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Preface to the Third Edition

The one and a half decades since the publication of the first edition of Theo-
retical Atomic Physics have seen a continuation of remarkable and dramatic
experimental breakthroughs. With the help of ultrashort laser pulses, special
states of atoms and molecules can now be prepared and their time-evolution
studied on time scales shorter than femtoseconds. Trapped atoms and mole-
cules can be cooled to temperatures on the order of a few nano–Kelvin and
light fields can be used to guide and manipulate atoms, for example in optical
lattices formed as standing waves by counterpropagating laser beams. After
the first production of Bose–Einstein condensates of ultracold atomic gases
in 1995, degenerate quantum gases of ultracold atoms and molecules are now
prepared and studied routinely in many laboratories around the world. Such
progress in atomic physics has been well received and appreciated in the gen-
eral academic community and was rewarded with two recent Nobel Prizes for
physics. The 1997 prize was given to Steven Chu, Claude Cohen-Tannoudji
and William Phillips for their work on cooling atoms, and only four years later
Eric Cornell, Wolfgang Ketterle and Carl Wieman received the 2001 prize for
the realization of the Bose–Einstein condensates mentioned above.

The prominence of modern experimental atomic physics establishes fur-
ther need for a deeper understanding of the underlying theory. The continuing
growth in quality and quantity of available computer power has substantially
increased the effectivity of large-scale numerical studies in all fields, including
atomic physics. This makes it possible to obtain some standard results such as
the properties of low-lying states in many-electron atoms with good accuracy
using generally applicable programme packages. However, largely due to the
dominant influence of long-ranged Coulomb forces, atomic systems are rather
special. They can reveal a wide range of interesting phenomena in very differ-
ent regimes — from near-classical states of highly excited atoms, where effects
of nonlinearity and chaos are important, to the extreme quantum regime of
ultracold atoms, where counterintuitive nonclassical effects can be observed.
The theoretical solution of typical problems in modern atomic physics requires
proficiency in the practical application of quantum mechanics at an advanced
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level, and a good understanding of the links to classical mechanics is almost
always helpful. The aim of Theoretical Atomic Physics remains to provide the
reader with a solid foundation of this sort of advanced quantum mechanics.

In preparing the third edition I have again tried to do justice to the rapid
development of the field. I have included references to important new work
whenever this seemed appropriate and easy to do. Chapter 1 now includes a
section on processes involving (wave packets of) continuum states and also
an expanded treatment of the semiclassical approximation. Chapter 3 begins
with a section illuminating the characteristic differences in the near-threshold
properties of long-ranged and shorter-ranged potentials, and the first section
of Chap. 4 contains a more elaborate discussion of scattering lengths. As a
further “special topic” in Chap. 5 there is a section describing some aspects
of atom optics, including discusions of the interactions of atoms with material
surfaces and with light fields. The appendix on special mathematical functions
has been slightly expanded to accommodate a few results that I repeatedly
found to be useful.

I am grateful to many colleagues who continue to inspire me with numer-
ous discussions involving atomic physics, quantum mechanics and semiclassi-
cal connections, in particular Robin Côté at the University of Connecticut,
Manfred Kleber at the Technical University Munich and Jan-Michael Rost at
the Max–Planck–Institute for Complex Systems in Dresden. Several current
and former graduate students produced new results that I have used in the
book, in particular Christopher Eltschka, Georg Jacoby, Alexander Jurisch,
Michael J. Moritz, Thomas Purr and Johannes Trost. I thank them all for the
effort and enthusiasm with which they contributed to the various projects. I
also thank Thomas Mehnert for helpful comments on the previous editions. A
sabbatical term at the Australian National University in Canberra during the
southern summer 2002/2003 established a fruitful connection to Ken Baldwin
and Stephen Gibson in the Atomic and Molecular Physics Laboratories, and I
am grateful to Brian Robson and Erich Weigold who made this visit possible.
Finally, I wish to thank my wife Elfi who (again) endured a hard-working
and preoccupied husband during the final stages of preparation of this third
edition.

Garching, June 2005 Harald Friedrich



Preface to the First Edition

In the first few decades of this century atomic physics and quantum mechan-
ics developed dramatically from early beginnings to maturity and a degree of
completeness. After about 1950 fundamental research in theoretical physics
focussed increasingly on nuclear physics and high energy physics, where new
conceptual insights were expected to be more probable. A further field of
growing importance was theoretical solid state physics, which led to or ac-
companied many revolutionary technological developments. In this environ-
ment the role of atomic physics as an independent discipline of theoretical
physics became somewhat subdued. In the last two decades, however, high
precision experimental techniques such as high resolution laser spectroscopy
have opened up new and interesting fields in atomic physics. Experiments
can now be performed on individual atoms and ions in electromagnetic traps
and the dependence of their properties on their environment can be studied.
Effects and phenomena which used to be regarded as small perturbations or
experimentally irrelevant exceptional cases have moved into the centre of at-
tention At the same time it has become clear that interesting and intricate
effects can occur even in seemingly simple systems with only few degrees of
freedom.

The successful description and interpretation of such effects usually re-
quires the solution of a non-trivial Schrödinger equation, and perturbative
methods are often inadequate. Most lectures and textbooks which go beyond
an introductory “Quantum Mechanics I” are devoted to many-body theo-
ries and field theories at a high level of abstraction. Not enough attention is
given to a more practical kind of advanced quantum mechanics as required
by modern atomic physics. In order to meet this demand I have taught sev-
eral courses on “Theoretical Atomic Physics” at the Munich Universities since
1984. The present book grew out of these lectures. It is an updated version
of the textbook Theoretische Atomphysik, which appeared in German in Sep-
tember 1990, and contains the kind of advanced quantum mechanics needed
for practical applications in modern atomic physics. The level of abstraction
is deliberately kept low – almost all considerations start with the Schrödinger
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equation in coordinate representation. The book is intended as a textbook for
students who have had a first introductory contact with quantum mechanics.
I have, however, aimed at a self-contained presentation which should – at least
in principle – be understandable without previous knowledge.

The book contains five chapters, the first two of which present mostly con-
ventional material as can be found in more detail in available textbooks on
quantum mechanics and atomic physics. The first chapter contains a concise
review of quantum mechanics and the second chapter a deliberatel brief sum-
mary of traditional atomic theory. I have taken pains to treat bound states
and continuum states on the same footing. This enables the inclusion of a com-
paratively straightforward introduction to quantum defect theory (Chap. 3),
which has become a powerful and widely used tool for analyzing atomic spec-
tra and which, up to now, has not been treated at such a basic level in a
student textbook. The scope of the reaction theory presented in Chap. 4 is
that of “simple reactions” induced by the collision of a single electron with an
atom or ion. This avoids many complications otherwise occurring in the defi-
nitions of coordinates, channels and potentials. On the other hand, important
concepts such as cross sections, scattering matrix, transition operator, reac-
tance matrix, polarization effects, Born approximation, break-up channels,
etc. can already be discussed in this simple framework.

The last chapter contains a selection of special topics which are currently
subject to intense and sometimes controversial discussion. The interest in
multiphoton processes has grown strongly with the availability of high-power
lasers and underlines the importance of non-perturbative methods in quantum
mechanics. The possibility of using very short laser pulses to study spatially
and temporally localized excitations of individual atoms has revived interest in
the relation between classical mechanics and quantum mechanics. The final
section discusses “chaos”, which is currently one of the most popular and
rapidly growing subfields in almost all fields of physics. While most specific
investigations of chaos are numerical experiments on model systems, there
are a few prominent examples in atomic physics of simple but real systems,
which can be and have been observed in the laboratory and which have all
the properties currently causing excitement in connection with chaos.

It is a pleasure to thank the many colleagues and friends who unselfishly
helped me in the course of writing this book. Special thanks are due to Karl
Blum, Wolfgang Domcke, Berthold-Georg Englert, Christian Jungen, Manfred
Kleber, Achim Weiguny and Dieter Wintgen, who read through individual
chapters and/or sections and suggested several improvements of the original
manuscript. Valuable suggestions and hints were also provided by John S.
Briggs, Hubert Klar and Peter Zoller. Gerd Handke and Markus Draeger
conscientiously checked more than a thousand formulae and helped to avoid
disaster. The original drawings were produced with the competent help of
Mrs. I. Kuchenbecker and a plot program specially tailored for the purpose
by Markus Draeger. Special thanks are also dur to Dr. H.-U. Daniel from
Springer-Verlag. His experience and competence contributed significantly to
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the success of the project. Finally I would like to thank my wife Elfi, who not
only read through the German and the English manuscript word by word,
but also supported my work with patience and encouragement during the last
three years.

Garching Harald Friedrich
June 1991
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1

Review of Quantum Mechanics

Atomic phenomena are described mainly on the basis of non-relativistic quan-
tum mechanics. Relativistic effects can generally be accounted for in a sat-
isfactory way with perturbative methods. In recent years it has become in-
creasingly apparent, that a better understanding of the classical dynamics
of an atomic system can lead to a deeper appreciation of various features in
its observable quantum mechanical properties, see e.g. [RW94, BR97, CK97,
FE97, BB97, SS98], Sect. 5.3. This does not, however, invalidate the generally
accepted point of view, that quantum mechanics is the relevant theory for
atomic physics.

This chapter gives a brief review of quantum mechanics as it is needed for
use in later chapters. Although the reader is expected to have some experience
in the subject already, the presentation starts at the beginning and is self-
contained so that it should, at least in principle, be understandable without
previous knowledge of quantum mechanics. A more thorough introduction can
be found in numerous textbooks, e.g. [Sch68, Bay69, Gas74, Mes70, Sch02].

1.1 Wave Functions and Equations of Motion

1.1.1 States and Wave Functions

Non-relativistic quantum mechanics describes the state of a physical system at
a given time t with a complex-valued wave function ψ(X; t). The wave function
ψ depends on the parameter t and a complete set of variables summarized
as X. As an example let us think of a system of N electrons, which plays a
central role in atomic physics. Then X can stand for the N spatial coordinates
r1, ... rN and the N spin coordinates ms1 , ...msN

of the electrons. The spatial
coordinates ri are ordinary (real) vectors in three-dimensional space; the spin-
coordinates msi

can each assume only two values, msi
= ±1/2.

The set of wave functions describing a given system is closed with respect
to linear superposition. This means that all multiples and sums of possible
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wave functions are again possible wave functions. Mathematically, the possible
wave functions of a system form a vector space. The scalar product of two wave
functions ψ(X; t), φ(X; t′) in this vector space is defined as

〈ψ(t)|φ(t′)〉 =
∫
ψ∗(X; t)φ(X; t′) dX . (1.1)

The integral in (1.1) stands for integration over the continuous variables and
summation over the discrete variables. In the above-mentioned example of an
N -electron system we have∫

dX =
∫

d3r1...

∫
d3rN

1/2∑
ms1=−1/2

...

1/2∑
msN

=−1/2

.

The scalar product (1.1) is linear,

〈ψ|φ1 + cφ2〉 = 〈ψ|φ1〉 + c〈ψ|φ2〉 , (1.2)

and it is replaced by its complex conjugate if we interchange the wave func-
tions,

〈φ|ψ〉 = 〈ψ|φ〉∗ . (1.3)

Two wave functions ψ and φ are orthogonal if the scalar product 〈ψ|φ〉 van-
ishes. The scalar product 〈ψ|ψ〉 is a non-negative real number, and its square
root is the norm of the wave function ψ. Square integrable wave functions,
i.e. wave functions ψ(X; t) with the property

〈ψ|ψ〉 =
∫

|ψ(X; t)|2dX <∞ , (1.4)

are normalizable. This means that they become wave functions of norm unity,

〈ψ|ψ〉 =
∫

|ψ(X; t)|2dX = 1 , (1.5)

when multiplied by an appropriate constant. The non-negative function
|ψ(X; t)|2 is a probability density. If, at time t, a physical state is described
by the wave function ψ(X; t) (which is normalized to unity, 〈ψ|ψ〉 = 1), then
the integral∫

δV

|ψ(X; t)|2 dX

over a part δV of the full space of values of the variableX gives the probability
that a measurement of the variable X (at time t) will yield values within δV .
The concept of probability densities can also be applied to wave functions
which are not normalizable, as long as we only study relative probabilities.

The square integrable functions (1.4) form a subspace of the space of all
wave functions. This subspace has the properties of a Hilbert space. In particu-
lar it is complete, meaning that the limit of each convergent sequence of wave
functions in the Hilbert space is again a wave function in the Hilbert space.



1.1 Wave Functions and Equations of Motion 3

It also has a denumerable basis, i.e. there exists a sequence φ1(X), φ2(X), . . . ,
of linearly independent square integrable functions such that any square inte-
grable function ψ(X) can be written as a linear combination

ψ(X) =
∞∑

n=1

cnφn(X) (1.6)

with uniquely determined coefficients cn. The basis is orthonormal if its wave
functions obey the orthonormality relation

〈φi|φj〉 = δi,j . (1.7)

In this case the coefficients cn in (1.6) can be obtained by forming the scalar
product with φi:

ci = 〈φi|ψ〉 . (1.8)

The notation can be simplified if we leave out the variables X, which
often aren’t specified anyhow, and write the wave functions as abstract state
vectors |ψ〉. The complex conjugate wave functions φ∗, with which the ψs are
multiplied to form scalar products, are written as 〈φ|. From the word “bracket”
we call the state vector |ψ〉 forming the right-hand part of a scalar product
〈φ|ψ〉 a ket, and we call the left-hand part 〈φ| a bra. Equation (1.6) now has
the simplified form

|ψ〉 =
∞∑

n=1

cn|φn〉 , (1.9)

or, with (1.8),

|ψ〉 =
∞∑

n=1

|φn〉〈φn|ψ〉 . (1.10)

The bra-ket notation is very useful, because many statements and formulae
such as (1.9), (1.10) are independent of the particular choice of variables.

1.1.2 Linear Operators and Observables

An operator Ô turns a possible wave function |ψ〉 into another possible wave
function Ô|ψ〉. A linear operator has the property

Ô(|ψ1〉 + c|ψ2〉) = Ô|ψ1〉 + c Ô|ψ2〉 . (1.11)

For each linear operator Ô there is a Hermitian conjugate operator Ô†. It is
defined by the condition that the scalar product of any bra 〈φ| with the ket
Ô†|ψ〉 be the complex conjugate of the scalar product of the bra 〈ψ| with the
ket Ô|φ〉:

〈φ|Ô†|ψ〉 = 〈ψ|Ô|φ〉∗ . (1.12)
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Equation (1.12) is the bra-ket notation for the equation∫
φ∗(X){Ô†ψ(X)}dX =

(∫
ψ∗(X){Ôφ(X)}dX

)∗
. (1.13)

In quantum mechanics an especially important class of operators consists of
the Hermitian operators. Hermitian operators are linear operators Ô with the
property

Ô† = Ô . (1.14)

Eigenstates of a linear operator Ô are non-vanishing wave functions |ψω〉
for which the action of the operator Ô merely amounts to multiplication with
a number ω:

Ô|ψω〉 = ω|ψω〉 . (1.15)

The number ω is called eigenvalue of Ô. The spectrum of the operator Ô
consists of all its eigenvalues. For a Hermitian operator

〈ψω|Ô|ψω〉 = 〈ψω|Ô†|ψω〉∗ = 〈ψω|Ô|ψω〉∗ (1.16)

and

ω =
〈ψω|Ô|ψω〉
〈ψω|ψω〉 , (1.17)

so its eigenvalues are always real. Eigenstates of a Hermitian operator with
different eigenvalues

Ô|ψ1〉 = ω1|ψ1〉 , Ô|ψ2〉 = ω2|ψ2〉 (1.18)

are always orthogonal, because the product (ω1 − ω2)〈ψ2|ψ1〉 has to vanish
due to

〈ψ2|Ô|ψ1〉 = ω1〈ψ2|ψ1〉 = ω2〈ψ2|ψ1〉 . (1.19)

If the eigenvalue ω is degenerate, this means if there is more than one linearly
independent eigenstate with this eigenvalue, then we can construct orthogonal
linear combinations of these eigenstates which of course stay eigenstates with
eigenvalue ω.

As an example of a Hermitian operator we look at the projection operator
P̂φ. Its action on an arbitrary state vector |ψ〉 is to project out the component
proportional to the state |φ〉 (which we assume to be normalized to unity),

P̂φ|ψ〉 = 〈φ|ψ〉 |φ〉 = |φ〉〈φ|ψ〉 (1.20)

(compare (1.6), (1.9)). In compact bra-ket notation we have

P̂φ = |φ〉〈φ| . (1.21)

The state |φ〉 itself is an eigenstate of P̂φ with eigenvalue unity. All states or-
thogonal to |φ〉 are eigenstates of P̂φ with eigenvalue zero, which is thus highly
degenerate. If we sum up the projections onto all orthogonal components of
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a state |ψ〉, then we must recover the state |ψ〉 – see (1.10). If the states |φn〉
form an (orthonormal) basis of the whole Hilbert space, then (1.10) must hold
for all states |ψ〉. This can be expressed in a compact way in the completeness
relation,∑

n

|φn〉〈φn| = 1 . (1.22)

The bold 1 is the unit operator whose action on any wave function is to leave
it unchanged.

The observables of a physical system are described by Hermitian operators.
The (real) eigenvalues are the possible results of measurement of the observ-
able. If the state of a system is described by an eigenstate of a Hermitian
operator, this means that measuring the observable will definitely yield the
corresponding eigenvalue.

Any wave function must be decomposable into eigenstates of a given ob-
servable. This means that the eigenstates of an observable form a complete
set. If all eigenstates of an observable are square integrable, then they form
a basis of the Hilbert space of square integrable wave functions. Since eigen-
states with different eigenvalues are orthogonal and degenerate eigenstates
can be orthogonalized, it is then always possible to find an orthonormal basis
of eigenstates:

Ô|ψi〉 = ωi|ψi〉, 〈ψi|ψj〉 = δi,j . (1.23)

An arbitrary wave function |ψ〉 in Hilbert space can be expanded in eigenstates
of Ô:

|ψ〉 =
∑

n

cn|ψn〉 . (1.24)

If the wave function |ψ〉 is normalized to unity,

〈ψ|ψ〉 =
∑

n

|cn|2 = 1 , (1.25)

then the absolute squares

|cn|2 = |〈ψn|ψ〉|2 (1.26)

of the expansion coefficients represent the probabilities for finding the system
described by |ψ〉 in the respective eigenstates |ψn〉 and for a measurement of
the observable Ô yielding the respective eigenvalues ωn. The expectation value
〈Ô〉 of the observable Ô in the state |ψ〉 (assumed normalized to unity) is the
mean of all possible eigenvalues ωn weighted with the probabilities (1.26):

〈Ô〉 =
∑

n

|cn|2ωn = 〈ψ|Ô|ψ〉 . (1.27)

The numbers 〈ψi|Ô|ψj〉 defined with reference to a given basis |ψi〉 form
the matrix of the operator Ô in the basis {|ψi〉}. The matrix of a Hermitian op-
erator is Hermitian. The matrix of an operator in a basis of its own eigenstates
is diagonal (provided degenerate eigenstates are orthogonalized).
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Observables can also have eigenstates which are not normalizable, and
whose eigenvalues are in general continuous. In this case we must replace
or complement the discrete subscripts i, n in (1.23)–(1.27) by continuous
subscripts, and the sums by integrals.

If a wave function |ψ〉 is simultaneously an eigenstate of two observables
Â and B̂ with eigenvalues α and β respectively, then obviously

ÂB̂|ψ〉 = αβ|ψ〉 = βα|ψ〉 = B̂Â|ψ〉 . (1.28)

A necessary and sufficient condition for Â and B̂ to have a common complete
set of eigenstates is that Â and B̂ commute:

ÂB̂ = B̂Â or [Â, B̂] = 0 . (1.29)

[Â, B̂] = ÂB̂ − B̂Â is the commutator of Â and B̂. If Â and B̂ do not com-
mute, then they are not simultaneously measurable, which means there is
no complete set of wave functions which can simultaneously be classified by
eigenvalues of Â and B̂.

In order to describe a physical system completely, we need a complete set
of commuting observables. In this context “complete set” means that there
is no further independent observable that commutes with all members of the
set. The eigenvalues of the observables of a complete set form a complete set
of variables for the wave functions. The choice of observables and variables is
not unique; it defines the representation in which we study the evolution and
the properties of the physical system.

For a spinless point particle in three-dimensional space, the three compo-
nents x̂, ŷ, ẑ of the displacement operator r̂ form a complete set of observables.
Application of the displacement operators merely amounts to multiplying with
the respective position coordinates, e.g.

ŷ ψ(x, y, z; t) = y ψ(x, y, z; t) . (1.30)

The corresponding momenta are described by the vector operator

p̂ =
h̄

i
∇ , (1.31)

i.e.

p̂x =
h̄

i
∂

∂x
, etc. (1.32)

Here we have introduced Planck’s constant h̄, which has the dimensions of an
action and has the value 1.054571596(82)×10−34 Js = 6.58211889(78)×10−16

eV s [MT00].
Position and momentum operators for the same degree of freedom do not

commute:

[p̂x, x̂] =
h̄

i
. (1.33)
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This means that position and momentum in the same direction are not si-
multaneously measurable, as is expressed quantitatively in Heisenberg’s un-
certainty relation:

∆px∆x ≥ 1
2
h̄ . (1.34)

The uncertainties ∆px and ∆x in a given state |ψ〉 are defined as the
fluctuations of the observables around their respective expectation values
〈x̂〉 = 〈ψ|x̂|ψ〉, 〈p̂x〉 = 〈ψ|p̂x|ψ〉:
∆x =

√
〈x̂2〉 − 〈x̂〉2 , ∆px =

√
〈p̂2x〉 − 〈p̂x〉2 . (1.35)

Position and momentum operators for different degrees of freedom com-
mute, so we can write (1.33) more generally as

[p̂i, x̂j ] =
h̄

i
δi,j . (1.36)

Here the subscripts i and j can stand for different coordinates of one point
particle or for different particles in a many-body system.

Throughout this book relations and equations are almost always formu-
lated in coordinate representation where the spatial coordinates are variables
of the wave functions. Because of (1.30) we omit the hat ,̂ which generally
characterizes operators, from the position variables. The position variables
are only written with a hat on a few isolated occasions, where the operator
nature of the variable is intentionally emphasized.

1.1.3 The Hamiltonian and Equations of Motion

The Hermitian operator describing the energy of a system is the Hamiltonian.
For a system of N spinless point particles of massmi, the Hamiltonian usually
consists of the kinetic energy

T̂ =
N∑

i=1

p̂2
i

2mi

and a potential energy V̂ :

Ĥ = T̂ + V̂ . (1.37)

The potential energy is in general a function of the N displacement vectors,
V̂ = V̂ (r̂1, ...r̂N ). In coordinate representation V̂ is usually given by a real
function V (r1, ...rN ) of the position variables. Applying the operator V̂ to a
wave function then simply amounts to multiplying the wave function with the
function V (r1, ...rN ).

The Hamiltonian of a physical system determines its evolution in time.
In the Schrödinger picture the evolution of a state |ψ(t)〉 is described by the
Schrödinger equation:
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Ĥ|ψ(t)〉 = ih̄
d|ψ〉
dt

, (1.38)

which in coordinate representation corresponds to a partial differential equa-
tion:

Ĥψ(X; t) = ih̄
∂ψ

∂t
. (1.39)

The evolution of a state |ψ(t)〉 can formally be described with the help of
the time evolution operator:

|ψ(t)〉 = Û(t, t0)|ψ(t0)〉 . (1.40)

If the Hamiltonian is not explicitly time dependent, then the time evolution
operator is

Û(t, t0) = exp
[
− i
h̄
Ĥ(t− t0)

]
. (1.41)

For a time-dependent Hamiltonian, (1.41) must be replaced by

Û(t, t0) =
[
exp

{
− i
h̄

∫ t

t0

Ĥ(t′)dt′
}]

+

, (1.42)

where the symbol [· · ·]+ indicates time ordering of products of operators:[
Ô(t1) · · · Ô(tn)

]
+

= Ô(tl1) · · · Ô(tln) when tl1 ≥ tl2 . . . ≥ tln . The time evo-

lution operator is unitary. That means

Û†Û = Û Û† = 1 . (1.43)

In the Heisenberg picture we regard the state vector

|ψH〉 = Û†(t, t0)|ψ(t)〉 = |ψ(t0)〉 (1.44)

as a time-independent quantity, and the Schrödinger equation(1.38) leads to
an equation of motion for the Heisenberg representation

ÔH(t) = Û†(t, t0)ÔÛ(t, t0) , (1.45)

of the respective operators Ô, namely:

ih̄
dÔH

dt
= [ÔH, ĤH] + ih̄

∂ÔH

∂t
. (1.46)

The expectation value of an operator does not depend on whether we work in
the Schrödinger picture or in the Heisenberg picture:

〈Ô〉 = 〈ψ(t)|Ô|ψ(t)〉 = 〈ψH|ÔH(t)|ψH〉 . (1.47)

The evolution of 〈Ô〉 follows from (1.38) or (1.46):

ih̄
d〈Ô〉
dt

= 〈[Ô, Ĥ]〉 + ih̄

〈
∂Ô

∂t

〉
. (1.48)
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For a time-independent Hamiltonian Ĥ the wave function

|ψ(t)〉 = exp
(
− i
h̄
Et

)
|ψE〉 (1.49)

is a solution of the Schrödinger equation (1.38) if and only if |ψE〉 is an
eigenstate of Ĥ with eigenvalue E,

Ĥ|ψE〉 = E|ψE〉 . (1.50)

Equation (1.50) is the time-independent or stationary Schrödinger equation.
Since any linear combination of solutions of the time-dependent Schrödinger
equation (1.38) is again a solution we can use the eigenstates |ψEn

〉 of Ĥ to
construct a general solution of (1.38):

|ψ(t)〉 =
∑

n

cn exp
(
− i
h̄
Ent

)
|ψEn

〉 . (1.51)

As long as the potential energy is sufficiently attractive, the Hamiltonian
Ĥ has only discrete eigenvalues and normalizable eigenstates at low ener-
gies. They describe bound states of the system. In this energy region the
time-independent Schrödinger equation (1.50) is an equation for the eigenval-
ues En and the corresponding eigenfunctions |ψEn

〉. The lowest eigenvalue is
the ground state energy and the corresponding eigenstate the ground state of
the system. If the potential energy V (r1, ... , rN ) converges to a constant in the
asymptotic region (where at least one |ri| → ∞), then the time-independent
Schrödinger equation can be solved for all energies above this constant and
the corresponding eigenstates are in general not normalizable. Such contin-
uum wave functions describe unbound states of the system (scattering states,
reactions) and their concrete meaning depends on their asymptotic properties,
i.e. on the asymptotic boundary conditions.

1.2 Symmetries

1.2.1 Constants of Motion and Symmetries

If the Hamiltonian Ĥ does not depend explicitly on time, then the expec-
tation value of Ĥ is a constant in time, as is the expectation value of any
(time-independent) operator which commutes with Ĥ. This follows immedi-
ately from (1.48). The energy and the observables commuting with Ĥ are
the constants of motion. Solutions of the time-independent Schrödinger equa-
tion can be labelled by the energy and the eigenvalues of the other constants
of motion. The eigenvalues of the constants of motion are often called good
quantum numbers.

An important example is the orbital angular momentum of a point particle
of mass µ:

L̂ = r̂ × p̂ , (1.52)
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i.e. L̂x = ŷp̂z − ẑp̂y, etc. If the potential energy V (r) depends only on the
length r = |r| and not on the direction of the vector r,

Ĥ =
p̂2

2µ
+ V (r) , (1.53)

then all components of L̂ commute with Ĥ,

[Ĥ, L̂x] = [Ĥ, L̂y] = [Ĥ, L̂z] = 0 , (1.54)

as does the square L̂
2

= L̂2
x + L̂2

y + L̂2
z ,

[Ĥ, L̂
2
] = 0 . (1.55)

However, the components of L̂ themselves do not commute, rather

[L̂x, L̂y] = ih̄L̂z , [L̂y, L̂z] = ih̄L̂x , [L̂z, L̂x] = ih̄L̂y . (1.56)

L̂
2

and all components of L̂ are constants of motion, but L̂
2

and one compo-
nent alone already form a complete set of observables for the orbital angular
motion of the particle. In spherical coordinates,

x = r sin θ cosφ , y = r sin θ sinφ , z = r cos θ , (1.57)

the eigenstates of the angular momentum operators L̂
2

and L̂z are the spher-
ical harmonics Yl,m(θ, φ), which are labelled by the angular momentum quan-
tum number l and the azimuthal quantum number m:

L̂
2
Yl,m = l(l + 1)h̄2Yl,m , l = 0, 1, 2, . . . ;

L̂zYl,m = mh̄Yl,m , m = −l, −l + 1, . . . , l − 1, l . (1.58)

A precise definition and some important properties of the functions Yl,m(θ, φ)
are given in Appendix A.1. Here we just mention the orthonormality relation∫

Y ∗
l,m(Ω)Yl′,m′(Ω) dΩ

=
∫ π

0

sinθ dθ
∫ 2π

0

dφY ∗
l,m(θ, φ)Yl′,m′(θ, φ)

= δl,l′δm,m′ . (1.59)

The spherical harmonics up to l = 3 are given explicitly in Table 1.1.
Let K̂ be a constant of motion. The unitary operator generated by K̂,

ÛK(k) = exp(−ikK̂) , (1.60)

defines a transformation of the wave functions,

|ψk〉 = ÛK(k)|ψ〉 , (1.61)

and of the operators,

Ôk = ÛK(k) Ô Û†
K(k) . (1.62)
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Table 1.1. Spherical harmonics Yl,m(θ, φ) for l ≤ 3

l 0 1 1 2
m 0 0 ±1 0

Yl,m
1√
4π

√
3
4π

cos θ ∓
√

3
8π

sin θ e±iφ
√

5
16π

(3 cos2 θ − 1)

l 2 2 3
m ±1 ±2 0

Yl,m ∓
√

15
8π

sin θ cos θ e±iφ
√

15
32π

sin2 θ e±2iφ
√

7
16π

(5 cos3 θ − 3 cos θ)

l 3 3 3
m ±1 ±2 ±3

Yl,m ∓
√

21
64π

sin θ(5 cos2 θ − 1) e±iφ
√

105
32π

sin2 θ cos θ e±2iφ ∓
√

35
64π

sin3 θ e±3iφ

This transformation conserves expectation values and matrix elements:

〈ψk|Ôk|φk〉 = 〈ψ|Ô|φ〉 . (1.63)

Since K̂ commutes with Ĥ, and hence any function of K̂ commutes with Ĥ,
we have:

Ĥk = ÛK(k) Ĥ Û†
K(k) = Ĥ , (1.64)

that means, the Hamiltonian is invariant under the symmetry transformation
defined by ÛK(k). Conversely, if we assume the invariance (1.64) for all (real)
values of the parameter k, then for infinitesimal k we have

(1 − ikK̂ + · · ·)Ĥ(1 + ikK̂ + · · ·) = Ĥ + ik[Ĥ, K̂] +O(k2) = Ĥ , (1.65)

which only works if K̂ commutes with Ĥ. Thus the Hamiltonian is invariant
under the symmetry transformations (1.60) if and only if it commutes with
their generator K̂.

As an example let’s look again at the orbital angular momentum L̂ of a
point particle, in particular at its z-component which has the following form
in spherical coordinates:

L̂z =
h̄

i
∂

∂φ
. (1.66)

The symmetry transformations generated by L̂z are rotations around the z-
axis through all possible angles α:

R̂z(α) = exp
(
− i
h̄
αLz

)
. (1.67)

The invariance of the Hamiltonian under rotations manifests itself in the com-
mutation of the Hamiltonian with the components of orbital angular momen-
tum.

Mathematically, symmetry transformations which are generated by one or
more generators form a group. This means that two symmetry transformations
operating in succession form a symmetry transformation of the same kind,
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and to every symmetry transformation R there belongs an inverse symmetry
transformation R−1 which undoes the original transformation: R−1R = 1.
The transformations of a symmetry group can be labelled by one or more
continuous parameters, as in the example of rotations, or by discrete parame-
ters, as is the case for reflections. An important example of a reflection is the
reflection at the origin in coordinate space:

Π̂ψ(x, y, z) = ψ(−x,−y,−z) . (1.68)

Since Π̂2 = 1, there are only two possible eigenvalues for Π̂: +1 and −1.
The corresponding eigenstates are called states of positive parity and states
of negative parity respectively. If the potential energy V (x, y, z) of a point
particle does not depend on the sign of the coordinates, then parity is a good
quantum number.

Identifying constants of motion and good quantum numbers is an impor-
tant step towards solving the Schrödinger equation. If Ô is a constant of
motion we can look for eigenstates of Ĥ in subspaces consisting of eigenstates
of Ô with given eigenvalue ω. In most cases this is much simpler than trying
to solve the Schrödinger equation directly in the space of all possible wave
functions, as the following example shows.

1.2.2 The Radial Schrödinger Equation

The time-independent Schrödinger equation for a point particle in a radially
symmetric potential V (r) is, in coordinate representation,(

− h̄
2

2µ
∆+ V (r)

)
ψ(r) = Eψ(r) . (1.69)

The Laplacian operator ∆ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 = −p̂2/h̄2 can be
expressed in spherical coordinates with the help of the orbital angular mo-
mentum L̂:

∆ =
∂2

∂r2
+

2
r

∂

∂r
− L̂

2

r2h̄2 . (1.70)

Since L̂
2

and L̂z are constants of motion, we can label the solutions of the
Schrödinger equation (1.69) by the good quantum numbers l and m:

ψ(r) = fl(r)Yl,m(θ, φ) . (1.71)

Parity is also a good quantum number for the wave function (1.71), because
the radial coordinate r is unaffected by the reflection r → −r and (see (A.5))

Π̂ Yl,m(θ, φ) = (−1)l Yl,m(θ, φ) . (1.72)

Inserting (1.71) into (1.69) leads to an equation for the radial wave function
fl(r):
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− h̄

2

2µ

(
d2

dr2
+

2
r

d
dr

)
+
l(l + 1)h̄2

2µr2
+ V (r)

]
fl(r) = Efl(r) ; (1.73)

it does not depend on the azimuthal quantum number m.
The radial Schrödinger equation (1.73) is an ordinary differential equation

of second order for the radial wave function fl and is thus a substantial sim-
plification compared to the partial differential equation (1.69). A further not
so substantial but very useful simplification is achieved, if we formulate an
equation not for fl(r), but for φl = rfl, i.e. for the radial wave function φl(r)
defined by

ψ(r) =
φl(r)
r
Yl,m(θ, φ) . (1.74)

The radial Schrödinger equation now reads(
− h̄

2

2µ
d2

dr2
+
l(l + 1)h̄2

2µr2
+ V (r)

)
φl(r) = Eφl(r) , (1.75)

and this looks just like the Schrödinger equation for a point particle moving
in one spatial dimension in an effective potential consisting of V (r) plus the
centrifugal potential l(l + 1)h̄2/(2µr2):

Veff(r) = V (r) +
l(l + 1)h̄2

2µr2
. (1.76)

Note however, that the radial Schrödinger equations (1.73) and (1.75) are only
defined for non-negative values of the radial coordinate r. The boundary con-
dition which the radial wave function φl(r) must fulfill at r = 0 can be derived
by inserting an ansatz φi(r) ∝ rα into (1.75). As long as the potential V (r) is
less singular than r−2, the leading term on the left-hand side is proportional
to rα−2 and vanishes only if α = l + 1 or α = −l. The latter possibility is to
be discarded, because an infinite value of φl(r → 0) would lead to an infinite
contribution to the norm of the wave function near the origin; a finite value,
as would occur for l = 0, leads to a delta function singularity originating from
∆(1/r) on the left-hand side of the Schrödinger equation (1.69), and this can-
not be compensated by any of the other terms in the equation. The boundary
condition for the radial wave function at the origin r = 0 is thus

φl(0) = 0 for all l , (1.77)

and its behaviour near the origin is given by

φl(r) ∝ rl+1 for r → 0 (1.78)

(as long as the potential V (r) is less singular than r−2).
The radial Schrödinger equation (1.75) is a one-dimensional Schrödinger

equation for a particle which moves in the effective potential (1.76) for r ≥ 0
and hits an infinite repulsive wall at r = 0. In a one-dimensional symmetric
potential V (|x|) the odd solutions, i.e. those of negative parity, automatically
fulfill the condition φ(0) = 0. Since the effective potential (1.76) for l = 0
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has the same form as the potential in the one-dimensional Schrödinger equa-
tion, there is a one-to-one correspondence between the solutions of the radial
equation for l = 0 and the negative parity solutions of the one-dimensional
equation with the same potential.

Using the orthonormality (1.59) of the spherical harmonics we see that the
scalar product of two wave functions ψl,m and ψ′

l′,m′ of type (1.74) is given
by

〈ψl,m|ψ′
l′,m′〉 =

∫
ψ∗

l,m(r)ψ′
l′,m′(r)d3r

= δl,l′ δm,m′

∫ ∞

0

φ∗l (r)φ
′
l(r) dr . (1.79)

If the potential V (r) is real the phase of the wave function (1.74) can always
be chosen such that the radial wave function φl is real.

1.2.3 Example: The Radially Symmetric Harmonic Oscillator

The potential for this case is

V (r) =
µ

2
ω2r2 . (1.80)

For angular momentum quantum numbers l > 0 the effective potential Veff

also contains the centrifugal potential. The potential tends to infinity for
r → ∞ and there are only bound solutions to the Schrödinger equation.
For each angular momentum quantum number l there is a sequence of energy
eigenvalues,

En,l =
(

2n+ l +
3
2

)
h̄ω , n = 0, 1, 2, . . . , (1.81)

and the corresponding radial wave functions φn,l(r) (which are normalized to
unity) are

φn,l = 2(
√
πβ)−

1
2

[
2n+l n!

(2n+ 2l + 1)!!

] 1
2
(
r

β

)l+1

L
l+ 1

2
n

(
r2

β2

)

×exp
(
− r2

2β2

)
. (1.82)

The polynomials Lα
n(x) are the generalized Laguerre polynomials and are poly-

nomials of order n in x. (The ordinary Laguerre polynomials correspond to
α = 0.) For the definition and some important properties of the Laguerre
polynomials see Appendix A.2. The quantity β in (1.82) is the oscillator width
given by

β =

√
h̄

µω
or

h̄2

µβ2
= h̄ω . (1.83)
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Table 1.2. Radial eigenfunctions (1.82) for the harmonic oscillator, (
√

π β)
1
2 φn,l(r) ,

(x = r/β)

l n = 0 n = 1 n = 2

0 2x e−x2/2

√
8

3
x

(
3

2
− x2

)
e−x2/2

√
8

15
x

(
15

4
− 5x2 + x4

)
e−x2/2

1

√
8

3
x2e−x2/2 4√

15
x2

(
5

2
− x2

)
e−x2/2 4√

105
x2

(
35

4
− 7x2 + x4

)
e−x2/2

2
4√
15

x3e−x2/2

√
32

105
x3

(
7

2
− x2

)
e−x2/2

√
32

945
x3

(
63

4
− 9x2 + x4

)
e−x2/2

3

√
32

105
x4e−x2/2 8√

945
x4

(
9

2
− x2

)
e−x2/2 8√

10395
x4

(
99

4
− 11x2 + x4

)
e−x2/2

For l = 0 (1.81) gives us the spectrum (2n + 3/2)h̄ω , n = 0, 1, . . . of the
one-dimensional oscillator states of negative parity. The radial wave functions
(1.82) are summarized in Table 1.2 and illustrated in Fig. 1.1 for low values
of the quantum numbers n and l.

The radial wave functions φn,l are complemented via (1.74) to give eigen-
functions of the three-dimensional Schrödinger equation for a (spinless) point
particle in the potential (1.80). For every radial quantum number n and
angular momentum quantum number l there are 2l + 1 eigenfunctions cor-
responding to the various values of the azimuthal quantum number m =

Fig. 1.1. Radial eigenfunctions φn,l(r) of the spherical harmonic oscillator (1.82) for
angular momentum quantum numbers l = 0, 1, 2 and principal quantum numbers
(1.84) up to N = 19
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−l, −l+1, . . . , l−1, l. These eigenfunctions all have the same energy eigen-
value En,l , because the radial Schrödinger does not depend on m. This is true
in any radially symmetric potential; a peculiarity of the harmonic oscillator
spectrum is its additional degeneracy: the energy depends not on the quantum
numbers n and l independently, but only on the combination

N = 2n+ l , (1.84)

which is hence called the principal quantum number (of the radially symmet-
ric harmonic oscillator). The energy eigenvalues are grouped into equidistant
oscillator shells of energy EN = (N + 3/2)h̄ω, N = 0, 1, 2, . . . . The degree of
degeneracy of the Nth oscillator shell is given by summation over all l values
compatible with this principal quantum number; for even values of N this
means all even l less or equal to N , for odd N all odd l less or equal to N . Re-
gardless of whether N is even or odd, the number of independent eigenstates
with energy eigenvalue EN = (N + 3/2)h̄ω is given by∑

l

(2l + 1) = (N + 1)(N + 2)/2 . (1.85)

Due to (1.72) each oscillator shell is characterized by a definite parity, namely
(−1)N .

1.3 Bound States and Unbound States

Let’s look at the radial Schrödinger equation (1.75) for a particle of mass µ
in an effective potential Veff(r) which vanishes for r → ∞:(

− h̄
2

2µ
d2

dr2
+ Veff(r)

)
φ(r) = Eφ(r) . (1.86)

The behaviour of the solutions of (1.86) depends in an essential way on
whether the energy E is smaller or larger than zero.

1.3.1 Bound States

For a start let’s assume that Veff is short ranged, meaning that Veff vanishes
beyond a definite radius r0:

Veff(r) = 0 for r ≥ r0 . (1.87)

This is of course only reasonable if l = 0, because the centrifugal potential
falls off as 1/r2 at large r (see (1.76)).

If E < 0, the (1.86) in the outer region is simply

d2φ

dr2
= κ2φ , r ≥ r0 , (1.88)

where κ is a (positive) constant depending on the energy E = −|E|:
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κ =
√

2µ|E|/h̄2 . (1.89)

Two linearly independent solutions of the ordinary second-order differential
equation (1.88) are

φ+(r) = e+κr , φ−(r) = e−κr . (1.90)

In the inner region r ≤ r0 the solution of (1.86) depends on the potential
Veff(r). The general solution contains two integration constants, one of which is
determined by the boundary condition (1.77) at the origin, φ(0) = 0; the other
constant is undetermined, because any multiple of a solution φ(r) of (1.86)
is again a solution. The boundary condition (1.77) determines the solution of
(1.86) in the inner region uniquely, except for multiplication by an arbitrary
constant.

In order to get a solution of (1.86) for all r ≥ 0, we must connect the
solution φr≤r0 in the inner region to a linear combination of the solutions
(1.90) in the outer region r ≥ 0. We must however discard any contribution
from φ+(r), because the probability for finding the particle would otherwise
grow exponentially for r → ∞. The conditions that the wave function be
continuous and have continuous derivative lead to the following matching
conditions at the matching radius r0:

φr≤r0(r0) = Ce−κr0 , φ′r≤r0
(r0) = −κCe−κr0 . (1.91)

Dividing the second of these equations by the first leads to a matching con-
dition free of the proportionality constant C:

φ′r≤r0
(r0)

φr≤r0(r0)
= −κ = −

√
2µ|E|/h̄2 . (1.92)

For arbitrary energies E < 0 the matching condition (1.92) is in general not
fulfilled, as is illustrated in Fig. 1.2 for a square well potential. If the potential
Veff is sufficiently attractive, there is a discrete sequence E1, E2, E3, . . . of
energies for which (1.92) is fulfilled. The corresponding wave functions are
square integrable and are the bound states in the potential Veff(r).

The discussion above remains valid if the effective potential in the outer
region does not vanish, but corresponds instead to a centrifugal potential with
finite angular momentum quantum number l > 0:

Veff(r) =
l(l + 1)h̄2

2µr2
, r ≥ r0 . (1.93)

Instead of the simple exponential functions (1.90), the solutions in the outer
region are now modified Bessel functions (see Appendix A.4):

φ+(r) =
√
κr Il+ 1

2
(κr), φ−(r) =

√
κrKl+ 1

2
(κr) . (1.94)

Asymptotically φ+(r) is again an exponentially growing solution,

φ+(r) ∝ e+κr

(
1 +O

(
1
κr

))
, (1.95)
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Fig. 1.2. Matching of inner and outer solutions φ for negative energies E = −κ2

in an attractive square well potential (V (r) = −K2
0 for r < r0, V ≡ 0 for r > r0,

h̄2/(2µ) = 1). With the paremeters used in this figure, K2
0 = 2.5, r0 = 1.6, there

is an energy between E =−0.6 and E =−1.0 at which (1.92) is fulfilled. (See also
Sect. 1.3.3)

which must be discarded on physical grounds, while φ−(r) decreases exponen-
tially in the asymptotic region. An exact expression for φ−(r), which is valid
not only asymptotically, is

φ−(r) =
√
π

2
e−κr

l∑
λ=0

(l + λ)!
λ!(l − λ)! (2κr)

−λ . (1.96)

The matching condition at r = r0 is now

φ′r≤r0
(r0)

φr≤r0(r0)
=
φ′−(r0)
φ−(r0)

= − l

r0
− κ

Kl− 1
2
(κr0)

Kl+ 1
2
(κr0)

, (1.97)

where we have used the property (A.44) of the functions Kl± 1
2
.

We can venture one step further and allow the effective potential in the
outer region to contain a long-ranged Coulomb contribution proportional to
1/r:

Veff(r) =
l(l + 1)h̄2

2µr2
− C

r
, r ≥ r0 . (1.98)

The solutions of (1.86) in the outer region are now Whittaker functions (see
Appendix A.5). At r = r0 we now match to the wave function

φ−(r) =Wγ,l+ 1
2
(2κr) , (1.99)

which decreases exponentially for r → ∞. The parameter
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γ =
µC

h̄2κ
(1.100)

describes the relative strength of the 1/r term in the potential. The depen-
dence of γ on energy E or on κ is determined by a length parameter a,

γ =
1
κa
. (1.101)

The length a, which gives a scale for the spatial extension of the bound states
in the Coulomb-type potential, is called the Bohr radius:

a =
h̄2

µC
. (1.102)

For large values of r the leading term of (1.99) is

φ−(r) = e−κr(2κr)γ

(
1 +O

(
1
κr

))
. (1.103)

1.3.2 Unbound States

Circumstances are quite different at positive energies E > 0. For a short-
ranged potential (1.87) the radial Schrödinger equation in the outer region
r ≥ 0 reads

d2φ

dr2
+ k2φ = 0 , (1.104)

with the wave number

k =
√

2µE/h̄2 . (1.105)

Two linearly independent solutions of (1.104) are

φs(r) = sin kr , φc(r) = cos kr . (1.106)

In the absence of the short-ranged potential, φs solves the radial Schrödinger
equation for all r and fulfills the boundary condition φ(0) = 0; it is called the
regular solution, because the corresponding wave function ψ(r) (c.f. (1.74))
is regular at the origin. In the presence of the short-ranged potential there
is a different inner solution φr≤r0(r) which fulfills the boundary condition
φ(0) = 0. This solution is unique, except for multiplication by an arbitrary
constant. Matching it continuously and with continuous derivative to a linear
combination of outer solutions (1.106) leads to the matching equations

φr≤r0(r0) = Aφs(r0) +Bφc(r0) , (1.107)

φ′r≤r0
(r0) = Aφ′s(r0) +Bφ′c(r0) . (1.108)

In contrast to the negative energy case, we now have no physical reasons for
discarding one of the two basis functions (1.106). Thus we have two constants
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A and B which we can always choose such that (1.107) and (1.108) are simul-
taneously fulfilled. For any energy E > 0 there is a solution to the Schrödinger
equation. Asymptotically the eigenfunctions are bounded, but they don’t van-
ish; they describe unbound states in the potential Veff(r).

The physical solution of the radial Schrödinger equation in the outer region
thus has the form

φ(r) = Aφs(r) +Bφc(r) , r ≥ r0 , (1.109)

with the constants A and B to be determined from the matching equations
(1.107), (1.108). Solutions of the Schrödinger equation are in general complex.
However, if the potential Veff in (1.86) is real, we can always find real solutions
φ and hence assume that the constants A and B are real. It is helpful to rewrite
(1.109) as

φ(r) =
√
A2 +B2 [cos δ φs(r) + sin δ φc(r)], r ≥ r0 , (1.110)

where δ is the angle defined by

sin δ =
B√

A2 +B2
, cos δ =

A√
A2 +B2

. (1.111)

Inserting (1.106) gives

φ(r) =
√
A2 +B2 sin(kr + δ) , r ≥ r0 . (1.112)

At each energy E > 0 the two constants A and B derived via the matching
equations (1.107), (1.108) thus determine the amplitude and the phase of
the physical wave function in the outer region. The amplitude is in principle
an arbitrary constant, which can be fixed by a normalization condition (see
Sect. 1.3.4). The phase δ, on the other hand, is a very important quantity. At
each energy E it tells us how much the outer waves of the physical solution
are shifted from the waves of the regular solution φs(r) of the “free wave
equation” – see Fig. 1.3. From (1.111) we get an equation for the phase shift
which no longer contains the amplitude:

tan δ =
B

A
. (1.113)

Note that matching conditions determine the phase shift δ only up to an
additive constant which is any integral multiple of π.

The asymptotic phase shift is a very important quantity, because it carries
the information about the physical effect of the potential in the inner region
into the asymptotic region. Such phase shifts determine observable cross sec-
tions in scattering and reaction experiments (see Chap. 4).

The above discussion of unbound states in a short-ranged potential can
easily be generalized to the case that the effective potential Veff(r) in the outer
region r ≥ r0 is the centrifugal potential (1.93). The two linearly independent
solutions of (1.86) in the outer region are now

φs(r) = kr jl(kr) , φc(r) = kr nl(kr) , r ≥ r0 , (1.114)
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Fig. 1.3. Asymptotic phase shifts in the radial wave function, obtained by matching
the inner wave function to the outer wave function at the matching radius r0. The
dashed lines are the regular solutions φs of the free wave equation (1.104) at two
different (positive) energies; the solid lines are the regular physical solutions in the
presence of the attractive square well potential of Fig. 1.2 (V (r)=−K2

0 =−2.5 for
r < r0 = 1.6, V ≡ 0 for r > r0, h̄2/(2µ) = 1). (See also Sect. 1.3.3)

where φs is again the regular solution of the free equation, in which Veff(r)
consists of the centrifugal potential alone for all r. jl and nl are the spherical
Bessel and Neumann functions which are defined in Appendix A.4. Their
asymptotic behaviour is such that the wave functions φs and φc asymptotically
correspond to a sine and a cosine:

φs(r) = sin
(
kr − lπ

2

)[
1 +O

(
1
r

)]
,

φc(r) = cos
(
kr − lπ

2

)[
1 +O

(
1
r

)]
. (1.115)

All considerations following (1.104), including equations (1.107) to (1.111)
and (1.113), remain valid at least asymptotically. The physical solution of the
radial Schrödinger equation has the asymptotic form

φ(r) ∝ sin
(
kr − lπ

2
+ δl

)
, (1.116)

and δl is its asymptotic phase shift against the “free wave” kr jl(kr).
If we let the effective potential in the outer region include a Coulomb

potential as in (1.98), then the appropriate linearly independent solutions of
(1.86) in the outer region are

φs(r) = Fl(η, kr) , φc(r) = Gl(η, kr) , r ≥ r0 . (1.117)
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Here Fl is the regular Coulomb function which solves the free equation, in
which Veff has the form (1.98) for all r. Gl is the irregular Coulomb function,
which also solves the free equation, but which does not vanish at r = 0. The
Coulomb functions (see Appendix A.5) depend not only on kr, but also on the
Coulomb parameter η, which determines the relative strength of the Coulomb
term in the Hamiltonian (see also (1.100)):

η = − µC
h̄2k

= − 1
ka
, (1.118)

where a is again the Bohr radius (1.102).
Asymptotically, the regular and irregular Coulomb functions can be writ-

ten as a sine and a cosine respectively, but the argument is a bit more com-
plicated than in (1.106) and (1.115):

Fl(η, kr) → sin
(
kr − η ln 2kr − lπ

2
+ σl

)
, for r → ∞ ,

Gl(η, kr) → cos
(
kr − η ln 2kr − lπ

2
+ σl

)
, for r → ∞ . (1.119)

The l-dependent real constants σl are the Coulomb phases, which can be
expressed with the help of the complex gamma function (see (A.16) in Ap-
pendix A.3):

σl = arg[Γ (l + 1 + iη)] . (1.120)

In addition, the argument of the sine and the cosine in (1.119) contains an
r-dependent term η ln 2kr, due to which the wave length of a Coulomb wave
approaches its asymptotic limit 2π/k only very slowly. This is of course a
manifestation of the long-ranged nature of the Coulomb potential.

Nevertheless, the discussion following (1.104) above remains valid, even in
the presence of a Coulomb potential. The physical solution of the Schrödinger
equation has the asymptotic form

φ(r) ∝ sin
(
kr − η ln 2kr − lπ

2
+ σl + δl

)
, (1.121)

and δl describes its asymptotic phase shift against the “free Coulomb wave”
Fl(η, kr).

At each energy E > 0 the asymptotic phase shift δl tells us how a short-
ranged deviation of the potential Veff from a reference potential affects the
wave function at large r. Asymptotically the physical wave function is a su-
perposition of two solutions of the “free radial Schrödinger equation” contain-
ing the reference potential alone, namely of the regular solution φs and an
irregular solution φc. The tangent of δl is the relative weight of the irregular
component. This statement does not depend on the reference potential, pro-
vided it vanishes asymptotically. The three cases discussed in this section are
summarized in Table 1.3.
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Table 1.3. Regular solutions φs and irregular solutions φc of the radial Schrödinger
equation (1.86) for positive energies E = h̄2k2/(2µ) . The Coulomb parameter is
η = −(µ/h̄2)(C/k)

Veff(r) φs(r) φc(r)

0 sin kr cos kr

l(l + 1)h̄2

2µr2
kr jl(kr) kr nl(kr)

asymptotically sin
(
kr − lπ

2

)
cos

(
kr − lπ

2

)
l(l + 1)h̄2

2µr2
− C

r
Fl(η, kr) Gl(η, kr)

asymptotically sin
(
kr − η ln 2kr − lπ

2
+ σl

)
cos

(
kr − η ln 2kr − lπ

2
+ σl

)

1.3.3 Examples

Square Well Potential

In this case we have

V (r) =
{−V0 for r < r0 ,

0 for r ≥ r0 .
(1.122)

If the effective potential Veff consists only of V (r) with no centrifugal potential
and no Coulomb contribution, then for negative energies −V0 < E < 0 the
solution φr≤r0 of the Schrödinger equation in the inner region is

φr≤r0(r) = sinKr . (1.123)

The wave number K in the inner region depends on the energy E =

−h̄2κ2/(2µ) and the potential parameter K0 =
√

2µV0/h̄
2 (see Fig. 1.2):

K =
√
K2

0 − κ2 . (1.124)

The matching condition (1.92) now reads

K cotKr0 = −κ = −
√
K2

0 −K2 , (1.125)

and can be fulfilled at most for a finite number of wave numbersKi or energies
Ei (see Problem 1.1).

For finite angular momentum quantum number l > 0 the effective potential
Veff contains the centrifugal potential, and the regular solution in the inner
region is

φr≤r0(r) = Kr jl(Kr) . (1.126)

The matching condition (1.97) at r = r0 now reads
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K
jl−1(Kr0)
jl(Kr0)

= −κ
Kl− 1

2
(κr0)

Kl+ 1
2
(κr0)

, (1.127)

where we have used the property (A.50) of the spherical Bessel functions.
For positive energies E = h̄2k2/(2µ), the regular solution in the inner

region again has the form (1.123) in the absence of a centrifugal term, but the
wave number in the inner region is now

K =
√
K2

0 + k2 (1.128)

(see Fig. 1.3). At r = r0 the matching conditions (1.107), (1.108) can be
rewritten to

1
K

tanKr0 =
1
k

tan(kr0 + δ0) , (1.129)

from which we derive

δ0 = −kr0 + arctan
(
k

K
tanKr0

)
. (1.130)

In the presence of a centrifugal potential, l > 0, we get a simple result for
the case of an infinite repulsive square well of radius r0, because the physical
wave function must then vanish at r = r0,

φl(r0) = Akr0 jl(kr0) +B kr0 nl(kr0) = 0 , (1.131)

in other words,

tan δl =
B

A
= − jl(kr0)

nl(kr0)
. (1.132)

Attractive Coulomb Potential

In this case we have

V (r) = −C
r
, (1.133)

and the constant C is e.g. for a hydrogen atom the square of the elementary
electric charge, C = e2.

The bound states are characterized by a Coulomb principal quantum num-
ber, n = 1, 2, 3 . . . , and the corresponding energy eigenvalues are

En = −R
n2
. (1.134)

R is the Rydberg energy:

R =
µC2

2h̄2 =
1
2
h̄2

µa2
, (1.135)

where a again stands for the Bohr radius (1.102). Similar to the radially sym-
metric harmonic oscillator (see Sect. 1.2.3) the energy eigenvalues (1.134) in
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a Coulomb potential have an additional degeneracy, which is expressed in
the present case by the fact that they do not depend on the angular momen-
tum quantum number l; values of l are however restricted to be smaller than
n. Thus the angular momentum quantum numbers contributing to the n-th
Coulomb shell of eigenvalues are

l = 0, 1, . . . n− 1 . (1.136)

Except for n = 1, the Coulomb shells have no definite parity, because they
contain both even and odd angular momenta. The degeneracy of the n-th
Coulomb shell is given by

n−1∑
l=0

(2l + 1) = n2 . (1.137)

The radial eigenfunctions φn,l(r) are

φn,l(r) =
1
n

[
(n− l − 1)!
a (n+ l)!

] 1
2
(

2r
na

)l+1

L2l+1
n−l−1

(
2r
na

)
e−r/(na) . (1.138)

Lα
ν again stands for a generalized Laguerre polynomial (see Appendix A.2).

In (1.138) the degree of the Laguerre polynomial, which corresponds to a
radial quantum number, is n− l−1. This means that the radial eigenfunction
φn,l has exactly n − l − 1 nodes (zeros) in the region r > 0. The radial
eigenfunctions (1.138) are tabulated in Table 1.4 and illustrated in Fig. 1.4
for angular momentum quantum numbers l=0, 1, 2 and for the lowest values
of n.

