x → x′ = x/b,
τ → τ ′ = τ/b, we obtain the following renormalization group flow equations
(up to one loop):

dt

dl
= t , (19a)

dK

dl
= −1

2
p4u2KB0

(
p2K,

K

2t

)
coth

K

2t
, (19b)

du2

dl
=

[
3 − p2K

2
coth

K

2t

]
u2 , (19c)

dσ

dl
= σ , (19d)

where dl = ln b. For some more details on the RG calculation we relegate to
[21, 20] where we have written the RG-flow also for dimensions |d − 1| 	 1.
The complete calculations can be found in [19]. Note, that the renormalization
group equation for terms in the replica Hamiltonian which follow from higher
order harmonics in the charge density look similar to those presented in (19c)
with p replaced by np, n > 1, integer. Therefore these terms are negligible
close to the quantum phase transition considered below. One should keep in
mind though, that in the region where K 	 1 at zero temperature, also those
higher harmonics become relevant. But since this is also the parameter range
where we leave the weak pinning regime, the RG breaks down anyways.

For legibility we have introduced the following functions:
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Bi(ν, y) =

y∫
0

dτ

∞∫
0

dx
gi(τ, x)
Υ (τ, x)

cosh (y − τ)
cosh y

, (20)

Υ (τ, x) =
[
1 +

( y
π

)2
(

cosh
πx

y
− cos

πτ

y

)]ν/4

, (21)

with

g0(τ, x) = δ(x)τ2 .

Note, that B0(p2K, K
2t ) → 0 for K → 0 (see Fig. in appendix E1 of [20]).

Ku K

u

t

*

Fig. 2. Typical flow diagram for w = 0 in the three dimensional parameter space
of K, u and t, proportional to the strength of quantum, disorder and thermal fluc-
tuations, respectively.

The strength of the thermal fluctuations t is only rescaled, since there
is no non-trivial renormalization of t (i.e., of the elastic constant c) because
of a statistical tilt symmetry [39]. Note, that (18) is written in rescaled di-
mensionless parameters and the different renormalization of the kinetic and
elastic term is reflected in the different renormalization of v and c, i.e., K and
t, respectively.

From the flow equation for u2 (19c) one directly sees that, depending on
the sign of the prefactor, the behavior changes from increase for small t and
K to decrease for high K or t.

There is no first order RG correction to σ and the change of σ with length
scale is simply given by rescaling, see (19d). The two-loop contribution to
σ is much more involved than the one-loop contributions for the other flow
equations and gives no qualitatively different result for the flow of σ. As seen
from (19d), the forward scattering amplitude always increases as σ0e

l on larger
length scales and is therefore not well controlled in the RG sense. But, since
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the flow of σ does not feed back into the other flow equations it has only minor
relevance for our considerations. And indeed, we can get rid of the forward
scattering term f/πU(x)∂ϕ

∂x by introducing the field ϕ̂b(x) by [39]

ϕ̂(x) = ϕ̂b(x) − ϕf (x) , ϕf (x) =
∫ x

0

dyc(y) , (22)

where c(x) ≡ U(x)f
πcΛ , with c(x) = 0 and c(x)c(x′) = π

2σδ(x−x′). This can easily
be verified by inserting this decomposition of ϕ̂(x) into the initial Hamiltonian
(4) written in dimensionless units, and using (5) and the definition of σ for
deriving the averages of c(x). Note, that x is dimensionless. The typical flow
described by the flow equations (19a) to (19c) is shown in Fig. 2, obtained by
a numerical solution.

symbol here Giamarchi and Schulz Haldane

ϕ, ĵ
√

2φ,
√

2/π∂τφ θ − πρ0x, π−1θ̇

P̂ �Π/
√

2 − �

π
∇ϕ

K 2Kρ

√
vj/vN

v uρ
√

vjvN

c
�uρ

2πKρ
�vN/π

p 1 2

Table 1. Notation guide. Symbols used in this paper compared to the notation in
Ref. [16] by Giamarchi and Schulz (charge operators) and Ref. [24] by Haldane.

3.2 Zero temperature - a review

The special case t = 0 was previously considered, e.g., in [16, 15] (for a better
comparison see the notation guide listed in table 1).

The flow equations for K and u at zero temperature read:

dK

dl
= −1

2
p4u2KB0(p2K,∞) , (23a)

du2

dl
=

[
3 − p2K

2

]
u2 , (23b)

with

B0(ν,∞) =

∞∫
0

dτ τ2e−τ
[
1 + τ2/2

]−ν/4
. (24)

The corresponding flow equation for K obtained in [16] deviates slightly
from (23a), which can be traced back to the different RG procedures. In [16]
the authors performed the RG at strictly zero temperature and used a sym-
metric, circular shape of the “momentum–shell”, i.e., treated the model as,
effectively, isotropic in the 1+1-dimensional space-time.
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This procedure may be a good approximation at zero temperature, but
if one considerers finite temperatures this does not hold anymore, since the
extension in τ -direction is now finite. As a result, there is a region π/L < |k| <
π/λT where fluctuations are mainly one-dimensional and purely thermal. This
region was disregarded in previous treatments. As we will see, fluctuations
from this region have an important influence on the overall phase diagram.

The critical behavior is, however, the same: there is a Kosterlitz-Thouless
(KT) transition at the phase boundary Ku between a disorder dominated,
pinned and a free, unpinned phase which terminates in the fixed point K∗

u =
6/p2. One can derive an implicit equation for Ku by combining (23a) and
(23b) to a differential equation

du2

dK
=

1
p2ηK

(K −K∗
u) , (25)

which has the solution

u2(K) − u2
0 =

K∗
u

p2η

(
K −K0

K∗
u

− ln
K

K0

)
, (26)

where u0 and K0 denote the bare values of the disorder and quantum fluctu-
ation, respectively, and η ≡ B0(p2K∗

u,∞). Then, Ku is implicitly given by

u2(Ku) =
K∗

u

p2η

(
Ku −K∗

u

K∗
u

− ln
Ku

K∗
u

)
, (27)

where the initial condition u2(K0 = K∗
u) = u2

0 = 0 is used. The KT-flow
equations at K∗

u can be recovered by defining

2γ ≡ p2K

2
− 3 ,

2χ2 ≡ 3
2
p4ηu2

with |γ| 	 1. This yields

dγ

dl
= −χ2 , (28a)

dχ2

dl
= −2γχ2 , (28b)

which are exactly the flow equations obtained by Kosterlitz and Thouless [29].
Under the assumption, that a small deviation from the dimension d = 1

changes only the naive scaling dimensions of the fields, our results can be
extended also to d = 1 + ε dimensions (For details see appendix [20]). The
zero temperature phase diagram is modified and illustrated in Fig. 3. For
ε < 0 the fixed point at (K = K∗

u, u = 0) is shifted to positive u-values
(see left inset of Fig. 3), whereas for ε > 0, K and u always flow to the
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Ku K

u

*

d=1

u

K

d>1
u

K

d<1

Fig. 3. Schematic zero temperature phase diagram in d = 1 and close to d = 1
dimensions (see text). u and K denote the strength of the disorder and quantum
fluctuations, respectively.

strong pinning fixed point (at K = 0 and u → ∞; right inset), i.e., quantum
fluctuations are too weak to renormalize the random potential to zero. The
zero temperature transition disappears therefore for d > 1, since the fixed
point lies in the unphysical u < 0 region of the K-u parameter space. In
general this discussion applies to the localization transition as well as to the
Mott transition (see discussion of the the lattice potential in section 5). Note,
that the flow for d �= 1 is qualitatively different from that discussed in Ref. [25],
because the model for superfluids in this paper [eq. (7) therein] is dual to our
model. Since this mapping can only be done in strictly one dimension, one
has to go back to the initial Hamiltonian for superfluids [24] to obtain the
rescaling in d = 1 + ε.

If one includes the effect of Coulomb interaction in d = 1 dimension, phase
fluctuations of the free phase field increase only as (T = 0)〈

(ϕ(x, 0) − ϕ(0, 0))2
〉
∼ K ln1/2 |x|. (29)

As a result, phase fluctuations are too weak to suppress the disorder even for
large values of K and the system is always in the pinned phase. The phase
diagram is therefore similar to that in d > 1 dimensions.

In the pinned phase the parameters K and u flow into the classical, strong
disorder region: K → 0, u → ∞.

Integration of the flow equations gives for small initial disorder and K 	
K∗

u an effective correlation or localization length at which u becomes of the
order unity. This can be extracted from (23b), neglecting the flow of K.

ξu ≈ L
(1−K/K∗

u)−1

FL , (30)

A better approximation of ξu, which takes also the flow of K into account,
can be obtained by replacing u2 in the flow equation for K (23a) by the
expression given in (26). We still use the approximation, that K deviates not
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much from the bare value K0 which is the case, as long as u2
0l 	 1. Then, the

solution for K(l) is given by

K(l) ≈ K0

(
1 − p4

2
u2

0ηl

)
, (31)

which yields a solution of (23b):

ln
u2(l)
u2

0

≈
(

3 − p2

2
K0

)
l +

p6

8
ηK0u

2
0l

2 . (32)

With u2(ln(ξu)) ≈ 1, the correlation length ξu is defined by

0 = lnu2
0 +

(
3 − p2

2
K0

)
︸ ︷︷ ︸

≡a

ln(ξu) +
p6

8
ηK0u

2
0︸ ︷︷ ︸

≡b

(ln(ξu))2 , (33)

which yields

ln(ξu) =

√
a2 − 4b lnu2

0 − a

2b

≈ − lnu2
0

3 − p2K0
2

− p6

8
ηK0u

2
0

(lnu2
0)

2(
3 − p2K0

2

)3 , (34)

where the first term of the right-hand side gives the result (30).
Close to the transition line, ξu shows KT behavior. For K ≥ Ku, ξu di-

verges and C(x, τ) ∼ K(l = ln |z|) ln |z| where |z| =
√
x2 + τ2 (cf. section

4).

3.3 Strong pinning limit: Exact ground state

For large values of u our flow equations break down. Qualitatively the flow is
towards large u and small K. We can, however, find the asymptotic behavior
in this phase by solving the initial model in the strong pinning limit exactly.
To find this solution we will assume strong pinning centers and weak thermal
fluctuations:

Uimp → ∞ and c/(p2limp) 
 T. (35)

To treat this case, we go back to the initial Hamiltonian (4) (with W ≡ 0
and the kinetic term also vanishes because of K → 0). For strong disorder it
is convenient to integrate out the phase field ϕ(x) at all points which are not
affected by the impurities. Then the effective Hamiltonian takes the form [10]

Heff =
N∑

i=1

{
c

2
(ϕi+1 − ϕi)2

xi+1 − xi
+ Uiρ(xi)

}
, ϕi ≡ ϕ(xi). (36)
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Under condition (35), ϕi only takes values obeying

p(ϕi +Qxi) = 2πni + π with ni ∈ Z integer (37)

which minimizes the backward scattering term. Defining hi and εi by

ni+1 − ni ≡ hi +
[
pQlimp

2π

]
, xi+1 − xi ≡ limp + εi (38)

with 0 ≤ x1 ≤ x2 ≤ . . . ≤ xN+1 ≤ L, the effective Hamiltonian can be
rewritten as

Heff =
c

2p2

∑
i

(2π)2
(
hi − pQεi

2π − γ
)2

limp + εi
. (39)

Here [x] denotes the closest integer to x (Gaussian brackets):

[x] = m for x ∈
[
m− 1

2
,m+

1
2

]
,m ∈ Z (40)

and

γ ≡ pQlimp

2π
−

[
pQlimp

2π

]
, (41)

such that |γ| ≤ 1
2 .

Because thermal fluctuations are small compared to the elastic energy, see
(35), (hi − pQεi

2π − γ) takes on its minimal value, which is given by

h0
i =

[
pQεi
2π

+ γ

]
. (42)

This defines the exact ground state of the classical model: If we use (38) one
finds for the optimal value of the ni’s

n0
i+1 = n0

i +
[
pQ

2π
(εi + limp)

]
,

which leads, using (37), to the exact classical ground state

ϕ0
i =

1
p

⎛⎝2π

⎧⎨⎩n0
1 +

∑
j<i

[
pQ

2π
(εj + limp)

]⎫⎬⎭ + π

⎞⎠−Qxi , (43)

where n0
1 has an arbitrary integer value (see Fig. 4).

3.4 Finite temperature and crossover diagram

At finite temperatures thermal fluctuations wipe out the random potential,
which leads to the pinning of the CDW at t = 0 and K < Ku. Thus, there
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ix2x x

ϕ i = ϕ(xi)

2π

1x

n1 = 2
0

n1 = 1
0

Fig. 4. Ground states in the strong pinning regime characterized by the integer
number n0

1. The wavy lines show an excitation from one ground state forming an in-
stanton configuration which could be a mechanism for quantum tunneling transport
at low temperatures [35, 33].

is no phase transition anymore and the system is always in its delocalized
phase, even if the disorder may still play a significant role on intermediate
length scales.

In the special case K → 0 the flow equation (19c) reduces to du2

dl =[
3 − p2t

]
u2 with solution

u2(l) = u2
0e

3l−p2t0(e
l−1) . (44)

If we write t = t0e
l, we may express l by t and hence, we may write u2 as

t-dependent function:

u2(t) = u2
0(t/t0)

3e−p2(t−t0) , (45)

which is plotted in Fig. 2 in the t-u plane.
One sees that the flow of the disorder has a maximum at t = 3/p2 or

l = ln(3/(p2t0)), if t0 < 3/p2. For finite K, the RG flow of u in the region
K < Ku first increases and then decreases. The region of increase in the K-t
plane is implicitly defined by Mu ≡

{
(K, t)|K∗

u ≥ K coth K
2t ≥ 0

}
, i.e., the

positions of the maxima of u2[K, t] are located on the boundary of Mu defined
by K∗

u = K coth K
2t .

The correlation length ξ can be found approximately by integrating the
flow equations until the maximum of u(l) and t(l)/(1 + K(l)) is of the order
one (see discussion in section 4). This can be done in full generality only
numerically (see Fig. 5).

It is however possible to discuss several special cases analytically. The zero
temperature correlation length can still be observed as long as this is smaller
than the thermal de Broglie wave length λT which can be rewritten for K not
too close to Ku as t � tK ≈ Kt

(1−K/Ku)−1

u with tu ≈ L−1
FL, where we defined

tK via ξu ≡ K
tK

, analogously to the definition of λT , and used (30). We call
this domain the quantum disordered region.

For K ≥ Ku the correlation length ξ is given by λT which is larger than
given by purely thermal fluctuations. For scales smaller than λT , the phase
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Ku

t

K

p = 2
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disordered

quantum
critical

quantum
disordered

thermal

*

Fig. 5. The low temperature crossover diagram of a one-dimensional CDW. t and
K are proportional to the temperature and the strength of quantum fluctuations,
respectively. The amount of disorder corresponds to a reduced temperature tu ≈ 0.1.
In the classical and quantum disordered region, respectively, essentially the t = 0
behavior is seen. The straight dashed line separating them corresponds to λT ≈ 1,
i.e., K ≈ t, where λT is the de Broglie wave length. In the quantum critical region,
the correlation length is given by λT . Pinning (localization) occurs only for t =
0, K < K∗

u.

correlation function still increases as ∼ ln |z| with a continuously varying
coefficient Keff(u0), as will be discussed in detail in the next section. In this
sense one observes quantum critical behavior in that region, despite of the fact,
that the correlation length is now finite for all values of K [6, 7].

In the classical disordered region tK < t < tu the correlation length is
roughly given by LFL as follows from previous studies [10, 44] or by solving
u2(ln(ξ)) � 1 using (44) for small t0 yielding ξ ≈ u

−2/3
0 e−p2t0 ≈ u

−2/3
0 =

LFL(πp4)1/3. Note, that tK ≈ K for small K.
In the remaining region t � tu, the thermal region, we apply the mapping

onto the Burgers equation (see section 4). In this case the RG-procedure
applied to this equation becomes trivial, since there is only a contribution
from a single momentum shell and one finds for the correlation length ξ−1 ≈
π
2 f(T )t[1 + 1/2[tu/(πp2t)]3]Λ.

The phase diagram depicted in Fig. 5 is the result of the numerical integra-
tion of our flow equations and shows indeed the various crossovers discussed
before.

In the high temperature region (t 
 K) the flow equations can be solved
explicitly. For u2(l) we get the same result as given in (44) and the flow
equation for K reduces to

dK

dl
= −p4

2
u2 K4

(2t)3
, (46)

where we used B0(p2K, K
2t → 0) = (K/2t)4. The solution of this equation is

given by

K(l) =
[
K−3

0 +
3p4u2

0

16t30
ep2t0Ei(p2t0, p

2t0e
l)
]−1/3

, (47)
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with the incomplete exponential integral function Ei(a, b) defined by

Ei(a, b) ≡
∫ b

a

dt e−t/t .

One observes that K(l) saturates very quickly at a value K(∞) < K0.

4 Correlation functions

In this section we discuss the density-density and the phase correlation func-
tions in more detail and summarize all correlation lengths in the various
regimes – partly already used in the last two sections.

The (full) density-density correlation function is defined as

S(x, τ) ≡ 〈ρ(x, τ)ρ(0, 0)〉 , (48)

where ρ(x, τ) is given in (1). In the following we restrict our considerations
to the (charge) density wave order part of S, which is the term proportional
to ρ2

1, i.e.
S1(x, τ) = ρ2

1 〈cos p(ϕ(x, τ) +Qx) cos pϕ(0, 0)〉 , (49)

which defines the type of order of the density wave: If it decays algebraically we
have quasi long–range order (QLRO), an exponential decay over a correlation
length ξ corresponds to short–range order (SRO). The omitted parts of S
decay faster than S1 [17].

S1 can be rewritten as

S1(x, τ) =
ρ2
1

4

(
eıpQx

〈
eıp(ϕ(x,τ)−ϕ(0,0))

〉
+ e−ıpQx

〈
e−ıp(ϕ(x,τ)−ϕ(0,0))

〉)
,

(50)
and using a gaussian approximation for the averages, which can be indeed
exact in lowest order perturbation theory [8], we obtain

S1(x, τ) � ρ2
1 cos(pQx)e−

p2

2 〈(ϕ(x,τ)−ϕ(0,0))2〉 . (51)

From now on we focus on the phase correlation function

C(x, τ) ≡
〈
(ϕ(x, τ) − ϕ(0, 0))2

〉
, (52)

and discuss it in various limits. Combining (51) and (52) we can extract a
correlation length from the relation

ξ−1 = lim
x→∞

p2

2x
C(x, 0). (53)

An overview of all different correlation lengths is shown in table 2.
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4.1 Disorder-free case

We start with the most simple case u = 0. Then, the correlation function in
dimensionless units follows directly from the action S0 written in momentum
space:

C0(x, τ) =
2πt
L

∑
k,n

1 − eı(kx+ωnτ)

ω2
n + k2

, (54)

with Matsubara frequencies ωn = 2πn/λT and momenta k = km = 2πm/L.
The sums over n and k (i.e., m) can be performed approximately for

sufficiently large x and τ and one obtains [38]

C0(x, τ) �
K

2
ln

(
1 +

(
λT

2π

)2 [
cosh

(
2πx
λT

)
− cos

(
2πτ
λT

)])
. (55)

The behavior of this function is considered in the following cases:
(i) At zero temperature (λT → ∞) (55) reduces to

C0(x, τ) �
K

2
ln

(
1
2
[
x2 + τ2

]
+ 1

)
, (56)

i.e., the correlation function has a logarithmic dependency on x and τ and
leads to an algebraic decay of S1, i.e., the system shows QLRO.

(ii) At finite temperatures we can distinguish between length scales smaller
and larger than λT .

In the first case x 	 λT and τ 	 λT the cosh and cos term can be
expanded to second order in the arguments and one gets the same logarithmic
function as in the zero temperature case. In the opposite case x 
 λT , which
is the usual case at high temperatures, the cosh term can be approximated
by the exponential function and one finds a linear dependency on x:

C0(x) ≈ πtx = Tx/c =⇒ ξ =
2

p2πt
≡ ξT , (57)

i.e., S1 decays exponentially (SRO) over a characteristic length ξ ∼ t−1. The
same result is obtained for the limit K → 0 at a fixed, finite temperature.

Note, that with this result we have neglected the algebraic decay for small
x < λT . Therefore a better interpolation formula for the correlation length
is ξ ≈ 2

p2 (ξT + λT ), which takes the slow decay for small x into account. In
terms of the length-scale dependent t(l) this rewrites to

t(l = ln(ξ)) = K + 1 , (58)

i.e., the correlation length is reached, if t(l)/(1 +K) is of order one.
The change from QLRO on small length scales x < ξ to SRO on large

length scales becomes clear if one considers the cylindric topology of the sys-
tem in space-time at finite temperatures: As soon as one reaches length scales
of the order of the perimeter of the cylinder, which is λT (see Fig. 6), start-
ing from small scales, the system changes from two-dimensional to effectively
one-dimensional behavior.
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T
L

x Fig. 6. Topology of the 1 + 1 dimensional system at fi-
nite temperature. Due to periodic boundary conditions in
imaginary time direction the system has a cylinder topol-
ogy with perimeter of the thermal de Broglie wave length
λT .

4.2 Finite disorder

If u is finite, the action of the system has a forward and a backward scattering
part. With the decomposition (22), the phase correlation function divides into
two parts:

C(x, τ) = Cb(x, τ) + Cf (x) (59)

and has therefore always a contribution Cf (x) ∼ |x|/ξf with ξ−1
f ∼ σ(l =

ln |x|), i.e., the density wave order has always an exponentially decaying con-
tribution and we can define

S1(x, τ) ≡ fρ(x)e−
p2

2 Cb(x,τ) , (60)

with fρ(x) = ρ2
1 cos(pQx)e−

p2π
4 |x|/ξf . However, since Cf (x) is not τ -dependent,

it will not influence the dynamical properties of the system. Therefore all fur-
ther remarks about phase correlations refer to Cb(x, τ) and consequently we
will drop the subscript b in the following. Again we examine the T = 0 and
finite temperature cases:

(i) At zero temperature we have to distinguish between three K-regimes: For
K > Ku the disorder becomes irrelevant under the RG flow and we can
use the zero temperature, disorder free result for the correlation function
with the pre-factor K replaced by an effective quantity Keff(l = ln z) on
a length scale z =

√
x2 + τ2, defined by the flow equation for K. This

effective K saturates on large scales at a fixed point value Keff(u0), which
may be seen in Fig. 2. Therefore we have QLRO in this K region.

For 0 < K < Ku we integrate the flow of u until it reaches a value of
order one, starting at small u0, which defines the localization length ξu (see
section 3.2), i.e., the correlation function behaves like C(x, τ) ∼ |x|/ξu, i.e.,
we have an additional (to Cf ) exponentially decaying contribution to S1.

The third case, K = 0, is discussed in the next section.
(ii) At finite temperatures the parameter K saturates at an effective value

Keff(u0) on large length scales. Therefore the correlation function for small
disorder is given by (55) with K replaced by K(l = ln z).

In the region Mu of the K-t plane (see section 3.4), u still increases and
we can find an effective correlation length by comparing the length scales
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on which u(l) or t(l)/[1+K(l)] become of order one. Then, the correlation
length is the smaller length of these two.

For K = 0, high temperatures, but weak disorder we adopt an alterna-
tive method by mapping the (classical) one-dimensional problem onto the
Burgers equation with noise [26]. With this approach one can derive an
effective correlation length given by

ξ−1
B ≈ ξ−1

T

(
1 +

1
2

[
ξT

2LFL

]3
)

(61)

where ξT 	 LFL, which changes the prefactor of the free correlation func-
tion at high temperatures (57). The full calculation for this result can be
found in [21, 20].

4.3 Strong disorder

In the last region K = 0 for T 	 c/(p2limp) we come back to the strong
pinning case, discussed in section 3.3 before, and calculate the pair correlation
function exactly. Taking into account that the hi’s are independent on different
lattice sites, i.e., hihj ∝ δij , the (discrete) phase correlation function is given
by

〈
(ϕn+1 − ϕ1)

2
〉

=
4π2

p2

〈(
hi −

pQεi
2π

− γ

)2
〉

· n

=
4π2

p2

(
pQεi
2π

+ γ −
[
pQεi
2π

+ γ

])2

n ,

where we used (42) for the second equality. For evaluating the disorder average
in this expression, one has to take into account the order statistics of the
impurity distances εi. In the thermodynamic limit the probability density
function for the εi’s can be rewritten as

p(εi) ≈
l−1
imp

e
e−l−1

impεi , −limp ≤ εi < ∞ . (62)

A complete derivation of this expression can be found in [19].
Then, the correlation function can be explicitly written as〈

(ϕn+1 − ϕ1)
2
〉

=
4π2

p2

∫ ∞

0

dx e−x
( x

2α
−

[ x

2α

])2

n , (63)

where we introduced the parameter α ≡ π
pQlimp

and substituted x = l−1
impεi +1.

This integral can be evaluated exactly, which leads to the following exact
expression for the pair correlation function at zero temperature, written in a
continuum version:
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C(x, τ) =
2π
pα

(
1 − α

sinhα

)
|Qx| ≡ 2x

p2ξ
, α =

π

pQlimp
. (64)

Finally, we want to give an interpolating expression for C(x, τ) from T = 0
to high temperatures T 
 c/(limpp

2) starting with the result (64). In the latter
case we may neglect the discreteness of hi and hence〈

(ϕn+1 − ϕ1)
2
〉

≈ 4π2

p2limp

(
− ∂

∂λ1
ln

(∫
dh e−

∑
i
λih2

))
|x|

=
T

c
|x| = πt|x| , (65)

with λi = 2π2c
Tp2(limp+εi)

.
A plausible interpolation formula is then given by〈

(ϕ(x) − ϕ(0))2
〉
≈

(
2Q2limp

(
1 − α

sinh(α)

)
+
T

c

)
|x| , (66)

and for limp 
 Q−1, i.e., α 	 1:

〈
(ϕ(x) − ϕ(0))2

〉
≈

(
π2

3p2
l−1
imp −

7π4

180p4

l−3
imp

Q2
+
T

c

)
|x| . (67)

Hence the correlation length acquires the form

ξ−1
sp ≈ p2Q2limp

(
1 − α

sinh(α)

)
+ ξ−1

T . (68)

Note, that limpQ ≥ 1, i.e., α ≤ π/p and ξT 
 limp. An approximate crossover
to the weak pinning limit follows by choosing limp ≈ LFL.

length description eq.

ξB weak pinning/high temp. length (61)
ξf forward scattering length (59)
ξsp strong pinning length (68)
ξT high temp./disorder free length (57)
ξu disorder localization length (30)
ξw lattice pot. correlation length sec. 5

Table 2. Overview of the dimensionless correlation lengths.

For application of those results to other systems like superfluids, see [21,
20].
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5 Influence of a commensurate lattice potential

If the wave length λ of the CDW modulation is commensurate with the period
a (= π, due to dimensionless units) of the underlying lattice such that nλ = qa
with integers n and q, the umklapp term −2π(w/K) cos(qϕ) appears in the
Hamiltonian [23]. Therefore we switch on the lattice potential w �= 0 now. In
this section we consider the case u = 0, which leads to the sine-Gordon type
model:

SLP

�
=

L∫
0

dx

K/t∫
0

dτ

[
1

2πK
{
(∂xϕ)2 + (∂τϕ)2

}
− w

K
cos(qϕ)

]
. (69)

The model has q degenerate classical ground states given by ϕm = 2πm/q
with m = 0, ..., q − 1. Performing a calculation analogous to the one above
(but with u = 0) the RG-flow equations read

dK

dl
=

π

2
q4w2B2

(
q2K,

K

2t

)
coth

K

2t
, (70a)

dt

dl
=

[
1 +

π

2
q4w2B1

(
q2K,

K

2t

)
coth

K

2t

]
t, (70b)

dw

dl
=

[
2 − q2

4
K coth

K

2t

]
w, (70c)

where B1,2 are given in (20) with

g1 = 2x2 cosx ,
g2 = (x2 + τ2) cosx .

Plots of the functions B1 and B2 can be found in [20]. A plot of the numerical
solution of (70a) to (70c) is shown in Fig. 7.

At zero temperature (70a) and (70c) reduce to

dK

dl
=

π

2
q4w2B2

(
q2K,∞

)
, (71a)

dw

dl
=

[
2 − q2

4
K

]
w, (71b)

and we find, that the lattice potential becomes relevant (i.e., w grows) for
K < Kw, where Kw is implicitly defined by

w2(Kw) =
K∗2

w

2πq2η̃

(
Kw

K∗
w

− 1
)2

, (72)

which follows from
dw

dK
= − 4

q4πη̃w

(
1 − K

K∗
w

)
, (73)
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Kw K

w

t

Fig. 7. Typical flow diagram for the disorder free model in the three dimensional
parameter space of K, w and t. w denotes the strength of the commensurate lattice
potential.

where we used (71a) and (71b) and the initial condition w(K∗
w ≡ 8/q2) =

w0 = 0; η̃ = −B2

(
q2K∗

w,∞
)

(≈ 0.4, for q = 1).
In this region the periodic potential stabilizes true long-range order of the

CDW: the phase is everywhere close to one of the q classical ground states ϕm.
The depinning transition from the lattice for K ↗ Kw is again of KT type. The
correlation length ξw in the low-K ordered phase is defined by w(ln ξw) ≈ 1
and diverges at Kw−0 [3, 11, 46]. This can be seen by considerations analogous
to the disordered case. Defining

γ = 2
K

K∗
w

− 2 ,

χ2 =
π

8
q6η̃w2

(note that η̃ > 0) leads for |γ| 	 1, i.e., close to K∗
w, to the KT equations

(28a) and (28b).
At finite temperatures we find a similar scenario as in the case where we

considered the influence of the disorder: w first increases in a region in the
K–t plane which is defined by Mw ≡

{
(K, t)|K∗

w ≥ K coth K
2t ≥ 0

}
, i.e., when

the right-hand side of (70c) is positive, but then decreases and flows into the
region of large t and small w. Thus the periodic potential becomes irrelevant
at finite temperatures. This can be understood as follows: at finite t the 1D
quantum sine-Gordon model can be mapped on the Coulomb gas model on
a torus of perimeter λT since periodic boundary conditions apply now in
the τ -direction. Whereas the entropy of two opposite charges increases for
separation L 
 λT as ln(LλT ), their action increases linearly with L. Thus,
the charges remain bound. The one-dimensional Coulomb gas has indeed only
an insulating phase [31].
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6 Disorder and lattice potential

In this section we consider the combined influence of the disorder and the
umklapp term at zero temperature. Although the RG calculation breaks down

disorder

pinned

u0

Kw Ku K

unpinned

* *

p/q<   3 /2

disorder

pinned

u0

Ku Kw K

unpinned

* *

p/q>  3 /2

Fig. 8. Qualitative zero temperature phase diagram for a system with commensurate
lattice potential and small disorder. One has to distinguish two cases: (i) K∗

w < K∗
u

(or p/q <
√

3/2) and (ii) K∗
w < K∗

u (or p/q >
√

3/2). The phase boundaries can be
estimated by Imry-Ma arguments (see text).

for K < max(Ku,Kw), the common influence of both the random and the
commensurate potential can be estimated by combining the results obtained
so far with Imry-Ma arguments [27]. We distinguish the following cases:

(i) Case: K > max(Ku,Kw). Both disorder and the umklapp term become
irrelevant and the system is asymptotically free. The order is of quasi-long-
range type.

(ii)Case: Ku < K < Kw (i.e. p >
√

3
2 q). This is the region where in the

absence of the umklapp term the disorder would still become irrelevant.
The umklapp term favors phase values ϕm = 2πm/q, m = 0, ..., q − 1,
equally. We consider now the stability of one of these phases, say with
m = 0, with respect to the formation of domains with m �= 0 due to the
disorder. Since the disorder is completely correlated in the τ -direction, it
is clear that these domains - if they exist - are stripe-like with an infinite
extension in this direction.
In the presence of weak disorder the free energy density of this stripe
domain state is given by

fdomain = (qw1/2L−1
x − uL−1/2

x ) , (74)

where Lx denotes the extension of these domains. qw1/2 is the surface
tension of the domain wall. Minimizing fdomain leads to Lx � q2w/u2. To
determine whether the disorder or the lattice potential dominate in the
considered K region, we study the behavior of Lx on larger length scales
by using the flow equations
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Lx(l) ∝ weff(l)
u2
eff(l)

≈ ξ−2w(l)
ξ−3u2(l)

= ξ
w(l)
u2(l)

, (75)

where ln ξ = l. The effective parameters follow from the unrescaled flow
equations which are expressed by the renormalized and rescaled quantities
as given in (75). At the correlation length ξw, where the renormalization
stops (w ≈ 1), Lx behaves like

Lx(ln ξw) ≡ ξu = const × ξw

u2(ln ξw)
(76)

and therefore ξu > ξw. We conclude that even though the disorder in the
absence of the periodic potential is irrelevant for K > Ku, the decay of
u is stopped due to the suppression of the ϕ fluctuations which in turn
are due to w, and the ordered state ϕ = ϕm = 2πm/q state is destroyed
on the scale ξu by arbitrarily weak disorder. In the space direction the
system decomposes into domains of extension ξu. Note, that there are still
long-range correlations in the τ -direction since the disorder is frozen. For
these reasons we expect only two phases, a free phase for K > Kw and a
pinned phase for K < Kw (see right diagram in Fig. 8).

(iii)Case: Kw < K < Ku (i.e. p <
√

3
2 q) or K < min(Ku,Kw). In this case

the above considerations suggest that the disorder dominates the lattice
potential even more, and we again expect only two phases (see Fig. 8).

This means that for K < max(Ku,Kw) disorder turns out to be always
relevant with ξu ≈ ξw/u

2(ln ξw).

7 Conclusions

To conclude we have shown, that in one-dimensional charge and spin density
waves, Luttinger liquids, and superfluids, quantum phase transitions between
a disordered (or locked-in) phase and an asymptotically free phase at zero tem-
perature are destroyed by thermal fluctuations, leaving behind a rich crossover
behavior. This was demonstrated by using a full finite temperature renormal-
ization group (RG) calculation. The crossover regions were characterized by
the behavior of the phase pair correlation functions. For vanishing quantum
fluctuations our calculation was improved by an exact solution in the case of
strong disorder and by a mapping onto the Burgers equation with noise in the
case of weak disorder, respectively. Both methods gave an exponential decay
of density correlations.

We have also briefly discussed, that the inclusions of Coulomb interaction
may destroy the unpinning (localization) transition at zero temperature.

The finite temperature calculation, used in this paper, is also suited for
treating the low frequency, low temperature behavior of dynamical properties
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which may depend crucially on the ratio ω/T , e.g., the frequency dependent
electric conductivity. This will be postponed to a forthcoming publication.

The combined effect of disorder and the lattice potential on the zero tem-
perature phase diagram, i.e., the competition between unpinning (Anderson)
and lock-in (Mott) transition, is still controversially discussed [41, 14] and can-
not be explained by the RG-results presented here, since both perturbations
become relevant for small K. However, using Imry-Ma arguments one finds,
that as soon as K is below one of the two critical values (for the unpinning
and lock-in transition) the disorder dominates the lattice potential and only
two phases exist. This is in contrast to the proposed existence of a so-called
intermediate Mott-Glass phase [14].
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Summary. We demonstrate that in a wide range of temperatures Coulomb drag
between two weakly coupled quantum wires is dominated by processes with a small
interwire momentum transfer. Such processes, not accounted for in the conventional
Luttinger liquid theory, cause drag only because the electron dispersion relation
is not linear. The corresponding contribution to the drag resistance scales with
temperature as T 2 if the wires are identical, and as T 5 if the wires are different.

1 Introduction

Electrons moving in a conductor generate a fluctuating electric field around
it. This field gives rise to an unusual transport phenomenon, Coulomb drag
between two closely situated conductors [1]. The structure of the fluctuating
field is determined by electron correlations within the conductors. Correla-
tions are stronger in conductors of lower dimensionality. Tomonaga-Luttinger
model captures some aspects of the correlations in the case of one-dimensional
conductors (quantum wires). Within this model, the Coulomb drag was stud-
ied in [2, 3]. In a typical setup [4, 5] a dc current flows through the active wire
1, while the bias applied to the passive wire sets I2 = 0, see Fig. 1. The drag
resistivity (drag resistance per unit length of the interacting region) is then
defined as

r = − lim
I1→0

e2

2π�

1
L

dV2

dI1
. (1)

The only source of drag in the Luttinger liquid is interwire backscattering,
associated with a large momentum transfer between the wires. The model pre-
dicts a distinctive temperature dependence of the corresponding contribution
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r2kF
to the drag resistivity (1). In the case of identical wires r2kF

∝ l−1
2kF

e∆/T

at the lowest temperatures [2, 3]. Here l2kF
is the scattering length character-

izing the interwire backscattering. At temperatures T above the gap ∆, this
exponential dependence is replaced by a power-law, r2kF

∼ l−1
2kF

(T/εF )1−γ ,
where εF is the Fermi energy. The exponential temperature dependence of
r2kF

indicates a formation of a zig-zag charge order due to the 2kF -component
of the interwire interaction [2, 3]. To the contrary, the exponent γ > 0 in the
power-law portion of the function r2kF

(T ) is determined by the interactions
within the wires; γ = 0 in the absence of interactions [6]. This renormalization
of r2kF

is similar in origin to the suppression of the conductance of a Luttinger
liquid with an impurity [7]: in both cases repulsive interactions enhance the
backscattering probability when temperature is lowered.

However, forward scattering between the wires also induces drag. To see
this, one has to go beyond the Tomonaga-Luttinger model and account for the
nonlinearity of the electronic dispersion relation. If the electron velocity de-
pends on momentum, then even small (compared to 2kF ) momentum transfer
results in drag.

I1

d

V2

1
2

Fig. 1. Coulomb drag between quantum wires. A dc current I1 flows through the
active wire (1). A voltage bias V2 is applied to the passive wire (2) in such a way
that I2 = 0.

The small (r0) and large (r2kF
) momentum transfer contributions to the

drag are inversely proportional to the corresponding scattering lengths l0
and l2kF

, respectively. Their ratio l0/l2kF
∝ e−4kF d depends strongly on the

distance d between the wires. If the drag effect is employed to study the
correlations within a wire, rather than the zig-zag order induced by inter-
wire interaction, then d must be large: kF d > 1. In this case the gap ∆ ∼
εF (kF l2kF

)−1/γ becomes narrow, and the role of forward scattering increases.
In this paper we demonstrate that the drag resistivity between weakly

coupled wires is dominated by the forward scattering in a wide temperature
range. Even for identical wires, which is the most favorable for backscatter-
ing case, r0 ∝ T 2 wins over r2kF

at all T above T ∗ ∼ εF (l0/l2kF
)1/(1+γ).

For different wires, r2kF
is exponentially small at T � uδn, whereas r0 has a

power-law low-temperature asymptotics; here δn is the mismatch of the elec-
tron densities between the wires and u is the characteristic plasma velocity;
hereafter we set � = 1.
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2 Drag Resistance in Terms of the Density-Density
Correlation Function

The Hamiltonian of the system, H = H1 +H2 +H12, is given by the sum of
the Hamiltonians of the two isolated wires i = 1, 2,

Hi =
∫

dxψ†
i (x)

p̂2

2m
ψi(x) +Hint, p̂ = −id/dx,

Hint =
∫

dxdy ρi(x)Uii(x− y)ρi(y), (2)

and of the Hamiltonian of the interwire interaction,

H12 =
∫

dx1dx2 ρ1(x1)U12(x1 − x2)ρ2(x2); (3)

here ρi(x) = ψ†
i (x)ψi(x).

We will assume that the interactions are screened by the nearby metallic
gates. The screening length ds is set by the distance to the gates and is
typically [4, 5] of the order of the separation d between the wires, ds ∼ d.
The short-distance cutoff dij of the Coulomb potential is provided by the
wire width d0 for i = j or by the interwire distance d for i �= j. The Fourier
transforms Uij(k) =

∫
dxeikxUij(x) are rapidly decreasing functions of k with

Uij(k) ∝ e−|k|ds for |k| 
 1/ds, and Uij(k) ≈ const for |k| 	 1/dij . Note
that dij ∼ ds ∼ d for interwire interaction U12(k). Thus, its k-dependence is
characterized by a single scale k0 ∼ 1/d.

Because of the interaction H12, electrons in the wire 2 experience a force [2]
whose density is given by

F2 =
∫

dx (dU12(x)/dx) 〈ρ1(x)ρ2(0)〉. (4)

Since there is no current in the wire 2, this force must be balanced by an
external electric field, en2E2 + F2 = 0, where E2 = V2/L and ni = 〈ρi〉 is the
concentration of electrons in the wire i. At T 
 ∆ (see the discussion above)
the correlation function in the r.h.s. of Eq. (4) can be evaluated in the first
order in U12,

V2

L
=

1
en2

∫
dkdω

(2π)2
kU2

12(k)S̃1(k, ω)S̃2(−k,−ω), (5)

where S̃i(k, ω) are the dynamic structure factors,

S̃i(k, ω) =
∫

dxdt eiωt−ikx 〈ρi(x, t)ρi(0, 0)〉 ,

calculated in the presence of a finite current I1 in the wire 1. The structure
factor S̃2(k, ω) in the wire 2 coincides with its equilibrium value, S2(k, ω).
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The electronic subsystem in the wire 1 is in equilibrium in the reference frame
moving with the drift velocity vd = I1/en1 in the direction of the current.
Therefore the structure factor S̃1 is obtained from the equilibrium value S1

using the Galilean transformation: S̃1(k, ω) = S1(k, ω − qvd). Equations (1)
and (5) then yield

r =
∫

dkdω
k2U2

12(k)
8π3n1n2

∂S1(k, ω)
∂ω

S2(−k,−ω). (6)

Now we use the fluctuation-dissipation theorem,

Si(k, ω) =
2Ai(k, ω)
1 − e−ω/T

to further simplify Eq. (6),

r =
∫ ∞

0

dk

∫ ∞

0

dω
k2U2

12(k)
4π3n1n2T

A1(k, ω)A2(k, ω)
sinh2(ω/2T )

. (7)

Here Ai is the imaginary part of the retarded density-density correlation func-
tion; Ai(k, ω) = Ai(−k, ω) = −Ai(k,−ω). Equation (7) was derived by differ-
ent means in [8]; similar expressions have been also obtained for noninteracting
systems with disorder [9]. Here we demonstrated the validity of Eq. (7) for
clean interacting systems.

3 Temperature Dependence of the Drag Resistance

We start with the evaluation of the drag resistivity for noninteracting electrons
(Uii = 0). Concentrating on the small momentum transfer contribution to r,
we consider the limit l0/l2kF

→ 0, thus setting r2kF
= 0. In this case the main

contribution to the integral over k in Eq. (7) comes from small momenta
k 	 kF and small energies ω 	 εF . At these values of k and ω, functions
Ai(k, ω) are sharply peaked at ωi = vik, where vi = πni/m are the Fermi
velocities in the two wires. For a given k < 2kF the widths of the peaks can
be estimated as

δω(k, T ) = max
{
k2/m, kT/kF

}
. (8)

Equation (8) and the exact f-sum rule,∫ ∞

0

dω ωAi(k, ω) =
πni

m

k2

2
, (9)

allow us to estimate the peak heights: Ai ∼ k/2δω. If the difference between
the Fermi velocities is small,

δv = |v1 − v2| 	 vF = πn/m, n = (n1 + n2)/2,
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then Eq. (7) reduces to

r =
1

4π3n2T

∫ ∞

0

dk
k2U2

12(k)
sinh2(vF k/2T )

α(k, T ), (10)

α(k, T ) =
∫ ∞

0

dωA1(k, ω)A2(k, ω). (11)

The function α(k, T ) depends on δv. If the wires are identical (δv = 0), then
Eq. (11) and the above estimates for Ai yield

α(k, T ) ≈ k2

4δω(k, T )
. (12)

There are two competing scales in the integrand of Eq. (10). The first scale,
k0 ∼ 1/d 	 kF , characterizes the k-dependence of the interwire interaction
U12(k). The typical wave vector of thermally excited electron-hole pairs, T/vF ,
defines the second scale. The two scales coincide at T = T0 = vF k0. At T 	 T0

one can replace U12(k) by U12(0) in Eq. (10). Furthemore, we use α in the
form of Eq. (12) at T = 0, which results in

r =
c1
l0

(
T

εF

)2

,
1
l0

=
[
U12(0)
2πvF

]2

n (13)

with c1 = π4/12. Use of exact form of Ai(k, ω) in Eq. (11) changes only the
numerical coefficient, c1 = π2/4.

The increase of temperature T above T0 results in a saturation of the drag
resistivity. Indeed, at T0 	 T 	 εF one can expand sinh(vF k/2T ) in Eq. (10)
and use δω = kT/kF for the peak width in (12). This yields

r ∼ 1
l0

∫ ∞

0

kdk

n2

U2
12(k)

U2
12(0)

∼ 1
l0

(
T0

εF

)2

. (14)

Further increase of T leads to the decay of the drag,

r ∝ l−1
0 (T0/εF )2(T/εF )−3/2, T 
 εF , (15)

similar to the two-dimensional case [10].
We now consider wires with slightly different Fermi velocities δv > 0.

In this case the peaks of Ai(k, ω) are separated in ω by kδv. We define a
new temperature scale T1 = kF δv by equating the separation to the peak
width (8). We assume this scale is small, T1 	 T0. The difference between
velocities does not affect the drag at T 
 T1. However, at T 	 T1 the
drag resistivity is suppressed exponentially. To obtain the leading asymptotics
of r(T ) it is sufficient to use the T = 0 limit [11] of Ai(k, ω) in Eq. (11),
α(k, 0) = (m/4k) (k −mδv) θ(k −mδv). Equation (10) then results in

r =
π2/4
l0

(
T1

εF

)2
T

T1
e−T1/T , T 	 T1. (16)
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The activational temperature dependence Eq. (16) holds for all T 	 T1,
because for noninteracting electrons at T = 0 the product A1(k, ω)A2(k, ω)
is exactly zero [11] at k < mδv. If electrons interact, some overlap of A1 and
A2 exists even at small k 	 mδv. This yields a further contribution to r, that
has a power-law temperature dependence. We will evaluate this contribution
for weak intrawire interaction.

It is convenient to write A(k, ω) (we suppress the index i in the follow-
ing) in the form A(k, ω) = [S(k, ω) − S(−k,−ω)] /2 and use the Lehmann
representation for the dynamic structure factor:

S(k, ω) =
2π
L

∑
n

|〈n| ρk |gs〉|2 δ(ω − En + Egs). (17)

Here L is the system size, |gs〉 is the ground state, and ρk =
∑

p ψ
†
p+kψp.

We evaluate the matrix element in Eq. (17) in the first order in the intrawire
interaction. The nonvanishing at ω − vF k 
 δω contribution results from
the processes in which the unperturbed final state |n〉 in Eq. (17) has two
electron-hole pairs: |n〉(0) = ψ†

p+qψpψ
†
p′−q′ψp′ |0〉. This contribution is

δS(k, ω) =
1
π2

∫
dpdp′dqdq′ δ(q − q′ − k) (18)

× δ(ω − ξp+q + ξp − ξp′−q′ + ξp′)
× fp(1 − fp+q)fp′(1 − fp′−q′)K2(p, p′, q, q′, ω),

where fp are the Fermi functions, ξp = p2/2m, and

K =
U(q′) − U(p− p′ + q′)

ω − ξp+q + ξp+q′
− U(q′) − U(p− p′ + q)

ω − ξp+q−q′ + ξp

+[p ↔ p′, q ↔ −q′].

Note that Eq. (18), unlike Eq. (17), accounts for a finite temperature. At
ω 	 εF and k 	 kF , Eq. (18) yields the interaction-induced correction to
A(k, ω),

δA(k, ω) =
Ũ2

vF

k4

m2

θ(ω − vF k)
ω2 − v2

F k
2
, (19)

where Ũ = [U(0) − U(2kF )]/2πvF 	 1. This result is valid for ω 	 εF ,
k 	 kF , |ω − vF k| 
 max{ŨvF k, δω(k, T )}, and describes A(k, ω) outside
the interval Eq. (8). The limit of linear electron dispersion relation (m → ∞)
corresponds [12] to δA(k, ω) = 0.

We use Eq. (19) to evaluate the interaction-induced correction δr to the
drag resisitivity between non-identical wires with T1 = kF δv 
 εF Ũ . At the
lowest temperatures, Eqs. (10) and (11) yield

δr ∼ Ũ2

l0

(
T1

εF

)4 (
T

T1

)5

. (20)
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With increasing temperature, the r(T ) dependence changes from Eq. (20) to
the activation law (16). At T 
 T1 the difference between wires does not
affect r(T ).

We will argue now that intrawire interactions do not change the quadratic
temperature dependence of r(T ) at T1 	 T 	 T0, see Eq. (13). At these tem-
peratures, an estimate equivalent to Eq. (13) reads r ∼ |U2

12(0)|v−3
F δω(kT , T )

and yields r ∝ T 2; here kT ∼ T/vF 	 kF is the wave vector of a typical
electron-hole excitation. Interaction apparently does not affect the functional
dependence of δω on k and T ; the estimate (8) still can be used, although the
coefficients 1/m and 1/kF in it are affected by the interaction.

The Tomonaga-Luttinger model is insufficient for the evaluation of δω
in the presence of interaction: it implies linear electron spectrum, which
yields [12] δω = 0. Accounting for the curvature of the electron spectrum
complicates the treatment of the interaction greatly. The width δω can be
explicitly evaluated in the Calogero-Sutherland model which is characterized
by a very specific interaction potential,

Uii(x) =
2π2

mL2

λ(λ− 1)
sin2 [πx/L]

. (21)

The parameter λ here is related to the conventional interaction parameter
g of the Luttinger liquid: g = 1/λ. This relation follows from the definition
g = vF /u in terms of the velocity of the collective mode (plasmon) u, and
its value u = (πn/m)λ in the Calogero-Sutherland model [14, 13]. For the
rational values of λ and at T = 0 the density-density correlation function is
known exactly [14, 13]. Due to the integrability of the model, Ai(k, ω) �= 0
only in a finite interval of ω around ω = uik [15]. We found this interval for
k ≤ 2πni:

− (1/g)
k2

2m
< ω − uik <

k2

2m
, (22)

which yields for the width

δω(k, 0) =
1 + g

2g
k2

m
. (23)

In order to estimate r we note that Eq. (7) and the sum rule (9) remain
valid in the presence of interactions within the wires. This allows us to follow
the steps that led to Eq. (13). Replacing vF by the plasma velocity u in
Eq. (10) and using Eq. (23), we find

r =
cg
l0

(
T

εF

)2

, cg ∝ g6

1 + g
, (24)

which agrees with our expectation for the r(T ) dependence. We are not aware
of a reliabale theory of Ai(k, ω) beyond the exactly solvable case. However,
the self-consistent Born approximation results [16] allow us to corroborate
the estimate δω ∝ k2/m for the peak width, so, apparently, the r ∝ T 2

dependence is universal.
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r

TT ∗ T0 εF

T 2 T−3/2

Fig. 2. Sketch of the temperature dependence of the drag resistivity between iden-
tical wires. The small momentum transfer contribution considered in this paper
dominates at T > T ∗; the ratio T ∗/εF is exponentially small for kF d > 1 .

4 Conclusions

First observations of drag between ballistic quantum wires appeared re-
cently [4, 5]. In a limited temperature interval, 0.2 K < T < 0.9 K, a
three-fold drop in the drag resistance was observed [4] with the increase of
temperature. This drop was fit to a power-law r ∝ T−0.77 and interpeted
as evidence of the Luttinger liquid behavior. However, the Fermi wave vec-
tor in the wires of Ref. [4] was estimated to be kF = 6 × 104 cm−1, which
yields εF = �

2k2
F /2m

∗ ≈ 0.2 K (we used here m∗ = 0.068m0 known for
GaAs). It thus appears that the measurements of Ref. [4] correspond to a
non-degenerate or weakly degenerate regime incompatible with the Luttinger
liquid description. An alternative explanation of the observations [4, 5] is pro-
vided by our theory. Indeed, using the values of kF and d = 200 nm of [4], we
find kF d = 1.2. Under this condition the small momentum transfer contribu-
tion dominates at T > T ∗, see Fig. 2. The observed [4, 5] behavior of r(T )
may correspond to the crossover regime between the limits r(T ) = const and
r(T ) ∝ T−3/2 presented by Eqs. (14) and (15).

To conclude, the small momentum transfer contribution dominates
Coulomb drag at almost all temperatures if the distance between the wires
exceeds the Fermi wavelength, see Fig. 2. Drag by small momentum transfer
is possible because electron dispersion relation is not linear, and therefore can
not be accounted for in the conventional Tomonaga-Luttinger model.
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Summary. We present evidence for spin-charge separation in the tunneling spec-
trum of a system consisting of two quantum wires connected by a long narrow tunnel
junction at the edge of a GaAs/AlGaAs bilayer heterostructure. Multiple excitation
velocities are detected in the system by tracing out electron spectral peaks in the
conductance dependence on the applied voltage, governing the energy of tunneled
electrons, and the magnetic field, governing the momentum shift along the wires.
The boundaries of the wires are important and lead to a characteristic interference
pattern in measurements on short junctions. We show that the experimentally ob-
served modulation of the conductance oscillation amplitude as a function of the
voltage bias can also be accounted for by spin-charge separation of the elementary
excitations in the interacting wires.

1 Introduction

One-dimensional (1D) electronic systems are a very fertile ground for studying
the physics of interacting many-body systems. Gapless electron gases in one
dimension possess universal low-energy properties which can be mapped onto
the exact solution of the Luttinger model.[1] Such 1D systems are collec-
tively termed as Luttinger liquids (LL’s). Despite a number of remarkable
predictions for electronic and thermodynamic properties of LL’s,[1] some made
more than twenty years ago, direct experimental verification for many of them
has remained a challenge. This mostly owes to the high quality of quasi-1D
systems necessary to bridge the gap between the usual Landau Fermi-liquid
(FL) physics in three spatial dimensions and the LL physics in one dimension.

An important prediction of LL theory is that the low-energy elementary
excitations of a one-dimensional metal are not electronic quasiparticles, as
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in the Landau FL theory of three-dimensional Fermi systems, but rather are
separate spin and charge excitations that propagate at different velocities. An
electron entering an LL will split into spin and charge excitations, and the
electron propagator will have singularities corresponding to both velocities,
in contrast to the case of a Landau FL where there is a simple pole at a
single Fermi velocity. In this paper, we discuss evidence for spin-charge sepa-
ration in tunneling between two parallel quantum wires at a cleaved edge of a
double–quantum-well heterostructure. We use two approaches: one based on
mapping out the elementary-excitation dispersions by measuring the conduc-
tance G as a function of the magnetic field B applied perpendicular to the
plane connecting the wires and the voltage bias V , and the other focusing on
the conductance oscillation pattern, in the (V,B) plane, arising due to the
finite length of the tunnel junction.

Fig. 1. Illustration of the sample and the contacting scheme. The sample is fabri-
cated using the CEO method. The parallel 1D wires span along the whole cleaved
edge (front side in the schematic). The upper wire (UW) overlaps the 2DEG, while
the lower wire (LW) is separated from them by a thin AlGaAs barrier (the wires are
shown in dark gray and the 2DEG is light gray). Contacts to the wires are made
through the 2DEG. Several tungsten top gates can be biased to deplete the electrons
under them: We show only g1, here biased to deplete the 2DEG and both wires, and
g2, here biased to deplete only the 2DEG and the upper wire. The magnetic field
B is perpendicular to the plane defined by the wires. The depicted configuration
allows the study of the conductance of a tunnel junction between a section of length
L of the upper wire and a semi-infinite lower wire.

2 Experimental Method

The two parallel 1D wires are fabricated by cleaved-edge overgrowth (CEO),
see Fig. 1. Initially, a GaAs/AlGaAs heterostructure with two closely situated
parallel quantum wells is grown. The upper quantum well is 20 nm wide, the
lower one is 30 nm wide and they are separated by a 6 nm AlGaAs barrier
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about 300 meV high. We use a modulation doping sequence that renders only
the upper quantum well occupied by a two-dimensional electron gas (2DEG)
with a density n ≈ 2 × 1011 cm−2 and mobility µ ≈ 3 × 106 cm2V−1s−1.
After cleaving the sample in the molecular beam epitaxy growth chamber
and growing a second modulation doping sequence on the cleaved edge, two
parallel quantum wires are formed in the quantum wells along the whole side
of the sample. Both wires are tightly confined on three sides by atomically
smooth planes and on the fourth side by the triangular potential formed at
the cleaved edge.

Spanning across the sample are several tungsten top gates of width 2 µm
that lie 2 µm from each other (two of these are depicted in Fig. 1). The
differential conductance G of the wires is measured through indium contacts
to the 2DEG straddling the top gates. While monitoring G with standard
lock-in techniques (we use an excitation of 10 µV at 14 Hz) at T = 0.25 K,
we decrease the density of the electrons under a gate by decreasing the voltage
on it (Vg). At Vg = V2D, the 2DEG depletes and G drops sharply, because the
electrons have to scatter into the wires in order to pass under the gate. For
V2D > Vg > VU the conductance drops stepwise each time a mode in the
upper wire is depleted.[2] In this voltage range, the contribution of the lower
wire to G is negligible because it is separated from the upper quantum well by
a tunnel barrier. When Vg = VU , the upper wire depletes and only the lower
wire can carry electrons under the gate. This last conduction channel finally
depletes at VL and G is suppressed to zero.

The measurements are performed in the configuration depicted in Fig. 1.
The source is the 2DEG between two gates, g1 and g2 in Fig. 1, the voltages
on which are V1 < VL and VL < V2 < VU , respectively. The upper wire
between these gates is at electrochemical equilibrium with the source 2DEG.
This side of the circuit is separated by the tunnel junction we wish to study
from the drain. The drain is the 2DEG to the right of g2 (the semi-infinite
2DEG in Fig. 1) and it is in equilibrium with the right, semi-infinite, upper
wire and with the whole semi-infinite lower wire in Fig. 1. Thus, any voltage
difference (V ) induced between the source and the drain drops on the narrow
tunnel junction between the gates. In addition, we can shift the momentum
of the tunneling electrons with a magnetic field B perpendicular to the plane
defined by the wires. This configuration therefore gives us control over both
the energy and the momentum of the tunneling electrons.

3 Dispersions of Elementary Excitations

The conductance for a spacing of 2 µm between gates g1 and g2 is shown in
Fig. 2. The measured bright and dark curves in the plot can be interpreted
as spectral peaks tracing out the dispersions of the elementary excitations in
the wires.[3] In the case of noninteracting electrons, the curves are expected
to map out parabolas defining the continua of electron-hole excitations across
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Fig. 2. Measurement of G(V, B) for a 2 µm junction. Light shows positive and dark
negative differential conductance. A smoothed background has been subtracted to
emphasize the spectral peaks and the finite-size oscillations. The solid black lines are
the expected dispersions of noninteracting electrons at the same electron densities
as the lowest 1D bands of the wires, |u1〉 and |l1〉. The white lines are generated in a
similar way but after rescaling the GaAs band-structure mass, and correspondingly
the low-voltage slopes, by a factor of 0.7. Only the lines labeled by a, b, c, and
d in the plot are found to trace out the visible peaks in G(V, B), with the line d
following the measured peak only at V > −10 mV.

the tunnel barrier for various pairs of 1D modes, one in the UW and the
other in the LW. At small voltages, electron repulsion is predicted to split
the curves into branches with slopes corresponding to different charge- and
spin-excitation velocities, crossing at a point with V = 0 and magnetic field
necessary to compensate for the Fermi wave-vector mismatch between the 1D
modes (in the following referred to as the “crossing point”).[4, 5]

The 1D modes in the upper quantum well are coupled to the 2DEG via
elastic scattering which ensures an Ohmic contact between the 2D well states
and the states confined to the cleaved edge.[6] (This scattering is however
weak on the scale of the junction length, not affecting the finite-size quantum-
interference effects in tunneling.[7]) In addition to tunneling between the 1D
states of the wires, there is a direct electron transfer from the 2DEG to the
lower wire, when the extended states have an appreciable weight on the edge.
Each of the quasi-1D wires carries several 1D modes. In our theoretical analy-
sis, we will only consider the transition between the lowest 1D bands of the
wires (i.e., the bands with the largest Fermi momentum), |u1〉 ↔ |l1〉, which
has a strong signal, as seen in Fig. 2, given by a family of curves crossing at
the lowest magnetic field. Since other 1D modes have Fermi velocities smaller
than |u1〉 and |l1〉 by at least 40%,[3] we can disregard their coupling to the
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lowest bands,[8] keeping in mind, however, that the effective electron-electron
interaction is affected by screening due to the nearby 2DEG and other 1D
modes. Both the spin-orbit interaction and Zeeman splitting are negligible in
comparison to the Fermi energy, so that the electron states are nearly spin
degenerate in our heterostructure. In our theoretical discussion we therefore
consider tunneling between two coupled spinful modes having some effective
intrawire and interwire interaction. To this end, we use Luttinger-liquid for-
malism, [1] assuming sufficiently low temperature and voltage bias. It is im-
portant in our analysis that the measured densities of |u1〉 in the UW and |l1〉
in the LW happen to match to within several per cent,[3] so that the electronic
excitations in the double-wire system are collective across the tunnel barrier
as well as within each wire.
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B
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’
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0
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Fig. 3. Schematics of the circuit (a) and the model (b). A wire of length L runs
parallel to a semi-infinite wire. The boundary of the upper wire is formed by potential
U(x) confining the one-electron wave function ψ(x) along the wire. The energy
and momentum of the tunneling electrons are governed by applied voltage V and
magnetic field B.

The geometry for our theoretical description is shown in Fig. 3. The po-
tential well U(x) is felt by electrons in the upper quantum wire, which are
confined to a region of finite length by potential gates at both ends (see the
source region in Fig. 1). One of these gates (g1) causes the electrons in the
lower wire to be reflected at one end, but the other (g2) allows them to pass
freely under it. The effective tunneling region is determined by the length of
the upper wire, which is approximately the region |x| < L/2 in Fig. 3. The
magnetic field, B, gives a momentum boost �qB = eBd along the x -axis to
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the electrons tunneling from the upper to the lower wire. The current (for
electrons with a given spin)

I = e|λ|2
∫ ∞

−∞
dxdx′

∫ ∞

−∞
dteiqB(x−x′)eieV t/�C(x, x′; t) , (1)

is determined to lowest order in perturbation theory by the two-point Green
function[4]

C(x, x′; t) =
〈[
Ψ †

l Ψu(x, t), Ψ †
uΨl(x′, 0)

]〉
= G>

u (x, t;x′, 0)G<
l (x′, 0;x, t) −G<

u (x, t;x′, 0)G>
l (x′, 0;x, t) . (2)

The last equality in Eq. (2) is valid when the interwire electron-electron in-
teractions vanish. Although it might not be a good approximation for our
closely-spaced wires, for pedagogical reasons we will discuss this limit first.
One-particle correlators are defined by the usual expressions: G>(x, t;x′, t′) =
−i

〈
Ψ(x, t)Ψ †(x′, t′)

〉
and G<(x, t;x′, t′) = i

〈
Ψ †(x′, t′)Ψ(x, t)

〉
. For V > 0

(V < 0), only the G>
uG

<
l (G<

uG
>
l ) term in Eq. (2) contributes to the cur-

rent (1).
In the LL picture, we can distinguish between the left- and right-moving

electronic excitations in a given 1D mode.[1] In long wires, each chirality con-
tributes terms proportional to e±ikF (x−x′) to the one-particle Green functions
(away from the boundaries), where kF = (π/2)n and n is the electron density
in the mode. If the magnetic field is small enough, qB 	 kF , the edge-state
chirality of the electrons cannot be changed during a tunneling event, and the
total current is thus a sum of the right-moving and left-moving contributions.
It is sufficient to calculate the tunneling rate of the right movers only, since it
equals to that of the left movers under the magnetic-field reversal, B → −B
(so that the total conductance is an even function of B). The corresponding
zero-temperature one-particle Green functions for a gapless translation- and
spin–rotation-invariant 1D gas of interacting electrons has a universal form

G>,<(x, t;x′, 0) =
±ψ(x)ψ∗(x′)

2π
√

(z − vst± i0+)(z − vct± i0+)
×[

rc√
z2 − (vct∓ irc)2

]α

, (3)

where vc = vF /K is the charge-excitation velocity, which is enhanced with
respect to the Fermi velocity vF by electron repulsion, vs is the spin-excitation
velocity, which is close to vF for vanishing backscattering rate and is de-
termined by the exchange interaction of neighboring electrons for strong
repulsion with a sizable backscattering, and α = (K + K−1 − 2)/4 is a non-
universal exponent. K < 1 is the compressibility normalized to that of the
free-electron gas at the same density, z = x−x′, and rc is a short-distance cut-
off. ψ(x) = eikF x is the noninteracting-electron wave function for an infinite
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wire at the Fermi level. Using Eq. (3) to calculate the two-particle Green
function (2) and then performing the integration in Eq. (1), one shows that
the interactions do not shift the position of the crossing point at V = 0 and
qB = ∆kF , the mismatch in the Fermi wave vectors of the wires, but are
manifested by multiple peaks in the tunneling conductance G(V,B), which
intersect at the crossing point with slopes determined by different spin and
charge velocities.[4, 5]

It turns out that in a symmetric double-wire structure, the interwire
electron-electron interactions, do not change the two-point correlation func-
tion (2) apart from renormalizing the parameters entering Eq. (3).[5] The
reason for this is that a tunneling event from the UW to the LW at a low
magnetic field creates a long-lived exciton across the tunnel-barrier with the
electron in the lower and hole in the upper wire, moving in the same di-
rection. The exciton propagates freely, as an acoustic plasmon in a single
wire but with the velocity vc reduced by the electron-hole attraction (corre-
sponding to a larger normalized compressibility K).[7] Similarly, vs entering
Eq. (3) should be thought of as the antisymmetric spin velocity of coupled
antiferromagnetic Heisenberg chains, again reducing to vF in the case of van-
ishing backscattering. For a symmetric double-wire structure, one therefore
expects two velocities to be present at low magnetic-field and bias data: the
antisymmetric spin- and charge-excitation velocities. The situation is more
complicated at high magnetic fields capable of flipping the electron cleaved-
edge chirality: A tunneled particle moves in the direction opposite to the hole
left behind, decaying into a combination of symmetric and antisymmetric ex-
citations across the tunnel barrier, even in the case of a perfectly symmetric
double wire.[4] We will not discuss this regime here.

One can see a family of measured curves crossing at V = 0 and B ≈ 0.1 T
in Fig. 2, which constitute the signal from the |u1〉 ↔ |l1〉 tunneling. We also
draw in Fig. 2 as black solid lines the expected parabolic dispersions for non-
interacting electrons at the same electron densities as |u1〉 and |l1〉; the white
solid lines are generated in a similar way but after rescaling the GaAs band-
structure mass, and correspondingly the low-voltage slopes, by a factor of 0.7.
Remarkably, for positive voltages, we can fit the three visible experimental
curves, a, b, and c, by such parabolas crossing at V = 0 with two different
slopes. Such a fitting is a naive extrapolation of LL spectrum at small volt-
ages, where the excitation dispersions can be linearized and the two visible
low-voltage slopes can be associated with elementary 1D excitations. Under-
standing the high-voltage regime, where the dispersions acquire a curvature,
requires going beyond LL theory, and for that matter beyond the scope of this
paper. For negative voltages, fewer G(V,B) peaks are visible after we subtract
a large background signal due to the direct 2DEG-1D tunneling; in particular,
only one curve, d, is visible for the |u1〉 ↔ |l1〉 tunneling, which cannot be fit-
ted by our naive procedure at V < −10 mV. It is important to point out that
the observed curves a, b, and c in Fig. 2 rule out the noninteracting-electron
picture for tunneling between two 1D modes with different Fermi velocities:
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If the LW had the higher Fermi velocity, we would expect to see dispersions
e and a in Fig. 2, and if the UW had the higher velocity, we would see only b
and c, but not three curves.

The curve c slope is given by the Fermi velocity of the noninteracting
electron gas, corresponding to the value of the electron density measured in
Ref. [3]. The slope of a has the velocity enhanced by a factor of 1.4. Identifying
the faster velocity with the charge mode and the slower with the spin mode,
we arrive at the following LL parameters characterizing the system: K ≈ 0.7
and vs ≈ vF . This value of K indicates that the electron-electron interaction
energy in the cleaved-edge quantum wires is comparable to the Fermi energy,
resulting in a sizable effect on the correlation and thermodynamic properties.
The closeness of the spin velocity vs to the noninteracting Fermi velocity
implies a small backscattering rate due to electron repulsion, as expected in
our wide quantum wires.[4]

4 Finite-Size Effects

The momentum of the electrons tunneling through a window of finite length
L is only conserved within an uncertainty of order 2π/L, resulting in con-
ductance oscillations away from the main dispersion peaks. We show in this
section that another spectacular manifestation of spin-charge separation at
small voltages can be tracked down in such oscillations, as those forming
checkerboard-like patterns near the crossing points of various dispersion curves
in Fig. 2a. We zoom into these oscillations in Fig. 4a. In order to understand
them in detail, we now generalize our analysis to take into account the finite
length of the upper wire.

Assuming that the electron density in each wire varies slowly on the length
scale of k−1

F (except for unimportant regions very close to the boundaries), we
use the WKB wave function

ψ(x) =
eikF xe−is(x)√

k(x)
, (4)

where k(x) = kF [1 − U(x)/EF ]1/2 and s(x) =
∫ x

0
dx′[kF − k(x′)], for right-

moving electrons in the UW in Eq. (3). U(x) is the potential formed by the
top gates defining the finite length of the UW, see Fig. 3. The right movers
in the LW are taken to be propagatory, as in the infinite wire, assuming
its left boundary is formed by the gate g1 in the region where the UW is
already depleted and assuming the gate g2 potential in the LW is well screened.
Additional assumptions required for using the WKB wave function (4) in the
correlator of a finite interacting wire are discussed in Ref. [7].

Substituting Green functions (3) into integral (1), we obtain for the tun-
neling current at V > 0

I ∝
∫ ∞

−∞
dxdx′ei(qB−kF )(x−x′)ψu(x)ψ∗

u(x′)h(x− x′) , (5)
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Fig. 4. Nonlinear conductance oscillations at low field from a 6 µm junction. (a)
shows the oscillations as a function of both B and V . (A smoothed background has
been subtracted to emphasize the oscillations.) The brightest (and darkest) lines,
corresponding to tunneling between the lowest modes, break the V -B plain into re-
gions I, II, and III. Additional positively-sloped bright and dark lines in II arise from
other 1D channels in the wires and are disregarded in our theoretical analysis. Also
present is a slow modulation of the strength of the oscillations along the abscissa.
(b) Absolute value of the peak of the Fourier transform of the conductance at a
fixed V in region II as a function of V . Its slow modulation as a function of V is
easily discerned.

where

h(z) = −
∫ ∞

−∞
dt

eieV t/�

(z − vst+ i0+)(z − vct+ i0+)

[
r2c

z2 − (vct− irc)2

]α

. (6)

Here we have taken the two wires to have the same electron density and
strength of the interactions. For not very strong interactions, α 	 1, the last
term in Eq. (6) can be disregarded, away from the regime of the zero-bias
anomaly.[7] The integrand in Eq. (6) then has two simple poles yielding

h(z) ≈ −2πi
eieV z/(�vs) − eieV z/(�vc)

(vc − vs)(z + i0+)
. (7)
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Combining this with Eq. (5), we finally find the differential conductance G =
∂I/∂V :

G(V,B) ∝ 1
vc − vs

[
1
vs

|M(κs)|2 −
1
vc

|M(κc)|2
]
, (8)

where κs,c = qB +∆kF + eV/(�vs,c) (now including a small mismatch ∆kF =
kFu − kFl in the Fermi wave vectors of the UW and LW, respectively) and

M(κ) =
∫

dx
eiκxe−is(x)√

k(x)
(9)

s(x) and k(x) being the same as in Eq. (4). M(κ) can be found analytically
using the stationary-phase approximation (SPA): M(κ) is evaluated near po-
sitions x± (x+ > x−) where k(x±) = kF − κ and the integrand in Eq. (9) has
a stationary phase. In the case of a symmetric potential, U(x) = U(−x) (so
that, in particular, x− = x+), the SPA gives

M(κ) ∝ Θ(κ)√
∂U(x+)∂x

cos
[
κx+ − s(x+) − π/4

]
, (10)

where Θ(κ) is the Heaviside step function. The SPA approximation (10) can be
shown to diverge for small values of κ, where we have to resort to a numerical
calculation of the integral in Eq. (9).[9] The form of Eq. (10) shows that
(1) the conductance is asymmetric in κ, vanishing for κ < 0 (in the SPA
approximation), (2) it oscillates in magnetic field (and similarly in voltage)
with period ∆qB = 2π/x+, assuming x+ to be a slow-varying function of κ
and that (3) it is a superposition of two oscillating patterns in the (V,B) plane,
the first (second) being constant-valued along line κs = const (κc = const)
and oscillating perpendicular to it, resulting in a moiré structure of G(V,B).
[Note that the conductance in Eq. (8) so far only includes the right-movers’
contribution. In order to get the total conductance, one has to add the piece
which is mirror symmetric to Eq. (8) around B = 0.] If the two velocities vs

and vc are not very different, there are two voltage scales characterizing the
conductance oscillation pattern:

∆V =
2π�vcvs

ex+(vc + vs)
and ∆Vmod =

π�vcvs

ex+(vc − vs)
. (11)

∆V is the period of the “fast” oscillations, which would be present even in the
absence of spin-charge separation, and ∆Vmod is the distance between consec-
utive minima in the oscillation power due to the moiré amplitude modulation
in the voltage direction. The ratio between these two scales

∆Vmod

∆V
=

1
2
vc + vs

vc − vs
=

1
2

1 + vs/vc

1 − vs/vc
(12)
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can be used to experimentally extract the ratio between the two velocities.
We find

vs/vc = 0.67 ± 0.07 , (13)

which is independent of the UW length L, while both ∆V and ∆Vmod scale
roughly as 1/L. This value is in agreement with the one found in Sec. 3.

Fig. 5. The differential conductance interference pattern near the lower crossing
point calculated using a smooth confining potential for the upper wire. vc = 1.4vF ,
vs = vF , and ∆kF = 10π/L.

Finally, we compare the interference pattern predicted by our theory,
Eq. (8), with the experiment, Fig. 4(a). G(V,B) calculated using a smooth
confining potential given by U(x) = EF exp[(L/2−|x|)/10] at the boundaries
of the upper wire is shown in Fig. 5. Many pronounced features observed
experimentally–the asymmetry of the side lobes, a slow fall-off of the oscil-
lation amplitude and period away from the principal peaks, an interference
modulation along the V -axis, π phase shifts at the oscillation suppression
stripes running parallel to the field axis–are reproduced by the theory. There
is however one experimental finding which is not captured by the presented
theory: In addition to the periodic modulation of the oscillations, there is
an appreciable fall-off in amplitude in the voltage direction, as can be seen
in Fig. 4(b). This dephasing can be due to the dispersion curvature which
becomes appreciable with increasing voltage bias. Its discussion, however, re-
quires going beyond the linearized LL theory, which we do not attempt here.
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5 Conclusions

The two approaches to study the size of spin-charge separation, one by map-
ping out the dispersions, which are independent of the tunnel-junction length,
and the other based on the finite-size conductance oscillations, the frequency
of which scales linearly with the junction length, are found to be in excellent
agreement, giving the LL parameter K = vF /vc ≈ 0.7 for the antisymmet-
ric (i.e., excitonic) collective charge excitations in the lowest modes of the
double-wire structure, and vs ≈ vF for the antisymmetric spin velocity. Ad-
ditional, complimentary information about the electron-electron interactions
can be extracted by measuring the tunneling density-of-states exponent α in
the regime of very small voltage bias and temperature, where the tunneling
rate is suppressed as a power law (the so-called LL zero-bias anomaly).[7] We
do not discuss this in the present paper.
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Summary. We generalize the fermionic renormalization group method to describe
analytically transport through a double barrier structure in a one-dimensional sys-
tem. Focusing on the case of weakly interacting electrons, we investigate thoroughly
the dependence of the conductance on the strength and the shape of the double
barrier for arbitrary temperature T . Our approach allows us to systematically ana-
lyze contributions to the renormalized scattering amplitudes from scales absent for
a single impurity, without restricting to the single-resonance model.

1 Introduction

Effects related to the Coulomb interaction between electrons become increas-
ingly prominent in systems of lower spatial dimensionality as their size is made
smaller. Recent experimental progress in controlled preparation of nanoscale
devices has led to a revival of interest in the transport properties of one-
dimensional (1D) quantum wires. A remarkable example of a correlated 1D
electron phase is the Luttinger-liquid model (for a review see, e.g., Ref. [1]).
In this model, arbitrarily weak interactions ruin the conventional Fermi liquid
phenomenology, which leads to the striking transport properties of a Lut-
tinger liquid in the presence of impurities. In particular, even a single impu-
rity yields a complete pinning of a Luttinger liquid with repulsive interactions,
which results in a vanishing conductance at zero temperature [2]. In addition
to quantum wires, largely similar ideas apply to edge modes in a Hall bar
geometry in the fractional quantum Hall regime, which are thought to behave
as spatially separated chiral Luttinger liquids. Evidence has recently emerged
pointing towards the existence of the Luttinger liquid in metallic single-wall
carbon nanotubes [3]. Further technological advances have made possible the
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fabrication of low-resistance contacts between nanotubes and metallic leads
(see, e.g., Ref. [4] and references therein).

Two striking experimental observations have been reported recently. In
Ref. [5], a resonant structure of the conductance of a semiconductor single-
mode quantum wire was attributed to the formation (with reduction of elec-
tron density by changing gate voltage) of a single disorder-induced quantum
dot. In Ref. [6], two barriers were created inside a carbon nanotube in a con-
trolled way with an atomic force microscope. In both cases, the amplitude
of a conductance peak Gp as a function of temperature T showed power-law
behavior Gp ∝ T−γ with the exponent γ noticeably different from γ = 1.
The latter is the value of γ expected in the absence of interactions provided
T lies in the range Γ 	 T 	 ∆, where Γ is the width of a resonance in the
transmission coefficient and ∆ is the single-particle level spacing. The width
of a conductance peak w followed a linear temperature dependence w ∝ T in
both experiments.

On the theoretical side, resonant tunneling in a Luttinger liquid was stud-
ied previously in a number of papers [2, 7, 8]. In particular, the width Γ ∝ Tαe

was shown [7] to shrink with decreasing temperature. The exponent αe de-
pends on the strength of interaction and describes tunneling into the end of
a semi-infinite liquid. The dimensionless peak conductance (in units of e2/h)
obeys Gp ∼ Γ/T in the above range of T , which indeed leads to a smaller value
of γ = 1 − αe. Surprisingly, in Ref. [6] both the amplitude Gp and the width
w were reported to vanish with decreasing T , in sharp contrast to the non-
interacting case. While such behavior is known to be possible for very strong
repulsive interaction [7], the required strength of interaction would then be
much larger than expected and indeed reported in carbon nanotubes.

It is thus desirable to examine the resonant tunneling in a Luttinger liquid
in a broad range of temperature down to T = 0 and for various parameters
of the barriers. Our purpose in this paper is to analyze transport through a
double barrier of arbitrary strength, strong or weak, symmetric or asymmetric,
within a general analytical method applicable to all these situations.

2 RG Equations for a Double Barrier

Consider two potential barriers located at x = 0 and x = x0 and let the dis-
tance x0 be much larger than the width of each of them. The spatial structure
itself yields an energy dependence of the total (describing scattering on both
impurities) transmission and reflection amplitudes, t(ε) and rL,R(ε). Specifi-
cally, without interaction the energy ∆ = πvF /x0 gives a period of oscillations
in the total scattering amplitudes with changing Fermi energy εF (vF is the
Fermi velocity).

A renormalization group (RG) description of a double barrier requires a
generalization of the RG [9] to the case when the bare amplitudes are energy
dependent. A question, however, arises if the total amplitudes generated by
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RG transformations are expressed in terms of themselves only. The answer
depends on the parameter ∆/D0, where D0 = min{εF , vF /d}, with d being
the radius of interaction. If ∆ 	 D0, the RG transformations generate more
terms than are encoded in the total S-matrix, namely the amplitudes to stay
inside the dot Aµ,−µ(ε) and those to escape from the dot to the left(right)
d±µ (ε) for right(left)-movers (µ = ±).

The system of one-loop RG equations for a double barrier reads

∂t(ε,D)
∂lD

= Îε′(ε,D)
{
L+(ε, ε′;D) + θ(−ε′)t(ε,D)

[ rR(ε,D)r∗R(ε′, D)χε−ε′ + rL(ε,D)r∗L(ε′, D) ]
}
, (1)

∂rL(ε,D)
∂lD

= Îε′(ε,D)
{
L−(ε, ε′;D) + θ(ε′)rL(ε′, D) + θ(−ε′)

[ t2(ε,D)r∗R(ε′, D)χε−ε′ + r2L(ε,D)r∗L(ε′, D) ]
}
, (2)

and similar equations for other amplitudes. Here lD = ln(D0/D) [we intro-
duced D dependent amplitudes],

Lµ(ε, ε′) = d−−(ε)A+−(ε′)dµ
−(ε)(χε−ε′ − 1)

+ d−+(ε)A−+(ε′)dµ
+(ε)(1 − χε′−ε), (3)

Îε′(ε,D){...} = − α

2 lnΛ

[∫ ΛD

D

+
∫ −D

−ΛD

]
dε′

ε− ε′
{. . .} , (4)

Λ 
 1 is restricted by the condition α lnΛ 	 1 with α being the parameter
characterizing the strength of the interaction, and χε = exp(2πiε/∆).

3 Results

Integrating Eqs. (1),(2) we get renormalized transmission amplitudes and then
obtain the amplitude [Gp(T )] and the shape [width w(T )] of the conductance
peak G(ε0, T ) by using the Landauer formalism (ε0 is the resonance energy
counted from εF ).

For strong barriers (the bare transmission through the barriers may be
high, but we assume that the barriers get strong before the RG flow parameter
D equals ∆) we have a sharp peak of the transmission probability centered
at ε = ε0 whose width is max{Ds, Γ (T )} 	 ∆, where Ds = Γ (∆)(Ds/∆)α

is the zero-T width, Γ (T ) = Γ (∆)(T/∆)α, and Γ (∆) is determined by the
renormalization on scales ∆ < D < D0.

For T 
 Ds, the shape of the conductance peak is given by

G(ε0, T ) =
ζ Gp

cosh2(ε0/2T )
, (5)

where the peak value of the conductance
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Gp = πλΓ (T )/8T , (6)

with ζ = (max{|ε0|, T}/T )α and λ = 4Γ1Γ2/Γ
2(∆) (Γ1,2 are the renormalized

transmission rates for individual barriers at D = ∆). The width of the con-
ductance peak w is of order T , as for noninteracting electrons; however, the
power-law behavior of Gp(T ) is seen to be modified by interaction, in accor-
dance with the results derived in Ref. [7]. Note that the scaling of Gp ∝ Tα−1

is proportional to the single-particle density of states for tunneling into the
end of a Luttinger liquid.

Let us now turn to low temperatures T 	 Ds, where processes of all orders
in the tunneling amplitudes are important. Consider first the symmetric case:
the shape of the conductance peak is a Lorentzian:

G(ε0, T ) =
Γ 2(T )

Γ 2(T ) + 4ε20
. (7)

We see that Gp = 1 and
w = Ds(T/Ds)α (8)

exhibits a power-law T dependence with an exponent depending on the
strength of interaction. The vanishing of w as T → 0 should be contrasted
with the behavior of the transmission probability peak, whose width is Ds

for low T . In the limit T → 0, the conductance peak becomes infinitely nar-
row but the resonance at ε0 = 0 persists down to T = 0, in accordance with
Ref. [2].

The renormalization in the asymmetric case is governed by the scale D− =
Ds[ |Γ1−Γ2|/Γ (∆) ]1/α which describes the degree of asymmetry. For T 
 D−
the conductance is given by Eq. (7) for symmetric barriers with an overall
factor of λ. For T 	 D− the transmission at εF falls off with decreasing T .
As a result,

G(ε0, T ) =
λ(T/Ds)2α

(D−/Ds)2α + (2ε0/Ds)2
, (9)

which gives

Gp = λ

(
T

D−

)2α

, w = Ds
|Γ1 − Γ2|
Γ (∆)

. (10)

Thus, Gp goes down as T → 0, whereas w does not depend on T any longer.
Naively one could think that scattering on weak barriers cannot possibly

yield a sharp peak in G(ε0, T ). Indeed, the transmission probability as a func-
tion of ε does not have any peak at ε = ε0, in contrast to the case of resonant
tunneling. At high T , G(ε0, T ) is a weakly oscillating (with a period ∆) func-
tion of ε0. The only difference with the non-interacting case is an enhanced
amplitude of the oscillations. In fact, however, the interaction-induced van-
ishing of the transmission probability at εF for T = 0 does lead to a narrow
Lorentzian peak of G(ε0, T ), provided that T is low enough and the barriers
are not too asymmetric.
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The thermal averaging of the transmission probability obtained from the
RG equations (1),(2) for symmetric barriers yields

G(ε0, T ) =

[
1 +

(
2πε0
∆

)2 (
Dr

T

)2α
]−1

, (11)

which indeed describes a Lorentzian peak with the height Gp = 1 and the
width

w =
∆

π

(
T

Dr

)α

, (12)

where Dr = D0R
1/2α, R = R1,2 is the bare reflection probability of individual

barriers. The peak is narrow, w 	 ∆, provided that T 	 Dr. In the limit
T → 0, the width of the peak is infinitesimally small.

Introducing a weak asymmetry R− = |R1 − R2| 	 R � R1,2, we get for
T 	 δ− = Dr(R−/2R)1/α:

G(ε0, T ) =
R2(T/Dr)2α

R2−/4 + R2(2πε0/∆)2
. (13)

The height and the width of the peak are

Gp =
(
T

δ−

)2α

, w =
∆

2π
R−
R

. (14)

Thus, the asymmetry leads to vanishing Gp at T → 0 and the width is seen to
saturate with decreasing T , similarly to Eq. (10). It is worth noting that the
dependence of Gp on T is non-monotonic: Gp ∝ T 2α grows with increasing
T for T 	 δ−, continues to grow in the range δ− 	 T 	 w according to
1−Gp ∝ T−2α, but goes down for w 	 T 	 ∆, where the correction behaves
similarly to the case of symmetric barriers, 1−Gp ∝ T 2(1−α). The conductance
peak is narrow provided the asymmetry is weak. If the asymmetry is strong,
the peak is completely destroyed.

4 Conclusions

In conclusion, we have thoroughly studied transport of weakly interacting
spinless electrons through a double barrier. We have described a rich vari-
ety of different regimes depending on the strength of the barrier, its shape,
and temperature [10]. We have developed a fermionic RG approach to the
double barrier problem, which has enabled us to treat on an equal footing
both the resonant tunneling and resonant transmission through weak impu-
rities. In the latter case, we have demonstrated how the interaction-induced
renormalization in effect creates a quantum dot with tunneling barriers with
a pronounced resonance peak structure. Moreover, we have shown that even
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very weak impurities, for which the renormalized transmission coefficient does
not exhibit any peak, may give a sharp peak in the conductance as a function
of gate voltage, provided that the double barrier is only slightly asymmetric.
In contrast, the resonant structure is shown to be completely destroyed for a
strongly asymmetric barrier. All the regimes we have studied may be char-
acterized by three different types of behavior of the conductance peak height
Gp and the peak width w on temperature T : (i) for high T , Gp ∝ Tα−1 and
w ∝ T ; (ii) for lower T , depending on the shape of the barrier (whether it is
symmetric or asymmetric), either Gp does not depend on T and w ∝ Tα or
(iii) Gp ∝ T 2α and w is constant.

One can see that none of the regimes (i–iii) supports Gp ∝ T 2α−1 and
w ∝ T , as proposed in Ref. [6]. Further experiments would be useful to re-
solve the puzzle. Including spin and generalizing to the case of several chan-
nels (possibly with different Fermi wavevectors) within the framework of the
present approach warrant further study.
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Summary. We investigate the rectification of an ac bias in Luttinger liquids in
the presence of an asymmetric potential (the ratchet effect). We show that strong
repulsive electron interaction enhances the ratchet current in comparison with Fermi
liquid systems, and the dc I − V curve is strongly asymmetric in the low-voltage
regime even for a weak asymmetric potential. At higher voltages the ratchet current
exhibits an oscillatory voltage dependence.

1 Introduction

Asymmetric conductors have asymmetric I − V curves. This phenomenon
is known as the diode or ratchet effect and plays a major role in electronics.
Recently much interest has been attracted by transport asymmetries in single-
molecule devices and other mesoscopic systems [1]. The idea that asymmetric
molecules can be used as rectifiers is rather old [2], however, it was imple-
mented experimentally [3] only recently. Another experimental realization of
a mesoscopic rectifier is an asymmetric electron waveguide constructed within
the inversion layer of a semiconductor heterostructure [4]. The ratchet effect
was observed in carbon nanotubes [5], and strongly asymmetric I − V curves
were recently reported for the tunneling in the quantum Hall edge states
[6]. These experimental advances have stimulated much theoretical activity
[7, 8, 9, 10, 11] with the main focus on the simplest Fermi-liquid systems [12].

Transport in one-channel quantum wires, where electrons form a Luttinger
liquid, differs significantly from the Fermi liquid case. In particular, impurity
effects are stronger in Luttinger liquids, and even a weak impurity potential
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may render the linear conductance zero at low temperatures [13]. In this
Letter we investigate the ratchet effect in Luttinger liquids. We show that
strong repulsive electron interaction enhances the ratchet current, and the
low-voltage part of the I − V curve is strongly asymmetric even in quantum
wires with weak asymmetric potentials.

We consider the ratchet effect in the presence of a weak asymmetric po-
tential U(x) 	 EF , where EF is the band width. We calculate the ratchet
current Ir(V ) = [I(V )+ I(−V )]/2 for a one-channel quantum wire with spin-
polarized electrons. The ratchet current vanishes for systems with symmetric
I−V curves. It can be measured as the dc response to a low-frequency square
voltage wave of amplitude V . First, we consider voltages V < V0 = �vF /(ea),
where vF is the Fermi velocity, e the electron charge, and a the size of the
region containing the asymmetric potential. We find a weak ratchet effect
in the interval eV0 > eV >

√
UEF for both Fermi and Luttinger liquids,

Ir ∼ (e/h)U2(eV )2g/E2g+1
F , where g = 1 for Fermi liquids and g < 1 for

Luttinger liquids with repulsive interaction. However, at strong repulsive in-
teraction (the Luttinger liquid parameter g 	 1) and sufficiently low voltages,
the ratchet current Ir(V ) grows as the voltage decreases until Ir(V ) becomes
comparable with the total current I(V ) at eV = eV ∗ ∼ (UE−g

F )1/(1−g). At
EF 
 eV > eV0 the ratchet current oscillates as a function of the voltage
and can become comparable with the total current I(V ) for any repulsive
interaction strength. We also briefly discuss the ratchet effect in the presence
of a strong asymmetric potential U > EF . The complicated ratchet-current
behavior is caused by the energy dependence of the effective impurity strength
in Luttinger liquids [13]. This introduces an additional energy scale V ∗ absent
in Fermi-liquid systems.

2 Model

One-channel quantum wires can be described by the Tomonaga-Luttinger
model with the Hamiltonian

H =
∫

dx

{
− �vF [ψ†

R(x)i∂xψR(x) − ψ†
L(x)i∂xψL(x)] + U(x)ρ(x) + (1)∫

dyK(x− y)ρ(x)ρ(y)
}
,

where ψ†
R and ψ†

L are the creation operators for right- and left-moving elec-
trons, ψ† = ψ†

R+ψ†
L gives the conventional electron creation operator, ρ = ψ†ψ

is the electron density, U(x) is the asymmetric potential, and K(x − y) the
interaction strength. Our aim is to calculate the current I as a function of
the applied voltage V . We assume that the long-range Coulomb interaction
is screened by the gates so that K(x− y) decreases rapidly for large (x− y).
Electric fields of external charges are also assumed to be screened. Thus, the
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applied voltage reveals itself only as the difference of the electrochemical po-
tentials EL and ER of the particles injected from the left and right reservoirs.

We assume that one lead is connected to the ground so that its elec-
trochemical potential ER = EF is fixed. The electrochemical potential of
the second lead EL = EF + eV is controlled by the voltage source. In such
situation a symmetric potential U(x) is sufficient for rectification. For ex-
ample, in a non-interacting system I(V ) ∼

∫ EL

ER
[1 − R(E)]dE, where R(E)

is the reflection coefficient. If the only relevant scale for the energy depen-
dence of the reflection probability is the band width ∼ EF then the ratchet
current Ir ∼

∫ eV

0
dE[R(EF − E) − R(EF + E)] ≈ −2

∫ eV

0
dER′(EF )E ∼

R(EF )(eV )2/EF ∼ U2(eV )2/E3
F for small U and V , and any coordinate de-

pendence U(x).
A ‘not-trivial’ ratchet effect can be observed when the injected charge

density is voltage-independent, EL/R = EF ± eV/2. Symmetry considerations
require an asymmetric U(x) for a non-vanishing ratchet current in this case.
Also an electron interaction must be present. Indeed, for free particles the
reflection coefficient R(E) is independent of the electron propagation direction
[14] and hence I(V ) = −I(−V ).

The ‘non-trivial’ ratchet effect is absent in the first two orders in U(x).
Indeed, in the lowest two orders the ratchet current I(1,2)

r =
∫
dxC(x)U(x) +∫

dxdyD(x, y)U(x)U(y). I(1,2)
r must be zero for any symmetric potential. Sub-

stituting U(x) = Uδ(x− x0) we find that C(x0), D(x0, x0) = 0. Substituting
U(x) = Uδ(x−x1)+Uδ(x−x2) we see that D(x1, x2)+D(x2, x1) = 0. Hence,
I
(1,2)
r = 0 for any U(x).

3 Hartree picture

We first consider the ‘non-trivial’ ratchet effect and then check what changes
after the voltage dependence of the injected charge density is taken into
account. Let us begin with a qualitative explanation before we make a rigor-
ous calculation. The origin of the ratchet current can be understood from a
simplified Hartree-Fock picture. In this approximation, electrons are backscat-
tered off a combined potential Ũ(x) = U(x) + W (x), where W (x) is a self-
consistent electrostatic potential created by the average local charge density.
To obtain W (x) we use the following approximation in the last term of Eq.
(1): ρ(x)ρ(y) ≈ (ψ+

R(x)ψR(x) + ψ+
L (x)ψL(x))(ψ+

R(y)ψR(y) + ψ+
L (y)ψL(y)) +

[〈ρ(x)〉ψ+
R(y)ψL(y) + 〈ρ(y)〉ψ+

R(x)ψL(x) +h.c.] + const. Thus, the relation be-
tween W and ρ is linear. The combined potential Ũ(x) is different for the
opposite voltage signs.

In the model (1) the electron interaction is short-ranged due to the screen-
ing gates, and hence, the relation between the potential W (x) and the elec-
tron density ρ(x) is local, W (x) ∼ ρ(x). The simplest choice of U(x) is a
two-impurity asymmetric potential U(x) = U1δ(x+ a/2)+U2δ(x− a/2). The
charge density profile [16] in the presence of a two-impurity potential and
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Fig. 1. Density profiles averaged over the period of Friedel oscillations for a potential
with U1 < U2. The averaged densities show drops at the impurity positions. The
amplitudes of the density drops depend on the direction of the incident wave.

the voltage drop V is sketched in Fig. 3. Depending on the voltage sign, the
charge density decreases or grows as a function of the coordinate x. So does
the electrostatic potential W (x). Hence, Ũ(x) is different for the opposite volt-
age signs. The density is essentially independent of the coordinate between
the impurities [16], as well as on the left and on the right of the impurities,
since no backscattering occurs in those regions. The charge density and the
electrostatic potential drop at the positions of the impurities. The magnitude
of a drop is proportional to the electric charge backscattered off the impurity.
Indeed, if the incident charge densities of the electrons approaching the im-
purity from the left and from the right are ρ→L and ρ←R , and the backscattered
charge densities are ρ←L and ρ→R then the density drop across the impurity
∆ρ = (ρ→L +ρ←L +ρ←R −ρ→R )−(ρ←R +ρ→R +ρ→L −ρ←L ) = 2(ρ←L −ρ→R ) ∼ Ibs, where
Ibs is the current backscattered off the impurity. Thus W (x) = Ũ − U ∼ Ibs.
From Ref. [13] we know that for a weak potential U

Ibs ∼ |U2kF
|2|V |2g−1signV/E2g

F , (2)

where U2kF
∼ kF

∫
dx exp(2ikFx)U(x), kF is proportional to the mean elec-

tron density, and the dimensionless constant g characterizes the interaction
strength, g = 1 for non-interacting electrons (in which case W (x) = 0).

Now we can substitute the renormalized potential Ũ = U + W for U in
Eq. (2). The Fourier component W2kF

is different for the opposite voltage
signs. Hence, we obtain the asymmetric part of the I − V characteristics
Ir ∼ eU3|eV |4g−2/(hE4g

F ). The ratchet effect is strongest for g → 0 when the
ratchet current grows as the voltage decreases.

4 Bosonization

The above Hartree-Fock argument provides a qualitatively correct picture at
small g but underestimates fluctuations in Luttinger liquids. As shown be-
low, the ratchet current growth at small voltages differs from our estimate:
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Ir ∼ U3|V |6g−2, EF 
 V > V ∗ ∼ (UE−g
F )1/(1−g), g 	 1. We will see

that the growth terminates at V = V ∗. At such voltage Ir(V ∗)/I(V ∗) ∼
[(V ∗)3g+1/E3g

F ]/[V ∗] ∼ (V ∗/EF )3g ∼ 1 as g 	 1. Fluctuations are less im-
portant in many-channel systems and the Hartree-Fock picture gives exact
results for some two-channel systems and for Fermi liquids [15].

We use the bosonization technique [17] to calculate the ratchet current. Af-
ter an appropriate rescaling of the time variable, the system can be described
by the action [13]

S =
∫

dtdx

{
1
8π

[(∂tΦ)2 − (∂xΦ)2] − δ(x)
∑
n≥1

2Ũ2nkF
cos(n

√
gΦ+ αn)

}
, (3)

where the bosonic field Φ is related to the charge density as ρ = e(
√
g∂xΦ +

2kF )/(2π), and Ũ2nkF
exp(iαn) are of the order of the Fourier components

of the asymmetric potential, kF

∫
exp(2inkFx)Ũ(x)dx. We assume that the

charge density ∼ kF is independent of the voltage. The operator cos(n
√
gΦ+

αn) describes scattering events involving n electrons. We assume that α1 = 0.
Indeed, we can always set α1 = 0 by a constant shift of the bosonic field Φ.
For a general asymmetric potential, αn with n > 1 remain non-zero after this
shift. On the other hand, for a symmetric potential U(x) = U(−x) all αn = 0.
In most problems it is sufficient to keep only the n = 1 term. The n = 2
contribution is relevant in the theory of resonant transmission in Luttinger
liquids [13]. This term is also important for the ratchet effect.

We use the standard model [18, 19, 20] for Fermi-liquid leads adiabatically
connected to the wire. We assume that the action (3) is applicable for |x| < L
only. At large |x| the interaction strength K(x−y), Eq. (1), is zero. This model
can be interpreted as a quantum wire with electron interaction completely
screened by the gates near its ends. Electric fields of external charges are
assumed to be screened in all parts of the wire. A simple modification of
this model describes electrically neutral leads [20]. All results coincide for our
set-up and the model [20].

The current injected from the non-interacting 1D regions is given by the
Landauer formula I0 = e2V/h [18]. Indeed, left-/right-movers entering the
non-interacting region from the central part of the wire cannot affect the cur-
rent of right-/left-movers in the non-interacting region. Hence, the current of
right-/left-moving particles in the left/right non-interacting region is deter-
mined by the chemical potential of the left/right reservoir. The total current
is the sum [19, 20] of the injected current and the current backscattered off the
asymmetric potential: I = I0 + Ibs. Only Ibs contributes to the ratchet effect.
To find the backscattered current we employ the Keldysh formalism [21]. We
assume that at t = −∞ there is no backscattering in the Hamiltonian, and
then the backscattering is gradually turned on. Thus, at the initial moment of
time the numbers NL and NR of left- and right-moving electrons conserve sep-
arately. Hence, at t = −∞ the system can be described by a partition function
with two chemical potentials µR = EF and µL = EF + eV conjugated with
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the particle numbers NR and NL. This initial state determines bare Keldysh
Green functions.

We will consider only zero temperature. It is convenient to switch [19] to
the interaction representation H → H − µRNR − µLNL. This transformation
induces time dependence in the electron creation and annihilation operators.
As a result,

∑
n 2Ũ2nkF

cos(n
√
gΦ + αn) in the action should be modified as∑

n 2Ũ2nkF
cos(n

√
gΦ + αn + nA(t)), where A(t) = eV t/� [13, 19, 20]. The

backscattered current operator equals [13, 20]

Ibs(t) = dNL/dt = i[H,NL]/� = −δS/δA(t), (4)

where we omit dimensional factors such as e, �, and vF for brevity. We need
to calculate

〈Îbs(t = 0)〉 = 〈0|S(−∞; 0)Îbs(0)S(0;−∞)|0〉, (5)

where |0〉 denotes the initial state and S is the evolution operator. In the weak
impurity case this can be done with the perturbation theory in Ũ2nkF

using the
bare Green function [17] 〈0|Φ(t1, x1 = 0)Φ(t2, x2 = 0)|0〉 = −2 ln(δ+i[t1−t2]),
where δ is an infinitesimal positive constant.