Table 1.4. Radial eigenfunctions (1.138) in a Coulomb potential, xn = 2r/(na)

l n = l + 1 n = l + 2 n = l + 3

0
x1√

a
e−

1
2 x1

x2

2
√

2a
(2 − x2) e−

1
2 x2

x3

6
√

3a

(
6 − 6x3 + x2

3

)
e−

1
2 x3

1
x2

2

2
√

6a
e−

1
2 x2

x2
3

6
√

6a
(4 − x3) e−

1
2 x3

x2
4

16
√

15a

(
20 − 10x4 + x2

4

)
e−

1
2 x4

2
x3

3

6
√

30a
e−

1
2 x3

x3
4

48
√

5a
(6 − x4) e−

1
2 x4

x3
5

60
√

70a

(
42 − 14x5 + x2

5

)
e−

1
2 x5

3
x4

4

48
√

35a
e−

1
2 x4

x4
5

120
√

70a
(8 − x5) e−

1
2 x5

x4
6

864
√

35a

(
72 − 18x6 + x2

6

)
e−

1
2 x6

It is important to note that the argument 2r/(na) appearing in the
Coulomb eigenfunctions (1.138) depends on the principal quantum number
n. The reference length na increases with n. One consequence hereof is, that
the wave lengths of the inner oscillations do not decrease steadily with in-
creasing n as in the case of the harmonic oscillator (see Fig. 1.1). The wave
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Fig. 1.4. Radial eigen-
functions φn,l(r) in
a Coulomb potential
(1.138) for angular
momentum quantum
numbers up to l = 2
and the lowest five
values of n

lengths of the inner oscillations of the Coulomb functions depend strongly on
the radius r, but they hardly depend on the principal quantum number n.
This is easily understood:

As the principal quantum number n increases, the energy eigenvalue
(1.134) approaches zero. For energies close to zero, the right-hand side Eφ(r)
of the radial Schrödinger equation (1.75) is only important at large values of
r, where the potential energy V (r) also contributes little. In the inner region,
the small energy differences corresponding to the different principal quantum
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Fig. 1.5. Renormalized radial Coulomb eigenfunctions (1.139) for l = 0. The solid
line labelled n=∞ is the limiting wave function (1.140)

numbers play only a minor role. As a consequence, the radial wave functions
φn,l for a given angular momentum quantum number l and large principal
quantum numbers n are almost identical except for a normalization constant.
This can be clearly seen in Fig. 1.5, in which the radial wave functions have
been renormalized such that their norm becomes inversely proportional to
their separation in energy at large quantum numbers:

φE
n,l(r) =

√
n3

2R φn,l(r) . (1.139)

In this normalization the heights of the inner maxima are independent of n
for large n, and the wave functions for a given l converge to a well defined
limiting wave function φ(E=0)

l with infinitely many nodes in the limit n→ ∞.
This limiting wave function is a solution of the radial Schrödinger equation
(1.75) at energy E = 0 and has the explicit form

φ
(E=0)
l (r) =

√
r

a
√R J2l+1

(√
8r
a

)
. (1.140)

Jν(x) is the ordinary Bessel function (see Appendix A.4). For small arguments
x we have

Jν(x) =
1
ν!

(x
2

)ν

, x→ 0 , (1.141)

whilst asymptotically

Jν(x) =
(π

2
x
)− 1

2
cos

(
x− ν

2
π − 1

4
π

)
, x→ ∞ . (1.142)
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The convergence of the Coulomb eigenfunctions as n→ ∞ is related to the
convergence of the energy eigenvalues. The energy eigenvalues (1.134) of the
bound states only make up part of the spectrum of the Hamiltonian and
the corresponding bound state eigenfunctions only span a part of the Hilbert
space. The bound states in a Coulomb potential do not form a complete
set. This becomes obvious if we try to expand a simple square integrable
wave function (normalized to unity) according to (1.24). The sum

∑
n |cn|2

converges rapidly, but in general to a value noticeably less than unity (see
Problem 1.2).

The eigenfunctions in a Coulomb potential only become a complete set
if we include the unbound states of the continuum E > 0. The unbound
eigenfunctions are just the regular Coulomb functions Fl(η, kr) introduced in
Sect. 1.3.2. From (A.62) in Appendix A.5 we obtain the following formula for
the behaviour of the regular Coulomb functions in an attractive Coulomb po-
tential (η < 0) at small separations (r → 0) close to the continuum threshold
(k → 0):

Fl(η, kr) =

√
π
2 ka

(2l + 1)!

(
2r
a

)l+1

, r → 0 , k → 0 . (1.143)

As the energy E = h̄2k2/(2µ) converges to zero from above, the radial
Schrödinger equation (1.75) becomes identical to the equation we obtain for
negative energies En = −R/n2 when the principal quantum number n con-
verges to infinity. Hence the continuum wave functions Fl(η, kr) must also
converge to the solution φ(E=0)

l in (1.140) at the continuum threshold,

lim
E→0

Fl(η, kr) =

√
πh̄2k

2µ
φ

(E=0)
l (r) . (1.144)

The proportionality constant follows from the behaviour (1.141), (1.143) at
r → 0.

1.3.4 Normalization of Unbound States

The orthogonality of solutions of the time-independent Schrödinger equation
at different energies holds for bound states and for unbound states. Since the
unbound wave functions are not square integrable, they cannot be assigned
a finite norm. A natural prescription for normalizing unbound states is to
require that their scalar product be proportional to a delta function. This can
be done in different ways.

For radial wave functions φk(r) which asymptotically correspond to a sine
with factor unity,

φk(r) −→ sin(kr + δas) , for r → ∞ , (1.145)
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we have∫ ∞

0

φk(r)φk′(r)dr =
π

2
δ(k − k′) , (1.146)

assuming that k and k′ are both positive. The phase δas in (1.145) may be a
constant, it may however also contain the r-dependent Coulomb modification
η ln 2kr. If we want the scalar product between two radial wave functions to
be a delta function in the wave numbers without the factor π/2 in (1.146), we

must normalize them to be asymptotically proportional to
√

2
π sin (kr + δas).

In many applications we want the wave functions to be energy normalized,
which means

〈φE |φE′〉 = δ(E − E′) . (1.147)

For E = h̄2k2/(2µ) we have

δ(k − k′) =
dE
dk
δ(E − E′) =

h̄2k

µ
δ(E − E′) . (1.148)

Hence energy normalized wave functions φE can be obtained from the wave
functions φk in (1.145), (1.146) by the following multiplication:

φE(r) =
(
πh̄2k

2µ

)− 1
2

φk(r) . (1.149)

The solutions of the radial Schrödinger equation are energy normalized if they
have the following asymptotic form:

φE(r) =
√

2µ
πh̄2k

sin(kr + δas) for r → ∞ . (1.150)

With (1.144) we see that the energy normalized regular Coulomb functions

FE
l (η, kr) =

√
2µ
πh̄2k

Fl(η, kr) (1.151)

converge at threshold, E → 0, to the wave function (1.140), which is the
limiting wave function for the renormalized bound states (1.139):

lim
n→∞φ

E
n,l(r) = φ(E=0)

l (r) = lim
E→0

FE
l (η, kr) . (1.152)

Figure 1.6 shows the renormalized bound radial eigenfunctions (1.139) and
the energy normalized regular Coulomb functions (1.151) together with the
limiting wave function (1.140), all for angular momentum quantum number
l = 0.
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Fig. 1.6. Renormalized bound ra-
dial eigenfunctions (1.139) (E < 0),
energy normalized regular Coulomb
functions (1.151) (E > 0) and the
limiting wave function (1.140) (dotted
line) for l=0

1.4 Processes Involving Unbound States

1.4.1 Wave Packets

Stationary wave functions for unbound states are generally non-vanishing all
the way to infinity in coordinate space. This is an idealization of realistic
physical conditions, where the probability density should be restricted to a
perhaps quite large, but nevertheless finite region, so that the total probability
of a particle being anywhere can be normalized to unity,∫

|ψ(r, t)|2 d3r = 1 . (1.153)

Due to the uncertainty relation (1.34), a finite localization in coordinate space
implies a non-vanishing uncertainty im momentum. For an unbound state
describing, e.g., the motion of a free particle, this in turn generally implies
a non-vanishing uncertainty in energy. The wave function ψ(r, t) is thus a
superposition of many energy eigenstates – a wave packet – and is genuinely
time dependent. The wave function for a wave packet describing a particle
of mass µ moving under the influence of a (time-independent, real) potential
V (r) obeys the time-dependent Schrödinger equation (1.38),

− h̄
2

2µ
∆ψ(r, t) + V (r)ψ(r, t) = ih̄

∂ψ(r, t)
∂t

, (1.154)

and for the complex congugate wave function ψ∗ we have
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− h̄
2

2µ
∆ψ∗(r, t) + V (r)ψ∗(r, t) = −ih̄

∂ψ∗(r, t)
∂t

. (1.155)

Multiplying (1.154) by ψ∗/(ih̄) and (1.155) by ψ/(−ih̄) and adding the results
yields,

∂ρ(r, t)
∂t

= − h̄

2iµ
(ψ∗∆ψ − ψ∆ψ∗) , ρ(r, t) = ψ∗(r, t)ψ(r, t) . (1.156)

By introducing the current density,

j(r, t) def=
h̄

2iµ
(ψ∗∇ψ − ψ∇ψ∗) = 


{
ψ∗

(
p̂

µ
ψ

)}
, (1.157)

Equation (1.156) becomes a continuity equation connecting the time depen-
dence of the probability density ρ(r, t) with the spatial divergence ∇ · j of
j(r, t),

∇ · j(r, t) +
∂

∂t
ρ(r, t) = 0 . (1.158)

Writing j as on the far-right-hand side of (1.157) shows up the analogy to
the classical current density ρv for a substance of density ρ moving with
a local velocity v. When integrating (1.158) over the whole of coordinate
space, the contribution of the first term ∇ · j vanishes, because it can be
transformed to a surface integral via Gauss’ Theorem, and the wave function
of the localized wave packet vanishes at infinity. This implies that

∫
ρ(r, t)d3r

is time independent and thus expresses the conservation of total probability
for the time-dependent wave function.

As an example consider a particle in just one spatial dimension, so the
current density (1.157) and continuity equation (1.158) simplify to

j(x, t) =
h̄

2iµ

(
ψ∗ ∂ψ
∂x

− ψ∂ψ
∗

∂x

)
,

∂j

∂x
+
∂ρ

∂t
= 0 . (1.159)

For a free particle with well-defined momentum p = h̄k and energy E =
h̄2k2/(2µ), the wave function solving the time-independent Schrödinger equa-
tion is a non-normalizable monochromatic wave,

ψk(x, t) = φk(x) e−(iE/h̄)t =
1√
2π

ei(kx−ωt) , φk(x) =
1√
2π

eikx . (1.160)

The wave function ψk(x, t) propagates with the phase velocity v = ω/k in the
direction of the positive x-axis. The parameter ω = E/h̄ defines the frequency
of oscillation of the wave in time, and the wave number k defines its spatial
wavelength λ = 2π/k, the de Broglie wavelength. The relation between these
parameters, ω as function of k, is called the dispersion relation. For the present
case of a free particle the dispersion relation is,

ω =
E

h̄
=
h̄k2

2µ
. (1.161)
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With the factor 1/
√

2π in (1.160), the wave functions are normalized in the
wave number k,∫ ∞

−∞
ψ∗

k(x, t)ψk′(x, t) dx =
∫ ∞

−∞
φ∗k(x)φk′(x) dx = δ(k − k′) . (1.162)

The probability density for the wave function (1.160) is ρ(x) = 1/(2π) and
is independent of x, as is the current density j(x) = h̄k/(2πµ) = vρ, corre-
sponding to a stationary flow of density ρ and velocity v = p/µ.

A localized wave packet is described by a (normalized) wave function
ψ(x, t), which can be expanded in the basis of momentum eigenstates (1.160).
E.g., for t = 0,

ψ(x, 0) =
∫ ∞

−∞
ψ̃(k)ψk(x, 0) dk =

1√
2π

∫ ∞

−∞
eikxψ̃(k) dk . (1.163)

The coefficients ψ̃(k) of this expansion,

ψ̃(k) = 〈ψk(x, 0)|ψ(x, 0)〉 =
1√
2π

∫ ∞

−∞
e−ikxψ(x, 0)dx , (1.164)

constitute the momentum representation of the wave function ψ(x, 0);1 actu-
ally ψ̃(k) is just the inverse Fourier transform of ψ(x, 0). The time evolution
of the wave packet ψ(x, t) is given by the time evolution of the momentum
eigenstates (1.160),

ψ(x, t) =
∫ ∞

−∞
ψ̃(k)ψk(x, t)dk =

1√
2π

∫ ∞

−∞
ei(kx−ωt)ψ̃(k) dk . (1.165)

For example, an initial (normalized) Gaussian wave packet

ψ(x, 0) =
(
β
√
π
)−1/2 exp

(
− (x− x0)2

2β2

)
eik0x (1.166)

is localized over a width β around the point x0 in coordinate space and moves
with a mean velocity v0 = h̄k0/µ. In the course of time it evolves such that

|ψ(x, t)|2 =
1

b(t)
√
π

exp
(
− (x−x0−v0t)2

b(t)2

)
, b(t)=β

√
1+

h̄2t2

µ2β4
, (1.167)

i.e., the maximum of the wave packet follows the classical path x = x0 + v0t,
but the width b(t) spreads with time. This spreading of the wave packet is a
direct consequence of the fact that the different contributions to the integral in
(1.165) propagate with a k-dependent phase velocity ω/k as follows from the
dispersion relation (1.161). Replacing h̄/µ by v0/k0 in the formula (1.167) for
b(t) gives: b(t) = β

√
1 + (v0t)2/(k0β2)2. Spreading starts slowly, quadratically

in time, and becomes appreciable when

v0t ≈ β(k0β) . (1.168)
1 We use the term “momentum representation” when we write the wave functions

as functions of momentum p or as functions of wave number k = p/h̄.
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For large times, the width of the wave packet grows linearly in time, b(t) t→∞∼
v0t/(k0β), so that b(t)/x(t) t→∞∼ 1/(k0β). The onset of spreading (1.168)
and the large-time spreading rate depend on the dimensionless product k0β.
Spreading is small when k0β is large, meaning that the wave-number uncer-
tainty ∆k = 1/(β

√
2) of the initial wave packet is small compared to the mean

wave number k0 – see Problem 1.4.
When a wave packet (1.165) only contains components close to a given

mean wave number k0 corresponding to a mean momentum p0 = h̄k0, then
we can expand the dispersion relation around k0,

ω(k) ≈ ω(k0) + (k − k0)dω
dk

∣∣∣∣
k0

. (1.169)

Inserting (1.169) into the expression (1.165) for the time-dependent wave
packet gives

ψ(x, t) ≈ e−iω0t

√
2π

∫ ∞

−∞
ψ̃(k) eik(x−vgt)dk ,

with ω0 = ω(k0) − k0 dω
dk

∣∣∣∣
k0

, vg =
dω
dk

∣∣∣∣
k0

. (1.170)

The integral in (1.170) is a function of x − vgt, so except for the oscillating
phase factor e−iω0t, the time evolution of the wave packet consists in propaga-
tion with the group velocity vg as defined in the lower line. For the free-particle
dispersion relation (1.161) we have vg = h̄k0/µ = p0/µ, as expected.

1.4.2 Transmission and Reflection

Consider a particle of mass µ moving in one spatial dimension under the
influence of a (time-independent, real) potential V (x). Assume that the po-
tential has a nontrivial dependence on x in a certain “interaction region”
and approaches (not necessarily equal) constant values V± in the asymptotic
limits x → ±∞, and that it approaches these limits faster than 1/|x|. Then
the motion of the particle approaches that of a free particle asymptotically,
provided the energy is large enough, E > V+, E > V−. A particle incident
from the left and travelling in the direction of the positive x-axis with a well-
defined energy E > V− can be described by a monochromatic wave function,
ψ

x→−∞∝ eikx, with h̄k =
√

2µ(E − V−). The solution of the time-independent
Schrödinger equation may also contain a leftward travelling contribution de-
scribing a part of the wave function reflected through the influence of the
potential, ψ

x→−∞∝ e−ikx. If E > V+, then the particle can also move to
infinitely large distances, and the wave function may contain contributions
proportional to e+iqx, h̄q =

√
2µ(E − V+) for x → ∞. If the potential ap-

proaches its asymptotic limit(s) as 1/|x| (e.g. for Coulombic potentials) or
more slowly, then the asymptotic wave functions retain an x-dependent phase
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correction which does not vanish, even in the limit |x| → ∞, compare (1.119)
and Table 1.3 in Sect. 1.3.2.

For a potential approaching its asymptotic limits sufficiently rapidly, a par-
ticle incident from the left is described by a solution of the time-independent
Schrödinger equation with the following asymptotic behaviour,

ψl(x)
x→−∞=

1√
v−

eikx +
Rl√
v−

e−ikx , ψl(x)
x→∞=

Tl√
v+

eiqx , (1.171)

v− =
h̄k

µ
, k =

√
2µ(E − V−) , v+ =

h̄q

µ
, q =

√
2µ(E − V+) ,

with the reflection amplitude Rl and the transmission amplitude Tl. The sub-
script “l” is to remind us that the incoming particle approaches from the left.
The current density (1.159) for the contribution eikx/

√
v− describing the in-

coming wave is jinc = 1, and for the transmitted wave at x → ∞ we have
jtrans = |Tl|2. For the reflected wave jrefl = −|Rl|2, where the minus sign
shows that this part of the wave function describes a leftward travelling wave.

The probability PT that the incoming particle is transmitted through the
interaction region is

PT =
jtrans

jinc
= |Tl|2 , (1.172)

and the probability PR that it is reflected is

PR =
|jrefl|
jinc

= |Rl|2 . (1.173)

When the potential V (x) has a maximum which is larger than the energy
E it forms a barrier, because transmission of the particle from one side of
the maximum to the other side is forbidden in the framework of classical
mechanics. The quantum mechanical transmission probability (1.172) need
not vanish, however, because the Schrödinger equation allows non-vanishing
wave functions in classically forbidden regions V (x) > E. Such transmission
through a potential barrier – more generally, through a classically forbidden
region – is called tunnelling. If, on the other hand, the energy E is larger than
the maximum of the potential V (x), then there is no turning point where the
classical particle would change its direction of motion. The particle keeps its
direction of motion and reflection is forbidden in the framework of classical
mechanics. The quantum mechanical reflection probability (1.173) need not
vanish, however, and this process of classically forbidden reflection is called
quantum reflection.

In order to describe an incoming particle approaching from the right, we
replace the asymptotic boundary conditions (1.171) by

ψr(x)
x→−∞=

Tr√
v−

e−ikx , ψr(x)
x→∞=

1√
v+

e−iqx +
Rr√
v+

eiqx ; (1.174)
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the subscript “r” reminds us that the incoming particle approaches from the
right. Since the potential is real, the complex conjugate wave functions ψ∗

l and
ψ∗

r are also solutions of the time-independent Schrödinger equation, and so is
the wave function (ψ∗

l −R∗
l ψl)/T ∗

l – which happens to have the same asymp-
totic behaviour (1.174) as ψr. Comparing the amplitudes of the transmitted
and reflected waves gives the reciprocity relations,

Tr = Tl
def= T , Rr = −R∗

l

T

T ∗ . (1.175)

From (1.175) it immediately follows that the probabilities (1.172) for trans-
mission and (1.173) for reflection do not depend on the side from which the
incident particle approaches the interaction region.

1.4.3 Time Delays and Space Shifts

For a realistic description of transmission and reflection in the system dis-
cussed in Sect. 1.4.2, consider a wave packet which is initially (t = 0) localized
around a large negative coordinate x0 and approaches the interaction region
with mean momentum h̄k0 > 0, e.g., the Gaussian wave packet (1.166) with
x0 < 0 , |x0|  β. The expansion coefficients ψ̃(k) entering the eigenstate
expansions (1.163), (1.165) are again defined according to (1.164),

ψ̃(k) = 〈ψk(x, 0)|ψ(x, 0)〉 =
∫ ∞

−∞
ψ∗

k(x, 0)ψ(x, 0)dx , (1.176)

but now the basis states ψk(x, 0) are not just the free-particle momentum
eigenstates (1.160), but stationary solutions of the Schrödinger equaton in-
cluding the potential V (x). For a given energy E = h̄2k2/(2µ) + V− =
h̄2q2/(2µ) + V+ we choose

ψk(x, 0) =
√
v−
2π
ψl(x) (1.177)

with ψl(x) as defined in (1.171) with the appropriate wave number k. The
prefactor

√
v−/(2π) is chosen so that the incoming-wave part of ψk is identi-

cal to the free-particle wave (1.160). In the following we assume that the mean
momentum h̄k0 of the initial wave packet is sufficiently large and that the un-
certainty ∆k in the wave number is sufficiently small, so that the expansion
coefficients (1.176) are only appreciable for k > 0, i.e. that we really only need
basis functions (1.177) corresponding to a rightward travelling incoming par-
ticle. For the Gaussian wave packet (1.166) this implies k0  ∆k = 1/(β

√
2) –

see Problem 1.4.
For sufficiently large values of |x0|, the initial wave packet ψ(x, 0) is lo-

calized so far in the asymptotic region x → −∞, that only the asymptotic
x→ −∞ part of the basis functions (1.177) contributes to the matrix element
(1.176). Furthermore, the reflected-wave part proportional to e−ikx yields neg-
ligible contributions. This is because the corresponding factor eikx in ψ∗

k(x, 0),
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together with a factor eik0x for the mean momentum of the initial wave packet
[as in the Gaussian example (1.166)] produces a factor ei(k0+k)x in the inte-
grand on the far right-hand side of (1.176); for very large values of |x| this
oscillates extremely rapidly, because k0 +k is always a positive number larger
than k0, and these oscillations suppress the contributions to the integral. The
incoming-wave part, on the other hand, is proportional to e−ikx in ψ∗

k(x, 0)
and together with the factor eik0x for the mean momentum of the initial
wave packet produces an exponential ei(k0−k)x in the integrand in (1.176),
and this allows for appreciable contributions to the integral when k ≈ k0.
Consequently, the expansion coefficients (1.176) in the basis of stationary so-
lutions with the asymptotic behaviour given by (1.171) and (1.177) are the
same as those (1.164) for the free-particle basis – under the condition that the
initial wave packet be localized far in the asymptotic region x→ −∞ in coor-
dinate space and in a sufficiently narrow interval around its mean momentum
in momentum space. For the Gaussian example (1.166) these conditions can
be formulated explicitly,

|x0|  β ,
1
∆k

;
1
k0

� β ,
1
∆k

. (1.178)

For more general wave packets the conditions (1.178) still hold when we in-
terpret β as a length of the order of the uncertainty of the initial wave packet
in coordinate space.

In analogy with (1.163) the initial wave packet far to the left of the iter-
action region can be written as

ψ(x, 0) =
∫ ∞

0

ψ̃(k)ψk(x, 0) dk =
1√
2π

∫ ∞

0

ψ̃(k) eikxdk , (1.179)

where ψk(x, 0) now stands for the stationary solutions defined by (1.177),
(1.171). Only the incoming-wave parts of the ψk(x, 0) are relevant for the
initial wave packet, and we can restrict the integration to positive k values for
the reasons given above. The time evolution of this wave packet is given as in
(1.165) by a factor e−iω(k)t for each contribution to the integral over k,

ψ(x, t) =
∫ ∞

0

ψ̃(k)ψk(x, 0)e−iω(k)t dk , (1.180)

and the frequency parameter ω(k) = E/h̄ obeys

ω =
h̄k2

2µ
+
V−
h̄

=
h̄q2

2µ
+
V+

h̄
. (1.181)

Far to the right of the interaction region, x → ∞, we expect contributions
only from the transmitted-wave parts of the stationary basis functions (1.177),
(1.171),

ψ>(x, t) =
1√
2π

∫ ∞

0

√
k

q
ψ̃(k)T (k) eiqxe−iω(k)t dk . (1.182)
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It is helpful to decompose the transmission amplitude T (k) into its modulus,
which determines the transmission probability (1.172) and a phase factor,

T = |T | eiφT . (1.183)

If the expansion coefficients ψ̃(k) are sufficiently narrowly peaked around k0,
we can replace |T (k)| by |T (k0)|, but because of the sensitive dependence of
the integral on the phase of the integrand we include the first term of a Taylor
expansion for the phase of T (k),

φT(k) ≈ φT(k0) + (k − k0)dφT

dk

∣∣∣∣
k0

. (1.184)

If we also expand the frequency ω(k) as in (1.169), then (1.182) becomes,

ψ>(x, t) ≈ T (k0) exp

{
−i

[
ω(k0)t+ k0

(
dφT

dk

∣∣∣∣
k0

− dω
dk

∣∣∣∣
k0

t

)]}
×

1√
2π

∫ ∞

0

√
k

q
ψ̃(k) eiqx exp

[
ik

(
dφT

dk

∣∣∣∣
k0

− dω
dk

∣∣∣∣
k0

t

)]
dk . (1.185)

Let us first consider the case that the asymptotic limits V− and V+ of the
potential are the same on both sides of the interaction region. Then q = k
and the lower line of (1.185) is the same as the far right-hand side of (1.179),
except that eikx is replaced by eikx̃(t) with

x̃(t) = x+
dφT

dk

∣∣∣∣
k0

− dω
dk

∣∣∣∣
k0

t . (1.186)

In the upper line of (1.185), T (k0) represents the (mean) transmission am-
plitude for the transmitted part of the wave packet, and the exponential is
an overall phase factor. The lower line represents a (normalized) wave packet
with the same shape as the initial wave packet (1.179); however, it is peaked
not at x = x0, but at x̃ = x0, i.e. at

x = x0 − dφT

dk

∣∣∣∣
k0

+
dω
dk

∣∣∣∣
k0

t . (1.187)

The interpretation of (1.187) is quite straightforward: the transmitted wave
packet moves with the group velocity vg = dω/dk|k0 = h̄k0/µ as follows from
(1.181), but its position is shifted relative to the free particle moving with
constant velocity vg – it lags behind by a space shift xshift,

xshift =
dφT

dk

∣∣∣∣
k0

. (1.188)

This corresponds to a time delay tdelay relative to free-particle motion,

tdelay =
xshift

vg
= h̄

dφT

dE

∣∣∣∣
E=E0

, (1.189)
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where E0 is the mean energy of the wave packet, E0 = V− + h̄2(k0)2/(2µ). If
xshift and tdelay are negative, then the transmitted wave is advanced relative
to the free particle. There is nothing special about negative time delays, i.e.
time gains, when they are measured relative to the motion of a free particle.
An ordinary classical particle experiences a time gain when it passes through a
region of negative potential energy, where it moves faster than the free particle
used as reference.

The situation is a little more complicated when the asymptotic limits
V− and V+ of the potential are different on different sides of the interaction
region. The mean energy E0 is now associated with different mean asymptotic
momenta, h̄k0 to the left and h̄q0 to the right of the interaction region,

E0 =
h̄2(k0)2

2µ
+ V− =

h̄2(q0)2

2µ
+ V+ . (1.190)

We assume that V+ is either smaller or not too much larger than V−, so that
E0 is well above the transmission threshold E = V+. Since the expansion
coefficients ψ̃(k) are appreciable only in a narrow interval of k values around
k0, corresponding to a narrow range of q values around q(k0) = q0, we can
approximate

√
k/q in the integral in the lower line of (1.185) as

√
k0/q0,

and we approximate the oscillating exponential in the integral using q(k) ≈
q0 + (k − k0)k0/q0,

eiqx ≈ exp

(
iq0

[
1 −

(
k0
q0

)2
]
x

)
exp

(
ik
k0
q0
x

)
. (1.191)

The first exponential on the right-hand side of (1.191) is independent of k
and just adds to the overall phase of ψ>(x, t). The second exponential has the
form eiky for the scaled variable,

y =
k0
q0
x . (1.192)

The lower line of (1.185) now represents a wave packet with the same shape
as the initial wave packet (1.179), but only when it is considered as a function
of y. It is peaked at

y = x0 − dφT

dk

∣∣∣∣
k0

+
dω
dk

∣∣∣∣
k0

t or x =
q0
k0

(
x0 − dφT

dk

∣∣∣∣
k0

+
dω
dk

∣∣∣∣
k0

t

)
. (1.193)

The peak of the transmitted wave thus moves with the velocity

v(trans)
g =

q0
k0

dω
dk

∣∣∣∣
k0

=
dω
dq

∣∣∣∣
q0

=
h̄q0
µ
. (1.194)

If, for example, V+ < V−, then q0 > k0 and the transmitted particle moves
faster than the incoming particle. The transmitted wave packet is stretched
by a factor q0/k0 along the x-axis, but it remains normalized due to the
factor

√
k/q ≈ √

k0/q0 in the lower line of (1.185). The norm of the whole
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transmitted wave packet (1.185) is |T (k0)|2. A particle moving from x0 < 0
with constant velocity vg arrives at the origin x = 0 at time t0 = −x0/vg. If
it continues beyond x = 0 with the constant velocity v(trans)

g = vgq0/k0, then
its position at time t > t0 is given by x = v

(trans)
g (t − t0) = (x0 + vgt)q0/k0.

This is just what (1.193) predicts if we ignore the term involving the phase
φT of the transmission amplitude. The term involving the phase describes the
space shift

xshift =
q0
k0

(
dφT

dk

∣∣∣∣
k0

)
=

dφT

dq

∣∣∣∣
q0

(1.195)

and the related time delay,

tdelay =
xshift

v
(trans)
g

= h̄
dφT

dE

∣∣∣∣
E0

, (1.196)

relative to a particle moving with constant velocity vg = h̄k0 from x = x0 < 0
to x = 0 and continuing on with constant velocity v(trans)

g = h̄q0.
Far to the left of the interaction region, x → −∞, we expect contribu-

tions from the incoming- and the reflected-wave parts of the stationary basis
functions (1.177), (1.171),

ψ<(x, t) =
1√
2π

∫ ∞

0

ψ̃(k)eikxe−iω(k)t dk

+
1√
2π

∫ ∞

0

ψ̃(k)Rl e−ikxe−iω(k)t dk . (1.197)

With the arguments used above for deriving (1.187) we conclude that the
upper line of (1.197) would contribute a wave packet centred around x =
x0 +vgt and can be neglected in the regime of negative x values at large times
t. For large times, only the lower line of (1.197) gives contributions to the left
of the interaction region and they describe the reflected wave packet moving
in the direction of the negative x axis. This reflected wave packet has the same
shape as the incoming wave packet when considered as a function of −x, i.e.
its shape is reflected in coordinate space, and it is peaked around

x = −x0 +
dφR

dk

∣∣∣∣
k0

− dω
dk

∣∣∣∣
k0

t . (1.198)

Here φR stands for the phase of the reflection amplitude,

Rl(k) = |Rl(k)|eiφR . (1.199)

The reflected wave packet travels with the group velocity −vg = −h̄k0/µ.
The coordinate of a free particle starting with velocity vg > 0 at x0 < 0
and returning to negative x values after being elastically reflected at x = 0
would be given by x = −x0 − vgt. The second term on the right-hand side of
(1.198) thus represents a space shift relative to the reflection of a free particle
at x = 0. The reflected wave packet lags behind by a distance
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xshift =
dφR

dk

∣∣∣∣
k0

, (1.200)

corresponding to a time delay,

tdelay =
xshift

vg
= h̄

dφR

dE

∣∣∣∣
E=E0

, (1.201)

For wave packet incident from the left, the time evolution of the reflected
wave packet corresponds that of a free particle reflected not at x = 0 but at
x = xshift/2.

The results derived in this section are based on approximations justified
by the assumption that the initial wave packet is sufficiently narrowly local-
ized in momentum, as expressed in (1.178). These approximations are already
too crude to account for the spreading of the wave packet as discussed in
the Gaussian example above, (1.166)–(1.168). For general wave packets which
may be strongly localized in coordinate space and widely spread in momen-
tum, the issue of time becomes quite complicated. The basic problem is, that
wave packets generally don’t keep their shape in the course of time. They
can reshape and/or break up into many components, and naive time defini-
tions based, e.g., on the motion of the absolute or a relative maximum of the
probability density or on its centre of mass don’t lead to generally consistent
results. This is an old topic which has recently received renewed attention. One
school of thought is to define an operator for time as a physical observable
and derive the times for quantum tunnelling and/or reflection via eigenval-
ues or expectation values of such operators [BK95, ORJ04]. An alternative
and perhaps more natural approach is to accept time as a mere parameter
in the time-dependent Schrödinger equation and to directly study the behav-
iour of its wave-packet solutions [EK87, Kle94, CN02]. A detailed discussion
of time in the context of tunnelling is given in Chaps. 17 to 19 of [Raz03],
and a rather comprehensive summary of the many questions associated with
the general problem of time in quantum mechanics is contained in [MSE02].
Notwithstanding these reservations it is worth mentioning, that in the limit
of almost monochromatic wave packets discussed above, the concept of time
delays (or gains) defined via the derivative of the phase of the transmission
or reflection amplitude is well defined and unambiguous. A similar treatment
of time delays was first discussed by Eisenbud and Wigner [Wig55] in the
context of particle scattering, see Sect. 4.1.1.

1.5 Resonances and Channels

Resonances appear above the continuum threshold at energies where a bound
state might have occurred, meaning that a slight modification of the Hamil-
tonian would have led to a bound state. In a one-dimensional potential res-
onances can typically occur if almost bound states in the inner region are
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sheltered from the outer region by a potential barrier (see Sect. 1.5.3). In sys-
tems with several degrees of freedom resonances often occur when a bound
motion in one degree of freedom couples weakly to and can decay into unbound
motion in another degree of freedom. These so-called Feshbach resonances are
best described in the picture of coupled channels. The concept of channels is
of a very fundamental importance and is introduced in a general way in the
following subsection.

1.5.1 Channels

Consider a physical system whose wave functions ψ(X,Y ) depend on two sets
X and Y of variables. Let Ô be an observable which only acts on functions of
the variable Y , i.e. for a product wave function ψ(X)φ(Y ) we have

Ô ψ(X)φ(Y ) = ψ(X) Ôφ(Y ) . (1.202)

The eigenvalue problem for Ô is

Ôφn = ωnφn (1.203)

and defines a complete set of eigenfunctions φn(Y ). Ô can stand for a whole
set of observables; ωn then stands for the corresponding set of eigenvalues.

If Ô commutes with the Hamiltonian Ĥ, then the problem of solving
the full Schrödinger equation can be reduced to the solution of a reduced
Schrödinger equation for each eigenvalue ωn of Ô. Each eigenfunction φn(Y )
of Ô – more precisely: each eigenvalue ωn, which is not the same in the de-
generate case – defines a channel, and the dynamics of the reduced problem
in the variable X in a given channel is not coupled to the motion in the other
channels.

Coupling of channels occurs if Ô does not commute with Ĥ. Since the
functions φn(Y ) form a complete basis in the space of all functions of Y , we
can expand any wave function ψ(X,Y ) of the whole system in this basis:

ψ(X,Y ) =
∑

n

ψn(X)φn(Y ) . (1.204)

The functions ψn(X) are the channel wave functions which are to be deter-
mined by solving the Schrödinger equation. Inserting the ansatz (1.204) into
the time-independent Schrödinger equation leads to∑

n

Ĥ ψn(X)φn(Y ) = E
∑

n

ψn(X)φn(Y ) . (1.205)

Multiplying from the left by φ∗m(Y ) and integrating over Y yields the coupled-
channel equations in their most general form:

Ĥm,mψm(X) +
∑
n�=m

Ĥm,nψn(X) = Eψm(X) . (1.206)
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The diagonal Hamiltonians Ĥm,m and the coupling operators Ĥm,n , m �= n ,
are reduced operators which act only in the space of wave functions ψ(X).
They are defined through the eigenfunctions φn(Y ),

Ĥm,n = 〈φm|Ĥ|φn〉Y , (1.207)

where the subscript Y on the bracket indicates integration (and/or summa-
tion) over the variable Y alone.

The coupled-channel equations (1.206) are particularly useful if the di-
agonal operators Ĥm,m play a dominant role, while the coupling operators
Ĥm,n , m �= n, are “small”. This happens if the operator Ô commutes with
a dominant part of the Hamiltonian which then doesn’t contribute to the
coupling operators. It is also helpful if symmetry considerations restrict the
number of channels coupling to each other to a finite and preferably small
number, or if the expansion (1.204) can be terminated after a small number
of terms on physical grounds.

For further insights let us define the situation more precisely. Assume for
example, that Ĥ consists of the operators ĤX and ĤY , which act only on
functions of X and Y respectively, together with a simple coupling potential
given by the function V (X,Y ):

Ĥ = ĤX + ĤY + V (X,Y ) . (1.208)

The eigenfunctions φn(Y ) of ĤY may be used to define channels. The diagonal
Hamiltonians of the coupled-channel equations are

Ĥm,m = ĤX + 〈φm|ĤY |φm〉Y + 〈φm|V (X,Y )|φm〉Y , (1.209)

and the coupling operators form a matrix of potentials:

Ĥm,n = Vm,n(X) =
∫

dY φ∗m(Y )V (X,Y )φn(Y ) , m �= n . (1.210)

The diagonal Hamiltonians (1.209) contain the operator ĤX , which is the
same in all channels, and an additional channel-dependent potential

Vm,m(X) =
∫

|φm(Y )|2 V (X,Y ) dY (1.211)

as well as a constant energy

Em = 〈φm|ĤY |φm〉Y , (1.212)

corresponding to the internal energy of the Y variables in the respective chan-
nels.

To be even more precise let us assume that ψ(X,Y ) describes a point
particle of mass µmoving in an effective radial potential Veff(r) and interacting
with a number of other bound particles. Our ansatz for ψ(X,Y ) is

ψ =
∑

n,l,m

φn,l,m(r)
r

Yl,m(θ, φ)χn , (1.213)
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where χn are the bound states of the other particles. Now X is the radial
coordinate r and Y stands for the angular variables (θ, φ) of the point particle
as well as all other degrees of freedom. The coupled-channel equations now
have the form(

− h̄
2

2µ
d2

dr2
+ Veff(r) + Vk,k(r) + Ek

)
φk(r)

+
∑
k′ �=k

Vk,k′(r)φk′(r) = Eφk(r) , (1.214)

and the channel index k covers the angular momentum quantum numbers
of the point particle and all other quantum numbers of the other degrees of
freedom.

If the coupling potentials vanish asymptotically (r → ∞) we can distin-
guish between closed and open channels of the system. In closed channels the
motion is bound and the channel wave functions φk(r) vanish asymptotically.
In open channels the motion is unbound and the channel wave functions os-
cillate asymptotically. Assuming that the effective potential Veff(r) and the
additional potentials Vk,k(r) vanish asymptotically, the open channels at a
given energy E of the whole system are those whose internal energy Ek is
smaller than E, whilst channels with Ek > E are closed. The internal ener-
gies Ek define the channel thresholds, above which the channel wave functions
φk(r) in the respective channels have the properties of continuum wave func-
tions. Bound states of the whole system and discrete energy eigenvalues occur
only if all channels are closed. Thus the continuum threshold of the whole
system is identical to the lowest channel threshold. For energies at which at
least one channel is open, there is always a solution of the coupled channel
equations. Figure 1.7 schematically illustrates a typical set of diagonal channel
potentials

Vk(r) = Veff(r) + Vk,k(r) + Ek , (1.215)

as they occur in (1.214). Physical examples for systems of coupled channels
are discussed in Sect. 3.3.

1.5.2 Feshbach Resonances

For the simplest example of a Feshbach resonance consider a system of two
coupled channels described by the following coupled-channel equations:(

− h̄
2

2µ
d2

dr2
+ V1(r)

)
φ1(r) + V1,2(r)φ2(r) = Eφ1(r) ,(

− h̄
2

2µ
d2

dr2
+ V2(r)

)
φ2(r) + V2,1(r)φ1(r) = Eφ2(r) . (1.216)

For real potentials we must require that V1,2(r) = V2,1(r) if the two-channel
Hamiltonian is to be Hermitian. Let’s assume that channel 1 is open and
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3.0r

Vk(r) k=3

k=2

k=1

Fig. 1.7. Schematic illustration of diagonal potentials (1.215) in a system of coupled
channels

channel 2 is closed, and that the energy scale is such that the channel threshold
E1 of the open channel lies at E = 0.

An almost bound state, i.e. a resonance, tends to occur near an energy at
which there would be a bound state in the closed channel 2 if channel coupling
were switched off. Let φ0(r) be the wave function of such a bound state in
uncoupled channel 2:(

− h̄
2

2µ
d2

dr2
+ V2(r)

)
φ0(r) = E0φ0(r) . (1.217)

The existence of such a bound state φ0 has a dramatic influence on the
solutions of the coupled equations (1.216) in the vicinity of the energy E0.
To see this we assume that the wave function φ2(r) in the closed channel 2
is simply a multiple Aφ0(r) of this bound state. Then the coupled equations
(1.216) can be rewritten as(

E +
h̄2

2µ
d2

dr2
− V1(r)

)
φ1(r) = AV1,2(r)φ0(r) ,

A(E − E0)φ0(r) = V2,1(r)φ1(r) . (1.218)

The upper (1.218) can be solved using the Green’s function G(r, r′), which
is defined by the relation(

E +
h̄2

2µ
d2

dr2
− V1(r)

)
G(r, r′) = δ(r − r′) . (1.219)

It is immediately obvious that the wave function
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φ1(r) = φreg +AĜV1,2φ0

= φreg(r) +A
∫ ∞

0

G(r, r′)V1,2(r′)φ0(r′) dr′ (1.220)

is a solution of the upper (1.218), if φreg(r) is a solution of the corresponding
homogeneous equation:(

E +
h̄2

2µ
d2

dr2
− V1(r)

)
φreg(r) = 0 . (1.221)

We take φreg to be the regular solution which, vanishes at r = 0; then φ1

in (1.220) also fulfills this boundary condition (see (1.227) below). If φreg is
energy normalized, then its asymptotic form is (c.f. (1.150))

φreg(r) =
√

2µ
πh̄2k

sin(kr + δbg) , r → ∞ . (1.222)

δbg is a background phase shift, which originates mainly from the diagonal po-
tential V1(r) and usually depends only weakly on the energy E = h̄2k2/(2µ). If
V1(r) contains a very-long-ranged Coulomb contribution, then δbg will contain
the usual r-dependent Coulomb term (see Table 1.3 in Sect. 1.3.2).

If we insert the solution (1.220) for φ1(r) into the lower (1.218),

A

[
(E−E0)φ0(r) − V2,1(r)

∫ ∞

0

G(r, r′)V1,2(r′)φ0(r′) dr′
]

= V2,1(r)φreg(r) , (1.223)

and form the scalar product with the bra 〈φ0|, then we obtain an explicit
expression for the coefficient A,

A =
〈φ0|V2,1|φreg〉

E − E0 − 〈φ0|V2,1ĜV1,2|φ0〉
. (1.224)

The matrix element in the denominator is the double integral

〈φ0|V2,1ĜV1,2|φ0〉
=
∫ ∞

0

dr
∫ ∞

0

dr′ φ∗0(r)V2,1(r)G(r, r′)V1,2(r′)φ0(r′) . (1.225)

For a given diagonal potential V1(r) in the open channel 1 we can express
the Green’s function G(r, r′) through the regular solution φreg of the homoge-
neous equation (1.221) and the corresponding irregular solution which behaves
like a cosine asymptotically,

φirr(r) =
√

2µ
πh̄2k

cos(kr + δbg) , r → ∞ . (1.226)

The Green’s function is (see Problem 1.5)

G(r, r′) = −π
{
φreg(r)φirr(r′) for r ≤ r′ ,
φreg(r′)φirr(r) for r′ ≤ r . (1.227)



46 1 Review of Quantum Mechanics

For sufficiently large values of r we can assume that the variable r′ in the
integral in (1.220) is always smaller than r, because φ0(r′) is a bound wave
function so that the integrand vanishes for large r′. Hence we can insert the
lower line of (1.227) for G(r, r′) and perform the integration over r′. With
(1.224) this leads to the following asymptotic form of φ1(r):

φ1(r) = φreg(r) + tan δ φirr(r)

=
1

cos δ

√
2µ
πh̄2k

sin(kr + δbg + δ) , r → ∞ , (1.228)

and the angle δ ist given by

tan δ = −π |〈φ0|V2,1|φreg〉|2
E − E0 − 〈φ0|V2,1ĜV1,2|φ0〉

. (1.229)

Being solutions of a homogeneous system of differential equations, the
two-channel wave functions are determined only to within multiplication by
a common arbitrary constant. To obtain a continuum wave function in chan-
nel 1 which is energy normalized, we should multiply the wave function φ1 of
(1.228) – and simultaneously the corresponding wave function Aφ0 in chan-
nel 2 – by cos δ. Then the whole two-channel wave function is also energy
normalized, because the normalization integrals are dominantly given by the
divergent contribution of the open-channel wave function.

Coupling the bound state φ0(r) in the closed channel 2 to the open chan-
nel 1 leads to an additional asymptotic phase shift δ in the open-channel wave
function (1.228). This additional phase shift characterizes the resonance. The
matrix elements

∆ = 〈φ0|V2,1ĜV1,2|φ0〉 (1.230)

and

Γ = 2π|〈φ0|V2,1|φreg〉|2 (1.231)

in (1.229) are actually energy-dependent, because φreg and the Green’s func-
tion G depend on E, but this energy dependence is insignificant compared
with the energy dependence resulting from the pole structure of the formula
(1.229) for tan δ. The position of the pole, i.e. the zero of the denominator,
defines the position of the resonance, ER:

ER = E0 +∆ = E0 + 〈φ0|V2,1ĜV1,2|φ0〉 . (1.232)

It differs from the energy E0 of the uncoupled bound state in the closed
channel 2 by the shift ∆. Around the resonance energy ER the phase δ rises
more or less suddenly by π. The width of the resonance is determined by the
energy Γ in (1.231); at E = ER −Γ/2 and E = ER +Γ/2 the phase has risen
by 1/4 and 3/4 of π respectively. The function

δ = − arctan
(

Γ/2
E − ER

)
(1.233)
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Fig. 1.8. The solid line
shows the additional
asymptotic phase shift
δ(E) (without back-
ground phase shift)
near an isolated Breit-
Wigner resonance at
E = ER = 2.0 with
a width Γ = 0.4 (see
(1.233)). The dotted line
is the derivative (1.234)

is illustrated for constant values of the parameters ER and Γ in Fig. 1.8. An
isolated resonance which is described by an additional asymptotic phase shift
as in (1.233) is called a Breit-Wigner resonance.

The derivative of the phase shift (1.233) with respect to energy is

dδ
dE

=
Γ/2

(E − ER)2 + (Γ/2)2
(1.234)

and has a maximum at the resonance energy ER, with

Γ = 2

(
dδ
dE

∣∣∣∣
E=ER

)−1

. (1.235)

In general a resonance appears as a jump in the phase shift which need not,
however, have precisely the form of the Breit-Wigner resonance (1.233). In the
general case, the point of maximum gradient dδ/dE serves as definition for
the position ER of the resonance, and the width can be defined via (1.235).
Determining the position and width of a resonance is usually no problem as
long as the resonance is so narrow that the matrix elements (1.230), (1.231)
and also the background phase shift δbg can be regarded as constants over the
whole width of the resonance. For a broader resonance, however, the unique
definition of its position and width can become a difficult problem (see also
Sect. 1.5.3).

The derivative of the phase shift with respect to energy is also a measure for
the strength of the closed-channel component in the solution of the coupled-
channel equations. Assuming energy normalized solutions of the coupled-
channel equations (1.216) or rather (1.218), the channel wave function φ2

in the closed channel 2 is

φ2(r) = A cos δ φ0(r) , (1.236)

where the factor cos δ stems from the energy normalization of the open-channel
wave function, as explained above in the paragraph following (1.229). The
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strength of the closed-channel admixture is quantitatively given by the square
of the amplitude A cos δ in front of the (bound) wave function φ0, which is
normalized to unity. With (1.224), (1.229) we have

|A cos δ|2 =
|〈φ0|V2,1|φreg〉|2

(E − ER)2
1

1 + tan2 δ

=
1
π

Γ/2
(E − ER)2 + (Γ/2)2

=
1
π

dδ
dE

. (1.237)

If we decompose the sine function in the open-channel wave function
(1.228) as

sin (kr + δbg + δ) ∝ −e2i(δbg+δ) eikr + e−ikr , (1.238)

then the second term on the right-hand side represents an incoming monochro-
matic wave and the first term an outgoing, reflected wave with the reflection
amplitude − exp [2i(δbg + δ)]. For wave packets narrowly localized in momen-
tum, the energy dependence of the phase, φ = π+2(δbg + δ), of this reflection
amplitude defines the time delay of the reflected wave packet relative to a free
particle reflected at r = 0, as formulated in (1.201). Assuming an essentially
energy-independent background phase shift δbg and the Breit-Wigner form
(1.233), (1.234) for the energy-dependent part δ gives

tdelay(E) = h̄
dφ
dE

= 2h̄
dδ
dE

=
h̄Γ

(E − ER)2 + (Γ/2)2
. (1.239)

For the formula (1.239) to be valid, the energy spread of the wave packet
localized around E should be small compared to the width Γ of the resonance.
The formula describes the time delay of an almost monochromatic wave packet
incident with mean energy near the resonance energy ER. The time delay has
its maximum value when the mean energy E of the wave packet coincides with
the resonance energy, tdelay(ER) = 4h̄/Γ , and it decreases with increasing
detuning from ER.

1.5.3 Potential Resonances

Another important situation which can lead to resonances occurs when a po-
tential barrier separates the inner region of small separations r from the outer
region of large r. Such potential barriers can result from the superposition of
an attractive short-ranged potential and the repulsive centrifugal potential.
As an example we study the potential

V (r) = −V0 e−r2/β2
+
l(l + 1)h̄2

2µr2
, (1.240)

which is illustrated in Figs. 1.9 and 1.10 for angular momentum quantum
number l= 2 and two different potential strengths V0. In Fig. 1.9 there is a
resonance just above the continuum threshold and well below the maximum
of the barrier. It appears as a jump of the phase shift δl=2 by a little less
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than π. In Fig. 1.10 the potential is less attractive and the resonance lies close
to the maximum of the barrier. The phase shift now jumps by appreciably
less than π, but there is a point of maximum gradient and the width of the
resonance can be defined via (1.235).

Fig. 1.9. The left half shows the potential (1.240) for angular momentum quantum
number l = 2, V0 = 12.5 und β = 1.0 (h̄2/µ = 1). The right half shows the phase
shift δl=2 of (1.116) as a function of the energy E. The maximum of the gradient
dδ/dE is at ER = 0.21 and the width of the resonance according to (1.235) is
Γ ≈ 0.03

Fig. 1.10. The same as Fig. 1.9 for V0 = 10.0. The maximum gradient of the phase
shift is at ER = 0.6 and the width of the resonance according to (1.235) is Γ ≈ 0.5

For a Feshbach resonance (see Sect. 1.5.2), the background phase shift
due to the potential in the open channel and the additional phase shift re-
sulting from the coupling to the bound state in the closed channel add up
to give the total phase shift δbg + δ (see (1.228)). If the energy dependence
of the background phase shift and the coupling matrices is negligible and if
the resonance is isolated (i.e. the width of the resonance should be smaller
than the distance in energy to neighbouring resonances), then the jump of
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the phase shift is well described by the arctan form of the Breit-Wigner res-
onance. For potential resonances such as those shown in Figs. 1.9 and 1.10
it is not so straightforward to decompose the total phase shift into a weakly
energy-dependent background phase shift and a resonant part. As Fig. 1.10
illustrates, the jump of a phase shift around a broad potential resonance can
be appreciably smaller than what the Breit-Wigner formula (1.233) would
lead to expect.

At energies above the resonances in Figs. 1.9 and 1.10 the phase shifts
decrease slowly and tend to zero for E → ∞. This is related to the fact
that the potential (1.240) with the parameters of Figs. 1.9 and 1.10 does not
support any bound states. The difference between the phase shift at threshold
E = 0 and at infinitely large energies is connected with the number of bound
states in the potential through Levinson’s Theorem. According to this theorem
δ(E = 0) is always an integral multiple of π and

δ(E = 0) − δ(E → ∞) = Nbπ , (1.241)

where Nb is the number of bound states. Levinson’s Theorem (1.241) holds
for the phase shift due to a short-ranged potential in the radial Schrödinger
equation. In this context, “short ranged” means that V (r) vanishes faster
than 1/r2 asymptotically. The relation (1.241) for the phase shifts also holds
if the “free radial equation” (excluding the short-ranged potential) contains
as reference potential the centrifugal potential and/or a repulsive Coulomb
potential. In the presence of an attractive Coulomb potential there are infinitely
many bound states, δ(E = 0) is in general not an integral multiple of π and
Levinson’s Theorem is not applicable.2 (See Sect. 3.2.2.)

1.6 Methods of Approximation

1.6.1 Time-independent Perturbation Theory

We are often looking for eigenvalues and eigenstates of a Hamiltonian

Ĥ = Ĥ0 + λŴ , λ small , (1.242)

which only differs by a “small perturbation” λŴ from a simpler Hamiltonian
Ĥ0 of which we know the spectrum and the eigenstates (which we shall assume
to be normalized to unity):

Ĥ0|ψ(0)
n 〉 = E(0)

n |ψ(0)
n 〉 . (1.243)

In order to define an ordered sequence of increasingly accurate approxi-
mations of the eigenstates |ψn〉 of Ĥ, we expand these in powers of the small
parameter λ:
2 A further but rare exception from (1.241) occurs in a short-ranged potential

(without centrifugal potential and without Coulomb potential) if there is a “half-
bound state” exactly at threshold. More details about such exceptional situations
can be found in [New82].
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|ψn〉 = |ψ(0)
n 〉 + |λψ(1)

n 〉 + |λ2ψ(2)
n 〉 + . . . . (1.244)

Similarly for the eigenvalues En of Ĥ:

En = E(0)
n + λE(1)

n + λ2E(2)
n + . . . . (1.245)

Inserting (1.244), (1.245) into the time-independent Schrödinger equation,

(Ĥ0 + λŴ ) (|ψ(0)
n 〉 + |λψ(1)

n 〉 + . . . )
= (E(0)

n + λE(1)
n + λ2E(2)

n + . . . ) (|ψ(0)
n 〉 + |λψ(1)

n 〉 + . . . ) , (1.246)

and collecting powers of λ yields a hierarchy of approximations. In zeroth
order we retrieve the unperturbed eigenvalue (1.243). In first order we have

Ĥ0|λψ(1)
n 〉 + λŴ |ψ(0)

n 〉 = E(0)
n |λψ(1)

n 〉 + λE(1)
n |ψ(0)

n 〉 . (1.247)

If we form the scalar product with the bra 〈ψ(0)
n |, then the terms containing

|λψ(1)
n 〉 cancel, because of

〈ψ(0)
n |Ĥ0|λψ(1)

n 〉 = E(0)
n 〈ψ(0)

n |λψ(1)
n 〉 , (1.248)

and we obtain an expression for the energy shifts in first order:

λE(1)
n = 〈ψ(0)

n |λŴ |ψ(0)
n 〉 . (1.249)

In order to deduce the change |λψ(1)
n 〉 of the wave functions in first order

from (1.247) we form the scalar product with any (unperturbed) eigenstate
〈ψ(0)

m | of Ĥ0 as bra. Because of

〈ψ(0)
m |Ĥ0|λψ(1)

n 〉 = E(0)
m 〈ψ(0)

m |λψ(1)
n 〉 (1.250)

this yields the following expression for the overlap (i.e. the scalar product) of
|λψ(1)

n 〉 with the unperturbed states:

〈ψ(0)
m |λψ(1)

n 〉(E(0)
n − E(0)

m ) = 〈ψ(0)
m |λŴ |ψ(0)

n 〉 − λE(1)
n 〈ψ(0)

m |ψ(0)
n 〉 . (1.251)

For m = n the left-hand side of (1.251) vanishes and we retrieve (1.249).
For m �= n and provided that E(0)

n is non-degenerate, i.e. E(0)
m �= E

(0)
n for all

m �= n, we obtain

〈ψ(0)
m |λψ(1)

n 〉 =
〈ψ(0)

m |λŴ |ψ(0)
n 〉

E
(0)
n − E(0)

m

. (1.252)

Since the eigenstates of Ĥ0 form a complete set, (1.252) defines the expan-
sion of |λψ(1)

n 〉 in the unperturbed basis (see (1.6), (1.8)). Only the coefficient
of |ψ(0)

n 〉 is left undetermined by (1.251). It is a natural choice to set this coef-
ficient zero, which ensures that the norm of the perturbed state |ψ(0)

n + λψ(1)
n 〉

deviates from unity in second order at the earliest. The perturbation of the
wave function in first order is thus

|λψ(1)
n 〉 =

∑
m�=n

〈ψ(0)
m |λŴ |ψ(0)

n 〉
E

(0)
n − E(0)

m

|ψ(0)
m 〉 . (1.253)
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Collecting terms of second order in λ in (1.246),

Ĥ0|λ2ψ(2)
n 〉 + λŴ |λψ(1)

n 〉
= E(0)

n |λ2ψ(2)
n 〉 + λE(1)

n |λψ(1)
n 〉 + λ2E(2)

n |ψ(0)
n 〉 , (1.254)

and forming the scalar product with the bra 〈ψ(0)
n | leads to an expression for

the second-order contribution to the energy shift:

λ2E(2)
n = 〈ψ(0)

n |λŴ |λψ(1)
n 〉 =

∑
m�=n

|〈ψ(0)
n |λŴ |ψ(0)

m 〉|2
E

(0)
n − E(0)

m

. (1.255)

The above considerations are valid for small perturbations of non-degene-
rate eigenstates of the unperturbed Hamiltonian Ĥ0. In the degenerate case
an eigenvalue E(0)

n has N eigenstates, |ψ(0)
n,1〉, . . . |ψ(0)

n,N 〉, and each (unitary)
transformation of these N states amongst each other,

|ψd
n,i〉 =

N∑
j=1

ci,j |ψ(0)
n,j〉 , (1.256)

again yields N eigenstates of Ĥ0 with the same eigenvalue E(0)
n . A sensible

choice of the coefficients ci,j in (1.256) is that which diagonalizes the perturb-
ing operator λŴ in the N -dimensional subspace spanned by the degenerate
eigenstates:

〈ψd
n,i|λŴ |ψd

n,j〉 = εiδi,j . (1.257)

Equation (1.257) is fulfilled if the states (1.256) in theN -dimensional subspace
are eigenstates of λŴ in this subspace, i.e. if the respective “residual states”
(λŴ−εi)|ψd

n,i〉 are each orthogonal to allN states |ψd
n,j〉 or, equivalently, to all

|ψ(0)
n,k〉 , k = 1, . . . N . Using (1.256) this orthogonality condition can be written

as a homogeneous set of simultaneous linear equations for the coefficients ci,j :

〈ψ(0)
n,k|λŴ − εi|ψd

n,i〉 =
N∑

j=1

(
〈ψ(0)

n,k|λŴ |ψ(0)
n,j〉 − εiδk,j

)
ci,j = 0 . (1.258)

For each i (1.258) is a set of N equations, k = 1, . . . N , for the N unknowns
ci,1, . . . ci,N . Non-trivial solutions exist only if the determinant of the matrix
of coefficients vanishes:

det
(
〈ψ(0)

n,k|λŴ |ψ(0)
n,j〉 − εiδk,j

)
= 0 . (1.259)

The pre-diagonalized states |ψd
n,i〉 obtained by solving (1.258) are still only

eigenstates of Ĥ to zeroth order in λ. The N roots of the secular equation
(1.259) define the N eigenvalues ε1, . . . εN of λŴ in the N -dimensional sub-
space spanned by the degenerate eigenstates of Ĥ0. The corresponding new
energies E(0)

n + εi are the perturbed energies to first order in λ,

λE
(1)
n,i = εi . (1.260)
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The first-order correction to the pre-diagonalized state |ψd
n,i〉 is |λψ(1)

n,i〉,
and its projections onto the unperturbed basis states |ψ(0)

m 〉 with E(0)
m �= E(0)

n

can be calculated via the same steps that led to (1.252), giving

〈ψ(0)
m |λψ(1)

n,i〉 =
〈ψ(0)

m |λŴ |ψd
n,i〉

E
(0)
n − E(0)

m

. (1.261)

In order to obtain the projections of |λψ(1)
n,i〉 onto the other pre-diagonalized

states |ψd
n,j〉 in the subset of degenerate unperturbed states, we insert |ψd

n,i〉
and its first- and second-order corrections into the second-order equation
(1.254) in place of |ψ(0)

n 〉 and its first- and second-order corrections. Form-
ing the scalar product with the bra 〈ψd

n,j | yields (j �= i)
〈ψd

n,j |λŴ |λψ(1)
n,i〉 = λE(1)

n,i 〈ψd
n,j |λψ(1)

n,i〉 . (1.262)

Inserting a complete set (1.22), involving the unperturbed states |ψ(0)
m 〉 with

E
(0)
m �= E

(0)
m and the pre-diagonalized states from the degenerate subset, in

between λŴ and |λψ(1)
n,i〉 on the left-hand side of (1.262), and remembering

(1.257), (1.260) gives

(λE(1)
n,i − λE(1)

n,j)〈ψd
n,j |λψ(1)

n,i〉 =
∑

E
(0)
m �=E

(0)
n

〈ψd
n,j |λŴ |ψ(0)

m 〉〈ψ(0)
m |λψ(1)

n,i〉 . (1.263)

With the explicit expression (1.261) for 〈ψ(0)
m |λψ(1)

n,i〉 (1.263) results in

〈ψd
n,j |λψ(1)

n,i〉 =
∑

E
(0)
m �=E

(0)
n

〈ψd
n,j |λŴ |ψ(0)

m 〉
λE

(1)
n,i − λE(1)

n,j

〈ψ(0)
m |λŴ |ψd

n,i〉
E

(0)
n − E(0)

m

. (1.264)

The first-order correction |λψ(1)
n,i〉 to the pre-diagonalized state |ψd

n,i〉 con-
tains contributions from the unperturbed degenerate subset according to
(1.264) and from the orthogonal subset according to (1.261) and is

|λψ(1)
n,i〉 =

∑
E

(0)
m �=E

(0)
n

〈ψ(0)
m |λŴ |ψd

n,i〉
E

(0)
n − E(0)

m

|ψ(0)
m 〉

+
∑
j �=i

∑
E

(0)
m �=E

(0)
n

〈ψd
n,j |λŴ |ψ(0)

m 〉
λE

(1)
n,i − λE(1)

n,j

〈ψ(0)
m |λŴ |ψd

n,i〉
E

(0)
n − E(0)

m

|ψd
n,j〉 . (1.265)

The overlap of |λψ(1)
n,i〉 with |ψd

n,i〉 should vanish, so that the norm of the
perturbed state deviates from unity in second order at the earliest.