If all αk = 0 then the ratchet current is zero. Indeed, at αk = 0 the
action (3) is invariant under the transformation Φ → −Φ, V → −V while
the current operator (4) changes its sign. As discussed above, for an asym-
metric potential we expect α2 �= 0. Then a ratchet current Ir emerges in
the order Ũ2

2kF
Ũ4kF

. Before the calculation of Ir let us determine its voltage
dependence with a heuristic argument similar to Ref. [13]. As one changes
the energy scale E, the backscattering amplitudes Ũ2nkF

in the action (3)
scale as Ũ2nkF

(E) ∼ Ũ2nkF
En2g−1 [13]. This renormalization stops at the

energy scale V . Assuming that a scattering matrix approach could be ap-
plied for an estimation of the current, we write Ibs(V ) ∼ V Reff(V ), where
Reff(E) =

∑
constŨ2

2nkF
(E) +

∑
constŨ2nkF

(E)Ũ2mkF
(E)Ũ2lkF

(E) + . . . is
an effective reflection coefficient. Quadratic terms do not contribute to the
ratchet current. The leading contribution emerges in the order Ũ2

2kF
Ũ4kF

.
One gets Ir ∼ V Ũ2

2kF
(V )Ũ4kF

(V ) ∼ V 6g−2. Below we obtain the same result
rigorously from Eqs. (4,5).

Expanding Eq. (5) to the order Ũ2
2kF

Ũ4kF
gives

Ir = 2 sinα2Ũ
2
2kF

Ũ4kF

{∫ 0

−∞
dt1

∫ t1

−∞
dt2 cos(V t1 − 2V t2)P (t1, t2, t2 − t1)

+
∫ 0

−∞
dt1

∫ 0

t1

dt2 cos(V t1 − 2V t2)P (t1, t2, t1 − t2)
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−
∫ 0

−∞
dt1

∫ 0

−∞
dt2 cos(V t1 − 2V t2)P (−t1, t2 − t1, t2)

−2
∫ 0

−∞
dt1

∫ t1

−∞
dt2 cos(V t1 + V t2)P (t2 − t1, t1, t2)

+
∫ 0

−∞
dt1

∫ 0

−∞
dt2 cos(V t1 + V t2)P (t2 − t1,−t1, t2)

}
+ c.c., (6)

where P (t, s, q) = (δ− it)2g(δ− is)−4g(δ− iq)−4g. Dimensional analysis shows
that Ir ∼ V 6g−2 in agreement with our previous estimate. It is convenient
to change variables in the integrals with cos(V t1 − 2V t2) as τ1 = t2 − t1,
τ2 = t2. Then after tedious but straightforward manipulations Eq. (6) can be
represented as

Ir = 2 sinα2Ũ
2
2kF

Ũ4kF

{∫ ∞

−∞
dtdτ cos[V (τ − t)]P (−(t+ τ),−τ,−t) −∫ ∞

−∞
dtdτ cos[V (τ + t)]P (τ − t, τ, t)

}
. (7)

The first integral in (7) is zero as seen from the location of the branching
points of the function P . The second integral yields

Ir = − sinα2Ũ
2
2kF

Ũ4kF
cos(πg)

22+2gπ3/2Γ (g + 1/2)
Γ (4g)Γ (3g)

|V |6g−2. (8)

This expression becomes 0 at g = 1/2. We also get a zero ratchet current
for non-interacting electrons, g = 1, because the Hamiltonian (1) is quadratic
in Fermi-operators in the non-interacting case and hence no operators which
backscatter more than one electron can appear, Ũ4kF

= 0.
At small g the ratchet current (8) is proportional to a negative power of

the voltage. This means an unusual behavior: the dc response to an ac voltage
grows as the ac voltage decreases.

So far we ignored the voltage dependence of the injected charge density.
At g 	 1, Eq. (8) gives the main contribution to the ratchet current only for
eV <

√
UEF . For g close to 1 the result (8) is always exceeded by another

contribution. This contribution emerges in the second order in U and is re-
lated to the voltage dependence of the injected charge density. The density is
proportional to kF which enters the expression for U2kF

in Eq. (2). At small
V 	 EF the correction [22] to U2kF

is a linear function of V . The substitution
of this correction into Eq. (2) gives an additional ratchet current

I(density)
r ∼

eU2
2kF

(eV )2g

hE2g+1
F

. (9)
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For g > 1/3 and V > V ∗ the contribution (9) always exceeds (8). At
g < 1/3 the current (9) is greater than (8) above a threshold voltage that
depends on U and g. As we already discussed, Ir (8) is comparable with the
total current I(V ) ∼ e2V/h at small g near the border of the perturbatively
accessible region UV g−1/Eg

F < 1. On the other hand, Eq. (9) provides only a
small correction to the total current for any g. Still a repulsive interaction of
any strength enhances the ratchet effect as seen from the comparison of the
current (9) for g < 1 and for the non-interacting case g = 1.

What happens beyond the perturbative region when V < V ∗ ∼ U1/(1−g)?
As the energy scale decreases the effective impurity strength grows. Hence,
we need to consider a strong U > EF limit. In this limit we have a weak
tunneling between the left and right halves of the wire. The current I(V ) ∼
t2V (2/g)−1/E

2/g
F , where t is the tunneling amplitude [13]. Inserting the voltage

dependence of the tunneling amplitude in the expression above we estimate
Ir(V ) ∼ V 2/g.

A single impurity model (3) can be used only when the potential U(x)
is confined in a small space region of size a < aV ∼ �vF /(eV ). If the po-
tential changes slowly at the scales x > aV 
 1/kF it cannot backscat-
ter electrons since backscattering involves high momentum transfers, ∆k ≥
kF . Interesting interference effects are possible for a two-impurity potential
U1δ(x) + U2δ(x − a) and other U(x) which significantly change at the scale
1/kF but are non-zero in a region of size a ∼ aV . In the two-impurity case
the current oscillates as a function of the voltage bias [23]. For U1, U2 	 EF ,
I−e2V/h ∼ [U2

1 +U2
2 +2U1U2 cos(2kFa)H(geV a/[�vF ])]|V |2g−1signV , where

H(x) =
√
πΓ (2g)Jg−1/2(x)/[Γ (g)(2x)g−1/2] and Jg−1/2(x) is the Bessel func-

tion of the first kind [23]. The main contribution to the ratchet current at
a ∼ aV comes from the shift of kF due to the change of the electrochemi-
cal potential of the left reservoir by eV . From the minimum of the quadratic
part of the bosonized Hamiltonian one finds the charge density shift [24]. This
gives kF = k

(0)
F + g2eV/(2�vF ). After the substitution to the expression for

the total current I we find

Ir(V ) ∼ U1U2 sin(2k(0)
F a)|V |2g−1 sin(g2e|V |a/[�vF ])H(geV a/[�vF ]) (10)

Thus, Ir(V ) oscillates. Notice that for V ∼ V ∗ 	 EF , a ∼ aV ∗ the ratchet
current (10) is of the order of the total current ∼ e2V/h.

5 Conclusions

In conclusion, we have found the ratchet current for strong and weak asym-
metric potentials. It exhibits a set of universal power dependencies on the
voltage and can grow as the voltage decreases. In Ref. [25] our analysis was ex-
tended to include the electron spin. This leads to a complicated phase diagram
with several qualitatively different transport regimes for different interaction
strengths.
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Summary. The interplay between superconductor (S) and ferromagnet (F) in hy-
brid structures consisting of S and F layers creates an exotic spin-triplet ordering in
the vicinity of F/S boundaries, even though the S-layers are made of conventional
BCS superconductors. We present experimental and theoretical studies of F/S/F
trilayer hybrid systems, where the emergent spin-triplet correlations lead to the de-
pendence of the superconducting transition temperature on the angle between the
magnetization directions of the two ferromagnetic layers.

1 Introduction

Proximity effects between a superconductor (S) and a metallic ferromagnet
(F) are a subject of much recent work. Apart from the regular suppression
of superconductivity by an adjacent ferromagnet, many unusual phenom-
ena were observed in experiments, such as, Josephson π-junctions in S/F/S
systems,[1, 2, 3, 4] anomalous proximity effects, [5] oscillations of the super-
conducting transition temperature Tc as a function of layer thickness in S/F
bilayers,[6, 7] and the superconducting switch, where Tc is controlled by the
mutual orientation of the magnetizations in the F/S/F structure.[8] Other
effects are predicted theoretically and await experimental realization.[9, 10]

In many practical cases, metals constituting the hybrid system are char-
acterized by a small mean free path of electrons (“dirty limit”). The sys-
tem can be then described by an appropriate generalization of the Usadel
equations.[11, 10] Ferromagnetism is taken into account in the mean field
approximation by introducing Zeeman fields h, directed along the magneti-
zation inside the F-layers, and the possibility of exotic correlations is allowed
for by retaining the full form of the anomalous Green’s function with two spin
indices:

159
A. Glatz et al. (eds.), Theory of Quantum Transport in Metallic and Hybrid
Nanostructures 159–171.
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fσ1σ2(r, ωn) =
∣∣∣∣ f↑↑ f↑↓f↓↑ f↓↓

∣∣∣∣ , (1)

where σ1 and σ2, r and ωn are the spin indices, spatial argument and Mat-
subara frequency, respectively. In the absence of ferromagnets, f̂ has a form,
corresponding to spin-singlet Cooper pairs

fσ1σ2 =
∣∣∣∣ 0 fs(r, ωn)
−fs(r, ωn) 0

∣∣∣∣ = fs(r, ωn)
∣∣∣∣ 0 1
−1 0

∣∣∣∣ (2)

with only one unknown function to be found. When the solution of the gen-
eralized Usadel equations, f̂ , differs from (2), some exotic pairing is present.

The full symmetry of the superconducting pairing is characterized by the
symmetry of the anomalous Green’s function in momentum space (s-wave,
p-wave, etc.), spin space (spin-singlet or spin-triplet) and with respect to
the Matsubara frequency ωn. It is known that only s-wave correlations can
survive in the dirty limit [12] - accordingly the momentum-averaged functions
in (1) have only one spatial argument r. Together with the general symmetry
properties of the anomalous Green’s function, [13] matrix f̂ is in general a
superposition of the spin-singlet component (2) with fs being an even function
of ωn, and three spin-triplet components

f1(r, ωn)
∣∣∣∣ 1 0
0 0

∣∣∣∣ , f2(r, ωn)
∣∣∣∣ 0 1
1 0

∣∣∣∣ , f3(r, ωn)
∣∣∣∣ 0 0
0 1

∣∣∣∣ (3)

with f1,2,3 being odd in ωn. The odd-in-frequency spin-triplet pairing was first
considered by Berezinskii.[14]

Solutions of the Usadel equations in hybrid systems with F and S layers
show that triplet components of f̂ are generated near the F/S boundaries and
decay into both the ferromagnetic and superconducting materials. When the
boundaries are sufficiently close to each other, the triplet component propa-
gates over the whole system and can lead to new interesting effects.

The property of the spin-triplet components f1,2,3(ωn) = −f1,2,3(−ωn)
means that their presence is not easy to observe. For example, the order pa-
rameter ∆ is related to the sum

∑n=+∞
n=−∞ f̂(ωn) in which all contributions

of the odd functions f1,2,3 cancel. However, there are phenomena where the
presence of the spin-triplet pairing plays a crucial role. One of them is the
effect of the Tc dependence on the mutual orientation of magnetizations in
the F/S/F structure. Another one is the predicted long-range proximity effect
based on the spin-triplet component, which should lead to a Josephson cur-
rent in F/S/F/S structures with anomalously thick F-layers.[10] The latter is
relevant for experimental results of Ref. [5].

2 F/S/F superconducting switch

The F/S/F structures were proposed in Refs. [15] and [16] (an F/F/S struc-
ture with similar properties was proposed earlier in Ref. [17]). In both cases
F layers suppress the Tc of the S layer, but the magnitude of the suppression
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depends on the relative magnetization orientation of the two F layers. The
superconducting transition temperature of the middle layer is denoted TP

c for
the configuration with parallel (P) magnetizations of the F layers, and TAP

c

for the one with antiparallel (AP) magnetizations. Relative magnetization ori-
entation of the F layers can be controlled by a weak magnetic field H provided
one of the F layers is pinned, i.e. by proximity to an antiferromagnet (AF)
(spin-valve setting). The field necessary to switch the structure between par-
allel and antiparallel configurations can be small so that by itself it would be
insufficient to influence the superconductivity of the middle layer. In theory
papers [15, 16] it was proposed that at temperature T between the TP

c and
TAP

c switching between P and AP magnetic configurations of the F/S/F sys-
tem will result in switching between the superconducting and normal states
of the middle layer. A schematic of such an F/S/F proximity switch device is
illustrated in Fig. 1.

Solution of the Usadel equations in certain limits [15, 16] shows that
TAP

c > TP
c and ∆Tc = TAP

c − TP
c is non-negligible only when the thick-

ness of the superconducting layer dS is not much larger than the supercon-
ducting coherence length ξS . For larger dS the temperature difference decays
as exp(−dS/ξS). Usually this result is explained qualitatively by saying that
when the size of the Cooper pairs ξS is larger than dS , they feel a pair-breaking
effect proportional to the average magnetization of the two F layers. According
to that logic, one should naturally observe some cancellation of pair-breaking
in the AP state. One can say that a Cooper pair, consisting of two electrons
with opposite spin, puts the spin-up electron into the F layer with up magne-
tization and the spin-down electron into the F layer with down magnetization.
Thus both electrons are less disturbed by the magnetic layers and so the sup-
pression of Tc is smaller than in the P configuration. This argument, however,
should be taken with a grain of salt. For example, it was shown in Ref. [18]
for a model system, that while TAP

c > TP
c holds, it is also true that at T = 0

the system in the P configuration has a larger order parameter ∆P > ∆AP

(see also Refs. [19, 20, 21]), contradicting the above mentioned reasoning.
It is important to note that the Tc dependence on the magnetic configura-

tion would not exist, at least in the dirty limit, if only singlet superconducting
correlations were present. This is because the singlet anomalous Green’s func-
tion carries no information about the direction of the magnetization which
suppressed it. Thus the left F/S interface would not know about the magne-
tization direction on the right F/S interface, and the angle between magne-
tizations would not enter into the solution of Usadel equations. In this case
one could only expect a stronger suppression of Tc in the F/S/F trilayer com-
pared to the F/S bilayer due to the additional hostile interface. In reality, the
presence of magnetic layers changes the nature of the Cooper pairs in the S
layer. The usual spin-singlet pairs are modified and acquire an admixture of
spin-triplet nature. Now the coefficients of the triplet components (3) define a
vector direction of the spin orientation of the pair. The interaction of a spin-
triplet pair with the F layer then does depend on the angle between the spin
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Fig. 1. Schematic structure of an F/S/F/AF proximity switch device. As shown by
the arrow, resistance can change from a finite value to zero at T P

c < T < T AP
c .

of the pair and the magnetization of the F layer. Thus the effect discussed
here is made possible.

Experimentally the difference ∆Tc was first observed in an all-metallic
system in Ref. [8]. The analogous phenomena with insulating F layers was re-
ported much earlier. [22, 23] In the following, we summarize our experimental
and theoretical work on the all-metallic system.

3 Experiment

We chose dilute ferromagnetic CuxNi1−x alloys (x ≤ 0.6) as the F layer. CuNi
was similarly used previously for the study of S/F/S junctions [4, 24] and S/F
bilayers, [25] since its weak ferromagnetism is less devastating to superconduc-
tivity than for pure Ni. A sputtering target of x = 0.4 was made by pressing a
mixture of Cu and Ni powders. The Curie temperature, TC , of our sputtered
CuNi films is ∼ 70 K based on the T -dependence of the magnetization, M(T ).
Magnetic hysteresis measurements at 5 K show a coercive field, Hc, of ∼ 100
Oe. According to the dependence of TC on x for CuxNi1−x alloys, [26] the Cu
compositions of the thin films are expected to be 0.47 (instead of x = 0.4),
which is slightly different from the target composition.

In order to get well defined P and AP alignments between the two
CuNi layers, we initially employed an exchange-biased spin-valve stack of
CuNi/Nb/CuNi/Fe50Mn50. The AF Fe50Mn50 layer pins the magnetization
of the adjacent CuNi layer via exchange bias so that it remains fixed in weak
magnetic fields that can reorient the magnetization of the “free” CuNi layer,
allowing control of the P and AP configurations of the two F layers. How-
ever, a problem we encountered was that we could not get a well-defined
AP region due to the rather large Hc of the CuNi layer compared to the
exchange-bias field, HE . Hc of the CuNi layer is about 100 Oe and the HE is
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Fig. 2. M(H) of Py(4 nm)/Cu0.47Ni0.53(5)/Nb(18)/CuNi(5)/Py(4)/FeMn(6).
Empty and filled circles denote data measured at T = 2 K (< Tc) and T = 5
K (> Tc), respectively. A minor loop measured between ± 500 Oe and the structure
of an exchange-biased spin valve, Py/CuNi/Nb/CuNi/Py/FeMn, are shown in the
inset.

only about 150 ∼ 200 Oe. Therefore, the two hysteresis curves of the free and
pinned CuNi layers overlap. To solve this problem, we inserted a soft ferro-
magnetic layer of permalloy (Py = Ni82Fe18) adjacent to the CuNi layers to
yield Py/CuNi/Nb/CuNi/Py/Fe50Mn50 multilayers, as shown in the inset of
Fig. 2. Introduction of the Py layer decreases Hc of the CuNi layer and creates
a range of fields where an AP alignment of the two CuNi layers is well defined.
Coupling with the soft layer significantly reduces the field required to switch
the hard layer. A multilayer, starting with the bottom Py and ending with the
FeMn layer, was deposited onto a Si substrate using a chamber with a base
pressure of 10−8 Torr and an Ar pressure of 1.5 ∼ 4 mTorr. To set the ex-
change bias, the multilayers were heated to 370 K and cooled through the Neel
temperature of the FeMn layer in a magnetic field of 1 T. Figure 2 shows the
M(H) curves of Py(4 nm)/Cu0.47Ni0.53(5)/Nb(18)/CuNi(5)/Py(4)/FeMn(6)
measured at 5 K (> Tc ≈ 2.81 K) and 2 K (< Tc). The hysteresis loop of the
top CuNi/Py layer is shifted due to the exchange bias between the Py and
FeMn layers. The hysteresis loops measured in the normal and S-state do not
show much difference and both have well-defined P and AP configurations. A
minor loop measured between ± 500 Oe is shown in the inset, where P and
AP states between two CuNi layers are well defined. [27] The fact that the
net magnetization value at the AP configuration is zero also suggests that the
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top and bottom Py/CuNi layers are aligned in opposite directions and the
magnetizations cancel.
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Fig. 3. (a) R(H)/R(H = 500 Oe) curves at T = 5 K (> Tc) and T = 2.81
K (∼ Tc) and (b) RP (H = 300 Oe, T ) and RAP (H = -300 Oe, T ) for Py(4
nm)/Cu0.47Ni0.53(5)/Nb(18)/CuNi(5)/Py(4)/FeMn(6). ∆R(T ) = RP (T )−RAP (T )
is shown in the inset of (b).

Figure 3(a) shows the resistance as a function of H, R(H), data of the Py(4
nm)/Cu0.47Ni0.53(5)/Nb(18)/CuNi(5)/Py(4)/FeMn(6) measured both at T >
Tc (5 K) and T ∼ Tc (2.81 K) and normalized at R(H = 500 Oe). For T > Tc,
the S-layer is in the normal state andR(H) does not change between ± 500 Oe,
indicating that R is not affected by whether the two CuNi layers are aligned
P or AP. However, when the S-layer enters into the superconducting state at
T ≤ Tc, R(H) shows a dramatic change when alternating the configuration of
the two CuNi layers between P and AP. We observe that R decreases when the
field goes from positive (P configuration) to negative (AP configuration): RAP

< RP , where RP and RAP are the resistances measured at H = 300 Oe and
H = −300 Oe, respectively. The sign of this change is consistent with the fact
that the AP configuration has a higher Tc. Indeed, in the idealized situation of
infinitely sharp superconducting transitions, theoretical calculations [15, 16]



Ferromagnetic-Superconducting Hybrid Systems 165

predict that R would decrease from a finite value to zero in a T -region between
TAP

c and TP
c , as illustrated in Fig. 1. However, only a small reduction in the

resistance is observed, and there is an ∼25% change of R ([(R(H = 300 Oe)
- R(H = −300 Oe))/R(H = 500 Oe)] × 100%) upon switching from P to AP
alignment.

We also made T -dependence measurements of RP (T ) = R(H = 300 Oe, T )
and RAP (T ) = R(H = −300 Oe, T ). As shown in the M(H) curve in the inset
of Fig. 2, 300 Oe is enough to create a single domain configuration, so that we
can neglect the magnetic stray-field effect which exists only at the edge of the
sample in our case. It is important to note that the methodology of making
measurements at fixed T while reversing the field ensures the accuracy of the
∆R values: there is virtually no T drift during the magnetization switch. The
RP (T ) and RAP (T ) curves themselves are shown in Fig. 3(b). From ∆R value
at the middle of the transition and the slope of RP (T ) [or RAP (T )], we find
∆Tc ≈ 6 mK for tCuNi = 5 nm and tNb = 18 nm. Since the ∆Tc value is smaller
than the width of superconducting transition, we were not able to observe a
system going from normal in the P configuration to fully superconducting
in the AP configuration. However, it is important to note that the width of
superconducting transition (from 10 - 90%) in the experimental data is quite
small (∼35 mK) even though it is larger than the ∆Tc value. Thus improved
sample quality cannot decrease the transition width much more.

4 Numeric solution of Usadel equations

As mentioned in the introduction, the proximity effect in F/S hybrid systems
is usually described by Usadel equations valid in the limit of a small mean free
path. [15, 16, 28, 25, 29] Analytic solutions for F/S/F structures were obtained
in Refs. [15, 16, 30] and significantly different values of TAP

c and TP
c were pre-

dicted. This is in sharp contrast with experimental results [8] that however did
verify the inequality TAP

c > TP
c . The significance of such discrepancy is not

immediately clear: all analytic calculations [15, 16, 30] used certain approxima-
tions (either a thin S-layer approximation or a “single-mode” approximation)
to solve the Usadel equations. In a “single-mode” approximation, Wn in Eq.
(7) is approximately independent on n. The actual experiments of Ref. [8]
were performed on a structure with dS ≈ ξS . Thus neither of the approxi-
mations is suitable for their description. This is even more true if one recalls
that the F-layers were deliberately fabricated from a weak ferromagnet; so
h >> ωn∗ used in “single-mode” approximation, where Eex is the band split-
ting parameter in F-layer, may not be valid either. Hence, a numeric solution
is required to compare theory and experiment in a meaningful way.

We found how Tc can be calculated using an extension of the numerical
method of Fominov et al. [25, 29] This method was originally proposed to
calculate Tc of the F/S bilayer structures. Its extension to the case of an
F/S/F trilayer in the P configuration is straightforward, but application to
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the AP configuration requires consideration. Below we summarize the key
points of the original method and describe its modification.

The strength of the superconducting interaction is characterized by the
transition temperature of the single S layer without F layers, Tcs. The fer-
romagnetic layers are modelled by introducing spin split bands described by
the mean field exchange constant, h. First, it can be shown that for collinear
magnetic configurations the f1 and f3 triplet components vanish. The f2 com-
ponent is non-zero and can be proven to satisfy a special property: f2 ∼ ifs.
As a result functions f↑↓ and f↓↑ have the form

f↑↓ = fs + if3 = F (ωn),
f↓↑ = −fs + if3 = −F ∗(ωn).

Therefore it is enough to solve just one complex equation for F , instead of
the original four equations for fσ1σ2 . This equation has a form

ξ2(x)πTcsF
′′(x, ωn) −

(
|ωn| + ih(x)sgn(ωn)

)
F (x, ωn) +∆(x) = 0, (4)

with self-consistency condition on the order parameter

∆(x) log(
Tcs

T
) = πT

∑
ωn

∆(x)
|ωn|

− F (x, ωn)

= 2πT
∑

ωn> 0

∆(x)
|ωn|

− Re
{
F (x, ωn)

}
, (5)

where ξ is piece-wise constant in the S and F layers, expressed through the
diffusion coefficients DS and DF , respectively:

ξS =
√
DS/(2πTcs),

ξF =
√
DF /(2πTcs).

The band splitting parameter hi (i = 1, 2) is non-zero only in the F1,2 layers
and comes with positive sign for up and negative for down-direction of the
magnetization.

On the outer boundaries of the magnetic layers the function F satisfies a
boundary condition

dF

dx
= 0.

The interaction between the magnetic and superconducting layers is given by
the S/F boundary conditions derived by Kupriyanov and Lukichev. [31] On
the Fi/S (i = 1, 2) boundaries

γξF

(
dFF

dx

)
i

= ξS

(
dFS

dx

)
i

, (6)

(−1)i+1γbξF

(
dFF

dx

)
i

= FSi − FFi,
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where FF and FS denote the function on the ferromagnetic and supercon-
ducting sides of the F/S junction, and γ, γb characterize the band structure
mismatch and boundary transparency.

The method of Fominov et al. [25, 29] was formulated for the case of an
F/S bilayer. Following it, Eq. (4) is first solved analytically in the F layers and
for the f3 component in the S layer. This is possible because in all these cases
the equation is uniform. The order parameter ∆ is zero in the F layers and
has only singlet component in the S layer. After that, the boundary condition
(6) - there is only one F/S (i = 1) boundary in this case - can be re-expressed
through the fs part of the anomalous function on the S layer side only

ξSf
′
s(r, ωn) = W (ωn) fs(r, ωn) (7)

with real W (ωn) (see Refs. [25, 29]). At the boundary with the vacuum

f ′
s = 0. (8)

Since self-consistency condition (5) is also formulated in terms of fs, we get a
closed system of two equations on a real function fs which is solved numeri-
cally.

Following the same route for an F/S/F structure, we solve equations an-
alytically in the F layers and for f3 in the S layer. The important step is
the realization that, if the F1,2 layers and two F/S boundaries are identical,
fs(r, ωn) is symmetric in space with respect to the center of the S layer in both
collinear magnetic configurations. This result is trivial in the P configuration,
but is somewhat unexpected in the AP one. In contrast, the triplet component
f3(r, ωn) is symmetric in the P and anti-symmetric in the AP configuration.

The symmetry of fs enables utilization of the method of Fominov et al.
[25, 29] The trilayer is now equivalent to a bilayer with S layer of effective
thickness d eff

S = dS/2, and, after some algebra, it is possible to reduce (6) to
an effective counterpart of the condition (7)

ξSf
′
si(r, ωn) = W[P/AP ](ωn) fsi(r, ωn) , (9)

with

W[P/AP ] = γ
A[P/AP ](γb +Re[B]) + γ

A[P/AP ]|γb +B|2 + γ(γb +Re[B])
,

(10)

where

A[P ] = kS(ωn)ξS tanh(kS(ωn)dS/2) ,
A[AP ] = kS(ωn)ξS coth(kS(ωn)dS/2) , (11)

kS(ωn) =
1
ξS

√
|ωn|
πTcs

,
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and

B =
1

ξF kF (ωn) tanh(dF kF (ωn))
, (12)

kF (ωn) =
1
ξF

√
|ωn| + i|h|sgn(ωn)

πTcs
,

with dF being the thickness of identical F layers. Examination of Eq. (10)
shows that the only difference between the P and the AP arrangements comes
from A[P ] �= A[AP ]. As expected, we find W[P ] to be identical to the one found
for the F/S bilayer with S layer of half thickness (compare with Refs. [25] and
[29]). The AP case gives a new result. Substituting Eq. (10) instead of (7) into
the numeric procedure of Fominov et al. [25, 29] we obtain TP

c and TAP
c for

the actual parameters of our F/S/F hybrids.
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Fig. 4. (a) Tc(tCuNi) for Py(4 nm)/Cu0.49Ni0.51(tCuNi)/Nb(19)/CuNi(tCuNi)/
Py(4)/FeMn(6). ∆Tc(tCuNi) is shown in (b). Experimental data and theoretical
calculations are plotted as symbols and dashed lines, respectively.

The results for Tc = (TP
c + TAP

c )/2 and ∆Tc are shown in Fig. 4. We
attempted to fit the experimental data for the F/S/F structure studied in
Ref. [8]. The fit parameters are dS = 19 nm, γ = 0.135, γb = 0.3, and
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h/kB = 110 K. The behavior of Tc shows agreement between the experi-
mental data and theoretical calculations. However, the result for ∆Tc with
γb and h obtained from the fitting of experimental Tc shows only qualitative
agreement between the theoretical and experimental ∆Tc. Even with a nu-
meric procedure that uses no approximations, there is a large discrepancy in
the magnitude of ∆Tc. Inversely, when we tried to fit the experimental ∆Tc

with the present theory, we could not get γb and h fitting both the magnitude
and the peak position of ∆Tc simultaneously. Furthermore, the discrepancy of
the experimental and theoretical Tc is noticeable when we use the parameters
obtained from the fit of the experimental ∆Tc. Therefore, we were not able to
fit both Tc and ∆Tc by varying two unknown parameters γb and h. We would
like to contrast this result with the case of a thin superconductor (dS << ξS),
where such a fit is always possible. [32] Such is the difference between the
dS ∼ ξS experimental situation of Ref. [8] and the thin superconductor limit.

5 Discussion

The small value of ∆Tc experimentally measured in Ref. 8 compared to the
theoretical prediction could be due to several reasons, even within the frame-
work of theory based on the Usadel equations. Firstly, there is only a small re-
gion in dF giving a large value of∆Tc, for example dF ∼ 0.5

√
4�DF /I. [15, 33]

Therefore, dF and dS should be optimized to get a large value of ∆Tc. Sec-
ondly, as mentioned previously, the interface transparency of the S/F layers
has a large effect on the behavior of Tc and ∆Tc. For example, when the inter-
face transparency decreases, ∆Tc becomes smaller. [15, 33] Since the interface
transparency is affected by the interface quality of the sample, the absolute
value of ∆Tc will strongly depend on the CuNi/Nb interface. A better under-
standing and control of the interface of our samples will be necessary. Thirdly,
the two CuNi layers may not be identical. This asymmetry makes the value
of ∆Tc smaller since the cancellation of the pair-breaking effect will not be
perfect in AP alignment if the two CuNi layers are not the same. Fourthly,
the contribution from the Py layer adjacent to the CuNi layer should be taken
into account especially for samples with thin CuNi layers. Finally, local me-
chanical strain and compositional fluctuations can have a strong effect on the
magnetic behavior of the CuNi layers, whose net composition is close to the
onset of ferromagnetism. Further quantitative explanation of the data remains
a challenge for future research.

6 Conclusions

In summary we showed experimental results and theoretical calculations
on magnetization orientation dependence of superconductor critical temper-
ature in F/S/F all-metallic structures. This effect is based on the emer-
gence of a small admixture of spin-triplet superconductivity in the hybrid
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superconductor-ferromagnet structures. We showed that the proposed effect
exists, but the observed magnitude is even smaller than the prediction based
on the numeric solution of the Usadel equations with no approximations in-
volved. Reconciling theory and experiment is a challenge for the future.
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Summary. At the contact with a Superconductor, the electrons from a Normal
metal are Andreev-reflected. This modifies the normal metal electronic properties
in the vicinity of the interface, including the local density of states (LDOS). A gap
of reduced width (a mini-gap) is expected in the normal metal if its size is small as
compared to the phase-breaking length. Otherwise, a pseudo-gap is expected. We
performed the local spectroscopy of Normal-metal–Superconductor (N-S) structures
with the help of a very low temperature (60 mK) Scanning Tunneling Microscope
(STM). Both structures with a lateral and with a bilayer geometry were investigated.
By comparing the experimental spectra with the predictions of the quasi-classical
theory, we found a good agreement in many cases but also some clear discrepancies,
especially in the mini-gap regime.

1 Introduction

In a normal metal (N) coupled to a superconductor (S), superconducting prop-
erties are locally induced by the proximity effect. The characteristic energy
scale of this proximity superconductivity is given by the minimum of the bulk
superconductor energy gap ∆ and the Thouless energy εc:

εc =
�D

L2
(1)

which is equal to � over the diffusion time L2/D of an electron over the sample
length L. Here D is the diffusion coefficient in the normal metal.

In order to get a physical understanding of this effect, one has to consider
the microscopic mechanism of the Andreev reflection at the N-S interface
[1]. An electron arriving on the interface from the normal metal side cannot
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enter the superconductor if its energy lies within the energy gap ∆ of the
superconductor density of states. In order to enter the superconductor, this
electron has to form an electron pair with another electron from the normal
metal. A Cooper pair is then transferred in the superconductor. This process
is often described as the retro-reflection of a hole in the normal metal. The
incident electron and retro-reflected hole phases are correlated and coupled
to the superconducting condensate phase [2]. In terms of excitation energy,
the electron and the hole have the same energy: there is no energy transfer
through an N-S interface. In terms of electronic particles, these two electron
states have symmetric energies relative to the Fermi level at the energy EF .
One should not make the trivial error to refer here to “electron-hole pairs”
which is a fully irrelevant concept here. The total charge of the pair is 2e.
In classical terms, the electron exists before the reflection, the hole exists
after. One should rather use the term of Andreev pairs introduced in Ref.
[3]. The Andreev reflection of an electron will therefore be described as the
absorption of an Andreev pair of two electrons from the normal metal into
the superconductor. It may be more interesting to consider the reverse effect,
where two phase-correlated electrons are injected in the normal metal. This
Andreev pair does not hold with the help of an attraction between electrons in
the normal metal, but only because of a boundary effect, at the N-S interface.

The question of the decay length of superconducting correlations in the
normal metal is an important issue. It is not correct to consider the thermal
length LT =

√
�D/kBT as the general coherence length of Andreev pairs.

In fact, the coherence length of an Andreev pair depends on its energy ε.
The key point is that due to the E(k) dispersion relation, the two electronic
component of an Andreev pair do not have the same wave-vector k magnitude.
As the momentum transfer perpendicular to the interface has to be zero, the
parallel component of the hole and the electron wave-vectors will be different.
This induces an angle of order ε/EF between the two trajectories, the Fermi
level being used as the reference ε = 0. Although small, this difference also
results in a phase shift between the two components of an Andreev pair with
ε �= 0. This phase shift becomes of order one when the position of the two
electrons is separated by a distance of order the Fermi wave-length. At this
point, the Andreev pair is broken. This happens at a characteristic time �/ε
which corresponds to a characteristic length scale:

Lε =

√
�D

ε
. (2)

The thermal length LT coincides with Lε at ε � kBT . A striking fact is also
that the coherence length Lε seems to diverge at the Fermi level (ε = 0).
At non-zero temperature, this naive prediction is of course hindered by the
unavoidable phase-breaking events due to phonons or magnetic impurities.
A physical consequence of the long-range coherence of low-energy Andreev
pairs is the persistence of large magneto-resistance oscillations of Andreev
interferometers and their decay with temperature T as 1/T [3]. In terms of
energy, the Andreev pairs coherence condition L < Lε can be recast as ε < εc,
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which means that pairs with an energy below the Thouless energy εc = �D/L2

remain coherent over the sample length L.
The superconducting properties induced in the normal metal manifest

themselves in many different ways, including energy-dependent transport
properties and a modification of the local density of states. For instance, the
conductance of a normal conductor connected to a superconducting electrode
shows a striking re-entrant behavior [4]. At non-zero temperature and/or bias,
the conductance of the normal metal is enhanced as compared to the normal-
state. At zero temperature and zero bias, the expected conductance coincides
with the normal-state value. The conductance has therefore a non-monotonous
behavior.

As compared to transport experiments, local density of states measure-
ments have the strong advantage to bring a local physical quantity, which is
not integrated over a full sample length. The energy dependence of the lo-
cal density of states brings an exhaustive information on the phase-coherent
coupling of electron states to the superconducting interface. In the diffusive
regime, the prediction is that the local density of states should show a fully
opened gap (a mini-gap) in the case of a closed normal metal system coupled
to a superconductor [5, 6, 7, 8]. Indeed, in a closed system, every electronic
trajectory should couple to the superconducting interface. This will be the
case of a normal metal of finite length, in practice smaller than the phase-
breaking length. In an open system, for example with a very long normal
metal, not every electron state will Andreev-reflect at the interface within the
coherence time �/ε, except if one considers an energy which is infinitely close
to the Fermi level ε = 0. This will induce a pseudo-gap behavior in the density
of states: the density of states will be zero only at the Fermi level and will
be proportional to the energy close to it. The predicted width of the mini-
or the pseudo-gap is again the Thouless energy, since Andreev pairs with a
larger energy will loose correlation before diffusing through the whole normal
metal length. The same distinction is expected in coherent ballistic cavities
[9]. In chaotic cavities, every trajectory will reach the superconducting inter-
face, even-though it may be after a very long diffusion time. A mini-gap is
therefore expected. In an integrable cavity, some closed-loop trajectories will
never hit it, which makes expect a pseudo-gap.

The local density of states was probed in N-S bilayers using tunneling
spectroscopy in thin film junctions [10], and in lateral N-S structures with
solid tunnel junctions [11, 12]. More local studies are welcome in order to
overcome the unavoidable spatial averaging of such conventional experiments.
Indeed, the Scanning Tunneling Microscopy (STM) in the spectroscopy mode
enables one to measure the very local density of states under the tip. Due
to the technical complexity of (very-low-temperature STM, the local study of
mesoscopic superconductors is still in its infancy. Inoue and Takayanagi mea-
sured the tunneling spectra of a Nb-InAs-Nb system at 4.2 K [13]. Pioneering
work by Tessmer et al. focused on the proximity effect in Au nano-sized is-
lands on top of a NbSe2 sample [14]. Levi et al. studied complex Ni-Cu-NbTi
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multi-filamentary superconducting wires [15]. Recently, a NbSe2 crystal cov-
ered with Au [16] was also investigated.

In our recent experiments, we have been able to combine the very-low tem-
perature (T 	 1 K) conditions with the local probe technique. This guarantees
a much improved energy resolution, and therefore the possibility to probe the
proximity effect on a larger length scale, together with a high spatial reso-
lution. The geometry of a STM tip generally results in a low resistance for
the tunnel probe so that no (dynamical) Coulomb blockade should interfere
with the spectroscopy experiments. Our very low temperature STM works at
60 mK in a dilution refrigerator [17]. It features both an atomic resolution
and a large scanning range of 6 × 6µm2 at low temperature. In the spec-
troscopy mode, this STM has shown an unprecedented energy resolution of
36 µeV. This corresponds to an effective temperature of 210 mK which had
to be introduced in the BCS fit of the spectroscopy data for plain Al and
Nb layers. These fits were performed without any inelastic scattering parame-
ter [18], which means that this effective temperature is actually a maximum
value. With this apparatus, we have investigated two different types of N-S
structures: the junction between a superconducting dot and a normal metal
film, N-S bilayers with a thick superconductor and a normal metal of varying
thickness.

2 Theoretical description

The proximity effect in diffusive metals can be described by the quasiclassi-
cal theory based on the Usadel equations [5, 6, 7, 8]. In the usual θ para-
metrization, the complex angle θ(ε, x) is related to the pair amplitude as
F (ε, x) = −i sin θ(ε, x). The local density of states is expressed as:

n(r, ε) = n0�e[cosθ(r, ε)]. (3)

The Usadel equations in one dimension write:⎧⎨⎩
1
2�DS

∂θ2

∂x + iε sin θ +∆(r) cos θ = 0 in S

1
2�DN

∂θ2

∂x + iε sin θ = 0 inN

(4)

where DN and DS are the diffusion coefficients in N and S respectively. The
inelastic and spin-flip rates were neglected. The gap ∆(r) in S is self consis-
tently defined by:

∆(r) = n0Veff

∫
�wD

0

tanh(
ε

2kBT
)�m[sin θ]dε, (5)

where n0 is the electron density, Veff is the local interaction parameter and
ωD is the Debye frequency. In the case of a perfect transparency, the boundary
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conditions at the N-S interface include the continuity of θ at the interface and
the spectral current conservation:

σS
∂θ

∂xx=0−
= σN

∂θ

∂xx=0+
, (6)

where σS and σN are the conductivity in S and N respectively. In this work,
we benefited from the numerical code developed by W. Belzig et al. [5], which
solves the Usadel equation for a quasi-1D N-S junction and calculates the
local density of states. The relevant theoretical parameters are the gap ∆ of
the S metal, the mismatch parameter

γ =
σNξS

σSξN
(7)

and the thicknesses of the N and S layers in units of the characteristic lengths:

ξN =

√
�DN

2∆
; ξS =

√
�DS

2∆
(8)

respectively. Whereas the length ξS is close to the usual superconducting
coherence length, the length ξN does not stand for a coherence length of
electron pairs in the normal metal.

3 Local spectroscopy close to a N-S junction

In this section, we will describe the spatially-resolved spectroscopy studies
we performed on a lateral N-S junction [19]. These samples were made by
successive in-situ evaporation of Nb (Superconducting below about 9 K) and
Au (Normal metal). First, the Si sample substrate was introduced in the
UHV evaporator with a patterned Si membrane clamped on it. This 5 µm-
thick Si membrane was previously patterned by e-beam lithography and deep
Reactive Ion Etching. An array of circular holes with a periodicity of 4 µm and
a diameter of about 1.5 µm were drilled throughout the membrane. During
Nb evaporation, the Si membrane acted as a mechanical mask, so that only
dots of Nb are deposited on the substrate. After deposition of 40 nm of Nb,
the mask was removed in situ and an uniform layer of 20 nm of Cu or Au was
deposited. The pressure was below 10−8 mbar during the few minutes between
the two evaporations. This provides a highly transparent Nb-Au interface. Let
us point out that no lithography or two-step deposition procedure was needed
here, so that the Nb-Au interface is actually as clean as possible.

Figure 1b shows an STM image of the Nb-Au sample at 60 mK. Two
Nb dots are clearly visible. The relief of the Nb dots is rather smooth. This
is due to both the thickness of the mask and the residual distance between
the substrate and the mask. We performed several series of spectroscopies
as a function of distance from the center of a Nb dot by traveling along
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Fig. 1. a: Profile of the sample surface extracted from image b) (line indicated
indicated by the two arrows) together with a schematics of the sample geometry.
Note that the vertical scale has been expanded by a factor of about 10 compared
to the horizontal one. The locations where the spectra of Fig. 2a were measured
are indicated, as well as the domains of application of the two geometry models
used in the calculations (shown in Fig. 2b). In the “Bilayer” region, the sample is
modeled by a series of (vertical) N-S bilayers, the thickness of S = Nb being given by
the measured profile. In the “Proximity” region, the sample is modeled by a single
(horizontal) N-S region. b: 2.6 × 5 µm2 STM image at 60 mK captured with a 10
mV bias voltage and a 30 pA tunnel current. Two circular Nb dots are visible.

one line. During each series, the displacement speed was limited to 10 nm/s
and the scanning direction was kept fixed in order to reduce the piezoelectric
hysteresis. Figure 2a shows a representative selection of spectra taken during
a single series. The surface profile of the same line is shown in Fig. 1a. Labeled
arrows indicate the position of the spectra shown in Fig. 2. In the center of
the Nb island (curve a), the density of states exhibits a clear gap, which is
reminiscent of a BCS behavior. Compared to the bulk Nb gap value ∆Nb � 1.4
meV, the measured gap is significantly reduced. This behavior is consistent
with the measured critical temperature Tc = 3 K at the superconductivity
onset. As we move away from the Nb dot center (curves b to d), the density
of states first continues to exhibit a fully developed but reduced gap. This
remains approximately true up to close to the curve e, which shows a clear
pseudo-gap: the density of states goes approximately linearly to zero at the
Fermi level. As the tip is moved further away (spectra e to j), the pseudo-gap
width is reduced.

In order to analyze easily our experimental results, we modeled the differ-
ent parts of our structures as quasi-1D junctions. On top of the Nb dot, we
locally model the sample as an uniform bilayer of Nb and Au, see Figure 1b.
Note that the vertical magnification by a factor of about 10 may make the
reader underestimate the validity of this approach. In the remaining region
labeled “Proximity”, we model our sample as a single horizontal N-S junction,
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Fig. 2. a: Experimental spectra measured on locations a to j (see Fig. 1a) during
a single scan along one line. The tunnel resistance was about 12 MΩ during the
spectroscopies. b: Theoretical spectra calculated with the Usadel equations. The
actual geometry was modeled as a series of N-S bilayers (curves a to d) and a
single lateral N-S junction (curves e to j). An effective temperature of 210 mK was
introduced. In the bilayer region, the measured thickness of the Nb layer (dS = 40,
21, 15 and 11 nm in a, b, c and d respectively) in units of ξS = 27 nm was introduced
in the calculation together with the fixed Au layer thickness dN = 20 nm = 0.3ξN . In
the proximity-effect region, the distance from the interface was a free fit parameter
(see Fig. 3b).

the interface position being a posteriori determined by the comparison with
the theory.

Let us first consider the “Bilayer” region. The sample is locally modeled as
a quasi-1D N-S junction with a constant length of N metal and a locally vary-
ing length of S metal. A fully-developed gap is predicted, in agreement with
the experiment. We assumed a perfect interface transparency and no inelastic
or spin-flip scattering. By fitting the curve a, a good set of values was found
to be γ = 1.1, ∆ = 0.82 meV, dS = 1.5ξS and dN = 0.3ξN . The γ parameter
value matches within the experimental accuracy the estimation of 1.2 based
on the measured transport properties of the N and S layers. The magnitude
of ∆ is significantly smaller than the Nb bulk value, which we attribute to
the small Nb thickness [20] and the special conditions of Nb evaporation. As
the Nb and Au layers thicknesses are known, we can extract the length scales
ξS = 27 nm and ξN = 67 nm, in qualitative agreement with the respective
expected values 41 nm and 55 nm. Curves for locations b to d in the “Bilayer”
region were subsequently calculated by taking into account the fixed Au thick-
ness dN = 20 nm = 0.3ξN and the measured Nb layer thickness in units of
ξS . As expected, the mini-gap amplitude is reduced as the thickness of the
Nb layer decreases, the Au layer thickness being constant. In the calculated
curves (shown in Fig. 2b), we introduced an effective temperature T = 210
mK in order to account for the experimental accuracy [17]. The agreement
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is very good, as both the mini-gap amplitude and the spectra shape are well
described.

In the “Proximity” region, the measured spectra (curve e and beyond)
show a filling of the density of states near the Fermi level and a peak shape
that are not compatible with a bilayer model. This pseudo-gap behavior is the
signature of the proximity effect in a N-S junction with a long normal metal
N. In this “Proximity” region, we described the sample as a single infinite
N-S junction extending laterally. We used the same γ parameter as in the
“Bilayer” region. Again we consider a perfect interface transparency and zero
inelastic and spin-flip scattering. In order to describe successfully the data,
we had to assume a reduced gap value ∆′ = 0.27 meV. Compared to the value
in the bilayer region, this reduced value may be understood as the effective
gap of the Nb-Au dot treated as a whole. The experimental curves e to j were
fitted within this model by considering the tip position as a free parameter.

The validity of our description can be checked in Fig. 3 where we compare
the actual position of the acquired spectra to the position extracted from the
fit, in units of the relevant characteristic length. The data points follow a
monotonous behavior, but with a significant scattering. From the slope of the
mean line we can draw through the data points on the N side (top part of
Fig. 3), we can extract the value ξN = 94 nm. This corresponds exactly to the
estimation based on the gap ∆′ and the measured mean free path of 16 nm
in Au. On the S side (bottom part of Fig. 3), the estimated length is ξS = 50
nm. Taking into account the reduced gap ∆′, it corresponds to a mean free
path of 4.5 nm which is half the value estimated from transport properties
of similar samples. In fact, it should be considered more as a property of the
Nb-Au layer at its border than a property of the bare Nb film.
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The location of the interface can be accessed from the fitting procedure.
It appears that the interface is situated at an estimated Nb thickness of 6
nm. This means that the Nb layer is not superconducting when it is thinner
than 6 nm. This behavior is expected in respect of the getter properties of Nb
during evaporation. In Fig. 3, the scatter in the fitted position compared to
the actual position can be envisioned as a signature of the extreme locality of
the STM measurement. It is indeed visible from our whole set of data that the
measured spectrum often changed abruptly as the surface is scanned. Some
of these events are really local at the nanometer scale and show anomalies
presumably related to point-like impurities. The other events feature step-like
evolutions which may be related to local scattering centers in the sample, like
grain boundaries.

The experimental data compares therefore favorably with the spectra cal-
culated from the Usadel equations [5], assuming a very simple geometrical
model of the complex sample geometry. The same data were also success-
fully described with the Bogoliubov-de Gennes equations [21]. Vinet et al.
performed a similar spatially-resolved spectroscopy of Nb-Au structures pat-
terned by lithography [22]. Again a good agreement with the quasi-classical
theory based on the Usadel equations was obtained.

4 Anomalous density of states in N-S bilayers

In the following, we will present measurements of the local density of states
at the N metal surface of S-N bilayers with a varying N metal thickness [23].
In these samples, the superconducting layer was thick enough that the super-
conducting gap was not depressed. The achieved high ratio ∆/kBT enabled
us to study with a high accuracy the mini-gap regime. In particular, we will
focus on the case of a long Normal metal (L 
 ξN ) which was not investi-
gated before. This new approach made us unveil a new phenomenon, namely a
non-zero density of states appearing in the vicinity of the Fermi level together
with clear sub-gap structures, and an anomalous mini-gap width dependence
with the N metal length.

We fabricated simultaneously a series of Nb-Au bilayers, with a fixed Nb
thickness and a varying Au thickness, on a single (6 × 40 mm2) Si substrate.
The Nb layer thickness was chosen to be significantly larger than the coher-
ence length ξS in order to avoid any effect due to the finite thickness of the
superconductor. For varying the Au thickness, another Si wafer was used as a
mask and moved in situ above the Si substrate. After depositing the 120 nm
Nb film, the Au film (from 10 to 260 nm) was deposited within 15 minutes at
a pressure below 10−8 mbar. These conditions minimize the interface contam-
ination and should preserve the best Nb-Au interface transparency. The full
Si wafer with the bilayer films thus obtained (see Fig. 4a) was cleaved in air
to separate the different samples. Individual Au (260 nm) and Nb (120 nm)
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layers were characterized by transport measurements. The calculated values
for the characteristic length scales are ξs = 23.2 and ξn = 60.8 nm.

Each bilayer sample was cooled separately in the STM, with a freshly cut
Pt-Ir wire used as the STM tip. A STM image of the 72 nm Au sample at very
low temperature (100 mK) is shown in Fig. 4b. We observe a polycrystalline
structure with a grain size of about 50 nm. The same grain size was observed
in every sample, except in the thinnest one (10 nm). Moreover, this value is
consistent with the measured elastic mean free path le,n = 36nm in the 260 nm
sample. The rms surface roughness is 3.4 nm. Thus our Au films are in clearly
in the diffusive regime, except for the smaller thicknesses where ballistic effects
may occur. On every sample, we acquired series of I(V ) tunnel characteristics,
at a tunnel resistance of 5 to 12 MΩ, and at numerous places in order to check
reproducibility. The acquired spectra were actually very reproducible over a
sample surface. The I(V ) data was numerically differentiated to obtain the
differential conductance dI/dV (V ), which gives the LDOS at the energy eV
with an accuracy limited by the thermal smearing. A selection of tunneling
spectra is shown in Fig. 4. The spectra are flat at large bias voltages (|V | 

2.5 meV) and have been normalized to make this conductance as 1.

For the bilayer with the smallest Au thickness (10 nm), the spectrum
qualitatively resembles a BCS spectrum with a gap amplitude very close to
the expected bulk Nb gap: ∆/e ∼ 1.5 meV. For the larger thicknesses, the
spectra shows a mini-gap that reduces in width with increasing Au thickness.
For large Au thicknesses, there is a small dip at ∆/e which actually implies
that the superconducting gap in the bulk of Nb is not significantly influenced
by the Au. Inside the mini-gap, the density of states is strikingly different from
zero and features a few sub-gap structures. The observed sub-gap features do
not scale with the bulk Nb energy gap ∆, as their energy position evolves
with the normal metal length Ln. The mean LDOS close to the Fermi level
(V = 0) monotonously increases with the Au thickness. This effect is therefore
not a ballistic one which would be restricted to the smaller thicknesses. Let
us point out that the high energy resolution of our STM [17] rules out the
thermal smearing as a cause of such a large (up to 50%) zero bias conductance.

We compared our data to the solutions of the Usadel equations with the
help of the numerical code from W. Belzig et al. [5]. Again, we considered the
interface transparency as perfect and we took into account a thermal smear-
ing with an effective temperature of 210 mK. We adjusted the calculation
parameters to fit the tunneling spectra. Fig. 5 displays a comparison of ex-
perimental spectra with two sets of calculated curves. In order to recover the
observed LDOS peaks amplitude and position, we had to assume a mismatch
parameter γ value of 0.6 instead of 2.6 as estimated from the transport mea-
surements, keeping the other parameters matching precisely the measured
values. This discrepancy may be related to the Nb-Au interface roughness
which is expected to affect the Andreev reflection rate [8].

We first assumed that the inelastic and spin-flip scattering lengths are
much larger than the Au layer thickness, so that we can neglect these processes
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Fig. 4. Left: Tunneling density of states measured at 60 mK at the Au surface of
Nb-Au bilayer samples with a varying Au thickness Ln. Data from the 130 and 200
nm samples are not shown for ease of reading. Right, top: Schematic cross section
of the full Nb-Au bilayers sample. Right, bottom: STM image (410 × 410 nm2) at
100 mK of the sample with a Au thickness of 72 nm. The rms roughness for this
image is 3.4 nm.
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Fig. 5. Comparison of the experimental data for Ln= 10; 50; 100; 160 and 260 nm
(full line) with the calculated spectra. The calculation parameters are Ls/ξs = 5.17,
∆ = 1.57 meV, T = 210 mK, γ = 0.6, rB = 0, and ξn = 60.8 nm. The dotted line
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(Fig. 5 dotted lines). The overall spectra shapes are qualitatively reproduced,
except for the peak of the 50 nm spectra which is noticeably different from the
experimental data. At large Ln, the predicted mini-gap is clearly smaller than
in the experiment. Changing the ξn,s values or introducing a small interface
resistance in the calculation did not improve the fit. We tried to take into
account the dependence of the elastic mean free path with the normal metal
thickness Ln, and hence the related variation of the characteristic length ξn
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and of the mismatch parameter γ with Ln. This modified only slightly the
calculated spectra in the regime Ln< 100 nm. Obviously, we always obtain
a fully opened gap with a zero LDOS at the Fermi level. This is in clear
disagreement with our experimental results, where we always get a non-zero
conductance at zero bias.

With the hope to obtain a better fit, we included a non-zero inelastic
scattering rate in the calculation parameters (Fig. 5 dashed lines). We achieved
a good agreement of the calculated LDOS with the measured one, but only
at the precise Fermi level, by choosing γin = 0.05∆/�. This value corresponds
to an inelastic mean free path of about 370 nm, which is significantly smaller
than the expected value of about 2 µm. At large thicknesses, the calculated
mini-gap remains smaller than in the experiment. Fitting the mini-gap width
requires a significant modification of the calculation parameters such that
the calculated LDOS close to the Fermi level also diminishes. This makes
the disagreement between the experimental data and calculated LDOS even
stronger for a fixed value of γin. We also tried to include a spin-flip scattering
[11, 22] or a small interface resistance in the calculation, but it did not improve
the fit.

The observed LDOS in N-S bilayers, especially its amplitude at the Fermi
level and the mini-gap width evolution, cannot be described by the quasi-
classical theory, even after assuming an extremely strong phase-breaking
scattering. Our observations are somewhat reminiscent of some unexplained
features reported on the LDOS of presumably quite disordered 20 nm N metal
ridges lying over a Nb surface [22]. There also, a clear filling of the LDOS at
the Fermi level was observed in the absence of any mini-gap width evolution.
Let us point out that both this and our systems are far from the strongly
disordered regime where a non-zero LDOS for all energies is predicted [25].
Rather, our films have the typical polycrystalline structure of a weakly disor-
dered thin film. The elastic diffusion in the N metal is not homogenous as in
an amorphous metal but controlled by the interfaces between ballistic grains.
The possible confinement of electron states within a grain can have serious
effects on the LDOS in the proximity superconductivity regime of interest
here. A significant fraction of electron states may be sufficiently decoupled
from the N-S interface to avoid any Andreev reflection. These states would
thus remain insensitive to the superconductivity in the S layer and contribute
fully to the LDOS.

5 Conclusion

In conclusion, we have probed the local density of states in the vicinity of
various N-S structures [19, 23] at very low temperature. The samples with
a lateral geometry (and a reduced gap) showed a good agreement between
the experiment and the quasi-classical theory. In contrast, N-S bilayers with a
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thick N layer feature an anomalous mini-gap width evolution and a non-zero
density of states background within the mini-gap.

In our opinion, this new effect was not observed before because previous
studies either did not feature the relevant thickness range and a confined geom-
etry where the mini-gap enables a clear observation of additional low-energy
single particle states [19, 22], or were carried out at a higher temperature with
insufficient energy resolution in the measured LDOS [16]. These features may
be related to the precise granular structure of the normal metal, including
the growth mechanisms of the Au layer, but should be observable in other
similar diffusive hybrid structures. In this respect, it would be very inter-
esting to investigate new samples with a better control of the normal metal
nanostructure.
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12. M. Sillanpaä, T. Heikkilä, R. K. Lindell and P. J. Hakonen, Europhys. Lett. 56,

590 (2001).
13. K. Inoue and H. Takayanagi, Phys. Rev. B 43, 6214 (1991).
14. S. H. Tessmer, M. B. Tarlie, D. J. van Harlingen, D. L. Maslov and P. M.

Goldbart, Phys. Rev. Lett. 77, 924 (1996).
15. Y. Levi, O. Millo, N. D. Rizzo, D. E. Prober and L. R. Motowidlo, Phys. Rev.

B 58, 15128 (1998).
16. A. D Truscott, R. C. Dynes and L. F. Schneemeyer, Phys. Rev. Lett. 83, 1014

(1999).
17. N. Moussy, H. Courtois and B. Pannetier, Rev. Sci.Instrum. 72, 128 (2001).
18. R. C. Dynes, V. Narayamurti and J. P. Garno, Phys. Rev. Lett. 41, 1509 (1978).
19. N. Moussy, H. Courtois, and B. Pannetier, Europhys. Lett. 55, 861 (2001).
20. S. I. Park and T. H. Geballe, Physica 135B, 108 (1985).



186 L. Crétinon et al.

21. K. Halterman and O. T. Valls, Phys. Rev. B 66, 224516 (2002).
22. M. Vinet, C. Chapelier, and F. Lefloch, Phys. Rev. B 63, 165420 (2001).
23. A. K. Gupta, L. Crétinon, N. Moussy, B. Pannetier and H. Courtois, Phys. Rev.

B to appear (2004).
24. K. Fuchs, Proc. Cambridge Philos. Soc. 11, 1120 (1938).
25. P. M. Ostrovsky, M. A. Skvortsov and M. V. Feigelman, Phys. Rev. Lett. 87,

027002 (2001).



Quantum Tunneling between Paramagnetic
and Superconducting States of a
Nanometer-Scale Superconducting Grain
Placed in a Magnetic Field
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Summary. We consider the process of quantum tunneling between the supercon-
ducting and paramagnetic states of a nanometer-scale superconducting grain placed
in a magnetic field. The grain is supposed to be weakly coupled to a normal metallic
contact that plays a role of the spin reservoir. Using the instanton method we find
the probability of the quantum tunneling process and express it in terms of the ap-
plied magnetic field, order parameter of the superconducting grain and conductance
of the tunneling junction between the grain and metallic contact.

1 Introduction

In certain geometrically restricted superconductors the Zeeman effect plays a
major role in suppression of superconductivity by applied magnetic field. One
of examples of such systems is a thin superconducting film placed in a magnetic
field applied in a direction parallel to the film; it was shown a long time ago
that an Al film with thickness b � 5 nm at low temperatures exhibits the first
order phase transition between the superconducting and normal states at field
H ≈ 4.8 T. [1, 2] This magnitude is in a good agreement with the theoretical
result Hspin = ∆/

√
2µB = 4.4 T [3] (∆film = 0.38 meV ) which is obtained

by comparing the Zeeman and condensation energies under assumption that
the Zeeman pair breaking effect completely dominates the orbital one.

Another example of a system where the Zeeman effect plays a crucial role is
a nano-scale superconducting grain: For a dirty grain the orbital pair breaking
effect becomes significant at Horb ∼ Φ0/(r

√
D/∆) [4] where Φ0 = hc/2e, D

is the diffusion coefficient and r is the radius of the grain. Comparing Horb

with Hspin we have
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Hspin

Horb
∼

√
∆

d

√
l

r
(1)

with l = vF τ being the mean free path and d being the mean level spacing.
In case of the grain with ballistic electron transport and diffusive surface
scattering the ratio Hspin/Horb can be estimated by taking l ∼ r in Eq.(1)

Hspin

Horb
∼

√
∆

d
. (2)

We see that in case of the ballistic transport the paramagnetic effect is domi-
nant when ∆ becomes less than the mean level spacing. Under such condition
the grain cannot be considered as a superconductor [5] since ∆ looses its
physical meaning of the energy gap. This is, probably, the reason why the
first order phase transition was not yet observed in experiments with ultra
small Al superconducting grains [6]: For the grains with ∆ 
 d (r � 5nm)
the orbital effect dominates leading to the second order phase transition, while
for smaller grains ∆ 	 d, there is no well defined order parameter and there-
fore a phase transition of any kind cannot occur.

On the contrary, for a dirty grain from Eq.(1) we see that the paramagnetic
limit can be achieved even in case ∆ 
 d if the ratio l/r is small enough.

H

Fig. 1. Schematic picture of a platelet superconducting grain (gray) and two metal-
lic plates separated by the insulating layers (black). The state of the grain can be
controlled by measuring the conductance of the grain.

The paramagnetic limit can be also achieved by considering a grain of
a special platelet form with thickness b being much less than the area S.
Indeed, the orbital field in that case is determined by the smallest size Horb ∼
Φ0/(b

√
D/∆) while the density of states is determined by the volume d ∼

1/mkFSb and instead of (1) we have

Hspin

Horb
∼

√
∆

d

√
l

b

b√
S
. (3)

From this equation we see that even for ballistic grains (l/b ∼ 1) the para-
magnetic effect can be dominant while ∆ 
 d if the ratio b/

√
S is sufficiently

small.
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In the present paper we consider an ultra small superconducting grain
placed in a magnetic field assuming that the Zeeman effect dominates the
orbital one while the order parameter ∆ is larger than the mean level spacing
d. According to the written above a clean superconducting grain of platelet
geometry or a dirty spherical grain are the possible realizations of such a
system. Our goal is to find the probability of quantum tunneling between
paramagnetic and superconducting states of the grain. Such quantum tun-
neling process cannot be entirely described in terms of a Hamiltonian that
includes only the superconducting interaction. That is because the paramag-
netic and superconducting states are characterized by different values of the
total spin, thus some processes allowing for total spin non-conservation must
be included in the Hamiltonian. In the present work we assume that the
grain is weakly coupled to a normal metallic contact and that this coupling is
the dominant mechanism for non-conservation of the total spin of the grain.
Schematic picture of a possible experimental set up is shown on Fig. 1. Apart
form restrictions on size and shape of a grain described above we also assume
that the largest size of the grain is less than the coherence length of a corre-
sponding bulk sample - this makes the problem effectively zero-dimensional
in terms of ∆. Our final result for the probability of the quantum tunneling
between the superconducting and paramagnetic states is

P ∼ exp [N ln(β δE G/∆0 ) ] (4)

where the numerical coefficient β ≈ 1.1, the factor N is the number of polar-
ized electrons in the paramagnetic state of the grain, G is the conductance
of the tunneling junction between the superconducting grain and the metallic
plate measured in units e2/h, ∆0 is the order parameter of the grain in the
superconducting state and NδE is the total energy difference between the
superconducting and paramagnetic states of the grain. The factor N is of
the order of ∆0/d and it is related with applied magnetic filed H and average
density of states ν by N = 2νµBH with µB = |e|h̄/2mc. The energy differ-
ence per one polarized state δE is related with the magnetic field deviation δH
from the magnitude at which the the thermodynamic phase transition occurs
by δE = µBδH. The result (4) is valid only for δE/∆0 	 1, the general case
∆0 ∼ δE is more technically complicated and we leave it for future study.

The paper is organized as follows: In Section II we find the total energy
of an isolated grain in applied magnetic field as a function of the total spin
of the grain, in section III we write the general expression for the tunneling
probability, in section IV we derive the instanton equations which solution is
described in sections V-VIII. Our final result is discussed in Section IX. Some
details of calculations are presented in the Appendix.

2 Energy of an isolated grain

An isolated superconducting grain can be be described by the reduced BCS
Hamiltonian with the Zeeman coupling to the magnetic field
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Hg =
∑

k

ψ†
k [ εk − µ− hσz ]ψk

−λ
∑

k1,k2

ψ†
k1↑ψ

†
k1↓ψk2↓ψk2↑, (5)

where ψ is a spinor ψ = (ψ↑, ψ↓), εk are the exact eigenvalues of the non
interacting Hamiltonian, µ is the chemical potential and the magnetic field h
that is assumed to point along the z− axis is measured in the energy units
h = µBH.

0

ξ

ξ

ξ

Paired states

Paired states

Polarized unpaired states

Fig. 2. Schematic presentation of the ground state of the grain in the magnetic
field. States with |ξ| < ξ̃ are polarized and unpaired, while the states with |ξ| > ξ̃
are paired and have zero spin.

Since the Hamiltonian (5) conserves the total spin the quantum states of
the grain may be characterized by the values of the z-component of the total
spin

Sz =
1
2

∑
k

n↑k − n↓k, (6)

where nσ = 〈ψ†
σψσ〉. Therefore the energy of the system can be considered

as a function of the total spin S. Technically, the spin can be fixed by intro-
ducing the Lagrange multiplier S̃z[12

∑
k ψ

†
kσzψk − Sz] into Lagrangian that

corresponds to the Hamiltonian (5)

L = − 1
λ
∆∗∆−

∑
k

ψ†
k[ ∂/∂τ + ξk − h̃σz ]ψk

−∆ψ†
k↑ψ

†
k↓ −∆∗ ψk↓ψk↑ − S̃zSz, (7)
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where h̃ = h + S̃z/2, ξk = εk − µ and the BCS interaction was decoupled
with the help of the pair field ∆. In the mean field approximation the action
corresponding to the Lagrangian (7) should be at extremum with respect to
∆ and S̃z, that results in equations defining the order parameter and spin

∆ = λ
∑

k

fk, Sz =
∑

k

szk. (8)

with fk = 〈ψ↑kψ↓k〉 , f†
k = 〈ψ†

↓kψ
†
↑k〉 and szk = [n↑k − n↓k]/2. Note, that

for a fixed Lagrange multiplier h̃ the energy corresponding to Lagrangian (7)
should not be at minimum with respect to ∆, in fact the energy should be
stable only with respect to simultaneous variations of ∆ and h̃ that leave the
total spin conserved. The functions n = n↑ + n↓, sz and f, f† can be easily
found from the Lagrangian (7): for

√
ξ2 +∆2 > |h̃| we obtain

n = 1 − ξ√
ξ2 + |∆|2

, f =
∆

2
√
ξ2 + |∆|2

,

f† = f∗, sz = 0, (9)

and for
√
ξ2 +∆2 < |h̃| we have

n = 1, f = f† = 0, sz = 1/2. (10)

Introducing the energy ξ̃ =
√
h̃2 −∆2 we clearly see the physical meaning of

Eqs.(9): states with |ξ| > ξ̃ are paired and thus have nonzero f− functions
and zero spin (see Fig 2.), while the states with |ξ| < ξ̃ are unpaired having
zero f− functions and only one electron per state with spin sz = 1/2. Thus,
the total spin in terms of energy ξ̃ is

S = N/2 =
1
2

∑
ξk

θ(|ξk| − ξ̃). (11)

The energy of the superconducting grain in the mean field approximation
is given by

E′ =
1
λ
∆∗∆− 2Szh+

∑
k

ξknk −∆∗fk −∆f†
k . (12)

It is convenient to subtract the energy of the normal state in absence of the
magnetic field E0 = 2

∑
ξ<0 ξk from Eq. (12) and consider E = E′−E0. Using

Eqs. (9,10) we obtain

E =
1
λ
∆∗∆− 2hSz +

∑
k

|ξk| −
∑

|ξk|>ξ̃

√
ξ2
k + |∆|2. (13)

We shall assume that only the levels with |ξ| < ωD where ωD 
 ∆ is the
Debye frequency are paired. Assuming also that the density of states ν is
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constant around the Fermi level and choosing ∆ to be real from Eq. (8) we
obtain

1
λν

=
∫ ωD

ξ̃

dξ
1√

ξ2 +∆2
= ln

2ωD

ξ̃ +
√
ξ̃2 +∆2

. (14)

The order parameter ∆0 in absence of the magnetic field is determined by

1/λν = ln 2ωD/∆0. (15)

Using this equation we can present Eq. (14) in the form

ξ̃ +
√
ξ̃2 +∆2 = ∆0, (16)

from which we see that the superconducting state exists only in the region
0 < ξ̃ < ∆0/2, for ξ̃ > ∆0/2 only paramagnetic state is possible. Finally, for
the energy we obtain

E/ν = −∆2
0/2 + 2ξ̃∆0 − ξ̃2 − 2hξ̃, ξ̃ < ∆0/2, (17)

E/ν = −2hξ̃ + ξ̃2, ξ̃ > ∆0/2, (18)

Under assumption of constant density of states the total spin is related with
ξ̃ by S = N/2 = νξ̃.

0 0.5 1
−1

−0.5

0

ξ
Fig. 3. Dependence of the energy E/∆2

0ν on a variable ξ′ = ξ̃/∆0 which is related
with a total spin as S = ν∆0ξ̃ for different magnetic fields h = ∆0/2, ∆0/

√
2, ∆0

(from top to bottom). The superconducting state corresponds to the region ξ′ < 0.5.

Dependence of the energy of the grain on ξ̃ is shown on Fig. 3. For the
Hamiltonian with no spin relaxation that we have considered so far all the
values of ξ̃ correspond to the stable physical states. If one turns on a finite
spin relaxation, then only the minima of E(ξ̃) will describe stable or locally
stable states. In this case, from Fig. 1 we see that, for h < ∆0/2 only the
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superconducting state (ξ̃ = 0,∆ �= 0) is stable while for h > ∆0 only the
paramagnetic state is stable. In the intermediate regime ∆0/2 < h < ∆0 both
phases are locally stable such that for h < ∆0/

√
2 the superconducting state

is globally stable and for h > ∆0/
√

2 the paramagnetic state is globally stable.

3 Tunneling

The main goal of our study is to develop a theory of quantum tunneling
between superconducting and paramagnetic states. This tunneling process
cannot be entirely described by the Hamiltonian (5) for the reason that it con-
serves the total spin of the grain while during the quantum tunneling process
the total spin of the grain must change. Thus, some additional processes al-
lowing for non-conservation of the total spin of the grain should be included.
We shall consider the simplest case: the superconducting grain is weakly cou-
pled to the normal metallic contact that plays a role of an external spin bath
and the spin exchange between the grain and the normal metal is realized by
means of electron tunneling. The system of the grain and metal is described
by the Hamiltonian

Ĥ = Ĥg + ĤM +
∑
k,k′

tkk′ [ψ̂†
kσd̂k′σ + d̂†k′σψ̂kσ)]. (19)

where Ĥg and ĤM are the Hamiltonians of the grain and metallic contact
respectively, d̂† and d̂ are the creation and annihilation operators of electrons
that belong to the metal and tkk′ is the electron tunneling matrix element
between the grain and metal. Electrons that belong to the metallic contact
are assumed to be described by the free-fermion Hamiltonian HM

ĤM =
∑
k′

d̂†k′σ ζσk′ d̂k′σ.

The amplitude of tunneling process between the initial and final states is given
by the general formula

A =< f | Tt e
−i

∫ tf

ti
Ĥ(t) dt | i > . (20)

The Hamiltonian (19) in Eq. (20) is written in the interaction represen-
tation: the noninteracting part includes the metal Hamiltonian HM and the
first (free-fermion) term of grain Hamiltonian (5) while the interaction part
includes the BCS interaction and electron tunneling between the grain and
metal. We shall consider a process of quantum tunneling from pure super-
conducting state (initial state) to the paramagnetic state with ∆ = 0 (see
Fig. 4). The electron tunneling between the grain and metal will be treated
as a perturbation assuming that the tunneling matrix elements tkk′ are weak.
During the quantum tunneling process the spin of the grain must change by
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ξ

ξ

0

ξξ

Fig. 4. Ground states of the grain before the quantum tunneling process (left) and
after (right). The spin of the grain increases from zero to S during the tunneling
process due to the quasiparticle exchange with the metallic plate.

S, thus there must be N = 2S electron tunneling processes between the grain
and metal and therefore the first nonzero contribution in expansion in tkk′ of
Eq. (20) emerges only in the N−th order. Moreover from the analysis of the
previous section it is clear that the paired states which are destroyed by the
electron tunneling are those with |ξ| < ξ̃. Expanding Eq. (20) it tkk′ we have

A =< f |
∏

|ξk|<ξ̃

∫
dtk Tt e

−i
∫ tf

ti
Ĥ(t )dt ∑

k′
tkk′

×[ψ̂†
k σ(tk)d̂k′σ(tk) + d̂†k′σ(tk)ψ̂k σ(tk)] | i > . (21)

In the absence of coupling between the grain and metal the initial and
final states of the system are the products of corresponding initial and final
states of of the grain and metal

|i >= |iG > |iM >, |f >= |fG > |fM >, (22)

thus in the leading order in tkk′ the quantum mechanical average of opera-
tors d̂ in (21) can be directly implemented. During the tunneling process the
z-component of the spin of the grain increases while the z-component of the
total spin of the metal decreases. Thus the only relevant processes inside
the metal are creation of electrons with spin down and annihilation of electrons
(or equivalently creation of holes) with spin up. The corresponding matrix
elements are:



Quantum Tunneling between PM and SC States of a SC Grain 195

< fM | d†k↓(t) |iM > = eiζk↓ t, ζk↓ > 0 (23)

< fM | dk↑(t) |iM > = ei|ζk↑| t, ζk↑ < 0. (24)

The initial state of the metal is the Fermi sea while its final state having
N electron/hole excitations is characterized by the set of excitation energies
ζ
{p}
k′α where the index k′ labels the quantum number of excitation p. k′ labels

its quantum number. Assuming a simple model for electron tunneling matrix
elements [7]

tkk′ = t (25)

the amplitude of the tunneling process can be written as

A = tN < fG|Tt

∏
|ξk|<ξ̃

∫
dtke

−i
∫ tf

ti
Ĥ(t)dt ∑

Per p(k)

eiζ
{p(k)}
k′ tk

×[ψ̂†
k↑(tk) θ(−ζ{p(k)}

k′ ) + ψ̂k↓(tk) θ(ζ{p(k)}
k′ )] |iG > (26)

where the sum goes over all excitation permutations p(k). At this step we
will simplify the problem further: we shall assume that the typical excitation
energy in the metal is much less than ∆0. This is always the case if the
difference of the energy of the paramagnetic and superconducting states per
one polarized electron energy level

δE = (Esup − Epar)/N

is much less that ∆0. In this case in the leading order we can neglect the
energies ζ

{p}
k′ in (26) and using the Heisenberg representation we write the

amplitude (26) as

A = N ! tN < fG|
∏

|ξk|<ξ̃

∫
dtk [ψ̂†

k↑(tk) θ(−ζ{p(k)}
k′ )

+ψ̂k↓(tk) θ(ζ{p(k)}
k′ )] |iG >, (27)

where a specific permutation p(k) was chosen.
The probability of an elementary process with a given final state (char-

acterized by the set of the excitation energies ζ{p}
k′ ) is A∗A, thus the whole

probability P of the tunneling process should be obtained by integrating A∗A
over all possible quantum states of the metal.

P ∼ νN
M

N !

∫
dζ{1}.. dζ{N}A∗Aδ(N δE −

∑
p

|ζ{p}|), (28)

where νM is the density of states of the metal.
To find the values of A we shall use the instanton method turning to

operate with the Euclidean time t → −iτ. Taking initial and final times as
τi = −∞, τf = 0 we present the amplitude A as
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A = N ! tN < fG|S(0,−∞) |iG > (29)

with the evolution operator

S(τ2, τ1) =
∏

|ξk|<ξ̃

∫ τ2

τ1

dτk [ψ̂†
k↑(τk) θ(−ζ{p(k)}

k′ )

+ψ̂k↓(τk) θ(ζ{p(k)}
k′ )] (30)

In principle, the instanton method should be applied to the amplitude A
directly, but it is more convenient to consider the product A∗A presenting A∗

as

A∗ = N ! tN < iG|S†(∞, 0)|fG > . (31)

and writing the product A∗A as

< iG|S†(∞, 0) |fG >< fG|S(0,−∞)|iG >

=< iG|S†(∞, 0)S(0,−∞) |iG > . (32)

where we used that by construction the Euclidean evolution operator S must
bring the system from initial |iG > to the final |fG > state: S |iG >= |fG >.
Now the instanton process has the following structure (see Fig. 5.): the evolu-
tion begins at τ = −∞ from the superconducting state, then at τ ≈ −T the
system turns into the paramagnetic state and stays there till it turns back to
the superconducting state at τ ≈ T. The artificial part of process (τ > 0) is
the mirror reflection of the “physical” process with τ < 0.

τ-T T

∆

Fig. 5. Dependence of the order parameter ∆ on time τ. The region τ > 0 is
the mirror reflection of the “physical” region τ < 0. The superconducting state
corresponds to the regions |τ | > T while the paramagnetic one to |τ | < T.

The advantage of this representation is that now the new initial (τ = −∞)
and final (τ = ∞) states are identical and therefore we can use the convenient
functional representation for A∗A
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A∗A = [N ! tN ]2
∫

Dψ†Dψ e
∫

Ldt
∏
k

∫
dτ1kdτ2k

×
[
ψk↑(τ1k)ψ†

k↑(τ2k) θ(−ζ{p(k)}
k′ )

+ψ†
k↓(τ1k)ψk↓(τ2k)θ(ζ{p(k)}

k′ )
]
, (33)

with the Lagrangian

L = − 1
λ
∆∗∆−

∑
k

ψ†
k[∂τ + ξk − hσz ]ψk

−∆ψ†
k↑ψ

†
k↓ −∆∗ ψk↓ψk↑. (34)

Note that the integration over the fermionic fields in (33) should be imple-
mented exactly while the assumed integration over ∆(τ) will be taken with
the saddle point accuracy. Now taking integrals in (28) for the probability we
obtain

P = eN ln(N δE t2 νM )

∫
Dψ†Dψ

∏
k

∫
dτ1kdτ2k

× e
∫

Ldτ [ψk↑(τ1k)ψ†
k↑(τ2k) + ψ†

k↓(τ1k)ψk↓(τ2k)], (35)

where we used that N ! = N ln N −N in the limit N 
 1. Finally integrating
over the fermionic fields we obtain

lnP = N ln(N δE t2 νM ) +
∑

k

Tr ln[∂τ + Hk]

− 1
λ

∫
dτ ∆∗(τ)∆(τ) +

∑
k

ln Tr
∫

dτ1dτ2 Ĝ1k(τ1, τ2), (36)

where

Hk(τ) =
[
ξk − h ∆(τ)
∆∗(τ) −ξk − h

]
, (37)

and the matrix Green function Ĝ1(τ1, τ2) is defined by the equation

[∂τ1 + Hk(τ1)] Ĝ1k(τ1, τ2) = δ(τ1 − τ2). (38)

This Green function can be written as the average of the Nambu spinors
ψ̃ = (ψ↑, ψ

†
↓) with respect to the Lagrangian (34)

Ĝαβ
1k (τ1, τ2) = 〈ψ̃α

k (τ1) ψ̃
β †
k (τ2)〉L. (39)

For the components of Ĝ1 we adopt the standard notations

Ĝ1k(τ1, τ2) =
[
G1k(τ1, τ2) F1k(τ1, τ2)
F †

1k(τ1, τ2) Ḡ1k(τ1, τ2)

]
. (40)
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4 Instanton equations

To find the instanton equations we take the functional derivative of Eq.(36)
with respect to ∆∗ obtaining

1
λ
∆(τ) =

∑
k

f1k(τ) + f2k(τ), (41)

where the Green function f1(τ) = F1(τ, τ) emerges from the variational deriv-
ative of Tr ln[∂τ + Hk] in (36) and f2 emerges from the functional derivative
of the Green function Ĝ1

f2(τ) = Z−1
k

δ

δ∆∗(τ)
Tr

∫
dτ1dτ2 G1k(τ1, τ2), (42)

where Zk =
∫
dτ1dτ2 TrG1k(τ1, τ2).

The function f1(τ) being the equal-time part of F1(τ1, τ2) is completely
determined by the definition of the Green function (38). But instead of using
Eq. (38) it is more convenient to derive equations that define f1(τ) entirely
in terms of the equal time Green functions

ĝ1k(τ) =
[
g1k(τ) f1k(τ)
f†
1k(τ) ḡ1k(τ)

]
= Ĝ1k(τ, τ). (43)

For that we write Eq.(38) in the form

Ĝ1k(τ1, τ2)(−∂τ2 + Hk(τ2)) = δ(τ1 − τ2), (44)

where derivative ∂τ2 acts on the left and then we add Eqs. (38, 44) obtaining

∂τ ĝ1(τ) + [H0(τ), ĝ1(τ)] = 0, (45)

where

H0(τ) =
[

ξk ∆(τ)
∆∗(τ) −ξk

]
. (46)

Note that Eqs. (45, 46) do not contain the magnetic field h. Writing Eq. (45)
in components we get

∂τ g̃1k +∆f†
1k −∆∗f1k = 0, (47)

∂τ f1k + 2ξf1k − 2∆g̃1k = 0, (48)

− ∂τ f†
1k + 2ξf†

1k − 2∆∗g̃1k = 0, (49)
∂τ sz1k = 0, (50)

where the variables

g̃1k = [g1k − ḡ1k]/2, sz1k = −[g1k + ḡ1k]/2, (51)
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were introduced instead of components g1 and ḡ1. Eqs. (47, 48, 49) are very
similar to the well known Eilenberger [8] equations and posses the same in-
variant

g̃2
1k + f†

1kf1k = const. (52)

Now we turn to the function f2(τ): Using the definition of the Green function
(38) one can take the variation derivative in (42)) obtaining

f2k(τ) = −f II
k (τ)gI

k(τ) + ḡII
k (τ)f I

k (τ)∫
dτ [gI

k(τ) + ḡI
k(τ)]

(53)

where

ĝI
k(τ) ≡

[
gI

k(τ) f I
k (τ)

f†I
k (τ) ḡI

k(τ)

]
=

∫
dτ2Ĝ1k(τ, τ2) (54)

and

ĝII
k (τ) ≡

[
gII

k (τ) f II
k (τ)

f†II
k (τ) ḡII

k (τ)

]
=

∫
dτ1Ĝ1k(τ1, τ). (55)

Analogously we define the function f†
2 as a derivative of lnZk with respect to

∆∗

f†
2k(τ) = −gII

k (τ)f† I
k (τ) + f† II

k (τ)ḡI
k(τ)∫

dτ [gI
k(τ) + ḡI

k(τ)]
. (56)

Equations that determine the functions ĝI and ĝII can be easily found by
integrating Eq. (38) over τ2 and Eq. (44) over τ1

∂τg
I
k(τ) + Hk(τ)gI

k(τ) = 1, (57)

− ∂τg
II
k (τ) + gII

k (τ)Hk(τ) = 1. (58)

5 Boundary conditions

To determine boundary conditions for the functions ĝ1, f2, f
†
2 first we intro-

duce the “physical” equal time matrix Green function

ĝk(τ) =
[
gk(τ) fk(τ)
f†

k(τ) ḡk(τ)

]
, (59)

which is defined with respect to the evolution operator S†S,

ĝα,β
k (τ) =

< iS |S†(∞, 0)S(0, τ)ψ̃α
k ψ̃

β†
k S(τ,−∞) |iS >

< iS |S†(∞, 0)S(0,−∞)|iS >
(60)

where negative τ was chosen for concreteness. To find the function ĝk(τ) in
the functional representation we add the source term

∫
dτµαβ

k (τ)ψ̃α(τ)ψ̃†
β(τ)
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to the Lagrangian (34) and take the variation derivative of (36) with respect
to µαβ

k (τ) obtaining
ĝk(τ) = ĝ1k(τ) + ĝ2k(τ), (61)

where ĝ1k is defined by Eq.(43) and the off-diagonal components of the func-
tion

ĝ2k(τ) =
[
g2k(τ) f2k(τ)
f†
2k(τ) ḡ2k(τ)

]
(62)

are defined by Eqs. (53, 56), while the diagonal components are

g2k(τ) = Z−1
k

δ

δ µ↑(τ)

∫
dτ1 dτ2 Gk(τ1, τ2)

= −gII(τ)gI(τ) + f†II(τ)f I(τ)∫
dτ [gI(τ) + ḡI(τ)]

, (63)

ḡ2k(τ) = Z−1
k

δ

δ µ↓(τ)

∫
dτ1 dτ2 Gk(τ1, τ2)

= − ḡII(τ)ḡI(τ) + f II(τ)f†I(τ)∫
dτ [gI(τ) + ḡI(τ)]

. (64)

To the extent one can consider an instanton trajectory as a physical process
(in fact only the initial and final states of the instanton trajectory have a
physical sense ) only the function ĝ has a physical meaning and therefore
the physical requirements for boundary conditions should be applied to the
function ĝ.

In the superconducting phase (|τ | 
 |T |) this function should coincide
with the equilibrium superconducting Green functions

g̃k =
ξk

2
√
ξ2
k +∆2

0

, fk =
∆0

2
√
ξ2
k +∆2

0

, f†
k = f∗

k , sz = 0 (65)

where the functions g̃ and sz are defined in a similar way with g̃1 and sz1

g̃k = [gk − ḡk]/2, szk = −[gk + ḡk]/2. (66)

The function g̃ is directly related with electron density on the level k by
nk = 1 − 2g̃k and the function szk is the z-component of the spin on the
level k. Analogously, in the paramagnetic phase the Green function ĝ should
coincide with the equilibrium Green functions defined by Eqs. (9, 10) with
∆ = 0. For the sake of generality (it is also useful for numerical solution) we
shall assume that the order parameter in the paramagnetic phase ∆p �= 0.
Our final results though will be applicable only for ∆p = 0. Thus, in the
paramagnetic phase the boundary conditions for the function ĝk(τ) are
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g̃k =
ξk

2
√
ξ2
k +∆2

p

, fk =
∆p

2
√
ξ2
k +∆2

p

, f†
k = f∗

k ,

szk = 0, for |ξk| > ξ̃ (67)

g̃k = fk = f†
k = 0, szk = 1/2 for |ξk| < ξ̃. (68)

The boundary conditions formulated in Eqs. (65, 67, 68) contain all the
physical requirements for the instanton trajectory. Now we need to figure
out the boundary conditions for the functions ĝ1, ĝ2 that are consistent with
Eqs. (65, 67, 68). We will show below that the function ĝ2 → 0 in the super-
conducting region. Thus, at |τ | 
 |T | the Green function ĝ1 has the same
boundary conditions with those defined by Eq. (65) for function ĝk

g̃1k =
ξk

2
√
ξ2
k +∆2

0

, f1k =
∆0

2
√
ξ2
k +∆2

0

,

f†
1k = f∗

1k, sz1k = 0. (69)

One can see that the Green functions defined by Eqs. (69) at the same time
are the stationary solutions of Eqs. (47, 48, 49). Boundary conditions (69)
also define the value of the invariant (52)

g̃2
1k + f†

1kf1k = 1/4. (70)

In the paramagnetic region |τ | 	 |T | the boundary conditions for the
function ĝ1 are analogous to those defined by Eq.(69)

g̃1k =
ξk

2
√
ξ2
k +∆2

p

, f1k =
∆p

2
√
ξ2
k +∆2

p

,

f†
1k = f∗

1k, sz1k = 0. (71)

These are the only possible boundary conditions for the function ĝ1 in the
paramagnetic region because (i) in the paramagnetic state the components of
the Green function ĝ1 must be the stationary solutions of Eqs. (47, 48, 49)
and (ii) Eq. (70) should be satisfied.

Now knowing the boundary conditions for functions ĝ and ĝ1 given by
Eqs. (67, 68, 71) we finally determine the boundary conditions for ĝ2 in the
paramagnetic phase:

g̃2k = − ξk

2
√
ξ2
k +∆2

p

, f2k = − ∆p

2
√
ξ2
k +∆2

p

,

f†
2k = f∗

2k, sz2k = 1/2. (72)
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6 Numerical solution for function ĝ1

For a given order parameter configuration ∆(τ) the functions g̃1k(τ), f1k(τ),
f†
1k(τ) can be found numerically by solving Eqs. (47-49) supplemented by the

boundary conditions (69, 71). Numerical solutions for functions g̃1k(τ) and
f

(s)
1k (τ) ≡ f1k(τ) + f†

1k(τ) corresponding to the self-consistent configuration
of ∆(τ) (see below) in the region τ ∼ T are shown on Fig. 6. Solutions at
the left instanton boundary τ ∼ −T can be obtained by the time reversal
transformation τ → −τ, ∆ → ∆∗, g̃1 → g̃1, f → f†, f† → f following from
Eqs. (47-49). Since we choose the real order parameter ∆(τ) the functions
∆(τ), g̃1k(τ) and f

(s)
1k (τ) shown on Fig. 6 are symmetric under time reflection

τ → −τ.

−1.5 −1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Fig. 6. Order parameter ∆(τ)/∆0 (solid line) and functions g̃1k(τ) (dotted lines)

and f
(s)
1k (τ) = f1k(τ) + f†

1k(τ) (dashed lines) plotted as functions of (τ − T )d for
electron levels ξ = 3d, 20d, 50d, 100d. For the functions g̃1k higher curves correspond
to larger ξk while for the functions f

(s)
1k higher curves correspond to lower ξk.

7 Asymptotic and boundary conditions of functions
ĝI, ĝII

According to Eqs. (53, 56, 63, 64) the matrix Green function ĝ2 is determined
by the matrix Green functions ĝI and ĝII defined by Eqs. (57, 58). Now our
task is to find such solutions of Eqs. (57, 58) that being inserted into Eqs. (53,
56, 63, 64) provide the Green function ĝ2 satisfying the proper boundary
conditions found in Sec. 5.

Let us first formulate the ansatz for general form of the functions ĝI , ĝII

and then show that this ansatz leads to the function ĝ2 satisfying all the
necessary requirements. The function gI exponentially grows ĝI ∼ eλpτ in the
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interval (−T, T ) from values of order of 1/∆0 at τ ∼ −T to exponentially large
values at τ ∼ T. At τ > T the function gI exponentially decrease ĝI ∼ eλsτ .
The corresponding exponents may be easily found from Eq. (57) where we
can neglect the r.h.s. since ĝI is exponentially large in the region t ∼ T

λp = h−
√
ξ2
k +∆2

p > 0, λs = h−
√
ξ2
k +∆2

0 < 0.

It the region τ 	 −T the function ĝI is time independent and can be easily
found as a stationary solution of Eq. (57)

ĝI = D−1

[
ξk + h ∆0

∆0 −ξk + h

]
, (73)

where D = ξ2 + ∆2
0 − h2. The function gII(τ) has a similar structure but it

has a peak at t ∼ −T and it grows with exponent −λs in the region t < −T
and decays in the paramagnetic region −T < τ < T with exponent −λp to
the value of order 1/∆0 at τ ∼ T. In the region t 
 T the function ĝII is the
stationary solution of Eq. (58) and it coincides with ĝI(τ 	 −T ) given by
Eq. (73).

Although functions ĝI , ĝII in the paramagnetic region −T < τ < T
strongly depend on time their products that enter Eqs. (53, 56, 63, 64) do
not. Thus the components of the function ĝ2 stay constant in the paramag-
netic region as they should. Moreover, the numerators and denominators in
Eqs. (53, 56, 63, 64) are of the same order and thus the function ĝ2 is of order
one in spite of the fact that functions ĝI , ĝII are exponentially large. Thus
the components of the functions ĝ2 change only on the boundaries τ ∼ −T, T
between the paramagnetic and superconducting regions.

Writing Eqs. (57, 58) in components one can see that there is a symmetry
relation between the functions gI and gII under change of time sign τ → −τ :
∆ → ∆∗, gI → gII , ḡI → ḡII , f I → f†II , f†II → f I . Therefore, since we
choose the real order parameter ∆(τ), solutions of Eqs. (57, 58) on the left
and right boundaries are interrelated and further we shall consider only the
right boundary τ ∼ T.

Writing Eq. (58) in components one can see that the pairs of functions
gII , f II and ḡII , f†II enter this equation separately: Functions gII , f II satisfy

∂τg
II
k = (ξk − h)gII

k +∆f II
k − 1 (74)

∂f II
k = ∆gII

k − (ξk + h)f II
k (75)

(gII
k , f II

k ) = Ak (ξk +
√
ξ2
k +∆2

p, ∆p) e−λpτ , τ 	 T, (76)

while the functions ḡ and f† obey

∂τ ḡ
II
k = −(ξk + h)ḡII

k +∆f†II
k − 1 (77)

∂τf
†II
k = (ξk − h)f†II

k +∆ḡII
k (78)

(ḡII
k , f† II

k ) = Āk (−ξk +
√
ξ2
k +∆2

p, ∆p) e−λpτ , τ 	 T. (79)
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The coefficients Ak, Āk should be found numerically by matching the bound-
ary conditions in the superconducting region defined by Eq. (73).

Since the components of the function ĝI are exponentially large on the
boundary τ ∼ T one can neglect the r.h.s. in Eq. (57). Writing Eq. (57) in
components we can separate equations for gI and f†I

∂τg
I
k + (ξk − h)gI

k +∆f†I
k = 0 (80)

∂τf
†I
k − (ξk + h)f†

k +∆gI
k = 0 (81)

from equations on ḡI , f I

∂τf
I
k + (ξk − h)f I

k +∆ḡI
k = 0 (82)

∂τ ḡ
I
k − (ξk + h)ḡk +∆f I

k = 0. (83)

Since Eqs. (80-83) are homogeneous they define the pairs of functions gI
k, f

†I
k

and ḡI
k, f

I
k only up to the normalization factors. From Eqs. (53, 56, 63, 64)

we see that the overall normalization factor for the functions gI
k, f

†I
k , ḡI

k, f
I
k

gets cancel out and thus we are left with one free parameter to be fixed by
the requirements on the boundary conditions on resulting function ĝ2k. In the
superconducting region τ 
 T the components of ĝ2k decay to zero due to
our asymptotic requirements while in the paramagnetic region there are four
equations (one for each component of ĝ2k) that should be satisfied. Fortunately
all these four equations can be shown to be linear dependent, thus we are left
with one requirement for which we have one free parameter.

Numerical solution for resulting function ĝ2k is presented on Fig. 7. Being
able to find numerical solutions for functions f1k and f2k for a given order
parameter configuration ∆(τ) one can find self-consistent order parameter
configuration satisfying to Eq. (41) which is presented on Fig. 6.

8 Action

The probability of the tunneling process is determined by Eq. (36). The last
term in this equation can be written in terms of the function gI

k(τ) that up
to the normalization factor is defined by Eqs. (80, 81 )

A1 =
∑

k

ln Tr
∫

dτ ĝI
k(τ). (84)

To find the normalization factor of the function gI we need to consider Eq. (57)
in the region τ ∼ −T with the proper boundary conditions

∂τg
I
k = 1 − (ξk − h) gI

k −∆f†I
k (85)

∂τf
†I
k = (ξk + h) f† −∆gI

k (86)

(gI
k, f

†I
k ) = Ãk (ξk +

√
ξ2
k + |∆p|2,∆p) eλp τ , τ 
 −T. (87)
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Fig. 7. The solid lines represent dependencies of the doubled quasiparticle spins
2sk = −(g2k + ḡ2k) on (τ − T )d for energy levels ξ = 2d, 8d, 16d (higher curves

correspond to larger ξk). The functions f
(s)
2k ≡ f2k +f†

2k (higher curves correspond to
larger ξk) and 2g̃2k ≡ g2k−ḡ2k (higher curves correspond to lower ξk) are represented
by dashed and dotted lines respectively.

Analogous equations for the pare of functions ḡI
k and f I

k can be formally ob-
tained from the above equations by the transformation g → ḡ, f† → f, ξ →
−ξ. The coefficient Ãk that defines the asymptotic behavior in the region
−T 	 τ 	 T is uniquely defined by the requirement of matching the bound-
ary conditions (69) in the superconducting region τ 	 −T. The normalization
constant of the function gI

k in the region τ ∼ T now is determined by the as-
ymptotic behavior (87).

As we show in the Appendix the third term in Eq. (36) can be written in
terms of the functions f1k, f

†
1k such that

A2 ≡ − 1
λ

∫
dτ ∆∗(τ)∆(τ) +

∑
k

Tr ln[∂τ + Hk]

=
∫

dτ

[
−∆2(τ)

λ
+
∆(τ)

4

∑
k

[
1

f1k(τ)
+

1

f†
1k(τ)

]]
. (88)

This action should be compared with the action of the superconducting state∫
dτEs, where Es is the energy of the superconducting state given by Eq. (12)

with Sz = 0. Subtracting this term from (88) we get

A2 →
∫

dτ

[
−Es −

∆(τ)2

λ
+

1
4

∑
k

[
∆(τ)
f1k(τ)

+
∆(τ)

f†
1k(τ)

]]
. (89)

Using the Green functions in the superconducting state given by Eq. (69)
one can check that the expression under integral in (89) tends to zero in the
superconducting region |τ | 
 T.
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Now the probability of the tunneling process (36) can be written as

lnP = N ln(N δE t2νM ) +A1 +A2. (90)

The probability of the instanton process should not depend on the time differ-
ence 2T between the boundaries of the instanton processes. Although terms
A1 and A2 both depend on T one can show that their sum is T independent.
Indeed the change of the term A1 under increase of T

δA1 = 2
∑
|ξ|<ξ̃

λp δT ≡ 2
∑
|ξ|<ξ̃

(h−
√
ξ2
k +∆2

p) δT, (91)

is exactly compensated by the change in the action A2. In the limit ∆/d → ∞
the sum of the terms A1 and A2 can be presented as

A1 +A2 = N(ln[∆−2
0 ] + β′) (92)

where β′ ≈ 4.1 is a numerical constant, which was found for N = 40 levels
and ωD/d = 100. Finally we can present the probability as

ln P ∼ N ln(βδE G/∆0), (93)

where β ≈ 1.1 and G is the dimensionless conductance of the junction between
the superconducting grain and metallic plate which for our model is

G = 8π2 νG νM t2, (94)

where νG = N/2ξ̃ is the density of states of the grain.

9 Conclusions

In the present paper we have considered the quantum tunneling between para-
magnetic and superconducting states of a nano-scale superconducting grain
weakly coupled to a normal metallic contact assuming that the quasiparticle
tunneling between the grain and metal provides the dominant mechanism for
non-conservation of the total spin of the grain. Our final answer (93) can be
understood more clearly when written in a form

P ∼
(
β δE G

∆0

)N

. (95)

We see that the factor (GδE)N ∼ (t2 νG νMδE)N represents the probability
of tunneling of N electrons or holes from the grain to the metal with δE being
the typical energy of one electron (hole) excitation in the metal. Determina-
tion of the factor β in (95) requires an application of the instanton method
which is capable of careful description of quantum tunneling process between
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paramagnetic and superconducting states of the grain (see Figs. 3, 4). Deriv-
ing Eq. (93) we assumed that the typical energy of electron (hole) excitation
inside the metal δE 	 ∆0, this situation is realized if the magnetic field H
is close to the value H0 = ∆0/

√
2µB at which the thermodynamic first order

phase transition takes place: H −H0 << H0.
Although we have considered only the zero temperature case, at finite

temperatures T 	 δE our result should still hold. In the case δE 	 T 	 ∆0

we expect that the dependence on the applied magnetic filed will be saturated
by temperature such that one should substitute δE → T in (93), the coefficient
β for this case requires a more advanced study.
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K. Matveev, A. Mel’nikov, V.L. Pokrovsky, R. Ramazashvily for useful dis-
cussions.