The second-order correction to the energy eigenvalue is obtained by insert-
ing |ψd

n,i〉 and its first-order correction (1.265) into the second-order equation
(1.254) and forming the scalar product with the bra 〈ψd

n,i|. Because of the
pre-diagonalization (1.257), the contribution of the lower line of (1.265) to
the matrix element vanishes and we obtain
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λ2E
(2)
n,i = 〈ψd

n,i|λŴ |λψ(1)
n,i〉 =

∑
E

(0)
m �=E

(0)
n

|〈ψd
n,i|λŴ |ψ(0)

m 〉|2
E

(0)
n − E(0)

m

, (1.266)

which is essentially the same as in the non-degenerate case (1.255) with the
sum taken over all unperturbed states outside the degenerate subset. The
states within the degenerate subset contribute to the first-order correction
(1.265) of the (pre-diagonalized) states, but not to the second-order correc-
tion (1.266) of the energies. In the sum over j in the lower line of (1.265), we
assume that the first-order energy correction λE(1)

n,j is not equal to λE(1)
n,i . If

some states of the unpeturbed degenerate subset remain degenerate after pre-
diagonalization, then the first- and second-order energy shifts do not depend
on the choice of basis in this still degenerate subset of first-order-corrected
states.

Pre-diagonalizing a limited number of unperturbed eigenstates is a useful
and valid procedure, not only in the case of exact degeneracy of the unper-
turbed eigenstates. In equations (1.253) and (1.255) the contributions of states
with unperturbed energies E(0)

m close to E(0)
n can become very large due to the

small energy denominator. Hence it can be appropriate to pre-diagonalize the
states with unperturbed eigenvalues close to E(0)

n . An unperturbed energy can
be regarded as “close to E(0)

n ” if the absolute value of the energy difference
E

(0)
m − E(0)

n is of the same order or smaller than the absolute value of the
coupling matrix element 〈ψ(0)

m |λŴ |ψ(0)
n 〉, see Problem 1.6.

In order to calculate energy shifts in second order or perturbations of the
wave functions in first order, we strictly speaking need to have solved the un-
perturbed problem (1.243) completely, because the summations in (1.253) and
(1.255) or (1.265) and (1.266) require a complete set of (unperturbed) eigen-
states and eigenvalues. For unperturbed Hamiltonians with unbound eigen-
states, the summations have to be replaced or complemented by integrations
over the corresponding contributions of the continuum.

1.6.2 Ritz’s Variational Method

The expectation value of a given Hamiltonian Ĥ in a Hilbert space of normal-
izable states can be regarded as a functional which maps each state |ψ〉 onto
a real number E[ψ]:

〈Ĥ〉 =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 ≡ E[ψ] . (1.267)

The state |ψ〉 is an eigenstate of Ĥ if and only if E[ψ] is stationary at the
point |ψ〉, meaning that an infinitesimally small variation |ψ〉 → |ψ + δψ〉 of
the state leaves the energy unchanged:

δE = 0 . (1.268)

To see this we evaluate δE = E[ψ + δψ] − E[ψ] to first order in |δψ〉,
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δE =
〈ψ|Ĥ|ψ〉 + 〈δψ|Ĥ|ψ〉 + 〈ψ|Ĥ|δψ〉

〈ψ|ψ〉 + 〈δψ|ψ〉 + 〈ψ|δψ〉 − E

=
〈δψ|Ĥ − E|ψ〉 + 〈ψ|Ĥ − E|δψ〉

〈ψ|ψ〉 + 〈δψ|ψ〉 + 〈ψ|δψ〉 , (1.269)

and this expression vanishes if and only if

〈δψ|Ĥ − E|ψ〉 + 〈ψ|Ĥ − E|δψ〉 = 0 . (1.270)

If |ψ〉 is an eigenstate of Ĥ, then its eigenvalue is identical to the expectation
value (1.267), and (1.270) is automatically fulfilled for all |δψ〉. Conversely, if
(1.270) is fulfilled for all (infinitesimal) |δψ〉, then it must be fulfilled for the
pair of variations |δψ〉 and i|δψ〉; with (1.11), (1.12) we have

−i〈δψ|Ĥ − E|ψ〉 + i〈ψ|Ĥ − E|δψ〉 = 0 . (1.271)

It follows from (1.270) and (1.271) that 〈ψ|Ĥ−E|δψ〉 and 〈δψ|Ĥ−E|ψ〉 must
both vanish independently. On the other hand, if 〈δψ|Ĥ − E|ψ〉 vanishes for
all (infinitesimal) |δψ〉 in the Hilbert space, then the state (Ĥ−E)|ψ〉 must be
orthogonal to all states in the Hilbert space und must consequently be zero.
That means |ψ〉 is an eigenstate of Ĥ with eigenvalue E.

It is often much easier to calculate the energy expectation value E[ψ] for
a limited number of model states |ψ〉 than to solve the eigenvalue problem
for the Hamiltonian Ĥ. In such cases we may look for model states at which
E[ψ] is stationary under small variations within the space of model states and
regard them as approximate eigenstates of Ĥ. It is particularly sensible to
search for a minimum of E[ψ] in order to approximate the ground state of the
system. The expectation value (1.267) can be written as a weighted mean of
all exact eigenvalues of Ĥ (see (1.27)) and as such cannot be smaller than the
smallest eigenvalue E1:

E1 ≤ 〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 , all |ψ〉 . (1.272)

As a special case let’s look at a set of model states forming a subspace of
a Hilbert space spanned by a basis |ψ1〉, . . . |ψN 〉 (which need not be ortho-
normal). The general model state is then a linear combination

|ψ〉 =
N∑

i=1

ci|ψi〉 (1.273)

of these basis states, and the coefficients ci are the parameters defining the
model state.

The projection of the Hamiltonian Ĥ onto the subspace spanned by the
|ψ1〉 . . . |ψN 〉 is a reduced operator ĥ which is defined by the matrix elements

hi,j = 〈ψi|ĥ|ψj〉 = 〈ψi|Ĥ|ψj〉 , i, j = 1, . . . N . (1.274)

The expectation values of ĥ and Ĥ are the same within the model subspace:
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〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 =

〈ψ|ĥ|ψ〉
〈ψ|ψ〉 = E[ψ] . (1.275)

Since the model subspace is itself a vector space of state vectors, we may apply
the same reasoning as used above in full Hilbert space and conclude that the
energy functional (1.275) is stationary if and only if the corresponding model
state |ψ〉 is an eigenstate of the projection ĥ of the Hamiltonian onto the
model subspace. |ψ〉 is an eigenstate of ĥ means that (ĥ−E)|ψ〉 vanishes, or
equivalently that (Ĥ −E)|ψ〉 is orthogonal to all basis states |ψ1〉 . . . |ψN 〉 of
the model subspace:

〈ψi|Ĥ − E|ψ〉 = 0 , i = 1, . . . N . (1.276)

Inserting the explicit ansatz (1.273) for |ψ〉 in (1.276) we have

N∑
j=1

(hi,j − E ni,j) cj = 0 , i = 1, . . . N , (1.277)

where hi,j are the matrix elements of the Hamiltonian (1.274) and ni,j are
the elements of the overlap matrix:

ni,j = 〈ψi|ψj〉 , i, j = 1, . . . N . (1.278)

Equation (1.277) is a homogeneous system of N simultaneous linear equa-
tions for the N unknown coefficients cj . It contains the overlap matrix ni,j ,
because we didn’t assume orthonormality of the basis. The secular equation
now reads

det(hi,j − E ni,j) = 0 (1.279)

and yields N eigenvalues εk of ĥ belonging to N eigenstates of the form
(1.273). Each eigenstate |ψ(k)〉 is characterized by an N -component vector
of coefficients c(k)

i , and as eigenstates of the Hermitian operator ĥ they are
mutually orthogonal:

〈ψ(k)|ψ(l)〉 =
N∑

i=1

N∑
j=1

(c(k)
i )∗ ni,j c

(l)
j ∝ δk,l . (1.280)

If they are normalized to unity we have

〈ψ(k)|ψ(l)〉 = δk,l ,

〈ψ(k)|Ĥ|ψ(l)〉 = εkδk,l , k, l = 1, . . . N . (1.281)

The method of diagonalizing in a subspace is particularly useful if we are
looking for approximations to describe not only the ground state of a system.
Equation (1.272) sets an upper bound for the ground state energy and hence
we know, the lower the value of E[ψ], the closer it is to the exact ground state
energy E1. For an excited state there is in general no condition like (1.272),
and it is not always a good thing to approximate it by a model state with as
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low an energy as possible. Bounding conditions of the form (1.272) do however
hold for a set of model states, if the states don’t mix among each other, i.e.
if they fulfill (1.281). More precisely: Let E1 ≤ E2 ≤ E3 · · · be the exact
eigenvalues of Ĥ arranged in ascending order and let ε1 ≤ ε2 · · · ≤ εN be the
energy expectation values of N states fulfilling the conditions (1.281). Then

Ei ≤ εi for all i = 1, . . . N . (1.282)

This is the Hylleraas-Undheim theorem. With the Hylleraas-Undheim theorem
it is clear that all approximate eigenvalues obtained by diagonalizing Ĥ in a
subspace can only become smaller (or stay the same) when the subspace is
enlarged. To see this just regard the enlarged subspace as the Hilbert space and
apply the Hylleraas-Undheim theorem (1.282) to the eigenstates in the smaller
subspace. An elegant three-line proof of the Hylleraas-Undheim theorem is
contained in [New82], p. 326.

The Hylleraas-Undheim theorem can also be useful in situations more gen-
eral than diagonalizing in a subspace. Assume for example, that varying E[ψ]
in a set of parametrized model states which don’t form a closed subspace yields
two (or more) stationary points, an absolute minimum at |ψ1〉, say, and a local
minimum at |ψ2〉. In general we don’t know whether E[ψ2] is larger or smaller
than the exact energy of the first excited state, and furthermore, |ψ1〉 and |ψ2〉
need not be orthogonal. On the other hand, it is usually comparatively simple
to calculate the 2×2 matrices hi,j = 〈ψi|Ĥ|ψj〉 and ni,j = 〈ψi|ψj〉 and to solve
the equations (1.277), (1.279). This corresponds to post-diagonalization of the
Hamiltonian in the two-dimensional subspace spanned by |ψ1〉 and |ψ2〉. It
yields an improved (lower) approximation ε1 for the ground state energy and
a second energy ε2, which may lie a little above E[ψ2], but which we definitely
know to be an upper bound for the exact energy of the first excited state.

Further improvements can be achieved by diagonalizing two (or more)
states according to (1.277), (1.279) for different sets of values of the model
parameters. Each diagonalization leads to a set ε1 ≤ ε2 ≤ . . . of energies and
the best approximation for the ground state is the (diagonalized) wave func-
tion with the lowest value of ε1. The best approximation for the second (the
first excited) state is the wave function with the lowest value of ε2, which may
occur for a different set of values of the model parameters, etc. In this method
of variation after diagonalization the resulting approximate eigenstates need
not be orthogonal, because they emerge from different diagonalizations. The
corresponding energies εi are however definitely upper bounds for the respec-
tive exact energies of the i-th state, because each εi is the i-th energy in a
diagonal set of states (1.281).

1.6.3 Semiclassical Approximation

The relation between classical mechanics and quantum mechanics has inter-
ested rersearchers ever since Schrödinger formulated his wave equation in 1926.
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In recent years, the rich structure observed in the classical dynamics of seem-
ingly simple systems with few degrees of freedom has made the question of how
such classical behaviour affects the corresponding quantum dynamics a cen-
tral theme of theoretical physics (see Sect. 5.3); the study of “simple” atoms
plays an important role in this context [FE97, BB97, BR97, CK97, SS98].

The connection between classical mechanics and quantum mechanics is
comparatively well understood for one-dimensional systems. One approach
which relates the concept of a wave function to motion on a classical trajectory
is the semiclassical approximation of Wentzel, Kramers and Brillouin, the
WKB method.

The WKB approximation can be derived by writing the wave function
ψ(x) describing the one-dimensional motion of a point particle of mass µ in a
(real) potential V (x) as

ψ(x) = exp (ig(x)) , (1.283)

with a complex function g(x). If we write the time-independent Schrödinger
equation as

ψ′′ +
p(x)2

h̄2 ψ = 0 (1.284)

and insert (1.283), we obtain

(g′)2 =
p2

h̄2 + i g′′ . (1.285)

The function p(x) appearing in (1.284) and (1.285) is the local classical mo-
mentum corresponding to a classical decomposition of the energy E into a
kinetic and a potential energy:

E =
p(x)2

2µ
+ V (x) , p(x) =

√
2µ(E − V (x)) . (1.286)

In the classically allowed region, E > V (x), the kinetic energy is positive and
we assume the convention that p(x) is the positive square root of p2. The local
classical momentum is also a useful concept in the classically forbidden region,
E < V (x); here the kinetic energy is negative and p(x) is purely imaginary.

From (1.285) we have

g′(x) = ± p
h̄

√
1 + i

h̄2

p2
g′′ = ± p

h̄
± i

h̄

2p
g′′ +O

[(
h̄

p

)3

(g′′)2
]
. (1.287)

Regarding h̄ as a small quantity gives, to leading order, g′ = ±p/h̄. Including
the next term on the right-hand side of (1.287) via g′′ = ±p′/h̄ yields

g′(x) = ± p
h̄

+ i
p′

2p
⇒ g(x) = ± 1

h̄

∫ x

p(x′)dx′ +
i
2

ln p(x) + const. (1.288)

Inserting this expression for g(x) into (1.283) defines the WKB approximation,
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ψWKB(x) ∝ 1√
p(x)

exp
{
± i
h̄

∫ x

p(x′) dx′
}
. (1.289)

In the classically allowed region p(x) is real and so is the action integral

S =
∫ x

p(x′) dx′ , (1.290)

and ψWKB(x) is an oscillating function characterized by the local de Broglie
wave length

λ(x) =
2πh̄
p(x)

. (1.291)

The WKB wave function (1.289) depends on the lower limit for the action
integral in the exponent only in the form of an overall constant. The factor
exp

[
i
h̄

∫ x
p(x′)dx′

]
represents a rightward travelling wave with current den-

sity (1.159) equal to the classical velocity p/µ, and exp
[− i

h̄

∫ x
p(x′)dx′

]
rep-

resents a leftward travelling wave with current density −p/µ. The amplitude
proportional to p−1/2 in (1.289) ensures that the probability density |ψWKB|2
is inversely proportional to the particle’s velocity, so that the current density
of the WKB wave is independent of x, as required by the continuity equation
for a stationary state. In the classically forbidden region where p(x) is purely
imaginary, the exponential in the WKB expression (1.289) is a monotonically
increasing or decreasing function of x.

Semiclassical approximations are based on the assumption that Planck’s
constant is small, meaning that relevant observables with the same physical
dimension – e.g. the action integral (1.290) – should have values which are
large compared to h̄. The fulfillment or violation of this condition is quite
transparent in a system with any number of degrees of freedom when the po-
tential is homogeneous. A homogeneous potential of degree d has the property

Vd(σx) = σdVd(x) , (1.292)

where x may stand for any number of coordinates. For the harmonic oscillator
(1.80) we have d = 2, whereas d = −1 for the Coulomb potential (1.133).
Classical motion in homogeneous potentials has the property of mechanical
similarity [LL58], i.e. if x(t) is a valid solution of the equations of motion at
energy E, then σx(σ1−d/2t) is a solution at energy E′ = σdE. This rescaling
of energy with a factor ε ≡ σd and of the coordinates according to s = σx has
the following effect on the classical action (1.290):

S(εE) =
√

2µ
∫

ds
√
εE − Vd(s) = ε

1
2
√

2µ
∫

ds
√
E − ε−1 Vd(s)

= ε
1
2
√

2µ
∫

ds
√
E − Vd(x)

= ε
1
2+ 1

d

√
2µ

∫
dx

√
E − Vd(x) = ε

1
2+ 1

d S(E) . (1.293)
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This means that an increase in the absolute value |E| of the energy, ε > 1,
results in an increase of the action S if and only if

1
2

+
1
d
> 0 , i.e. d > 0 or d < −2 . (1.294)

The semiclassical limit h̄/S → 0 is reached in the limit of large energies for
all homogeneous potentials of positive degree, such as all sorts of oscillators,
V ∝ |x|d , d > 0, and also for homogeneous potentials of negative degree,
as long as d < −2. The anticlassical or extreme quantum limit, on the other
hand, is defined by h̄/|S| → ∞ and corresponds to E → 0 for these systems.
In contrast, for negative degrees of homogeneity in the range −2 < d <
0, the opposite and perhaps counterintuitive situation occurs: the limit of
vanishing energyE → 0 defines the semiclassical limit, whereas |E| → ∞ is the
anticlassical, the extreme quantum limit. All attractive or repulsive Coulomb-
type potentials, for which d = −1, fall into this category. A discussion of the
semiclassical and anticlassical limits for more general potentials containing
several homogeneous terms is given in Sect. 5.3.4.

The WKB wave function (1.289) may be a good approximation to an exact
solution of the Schrödinger equation, at least locally, even when the conditions
of the semiclassical limit are not fulfilled for the Schrödinger equation as a
whole. To see this, construct the second derivative of (1.289) and observe that
ψWKB is a solution to the following equation:

ψ′′
WKB +

p2

h̄2ψWKB +
(
p′′

2p
− 3

4
(p′)2

p2

)
ψWKB = 0 . (1.295)

The last term on the left-hand side of (1.295) corresponds to the contribution
of an additional potential Vadd. given by

2µ
h̄2 Vadd.(x) =

3
4

(p′)2

p2
− p′′

2p
. (1.296)

Without this term (1.295) is identical to the Schrödinger equation (1.284). The
condition for validity of the WKB approximation is thus, that the additional
term (1.296) be small compared to the function p2/h̄2 of the potential term
in the Schrödinger equation,

|Q(x)| � 1 , (1.297)

where

Q(x) = h̄2

(
3
4

(p′)2

p4
− p′′

2p3

)
=

1
16π2

[
2λ

d2λ

dx2
−
(

dλ
dx

)2
]

; (1.298)

here λ(x) is the local de Broglie wave length (1.291),
The condition (1.297) for the validity of the semiclassical WKB approxima-

tion is inherently local, as expressed in the function (1.298). Where |Q(x)| is
small, semiclassical approximations are expected to be accurate. On the other
hand, regions in coordinate space where Q(x) is significantly non-vanishing
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are expected to show manifestly nonclassical, quantum mechanical effects.
This justifies calling Q(x) the quantality function.

An obvious problem for the WKB wave function (1.289) occurs at a classi-
cal turning point xt, where E = V (xt) and p(xt) vanishes; Q(x) diverges and
ψWKB(x) becomes singular at xt. If the turning point is isolated, the classi-
cally forbidden region extends indefinitely, there is no tunnelling and the wave
function decays to zero on the classically forbidden side of the turning point,
whereas a wave approaching the turning point on the classically allowed side is
totally reflected. Under favourable conditions, the WKB approximation may
be accurate away from xt on one or both sides of the turning point. On the
classically allowed side

ψ
(φ)
WKB(x) ∝
1√
p(x)

[
exp

(
− i
h̄

∣∣∣∣
∫ x

xt

p(x′)dx′
∣∣∣∣
)

+e−iφ exp
(

i
h̄

∣∣∣∣
∫ x

xt

p(x′)dx′
∣∣∣∣
)]

∝ 1√
p(x)

cos
(

1
h̄

∣∣∣∣
∫ x

xt

p(x′)dx′
∣∣∣∣− φ

2

)
, (1.299)

and on the forbidden side ψWKB(x) ∝ exp
[
− 1

h̄

∣∣∣∫ x

xt
p(x′)dx′

∣∣∣]/√|p(x)|. Here
we have chosen the classical turning point xt, which is a natural point of
reference, as the lower limit for the action integrals. The second-last line in
(1.299) shows that φ is the phase loss in the WKB wave due to reflection at
the classical turning point xt – the reflection phase [FT96, FT04].

The WKB wave function (and the exact wave function) can be chosen to
be real when the potential is real. The decaying WKB wave function on the
classically forbidden side is uniquely defined to within an overall constant, but
the ratio of the amplitudes on both sides and the phase φ in the oscillating
wave (1.299) on the allowed side are not fixed a priori, they are determined
by matching the WKB waves on both sides of the turning point according to
the connection formula,

N√|p(x)| e
− 1

h̄

∣∣∣∫ x

xt
p(x′)dx′

∣∣∣ −→ 2√|p(x)| cos
(

1
h̄

∣∣∣∣
∫ x

xt

p(x′)dx′
∣∣∣∣− φ

2

)
. (1.300)

This form of the connection formula, i.e. with the absolute values of the action
integrals in the arguments of the exponential and cosine functions, does not
depend on whether the classically allowed side is to the left or to the right of
the turning point xt.

The derivation and interpretation of the connection formula (1.300) is dis-
cussed at great length in many texts on semiclassical theory [FF65, BM72,
FF96, FT04]. If the WKB approximation becomes sufficiently accurate away
from the turning points, then an unambiguous determination of φ and N can
be achieved by matching the WKB wave functions to the exact solution of
the Schrödinger equation. If the potential is approximately linear in a region
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which surrounds the classical turning point and is large enough to accommo-
date many de Broglie wave lengths on the allowed side and many times the
penetration depth on the forbidden side, then the exact wave function is an
Airy function (Appendix A.4) and the amplitude N and reflection phase φ in
(1.300) are given by,

N = 1 , φ =
π

2
, (1.301)

see e.g. [BM72]. This is the general result of the semiclassical or short-wave
limit and is the basis of conventional WKB applications involving a classical
turning point. The standard choice (1.301) is, in general, far too restrictive
and not related to whether or not the WKB approximation is accurate away
from the turning point. Allowing more accurate values for N and φ in (1.300)
greatly widens the range of applicability of WKB wave functions. E.g. for
a particle reflected by an infinite steep wall the reflection coefficient is −1
and the reflection phase is π rather than π/2. This result is typical of the long
wave limit, where the wave length on the classically allowed side of the turning
point is large compared with the penetration depth of the wave function on
the classically forbidden side. In more general situations it is often appropriate
to use other values of the reflection phase. Regardless of whether or not the
WKB approximation ever becomes accurate on the classically forbidden side,
inserting the correct reflection phase φ on the right-hand side of the connection
formula (1.300) is the key to obtaining a WKB wave function which is an
accurate approximation to the exact solution of the Schrödinger equation on
the classically allowed side of the classical turning point [FT96, FT04]. (See
Problem 1.7.)

A particularly important case is that of a potential proportional to the
inverse square of the coordinate,

V (x) =
h̄2

2µ
γ

x2
, γ ≥ 0 , x > 0 , (1.302)

which is just the centrifugal potential for angular momentum quantum number
l when x is the radial coordinate and γ = l(l+1) [cf. (1.76)]. For homogeneous
potentials of degree d = −2, classical action integrals are invariant under the
scaling (1.293), so changing the energy does not bring us closer to or further
from the semiclassical limit. As for all homogeneous potentials of negative
degree, however, large absolute values of the potential strength correspond to
the semiclassical and small values to the anticlassical limit of the Schrödinger
equation, see (5.154)–(5.156) in Sect. 5.3.4.

The Schrödinger equation with the potential (1.302) alone can be solved

exactly, and the solution is ψ(x) ∝ √
kxJν(kx), k =

√
2µE/h̄2 , where Jν is

the ordinary Bessel function of index ν =
√
γ + 1/4. The asymptotic behav-

iour of ψ follows from (A.29) in Appendix A.4,

ψ(x) ∼ cos
(
kx− ν π

2
− π

4

)
. (1.303)
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The classical turning point xt is given by kxt =
√
γ, and the action integral in

the WKB wave function can be calculated analytically. The asymptotic form
of the WKB wave function on the classically allowed side of the turning point,
cf. (1.300), is

ψWKB(x) ∼ cos
(
kx−√

γ
π

2
− φ

2

)
, (1.304)

where φ is the reflection phase.
When the conventional choice (1.301) is used for the reflection phase, φ =

π/2, the asymptotic phase of the WKB wave function (1.304) disagrees with
the asymptotic phase of the exact wave function (1.303). This discrepancy
can be repaired by the so-called Langer modification, in which the potential
for the WKB calculation is manipulated by the replacement

γ → γ +
1
4

corresponding to l(l + 1) →
(
l +

1
2

)2

. (1.305)

An alternative procedure for reconciling the phases in (1.303) and (1.304) is
to leave the potential intact and to insert as reflection phase

φ =
π

2
+ π

(√
γ +

1
4
−√

γ

)
. (1.306)

The reflection phase (1.306) for the centrifugal potential approaches the value
π/2 in the semiclassical limit γ → ∞ and the value π in the anticlassical limit
γ → 0. This is in fact the right value for s-waves (l = γ = 0), where the node
required in the wave function at x = 0 has the same effect as reflection by an
infinite steep wall.

Although the Langer modification helps to improve the results of the WKB
approximation when the reflection phase is kept fixed at π/2, leaving the
potential intact and inserting the correct reflection phase (1.306) leads to wave
functions which approach the exact solution of the Schrödinger equation much
more rapidly in the classically allowed region [FT96].

Now consider a particle bound with total energy E in a potential V (x) as il-
lustrated in Fig. 1.11. The exact wave function is a solution of the Schrödinger
equation (1.284); in the classically allowed region between the two classical
turning points a and b the “kinetic energy” proportional to p2 is positive, and
the sign of the second derivative ψ′′ of the wave function is opposite to the
sign of ψ, i.e. the wave function oscillates and is always curved towards the
x-axis. In the classically forbidden regions p2 is negative, ψ′′ and ψ have the
same sign, so the wave function is curved away from the x-axis; if the entire
regions to the right of b and to the left of a are classically forbidden, the wave
function decays to zero in the classicall forbidden regions. During one whole
period of oscillation the WKB wave function gains the phase

1
h̄

∮
p(x′)dx′ def=

1
h̄
S(E) , (1.307)
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V(x)

a b

E

x

Fig. 1.11. Exact and
WKB wave functions for
the bound motion of a par-
ticle in a real potential
V (x). The thin solid line
shows the exact solution
of the Schrödinger equa-
tion (1.284); the dashed
line shows the WKB wave
function (1.289), which is
singular due to the fac-
tor p(x)−1/2 at the classi-
cal turning points a and b
where p = 0

and it loses the phases φa and φb due to reflection at the classical turning
points a and b. The integrated action S(E) in (1.307) is just the area enclosed
by the classical trajectory in the two-dimensional phase space spanned by the
coordinate x and the momentum p. A quantization rule for stationary bound
states can be obtained by requiring the net phase gain during one period of
oscillation, viz. 1

h̄S(E)−φa−φb, to be an integral multiple of 2π in order that
the wave function be a unique function of the coordinate. This leads to,

1
2
S(E) =

∫ b

a

p(x)dx = πh̄
(
n+

µφ

4

)
, n = 0, 1, 2, . . . . (1.308)

In (1.308) µφ is the Maslov index, which is equal to the total phase loss
measured in units of π/2,

µφ =
φa + φb

π/2
. (1.309)

In conventional semiclassical theory, the reflection phases φa and φb are taken
to be π/2 according to (1.301), so µφ = 2 and we obtain the most widely used
form of the Bohr-Sommerfeld quantization rule corresponding to conventional
WKB quantization,

1
2
S(E) =

∫ b

a

p(x)dx = πh̄
(
n+

1
2

)
, n = 0, 1, 2, . . . . (1.310)

As discussed above, this is only justified when the potential is sufficiently well
approximated by a linear function near the classical turning points, which
is generally the case near the semiclassical limit. Away from the semiclassi-
cal limit the reflection phases can be nonintegral multiples of π/2; with the
corresponding non-integral Maslov index (1.309), (1.308) represents a modi-
fied quantization rule which can yield accurate results beyond the restrictive
assumptions of the semiclassical limit [FT96, FT04].
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In order to demonstrate the power of the more general modified quan-
tization rule, we consider a free particle of mass µ trapped within a sphere
of radius R, the “spherical billiard”. For given angular momentum quantum
number l = 0, 1, 2, . . . the radial wave function φl(r) obeys the free (V = 0)
radial Schrödinger equation (1.75), so the effective potential is just the cen-
trifugal potential, i.e. (1.302) with γ = l(l + 1). The radial wave functions
at energy E = h̄2k2/(2µ) are proportional to kr jl(kr) as in (1.114), and the
eigenvalues are given by those wave numbers kn,l for which the radial wave
function vanishes at the confining distance r = R, i.e. where the spherical
Bessel function jl(kn,lR) vanishes,

En,l =
h̄2k2

n,l

2µ
=

h̄2

2µR2
(xn,l)2 , jl(xn,l) = 0 , n = 0, 1, 2, . . . . (1.311)

Here xn,l stands for the positive zeros of the spherical Bessel funtion jl(x).
For l = 0 we have jl(x) = sinx/x and xn,l = (n + 1)π. For l > 0 the zeros
are increasingly affected by the centrifugal potential (1.302). When applying
the quantization rule (1.308), the reflection phase at the outer turning point
r = R has to be taken as π for the hard-wall reflection. In conventional
WKB quantization, the centrifugal potential (1.302) is replaced by the Langer-
modified potential (1.305) and the reflection phase at the inner turning point
is taken to be π/2 according to (1.301), so the Maslov index (1.309) is µφ = 3.
In the modified quantization rule, the potential is left intact, but the condition
(1.301) is relaxed and the reflection phase at the inner turning point is as given
by (1.306), so the Maslov index is,

µφ = 3 + 2
(
l +

1
2
−
√
l(l + 1)

)
. (1.312)

This gives µφ = 4 for l = 0, µφ = 3.17157 for l = 1 and µφ = 3.10102 for
l = 2.

The energy eigenvalues for the spherical billiard are given in units of E0 =
h̄2/(2µR2) in Table 1.5 for l = 0 to 2 and n = 0 to 4. Next to the exact results,
En,l/E0 = (xn,l)

2, the table shows the results obtained with conventional
WKB quantization (superscript “WKB”) and, for l = 1 and l = 2, with
the modified quantization rule using the Maslov index (1.312) (superscript
“mqr”). The energies predicted by conventional WKB quantization including
the Langer modification of the potential are consistently too low by an almost
n- and l-independent term near 0.25 times E0. The results obtained with the
modified quantization rule, meaning there is no Langer modification and the
Maslov index is given by (1.312), are obviously exact for l = 0. For l = 1
and l = 2 they are much closer to the exact results than the predictions of
conventional WKB quantization, and the error decreases rapidly with n as
illustrated in Figs. 1.12 and 1.13.

The results in Table 1.5 and Figs. 1.12 and 1.13 demonstrate how the
accuracy of the conventional WKB approximation can be dramatically im-
proved by relaxing the restrictions of the standard interpretation (1.301) of
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Fig. 1.12. Errors |Eexact
n,l − En,l| (in units of E0 = h̄2/(2µR2)) of the energy eigen-

values for the spherical billiard for angular momentum quantum number l = 1. The
triangles show the errors of the eigenvalues obtained with conventional WKB quan-
tization involving the Langer modification (1.305) and a Maslov index µφ = 3. The
squares show the errors obtained with the modified quantization rule based on the
true centrifugal potential and the Maslov index µφ = 3.17157 according to (1.312)
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Fig. 1.13. Errors |Eexact
n,l − En,l| (in units of E0 = h̄2/(2µR2)) of the energy eigen-

values for the spherical billiard for angular momentum quantum number l = 2. The
triangles show the errors of the eigenvalues obtained with conventional WKB quan-
tization involving the Langer modification (1.305) and a Maslov index µφ = 3. The
squares show the errors obtained with the modified quantization rule based on the
true centrifugal potential and the Maslov index µφ = 3.10102 according to (1.312)
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Table 1.5. Energies εn,l = En,l/E0 in units of E0 = h̄2/(2µR2) for the spherical
billiard. The superscript “exact” labels the exact quantum mechanical eigenvalues
(1.311), εn,l = (xn,l)

2. The superscript “WKB” labels the eigenvalues obtained with
conventional WKB quantization involving the Langer modification (1.305) of the
potential and a Maslov index µφ = 3. The superscript “mqr” labels the eigenvalues
obtained with the modified quantization rule based on the true centrifugal potential
and the Maslov index µφ = 3.17157 for l = 1 and µφ = 3.10102 for l = 2 according
to (1.312).

n εexact
n,0 εWKB

n,0 εexact
n,1 εWKB

n,1 εmqr
n,1 εexact

n,2 εWKB
n,2 εmqr

n,2

0 π2 9.6174 20.1907 19.8697 20.1390 33.2175 32.8153 33.1018
1 (2π)2 39.2279 59.6795 59.4064 59.6625 82.7192 82.4160 82.6791
2 (3π)2 88.5762 118.8999 118.6384 118.8914 151.8549 151.5770 151.8340
3 (4π)2 157.6635 197.8578 197.6009 197.8527 240.7029 240.4357 240.6900
4 (5π)2 246.4900 296.5544 296.2998 296.5510 349.2801 349.0183 349.2713

the connection formula (1.300) and allowing a more appropriate choice for the
reflection phase. An extensive review on how such modifications of conven-
tional WKB theory can yield accurate and even asymptotically exact results
far from the semiclassical limit is given in [FT04].

1.6.4 Inverse Power-Law Potentials

Many physically interesting problems are described by a one-dimensional
Schrödinger equation with a potential V (r) which over a large range of dis-
tances r follows a simple inverse power law,

V (±)
α (r) = ±Cα

rα
; r > 0 , α > 0 , Cα > 0 . (1.313)

For (attractive or repulsive) Coulomb potentials α = 1, for the centrifugal
potential (1.302) α = 2. A further example for inverse-square potentials, at-
tractive or repulsive, is the interaction of an electric charge with an electric
dipole. Examples for α = 3 and 4 are the van der Waals interactions of po-
larizable atoms and a conducting or dielectric surface, neglecting or including
relativistic retardation effects, see Sect. 5.5.1, and the corresponding interac-
tions of atoms (or molecules) with each other are examples for α = 6 and 7.
For α > 2, attractive potentials cannot have the form (1.313) all the way down
to r = 0, because the energy spectrum would then be unbounded from below,
so the actual potential must change to a less strongly attractive or even re-
pulsive form at short distances. However, the regime of short distances where
these deviations are appreciable may be quite small, so it is worthwhile to
study not only the repulsive potentials V (+)

α but also the attractive potentials
V

(−)
α in some detail, even for α > 2.

With the potential energy given by (1.313), the local classical momentum
at threshold, E = 0, is given by p(r) = r−α/2

√±2µCα, and the quantality
function (1.298) is easy to calculate,
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Q(r) E=0= ± h̄2

32µCα
α(α− 4) rα−2 . (1.314)

For large distances r the quantality function diverges when α > 2, and it
vanishes when α < 2. For inverse power-law potentials, the classical scaling
discussed in Sect. 1.6.3, (1.293), leads to large distances near threshold, i.e.
ε → 0 corresponds to σ → ∞ when d < 0, so this behaviour is consistent
with the observation, that E = 0 corresponds to the anticlassical limit for
α > 2 and to the semiclassical limit for α < 2. Inverse-square potentials,
α = 2, represent the boundary between the long-ranged potentials 0 < α < 2
and the shorter-ranged potentials α > 2, and Q(r) is constant at threshold
in this case. The case α = 4 is special, because Q(r) vanishes identically
at threshold. For a potential proportional to 1/r4, WKB wave functions are
exact solutions of the Schrödinger equation at energy zero. This example of a
1/r4 potential at threshold shows, that the criterion (1.297) for the validity of
the WKB approximation is more reliable than the commonly quoted criterion
|dλ/dr| � 1.

For r → 0, Q(r) diverges for α < 2 and vanishes for α > 2. Even
though the threshold represents the anticlassical, extreme quantum limit of the
Schrödinger equation for α > 2, there nevertheless is a semiclassical regime
of small r values where WKB wave functions are accurate solutions of the
Schrödinger equation, because the condition (1.297) is well fulfilled. The small-
r behaviour of Q(r) as given by (1.314) also holds for all finite energies E �= 0,
because the potential (1.313) diverges for r → 0 and dominates over the finite
energy E for sufficiently small values of r.

For the repulsive potential V (+)
α (r) and positive energy E = h̄2k2/(2µ)

there is a classical turning point rt at which the quantality function diverges,

rt =
(
Cα

E

)1/α
α�=2
= βα (kβα)−2/α

, (1.315)

Here we have introduced, for α �= 2, the potential strength parameter βα

which has the physical dimension of a length,

Cα =
h̄2

2µ
(βα)α−2 . (1.316)

For α > 2, the WKB approximation gives the correct, i.e. the asymptotically
exact, behaviour of the regular solution of the Schrödinger equation in the
classically forbidden region near the origin,

ψ(r)
r→0∝ 1√

p(r)
exp

[
− 1
h̄

∫ r0

r

|p(r′)|dr′
]

r→0∝ rα/4 exp

[
− 2
α− 2

(
βα

r

)(α−2)/2
]
, (1.317)

where r0 is some fixed point of reference smaller than rt. The lower line in
(1.317) follows from the r dependence of the local classical momentum in
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the limit r → 0, where the energy E is neglible compared to the potential,
|p(r)| r→0=

√
2µCα r

−α/2 = h̄(βα)(α−2)/2r−α/2. For a repulsive inverse-square
potential with strength C2 = γh̄2/(2µ) (cf. (1.302)), we have |p(r)| r→0= h̄

√
γ/r

for sufficiently small r and the WKB approximation as defined in the upper
line of (1.317) yields

ψWKB(r)
r→0∝ r1/2+

√
γ . (1.318)

Note that for the centrifugal potential (1.76), γ = l(l + 1), the result (1.318)
does not agree with the correct quantum mechanical behaviour (1.78), unless
we invoke the Langer modification (1.305),

√
γ → l + 1/2. For a repulsive or

attractive pure Coulomb potential, α = 1, the regular quantum mechanical
wave function is proportional to r for small r, see (A.60) in Appendix A.5;
the WKB wave function is not a good approximation for r → 0 in this case.

The attractive potential V (−)
α (r) may constitute the tail of a realistic pote-

ntial well as illustrated in Fig 1.14. For negative energies E = −h̄2κ2/(2µ) < 0
the outer classical turning point rt in the inverse power-law tail of the potential
is given, similar to (1.315), by

rt =
(−Cα

E

)1/α
α�=2
= βα (κβα)−2/α ; (1.319)

rt diverges to infinity for E → 0. The inner classical turning point ri, on the
other hand, is either zero or determined by a short-ranged repulsive contribu-
tion to the potential; ri depends only weakly on the energy E and converges
to a well defined value for E → 0.

The integrated action in the quantization rule (1.308) is given by

Fig. 1.14. Schematic illustration of the potential V (r) with an attractive inverse
power-law tail, (1.313)
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1
2
S(E) =

∫ rt(E)

ri

p(r)dr

=
∫ r0

ri

p(r)dr +
∫ rt(E)

r0

√
2µ

(
Cα

rα
− |E|

)
dr ; (1.320)

here we have introduced a energy-independent distance r0 between ri and
rt and assume that short-ranged deviations from the inverse-power form of
the potential are neglible beyond r0. The integral

∫ r0

ri
p(r)dr converges to a

constant for E → 0. The second integral on the right-hand side of the lower
line of (1.320) remains finite in the limit E → 0, if the exponent α is larger
than two. In this case the action (1.320) remains bounded from above as we
approach the threshold E = 0, and the quantization rule (1.308) predicts at
most a finite number of bound states. If α < 2 however, the second integral on
the right-hand side of (1.320) diverges in the limit E → 0 and the integrated
action S grows beyond all bounds; in this case the quantization rule (1.308)
predicts infinitely many bound states. These statements are independent of
the shape of the potential at small distances r and are not sensitive to bounded
variations in the choice of the Maslov index, so they are quite generally valid
and do not depend on the applicability of semiclassical approximations.

Thus the number of bound states in a potential V (r) depends decisively on
the asymptotic behaviour of the potential. Shorter-ranged potentials, namely
those which vanish more rapidly than 1/r2, can support at most a finite
number of bound states. Very-long-ranged potentials, namely those behav-
ing asymptotically as V (r) r→∞−→ −Cα/r

α with 0 < α < 2, always support
an infinite number of bound states. This class of attractive very-long-ranged
potentials includes, of course, the attractive Coulomb potential discussed in
Sect. 1.3.3. The fact that the threshold E = 0 represents the semiclassical
limit of the Schrödinger equation for such very-long-ranged potential tails is
consistent with the notion that the limit of large quantum numbers, n→ ∞,
corresponds to the semiclassical limit. For shorter-ranged potentials falling off
faster than −1/r2, the number of bound states may be large if the potential
well is deep enough, but it is always finite, the limit n → ∞ does not ex-
ist, which is consistent with the observation that the threshold represents the
anticlassical, the extreme quantum limit for shorter-ranged potential tails.
A detailed comparison of very-long-ranged and shorter-ranged potentials is
given further on in Sect. 3.1.1.

Potentials asymptotically proportional to 1/r2 represent a special case. A
potential behaving asymptotically as

V (r) r→∞−→ h̄2

2µ
γ

r2
, γ < 0, (1.321)

supports an infinite number of bound states if and only if γ < −1/4 (see
[MF53] p. 1665 and Sect. 3.1.3). Note that the integrated action (1.320) is
infinite in the limit E → 0 for an attractive 1/r2-potential. The condition for
supporting infinitely many bound states in a 1/r2 potential coincides with the
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Fig. 1.15. Quantality function (1.298) for attractive inverse power-law potentials
(1.313) with α = 1, 2 and 3. Parameters were chosen as Cα = 1, E = 1 and
h̄2/(2µ) = 1

requirement that the potential still be attractive after being subjected to the
Langer modification (1.305). (See Problem 1.9.)

The qualitatively different properties of long-ranged and short-ranged po-
tentials are also manifest at positive energies, E = h̄2k2/(2µ) > 0. Fig. 1.15
shows the quantality function (1.298) for attractive inverse power-law poten-
tials (1.313) with α = 1, 2 and 3 at a given positive energy with scales chosen
such that E = |V (−)

α (r = 1)| = 1 in all cases. For large distances, the energy
term in the Schrödinger equation eventually dominates over the potential
term, so p(r) r→∞∼ const �= 0 and the quantality function goes to zero. For
r → 0, the quantality function is determined by the potential term and de-
pends strongly on whether α < 2, α = 2 or α > 2. As expected from (1.314),
Q(r) diverges in the limit r → 0 for α = 1 and approaches a constant finite
value for α = 2. For α = 3, on the other hand, as for any α > 2, Q(r) → 0 for
r → 0.

For attractive inverse power-law potentials (1.313) with α > 2 there is a
semiclassical regime of small r values where WKB wave functions are accu-
rate approximations to the exact solutions of the Schrödinger equation, even
though the potential is a rapidly varying function of r. For sufficiently deep
potentials of the type shown in Fig 1.14, this inner semiclassical regime may
reach well beyond the domain of short distances where the potential neccessar-
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ily deviates from the inverse-power form. The quantum mechanical regime of
the potential tail, where the quantality function is significantly non-vanishing,
is then localized between the semiclassical regimes at small and large r values.

The extent and location of the quantal region of an attractive potential
tail is well understood for inverse power-law potentials (1.313). Note that, as
for all homogeneous potentials, the properties of the Schrödinger equation do
not depend on energy and potential strength independently. If we rewrite the
Schrödinger equation at energy E = h̄2k2/(2µ) in terms of the dimensionless
variable x = r/βα, with βα given by (1.316),(

d2

dx2
+ (kβα)2 +

1
xα

)
ψ(x) = 0 , (1.322)

we see that the “scaled energy” (kβα)2 is the one essential parameter affecting
the quantum mechanical properties of the system. Fig. 1.16 shows the quan-
tality function (1.298) for the attractive inverse-cube potential, α = 3, for
three values of the scaled energy, namely 0.1, 1 and 10. The lower panel of the
figure shows the scaled potential, v = V (−)

3 (r)× 2µ(β3)2/h̄2 = −(β3/r)3. The
quantal region of coordinate space shrinks and moves to smaller distances as
the energy increases.

For attractive inverse power-law potentials with α > 2 and positive en-
ergies E = h̄2k2/(2µ) > 0, it can be shown that the maximum of |Q(r)|
lies close to the characteristic distance rE , where the absolute value of the
potential equals the total energy,

|V (−)
α (rE)| = E ; (1.323)

rE is actually the classical turning point for the inverted potential −V (−)
α (r) =

V
(+)
α (r) as given by (1.315),

rE =
(
Cα

E

)1/α

= βα (kβα)−2/α
. (1.324)

Indeed, the quantality function can be calculated analytically, and the maxi-
mum of |Q(r)| occurs at

rmax = cαrE , (1.325)

where c3 = 0.895, c4 = 1 and 1 < cα < 1.06 for larger powers α, see Prob-
lem 1.10.

1.7 Angular Momentum and Spin

An angular momentum operator Ĵ is a vector of operators Ĵx, Ĵy, Ĵz obeying
the following commutation relations (see (1.56)):

[Ĵx, Ĵy] = ih̄Ĵz , [Ĵy, Ĵz] = ih̄Ĵx , [Ĵz, Ĵx] = ih̄Ĵy . (1.326)
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Fig. 1.16. Quantality function (1.298) for an attractive inverse-cube potential,
(1.313) with α = 3, for three values of the scaled energy (kβ3)

2. The lower panel

shows, for comparison, the scaled potential v = V
(−)
3 (r) × 2µ(β3)

2/h̄2 = −(β3/r)3.
Note that the maximum of |Q| is close to the characteristic distance at which the
absolute value of the (scaled) potential is equal to the total (scaled) energy

These can be summarized in the suggestive if somewhat unorthodox equation

Ĵ × Ĵ = ih̄Ĵ . (1.327)

From the commutation relations (1.326) it already follows, that the eigenval-
ues of Ĵ

2
= Ĵ2

x + Ĵ2
y + Ĵ2

z have the form j(j + 1)h̄2 and that to each value
of j there are exactly 2j + 1 different eigenvalues of Ĵz, namely mh̄ with
m = −j, −j + 1, . . . , j − 1, j. The number 2j + 1 must be a positive integer
so that j itself must be integral or half-integral. For orbital angular momenta,
which can be written as operators in the spatial varibles (see (1.66)), the re-
quirement of uniqueness of the wave function in coordinate space restricts the
angular momentum quantum numbers to integers. This restriction does not
hold for spin angular momenta for which there are no classical counterparts
in coordinate space.
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1.7.1 Addition of Angular Momenta

Let Ĵ1 and Ĵ2 be two commuting angular momenta ([Ĵ1x, Ĵ2x] = [Ĵ1x, Ĵ2y] =
0, etc.) with angular momentum quantum numbers j1, m1 and j2, m2 respec-
tively. Since Ĵ1 and Ĵ2 obey the commutation relations (1.326), the sum

Ĵ = Ĵ1 + Ĵ2 (1.328)

also obeys these relations and is also an angular momentum. Ĵ
2

has the eigen-
values j(j + 1)h̄2 and Ĵz has the eigenvalues mh̄.

The squares of the angular momenta commute,

[Ĵ
2
, Ĵ

2

1] = [Ĵ
2
, Ĵ

2

2] = 0 , (1.329)

and the components of the summed angular momentum Ĵ commute with Ĵ
2

1

and Ĵ
2

2, e.g. for Ĵz = Ĵ1z + Ĵ2z:

[Ĵz, Ĵ
2

1] = [Ĵz, Ĵ
2

2] = 0 . (1.330)

However, the components of Ĵ1 and Ĵ2 do not commute with the square of
the summed angular momentum,

Ĵ
2

= Ĵ
2

1 + Ĵ
2

2 + 2Ĵ1 ·Ĵ2 , (1.331)

because e.g. Ĵ1z doesn’t commute the terms Ĵ1xĴ2x and Ĵ1yĴ2y in the scalar
product Ĵ1 ·Ĵ2 .

Four mutually commuting operators are already sufficient to completely
classify the angular momentum eigenstates, and these four operators can be
chosen in different ways. In the uncoupled representation the four operators
are Ĵ

2

1, Ĵ1z, Ĵ
2

2, Ĵ2z. The corresponding eigenstates |j1,m1, j2,m2〉 are also
eigenstates of Ĵz = Ĵ1z + Ĵ2z with the eigenvalues mh̄ (m = m1 +m2), but
they are in general not eigenstates of Ĵ

2
. In the coupled representation the

basis states |j,m, j1, j2〉 are eigenstates of the four operators Ĵ
2
, Ĵz, Ĵ

2

1 and
Ĵ

2

2. They are in general not eigenstates of Ĵ1z and Ĵ2z.
For given values of j1 and j2, the basis states in the coupled representation

can of course be expressed as linear combinations of the uncoupled basis states:

|j,m, j1, j2〉 =
∑

m1,m2

〈j1,m1, j2,m2|j,m〉|j1,m1, j2,m2〉 . (1.332)

Vice-versa we can express the uncoupled states as linear combinations of the
coupled states:

|j1,m1, j2,m2〉 =
∑
j,m

〈j,m|j1,m1, j2,m2〉|j,m, j1, j2, 〉 . (1.333)

The coefficients appearing in (1.332), (1.333) are the Clebsch-Gordan coeffi-
cients [Edm60],
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〈j1,m1, j2,m2|j,m〉 = 〈j,m|j1,m1, j2,m2〉∗ , (1.334)

which are real if the phases of the basis states are appropriately chosen.
Obviously the Clebsch-Gordan coefficient 〈j1,m1, j2,m2|j,m〉 is only non-

zero if

m1 +m2 = m . (1.335)

A further selection rule is the triangle condition which determines the minimal
and maximal summed angular momentum quantum number j for given values
of j1 and j2

|j1 − j2| ≤ j ≤ j1 + j2 . (1.336)

For fixed j1 and j2, each possible summed angular momentum quantum
number j encompasses exactly 2j+1 eigenstates corresponding to the different
eigenvalues mh̄ of Ĵz. Since coupling cannot affect the dimension of the space
spanned by the basis states, the total number of coupled states for all possible
values of j (at fixed values of j1 and j2) is equal to the number (2j1 + 1) ×
(2j2 + 1) of states in the uncoupled basis:

j1+j2∑
j=|j1−j2|

(2j + 1) = (2j1 + 1)(2j2 + 1) . (1.337)

1.7.2 Spin

It is known from experimental investigations that an electron has an internal
angular momentum called spin, and that the total angular momentum Ĵ of
an electron ist the sum of its orbital angular momentum L̂ and its spin Ŝ:

Ĵ = L̂ + Ŝ . (1.338)

The electron’s spin has no classical counterpart and cannot be related to
ordinary coordinates. All physical states are eigenstates of Ŝ

2
with eigenvalue

s(s+1)h̄2, and the spin quantum number s always has the same value s = 1/2.
Any component, e.g. Ŝz, of Ŝ has two eigenvalues msh̄, namely ms = +1/2
and ms = −1/2.

The wave function of an electron thus depends not only on e.g. the spatial
coordinate r, but also on the spin variable ms:

ψ = ψ(r,ms) . (1.339)

Since the discrete variable ms can only take on two values, it is convenient
to write the wave function (1.339) as a pair of ordinary functions of r corre-
sponding to the two values ms = 1/2 and ms = −1/2:

ψ =
(
ψ+(r)
ψ−(r)

)
=
(
ψ(r,ms = +1

2 )
ψ(r,ms = − 1

2 )

)
. (1.340)
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These two-component entities are called spinors in order to distinguish them
from ordinary vectors in coordinate space. If we introduce the two basis spinors

χ+ =
(

1
0

)
, χ− =

(
0
1

)
, (1.341)

we can write the general one-electron wave function (1.340) as

ψ = ψ+(r)χ+ + ψ−(r)χ− . (1.342)

The scalar product of two spinors of the form (1.340) or (1.342) is

〈ψ|φ〉 =
∫

d3r

+ 1
2∑

ms=− 1
2

ψ∗(r,ms)φ(r,ms) = 〈ψ+ |φ+〉 + 〈ψ− |φ−〉 . (1.343)

States ψ normalized to unity fulfill the condition

〈ψ+ |ψ+〉 + 〈ψ− |ψ−〉 =
∫

d3r
(|ψ+(r)|2 + |ψ−(r)|2) = 1 , (1.344)

and |ψ+(r)|2 is e.g. the probability density for finding the electron at the
position r and in the spin state χ+ .

Linear operators can not only act on the component functions ψ+ , ψ− ,
they can also mix up the components in a spinor. The most general linear
operators in spin space are 2 × 2 matrices of complex numbers. These can be
expressed as linear combinations of four basis matrices; the most commonly
used basis consists of the unit matrix and the three Pauli spin matrices:

σ̂x =
(

0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
. (1.345)

Thus the most general linear operator in the Hilbert space of one electron
states has the form

Ô = Ô0 + Ô1σ̂x + Ô2σ̂y + Ô3σ̂z , (1.346)

where Ôi are spin-independent operators such as p̂, r̂ and functions thereof.
The spinors χ+ and χ− of (1.341) are eigenstates of σ̂z with eigenvalues +1

and −1 respectively. Since they are also supposed to be eigenstates of the z-
component Ŝz of the spin with eigenvalues +(1/2)h̄ and −(1/2)h̄ respectively,
the relation between Ŝz and σ̂z must simply be:

Ŝz =
1
2
h̄σ̂z . (1.347)

Together with the other two components,

Ŝx =
1
2
h̄σ̂x , Ŝy =

1
2
h̄σ̂y , (1.348)

we have the spin operator Ŝ as

Ŝ =
1
2
h̄σ̂ . (1.349)
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From the commutation relations of the Pauli spin matrices,

σ̂xσ̂y = iσ̂z = −σ̂yσ̂x , etc. , (1.350)

it immediately follows, that the spin components defined by (1.347)–(1.349)
obey the commutation relations (1.326) characteristic of angular momentum
operators:

[Ŝx, Ŝy] = ih̄Ŝz , [Ŝy, Ŝz] = ih̄Ŝx , [Ŝz, Ŝx] = ih̄Ŝy . (1.351)

Furthermore, the properties

σ̂2
x = σ̂2

y = σ̂2
z = 1 (1.352)

imply that

Ŝ
2

= Ŝ2
x + Ŝ2

y + Ŝ2
z =

3
4
h̄2 , (1.353)

which of course just means that all states are eigenstates of Ŝ
2

with eigenvalue
s(s+ 1)h̄2 corresponding to s = 1/2.

The spin Ŝ is a vector operator consisting of three components, just like the
position r̂ and the momentum p̂. The components of Ŝ are however, in con-
trast to position and momentum, not ordinary operators acting on functions,
but 2×2 matrices which linearly transform the spinor components. The spinor
components must not be confused with the components of ordinary vectors
in coordinate space.

1.7.3 Spin-Orbit Coupling

In addition to the usual kinetic and potential energy terms, the Hamiltonian
for an electron in a radially symmetric potential V (r) contains a further term
which couples the spin and spatial degrees of freedom:

Ĥ = − h̄
2

2µ
∆ + V (r) + VLS(r) L̂·Ŝ . (1.354)

The spin-orbit coupling term can be physically understood as the interaction
energy of two magnetic dipoles associated with the orbital angular momentum
L̂ and the spin Ŝ respectively. More precisely the spin-orbit coupling appears
as an additional contribution to the conventional Hamiltonian (1.53) in the
non-relativistic limit of the relativistic Dirac equation (see Sect. 2.1.4, (2.45)).
The coupling function VLS derived in this way is

VLS(r) =
1

2µ2c2
1
r

dV
dr

. (1.355)

The Hamiltonian (1.354) no longer commutes with the components of the
orbital angular momentum L̂, but it commutes with the components of the
total angular momentum Ĵ = L̂ + Ŝ, because we can express the spin-orbit
coupling operator in terms of the squares of the angular momenta
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L̂·Ŝ =
1
2
(Ĵ

2 − L̂
2 − Ŝ

2
) , (1.356)

and the components of the summed angular momentum commute with all
squares (see (1.330)). Hence it is appropriate to couple the eigenstates of
orbital angular momentum and spin to eigenstates of the total angular mo-
mentum Ĵ . This is done with the Clebsch-Gordan coefficients as a special case
of (1.332):

|j,m, l, s〉 =
∑

ml,ms

〈l,ml, s,ms|j,m〉Yl,ml
(θ, φ)χms . (1.357)

The quantum number s in (1.357) is of course always 1/2. Since l and ml are
always integers, j and m must always be half integers (meaning odd multiples
of 1/2). Because of the triangle condition (1.336) there are exactly two possible
values of j for each value of l larger than zero, namely j = l + 1/2 and
j = l − 1/2. For l = 0 there is only one possible value of j, namely +1/2.

The coupled eigenstates |j,m, l, s〉 are called generalized spherical harmon-
ics and are written as Yj,m,l. They are two-component spinors, and it is clear
from (1.341) and the selection rule m = ml +ms (see (1.335)) that the up-
per component corresponding to a contribution with ms = +1/2 contains a
spherical harmonic with ml = m− 1/2, while the lower component contains a
spherical harmonic with ml = m+ 1/2. The generalized spherical harmonics
are thus essentially two-component spinors of spherical harmonics. Inserting
the known Clebsch-Gordan coefficients [New82, Tin64] yields the explicit ex-
pressions

Yj,m,l =
1√
2j

(√
j +mYl,m− 1

2
(θ, φ)√

j −mYl,m+ 1
2
(θ, φ)

)
, j = l +

1
2
,

Yj,m,l =
1√

2j + 2

(−√
j + 1 −mYl,m− 1

2
(θ, φ)√

j + 1 +mYl,m+ 1
2
(θ, φ)

)
, j = l − 1

2
. (1.358)

The time-independent Schrödinger equation Ĥψ = Eψ with the Hamil-
tonian (1.354) corresponds to two coupled partial differential equations for
the two components ψ+(r) and ψ−(r) of the spinor wave function (1.340).
A substantial simplification can be achieved if we extend the ansatz (1.74)
for separating radial and angular variables to the present case of spinor wave
functions using the generalized spherical harmonics:

ψ(r,ms) =
φj,l(r)
r

Yj,m,l . (1.359)

In addition to the relation (1.70) (with (1.58)) we can now use the fact that
the generalized spherical harmonics Yj,m,l are eigenfunctions of the spin-orbit
coupling operator (1.356),

L̂·Ŝ Yj,m,l =
h̄2

2
[j(j + 1) − l(l + 1) − s(s+ 1)]Yj,m,l , (1.360)
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where s(s+ 1) = 3/4. For the two possible cases j = l ± 1/2 we have

L̂·Ŝ Yj,m,l =
h̄2

2

{
lYj,m,l for j = l + 1/2 ,

−(l + 1)Yj,m,l for j = l − 1/2 . (1.361)

Thus the Schrödinger equation can be reduced to a radial Schrödinger equa-
tion(

− h̄
2

2µ
d2

dr2
+
l(l + 1)h̄2

2µr2
+ V (r) +

h̄2

2
F (j, l)VLS(r)

)
φj,l(r)

= Eφj,l(r) , (1.362)

and the factor F (j, l) is l or −(l+1) for j = l+1/2 and j = l−1/2 respectively.
For a given orbital angular momentum quantum number l, the spin-orbit
potentials for the two possible values of j have opposite sign.

Including the spin variable in the description of an electron in a radially
symmetric potential still allows us to reduce the time-independent Schrödinger
equation to an ordinary differential equation for the radial wave function. The
radial Schrödinger equation now depends not only on the orbital angular mo-
mentum quantum number l, but also on the total angular momentum quantum
number j (not, however, on m).

Problems

1.1. Consider a point particle of mass µ in a radially symmetric potential

V (r) =
{−V0 for r ≤ r0

0 for r > r0 ,

where V0 is a positive constant considerably larger than h̄2/(µr20). Give an
approximate (±1) estimate for the number of bound states for l = 0.

1.2. a) Consider the following radial wave function which is normalized to
unity:

φ(r) = (
√
πb)−

1
2
2r
b

e−r2/(2b2) .

Calculate the overlaps (i.e. the scalar products) 〈φ|φn,l=0〉 with the radial
eigenfunctions (1.82) of the harmonic oscillator with an oscillator width
β �= b.

b) Consider the following radial wave function which is normalized to unity:

φ(r) = 2b−
1
2
r

b
e−r/b .

Calculate the overlaps 〈φ|φn,l=0〉 with the radial eigenfunctions (1.138) of
the attractive Coulomb potential with a Bohr radius a �= b.
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c) Evaluate the first four or five terms of the sum∑
n

|〈φ|φn,l=0〉|2

for the explicit values b = β/2 and b = a/2 respectively. Estimate the
limit to which the sum converges in both cases.

d) Repeat the exercise (c) for the Coulomb potential for b = a and b = 2a.
Hint: ∫ ∞

0

e−sx xα Lα
ν (x) dx =

Γ (α+ ν + 1)(s− 1)ν

ν! sα+ν+1
,∫ ∞

0

e−sx xα+1 Lα
ν (x) dx = − d

ds

(∫ ∞

0

e−sx xα Lα
ν (x) dx

)
.

1.3. Use the recurrence relation (A.15) and the orthogonality relation (A.14)
to show that the expectation value of the radius r in the Coulomb eigenfunc-
tions (1.138) (with Bohr radius a) is given by:

〈φn,l|r|φn,l〉 =
a

2
[3n2 − l(l + 1)] .

1.4. A free point particle of mass µ in one spatial dimension is described at
time t = 0 by the wave function (1.166),

ψ(x, t = 0) =
(
β
√
π
)−1/2 exp

(
− (x− x0)2

2β2

)
eik0x .

Calculate the momentum representation ψ̃(k, t = 0) of the initial wave func-
tion,

ψ̃(k, t = 0) =
1√
2π

∫ ∞

−∞
e−ikxψ(x, t = 0) dx ,

and discuss the time evolution of ψ̃(k, t) according to the time-dependent
Schrödinger equation (1.38).

Calculate the time-dependent wave function ψ(x, t) in coordinate space
and discuss the evolution of the uncertainties ∆x, ∆p as defined by (1.35).

1.5. Show that the free Green’s function for l = 0,

G0(r, r′) = − 2µ
h̄2k

sin(kr<) cos(kr>) ,

(r< is the smaller, r> the larger of the two radii r, r′) fulfills the defining
equation:(

E +
h̄2

2µ
d2

dr2

)
G(r, r′) = δ(r − r′) .
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1.6. Consider a Hamiltonian

Ĥ = Ĥ0 + Ŵ

in a two-dimensional Hilbert space, where

Ĥ0 =
(
ε1 0
0 ε2

)
, Ŵ =

(
0 w
w 0

)
.

Calculate the eigenstates and eigenvalues of Ĥ
(a) in lowest non-vanishing order perturbation theory treating Ŵ as the per-
turbation, (b) by exact diagonalization of Ĥ.
How do the results in both cases depend on the difference ε1 − ε2 of the
unperturbed energies?

1.7. a) Use the Bohr-Sommerfeld quantization rule (1.310) to calculate the
energy eigenvalues of the bound states of a one-dimensional harmonic
oscillator: V (x) = (µ/2)ω2x2.

b) Use the quantization rule (1.308) to calculate the energy eigenvalues of
the bound states in a one-dimensional infinitely deep well,

V (x) =
{

0 , 0 < x < L ,
+∞ , x < 0 or x > L .

c) Consider a particle of mass µ reflected by a one-dimensional potential step,

V (x) =
{

0 , x < L ,
+V0, x ≥ L ,

at an energy E, 0 < E < V0. Calculate the reflection phase φ and the
amplitude N for the WKB wave function according to the connection
formula(1.300).
Now consider a particle of mass µ bound in the finite square well potential

V (x) =
{

0 , 0 < x < L ,
+V0, x ≤ 0 or x ≥ L .

Discuss the accuracy of the wave functions and the energy eigenvalues
obtained via the quantization rule (1.308) when the appropriate reflection
phases and normalization constants are used.

1.8. Consider a point particle of mass µ in a one-dimensional potential V (x).
Calculate the energy expectation value for the Gaussian wave function

ψ(x) = (
√
πb)−1/2 e−x2/(2b2) ,

(which is normalized to unity), and think about the limit b→ ∞.
Show that a potential V (x) with lim|x|→∞ V (x) = 0, which is more attractive
than repulsive, meaning
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−∞
V (x) dx < 0 ,

always supports at least one bound state. Why doesn’t this statement hold
for a particle in three dimensions?

1.9. Consider a point particle of mass µ in a radially symmetric potential
V (r), which is equal to −C/r2 (C > 0) beyond a certain radius r0,

V (r) = −C
r2
, r > r0 ,

and which is repulsive near the origin r = 0. Use the WKB approximation
and the Langer modification (1.305) to show that, for values of C larger than
a certain l-dependent threshold C(l), the energy eigenvalues for high quantum
numbers n are given by

En,l = −c1 e−c2(l)n .

Determine the constant c2(l).

1.10. Calculate the quantality function (1.298) for an attractive inverse
power-law potential,

V (−)
α (r) = − h̄

2

2µ
(βα)α−2

rα
, α > 2 ,

at energy E = h̄2k2/(2µ) > 0, and show that the maximum of |Q(r)| is located
at

r = [F (α)]1/α
rE , Fα =

5
4
− 9

2α+ 4
+

9α
4α+ 8

√
1 − 20

27

(
α+ 2
α+ 1

)
.

Evaluate [F (α)]1/α for integer values of α from 3 to 10.

1.11. Use (1.70) to verify the following identities:

[p̂2, r] = −2h̄2

(
∂

∂r
+

1
r

)
,

[p̂2, r2] = −2h̄2

(
2r
∂

∂r
+ 3

)
.
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2

Atoms and Ions

This chapter summarizes the traditional theory of one- and many-electron
systems, which has been developed and successfully applied to many atomic
problems for almost a century. The presentation is deliberately brief. A more
detailed introduction to atomic physics can be found in the textbook by Brans-
den and Joachain [BJ83]. At a much more formal level there is “Atomic Many-
Body Theory” by Lindgren and Morrison [LM85]. Finally we mention “Atomic
Structure” by Condon and Odabasi [CO80], where a comprehensive account
of conventional atomic structure calculations can be found.

2.1 One-Electron Systems

2.1.1 The Hydrogen Atom

In non-relativistic quantum mechanics a system consisting of a proton of mass
mp and an electron of mass me is described by the following Hamiltonian:

ĤH =
p̂2

p

2mp
+

p̂2
e

2me
− e2

|re − rp| , (2.1)

where p̂p and p̂e are the momentum operators for the proton and the electron
respectively, and rp and re are the respective spatial coordinates. Introducing
the centre-of-mass coordinate R and the relative distance coordinate r,

R =
mprp +mere

mp +me
, r = re − rp , (2.2)

we can rewrite (2.1) as

ĤH =
P̂

2

2(mp +me)
+

p̂2

2µ
− e2

r
, (2.3)

where P̂ is the total momentum and p̂ the relative momentum in the two-body
system:
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P̂ = p̂p + p̂e ,
p̂

µ
=

p̂e

me
− p̂p

mp
. (2.4)

In coordinate representation the momentum operators have the explicit form:

P̂ =
h̄

i
∇R , p̂ =

h̄

i
∇r . (2.5)

The mass µ appearing in (2.3) and (2.4) is the reduced mass

µ =
memp

me +mp
=

me

1 +me/mp
. (2.6)

Since the ratio me/mp = 0.0005446170234 (12) is very small (the numerical
value is taken from [MT00]), the reduced mass µ is only little smaller than
the rest mass me of the electron, namely by about 0.50/00.

Thus the Hamiltonian ĤH consists of a part P̂
2
/[2(mp +me)] describing

the free motion of the centre of mass and an internal Hamiltonian,

Ĥ =
p̂2

2µ
− e2

r
, (2.7)

describing the motion of the electron relative to the position of the proton.
Eigenfunctions ψcm(R) and eigenvalues Ecm for the centre-of-mass motion
are known, ψcm(R) ∝ exp(iK · R) , Ecm = h̄2K2/[2(mp +me)] , so solving
the two-body problem (2.1) or (2.3) is reduced to the problem of solving the
one-body Schrödinger equation with the internal Hamiltonian (2.7).

This is just the one-body problem in an attractive Coulomb potential
which was discussed in detail in Sect. 1.3.3. The energy eigenvalues are

En = −R
n2
, n = 1, 2, 3, . . . ,

l = 0, 1, . . . , n− 1 ,
m = −l, −l + 1, . . . , l − 1, l , (2.8)

where the Rydberg energy R = µe4/(2h̄2) is smaller by a factor µ/me than
the Rydberg energy R∞ = mee

4/(2h̄2) corresponding to a proton of infinite
mass [BN97, UH97, MT00]:

R∞ = 2.1798719(2) × 10−18 J = 13.605692(2) eV ,
R∞/(2πh̄c) = 109737.315686 (1) cm−1 ,

R∞/(2πh̄) = 3.28984196037(3) × 1015 Hz . (2.9)

In coordinate space, the bound eigenfunctions of the Hamiltonian (2.7)
have the form (1.74) and the radial wave functions are given by (1.138). The
Bohr radius a = h̄2/(µe2) is larger by a factorme/µ than the Bohr radius a0 =
h̄2/(mee

2) corresponding to an infinite proton mass. According to [MT00] the
numerical value for a0 is:

a0 = 0.529177208 (2) × 10−8 cm . (2.10)
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In atomic units we measure energies in units of twice the Rydberg energy
and lengths in units of the Bohr radius, r → ar , p̂ → p̂h̄/a , Ĥ → 2RĤ .
The time scale in atomic units is t0 = h̄/(2R). Inserting the Rydberg energy
R∞ corresponding to infinite proton mass we have [MT00], t∞0 = h̄/(2R∞) =
0.241888432650(2) × 10−16 s.

In atomic units and coordinate representation, the (internal) Hamiltonian
for the hydrogen atom is:

Ĥ = −1
2
∆− 1

r
, (2.11)

which corresponds to µ = 1, h̄ = 1 and e = 1. In atomic units, the bound
spectrum of the hydrogen atom is simply En = −1/(2n2) and the Bohr radius
is unity.

2.1.2 Hydrogenic Ions

The considerations of the preceding section apply almost without change to a
system consisting of an electron and an arbitrary atomic nucleus with charge
number Z. Such a system is a hydrogenic ion which is (Z − 1)-fold positively
charged. In the formula for the reduced mass, the mass mp must now be
replaced by the mass mnuc of the nucleus which depends not only on the
charge number Z, but also on the mass number A (or equivalently, on the
number of neutrons A− Z):

µ =
memnuc

me +mnuc
=

me

1 +me/mnuc
. (2.12)

Since mnuc > mp for all nuclei barring the proton itself, µ is now even closer
to the electron mass me.

For charge numbers Z > 1, the essential difference between a hydrogenic
ion and the hydrogen atom lies in the potential energy which is stronger by a
factor Z:

ĤZ =
p̂2

2µ
− Ze2

r
. (2.13)

Looking at the formula (1.135) for the Rydberg energy and (1.102) for the
Bohr radius we see that the formulae (2.8) for the energy eigenvalues and
(1.138) for the radial wave functions still hold, provided we insert the Rydberg
energy RZ instead of R,

RZ =
Z2µe4

2h̄2 , (2.14)

and the Bohr radius aZ ,

aZ =
h̄2

Zµe2
, (2.15)
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instead of a. In atomic units the Hamiltonian ĤZ and the energy eigenvalues
En are given by

ĤZ = −1
2
∆− Z

r
, En = − Z

2

2n2
, (2.16)

while the Bohr radius is aZ = 1/Z.
The hydrogen atom and the hydrogenic ions He+, Li++, Be+++, . . .,

U91+, . . . constitute the simplest example of an iso-electronic sequence: atoms
and ions with the same number of electrons have very similar spectra. In se-
quences with more than one electron however, the energies don’t follow such
a simple scaling rule as (2.16), because only the electron-nucleus part of the
potential energy is proportional to Z, while the electron-electron interaction
is independent of Z (see Sect. 2.2 and Sect. 2.3).

2.1.3 The Dirac Equation

The time-dependent Schrödinger equation (1.39) violates the symmetry re-
quirements of special relativity, as is already obvious from the different roles
played by the spatial coordinates and the time; the Schrödinger equation con-
tains second derivatives with respect to the spatial coordinates, but only first
derivatives with respect to time. As a way out of this situation Dirac pro-
posed a Hamiltonian containing the momentum components p̂x = (h̄/i)∂/∂x
etc. linearly. For a free particle of mass m0 Dirac’s Hamiltonian is

Ĥ = cα·p̂ + βm0c
2 . (2.17)

Here c = 2.99792458 × 108 ms−1 is the speed of light, which is included so
that the coefficient β and the vector of coefficients (αx, αy, αz) ≡ (α1, α2, α3)
are physically dimensionless.

The square of Dirac’s Hamiltonian,

Ĥ2 = c2
3∑

i,k=1

1
2
(αiαk + αkαi)p̂ip̂k +m0c

3
3∑

i=1

(αiβ + βαi)p̂i

+β2m2
0c

4 , (2.18)

can only fulfill the relativistic energy momentum relation E2 = p2c2 +m2
0c

4,
if the coefficients αi, β fulfill the following anticommutation relations:

αiαk + αkαi = 2δi,k , αiβ + βαi = 0 , β2 = 1 . (2.19)

This means they can’t simply be numbers. As square matrices they must at
least be 4×4 matrices in order to fulfill (2.19). We thus replace the Schrödinger
equation by an equation

(cα·p̂ + βm0c
2)ψ = ih̄

∂ψ

∂t
(2.20)

for four-component quantities called four-component spinors:
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ψ(r, t) =

⎛
⎜⎝
ψ1(r, t)
ψ2(r, t)
ψ3(r, t)
ψ4(r, t)

⎞
⎟⎠ . (2.21)

Equation (2.20) is the Dirac equation representing four partial differential
equations for the four components of ψ. In the so-called standard represen-
tation the coefficients αi, β are expressed through the Pauli spin matrices
(1.345):

αx =
(

0 σ̂x

σ̂x 0

)
, αy =

(
0 σ̂y

σ̂y 0

)
,

αz =
(

0 σ̂z

σ̂z 0

)
, β =

(
1 0
0 −1

)
. (2.22)

Each entry in a matrix in (2.22) stands for a 2 × 2 matrix, e.g.

αx =

⎛
⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠ , β =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠ . (2.23)

Inserting an ansatz for a stationary solution,

ψ(r, t) = ψ(r, t=0) e−(i/h̄)Et , (2.24)

turns the Dirac equation (2.20) into a time-independent Dirac equation,

(cα·p̂ + βm0c
2)ψ = Eψ . (2.25)

In order to simplify notation and interpretation we write the four-component
spinors ψ as pairs of two-component quantities:

ψ =
(
ψA

ψB

)
, ψA =

(
ψ1

ψ2

)
, ψB =

(
ψ3

ψ4

)
. (2.26)

Inserting (2.26) into (2.25) and using the representation (2.22) of the coeffi-
cients αi , β leads to two coupled equations for the two-component spinors
ψA and ψB :

σ̂ ·p̂ψB =
1
c
(E −m0c

2)ψA ,

σ̂ ·p̂ψA =
1
c
(E +m0c

2)ψB . (2.27)

For a particle at rest, p̂ψA = 0, p̂ψB = 0, we obtain two (linearly inde-
pendent) solutions of (2.27) with positive energy E = m0c

2, namely ψA =
(
1
0

)
or

(
0
1

)
and ψB = 0, and two solutions with negative energy E = −m0c

2,
namely ψB =

(
1
0

)
or

(
0
1

)
and ψA = 0. The positive energy solutions are in-

terpreted as the two spin states of the ordinary particle (of spin s = 1/2),
and the negative energy solutions are related to the corresponding states of
the associated anti-particle. (For a discussion of the concept of anti-particles
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see textbooks on relativistic quantum mechanics, e.g. [BD64].) In situations
more general than a particle at rest, the positive energy solutions of (2.27)
usually have non-vanishing lower components ψB , but these are small, except
in the extremely relativistic case (E  m0c

2), and are consequently called
small components in contrast to the large components ψA.

In order to describe e.g. a hydrogen atom, we must extend the above treat-
ment of a free particle to the case of a particle in a potential. The concept of a
particle in a static potential V (r) obviously contradicts the basic requirements
of relativity, because it distinguishes one reference frame from all others. On
the other hand, a relativistic theory does not allow the simple separation of
a two-body problem into a centre-of-mass part and an internal relative mo-
tion part, as was possible in the non-relativistic case (Sect. 2.1.1). We can
nevertheless justify the relativistic treatment of an electron in the potential
of an atomic nucleus, because the nucleus is comparatively heavy and can be
assumed to be at rest (in an appropriate reference frame). This picture makes
sense as long as the energy of the electron is small compared with the rest
energy mnucc

2 of the atomic nucleus.
We extend the Dirac equation (2.20) or (2.27) to a particle in a static

potential V (r) by simply adding V (r) to the Hamiltonian. Equation (2.27)
then becomes

σ̂ ·p̂ψB =
1
c
(E − V (r) −m0c

2)ψA ,

σ̂ ·p̂ψA =
1
c
(E − V (r) +m0c

2)ψB . (2.28)

If the potential is radially symmetric, V = V (r), then the radial motion
can be separated from the angular motion as in the non-relativistic case.
To this end we use the generalized spherical harmonics Yj,m,l introduced in
Sect. 1.7.3 and make the following ansatz for the two-component spinors ψA

and ψB :

ψA =
F (r)
r

Yj,m,lA , ψB = i
G(r)
r

Yj,m,lB . (2.29)

We make use of the identity (Problem 2.1)

σ̂ ·p̂ =
1
r2

(σ̂ ·r)
(
h̄

i
r
∂

∂r
+ i σ̂ ·L̂

)
, (2.30)

of the properties

1
r
(σ̂ ·r)Yj,m,l=j+1/2 = −Yj,m,l=j−1/2 ,

1
r
(σ̂ ·r)Yj,m,l=j−1/2 = −Yj,m,l=j+1/2 , (2.31)

and of the fact that the operator σ̂ ·L̂ = (2/h̄)Ŝ ·L̂ can be expressed through
Ĵ

2−L̂
2−Ŝ

2
, in other words, through [j(j+1)−l(l+1)−3/4]h̄2 (1.360). From

(2.30), (2.31) we see that each total angular momentum quantum number j
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allows exactly two possibilities for the orbital angular momentum quantum
numbers lA and lB in the ansatz (2.29):

(i) lA = j − 1
2
, lB = j +

1
2

; (ii) lA = j +
1
2
, lB = j − 1

2
. (2.32)

Inserting (2.29) into (2.28) and using (2.30), (2.31) leads to the radial Dirac
equation for the radial wave functions F (r) and G(r):

h̄c

(
dF
dr

+
κ

r
F

)
= (E − V (r) +m0c

2)G ,

h̄c

(
dG
dr

− κ

r
G

)
= −(E − V (r) −m0c

2)F . (2.33)

The absolute value of the constant κ ist j+1/2; its sign depends on the orbital
angular momentum numbers given by (2.32):1

κ = −j − 1
2

for (i) , κ = j +
1
2

for (ii) . (2.34)

The radial Dirac equation (2.33) is a system of two coupled ordinary differ-
ential equations of first order. Solving the radial Dirac equation is in general no
more difficult than solving the radial Schrödinger equation (1.75) or (1.362).
For an attractive Coulomb potential, V (r) = −Ze2/r, the energy eigenvalues
can be given analytically in the regime of bound particle states 0 < E < m0c

2:

En,j = m0c
2

[
1 +

(Zαfs)2

(n− δj)2
]− 1

2

,

δj = j +
1
2
−
√

(j + 1/2)2 − (Zαfs)2 . (2.35)

Here αfs = e2/(h̄c) = 0.007297352533 (27) ≈ 1/137 [MT00] is the dimension-
less fine-structure constant which characterizes the strength of the electromag-
netic interaction. Note that, in atomic units corresponding to h̄ = 1, e = 1,
the speed of light is 1/αfs.

The energies (2.35) depend not only on the principal quantum number
n = 1, 2, 3, . . ., but also on the total angular momentum quantum number j,
which, for given n, can assume the values j = 1/2, 3/2, . . . n− 1/2. For each
j with 1/2 ≤ j < n−1/2 (i.e. j �= n−1/2) there are two linearly independent
solutions of the radial Dirac equation characterized by the orbital angular
momentum quantum numbers lA = j + 1/2 and lA = j − 1/2 in the large
components. Obviously the formula (2.35) is only valid for Zαfs < 1. This
implies Z < 137, which is fulfilled for all known atomic nuclei.

Expanding (2.35) in powers of Zαfs yields

En,j = m0c
2

[
1 − (Zαfs)2

2n2
− (Zαfs)4

2n3

(
1

j + 1/2
− 3

4n

)
+ · · ·

]
. (2.36)

1 The constant κ is related to the factor F (j, l) in front of the spin-orbit contribution
in the radial Schrödinger equation (1.362) by κ = −1 − F (j, lA).
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Fig. 2.1. Fine-structure
splitting of the energy
levels up to n = 3 in the
hydrogen atom, as pre-
dicted by the Dirac equa-
tion (2.35). The num-
bers are energies in 10−6

atomic units; on this
scale the non-relativistic
binding energies are 0.5×
106/n2

The first term is simply the rest energy m0c
2 of the particle and the second

term corresponds to the non-relativistic spectrum with binding energies R/n2.
The next term contains corrections which are smaller than the non-relativistic
binding energies by at least a factor of (Zαfs)2/n. This fine structure causes
an n- and j-dependent lowering of all energy levels. For a given n the shift is
largest for j = 1/2 and smallest for j = n− 1/2.

Figure 2.1 shows the fine-structure splitting of the low-lying levels of the
hydrogen atom, as predicted by the Dirac equation. The standard nomen-
clature for hydrogenic single-particle states is as follows: Energy levels are
labelled nlj , where n is the Coulomb principal quantum number and j is
the total angular momentum quantum number. The orbital angular mo-
mentum quantum numbers lA ≡ l = 0, 1, 2, 3, . . . are denoted by the
letters s, p, d, f, . . . (continue alphabetically). Examples: 2s1/2 stands for
n = 2, l = 0, j = 1/2 and 7g9/2 stands for n = 7, l = 4, j = 9/2.

Going beyond the Dirac equation, the electron-proton interaction can be
treated with the methods of quantum electrodynamics which leads to still
finer corrections to the energy levels, the Lamb shift. Further corrections follow
from the fact that the proton is not a structureless point particle. Such higher-
order corrections to the energy eigenvalues are more important for states of
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low angular momentum and thus lift the degeneracy of the lA = j ± 1/2
states for given n and j. The Lamb shift has been measured to a high degree
of precision [BH95] and amounts to about 1.24 × 10−6 atomic units for the
1s state in hydrogen, whereas the 2s1/2 level comes to lie 0.16× 10−6 atomic
units above the 2p1/2 level, a separation corresponding to about 10% of the
fine-structure splitting to the 2p3/2 level.

2.1.4 Relativistic Corrections to the Schrödinger Equation

The Dirac equation (2.28) can be rewritten as one second-order partial dif-
ferential equation for the large components ψA. To see this, resolve the lower
equation for ψB ,

ψB =
c

E − V (r) +m0c2
σ̂ ·p̂ψA , (2.37)

and insert the result into the upper equation:

σ̂ ·p̂ c2

m0c2 + E − V σ̂ ·p̂ψA = (E − V −m0c
2)ψA , (2.38)

or, replacing E −m0c
2 by ε:

1
2m0

σ̂ ·p̂
[
1 +

ε− V
2m0c2

]−1

σ̂ ·p̂ψA = (ε− V )ψA . (2.39)

In the weakly relativistic case the energy E of the particle is not very
different from its rest energy m0c

2, so the difference ε = E −m0c
2 is small

compared with m0c
2, as is the potential V . It then makes sense to expand the

square bracket in (2.39), and the left-hand side becomes

1
2m0

σ̂ ·p̂
(

1 − ε− V
2m0c2

)
σ̂ ·p̂ψA

=
[(

1 − ε− V
2m0c2

)
(σ̂ ·p̂)(σ̂ ·p̂)

2m0
+
h̄

i
(σ̂ · ∇V )(σ̂ ·p̂)

4m2
0c

2

]
ψA . (2.40)

Using the identity (Problem 2.1)

(σ̂ ·A)(σ̂ ·B) = A·B + iσ̂ · (A × B) (2.41)

(in particular (σ̂·p̂)(σ̂·p̂) = p̂2) and assuming a radially symmetric potential,
V = V (r) , ∇V = (r/r)dV/dr , we obtain the equation[(

1 − ε− V
2m0c2

)
p̂2

2m0
+
h̄

i
1

4m2
0c

2

1
r

dV
dr

(r ·p̂)

+
h̄

4m2
0c

2

1
r

dV
dr

σ̂ ·(r × p̂)

]
ψA = (ε− V )ψA . (2.42)

In the first term on the left-hand side we approximate ε− V by p̂2/(2m0). In
the last term we have h̄σ̂ ·(r× p̂) = 2L̂ · Ŝ. The middle term is not Hermitian.
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This is due to the fact that we are trying to account for the coupling between
the large components ψA and the small components ψB in a Schrödinger-type
equation for the large components alone. Darwin introduced the Hermitian
average,

ĤD =
1

8m2
0c

2

[
h̄

i
1
r

dV
dr

(r · p̂) − h̄

i
(p̂ · r)

1
r

dV
dr

]

=
h̄2

8m2
0c

2

(
2
r

dV
dr

+
d2V

dr2

)
=

h̄2

8m2
0c

2
∆V (r) . (2.43)

With these manipulations we obtain a Schrödinger equation including rel-
ativistic corrections to first order in p̂2/(m0c)2:(

p̂2

2m0
− p̂2p̂2

8m3
0c

2
+ V (r) + ĤLS + ĤD

)
ψA = εψA . (2.44)

Besides the Darwin term (2.43) the Hamiltonian in (2.44) contains the spin-
orbit coupling

ĤLS =
1

2m2
0c

2

1
r

dV
dr

L̂·Ŝ (2.45)

and a correction to the kinetic energy including the fourth power of the
momentum operator. This makes (2.44) a differential equation of fourth or-
der, which is actually no progress compared with the original Dirac equation
(2.28) or (2.33). However, the effects of the relativistic corrections to the non-
relativistic Schrödinger equation are small and can usually be calculated with
perturbative methods.

In an attractive Coulomb potential V (r) = −Ze2/r, the spin-orbit cou-
pling and the Darwin term are explicitly:

ĤLS =
Ze2

2m2
0c

2

1
r3

L̂·Ŝ , ĤD =
πh̄2Ze2

2m2
0c

2
δ(r) . (2.46)

In this case the Darwin term contributes only for l = 0; the spin-orbit coupling
always contributes only for l > 0. We can recover the result (2.36) using first-
order perturbation theory with the perturbing operator consisting of the two
terms (2.46) and the p̂2p̂2 term (Problem 2.2).

As indicated at the end of Sect. 2.1.3, further corrections can be obtained
by considering that the atomic nucleus isn’t a structureless point particle,
but has a finite spatial size of the order of 10−12 cm and an internal angular
momentum called the nuclear spin. These corrections are even smaller than the
fine structure effects discussed above and appear in the spectrum as hyperfine
structure.
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2.2 Many-Electron Systems

2.2.1 The Hamiltonian

For an atom or ion consisting of N electrons and an atomic nucleus of mass
mnuc and charge number Z, the non-relativistic Hamiltonian for the whole
system is

ĤN,Z =
p̂2

nuc

2mnuc
+

N∑
i=1

(
p̂2

ei

2me
− Ze2

|rei − rnuc|

)
+
∑
i<j

e2

|rei − rej | ; (2.47)

p̂nuc and rnuc are the momentum and the position of the nucleus, and p̂ei

and rei are the momenta and position coordinates of the N electrons. We can
separate the centre-of-mass motion from the internal dynamics by introducing
the centre-of-mass coordinate,

R =
1
M

(
mnucrnuc +me

N∑
i=1

rei

)
, M = mnuc +Nme , (2.48)

together with the relative distance coordinates ri, which stand for the dis-
placement of the respective electrons from the position of the nucleus:

ri = rei − rnuc . (2.49)

The associated momenta are

P̂ =
h̄

i
∇R , p̂i =

h̄

i
∇ri . (2.50)

Expressing the momenta p̂nuc and p̂ei in (2.47) in terms of the momenta
(2.50),

p̂nuc =
mnuc

M
P̂ −

N∑
i=1

p̂i , p̂ei =
me

M
P̂ + p̂i , (2.51)

allows us to decompose the total kinetic energy in (2.47) into a centre-of-mass
part and an internal part:

p̂2
nuc

2mnuc
+

N∑
i=1

p̂2
ei

2me
=

P̂
2

2M
+

N∑
i=1

p̂2
i

2µ
+

1
mnuc

∑
i<j

p̂i ·p̂j . (2.52)

Here µ = memnuc/(me +mnuc) again is the reduced mass of an electron rel-
ative to the atomic nucleus. The two-body potential describing the mutual
electrostatic repulsion of the electrons depends on differences of two electron
coordinates, and these differences do not depend on whether we use the elec-
tron coordinates rei in a fixed reference frame or the displacements (2.49)
from the atomic nucleus.

The Hamiltonian describing the internal structure of the atom or ion has
the form
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Ĥ =
N∑

i=1

p̂2
i

2µ
+

N∑
i=1

V̂ (i) +
∑
i<j

Ŵ (i, j) . (2.53)

It differs from the Hamiltonian we would obtain for an infinitely heavy nu-
cleus in that the kinetic energy term contains the reduced mass µ instead
of the free-electron mass me. Furthermore, the last term on the right-hand
side of (2.52) leads to a momentum-dependent correction p̂i ·p̂j/mnuc to the
two-body interaction. This correction is called the mass polarization term and
originates from the fact, that the centre of mass (2.48) of the whole system
is not identical to the position rnuc of the nucleus, from where the internal
electron displacements (2.49) are measured. However, this correction is very
small and can be treated perturbatively. The same is true, at least in light
atoms (and ions), for the relativistic corrections such as spin-orbit coupling
discussed in Sect. 2.1.4. Ignoring these corrections for the time being, we have
an N -electron problem defined by the Hamiltonian (2.53) with the electrosta-
tic attraction of the electrons by the nucleus as the one-body interaction,

V̂ (i) = −Ze
2

ri
, (2.54)

and a two-body interaction due to the mutual electrostatic repulsion of the
electrons,

Ŵ (i, j) =
e2

|ri − rj | . (2.55)

2.2.2 Pauli Principle and Slater Determinants

The wave functions describing the internal dynamics of an N -electron atom
or ion depend on the internal spatial coordinates ri and the spin coordinates
msi

, which we shall collect in one symbol xi. The indistinguishability of the
electrons manifests itself in the fact that the Hamiltonian (2.53) does not
depend on the ordering of the electron labels i. If we change a given wave
function ψ(x1, . . . xN ) by permuting the electron labels,

P̂ψ(x1, . . . xN ) := ψ(xP (1), . . . xP (N)) , (2.56)

then the action of the Hamiltonian on the wave function does not depend on
whether it acts before or after such a permutation:

P̂ Ĥψ(x1, . . . xN ) = ĤP̂ψ(x1, . . . xN ) . (2.57)

Each permutation P of the numbers 1, . . . , N defines an operator P̂ ac-
cording to (2.56), and each such operator commutes with the Hamiltonian,
because of (2.57):

[Ĥ, P̂ ] = 0 . (2.58)

It would seem reasonable to classify the eigenstates of Ĥ according to the
eigenvalues of the permutation operators, i.e. according to their behaviour
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under reordering of the particle labels. In a two-body system there is only
one non-trivial permutation, namely P21, which replaces the pair 1, 2 by 2, 1.
Obviously the corresponding operator gives the unit operator when squared,
P̂21P̂21 = 1, so its only possible eigenvalues are +1 and −1. In systems of
more than two indistinguishable particles the situation is more complicated.
Two classes of many-particle wave functions are particularly important: to-
tally symmetric wave functions for which interchanging any two particle la-
bels doesn’t change the wave function at all, and totally antisymmetric wave
functions for which interchanging any two particle labels multiplies the wave
function by −1:

P̂ijψ(x1, .. , xi−1, xi, .. , xj−1, xj , .. xN )
= ψ(x1, .. , xi−1, xj , .. , xj−1, xi, .. xN )
= −ψ(x1, .. , xi−1, xi, .. , xj−1, xj , .. xN ) . (2.59)

For systems of more than two indistiguishable particles, the totally symmetric
or totally antisymmetric wave functions represent only a fraction of the func-
tions one might construct mathematically, but only these two possibilities are
realized in nature. Furthermore, the behaviour of the wave functions under
permutations of the particle labels is an internal property of the particles and
does not depend on their dynamic state or their environment. Particles with
totally symmetric wave functions are called bosons, particles with totally an-
tisymmetric wave functions are called fermions. Electrons are fermions. The
statement that fermions only occur in totally antisymmetric states is called
the Pauli principle.

Any permutation of the numbers 1, . . . , N can be decomposed into a se-
quence of successive swaps of just two numbers. This decomposition is not
unique, but the number of swaps making up a given permutation is either
always even or always odd. One calls the permutation itself even or odd ac-
cordingly. The total antisymmetry of a wave function can thus be written
compactly:

P̂ψ = (−1)Pψ , (2.60)

with (−1)P = 1 for even permutations and (−1)P = −1 for odd permutations.
From a given wave function ψ, which need not be totally antisymmetric,

we can project out a totally antisymmetric part using the antisymmetrizer

Â =
1√
N !

∑
P

(−1)P P̂ . (2.61)

To see that Âψ is totally antisymmetric, we apply an arbitrary permutation
Q:

Q̂Âψ =
1√
N !

∑
P

(−1)P Q̂P̂ψ . (2.62)



98 2 Atoms and Ions

Since the permutations mathematically form a group, the set of all permu-
tations QP (Q fixed, P covering all permutations) again contains each per-
mutation exactly once. Furthermore (−1)P = (−1)Q(−1)QP , so that we can
rewrite (2.62) using P ′ = QP :

Q̂Âψ = (−1)Q 1√
N !

∑
P ′

(−1)P ′
P̂ ′ψ = (−1)QÂψ . (2.63)

In a similar way it can be shown that

ÂÂ =
√
N !Â , Â† = Â . (2.64)

This means that Â/√N ! has the properties of a projection operator.
A particularly important set of totally antisymmetric wave functions con-

sists of those constructed by antisymmetrizing simple product wave functions:

Ψ0 =
N∏

i=1

ψi(xi) . (2.65)

Such product wave functions appear e.g. as eigenfunctions of an N -body
Hamiltonian which can be written as a sum of one-body Hamiltonians (such
as the Hamiltonian (2.53) if we were to leave out the two-body interac-
tion Ŵ (i, j)). Applying the antisymmetrizer to (2.65) produces the antisym-
metrized product wave function

ÂΨ0 =
1√
N !

∑
P

(−1)P
N∏

i=1

ψi(xP (i)) ≡ 1√
N !

det(ψi(xj)) . (2.66)

We write det(ψi(xj)), because the sum over the products in (2.66) can formally
be written as the determinant of the N ×N matrix (ψi(xj)):

det(ψi(xj)) =

∣∣∣∣∣∣∣
ψ1(x1) ψ1(x2) · · · ψ1(xN )

...
...

...
ψN (x1) ψN (x2) · · · ψN (xN )

∣∣∣∣∣∣∣ . (2.67)

Antisymmetrized product wave functions are called Slater determinants.
The determinant notation shows that an antisymmetrized product wave

function vanishes identically when two or more single-particle wave functions
ψi are the same. This leads to an alternative formulation of the Pauli prin-
ciple, applicable to Slater determinants: no two fermions may occupy the
same single-particle state. A more general and at the same time more pre-
cise formulation is: a Slater determinant vanishes identically if and only if the
single-particle states from which it is built are linearly dependent.

Like an ordinary determinant, a Slater determinant is invariant under el-
ementary replacements of rows:

ψi → ψ′
i = ψi +

∑
j �=i

cjψj . (2.68)
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More generally: if we replace the (linearly independent) set of single-particle
wave functions ψi by any set of linearly independent linear combinations ψ′

i,
then det(ψ′

i(xj)) differs from det(ψi(xj)) by at most a constant factor. A
Slater determinant is thus characterized not so much by a particular set of
single-particle states, but rather by the subspace spanned in the single-particle
Hilbert space by these single-particle states.

When many-body wave functions are Slater determinants, the many-body
scalar products such as (1.1) can be expressed in terms of scaler products of the
single-particle wave functions involved. The overlap of two Slater determinants
Ψ = (N !)−1/2 det(ψi(xj)) and Φ = (N !)−1/2 det(φi(xj)) is:

〈Φ|Ψ〉 = det(〈φi|ψj〉) , (2.69)

and the right-hand side is now an ordinary determinant of a matrix of num-
bers, viz. the numbers

Aij = 〈φi|ψj〉 . (2.70)

For a one-body operator, more precisely, for a many-body operator which can
be written as a sum of single-particle operators V̂ , we have

〈Φ|
N∑

i=1

V̂ (i)|Ψ〉 = 〈Φ|Ψ〉
N∑

i,j=1

〈φi|V̂ |ψj〉Bji , (2.71)

where the matrix B is the inverse of the matrix A defined by (2.70). For an
operator which can be written as a sum of two-particle operators we have

〈Φ|
∑
i<j

Ŵ (i, j)|Ψ〉

=
1
2
〈Φ|Ψ〉

N∑
i,j,k,l=1

〈φiφj |Ŵ |ψkψl〉(BkiBlj −BkjBli) . (2.72)

The formulae (2.71), (2.72) are valid for any (not necessarily orthonormal)
set of single-particle wave functions as long as detA �= 0. Simpler formulae
apply when Φ and Ψ are built from the same set of orthonormal single-particle
states. Then 〈Φ|Ψ〉 is only non-vanishing if the same single-particle states are
occupied in Φ and Ψ . Furthermore, 〈Ψ |Ψ〉 = 1. The factor 1/

√
N ! in (2.66)

is just chosen such that a Slater determinant built from orthonormal single-
particle states is normalized to unity.

For orthonormal single-particle states and Φ = Ψ , the formula (2.71) is
simplified to

〈Ψ |
N∑

i=1

V̂ (i)|Ψ〉 =
N∑

i=1

〈ψi|V̂ |ψi〉 . (2.73)

There is also a non-vanishing matrix element 〈Φ|∑N
i=1 V̂ (i)|Ψ〉 when at most

one of the single-particle states occupied in Ψ (ψh, say) is replaced in Φ by
another single-particle state (ψp, say) which is unoccupied in Ψ . Such a Slater
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determinant Φ is called a one-particle-one-hole excitation Ψph of Ψ . The matrix
element of a one-body operator between Ψph and Ψ is:

〈Ψph|
N∑

i=1

V̂ (i)|Ψ〉 = 〈ψp|V̂ |ψh〉 . (2.74)

(Formula (2.71) cannot be applied to this case, because 〈Ψph|Ψ〉 = 0.)
For orthonormal single-particle states and Φ = Ψ , the formula (2.72) for

two-body operators is simplified to

〈Ψ |
∑
i<j

Ŵ (i, j)|Ψ〉 =
1
2

N∑
i,j=1

(
〈ψiψj |Ŵ |ψiψj〉 − 〈ψiψj |Ŵ |ψjψi〉

)
. (2.75)

The matrix element of a two-body operator between Ψ and a one-particle-
one-hole excitation Ψph is:

〈Ψph|
∑
i<j

Ŵ (i, j)|Ψ〉 =
N∑

i=1

(
〈ψiψp|Ŵ |ψiψh〉 − 〈ψiψp|Ŵ |ψhψi〉

)
. (2.76)

If the bra is a two-particle-two-hole excitation Ψp1p2h1h2 of Ψ , i.e. φh1 = ψp1 ,
φh2 = ψp2 and φi = ψi for all other ψi, then there is also a non-vanishing
matrix element

〈Ψp1p2h1h2 |
∑
i<j

Ŵ (i, j)|Ψ〉

= 〈ψp1ψp2 |Ŵ |ψh1ψh2〉 − 〈ψp1ψp2 |Ŵ |ψh2ψh1〉 . (2.77)

2.2.3 The Shell Structure of Atoms

If the Hamiltonian (2.53) contained only the one-body interaction and there
were no two-body interactions, then it would describe independent motion of
the N electrons. The Hamiltonian would be a sum of N single-particle Hamil-
tonians of the form (2.13) whose eigenfunctions are simply the eigenfunctions
of the hydrogenic ion. Each product of N such single-particle eigenfunctions
would be an eigenfunction of the N -particle Hamiltonian, and so would each
Slater determinant made by antisymmetrizing such a product (because Ĥ
commutes with all permutations and hence also with the antisymmetrizer
(2.61)). The energy eigenvalue of such a Slater determinant would simply be
the sum of the single-particle energies of the occupied states. The energeti-
cally lowest N single-particle states would make up the ground state (Pauli
principle), and the excited states would be one-particle-one-hole, two-particle-
two-hole, etc. excitations of the ground state Slater determinant.

This simple picture is disturbed by the two-body interaction
∑
Ŵ (i, j).

It is not small and contributes significantly to the total energy of the atom
or ion. However, a large part of the two-body interaction can be accounted
for by a mean single-particle potential, often called mean field, which formally
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Fig. 2.2. Schematic illus-
tration of the mean single-
particle potential V (r) (solid
line) in the Na atom (Z =
N = 11)

retains the independence of the electrons. A consistent derivation of the mean
single-particle potential is given in Sect. 2.3.1. Qualitatively, the electrostatic
repulsion of one given electron by all other electrons is described by an average
screening potential which modifies the single-particle potential (electrostatic
attraction by the nucleus) acting on that electron. Those parts of the two-
body interaction which are not included in the mean single-particle potential
constitute a residual two-body interaction and this is much less than the full
two-body interaction. Take e.g. an electron in an N -electron atom or ion
whose nucleus has charge number Z. At large distances from the nucleus (and
the other electrons) the electron feels a screened Coulomb potential −(Z −
N + 1)e2/r. At small separations r < aZ , however, it feels the full unscreened
attraction of the naked nucleus: −Ze2/r. In the transition region from small to
large separations the mean single-particle potential changes smoothly from the
unscreened potential to the screened potential as is illustrated schematically
for the case of a neutral sodium atom (Z = N = 11) in Fig. 2.2.

The single-particle eigenstates in such a mean single-particle potential are
no longer the eigenstates of a pure Coulomb potential, but they can still be
classified by the quantum numbers n, l, m. Since the mean single-particle po-
tential is always taken to be radially symmetric, the single-particle energies for
given angular momentum quantum number l are degenerate in the azimuthal
quantum number m. However, eigenstates with a given principal quantum
number n are no longer degenerate in l, because the potential is no longer a
pure Coulomb potential. A glance at Fig. 2.2 shows that states with low l are
most strongly influenced by the stronger attraction of the unscreened nucleus,
because their wave functions have the largest amplitudes at small separations
– see Fig. 1.4 and (1.78). As a result the levels with low l are shifted down-
wards considerably relative to the levels with higher l. A typical spectrum of
a single-particle Hamiltonian containing a mean single-particle potential as in
Fig. 2.2 is shown in Fig. 2.3. The downward shift of the l = 0 levels is so large
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Fig. 2.3. Typical spectrum of
single-particle energies in a single-
particle potential as in Fig. 2.2

that the energy of the 4s state already lies below the energy of the 3d state.
Larger gaps appear in the spectrum above the 1s, 2p, 3p, . . . levels.

The energy levels in Fig. 2.3 define subshells which accomodate a num-
ber of single-particle states according to their degeneracy, and each of these
single-particle states can be occupied by at most one electron. (We reserve
the term “shell” for all states belonging to one principal quantum number n.)
Considering that there are two possible spin states associated with each or-
bital wave function ψ(r), the total number of single-particle states in each nl
subshell is simply 2(2l+1). In s, p, d, f, . . . subshells there are 2, 6, 10, 14, . . .
etc. states.

We assume that the ground state wave functions of neutral atoms are built
by successively filling the subshells of single-particle states. The electrons in
the energetically lower closed (i.e. completely filled) subshells are compara-
tively tightly bound, and the least bound electrons are the outer electrons
in the last occupied subshell. In this picture, chemically similar elements,
which were grouped together in the periodic table long before the invention of
quantum mechanics, have the same number of outer electrons, and the last
partially occupied subshells within a group have the same angular momentum
quantum number l. The noble gases He, Ne, Ar, Kr, Xe, Rn are built wholly



2.2 Many-Electron Systems 103

of closed, i.e. fully occupied subshells and the last occupied subshell is that
of a single-particle level at the lower edge of one of the larger gaps in the
single-particle spectrum 1s, 2p, 3p, 4p, 5p, 6p.

The simple picture of the shell structure of atoms (in their ground states)
following from Figs. 2.2 and 2.3 is able to explain the positions assigned to the
elements in the periodic table according to their chemical properties. This is
a great success of the concept of independent electrons in well defined single-
particle states. Nevertheless, the exact eigenstates of the Hamiltonian (2.53)
are of course much more complicated. For a quantitative description of atoms
with more than one electron we need to consider correlations which go beyond
the independent single-particle picture.

2.2.4 Classification of Atomic Levels

In order to classify the eigenstates of the N -electron Hamiltonian it is rea-
sonable to look for constants of motion, i.e. for good quantum numbers. Let’s
assume for the time being that the effects of the spin-orbit coupling are neg-
ligible. Then the total orbital angular momentum L̂ and the total spin Ŝ,
which are made up of the single-particle orbital angular momenta L̂i and the
single-particle spins Ŝi of the electrons respectively,

L̂ =
N∑

i=1

L̂i , Ŝ =
N∑

i=1

Ŝi , (2.78)

are constants of motion, i.e. their components and their squares L̂
2

and Ŝ
2

commute with the Hamiltonian (2.53). The eigenvalues of L̂
2

and Ŝ
2

are
L(L+ 1)h̄2 and S(S + 1)h̄2 respectively, and to each pair of values of L and
S there are (2L + 1) × (2S + 1) degenerate eigenstates corresponding to the
different eigenvalues of L̂z and Ŝz.

It is customary to denote the total orbital angular momentum quantum
number L = 0, 1, 2, 3, . . . by the capital letters S, P, D, F, . . . (continue al-
phabetically), while the total spin quantum number S is noted by writing the
spin multiplicity 2S + 1 to the upper left of the letter denoting L: 3P means
S=1, L=1, 4D means S=3/2, L=2, etc. Since all electron spins are 1/2, the
total spin quantum number S is an integer and the spin multiplicity 2S + 1
odd for an even number N of electrons, while S is a half-integer and 2S + 1
even if N is odd.

In the presence of a small spin-orbit term VLS(ri)L̂i ·Ŝi in the one-body
interaction, the Hamiltonian (2.53) no longer commutes with the components
of the orbital angular momenta and the spins, but it commutes with the total
angular momentum of the electrons:

Ĵ = L̂ + Ŝ . (2.79)

We can treat the effects of the spin-orbit coupling approximately if we couple
the states classified by L and S to eigenstates of Ĵ

2
and Ĵz, similar to the
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one-electron case described in Sect. 1.7.3. The resulting states are now labelled
by a further quantum number J for the total angular momentum, and it is
written as a subscript to the letter denoting L, in analogy to the labelling of
one-electron levels. Example: 4D5/2 means S = 3/2, L = 2, J = 5/2. Accord-
ing to the triangle condition (1.336), each term 2S+1L splits into 2S+1 (in case
S ≤ L) or 2L+ 1 (in case L ≤ S) levels 2S+1LJ , J = |L−S|, |L−S|+ 1, . . . ,
L + S − 1, L + S, and each such level encompasses 2J + 1 eigenstates of Ĵz

which remain degenerate in the presence of the spin-orbit coupling. (This de-
generacy is lifted if we consider the effects of the hyperfine interaction with a
non-vanishing nuclear spin Î, because then only the total angular momentum
Î + Ĵ of atomic nucleus plus the orbiting electrons is a constant of motion.)

As long as the picture of independent particles is applicable, we can in ad-
dition label the atomic states by the principal and orbital angular momentum
quantum numbers n, l of the occupied single-particle states. The complete set
of n, l quantum numbers of the occupied single-particle states defines a con-
figuration. A configuration with, say, two occupied 1s single-particle states,
two occupied 2s states and three occupied 2p states is conventionally written
as (1s)2(2s)2(2p)3.

When constructing a many-body state out of single-particle states we must
of course respect the requirements of the Pauli principle. This is still compara-
tively easy for atoms and ions with two electrons (or with two outer electrons),
because the coupled spin states of two s = 1/2 particles have a well defined
symmetry with respect to permutation of the two particle labels. In this spe-
cial case of angular momentum coupling (j1 = 1/2, j2 = 1/2) let’s abbreviate
(1.332) to

|S,MS〉 =
∑

ms1 ,ms2

〈ms1 ,ms2 |S,MS〉|ms1 ,ms1〉 . (2.80)

In this notation the triplet of states coupled to S = 1 is simply

|1, 1〉 = |1/2, 1/2〉 ,
|1, 0〉 =

1√
2

(|1/2,−1/2〉 + |−1/2, 1/2〉) ,
|1,−1〉 = |−1/2,−1/2〉 , (2.81)

and the S = 0 (singlet) state is

|0, 0〉 =
1√
2

(|1/2,−1/2〉 − |−1/2, 1/2〉) . (2.82)

The three states of the triplet S = 1 are symmetric with respect to inter-
changing the two labels ms1 and ms2 , while the singlet state is antisymmet-
ric. Since the whole two-particle wave function ψ(r1,ms1 , r2,ms2) has to be
antisymmetric, its behaviour with respect to interchange of the two spatial
coordinates must be symmetric in the singlet state and antisymmetric in the
triplet states. Thus a helium configuration in which both electrons occupy
the (non-degenerate) 1s spatial state is only possible in the singlet spin state.
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Fig. 2.4. Energies of the
bound states of the helium
atom. The left half of the fig-
ure shows the singlet states of
para-helium and the right half
of the figure shows the triplet
states of ortho-helium

Figure 2.4 shows the energy levels of the bound states of helium, separated
according to S = 0 (para-helium) and S = 1 (ortho-helium). Provided they are
allowed by the Pauli principle, the configurations of ortho-helium lie energet-
ically lower than the corresponding configurations in para-helium. This can
be understood as an effect of the residual interaction involving a short-ranged
repulsion of the electrons. It is less effective in a wave function antisymmet-
ric with respect to interchange of spatial coordinates, which has to vanish
for |r1 − r2| = 0, than it is in a symmetric wave function, where it yields a
positive contribution to the total energy. (See Problem 2.3.)

When the spins of more than one electron from a given subshell are coupled
to total spin S, then the state with the largest value of S is energetically lowest,
because it feels the effects of the short-ranged electron-electron repulsion least
due to the symmetry properties of the spatial part of the wave function. This
is Hund’s first rule. For a given value of S the electrons can couple to different
values L of the total orbital angular momentum. Amongst these states, the
effect of the short-ranged repulsion is least in the states with the largest values
of L. Of all states with the same value of S, the state with the maximum value
of L is hence the energetically lowest. This is Hund’s second rule.

As an example Fig. 2.5 shows the lowest-lying states of the carbon atom
which has two electrons in the 2p subshell. The ground state triplet 3P and
the next two excited singlets 1D and 1S are based on the (1s)2 (2s)2 (2p)2

configuration in which the lowest single-particle states are occupied. The next
highest term is a quintuplet 5So corresponding to a (1s)2 (2s) (2p)3 configu-
ration in which the 2s subshell is occupied by only one electron, while the
2p subshell is occupied by three electrons. The small “o” at the upper right
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Fig. 2.5. The lowest energy levels in the carbon atom. The configuration labels
should in principle carry a further (1s)2 for the two occupied states in the n = 1
shell. Amongst the (2s)2 (2p)2 states the triplet term (S = 1) is lowest according to
Hund’s first rule. The Pauli principle forbids 3S and 3D terms, because they would
contain a spatial wave function symmetric in the particle labels in conjunction with
a spin wave function which is also symmetric in the particle labels. The L = 1
triplet is regular, i.e. the energy increases with increasing total angular momentum
quantum number J . The L = 2 term is the lower of the singlet states according to
Hund’s second rule. The first excited configuration shows up in the quintuplet term
of the 2s (2p)3 configuration. This configuration has odd parity

of the letter denoting L stands for odd parity and indicates that the whole
many-body wave function has odd parity with respect to the simultaneous re-
flection of all spatial coordinates at the origin. This notation was already used
for the P and the F states in helium in Fig. 2.4. The parity of a many-body
wave function is important, because it influences the selection rules for elec-
tromagnetic transitions. A configuration characterized by the single-particle
orbital angular momentum quantum numbers l1, . . . lN has odd parity if the
sum

∑N
i=1 li is odd (see (1.72)). Note that the parity of a many-electron state

is in general a good quantum number, and this is not bound to the validity
of the independent particle picture.

Figure 2.5 also shows the splitting of the ground state triplet into three 3PJ

levels, J = 0, 1, 2 due to the spin-orbit coupling. The 1D, 1S and 5So terms do
not split up, because either L or S (or both) are zero. The ground state triplet
is regular, meaning that the energies of the levels increase with increasing
values of J . Multiplets with the opposite behaviour are called inverted. It is
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empirically established, that ground state terms of atoms whose outer subshell
is at most half filled form regular multiplets, while the ground state multiplets
are inverted in atoms whose outer subshell is more than half filled.

The above classification of atomic states is based on the assumption that
orbital and spin angular momenta are at least approximately constants of
motion. This LS coupling, which is also called Russell-Saunders coupling, loses
its justification, when the influence of the spin-orbit coupling in the one-body
interaction increases as is the case for the heavier atoms. It may then be more
appropriate to assume that the single-particle total angular momenta of the
electrons

Ĵ i = L̂i + Ŝi , (2.83)

are approximate constants of motion, and to couple these to the total angular
momentum of all the electrons. For two electrons,

Ĵ = Ĵ1 + Ĵ2 , (2.84)

this can be done in a straightforward way (compare Sect. 1.7.1) and leads to
the jj coupling scheme.

A comprehensive compilation of the known levels of atoms and ions from
hydrogen to manganese can be found in [BS75, BS78, BS81, BS82]. A detailed
and comprehensive discussion of the levels of atoms with one or two electrons
is contained in the classic book by Bethe und Salpeter [BS77]. For a thorough
discussion of the structure of low-lying states see also Atomic Structure by
Condon and Odabasi [CO80].

2.3 The N -Electron Problem

The many-body problem poses a major challenge in all areas of physics. It
is not soluble in general, but various approximations have been successful
in different fields. This section contains a brief summary of some techniques
which have been successful and/or widely used in the many-electron problem
of atomic physics.

2.3.1 The Hartree-Fock Method

The central idea of the Hartree-Fock method is to retain the simplicity of the
independent single-particle picture, and to approximate an exact solution of
the N -electron problem as well as possible within this framework. This means
that we describe the system by the “best” Slater determinant. In the spirit of
the Ritz variational method (Sect. 1.6.2) we search for a Slater determinant Ψ
for which the energy expectation value E[Ψ ] remains stationary under small
variations Ψ → Ψ + δΨ of the Slater determinant: δE[Ψ ] = 0.
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Let Ψ = (1/
√
N !) det(ψi(xj)) be a Slater determinant of orthonormalized

single-particle states ψi. When varying Ψ we must take care that the var-
ied wave function is again a Slater determinant. Appropriate variations are
achieved by modifying the single-particle states occupied in Ψ through small
admixtures of single-particle states ψpi

which are not occupied in Ψ :

ψi → ψ′
i = ψi + λiψpi

. (2.85)

Expanding the Slater determinant Ψ ′ = (1/
√
N !) det(ψ′

i(xj)) around the orig-
inal Slater determinant Ψ shows that the leading terms in δΨ = Ψ ′ − Ψ are
those in which only one single-particle state is modified. These terms yield
contributions of the form λiΨpii, where Ψpii is a one-particle-one-hole excita-
tion of Ψ in which the single-particle state ψi is replaced by the single-particle
state ψpi

(which is unoccupied in Ψ). Contributions in which more than one
single-particle state are modified correspond to two-particle-two-hole, three-
particle-three-hole excitations etc. They, however, carry two, three or more
factors λi and are hence small to higher order than the contributions of the
one-particle-one-hole excitations.

The infinitesimal variations of a Slater determinant which ensure that
the varied wave function is again a Slater determinant are thus one-particle-
one-hole excitations. From (1.270), (1.271) it immediately follows, that the
condition δE[Ψ ] = 0 is equivalent to the condition that all matrix elements of
Ĥ between Ψ and one-particle-one-hole excitations vanish:

δE[Ψ ] = 0 ⇐⇒ 〈Ψph|Ĥ|Ψ〉 = 0 for all Ψph . (2.86)

This is Brillouin’s Theorem.
Brillouin’s Theorem leads directly to a set of equations for the “best”

Slater determinant. With the Hamiltonian (2.53) as a sum of one-body and
two-body operators and the formulae (2.74), (2.76) for its matrix elements
with one-particle-one-hole excitations, we have

〈ψp| p̂
2

2µ
+ V̂ |ψh〉 +

N∑
i=1

(
〈ψiψp|Ŵ |ψiψh〉 − 〈ψiψp|Ŵ |ψhψi〉

)
= 0 . (2.87)

The whole left-hand side of (2.87) can be interpreted as the matrix element
of an effective one-body Hamiltonian ĥΨ between the single-particle state ψp,
which is unoccupied in Ψ , and the single-particle state ψh, which is occupied
in Ψ . The condition δE[Ψ ] = 0 is fullfilled if the one-body operator ĥΨ , which
itself depends on Ψ , has no non-vanishing matrix elements between single-
particle states which are occupied in Ψ and single-particle states which are un-
occupied in Ψ . A sufficient (but not necessary) condition is that the one-body
operator ĥΨ be diagonal in the single-particle states ψ1, . . . , ψN , . . . , ψp, . . . :

〈ψα| p̂
2

2µ
+ V̂ |ψβ〉 +

N∑
i=1

(
〈ψiψα|Ŵ |ψiψβ〉 − 〈ψiψα|Ŵ |ψβψi〉

)
= 〈ψα|ĥΨ |ψβ〉 = εαδα,β . (2.88)
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Now ψα and ψβ are any occupied or unoccupied single-particle states, but
the sum in (2.88) runs only over the single-particle states occupied in Ψ ,
ψ1, . . . , ψN . These are the Hartree-Fock equations.