A Appendix. Action A2

To find the action A2, following the method of Ref. [9] , we first consider the
Green function Eqs. (47-49) and introduce the new variables uk and vk

g1k = ukvk, f1k = u2
k, f†

1k = −v2
k +

1
4u2

k

. (96)

such that the constraint (52) is identically satisfied. From Eqs. (47-49) we find
that the functions uk and vk obey the equations

∂τuk + ξk uk −∆vk = 0, (97)
∂τvk − ξkvk −∆∗uk +∆/4u3

k = 0 (98)

that can also be obtained taking the variational derivative of the functional

A′
2 =

∑
k

∫
dτ

[
2vk∂τuk + 2ξukvk

− ∆v2
k +∆∗u2

k +
∆

4u2
k

]
. (99)

Taking the variation derivative of the action A′
2 with respect to ∆ and ∆∗ we

obtain
∑

k f
†
1k and

∑
k f1k respectively. Therefore up to the boundary terms

the functional (99) should coincide with
∑

k Tr ln[∂τ + Hk]. Moreover, the
possible boundary terms should vanish because the Green functions of initial
τ = −∞ and final τ = ∞ coincide. Writing the action (99) in terms of the
original functions g, f, f† and using Eqs. (47-49) to bring it into symmetric
form for A2 we finally get

A2 =
∫

dτ

[
− 1
λ
∆∗∆+

∑
k

1
4

[
∆/f1k +∆∗/f†

1k

]]
. (100)
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Domain Wall Superconductivity
in Ferromagnetic Superconductors
and Hybrid S/F Structures
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Summary. On the basis of phenomenological Ginzburg-Landau approach we inves-
tigate the problem of order parameter nucleation in a ferromagnetic superconductor
and hybrid superconductor - ferromagnetic (S/F) systems with a domain structure
in an applied external magnetic field H. We study the interplay between the super-
conductivity localized at the domain walls and between the domain walls and show
that such interplay determines a peculiar nonlinear temperature dependence of the
upper critical field. For hybrid S/F systems we also study the possible oscillatory
behavior of the critical temperature Tc(H) similar to the Little-Parks effect.

The presence of domains is inherent to ferromagnets and, thus, for sys-
tems with coexisting superconducting and magnetic orderings it is important
to study the influence of the domains on the superconducting order parame-
ter nucleation (see, e.g., [1] and references therein). The revival of interest to
the domain wall superconductivity has been stimulated, in part, by recent in-
vestigations of hybrid superconductor/ferromagnetic (S/F) systems, e.g., S/F
bilayers or superconducting films with arrays of magnetic dots. The interest
to such structures is caused by their large potential for applications (e.g., as
switches or systems with a controlled artificial pinning). In many cases such
thin film structures consist of a ferromagnetic insulator film and superconduct-
ing film deposited on it, or a metallic ferromagnetic and superconducting films
separated by a buffer oxide layer. In both situation the proximity effect can
be neglected. A nonhomogeneous magnetic field distribution induced by the
domain structure in a ferromagnetic layer influences strongly the conditions
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of the superconducting order parameter nucleation, and, as a consequence,
the hybrid S/F systems reveal a nontrivial phase diagram in an external ap-
plied magnetic field H (see, e.g., [2, 3, 4, 5]). In particular, it was found that
depending on the domain structure the temperature dependence of the up-
per critical field becomes strongly nonlinear near the superconducting critical
temperature Tc. Provided the thickness of a superconducting film is rather
small as compared with the coherence length ξ, the critical temperature of
the superconducting transition as well as the structure of superconducting
nuclei should be determined by a two–dimensional distribution of a magnetic
field component Bz(x, y) (perpendicular to the superconducting film plane)
induced by the domain structure or an array of ferromagnetic particles. Obvi-
ously, the highest critical temperature corresponds to the nuclei which appear
near the lines of zeros of Bz.

The profile Bz(x, y) is determined by the ratio of two length scales: thick-
ness of a ferromagnetic film D and distance between the domain walls w
(hereafter we consider the width of the domain wall to be much less than
ξ). Provided the ferromagnetic film is rather thick (D 
 w), the magnetic
field in a thin superconducting film is almost homogeneous over the domain
and shifts the critical temperature of superconductivity nucleation at a value
∆T orb

c = (2πB0ξ
2
0/Φ0)Tc0 due to the orbital mechanism (B0 is the maximum

absolute value of the z- component of the field induced by the ferromagnet).
In this case with the decrease in the temperature the superconductivity must
firstly appear just above the domain wall due to the mechanism analogous
to the one responsible for the surface superconductivity below Hc3 (see, e.g.,
[6]). Thus, in this limit the domain walls stimulate the nucleation of the su-
perconducting order parameter. For a thin ferromagnetic film (D 	 w) the
magnetic field decays with the increase in the distance from the domain wall
and almost vanishes inside the domain. In the absence of the external field
such domain wall should locally weaken superconductivity as it was discussed
by Sonin [7]. The superconducting nucleus in this case should appear far from
the domain wall. As we switch on an external magnetic field, we can control
the position of the superconducting nucleus suppressing the order parameter
inside the domains.

Another reason which explains recent experimental and theoretical activity
in the field of domain wall superconductivity is associated with the discovery of
ferromagnetic superconductors UGe2 and URhGe [8] where superconductivity
appears in the presence of large exchange field which obviously excludes sin-
glet superconducting pairing. Thus, these compounds are considered as good
candidates for superconductivity with triplet pairing. The basic features of
the H − T phase diagram and possible re-entrant superconductivity induced
by external magnetic field in such compounds can be analyzed within the
appropriate version of the Ginzburg–Landau (GL) theory.

The goal of the present paper is to study the unusual nonlinear behavior
of the temperature dependence of the upper critical field observed exper-
imentally in hybrid S/F systems and ferromagnetic superconductors using
the GL model. We consider a linearized GL equation which is equivalent to
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the Shrödinger equation for two – dimensional electronic gas in the presence
of some inhomogeneous magnetic field [9]: − (∇ + 2πiA/Φ0)

2
Ψ = ξ−2(T )Ψ .

Here A(r) is the vector potential, Φ0 is the flux quantum, ξ(T ) = ξ0/√
1 − T/Tc0, and Tc0 is the critical temperature of the bulk superconduc-

tor at B = 0. The lowest eigenvalue 1/ξ2(T ) of this Schrödinger-like equation
defines the critical temperature Tc of the phase transition into a superconduct-
ing state. As for the case of ferromagnetic triplet superconductors like UGe2,
a nonzero spin of the Cooper pair can be phenomenologically taken into ac-
count if we just assume the existence of two order parameters corresponding
to different spin orientations and define two different critical temperatures
depending on the mutual orientation of Cooper pair spin and ferromagnetic
moment. These two components of the order parameter can be viewed, for in-
stance, as the ones corresponding to two different one-dimensional irreducible
representations of the symmetry group of the crystal. We also assume that
the domain walls are well pinned and do not take account of changes in the
domain structure with an increase in H.

Let us start from the one–dimensional case and take a step-like magne-
tization profile M = M(x)z0. Consider first narrow domains (w 	 D). An
external magnetic field H applied along the z axis results in a partial compen-
sation of magnetic induction in one of the domains. As a result, the critical
temperature of superconductor depends non-monotonously on H (see Fig. 1a).
Both the critical temperature of superconducting nucleation inside the domain
and critical temperature of formation of localized superconductivity should in-
crease up to the external field value equal to the magnetic induction induced
by the ferromagnetic moment. So the external magnetic field shrinks the re-
gion of the domain wall superconductivity and causes the shift of the S nucleus
from the wall.

For UGe2 we must take account of some additional shift in energy of
Cooper pairs corresponding to the shift in Tc for a given order parameter
component in different domains due to the exchange interaction. We found
that the effect of this exchange field can completely suppress the formation
of the localized superconducting nuclei as it produces a rather large shift in
critical temperature ∆T ex

c > 0.6∆T orb
c for Cooper pairs with different spin

orientation with respect to the magnetic moment.
Let us now consider another possible limit of wide domains (w 
 D).

As we increase an external magnetic field H the position of a supercon-
ducting nucleus shifts from infinity to the domain wall. So at low H the
asymptotical behavior of Tc(H) for a nucleus localized near the zero of the
total magnetic field appears to be strongly nonlinear: (Tc0 − Tc)/∆T orb

c ∼
(Φ0/B0D

2)1/3 sin4/3(π|H|/(2B0)). For rather large fields H the nucleus ap-
pears to be localized at the domain wall with Tc given by the expression
(Tc − Tc0)/∆T orb

c = 1 − |H|/B0. These asymptotical expressions are in a
good agreement with our numerical simulations (see Fig. 1b). The nuclei can
be considered as isolated only if their characteristic size is much less than w.
Otherwise, we should take account of the interaction of Cooper pair wavefunc-
tions nucleated at different domain walls. The phase diagram for a periodic
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Fig. 1. The H − T phase diagrams for different S/F systems. (a) Structure with
narrow domains. The solid (dashed) line corresponds to an isolated superconduct-
ing nucleus at the domain boundary (far from the domain boundary). (b) Isolated
superconducting nucleus in a structure with wide domains (B0D

2/Φ0 = 25). (c) Pe-
riodic domain structure for πB0w

2/Φ0 = 5 (solid line) and πB0w
2/Φ0 = 1 (dashed

line). (d) Ferromagnetic dot over the superconducting film (Nf = 10).

step-like distribution of magnetic field induced by the domain structure with
the period 2w is shown in Fig. 1c. For large values πB0w

2/Φ0 the phase tran-
sition line is very close to the one found for an isolated domain boundary,
except for the small temperature region close to Tc0: ∆T ∼ 4Tc0ξ

2
0/w

2. For
not very large values πB0w

2/Φ0 < 2.0 the critical temperature becomes a
monotonic function of the external magnetic field because of the strong over-
lapping of wavefunctions corresponding to different domain walls. However,
even in this case we still observe a change in the slope of the phase transition
line (see dashed line in Fig. 1c).

For two–dimensional distributions of magnetization or for magnetic dot
arrays a line of Bz(x, y) zeros can form a closed loop. The winding number m
of a superconducting nucleus at such loop will be determined by the magnetic
flux through the loop. Thus, changing this flux (e.g., increasing an external
H field) we can control the winding number. The resulting phase transitions
between the multiquantum states with different m can cause the oscillations
of Tc similar to the well–known Little–Parks oscillations. A possibility to cre-
ate multiquantum vortex states in a hybrid S/F system has been previously
discussed in [10]. Here we focus only on the oscillatory behavior of Tc(H) in
a large area superconducting film caused only by the quantization associated
with the characteristics of the inhomogeneous magnetic field produced by fer-
romagnetic structure. To investigate the details of this oscillatory behavior we
consider a particular case of a small ferromagnetic particle with a magnetic
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moment M = Mz0 placed at a height h over the superconducting film. In
the limit H → 0 the nucleation of superconductivity occurs at large distances
from the dot and Tc for different m are very close. For large |H| (much larger
than the maximum field induced by the dipole) the superconductivity nucle-
ates near the minima of the total field |Bz| and, thus, is localized near the
dipole. In the intermediate field region we obtain the oscillatory behavior of
Tc with the number of oscillations controlled by the dimensionless parameter
Nf = 4πM/(3

√
3hΦ0). The resulting dependence Tc(H) for Nf = 10 is shown

in Fig.1d.
The appearance of the localized superconducting nuclei should result in

a broadening of the superconducting transition probed, e.g., by the resistiv-
ity measurements. In fact, the beginning of the resistivity decrease with the
temperature decrease would correspond to the domain wall superconductiv-
ity, while its complete disappearance would signal the bulk superconductiv-
ity. Taking, for example, the parameters of Nb and typical magnetization
4πM ∼ 1 − 10 kOe we obtain a quite strong increase in Tc above a domain
wall in a S/F bilayer: δTc ∼ 1−3 K. Taking the magnetization 4πM ∼ 2 kOe
and dHc2/dT ∼ 40 kOe/K for UGe2 we obtain max(δTc) ∼ 0.02 K. These
estimates give us quite measurable temperature intervals. Experimental ob-
servation of the H − T phase diagram discussed above for UGe2 and URhGe
could provide arguments in favor of unconventional pairing in these com-
pounds and permit to determine the important parameter τ , describing the
ratio of exchange and orbital effects. Taking M ∼ 3 × 10−11 G · cm3 and
h ∼ 300 nm for a ferromagnetic particle we obtain Nf � 10 and the charac-
teristic scales of Tc oscillations ∆H ∼ 100 Oe, ∆Tc ∼ 0.1 K for a Nb film.
Such oscillatory behaviour of Tc has been, in fact, observed experimentally
in [2, 5]. A change in a slope of the phase transition curve Tc(H) (which is
probably a signature of phenomena discussed above) has been also found in
[3] for a Pb film with CoPd particles. The behavior observed in [4] for S/F
bilayers with bubble domains is also qualitatively similar to our predictions.
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Summary. We consider the Josephson effect in a ballistic Superconductor/
Quantum Wire/ Superconductor junction. It is shown that the interplay of chiral
symmetry breaking generated by Rashba spin-orbit interaction and Zeeman split-
ting results in the appearance of a Josephson current even in the absence of any
phase difference between the superconductors.

1 Introduction

It is well known [1] that electrons confined to a plane (e.g. in MOSFET struc-
tures or in heterostructures) experience a strong spin-orbit interaction origi-
nating from interface electric field (Rashba spin-orbit interaction). Recently
it was shown experimentally that the strength of the Rashba coupling can be
controlled by a gate voltage [2]. The Rashba effect leads to various interesting
suggestions in spintronics and it has been a subject of active theoretical and
experimental studies in recent years (see e.g. Ref. [3] and references therein).

For quasi-1D electron systems the influence of the Rashba interaction on
thermodynamic and transport properties of quantum wires were considered
in Refs. [4] and [5]. There, it was shown that in the presence of an in-plane
confinement potential and spin-orbit interactions the electron spectrum is qua-
litatively modified. Chiral symmetry, which is usually assumed to be present
in QWs, is violated resulting in the appearance of a dispersion asymmetry.
To be more precise, the right-moving spin-up (left-moving spin-down) and
left-moving spin-up (right-moving spin-down) electrons have different Fermi
velocities [4]. This implies that electrons in quantum wires with Rashba inter-
action are “chiral particles” and their spin projections are correlated with the
direction of motion. Being interested in low-energy (E 	 EF ) properties of
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Fig. 1. Schematic energy spectrum of 1D electrons with dispersion asymmetry. The
particles with energies close to the Fermi energy εF have an almost linear dependence
on momentum and are classified by their Fermi velocities (v1F - subband 1, v2F -
subband 2).

quantum wires, we can classify these particles as belonging to two subbands
(“1” and “2”) characterized by their Fermi velocities (see Fig. 1). Notice that
this electron spectrum pertains to a weak or moderate s-o interaction. As it
was demonstrated in Ref. [6] for a strong Rashba interaction the projection
of electron spin is strongly correlated with the direction of motion and left-
and right-moving electrons with the Fermi energy always have opposite spin
projections. The unusual spectral properties of electrons in QWs have to show
up in situations when spin degrees of freedom are nontrivially involved in the
electron dynamics. Here we consider the Josephson current in a long S-QW-S
junction for electron spectrum with dispersion asymmetry and large Zeeman
splitting. Recently [7] the combined effect of magnetic field and spin-orbit in-
teraction on the Josephson current in a short ballistic junction formed in a
2DEG was studied. Notice that interaction induced dispersion asymmetry in
the electron spectrum is a specific property of quasi-one-dimensional geome-
try [4]. For a pure 2D geometry spin-orbit interaction does not lead to a chiral
symmetry breaking and the peculiar effects produced by chiral particles do
not manifest themselves in the short and wide SNS junction considered in
Ref. [7]. In particular, we show that the combined effect of Rashba and Zee-
man interactions results in the appearance of an anomalous Josephson current
Jan = J(ϕ = 0) in a long S-QW-S junction. For a transparent junction the
induced by Rashba and Zeeman interaction supercurrent at low temperatures
is a step-like periodic or quasiperiodic function of magnetic field (see Fig. 2).
The periodicity depends on the ratio of the Fermi velocities and is controlled
by the strength of the spin-orbit interaction. The amplitude of the anomalous
current at T = 0 is of the order of the critical Josephson current in a long
S-N-S junction and it appears abruptly at finite values of Zeeman splitting
of the order of the Andreev level spacing (Fig. 2). For a low-transparency
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junction (D 	 1), realized by introducing a scattering barrier (impurity)
into the normal region, the maximum amplitude of Jan at special (resonance)
conditions is of the order of

√
D. Notice that this unusual dependence on

transparency, which corresponds to tunneling of a single electron through a
barrier (its entangled partner resonantly passes through the structure) holds
also for the critical Josephson current even in the absence of dispersion asym-
metry. This effect can be interpreted as a tunnel splitting of the deGennes -
Saint-James bound state [10] shifted by magnetic field to the vicinity of the
Fermi level. Analogous effects of giant critical supercurrents in tunnel SIS (“I”
stands for insulator) and SINIS structures were discussed in Ref. [8] (see also
Ref. [9], where resonance effects are considered for a persistent current in a
normal metal ring).

Fig. 2. The dependence of the normalized anomalous Josephson current
Jan/J0 (J0 = evF /L) on the dimensionless Zeeman splitting ∆Z/∆L (∆L =
�vF /L). a) asymmetry parameter λa = 0.3. The different plots (1 - 4) corre-
spond to different temperatures T = (0.1, 0.5, 3, 5) T ∗ where T ∗ = ∆L/2π. b)
λa = 0.7; T = (0.1, 0.5, 1, 3).

When the Zeeman splitting vanishes the anomalous supercurrent and all
the above described resonance effects disappear. Then, the Josephson current
in a low-D junction is small (∼D). What is the influence of dispersion asym-
metry on the critical current? There is a general statement [17] that spin-orbit
interaction in systems with Aharonov-Bohm geometry suppresses persistent
currents. Although the theorem directly concerns normal ring-shaped conduc-
tors, it also holds for linear hybrid systems with Andreev mirrors due to the
analogy between persistent currents in a normal 1D ring and Josephson cur-
rents in a long SNS junction. We show here that the cited statement is not
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valid when the spin-orbit interaction is accompanied by a chiral symmetry
breaking. Rashba spin-orbit interaction in quantum wires always enhances
the critical current.

2 Anomalous Josephson Current

The Josephson current, being an equilibrium supercurrent between two su-
perconductors, can be calculated from the general thermodynamical relation

J =
e

�

∂Ω

∂ϕ
, (1)

where Ω is the thermodynamic potential of the junction considered and ϕ is
the phase difference between the two superconductors. We have included a
factor 2, which usually appears in Eq. (1) in combination with the electric
charge, into the definition of Ω. This factor originates from spin degeneracy
and in the presence of Zeeman splitting Ω = Ω↑ +Ω↓ and Ω↑ �= Ω↓.

In general both the Andreev bound states (E < |∆|, ∆ is the supercon-
ducting order parameter) and the continuum scattering states (E ≥ |∆|)
contribute to the supercurrent. In two limiting cases - short (L 	 ξ0 =
�vF /|∆|, L is the junction length) and long (L 
 ξ0) junctions - only bound
states are relevant. This statement is well-known for the case of short junc-
tions (see e.g. Ref. [11] and references therein). For a long junction it has
been shown that the Josephson current through a long SNS junction does not
depend on |∆| at all [12]. Then, one can formally put |∆| → ∞ and sum over
all Andreev bound states En(n = 0,±1,±2, ...) with the natural assumption
that the supercurrent vanishes in the limit L → ∞. This procedure (analo-
gous to Casimir energy evaluation in quantum field theory, see e.g. Ref. [13])
reproduces all known results for a long ballistic SNS junction. In what follows
we will consider only long junctions.

Fig. 3. A long (L � ξ0) ballistic S-N-S junction with a scattering barrier (shadow
region).

To get analytical results we consider a single barrier junction of length L,
where the barrier is located at the point x = l ≤ L, a distance l is counted
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from the left bank of the junction (see Fig. 3). We start with the general
equation for Andreev bound state energies expressed in terms of scattering
matrices of electrons (ŜE) and holes (Ŝ∗

−E) in the normal region [14]

det(1 − αAŜE r̂AŜ
∗
−E r̂

∗
A) = 0, (2)

where αA = exp[−2i arccos(E/|∆|)] � −1 in our case (E 	 ∆) and r̂A is a
diagonal matrix that only depends on the superconducting phases (see Appen-
dix). Since the presence of a magnetic field violates T-symmetry, two channel
scattering of spin-1/2 electrons is described by a 4× 4 nonsymmetric unitary
matrix ŜE . The scattering potential in our model always changes channel in-
dex 1 ⇔ 2 (see Fig. 1) because it does not flip electron spin. This allows us
to parameterize the scattering matrix by 7 independent real parameters (see
Appendix).

After straightforward (although rather lengthy) transformations, Eq. (2)
results in the transcendental equation for Andreev level energies of the form

cos[(E +
η

2
∆Z)δ(+)

L ] +R cos[(E +
η

2
∆Z)δ(+)

L−2l]

+D cos[(E +
η

2
∆Z)δ(−)

L + ηϕ] = 0 . (3)

Here ∆Z = gµBH is the Zeeman energy splitting (g = 2 for bare electrons),
η = ±1, D is the transparency of the junction D +R = 1, and

δ(±)
x =

x

�

(
1
v1F

± 1
v2F

)
. (4)

In the limit H = 0 and v1F = v2F (absence of spin-orbit interaction) Eq. (3)
is reduced to a well-known spectral equation for Andreev levels in a long SNS
junction with a single barrier [15, 11].

For a transparent junction (D = 1) the Andreev bound states are described
by two independent sets of energy levels

E(1)
n,η = π∆

(1)
L

(
n+

1
2

+ η
ϕ+ χ1

2π

)
, (5)

E(2)
m,η = π∆

(2)
L

(
m+

1
2

+ η
ϕ− χ2

2π

)
,

where n,m = 0± 1,±2, ...; η = ±1 and ∆
(j)
L = �vjF /L, χj = ∆Z/∆

(j)
L . Notice

that for a given band index (“1” or “2”) the relative sign between the super-
conducting phase ϕ and the magnetic phase χj is fixed and it is different for
channels “1” and “2”. This is a direct consequence of the chiral properties of
the electrons in our model.

Knowing explicitly the energy spectrum Eq. (5), it is straightforward to
evaluate the Josephson current. It takes the form
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J(ϕ, T,H) =
2eT
�

∞∑
k=1

(−1)k+1

{
sin k(ϕ+ χ1)

sinh(2πkT/∆(1)
L )

+
sin k(ϕ− χ2)

sinh(2πkT/∆(2)
L )

}
.

(6)
It is readily seen from Eq. (6) that an anomalous Josephson current Jan ≡
J(ϕ = 0) appears only if both the Zeeman splitting (∆Z) and dispersion
asymmetry (v1F �= v2F ) are nonzero. Here we use the term “anomalous” just
to define the supercurrent at ϕ = 0. Actually this current is induced by Zee-
man splitting in 1D electron system with dispersion asymmetry. The direction
(sign) of Jan is totally determined by the sign of asymmetry parameter (see
Eq. (8)). At high temperatures T ≥ ∆

(j)
L anomalous supercurrent is expo-

nentially small. In the low temperature region (T 	 ∆
(j)
L ) it is a piece-wise

constant function of magnetic field represented by the following series

Jan(H) =
e

πL

∞∑
k=1

(−1)k+1

k
(v1F sin kχ1 − v2F sin kχ2) . (7)

For rational values v1F /v2F = p/q (p ≤ q are the integers) Jan is a periodic
function of magnetic field with period δH = 2πq∆(1)

L /gµB , otherwise it is a
quasiperiodic function.

It is convenient to introduce the mean Fermi velocity vF = (v1F + v2F /2
and the asymmetry parameter λa,

λa =
v1F − v2F

v1F + v2F
, (8)

which determines the strength of Rashba spin-orbit interaction in a 1D
quantum wire. The dependence of the normalized anomalous supercurrent
Jan/J0 (J0 = evF /L) on the dimensionless Zeeman splitting χ ≡ ∆Z/∆L

, (∆L = �vF /L) for λa = 0.3 and for different temperatures is shown in
Fig. 2a. In the limit of strong asymmetry (this range of parameters, how-
ever, seems to be unrealistic [4] ), when only one of the two channels (“1”
or “2”) contributes to Eq. (6), the dependence of the anomalous current on
the magnetic field becomes analogous to the well-known phase dependence of
the Josephson current [16]. The approach to this simple behavior passes via
the stages of staircase-like dependencies (see Fig. 2b). Notice that we plotted
the figures assuming that v1F ≥ v2F . The interchange v1F ↔ v2F makes the
supercurrent Eq. (7) change sign.

3 Giant Critical Current in a Magnetically Controlled
Low Transparency Junction

Now we consider the limit D 	 1 pertaining to low transparency SNS junc-
tions. As is well known (see e.g. Refs. [15] and [11]), the supercurrent in this
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limit for a single barrier junction in the absence of Zeeman and spin-orbit inter-
actions is described by the simple formula J(ϕ) = Jc sinϕ , where the critical
current at low temperatures T 	 ∆L is of the order of D (Jc ∼ DevF /L).
Interesting physics for low-D junctions appears when resonant electron tun-
neling occurs. This is, for instance, the case for the symmetric double-barrier
ballistic junction considered in Refs. [8] and [11]. There, it was shown that
for resonance conditions (realized for a special set of junction lengths) a gi-
ant critical supercurrent appears Jc ∝ Db, where Db is the transparency of
a single barrier. Analogous results were obtained for the persistent current
in a ballistic ring with a double barrier [9]. Notice that for the symmetric
structure considered in Ref. [8] the normal current (i.e. the current through
a double barrier structure with normal leads) at resonance conditions does
not depend on barrier transparency at all. It means that for the hybrid struc-
ture considered in Ref. [8], the superconductivity actually suppresses electron
transport.

We show below that in a magnetically controlled single barrier junction
there are conditions when superconductivity in the leads strongly enhances
electron transport and a mesoscopic hybrid structure is characterized by a
giant critical current Jc ∝

√
D.

We start with the case of a symmetric single barrier junction, when the
scattering barrier is situated in the middle of the normal region, i.e. l = L/2
in Eq. (3). Then δ

(±)
x=0 = 0 and the second cosine term in the spectral equation

Eq. (3) is equal to one

cos
[(
E +

η

2
∆Z

)
δ
(+)
L−2l

]
= 1. (9)

When the condition (9) is fulfilled the spectral equation is reduced to the
much simpler expression

cos2
[
1
2

(
E +

η

2
∆Z

)
δ
(+)
L

]
= D sin2

[
1
2

(
E +

η

2
∆Z

)
δ
(−)
L + ηϕ

]
. (10)

By using Eq. (10), one can readily evaluate the partial supercurrent j{α} char-
acterized by 3 quantum numbers {α} = (n, η, σ) where n = 0,±1,±2, ...; η, σ =
±1

j{α} =
e

�

∂E{α}
∂ϕ

= −eησ

�

√
D cos

1
2

[
E{α}δ

(−)
L + η

(
1
2
∆Zδ

(−)
L + ϕ

)]
×{

δ
(+)
L sin

1
2

[
δ
(+)
L

2

(
E{α} +

η

2
∆Z

)]

+σδ(−)
L

√
D cos

1
2

[
E{α}δ

(−)
L + η

(
1
2
∆Zδ

(−)
L + ϕ

)]}−1

, (11)

where E{α} ≡ En,η,σ is a solution of Eq. (10). The Josephson current at T = 0
is a sum of partial currents over all occupied states.



222 I.V. Krive et al.

The resonance current (of order
√
D) is formed by non-compensated par-

tial currents carried by the Andreev levels in the vicinity of the Fermi energy,
i.e. for E{α} = 0− when D → 0. Such levels exist only for a discrete set of
Zeeman splittings

∆
(k)
Z =

2π(2k + 1)

δ
(+)
L

, k = 0, 1, 2, ... (12)

At a given ∆
(k)
Z ( controlled e.g. by an external local magnetic field) two

(η = ±1) Andreev levels contribute to the resonance Josephson current Jr,
which can be represented in the form

Jr(ϕ) = J0

√
D

1 − λ2
a

2

sin
(

1
2∆

(k)
Z δ

(+)
L λa + ϕ

)
∣∣∣sin 1

2

(
1
2∆

(k)
Z δ

(+)
L λa + ϕ

)∣∣∣ , (13)

where J0 = evF /L, and asymmetry parameter λa is defined in Eq. (8).
In the absence (λa = 0) of spin-orbit interaction Eq. (13) has the typi-

cal form of a resonance Josephson current (see e.g. Ref. [11]) associated with
the contribution of a single Andreev level. One can interpret this result as
follows. Let us assume for a moment that the potential barrier is infinite.
Then, a symmetric SNINS junction (“I” stands for the insulator “layer”)
breaks into two identical INS-hybrid structures. In each of the two systems
de Gennes-Saint-James energy levels [10] with spacing 2π�vF /L are formed.
For a finite barrier these levels are split with the characteristic splitting
energy δ ∼

√
D∆L 	 ∆L. The tunnel split levels being localized already on

the whole length L between the two superconductors are nothing but the An-
dreev energy levels i.e. they depend on the superconducting phase difference.
Although the partial current of a single level is large (of the order of

√
D, see

Ref. [11, 8]), the current carried by a pair of split levels is small (∼D) due to a
partial cancellation. A Zeeman splitting of order ∆L shifts the set of Andreev
levels so that the Fermi energy lies in between the split levels. Now only the
lower state is occupied and this results in an uncompensated, large Josephson
current. In other words only one of the two electrons of the Cooper pairs that
form the supercurrent tunnels through the barrier. Its entangled partner at
resonance conditions passes through the hybrid SFIFS structure (“F” denotes
the region with nonzero Zeeman splitting) without backscattering. Since the
quantized electron-hole spectrum is formed by Andreev scattering, the reso-
nance structure for a single barrier junction disappears when the leads are in
the normal state. Hence, electron transport through a normal region in our
case is enhanced by superconductivity.

The effect of chiral symmetry breaking on the physical picture described
above is to additionally split the degenerate Andreev levels. A dispersion
asymmetry λa �= 0 lifts the left-right symmetry of electron transport through
the junction and splits the doubly degenerated Andreev levels at ϕ = 0. This
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results in appearance of giant anomalous Josephson current (see Eq. (13)) at
ϕ = 0.

We saw that it is indispensable that Eq. (9) holds for resonant transport
through the single barrier hybrid structure to occur. This equation can be
satisfied not only for the symmetric junction considered above. One can easily
check that for a fixed value of Zeeman splitting ∆(k)

Z , given by Eq. (12), there is
a set of points where a barrier still supports resonant transport. These points,
determined by their coordinates x(k)

m counted from the middle of a junction,
are (m is the integer)

x(k)
m = ± m

2k + 1
L, 0 ≤ m ≤ k + 1/2. (14)

The temperature dependence of the
√
D-currents is determined by the

energy scale δ ∼
√
D∆L and at temperatures TD ≥ δ, which are much less

then ∆L, all resonance effects are washed out.

4 Influence of Chiral Symmetry Breaking on a Critical
Current

There is a general statement [17] that spin-orbit interaction in 1D systems
with Aharonov-Bohm geometry produces additional reduction factors in the
Fourier expansion of thermodynamic or transport quantities. This statement
holds for spin-orbit Hamiltonians for which the transfer matrix is factorized
into spin-orbit and spatial parts. In a pure 1D case the spin-orbit interaction
is represented by the Hamiltonian H

(so)
1D = α(so)p̂xσz, which is the product of

spin-dependent and spatial operators, and thus it satisfies the above described
requirements. However, as was shown by direct calculation in Ref. [4], spin-
orbit interaction of electrons in 1D quantum wires formed in 2DEG by an
in-plane confinement potential can not be reduced to the Hamiltonian H

(so)
1D .

Instead, a violation of left-right symmetry of 1D electron transport, char-
acterized by a dispersion asymmetry parameter λa, appears. We show now
that in quantum wires with broken chiral symmetry the spin-orbit interaction
enhances persistent current.

There is a close analogy between the Josephson current in a long SNS
junction and the persistent current in a normal metal ring. For a long (L 

�vF /|∆|) SNS junction Andreev boundary conditions can be recasted [18]
in the form of twisted boundary conditions for chiral (right- or left-moving)
fermions on a ring with circumference 2L pierced by the magnetic flux Φ/Φ0 =
1/2+ϕ/2π, where Φ0 = hc/e is the normal flux quantum. Due to this mapping
the corresponding formulae for the persistent current in a normal diamagnetic
(with odd number of spinless fermions) 1D ring and the formulae for Josephson
current coincide up to numerical factors. Here we consider the influence of
dispersion asymmetry in electron spectrum on the off-resonance supercurrent
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through a single barrier SNS junction (notice that resonance effects disappear
in zero magnetic field).

In a low transparency 1D SNS junction the critical current in the presence
of dispersion asymmetry is of the form Jc = f(λa)DevF /L. To analytically
evaluate the function f(λa) we consider two limiting cases: (i) an asymmetric
junction l = 0, and (ii) a symmetric junction l = L/2.

The first case models a junction with strong normal backscattering at one
of the two interfaces. In zero magnetic field the spectral equation, Eq. (3), in
the limit considered is reduced to

cos(Eδ(+)
L ) � −D

2
cos(Eδ(−)

L + ηϕ). (15)

The energy spectrum and the partial supercurrents in the limit D 	 1 are

E(0)
n =

π

2δ(+)
L

(
n+

1
2

)
, (16)

j(a)
n,η = η(−1)n+1 e

�

D

2δ(+)
L

sin
[
π

(
n+

1
2

)
λa + ηϕ

]
.

By summing partial currents over quantum numbers of occupied states
(E(0)

n ≤ 0) at T = 0 one gets

J (a) =
−∞∑

n=−1;η=±1

j(a)
n,η = J (a)

c (λa) sinϕ , J (a)
c (λa) =

evF

4L
D

1 − λ2
a

cos(πλa/2)
.

(17)
The critical current in the absence of spin-orbit interaction J (a)

c (0) = DevF /4L
coincides with known results (see e.g. Ref. [11]).

For a symmetric junction the analogous calculation leads to the expression

J (s)
c (λa) =

evF

πL
D
πλa(1 − λ2

a)
sin(πλa)

, J (s)
c (0) =

evF

πL
D. (18)

The curves in Fig. 4 demonstrate the dependence of the normalized critical
current J

(a,s)
c /J

(a,s)
c (0) on the spin-orbit parameter λa for asymmetric (a)

and symmetric (s) junction. We see that the spin-orbit Rashba interaction in
quasi-1D quantum wires always enhances the critical current. The qualitative
explanation of the unusual impact of chiral symmetry breaking on a critical
Josephson current is as follows. The Josephson current (as any other thermo-
dynamic persistent current) is a sum of partial currents of all occupied energy
levels. The partial currents of adjacent energy levels are opposite in sign and
for chiral invariant systems (i.e. without dispersion asymmetry) they almost
perfectly cancel each other to produce a net current of the order of a single
level current. When chiral invariance is broken the absolute values of partial
currents of adjacent energy levels are different and the cancelation of currents
for distant levels is less perfect. It results in an enhancement of the critical
Josephson current. The effect is, however, numerically not large.
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Fig. 4. The dependence of the normalized critical current Jc(λa)/Jc(λa = 0) in a
low-transparency (D � 1) S-N-S junction on the parameter of dispersion asymmetry
λa. The curve labeled by “s” corresponds to the case of symmetric junction (l =
L/2), the curve “a” describes strongly asymmetric junction (l = 0).

5 Conclusion

In quantum wires formed in a two-dimensional electron gas (2DEG) by lateral
confinement the Rashba spin-orbit interaction is not reduced to a pure 1D
Hamiltonian H

(so)
1D = αsop̂xσz. As was shown in Ref. [4] the presence of an in-

plane confinement potential qualitatively modifies the energy spectrum of the
1D electrons so that a dispersion asymmetry appears. As a result the chiral
symmetry is broken in quantum wires with Rashba coupling. Although the
effect was shown [4] not to be numerically large, the breakdown of symmetry
leads to qualitatively novel predictions.

We have considered here the influence of dispersion asymmetry and Zee-
man splitting on the Josephson current through a superconductor/quantum
wire/superconductor junction. We showed that the violation of chiral symme-
try in a quantum wire results in qualitatively new effects in a weak supercon-
ductivity. In particularly, the interplay of Zeeman and Rashba interactions
induces a Josephson current through the hybrid 1D structure even in the
absence of any phase difference between the superconductors. At low tem-
peratures (T 	 �vF /L) the anomalous supercurrent can be of the order of
the critical Josephson current. For a transparent junction with small or mode-
rate dispersion asymmetry (characterized by the dimensionless parameter
λa = (v1F − v2F )/(v1F + v2F )) it appears, as a function of the Zeeman split-
ting ∆Z , abruptly at ∆Z ∼ �vF /L. In a low transparency (D 	 1) junction,
the anomalous Josephson current at special (resonance) conditions is of the
order of

√
D. In zero magnetic field the anomalous supercurrent disappears

(as it should) since the spin-orbit interaction itself respects T-symmetry. How-
ever, the influence of the spin-orbit interaction on the critical Josephson cur-
rent through a quasi-1D structure is still anomalous. Contrary to what holds
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for chiral invariant systems with Aharonov-Bohm geometry where spin-orbit
effects suppress persistent currents [17], the breakdown of chiral symmetry
results in an enhancement of the supercurrent.

All the phenomena described above are absent in a 2D-junction when the
effects of transverse mode quantization are neglected [7]. We have considered
the limiting case of a single (transverse) channel because this is the case when
the effects induced by a dispersion asymmetry in the electron spectrum are
most pronounced. The anomalous supercurrent Eq. (7) is a sign alternating
function of the transverse channel index since for neighboring channels the
spin projections of chiral states are opposite [4]. Besides, the absolute value of
the dispersion asymmetry parameter λ(j)

a decreases with transverse-channel
number j. So, for a multichannel junction the effects related to a dispersion
asymmetry phenomenon will be strongly suppressed and they completely dis-
appear in the pure 2D case.

We evaluated the Josephson current through a S-QW-S junction in a model
of noninteracting electrons. In QWs the effects of electron-electron interac-
tion can be significant and here we comment on how interaction effects could
modify the obtained results. Electronic properties of 1D QWs are usually de-
scribed by a Luttinger liquid (LL) model (see e.g. Ref. [19]). The supercurrent
in a S-LL-S junction with repulsive e-e interaction strongly depends on the
quality of electric contact of a nanowire with the bulk superconductors. For
adiabatic contacts when only Andreev scattering takes place at the interfaces
the Josephson current through a perfect wire is not renormalized by interac-
tion [18, 21]. For tunnel contacts e-e interaction in a wire renormalizes the
barrier transparencies (Kane-Fisher effect [20]) and for repulsive interaction
the critical current is strongly suppressed [22].

We are interested in spin-orbit effects in S-QW-S junction. It is reason-
ably to expect that Eqs. (6), (7) derived for a perfect junction (without normal
backscattering) will be valid even for interacting electrons. One could expect
also that in a tunneling regime (D 	 1) the interaction effects in Eqs. (13),
(17), (18) can be estimated by replacing the bare transparency D by the
interaction-renormalized one [18] Dg ∼ D(d/L)K−1

ρ −1 (here d 	 L is the
width of the wire and Kρ is the LL correlation parameter). In quantum wires
formed in 2DEG the Coulomb interaction is not strong and it can be con-
trolled by the gate electrodes. For weakly interacting electrons (a conceivable
case for “semiconducting” QWs) when the electron picture of charge transport
through a 1D wire is still valid [23], the interaction effects can be really ac-
counted for by replacing the bare transmission coefficient by the renormalized
one.
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A Appendix

We consider electron transport through a normal region of length L with a
local scatterer placed a distance l from the left bank, at point x = l. In our
two channel chiral model (the term “chiral” here means that left- and right-
moving particles with a given Fermi velocity have opposite spin polarizations,
see Fig. 1) backscattering by nonmagnetic impurity corresponds to a back-
ward interchannel scattering (“1” ⇔ “2”). In the presence of a magnetic field
and interchannel scattering the general 4×4 nonsymmetric S-matrix can be
parameterized as follows

ŜE =
(
|r|σ1 exp i(ρR + σ3µR) |t|σ3 exp i(αR + σ3ηR)
|t|σ3 exp i(αL + σ3ηL) |r|σ1 exp i(ρL + σ3µL)

)
.

Here σ1,3 are the Pauli matrices, tR,L = |t| exp(iηR,L), rR,L = |r| exp(iρR,L)
and |t|2 + |r|2 = 1. Unitarity of the S-matrix (SS† = I) implies the relations

µR + ηR = µL + ηL, ρR + ρL = αR + αL (19)

So, the scattering matrix in our problem is described by 7 independent real pa-
rameters. For a point scatterer with energy independent scattering amplitudes
(t0, r0) one readily gets that |t|2 = |t0|2 ≡ D (D is the junction transparency).
The phases are

µR = −(L− l)k− , ρR = (L− l)k+ , ηR = Lk↑↓− , αR = Lk↑↓+

µL = lk−, ρL = lk+, ηL = Lk↓↑− , αL = Lk↓↑+ , (20)

where k± = k↑↑+ ± k↓↓+ , and

kσσ′
± =

1
2

(
kσ
1 ± kσ′

2

)
, kσ

j (±E) = kjF +
±E + σgµBH/2

�vjF
(21)

and kjF , vjF (j = 1, 2) are the Fermi momentum and the Fermi velocity in
the j-th channel.

The diagonal matrix r̂A in Eq. (2) takes the form

r̂A =
(

exp(iϕ/2)Î 0
0 exp(−iϕ/2)Î

)
, (22)

where ϕ is the superconducting phase difference and Î is 2×2 unit matrix.
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Summary. We study proximity effects in a multilayered superconductor/ferro-
magnet (S/F) structure with arbitrary relative directions of the magnetization M. If
the magnetizations of different layers are collinear the superconducting condensate
function induced in the F layers has only a singlet component and a triplet one
with a zero projection of the total magnetic moment of the Cooper pairs on the M
direction. In this case the condensate penetrates the F layers over a short length ξJ

determined by the exchange energy J . If the magnetizations M are not collinear the
triplet component has, in addition to the zero projection, the projections ±1. The
latter component is even in the momentum, odd in the Matsubara frequency and
penetrates the F layers over a long distance that increases with decreasing tempe-
rature and does not depend on J ( spin-orbit interaction limits this length). If the
thickness of the F layers is much larger than ξJ , the Josephson coupling between
neighboring S layers is provided only by the triplet component, so that a new type of
superconductivity arises in the transverse direction of the structure. The Josephson
critical current is positive (negative) for the case of a positive (negative) chirality of
the vector M.

1 Introduction

Multilayered superconductor/ferromagnet (S/F ) structures are under an in-
tensive study now (for a recent review see e.g. [1]). The interest in such sys-
tems originates from a possibility to find new physical phenomena as well
from the hope to construct new devices based on these structures. Although
a ferromagnet F attached to a superconductor S is expected to suppress the
order parameter in S, under certain conditions superconductivity and ferro-
magnetism may coexist and exhibit interesting phenomena. In most papers
on S/F structures the case of collinear (parallel or antiparallel) orientations
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of the magnetization M was considered. If the magnetization vector M is not
constant in space, as in a domain wall, or if the orientations of M in different
F layers are not collinear to each other, a qualitatively new and interesting
effect occurs. For example, if a ferromagnetic wire is attached to a supercon-
ductor, a domain wall in the vicinity of the interface can generate a triplet
component of the superconducting condensate [2] (a similar case was ana-
lyzed in a later work [3]). The existence of the triplet component (TC) has
far reaching consequences. It is well known that the singlet component (SC)
penetrates into a ferromagnet over the length ξJ =

√
DF /J , where DF is the

diffusion coefficient in F . In contrast, it was shown that even for J >> T the
TC penetrated F over a much longer distance ξT =

√
DF /2πT . This long-

range penetration of the TC might lead to an increase of the conductance of
the F wire if the temperature is lowered below Tc [2, 3].

In this report we consider a multilayered S/F structure. Each F layer has
a constant magnetization M but the direction of the M vector varies from
layer to layer. We show that, in this case, the triplet component of the super-
conducting condensate is also generated and it penetrates the F layers over
the long length ξT that does not depend on the large exchange energy J at all.
If the thickness of the F layers dF is much larger than ξJ , then the Josephson
coupling between adjacent S layers and, therefore, superconductivity in the
transverse direction is due to the TC. In the vicinity of the S/F interface the
amplitudes of the SC and TC may be comparable but, unlike the TC, the SC
survives in F only over the short distance ξJ from the S/F interface. In other
words, in the multilayered F/S structures with a non-collinear magnetization
orientation, a new type of superconductivity arises. The non-dissipative cur-
rent within the layers is due to the s-wave singlet superconductivity, whereas
the transversal supercurrent across the layers is due to the s-wave, triplet
superconductivity.

It is important to emphasize (see Ref. [2]) that the TC in this case differs
from the TC realized in the superfluid He3 and, for example, in materials like
Sr2RuO4 [4]. The triplet-type superconducting condensate we predict here is
symmetric in momentum and therefore is insensitive to non-magnetic impuri-
ties. It is odd in frequency and is called sometimes odd superconductivity. This
type of the pairing has been proposed by Berezinskii in 1975 [5] as a possible
candidate for the mechanism of superfluidity in He3. However, it turned out
that another type of pairing was realized in He3: triplet, odd in momentum p
(sensitive to ordinary impurities) and even in the Matsubara frequencies #.
It is also important to note that while the symmetry of the order parameter
∆ in Refs. [4, 5] differs from that of the BCS order parameter, in our case ∆
is nonzero only in the S layers and is of the BCS type. It is determined by the
amplitude of the singlet component. Since the triplet and singlet components
are connected which each other, the TC affects ∆ in an indirect way.

Therefore the type of superconductivity analyzed in our paper comple-
ments the three known types of superconductivity: s-wave and d-wave sin-
glet superconductivity that occur in ordinary superconductors and in high Tc
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superconductors respectively, and the p-wave superconductivity with triplet
pairing observed in Sr2RuO4.

In addition, the new type of the triplet superconductivity across the S/F
layers shows another interesting property related to the chirality of the mag-
netization M. If the angle of the magnetization rotation 2α across the SA

layer (see Fig. 3) has the same sign as the angle of the M rotation across the
SB layer, then the critical Josephson current Ic between SA and SB is posi-
tive. If these angles have different signs, then the critical current Ic is negative
and π− state is realized (in this case spontaneous supercurrents arise in the
structure). Depending on the chirality an “effective” condensate density in
the direction perpendicular to the layers may be both positive and negative.

2 The condensate function in a F/S/F sandwich

In order to get a better understanding of the properties of the superconduct-
ing condensate in the presence of the ferromagnetic layers, we consider in this
section a simple case of a trilayered F/S/F structure (see Fig. 1). Generaliza-
tion to a multilayered structures is of no difficulties and will be done in the
next section.

In the most general case, when the magnetization vectors M of the F-
layers are non-collinear, the electron Green functions are 4 × 4 matrices in
the particle-hole⊗spin-spaceȦ very convenient way for the study of proximity
effects is the method of quasiclassical Green’s functions [7, 8, 9]. Equations
for the quasiclassical Green’s functions ǧ have been generalized recently to
the case of a non-homogeneous exchange field (magnetization) M [10].

The elements of the matrix ǧ diagonal in the particle-hole space (i.e pro-
portional to τ̂0 and τ̂3) are related to the normal Green’s function, while the
off-diagonal elements (proportional to τ̂1 and τ̂2) determine the superconduct-
ing condensate function f̌ . In the case under consideration the matrix ǧ can
be expanded in the Pauli matrices in the particle-hole space (τ̂0 is the unit
matrix):

ǧ = ĝ0τ̂0 + ĝ3τ̂3 + f̌ , (1)

where the condensate function is given by

f̌ = f̂1iτ̂1 + f̂2iτ̂2 . (2)

The functions ĝi and f̂ i are matrices in the spin-space. In the case under
consideration the matrices f̂ i can be represented in the form

f̂2(x) = f0(x)σ̂0 + f3(x)σ̂3 (3)

f̂1(x) = f1(x)σ̂1 (4)

This follows from the equation that determines the Green’s function (see
below).
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Let us discuss briefly properties of the condensate matrix function f̌ . Ac-
cording to the definitions of the Green’s functions ǧ the functions fi(x) are
related to following correlation functions

f3 ∼ 〈ψ↑ψ↓〉 − 〈ψ↓ψ↑〉 ,
f0 ∼ 〈ψ↑ψ↓〉 + 〈ψ↓ψ↑〉 , (5)
f1 ∼ 〈ψ↑ψ↑〉 ∼ 〈ψ↓ψ↓〉 .

FF S

x

-(dS+dF) -dS dS dS+dF

α−α

Fig. 1. The F/S/F trilayer. The magnetizations vectors in the F layers make an
angle ±α with the z-axis, respectively

The function f3 describes the SC, while the functions f0 and f1 describe
the TC (see for example Ref. [11]). The function f0 is proportional to the zero
projection of the triplet magnetic moment of the Cooper pairs on the z-axis,
whereas the function f1 corresponds to the projections ±1.

It is important that in the absence of an exchange field J (or magneti-
zation M) acting on spins, the SC, i.e. the function f3, exists both in the
superconducting and normal (non-magnetic) layers. If J is not equal to zero
but is uniform in space and directed along the z-axis, then the part f0 of the
TC arises in the structure.

However, both the functions f3 and f0 decay very fast in the ferromagnet
(over the length ξJ). The singlet component decays because a strong magneti-
zation makes the spins of a pair be parallel to each other, thus destroying the
condensate. The triplet component with the zero projection of the magnetic
moment is also destroyed because it is more energetically favorable for the
magnetic moment to be parallel to the magnetization.

In order to find the Green’s function ǧ, we consider the diffusive case when
the Usadel equation is applicable. This equation can be used provided the
condition Jτ 	 1 is satisfied (τ is the momentum relaxation time). Of course,
this condition can hardly be satisfied for strong ferromagnets like Fe and in
this case one should use a more general Eilenberger equation for a quantitative
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computation. However, the Usadel equation may give qualitatively reasonable
results even in this case.

The Usadel equation is a nonlinear equation for the 4 × 4 matrix Green’s
function [15]. The Usadel equation is complemented by the boundary condi-
tions at the S/F interface [12]

γ (ǧ∂xǧ)F = (ǧ∂xǧ)S , x = ±dS (6)
2γbξJ (ǧ∂xǧ)F = ± [ǧS , ǧF ] , x = ±dS , (7)

where γ = σF /σS , and σS,F are the conductivities of the F and S layers,
γb = σFRb/ξJ is a coefficient characterizing the transmittance of the S/F
interface with resistance per unit area Rb.

The Usadel equation can be solved in some limiting cases [15]. In Fig. 2 we
present the spatial dependence of the condensate function (singlet and triplet).
One can see that the SC penetrates the F layer over a short distance of the
order ξJ whereas the TC penetrates over a long distance ξT =

√
DF /2πT .

The amplitude of the long-range part of the TC has a maximum at α = π/4.

0

1

-(dS+dF) -dS dS dS+dF

Fig. 2. The spatial dependence of Im(SC) (dashed line) and the long-range part of

Re(TC) (solid line). We have chosen γ = 0.2, J/TC = 50, γb = 0.05, dF

√
TC/DS =

2, dS

√
TC/DS = 0.4 and α = π/4. The discontinuity of the TC at the S/F interface

is because the short-range part is not shown in this figure.

3 Josephson Current in a F/S/F/S/F structure

In this section we calculate the Josephson current between the S layers of a
FSFSF structure. We assume again that the thickness of the F layers dF is
much larger than ξJ . In this case the Josephson coupling between the S layers
is due to the long range part of the TC. Therefore the supercurrent in the
transverse direction is unusual, since it is caused by the triplet component of
the condensate that is odd in frequency and even in momentum.
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At the same time, the in-plane superconductivity is caused mainly by the
ordinary singlet component. Therefore the macroscopic superconductivity due
to the Josephson coupling between the layers is an interesting combination of
the singlet superconductivity within the layers and the odd triplet supercon-
ductivity in the transversal direction.

We will see that the unusual character of the superconductivity in the
transversal direction leads to peculiarities of the Josephson effect. For exam-
ple, if the bias current flows through the terminal superconducting layer SO

and SA (see Fig. 3), the supercurrent is zero because of the different symmetry
of the condensate in SO and SA. In order to observe the Josephson effect in
this structure the bias current has to pass through the layers SA and SB, as
shown in Fig. 3. The supercurrent between SA and SB is non-zero because
each superconductor has its “own” TC and the phase difference ϕ is finite.

So SA SBF1 F2 F3

  −αα−α
3α (pos. chirality)

(neg. chirality)

Fig. 3. The multilayered structure considered. The arrows show the bias current.
In the case of positive (negative) chirality the magnetization vector M of the layer
F3 makes an angle 3α (−α) with the z- axis, i.e. in the case of positive chirality the
vector M rotates in one direction if we go over from one F layer to another whereas
it oscillates in space in the case of negative chirality.

The Josephson current IS is given by the expression

IS = (LyLz)σF Tr (τ̂3σ̂0)
∑
ω

f̌∂xf̌ (8)

This current was calculated for the case of small angles α in Ref. [6]. Here
LyLz is the area of the interface and σF is the conductivity of the F layer.
The simplest way to calculate the IS is to assume a weak coupling between
the S layers, which corresponds to the case when the condition dF > ξT holds.
In this case the long-range part of the TC is given by the sum of two terms
each of those is induced by the layers SA and SB in Fig. 3:

f̌(x) = f̌A(x) + Š.Ǔ .f̌B(x− dS − dF )Ǔ+.Š+ , (9)
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where f̌A(x) is the long range part of the TC induced by the layer SA. If
the SA,B/F interfaces are identical as well as the superconductors SA and
SB, the function f̌B is equal to f̌A if one replace the exponential function
exp(−κω(x − dS)) by exp(κω(x − dS − dF )). The phase of the SA layer is
set to be zero and the phase of the SB is ϕ. This phase has been taken into
account by the gauge transformation performed with the help of the matrix
Š = τ̂0 cos(ϕ/2)+ iτ̂3 sin(ϕ/2). The magnetizations M of the layers F1 and F2

make an angle ∓α with the z-axis respectively. For the direction of M in the
F3 we consider two cases: a) the direction of magnetization is −α (negative
chirality) or b) 2α (positive chirality). In the latter case the matrix Ǔ in Eq.
(9) is given by

Ǔ = τ̂0σ̂3 cosα+ iτ̂3σ̂2 sinα . (10)

In the case of negative chirality, Ǔ is the unit matrix and one has to change
the sign of α in the expression for the function f̌B (Eq. (9)). In Fig. 4 we show
schematically the spatial dependence of f1(x).

S F S

Fig. 4. The spatial dependence of the amplitude of the TC f1(x) in the case of
positive (solid line) and negative (dashed line) chirality.

Using the solution of the Usadel equation [15], one obtains after simple
transformations IS = Ic sinϕ, where

eRF Ic = ±2πT
∑
ω

κωdF b
2
1(α)

(
1 + tan2 α

)
e−dF κω , (11)

where the sign “+” (“-”) corresponds to the positive (negative) chirality. In
the case of negative chirality the critical current is negative (π-contact). The
negative Josephson coupling is due to the TC and can be realized in S/F
structures with negative chirality. This gives a unique opportunity to switch
experimentally between the 0 and π-contacts by changing the angles of the
mutual magnetization of the layers.
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If the orientation of M is parallel (α = 0) or antiparallel (α = π/2) the
amplitude of the triplet component is zero and therefore there is no coupling
between the neighboring S layers, i.e. Ic = 0. For any other angle between
the magnetizations the amplitude of the TC is finite. This leads to a non-zero
critical current. At α = π/4 ( perpendicular orientation of M) Ic reaches
its maximum value. The weak coupling assumption (dF > ξT ) leads to an
exponential decay of Ic with increasing dF ( Eq. (11)). In the case dF ≤ ξT ,
Eq. (11) is not valid. One can easily obtain Ic for the case of an arbitrary
dF and small α. It turns out that in this case Eq. (11) remains valid if the
exponential factor exp(−κωdF ) is replaced by cosh−2(κωdF /2).

In order to estimate the value of the critical current Ic, we use Eq. (11). If
dF exceeds the length ξT ( for example dF /ξT = 2) only the term with n = 0
(i.e. ω = πT ∗

c ) is important in the sum. In this case one obtains

eRF Ic

T ∗
c

=
4
π

(
∆

T ∗
c

)2

e−κT dFC , (12)

where the factor C can be easily expressed in terms of M±, T±, etc. Thus, C
depends on many parameters such as γ, γb, κJ , etc. We estimate C for values
of these parameters similar to those which were used in Ref. [13]: γb = 0.5,
γ = 0.1, dSκS = 0.4, dFκω = 1.5, κω/κS = 3. We get C = 10−2 − 10−3

for κJdS = 5 − 10. The expression (12) for Ic also contains the parameters
(∆/T ∗

c )2 and exp(−dFκT ) which are also small. We note however that if
dF ≤ ξT , the exponential function is replaced by a numerical factor of the
order of 1. The factor (∆/T ∗

c )2 is also of the order 1 if the temperature is not
close to T ∗

c . Taking σ−1
F =60µΩ.cm (cf. Ref. [13]) and dF ∼ ξT ∼200 nm we

obtain Ic ∼ 104 − 105 A.cm−2; that is, the critical current is a measurable
quantity ( see experimental work [14]) and the detection of the TC is possible.

4 Conclusion

We studied odd, s-wave, triplet superconductivity that may arise in S/F mul-
tilayered structures with a non-collinear orientation of magnetizations. It was
assumed that the orientation of the magnetization is not affected by the
superconductivity (e.g. the energy of the magnetic anisotropy is much larger
than the superconducting energy). The analysis was carried out in the dirty
limit (Jτ 	 1) when the Usadel equation is applicable.

It was shown that for all values of α the condensate function consists of a
singlet (SC) and a triplet (TC) components. Even in the case of a homogenous
magnetization (α = 0), in addition to the SC, the TC with the zero projection
onto the z axis arises. In this case, both the SC and the TC decay in the F
layers over a short distance given by ξJ =

√
DF /J . If the magnetization

vectors M are not collinear α �= 0, π/2, all projections of the TC appear, in
particular, those with non-zero projection on the z-axis. In this case, the TC
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penetrates the F layer over a long distance ξT =
√
DF /2πT . In the presence of

spin-orbit interaction this penetration length is given by min(ξso, ξT ), where
ξso =

√
τsoDF . Generally, this length may be much larger than ξJ .

Thus, if the condition dF 
 ξJ is fulfilled the Josephson coupling between
neighboring S layers is only due to the TC. Therefore in this case a new
type of superconductivity may arise in the multilayered structures with non-
collinear magnetizations. The supercurrent within each S layer is caused by
the SC, whereas the supercurrent across the layers is caused by the triplet
condensate, which is odd in the frequency ω and even in the momentum.

The TC in our case is completely different from the triplet condensate
found in Sr2RuO4 [4]. In the latter case one has a p-wave, even in ω, triplet
superconductivity, which is suppressed by impurity scattering. In contrast,
the TC we have considered is not affected by non-magnetic impurities. The
reason for the existence of the long-range TC is the fact that if α �= 0, the SC
and the TC are coupled and, in addition to κ± = ξ−1

J (1 ± i), the eigenvalue
κT = ξ−1

T appears. The latter corresponds to the long-range penetration of
the TC in the ferromagnet.

The triplet superconductivity in S/F structures possesses an interesting
property: the Josephson current depends on the chirality of the magnetiza-
tion M: If the M vector rotates in only one direction (the positive chirality)
the critical current Ic is positive. If the direction of the M vector oscillates in
space (the negative chirality) then Ic < 0. In the latter case spontaneously cir-
culating currents must arise in the structure. This result can be explained as
follows: if the chirality is positive the averaged M vector < M > is zero and
the S/F structure behaves as a superconductor with anisotropic properties
(the singlet superconductivity along the layers and the triplet superconduc-
tivity across them). In the case of the negative chirality the average in space
yields a non-zero magnetization < M >�= 0. In such a superconductor with
a build-in magnetic moment the circulating currents arise as they arise in
superconductors of the second type in the mixed state.

It would be interesting to carry out experiments on S/F structures with
non-collinear magnetization in order to observe this new type of supercon-
ductivity. As follows from a semiquantitative analysis, the best conditions to
observe the Josephson critical current caused by the TC are high interface
transparency (small γb) and low temperatures. These conditions are a bit be-
yond our quantitative study. Nevertheless, all qualitative features predicted
here (angle dependence, etc) should remain in a general case when one has to
deal with the non-linear Usadel equation.
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Part IV

Noise and Fluctuation Phenomena
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Summary. We calculate analytically the full counting statistics for a short normally
conducting diffusive wire connecting a normal reservoir and a short superconductor-
normal metal-superconductor junction, at arbitrary applied voltages and tempera-
tures. The cumulant-generating function oscillates with the phase difference φ across
the junction and approaches the normal-state value at φ = π. At T = 0 and at ap-
plied voltage much smaller than the proximity gap ∆φ, the current noise PI doubles
and the third current cumulant C3 is 4 times larger compared to the normal state;
at eV � ∆φ they acquire large excess components. At the gap edge, eV = ∆φ,
the differential shot noise dPI/dV exhibits sharp peak, while the differential Fano
factor dPI/dI turns to zero along with the differential resistance, which reflects the
transmission resonance associated with the singularity of the density of states. At
nonzero temperature, C3 shows a non-monotonous voltage dependence with a dip
near eV = ∆φ; the zero-bias slope of C3(V ) is much larger (up to 5 times) than at
the zero temperature.

During last few years the statistics of quantum and thermal fluctuations of
the electric current in mesoscopic systems has been attracted a rapidly grow-
ing attention. It was recognized that measuring the fluctuation properties of
mesoscopic conductors provide unique and important information about cor-
relations and statistics of charge carriers, the information that is not accessible
through conventional conductance measurements. An adequate and powerful
theoretical approach to the fluctuations was built on the concept of full count-
ing statistics (FCS), i.e., the statistics of the number of particles transferred
through the conductor. The concept of FCS, which appeared first in quan-
tum optics, was extended to normal electron systems [1] and then successfully
applied to superconducting structures [2].

241
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Nanostructures 241–255.
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NS

V

 

L
d

Fig. 1. A model of Andreev interferometer. A diffusive wire of the length L connects
a normal reservoir (N) and short SNS junction of the length d; magnetic flux Φ
threads a superconducting loop (S) of the interferometer.

The basic problem of the FCS is to calculate a probability Pt0(N) for N
particles to pass a system during an observation time t0. Equivalently, one
can find a cumulant generating function (CGF) S(χ),

exp[−S(χ)] =
∑

N
Pt0(N) exp(iNχ), (1)

which determines the current correlation functions as follows:

Cn ≡ 1
en

∫ t0

0

dt1 . . .

∫ t0

0

dtn〈〈Î(t1) . . . Î(tn)〉〉 = − (∂/i∂χ)nS(χ)|χ=0 , (2)

where 〈〈. . .〉〉 denotes the irreducible part (cumulant) of a correlation function.
The first two cumulants, C1 = N ≡

∑
N NPt0(N) and C2 = (N −N)2, corre-

spond to the average current I = (e/t0)C1 and noise power PI = (2e2/t0)C2.
Intense studies of the current noise have led to a number of interesting re-
sults concerning statistical correlations in the current transport (for a review,
see Ref. [3]), and the effective charge qeff transferred during an elementary
transport event. The third cumulant C3 = (N −N)3 has recently attracted
a special interest as the lowest-order correlation function which is not dis-
guised by equilibrium fluctuations [4]. First measurements of C3(V ) in the
tunnel junction [5] have revealed a high sensitivity of this cumulant to an
electromagnetic environment [6].

In normal metal (N)/superconducting (S) hybrid structures, the basic
mechanism of charge transport at subgap energies, E < ∆, is due to An-
dreev reflection of quasiparticles at the NS boundary [7], i.e., conversion of
electrons incident from the normal side of the junction to retroreflected holes,
accompanied by escape of Cooper pairs into the superconductor. During an
elementary Andreev reflection event, the effective charge transferred through
the NS interface is twice the electron charge, qeff = 2e. This charge doubling
strongly affects the current statistics in the NS junctions. For example, it
leads to a factor of two increase in the magnitude of a zero-bias shot noise in
the NS junctions as compared to that in normal ones [2, 8]. At finite biases,
the effective charge becomes dependent on the applied voltage [9, 10], due to
variations of the size of the proximity region near the NS boundary, where
the quantum coherence holds between the electrons and retroreflected holes.
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In the Andreev interferometers (see Fig. 1), the phase relations between
the electron and hole wavefunctions in the normal wire can be controlled
by the magnetic flux enclosed by a superconducting loop, which results in
the periodic dependence of transport characteristics of the interferometer on
the superconducting phase difference φ across the SNS junction. Initially, the
oscillations of the conductance were investigated both experimentally (see a
review in Ref. [11]) and theoretically [12], and, more recently, the oscillations
in the current noise were reported [10].

Motivated by the growing interest in high-order correlation functions, we
develop in the present Paper a systematic approach to full statistics of charge
transport in Andreev interferometers. We adopt several simplifying assump-
tions, which enables us to present an analytical solution for the CGF and,
without a loss of generality, to clearly demonstrate essential features of coher-
ent effects in the current statistics in NS structures. Our approach is based
on the extended Keldysh-Green technique [13, 14], in which the CGF is de-
termined by the equation

(−ie/t0)∂S/∂χ = I(χ), I(χ) =
1
8e

∫
dETrτ̌K Ǐ , τ̌K = σzτx. (3)

The Pauli matrices σ (τ) operate in the Nambu (Keldysh) space. The counting
current I(χ) is to be found from the quantum kinetic equations [15] for the
4 × 4 matrix Keldysh-Green function Ǧ in the mesoscopic normal region of
the interferometer confined between the reservoirs,

σN

[
σzE, Ǧ

]
= i�D∂Ǐ, Ǐ = σN Ǧ∂Ǧ, Ǧ2 = 1̌, (4)

where D is the diffusion coefficient, ∂ denotes spatial derivative, and σN is
the normal conductivity per unit length. The counting field χ is introduced
via a modified boundary condition involving the gauge transformation of the
local-equilibrium function ǦR, e.g., in the right (R) normal reservoir,

ǦR(χ) = exp(iχτ̌K/2)ǦR exp(−iχτ̌K/2). (5)

A brief overview of this technique in the particular case of normal structures
is given in the Appendix.

For a multi-terminal structure of Fig. 1, the solution of Eq. (4) has to
be found separately in each arm of the interferometer, taking into account
the matching condition following from the Kirchhoff’s rule for partial count-
ing currents at the node [16]. The problem simplifies if the junction length
d is much smaller than the length L of the interferometer wire (or, more
precisely, in the case where the wire resistance dominates the net interfer-
ometer resistance). In this case, the wire weakly affects the spectrum of the
junction [17], which thus can be considered as an effective left (L) reservoir.
Correspondingly, the function ǦL which imposes the boundary condition to
Eq. (4) at the junction node, is to be constructed from the Green and dis-
tribution functions taken at the middle of a closed equilibrium SNS junction.
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Furthermore, if d is much smaller than the coherence length ξ0 =
√

�D/∆,
these Green functions take the BCS form, with the phase-dependent proxim-
ity gap ∆φ = ∆| cos(φ/2)| [18]. This results in the BCS-like singularity at the
gap edge in the density of states (DOS) of the normal wire and suppression
of the DOS at E < ∆φ. Within such model, the problem of current statistics
in the Andreev interferometer reduces to the calculation of the CGF for an
NS junction with the effective order parameter ∆φ in the superconducting
reservoir.

Proceeding with this calculation, we encounter a common technical diffi-
culty, namely, the violation of the standard triangle form of Ǧ in the Keldysh
space which results from the gauge transformation in Eq. (5). In such a situa-
tion, Eq. (4) cannot be decomposed into the Usadel equation for the Green’s
functions and the kinetic equations for the distribution functions, and there-
fore the well developed methods for solving Keldysh-Green’s equations quite
cannot be applied. This is the reason why the FCS problem in the NS struc-
tures requires generally a numerical analysis of the whole 4×4 matrix bound-
ary problem; such an analysis has been carried out so far only in the limit of
small characteristic energies {eV, T} 	 ∆ [9, 10].

In some particular cases, however, the analytical solution to this prob-
lem can be attained by the methods of the generalized circuit theory [19, 20].
Within this approach, the CGF for a mesoscopic connector between two reser-
voirs is expressed in terms of the distribution ρ(T) of the transparencies of
the conduction channels,

S(χ) =
gt0
4e2

∫
dE

∫ 1

0

dTρ(T)Tr ln W̌ (E,T, χ), (6)

W̌ = 1 + (T/4)({ǦL, ǦR(χ)} − 2), (7)

where g is the connector conductivity. Eq. (6) generally applies to the normally
conducting structures with arbitrary ρ(T). It was also applied to the super-
conducting tunnel junctions [21] and point contacts [20, 22] with a singular
transparency distribution localized at the junction transparency. In general NS
structures, the statistics of conducting modes, in contrast to their behavior in
normal structures [23, 24], do not reduce to statistics of transparencies - due
to dephasing between the electron and hole wavefunctions described by the
left-hand side (lhs) of Eq. (4) - but requires the knowledge of full scattering
matrices. However, if the characteristic energies are much smaller than the
Thouless energy, {eV, T} 	 ETh = �D/L2, the dephasing term in Eq. (4) can
be neglected, and the transparency statistics for a normal wire [23] can be
applied to the NS structure. In long junctions, L 
 ξ0, where the Thouless
energy is small, ETh 	 ∆, the quasiparticle spectrum is structureless at small
energies, E 	 ETh , which results in linear voltage dependence of the CGF
and, correspondingly, of all cumulants at eV 	 ETh [14]. In the opposite
limit, eV 
 ETh , the CGF for a long junction can be found within the
so-called “incoherent” approximation [25], by neglecting the contribution of
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the coherent proximity region. The calculations in Refs. [14] and [25] lead
to the conclusion that the FCS exhibits the reentrance effect: In both limits,
eV 	 ETh and eV 
 ETh, it is described by the same expression for S(χ). An
interesting situation occurs in NS junctions with opaque interfaces dominating
the net resistance [26]. In this case, the crossover between the coherent and
incoherent transport regimes occurs at very small voltage of the order of the
inverse dwell time of quasiparticles confined between the interface barriers.

In our work we focus on short NS junctions with the length smaller than
ξ0 and, correspondingly, with large Thouless energy, ETh 
 ∆φ. In such
situation, the energy region of negligibly small dephasing, E 	 ETh , overlaps
with the region E 
 ∆φ, in which the NS junction behaves as the normal
system. This enables us to apply Eq. (6) and the transparency statistics for
diffusive normal conductor at arbitrary voltages and temperatures, and obtain
the analytical solution of the FCS problem in the full range of V and T .

The calculation of the integrand in Eq. (6) is performed as follows. The Kel-
dysh-Green function GR(χ) in the normal reservoir is traceless in the Keldysh
space and therefore it can be expanded over the Pauli matrices τ as

ǦR(χ) = τ (g1 + σzgz), g1gz = 0, g2
1 + g2

z = 1, τ = (τx, τy, τz), (8)

where the vectors g1,z(χ) are expressed through the local-equilibrium distri-
bution functions in the voltage biased electrode. In the subgap energy region,
E < ∆φ, the function ǦL at the junction node is the unity matrix in the
Keldysh space proportional to the Nambu matrix Green’s function ĝ,

ǦL = ĝ = σy exp(σxθφ), ĝ2 = 1, θφ = arctanh(E/∆φ). (9)

Then the calculation of the trace in the Nambu space in Eq. (7) is reduced to
the summation over the eigenvalues σ = ±1 of the matrix ĝ,

Tr ln W̌ =
∑

σ
Trτ ln W̌σ, W̌σ = a+ τb, (10)

a = 1 − T/2, b = (T/2)(σg1 − igz sinh θφ). (11)

Noticing that any 2 × 2 matrix can be presented in exponential form as

W̌σ = exp(lnw + ϕp̌), (12)

w2 = a2 − b2, coshϕ = a/w, p̌ = τb/w sinhϕ, Trp̌ = 0, (13)

where w is independent of σ due to orthogonality of the vectors g1 and gz,
one easily obtains Trτ ln W̌σ = lnw2 and Tr ln W̌ = 2 lnw2. At E > ∆φ, the
function GL is traceless in the Keldysh space,

ǦL = ĝ(τgL), ĝ = σz exp(σxθφ), θφ = arctanh(∆φ/E), (14)

where the vector gL is constructed from the equilibrium distribution function
at zero potential. In this case, the 4× 4 matrix W̌ has the form W̌ = a+ σb,
where a and b2 are scalars,
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a = 1 − (T/2)(1 − gLgz cosh θφ), (15)

b2 = (T/2)2[(gLg1)2 − (gL × gz)2 sinh2 θφ], (16)

therefore it can also be transformed to the exponent form similar to Eqs. (12)
and (13), with the traceless matrix p̌ = σb/w sinhϕ. Following this line, we
obtain Tr ln W̌ = 2 lnw2, and then, integrating over T in Eq. (6), we arrive
at the final expressions for the CGF

S(χ) =
gt0
4e2

∫ ∞

0

dE S(E,χ), S(E,χ) =
{

2θ2, E < ∆φ,
θ2
+ + θ2

−, E > ∆φ,
(17)

where the quantities θ and θ± are given by explicit relations,

Z(0) cosh2 θ = Z(2χ) cosh2 θφ, (18)

Z(0) cosh θ± = [Z(χ) + cosχ− 1] cosh θφ ± tanh
ε

2
[sinh p− (19)

sinh (p− iχ) − i sinχ]
(
1 − cosh ε+ 1

cosh p− 1
sinh2 θφ

)1/2

,

θφ = arctanh
[
(∆φ/E)sgn(E−∆φ)

]
, (20)

Z(χ) = cosh(ε) + cosh(p− iχ), ε = E/T, p = eV/T. (21)

By using Eqs. (2) and (17)-(21), one can obtain analytical expressions
for all cumulants. At zero temperature, the calculation essentially simplifies.
Indeed, at T → 0 and E > eV , the dominating terms in Eqs. (18)-(21) are
proportional to exp(ε), and therefore θ and θ± are equal to θφ. This implies
that the CGF is independent of the counting field at these energies, and all
cumulants turn to zero. At E < eV , the terms with exp(p − inχ) dominate,
and we arrive at simple relations,

cosh θ = e−iχ cosh θφ, cosh θ± = e−iχ cosh θφ ± (e−iχ − 1). (22)

At subgap voltage, eV < ∆φ, when the charge transport at T = 0 is only
due to the Andreev reflection, the current I, the shot noise power PI , and the
third cumulant C3 read

I = I∆q(z), q(z) =
∫ z

0

dx

x
arctanhx, PI = 2e

[
I − I∆f(z−1)

]
, (23)

C3 = N − N∆

2z2

[
(5z2 − 3)f(z−1) + z

]
, I∆ =

g∆φ

e
, N∆ =

I∆t0
e

, (24)

f(z) = (1/2)[z − (z2 − 1)arctanhz−1], z = eV/∆φ. (25)

At small voltages, eV 	 ∆φ, the magnitude of the shot noise doubles, PI =
(4/3)eI, and C3 = 4N/15 is four times larger compared to the normal case
[8, 2, 27, 1]. When the voltage increases and exceeds the gap edge, eV > ∆φ,
the normal electron processes at the energies E > ∆φ begin to contribute
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Fig. 2. Shot noise power and third cumulant vs superconducting phase (a, b) at
different voltages and T = 0, and vs voltage at different temperatures (c, d). Dashed
lines denote voltage dependencies in the normal state at T = 0. In the panel (d),
zero-bias slopes of the normalized C3(V ) are indicated.

to the charge transport, providing the normal-state voltage dependencies of
the cumulants at eV 
 ∆φ. At large voltage, the Andreev reflected particles
produce voltage-independent excess components of the cumulants,

I = IN − I∆f(z) + Iex, PI = 2eI∆(z2 − 1)f(z) + P ex
I , IN = gV, (26)

C3 =
N∆

2
(z + 1)

{
(z − 1)

[
8z/3 − (8z2 − 3)f(z)

]
− 1/3

}
+ Cex

3 , (27)

Iex = (I∆/2)
(
π2/4 − 1

)
, P ex

I = 2eIex, Cex
3 = (N∆/2)

(
π2/4 − 4/3

)
. (28)

At nonzero temperatures, T �= 0, we calculate the cumulant spectral den-
sities I(E), P (E) and C(E) defined as

I = I∆

∫ ∞

0

dE I(E), PI = 2eI∆

∫ ∞

0

dE P (E), C3 = N∆

∫ ∞

0

dE C(E).

(29)
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Here I(E) = f1 sinh p/Z(0), and the functions P (E) and C(E) at E < ∆φ

read

P (E) =
2

Z2(0)
[
2Qf1 + (1 − f2) sinh2 p

]
, Q = 1 + cosh ε cosh p, (30)

C(E) =
sinh p
Z3(0)

{
4f1 sinh2 ε+ (2f2+3f3) sinh2 p+ 2Q [3(1−f2)−2f1]

}
, (31)

whereas at E > ∆φ they are given by equations,

P (E) =
2

Z2(0)

[
Q
(
1 + 2f1 − 2f2

cosh p− 1
cosh ε+ 1

)
+ sinh2 p− Z(0)

]
, (32)

C(E) =
sinh p

Z3(0)(1 + cosh ε)

{
4f1(1 + cosh ε)(Q+ sinh2 ε) (33)

+ 3
[
Z(0)(1 − 2f3) +Q

(
4(1 − f2 + f3 cosh ε) + 3 cosh ε− 2f3

)
+ sinh2ε

(
2f3 − cosh ε+ (3 − 5 cosh p)f2

)]
+ f2(5 cosh ε− 1) sinh2 p

}
,

In Eqs. (30)-(33), the functions

f1 = θφ coth θφ, f2 = (f1 − 1)/ sinh2 θφ, f3 = (f2 − 1/3)/ sinh2 θφ. (34)

describe energy variation of quasiparticle spectrum which is most essential in
the vicinity of the gap edge ∆φ.

As shown in Fig. 2,(a,b), the cumulants oscillate with the phase and exhibit
deep minima at φ mod 2π = π, when the gap closes and the cumulants ap-
proach their normal values. When the proximity gap ∆φ approaches eV , PI(φ)
exhibits a peak, while C3(φ) shows a step-like structure. Shown in Fig. 2,(c,d)
are voltage dependence of the cumulants for different temperatures plotted as
functions of variables that provide the universality of the curves for any φ. As
the temperature increases, the current noise approaches finite value at eV = 0
due to thermal fluctuations, and exhibits quadratic dependence on the applied
voltage at eV 	 T . Within the intermediate voltage region, T < eV < ∆φ,
PI(V ) becomes linear with doubled slope produced by the Andreev reflected
particles, and at eV > ∆φ, the slope turns to its normal-metal value. A con-
siderable excess noise at large voltages is contributed by both the thermal
fluctuations and Andreev reflection. A more interesting behavior is discovered
for the third cumulant. At nonzero temperature, the zero-bias slope of the
normalized C3(V ) is much larger than at zero temperature (up to the factor
5 which is similar to the normal structures [4]), approaching the value 4/3.
At larger voltages, T < eV < ∆φ, the slope of C3(V ) returns to the value
4/15 found for T = 0. At eV ∼ ∆φ, the curve C3(V ) shows N -like feature,
and finally, at eV > ∆φ, it approaches a straight line with the (normal-state)
slope 1/15. Such a behavior indicates that C3 acquires anomalously large
thermal component at voltage eV ∼ ∆φ, which, however, rapidly decreases at
eV > ∆φ and/or T > ∆φ towards the normal metal level.
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Fig. 3. Effective transferred charge (a), differential noise (b), and differential resis-
tance (inset) vs voltage at φ = 0 (solid lines) and φ = 0.7π (dashed lines), T = 0.

The singularity in the DOS at the proximity gap edge produces interest-
ing features of the differential transport characteristics of the interferometer
shown in Fig. 3. First, we note that the differential resistance Rd = dV/dI
turns to zero at eV = ∆φ (see inset in Fig. 3,a), which is explained by full
transmission of the NS junction at the resonant energy ∆φ. Correspondingly,
the differential Fano factor dPI/dI = Rd(dPI/dV ), which is commonly inter-
preted as effective transferred charge, qeff = (3/2)dPI/dI, also turns to zero,
qeff = 0e, while the differential noise normalized in a similar way, (3R/2)
dPI/dV , shows a large peak of the height 3e. Thus we conclude that none
of these quantities can be unambiguously associated with the physical ele-
mentary transferred charge, but they rather reflect the energy variation of
the transmission characteristics. Similar effects have been predicted for an NS
structure with opaque interfaces [26] where a considerable enhancement of
dPI/dV and suppression of dPI/dI occur, however, at small applied voltage
determined by large dwell time of quasiparticles.

It is instructive to compare our analytical results for short-arm interfer-
ometers with that obtained numerically for long NS junctions with a small
minigap Eg ∼ ETh 	 ∆. The results are qualitatively similar: in long junc-
tions, qeff is equal to 2e at eV 	 Eg and has a minimum at eV ≈ Eg(φ),
which moves towards small voltage when at φ → π [10]; the differential noise is
also non-monotonous and approaches maximum at eV ≈ 5ETh [9]. After this
comparison we see that the proximity gap ∆φ in short junctions plays the role
of the minigap Eg in long junctions and determines the feature in the effective
charge, though this feature at eV ∼ Eg in long junctions is much less pro-
nounced. However, as noted above, a qualitative difference of long junctions
is the existence of an intermediate incoherent voltage region Eg 	 eV 	 ∆,
where both the effective charge and the normalized differential noise have the
value 2e, and their crossover to e occurs only at eV ≥ ∆ [28].
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In conclusion, we have studied the full counting statistics of a normal diffu-
sive wire confined between the normal electrode and SNS junction controlled
by the magnetic flux through a superconducting loop (Andreev interferome-
ter). Assuming the size of the mesoscopic structure to be much smaller than
the coherence length, we calculated analytically the cumulant-generating func-
tion for arbitrary applied voltage and temperature. We studied in detail the
second (the current noise) and the third cumulants. Both quantities oscil-
late with the phase difference across the junction and show non-monotonous
voltage dependence in the vicinity of the proximity gap edge, which reflects
resonant transmission of the structure at the singularity of the density of
states.

This work was supported by the U.S. Department of Energy, Office of
Science under contract No. W-31-109-ENG-38.

In this Appendix we outline, for reference purposes, the procedure and
summarize the results of calculation of the CGF for a diffusive connector
between normal reservoirs, by using the extended Keldysh-Green’s technique.
For generality, we consider a diffusive wire interrupted by tunnel barriers,
which enables us to present several original results and to examine various
limiting situations.

In normal systems, the matrices Ǧ and Ǐ are traceless in the Keldysh space
and therefore they can be expressed through 3-vectors with the components
diagonal in the Nambu space, Ǧ = gτ , Ǐ = Iτ , where τ is the vector of
the matrices τ , and g2 = 1. Since the lhs of Eq. (4) turns to zero in normal
systems, the formal solution of Eq. (4) for the matrix current density ǏN in
each segment of the wire can be easily obtained,

ǏN = gN ln Ǧ1Ǧ2 = gN ln[g1g2 + iτ (g1 × g2)] = τIN ,

IN = igNpφN , φN = arccos g1g2, (35)

where gN is the conductivity of the wire segment, Ǧ1,2 are the Green’s func-
tions at the left and right segment edges, respectively, φN is the angle between
the (complex) unit vectors g1 and g2, and p = (gL × gR)/ sinφN is the unit
vector perpendicular to g1 and g2.

The matrix current ǏB through the tunnel barrier can be expressed in
terms of Green functions Ǧ− and Ǧ+ at the left and right sides of the barrier
by using the boundary condition [29],

ǏB− = ǏB+ =
gB

2
[Ǧ−, Ǧ+] = τIB,

IB = igBp sinφB , φB = arccos g−g+, (36)

where p = (g− × g+)/ sinφB and gB is the barrier conductance.
The conservation of the matrix current along the connector, Ǐ = const,

following from Eq. (4) and the boundary condition in Eq. (36), results in
conservation of the vector current, I = IN = IB = const. This implies that
for all elements of the connector, the unit vectors p coincide, therefore the
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Green’s vectors g lye in plane, and the vector p can be constructed from
known Green’s vectors gL and gR in the reservoirs, p = (gL × gR)/ sinφ,
where φ is the angle between gL and gR,

φ = arccos[1 + P−+(eiχ − 1) + P+−(e−iχ − 1)], (37)
Pσσ′ = nσ(1 − nσ′), n− = nF (E), n+ = nF (E + eV ).

From the current conservation, we also conclude that all elements are charac-
terized by a single variable η,

gB sinφB = gNφN = gη = const, (38)

where the normalization constant g is chosen to be equal to the conductance
of the whole connector. Thus, the vector current is given by equation,

I =
igη

sinφ
(gL × gR). (39)

The planar rotation of the Green’s vector results in the additivity of the angles
between all consecutive vectors g, therefore the sum of these angles is equal
to φ, ∑

wires

φN +
∑

barriers

φB = φ = arccos(gLgR), (40)

which leads to the equation for the parameter η(φ),

γNη+
∑

k
arcsin(γkη) = φ, γN = RN/R, γk = Rk/R, γN +

∑
k
γk = 1,

(41)
where RN is the net resistance of all wires, Rk is the resistance of the k-th
barrier, and R = g−1.

By using the definitions in Eq. (3), we obtain the counting electric current
I(χ) and the CGF,

I(χ) =
1
2e

∫ ∞

0

dETrσzIx =
ig

2e

∫ ∞

0

dETr
σzη

sinφ
(gL × gR)x, (42)

S(χ) =
gt0
4e2

∫
dETr

[
rNη

2/2 +
∑

k

(
1 −

√
1 − r2kη

2
)
/rk

]
, (43)

We note that the statistics is insensitive to the position of the barriers and
depends only on the barrier resistances and the net resistance of the diffusive
part of the connector. In the absence of barriers, rk → 0, the CGF reads

S(χ) =
gt0
4e2

∫
dE φ2 (44)

=
gt0
4e2

∫
dE arccos2

[
1 + P−+

(
eiχ − 1

)
+ P+−

(
e−iχ − 1

)]
.
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At zero temperature, the integration over energy in Eq. (43) can be explicitly
performed,

S(χ) =
N

2

[
rNη

2/2 +
∑

k

(
1 −

√
1 − r2kη

2
)
/rk

]
, (45)

where N = gV t0/e. From Eq. (45) we find the Fano factor F in the shot noise
power PI = eFI,

F = (2/3) (1 + 2B3) , Bn =
∑

k
rn
k , (46)

which varies between the Poissonian value F = 2 for the tunnel connector and
1/3-suppressed value, F = 2/3, in the absence of barriers. The third cumulant
C3 varies between N for Poissonian statistics in the single barrier case and
N/15 for a diffusive conductor,

C3(V, 0) =
(
N/15

)
[1 + 10B3 (1 + 4B3) − 36B5] . (47)

It is interesting to note that Eq. (41) can be easily transformed into equa-
tion for the transparency distribution ρ(T), by making use of the relation
of the generalized circuit theory between the counting current I(χ) and the
matrix current Ǐ following from Eqs. (6) and (3),

I(χ) =
1
4e

∫ ∞

0

dETrτxσz Ǐ , Ǐ =
g

2

∫ 1

0

dTρ(T)T[ǦL, ǦR(χ)]W̌−1. (48)

Rewriting these equations in the vector representation, comparing them with
Eq. (42), and introducing the variable z = (1 − gLgR)/2, we obtain the
equation for ρ(T), ∫ 1

0

TdTρ(T)
1 − zT

=
η

2
√
z(1 − z)

, (49)

where η obeys Eq. (41) with the function φ(z) = 2 arcsin
√
z in the right-hand

side (rhs). The solution of Eq. (49) has the form ρ(T) = Re η/2πT
√

1 − T,
where η(T) is the solution of Eq. (41) with the function π+2i arccosh(1/

√
T)

in the rhs [24].
In some limiting cases, one can obtain an analytical solution of Eq. (41). In

particular, if the number M of the barriers is large, M 
 1, then the resistance
of each barrier is small compared to the net resistance, Rk 	 R. In this case,
the approximate solution of Eq. (41) is η = φ, and the CGF coincides with
that for diffusive wire, Eq. (44). In the tunnel limit, when the resistance of
each barrier much exceeds the net resistance of diffusive segments, Rk 
 RN ,
the first term in Eq. (41) can be neglected. Then an analytical expression for
the parameter η and the CGF at arbitrary M can be obtained in the case of
equivalent barriers, rk = 1/M ,

η = M sin
φ

M
, S(χ) = NM2 sin2 arccos eiχ/2

M
, (50)
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when the Fano factor is given by F = (2/3)
(
1 + 2/M2

)
. In the limit of large

number of the barriers, M 
 1, we return to the diffusive statistics, while
for single-barrier structure, M = 1, we obtain Poissonian statistics, S(χ) =
N(eiχ − 1).

At arbitrary temperature, the cumulants can be found analytically by
asymptotic expansion in Eqs. (41), (43) over small η and χ. In particular, the
noise power,

PI(V, T ) =
4T
3R

[
(1 + 2B3)

p

2
coth

p

2
+ 2(1 −B3)

]
, (51)

exhibits crossover between the shot noise at T 	 eV and the Johnson thermal
noise PT = 4T/R at large temperature, T 
 eV . The voltage dependence of
the third cumulant,

C3(V, T ) = C3(V, 0) +
2
5
N(1 − 10B2

3 + 9B5)
sinh p− p

p sinh2(p/2)
, (52)

is linear in both limits and approaches (N/3)(1 + 2B3) at high temperatures.
In the absence of barriers, Bn = 0, Eq. (52) reproduces the result of a modified
kinetic theory of fluctuations for a diffusive wire [4].

In order to access FCS in multi-terminal structures, which consist of a
set of connectors attached between several normal electrodes and a diffusive
island (node) with negligibly small resistance, separate counting fields χα and
parameters ηα are to be introduced in each arm [16],

Iα = iξα(gα × gc), ξα = gαηα/ sinφα. (53)

The quantities ηα obey the equations similar to Eq. (41), with the angles
φα = arccos(gαgc) in the rhs, where the Green’s vector gc at the node can be
found from the current conservation law,

∑
α Iα = 0,

gc = G/
√

G2, G =
∑

α
ξαgα. (54)

According to Eq. (54), the vector gc depends on all counting fields χα,
which reflects cross-correlations between the currents in different connectors.
For the system of tunnel connectors, where the quantities ξα are equal to the
conductances gα and therefore become independent of χ, the CGF at zero
temperature can be explicitly evaluated [21],

S{χ} =
V t0
2e

G

√
1 + 4

∑
α
gV gα(eiχα − 1), gα = gα/G, G =

∑
β
gβ ,

(55)
where the index V denotes the voltage biased electrode.

For arbitrary connectors, the cumulants can be found from asymptotic
solutions of the equations for ηα and gc at small χα. For instance, the partial
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current through α-th connector is Iα = V gαgV , and the Fano factors defined
as Fαβ = (2ei/Iα)(∂Iα{χ}/∂χβ)χ=0 read

Fαβ =
(
2−4

3
gV

)
δαβ−

4
3
gβ

[
1+gV (B3α+B3β)−B3V (1−gV )2 −gV

∑
γ �=V

gγB3γ

]
.

(56)
The diagonal elements Fαα of the matrix Fαβ have the meaning of the Fano

factors for the shot noise in α-th connector and may vary between 2/3 and
2. For large number of the terminals, when the normalized conductances gα

become small, they approach Poissonian value Fαα = 2. The cross-correlators
Fαβ (α �= β) between the currents in different terminals are negative due
to Pauli principle [28]. In a particular case of diffusive connectors (Bα = 0),
Eq. (56) reproduces the result of Ref. [30] for a so-called star-shaped geometry.
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Semiclassical Theory of Higher Cumulants
of Noise

K.E. Nagaev

Institute of Radioengineering and Electronics, Russian Academy of Sciences,
Mokhovaya ulica 11, 125009 Moscow, Russia nag@cplire.ru

Summary. The semiclassical Boltzmann–Langevin method is extended to calcula-
tions of higher cumulants of current. Its efficiency is demonstrated for mesoscopic
diffusive contacts and chaotic cavities. We show that in addition to a dispersion at
the inverse RC time characteristic of charge relaxation, higher cumulants of noise
have a low-frequency dispersion at the inverse dwell time of electrons in the system.

Higher-order correlations of current became a subject of interest for theo-
rists since early nineties. This work was pioneered by Levitov and Lesovik [1],
who discovered that the charge transmitted through a single-channel quantum
contact obeys a binomial distribution. Based on their quantum-mechanical
formulas, higher cumulants of current were calculated for a variety of mul-
tichannel phase-coherent systems [2, 3, 4]. Meanwhile a wide class of these
systems, like diffusive conductors and chaotic cavities, allows a semiclassi-
cal description of their average transport properties and second cumulant of
noise [5, 6]. Hence it is of interest to have a fully semiclassical theory for
higher cumulants of noise in these systems too. Very recently, such a theory
was developed in a number of papers and here we give a brief overview of it.

The basis for the semiclassical description of kinetics is the existence of two
well separated time scales, one of which describes a “slow” classical evolution
of the system and the other describes “fast” quantum processes. For example,
the collision integral in the Boltzmann equation may be written as local in time
because quantum-mechanical scattering is assumed to be fast as compared to
the evolution of the distribution function.

The second cumulants of noise are conveniently described by the Boltzmann–
Langevin equation [5][

∂

∂t
+ v

∂

∂r
+ eEv

∂

∂ε

]
δf(p, r, t) + δI = −e δEv

∂f

∂ε
+ Jext, (1)
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where δI is the linearized collision integral and Jext is the Langevin source
that accounts for the randomness of electron scattering. Because of a short
duration of scattering events, the Langevin sources are δ-correlated in time.
Furthermore, since different scattering events are independent, the scattering
between each pair of states presents a Poissonian process whose cumulants of
any order are proportional to its average rate

J(p → p′) = W (p,p′)f(p, r, t)[1 − f(p′, r, t)]. (2)

Hence the cumulants of extraneous sources of the corresponding order re-
lated with randomness of scattering may be written as the sums of incoming
and outgoing scattering fluxes taken with appropriate signs. For example, the
second cumulant is given by [5]

〈〈Jext(p1, r1, t1)Jext(p2, r2, t2)〉〉 = δ(r1 − r2)δ(t1 − t2)

{
δp1p2

×
∑
p′

[J(p1 → p′) + J(p′ → p1)] − J(p1 → p2) − J(p2 → p1)

}
. (3)

Similar expressions are valid for the third and fourth cumulants [7]. However to
obtain higher cumulants of δf , it is insufficient to multiply the corresponding
number of solutions of Eq. (1) and average the product using the correspond-
ing cumulant of Langevin sources. The point is that the second cumulant of
Langevin sources (3) as well as their higher cumulants are functionals of the
distribution function and hence may also fluctuate. As the characteristic time
for the variations of fluctuations δf is much longer than the correlation time
of Langevin sources, their cumulants adiabatically follow δf . On the other
hand, δf is correlated with other measurable fluctuations. This results in
additional correlations, which may be termed “cascade” because lower-order
correlators of Langevin sources contribute to higher-order cumulants of mea-
surable quantities. Symbolically, the expression for the cascade correction to
the third cumulant of current may be written in a form [7]

∆〈〈I1I2I3〉〉 = P123

{
δ〈〈I1I2〉〉

δf4
〈δf4δI3〉

}
, (4)

where P123 denotes a summation over all inequivalent permutations of
indices (123) and δ〈. . .〉/δf4 denotes a functional derivative with respect to
f(ε4, r4, t4). The products imply a convolution over the arguments of the
distribution functions with repeating indices. The expressions for higher cu-
mulants are conveniently presented in a diagrammatic form (see Fig. 1). All
diagrams present graphs whose outer vertices correspond to different instances
of the fluctuating quantity and whose inner vertices correspond either to cu-
mulants of extraneous sources or their functional derivatives. As there should
be no back-action of higher cumulants on the lower cumulants, all diagrams
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f

b ca

d e

Fig. 1. The contributions to the fourth cumulant of the current. Dashed lines corre-
spond to fluctuations of the distribution function. Full circles, triangles and squares
correspond to the second, third, and fourth cumulants of extraneous currents. The
empty triangles and squares present their functional derivatives.

are singly connected and their number is strictly limited for a cumulant of
a given order. Hence any diagram for the nth cumulant of the fluctuating
quantity may be obtained from a diagram of order m < n by inserting one of
its outer vertices into one of the inner vertices of a diagram of order n−m+1.
A summation over all inequivalent permutations of the outer vertices should
be performed.

As an application of this formalism, consider the third and fourth cumu-
lants of current in a voltage-biased diffusive-metal contact. In this case, the
direct contributions from the third and fourth cumulants of Langevin sources
are negligibly small because these cumulants are proportional to the inverse
elastic scattering time τ−1 and each solution of the Boltzmann–langevin equa-
tion gives an additional factor of τ , so that the cumulants of transport current
would be proportional to τ3 instead of τ . Hence all higher cumulants of current
for diffusive contacts are dominated by diagrams constructed of the second
cumulant of Langevin sources and its functional derivatives. As a result, one
obtains the low-frequency Fourier transform of the third cumulant in the form

P3(0, 0) =
1
15

e

R

eV cosh(eV/T ) + 12T sinh(eV/T ) − 13eV
cosh(eV/T ) − 1

. (5)

This expression coincides exactly with previous quantum-mechanical results
[8] and gives P3 = (1/15)e2I at high voltages eV 
 T and P3 = (1/3)e2I at
low voltages eV 	 T . The resulting expression for the fourth cumulant reads

P4(0, 0, 0) = − 1
420

e2

R

1
sinh3(eV/2T )

[
eV cosh

(
3eV
2T

)
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−20T sinh
(

3eV
2T

)
− 313eV cosh

(
eV

2T

)
+684T sinh

(
eV

2T

)]
. (6)

In the high-voltage regime it gives P4 = −(1/105)e3I in agreement with the
corresponding quantum-mechanical expression [4]. Moreover, the terms of cas-
cade expansion can be directly mapped on the Keldysh diagrams for the same
cumulants in diffusive metals.

Now we show that the validity of the cascade Langevin approach extends
beyond the limits of validity of Boltzmann equation. Consider a frequency-
dependent noise in a chaotic cavity, i.e. in a metallic island of irregular shape
connected to the electrodes L, R via two quantum point contacts of conduc-
tances GL,R 
 e2/h and arbitrary transparencies ΓL,R. As the dwell time of
an electron in the cavity τD = e2NF /(GL +GR) is much larger than the time
of flight through the cavity, the electrons in the cavity lose memory of their
initial phase and are described by an energy-dependent distribution function
f(ε, t). The fluctuations of the electric current in the left and right contacts
are given by equations

δIL,R =
∫

dε

[
(ĨL,R)ε +

1
e
GL,Rδf(ε)

]
, (7)

where (ĨL)ε and (ĨR)ε are the energy-resolved random extraneous currents
generated by the left and right contacts. The fluctuation of the distribution
function δf(ε) obeys a kinetic equation(

∂

∂t
+

1
τD

)
δf(ε, t) = −e∂δU

∂t

∂f

∂ε
− 1
eNF

[(ĨL)ε + (ĨR)ε], (8)

where τD = e2NF /(GL+GR) is the dwell time of an electron in the cavity, NF

is the density of states in it, and δU is a fluctuation of the electric potential
of the cavity. This fluctuation is obtained from the charge-conservation law

∂δU

∂t
=

1
C

∂δQ

∂t
= − 1

C

∫
dε [(ĨL)ε + (ĨR)ε], (9)

where C is the electrostatic capacitance of the cavity. Equations (7) - (9)
suggest that different parts of δf are described by different time scales. The
relaxation of electrically neutral fluctuations is described by the characteristic
time τD, whereas the fluctuations of charge are described by τQ = [(GL +
GR)/C + 1/τD]−1, which is much shorter than τD for good conductors.

If the distribution function of electrons in the cavity f(ε, t) were not al-
lowed to fluctuate, the contacts would be independent generators of current
noise whose zero-frequency energy-resolved cumulants 〈〈Ĩn

L,R〉〉ε could be ob-
tained from a quantum-mechanical formula

〈〈Ĩn
L,R〉〉ε =

GL,R

ΓL,R

∂n

∂χn
ln
{
1 + ΓL,RfL,R(ε)[1 − f(ε)](e−eχ − 1)
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+ ΓL,Rf(ε)[1 − fL,R(ε)](eeχ − 1)
}
|χ=0. (10)

If the voltage is high enough, the noise of isolated contacts can be considered
as white at frequencies at which the distribution function f fluctuates. This
allows us to consider the contacts as independent generators of white noise,
whose intensity is determined by the instantaneous distribution function of
electrons in the cavity. Based on this time-scale separation, we perform a
recursive expansion of higher cumulants of current in terms of its lower cu-
mulants. In the low-frequency limit, the expressions for the third and fourth
cumulants coincide with those obtained by quantum-mechanical methods for
arbitrary ratio of conductances GL/GR and transparencies ΓL,R [9]. Very re-
cently, the same recursive relations were obtained as a saddle-point expansion
of a stochastic path integral [10].

Consider now the frequency dependence of the third cumulant. We will be
interested in the case of a good conductor where the charge-relaxation time
τQ is much shorter than the dwell time τD. Unlike the second cumulant of
current, the third cumulant P3(ω1, ω2) in general exhibits a strong disper-
sion at ω1,2 ∼ 1/τD [11]. For symmetry reasons, this dispersion vanishes for
symmetric cavities and cavities with two tunnel or two ballistic contacts. The
shape of P3(ω1, ω2) essentially depends on the parameters of the contacts. In
particular, for a cavity with one tunnel and one ballistic contact with equal
conductances GL = GR = G it exhibits a non-monotonic behavior as one goes
from ω1 = ω2 = 0 to high frequencies. A relatively simple analytical expres-
sion for this case may be obtained if τD 
 τQ and one of the frequencies is
zero:

P3(ω, 0) = − 1
32
e2I

1 + 2τ2
Dω

2 + τ2
Dτ

2
Qω

4

(1 + ω2τ2
D)(1 + ω2τ2

Q)2
. (11)

The P3(ω, 0) curve shows a clear minimum at ω ∼ (τDτQ)−1/2 and the am-
plitude of its variation tends to P3(0, 0) as τQ/τD → 0.