The one-body Hamiltonian ĥΨ contains various contributions:

ĥΨ =
p̂2

2µ
+ V̂ + Ŵd − Ŵex . (2.89)

The kinetic energy p̂2/(2µ) and the one-body potential V̂ come from the one-
body part of the N -electron Hamiltonian Ĥ and do not depend on the Slater
determinant Ψ . The first terms in the bracket following the summation sign
in (2.88) constitute the direct potential Ŵd, which is defined by its one-body
matrix elements

〈ψα|Ŵd|ψβ〉 =
N∑

i=1

〈ψiψα|Ŵ |ψiψβ〉 . (2.90)

For the two-body interaction (2.55) without spin-dependent corrections, Ŵd

is simply a local potential depending on the spatial coordinate r:

Ŵd ≡Wd(r) =
N∑

i=1

〈ψi| e2

|r − r′| |ψi〉

=
∫
dr′

N∑
i=1

∑
ms

|ψi(r′,ms)|2 e2

|r − r′| . (2.91)

The integrand in (2.91) contains the electrostatic two-body interaction
e2/|r − r′| multiplied by the single-particle density � at the position r′:

�(r′) def= 〈Ψ |
N∑

i=1

δ(r′ − ri)|Ψ〉 =
N∑

i=1

∑
ms

|ψi(r′,ms)|2 . (2.92)

Thus Wd(r) is the electrostatic potential due to the N electrons of the Slater
determinant Ψ .

The second terms in the bracket following the summation sign in (2.88)
yield the exchange potential Ŵex. It is also a one-body operator defined by its
matrix elements,

〈ψα|Ŵex|ψβ〉 =
N∑

i=1

〈ψiψα|Ŵ |ψβψi〉 , (2.93)

but it has the much more complicated form of a nonlocal potential. The action
of such a non-local potential on a single-particle wave function ψ(r,ms) is
determined by an integral kernel Wex(r,ms; r′,m′

s):

Ŵexψ(r,ms) =
∫
dr′∑

m′
s

Wex(r,ms; r′,m′
s)ψ(r′,m′

s) . (2.94)
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Writing out the two-body matrix elements on the right-hand side of (2.93)
shows that the integral kernel in (2.94) corresponds to

Wex(r,ms; r′,m′
s) =

N∑
i=1

ψ∗
i (r′,m′

s)Ŵψi(r,ms) . (2.95)

If we neglect momentum-dependent corrections and take Ŵ simply to be
the electrostatic repulsion (2.55), then

Wex(r,ms, r
′,m′

s) =
N∑

i=1

ψi(r,ms)
e2

|r − r′|ψ
∗
i (r′,m′

s)

= δms,m′
s

N∑
i=1

δms,msi
ψi(r)

e2

|r − r′|ψ
∗
i (r′) . (2.96)

On the right-hand side of (2.96) we assumed that the single-particle states ψi

each correspond to a well defined spin state, ψi(r,ms) = ψi(r)χmsi
(compare

(1.341)).
When we calculate the expectation value of Ŵd − Ŵex for a given single-

particle state ψj occupied in Ψ , the two contributions corresponding to i = j
cancel:

〈ψj |Ŵd − Ŵex|ψj〉 =
∑
i �=j

(
〈ψiψj |Ŵ |ψiψj〉 − 〈ψiψj |Ŵ |ψjψi〉

)
. (2.97)

Thus a part of the exchange potential just cancels the unphysical self-energies
〈ψiψi|Ŵ |ψiψi〉 in the contribution of the direct potential.

The Hartree-Fock equations (2.88) replace the N -electron problem by a
one-body problem characterized by the one-body Hamiltonian ĥΨ (2.89). But
ĥΨ still depends on the Slater determinant Ψ , which is to be determined by
solving the Hartree-Fock equations. Thus the Hartree-Fock method involves a
problem of self-consistency, which is usually solved iteratively. We start with
a Slater determinant Ψ0, diagonalize the one-body Hamiltonian ĥΨ0 defined
by the single-particle states occupied in Ψ0, obtain a new set of single-particle
states and a new Slater determinant Ψ1, diagonalize ĥΨ1 , obtain Ψ2, etc.,
until the procedure reaches convergence. A widespread simplification of this
unrestricted Hartree-Fock procedure is the restricted Hartree-Fock procedure,
in which we assume that the single-particle wave functions in each iteration
step are eigenfunctions of the single-particle orbital angular momentum,

ψi(r,ms) =
φ

(l)
i (r)
r

Yl,m(θ, φ)χmsi
, (2.98)

and that all radial wave functions in a subshell are identical. The Hartree-Fock
equations can then be reduced to a set of radial equations for the determina-
tion of the radial wave functions φ(l)

i in each occupied subshell.
In the Hartree-Fock method, the variational method doesn’t lead to diag-

onalization of a reduced Hamiltonian in a subspace of Hilbert space (compare
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Sect. 1.6.2). The reason for this is that the set of variational wave functions,
i.e. of Slater determinants, is not a subspace which is closed with respect to
linear superposition; a sum of Slater determinants need not itself be a Slater
determinant. Consequently, two different Slater determinants which solve the
Hartree-Fock equations (for the same values of the good quantum numbers of
the system) need not be diagonal in Ĥ. Only for the ground state (of a given
symmetry) do we know that the Hartree-Fock energy E[ΨHF] = 〈ΨHF|Ĥ|ΨHF〉
is an upper bound for the exact energy eigenvalue.

The Hartree-Fock energy E[ΨHF] is not identical to the sum of single-
particle energies εi of the occupied states, as obtained by solving the Hartree-
Fock equations (2.88). This is because the summation of the single-particle
energies counts the contribution of the two-body interaction between electron
pairs twice. With (2.73) and (2.75) we have

〈ΨHF|Ĥ|ΨHF〉 =
N∑

i=1

〈ψi| p̂
2

2µ
+V̂ |ψi〉

+
1
2

N∑
i,j=1

(
〈ψiψj |Ŵ |ψiψj〉−〈ψiψj |Ŵ |ψjψi〉

)
(2.99)

=
N∑

i=1

εi − 1
2

N∑
i,j=1

(
〈ψiψj |Ŵ |ψiψj〉 − 〈ψiψj |Ŵ |ψjψi〉

)
.

In general the final Hartree-Fock wave function is not a single Slater de-
terminant, but a sum of several Slater determinants each containing the same
occupied radial single-particle states and whose spin and angular parts are
coupled to good quantum numbers of the total angular momentum and per-
haps also of the total orbital angular momentum and the total spin (compare
Sect. 2.2.4).

For lighter atoms and ions, the effects of relativistic corrections to the
non-relativistic Schrödinger equation are small and can be treated in first-
order perturbation theory starting from the Hartree-Fock wave function. For
heavier atoms and ions the effective fine-structure constant Zαfs ≈ Z/137 is
no longer such a small number and, as Z becomes larger, perturbation theory
becomes increasingly inadequate for describing relativistic corrections. One
way of improving the description of relativistic effects is to replace the kinetic
energy p̂2/(2µ) in the one-body Hamiltonian (2.89) by Dirac’s Hamiltonian
(2.17) for a free particle:

ĥD
Ψ = cα·p̂ + βµc2 + V̂ + Ŵd − Ŵex . (2.100)

In this way, relativistic corrections to the one-electron problem are included
consistently (cf. Sect. 2.1.4). The relativistic treatment of the two-body inter-
action is much more difficult, because the picture of a heavy resting mass as
origin of the static potential only holds for the attraction of the electrons by
the atomic nucleus (compare Sect. 2.1.3) and not for the interaction between
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two electrons. In practice the potentials Ŵd and Ŵex are initially defined via
the static interaction (2.55). Retardation effects due to the fact that all in-
teractions can propagate no faster than the speed of light are subsequently
treated with perturbative methods. The Dirac-Fock method consists in look-
ing for self-consistent eigenfunctions of the one-body Hamiltonian (2.100). For
radially symmetric potentials this means self-consistently solving the radial
Dirac equation instead of the radial Schrödinger equation.

2.3.2 Correlations and Configuration Interaction

The Hartree-Fock method (or the Dirac-Fock method) yields the best N -
electron wave function compatible with the picture of N independent elec-
trons. In order to account for correlations, which go beyond this picture, we
have to admit variational wave functions which are more general than sin-
gle Slater determinants. An obvious ansatz for a correlated N -electron wave
function ψ is a sum of NS Slater determinants Ψν , which may include various
different N -electron configurations (with the same values of the good quantum
numbers):

ψ =
NS∑
ν=1

cνΨν . (2.101)

Effects of configuration interaction are included if we diagonalize the N -
electron Hamiltonian in the subspace spanned by the Ψν in Hilbert space.
This corresponds to a variational calculation in which the mixing coefficients
cν in (2.101) are the variational parameters (compare Sect. 1.6.2). In the
multi-configurational Hartree-Fock method (MCHF) the energy expectation
value E[ψ] is minimized with respect to variations both of the coefficients cν
in (2.101) and of the single-particle states in the Slater determinants Ψν . If the
sum in (2.101) includes enough terms, this procedure can in principle approx-
imate the exact solution to any accuracy, because every totally antisymmetric
N -electron wave function can be written as a sum of Slater determinants. In
practice of course, the MCHF problem is most readily solved if not too many
terms are included in the sum in (2.101).

Configuration interaction calculations can also be performed with the
Slater determinants of the Dirac-Fock method. The corresponding generaliza-
tion of the MCHF method is called multi-configurational Dirac-Fock method
(MCDF). [IL05]

If the number of configurations included in the ansatz (2.101) is suffi-
ciently large, then a simple diagonalization of the Hamiltonian in the sub-
space spanned by the Ψν can yield a good approximation of the exact eigen-
states, even without explicit consideration of self-consistency as in the MCHF
method. If we start from a complete basis of single-particle states, then the
exact eigenstates can in principle be approximated within arbitrary accu-
racy in this way. Such large scale diagonalizations are quite generally called
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“configuration interaction calculations” (CI). Usually various many-electron
configurations are constructed from single-particle wave functions which are
chosen so that the corresponding one-body and two-body matrix elements are
not too difficult to calculate. The N -electron energies and eigenfunctions are
obtained by diagonalizing the Hamiltonian matrix which now may have quite
large dimensions – typically up to many thousands.

A frequent choice for the spatial part of the single-particle wave functions
is based on expansions in Slater-type orbitals: φl(r) ∝ rm exp (−ζr). The co-
efficients in such expansions as well as the coefficients ζ in the exponents
are treated as variational parameters. Another basis of single-particle states,
which are characterized by their similarity to the eigenfunctions (1.138) of
the pure Coulomb potential, is the Sturm-Liouville basis. The single-particle
states in this basis have the same form as in (1.138), but the number n in the
argument of the Laguerre polynomial and the exponential function is replaced
by a constant integer n0 rather than varying from shell to shell. In contrast
to the pure Coulomb bound states (1.138), the Sturm-Liouville states form
a complete set, because of the completeness of the Laguerre polynomials.
Furthermore, the single-particle states with n = n0 are identical to the eigen-
states of the pure Coulomb potential with this principle quantum number. On
the other hand, in a Sturm-Liouville basis single-particle states with different
principle quantum numbers are no longer orthogonal.

As simplest example of a many-electron system Table 2.1 summarizes the
ground state energies of the two-electron helium iso-electronic sequence from
H− to Ne8+ as they are obtained in various approximations, together with the
experimental values Eexp [BS75]. The first column contains the Hartree-Fock
energies2 [Fro77, Fro87, SK88] and the second column contains the results
of an MCHF calculation [SK88]. The third column contains the “exact” re-
sults Enr within non-relativistic quantum mechanics, as obtained by Pekeris
[Pek58] in a very clever CI calculation as early as 1958 – a time when com-
puter capacity was far less abundant than today. The difference between the
exact ground state energy and the Hartree-Fock energy (fourth column) is
usually called the correlation energy; it is a measure of the deviation of the
exact (correlated) two-body wave function from the Hartree-Fock configura-
tion. The absolute magnitude of the correlation energy changes little within
the iso-electronic sequence, because the electron-electron interaction doesn’t
depend on the charge number Z. On the other hand, the one-body contribu-
tion to the total binding energy increases rapidly with increasing Z, and so the
2 The fact that the energy of the H− ion in the first column of Table 2.1 lies above

the energy −0.5 of the H atom shows a weakness of the restricted Hartree-Fock
method, which was used here and in which both electrons were restricted to having
the same spatial part of the single-particle wave function. In an unrestricted
Hartree-Fock calculation the Hartree-Fock energy can come arbitrarily close to
the value −0.5. To see this construct a two-electron Slater determinant in which
one occupied single-particle state is the ground state of atomic hydrogen and the
other is a very distant almost plane wave with (almost) vanishing wave number.
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Table 2.1. Ground state energies (in atomic units) for the helium iso-electronic
sequence

EHF EMCHF Enr Enr − EHF EDF − EHF Eexp

H− −0.487927 −0.527510 −0.527751 −0.039824 <0.00001 −0.52776

He −2.861680 −2.903033 −2.903724 −0.042044 −0.00013 −2.90378
Li+ −7.236416 −7.279019 −7.279913 −0.043497 −0.00079 −7.28041

Be++ −13.611300 −13.654560 −13.655566 −0.044266 −0.00270 −13.65744
B3+ −21.986235 −22.029896 −22.030972 −0.044737 −0.00692 −22.03603
C4+ −32.361194 −32.405123 −32.406247 −0.045053 −0.01480 −32.41733

N5+ −44.736163 −44.780287 −44.781445 −0.045282 −0.02804 −44.80351
O6+ −59.111141 −59.155411 −59.156595 −0.045454 −0.04865 −59.19580
F7+ −75.486124 −75.530508 −75.531712 −0.045588 −0.07898 −75.59658

Ne8+ −93.861111 −93.905586 −93.906807 −0.045696 −0.12169 −94.00835

relative importance of the correlations decreases with increasing charge num-
ber in the iso-electronic sequence. An estimate of the magnitude of relativistic
corrections can be derived from the fifth column which lists the differences
between the energies obtained in the Dirac-Fock and Hartree-Fock methods.
These differences are of the same order of magnitude as the differences be-
tween the exact non-relativistic results (column 3) and the experimental data
(column 6). At this level of accuracy we must however also consider the effects
of radiative corrections which follow from a more sophisticated description of
the atoms and ions in the framework of quantum electrodynamics. For preci-
sion calculations of the various corrections in the two-electron system see e.g.
[KH86, Dra88, Dra01].

The art of solving the Hartree-Fock equations has been driven to a high
degree of perfection in the last decades [Fro77, Fro87, Fro94]. The same is
true for high-dimensional CI calculations for the determination of energies and
wave functions of low-lying states [Sch77, Fro94]. A thorough description of
the details of such calculations for the structure of atomic many-body systems
can be found in the book by Lindgren und Morrison [LM85]. (See also [CO80].)

In contrast to the substantial and comprehensive body of knowledge which
has accumulated during many years of successful investigations of the elec-
tronic structure of low-lying states, our understanding of highly excited atomic
states is still very incomplete. Only in the situation that just one electron is
highly excited with the other electrons forming a low-lying state of the atomic
(or ionic) “core”, can we make far reaching and general statements concerning
the structure of atomic spectra and wave functions. This case, which largely
corresponds to a one-electron problem, is treated in detail in Chapter 3. The
systematic understanding of the spectrum of an atom or ion already becomes
a very difficult problem if two electrons are highly excited. For a detailed de-
scription of the problem of two or more highly excited electrons, see [Fan83] or
Part D of the book by Fano and Rau [FR86]. The complications involved can
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already be appreciated by studying high doubly-excited states in the helium
atom, see Sect. 5.3.5 (c) in Chap. 5.

2.3.3 The Thomas−Fermi Model

One of the simplest models of an N -electron atom or ion is the Thomas-Fermi
model, which was developed eighty years ago. The model is based on the single-
particle density of a degenerate free-electron gas, in which all single-particle
states up to the Fermi energy,

EF =
h̄2

2µ
k2
F , (2.102)

are occupied and all single-particle states with higher energies are unoccupied.
In 6N -dimensional phase space the occupied single-particle states fill a volume
which is the product of the spatial volume Vs and the volume 4π

3 (h̄kF)3 of the
Fermi sphere in momentum space. A volume of Vs

4π
3 (h̄kF)3 is thus filled in

phase space, and each cell of size h3 = (2πh̄)3 can accomodate two single-
particle states – one with spin up and one with spin down. The number N of
occupied one-electron states is thus (see also Problem 2.4)

N =
2

(2πh̄)3
Vs

4π
3

(h̄kF)3 = k3
F

Vs

3π2
. (2.103)

This gives us a relation between the density � = N/Vs and the Fermi wave
number kF:

kF = (3π2�)1/3 . (2.104)

In the Thomas-Fermi model we describe an atom by a radially symmetric
single-particle potential V (r) for the electrons, and we let the Fermi momen-
tum h̄kF depend on the radial distance r, just like the semiclassical momentum
in the WKB approximation (1.286) (see Fig. 2.6):

E0 =
h̄2

2µ
k2
F(r) + V (r) , (2.105)

where E0 ≤ 0 is the total energy of the least bound electron. In this picture
the kinetic energy of the least bound electron is

T (r) = E0 − V (r) =
h̄2

2µ
k2
F(r) , (2.106)

and it depends on the spatial coordinate r, in analogy to the semiclassical
approximation (1.286). The kinetic energy (2.106) of the least bound electron
vanishes at the outer turning point r0 which defines the “edge” of the atom.

We can obtain a differential equation for the single-particle potential V (r),
or for T (r), by relating the electrostatic potential −V/e to the sources of
charge −e� (outside of the atomic nucleus at r = 0) via the Poisson equation:

∆V = −∆T = −4πe2� . (2.107)
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Fig. 2.6. Schematic repre-
sentation of an atom or ion
in the Thomas-Fermi model.
All single-particle states in the
single-particle potential V (r)
are occupied up to the energie
E0. Locally the system resem-
bles a degenerate free-electron
gas in which the states are oc-
cupied up to the Fermi en-
ergy EF = (h̄2/2µ)k2

F = E0 −
V (r) = T (r). The local kinetic
energy T (r) of the least bound
electron vanishes at the outer
turning point r0

We can express the density � in terms of kF via (2.104) and in terms of T via
(2.106),

� =
1

3π2

(
2µ
h̄2 T

)3/2

, (2.108)

and so we obtain the following differential equation for the function T (r)
(compare (1.70)):(

d2

dr2
+

2
r

d
dr

)
T =

1
r

d2

dr2
(rT ) =

4e2

3π

(
2µ
h̄2 T

)3/2

. (2.109)

This equation assumes a universal form when we refer the local kinetic energy
of the least bound electron T (r) to the potential Coulomb energy −Ze2/r
due to the atomic nucleus and introduce the dimensionless Thomas-Fermi
function

χ =
rT

Ze2
. (2.110)

Equation (2.109) thus becomes the Thomas-Fermi equation,

d2χ

dx2
=
χ3/2

√
x
, (2.111)

where x is a dimensionsless length:

x =
r

b
, b = aZ− 1

3

(
9π2

128

)1/3

; (2.112)

a = h̄2/(µe2) is the Bohr radius. The outer turning point x0 = r0/b is the
first zero of χ(x); χ vanishes identically beyond x0.

The boundary condition for the Thomas-Fermi function at x = 0 follows
from the fact that the potential V (r) in (2.106) is dominated by the attractive
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Coulomb potential −Ze2/r near the atomic nucleus r = 0. From (2.110) we
get the boundary condition for χ:

χ(0) = 1 . (2.113)

The behaviour of χ(x) for small x is in fact [Eng88]:

χ(x) x→0= 1 +Bx+
4
3
x3/2 +O

(
x5/2

)
. (2.114)

Since the Thomas-Fermi function χ is never zero between x = 0 and the outer
turning point x0 = r0/b, its second derivative (2.111) never vanishes and its
first derivative cannot change sign in this interval. It follows that χ(x) is a
monotonically decreasing function falling from unity at x = 0 to zero at the
outer turning point x0. The gradient at x = 0 is given by the (negative)
constant B in (2.114).

The outer boundary condition for the Thomas-Fermi function follows from
the consideration that the integral of the single-particle density from the origin
to the outer turning point must yield the total number N of electrons:

4π
∫ r0

0

�(r)r2dr = N . (2.115)

With (2.108), (2.110) and (2.112) this can be expressed in the dimensionless
quantities:

Z

∫ x0

0

[χ(x)]3/2
√
xdx = N . (2.116)

From the differential equation (2.111) we can replace χ3/2 by χ′′
√
x and for-

mally integrate (2.116):

N = Z
∫ x0

0

xχ′′dx = Z [xχ′ − χ]x0
0 . (2.117)

With χ(0) = 1 and χ(x0) = 0, (2.117) becomes

x0χ
′(x0) =

N − Z
Z

. (2.118)

Since χ(x) is a monotonically decreasing function, the right-hand side of
(2.118) cannot be positive. This means that N cannot be larger than the
charge number Z of the nucleus. For N = Z corresponding to a neutral atom,
the outer turning point x0 lies at infinity; the energy E0 in (2.105), (2.106)
vanishes and the single-particle potential is simply (cf. (2.106), (2.110))

V (r) = −Ze
2

r
χ0

(r
b

)
. (2.119)

All neutral atoms are described in the Thomas-Fermi model by a universal
Thomas-Fermi function χ0 which is shown as the solid line in Fig. 2.7. It is the
(unique) solution of the (2.111) with the boundary conditions that χ(0) = 1
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Fig. 2.7. Solutions of the
Thomas-Fermi equation
(2.111). The solid line shows
the case of a neutral atom
N = Z, the dashed line
shows an example of a
positively charged ion with
N ≈ Z/2

and that the first zero of χ lies at infinity. The gradient at x = 0 in this case
is B = −1.588 (see e.g. [Eng88], p. 65).

Solutions of (2.111) which fall off faster than χ0 at x = 0 cut the x-axis
at finite values of x and with finite (negative) gradient. For these solutions
the right-hand side of (2.118) is a finite negative number which corresponds
to a positively charged ion, N < Z. For example: The solution χ(x) starting
with a gradient B = −1.608 at x = 0 already cuts the x-axis at x ≈ 2.9 and
the right-hand side is approximately −1/2. This case corresponds to an ion
with half as many electrons as the associated neutral atom and is shown as
the dashed line in Fig. 2.7. Solutions of (2.111) which fall off more slowly than
χ0 at x = 0 never reach the x-axis, not even at infinity, and are not suited
for the description of isolated atoms or ions in the Thomas-Fermi model. The
Thomas-Fermi model cannot describe negative ions.

Although the Thomas-Fermi model represents a drastic approximation of
the N -electron problem, it is very useful for describing general trends in the
properties of atoms. Equation (2.112) for example, shows that the behaviour
of typical lengths as a function of charge number Z is given by proportionality
to Z−1/3. For a detailed description of Thomas-Fermi theory in particular and
of semiclassical theories in atomic physics in general see [Eng88].

2.3.4 Density Functional Methods

The one-body contribution EV to the potential energy of N electrons in an
external local potential V (r) is

EV = 〈Ψ |
N∑

i=1

V (ri)|Ψ〉 =
∫
V (r)�(r) dr . (2.120)

EV is a unique function, i.e. a functional, of the single-particle density �(r),
which is defined quite generally (and not only for Slater determinants) by
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the first equation (2.92). The relation (2.120) can be obtained by replacing
the V (ri) in the matrix element by

∫
δ(r − ri)V (r) dr and then pulling the

integral over the vector r out of the matrix element. If we are dealing with
Slater determinants, then the direct part Ŵd of the two-body interaction
(compare (2.91)) contributes a term

Ed =
e2

2

∫
dr1

∫
dr2

�(r1)�(r2)
|r1 − r2| (2.121)

to the total energy (compare (2.75)), and this term is also a functional of the
single-particle density �.

Investigating the quite general question whether the energy of an N -
electron system is a functional of the single-particle density leads to a very
strong statement concerning the ground state of an N -electron system. This
is the Hohenberg-Kohn Theorem [HK64, KS65] which states: “For a system
of N electrons in an external potential V (r) there is a universal functional
F [�] of the single-particle density �, which is independent of V and has the
property that the expression

E[�] =
∫
V (r)�(r) dr + F [�(r)] (2.122)

assumes a minimum for the density corresponding to the ground state of the
system, and the value at this minimum is the correct ground state energy (in
this external potential).”

The first term on the right-hand side of (2.122) is the one-body contri-
bution (2.120) to the potential energy. The universal functional F in (2.122)
contains a term of the form (2.121) for the direct two-body contribution to
the potential energy. Beyond this it contains a contribution Ekin of the ki-
netic energy as well as an “exchange and correlation” term, which collects all
those contributions to the potential energy not already contained in (2.120)
or (2.121). The nature of this term and of the kinetic energy contribution Ekin

is in general unknown.
In the simple Thomas-Fermi model where the atom is treated locally as a

degenerate electron gas (Sect. 2.3.3), it is easy to evaluate the kinetic energy
as a functional of the single-particle density: The sum of the kinetic energies
of all occupied single-particle states is equal to the integral of h̄2k2/(2µ) over
the occupied states in phase space:

TF =
2

(2πh̄)3
Vs 4π

∫ kF

0

h̄3k2dk
h̄2k2

2µ
=

h̄2

10π2µ
Vsk

5
F . (2.123)

The total kinetic energy Ekin is equal to the integral of the kinetic energy
density TF/Vs over the spatial volume of the Thomas-Fermi atom. Inserting
the expression (2.104) for kF yields Ekin as functional of � (in the framework
of Thomas-Fermi model):

(Ekin)TF =
h̄2

10π2µ
4π

∫ r0

0

[3π2�(r)]5/3r2dr . (2.124)
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Within the Thomas-Fermi model, the energy as functional of the single-
particle density is thus given by a term of the form (2.120) for the poten-
tial energy of the electrons in the external potential due to the electrostatic
attraction by the atomic nucleus, a term of the form (2.121) for the mutual
electrostatic repulsion of the electrons and the kinetic energy term (2.124).
The condition that this functional be stationary with respect to small vari-
ations of the single-particle density actually does lead to the Thomas-Fermi
equation (2.111) [Eng88].

Next to the N -body Schrödinger equation, the Hohenberg-Kohn Theorem
offers an alternative approach to the N -electron problem. Usually one starts
with a physically or pragmatically founded ansatz for the density functional
F [�(r)] in (2.122) and tries to minimize the energy E[�]. In recent years,
density functional theory has evolved into a sophisticated and powerful tool for
accurately calculating the properties of many-electron systems in physics and
chemistry [DG90]. In 1998 Walter Kohn shared the Nobel Prize in Chemistry
for the development of this theory.

2.4 Electromagnetic Transitions

The Hamiltonians (2.1) and (2.7) or (2.47) and (2.53) describe the atomic
degrees of freedom of a one- or many-electron atom (or ion) with and without
inclusion of the atomic nucleus respectively. Such an atomic Hamiltonian ĤA

possesses a spectrum of eigenvalues, and the associated eigenstates are solu-
tions of the corresponding stationary Schrödinger equation. The eigenstates
of ĤA are usually “seen” by observing electromagnetic radiation emitted or
absorbed during a transition between two eigenstates. The fact that such
transitions occur and that an atom doesn’t remain in an eigenstate of ĤA for-
ever, is due to the interaction between the atomic degrees of freedom and the
degrees of freedom of the electromagnetic field. A Hamiltonian Ĥ able to de-
scribe electromagnetic transitions must thus account not only for the atomic
degrees of freedom, but also for the degrees of freedom of the electromagnetic
field. An eigenstate of the atomic Hamiltonian ĤA is in general not an eigen-
state of the full Hamiltonian Ĥ; a system which is in an eigenstate of ĤA at
a given time will evolve as prescribed by the time evolution operator (1.40),
(1.41) containing the full Hamiltonian Ĥ, and may be in a different eigen-
state of ĤA at a later time. If we look at the interaction between atom and
electromagnetic field as a perturbation of the non-interacting Hamiltonian,
then this perturbation causes time dependent transitions between the unper-
turbed eigenstates, even if the perturbation itself is time independent. Such
transitions can be generally described in the framework of time-dependent
perturbation theory which is expounded in the following section.
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2.4.1 Transitions in General, “Golden Rule”

Consider a physical system which is described by the Hamiltonian

Ĥ = Ĥ0 + Ŵ , (2.125)

but which is in an eigenstate φi of the Hamiltonian Ĥ0 at time t = 0. This
Hamiltonian Ĥ0 is assumed to differ from the full Hamiltonian Ĥ by a “small
perturbation” Ŵ . Even if Ĥ0 isn’t the exact Hamiltonian, its (orthonormal-
ized) eigenstates φn,

Ĥ0φn = Enφn , (2.126)

still form a complete basis in which we can expand the exact time-dependent
wave function ψ(t):

ψ(t) =
∑

n

cn(t)φn exp
(
− i
h̄
Ent

)
. (2.127)

The coefficients cn(t) in this expansion are time dependent, because the time
evolution of the eigenstates of Ĥ0 is, due to the perturbation Ŵ , not given by
the exponential functions exp [−(i/h̄)Ent] alone.

The initial condition that the system be in the eigenstate φi of Ĥ0 at time
t = 0 is expressed in the following initial conditions for the coefficients cn(t):

cn(t=0) = δn,i . (2.128)

At a later time t, the probability for finding the system in the eigenstate φf

of Ĥ0 is:

wi→f(t) = |cf(t)|2 . (2.129)

In order to calculate the coefficients cn(t) we insert the expansion (2.127)
in the time-dependent Schrödinger equation (1.38) and obtain using (2.125),
(2.126),

ih̄
∑

n

φn

(
dcn
dt

− i
h̄
Encn

)
exp

(
− i
h̄
Ent

)

=
∑

n

cn exp
(
− i
h̄
Ent

)
(Enφn + Ŵφn) . (2.130)

If we multiply from the left with the bra 〈φm|, (2.130) becomes a system of
coupled ordinary differential equations for the coefficients cn(t):

ih̄
dcm
dt

=
∑

n

Wmn cn exp
[

i
h̄

(Em − En)t
]
, (2.131)

with

Wmn = 〈φm|Ŵ |φn〉 . (2.132)

We can formally integrate the equations (2.131):
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cm(t) = cm(0) +
1
ih̄

∫ t

0

dt′
∑

n

Wmn exp
[

i
h̄

(Em − En)t′
]
cn(t′)

= cm(0) +
1
ih̄

∫ t

0

dt′
∑

n

Wmn exp
[

i
h̄

(Em − En)t′
]
cn(0)

+
1

(ih̄)2

∫ t

0

dt′
∑

n

Wmn exp
[

i
h̄

(Em − En)t′
]

×
∫ t′

0

dt′′
∑

l

Wnl exp
[

i
h̄

(En − El)t′′
]
cl(t′′) ,

etc. (2.133)

To obtain the second equation (2.133) we inserted the expression given by the
first equation for cn(t′) in the integral (in the first equation). To obtain higher
terms insert a similar expression for cl(t′′) in the integral in the last row.

To first order in the matrix elements of the perturbing operator Ŵ , the
coefficients cn(t) are given by the second row in (2.133). Inserting the initial
conditions (2.128) we obtain an expression for the transition amplitude cf(t)
to the final state φf :

cf(t) =
1
ih̄

∫ t

0

dt′Wfi exp
[

i
h̄

(Ef − Ei)t′
]
. (2.134)

If the perturbing operator Ŵ , and hence the matrix element Wfi, do not
depend on time, we can integrate (2.134) directly and obtain

|cf(t)|2 = wi→f(t) = |Wfi|2 sin2[(Ef − Ei)t/(2h̄)]
[(Ef − Ei)/2]2

. (2.135)

For large times t, (2.135) becomes

wi→f(t) ≈ |Wfi|2 2π
h̄
t δ(Ef − Ei) . (2.136)

This means that for large times t the transition probability per unit time, Pi→f ,
becomes independent of t:

Pi→f =
1
t
wi→f(t) =

2π
h̄
|Wfi|2 δ(Ef − Ei) . (2.137)

It makes sense to assume that the diagonal matrix elements 〈φi|Ŵ |φi〉 and
〈φf |Ŵ |φf〉 vanish, because a perturbing operator diagonal in the unperturbed
basis doesn’t cause transitions. Then Ei and Ef are not only the eigenvalues
of the unperturbed Hamiltonian Ĥ0 in the initial and final state respectively,
but they are also the expectation values of the full Hamiltonian Ĥ = Ĥ0 + Ŵ
in the respective states. The delta function in the formula (2.137) for the
transition probabilities expresses energy conservation in the long-time limit.

In many practical examples (such as the electromagnetic decay of an
atomic state) the energy spectrum of the final states of the whole system
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(in this case of atom plus electromagnetic field) is continuous. In order to
obtain the total probability per unit time for transitions from the initial state
φi to all possible final states φf we must integrate over an infinitesimal energy
range around Ei:

Pi→f = lim
ε→0

∫ Ei+ε

Ei−ε

2π
h̄
|〈φf |Ŵ |φi〉|2δ(Ef − Ei)�(Ef)dEf , (2.138)

or rather,

Pi→f =
2π
h̄
|〈φf |Ŵ |φi〉|2�(Ef =Ei) . (2.139)

Here �(Ef) is the density of final states.
The formula (2.139) is Fermi’s famous Golden Rule; it gives the probability

per unit time for transitions caused by a time-independent perturbing operator
in first-order perturbation theory.

The precise definition of the density �(Ef) of final states φf depends on
the normalization of the final states. Consider for example a free particle in a
one-dimensional box of length L. The number of bound states (normalized to
unity) per unit energy is (see Problem 2.5)

�L(E) =
L

2π

(
h̄2

2µ
E

)−1/2

. (2.140)

The bound states normalized to unity have the form
√

2/L sin kx, where E =
h̄2k2/(2µ). Matrix elements like |Wfi|2 contain the square of the factor

√
2/L,

so the product |Wfi|2�L(E) no longer depends on the length L of the box. If
we normalize the wave functions φf so that they are simply a sine with factor
unity, then the density � must obviously be

�(E) =
1
π

(
h̄2

2µ
E

)−1/2

. (2.141)

The amplitude of the wave functions and the density of states � are now
independent of L, and there is a smooth transition to the continuum case
L→ ∞. If we work with (unbound) wave functions normalized in energy,

〈φf(E)|φf(E′)〉 = δ(E − E′) , (2.142)

their amplitude is a sine with a factor
√

2µ/(πh̄2k) = [2µ/(π2h̄2E)]1/4 (see
(1.150) in Sect. 1.3.4), and the correct density of states is

�(E) = 1 . (2.143)

When applying the Golden Rule (2.139) we have to take care that the density
of the final states and their normalization are chosen consistently.

The Feshbach resonances discussed in Sect. 1.5.2 can also be described in
the framework of time-dependent perturbation theory. If we regard the equa-
tions (1.218) without channel coupling as the (time-independent) Schrödinger
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equation with the unperturbed Hamiltonian Ĥ0 and the coupling potentials
V1,2 , V2,1 as the perturbation, then the transition probability per unit time
from a bound initial state ψ1 = 0 , ψ2 = φ0(r) to an unbound final state
ψ1 = φreg(r) , ψ2 = 0 is, according to the Golden Rule,

P =
2π
h̄

|〈φ0|V2,1|φreg〉|2 �(E) . (2.144)

Since the density of final states is unity according to (2.143), the width Γ
given by (1.231) is related to P by

P =
Γ

h̄
, or

1
P

= τ =
h̄

Γ
. (2.145)

P describes the time rate of change (decrease) of the occupation probability
wi of the initial state,

dwi

dt
= −Pwi , (2.146)

which corresponds to an exponential decay law:

wi(t) = wi(0) e−t/τ . (2.147)

The time τ is the lifetime of the bound initial state φ0 with respect to the
decay into the continuum which is mediated by the coupling potential V2,1.
The second equation (2.145) states that the width Γ and the lifetime τ of a
resonance fulfill a relation similar to the uncertainty relation. Note that the
lifetime of the resonant state is of the same order of magnitude as the time
delay suffered during scattering by an almost monochromatic wave packet
whose (mean) energy lies near the resonance energy, see (1.239) in Sect. 1.5.2.

2.4.2 The Electromagnetic Field

Classically we describe the electromagnetic field with the help of the scalar
potential Φ(r, t) and the vector potential A(r, t), which together define the
electric field E(r, t) and the magnetic field B(r, t) (see any textbook on elec-
trodynamics, e.g. [Jac98]):

E = −∇Φ− 1
c

∂A

∂t
, B = ∇× A . (2.148)

c is the speed of light (compare Sect. 2.1.3). The potentials are not unique
and depend on the choice of gauge. The fields E and B remain unchanged
when we replace the potentials Φ and A by new potentials Φ′ and A′ which
are related to the original potentials by a gauge transformation:

A′ = A + ∇Λ , Φ′ = Φ− 1
c

∂Λ

∂t
. (2.149)

Λ is a scalar function of r and t. In the Coulomb gauge, which is also called
radiation gauge or transverse gauge, we have
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∇·A = 0 , ∆Φ = −4π� , (2.150)

where � is the electric charge density. If there are no sources of charge
the scalar potential vanishes in the Coulomb gauge. A physical system of
electrically charged particles in an electromagnetic field is described by a
Hamiltonian in which the kinetic energy is defined via the kinetic momenta
p̂kin = p̂− (q/c)A while the potential energy contains the scalar potential Φ.
When the electromagnetic field is included, the Hamiltonian for a system of
N electrons with charge q = −e and mass µ is thus

Ĥ =
N∑

i=1

(
[p̂i + (e/c)A(ri, t)]

2

2µ
− eΦ(ri, t)

)
+ V̂ . (2.151)

Since the Hamiltonian (2.151) contains the potentials A and Φ, and not the
physical fields (2.148), it depends on the particular choice of gauge, as do its
absolute energy eigenvalues. Observable quantities such as energy differences
and transition probabilities are however independent of the choice of gauge.

The interaction of an atom or ion with an external electromagnetic field is
most easily described by treating the field classically and inserting the corre-
sponding potentials A(ri, t), Φ(ri, t) as functions in the Hamiltonian (2.151).
This procedure cannot however account for the observed phenomenon of spon-
taneous emission, in which an excited atom (or ion) emits a photon in the
abscence of an external field. For a consistent description of the observed elec-
tromagnetic transitions including spontaneous emission, we must treat the
electromagnetic field quantum mechanically. The full Hamiltonian then con-
tains an interaction between atom and field which causes transitions between
the eigenstates of the non-interacting Hamiltonian as described in Sect. 2.4.1,
even if there is initially no field present.

To obtain a prescription for the quantization of the electromagnetic field
we study the source-free field in a vacuum. As can be derived from Maxwell’s
equations, the vector potential A(r, t) fulfills the free wave equation,(

∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2

)
A =

1
c2
∂2

∂t2
A . (2.152)

A general solution of (2.152) can be obtained by superposing plane wave solu-
tions, which we shall mark with a mode label λ. Each mode λ is characterized
by a wave vector kλ pointing in the direction of propagation of the plane wave,
by an angular frequency ωλ = c|kλ| and by a polarization vector πλ of unit
length:

Aλ e−iωλt = L−3/2πλ ei(kλ·r−ωλt) . (2.153)

Many relations are easier to formulate if we discretize the continuous distri-
bution of wave vectors. To this end we think of the three-dimensional space
as divided into large but finite cubes of side length L and require periodic
boundary conditions for the plane waves. With the normalizing factor L−3/2
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on the right-hand side of (2.153), the integral of the square of the amplitude
over one such cube is unity for each mode λ:∫

L3
d3r|Aλ(r)|2 = 1 . (2.154)

In the Coulomb gauge (2.150) it follows from ∇·A = 0 that

πλ ·kλ = 0 (2.155)

in each mode λ. To each wave vector kλ there are thus only two independent
directions of polarization and both are perpendicular to the direction of prop-
agation. A real polarization vector πλ implies linearly polarized light, with
the electric field vector oscillating in the direction defined by πλ. Two vectors
πλ1 and πλ2 can serve as a basis for the possible states of polarization with
the electric field vector perpendicular to the direction of propagation. Polar-
ization vectors with complex components can be used to account for phase
differences in the field components. E.g., for a monochromatic wave travelling
in the direction of the positive z-axis, the polarization vector

πλ1 ≡ πλ
(r) =

1√
2

⎛
⎝ 1

i
0

⎞
⎠ (2.156)

describes right-handed circular polarization, while

πλ2 ≡ πλ
(l) =

1√
2

⎛
⎝ i

1
0

⎞
⎠ (2.157)

describes left-handed circular polarization. Note that the two polarization
vectors (2.156) and (2.157) are related by

πλ2 = ekλ
× (πλ1)

∗
, (2.158)

where ekλ
is the unit vector in the direction of kλ. Equation (2.158) represents

an appropriate way of defining a second polarization vector orthogonal to a
complex first one.3

The general (real) vector potential for a source-free electromagnetic field
in a vacuum is a real superposition of the plane waves (2.153),

A(r, t) =
∑

λ

(qλAλ e−iωλt + q∗λA∗
λ e+iωλt) , (2.159)

and the associated electric field E and magnetic field B are

E = −1
c

∂A

∂t
=

i
c

∑
λ

ωλ(qλAλ e−iωλt − q∗λA∗
λ e+iωλt) ,

B = ∇× A = i
∑

λ

kλ × (qλAλ e−iωλt − q∗λA∗
λ e+iωλt) . (2.160)

3 Vectors a, b with complex components are orthogonal when a∗
xbx+a∗

yby+a∗
zbz =0
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The energy E of the electromagnetic field is obtained by integrating the energy
density 1

8π (E2 + B2) over a cube of length L:

E =
1
8π

∫
L3
d3r (E2 + B2) =

1
2πc2

∑
λ

ω2
λq

∗
λqλ . (2.161)

Here we used the fact that integrals like
∫

L3 d
3r exp (2ikλ ·r) with oscillating

integrands vanish because of the periodic boundary conditions.
We obtain a more familiar form of (2.161) if we replace the mode ampli-

tudes qλ and q∗λ by the real variables

Qλ =
1√
4πc2

(q∗λ + qλ) , Pλ =
iωλ√
4πc2

(q∗λ − qλ) , (2.162)

namely:

E =
∑

λ

1
2
(P 2

λ + ω2
λQ

2
λ) . (2.163)

This form underlines the similarity between the source-free electromagnetic
field and a set of uncoupled harmonic oscillators. The correspondence of the
free electromagnetic field and a set of harmonic oscillators is apparent in the
energy spectrum. To each mode λ there belongs a sequence of equidistant
energies nλh̄ωλ , nλ = 0, 1, 2, . . . representing the contribution of this mode
to the total energy. In the case of the electromagnetic field nλ is the number
of photons in the mode λ; for the set of oscillators nλ is the quantum number
determining the excitation of the oscillator in the mode λ.

To quantize the electromagnetic field we interpret the variables Pλ and
Qλ as quantum mechanical momentum and displacement operators for the
oscillators in the various modes λ. So the Hamiltonian ĤF for the field is

ĤF =
∑

λ

1
2
(P̂ 2

λ + ω2
λQ̂

2
λ) . (2.164)

The eigenstates of this Hamiltonian are labelled by the occupation numbers
nλ1 , nλ2 , . . . in the individual modes.

Eigenstates and eigenvalues of the Hamiltonian (2.164) can be derived
elegantly if we introduce the operators

b̂†λ = (2h̄ωλ)−
1
2 (ωλQ̂λ − iP̂λ) ≡

√
ωλ

2πh̄c2
q∗λ ,

b̂λ = (2h̄ωλ)−
1
2 (ωλQ̂λ + iP̂λ) ≡

√
ωλ

2πh̄c2
qλ , (2.165)

as is usually done for ordinary harmonic oscillators. (See also Sect. 5.2.2.)
The commutation relations for the operators b̂†λ, b̂λ follow from the canonical
commutation relations (1.36) for the displacement and momentum operators
Q̂λ, P̂λ:

[b̂λ, b̂
†
λ′ ] = δλ,λ′ . (2.166)
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b̂†λ and b̂λ are creation and annihilation operators for photons which respec-
tively raise or lower the occupation number in the mode λ by unity (see
Problem 2.6):

b̂†λ| . . . , nλ, . . .〉 =
√
nλ + 1 | . . . , nλ + 1, . . .〉 ,

b̂λ| . . . , nλ, . . .〉 =
√
nλ | . . . , nλ − 1, . . .〉 . (2.167)

The operator N̂λ = b̂†λb̂λ counts the number of quanta (photons) in the mode
λ:

N̂λ | . . . , nλ, . . .〉 = nλ | . . . , nλ, . . .〉 , (2.168)

and the Hamiltonian for the whole electromagnetic field is

ĤF =
∑

λ

h̄ωλ b̂
†
λb̂λ . (2.169)

Going from (2.164) to (2.169) involves a renormalization of the Hamil-
tonian which consists in neglecting the constant but infinite contribution of
the zero-point energies of all modes

∑
λ h̄ωλ/2. The quantization prescription

used above isn’t unique anyway. In the classical formula (2.161) for the en-
ergy we could have changed the order of q∗λ and qλ and inserting the quantum
operators (2.165) would then have given a Hamiltonian

∑
λ h̄ωλ b̂λb̂

†
λ which,

because of (2.166), differs from (2.169) by twice the total zero-point energy∑
λ h̄ωλ.
We obtain a quantum mechanical operator corresponding to the classi-

cal vector potential A(r, t) by expanding the latter according to (2.159) and
identifying the amplitudes qλ and q∗λ with the annihilation and creation oper-
ators of photons b̂λ and b̂†λ according to (2.165). The time dependence of the
combinations b̂λe−iωλt and b̂†λe+iωλt appearing in this procedure is just that
describing the evolution of the field operators in the Heisenberg representation
(cf. (1.45) in Sect. 1.1.3). To see this recall that with ÛF(t) = exp [−(i/h̄)ĤFt]
we have

Û†
F(t)b̂λÛF(t) = b̂λ e−iωλt , Û†

F(t)b̂†λÛF(t) = b̂†λ e+iωλt . (2.170)

We have thus constructed the operator ÂH = Û†
F(t)ÂÛF(t) in the Heisenberg

representation. To get the corresponding operator Â for the vector potential
in the Schrödinger representation we just leave away the oscillating time-
dependent factors e−iωλt and e+iωλt:

Â(r) =
∑

λ

√
2πh̄c2

ωλ
(Aλb̂λ + A∗

λb̂
†
λ) . (2.171)

Here the functions Aλ and A∗
λ are the spatial parts of the plane waves (2.153),

normalized to a cube of length L, together with an appropriate polarization
vector, e.g.:

Aλ(r) = L−3/2πλ eikλ·r . (2.172)
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Later on we shall apply the Golden Rule (2.139) to electromagnetic tran-
sitions, and for this purpose it is important to know the density of photon
states. The plane waves (2.153) which fit into a cube of length L (with peri-
odic boundary conditions) have wave numbers given by k = (nx, ny, nz)2π/L
(with integer nx, ny and nz). The density of possible wave vectors is thus
(2π/L)−3. If we ask for the number of photon states of a given polarization
whose wave vector has an absolute value between k and k+dk and a direction
in the solid angle dΩ, then we obtain a density (L/2π)3k2dΩ. In reference to
the energy h̄ω = h̄ck, the density �L of photon states of given polarization is

�LdΩ =
(
L

2π

)3
k2

h̄c
dΩ =

(
L

2π

)3 (h̄ωλ)2

(h̄c)3
dΩ . (2.173)

2.4.3 Interaction Between Atom and Field

Multiplying out the contributions in the Hamiltonian (2.151) for anN -electron
atom (or ion) we obtain

Ĥ =
N∑

i=1

p̂2
i

2µ
+ V̂ +

e

2µc

N∑
i=1

[p̂i ·A(ri, t) + A(ri, t)·p̂i]

+
e2

2µc2

N∑
i=1

A(ri, t)2 − e
N∑

i=1

Φ(ri, t) . (2.174)

For classical fields the potentials A(r, t) and Φ(r, t) are real-valued functions.
For a fully quantum mechanical treatment of a system consisting of an atom
and an electromagnetic field we need a Hamiltonian encompassing the atomic
degrees of freedom and the degrees of freedom of the field. To this end we
add the Hamiltonian (2.169) describing a free electromagnetic field to the ex-
pression (2.174); the interaction between atom and field is taken into account
by replacing the potentials in (2.174) by the corresponding operators. For a
source-free field in the radiation gauge we set Φ = 0, while Â is given by the
expression (2.171). The full Hamiltonian thus contains a non-interacting part
Ĥ0 for the degrees of freedom of the atom plus the field (without interaction),

Ĥ0 = ĤA + ĤF =
N∑

i=1

p̂2
i

2µ
+ V̂ + ĤF , (2.175)

and an interaction term Ŵ . If, in the spirit of first-order perturbation theory,
we neglect the contribution quadratic in the vector potential, then

Ŵ =
e

2µc

N∑
i=1

[p̂i ·Â(ri) + Â(ri)·p̂i] , (2.176)

with Â(r) defined as in (2.171).
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In most cases of interest, the wave lengths 2π/|kλ| of the photons emitted
or absorbed by an atom are much larger than its spatial dimensions. The ex-
ponential functions (2.172) occurring in the matrix elements of the interaction
operator (2.176) are thus well approximated by unity:

eikλ·ri ≈ 1 . (2.177)

For reasons which will become clear in the next section, this approximation is
called the dipole approximation. In the dipole approximation the interaction
operator (2.176) simply becomes

Ŵ = L−3/2 e

µc

N∑
i=1

∑
λ

√
2πh̄c2

ωλ
p̂i ·(πλb̂λ + π∗

λb̂
†
λ) . (2.178)

2.4.4 Emission and Absorption of Photons

The Golden Rule (2.139) enables us to calculate the probabilities for the
emission and absorption of photons in the dipole aproximation via matrix
elements

Wfi = 〈φf |Ŵ |φi〉 (2.179)

of the operator (2.178). The initial state φi and the final state φf are eigen-
states of the non-interacting Hamiltonian (2.175) and can each be written as
a product of an atomic eigenstate |Φn〉 of ĤA and an eigenstate of the field
operator ĤF (2.169):

|φi〉 = |Φi〉| . . . , nλ, . . .〉 , |φf〉 = |Φf〉| . . . , n′λ, . . .〉 . (2.180)

The corresponding energies Ei and Ef of the initial and final state consist of
respective eigenvalues εi or εf of ĤA plus the energy of the photon field. If
only one mode λ has a different number of photons in the initial and final
states while all other modes play a spectator role, then

Ei = εi + nλh̄ωλ plus energy of the spectator modes,
Ef = εf + n′λh̄ωλ plus energy of the spectator modes. (2.181)

The matrix element (2.179) can now be reduced to a matrix element involving
only the atomic degrees of freedom:

Wfi = L−3/2 e

µc

√
2πh̄c2

ωλ
×

(
〈Φf |

N∑
i=1

πλ ·p̂i|Φi〉F abs
λ + 〈Φf |

N∑
i=1

π∗
λ ·p̂i|Φi〉F em

λ

)
, (2.182)

where the factors Fλ stand for the field contribution to the transition matrix
element,
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F abs
λ = 〈. . . , n′λ, . . . |b̂λ| . . . , nλ, . . .〉 ,
F em

λ = 〈. . . , n′λ, . . . |b̂†λ| . . . , nλ, . . .〉 (2.183)

and can be readily evaluated via (2.167) for given values of nλ and n′λ. Note
that F abs

λ is non-zero only when n′λ = nλ−1 while F em
λ is non-zero only when

n′λ = nλ + 1. The requirement of energy conservation, Ef = Ei, can also be
divided into an atomic and a photonic part:

εf − εi = (nλ − n′λ) h̄ωλ , (2.184)

which merely says that the energy loss (or gain) of the atom is equal to the
energy of the emitted (or absorbed) photon.

In the atomic matrix elements such as 〈Φf |
∑N

i=1 πλ · p̂i|Φi〉 in (2.182),
the momenta p̂i can be expressed through commutators of the displacement
vectors ri with the non-interacting Hamiltonian Ĥ0. If we neglect momentum-
dependent corrections such as the mass polarization term (cf. Sect. 2.2.1,
Problem 2.8), only the first term on the right-hand side of (2.175) contributes
to the commutator [Ĥ0, ri]. Then

p̂i = µ
i
h̄

[Ĥ0, ri] = µ
i
h̄

[ĤA, ri] , (2.185)

and the atomic matrix element becomes a matrix element of the electric dipole
operator

d̂ = −e
N∑

i=1

ri , (2.186)

e.g.,

− e
µ
〈Φf |

N∑
i=1

πλ ·p̂i|Φi〉 = (εf − εi) i
h̄

πλ ·〈Φf |d̂|Φi〉 . (2.187)

This representation of the atomic matrix element follows from the assumption
(2.177) which is hence called the “dipole approximation”. If we denote the
vector 〈Φf |

∑N
i=1 ri|Φi〉 by rfi, then

〈Φf |d̂|Φi〉 = −e 〈Φf |
N∑

i=1

ri|Φi〉 = −e rfi . (2.188)

Inserting (2.182) and (2.187) into the Golden Rule (2.139) we now obtain with
(2.188)

Pi→f =
4π2

h̄2 L
−3 (εf − εi)2

ωλ
e2

∣∣πλ ·rfiF
abs
λ + π∗

λ ·rfiF
em
λ

∣∣2 �L(Ef) . (2.189)
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Spontaneous Emission

In order to apply the formula (2.189) to spontaneous emission we start with an
initial state of the electromagnetic field containing no photons in any mode,
nλ = 0, for all λ. The transition matrix element (2.179) now differs from zero
only if the final state of the field contains precisely one photon in one mode λ,
n′λ = 1, and the values of the corresponding field factor (2.183) are, according
to (2.167), F abs

λ = 0, F em
λ = 1. Furthermore, the atomic energy difference

εi − εf must in this case exactly equal the energy h̄ωλ of the emitted photon.
With (2.173) the probability per unit time for an atomic transition from an
initial state Φi to a final state Φf accompanied by the emission of a photon of
polarization πλ into the solid angle dΩ is

Pi→f dΩ =
1

2πh̄
ω3

λe
2

c3
|π∗

λ ·rfi|2 dΩ . (2.190)

If, for a given wave vector kλ, we add the contributions (2.190) from the
two possible directions of polarization perpendicular to kλ, then the sum of
the absolute squares of the scalar product yields the absolute square of the
projection of the vector rfi onto the plane perpendicular to kλ,

|πλ
∗
1 ·rfi|2 + |πλ

∗
2 ·rfi|2 = |rfi|2 sin2 θ , (2.191)

where θ is the angle between the wave vector kλ and the real vector consisting
of the magnitudes of the three components of rfi. To derive (2.191) we assume
that the two normalized polarization vectors πλ1 and πλ2 fulfill the relation
(2.158). Integrating over all possible directions Ω of the wave vector kλ we
obtain the probability per unit time Pse

i→f for the atomic transition Φi → Φf

accompanied by the emission of a photon of arbitrary polarization in any
direction,

Pse
i→f =

∫
Pi→f dΩ =

4
3
e2ω3

λ

h̄c3
|rfi|2 def= Afi . (2.192)

The Afi are called the Einstein A coefficients for the transitions i → f [New02].
To obtain the total spontaneous decay rate per unit time Pi of an atomic

state Φi we sum the decay rates (2.192) over all possible final states Φf :

Pi =
∑

εf<εi

Pse
i→f . (2.193)

This total decay rate corresponds to the time rate of change (decrease) of the
occupation probability wi(t) of the initial state Φi, and the reciprocal quantity

τ = 1/Pi (2.194)

is, in analogy to (2.147), the lifetime of the atomic state Φi with respect to
electromagnetic decay.

In a more complete description going beyond the framework of perturba-
tion theory, we should not assume infinitely sharp atomic energy levels. Due
to the interaction between the atom and the field only the ground state of
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the atom, which cannot spontaneously decay, is a truly bound state. All ex-
cited states are strictly speaking resonances in the continuum analogous to
the Feshbach resonances described in Sect. 1.5.2. Thus each excited state of
an atom has a natural line width Γ , which is related to its lifetime with respect
to electromagnetic decay via the second equation (2.145).

Induced Emission

If the electromagnetic field in the initial state is not empty but contains nλ

photons in the mode λ, then a non-trivial field factor |F em
λ |2 = nλ + 1 has

to be multiplied to the right-hand sides of (2.190) and (2.192) (cf. (2.183),
(2.167)). The part proportional to nλ describes the probability for induced
emission which depends on the strength of the external field. The connection
between the external field strength and the number nλ actually to be inserted
in the formulae depends on the particular physical experiment.

Let’s look for example at an atom in an electromagnetic field in which all
modes are occupied isotropically with an intensity distribution I(ω). Then the
energy density in the frequency intervall between ω and ω + dω is equal to
the number of modes with arbitrary polarization and direction of propagation
Nωh̄dω , Nω = 2× 4π �L, multiplied by the (mean) energy density per mode,
nλh̄ω/L

3. With (2.173) this means that

I(ω)dω = 8π�Lh̄dω nλh̄ω/L
3 =

h̄

π2

(ω
c

)3

nλ dω , (2.195)

in other words,

nλ = π2 I(ω)
h̄

( c
ω

)3

. (2.196)

Multiplying this factor onto the right-hand side of (2.192) gives the following
formula for the probability per unit time Pie

i→f for an atomic transition from
Φi to Φf through induced emission of a photon of arbitrary polarization in any
direction:

Pie
i→f =

4
3
π2

h̄2 e
2 |rfi|2 I(ω) . (2.197)

The factors

Bfi =
4
3
π2

h̄2 e
2 |rfi|2 (2.198)

are the Einstein B coefficients, which also appear in an analogous treatment
of absorption [New02]. Historically, the Einstein A and B coefficients played
an important role for the understanding of Planck’s formula for the intensity
distribution I(ω) in the particular example of black-body radiation.
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Absorption

Absorption can occur only if the electromagnetic field in the initial state
has a non-vanishing number nλ of photons in at least one mode λ. After
absorption of a photon from this mode the occupation number in the final
state is n′λ = nλ−1, and the field factor (2.183) is |F abs

λ |2 = nλ. In the case of
absorption there is no additional free photon in the final state and, provided
the final state of the atom lies in the discrete part of the (atomic) spectrum,
we must use the discrete form (2.137) of the Golden Rule. In place of (2.189)
we obtain the absorption probabilty per unit time as

Pi→f = 4π2L−3ωλ e
2 |πλ ·rfi|2 nλ δ(εf − εi − h̄ωλ) . (2.199)

In order to describe absorption out of a uniform radiation field with an inten-
sity distribution I(ω) we would have to integrate over the frequencies ω and
over all directions, which, with the appropriate expression for nλ, would lead
to a formula analogous to (2.197).

Another experimentally important situation is the bombardment of an
atom by a uniform monochromatic beam of photons (see Fig. 2.8). In this
case the relevant physical quantity is the cross section σabs for the absorption
of a photon. σabs is the absorption probability per unit time (2.199) divided
by the current density of the incoming photons. This current density is simply
the density nλ/L

3 of the photons multiplied by their speed of propagation c,
so we have

σabs(E) = 4π2 e
2

h̄c
h̄ωλ |πλ ·rfi|2 δ(εf − εi − E) . (2.200)

For initial and final states Φi and Φf normalized to unity the vector rfi defined
by (2.188) has the dimensions of length and the cross section (2.200) has the
dimensions of an area. Quantitatively the number of photons absorbed equals
the number incident on an area of size σabs perpendicular to the direction of
incidence.