In summary, we demonstrated a semiclassical method for calculating
higher cumulants of noise in systems with a large time-scale separation. This
method is not restricted to zero frequencies and allows an inclusion of in-
elastic processes. Its validity has been rigorously substantiated for diffusive
conductors and semiclassical chaotic cavities. By using this method, we have
shown that the third cumulant of current in normal-metal mesoscopic systems
may exhibit a strong dispersion at frequencies much smaller than the charge-
relaxation time of the system. The variations of the cumulant may be of the
order of its zero-frequency value even if the number of quantum channels in
the system is large.
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Josephson Junctions as Threshold Detectors
for Full Counting Statistics

Jens Tobiska and Yuli V. Nazarov

Department of NanoScience, Delft University of Technology, 2628 CJ Delft, The
Netherlands Y.V.Nazarov@tn.tudelft.nl

Summary. We discuss how threshold detectors can be used for a direct measure-
ment of the full counting statistics (FCS) of current fluctuations and how to imple-
ment Josephson junctions in this respect. We propose a scheme to characterize the
full counting statistics from the current dependence of the escape rate measured.
We illustrate the scheme with explicit results for tunnel, diffusive and quasi-ballistic
mesoscopic conductors.

Quantum noise in electron transport is an actively developing field. Noise
measurements provide exclusive information about microscopic mechanisms
of the transport that can hardly be obtained by other means [1, 2]. Still, the
experiments in the field neither match the intensive theoretical development
nor gather all information about electric fluctuation. Indeed, the concept of
full counting statistics pioneered in [3] allows one to predict the non-Gaussian
distribution function of the current measured during a time interval τ , Pτ (I).
This distribution is characterized by an infinite set of cumulants 	 In 
. A
traditional noise measurement only assesses the second cumulant of this set
discarding the rest. Recent pioneering work reports a successful measurement
of the third cumulant [4], but there is a long way to go if one measured the
cumulants one by one. It would be advantageous to measure the distribution
function directly and thus to get all cumulants at once, thereby collecting the
wealth of information being currently discarded.

Why is such a measurement difficult? The probabilities to measure corre-
spond to big deviations of the current from its average value, |I − 〈I〉| � 〈I〉,
and are therefore exponentially small. For instance, in the shot noise regime
Pτ (I) � exp (−〈I〉G(I/〈I〉)τ/e), G(I/〈I〉) � 1 being the function to charac-
terize. One has to concentrate on very rare measurement outcomes that occur
with probability exp(−〈I〉τ/e) ≈ 0. Such measurements can only be carried
out with threshold detectors that discriminate these rare events. Let us discuss
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an ideal threshold detector that measures the current during the time interval
τ , and gives a signal if the current measured exceeds the threshold current Ith.
The signal probability will then be proportional to Pτ (Ith). To give a realistic
illustration, a detector that measures a tunnel junction with 〈I〉 = 10 pA in
the time interval τ = 10−6s would go off once an hour if Ith = 2〈I〉 and once
in 10−4s if Ith = 1.5〈I〉. Therefore, if one measures the rate of the detector
signals as a function of Ith, one directly assesses the full counting statistics.

Albeit realistic detectors are not ideal. There are three important factors
that can either hinder the interpretation of such a measurement or even pre-
vent the measurement: (i) a realistic detector hardly measures the current
averaged over a certain time interval τ . It is dispersive, being usually more
sensitive to longer and smaller current fluctuations rather than to bigger and
shorter ones. (ii) The detector may produce a significant feedback on the sys-
tem measured when it starts to signal, thereby disrupting its noise properties.
(iii) The detector could just go off by itself, for instance, due to quantum
tunneling.

A Josephson junction seems to be a natural threshold detector for current
fluctuations. It can be viewed as a particle in a washboard potential [5], the
superconducting phase difference φ across the junction corresponding to the
particle’s coordinate. The junction is in zero-voltage state provided the current
does not exceed the critical value corresponding to the critical tilt of the
washboard potential. φ is trapped in one of the minima of the potential, which
is separated by a barrier from the neighboring one. A current fluctuation that
exceeds the critical threshold sets φ into motion and the junction gives a
signal—a voltage pulse that lasts till φ is retrapped in a different minimum.

In this paper we address the feasibility of Josephson junction systems for
measuring the FCS of a mesoscopic conductor. Our results are as follows. The
Josephson junction is a realistic detector, all three factors mentioned are in
play. Albeit one can measure FCS provided the width of the barrier φ0 
 1.
This can be realized by connecting several Josephson junctions in series. Under
these conditions, the third factor is of no importance and the first and second
factor do not hinder the unambiguous correspondence between FCS and the
escape rate of the junction as a function of Ith. These theoretical results open
the way to direct experimental observation of FCS.

The circuit under consideration consists of a normal coherent conductor
with conductance G in series with the Josephson junction(system) (Fig. 1).
The system is biased with voltage source V 
 kBT/e. This assures that the
normal conductor is in the shot noise regime. In addition, we inject extra
current Ib that controls the slope of the Josephson washboard potential.

If fluctuations are neglected, this system can be described with the cele-
brated model of resistively shunted junction [5]. The normal conductor is a
source of non-gaussian current fluctuations that instantly tilt the washboard
potential and can lead to an escape of φ from the minimum. The escape gives
rise to an observable voltage pulse. The escape rate in the same or similar sys-
tems has been studied for a variety of noise sources and potentials [6, 7, 8, 9].
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bI

I thφ (t)
GV

Fig. 1. A voltage biased mesoscopic conductor with conductance G provides the
noise source for a threshold detector which is characterized by its threshold current
Ith. Ib is an additional current bias.

To our knowledge, the non-Gaussian noise sources that are characterized by
FCS were not addressed yet.

To proceed, we begin with the fully quantum mechanical description of
the system in terms of a Keldysh action for a single variable φ [10, 9], that
incorporates information about FCS of the normal conductor and the prop-
erties of the Josephson junction. We calculate the escape rate by considering
saddle-point trajectories of the action, A, that connect the potential minimum
with the nearest potential maximum. With exponential accuracy, the rate is
given by Γ � exp(−ImA/�).

The action consists of two terms, A = AJ + AN, corresponding to the
elements of the circuit. We denote by φ± the phases on the forward/backward
parts of the Keldysh contour and also use symmetrized combinations of these
φ, χ = (φ+ ± φ−)/2. The junction part reads in a standard way [10]:

AJ =
∫

dt

(
U(φ+(t)) − �

2C

8e2
φ̇+2(t)

)
− {φ+ ↔ φ−}, (1)

C being the self-capacitance of the junction, U(φ) being the Josephson energy
with the current bias term included: −U(φ) = (�/2e)(Ic cosφ + Ibφ) for a
single junction. Further we concentrate on overdamped junctions where C 	
G2

�/(2eIc) and neglect the capacitance term. The normal conductor part we
write following [11] in quasi-stationary approximation

AN =
i�

2e
G

∫
dt(V − �

2e
φ̇(t))S(χ(t)); (2)

where S characterizes the FCS and the preceding factor is just the voltage
drop over the normal conductor. A coherent conductor can be presented by a
set of transmission eigenvalues Tn and S is given by Levitov’s formula [3]

S(χ) =
GQ

G

∑
n

ln
(
1 + Tn(eiχ − 1)

)
, (3)

GQ being the conductance quantum. Concrete forms of S(χ) for specific
conductors will be given below. At χ → 0, S can be expanded in χ,
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S ≈ iχ − χ2F/2, F being the Fano factor that describes the suppression
of shot noise in comparison with the Poisson value [1].

This quasi-stationary approximation is only valid if the typical time τ of
the motion along the saddle-point trajectory is long in comparison with �/eV ,
that is, eV τ 
 �. To check the validity of this, we precede the results with
simple qualitative estimations.

Let us consider an arbitrary barrier with the width φ0 and height U0 �
(�/e)Ithφ0. The detection time can be estimated equating the potential energy
term and the term with φ̇, Gφ0(�/e)

2
χ/τ � U0χ/φ0, χ being a typical value

along the trajectory. This gives τ � (�/eV )φ0(If/Ith). The quasi-stationary
approximation thus holds provided If ≡ GV 
 Ith/φ0. Let us estimate χ
by equating the term which is quadratic in χ and the potential term. This
gives χ � Ith/If if Ith 	 If , χ � 1 otherwise. We see that if φ0 < 1 then
χ 	 1. The latter implies that S(χ) can be expanded near χ = 0 and only the
first two cumulants are relevant: no chance to see the effect of FCS. However,
if φ0 
 1, χ can become of the order of unity without violating the quasi-
stationary approximation, and one can observe the FCS. The quasi-stationary
approximation remains valid for χ < φ0.

The resulting rate can be estimated as logΓ � φ0(G/GQ)χ. If φ0 < 1,
this reduces to logΓ � φ0(G/GQ)Ith/If . In the opposite limit, the estimation
for the rate reads logΓ � φ0(G/GQ)F (Ith/If), F being a dimensionless func-
tion � 1. It is important to note that these expressions match the quantum
tunneling rate logΓ� � U0τ/� � (G/GQ)φ2

0 provided eV τ � �. Therefore the
quasi-stationary approximation is valid when the quantum tunneling rate is
negligible and the third factor mentioned in the introduction is not relevant.
For equilibrium systems, the situation corresponds to the well-known crossover
between thermally activated and quantum processes at kBTτ � � [9].

We proceed with the quantitative solution. The trajectories we are looking
at start at t → −∞ in the minimum of the potential with φ = φmin, χ = 0 and
approach the maximum φ = φmax, χ = 0 at t → ∞. They obey the equations
of motion

0 =
∂

∂χ

[
U(φ+(t)) − U(φ−(t)) +

i�

2e
G(V − �

2e
φ̇(t))S(χ(t))

]
, (4)

0 =
∂

∂φ

[
U(φ+(t)) − U(φ−(t))

]
+ i

(
�

2e

)2

Gχ̇
∂S

∂χ
. (5)

It is important to note that these equations have a simple integral of motion

i(U(φ+) − U(φ−)) +
�

2e
IfS(χ) = I (6)

I = 0 for saddle-point trajectories of interest. The full action along the tra-
jectory then reads

− 2e2

�2G
A =

∫
dtφ̇S(χ) =

∫ φmax

φmin

dφS(χ(φ)) (7)

where in the last relation χ is expressed in terms of φ by means of Eq. 6.
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Let us start with the results for φ0 � 1. In this case, one expands the
action in terms of χ keeping terms of the first and second order only. This
immediately yields χ = i4e(∂U/∂φ)/(�FIf). The general answer for the escape
rate can be obtained at any shape of the barrier and reads:

Γ � exp
(
−Umax − Umin

kBT ∗

)
; kBT

∗ = eV F/2 (8)

This is thermal activation with an effective temperature given by the noise
in the normal conductor. A similar effect of noise was envisaged in a recent
article [12] for the phase diffusion regime.

Let us now consider the more interesting case φ0 
 1. The simplest re-
alization of such a barrier comprises N 
 1 Josephson junctions connected
in series, this gives U(φ) = NIc sin(φ/N), φ0 � N . However, this system is
formally metastable: the vortices can traverse the junction providing phase
slips ∆φ = 2π. To eliminate this, one would increase the barrier for the vor-
tex formation, for instance, by making several parallel chains of junctions.
This would further complicate the concrete function U(φ). We notice that
any function U(φ) can be approximated by a cubic parabola if the tilting of
the washboard potential is close to the critical value. This is why we choose
the cubic parabola form

∂U

∂φ
=

�

2e
Ith

[
1 −

(
φ

φ0

)2
]
, (9)

for actual calculations. It is convenient to require that the barrier does not
change if we change If . This can be done by a corresponding change of Ib. To
simplify this further, we notice that χ 	 φ0 so that

U(φ+) − U(φ−) ≈ χ
∂U

∂φ
. (10)

Substitution into Eq. 6 gives φ in terms of χ

φ = φ0

√
1 +

If
Ith

(
S(χ)
iχ

− 1
)
. (11)

Combining this with Eq. 7, we obtain the escape rates as a function of Ith/If
for any given FCS.

To stress similarities and differences with thermal activation, we present
the results in the form of Arrhenius-like plots. We plot logΓ in units of
(G/GQ)φ0 versus the dimensionless Ith/If . Thermal activation with the ef-
fective temperature given by (8) would give a straight line (dashed lines
in the plot). By virtue of our approach, the rates should exceed the quan-
tum limit logΓ� � (G/GQ)φ2

0. This means that the rates should saturate
at this value provided If → 0. For each choice of S(χ) we plot two curves
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corresponding to two possible signs of V with respect to the current via the
junction. For forward bias, the barrier is crossed when the fluctuating cur-
rent is smaller than the average current. For backward bias, the barrier is
crossed if the fluctuating current is bigger than the average value. The dif-
ference between two curves thus reflects the asymmetry of the current distri-
bution with respect to the average current. In Fig. 2, left panel, we present
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Fig. 2. Escape rates versus Ith/If for a tunnel (t), diffusive (d) and ballistic (b)
mesoscopic conductor. “+”/“-” refers to forward/backward bias respectively. Dashed
lines correspond to the rates due to Gaussian noise.

the results for a tunnel junction (St(χ) = eiχ − 1) and a diffusive conduc-
tor (Sd(χ) = (1/4)arccosh2(2eiχ − 1)) [13]. All curves approach the dashed
thermal activation lines at If 
 Ith. Since the tunnel junction is more noisy
(F = 1 versus F = 1/3 for a diffusive conductor), it generally provides higher
escape rates. However, the difference in functional form of the rates remains
pronounced even upon rescaling with factor 3. The most pronounced feature
of the backward bias curves is a plateau at If → Ith with subsequent drop to
very small escape rates � Γ� (beyond the vertical scale of the plot). This is
because the current distribution is restricted: shot noise current is always of
the same sign as the average current.

A quasi-ballistic conductor presents two peculiarities of this kind. We
choose the transmissions of all channels to be the same, T0 = 0.8, Sb(χ) =
(1/T0) ln

(
1 + T0(eiχ − 1)

)
. In this case, the current distribution is restricted

from both sides: the maximum current fluctuation can not exceed the ballistic
limit Il = If/T0. From this we conclude that the barrier can not be crossed at
forward bias if Ith > (1/T0 − 1)If = 0.25If , as seen in the right panel of Fig.
2. The rate becomes increasingly smaller upon approaching this threshold.

There is an unambiguous correspondence between the rates as a function
of If/Ith and S, that is given by Eqs. (7), (11) and can be used to characterize
the FCS from the rates measured. However, this relation is implicit and more
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complicated than that of an ideal detector. Apparently, this complication is
due to the first and second factor mentioned in the introduction. To look at it
in more detail, we compute the optimal current and voltage fluctuations that
switch the detector.
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Fig. 3. Optimal current fluctuations (left panel) and feedback voltage (right panel)
versus time for different conductors and different values of Ith/If . Each line corre-
sponds to one point on the curves in figure 2. Note the different voltage scales. The
labels stand for (branch|Ith/If): (a) b+|1/5, (b) b+|1/10, (c) t-|1/3, (d) d-|1/3, (e)
d-|2/3, (f) t-|2/3.

The optimal current fluctuations are plotted in the left panel of Fig. 3 for
different conductors and If . The curves are symmetric owing to the symmetry
of the cubic parabola potential. Common features are that they all reach the
threshold current at maximum and their time spread is of the order of τ . Still,
the spread, shape, and most importantly, the integral of the current over time,
varies significantly from curve to curve. This proves that the detector in use
is dispersive and suffers from the first factor mentioned in the introduction.

The third factor is also in play. When φ moves, crossing the potential bar-
rier, the resulting voltage changes the voltage drop over the normal conductor
thereby affecting the current fluctuations in there. This feedback voltage Vfb

is negative for forward bias and positive for negative one. We see from the
evolution equations that

Vfb

V
≡ − �φ̇

2eV
=

S(χ(t))
χ(t)

∂χ

∂S(χ(t))
− 1, (12)

so the change in the voltage drop across the junction is quite significant if
χ � 1. We check that the negative feedback can never change the sign of the
voltage for S(χ) in use. The right panel of Fig. 3 presents voltage fluctuations
corresponding to the current fluctuations on the left panel. Interestingly, the
positive feedback can be very big on the plateau at the backward bias (curves
e, f). In this case, the detector seeks to optimize the rare fluctuation where
almost no current is flowing in the normal conductor. The probability of such
fluctuations is increased upon increasing the voltage drop over the conductor
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so that the detector provides the extra voltage required. Eventually, the feed-
back can be reduced with an extra resistive shunt over the Josephson junction.
However, this would decrease τ and reduce the region of applicability of our
results.

To conclude, we proved that Josephson junctions can be used as thresh-
old detectors for non-Gaussian noise produced by coherent conductors. Our
theoretical results facilitate a new type of electric noise measurement: direct
measurement of full counting statistics of the transferred charge.
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Summary. Interference of electronic waves undergoing Andreev reflection in diffu-
sive conductors determines the energy profile of the conductance on the scale of the
Thouless energy. A similar dependence exists in the current noise, but its behavior
is known only in few limiting cases. We consider a metallic diffusive wire connected
to a superconducting reservoir through an interface characterized by an arbitrary
distribution of channel transparencies. Within the quasiclassical theory for current
fluctuations we provide a general expression for the energy dependence of the cur-
rent noise. We calculate analytically the quantum interference corrections to the
semiclassical result.

1 Introduction

Interference of electronic waves in metallic disordered conductors is respon-
sible for weak localization corrections to the conductance [1]. If these are
neglected, the probability of transferring an electron through the diffusive
medium is given by the sum of the modulus squared of the quantum proba-
bility amplitudes for crossing the sample along all possible paths. This prob-
ability is denoted as semiclassical, since quantum mechanics is necessary only
for establishing the probability for following each path independently of the
phases of the quantum amplitudes. In superconducting/normal metal hybrid
structures, interference contributions are not corrections, they may actually
dominate the above defined semiclassical result for temperatures and volt-
ages smaller than the superconducting gap. This is seen experimentally as an
energy dependence of the conductance on the scale of the Thouless energy.
Indeed, the energy dependence comes from the small wavevector mismatch,
linear in the energy of the excitations, between the electron and the Andreev
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reflected hole. This is responsible for the phase difference in the amplitudes
for two different paths leading to interference. The effect is well known and
explicit predictions and measurements exist for a number of systems [2, 3, 4].

Interference strongly affects the current noise too [5]. The largest effects are
expected in the tunneling limit, when the transparency of the barrier is small
and its resistance is much larger than the resistance of the diffusive normal
region. Then, the conductance has a strong non linear dependence at low
bias (reflectionless tunneling) [2, 3]. This is actually the case, but the zero-
temperature noise (or shot noise) does not give any additional information
on the system since it is simply proportional to the current, as shown quite
generally in Ref. [6]. In the more interesting case of a diffusive metal wire in
contact with a superconductor through an interface of conductance GB much
larger than the wire conductance GD, Belzig and Nazarov [7] found that the
differential shot noise, dS/dV , shows a reentrant behavior, as a function of the
voltage bias, similar, but not identical, to the conductance one. (The extension
of the Boltzman-Langevin approach to the coherent regime in Ref. [8] neglects
this difference.) In order to compare quantitatively with actual experiments [9,
10, 11] and to gain more insight in the interference phenomenon, it is necessary
to obtain the energy dependence of noise in more general situations. The
numerical method used in Ref. [7] is, in principle, suitable to treat more general
cases, notably the case when GD ∼ GB , but only if all channel transparencies,
{Γn}, that characterize the interface are small. In Ref. [12] we presented an
analytical solution for the diffusion-type differential equation for the noise
within the theory of current fluctuations [13] in the quasiclassical dirty limit
[7]. It allows to treat the general case of arbitrary values for {Γn} and GB/GD.
In the present paper we present the minimal set of equations necessary to
obtain the noise. We then exploit them to obtain closed analytical expressions
for the noise at large energy.

2 Equations to obtain the noise

In Ref. [12] we have developed an analytical theory to calculate the current
noise in a diffusive wire of length L, diffusive constant D, and conductance
GD. The wire is connected to a normal reservoir on one side through a trans-
parent interface and to a superconducting one on the other side through an
arbitrary interface characterized by a set of channel transparencies {Γn}. Let
us summarize in a compact form the equations necessary to obtain the noise.
These equations are obtained by exploiting the semiclassical theory proposed
by Nazarov [14] to calculate the full counting statistics of charge transfer[13].
Details are given in Ref. [12].

The first step consists in obtaining the conductance G. For that we need
fT (x) and θ(x) (x varies between 0 and L), parameterizing respectively the
fermion distribution and the superconducting correlations. θ = θ1 + iθ2 is a
complex parameter that satisfies the equation

�D θ′′(x) + 2iε sinh θ(x) = 0 , (1)
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with boundary conditions [15] θ(L) = 0 and θ′(0) = H[θ(0)], where

H[θ] =
i

L r

〈
cosh θ

1 + Γ
2 (i sinh θ − 1)

〉
. (2)

We defined 〈ψ(Γ )〉 ≡
∑

n Γnψ(Γn)/
∑

n Γn, GB = (2e2/h)
∑

n Γn, and r =
GD/GB . For fT we have the simpler equation (cosh2 θ1(x)f ′

T (x))′ = 0 with
boundary conditions fT (L) = fT0 and

f ′
T (0) =

fT (0) θ′1(0)
cosh θ1(0) sinh θ1(0)

. (3)

Here fT0 = f−−f+, f±(ε) = f(ε±eV ), f is the Fermi function at temperature
T , and V is the voltage bias. Then the current is I = 1/(2e)

∫
dεG(ε)fT0(ε)

with [2]

G(ε) = GD

[
D−1(ε) +

tanh θ1(0)
Lθ′1(0)

]−1

(4)

and D−1(ε) = 1/L
∫ L

0
ds/ cosh2 θ1(s). At low temperatures, kBT 	 eV ,

G(V ) = G(eV ) is the differential conductance. Similar equations have been
recently exploited in Ref. [16] to discuss the conductance.

To obtain the noise we need an additional parameter a(x). It parameterizes
the first correction in the counting field to the Usadel Green’s function. Other
parameters intervene, but we do not need them to calculate the noise [12].

The complex parameter a = a1 + ia2 satisfies the following linear differen-
tial equation:

�Da′′(x) + 2i ε a(x) cosh θ(x) = −2ET
sinh θ1(x)
cosh3 θ1(x)

G(ε)2

G2
D

, (5)

with ET = �D/L2 the Thouless energy. The boundary conditions are a(L) = 0
and La′(0) = αa(0)/r + β/r with

α =

〈
i sinh θ − Γ (i sinh θ − 1)/2

[1 + Γ (i sinh θ − 1)/2]2

〉
(6)

β =
ic2

8

〈
2Γ 2 cosh θ∗ + 8(Γ − 1) cosh θ − 2iΓ (Γ − 2) sinh θ cosh θ∗

|1 + Γ (i sinh θ − 1)/2|2 (1 + Γ (i sinh θ − 1)/2)

〉
,

both evaluated at x = 0. The low frequency noise is finally given by:

S =
∫
dεG(ε)

{
1 − f2

L0(ε) − [1 −F(ε)]f2
T0(ε)

}
, (7)

where

F(ε) =
2
3
(1 + c3) +

2G
GD

∫ 1

0

sinh θ1a1

cosh3 θ1
ds− GDa

′
1(0)c2

G tanh θ1(0)
− 2a1(0)c

sinh 2θ1(0)
, (8)



274 M. Houzet and F. Pistolesi

with c = 1 − G(ε)/[GDD(ε)] and fL0 = 1 − f+ − f−.
We have now all the ingredients to calculate explicitly the noise for ar-

bitrary values of the ratio r, of the energy ε, and of the transparency set
{Γn}.

3 Large energy limit for r �= 0

Let us now study the large energy (or incoherent) limit. We will actually
find an analytical expression for the quantum corrections. Indeed if r �= 0 for
ε ggET the parameter θ vanishes like 1/

√
ε, it is thus convenient to set up the

following expansion:

θ(x) =
θ(0)(x)

k
+
θ(1)(x)
k2

+
θ(2)(x)
k3

+ . . . (9)

where we introduced the large parameter k =
√
ε/ET . We can now substitute

(9) into (1) and the boundary conditions. In collecting terms of the same order
in 1/k one has to take care that each derivative with respect to x introduces
an additional k factor. At lowest order we obtain

θ(m)′′(x̃) + 2ik2 θ(m) = 0 (10)

θ(2)′′(x̃) + 2ik2 [θ(2) + θ(0)3/3!] = 0 , (11)

where m = 0, 1 and x̃ = x/L. For the boundary conditions we heve
θ(m)(L) = 0 for all m, θ(0)′ = kH(0), θ(1)′ = kH ′(0)θ(0), and θ(2)′ =
kH ′(0)θ(1) + kH ′′(0)θ(0)2/2. To obtain the conductance to order 1/k2 we
need also the boundary condition for θ(3)′, but we do not need to solve the as-
sociated differential equation. Solving the differential equations (10) and (11)
and substituting the result into Eq. (4) we obtain for the conductance up to
second order in 1/k the following expression:

G =
H ′

1 +H ′ +
H ′H ′′

2k(1 +H ′)2
+
H ′H ′′(2H ′ + 2H ′2 −HH ′′)

4k2(1 +H ′)4
+ . . . . (12)

Equation (12) holds for any distribution of channel transparency, it suffices
to calculate the appropriate averages for H, H ′, and H ′′.

The procedure to obtain the noise is similar. This time we need an ex-
pansion of the parameter a which has the same form of (9). Actually the
differential equation for a(0) and a(1) coincide with those for θ(0). The equa-
tion for a(2) reads:

a(2)′′(x̃) + 2ik2a(2) = −2k2[ia(0)θ(0)2 + fT0G
2θ

(0)
1 ] . (13)

The boundary conditions for a read: a(0)′ + kβ(0)/r = 0, a(1)′ + k[α(0)a(0) +
β(1)]/r = 0, and a(2)′ + k[α(0)a(1) + α(1)a(0) + β(2)]/r = 0, where α = α(0) +
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α(1)/k + . . . and β = β(0) + β(1)/k + . . . . Substituting these expressions into
(8) we can obtain the differential Fano factor F(ε) = (dS/dV )(ε)/2eG(ε). The
lowest order, i.e. the incoherent contribution, has a simple form:

Finc =
2
3

⎡⎢⎣1 + (2 − 3

〈
Γ 3

(2−Γ )4

〉
〈

Γ
(2−Γ )2

〉 )
G3

D(
GD + 2GB

〈
Γ

(2−Γ )2

〉)3

⎤⎥⎦. (14)

This can be understood by a comparison with the classical calculation of
Ref. [17] for a wire connected to normal reservoirs. Eq. (14) coincide with
the Fano factor given there when the substitution e → 2e, GD → GD/2
and Γn → ΓA

n = Γ 2
n/(2 − Γn)2 are performed. This is consistent with the

expectation that phase coherence becomes irrelevant at high energy (see also
the discussion in Ref. [18]).

The expression for the quantum correction to (14) is cumbersome in the
general case and we will not present it. A simpler expression is obtained when
all transparencies are the same (Γn = Γ ):

F (1) =
2r2(Γ − 2)2

[r(Γ − 2)2 + 2Γ ]4
[
Γ (Γ − 2)(r(Γ − 2)(Γ 2 + 12Γ − 12) − 64) − 64

]
and F(ε) = Finc + F (1)/

√
ε/ET .

4 Conclusions

We presented a theory to calculate the energy dependence of the noise in
a wire connecting a normal with a superconducting reservoir. The theory
allows to obtain closed analytical expressions in different relevant limits. We
considered here in some details the large energy case. The classical incoherent
result appears for energy much larger than the Thouless energy. Quantum
corrections are explicitly evaluated when all transparencies have the same
value.
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1 Introduction

Transport studies provide a powerful tool for investigating electronic prop-
erties of a conductor. The I(V ) characteristic (or the differential resistance
Rdiff = dV/dI) contains partial information on the mechanisms responsible
for conduction. A much more complete description of transport in the steady
state, and further information on the conduction mechanisms, is given by the
probability distribution of the current P , which describes both dc current I
and the fluctuations δI = I(t)− I. The current fluctuations can be character-
ized by the moments of the probability distribution P of order two and higher.
However, until now only the second moment has been measured in the many
systems studied [1]. In this article we report the first measurements of the
third moment of the voltage fluctuations across a conductor,

〈
δV 3

〉
, where

δV = V (t) − V represents the voltage fluctuations around the dc voltage V
(see also [2]); 〈.〉 stands for time averaging, or equivalently for averaging over
the distribution P . Below we relate

〈
δV 3

〉
to

〈
δI3

〉
. Our experimental setup

is such that the sample is current biased at dc and low frequency but the
electromagnetic environment has an impedance ∼50 Ω within the detection
bandwidth, 10 MHz to 1.2 GHz. Our results are in agreement with a recent
theory that considers the strong effect of the electromagnetic environment of
the sample [3]. Moreover, we show that certain of these environmental effects
can be dramatically reduced by signal propagation delays from the sample to
the amplifier.

We present the theoretical overview first for the case of voltage bias [1]. In
a junction with a low transparency barrier (which corresponds to our samples)
biased by a dc voltage V , the current noise spectral density (related to the
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second moment) is given for low frequency by: SI2 = eGV coth(eV/2kBT) [4]
(in A2/Hz), where e is the electron charge and G is the conductance. Only
at high voltage eV 
 kBT does this reduce to the Poisson result SI2 = eI
[4]. The spectral density of the third moment of the current fluctuations in a
voltage biased tunnel junction of low transparency is calculated to be: SI3 =
e2GV , independent of temperature [5, 6]. By considering how the Fourier com-
ponents can combine to give a dc signal, we find that

〈
δI3

〉
= 3SI3(f2−2f1)2,

where the detection bandwidth is from f1 to f2. We have experimentally con-
firmed this unusual dependence on f1 and f2 (data not reported here, see [2]).

We next consider the effects of the sample’s electromagnetic environment
(contacts, leads, amplifier, etc.); the sample is no longer voltage biased. The
environment emits noise, inducing fluctuations of the voltage across the sam-
ple, which in turn modify the probability distribution P . Moreover, due to the
finite impedance of the environment, the noise emitted by the sample itself
induces also voltage fluctuations. We consider the circuit depicted in the inset
of Fig. 2, at first neglecting time delay along the coaxial cable. The noise of
the sample of resistance R is modeled by a current generator i. The voltage
δV is measured across a resistor R0, which has a current generator i0 of noise
spectral density Si20

. One has δV = −RD(i+ i0) with RD = RR0/(R+R0) (R
in parallel with R0). It has been recently predicted that the third moment of P
is significantly modified by the environment [3], leading to a spectral density:

SV 3 = −R3
DSI3 + 3R4

DSi20

dSI2

dV
+ 3R4

DSI2
dSI2

dV
(1)

The first term on the right is like that of the second moment. The negative
sign results from an increasing sample current giving a reduced voltage. Our
detection method is insensitive to Si30

. The environment noise i0 induces volt-
age fluctuations δV = −RDi0 across the sample. These modify the sample’s
noise SI2 (which depends on V (t)) as −RDi0dSI2/dV , to first order in δV .
This is the origin of the second term. The sample’s own current fluctuations
also modify the sample voltage to contribute similarly, giving the last term of
Eq. (1). We present below a simple derivation of how to include the effect of
progation time in the coaxial cable, which dramatically affects SV 3 .

2 Experimental setup and results

Two samples have been studied. Both are tunnel junctions made of Al/Al
oxide/Al, using the double angle evaporation technique [7]. In sample A (made
by C. Wilson), the bottom and top Al films are 50 nm thick. The bottom
electrode was oxidized for 2 hours in pure O2 at a pressure of 500 mTorr.
The junction area is 15 µm2. In sample B (made by L. Spietz), the films are
120 nm and 300 nm thick, oxidation was for 10 min, and the junction area is
5.6 µm2.
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We have measured δV (t)3 in real time (see Fig. 1). The resistance of the
sample is close to 50 Ω, and thus is well matched to the coaxial cable and
amplifier. After amplification at room temperature the signal is separated into
four equal branches, each of which carries a signal proportional to δV (t). A
mixer multiplies two of the branches, giving δV 2(t); a second mixer multiplies
this result with another branch. The output of this second mixer, δV 3(t), is
then low pass filtered, to give a signal which we refer to as D. Ideally D is
simply proportional to SV 3 , where the constant of proportionality depends
on mixer gains and frequency bandwidth. The last branch is connected to a
square-law crystal detector, which produces a voltage X proportional to the
the rf power it receives: the noise of the sample

〈
δV 2

〉
plus the noise of the

amplifiers. The dc current I through the sample is swept slowly. We record
D(I) and X(I); these are averaged numerically. This detection scheme has
the advantage of the large bandwidth it provides (∼1 GHz), which is crucial
for the measurement. We deduce SV 3 ∝ (D(I) − D(−I))/2. The magnitude
and sign of

〈
δV 3

〉
is obtained from measurements of D when the sample is

replaced by a programmable function generator.

Idc

sample crystal

X = <δV2(t)>

bias teeT = 300K

T = 4.2K
or 77 K

low pass

D = <δV3(t)>
coax. cable

Fig. 1. (a) Schematic of the experimental setup.

Sample A was measured at T = 4.2K. Its total resistance (tunnel junction
+ contacts) is 62.6 Ω. The resistance RA of the junction is extracted from the
fit of SV 2 as a function of eV/kBT , with V the voltage drop across the junction.
We find RA = 49.6 Ω. Rdiff is voltage independent to within 1%. The gain
of the amplification chain has been calibrated by replacing the sample by a
macroscopic 50 Ω resistor whose temperature was varied. We find η = 1 with
a precision of a few percent for both samples. SV 3(eV/kBT ) for |V | ≤ 10 mV
is shown in Fig. 2 (top); these data were averaged for 12 days.

Sample B was measured at T = 4.2 K, 77 K and 290 K. The resistance of
the junction RB = 86Ω is almost temperature independent. The contribution
of the contacts is ∼ 1 Ω. In Fig. 2 (middle and bottom panels) the averaging
time for each trace was 16 hours.
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Fig. 2. Measurement of SV 3(eV/kBT ) (solid lines). The dashed lines corresponds
to the best fit with Eq. (1). The dotted lines in the top plot correspond to the
different contributions to SV 3 (see text). Inset of the middle plot: schematics of the
equivalent circuit used for the theoretical model.

3 Interpretation

To analyze our results, consider again the circuit in the inset of Fig. 2, a
simplified equivalent of our setup. R0 ∼ 50 Ω is the input impedance of
the amplifier, which is connected to the sample through a coaxial cable of
impedance R0 (i.e., matched to the amplifier). The sample’s voltage reflection
coefficient is Γ = (R − R0)/(R + R0). In the analysis we present next we
neglect the influence of the contact resistance and impedance mismatch of
the amplifier, but we have included it when computing the theory to compare
to the data. The voltage δV (t) measured by the amplifier at time t arises from
three contributions: i) the noise emitted by the amplifier at time t: R0i0(t)/2;
half of i0 enters the cable. ii) the noise emitted by the sample (at time t−∆t,
where ∆t is the propagation delay along the cable) that couples into the cable:
(1 − Γ )Ri(t −∆t)/2; iii) the noise emitted by the amplifier at time t − 2∆t
that is reflected by the sample: ΓR0i0(t− 2∆t)/2; thus,

δV (t) = −R0

2
[i0(t) + Γi0(t− 2∆t)] − R

2
(1 − Γ )i(t−∆t) (2)
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For ∆t = 0, Eq. (2) reduces to δV = −RD(i+ i0) with RD = RR0/(R+R0).
Thus,

〈
δV 3

〉
= −R3

D(
〈
i3
〉

+ 3
〈
i2i0

〉
+ 3

〈
ii20

〉
+

〈
i30
〉
) for ∆t = 0. In this

equation the term
〈
i2i0

〉
leads to the second term on the right of Eq. (1).

The term
〈
i3
〉

yields the first term of Eq. (1), and, due to the sample noise
modulating its own voltage, the third term of Eq. (1) as well. The terms

〈
i30
〉

and
〈
ii20

〉
are zero. The result for ∆t = 0 corresponds to Eq. (1), which is a

particular case of Eq. (12b) of Ref. [3].
The finite propagation time does affect the correlator

〈
i2i0

〉
. The term

Si20
in Eq. (1) has to be replaced by (ΓSi20

+ Si0(t)i0(t−2∆t))/(1 + Γ ), where
Si0(t)i0(t−2∆t) is the spectral density corresponding to the correlator 〈i0(t)
i0(t−2∆t)〉. For long enough ∆t this term vanishes, since i0(t) and i0(t−2∆t)
are uncorrelated. Thus, the effect of the propagation time is to renormalize the
noise temperature of the environment T0 = R0Si20

/(2kB) into T ∗
0 = T0Γ/(1 +

Γ ).
We now check whether Eq. (1), with SI3 = e2I and modified as above to

account for finite propagation time, can explain our data. The unknown para-
meters are the resistance R0 and the effective environment noise temperature
T ∗

0 . We checked that the impedance of the samples was frequency independent
up to 1.2 GHz within 5%. Fig. 2 shows the best fits to the theory, Eq. (1),
for all our data. The four curves lead to R0 = 42 Ω, in agreement with the
fact that the electromagnetic environment (amplifier, bias tee, coaxial cable,
sample holder) was identical for the two samples. We have measured the im-
pedance Zenv seen by the sample. Due to impedance mismatch between the
amplifier and the cable, there are standing waves along the cable. This causes
Zenv to be complex with a phase that varies with frequency. We measured
that the modulus |Zenv| varies between 30 Ω and 70 Ω within the detection
bandwidth, in reasonable agreement with R0 = 42 Ω extracted from the fits.

We have measured directly the noise emitted by the room temperature
amplifier; we find T0 ∼ 100 K. The cable of length ∼2m corresponds to ∆t
being large for the bandwidth we used. As a consequence, the relevant noise
temperature to be used to explain the data is T ∗

0 . For sample A, Γ = 0.11;
including the contact resistance and cable attenuation one expects T ∗

0 = 5 K;
for sample B, Γ = 0.26 and one expects T ∗

0 = 21 K. A much shorter cable
was used for T = 290 K, and the reduction of T0 is not as significant. These
numbers are in reasonably good agreement with the values of T ∗

0 deduced
from the fits (see Fig. 2), and certainly agree with the trend seen for the two
samples. Clearly T ∗

0 	 T0 for the long cable.
Our data are consistent with a third moment of current fluctuations SI3

being independent of T between 4K and 300K when the sample is voltage bi-
ased, as predicted for a tunnel junction. We have also clearly demonstrated the
effect of the environment, through its noise and impedance (data not reported
here, see [2]). This is of prime importance for designing future measurements
on samples with unknown third moment.
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Summary. We show how shot noise can be used for studies of hopping and reso-
nant tunneling between localized electron states. In hopping, shot noise is seen to
be suppressed compared with its classical Poisson value SI = 2eI (I is the aver-
age current) and depends on the geometry of current paths and the distribution of
the barriers between the states. In resonant tunneling through a single impurity an
unusual enhancement of shot noise is observed. It has been established that a con-
siderable increase of noise can occur due to interaction between resonant tunneling
channels.

1 Introduction

In the past few years much attention has been drawn to the properties of shot
noise in mesoscopic structures. So far experimental studies have been primarily
concentrated on ballistic and diffusive systems, with only few exceptions [1, 2]
where shot noise in electron tunneling or hopping was investigated.

In this work we have studied shot noise in hopping in short, mesoscopic
barriers, where the condition L/Lc < 1 is realized (Lc is the correlation length
of the hopping network). We have found that the result depends on the geom-
etry of the sample [3]. The Fano factor F = SI/2eI for a wide sample (2D
geometry) is found to be smaller than for a narrow (1D geometry) sample.
We explain this by the reconstruction of the hopping network in the 2D case
[4, 5]: in a short sample the current is carried by a set of most conductive
hopping chains.

With decreasing further the sample length and temperature, resonant tun-
neling (RT) through a single localized state can be seen. It has been predicted
that in this case the suppression factor F is equal to

(
Γ 2

L + Γ 2
R

)
/ (ΓL + ΓR)2

[6], where ΓL,R are the leak rates from the state to the left and right contacts.
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Fig. 1. (a) Conductance as a function of the gate voltage for 2D and 1D configura-
tions at T = 4.2 K. Insets: (i) Cross-section of the transistor structure. (ii) Enlarged
G (Vg) near the pinch-off. (b) Fano factor for different samples with a schematic
representation of hopping paths in each case. Small crosses show dominant hops.
The solid line shows the (L/Lc)

−1 dependence and dotted lines are guides to the
eye.

In our study of shot noise in resonant tunneling we have observed significant
enhancement of shot noise [7]. We have proved that this effect is caused by
the Coulomb interaction between two parallel resonant tunneling channels.

The experiment has been carried out on a n-GaAs MESFET consisting of
a GaAs layer of 0.15 µm (donor concentration Nd = 1017 cm−3). On the top of
the GaAs layer Au gates are deposited with dimensions L = 0.4, W = 4 µm,
and L = 0.2, W = 20 µm, Fig. 1a (i). By applying a negative gate voltage,
Vg, a lateral potential barrier is formed between the ohmic contacts (source
and drain). Some gates contain a split of width ω = 0.3, 0.4 µm with the aim
to define a one-dimensional hopping channel.

2 Hopping

We have studied two gates on the same structure (L = 0.4 µm and W = 4
µm) with splits of different width: ω = 0.3 µm (sample A) and ω = 0.4
µm (sample B). The sample with the narrow split shows different behaviour
from one cooldown to another: two-dimensional (referred to as A-2D) and one-
dimensional (A-1D), Fig. 1a. In the 1D configuration where the position of the
conducting hopping chain is determined by the position of the split electron
transport through the split is seen in Fig. 1a (ii) as a characteristic bend in
the conductance. The second sample (B) has G (Vg) that does not look similar
to either of the two curves of the sample A. To determine the characteristic
length Lc in the structure at different gate voltages, we have measured the
T -dependence of the conductance of sample A in its 2D configuration.
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We have measured the cross-correlated spectrum SI (Isd) [3]. In order to
find the Fano factor we used the following fit SI (Isd) = F2eIsd coth

(
FeVsd

2kBT

)
−

4kBTGS , where GS is the ohmic conductance [8, 9].
The Fano factor as a function of gate voltage for different structures is

shown in Fig. 1b. In the 2D case the Fano factor slowly increases from 0.1
to 0.2 with decreasing Vg. According to the N = 1/F -barrier model this
change corresponds to a decrease in the number of dominant hops from 10
to 5. In the range Vg from −1.34 to 1.18 V we find agreement between the
Fano factor and the number of the hard hops N = L/Lc. With depleting
the conducting channel Lc increases and approaches L, while the Fano factor
shows a saturation around F ∼ 0.2. The difference between (L/Lc)

−1 and
F confirms that electron transport at these gate voltages is determined by
chains of hops [5, 4].

In A-1D sample the 1D channel is only formed at Vg < −1.3 V, Fig. 1a.
In the range of Vg from −1.32 to −1.63 V, F increases from 0.07 to 0.15
which corresponds to N � 1/F = 7. With further increasing negative gate
voltage (Vg < −1.65 V) the Fano factor in Fig. 1b rapidly increases to 0.8. In
this case, as the distribution of the resistances of these hops is exponentially
broad, only a single hop dominates the whole conductance of the 1D channel,
so that the Fano factor is close to 1.

For sample B the measurements of shot noise in the range of Vg from −1.36
V to −1.31 V have shown an increase of F from 0.6 to 0.8, Fig. 1b (sample
B). This large value of the Fano factor compared with F ∼ 0.2 expected for
2D hopping implies that hopping in this sample occurs through the 1D split
and is dominated by one or two hard hops.

3 Resonant tunneling

Shot noise in the case of resonant tunneling through a single impurity has been
studied on a 2D sample with the gate length 0.2 µm and width 20 µm. Fig. 2a
shows the increase of the amplitude of the peaks with decreasing T , which
is a typical feature of RT through an impurity. The box in Fig. 2b indicates
the range of Vg where shot noise has been studied at 1.85 K< T < 4.2 K.
In Fig. 2c (inset) an example of the shot noise spectrum is shown at a gate
voltage near the RT peak in Fig. 2b.

Fig. 2c shows the dependence of the shot noise power on Vsd at two temper-
atures. At small biases (Vsd < 3 mV) a pronounced peak in noise is observed,
with an unexpectedly large Fano factor F > 1. At large biases (Vsd > 3
mV), shot noise decreases to a conventional sub-Poisson value, F ∼ 0.6. The
figure shows the dependence SI (Vsd) with different F plotted using the phe-
nomenological expression for shot noise for RT through a single impurity
SI = F2eIsd coth

(
eVsd

2kBT

)
− F4kBTGS . We have established that this in-

crease of shot noise appears not only at small Vsd, but also in a specific range
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Fig. 2. (a) Typical RT peaks in the ohmic conductance. (b) Conductance peaks in
the region of Vg where the current noise has been measured. (c) Shot noise power
as a function of Vsd: at Vg = −1.6945 V for T = 1.85 K and Vg = −1.696 for
T = 4.2K. Lines show the dependencies SI (Vsd) expected for resonant tunneling
through a single impurity, with F = 1 (solid), F = 0.63 (dashed), and F = 0.52
(dotted). Inset: Excess noise spectrum at Vg = −1.696 V and Vsd = 1.5 mV.

Fig. 3. (a) Left panel: Energy diagrams of the two impurities for different positive

Vsd: V
(1)

sd < V
(2)

sd < V
(3)

sd . Inset: Schematic representation of the modulation of the
current through R by modulator M . Main part: Grey-scale plot of the differential
conductance as a function of Vg and Vsd at T = 1.85 K (darker regions correspond
to higher differential conductance, background hopping contribution is subtracted).
Lines show the positions of the conductance peaks of R and M obtained from the
analysis. (b) Shot noise and the corresponding Fano factor as a functions of source-
drain bias at different gate voltages. Solid lines show the results of the numerical
calculation.

of Vg. It has been shown in [7] that the region Vsd-Vg with enhanced shot noise
corresponds to the resonant current carried by two interacting impurities.

Consider two spatially close impurity levels, R and M , separated in the
energy scale by �ε. If impurity M gets charged, the level R is shifted up-
wards by the Coulomb energy, Fig. 3a (diagram 1). Thus, depending on the
occupation of M impurity R can be in two states: R1 or R2. If Vsd is small
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enough, state R2 is above the Fermi level in the left contact, Fig. 3a (diagram
2). Hence, electrons are transferred via R1 with the rates ΓL,R only when
M is empty. Let us assume that, impurity M (modulator) gets charged with
rate Xc and empties with rate Xe. If Xe,c 	 ΓL,R, the contribution of M
to the total current is negligible, but the current through impurity R jumps
randomly between two values: zero and I0, Fig. 3a (inset). If the bias is further
increased, the upper state R2 is shifted down into the conducting energy strip
and the modulation of the current via impurity R vanishes, Fig. 3a (diagram
3).

In such a modulation regime, the corresponding Fano factor can be written
as F = Γ 2

L+Γ 2
R

(ΓL+ΓR)2
+2 ΓLΓR

ΓL+ΓR

Xc

(Xe+Xc)
2 . The first term in this expression describes

the conventional (suppressed) Fano factor for one-impurity RT [6], whereas
the second term gives an enhancement of F . The generalisation of this simple
model for any relation between X and Γ is based on the master equation
formalism [6, 10]. As a result of the calculations, the current and the Fano
factor are obtained as functions of the energy positions of the two impurities
which are shifted with changing Vsd and Vg.

By measuring the differential conductance as a function of Vg and Vsd we
have shown that the increase of shot noise occurs exactly in the region of
Vg-Vsd where two interacting impurities carry the current in a correlated way,
region 2 in Fig. 3a. In Fig. 3a at small Vsd a cross-like feature is clearly seen
near point R2 – the exact positions of the maxima of the conductance peaks of
this line are indicated by circles. With increasing Vsd, however, a new parallel
line R1 appears at Vg ≈ −1.694 V and Vsd ≈ 1 mV. This happens when the
line R2 enters the central area of cross M - the maxima of the conductance
peaks of the new line are shown by triangles. In Fig. 3b current noise and the
Fano factor are presented as functions of Vsd for different Vg. One can see that
the modulation of the current occurs in region (2) of the central area of cross
M , between lines R1 and R2.

For a quantitative analysis we have taken into account that in our ex-
periment resonant tunneling via state R exists in parallel with the back-
ground hopping. Then the total Fano factor has to be expressed as F =
(FRT IRT + FBIB) / (IRT + IB), where FRT , FB and IRT , IB are the Fano
factors and currents for RT and hopping, respectively. The numerical results
have been fitted to the experimental data, Fig. 3b. The fitting parameters
are �ΓL � 394 µeV, �ΓR � 9.8 µeV, �Xe � 0.08 µeV, �Xc � 0.16 µeV,
�ε = 1 meV, and FB = 0.45. The coefficients in the linear relation between
the energy levels M , R and Vsd, Vg have also been found to match both the
experimental data in Fig. 3b and the position of lines R1 and R2 in Fig. 3a.
One can see that the model gives good agreement with the experiment.
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Summary. We study how the single-electron transport in clean Andreev wires is
affected by a weak disorder introduced by impurity scattering. The transport has
two contributions, one is the Andreev diffusion inversely proportional to the mean
free path � and the other is the drift along the transverse modes that increases with
increasing �. This behavior leads to a peculiar re-entrant localization as a function
of the mean free path.

1 Introduction

Transport of electrons along conducting wires surrounded by insulators have
been studied for several decades; mechanisms of the transport phenomena
involved are nowadays well understood (see [1, 2, 3] for review). In the ballistic
regime where the mean free path is much longer than the wire lengths, � 
 d,
the conductance is given by the Sharvin expression, G = (e2/π�)N , where
N ∼ (kFa)2 is the number of transverse modes, a is the wire radius, a 	
d, and kF is the Fermi wave vector. For a shorter mean free path � 	 d,
a diffusion controlled transport is obtained with the ohmic behavior of the
conductance, G ∼ (e2/π�)N�/d, neglecting the weak localization interference
between scattered electronic waves. With a further decrease in the ratio �/d,
the ohmic behavior breaks down due to the localization effects when �/d <
N−1: the conductance appears to decay exponentially [4].