Fig. 2.8. (a) Photoabsorption out of a monochromatic beam of photons: An elec-
tron is elevated from a low-lying bound state to a higher lying bound state. (b)
Photoionization: A bound electron is excited into a continuum state
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Photoionization

With slight modifications the formula (2.200) can be used to describe the
ionization of an atom through absorption of a photon. In this case the wave
function Φf of the atomic final state has the following form asymptotically
(i.e. for large separations of the outgoing electron):

Φf(x1, . . . , xN−1, xN ) = Φ′
f(x1, . . . , xN−1)ψ(xN ) . (2.201)

Here ψ(xN ) is the continuum wave function of the outgoing electron and may
have the form (1.359) or (1.74) with a radial wave function of the form (1.116)
or (1.121). Φ′

f is an (N − 1)-electron wave function for the other electrons
which are still bound after photoionization. Since the final states now have
a continuous spectrum, we have to use the continuum version (2.139) of the
Golden Rule. For energy normalized radial wave functions of the outgoing
electron (cf. (1.150)) the density of final states is unity according to (2.143),
and in place of (2.200) we obtain the following formula for the photoionization
cross section:

σph(E) = 4π2 e
2

h̄c
h̄ωλ |πλ ·rfi|2 . (2.202)

Due to the normalization of final states, 〈Φf(E)|Φf(E′)〉 = δ(E − E′), the
vector rfi defined by (2.188) now has the dimensions of a length times the
inverse square root of an energy, so that σph(E) again has the dimensions
of an area. The constant e2/(h̄c) ≈ 1/137 appearing in (2.200), (2.202) is
of course the fine-structure constant which characterizes the strength of the
electromagnetic interaction (see (2.35)).

In real situations the initial and/or final atomic states, Φi and/or Φf , may
be members of degenerate or almost degenerate multiplets which are not re-
solved experimentally. This must then be taken into consideration when ap-
plying formulae like (2.200) or (2.202) for transition probabilities or cross
sections. Our ignorance of the precise initial state is taken into account by
averaging over all initial states in the multiplet. The fact that transitions to
any state in a multiplet of final states contributes to the observed transion is
taken into account by summing over all final states in the multiplet. This is
performed explicitly in Sect. 3.2.3 for the particular example of one-electron
atoms.

2.4.5 Selection Rules

The probability for an electromagnetic transition depends decisively on the
atomic matrix element

rfi = 〈Φf |
N∑

i=1

ri|Φi〉 = 〈Φf |r̂|Φi〉 . (2.203)

This matrix element of the vector operator r̂ = −(1/e)d̂ (cf. (2.186)) is con-
veniently evaluated via its spherical components
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r̂(±) = ∓
N∑

i=1

1√
2
(xi ± iyi) , r̂(0) =

N∑
i=1

zi . (2.204)

In spherical components the scalar product of r̂ with another vector a is

r̂ ·a =
+1∑

ν=−1

(
r̂(ν)

)∗
a(ν) . (2.205)

For a one-electron atom the spherical components of r̂ can be expressed in
terms of the radius r =

√
x2 + y2 + z2 and the spherical harmonics Yl,m(θ, φ)

defined in Sect. 1.2.1 (cf. Table 1.1):

r̂(±) =

√
4π
3
r Y1,±1(θ, φ) , r̂(0) =

√
4π
3
r Y1,0(θ) . (2.206)

If the atomic states Φi and Φf are simply one-electron wave functions (without
spin) of the following form:

Φi(r) =
φli

r
Yli,mi(θ, φ) , Φf(r) =

φlf

r
Ylf ,mf (θ, φ) , (2.207)

then we can use the formula (A.10) for an integral over a product of three
spherical harmonics to reduce the matrix elements r(ν)

fi (ν = +1, 0, −1) of the
spherical components (2.206) of r̂ to an integral over the radial wave functions:

r
(ν)
fi = 〈Φf |r̂(ν)|Φi〉

=
∫ ∞

0

φ∗lf (r) r φli(r) dr

√
4π
3

∫
dΩ Y ∗

lf ,mf
(Ω)Y1,ν(Ω)Yli,mi(Ω)

=
∫ ∞

0

φ∗lf (r) r φli(r) dr F (lf , li)〈lf ,mf |1, ν, li,mi〉 . (2.208)

Here 〈lf ,mf |1, ν, li,mi〉 is the Clebsch-Gordan coefficient for coupling the ini-
tial angular momentum li,mi together with the angular momentum 1, ν of the
spherical component of the vector operator r̂ to the final angular momentum
lf ,mf (see Sect. 1.7.1).

The angular momentum quantum numbers lf , 1 und li must fulfill a triangle
condition of the form (1.336), and this means that lf and li can differ by at
most unity. It furthermore follows from the parity (1.72) of the spherical
harmonics that the sum of lf , 1 and li must be even, since the parity of
the integrand in the integral over Ω in (2.208) would otherwise be negative
causing the integral itself to vanish. Together with the condition mi + ν = mf

(cf. (1.335)) we obtain the following selection rules for the one-body angular
momentum in dipole transitions :

∆l = lf − li = ±1 , ∆m = mf −mi = 0, ±1 . (2.209)

Transitions which do not fulfill these selection rules are forbidden (in the dipole
approximation). The factor F (lf , li) in (2.208) is explicitly
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F (lf , li) =
{√

lf/(2lf + 1) for lf = li + 1 ,
−√li/(2lf + 1) for lf = li − 1 .

(2.210)

If we include the spin dependence of the one-electron wave functions and
assume atomic eigenstates of the form (1.359), then the formula (2.208) is
replaced by an equation of the form

r
(ν)
fi = 〈Φf |r̂(ν)|Φi〉 = 〈jf ||r̂||ji〉〈jf ,mf |1, ν, ji,mi〉 , (2.211)

where the m quantum numbers now characterize the eigenvalues of the z-
component of the total angular momentum Ĵ = L̂+ Ŝ. The quantity 〈jf ||r̂||ji〉
in (2.211) is called reduced matrix element of the vector operator r̂ and no
longer depends on the m quantum numbers of the atomic states or on the
component index ν of the operator. Equation (2.211) is an illustration of
the Wigner-Eckart Theorem, as is (2.208) above. This important theorem
holds quite generally for matrix elements of the (spherical) components of a
vector or tensor operator in angular momentum eigenstates. It says that the
dependence of such matrix elements on the m quantum numbers and on the
component index of the operator is given solely by the appropriate Clebsch-
Gordan coefficients. The correct Clebsch-Gordan coefficients are those which
couple the angular momentum of the initial state (here ji,mi) with the order
and the component index of the operator (here 1, ν) to the angular momentum
of the final state (here jf ,mf). From the conditions (1.335), (1.336) for non-
vanishing Clebsch-Gordan Coefficients we obtain the selection rules for the
quantum numbers of the total angular momentum:

∆j = jf − ji = 0, ±1 , ∆m = mf −mi = 0, ±1 . (2.212)

The Wigner-Eckart theorem allows us to derive analogous selection rules
for the angular momentum quantum numbers in many-electron atoms without
knowing the precise structure of the atomic wave functions. For the total
angular momentum (2.79) with the quantum numbers J,M we obviously have

∆J = Jf − Ji = 0, ±1 , ∆M =Mf −Mi = 0, ±1 . (2.213)

If the atomic wave funcions are well described in LS coupling so that the total
orbital angular momentum and the total spin are “good quantum numbers”,
then the selection rules for the orbital angular momentum quantum numbers
L, ML are

∆L = Lf − Li = 0, ±1 , ∆ML =MLf −MLi = 0, ±1 . (2.214)

Since the interaction operator (2.178) doesn’t act on the spin parts of the
wave functions, the quantum numbers of the total spin cannot change in a
transition,

∆S = 0 , ∆MS = 0 . (2.215)

As in a one-electron atom, the parity of the initial and final atomic states must
be different for the matrix element of the dipole operator to be non-vanishing.
In a many-electron atom however, the parity is not simply related to the
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orbital angular momentum, and hence ∆L = 0 transitions aren’t generally
forbidden.

Above and beyond the selection rules (2.213), (2.214) above, all transitions
in which both the initial angular momentum (Ji or Li) and the corresponding
final angular momentum vanish, are forbidden. This is because the initial and
final angular momenta and the order 1 of the vector operator r̂ must always
obey a triangle condition of the form (1.336).

Transitions which are forbidden in the dipole approximation may be al-
lowed for electromagnetic processes of higher order. If e.g. we go beyond the
dipole approximation (2.177) by including the next term ikλ ·ri in the ex-
pansion of the exponential function we obtain the probabilities for electric
quadrupole transitions as well as for magnetic dipole transitions. These are
generally very small, because the absolute value of kλ · ri is very small for
typical wave numbers kλ and for displacement vectors ri corresponding to
the spatial dimensions of an atom. In order to obtain probabilities for transi-
tions in which two or more photons are emitted or absorbed simultaneously,
we have to go beyond a description based on first-order perturbation theory
(see also Sect. 5.1 in Chap. 5).

2.4.6 Oscillator Strengths, Sum Rules

Dipole transitions between atomic states Φi and Φf can be characterized us-
ing the dimensionless oscillator strengths. These are the absolute squares of
appropriately normalized matrix elements of the components of the vector
operator r̂. In a cartesian basis the oscillator strength f (x)

fi is, for example,
defined by

f
(x)
fi =

2µ
h̄2 h̄ω|〈Φf |

N∑
i=1

xi|Φi〉|2 , (2.216)

where h̄ω = εf − εi. Summed over the three cartesian components we obtain:

ffi = f (x)
fi + f (y)

fi + f (z)
fi =

2µ
h̄
ω |〈Φf |r̂|Φi〉|2 . (2.217)

The contribution of the transition from Φi to Φf in the cross section σabs(E)
for absorption of photons polarized in x-direction, πλ = êx, out of a uniform
beam is e.g. (cf. (2.200))

σabs(E) = 4π2 e
2

h̄c

h̄2

2µ
f

(x)
fi δ(εf − εi − E) . (2.218)

Consider a given (normalized) initial atomic state Φi and a complete set of
(bound) final states Φn, then using the commutation relation (1.33) between
position and momentum we obtain:
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h̄

i
N = 〈Φi|

N∑
i=1

(p̂xi
xi − xip̂xi

)|Φi〉

=
∑

n

〈Φi|
N∑

i=1

p̂xi
|Φn〉〈Φn|

N∑
i=1

xi|Φi〉

−
∑

n

〈Φi|
N∑

i=1

xi|Φn〉〈Φn|
N∑

i=1

p̂xi
|Φi〉

= µ
i
h̄

∑
n

2(εi − εn)〈Φi|
N∑

i=1

xi|Φn〉〈Φn|
N∑

i=1

xi|Φi〉

=
2µ
ih̄

∑
n

h̄ωn|〈Φn|
N∑

i=1

xi|Φi〉|2 , (2.219)

where the momentum components p̂xi
were replaced by the commutators

[ĤA, xi] according to (2.185) in the second last line, and we used the fact that
the Φn are eigenfunctions of ĤA with the eigenvalues εn. With the definition
(2.216) we obtain a sum rule for the oscillator strengths f (x)

ni :∑
n

f
(x)
ni = N . (2.220)

Analogous sum rules obviously hold for the y- and z- components, and so we
obtain the Thomas-Reiche-Kuhn sum rule for the oscillator strengths defined
by (2.217):∑

n

fni =
∑

n

(
f

(x)
ni + f (y)

ni + f (z)
ni

)
= 3N . (2.221)

Before applying the above considerations to an atomic system we have
to complement the formulae in order to take account of the fact that the
complete set of final states contains continuum states. For final states ΦE

in the continuum we modify the definitions (2.216), (2.217) of the oscillator
strengths,

df (x)
Ei

dE
=

2µ
h̄2 h̄ω |〈ΦE |

N∑
i=1

xi|Φi〉|2 , etc. ,

dfEi

dE
=

df (x)
Ei

dE
+

df (y)
Ei

dE
+

df (z)
Ei

dE
. (2.222)

If the final states ΦE are energy normalized, then the functions df (x)
Ei /dE and

dfEi/dE have the dimensions of an inverse energy. The photoionization cross
section (2.202) for incoming photons polarized in x-direction is

σph(E) = 4π2 e
2

h̄c

h̄2

2µ
df (x)

Ei

dE
. (2.223)
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Inclusion of continuum states complements the sum rules (2.220), (2.221) to

∑
n

f
(x)
ni +

∫ ∞

0

df (x)
Ei

dE
dE = N , etc. ,

∑
n

fni +
∫ ∞

0

dfEi

dE
dE = 3N , (2.224)

where we have assumed the ionization threshold to lie at E = 0.
The sum rules for the oscillator strengths are a valuable help for estimating

the importance of individual transitions in a particular physical system. In
a numerical calculation of the transition probabilities to a finite number of
final states, an estimate of the extent to which the corresponding oscillator
strengths exhaust the sum rule may give valuable information on the reliability
of the calculation and the importance of neglected contributions. The number
N need not always be the total number of electrons. For photoabsorption by
a lithium atom with one outer electron we may for example assume N = 1
at low energies. If the energy is large enough to excite the electrons in the
low-lying 1s shell, then we must count these electrons in the formulation of
the sum rule.

Problems

2.1. A and B are two vectors and σ̂ is the vector of the Pauli spin matrices
(1.345). Prove the identity

(σ̂ ·A)(σ̂ ·B) = A·B + iσ̂ ·(A×B) .

Show that the scalar product of σ̂ and the momentum operator p̂ can be
expressed by the orbital angular momentum L̂ and the displacement vector r
as follows:

σ̂ ·p̂ =
1
r2

(σ̂ ·r)
(
h̄

i
r
∂

∂r
+ iσ̂ ·L̂

)
.

2.2. Use first-order perturbation theory to calculate the energy shifts due
to the spin-orbit coupling ĤLS , the Darwin term ĤD and the relativistic
correction Ĥke to the kinetic energy in the eigenstates of the hydrogen atom
with quantum numbers up to n = 2.

ĤLS =
Ze2

2m2
0c

2

1
r3

L̂·Ŝ , ĤD =
πh̄2Ze2

2m2
0c

2
δ(r) , Ĥke = − p̂2p̂2

8m3
0c

2
.
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2.3. a) Assume that both electrons in the helium atom or in a helium-like
ion occupy the same orbital wave function

ψ(r) =
1√
π
β−3/2 e−r/β .

For which value of β is the expectation value of the two-body Hamiltonian

Ĥ =
∑

i=1,2

(
p̂2

i

2µ
− Ze2

ri

)
+

e2

|r1 − r2|
a minimum? How do β and the minimal energy depend on the charge
number Z?
Hint: Use (A.9) in Appendix A.1.

b) Calculate the expectation values of Ĥ in the 1P and 3P states of the helium
atom, constructed by appropriate angular momentum coupling from the
1s 2p configuration. Use hydrogenic single-particle wave functions with the
parameter β as obtained in Problem 2.3 a).

2.4. Consider a “gas” of non-interacting fermions in a finite cube of side length
L:

V =
{ 0 inside the cube

+∞ outside of the cube

a) Determine the eigenfunctions and eigenvalues of the one-body Hamiltonian

Ĥ =
p̂2

2µ
+ V .

b) Let each single-particle wave function with an energy not greater than
EF = h̄2k2

F/(2µ) be occupied with two fermions (spin up and spin down).
How does the number N of fermions depend on the energy EF when EF is
large?

2.5. Calculate the eigenfunctions and eigenvalues of the Hamiltonian for a
particle of mass µ in a one-dimensional box of length L:

V (x) =
{ 0 for 0 ≤ x ≤ L ,

+∞ for x < 0 or x > L .

Show that the number of eigenstates per unit energy is given by the formula
(2.140) for large E.
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2.6. Let ψn(x) be the eigenfunctions of the Hamiltonian for a one-dimensional
harmonic oscillator:

Ĥ =
p̂2

2
+

1
2
ω2x2 , Ĥψn =

(
n+

1
2

)
h̄ω ψn .

Show that the operators

b̂† = (2h̄ω)−1/2(ωx− ip̂) , b̂ = (2h̄ω)−1/2(ωx+ ip̂)

act as creation and annihilation operators of oscillator quanta and, with suit-
able choice of phases of the eigenstates ψn, are given by

b̂†ψn =
√
n+ 1ψn+1 , b̂ψn =

√
nψn−1 .

Hint: Calculate the commutators of b̂† and b̂ with Ĥ.

2.7. Calculate the lifetime of the 2p state of the hydrogen atom with respect
to electromagnetic decay.

2.8. How is the relation (2.185),

p̂i = µ
i
h̄

[ĤA, ri] ,

affected if ĤA contains not only the usual kinetic energy, but also the mass
polarization term (Sect. 2.2.1)?

ĤA =
∑
i=1

p̂2
i

2µ
+

1
mnuc

∑
i<j

p̂i ·p̂j + terms commuting with ri .

How are formulae for transition probabilities such as (2.189) and sum rules
such as (2.220) modified if the mass polarization term is taken into account?

References

[BD64] J.D. Bjorken and S.D. Drell, Relativistic Quantum Mechanics, McGraw-
Hill, New York, 1964.

[BH95] D.J. Berkeland, E.A. Hinds and M.G. Boshier, Phys. Rev. Lett. 75 (1995)
2470.

[BJ83] B.H. Bransden and C.J. Joachain, Physics of Atoms and Molecules, Long-
man, London, New York, 1983.

[BN97] B. de Beauvoir, F. Nez, L. Julien, B. Cagnac, F. Biraben, D. Touahri, L.
Hilico, O. Acef, A. Clairon and J.J. Zondy, Phys. Rev. Lett. 78 (1997) 440.

[BS75] S. Bashkin and J.O. Stoner, Jr., Atomic Energy Levels and Grotrian Di-
agrams – vol. I. Hydrogen I – Phosphorus XV, North Holland Publ. Co.,
Amsterdam, 1975.



References 143

[BS77] H.A. Bethe and E. Salpeter, Quantum Mechanics of One- and Two-Electron
Atoms, Plenum Publishing Co., New York, 1977.

[BS78] S. Bashkin and J.O. Stoner, Jr., Atomic Energy Levels and Grotrian Di-
agrams – vol. II. Sulphur I – Titanium XXII, North Holland Publ. Co.,
Amsterdam, 1978.

[BS81] S. Bashkin and J.O. Stoner, Jr., Atomic Energy Levels and Grotrian Dia-
grams – vol. III. Vanadium I – Chromium XV, North Holland Publ. Co.,
Amsterdam, 1981.

[BS82] S. Bashkin and J.O. Stoner, Jr., Atomic Energy Levels and Grotrian Dia-
grams – vol. IV. Manganese I – XXV, North Holland Publ. Co., Amster-
dam, 1982.

[CO80] E.U. Condon and H. Odabasi, Atomic Structure, Cambridge University
Press, Cambridge (U.K.), 1980.

[DG90] R.M. Dreizler and E.K.U. Gross, Density Functional Theory, Springer-
Verlag, Berlin, 1990.

[Dra88] G.W.F. Drake, Nucl. Instrum. Methods B 31 (1988) 7.
[Dra01] G.W.F. Drake, Physica Scripta T95 (2001) 22.
[Eng88] B.-G. Englert, Semiclassical Theory of Atoms, Lecture Notes in Physics

vol. 300, eds. H. Araki et al., Springer-Verlag, Berlin, Heidelberg, New
York, 1988.

[Fan83] U. Fano, Rep. Prog. Phys. 46 (1983) 97.
[FR86] U. Fano and A.R.P. Rau, Atomic Collisions and Spectra, Academic Press,

New York, 1986.
[Fro77] C. Froese Fischer, The Hartree-Fock Method for Atoms, Wiley, New York,

1977.
[Fro87] C. Froese Fischer, Comput. Phys. Commun. 43 (1987) 355.
[Fro94] C. Froese Fischer, Comput. Phys. Commun. 84 (1994) 37.
[HK64] P. Hohenberg and W. Kohn, Phys. Rev. 136 (1964) B864.
[IL05] P. Indelicato, E. Lindroth and J.P. Desclaux, Phys. Rev. Lett. 94 (2005)

013002.
[Jac98] J.D. Jackson, Classical Electrodynamics, 3rd ed., John Wiley and Sons,

New York, 1998.
[KH86] A. Kono and S. Hattori, Phys. Rev. A 34 (1986) 1727.
[KS65] W. Kohn and L.J. Sham, Phys. Rev. 140 (1965) A1133.
[LM85] I. Lindgren and J. Morrison, Atomic Many-Body Theory, 2nd. Ed.,

Springer-Verlag, Berlin, Heidelberg, New York, 1985.
[MT00] P.J. Mohr and B. N. Taylor, Rev. Mod. Phys. 72 (2000) 351.
[New02] R.G. Newton, Quantum Physics, Springer-Verlag, Berlin, Heidelberg, New

York, 2002.
[Pek58] C.L. Pekeris, Phys. Rev 112 (1958) 1649.
[Sch77] H.F. Schaefer, ed. Methods of Electronic Structure Theory, Addison-Wesley,

London, 1977.
[SK88] J. Styszyński and J. Karwowski, J. Phys. B 21 (1988) 2389.
[UH97] T. Udem, A. Huber, B. Gross, J. Reichert, M. Prevedelli, M. Weitz and
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3

Atomic Spectra

A precise theoretical description of the energies and other properties of atomic
states in principle requires the solution of the N -electron problem discussed
in Sect. 2.2 and Sect. 2.3. This is of course not possible in general, but a
lot of work based on various approximate and numerical methods has, over
the years, been quite successful in explaining important properties of atomic
spectra qualitatively and in simple cases quantitatively, mainly in the region
of low-lying states [LM85, CO80]. On the other hand, the description of the
structure of an atom or ion soon becomes very complicated when several
electrons are highly excited [Fan83, FR86]. The many-electron problem in the
regime of highly excited states is in fact still largely unsolved today.

The structures of atomic spectra and wave functions can be understood
relatively simply and systematically if there is at most one electron in a highly
excited state, while all other electrons are described by more tightly bound
wave functions close to the atomic nucleus. The reason is that the interaction
between the highly excited electron and the residual atom or ion is asymptot-
ically described by a local potential. For neutral atoms and positively charged
ions this local potential is the long-ranged attractive Coulomb potential, for
(singly charged) negative ions it is a shorter-ranged power-law potential. The
first section of this chapter illuminates the qualitative differences in the spectra
of long-ranged and shorter-ranged potentials, and the following sections focus
on potentials with Coulombic tails, as seen by a single highly excited electron
in a neutral atom or positive ion. The study of such highly excited Rydberg
atoms has become a field of intense research since the late 1970’s, and this
is largely due to advances in high precision experimental techniques such as
laser spectroscopy. A detailed study of the general subject of Rydberg atoms
can be found in the monograph by Gallagher [Gal94]. There is currently quite
a strong revival of interest in Rydberg atoms, one reason being that they may
be of practical use in quantum information processing [LF01, TF04, RT05].
A special issue on Rydberg physics in Journal of Physics B gives a compre-
hensive account of the current state of the art in a number of topics related
to Rydberg atoms [CPW05].
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3.1 Long-Ranged and Shorter-Ranged Potentials

3.1.1 Very-Long-Ranged Potentials

The expressions “long-ranged” and “short-ranged” are often used with differ-
ent meanings by different authors. Sometimes the term “short-ranged” is used
to imply that a potential falls off exponentially or faster, whereas a poten-
tial which vanishes only as a power of the distance is termed “long-ranged”
[BC02]. For a potential with an attractive tail falling off asymptotically as
−1/rα,

V (r) r→∞∼ V −
α (r) = −Cα

rα
= − h̄

2

2µ
(βα)α−2

rα
, (3.1)

the structure of the quantum mechanical energy spectrum depends crucially
on whether the power α is smaller or larger than two, as already discussed in
Chapter 1, Sect. 1.6.4. Potentials falling off more slowly than 1/r2 might be
called “very-long-ranged potentials” in order to distguish them from shorter-
ranged potentials with power-law tails corresponding to α > 2. For Coulombic
potential tails, which play a dominant role in atomic systems, we have α = 1,
which is the only integer in the range 0 < α < 2. Potential tails falling off as-
ymptotically as (3.1) with non-integer powers α have little physical relevance,
but studying these cases is helpful for understanding the transition from the
very-long-ranged to the shorter-ranged potentials.

The generalized quantization rule as introduced in Sect. 1.6.3, Equations
(1.308) and (1.309), reads

S(E)
2h̄

=
1
h̄

∫ rout(E)

rin(E)

p(r) dr = nπ +
φin

2
+
φout

2
. (3.2)

This assumes that there is a WKB region between the inner classical turning
point rin and the outer one rout, where WKB wave functions are accurate
solutions of the Schrödinger equation. For very-long-ranged potentials this
condition is always fulfilled near the threshold E = 0, because the thresh-
old represents the semiclassical limit of the Schrödinger equation and the
WKB approximation becomes increasingly accurate for r → ∞, see (1.314) in
Sect. 1.6.4.

For attractive potential tails (3.1) with α < 2, the action integral S(E)
grows beyond all bounds as E → 0; the potential well supports an infinite
number of bound states and conventional WKB quantization, with φout = π/2
at the outer turning point, becomes increasingly accurate towards threshold.
For energies E = −h̄2κ2/(2µ) close enough to threshold, the action integral
can be written as

S(E)
2h̄

= C +
∫ rout(E)

r0

√
(βα)α−2

rα
− κ2 dr

κ→0∼ C ′ +
F (α)

(κβα)(2/α)−1
, F (α) =

√
π

2α
Γ
(

1
α − 1

2

)
Γ
(

1
α + 1

) , (3.3)



3.1 Long-Ranged and Shorter-Ranged Potentials 147

which leads to the near-threshold quantization rule,

n
n→∞∼ C ′′ +

F (α)
π(κβα)(2/α)−1

. (3.4)

The point r0 in (3.3) is to be chosen large enough for the potential to be
accurately described by the leading asymptotic term proportional to 1/rα.
The constants C, C ′ and C ′′ in (3.3) and (3.4) depend on the potential at
shorter distances r < r0, but the energy dependent terms depend only on the
potential tail beyond r0, i.e. only on the power α and the strength parameter
βα determining the leading asymptotic behaviour of the potential tail. For a
Coulombic potential tail, α = 1, F (1) = π/2 we obtain the Rydberg formula,

En = − h̄
2κ(n)2

2µ
= − R

(n− C ′′)2
, R =

h̄2

2µ(2β1)2
, (3.5)

with Bohr radius 2β1 and Rydberg constant R, cf. Sect. 2.1.1.
The level density is defined as the (expected) number of energy levels

per unit energy. If the quantum number n is known as a function of energy,
then the level density is simply the energy derivative of the quantum number,
dn/dE. Simple derivation of (3.4) with respect to E = −h̄2κ2/(2µ) gives the
near-threshold behaviour of the level density,

dn
dE

E→0=
F (α)
π

(
1
α
− 1

2

)(
h̄2

2µ(βα)2

) 1
α− 1

2
(

1
|E|

) 1
α + 1

2

. (3.6)

For Coulombic tails, α = 1, this reduces to the well known form,

dn
dE

E→0=
1
2

√R
|E|3/2

. (3.7)

3.1.2 Shorter-Ranged Potentials

When the potential vanishes faster than 1/r2 at large distances, then the
action integral S(E) remains bounded at threshold. The number of bound
states is finite, and conventional WKB quantization deteriorates towards
threshold [TE98, EF01, BA01]. It is however possible to derive a modified
quantization rule which has a universal form and becomes exact in the limit
E = −h̄2κ2/(2µ) → 0, as shown below (see also [FT04]).

The Schrödinger equation at threshold (E = 0) has two linearly indepen-
dent solutions, ψ0 and ψ1, whose asymptotic (r → ∞) behaviour is given
by

ψ0(r)
r→∞∼ 1 + o

(
r−1

)
, ψ1(r)

r→∞∼ r + o
(
r0
)
. (3.8)

We assume that there is a WKB region in the potential, where the exact wave
functions (at near-threshold energies) are accurately approximated by WKB
wave functions. In this region, the exact threshold solutions ψ0, ψ1 can be
written in WKB form,
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ψ0,1(r) = D0,1
1√
p0(r)

cos
(

1
h̄

∫ ∞

r

p0(r′) dr′ − φ0,1

2

)
, (3.9)

with well defined amplitudes D0 and D1 and the phases φ0 and φ1. Here p0(r)
is the local classical momentum at threshold,

p0(r) =
√
−2µV (r) . (3.10)

Since ψ0(r) is the solution which remains bounded for r → ∞, the phase φ0 in
the WKB form of this wave function in the WKB region is just the threshold
value of the reflection phase at the outer classical turning point, which lies at
infinity for E = 0, i.e. the “zero-energy reflection phase”.

To order below O(E) = O(κ2), the wave function

ψb(r) = ψ0(r) − κψ1(r)
r→∞∼ 1 − κr (3.11)

solves the Schrödinger equation and, to order below O(κ2), it has the correct
asymptotic behaviour required for a bound state at energy E, namely ψb

r→∞∝
exp (−κr). If there is a WKB region of moderate r values, where we can write
the WKB expressions (3.9) for ψ0(r) and ψ1(r), then in this region the bound
state wave function (3.11) has the form

ψb(r) ∝ 1√
p0(r)

cos
(

1
h̄

∫ ∞

r

p0(r′) dr′ − φ+

4
− ξ

)
, (3.12)

where

φ+ = φ0 + φ1 , φ− = φ0 − φ1 , (3.13)

and ξ is the angle defined by

tan ξ =
1 + κD1/D0

1 − κD1/D0
tan

(
φ−
4

)

= tan
(
φ−
4

)(
1 + 2κ

D1

D0
+O(κ2)

)
. (3.14)

So ξ = φ−
4 + κ sin

(
φ−
2

)
D1/D0 +O(κ2), and

ψb(r) ∝ 1√
p0(r)

cos
(

1
h̄

∫ ∞

r

p0(r′) dr′ − φ0

2
− κb+O(κ2)

)
, (3.15)

where b is given by

b =
D1

D0
sin

(
φ0 − φ1

2

)
. (3.16)

The parameter b has the dimensions of a length and is a characteristic property
of the potential tail beyond the WKB region; we call it the threshold length
[JF04], because it plays an important role in determining the near-threshold
properties of the potential.

Comparing (3.15) with the WKB wave function for the bound state at
energy E,
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ψWKB(r) ∝ 1√
p(r)

cos

(
1
h̄

∫ rout(E)

r

p(r′)dr′ − φout(E)
2

)
, (3.17)

yields an explicit expression for the reflection phase φout at the outer turning
point, namely

φout(E) = φ0 +
S(E) − S(0)

h̄
+ 2κb+O(κ2) . (3.18)

Here S(0) stands for the action integral at threshold,

1
2
S(0) =

∫ ∞

rin(0)

p0(r) dr , (3.19)

and we have exploited the fact, that the difference between the action integrals
(3.2) at finite energy E and (3.19) at energy zero is given, to order less than
E, entirely by the tail parts of the integrals beyond the point r in the WKB
region. Contributions from smaller distances than r to the action integral can
be expected to depend smoothly and analytically on E near threshold, so their
effect on the difference S(E) − S(0) will only be of order E ∝ κ2.

The reflection phase φin at the inner turning point will be near π/2 if the
conditions for conventional matching are fulfilled in the neighbourhood, see
Sect. 1.6.3, but, even if this is not the case, φin can be expected to be a smooth
analytic function of the energy E near threshold,

φin(E) = φin(0) +O(E) . (3.20)

Together with the expression (3.18) for the outer reflection phase the quanti-
zation rule (3.2) yields

n
κ→0∼ nth − b

π
κ+O(κ2) . (3.21)

Here nth is the threshold quantum number which fulfills the modified WKB
quantization rule (3.2) at E = 0,

S(0)
2h̄

− φin(0)
2

− φ0

2
= nthπ . (3.22)

nth is an upper bound to the quantum numbers n = 0, 1, 2 . . . of the negative
energy bound states and is usually not an integer. An integer value of nth

indicates a zero-energy bound state. The number of negative energy bound
states is [nth] + 1 where [nth] is the largest integer below nth. Note that
the leading energy dependence of the outer reflection phase near threshold
exactly cancels with the energy dependence of the action integral, so the
near-threshold quantization rule (3.21) has a universal form with a leading
energy dependent term proportional to

√|E|.
The near-threshold quantization rule (3.21) applies for potential tails

falling off faster than 1/r2 asymptotically. For potentials falling off faster
than 1/r2 but not faster than 1/r3, the exact zero energy solutions (3.8) have
next-to-leading asymptotic terms whose fall-off is not a whole power of r faster
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than the leading term 1 or r. The wave function ψ0 remains well defined and
its deviation from unity vanishes asymptotically. The wave function ψ1 may
have asymptotic contributions corresponding to a non-negative power of r
(less than 1); a possible admixture of ψ0 would be of equal or lower order,
so it seems that the definition of ψ1 has some ambiguity regarding possible
admixtures of ψ0. This does not affect the derivation of the expression (3.15),
however, because ψ1 enters with a small coefficient κ in the wave function
(3.11) and only its leading term is relevant. The threshold length (3.16) is
actually invariant with respect to possible ambiguities in the choice of ψ1.

From the universal form (3.21) of the near-threshold quantization rule, we
immediately derive the leading behaviour of the near-threshold level density,

dn
dE

E→0=
1
2π

√
2µb2

h̄2|E| +O(E0) . (3.23)

Equation (3.23) is also quite universal, in that it holds for all potential tails
falling off faster than 1/r2. The leading contribution to the near-threshold
level density is quite generally proportional to 1/

√|E|, and its magnitude
is determined by the threshold length b. Even though the number of bound
states in a potential well with a shorter-ranged tail is finite and there usually is
a finite interval below threshold with no energy level at all, the level density at
threshold becomes infinite as 1/

√|E| towards E → 0. The probability density
for finding a bound state near E = 0 diverges as 1/

√|E|, but the expected
number of states in a small energy interval below threshold, which is obtained
by integrating this probability density, has a leading term proportional to√|E|.

It is worth mentioning that the considerations above, and in particular the
universal formulae (3.21) for the near-threshold quantization rule and (3.23)
for the near-threshold level density, apply for all potential wells with tails
vanishing faster than 1/r2, irrespective of whether the leading asymptotic part
of the tail is attractive or repulsive. The only condition is, that on the near side
of the tail there be a WKB region in the well where the WKB approximation is
good for near-threshold energies. The threshold properties are derived via the
zero-energy solutions (3.8) which can be written as WKB wave functions (3.9)
in this region and involve four independent parameters, two amplitudes D0,1

and two phases φ0,1. Due to the freedom to choose the overall normalization
of the wave function (3.15), there remain three independent tail parameters,
which determine the near-threshold properties of the potential and depend
only on the potential tail beyond the semiclassical region. Three physically
relevant tail parameters derived from D0,1 and φ0,1 are: (i) the threshold
length b, which is given by (3.16) – it enters the universal near-threshold
quantization rule (3.21) and determines the leading, singular contribution to
the near-threshold level density (3.23); (ii) the zero-energy reflection phase φ0,
which enters into the definition (3.22) of the threshold quantum number nth

and is an important ingredient of the universal near-threshold quantization
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rule (3.21); (iii) the phase φ1 or any combination of the other parameters with
φ1. As we shall see later (Sect. 4.1.2 in Chap. 4), the mean scattering length
ᾱ0, which is defined by

ᾱ0 =
b

tan [(φ0 − φ1)/2]
, (3.24)

is a meaningful choice for the third tail parameter.
For homogeneous potential tails of the form (3.1), with α > 2, wave func-

tions which solve the Schrödinger equation at zero energy and have the as-
ymptotic behaviour (3.8) are essentially Bessel functions (see Appendix A.4)
of order ±1/(α− 2) [CF97, TE98],

ψ
(α)
0 (r) =

Γ (1 + ν)
νν

√
r

βα
Jν(z) , ψ

(α)
1 (r) = Γ (1 − ν)νν

√
βαr J−ν(z) ,

ν =
1

α− 2
, z = 2ν

(
βα

r

)1/(2ν)

. (3.25)

The phases φ0,1 and amplitudesD0,1 in the WKB representation (3.9) of these
wave functions are given by,

φ
(α)
0 =

π

2
+ πν , φ

(α)
1 =

π

2
− πν ,

D
(α)
0 =

√
h̄

πνβα

Γ (1 + ν)
νν

, D
(α)
1 =

√
h̄βα

πν
Γ (1 − ν)νν . (3.26)

The threshold length (3.16) is now given by

b(α) = βα ν
2ν Γ (1 − ν)
Γ (1 + ν)

sin (πν) = βα
πν1+2ν

Γ (1 + ν)2
, (3.27)

and the mean scattering length is

ᾱ
(α)
0 = βα ν

2ν Γ (1 − ν)
Γ (1 + ν)

cos (πν) =
b(α)

tan (πν)
. (3.28)

Both b(α) and ᾱ(α)
0 are related to the length parameter βα, which defines the

potential strength according to (3.1), via multiplication with a dimensionless
factor depending only on the power α. Note that the threshold length b(α)

is well defined for any α > 2, whereas ᾱ(α)
0 diverges for α → 3. Note also,

that the formulae (3.27) and (3.28), and the expression (3.26) for the zero-
energy reflection phase φ(α)

0 give the correct tail parameters for the potential
only if it is accurately described by the homogeneous form (3.1) in the whole
quantal region beyond the semiclassical WKB region of the potential. If the
potential tail deviates significantly from the homogeneous form beyond the
WKB region, then this affects the structure of the exact wave functions with
the asymptotic behaviour (3.8); this in turn influences the phases φ0,1 and
amplitudes D0,1 in their WKB representations (3.9) and so affects the tail pa-
rameters. Tail parameters are known analytically for a number of significantly
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Table 3.1. Threshold lengths b(α) [(3.27)], mean scattering lengths ᾱ
(α)
0 [(3.28)] and

zero-energy reflection phases φ
(α)
0 [from (3.26)] for attractive homogeneous potential

tails (3.1) of shorter range, α > 2.

α 3 4 5 6 7 8 α → ∞
b(α)/βα π 1 0.6313422 0.4779888 0.3915136 0.3347971 π/α

ᾱ
(α)
0 /βα − 0 0.3645056 0.4779888 0.5388722 0.5798855 1

φ
(α)
0

3
2
π π 5

6
π 3

4
π 7

10
π 2

3
π 1

2
π

nonhomogeneous tails, see Table 4 in Ref. [FT04]. For homogeneous potential
tails (3.1) the tail parameters b(α), ᾱ(α)

0 and φ(α)
0 are given in Table 3.1 for

integer powers from α = 3 to α = 8.

3.1.3 The Transition From a Finite Number to Infinitely Many
Bound States, Inverse-Square Tails

The near-threshold quantization rule (3.4) for an attractive potential tail van-
ishing as −1/rα with 0 < α < 2 becomes meaningless as α approaches the
value 2 (from below). On the other hand, the threshold length b entering in
the near-threshold quantization rule (3.21) for potential tails vanishing faster
than 1/r2 diverges to infinity for a (homogeneous) tail vanishing as −1/rα,
when the power α approaches 2 from above implying ν → ∞, see (3.27). In
order to understand the transition from potential wells with tails vanishing
faster than −1/r2, which support at most a finite number of bound states, to
those with tails vanishing more slowly than −1/r2, which support infinitely
many bound states, it is necessary to look in some detail at potentials with
tails asymptotically proportional to the inverse square of the distance,

V (r) r→∞∼ Vγ(r) def=
h̄2

2µ
γ

r2
. (3.29)

Inverse-square potentials of the form (3.29) with positive or negative values
of the strength parameter γ occur in various physically relevant situations.
For a one-particle Schrödinger equation in f -dimensional coordinate space
(f ≥ 2), radial and angular motion can be separated via an ansatz,

ψ(r) =
ψrad(r)
r(f−1)/2

× Y (angles) ; (3.30)

the one-dimensional radial Schrödinger equation for ψrad(r) contains a cen-
trifugal potential of the form (3.29) with

γ =
(
lf +

f − 1
2

)(
lf +

f − 3
2

)
. (3.31)

In three-dimensional space we have the well-known result γ = l3(l3 + 1),
l3 = 0, 1, 2, . . . [see (1.75) in Sect. 1.2.2], and in two-dimensional space we
have
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γ = (l2)
2 − 1

4
, l2 = 0, ±1, ±2, . . . . (3.32)

Attractive and repulsive inverse-square potentials occur in the interaction of
an electrically charged particle with a dipole, e.g. in the interaction of an
electron with a polar molecule or with a hydrogen atom in a parity-mixed
excited state, see Sect. 3.1.4.

If the inverse-square tail (3.29) is sufficiently attractive, more precisely, if

γ
def= −g < −1

4
, g >

1
4
, (3.33)

then the potential supports an infinite number of bound states, usually called
a “dipole series”, and towards threshold, E = 0, the energy eigenvalues of the
bound states depend exponentially on the quantum number n, [GD63, MF53]

En
n→∞∼ −E0 exp

⎛
⎝− 2π n√

g − 1
4

⎞
⎠ . (3.34)

The strength g of the attractive inverse-square tail determines the asymptotic
value of the ratio of successive energy eigenvalues,

En

En+1

n→∞∼ exp

⎛
⎝ 2π√

g − 1
4

⎞
⎠ , (3.35)

but not the explicit positions of the energy levels, which are fixed by the
constant E0 in (3.34). This reflects the fact that there is no energy scale in a
Schrödinger equation with a kinetic energy and an inverse-square potential; if
ψ(r) is a solution at energy ε, then ψ(s r) is a solution at energy s2ε. For a pure
−1/r2 potential one can obtain a discrete bound state spectrum corresponding
to the right-hand side of (3.34) by requiring orthogonality of the bound state
wave functions at different energies, but the resulting spectrum is unbounded
from below, En → −∞ for n→ −∞ [MF53].

In a realistic potential well with a sufficiently attractive inverse-square
tail, (3.33), the actual positions of the bound state energies are determined
by the behaviour of the potential at small distances, where it must necessar-
ily deviate from the pure −1/r2 form. If the potential tail contains a further
attractive term proportional to −1/rm, m > 2, then as r decreases this term
becomes dominant and the WKB approximation becomes increasingly accu-
rate. Potential wells with two-term tails,

V (r) r→∞∼ Vg,m(r) = − h̄
2

2µ

(
(βm)m−2

rm
+
g

r2

)
, m > 2 , g >

1
4
, (3.36)

support an infinite dipole series of bound states and there may be a WKB
region at moderate r values if the well is deep enough. In this case, near-
threshold properties of the bound states can be derived [ME01] by match-
ing the asymptotic (r → ∞) solutions of the Schrödinger equation with the
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inverse-square term alone to zero-energy solutions of the tail (3.36), which
are then expressed as WKB waves in the WKB region in a procedure similar
to that used in Sect. 3.1.2. This results [ME01] in an explicit expression for
the factor E0, which asymptotically (n→ ∞) determines the positions of the
energy levels in the dipole series (3.34),

E0 =
2h̄2(m− 2)

4
m−2

µ(βm)2
exp

{
2
τ

[
θ + χ+

π

2
+ arctan

(
tan (S̃0/(2h̄))
tanh (ξπ/2)

)]}
.

(3.37)

The parameters τ, ξ, θ and χ appearing in (3.37) are,

τ =

√
g − 1

4
, ξ =

2τ
m− 2

, θ = argΓ (iτ) , χ = argΓ (iξ) , (3.38)

and S̃0 is essentially the threshold value of the action integral from the inner
classical turning point rin(0) to a point r in the WKB region,

S̃0

2h̄
=

1
h̄

∫ r

rin(0)

p0(r′) dr′ +
2

m− 2

(
βm

r

)m−2
2

− φin(0)
2

− π

4
. (3.39)

A condition for the applicability of the formula (3.37) is, that near the point
r in the WKB region the potential must be dominated by the −1/rm term so
that the inverse square contribution can be neglected; the sum of the integral
and the term proportional to 1/r(m−2)/2 in (3.39) is then independent of the
choice of r.

More explicit solutions are available when the whole potential consists of
an attractive inverse-square tail and a repulsive 1/rm core,

V (r) =
h̄2

2µ

(
(βm)m−2

rm
− g

r2

)
, m > 2 . (3.40)

The existence of a WKB region in the well is not necessary in this case, because
analytical zero-energy solutions of the Schrödinger equation are available for
the whole potential. The zero-energy solution which vanishes at r = 0 ap-
proximates finite energy solutions to order less than O(E) in the region of
small and moderate r values, and it can be matched to the solution which
vanishes asymptotically in the presence of the attractive inverse-square tail.
This yields the following expression for the factor E0 defining the energies of
the near-threshold bound states of the dipole series (3.34) [ME01],

E0 =
2h̄2(m− 2)

4
m−2

µ(βm)2
exp

(
2
θ + χ
τ

)
, (3.41)

where τ , θ and χ are as already defined in (3.38). Note that E0 is only defined
to within a factor consisting of an integer power of the right-hand side of

(3.35); multiplying E0 by an integer power of exp (2π/
√
g − 1

4 ) does not affect
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the energies in the dipole series (3.34) except for an appropriate shift in the
quantum number n labelling the bound states.

A potential with an attractive inverse-square tail (3.29) no longer supports
an infinite series of bound states, when the strength parameter γ is equal to (or
larger than) − 1

4 . This can be expected from the breakdown of formulae such
as (3.34), (3.37) and (3.41) when −γ = g = 1

4 . It is also physically reasonable,
considering that the inverse-square potential Vγ=−1/4 is the s-wave (l2 = 0)
centrifugal potential for a particle moving in two spatial dimensions, see (3.32).
It is difficult to imagine a physical mechanism that would bind a free particle
in a flat plane, so the discontinuation of dipole series of bound states at the
value − 1

4 of the strength parameter γ seems more than reasonable.
A potential well with a weakly attractive inverse-square tail, i.e. with a

strength parameter in the range

−1
4
≤ γ < 0 , (3.42)

can suport a (finite) number of bound states if supplemented by an additional
attractive potential. If the additional potential is regular at the origin, then
the action integral from the origin to the outer classical turning point diverges
because of the −1/r2 singularity of the potential at r = 0, so a naive appli-
cation of the generalized quantization rule (3.2) doesn’t work. This can be
overcome by shifting the inner classical turning point to a small positive value
and adjusting the reflection phase φin accordingly [FT99].

The near-threshold quantization rule for a weakly attractive inverse-square
tail has been studied in some detail by Moritz et al. [ME01], and analytical
results have been derived for tails of the form

V (r) r→∞∼ V (weak)
g,m (r) = − h̄

2

2µ

(
(βm)m−2

rm
+
g

r2

)
, m > 2 , g ≤ 1

4
. (3.43)

For g < 1
4 (i.e., excluding the limiting case g = 1

4 ), the near-threshold quan-
tization rule is [ME01],

n = nth − π (κβm/2)2µγ

sin (πµγ) (m− 2)2νµγν[Γ (µγ)Γ (ν)]2

+O
(
(κβm)4µγ

)
+O

(
κ2
)
, (3.44)

with

µγ =

√
1
4
− g =

√
γ +

1
4

and ν =
2µγ

m− 2
. (3.45)

The finite but not necessarily integer threshold quantum number nth in (3.44)
is given by

nthπ =
1
h̄

∫ r

rin(0)

p0(r′) dr′ +
2

m− 2

(
βm

r

)m−2
2

− φin(0)
2

− π

4
− ν

2
π .(3.46)
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As in the discussion of (3.37) and (3.39), the point r defining the upper limit
of the action integral must lie in a region of the potential well where the
WKB approximation is sufficiently accurate and the potential is dominated
by the −1/rm term, so the inverse-square contribution can be neglected; the
sum of the integral and the term proportional to 1/r(m−2)/2 in (3.46) is then
independent of the choice of r.

When we express κ in terms of the energy E = −h̄2κ2/(2µ), the near-
threshold quantization rule (3.44) becomes

n = nth −B(−E)µγ , (3.47)

with

B =
π
(
µ(βm)2/(2h̄2)

)µγ

sin (πµγ) (m− 2)2ν µγν[Γ (µγ)Γ (ν)]2
. (3.48)

The limiting case γ = − 1
4 corresponding to µγ = 0 and ν = 0 requires

special treatment; the near-threshold quantization rule in this case is [ME01],

n = nth +
2/(m− 2)
ln (−E/B)

+O
(

1
[ln (−E/B)]2

)
, B =

h̄2

2µ(βm)2
. (3.49)

Again, nth is given by the expression (3.46); note that ν vanishes in this case.
We now have a very comprehensive overview of near-threshold quantiza-

tion in potential wells with attractive tails. Potentials falling off as −1/rα with
a power 0 < α < 2 support an infinite number of bound states, and the limit of
infinite quantum numbers is the semiclassical limit. The near-threshold quan-
tization rule (3.4) contains a leading term proportional to 1/(−E)

1
α− 1

2 in the
expression for the quantum number n. For α = 2, the threshold E = 0 no
longer represents the semiclassical limit of the Schrödinger equation, but the
potential still supports an infinite number of bound states, if the attractive
inverse-square tail is strong enough, (3.33); the near-threshold quantizaton

rule now contains
√
g − 1

4 ln (−E) in the expression for the quantum number
n, see (3.34). The attractive inverse-square tail ceases to support an infinite
series of bound states at the value g = −γ = 1

4 of the strength parameter,
which corresponds to the strength of the (attractive) s-wave centrifugal po-
tential for a particle in a plane. In the near-threshold quantization rule, the
leading term in the expression for the quantum number now is a finite number
nth related to the total number of bound states, and the next-to-leading term
contains the energy as 1/ ln (−E) for γ = − 1

4 [(3.49)], or as (−E)
√

γ+ 1
4 for

γ > − 1
4 , see (3.47).

It is interesting to note, that the properties of potential wells with shorter-
ranged tails falling off faster than 1/r2 fit smoothly into the picture elaborated
for inverse-square tails when we take the strength of the inverse-square term to
be zero. The near-threshold quantization rule (3.44) acquires the form (3.21)
when γ = 0, µγ = 1

2 , and the coefficient of κ becomes b(m)/π with b(m) given
by (3.27) when we also insert ν = 1/(m− 2).



3.1 Long-Ranged and Shorter-Ranged Potentials 157

The discussion of weakly attractive inverse-square tails, defined by the
condition (3.42), can be continued without modification into the range of
weakly repulsive inverse-square tails, defined by strength parameters in the
range

0 < γ <
3
4
. (3.50)

The parameter µγ =
√
γ + 1

4 determining the leading energy dependence on
the right-hand sides of (3.44) and (3.47) then lies in the range

1
2
< µγ < 1 , (3.51)

and the leading energy dependence (−E)µγ expressed in these equations is
still dominant compared to the contributions of order O(E), which come from
the analytical dependence of all short-ranged features on the energy E and
were neglected in the derivation of the leading near-threshold terms. We can
thus complete the comprehensive overview of near-threshold quantization by
extending it to repulsive potential tails. For weakly repulsive inverse-square
tails (3.50), the formulae (3.44) and (3.47) remain valid. The upper boundary
of this range is given by

γ =
3
4
, µγ =

√
γ +

1
4

= 1 , (3.52)

which corresponds to the p-wave centrifugal potential in two spatial dimen-
sions, l2 = ±1, see (3.32). At this limit, the near-threshold quantization rule
has the form,

n = nth −O(E) , (3.53)

and this structure prevails for more strongly repulsive inverse-square tails, γ >
3
4 , and for repulsive potential tails falling off more slowly than 1/r2. Repulsive
tails falling off more rapidly than 1/r2 comply with the case γ = 0, i.e. of
vanishing strength of the inverse-square term in the potential, and, provided
there is a sufficiently attractive well at moderate r values, the quantization
rule has the form (3.21) with the threshold length b and a threshold quantum
number nth which also depends on the shorter-ranged part of the potential.

Note that the condition (3.52) also defines the boundary between systems
with a singular and a regular level density at threshold. For attractive poten-
tial tails and for repulsive potential tails falling off more rapidly than 1/r2 or
as an inverse-square potential with γ < 3

4 , the level density dn/dE is singular
at threshold, and the leading singular term is determined by the tail of the
potential. For a repulsive inverse-square tail with γ ≥ 3

4 , and for a repulsive
tail falling off more slowly than 1/r2, the level density is regular at threshold,
and the leading (constant) term depends also on the shorter-ranged part of
the potential.

A summary of the near-threshold quantization rules reviewed in the last
three subsections is given in Table 3.2.
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Table 3.2. Summary of near-threshold quantization rules for attractive and repul-
sive potential tails. The second column gives the leading term(s) to the quantization
rule in the limit of vanishing energy, E = −h̄2κ2/(2µ) → 0. The third column lists
equations where explicit expressions for the constants appearing in the second col-
umn can be found; these can apply quite generally, as in the first row, or to special
models of potential tails with the asymptotic behaviour given in the first column.

V (r) for r → ∞ quantization rule for E → 0 refs. for constants

− h̄2

2µ
(βα)α−2/rα, 0 < α < 2 n ∼ 1

π
F (α)/ (κβα)(2/α)−1 F (α): (3.3)

h̄2

2µ
γ/r2 , γ < − 1

4
n ∼ − 1

2π
ln (−E/E0)

√
|γ| − 1

4
E0: (3.37), (3.41)

γ = − 1
4

n ∼ nth + A/ ln(−E/B) nth: (3.46)
A, B: (3.49)

− 1
4

< γ < 3
4

n ∼ nth − B(−E)
√

γ+1/4 nth: (3.46)
B: (3.48)

γ ≥ 3
4

n ∼ nth − O(E) nth: (3.46)

∝ +1/rα , 0 < α < 2 n ∼ nth − O(E)

∝ ±1/rα , α > 2 n ∼ nth − 1
π
bκ nth: (3.22)

b: (3.16), (3.27),
Table 3.1

3.1.4 Example: Truncated Dipole Series in the H− Ion

The interaction between an electron and a neutral atom usually behaves as-
ymptotically as a shorter-ranged potential falling off faster than 1/r2. The
excited energy levels of the hydrogen atom are an exception, because the
degenerate eigenstates of different parity can mix to form states with a fi-
nite dipole moment, and the interaction of such a dipole with the negatively
charged electron is given by a potential proportional to 1/r2.

Consider a system consisting of a hydrogen atom and an additional,
“outer” electron at a distance r. Let us ignore the spin degrees of freedom for
the time being, so the Hamiltonian is

Ĥ =
p̂2

1

2µ
− e2

r1
+

p̂2

2µ
− e2

r
+

e2

|r − r1| , (3.54)

and the total wave function is a function of the coordinate vector r ≡ (r,Ω)
for the outer electron and of r1 ≡ (r1, Ω1) for the “inner” electron in the
atom. If we restrict the study to excited states of hydrogen in a given shell n,
then the wave function for the inner electron is an eigenstate of the Hamil-
tonian p̂2

1/(2µ)−e2/r1 with eigenvalue En = −1/(2n2) au, and the total wave
function can be written as,

Ψ(r1, r) =
∑

l1,m1

φn,l1(r1)
r1

Yl1,m1(Ω1)
∑
l,m

χl1,m1;l,m(r)
r

Yl,m(Ω) . (3.55)
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The right-hand side of (3.55) represents an expansion in channels as described
in Sect. 1.5.1, where the radial coordinate r of the outer electron describes
the dynamic degree of freedom, whereas the radial coordinate r1 of the inner
electron together with all angular degrees of freedom describes the internal
variables whose eigenstates label the various channels. For given values of the
(conserved) total angular momentum quantum numbers L,M , there is only a
finite number of channels. E.g., for n = 2 the internal angular momentum l1
can be either zero or one, and the angular momentum l of the outer electron
can, for given L, only have the values L− 1, L or L+ 1. For L = 0 there are
only two possibilities, namely l = 0 which implies that l1 must also be zero,
and l = 1 which can only couple to L = 0 when l1 = 1.

For the simple case n = 2 and L = 0, the channel expansion (3.55) thus
reduces to

ΨL=0 =
φ2,0(r1)
r1

χ0(r)
r
Y0 +

φ2,1(r1)
r1

χ1(r)
r
Y1 , (3.56)

where Y0 and Y1 stand for the normalized angular parts of the wave function,
coupled to L = 0, M = 0 [Edm60]:

Y0 = Y0,0(Ω1)Y0,0(Ω) =
1
4π
,

Y1 =
1∑

m=−1

〈1,m, 1,−m|0, 0〉Y1,m(Ω1)Y1,−m(Ω)

=
1∑

m=−1

(−1)1−m

√
3

Y1,m(Ω1)Y1,−m(Ω) = − 1√
3

1∑
m=−1

Y1,m(Ω1)Y ∗
1,m(Ω)

= −
√

3
4π

cos (θ) , (3.57)

where θ is the angle between r and r1. The last line in (3.57) follows from the
properties of the spherical harmonics, see (A.8) in Appendix A.1.

We insert the two-channel wave function (3.56) into the two-electron
Schrödinger equation with the Hamiltonian (3.54) and take matrix elements
with the channel states Y0φ2,0(r1)/r1 and Y1φ2,1(r1)/r1. This involves inte-
grating over r1 and all angular variables and leads to the coupled-channel
equations for the wave functions χ0(r) and χ1(r),

− h̄
2

2µ
d2χ0

dr2
+
(
−e

2

r
+ V0,0

)
χ0 + V0,1χ1 = (E − I)χ0 ,

− h̄
2

2µ
d2χ1

dr2
+
(
h̄2

2µ
2
r2

− e2

r
+ V1,1

)
χ1 + V1,0 χ0 = (E − I)χ1 . (3.58)

The potentials Vi,j , i, j = 0, 1, are defined by,

Vi,j(r) =
〈
φ2,i(r1)
r1

Yi

∣∣∣∣ e2

|r − r1|
∣∣∣∣ φ2,j(r1)

r1
Yj

〉
r

, (3.59)
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where the subscript r on the matrix elements implies integration over all
variables except r. The threshold I below which both channels are closed is
just the energy eigenvalue E2 = − 1

8 au of the isolated hydrogen atom in an
n = 2 excited state.

At large distances r of the outer electron we can assume |r1| < |r| and
expand the inverse separation in (3.59) using (A.8) and (A.9) in Appendix A.1,

e2

|r − r1|
r1<r=

∞∑
l=0

e2(r1)l

rl+1

4π
2l + 1

l∑
m=−l

Yl,m(Ω)Y ∗
l,m(Ω1)

r→∞∼ e2

r
+
e2r1
r2

4π
3

1∑
m=−1

Y1,m(Ω)Y ∗
1,m(Ω1) +O

(
1
r3

)
. (3.60)

For i = j = 0, only the leading term in the lower line of (3.60) contributes to
the matrix element (3.59), due to the orthogonality of the spherical harmonics.
For i = j = 1 the contribution of the second term in the lower line of (3.60)
involves integrals over products of three spherical harmonics of the same odd
order l = 1, and these vanish according to (A.10), (A.11) in Appendix A.1.
For the diagonal potentials we thus have,

V0,0(r) =
e2

r
, V1,1(r) =

e2

r
+O

(
1
r3

)
. (3.61)

For the non-diagonal coupling potential we have

V0,1(r) = V1,0(r)
r→∞∼ e2

r2
Mrad

1
3
√

3
× (−1) ×

∑
m,m′

∫
dΩ1

∫
dΩ Y1,m(Ω)Y ∗

1,m(Ω1)Y1,m′(Ω1)Y ∗
1,m′(Ω) , (3.62)

where

Mrad =
∫ ∞

0

φ2,0(r1) r1 φ2,1(r1) dr1 = −3
√

3 a (3.63)

is the radial matrix element involving the n = 2 radial eigenfunctions of
the hydrogen atom, as defined in (1.138) and Table 1.4 in Sect. 1.3.3; here
a = h̄2/(µe2) is the Bohr radius. The sum of the integrals over all the spherical
harmonics in the lower line of (3.62) amounts to three.

In the coupled-channel equations (3.58), the terms −e2/r describing the
attraction of the outer electron by the atomic nucleus is exactly cancelled by
the terms e2/r in (3.61), which are the leading contributions from the repul-
sive interaction with the inner electron. The electron-atom potential is thus
asymptotically dominated by the terms proportional to 1/r2, which consist of
the centrifugal potential for l = 1, l(l + 1) = 2 in the second equation (3.58)
and the non-diagonal coupling potential (3.62),

V0,1(r) = V1,0(r)
r→∞∼ 3

e2a

r2
= 6

h̄2

2µr2
. (3.64)
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The coupled-channel equations (3.58) can be written as a matrix equation for
the two-component vectors consisting of the channel wave functions χ0 and
χ1, and at large distances this matrix equation is

− h̄
2

2µ

(
1

d2

dr2
− v

1
r2

)(
χ0

χ1

)
=
(
E − I 0

0 E − I
)(

χ0

χ1

)
,

where 1 =
(

1 0
0 1

)
and v =

(
0 6
6 2

)
. (3.65)

The constant matrix v in (3.65) can be diagonalized by replacing χ0 and χ1

by appropriate linear combinations; its eigenvalues are γ± = 1±√
37. Asymp-

totically, the coupled-channel equations (3.58) thus decouple into two inde-
pendent equations for channels corresponding to parity-mixed superpositions
of the 2s and the 2p states of the hydrogen atom. Through this mixing, the
inverse-square terms in the non-diagonal coupling potential (3.64) contribute
to the asymptotic potentials in the decoupled channels. The superposition cor-
responding to the eigenvalue γ− = 1 − √

37 ≈ −5.08 asymptotically obeys a
Schrödinger equation with an atrractive inverse-square potential (3.29), which
is clearly strong enough (3.33) to support a dipole series of states as described
in Sect. 3.1.3. Strictly speaking, these states are not bound states, because
they lie above the threshold E1 = − 1

2 au for decay into the n = 1 ground state
of the hydrogen atom; instead of a dipole series of bound states we actually
expect a dipole series of resonant states converging to the series limit, the
n = 2 threshold at E = I = − 1

8 au. One L = 0 resonance has actually been
observed at an energy of about 0.024 atomic units below the n = 2 threshold
in H−, and further states have been derived from ab initio calculations by
several authors, for details see [Pur99].

The low-lying states are, of course, affected by further details of the
electron-atom interaction, in particular the shorter-ranged contributions of
the electron-electron repulsion (3.60) as well as effects due to the Pauli princi-
ple and the spin-orbit interaction. The observed state at E−I = −0.024 au is
actually a spin singlet state, so the orbital wave function should be symmetric
with respect to exchange of r and r1, see Sect. 2.2.4. Towards the threshold I,
the short-ranged part of the wave functions is expected to change only mar-
ginally within the series, so the higher states differ only in their long-ranged
tails which are strongly influenced by the attractive inverse-square potential.
In this respect, the highly excited states in a dipole series resemble the highly
excited states in an attractive Coulomb potential as discussed in Sect. 1.3.3,
see Figs. 1.4 – 1.6.

The ratio of successive energy eigenvalues in a dipole series (relative to
the threshold) approaches a constant value R near threshold, see (3.34). For
g = −γ− ≈ 5.08 we have,

Ei − I
Ei+1 − I

n→∞∼ R = e2π/
√

g−1/4 ≈ 17.43 . (3.66)
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With the lowest 21S state of H− roughly 0.024 atomic units below I, we would
expect further states of the dipole series near 0.024/Ri−1, i = 2, 3, . . .. As the
distance to threshold, |Ei − I|, becomes smaller and smaller, we have to focus
on smaller contributions to the Hamiltonian of the system, which were ignored
so far. Indeed, the degeneracy of the n = 2 states of the hydrogen atom, which
is an essential ingredient in decoupling the coupled-channel equations (3.58),
(3.65) at large r, is only a reasonable assumption as long as we neglect the
fine-sructure splitting of roughly 1.7 × 10−6 au between the j = 1/2 and
j = 3/2 states, see Fig. 2.1. If the “internal energies” are not equal in both
channels, then the matrix containing the energy relative to threshold on the
right-hand side of (3.65) is still diagonal, but it no longer commutes with v,
so a superposition of the 2s and the 2p channels cannot decouple the two
equations. However, including relativistic effects as prescribed by the Dirac
equation in Sect. 2.1.3 still leaves a degenerate pair of parity-mixed n = 2
states in the hydrogen atom, namely the 2s1/2 and the 2p1/2 states. At this
stage, the appropriate good quantum number is the total angular momentum
J rather than the total orbital angular momentum L. For the simplest case
J = 0 and positive parity (meaning l1 + l is even), the 2s1/2 state of the
inner electron can combine with l = 0 and j = 1/2 of the outer electron,
whilst the 2p1/2 state combines with l = 1, j = 1/2. The potential matrix
determining the strength of the 1/r2 term in the coupled-channel equations
(3.65) again has one negative eigenvalue which fulfills the condition (3.33) for
supporting a dipole series, namely γ = 1 − √

13 ≈ −2.6 [PF98, Pur99]. The
near-threshold value of the ratio of successive energies relative to threshold
increases to R ≈ 60 for this value of γ, meaning that the energies approach
the threshold even more rapidly than in (3.66). At still finer energy resolution
we have to consider the Lamb shift which splits the 2s1/2 and 2p1/2 states
by 0.16 × 10−6 au. When this small energy splitting is taken into account,
decoupled equations can no longer be generated via linear combinations of
the 2s1/2 and 2p1/2 channels, and there is no attractive inverse square term
in the electron-atom potential.

A rough estimate of where the various corrections to the simple picture
of degenerate n = 2 states become important in coordinate space can be
obtained by looking at the position where the inverse-square potential, naively
calculated assuming degeneracy, reaches values comparable to the correction
in the energies of the channel thresholds. The absolute value of the potential
h̄2γ/(2µr2), with γ = 1−√

37 ≈ −5.08 – as obtained assuming degeneracy of
all states in the n = 2 shell – reaches the energy 1.7× 10−6 au corresponding
to the fine-structure splitting between the j = 1/2 and j = 3/2 states near
r ≈ 1200 au. For γ = 1 − √

13 ≈ −2.6 – as obtained with the channel
thresholds given by the Dirac equation but neglecting the Lamb shift – the
potential reaches values near the Lamb shift (1.6× 10−7 au) for r ≈ 3000 au.

The low-lying states of the electron-atom system are insenstive to the
long-ranged features of the potentials, because the wave functions χ0 and χ1

solving the coupled equations (3.58) decay rapidly for large or moderate values
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of |E−I|. The highly excited states, on the other hand, are quite similar to the
lower states at small distances and depend with increasing sensitivity on the
potential tail as the energy approaches threshold. The splitting of the n = 2
states in the hydrogen atom due to fine structure and the Lamb shift leads to
a truncation of the otherwise expected infinite dipole series when the energy
relative to the threshold is of the order of this splitting.

Purr et al. [PF98, Pur99] studied this truncation of dipole series using a
simple model for the short-ranged part of the (diagonal and non-diagonal)
electron-atom potentials together with the exact longer-ranged terms propor-
tional to 1/r2 and 1/r3, as well as the exact binding energies of the isolated
hydrogen atom, including fine structure and the Lamb shift. The short-ranged
model potential was adjusted to reproduce the lowest two states below the
n = 2 threshold, which are known from experiment and/or ab initio cal-
culations neglecting relativistic and quantum electrodynamic effects. Higher
states, for which these effects are essential, were then obtained by solving the
coupled channel equations with the previously determined potentials. Results
for the Jπ = 0+ series starting with the experimentally known 1S state below
the n = 2 threshold are summarized in Table 3.3. The ratio of successive en-
ergies (relative to threshold) is fairly close to the value (3.66) expected from
the strength of the attractive inverse-square potential obtained by asymptoti-
cally decoupling the equations (3.58), (3.65), in particular the ratio R2 for the
i = 2 and i = 3 states. The ratio R1 is a bit larger, which can be attributed
to effects of the short-ranged part of the interaction on the lowest state of the
series. The ratio R3 is also a bit larger, which can be attributed to the influ-
ence of fine-structure splitting on the fourth state in the series. This state is
separated from the lowest channel threshold I2p1/2 by only 2.9× 10−6 au, and
a hypothetical fifth state should be closer to threshold by a factor between
17 and 60. On such a fine energy scale, the corrections lifting the degeneracy
of the s and p states can no longer be ignored in the channel thresholds, the
picture of an attractive inverse-square potential breaks down and the dipole
series is truncated. The i = 4 state is actually the last state obtained below
I2p1/2 by solving the coupled-channel equations (3.58).

Table 3.3. Energies (in atomic units) of electron-hydrogen Jπ = 0+ resonances
below the n = 2 threshold relative to the unperturbed threshold energy I = − 1

8
au.

Due to fine-structure splitting the lowest channel threshold actually lies at I2p1/2 =

I−2.08×10−6 au. The last column lists the ratios Ri = (Ei−I2p1/2)/(Ei+1−I2p1/2).

i Ei − I Ri

1 −2.379 × 10−2 23.4
2 −1.018 × 10−3 17.4
3 −6.05 × 10−5 20.3
4 −4.95 × 10−6
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The investigation sketched above can be applied for other values Jπ in the
electron-atom system. The Jπ = 1− states below the n = 2 threshold were
studied in Refs. [LB98, PF98, Pur99]. The coupled-channel equations now
encompass seven channels and the degenerate threshold approximation yields
two decoupled channels with attractive inverse-square potentials of sufficient
strength, (3.33), which can roughly be identified as 1P o and 3P o channels
in standard LS-notation appropriate at small electron-atom separations, see
Sect. 2.2.4. The 1P states are more easily accessible that S states, because they
can be reached via laser excitation from the 1S ground state of the negative
hydrogen ion. Two 1P o states below the n = 2 threshold of the hydrogen atom
have actually been observed using laser spectroscopy [AB97], and a coupled-
channel calculation as outlined above predicts one third state of dominantly
of 1P o character and a series of four states dominantly of 3P o character.
Interestingly, fine-structure and Lamb shift corrections lead to appreciable
mixing of singlet and triplet configurations for the higher states in the series
[PF98].

3.2 One Electron in a Modified Coulomb Potential

3.2.1 Rydberg Series, Quantum Defects

In a neutral atom or a positive ion, a highly excited electron at large separa-
tions r from the residual ion moves in an attractive Coulomb field, i.e., in a
very-long-ranged potential proportional to 1/r. For an electron with orbital
angular momentum quantum number l in a pure Coulomb potential,

VC(r) = I − Ze2

r
+
l(l + 1)h̄2

2µr2
, (3.67)

the solutions of the radial Schrödinger equation have the energy eigenvalues
(cf. (1.134), (2.8))

En = I − R
n2
, n = l + 1, l + 2, . . . , (3.68)

where R is the Rydberg energy; I is the continuum threshold. If the potential
V (r) differs from the pure Coulomb form (3.67) only through a shorter-ranged
potential,

V (r) = VC(r) + Vsr(r) , lim
r→∞ r

2Vsr(r) = 0 , (3.69)

then the energy eigenvalues can still be written in the form (3.68) [compare
(3.5)] if we replace the quantum number n by an effective quantum number

n∗ = n− µn . (3.70)
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Explicitly:

En = I − R
(n∗)2

= I − R
(n− µn)2

. (3.71)

The corrections µn are called quantum defects and the energies (3.71) form a
Rydberg series.

The usefulness of the Rydberg formula (3.71) follows from the fact that
the quantum defects µn depend only weakly on n for large n and converge to a
finite value in the limit n→ ∞. That this is so can be understood most easily
in the framework of the semiclassical approximation which was discussed in
Sects 1.6.3 and 3.1.1.

For an energy E < I the relevant action integral in the quantization con-
dition (1.308) is, in the pure Coulomb case,

SC(E) = 2
∫ b

a

√
2µ(E − VC(r)) dr . (3.72)

For l = 0 the inner turning point is the origin. The outer turning point b
grows larger and larger as E → I:

b(E) =
Ze2

I − E , (3.73)

and

SC(E) = 2
∫ b

0

√
2µ

(
E − I +

Ze2

r

)
dr = 2

√
2µZe2

∫ b

0

√
1
r
− 1
b

dr

= 2π

√
b(E)µZe2

2
, (3.74)

or, with (3.73),

E = I − µZ2e4

2

(
2π

SC(E)

)2

. (3.75)

The quantization condition reads SC(E) = 2πh̄(n+µφ/4) [cf. (1.308), (3.2) ].
With the appropriate Maslov index µφ, which must obviously must be four in
the present case, it yields the energy formula (3.68) with the correct Rydberg
energy R = µZ2e4/(2h̄2). The Maslov index four can be interpreted as sum
of a contribution one, coming from the reflection at the outer turning point
where the potential is smooth, and a contribution three, coming from the
reflection at the attractive 1/r singularity at the origin [MK69].

For l > 0 the inner and outer turning points a and b are given by,

a(E) =
1

κ2aZ
− 1
κ

√
1

(κaZ)2
− γ , b(E) =

1
κ2aZ

+
1
κ

√
1

(κaZ)2
− γ ,(3.76)

where we have introduced the abbreviations,
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κ =
1
h̄

√
2µ(I − E) , aZ =

µZe2

h̄2 , γ = l(l + 1) . (3.77)

The action integral (3.72) can still be evaluated in closed form, and the quanti-
zation condition SC(E) = 2πh̄(n+µφ/4) actually reproduces the exact energy
eigenvalues if the Maslov index µφ is taken to be two and the centrifugal po-
tential is subjected to the Langer modification, l(l + 1) → (l + 1/2)2; this
trick even works for l = 0, where it corresponds to introducing an otherwise
absent inverse-square potential h̄2/(8µr2). The fact that WKB quantization
with Langer modification yields the exact bound state energies in a superposi-
tion of centrifugal and attractive Coulomb potentials [Lan37], is a coincidence
which should not be given too much weight [Tro97]. For a Coulomb potential,
the quantality function (1.298) becomes arbitrarily large as r → 0, see (1.314)
in Sect. 1.6.4. For a Coulomb potential, the WKB ansatz cannot be expected
to be a good approximation for the wave function for small values of the radial
coordinate.

Close to threshold E → I however, the energy dependence of the bound
state wave functions is dominated by the regime of large values of r, where
the semiclassical approximation is increasingly reliable. The influence of an
additional shorter-ranged potential on the spectrum near threshold can be
found out by replacing the action SC in the quantization condition by the full
action

S(E) = 2
∫ b

a′

√
2µ(E − V (r)) dr . (3.78)

This involves an additional contribution Ssr(E) given by

Ssr(E) = S(E) − SC(E)

= 2
∫ b

a′

√
2µ(E − V (r)) dr − 2

∫ b

a

√
2µ(E − VC(r)) dr . (3.79)

The inner turning point is a in the absence and a′ in the presence of the
additional shorter-ranged potential; near threshold the outer turning point b
is determined by the long-ranged Coulomb potential according to (3.73) in
both cases cf. Fig. 3.1. The quantization condition now connects the integer
n not to SC but to SC + Ssr; in place of (3.68) we now obtain the Rydberg
formula (3.71) and the quantum defects are, in semiclassical approximation,

µsc
n =

1
2πh̄

Ssr(En) . (3.80)

In the limit E → I , b → ∞ the diverging contributions to the two integrals
in (3.79) cancel and their difference converges to a finite value.1

1 These considerations still hold if the “shorter-ranged potential” falls off a little
more slowly than required by (3.69), e.g. if it contains inverse-square contribu-
tions, limr→∞ r2Vsr(r) = const. �= 0.
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Fig. 3.1. Radial modified
Coulomb potential (3.69)
(including centrifugal po-
tential) with inner turning
point a′ and outer turn-
ing point b.+ The energy
dependence of the outer
turning point is given by
(3.73) close to threshold

As an example for Rydberg series Table 3.4 lists the spectrum of one-
electron excitations in potassium (see [Ris56]). In order to derive the quan-
tum defects from the experimental term energies with sufficient accuracy, the
corrections to the Rydberg energy which arise from the mass of the nucleus
(cf. (2.12)) must be taken into account. With the nuclear masses from [WB77]
and the Rydberg energy R∞ from (2.9) we obtain the following result for the
isotope K39: R = R∞µ/me = 109735.771 cm−1. The continuum threshold is
at I = 35009.77 cm−1.

The quantum defects of the excited states in potassium are shown as func-
tions of the energy relative to the continuum threshold, E − I, in Fig. 3.2.
For each set of quantum numbers S (= 1

2 ), L, J we obtain a Rydberg series of
states nl in which the quantum defects depend only weakly on the principal
quantum number n or energy E. The energy dependence in each series can be
reproduced very accurately by a straight line. The quantum defects decrease
rapidly with increasing angular momentum l, because the inner region, where
the full potential deviates from the pure Coulomb potential, is screened more
and more effectively by the centrifugal potential (see Problem 3.1).

Because of their weak energy dependence, it is useful to complement the
quantum defects µn = µ(En) defined at the discrete energies En to a con-
tinuous quantum defect function µ(E) which describes the influence of the
shorter-ranged potential Vsr. In the semiclassical approximation an extension
of the formula (3.80) to arbitrary energies E < I immediately yields an ex-
plicit formula for the quantum defect function:

µsc(E) =
1

2πh̄
Ssr(E) . (3.81)

An exact definition of the quantum defect function (beyond the semiclassical
approximation) can be formulated by asymptotically matching the solutions
of the radial Schrödinger equation to linear combinations of Whittaker func-
tions [Sea83]. In practice it is customary to approximate the weakly energy-
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Table 3.4. Excitation energies E (in cm−1), effective quantum numbers n∗ and
associated quantum defects µn = n−n∗ for one-electron excitations in the potassium
atom (from [Ris56])

Term E n∗ µn Term E n∗ µn

4s 2S1/2 0.00 1.77043 2.22957 4p 2P1/2 12985.17 2.23213 1.76787
5s 2S1/2 21026.58 2.80137 2.19863 2P3/2 13042.88 2.23506 1.76494
6s 2S1/2 27450.69 3.81013 2.18987 5p 2P1/2 24701.43 3.26272 1.73728
7s 2S1/2 30274.28 4.81384 2.18616 2P3/2 24720.17 3.26569 1.73431
8s 2S1/2 31765.37 5.81577 2.18423 6p 2P1/2 28999.27 4.27286 1.72714
9s 2S1/2 32648.35 6.81691 2.18309 2P3/2 29007.71 4.27587 1.72413
10s 2S1/2 33214.22 7.81763 2.18237 7p 2P1/2 31069.90 5.27756 1.72244
11s 2S1/2 33598.54 8.81810 2.18190 2P3/2 31074.40 5.28058 1.71942
12s 2S1/2 33817.46 9.81847 2.18153 8p 2P1/2 32227.44 6.28015 1.71985
13s 2S1/2 34072.22 10.8187 2.1813 2P3/2 32230.11 6.28316 1.71684

9p 2P1/2 32940.21 7.28174 1.71826
2P3/2 32941.94 7.28478 1.71522

3d 2D5/2 21534.70 2.85370 0.14630 10p 2P1/2 33410.23 8.28279 1.71721
2D3/2 21537.00 2.85395 0.14605 2P3/2 33411.39 8.28579 1.71421

4d 2D5/2 27397.10 3.79669 0.20331
2D3/2 27398.14 3.79695 0.20305 4f 2F 28127.85 3.99318 0.00682

5d 2D5/2 30185.24 4.76921 0.23079
2D3/2 30185.74 4.76946 0.23054 5f 2F 30606.73 4.99227 0.00773

6d 2D5/2 31695.89 5.75448 0.24552
2D3/2 31696.15 5.75470 0.24530 6f 2F 31953.17 5.99177 0.00823

7d 2D5/2 32598.30 6.74580 0.25420
2D3/2 32598.43 6.74598 0.25402 7f 2F 32764.80 6.99148 0.00852

8d 2D5/2 33178.12 7.74021 0.25979
2D3/2 33178.23 7.74045 0.25955 8f 2F 33291.40 7.99127 0.00873

9d 2D5/2 33572.06 8.73652 0.26348
2D3/2 33572.11 8.73667 0.26333 9f 2F 33652.32 8.99109 0.00891

10d 2D5/2 33851.55 9.73371 0.26629
2D3/2 33851.59 9.73388 0.26612 10f 2F 33910.42 9.99094 0.00906

11d 2D5/2 34056.94 10.7317 0.2683
2D3/2 34057.00 10.7320 0.2680 11f 2F 34101.36 10.9909 0.0091

dependent function µ(E) by fitting a polynomial in E−I through the discrete
values given by the quantum defects, µ(En) = µn.

In the bound state region E < I we can introduce the variable ν, defined
by

ν(E) =

√
R

I − E , E = I − R
ν2
, (3.82)

as a substitute for the energy variable E. The variable ν is the continuous
effective quantum number. In a pure Coulomb potential the condition that
the energy corresponding to a given value of the continuous effective quantum
number ν is one of the eigenvalues (3.68) of the Schrödinger equation reads
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Fig. 3.2. Quantum defects (•) of the 2L Rydberg series in the potassium atom as
functions of the energy relative to the continuum threshold (see also Table 3.4). The
splitting within the individual doublets is not resolved in the figure. The almost
horizontal straight lines are the quantum defect functions µ(E); their intersections
with the set of curves (3.86) define the energies of the bound states. At the continuum
threshold E = I the quantum defects match smoothly to the asymptotic phase
shifts divided by π, which are shown as dashed lines in the figure (The Roman
numeral I behind the element symbol “K” indicates the neutral potassium atom. In
this notation potassium ions with a single positive charge are written K II, doubly
charged ions are written K III, etc.)

ν(E) = n = l + 1, l + 2, . . . . (3.83)

For a modified Coulomb potential of the form (3.69) the condition for a bound
state is, according to (3.71),

ν(E) + µn = n , (3.84)

or, expressed in terms of the quantum defect function µ(E),

ν(E) + µ(E) = n . (3.85)

Thus the energies En of the bound states are given by the intersections of the
quantum defect function with the set of curves
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µ(n) = n− ν(E) = n−
√

R
I − E (3.86)

in the µ-E plane, as shown in Fig. 3.2.
The technology of high resolution laser spectroscopy has made the ob-

servation of very highly excited Rydberg states possible. The left-hand part
of Fig. 3.3 shows an observed photoabsorption spectrum (cf. (2.200) in
Sect. 2.4.4) with lines up to n = 310 in the 6snd 1D2 Rydberg series in barium.
The right-hand part of the figure shows the energy differences En+1 − En as
a function of the effective quantum number n∗ on a logarithmic scale. The
straight line shows the proportionality to (n∗)−3 following from the Rydberg
formula (3.71). Apart from resolving such small energy differences (≈ 10−8

atomic units), it is a remarkable achievement that measurements involving
such highly excited Rydberg atoms are possible at all. The spatial extension
of a Rydberg atom grows quadratically with the principal quantum number n
(see Problem 1.3) and exceeds 105 Bohr radii for n ≈ 300, this means that the
Rydberg atoms observed in Fig. 3.3 are almost one hundredth of a millimetre
in size! In further measurements states in this Rydberg series with principal
quantum numbers n > 500 were identified [NR87].

Fig. 3.3. The left-hand part shows photoabsorption cross sections with final states
in the 6s nd 1D2 Rydberg series in barium. The right-hand part shows the energy dif-
ferences of successive Rydberg states as a function of the effective quantum number
n∗

f on a logarithmic scale (every fifth energy difference is plotted). The straight line
shows the proportionality (n∗

f )
−3 following from the Rydberg formula (3.71) (From

[NJ88])
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3.2.2 Seaton’s Theorem, One-Channel Quantum Defect Theory

Below the continuum threshold, the shorter-ranged deviation of the full poten-
tial from a pure Coulomb potential is described by the quantum defects or the
quantum defect function. Above the continuum threshold the shorter-ranged
deviation from the Coulomb potential manifests itself in the asymptotic phase
shifts (cf. Sect. 1.3.2, (1.121)). At the continuum threshold, the quantum de-
fects are related to the phase shifts, because the appropriately normalized
solutions of the radial Schrödinger equation in the limit n → ∞ (i.e. E → I
from below) and in the limit E → I (from above) converge to the same well
defined solution at E = I, just as in the pure Coulomb case (see (1.152)). The
quantitative connection between the quantum defects and the phase shifts at
threshold is given by Seaton’s Theorem:

lim
n→∞µn = µ(E = I) =

1
π

lim
E→I

δ(E) . (3.87)

The factor 1/π appears on the right-hand side of (3.87), because a shift of
one half-wave in the asymptotic part of a wave function corresponds to a
change of unity in the effective quantum number and the quantum defect
below threshold, while it corresponds to a change of π in the phase shift
above threshold.

The relation (3.87) can immediately be verified in the framework of the
semiclassical approximation. There the radial wave function has the form
(1.289),

φ(r) ∝ p(r)−1/2 exp
[

i
h̄

∫ r

p(r′)dr′
]
, (3.88)

and the phase of the wave is just the action integral in the exponent divided
by h̄. The asymptotic phase shift caused by a shorter-ranged potential Vsr

added to the pure Coulomb potential is the difference of the phases with and
without Vsr:

δsc(E) =
1
h̄

∫ r

a′

√
2µ(E − VC(r′) − Vsr(r′)) dr′

− 1
h̄

∫ r

a

√
2µ(E − VC(r′)) dr′ . (3.89)

(Again, the inner turning point is a in the absence and a′ in the presence
of Vsr.) Because of the short range of Vsr the difference (3.89) becomes in-
dependent of r for sufficiently large r. Thus the asymptotic phase shift in
semiclassical approximation is just 1/(2h̄) times the additional contribution
to the action due to the shorter-ranged potential (cf. (3.79)). In the limit
E → I this is precisely π times the right-hand side of (3.80) in the limit
b→ ∞ corresponding to n→ ∞.

The close connection between the “quasi-continuum” of the bound states
just below threshold and the genuine continuum above threshold is charac-
teristic for long-ranged Coulomb-type potentials. The wave functions consist
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mainly of a large number of oscillations far out in the 1/r potential, be it a
large finite number just below threshold or an infinite number above thresh-
old. The main influence of an additional shorter-ranged potential Vsr is to
shift these outer oscillations, and this manifests itself in the phase shift above
threshold and in the quantum defect function and the quantum defects below
threshold.

The two mathematically similar but physically different situations just
below and just above the continuum threshold can be summarized in one
uniform equation of one-channel quantum defect theory (QDT),

tan[π(ν + µ)] = 0 . (3.90)

Here µ(E) is the function which describes the physical effects of the additional
shorter-ranged potential: below threshold µ is the quantum defect function
described above, and above threshold µ(E) is the asymptotic phase shift δ(E)
divided by π. Below threshold ν(E) is a variable corresponding to the energy,
namely the continuous effective quantum number (3.82). Above threshold, ν
stands for the asymptotic phase shift divided by −π:

ν(E) =

√
R

I − E for E < I , ν(E) = − 1
π
δ(E) for E ≥ I . (3.91)

With the identification (3.91) the QDT equation (3.90) above threshold
is, for the present one-channel case, a trivial identity δ(E) = δ(E). Below
threshold (3.90) simply means that ν(E) + µ(E) must be an integer n – this
is just the condition (3.85) for the existence of a bound state.

Just as the asymptotic phase shifts are defined only to within an additive
multiple of π, the quantum defects and the quantum defect function are only
unique modulo unity. The particular choice of quantum defects or the quantum
defect function determines where to start counting in a given Rydberg series.

3.2.3 Photoabsorption und Photoionization

The cross sections (2.200) for photoabsorption and (2.202) for photoioniza-
tion are given, as discussed in Sect. 2.4.6, by the respective oscillator strengths
f

(i)
fi and df (i)

Ei /dE. The relation between the cross sections and the oscillator
strengths depends on the polarization of the incoming light and on the orien-
tation, i.e. on the azimuthal quantum numbers, of the initial and final atomic
states. In order to get rid of these geometric dependences it is convenient to
define mean oscillator strengths, which is quite easily done for one-electron
atoms with wave functions of the form (1.74).

For initial and final state wave functions

Φni,li,mi(r) =
φni,li(r)
r

Yli,mi(θ, φ) ,

Φnf ,lf ,mf (r) =
φnf ,lf (r)
r

Ylf ,mf (θ, φ) , (3.92)
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we define the mean oscillator strength for transitions from the initial multiplet
ni, li to the final state multiplet nf , lf by averaging over the initial states and
summing over the final states (cf. last paragraph in Sect. 2.4.4) as well as
averaging over the three spatial directions x, y, z :

f̄nf lf ,nili =
1

2li + 1

+li∑
mi=−li

+lf∑
mf=−lf

1
3

3∑
i=1

f
(i)
nf lfmf ,nilimi

=
2µ
3h̄
ω

+lf∑
mf=−lf

1
2li + 1

+li∑
mi=−li

|〈Φnf ,lf ,mf |r|Φni,li,mi〉|2 . (3.93)

We can rewrite the absolute square in (3.93) in spherical components
(2.204):

|〈Φnf ,lf ,mf |r|Φni,li,mi〉|2 =
+1∑

ν=−1

|〈Φnf ,lf ,mf |r(ν)|Φni,li,mi〉|2 . (3.94)

With the expression (2.208) for the matrix elements of the spherical compo-
nents of r we have

li∑
mi=−li

|〈Φnf ,lf ,mf |r|Φni,li,mi〉|2

=
li∑

mi=−li

(∫ ∞

0

φnf ,lf (r) r φni,li(r) dr
)2

F (lf , li)2

×
+1∑

ν=−1

〈lf ,mf |1, ν, li,mi〉2

=
(∫ ∞

0

φnf ,lf (r) r φni,li(r) dr
)2

l>
2lf + 1

. (3.95)

Here we have assumed that lf is either li+1 or li−1 and used the fact that the
sum of the squares of the Clebsch-Gordan coefficients overmi and ν gives unity
[Edm60]. For the factors F (lf , li) we inserted the explicit expression (2.210); l>
is the larger of the two angular momentum quantum numbers li and lf . Since
the expression (3.95) no longer depends on the azimuthal quantum number
mf of the final state, the factor 1/(2lf + 1) cancels with the summation over
mf in (3.93), and the expression for the mean oscillator strengths is simplified
to

f̄nf lf ,nili =
2µ
3h̄
ω

l>
2li + 1

(∫ ∞

0

φnf ,lf (r) r φni,li(r) dr
)2

. (3.96)

The frequency ω = (εf − εi)/h̄, and hence also the oscillator strengths, are
positive for εf > εi (absorption) and negative for εf < εi (emission). From
(3.96) it is easy to see that the mean oscillator strengths fulfill the relation

(2li + 1)f̄nf lf ,nili + (2lf + 1)f̄nili,nf lf = 0 . (3.97)
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For the mean oscillator strengths, where the sum over the azimuthal quan-
tum numbers is already contained in their definition, we obtain a sum rule of
the form (see also (3.105) below)∑

nf ,lf

f̄nf lf ,nili = 1 . (3.98)

The sum may further be decomposed into contributions from the two possible
angular momentum quantum numbers in the final states, lf = li + 1 and
lf = li − 1, yielding [BS57] (see also (3.106) below):∑

nf

f̄nf li+1,nili =
1
3

(li + 1)(2li + 3)
2li + 1

,

∑
nf

f̄nf li−1,nili = −1
3
li(2li − 1)

2li + 1
. (3.99)

The matrix elements (3.94) contain no spin dependence and allow no spin
changing transitions. If, however, the final state multiplets with good total
angular momentum quantum number j, which are split due to the effects
of spin-orbit coupling, can be resolved in the experiment, then the (mean)
oscillator strength for given final state quantum numbers nf and lf will be
distributed among the various j multiplets in proportion to their multiplicity
2j + 1. In an ni

2S1/2 → nf
2Pj transition, for example, the transition to the

j = 3/2 states (2j + 1 = 4) is twice as strong altogether as the transition to
the j = 1/2 states (2j + 1 = 2).

The cross section for the absorption of photons of arbitrary polarization
by a one-electron atom of undetermined orientation is a series of sharp spikes,
whose strength is given by the mean oscillator strength (3.96) (multiplied by
the constant factor 2π2e2h̄/(µc) from (2.218)). Only comparatively small dis-
tances r contribute in the radial integral in (3.96), because the initial wave
function φni,li(r) vanishes for large r. With increasing principal quantum num-
ber nf of the final states the amplitudes of the radial wave functions φnf ,lf (r) of
the final states (which are normalized to unity) become smaller and smaller in
the inner region, just as for the pure Coulomb functions in Fig. 1.4. Hence the
oscillator strengths also become smaller and smaller with increasing principal
quantum number nf of the final states.

In order to expose the dependence of the cross sections and oscillator
strengths on the principal quantum number for large principal quantum num-
bers, we renormalize the radial wave functions of the final states in analogy
to (1.139) so that the square of their norm becomes inversely proportional to
the separation 2R/(n∗f )3 between successive energy eigenvalues:

φE
nf ,lf

=

√
(n∗f )3

2R φnf ,lf . (3.100)

Here n∗f are the effective quantum numbers nf−µnf which determine the ener-
gies of the final states according to (3.71). In the limit n∗f → ∞ corresponding
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to E → I (from below), the wave functions (3.100) merge smoothly into the
energy normalized continuum wave functions φE,lf for E ≥ I. With (3.100)
we can rewrite the (mean) oscillator strengths (3.96) as

f̄nf lf ,nili =
2R

(n∗f )3
2µ
3h̄
ω

l>
2li + 1

(∫ ∞

0

φE
nf ,lf

(r) r φni,li(r) dr
)2

, (3.101)

where the radial matrix element now converges to a finite number at the
continuum threshold E = I.

The representation (3.101) of the discrete oscillator strengths facilitates
their smooth matching to the photoabsorption cross sections and oscilla-
tor strengths to final states in the continuum. If we define mean oscillator
strengths in analogy to (3.93) as

df̄Elf ,nili

dE
=

1
2li + 1

+li∑
mi=−li

+lf∑
mf=−lf

1
3

3∑
i=1

df (i)
Elfmf ,nilimi

dE

=
2µ
3h̄
ω

+lf∑
mf=−lf

1
2li + 1

+li∑
mi=−li

|〈ΦE,lf ,mf |r|Φni,li,mi〉|2 , (3.102)

then the same manipulations which led from (3.93) to (3.96) yield

df̄nili,Elf

dE
=

2µ
3h̄
ω

l>
2li + 1

(∫ ∞

0

φE,lf (r) r φni,li(r) dr
)2

. (3.103)

The cross section for the photoionization of atoms of unknown orientation
by photons of arbitrary polarization is given by the mean oscillator strength
(3.103) (multiplied by the constant factor 2π2e2h̄/(µc) from (2.223)). From
(3.101) we see that the discrete oscillator strengths multiplied by the density
(n∗f )

3/(2R) of the final states merge smoothly into the continuous form (3.103)
at the threshold E = I:

lim
nf→∞

(n∗f )
3

2R f̄nf lf ,nili = lim
E→I

df̄Elf ,nili

dE
. (3.104)

An example of the smooth transition from the discrete line spectrum below
the continuum threshold to the continuous photoionization spectrum above
threshold is shown in Fig. 3.4 for the case of sodium. The left-hand part of the
figure shows the discrete oscillator strengths (3.101) multiplied by (n∗f )

3/(2R)
(2R ist unity in atomic units), and the right-hand part shows the photoion-
ization cross sections divided by 2π2e2h̄/(µc). The pronounced minimum at
an energy around 0.05 atomic units above the threshold is attributed to a zero
with an accompanying sign change in the radial matrix element in (3.103). In
the discrete part of the spectrum the separation between successive lines in
the near-threshold region is just 2R/(n∗f )3, so that the areas under the dashed
lines correspond to the original oscillator strengths.

The transitions to the continuum must of course be taken into account
when formulating sum rules. Thus (3.98) correctly reads
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Fig. 3.4. Measured oscillator strengths for 3S → nP transitions in sodium. The
discrete oscillator strengths (from [KB32]) are multiplied by the respective factors
(n∗

f )
3. Near threshold the areas under the dashed lines correspond to the original

oscillator strengths. The continuous oscillator strengths above threshold are the
photoionization cross sections from [HC67] divided by the factor 2π2e2h̄/(µc)

∑
nf ,lf

f̄nf lf ,nili +
∫ ∞

I

df̄Elf ,nili

dE
dE = 1 . (3.105)

The correct form of (3.99) is
∑
nf

f̄nf li+1,nili +
∫ ∞

I

df̄E li+1,nili

dE
dE =

1
3

(li + 1)(2li + 3)
2li + 1

,

∑
nf

f̄nf li−1,nili +
∫ ∞

I

df̄E li−1,nili

dE
dE = −1

3
li(2li − 1)

2li + 1
. (3.106)

Finally it should be mentioned, that the derivation of the sum rules in
Sect. 2.4.6 relied on a commutation relation of the form (2.185), in partic-
ular on the commuting of the dipole operator and the potential energy. In a
one-electron atom this is only fulfilled if the potential energy is a local function
of the displacement variable. For nonlocal one-body potentials as they occur
in the Hartree-Fock method (see Sect. 2.3.1), the Thomas-Reiche-Kuhn sum
rule can, strictly speaking, not be applied with N = 1. We find a way out of
this problem by realizing that the non-locality in the Hartree-Fock potential
originates from the Pauli principle, which requires e.g. the wave function of
the valence electron in an alkali atom to be orthogonal to the occupied single-
particle states in the lower closed shells. The sum rule with N = 1 holds
approximately, if we include fictitious transitions to the states forbidden by
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the Pauli principle. Since εf < εi for such transitions and hence f̄nf lf ,nili is neg-
ative, the sum of the oscillator strengths for the allowed transitions becomes
larger.

3.3 Coupled Channels

3.3.1 Close-Coupling Equations

The simple picture of one electron in a modified Coulomb potential described
in Sect. 3.2 can be transferred, to a large part, to many-electron atoms, when
one electron is in a highly excited loosely bound state, while all other electrons
form a more or less tightly bound core. In the simplest case we can assume
that the core electrons are not excited and only affect the spectrum via their
influence on the mean single-particle potential for the “outer” electron. In a
further step we can allow a finite number of excitations of the core electrons.
The total wave function of the atom (or ion) then has the form

Ψ(x1, . . . , xN ) = Â1

∑
j

ψ
(j)
int (ms1 , x2, . . . xN )ψj(r1) , (3.107)

where the summation index j labels the various internal states of the core
whose wave functions ψ(j)

int each define a “channel” and depend on the internal
variables. The internal variables are all variables except the spatial coordinate
r1 of the outer electron; we are counting the spin of the outer electron as one
of the internal variables. In each channel j, ψj(r1) is the associated channel
wave function; it is simply a one-electron wave function for the outer electron.
We shall later include the angular coordinates of the outer electron among
the internal coordinates, so the channel wave functions will depend only on
the radial coordinate of the outer electron. To begin with however, we shall
derive the equations of motion for the full orbital one-electron wave functions
ψj(r1).

We assume that the wave functions of the core are antisymmetric with
respect to exchange amongst the particle labels 2−N ; the total wave function
is made fully antisymmetric by the residual antisymmetrizer which takes care
of the exchange of the outer electron with the electrons 2 −N of the core:

Â1 = 1 −
N∑

ν=2

P̂1↔ν . (3.108)

In order to derive equations of motion for the channel wave functions, we
rewrite ψj(r1) as

∫
dr′ δ(r1 − r′)ψj(r′) in (3.107) giving

Ψ(x1, . . . , xN ) =
∑

j

∫
dr′ Φj(r′)ψj(r′) (3.109)

with
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Φj(r′) = Â1{ψ(j)
int (ms1 , x2, . . . xN )δ(r1 − r′)} .

Equation (3.109) represents an expansion of the total wave function in the
basis of states Φj(r′) which are labelled by the discrete index j numbering
the channels and the continuous vector parameter r′ corresponding to the
position of the outer electron. Due to the effect of the residual antisymmetrizer
(3.108), this basis is not orthogonal, i.e. the overlap matrix

〈Φi(r)|Φj(r′)〉 = 〈ψ(i)
intδ(r1 − r)|Â†

1Â1|ψ(j)
intδ(r1 − r′)〉

= N〈ψ(i)
intδ(r1 − r)|Â1|ψ(j)

intδ(r1 − r′)〉 (3.110)

need not necessarily vanish for i �= j or r �= r′. For the second line of (3.110)
we have used the property Â†

1Â1 = NÂ1 of the residual antisymmetrizer
(3.108) (which is defined without a normalization factor – cf. (2.61), (2.64)).

Diagonalizing the Hamiltonian Ĥ in the basis (3.109) leads to an equation
of the type (1.277), generalized to the case of discrete and continuous basis
state labels:∑

j

∫
dr′ (Hi,j(r, r′) − E Ai,j(r, r′))ψj(r′) = 0 , (3.111)

with

Hi,j(r, r′) = 〈ψ(i)
intδ(r1 − r)|ĤÂ1|ψ(j)

intδ(r1 − r′)〉 ,
Ai,j(r, r′) = 〈ψ(i)

intδ(r1 − r)|Â1|ψ(j)
intδ(r1 − r′)〉 . (3.112)

In (3.111) we have cancelled the common factor N appearing in front of the
matrix elements, cf. (3.110).

Equation (3.111) represents a set of coupled-channel equations

Ĥi,iψi +
∑
j �=i

Ĥi,jψj = E

⎛
⎝Âi,iψi +

∑
j �=i

Âi,jψj

⎞
⎠ , (3.113)

for the channel wave functions ψj , and the Hamiltonian and overlap oper-
ators Ĥi,j and Âi,j are integral operators defined by the integral kernels
(3.112). These equations look a little more complicated than the coupled-
channel equations (1.206) which were derived under quite general assumptions
in Sect. 1.5.1. This is due to the non-orthogonality of the basis states which
results from the fact that our present ansatz (3.107) already takes into account
the indistinguishability of all electrons and collects all equivalent channnels,
which differ only by rearrangement of the electron labels, into one channel.

The overlap kernels Ai,j(r, r′) can be decomposed into a direct part orig-
inating from the 1 in the residual antisymmetrizer (3.108), and an exchange
part Ki,j(r, r′) coming from the genuine permutations in (3.108). Because of
the orthonormality of the core states the direct part of the overlap kernels is
simply a Kronecker symbol in the channel indices and a delta function in the
spatial coordinate, but the exchange parts are genuinely nonlocal:
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Ai,j(r, r′) = δi,jδ(r − r′) −Ki,j(r, r′) ,

Ki,j(r, r′) =
N∑

ν=2

〈ψ(i)
intδ(r1 − r)|P̂1↔ν |ψ(j)

intδ(r1 − r′)〉 . (3.114)

In each contribution to the exchange part, the spatial coordinate r1 of the
outer electron is exchanged with one of the coordinates r2, . . . rN of the core
electrons, and the matrix element vanishes for large |r′| (or large |r|) because
of the exponential decay of the wave function of the bound core state ψ(j)

int

(or ψ(i)
int). For large separations the overlap operator thus becomes the unit

operator.
Similar considerations apply for the Hamiltonian operators Ĥi,j . They too

can be decomposed into a direct part Ĥd arising from the 1 in the residual
antisymmetrizer (3.108), and an exchange part Ĥex described by an integral
kernel Hex i,j(r, r′), which is short ranged and nonlocal just as in the case of
the overlap operators.

In order to expose the structure of the direct part Ĥd of the one-body
Hamiltonian, it is useful to decompose the N -electron Hamiltonian (2.53) as
follows:

Ĥ = Ĥ1 + Ĥ2−N + ĤW . (3.115)

Ĥ1 acts only on functions of r1 and Ĥ2−N acts only on functions of the
remaining, the internal, variables:

Ĥ1 =
p̂2

1

2µ
+ V (r1) ,

Ĥ2−N =
N∑

ν=2

p̂2
ν

2µ
+

N∑
ν=2

V (rν) +
∑

1<ν<ν′
Ŵ (ν, ν′) . (3.116)

r1 is coupled to the other degrees of freedom by the interaction term

ĤW =
N∑

ν=2

Ŵ (1, ν) . (3.117)

Since Ĥ1 does not act on the internal wave functions, the integration over the
internal variables in 〈ψ(i)

intδ(r−r1)|Ĥ1|ψ(j)
intδ(r

′−r1)〉 yields a Kronecker symbol
in the channel indices and the diagonal matrix elements are simply the one-
body matrix elements of the kinetic energy p̂2

1/(2µ) plus the potential energy
V (r1) of the outer electron. From Ĥ2−N we obtain diagonal contributions
corresponding to the internal energies in the respective channels,

Ei = 〈ψ(i)
int|Ĥ2−N |ψ(i)

int〉′ , (3.118)

multiplied by δ(r − r′). The prime on the ket bracket indicates integration
and summation over the internal variables. We assume that the internal wave
functions are eigenfunctions of Ĥ2−N , or at least that Ĥ2−N is diagonal in
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the internal states included in the expansion (3.107); then its contributions
to the direct one-body Hamiltonian which are non-diagonal in the channel
labels vanish. The contribution from the interaction term ĤW couples the
channels. With the expression (2.55) for the electron-electron interaction this
contribution consists of the local coupling potentials

Vi,j(r) = 〈ψ(i)
int|

N∑
ν=2

e2

|r − rν | |ψ
(j)
int 〉′ . (3.119)

The decomposition of the Hamiltonian and overlap operators into direct
and exchange parts exposes the structure of (3.113) as a system of coupled
Schrödinger-like equations:(

p̂2

2µ
+ V (r)

)
ψi(r) +

∑
j

Vi,j(r)ψj(r)

+
∑

j

∫
Hex i,j(r, r′)ψj(r′) dr′

= (E − Ei)ψi(r) − E
∑

j

∫
Ki,j(r, r′)ψj(r′) dr′ . (3.120)

The coupled equations (3.120) are generally known under the name of close-
coupling equations. They consist of a set of coupled integro-differential equa-
tions for the channel wave functions ψi(r). The interactions consist of a direct
local potential and a nonlocal exchange potential. The explicit energy depen-
dence of the nonlocal contribution on the right-hand side is due to the fact
that the equation of motion has the form of a generalized eigenvalue problem
(3.111).

The longest-ranged contributions to the potential energy in (3.120) are the
direct diagonal potential V (r) describing the electrostatic attraction by the
atomic nucleus,

V (r) = −Ze
2

r
, (3.121)

and the direct interaction potentials (3.119). Using the multipole expansion
(A.9) in Appendix A.1,

1
|r − rν | =

∞∑
l=0

[min{r, rν}]l
[max{r, rν}]l+1

Pl(cos θν) , (3.122)

we can expand the potentials (3.119) in a series for large |r|,

Vi,j(r) =
∞∑

l=0

e2

rl+1
〈ψ(i)

int|
N∑

ν=2

rlν Pl(cos θν)|ψ(j)
int 〉′ , |r| → ∞ . (3.123)

Here Pl are the Legendre polynomials and θν is the angle between r and rν .
The l = 0 contribution in (3.123) yields a potential which is diagonal in the
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channel indices and describes the electrostatic repulsion by the core electrons.
It ensures that the outer electron only sees the net charge Z − (N − 1) of
atomic nucleus plus core electrons at large distances. The higher contributions
corresponding to l > 0 depend on the multipole moments and multipole matrix
elements

M
(l)
i,j = 〈ψ(i)

int|
N∑

ν=2

rlν Pl(cos θν)|ψ(j)
int 〉′ (3.124)

of the internal states. Since the internal states are usually eigenstates of the
the parity operator for the N − 1 core electrons (cf. Sect. 2.2.4), the diagonal
multipole moments M (l)

i,i vanish for odd l. For neutral atoms and positive
ions (i.e. for Z ≥ N), the structure of the close-coupling equations is thus
dominated by the diagonal long-ranged Coulomb potential −(Z −N +1)e2/r
describing the attraction of the outer electron by the net charge of nucleus
plus core electrons. The next contributions depend on multipole moments and
multipole matrix elements of the internal core states; they fall off at least as
fast as 1/r3 in the diagonal potentials and at least as fast as 1/r2 in the non-
diagonal coupling potentials. Due to the exponential decay of the bound state
wave functions of the internal core states, the nonlocal exchange potentials
fall off exponentially at large distances.

The internal states ψ(i)
int defining the channels generally have a well defined

angular momentum, the channel spin. It is made up of the orbital angular
momenta of the core electrons 2−N together with the spin angular momenta of
all electrons. The resulting channel spin must still be coupled with the orbital
angular momentum of the outer electron to form the total angular momentum
of all electrons, which is a good quantum number. When we separate the close
coupling equations (3.120) into radial and angular parts, there will only be
coupling between terms belonging to the same values of the total angular
momentum quantum numbers J, MJ and, if the perturbation due to spin-
orbit coupling is sufficiently small, to the same values L, ML of the total
orbital angular momentum and S, MS of the total spin. The coupled equations
(3.120) thus fall into various sets of coupled radial equations which, apart from
the nonlocal exchange potentials, each have the general form (1.214). Each
such set of coupled radial equations is characterized by the quantum numbers
J, L, S and theN -electron parity, as was described for atomic states in general
in Sect. 2.2.4. With the usual phase conventions in the angular momentum
coupling, the potentials appearing in the coupled radial equations are real.
The transition from the coupled equations (3.120) to coupled radial equations
will be discussed in more detail in connection with inelastic scattering in
Sect. 4.3.2.

3.3.2 Autoionizing Resonances

The internal energy E2 of an excited state ψ(2)
int of the core electrons lies higher

than the internal energy E1 of the ground state ψ(1)
int . The channel threshold
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I1 in channel 1 coincides with the continuum threshold of the whole system,
and the channel threshold I2, above which channel 2 is open, lies higher by
the amount E2 − E1 corresponding to the internal excitation energy of the
core.

I1 = I , I2 = I + E2 − E1 . (3.125)

At energies between I1 and I2 there can be states in channel 2 which would
be bound if there were no coupling to the open channel 1. In the independent-
particle picture such a state corresponds to a two-electron excitation: firstly
a core electron is excited defining the internal state ψ(2)

int ; secondly the outer
electron occupies an (excited) state in the electron-core potential (see Fig. 3.5).
Due to channel coupling, the excited core electron can impart its excitation
energy E2 −E1 to the outer electron, which thus attains an energy above the
continuum threshold and can be ejected without absorption or emission of
electromagnetic radiation. This process is called autoionization.

Fig. 3.5. Schematic illutration of an autoionizing resonance in the single-particle
picture. Electrons are indicated by filled circles, unoccupied single-particle states by
empty circles

Such autoionizing states appear in the coupled-channel equations as Fesh-
bach resonances which were described in Sect. 1.5.2. The bound state in the
uncoupled channel 2 is described by a bound radial wave function φ0(r), and
all other coordinates (including the angular coordinates of the outer electron)
are accounted for in the internal wave function of the excited core state ψ(2)

int .
The radial wave function φreg in the uncoupled open channel 1 has the asymp-
totic form [2µ/(πh̄2k)]1/2 sin (kr + δbg) (cf. (1.222)), where δbg is the back-
ground phase shift due to the diagonal potential. The factor [2µ/(πh̄2k)]1/2

ensures normalization in energy. The effects of the channel coupling can easily
be calculated if we assume that the channel wave function φ2 in the closed
channel 2 is always proportional to the wave function of the bound state φ0.
We then obtain a solution of the coupled equations in the following form:

φ1(r) = cos δresφreg(r) + sin δres∆φ1(r) ,

φ2(r) = cos δres
〈φ0|V2,1|φreg〉
E − ER

φ0(r) . (3.126)

The modification of the wave function in channel 1 is described by the term
sin δres∆φ1, in which∆φ1(r) asymptotically merges into the irregular solution
of the uncoupled equation:
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∆φ1(r) =
√

2µ/(πh̄2k) cos (kr + δbg) , r → ∞ . (3.127)

δres is the additional asymptotic phase due to coupling of the bound state
in channel 2 to the open channel 1. Near the energy ER of the autoionizing
resonance it rises more or less suddenly by π and is quantitatively given rather
well by the formula (1.233):

tan δres = − Γ/2
E − ER

. (3.128)

According to (1.231), the width Γ is given by

Γ = 2π〈φreg|V1,2|φ0〉2 , (3.129)

and it determines the lifetime of the state with respect to autoionization
according to (2.145). The potential V1,2 is real (as is the matrix element
〈φreg|V1,2|φ0〉) and encompasses all contributions which couple the channels,
including nonlocal exchange contributions.

The channel wave functions (3.126) correspond exactly to the solutions
of the two-channel equations in Sect. 1.5.2, together with the common fac-
tor cos δres which ensures that the wave functions in the open channel 1 are
energy normalized. The associated total wave functions are then also energy
normalized, because the normalization integrals are dominated by the diver-
gent contributions from the radial wave functions in the open channel.

With (3.128) and (3.129), the radial wave function φ2 in (3.126) can be
rewritten as

φ2(r) = − sin δres
π〈φreg|V1,2|φ0〉 φ0(r) , (3.130)

so that the entire N -electron wave function has the form

ΦE = cos δres Â1

{
ψ

(1)
int

φreg(r)
r

}

− sin δres
π〈φreg|V1,2|φ0〉 Â1

{
ψ

(2)
int

φ0(r)
r

− π〈φreg|V1,2|φ0〉ψ(1)
int

∆φ1(r)
r

}
. (3.131)

It is appropriate to normalize the radial wave function φ0 of the bound
state in the (uncoupled) channel 2 such that the contribution Â1{ψ(2)

intφ0(r)/r}
of channel 2 to the N -electron wave function (3.131) is normalized to unity.
Due to antisymmetrization, this does not necessarily mean that φ0 itself is
normalized to unity. With (3.128) and (3.129), the absolute square of the
factor in front of the contribution from channel 2 in (3.131) can be written as

sin2 δres
π2〈φreg|V1,2|φ0〉2 =

1
π

Γ/2
(E − ER)2 + (Γ/2)2

=
1
π

dδres
dE

. (3.132)

Thus the admixture of channel 2 near an autoionizing resonance is described
by a Lorentzian curve with a maximum at the resonance energy ER and a
width corresponding to the width of the resonance (see Fig. 1.8 in Sect. 1.5.2).
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Equation (3.131) shows that the “unperturbed wave function” (δres = 0)
acquires an admixture due to the coupling of the channels. This admixture
is not merely the naked bound state Â1ψ

(2)
intφ0(r)/r, but is itself dressed by a

modification of the open channel wave function.
The existence of autoionizing resonances manifests itself not only in the

radiationless decay of excited states, but also in other observable quantities
such as photoabsorption cross sections. In order to calculate, for example, the
oscillator strength df (x)

Ei /dE for photoionization from an initial N -electron
state Φi, we have to apply the upper formula (2.222) and insert the two-
channel final state wave function ΦE from (3.131):

df (x)
Ei

dE
=

2µ
h̄
ω

[
d1 cos δres − d2 sin δres

π〈φreg|V1,2|φ0〉
]2

=
2µ
h̄
ωd 2

1 cos2 δres

[
1 − d2

d1

tan δres
π〈φreg|V1,2|φ0〉

]2

. (3.133)

Here d1 and d2 are the N -electron matrix elements which describe the
dipole transitions from the initial state Φi to the two components of the final
state (3.131):

d1 = 〈ψ(1)
int

φreg(r)
r

|
N∑

ν=1

xνÂ1|Φi〉 ,

d2 = 〈ψ(2)
int

φ0(r)
r

− π〈φreg|V1,2|φ0〉ψ(1)
int

∆φ1(r)
r

|
N∑

ν=1

xνÂ1|Φi〉 . (3.134)

It may be worth commenting on the physical dimensions of d1 and d2. Due to
the energy normalization of the wave function φreg, each occurrence of φreg,
rather than a normalized bound state wave function, contributes the inverse
square root of an energy to the physical dimension, as is e.g. obvious in (3.129).
The same holds for ∆φ1. Hence the dipole transition strength d1 as defined
in (3.134) has the dimension of length times an inverse square root of energy,
whereas d2 is just a length.

The formula (3.133) shows that the observable photoabsorption cross sec-
tions in the vicinity of an autoionizing resonance are formed from two interfer-
ing amplitudes. The resulting line shapes can best be discussed if we rewrite
it as

df (x)
Ei

dE
=

2µ
h̄
ωd 2

1

(q + ε)2

1 + ε2
, (3.135)

where

ε = − cot δres =
E − ER

Γ/2
(3.136)

is the dimensionless reduced energy, which measures the energy relative to
the position of the resonance in units of half the width of the resonance. The
parameter
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q =
d2

d1π〈φreg|V1,2|φ0〉 (3.137)

is the dimensionless shape parameter which depends on the relative strength of
the dipole transition matrix elements (3.134) and determines the shape of the
absorption line. In (3.135) (2µ/h̄)ωd 2

1 is a weakly energy-dependent factor
corresponding to the oscillator strength we would expect in the absence of
coupling to the bound state in channel 2. The energy dependence of the cross
section near the resonance is dominantly given by the Beutler-Fano function

F (q; ε) =
(q + ε)2

1 + ε2
. (3.138)

Beutler-Fano resonances of the form (3.135) occur not only in photoab-
sorption, but in all observable quantities which are determined by a tran-
sition matrix element 〈ΦE |Ô|Φi〉 as in (2.222). The matrix elements (3.134)
must then be replaced by the corresponding matrix elements of the transition
operator Ô.

Different values of the shape parameter q in the Beutler-Fano function
(3.138) lead to absorption lines of different shape as illustrated in Fig. 3.6.

Fig. 3.6. The Beutler-Fano
function (3.138) for various
positive (a) and negative (b)
values of the shape parame-
ter q
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At ε = −q the function and hence also the oscillator strength vanish. This
corresponds to completely destructive interference of the two terms in (3.133).
The absorption line is steeper on the side of this zero and flatter on the other
side. The sign of q determines which side is the steep one. The maximum of
the Beutler-Fano function is at ε = 1/q; the height of the maximum is 1 + q2.
Far from resonance, i.e. for ε→ ±∞, the Beutler-Fano function is unity and
the oscillator strength merges into the oscillator strength we would expect in
the absence of channel coupling. For very small values of q the Beutler-Fano
function describes an almost symmetric fall off to zero around the resonance
energy (window resonance). (See Problem 3.4.)

3.3.3 Configuration Interaction, Interference of Resonances

The considerations of Sect. 1.5.2 and Sect. 3.3.2 can be extended to the case
of more than one closed and/or open channel.

Let’s look for example at a system consisting of one open channel 1 and
two closed channels 2 and 3, the latter two being dominated by a bound state
φ02 or φ03 respectively,(

− h̄
2

2µ
d2

dr2
+ Vi

)
φ0i = E0iφ0i , i = 2, 3 . (3.139)

The coupled-channel equations(
− h̄

2

2µ
d2

dr2
+ Vi

)
φi(r) +

∑
j �=i

Vi,jφj(r) = E φi(r) , i = 1, 2, 3 (3.140)

may be simplified using the assumptions

φ2(r) = A2φ02(r) , φ3(r) = A3φ03(r) , (3.141)

which lead to (cf. (1.218))(
E +

h̄2

2µ
d2

dr2
− V1

)
φ1(r) = A2V1,2φ02(r) +A3V1,3φ03(r) ,

A2(E − E02)φ02(r) = V2,1φ1(r) +A3V2,3φ03(r) ,
A3(E − E03)φ03(r) = V3,1φ1(r) +A2V3,2φ02(r) . (3.142)

The formal resolution of the first equation (3.142) for φ1 using the Green’s
function (1.227) now yields (cf. (1.220))

φ1 = φreg +A2 Ĝ V1,2φ02 +A3 Ĝ V1,3φ03 . (3.143)

If we insert this expression for φ1 in the lower two equations (3.142) and form
matrix elements with the bra states φ02 and φ03 respectively, we obtain an
inhomogeneous system of two equations for the two amplitudes A2 and A3:

(E − ε2)A2 −W2,3A3 = W2,1 , (E − ε3)A3 −W3,2A2 =W3,1 . (3.144)
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In analogy to (1.232), εi are energies close to the energies of the uncoupled
eigenstates in the closed channels,

εi = E0i + 〈φ0i|Vi,1 Ĝ V1,i|φ0i〉 , i = 2, 3 , (3.145)

and Wi,j are the (real) coupling matrix elements

Wi,1 = 〈φ0i|Vi,1|φreg〉 , i = 2, 3 ,

W2,3 = 〈φ02|V2,3|φ03〉 + 〈φ02|V2,1 Ĝ V1,3|φ03〉 = W3,2 . (3.146)

W2,3 also contains the effect of the indirect coupling of the closed channels via
the open channel 1 as is expressed in the second matrix element involving V2,1

and V1,3. It has the physical dimension of an energy, whereas Wi,1 have the
dimension of the square root of an energy. In place of (1.224), the resolution
of the equations (3.144) now yields expressions for the two amplitudes A2 and
A3:

A2 =
(E − ε3)W2,1 +W2,3W3,1

(E − ε2)(E − ε3) −W 2
2,3

,

A3 =
(E − ε2)W3,1 +W3,2W2,1

(E − ε2)(E − ε3) −W 2
2,3

. (3.147)

From the asymptotic form of (3.143) we obtain an expression for the tangent
of the asymptotic phase shift δres in the wave function of the open channel due
to coupling to the two bound states φ02 and φ03. In place of (1.229), which
was applicable to the case of one bound state, we now have

tan δres = −π (E − ε3)W 2
2,1 + (E − ε2)W 2

3,1 + 2W2,1W3,1W2,3

(E − ε2)(E − ε3) −W 2
2,3

. (3.148)

The formula (3.148) for δres describes two resonant jumps through π, and
the odd multiples of π/2 are passed at the zeros of the denominator

D(E) = (E − ε2)(E − ε3) −W 2
2,3 . (3.149)

If we abbreviate the numerator on the right-hand side of (3.148) by −N(E),

N(E) = π[(E − ε3)W 2
2,1 + (E − ε2)W 2

3,1 + 2W2,1W3,1W2,3] , (3.150)

then the derivative of the phase shift δres at the zeros of D(E) is given by

dδres
dE

∣∣∣∣
D=0

=
(

1 +
N2

D2

)−1 (
D′N −N ′D

D2

) ∣∣∣∣
D=0

=
D′

N
. (3.151)

If the poles of tan δres defined by the zeros of D(E) don’t overlap too
strongly, i.e. their separation should not be much smaller than their residues,
then these poles describe two resonances caused by the coupling of the bound
states φ02 and φ03 to the open channel 1. The positions E+ und E− of the
resonances reflect the interaction of the two bound states and are given by
(cf. Problem 1.6)
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E± =
ε2 + ε3

2
±
√(

ε2 − ε3
2

)2

+W 2
2,3 . (3.152)

If we neglect the generally weak dependence on energy E of the matrix ele-
ments Wi,j and of the εi defined by (3.145), then the corresponding widths
are given via the general formula (1.235) as:

Γ± =
Γ2 + Γ3

2
± π

1
2 (ε2 − ε3)(W 2

2,1 −W 2
3,1) + 2W2,1W3,1W2,3√

1
4 (ε2 − ε3)2 +W 2

2,3

. (3.153)

Here Γ2 = 2πW 2
2,1 and Γ3 = 2πW 2

3,1 are the widths one would expect ac-
cording to (1.231) due to coupling to only one of the closed channels 2 or 3
respectively. The sum of the two widths remains essentially unchanged due
to cancellation of the terms following the plus-minus sign on the right-hand
side of (3.153), but the distribution of the total width over the two resonances
depends extremely sensitively on the interaction. In an extreme case, one res-
onance can carry all the width, while the other resonance has vanishing width
and corresponds to a bound state in the continuum. The complete vanishing
of the autoionization probability for a superposition of bound states from the
closed channels 2 and 3 can be interpreted as a consequence of completely
destructive interference of the decay amplitudes of the two components of the
state. (See Problem 3.3.)