The picture above is essentially based on the assumption that electrons
are confined inside the wire by the insulating gap in the material around the
wire being reflected from the wall. Another way to confine electrons within
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a normal wire is to place the wire of a radius a much larger than the cohe-
rence length ξ into a superconducting environment. Due to the presence of a
superconducting gap ∆ the density of states outside the normal wire tends to
zero for excitation energies ε < ∆, thus the low-energy electronic states are
confined in the transverse direction of the normal metal channel. The nature
of these states is determined by the particle-hole Andreev reflection processes
at the superconducting/normal-metal (SN) boundaries. If the usual (with a
large momentum transfer) reflection processes at the SN boundaries can be
ignored, we refer to such a normal conducting region inside a superconduct-
ing environment as to an “Andreev wire”. An Andreev wire can be connected
through bulk normal-metal leads to an external measuring circuit. Note that
our definition of Andreev wire differs from that used, e.g., in Ref. [5] where it
was applied for a normal conductor in an insulating environment, connected
to superconducting leads. A simple way to create Andreev wires is to intro-
duce vortex lines in a type-II superconductor by applying a magnetic field.
Andreev wires can be manufactured artificially in the form of normal chan-
nels in a superconducting matrix, using modern nano-fabrication techniques
employed also for producing a wider class of hybrid SN structures (Andreev
interferometers [6] and billiards [7]). From the experimental point of view, the
most important difference between an Andreev wire and a normal channel
surrounded by an insulator is that measurements of the thermal conductance
are more appropriate than those of electrical conductance to probe the single
electron transport in an Andreev wire because the single-particle part of the
charge transport is short-circuited by the superflow.

2 Transport Properties

Usually, the electronic thermal conductance κ can be calculated from the
Wiedemann – Franz law, κ ∼ TG/e2. However, as shown in Ref.[8, 9] for the
ballistic limit � 
 d, this law gives a wrong result for Andreev wires if one uses
an expression for G obtained for a wire surrounded by an insulator. Andreev
processes strongly suppress the single electron transport for all quasiparticle
trajectories except for those which have momenta almost parallel to the wire
thus avoiding Andreev reflection at the walls. The resulting expression for the
thermal conductance

κbal ∼ (T/�)(kF a)2(a2/d2). (1)

appears to be much smaller than what can be derived from the Sharvin expres-
sion for G. This conductance decreases rapidly with increasing d and finally
saturates at a yet smaller Landauer-like expression [9]

κL ∼ (T/�)(kF a)2(vg/vF ) ∼ (T/�)(kF a)2(T/EF ) (2)

that is proportional to a non-quasiclassical group velocity of a slow drift
of particles along the transverse modes (Andreev states in the wire) vg =
�
−1∂εkz

/∂kz ∼ ε/pF much smaller than vF .
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Here we report how the single electron transport in Andreev wires at low
temperatures T 	 Tc is affected by a weak disorder introduced by impurity
scattering assuming that inelastic processes are negligible. The Andreev wire
is clean in the sense that the mean free path � is much longer than the wire
diameter, � 
 a.

We find that disorder modifies both the free motion of particles and the
drift along the Andreev states. Let us discuss these two mechanisms in turn.
Consider a quasiparticle propagating within the wire along a trajectory that
bounces from the normal/superconducting walls at both its ends. Neglecting
the slow drift, the distributions of particles and holes are equal at the wall
due to the Andreev reflection. If quasiparticle scattering is absent, the distri-
butions remain equal throughout the wire, thus there is no net single-particle
transport associated with these trajectories. In the presence of scattering, the
distributions of particles and holes deviate from each other by an amount pro-
portional to the probability of scattering, a/�. In the presence of a gradient of
the distribution function produced by the temperature difference at the ends
of the wire, the electronic thermal conductance becomes

κA = A(T/�)(kF a)2(a2/�d) (3)

where A ∼ ln(�/a). It is different from the standard expression for the elec-
tronic thermal conductance in a diffusive normal wire

κ ∼ (T/�)(kF a)2(�/d). (4)

The counter-intuitive behavior of the single-particle conductance Eq. (3)
which increases with decreasing � was first predicted by Andreev [10]. Com-
paring Eq. (3) with the ballistic (� 
 d) expression Eq. (1) we see that dis-
order with � 	 d stimulates the single-particle transport by opening of new
single-particle conducting modes that are blocked by Andreev reflections in
the ballistic limit. The conductance reaches its maximum when the mean free
path decreases down to � ∼ a, after which the distinction between the usual
and the Andreev diffusion is lost and Eq. (3) transforms into Eq. (4) for a
dirty wire (see [11] for the particular case of vortex lines).

The drift along Andreev bound states with a group velocity vg, which is
due to a small non-quasiclassical particle-hole asymmetry, is also modified by
disorder. We demonstrate that the characteristic mean free path �drift ∼ vgτ
relevant for the drift transport is considerably shorter than the usual mean free
path �. For �drift 	 d, the thermal conductance associated with the disorder-
modified drift is proportional to the mean free path with a qualitative behavior

κL ∼ (T/�)(kF a)2(vg/vF )2(�/d). (5)

It saturates at the ballistic Landauer expression Eq. (2) for enormously long
� 
 (vF /vg)d, i.e., when �drift 
 d.

The total single-particle transport of a clean Andreev wire contains two
contributions: one is the Andreev diffusion decreasing as �−1 and the other
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is the diffusive drift that increases with increasing �. Introducing an effective
number of transverse modes N = κ�/T we have

N ∼ (kFa)2
[
A

(
a2

�d

)
+B

(
vg

vF

)2
�

d

]
(6)

where B ∼ 1. The number of modes has a minimum as a function of �. This
behavior gives rise to a peculiar re-entrant localization as a function of the
mean free path: for a long enough Andreev wire, the quasiparticles with ε < ∆
may become localized not only in a dirty limit for a short mean free path
� < d(kFa)−2 but also in a clean limit for a long mean free path � ∼ a(vF /vg)
if the length of the wire is d > dc where dc ∼ a(kFa)2(vg/vF ). In the latter
case, an increase or decrease in � can lead to re-opening of the conduction via
the Landauer drift or Andreev diffusion, respectively.

3 Conclusions

In conclusion, we mention that the effects of disorder on the kinetics of quasi-
particles confined in an insulator/normal-metal/superconductor (INS) hybrid
structure due to Andreev reflections was first considered in Ref. [12] within a
model where the disorder is provided by irregularities on the I/N boundary
through the normal scattering of quasiparticles.

Acknowledgements.— This work was supported in part by the US DOE
Office of Science under contract No. W-31-109-ENG-38, by Russian Founda-
tion for Basic Research, the Program “Quantum Macrophysics” of the Russian
Academy of Sciences, Russian State Fellowship for young doctors of science,
and NATO Collaborative Linkage Grant No. PST.CLG.978122. A.S.M. is
grateful to the Low Temperature Laboratory at the Helsinki University of
Technology for hospitality.

References

1. Y. Imry, Introduction to Mesoscopic Physics, Oxford University Press (Oxford,
1997).

2. S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University
Press (Cambridge, 1995).

3. C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
4. D. J. Thouless, Phys. Rev. Lett. 39, 1167 (1977).
5. B. Reulet, A. A. Kozhevnikov, D. E. Prober, W. Belzig, and Yu. V. Nazarov,

Phys. Rev. Lett. 90, 066601 (2003).
6. D. Esteve et al., in: Mesoscopic Electron Transport edited by L. L. Sohn,

L. P. Kouwenhoven, and G. Schon, NATO ASI Series E345, Kluwer Academic
Publishers (Kluwer, Dordrecht, 1997).

7. I. Kosztin, D. L. Maslov, and P. M. Goldbart, Phys. Rev. Lett. 75, 1735 (1995).



Single Particle Transport in Disordered Andreev Wires 295

8. A. S. Mel’nikov and V. M. Vinokur, Nature, 415, 60 (2002); Phys. Rev. B 65,
224514 (2002).

9. N. B. Kopnin, A. S. Mel’nikov and V. M. Vinokur, cond-mat/0302540; Phys.
Rev. B, to be published (2003).

10. A. F. Andreev, Zh. Eksp. Teor. Fiz. 47, 2222 (1964) [Sov. Phys. JETP 20, 1490
(1965)].

11. N. B. Kopnin, Zh. Eksp. Teor. Fiz. 69, 364 (1975) [Sov. Phys. JETP, 42, 186
(1975)].

12. A. V. Shytov, P. A. Lee, and L. S. Levitov, Usp. Fiz. Nauk 168, 222 (1998)
[Physics–Uspekhi, 41, 207 (1998)].



Two-Channel Kondo Effect in a Modified
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Summary. We suggest a simple system of two electron droplets which should
display two-channel Kondo behavior at experimentally-accessible temperatures. Sta-
bilization of the two-channel Kondo fixed point requires fine control of the electro-
chemical potential in each droplet, which can be achieved by adjusting voltages
on nearby gate electrodes. We study the conditions for obtaining this type of two-
channel Kondo behavior, discuss the experimentally-observable consequences, and
explore the generalization to the multi-channel Kondo case.1

1 Introduction

The single-channel Kondo (1CK) effect has been studied for decades in met-
als with magnetic impurities [1]. The same phenomenon has recently been
observed in the novel context of semiconductor nanostructures containing no
magnetic impurities: here, an electron droplet with a degenerate ground state
assumes the role of a magnetic impurity, and nearby electron reservoirs act as
the surrounding normal metal [2, 3, 4, 5, 6, 7]. These semiconductor systems
are extremely flexible. The electron droplet’s shape and size are determined
by lithographic patterning, and its occupancy, energy levels, and coupling to
external reservoirs can be precisely measured, and even tuned in-situ using
gate voltages. This unique tunability has enabled the first precision measure-
ments of Kondo temperature as a function of system parameters, yielding an
excellent match to theory [4, 8]. Experiments on semiconductor nanostruc-
tures have also accessed new regimes, notably the low-temperature unitary
limit [5], Kondo effect out of equilibrium [9], and the single mixed-valence im-
purity [4]. These experiments have even introduced exotic varieties of Kondo
1 This manuscript is a copy of Yuval Oreg and David Goldhaber-Gordon Phys.

Rev. Lett. 90, 136602 (2003). Copyright (2003) by the American Physical Society.
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effect never seen in bulk studies, such as magnetic field-induced Kondo [10, 11]
and two-impurity Kondo [12]. As with conventional 1CK, each of these sys-
tems displays an interesting many-body resonance. However, at very low T
we can describe each system simply as a Fermi liquid superimposed with a
resonance [13]; i.e., there is no non-Fermi liquid ground state.

Studying two-channel Kondo (2CK) effect [14, 15, 16, 17, 18] in semicon-
ductor nanostructures could be even more intriguing. In 2CK, a twofold degen-
erate system such as a local spin is antiferromagnetically coupled to not one,
but two independent electron reservoirs. Since the reservoirs do not communi-
cate, each attempts to screen the local spin, resulting in overall overscreening.
Unlike 1CK, this system exhibits fascinating low-energy non-Fermi-liquid be-
havior [19, 20]. Yet there have been no conclusive experimental observations
of 2CK [14, 16, 21]. Indeed, in contrast to single-channel Kondo, 2CK effect
is not likely to occur in ordinary metals with magnetic impurities, due to
intrinsic channel anisotropy [22]. Ralph reported observation of 2CK, with lo-
cal near-degeneracies associated with atomic tunneling in a disordered metal
rather than the traditional spin. The observed behavior is striking, but its
physical origin has remained controversial [16, 21].

2 Model and Results

In this paper we argue that a simple configuration of two electron droplets
(see Fig. 1) attached to conducting leads can exhibit 2CK correlations [19, 20],
retaining non-Fermi-liquid (NFL) behavior at low temperature.

The relevant fixed point is stabilized at low temperature by fine tuning the
voltage on just one gate electrode. Near a 2CK fixed point, quantities such as
specific heat, entropy and spin susceptibility [20] behave differently than they
would in a Fermi liquid. The conductance through our model system should
exhibit an anomalous power-law dependence on temperature, deviating from
its T = 0 value as

√
T [20] rather than T 2. The simplicity of the structure

and the ability to tune system parameters offer hope for detailed study of
the NFL realm, including non-thermodynamic quantities such as transmission
phase [23], noise [24], pumping [25], and tunneling density of states.

In our model, a small central electron droplet (denoted by d) hosts a single
level of energy εds, which can be empty, or occupied by electrons of either or
both spin directions s =↑, ↓. Henceforth we refer to this droplet as small dot
d. The spin of the (singly-occupied) small dot d serves as the local degeneracy
needed for 2CK. Connected to small dot d by tunneling are two conducting
leads, plus an additional, much larger dot. In the large dot we neglect the
discreteness of single-particle energy levels, while retaining a finite Coulomb
energy. Thus, this dot behaves as a “Coulomb-interacting lead”; we refer to
it as large dot m.

For fixed number of electrons: nm on dot-m and nd on dot-d, the electro-
static energy Enm

nd
≡ Enm

nd
(Vm,Vd) is:
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Fig. 1. A proposed realization of the two-channel Kondo (2CK) model. Two non-
interacting leads (L and R) and a large dot m are attached to a single-level small
dot d. If dot d is occupied by a single electron, it can flip its spin by virtually hopping
the electron onto either dot m or the leads, and then returning an electron with
opposite spin to dot d. Dot m and the leads thus serve as the two distinct screening
channels required to produce the 2CK effect. Crucially, when kT is smaller than the
charging energy of dot m, Coulomb blockade blocks transfer of electrons between
the leads and dot m. Fine tuning of the voltage Vm (and/or Vd) can equalize the
coupling to the two channels, stabilizing the 2CK fixed point.

Enm
nd

= U (nd −Nd)
2 + um (nd + αnm −N )2 , (1)

where U ≡ e2/(2C̃d) 
 um ≡ e2/(2C̃m − c2µ/C̃d), |e|Nd ≡ cdVd, |e|N ≡
cmVm + cdcµ/C̃mVd and α ≡ cµ/C̃d � 1. Here C̃m(d) is the total capacitance
of dot m(d). See Fig. 1 for definitions of the other capacitances. Note that
the parameter Nd controls the number of electrons on the small dot while N
controls the total number of electrons on both dots combined. Since dot m is
large we may assume that C̃m is much larger than all other capacitances.

To write down the full Hamiltonian H of the model system, it is useful
to perform a transformation on the operators Lks and Rks for electrons in
leads L and R, respectively [26]. We define ψks = cos θ Lks + sin θ Rks,
φks = cos θ Rks − sin θ Lks, tan θ = VR/VL, Vψ =

√
|VL|2 + |VR|2. Without

loss of generality we take the coupling constants Vi, i = L,R,m, to be real.
With these definitions, the new effective lead ψ couples to the small dot d,
but the effective lead φ does not couple:

H =
∑

i=φ,ψ,m;ks

εiksi
†
ksiks +

∑
s

εdsd
†
sds + End

nm

+Vm

∑
ks

m†
ksds + Vψ

∑
ks

ψ†
ksds + h.c., (2)

To obtain a 2CK fixed point we assume that Vd is tuned to make the
average occupancy of the small dot nd = 1, creating a local spin-1

2 . We further
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assume that D,U 
 um, with D a cutoff of order the Fermi energy [27]. With
decreasing temperature the system evolves through several stages. Formally,
we integrate out the fast variables progressively in the renormalization group
(RG) sense. Details of this calculation will be published elsewhere.

For kT > U , charge fluctuations on both the small and large dots are
possible. Haldane showed [8] that in this regime only the level energy εd is
renormalized, while the couplings to the leads remain the same. For kT � U
we may perform the Schrieffer-Wolff transformation. In this transformation
charge fluctuations on the small dot are eliminated, and the effect of virtual
electron hopping is simply to flip the spin on the small dot. Our Anderson-
like Hamiltonian is mapped onto a 1CK Hamiltonian. In the present case we
have four possible spin flip events. Two are diagonal processes in which an
electron hops onto dot d from lead ψ (large dot m) and then an electron
with opposite spin hops off to the same lead ψ (large dot m). And two are
off-diagonal processes in which an electron hops onto dot d from lead ψ (large
dot m) and then an electron with opposite spin hops off to large dot m (lead
ψ). (Four “hole” processes, in which an electron first hops from the dot to
lead ψ or large dot m, are also possible). As T decreases further, so long as
kT > um charge fluctuations on large dot m are allowed and the system flows
according to the single channel Kondo RG laws [8]. However, for kT < um

charge fluctuations on the large dot are not possible and off-diagonal hopping
is suppressed. Diagonal spin flip events remain possible. In this regime we
obtain the standard two-channel Kondo model [20], with an additional free
channel φ which decouples from the rest of the system [see also Eq. (8)]. The
diagonal exchange coupling constants (at scale U) are:

J̃mm(Vm,Vd) ≡ Γm

[
1

E1
0 − E0

1

+
1

E−1
2 − E0

1

]
;

J̃ψψ(Vm,Vd) ≡ Γψ

[
1

E0
2 − E0

1

+
1

E0
0 − E0

1

]
. (3)

Here Γm(ψ) = |Vm(ψ)|2νm(ψ) is the rate of tunneling between dot d and dot
m (effective lead ψ); and Enm

nd
are defined in Eq. (1). To obtain a 2CK fixed

point we tune Vm and Vd to make J̃mm, the antiferromagnetic coupling of
dot d to dot m, equal to J̃ψψ, the antiferromagnetic coupling of dot d to the
leads. Eq. (3) and the ratio γ ≡ Γm/Γψ define a curve in the Vm,Vd plane. In
Fig. 2 we show these “2CK lines” for two different values of γ, both of order 1.
On these lines 2CK physics should be realized at low T . We did not consider
in Fig. 2 the renormalization of the parameters at scales below U , which may
modify the detailed shape of the curves.

The 2CK fixed point can be reached experimentally by a three-step proce-
dure: First, fix Vd to give one electron (or an odd number of electrons) in the
small dot. Second, tune γ to roughly 1 by adjusting the individual tunneling
rates. No great precision is required in this step. Finally, fine-tune Vm so that
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γ=1.08

1.25

n  =0,m n  =1d

γ=

0,0
1,0-1,0

-1,1

-1,2 0,2

1,1

V d

Vm

Fig. 2. The number of electrons on dots m and d are functions of the gate voltages
Vm and Vd. Within the central hexagon, dot d is singly-occupied, a prerequisite for
observation of Kondo effect. Curves superimposed on this hexagon (“2CK lines”)
map where in the Vm,Vd plane the two-channel Kondo (2CK) effect is realized for
two different values of the coupling ratio γ ≡ Γm/Γψ — each value gives rise to a
pair of disjoint curves. As illustrated for γ = 1.08 (dashed) these two curves divide
the hexagon into three regions with distinct low-temperature fixed points. On the
curves, the 2CK effect is realized and the deviation of the inter-lead differential
conductance from its T → 0,VLR → 0 limit G(0, 0) is ∝

√
max (T,VLR) [Eq. (4)]. In

the shaded regions at top left and bottom right, dot m “wins”, forming an exclusive
1CK resonance with dot d, and driving G(T,VLR) close to zero [Eq. (5)]. By contrast,
in the large unshaded region, leads L and R “win” giving rise to familiar Fermi-liquid
behavior G(0, 0) − G(T,VLR) ∝ [max (T,VLR)]2, [Eq. (6)]. With increasing γ, the
regions where dot m wins grow and merge, while the region where the leads win
shrinks and splits.

J̃mm(Vm,Vd) = J̃ψψ(Vm,Vd). In Fig. 2 this corresponds to tuning Vm until
we hit a 2CK line for our given value of γ.

The current I between the left and right leads can be measured as a
function of T , and as a function of VLR, the bias applied between leads L
and R (see Fig. 1). Drawing on the extensive literature of 2CK physics [14]
we can predict the qualitative behavior of the I-VLR curve through the dot,
for different values of the gate voltages Vm, Vd that scan the hexagon of
Fig. 2. On the 2CK lines (see Fig. 2) in the unitary limit — T ,VRL 	 Kondo
temperature TK

∼=
√
UΓm/2 e−1/J̃mm(Vm,Vd) — the differential conductance

G(T,VLR) ≡ dI/dVLR should approaches its limiting value G(0, 0) as
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2CK: G(0, 0) −G(T,VLR) ∝
√

max (VLR, kT ). (4)

In the symmetric case VL = VR, we get G(0, 0) = GK ≡ e2/h, half the
maximal value of G(0, 0) in the 1CK effect [5, 7].

In the part of the hexagon where J̃mm > J̃ψψ (shaded, for γ = 1.08), at
low T the electrons in dot m screen the spin of dot d, while the leads are
decoupled. In the RG sense J̃ψψ flows to zero, so that dot m “wins” over the
leads and forms a 1CK state with dot d. In this case dI/dVLR is small and
given by

Large dot wins: G(T,VLR) ∝
[
max

(
VLR, kT

)]2
. (5)

In contrast, in the unshaded part of the hexagon in Fig. 2, where J̃mm <
J̃ψψ, dot m decouples from dot d at low T , leaving the leads to form a 1CK
resonance with dot d and

Leads win: G(0, 0) −G(T,VLR) ∝
[
max

(
VLR, kT

)]2
, (6)

where G(0, 0) = 2GK for VL = VR.
At sufficiently low temperature the finite level spacing ∆m in dot m will

cut off the RG flow of the coupling constants [28]. We cannot make ∆m

infinitesimal as we must retain a finite Coulomb blockade energy [29] um > kT .
However, the ratio between charging energy and level spacing can be made
large, allowing 2CK behavior to be observed over an order of magnitude in
temperature before the system finally flows to the 1CK fixed point.

The above discussion can be generalized to include M − 1 large dots, re-
sulting in an M -channel Kondo (MCK) model, which may be possible (though
challenging) to realize experimentally for M > 2.

To describe this system we use the model Hamiltonian:

H =
∑
aks

εaksa
†
ksaks +

∑
a

ua(na −Na)2

+
∑

s

εdd
†
sds + Und↑nd↓ +

∑
ks

V ∗
aka

†
ksds + h.c. (7)

Here aks is the annihilation operator of an electron in state k, with spin s and
energy εaks on large dot a. a = 1, . . . ,M , na =

∑
ks a

†
ksaks, and the parameter

Na sets dot a’s equilibrium occupancy.
The physical role of the ua terms is clear: at low temperatures they forbid

processes in which charge is ultimately transferred from one large dot to an-
other. Spin flip events — e.g. when an electron hops onto the small dot and
then an electron with opposite spin hops off the small dot to the same large
dot — remain possible and under appropriate conditions lead to a MCK fixed
point.

After integrating out energies larger then U [8], we perform the Schrieffer-
Wolff transformation [30] and find that the second line of Eq. (7) is trans-
formed to
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ab,kq

Jkq
ab

[
S+s−kq

ab + S−s+kq
ab + 2Szszkq

ab

]
, (8)

S± = d†↑(↓)d↓(↑), 2Sz = d†↑d↑−d
†
↓d↓, s

±kq
ab = a†k↑(↓)bq↓(↑) and 2szkq

ab = 1
2a

†
k↑bq↑−

a†k↓bq↓. With Vaq = Vbk ≡ V , and assuming that εa(b)qs ≈ εa(b)F , where εa(b)F

is the last empty (occupied) level in dot a (b), we find:

Jkq
ab = Jab = |V |2 U + u−b + u+

a[
U + εd + u−b

] [
u+

a − εd

], (9)

where u±p = up [1 ± 2 (np −Np)] ± εpF , p = a, b. For −1/2 < Np − np + (µ−
εpF )/(2up) < 1/2 there are np electrons in dot p, where µ is the electrochem-
ical potential of a reference reservoir. Particle-hole symmetry may be absent
in the large dots, so in general Jab �= Jba.

At kT > max {uab} the system evolves according to the 1CK RG flow,
where uab =

(
u+

a + u−b
)
(1 − δab). At kT < min {uab} , a �= b, the off-diagonal

processes describing transfer of an electron from dot b to dot a are exponen-
tially suppressed as Jab = J0

abe
uab/(4kT ). Notice that uaa = 0, since the charge

on dot a is not changed when an electron hops from dot a onto dot d and then
back to the same dot a. At kT < min

{
uab

}
only the diagonal terms of Jab

do not flow to zero. Assuming that we are not at a degeneracy point where
uab = 0, an easy condition to avoid, the RG equations are identical to the
MCK RG equations [22]. As in the case of classic MCK, our NFL fixed point
is unstable to the introduction of channel anisotropy. If one of the coupling
constants is larger than the others, the corresponding channel alone screens
the local spin and forms a Kondo resonance while the other channels are de-
coupled from the local spin. In our model we can tune all the Na to achieve
Jaa = J for all a.

Gate voltages capacitively control the energy of the last occupied level
in each large dot, so excitations in each large dot will be around a different
Fermi energy. This does not modify the RG equations, but does affect certain
physical properties such as the small dot density of states at finite energies. A
similar situation occurs in the discussion of 2CK in a dot out of equilibrium [15,
18].

3 Conclusions

In conclusion, if a small dot is coupled to two (or more) electron reservoirs,
Coulomb blockade can suppress inter-reservoir charge transfer at low tempe-
ratures. Electrostatic gates provide the tunability needed to stabilize a 2CK
fixed point, resulting in observable NFL behavior. Softer suppressions of inter-
reservoir tunneling could also work in place of Coulomb blockade. For example,
the reservoirs could be conductors with large impedance [31], one-dimensional
Luttinger liquids [32] or conductors with strongly-interacting charge carriers.
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Finally, while the channel asymmetry parameter is relevant in the RG sense,
for realistically well-matched channel couplings we expect that the system will
remain near the 2CK fixed point, and will show NFL behavior, over a wide
range of temperatures.
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4. D. Goldhaber-Gordon, J. Göres, M. A. Kastner, H. Shtrikman, D. Mahalu, and
U. Meirav, Phys. Rev. Lett. 81, 5225 (1998).

5. W. G. van der Wiel et al. Science 289, 2105 (2000).
6. J. Nygard, D. H. Cobden, and P. E. Lindelof, Nature 408, 342 (2000).
7. W. Liang, M. Bockrath, and H. Park, Phys. Rev. Lett. 88, 126801 (2002).
8. F. D. M. Haldane, Phys. Rev. Lett. 40, 416 (1978).
9. S. De Franceschi et al. cond-mat/0203146 (2002).

10. S. Sasaki et al. Nature 764, 405 (2000).
11. M. Pustilnik, Y. Avishai, and K. Kikoin, Phys. Rev. Lett. 84, 1756 (2000), and

M. Pustilnik and L. I. Glazman Phys. Rev. B 64 045328 (2001).
12. H. Jeong, A. M. Chang, and M. R. Melloch, Science 293, 2221 (2001).
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Summary. We consider “shuttling” of spin-polarized electrons between two mag-
netic electrodes (half-metals) by a movable dot with a single electronic level. If the
magnetization of the electrodes is antiparallel we show that the transmittance of
the system can be changed by orders of magnitude if an external magnetic field,
perpendicular to the polarization of the electronic spins, is applied. A giant magne-
totransmittance effect can be achieved for weak external fields of order 1 ÷ 10 Oe.

1 Introduction

Metal-organic nanocomposite materials are interesting from the point of view
of the “bottom-up” approach to building future electronic devices. The ability
of the organic parts of the composite materials to identify and latch on to
other organic molecules is the basis for the possible self assembly of nanoscale
devices, while the metallic components provide mechanical robustness and
improve the electrical conductance.

Such composite materials are heteroelastic in the sense that the mecha-
nical rigidity of the organic and metallic components are very different. This
allows for a special type of deformation, where hard metallic components
embedded in a soft organic matrix can be rearranged in space at a low de-
formation energy cost associated with stretching and compressing the soft
matrix. Strong Coulomb forces, due to accumulation of electronic charge in
embedded nanoscale metallic particles, can be a source of such mechanical
deformations. This leads to a scenario where the transport of electric charge,
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possibly due to tunneling of electrons between metal particles, becomes a com-
plex nano-electromechanical phenomenon, involving an interplay of electronic
and mechanical degrees of freedom [1]. Such an interplay can lead to new
physics, as was recently demonstrated theoretically for the simplest possible
structure — a Nanoelectromechanical single-electron transistor. The electro-
mechanical instability predicted to occur in this device at large enough bias
voltage was shown to provide a new mechanism of charge transport [2]. This
mechanism can be viewed as a “shuttling” of single electrons by a metallic
island — a Coulomb dot — suspended between two metal electrodes. The
predicted instability leads to a periodic motion of the island between the
electrodes shuttling charge from one to the other.

The shuttle instability appears to be a rather general phenomenon. It has,
e.g., been shown to occur even for extremely small suspended metallic particles
(or molecules) for which the coherent quantum dynamics of the tunneling elec-
trons [3] or even the quantum dynamics of the mechanical vibration [4, 5, 6, 7]
become essential. Nanomechanical transport of electronic charge can, however,
occur without any such instability, e.g., in an externally driven device contain-
ing a cantilever vibrating at frequencies of order 100 MHz. A small metallic
island attached to the tip of the vibrating cantilever may shuttle electrons
between metallic leads as has recently been demonstrated [8]. Further ex-
periments with magnetic and superconducting externally driven shuttles as
suggested in [9], seem to be a natural extension of this work. Fullerene-based
nanomechanical structures [10] are also of considerable interest.

The possibility to place transition-metal atoms or ions inside organic mole-
cules introduces a new “magnetic” degree of freedom that allows the electronic
spins to be coupled to mechanical and charge degrees of freedom [12]. By
manipulating the interaction between the spin and external magnetic fields
and/or the internal interaction in magnetic materials, spin-controlled nano-
electromechanics may be achieved. An inverse phenomenon — a nanomechani-
cal manipulation of nanomagnets — was suggested earlier in [11]. A magnetic
field, by inducing the spin of electrons to rotate (precess) at a certain fre-
quency, provides a clock for studying the shuttle dynamics and a basis for a
dc spectroscopy of the corresponding nanomechanical vibrations.

A particularly interesting situation arises when electrons are shuttled be-
tween electrodes that are half-metals. A half-metal is a material that not only
has a net magnetization as do ferromagnets, but all the electrons are in the
same spin state — the material is fully spin-polarized. Examples of such mate-
rials can be found among the perovskite maganese oxides, a class of materials
that show an intrinsic, so called “colossal magnetoresistance” effect at high
magnetic fields (of order 10÷100 kOe) [13]. A large magnetoresistance effect
at lower magnetic fields has been observed in layered tunnel structures where
two thin perovskite manganese oxide films are separated by a tunnel barrier
[13, 14, 15, 16]. Here the spin polarization of electronic states crucially af-
fects the tunneling between the magnetic electrodes. This is because electrons
that can be extracted from the source electrode have there spins aligned in
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a definite direction, while electrons that can be injected into the drain elec-
trode must also have there spins aligned — possibly in a different direction.
Clearly the tunneling probability and hence the resistance must be strongly
dependent on the relative orientation of the magnetization of the two elec-
trodes. An external magnetic field aligns the magnetization direction of the
two films at different field strengths, so that the relative magnetization can
be changed between high- and low resistance configurations. A change in the
resistance of trilayer devices by factors of order 2-5 have in this way been
induced by magnetic fields of order 200 Oe [14, 15, 16]. The required field
strength is determined by the coercivities of the magnetic layers. This makes
it difficult to use a tunneling device of the described type for sensing very low
magnetic fields. In this paper we propose a new functional principle — spin-
dependent shuttling of electrons — for low-magnetic field sensing purposes.
We will show that this principle can lead to a giant magnetoresistance effect
in external fields as low as 1÷10 Oe.

The new idea which we propose to pursue is to use the external magnetic
field to manipulate the spin of shuttled electrons rather than the magnetization
of the leads. The possibility to “trap” electrons on a nanomechanical shuttle
(decoupled from the magnetic leads) during quite a long time on the scale of
the time it takes an electron to tunnel on/off the shuttle makes it possible for
even a weak external field to rotate the electron’s spin to a significant degree.
Such a rotation allows the spin of an electron, loaded onto the shuttle from the
spin-polarized source electrode, to be reoriented in order to allow the electron
finally to tunnel from the shuttle to the spin-polarized drain lead. As we will
show below, the magnetic field induced spin-rotation of shuttled electrons
is a very sensitive nanomechanical mechanism for a giant magnetoresistance
(GMR) effect.

↑ ↓-

TL(t)     TR(t)

JL(t)       JR(t)

. H

aαL aαR

Fig. 1. Schematic view of the nanomechanical GMR device: a movable dot with a
single electron level couples to the leads due to tunneling of electrons, described by
the tunneling probability amplitudes TL,R(t)), and due to the exchange interaction
whose strength is denoted by JL,R(t). An external magnetic field H is oriented
perpendicular to the direction of the magnetization in the leads (arrows).
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2 Formulation of the Problem. General Expression
for the Current

A schematic view of the nanomechanical GMR device to be considered is pre-
sented in Fig. 1. Two fully spin-polarized magnets with fully spin-polarized
electrons serve as source and drain electrodes in a tunneling device. In this
paper we will consider the situation when the electrodes have exactly op-
posite polarization. A mechanically movable quantum dot (described by a
time-dependent displacement x(t)), where a single energy level is available
for electrons, performs forced harmonic oscillations with period T = 2π/ω
between the leads. The external magnetic field is perpendicular to the orien-
tation of the magnetization in both leads.

The Hamiltonian that governs the dynamical evolution of the system is

Ĥ(t) = ε0(a
†
↑a↑ + a†↓a↓) +

∑
α

(εαa
†
α,Laα,L + εαa

†
α,Raα,R) (1)

−JL(t)(a†↑a↑ − a†↓a↓) − JR(t)(a†↓a↓ − a†↑a↑) − (gµH/2)(a†↑a↓ + a†↓a↑)

+TL(t)
∑
α

(a†α,La↑ + a†↑aα,L) + TR(t)
∑
α

(a†α,Ra↓ + a†↓aα,R) ,

where a†α,L(R), (aα,L(R)) are the creation (annihilation) operators of electrons
with the energy εα on the left (right) lead (we have suppressed the spin
indices for the electronic states in the leads due to the assumption of full spin
polarization), a†↑(↓)(a↑(↓)) are the creation (annihilation) operators on the dot,
ε0 is the energy of the on-dot level, JL(R)(t) ≡ JL(R)(x(t)) are the exchange
interactions between the on-grain electron and the left (right) lead, ΛL(R)(t) ≡
ΛL(R)(x(t)) are the tunnel coupling amplitudes, g is the gyromagnetic ratio
and µ is the Bohr magneton.

The single-electron density matrix describing electronic transport between
the leads may be presented in the form:

ρ̂ =
∑
α

wα,L|Ψα,L〉〈Ψα,L| +
∑
α

wα,R|Ψα,R〉〈Ψα,R| . (2)

Here |Ψα,L〉 are single-electron states that obey the time-dependent Shrödinger
(� = 1) equation with a Hamiltonian given by Eq. (1). The initial condition
has the form

|Ψα,L(R)(t → −∞)〉 = |α,L(R)〉 exp(−iεαt) ,

where |α,L(R)〉 is a single-electron state on the left (right) lead with energy
εα.

We will suppose that the internal relaxation in the leads is fast enough to
lead to equilibrium distributions of the electrons. This means that wα,L(R) =
f(εα ∓ V/2) (where f(ε) is the Fermi distribution function) and V is the
applied voltage.
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The problem at hand is greatly simplified if one considers the large bias-
voltage limit

| V − ε0 |
 νΛ2
max , (3)

where ν is the density of states on the leads. The restriction(3) does not allow
us to consider a narrow transition region of voltages from the zero-current
regime at V < ε0−νΛ2

max to the fully transmissive (in the absence of spin po-
larization effects) regime at V > ε0+νΛ2

max. However, it covers the in practise
most important case when the fully transmissive junction is strongly affected
by electronic spin-polarization. Therefore, in our further considerations we
will take wα,L = 1, wα,R = 0 and ε0 = 0.

We will calculate the average current, I, through the system from the
relation

I =
1
T

∫ T

0

dt Tr {ρ̂ĵ}, (4)

ĵ = e
∂N̂R

∂t
= ie[Ĥ, N̂R] = ieTR(t)

∑
α

(a†↓aα,R − a†α,Ra↓),

where N̂ is the electron number operator for the right lead, N̂ =
∑

α a
†
α,Raα,R.

In general, the state |Ψα,L〉 can be expressed as

|Ψα,L(t)〉 = cα↑ (t)| ↑〉 + cα↓ (t)| ↓〉 +
∑

β

(cα,β
L (t)|β, L〉 + cα,β

R (t)|β,R〉), (5)

Thus the problem is reduced to determining the coefficients cα,β
R(L) and cα↓(↑).

At this point it is convenient to introduce the bi-vectors

cα =
(
cα↑
cα↓

)
, e1 =

(
1
0

)
, and e2 =

(
0
1

)
,

so that the coefficients cα,β
R(L) can be expressed as (see Appendix 1)

cα,β
L = e−iεβtδαβ − i

∫ t

−∞
dt′eiεβ(t−t′)TL(t′)(e1, cα(t′)),

cα,β
R = −i

∫ t

−∞
dt′eiεβ(t−t′)TR(t′)(e2, cα(t′)).

Here (a,b) is the inner product of two bi-vectors. As shown in Appendix 1,
by using the wide band approximation (i.e. by taking the electron density of
states in the leads ν to be constant) the equation for the bi-vectors cα takes
the form

i
∂cα

∂t
= R̂(t)cα + fα(t) . (6)

Here fα(t) = TL(t)e−iεαte1 and the matrix R̂(t) is
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R̂(t) =
(
−J(t) − iΓL(t)/2 −gµH/2

−gµH/2 J(t) − iΓR(t)/2

)
, (7)

where J(t) = JL(t) − JR(t) and ΓL(R)(t) = 2πνΛ2
L(R)(t) is the level width.

The formal solution of Eq. (6) can be written in the form

cα(t) = −i
∫ t

−∞
dt′L̂(t, t′) fα(t′), (8)

where the “evolution” operator L̂(t, t′), (L̂(t, t) = Î), is defined as the solution
of the equation

i
∂L̂(t, t′)

∂t
= R̂(t)L̂(t, t′) , (9)

and obeys the multiplicative and periodicity properties,

L̂(t, t′) = L̂(t, t′′)L̂(t′′, t′), L̂(t+ T, t′ + T ) = L̂(t, t′). (10)

Using Eq. (8) together with Eq. (4), one can write the average current on
the form

I =
e

T

∫ T

0

dtΓR(t)
∫ t

−∞
dt′ΓL(t′)|L̂21(t, t′)|2 , (11)

where L̂21(t, t′) = (e2, L̂(t, t′)e1).
Since the probability amplitude for tunneling is exponentially sensitive

to the position of the dot, the maximum of the tunnel exchange interaction
between an electron on the dot and an electron in one lead occurs when the
tunneling coupling to the other lead is negligible. This is why we will assume
the following property of tunneling amplitude ΛL,R(t) to be fulfilled:

TL(t)TR(t) = 0, TL(t), TR(t) �= 0 (12)

This assumption allows us to divide the time interval (0, T ) into the intervals
(0, τ) + (τ, T/2) + (T/2, T/2 + τ) + (T/2 + τ, T ). We suppose that TL(t) �= 0
(but H = 0) only in the time interval (0, τ) (and, analogously, TR(t) ≡ TL(t+
T/2) �= 0 in the time interval (T/2, T/2 + τ)). Using this approximation
together with the properties (10) of the operator L̂(t, t′), we arrive at the
following expression for the average current (Appendix 2):

I =
e

T
(1 − e−Γ )2

∞∑
n=0

|(e2, L̂(T/2, τ)L̂ne1)|2. (13)

Here L̂ ≡ L̂(T + τ, τ) and

Γ = 2πν
∫ τ

0

dtT 2
L(t) (14)
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is the tunneling rate. Consequently, in order the calculate the average current
it is necessary to investigate the properties of the evolution operator L̂. It
follows from its definition that

L̂ = L̂(T + τ, T )L̂(T, T/2 + τ)L̂(T/2 + τ, T/2)L̂(T/2, τ) (15)
= e−(1+σ3)Γ/4+iσ3Φ0L̂(T, T/2 + τ)e−(1−σ3)Γ/4−iσ3Φ0L̂(T/2, τ),

where Φ0 =
∫ τ

0
dtJ(t) . From the symmetry properties of the operator R̂(T/2+

τ < t < T ),
R̂† = R̂, σ2R̂

∗ = −R̂, σ3R̂(−t) = −R̂(t)σ3

it follows that the operator Û ≡ L̂(T, T/2 + τ) has the form

Û =
(√

1 − γ2 iγeiϕ

iγe−iϕ
√

1 − γ2

)
(16)

In addition to this, L̂(T/2, τ) = σ1Ûσ1. As a result, the operator L̂ can be
expressed as

L̂ = e−Γ/2
(
e−σ3Γ/4+iΦ0σ3Ûσ1

)2

. (17)

Proceeding with the analysis we (i) calculate the eigenvalues λi and eigen-
vectors bi of the operator L̂ of Eq. (17); L̂bi = λibi, (ii) substitute the
expansion ei = ajibj (where (a)−1 = (ei,bj)) into Eq. (13) and calculate the
average current. The result is

I =
eκ

T
sinhΓ/2

coshΓ/2 + cos 2ϑ
sinh2 Γ/2 + κ(1 + cos 2ϑ coshΓ/2)

, (18)

where ϑ = ϕ+ Φ0, κ = 2γ2/(1 + γ2). Equation (18) for the average current is
our main result.

3 Calculation of the Current in Limit of Strong
and Weak Exchange Coupling between the Dot
and the Leads

Although the result (18) for the tunnel current is both transparent and com-
pact, it is in general a rather complicated problem to find the magnetic field
dependence of the coefficient κ, which depends on the probability amplitude
γ for flipping the spin of shuttled electrons. Three different time scales are in-
volved in the spin dynamics of a shuttled electron. They correspond to three
characteristic frequencies: (i) the frequency of spin rotation, determined by
the tunnel exchange interaction with the magnetic leads; (ii) the frequency of
spin rotation in the external magnetic field, and (iii) the frequency of shuttle
vibrations. Different regimes occur depending on the relation between these
time scales. Here we will consider two limiting cases, where a simple solution
of the problem can be found. Those are the limits of weak JL(R) 	 µH and
strong JL(R) 
 µH exchange interactions with the leads.
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3.1 Weak exchange interaction

In the limit JL(R) 	 µH one may neglect the influence of the magnetic leads
on the on-dot electron spin dynamics. In this case the matrix Û given by
Eq. (16) can easily be calculated and Eq. (18) reduces to

I =
2e
T

sin2 ϑ/2 tanhΓ/4
sin2 ϑ/2 + tanh2 Γ/4

, (19)

where ϑ = gµ
∫ T/2

τ
dtH is the rotation angle of the spin in the external field.

Two different scales for the external magnetic field determine the magneto-
transmittance in this limit. One scale is associated with the width of the
resonant magnetic field dependence (see the denominator in Eq. (19)). This
scale is (restoring dimension)

δH � Γ
�ω

gµ
, (20)

where ω is the shuttle vibration frequency. The second scale,

∆H � �ω

gµ
, (21)

comes from the periodic function sin2 ϑ/2 that enters Eq. (19). The magnetic-
field dependence of the current is presented in Fig. 2a. Dips in the trans-
mittance of width δH appear periodically as the magnetic field is varied, the
period being ∆. This amount to a giant magneto-transmittance effect. It is in-
teresting to notice that by measuring the period of the variations in I(H) one
can in principle determine the shuttle vibration frequency. This amounts to a
dc method for spectroscopy of the nanomechanical vibrations. Equation (21)
gives a simple relation between the vibration frequency and the period of
the current variations. The physical meaning of this relation is very simple:
every time when ω/Ω = n + 1/2 (Ω is the spin precession frequency in a
magnetic field) the shuttled electron is able to fully flip its spin to remove
the “spin-blockade” of tunneling between spin polarized leads having their
magnetization in opposite directions.

3.2 Strong Dot-Leads Exchange Interaction

A strong magnetic coupling to the leads, Jmax 
 µH, preserves the electron
spin polarization, preventing spin-flips of shuttled electrons due to an external
magnetic field. However, if the magnetization of the two leads are in opposite
directions, the exchange coupling to the leads have different sign. Therefore,
the exchange couplings to the two leads tend to cancel out when the dot is in
the middle of the junction. Hence the strong exchange interaction affecting a
dot electron depends on time and periodically changes sign, being arbitrary
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Jmax<<µH

I

δH∆H ∆H ∆HδH
∆Ha)

H

I

Jmax>>µH
δH

H

b)

Fig. 2. Magnetic-field dependence of the transmittance of the device shown in Fig. 1
for the limiting cases of a) weak and b) strong exchange coupling between dot and
leads. The period ∆H and the width δH of the “dips” are given by Eqs. (21) and
(20) for case a) and δH is given by Eq. (24) for the case b).

small close to the time of sign reversal. In Fig. 3 the on-dot electronic en-
ergy levels for spins parallel and antiparallel to the lead magnetization are
presented as a function of time. The effect of an external magnetic field is in
the limit JL(R) 
 µH negligible almost everywhere, except in the vicinity of
the level crossing. At this “time point”, which we denote tLZ , the external
magnetic field removes the degeneracy and a gap is formed in the spectrum
(dashed curve). The probability of electronic spin-flip in this case is deter-
mined by the probability of a Landau-Zener reflection from the gap formed
by the magnetic field (in this case a Landau-Zener transition across the gap is
a mechanism for backscattering of the electron, since this is the channel where
the electronic spin is preserved). The matrix Û can readily be expressed in
terms of Landau-Zener scattering amplitudes. The amplitude and phase of
electronic spin-flip is given by ϕ = ϕ0 + Φ1, ϕ0 is the Landau-Zener phase
shift,

Φ1 =
∫ T/2−τ

τ

dtJ(t) (22)

and γ2 is the probability of the Landau-Zener “backward” scattering,

γ2 = 1 − exp
[
−π(µH)2

J ′(tLZ)

]
. (23)
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↓
µH

J max

↑

Fig. 3. On-dot energy levels for spin-up and spin-down electron states as a function
of the position of the dot. Level crossing in the middle of the device is removed by
an external magnetic field.

Schematical view of I(H) dependence is presented on a Fig. 2b. The width
δH of the minimum in I(H) dependence can be found directly from Eqs. (18),
(23),

δH =
πgµ√
J0�ω

, (24)

where J0 = min (JL(R)(t)).

4 Conclusion

The analysis presented above demonstrates the possibility of a giant magneto-
transmittance effect caused by shuttling of spin-polarized electrons between
magnetic source- and drain electrodes. The sensitivity of the shuttle current
to an external magnetic field is determined, according to Eq. (20), by the
transparency of the tunnel barriers. By diminishing the tunneling transmit-
tance one can increase the sensitivity of the device to an external magnetic
field. The necessity to have a measurable current determines the limit of this
sensitivity. In the low transparency limit, Γ 	 1, the current through the
device can be estimated as I � eΓω. If one denotes the critical field that
determines the sensitivity of the device by Hcr, one finds from Eq. (20) that
Hcr � δH. The critical field can now be expressed in terms of the current
transmitted through the device as

Hcr(Oe) �
�I

eµg
� g0

g
(3 × 102)I(nA) , (25)

where g0 (= 2) is the gyromagnetic ratio for the free electrons. For I � 10−1÷
10−2 nA and g0/g � 1/3 this gives a range Hcr � 1÷10Oe. A further increase
in sensitivity would follow if one could use a shuttle with several (N) electronic
levels involved in the tunneling process. The critical magnetic field would then
be inversely proportional to the number of levels, Hcr(N) = Hcr(N = 1)/N .
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A Appendix 1

The Shrödinger equation results in equations for the coefficients cαβ
R(L), c

α
↑(↓):

i
∂cα↑
∂t

= −J(t)cα↑ − (gµH/2)cα↓ + TL(t)
∑

β

cαβ
L (t) , (26)

i
∂cα↓
∂t

= J(t)cα↑ − (gµH/2)cα↓ + TR(t)
∑

β

cαβ
R (t) ,

i
∂cαβ

L

∂t
= εβc

αβ
L + TL(t)cα↑ (t) ,

i
∂cαβ

R

∂t
= εβc

αβ
R + TR(t)cα↓ (t) .

As it follows from the last two equations (together with the initial condi-
tions)

cαβ
L (t) = e−iεβtδαβ − i

∫ t

−∞
dt′eiεβ(t′−t)TL(t′)cα↑ (t′) , (27)

cαβ
R (t) = −i

∫ t

−∞
dt′eiεβ(t′−t)TR(t′)cα↓ (t′) .

Therefore, for the
∑

β c
αβ
R (t) one gets

∑
β

cαβ
R (t) = −i

∫ t

−∞
dt′TR(t′)cα↓ (t′)

∑
β

eiεβ(t′−t) .

In wide-band approximation we suppose ν(ε) =const, therefore
∑

β e
iεβ(t′−t) =

2πνδ(t′ − t) and ∑
β

cαβ
R (t) = −iπνTR(t)cα↓ . (28)

Analogously, ∑
β

cαβ
L (t) = e−iεαt − iπνTL(t)cα↑ . (29)

Substitute the expressions, Eqs. (28), (29), to the first two equations (26), one
get the equation Eq. (6) for the bi-vector cα.
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B Appendix 2

Under our approximation we can change the integration limits in Eq. (11):

I =
e

T

∫ T

0

dtΓR(t)
∫ t

−∞
dt′ΓL(t′)|L̂21(t, t′)|2 (30)

=
e

T

∫ T/2+τ

T/2

dtΓR(t)
∫ τ

−∞
dt′ΓL(t′)|L̂21(t, t′)|2 .

Beside this, in the time moments T/2 < t < T/2 + τ L̂(t, T/2) is a diagonal
matrix. Therefore L̂21(t, t′) = L̂22(t, T/2)L̂21(T/2, t′). As a consequence, the
integral in the expression for the average current, Eq. (30), is factorized:

I =
e

T

∫ T/2+τ

T/2

dtΓR(t)|L̂22(t, T/2)|2
∫ τ

−∞
dt′ΓL(t′)|L̂21(T/2, t′)|2 . (31)

The first integral in Eq. (31) is easy to calculate. Having in mind that (T/2 <
t < T/2 + τ) |L̂22(t, T/2)|2 = exp

[
−
∫ t

T/2
dtΓR(t)

]
, one gets

∫ T/2+τ

T/2

dtΓR(t)|L̂22(t, T/2)|2 = 1 − e−Γ , (32)

where quantity Γ is defined in Eq. (14).
The calculation of the second integral in Eq. (31) can be done in the same

manner. One has the set of equalities,∫ τ

−∞
ΓL(t)|L̂21(T/2, t)|2 =

∞∑
n=0

∫ −nT+τ

−nT

dtΓL(t)|L̂21(T/2, t)|2

=
∞∑

n=0

∫ τ

0

dtΓL(t)|(e2, L̂(T/2, τ)L̂(τ, t− nT )e1)|2 . (33)

For the quantity L̂(τ, t− nT ) = L̂(τ + nT, t) one has

L̂(τ + nT, t) = L̂(τ + nT, τ + (n− 1)T )...L̂(τ, t) = L̂n(τ + T, τ)L̂(τ, t) . (34)

Therefore,∫ τ

−∞
dtΓL(t)|L̂21(T/2, t)|2 =

∞∑
n=0

∫ τ

0

dtΓL(t)|(e2, L̂(T/2, τ)L̂nL̂(τ, t)e1)|2 .

(35)
Integral over t in Eq. (35) can be taken similarly to ones in Eq. (32) and, as
a result, one gets the Eq. (13) for the average current.
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