The occurrence of resonances with exactly vanishing width follows quite
generally from the formula (3.148) without the need for any further assump-
tions [FW85]. The phase shift δres is a half-integral multiple of π at the zeros
of the denominator (3.149) and an integral multiple of π at the zeros of the
numerator (3.150). When a zero of the numerator lies close to a zero of the
denominator, the derivative of the phase shift becomes very large, because a
finite jump of at least π/2 must occur over a very small energy range. We
obtain an infinitely narrow resonance, i.e. a bound state in the continuum,
when numerator and denominator vanish simultaneously, and this is the case
when the following equations are fulfilled:

E − ε2 = −W2,1

W3,1
W2,3 , E − ε3 = −W3,1

W2,1
W2,3 . (3.154)

In this case the asymptotic phase shift δres is undetermined, because the wave
function φ1(r) in the open channel describes a bound state which vanishes
asymptotically.

The interference of two resonances from different closed channels also af-
fects the photoabsorption cross sections and oscillator strengths. For the three
channel wave functions making up the energy normalized final state ΦE , the
corresponding generalization of (3.126) is

φ1(r) = cos δresφreg(r) + sin δres∆φ1(r) ,
φ2(r) = cos δresA2φ02(r) , φ3(r) = cos δresA3φ03(r) , (3.155)
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and the total wave function ΦE is a corresponding generalization of (3.131). If
we calculate the oscillator strengths (2.222) with this final state wave function,
then we obtain, as extension of (3.133),

dfEi

dE
=

2µ
h̄
ω d 2

1 cos2 δres

(
1 +

d2
d1
A2 +

d3
d1
A3

)2

. (3.156)

Here (2µ/h̄)ωd 2
1 is the oscillator strength we would expect in the absence of

coupling of the open channel to the closed channels. The parameters d2 and
d3 are the dipole transition matrix elements connecting the initial state to
the components from the respective closed channels in the final state wave
function. These are essentially the channel wave functions φ02 and φ03, which
may be dressed with small admixtures from the open channel as in (3.134).
Replacing the cos2 in (3.156) by 1/(1+tan2) and using the explicit expressions
(3.147) for the amplitudes A2, A3, we obtain

dfEi

dE
=

2µ
h̄
ωd 2

1

[
D(E) +

d2
d1

[(E − ε3)W2,1 +W2,3W3,1]

+
d3
d1

[(E − ε2)W3,1 +W3,2W2,1]

]2
1

D(E)2 +N(E)2
, (3.157)

where D(E) und N(E) again stand for the denominator (3.149) and the nu-
merator (3.150) in the expression (3.148) for the phase shift.

For different values of the coupling matrix elements Wi,j , of the (shifted)
energies ε2, ε3 of the non-interacting resonances and of the relative dipole ma-
trix elements d2/d1 and d3/d1, the formula (3.157) for the oscillator strengths
can produce very different energy dependences and line shapes. Figure 3.7
shows two examples in which qualitatively different interference effects lead
to a narrow resonance. In both cases the phase shift (3.148) and the oscillator
strength (3.157) were calculated using the same matrix elements W2,1 = 0.5
and W3,1 = 0.3 for the direct coupling of the closed channels to the open
channel and the same relative dipole matrix elements (d2/d1 = d3/d1 = 2.0).
In Fig. 3.7(a) the other parameters are ε2 = 4.0, ε3 = 6.0 , W2,3 = −1.5 .
In this case both resonances are clearly separated, but the lower resonance
carries almost all the width while the upper resonance is very narrow, be-
cause the conditions (3.154) for a bound state in the continuum are almost
fulfilled. In the oscillator strength we clearly see a broad and a narrow res-
onance of the Beutler-Fano type. The maximum of the narrow resonance is
very high, because the denominator D(E)2 +N(E)2 on the right-hand side of
(3.157) becomes very small. The zero of the oscillator strength lies to the left
of the maximum for both resonances and this corresponds to a positive shape
parameter q (see Fig. 3.6).

In Fig. 3.7(b) the matrix element W3,2 for the direct coupling of the two
closed channels was taken to vanish and the energies ε2 and ε3 were chosen
very close together (namely at 4.9 and 5.1 respectively). This case corre-
sponds to the superposition of two resonances which do not interact directly
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Fig. 3.7. Resonant phase shifts (3.148) and oscillator strengths (3.157) for two
examples of two interfering resonances. The coupling of the two closed channels 2
and 3 to the open channel is given by the matrix elements W2,1 =0.5 , W3,1 =0.3,
and the relative dipole matrix elements are d2/d1 =d3/d1 =2.0. Further parameters
in case (a) are ε2 = 4.0 , ε3 = 6.0 , W3,2 =−1.5. In case (b) we have ε2 = 4.9 , ε3 =
5.1 , W3,2 =0. The oscillator strengths in the lower parts of the figure are given in
units of the oscillator strength (2µ/h̄)ωd 2

1 which we would obtain in the absence of
coupling to the two closed channels

and whose separation is substantially smaller than their widths. Now the sep-
aration between the two poles (3.152) of tan δres is so small that it is no longer
possible to identify two independent resonances. However, the phase shift is
forced to rise from one half-integral multiple of π to the next half-integral
multiple of π in the narrow intervall between the two poles, and this also
leads to a sudden jump in the phase shift (see top half of the figure). In the
oscillator strengths (bottom half of the figure) we observe a very narrow (and
high) Beutler-Fano resonance cutting into a broad resonance.

Apart from the two examples illustrated in Fig. 3.7 there are many other
possible line shapes corresponding to different widths, separations and shape
parameters of the resonances. Observable spectra often are the product of
complicated interference effects and it is by no means obvious that a maxi-
mum in a photoabsorption cross section unambiguously corresponds to a well
defined autoionizing state of the atom.
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So far we have assumed that only one channel is open. If e.g. two chan-
nels are open, then the asymptotic phase shifts of the continuum waves are
not uniquely defined and there are two linearly independent solutions of the
coupled-channel equations for each energy E. If we use the Golden Rule to
calculate transition probabilities we obtain an incoherent superposition of two
contributions corresponding to the two independent final states. For a detailed
and comprehensive description of the theory of photoabsorption spectra see
e.g. the article by Starace [Sta82].

3.3.4 Perturbed Rydberg Series

We can describe the effect of an isolated autoionizing resonance in the frame-
work of quantum defect theory by adding a pole term to the right-hand side
(3.90):

tan [π(ν + µ)] =
Γ/2

E − ER
. (3.158)

Again µ(E) is a weakly energy-dependent quantum defect function expressing
the deviation of the potential in the open channel 1 from a pure Coulomb
potential, and ν(E) has the two meanings (3.91) below and above threshold.
At energies E below threshold the modified QDT equation (3.158) remains
an equation for determining bound state energies, but these energies are now
given by the intersections of the set of curves (3.86) with the function

µ̃(E) = µ(E) − 1
π

arctan
Γ/2

E −ER
. (3.159)

For energies E above threshold the QDT equation (3.158) describes the reso-
nant jump of the phase shift through π,

δ = πµ(E) − arctan
Γ/2

E − ER
, (3.160)

and the weakly energy-dependent function πµ(E) appears as background
phase shift.

Strictly speaking we cannot simply superpose the effects of the potential
and the Feshbach resonance linearly; hence the quantum defect function µ(E)
in (3.158)–(3.160) may differ slightly from the quantum defect function for
the open channel in the absence of the Feshbach resonance.

A typical realization of the QDT including an autoionizing resonance at
an energy ER above the continuum threshold is illustrated in Fig. 3.8(a).

Although the physical situation is quite different, the formal aspects of
the considerations above change little when the energy of the two-electron
excitation lies not above, but below the continuum threshold I. Since the
mathematical justification of quantum defect theory holds both above and
below threshold [Sea83], we can also apply the formulae (3.158), (3.159) to
the case where the energy ER at which the bound state in channel 2 makes
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Fig. 3.8. The function µ̃ from
(3.159) for an isolated resonance or
pseudo-resonant perturbation with a
width Γ =0.02 Rydberg energies. A
constant value 0.1 was assumed for
µ(E). The position of the perturber
is (a) ER =I+0.05R, (b) ER =I, (c)
ER =I−0.05R. For E > I the func-
tion πµ̃ is the asymptotic phase shift
relative to the regular Coulomb func-
tion; for E < I the intersections of
µ̃(E) with the set of curves (3.86) de-
fine the energies of the bound states
which are shown again as vertical
lines at the bottom of each part of
the figure

itself felt, lies below the threshold. Now the two-electron excitation is not
an autoionizing resonance, but an additional bound state which appears as a
pseudo-resonant perturbation of the Rydberg series of bound states. Instead
of a jump by π in the phase shift we now have a more or less sudden jump
by unity in the quantum defects of the bound states. This is illustrated in
Fig. 3.8(c). Far below the energy ER of the perturber the quantum defects lie
on the weakly energy-dependent curve µ(E). Near ER the quantum defects
become larger, so that the effective quantum numbers n∗ = n−µn and hence
also the energies (3.71) lie closer than in the unperturbed Rydberg series. Far
above the energy of the perturber the quantum defects are shifted by unity
in comparison to the unperturbed states. That doesn’t change their energies,
but it does change their numbering: the n-th state in the unperturbed series
at En = I−R/(n−µn)2 is now the (n+1)-st state in the perturbed series at
roughly the same energy. Over an energy range corresponding approximately
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to the width Γ , the spectrum is compressed in order to accommodate one
additional bound state. The effect of the perturber on the energy levels can
also be seen in the spectra shown as vertical lines at the bottom of each part
of Fig. 3.8.

Finally it may happen, that the energy ER of the resonance lies very close
to the threshold so that the interval ER−Γ/2, ER +Γ/2 covers both energies
below threshold and energies above threshold. In this case, which is illustrated
in Fig. 3.8(b), the bound state in the closed channel 2 manifests itself partly
as a perturbation of the Rydberg series of bound states and partly as the tail
of a resonance in the continuum.

A pseudo-resonant perturbation of a Rydberg series of bound states affects
not only the energy eigenvalues but also other observable quantities such as
photoabsorption cross sections or oscillator strengths. The effect of a perturber
on the discrete oscillator strengths fn in a Rydberg series can be described
by a formula analogous to (3.135), if we replace the left-hand side by discrete
oscillator strengths multiplied by the density of states (cf. (3.104)):

(n∗)3

2R fn =
(n∗)3

2R f (0)
n

(q + ε)2

1 + ε2
, (3.161)

with

ε =
E − ER

Γ/2
, q =

d2/d1
π〈φE

n |V1,2|φ0〉 . (3.162)

Here f (0)
n are the discrete oscillator strengths one would expect without the

perturbation of the Rydberg series, and d2/d1 is a weakly energy-dependent
parameter describing the relative strength of the dipole transitions to the
two channels, as in (3.137). The matrix element 〈φE

n |V1,2|φ0〉 contains the
renormalized wave functions φE

n in channel 1, which merge smoothly into the
energy normalized continuum wave functions at the continuum threshold; it
is a weakly energy-dependent quantity describing the effective strength of the
channel coupling.

3.4 Multichannel Quantum Defect Theory (MQDT)

3.4.1 Two Coupled Coulomb Channels

In this section we study a two-channel system in which the diagonal potentials
both correspond to a modified Coulomb potential:

Vi(r)
r→∞= Ii − C

r
. (3.163)

Between the two channel thresholds I1 and I2 (I1 < I2) the closed channel 2
now contains not only one bound state leading to an autoionizing resonance
(see Sect. 3.3.4), but an infinite number of such states which form a Rydberg
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series. Due to coupling to the open channel 1 this leads to a whole Rydberg
series of autoionizing resonances at the energies

En2 = I2 − R
(n∗2)2

= I2 − R
[n2 − µ2(n2)]2

, (3.164)

where n∗2 and µ2(n2) are now effective quantum numbers and quantum defects
in channel 2. The widths Γn2 of the resonances are described by a formula
analogous to (3.129):

Γn2 = 2π〈φreg|V1,2|φn2〉2 = 2π
2R

(n∗2)3
〈φreg|V1,2|φE

n2
〉2 . (3.165)

Here φn2 are the bound radial wave functions in the closed channel 2, and

φE
n2

(r) =

√
(n∗2)3

2R φn2(r) (3.166)

are the corresponding renormalized wave functions which merge smoothly into
the energy normalized continuum wave functions – now in channel 2 – at the
threshold I2. Near this threshold the matrix element on the right-hand side
of (3.165) depends only weakly on energy and we see immediately, without
any calculation, that the autoionization widths are inversely proportional to
the third power of the effective quantum number n∗2 in channel 2 for large n2.
The autoionization widths thus decrease at the same rate as the separations
between successive resonances as we approach the series limit.

The physics of a Rydberg series of autoionizing resonances as described
above can be summarized in a compact and transparent way by an extension
of the formula (3.158):

tan [π(ν1 + µ1)] =
R 2

1,2

tan [π(ν2 + µ2)]
. (3.167)

In the energy range between the two channel thresholds ν1 is just the as-
ymptotic phase shift of the continuum wave function in the open channel 1
multiplied by −1/π (as in (3.91)),

ν1(E) = − 1
π
δ1(E) , E > I1 , (3.168)

while ν2 represents the continuous effective quantum number in the closed
channel 2, which is defined via the energy separation from the channel thresh-
old I2:

ν2(E) =
√ R
I2 − E , E < I2 . (3.169)

The dimensionless quantity R1,2 describes the strength of the coupling be-
tween the channels 1 and 2 and should depend at most weakly on energy.

In the energy region between the channel thresholds I1 and I2 equation
(3.167) is an explicit equation for the asymptotic phase shift δ1 of the open-
channel wave function:
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δ1 = πµ1(E) − arctan

[
R 2

1,2

tan [π(ν2 + µ2)]

]
. (3.170)

The term πµ1(E) appears as a background phase shift due to the diagonal po-
tential in channel 1 (more precisely: due to its deviation from a pure Coulomb
potential), just like the term πµ(E) in (3.160). The arcus-tangent term now
yields not only one single isolated jump of the phase shift through π, but a
whole Rydberg series of jumps, which occur at the energies En2 where the de-
nominator tan [π(ν2 + µ2)] in the argument vanishes. But this condition is just
the single-channel QDT equation (3.90) for the closed channel 2, and µ2(E)
now plays the role of the weakly energy-dependent quantum defect function
which smoothly connects the quantum defects µ2(n2) in the Rydberg series of
energies (3.164). Near a zero of tan [π(ν2 + µ2)] we can expand the function
in a Taylor series and, using the abbreviation

T2(E) := tan [π(ν2 + µ2)] , (3.171)

we obtain

T2(E) ≈ (E − En2)
dT2

dE

∣∣∣∣
E=En2

= (E − En2)
π

2R (n∗2)
3 . (3.172)

Near the zeros of T2(E) the (3.170) thus simplifies to

δ1 = πµ1(E) − arctan

[
2R
π(n∗2)3

R 2
1,2

(E − En2)

]
. (3.173)

If we write R1,2 as −π times the coupling matrix element containing the
renormalized bound state wave functions (3.166),

R1,2 = −π〈φreg|V1,2|φE
n2
〉 , (3.174)

then (3.173) assumes the form (3.160) for an isolated resonance at the position
En2 with the width (3.165). Transferring the picture of an isolated Feshbach
resonance to a Rydberg series of autoionizing resonances thus leads to the
approximate expression (3.174) for the (dimensionless) coupling parameter
R1,2. (The minus-sign, which doesn’t play a role at this stage, corresponds to
the most usual convention [GF84].)

Beside the behaviour of the phase shift δ1, several other results from
Sect. 3.3.2 can be adapted to the case of a Rydberg series of resonances. The
explicit formulae (3.126) and (3.130) for the radial channel wave functions
become

φ1(r)
r→∞= cos [π(ν1 + µ1)]φreg(r) − sin [π(ν1 + µ1)]φirr(r) ,

φ2(r) = − sin [π(ν1 + µ1)]
R1,2

√
(n∗2)3

2R φn2(r)

= − sin [π(ν1 + µ1)]
R1,2

φE
n2

(r) . (3.175)
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Apart from a minus-sign, π(ν1 +µ1) = −(δ1−πµ1) is just the resonant part of
the asymptotic phase shift without the weakly energy-dependent background
phase shift πµ1, which is already accounted for in the regular and irregular
solutions φreg and φirr in the (uncoupled) open channel. φE

n2
are the renormal-

ized bound state wave functions (3.166) which merge smoothly into the energy
normalized continuum wave functions φ(2)

reg of channel 2 at the threshold I2.
If we use the wave functions (3.175) as final state wave functions to calcu-

late the oscillator strengths for photoabsorption according to (2.222), then in
place of (3.133) we now obtain

dfEi

dE
=

2µ
h̄
ωd 2

1 cos2 [π(ν1 + µ1)]
[
1 − d2

d1

tan [π(ν1 + µ1)]
R1,2

]2

=
2µ
h̄
ωd 2

1

{tan [π(ν2 + µ2)] −R1,2d2/d1}2

tan2 [π(ν2 + µ2)] +R 4
1,2

, (3.176)

where (2µ/h̄)ωd 2
1 represents the weakly energy-dependent oscillator strength

which we would expect in the absence of coupling to the closed channel 2, and
the ratio d2/d1, which is now dimensionless, describes the relative oscillator
strength for transitions from the initial state to both final state channels. In
deriving the lower (3.176) we inserted the expression R 2

1,2/ tan [π(ν2 + µ2)] for
tan [π(ν1 + µ1)] according to (3.167). Equation (3.176) has the same form as
(3.135),

dfEi

dE
=

2µ
h̄
ωd 2

1

(q + ε)2

1 + ε2
, (3.177)

provided we define the reduced energy ε as

ε =
tan [π(ν2 + µ2)]

R 2
1,2

. (3.178)

The shape parameter q is now

q = −d2/d1
R1,2

. (3.179)

Near a resonance energy, i.e. near a zero of tan [π(ν2 + µ2)], the reduced
energy (3.178) is a linear function of the energy E (see (3.172)), and it is
indeed given by the expression on the right-hand side of (3.136) if we express
R 2

1,2 through the width Γ (cf. (3.193) below). As the continuous effective
quantum number ν2 varies through the interval reaching from 1/2 below to
1/2 above a resonance position, the reduced energy (3.178) takes on values
covering the entire interval −∞ to +∞. In the Rydberg series of resonances
each individual “Beutler-Fano resonance” is thus compressed into an energy
interval corresponding to an interval of unit length in the continuous effective
quantum number in the closed channel 2. (See Fig. 3.9.)

The discussion above as summarized in Fig. 3.9 refers to the energy interval
I1 < E < I2 in which channel 1 is open while channel 2 is closed. In order to
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Fig. 3.9. Phase shift (3.170) and os-
cillator strength (3.176) in a Rydberg
series of autoionizing resonances for
the following values of the 2QDT pa-
rameters: µ1 = 0.1 , µ2 = 0.1 , R1,2 =
0.3 , d2/d1 = −1.0 . The separation of
the two channel thresholds I1 and I2

is 0.1 Rydberg energies. The oscillator
strengths in the lower part of the fig-
ure are given in units of the oscillator
strength (2µ/h̄)ωd 2

1 , which we would
expect in absence of coupling to the
Rydberg series in the closed channel 2

describe the situation at energies below the threshold I1, where both channels
are closed, we must return to the interpretation of the quantity ν1 as the
continuous effective quantum number in channel 1:

ν1(E) =
√ R
I1 − E , E < I1 . (3.180)

Now (3.167) is an equation for determining the energies of the bound states
in the coupled two-channel system. If the (uncoupled) channel 2 supports a
bound state at an energy below I1, then the associated zero in the function
T2(E) (3.171) leads to a pseudo-resonant perturbation in the Rydberg series of
bound states and it manifests itself as a jump by unity in the quantum defects,
as described for a single perturber in Sect. 3.3.4. As an example Fig. 3.10 shows
the quantum defects of a Rydberg series in calcium consisting of 4s np states
coupled to 1P o. Near n = 7 this Rydberg series is perturbed by the lowest
state in the 3dnp 1P o channel. Above threshold the picture continues as a
series of jumps of the phase shift corresponding to autoionizing resonances as
in Fig. 3.9.

In the photoabsorption spectrum the perturber below threshold appears as
a modulation of the oscillator strengths (renormalized with the factor (n∗)3)
as described in (3.161), but we now have to insert the periodic form (3.178)
for the reduced energy ε.

Above the second channel threshold I2 both channels are open. At each en-
ergy E > I2 > I1 there are two linearly independent solutions of the coupled-
channel equations and each linear combination hereof is again a solution. At a
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Fig. 3.10. The left-hand part of the figure shows the quantum defects (modulo
unity) of the 4s np 1P o Rydberg series in Ca I, which is perturbed by the lowest
state in the 3d np 1P o channel. The right-hand part of the figure shows 1/π times
the asymptotic phase shift in the now open 4s np 1P o channel (again modulo unity).
The resonant jumps in the phase shift are due to higher states in the 3d channel
and correspond to autoiononizing resonances as in Fig. 3.9 (From [Sea83])

given energy the asymptotic phase shift in channel 1 is not fixed but depends
on the asymptotic behaviour of the wave function in channel 2. Conversely, a
definite choice of the asymptotic phase shift in channel 1 fixes the asymptotic
behaviour of the wave function in channel 2.

The asymptotic behaviour of the solutions in the case of two open channels
can be readily understood if we continue the explicit expressions (3.175) for the
wave functions just below the channel threshold I2 to energies above I2. Pairs
φ1, φ2 of wave functions containing a maximum admixture from channel 2
are characterized by sin [π(ν1 + µ1)] = ±1 and cos [π(ν1 + µ1)] = 0 . When
moving to energies above I2, the renormalized bound state wave functions
φE

n2
merge into the energy normalized regular solutions φ(2)

reg in uncoupled
channel 2. With the appropriate choice of sign we thus obtain a pair of channel
wave functions with the following asymptotic behaviour:

φ1(r)
r→∞= φ

(1)
irr (r) , φ2(r)

r→∞=
1
R1,2

φ(2)
reg(r) . (3.181)

(The superscript (1) has been introduced in order to distinguish the irregu-
lar (and regular) solutions in channel 1 from the corresponding solutions in
channel 2.) As both channels are open we can interchange the channel labels
to construct a solution of the coupled-channel equations with an asymptotic
behaviour complementary to that described by (3.181):
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φ1(r)
r→∞=

1
R2,1

φ(1)
reg(r) , φ2(r)

r→∞= φ
(2)
irr (r) . (3.182)

For the coupling matrix elements R1,2 and R2,1 appearing in (3.181) and
(3.182) we can extend the (approximate) formula (3.174) to energies E > I2
and obtain the (approximate) expressions

R1,2 = −π〈φ(1)
reg|V1,2|φ(2)

reg〉 , R2,1 = −π〈φ(2)
reg|V2,1|φ(1)

reg〉 = R1,2 . (3.183)

The matrix elements are finite, because the coupling potential falls off asymp-
totically at least as fast as 1/r2.

The general solution of the coupled equations in the case of two channels
is a linear combination of the two solutions with the asymptotic behaviour
(3.181) and (3.182) respectively:

φ1(r)
r→∞=

B

R2,1
φ(1)

reg(r) +Aφ(1)
irr (r) ,

φ2(r)
r→∞=

A

R1,2
φ(2)

reg(r) +Bφ(2)
irr (r) . (3.184)

For the asymptotic phase shifts δ1−πµ1 = −π(ν1+µ1) and δ2−πµ2 = −π(ν2+µ2)
we obtain

tan [π(ν1 + µ1)] = −A
B
R2,1 , tan [π(ν2 + µ2)] = −B

A
R1,2 , (3.185)

from which follows

tan [π(ν1 + µ1)] tan [π(ν2 + µ2)] = R 2
1,2 . (3.186)

Equation (3.186) again has the same form as (3.167), but it now represents a
compatibility equation for the asymptotic phase shifts in the two open chan-
nels.

The equations (3.167), (3.170) and (3.186) can be written in a unified way
as one equation of two-channel quantum defect theory (2QDT):∣∣∣∣ tan [π(ν1 + µ1)] R1,2

R2,1 tan [π(ν2 + µ2)]

∣∣∣∣ = 0 . (3.187)

Its different meanings – as an equation for determining the bound state energy
eigenvalues when both channels are closed, as an explicit equation for the
phase shift of the open-channel wave function when just one channel is open,
or as a compatibility equation for the asymptotic phase shifts when both
channels are open – follow in a straightforward way if we insert the different
definitions of the quantities νi, namely continuous effective quantum number
in channel i below the respective channel threshold Ii and −1/π times the
asymptotic phase shift above Ii:

νi(E) =

{√
R

Ii−E for E < Ii ,

− 1
π δi for E > Ii .

(3.188)
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The formulae in this section were derived by generalizing the consider-
ations of Sect. 1.5.2 on isolated Feshbach resonances. The approximate ex-
pressions (3.175) for the wave functions and (3.174), (3.183) for the coupling
parameter are based on this picture of isolated Feshbach resonances. A more
rigorous treatment, e.g. by Seaton [Sea83] and by Giusti and Fano [GF84],
shows that the 2QDT equation (3.187) is valid quite generally, even if the
channel coupling parameter |R1,2| is large, so that resonances and perturbers
aren’t isolated. The only condition for the validity of the formulae of quantum
defect theory is that the deviations of the diagonal potentials from the pure
Coulomb potential and the non-diagonal coupling potentials fall off sufficiently
fast for large r. In a rigorous derivation the 2QDT parameters µ1, µ2, R1,2 ap-
pear as weakly energy-dependent quantities whose precise definition is given
by the actual solutions of the coupled-channel equations.

Finally it should be pointed out that there are various formulations of
quantum defect theory in use. In this chapter we asymptotically represent the
channel wave functions as superpositions of the regular and irregular solutions
of the uncoupled equations including the deviations of the diagonal potentials
from the pure Coulomb potential. The original formulation of Seaton was
based on the regular and irregular (pure) Coulomb functions. The argument
of tangent functions such as (3.171) then contains the asymptotic phase shift
including the weakly energy-dependent background phase shift. The effect
of deviations of the diagonal potentials from the pure Coulomb potential is
contained in diagonal elements Ri,i of the matrix appearing in the MQDT
equation. For two channels the MQDT equation in Seaton’s formulation reads∣∣∣∣ tanπν1 +R1,1 R1,2

R2,1 tanπν2 +R2,2

∣∣∣∣ = 0 . (3.189)

When both channels are open, the matrix (Ri,j) is the reactance matrix of
scattering theory, which will be defined in Sect. 4.3.2. The formulation of
MQDT used in the present chapter and summarized in (3.187) can be derived
from Seaton’s MQDT by shifting the phases of the basis wave functions until
the diagonal elements of the matrix Ri,j vanish. The resulting matrix which
has no diagonal elements is frequently referred to as the phase shifted reactance
matrix.

A further formulation of MQDT is due to Fano [Fan70] and is based on
a diagonalization of Seaton’s reactance matrix. The resulting superpositions
of channels are called eigenchannels. The eigenvalues of the reactance matrix
are written as tan δ and the angles δ are the eigenphases (see also Sect. 4.3.2).

3.4.2 The Lu-Fano Plot

The physical content of 2QDT can easily be illustrated graphically. Below the
upper threshold I2 channel 2 is closed and the 2QDT equation (3.187) is

−ν1 = µ1 − 1
π

arctan

[
R 2

1,2

tan [π(ν2 + µ2)]

]
def= µ̃1 . (3.190)



3.4 Multichannel Quantum Defect Theory (MQDT) 201

The right-hand side is a function µ̃1 which depends on the energy E or on the
continuous effective quantum number ν2 = [R/(I2 −E)]1/2. It is an extension
of the function (3.159) for a single perturber to the case of a whole Rydberg
series of perturbers. If the 2QDT parameters µ1, µ2 and R1,2 were not weakly
energy dependent but constant, then µ̃1 would be exactly periodic in ν2 with
period unity. Above the lower threshold I1 the left-hand side of (3.190) stands
for 1/π times the asymptotic phase shift in the open channel 1, which is only
defined modulo unity, and below I1 it is −1 times the continuous effective
quantum number in channel 1. As in the case of a single isolated perturber
discussed in Sect. 3.3.4, the intersections of the function µ̃1 below I1 with the
set of curves (3.86) define the quantum defects

µn1 = n1 − ν1(En1) (3.191)

and energies En1 of the bound states. If we plot these quantum defects together
with the phase δ1(E)/π (both modulo unity) as functions of the continuous
effective quantum number ν2 in the upper channel 2 (also modulo unity),
then – given constant 2QDT parameters – both the quantum defects and the
phases lie on one period of the function µ̃1 from (3.190). This representation
is called Lu-Fano plot [LF70]. Figure 3.11 shows three typical examples of
Lu-Fano plots.

Some general properties of the Lu-Fano- plot can be formulated quantita-
tively if we study the derivatives of the function µ̃1(ν2). With the abbreviation
(3.171), T2 = tan [π(ν2 + µ2)], we have

d(µ̃1)
dν2

= R 2
1,2

1 + T 2
2

T 2
2 +R 4

1,2

,
d2(µ̃1)
dν2

2

= 2πR 2
1,2

T2(R 4
1,2 − 1)

(T 2
2 +R 4

1,2)2
(1+T 2

2 ) .(3.192)

The gradient of the curve is always positive. For weak coupling, |R1,2| < 1,
the maximum gradient is at T2 = 0 which corresponds to ν2 = n2 − µ2, and

Fig. 3.11. Examples of Lu-Fano plots with the constant 2QDT parameters: (a)
µ1 =0.3 , µ2 =0.4 , R1,2 =0.1 . (b) µ1 =0.3 , µ2 =0.4 , R1,2 =0.6 . The parameters
in part (c), µ1 =0.1 , µ2 =0.1 , R1,2 =0.3 , are the same as in Fig. 3.9. Fig. 3.11(c)
is thus a reduction of the upper part of Fig. 3.9 to one period in energy (or rather
ν2) and phase
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we obtain resonant jumps around the zeros of T2 as expected. The value of
the maximum gradient is 1/R 2

1,2 and defines the width of the resonance (or of
the pseudo-resonant perturbation) according to the general formula (1.235):

Γ =
4R
π(n∗2)3

R 2
1,2 . (3.193)

Here we have used the fact that
d
dE

=
ν3
2

2R
d
dν2

. (3.194)

Strictly speaking a maximum of the derivative with respect to E will not lie
at exactly the same position as the corresponding maximum of the derivative
with respect to ν2. This difference is generally ignored, firstly because it is very
small due to the weak energy dependence of the factor ν3

2/R in (3.194), and
secondly because this makes formulae such as (3.193) very much simpler. The
minimal gradients of the function µ̃1(ν2) lie at T2 = ∞, i.e. at ν2 = n2+ 1

2 −µ2

(for |R1,2| < 1) which is exactly in the middle between the resonance energies,
and the value of the minimal gradient is R 2

1,2.
For strong coupling, i.e. for |R1,2| > 1, conditions reverse: the gradient in

the Lu-Fano plot is minimal for T2 = 0 and maximal for T2 = ∞. In this case
the resonant jumps occur at ν2 = n2 + 1

2 − µ2 and the associated widths of
the resonances (or pseudo-resonant perturbations) are

Γ =
4R
πν3

2

1
R 2

1,2

. (3.195)

Very strong coupling of the channels thus leads to a Rydberg series of very
narrow resonances whose positions lie between the positions of the bound
states in the excited channel [Mie68].

The case |R1,2| ≈ 1 is somewhat special. The Lu-Fano plot is now essen-
tially a straight line with unit gradient and it is no longer possible to uniquely
define the positions of resonances.

A peculiarity of the 2QDT formula (3.190) is, that the 2QDT parameters
it contains are not uniquely defined. The function µ̃1(ν2) which one obtains
with the parameters µ1, µ2, R1,2 is not affected if we replace the parameters
by

µ′1 = µ1 +
π

2
, µ′2 = µ2 +

π

2
, R′

1,2 =
±1
R1,2

. (3.196)

In real physical situations the 2QDT parameters are not constant but
weakly energy dependent. Hence the function (3.190) is not exactly periodic
in ν2 and we obtain a slightly different curve in the Lu-Fano plot for each
period of tan [π(ν2 + µ2)]. This is illustrated in Fig. 3.12 for the example of
the coupled 1P o series in Ca I discussed in Sect. 3.4.1 above (cf. Fig. 3.10).
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Fig. 3.12. Lu-Fano-plot for coupled 4s np and 3d np 1P o channels in Ca I (From
[Sea83])

3.4.3 More Than Two Channels

After the detailed treatment of two-channel quantum defect theory in
Sect. 3.4.1 and 3.4.2 it is now relatively easy to extend the results to the
more general case of N coupled Coulomb channels. The central formula of
MQDT is a generalization of the two-channel equation (3.187) and reads

det{tan [π(νi + µi)] δi,j + (1 − δi,j)Ri,j} = 0 . (3.197)

The coupling of the various channels i = 1, 2, . . . N is described by the weakly
energy-dependent real symmetric matrix Ri,j . We shall continue to use the
representation corresponding to the phase shifted reactance matrix in which
Ri,j has no diagonal elements. The diagonal effects of deviations from the pure
Coulomb potential are contained in the weakly energy-dependent parameters
µi. The quantities νi have one of two meanings depending on whether the
respective channel i is closed or open. For energies below the channel threshold
Ii, νi is the continuous effective quantum number in the closed channel i;
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at energies above Ii the quantity −πνi is the asymptotic phase shift of the
channel wave function in the open channel i, see (3.188).

Because it is so important we shall derive the MQDT equation (3.197)
in another way. Let’s first consider the energy range where all N channels
are open. For a given energy there are then N linearly independent solutions
of the coupled-channel equations, and each solution Φ has N components,
namely the channel wave functions φi(r) , i = 1, . . . N . We choose a basis
Φ(j) of solutions with channel wave functions φ(j)

i whose asymptotic behaviour
corresponds to a generalization of (3.181), (3.182):

φ
(j)
j (r) r→∞= φ(j)

reg(r) , φ
(j)
i (r) r→∞= Ri,jφ

(i)
irr(r) , i �= j . (3.198)

The general solution of the coupled-channel equations is now an arbitrary
superposition

Φ =
N∑

j=1

ZjΦ
(j) (3.199)

of these basis solutions. In a given channel i the channel wave function of the
general solution (3.199) is

φi(r) =
N∑

j=1

Zjφ
(j)
i (r) r→∞= Ziφ

(i)
reg(r) +

⎛
⎝∑

j �=i

Ri,jZj

⎞
⎠φ(i)

irr(r) . (3.200)

The quotient of the coefficients in front of φ(i)
irr and φ(i)

reg in the asymptotic
expression on the right-hand side of (3.200) is the tangent of the additional
phase δi − πµi = −π(νi + µi) by which the channel wave function φi is as-
ymptotically shifted with respect to the regular solution φ(i)

reg in channel i. In
other words,

tan [π(νi + µi)]Zi = −
∑
j �=i

Ri,jZj ,

tan [π(νi + µi)]Zi +
∑
j �=i

Ri,jZj = 0 . (3.201)

Equation (3.201) is a homogeneous system of N linear equations for the N
unknowns Zi, and its matrix of coefficients consists of the diagonal elements
tan [π(νi + µi)] and the non-diagonal elements Ri,j . Non-vanishing solutions
exist when the determinant of this matrix vanishes, and this is just the content
of the MQDT equation (3.197).

This derivation of the MQDT equation can be extended to lower energies
at which some or all channels are closed. To this end the definitions of the
regular and irregular solutions φ(i)

reg and φ(i)
irr must be continued to energies

below the respective channel thresholds Ii in the closed channels. A detailed
description of such a procedure has been given by Seaton for the case that
φ

(i)
reg and φ(i)

irr are the regular and irregular Coulomb functions [Sea83].
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The MQDT equation (3.197) has different meanings in different energy
ranges. For simplicity we number the channels in order of increasing channel
thresholds:

I1 < I2 < · · · < IN . (3.202)

For E < I1 all channels are closed and (3.197) is a condition for the existence
of a bound state.

For I1 < E < I2 only channel 1 is open while all other channels are closed.
The MQDT equation is now an explicit equation for the asymptotic phase
shift of the wave function in the open channel 1. Expanding the determinant
we can rewrite (3.197) as

tan [π(ν1 + µ1)] detR11 =
N∑

j=2

(−1)jR1,j detR1j , (3.203)

or

δ1 = πµ1 − arctan

[∑N
j=2(−1)jR1,j detR1j

detR11

]
. (3.204)

Here R1j is the matrix which emerges from the matrix {tan [π(νi + µi)] δi,j +
(1 − δi,j)Ri,j} in (3.197) if we eliminate the first row and the jth column. In
particular, R11 is the matrix we would use to formulate an MQDT equation
for the N − 1 closed channels i = 2, . . . N without considering coupling to
the open channel 1. The zeros of detR11 thus correspond to bound states of
the mutually coupled closed channels i = 2, . . . N . Equation (3.204) describes
N − 1 coupled Rydberg series of autoionizing resonances due to these bound
states of the coupled closed channels.

For I1 < . . . < In < E < In+1 < . . . < IN the lower n channels are open
and the upper N−n channels are closed. Now there are n linearly independent
solutions of the coupled-channel equations and each solution is characterized
by n asymptotic phase shifts δi in the open channels i = 1, . . . n. For n ≥ 2
the MQDT equation (3.197) has the meaning of a compatibility equation for
these asymptotic phase shifts.

The intricate and complicated structure which spectra can acquire when
more than two channels couple already becomes apparent in the three-channel
case [GG83, GL84, WF87]. In the energy interval I1 < E < I2 < I3 in which
channel 1 is open while channels 2 and 3 are closed, the interference of two
Rydberg series of autoionizing resonances leads to quite complex spectra. In
this energy range the 3QDT equation (3.197) (with N = 3) is an explicit
equation for the phase shift δ1 in the open channel. Using the abbreviations

T2(E) = tan [π(ν2 + µ2)] , T3(E) = tan [π(ν3 + µ3)] , (3.205)

the 3QDT equation reads

tan (δ1 − πµ1) = −R
2
1,2T3 +R 2

1,3T2 − 2R1,2R1,3R2,3

T2T3 −R 2
2,3

. (3.206)
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The 3QDT equation (3.206) has the same form as (3.148) in Sect. 3.3.3
which describes the influence of coupling to just two bound states in different
closed channels. Equation (3.148) becomes the 3QDT equation (3.206) if we
replace (E − εi) , i = 2, 3, by 1/π times the periodic functions Ti(E) defined
in (3.205), and the coupling matrix elements Wi,j by −Ri,j/π as suggested by
(3.183),

E − εi → Ti

π
=

1
π

tan [π(νi + µi)] , Wi,j → −Ri,j

π
. (3.207)

Both δres in (3.148) and δ1 −πµ1 in (3.206) refer to the additional phase shift
due to the non-diagonal coupling effects.

Whereas Sect. 3.3.3 described the interference of just two autoionizing res-
onances, the 3QDT equation (3.206) accounts for the interference of two whole
Rydberg series of resonances. The zeros of the denominator on the right-hand
side define the positions of resonant jumps of the phase shift through π, as
did the zeros of (3.149), provided the widths are sufficiently small, mean-
ing smaller than the separation of neighbouring resonances. The zeros of the
denominator in (3.206) are given by

T2(ER) = R 2
2,3/T3(ER) , (3.208)

which corresponds to a 2QDT equation for the bound states in the two closed
channels 2 and 3. In the present case I2 < I3, so the positions of the resonances
form a Rydberg series in channel 2 which is perturbed by perturbers from
channel 3. The widths of the resonances can be calculated via the general
formula (1.235), and if we ignore possible weak energy dependences in the
3QDT parameters and exploit (3.208) this yields [GL84, FW85]

Γ =
4R
πν3

2

R 2
1,2

(T3 −R2,3R1,3/R1,2)2

T 2
3 +R 4

2,3 + (ν3/ν2)3(T 2
3 + 1)R 2

2,3

. (3.209)

For each perturber from channel 3, ν3 takes on values in an interval of unit
length and T3(E) covers all values from −∞ to +∞. The perturbed positions
of the resonances are given by the 2QDT formula (3.208) and can be described
by a jump through unity in appropriately defined quantum defects, just like
in a perturbed Rydberg series of bound states. At the same time, the widths
of the resonances are modified substantially and can be significantly narrower
or broader than the widths 4RR 2

1,2/(πν
3
2) in the unperturbed Rydberg series

of resonances (3.193). This modification is described by the extra quotient on
the right-hand side of (3.209).

In each period of T3(E) there is a point of vanishing width at

T3 =
R2,3R1,3

R1,2
. (3.210)

If the energy defined by (3.210) coincides with a resonance energy obeying
(3.208), then we do indeed obtain a resonance of exactly vanishing width,
i.e. a bound state in the continuum. The conditions (3.208), (3.210) for the
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occurrence of a bound state in the continuum can be rewritten in a more
symmetric form analogous to (3.154):

T2 =
R2,3R1,2

R1,3
, T3 =

R2,3R1,3

R1,2
. (3.211)

In order to estimate the maximum broadening caused according to (3.209)
by perturbation of the Rydberg series of resonances, we study the quotient
on the right-hand side,

(T3 −R2,3R1,3/R1,2)2

T 2
3 +R 4

2,3 + (ν3/ν2)3(T 2
3 + 1)R 2

2,3

≤ (T3 −R2,3R1,3/R1,2)2

T 2
3 +R 4

2,3

=
(p+ η)2

1 + η2
, (3.212)

where

η =
T3

R 2
2,3

, p = − R1,3

R1,2R2,3
. (3.213)

The right-hand side of (3.212) is a Beutler-Fano function (3.138) with energy
parameter η and shape parameter p from (3.213). Its maximum is 1 + p2, an
hence the maximum widths can be no larger than

Γmax =
4R
πν3

2

[
R 2

1,2 +
R 2

1,3

R 2
2,3

]
. (3.214)

The zeros in the denominator on the right-hand side of (3.206) can only be
interpreted as the positions of resonances if their separation is larger than the
widths of the resonances. This condition is fulfilled if the maximum widths
(3.214) are smaller than the separations which can be approximated by the
separations 2R/ν 3

2 in the unperturbed Rydberg series (of resonances). We
thus obtain the following condition for the validity of the general formula
(3.209) for the widths in a perturbed Rydberg series of autoionizing reso-
nances:

R 2
1,2 +

R 2
1,3

R 2
2,3

<
π

2
. (3.215)

If, however, the conditions (3.211) for a bound state in the continuum are
fulfilled exactly or approximately, then numerator and denominator on the
right-hand side of (3.206) vanish at exactly or almost exactly the same energy
and we obtain vanishing or very small widths irrespective of whether (3.215)
is fulfilled or not.

Finally we can also give a formula for the photoabsorption cross sections or
oscillator strengths in a perturbed Rydberg series of autoionizing resonances.
To this end we exploit the analogy to the situation described in Sect. 3.3.3,
where there are just two bound states in different closed channels and where
the oscillator strengths are described by (3.157). Making the transition (3.207)
we obtain
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dfEi

dE
=

2µ
h̄
ωd 2

1

×
[
D − d2

d1
(T3R1,2 −R2,3R1,3) − d3

d1
(T2R1,3 −R2,3R1,2)

]2
D2 +N2

, (3.216)

where N(E) now stands for minus the numerator in the quotient on the right-
hand side of the 3QDT equation (3.206) andD(E) stands for the denominator:

N(E) = R 2
1,2T3 +R 2

1,3T2 − 2R1,2R1,3R2,3 ,

D(E) = T2T3 −R 2
2,3 . (3.217)

The formula (3.216) for oscillator strengths in a system of three coupled
Coulomb channels was first derived in 1984 by Giusti and Lefebvre-Brion
[GL84].

The general expression (3.216) can formally be written as a product of
an unperturbed oscillator strength multiplied by a Beutler-Fano function (cf.
(3.177)):

dfEi

dE
=

2µ
h̄
ωd 2

1

(q̃ + ε̃)2

1 + ε̃2
, (3.218)

where the energy parameter ε̃ and the parameter q̃ are now given by

ε̃ = D(E)/N(E) and (3.219)

q̃ = −
d2
d1

(R1,2T3 −R2,3R1,3) + d3
d1

(T2R1,3 −R2,3R1,2)
N(E)

. (3.220)

Near a zero ER of D(E), the energy parameter is again a linear function of
energy,

ε̃ =
E − ER

Γ/2
, (3.221)

where Γ is the width given by (3.209). The formula (3.220) can be used to
define shape parameters as long as it makes sense to assign a single value of
q̃ to an individual resonance. If the widths are not too large, (3.218) again
describes a series of Beutler-Fano-type resonances. In contrast to an unper-
turbed Rydberg series of autoionizing resonances however, the widths vary
strongly within the series according to (3.209) and the shape parameters can
no longer be accounted for by one energy-independent or only weakly energy-
dependent number as in (3.179). If the resonances are so narrow that we can
take the function T2(E) = tan [π(ν2 + µ2)], which covers the whole range of
values from −∞ to +∞ in each period, as essentially constant over the width
of a resonance, then we can insert its value (3.208) at each resonance energy
into (3.220) and obtain a simple formula describing the variation of the shape
parameter q̃ within a perturbed Rydberg series of autoionizing resonances:

q̃ =
(
−d2/d1
R1,2

) (
T3 −R2,3d3/d2

T3 −R2,3R1,3/R1,2

)
. (3.222)
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The first factor on the right-hand side of (3.222) is the shape parameter
q which one would expect in an unperturbed Rydberg series of autoionizing
resonances according to (3.179). The second factor describes the changes due
to the perturbations. In each period of T3 there is a zero of q̃ at

T3 = R2,3
d3
d2

(3.223)

and a pole at

T3 = R2,3
R1,3

R1,2
. (3.224)

The pole position (3.224) is just the point of vanishing width (3.210). Here
the height 1 + q̃2 of a resonance line becomes infinite in principle, but the
product of the height and the width (3.209) remains finite. The sign of the
shape parameter q̃ changes both at the zero (3.223) and at the pole (3.224).
This sign change is known under the name of q-reversal and is conspicuous in
spectra as an interchange of the steep and the flat sides of Beutler-Fano-type
resonance lines (see Fig. 3.13).

The relation (3.222) was derived from (3.220) with the help of some rather
crude approximations, but it does enable us to qualitatively understand some
of the different structures which can appear in a perturbed Rydberg series
of autoionizing resonances. Figure 3.13 shows two examples of the oscillator
strength (3.216) as a function of the continuous effective quantum number ν2
in channel 2. The series is perturbed around ν2 ≈ 17 by a state with effective
quantum number ν3 = 7 (in channel 3). The two q-reversals, one at the point

Fig. 3.13. Oscillator strengths (3.216) in a perturbed Rydberg series of autoionizing
resonances. The following 3QDT parameters are common to both parts of the figure:
µ2 =µ3 =0 , R1,2 =0.4 , R1,3 =−0.2 , R2,3 =0.5 , I3 − I2 = 0.026 Rydberg energies.
The centre of the perturber (T3 = 0 for ν3 = 7.0) is at ν2 = 17.13 . In part (a) the
dipole transition parameters are d2/d1 = d3/d1 = 1 , so that the point of vanishing
width and the point of vanishing q-value lie on opposite sides of the centre T3 =0. In
part (b) we have d2/d1 = 0.5 , d3/d1 = −1 , so that both q-reversals lie to the left
of T3 =0. The oscillator strengths df/dE are given in units of the oscillator strength
(2µ/h̄)ωd 2

1 which we would expect in absence of coupling to the channels 2 and 3
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of vanishing width and one at the zero of the shape parameter, are easy to
discern in both cases.

If more than one channel is open, then a resonant state in a Rydberg series
of autoionizing resonances can decay into several decay channels, and the
total autoionization width is a sum of the partial widths into the individual
open channels. If such a Rydberg series is perturbed by states in further
closed channels, then one consequence of such perturbations is a strong energy
dependence of the branching ratios, which are the ratios of the partial decay
widths [VC88]. A detailed description of characteristic features of MQDT
spectra in cases with more than two open channels has been given by Cohen
[Coh98].

In real physical situations we often have to consider more than two or
three Coulomb channels. Figure 3.14 shows part of a photoionization spec-
trum to J = 2 states in neutral barium in an energy interval in which both
the 5d3/2 ns and the 5d3/2 nd series of autoionizing resonances are perturbed

Fig. 3.14. Photoionization spectrum in barium near the 5d5/2 14s1/2 J = 2 state
which perturbs the 5d3/2 ns and the 5d3/2 nd series. The lower part of the figure
shows the results of an MQDT analysis involving six closed and two open channels
(From [BH89])
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by the 5d5/214s1/2 resonance. The lower part of the figure shows the results
of an MQDT calculation involving six closed and two open channels. Many
significant features in the spectrum are accurately reproduced by the MQDT
fit. Note however, that an application of MQDT with so many channels al-
ready involves a large number of parameters which are not easy to determine
uniquely by fitting even such a rich spectrum.

Problems of non-uniqueness of the MQDT paramaters typically occur
when we treat them as independent empirical parameters to be determined
in a fit to experimental data. In an analysis of Rydberg spectra of molecules,
Jungen and Atabek implemented a frame transformation which allowed them
to calculate a large number of independent elements of the reactance matrix
on the basis of a few fundamental dynamical parameters. This made it pos-
sible to apply the MQDT with quite large numbers (up to 30) of channels
[JA77].

An ab initio theory without empirical parameters requires a solution (at
least an approximate solution) of the many-electron Schrödinger equation,
or, in the present case, of the coupled-channel equations. In the so-called
R matrix method [Gre83, OG85], coordinate space is divided into an inner
region of radius R and an outer region. The many-electron problem is solved
approximately in the inner region and, at r = R, the solutions are matched
to the appropriate asymptotic one-electron wave functions in each channel,
which consist of superpositions of regular and irregular Coulomb functions
or, in closed channels, of the corresponding Whittaker functions. MQDT is
still useful in connection with such ab initio theories, because the weakly
energy-dependent MQDT parameters can be calculated (and stored) on a
comparatively sparse mesh of energies and the complicated and sometimes
violent energy dependences in physical observables follow from the MQDT
equations. The combination of MQDT andRmatrix methods has been applied
with growing success, especially to the description of the spectra of alkali earth
atoms [AL87, AL89, LA91, AB94, AL94, LA94, LU95, AG96].

3.5 Atoms in External Fields

Everything said up to now has to be modified more or less strongly if we
consider atoms (and ions) which are not isolated, but influenced by an external
electromagnetic field. For low-lying bound states of an atom the influence
of external fields can often be satisfactorily accounted for with perturbative
methods, but this is no longer possible for highly excited states and/or very
strong fields, in which case intricate and physically interesting effects occur,
even in the “simple” hydrogen atom. The study of atoms (and molecules) in
strong external fields has been a topic of considerable interest for some years
now, and this is documented by the recent publication of several books on the
subject [NC90, RW94, CK97, SS98].
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In this section we consider a classical electromagnetic field described by
the scalar potential Φ(r, t) and the vector potential A(r, t). The Hamiltonian
for an N -electron atom or ion is then (see (2.151))

Ĥ =
N∑

i=1

(
[p̂i + (e/c)A(ri, t)]2

2µ
− eΦ(ri, t)

)
+ V̂ . (3.225)

An important consequence of external fields is, that the Hamiltonian
(3.225) is in general no longer rotationally invariant, so that its eigenstates
aren’t simultaneously eigenstates of angular momentum. For spatially homo-
geneous fields and the appropriate choice of gauge the Hamiltonian does how-
ever remain invariant under rotations around an axis parallel to the direction
of the field, so that the component of total angular momentum in the direc-
tion of the field remains a constant of motion. For an electron in a potential
V (r) which is not radially symmetric, but invariant under rotations around
the z-axis, say, we can at least reduce the three-dimensional problem to a
two-dimensional problem by transforming to cylindrical coordinates �, z, φ:

x = � cosφ , y = � sinφ , z = z ; � =
√
x2 + y2 . (3.226)

With the ansatz

ψ(r) = fm(�, z) eimφ (3.227)

we can reduce the stationary Schrödinger equation to an equation for the
function fm(�, z):[

− h̄
2

2µ

(
∂2

∂�2
+

1
�

∂

∂�
− m2

�2
+
∂2

∂z2

)
+ V (�, z)

]
fm(�, z)

= Efm(�, z) . (3.228)

3.5.1 Atoms in a Static, Homogeneous Electric Field

We describe a static homogeneous electric field E, which is taken to point in
the direction of the z-axis, by a time-independent scalar potential

Φ(r) = −Ez z (3.229)

and a vanishing vector potential. The Hamiltonian (3.225) then has the fol-
lowing special form:

Ĥ =
N∑

i=1

p̂2
i

2µ
+ V̂ + eEz

N∑
i=1

zi . (3.230)

The shifts in the energy eigenvalues caused by the contribution of the field
in (3.230) are given in time-independent perturbation theory (see Sect. 1.6.1)
to first order by (1.249),

∆E(1)
n = eEz〈ψn|

N∑
i=1

zi|ψn〉 , (3.231)
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where ψn are the eigenstates of the unperturbed (Ez = 0) Hamiltonian. As
mentioned in Sect. 2.2.4, these eigenstates are usually eigenstates of the N -
electron parity operator, so that the expectation values (3.231) of the operator∑N

i=1 zi, which changes the parity, vanish. In second order the energy shifts
are given by (1.255) or (1.266),

∆E(2)
n = (eEz)2

∑
Em �=En

|〈ψn|
∑N

i=1 zi|ψm〉|2
En − Em

, (3.232)

where En and Em are the eigenvalues of the unperturbed Hamiltonian. The
right-hand side of (3.232) should include the continuum, so the sum is to
be replaced by an integral above the continuum threshold. The energy shifts
(3.232) depend quadratically on the strength Ez of the electric field and are
known under the name quadratic Stark effect.

The energy shifts (3.232) are closely connected with the dipole polarizabil-
ity of the atom in an electric field. The modification of wave functions caused
by an infinitesimally weak electrical field can be described in first-order per-
tubation theory. As long as the unperturbed state ψn is not degenerate with
an unperturbed state of opposite parity, the modified eigenfunctions to first
order are described by (1.253),

|ψ′
n〉 = |ψn〉 + eEz

∑
m�=n

〈ψm|∑N
i=1 zi|ψn〉

En − Em
|ψm〉 . (3.233)

The wave functions (3.233) are no longer eigenfunctions of the N -electron
parity, and they have a dipole moment induced by the external field and
pointing in the direction of the field (the z-direction). The z-component of
the induced dipole moment is

dz = −e〈ψ′
n|

N∑
i=1

zi|ψ′
n〉

= 2e2Ez

∑
m�=n

|〈ψm|∑N
i=1 zi|ψn〉|2

Em − En
:= αdEz . (3.234)

Using the dipole polarizability αd defined by (3.234) (for the state ψn) we can
write the energy shift (3.232) of the quadratic Stark effect as

∆E(2)
n = −αd

2
E2

z . (3.235)

In the unusual case that an eigenvalue of the unperturbed Hamiltonian
is degenerate and has eigenstates of different parity, we already obtain non-
vanishing energy shifts in first order, and this is called the linear Stark effect.
The first-order energy shifts are calculated by diagonalizing the perturbing
operator eEz

∑N
i=1 zi in the subspace of the eigenstates with the degenerate

(unperturbed) energy, see equation (1.258). An important example is found
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in the one-electron atoms, where each principal quantum number n ≥ 2 cor-
responds to a degenerate energy eigenvalue with eigenfunctions of different
parity (−1)l. The interaction matrix elements between two degenerate eigen-
functions ψ1(r) = Yl1,m1(Ω)φn,l1(r)/r and ψ2(r) = Yl2,m2(Ω)φn,l2(r)/r are

〈ψ1|eEzz|ψ2〉 = eEz r
(0)
1 2 , (3.236)

where r(0)1 2 is the ν = 0 spherical component of the vector matrix element as
defined in (2.208). The matrix element (3.236) is non-vanishing only if the
azimuthal quantum numbers in bra and ket are the same, m1 = m2. For
n = 2 there is a non-vanishing matrix element between the l = 0 and l = 1
states with m = 0. The two further l = 1 states with azimuthal quantum
numbers m = +1 and m = −1 are unaffected by the linear Stark effect (see
Problem 3.8). Figure 3.15(a) shows the splitting of the n = 2 term in the
hydrogen atom due to the linear Stark effect. For comparison Fig. 3.15(b)
shows the energy shift (3.235) of the n = 1 level due to the quadratic Stark
effect (see Problem 3.9).

The perturbative treatment of the Stark effect is not unproblematic. This
becomes obvious when we consider that the perturbing potential eEz

∑N
i=1 zi

(positive field strength Ez assumed) tends to −∞ when one of the zi goes to
−∞. The perturbed Hamiltonian (3.230) is not bounded from below and has
no ground state; strictly speaking it has no bound states at all and no discrete

Fig. 3.15. (a) Splitting of the degenerate n = 2 level in hydrogen due to the
linear Stark effect Problem 3.8). (b) Energy shift of the hydrogen ground state
due to the quadratic Stark effect (3.235). f is the electric field strength in units of
E0 ≈ 5.142 × 109 V/cm (3.241), and the energies are in atomic units



3.5 Atoms in External Fields 215

eigenvalues, but a continuous energy spectrum unbounded from above and be-
low. In the presence of the electric field the bound states of the unperturbed
Hamiltonian become resonances and the width of each such resonance is h̄/τ ,
where τ is the lifetime of the state with respect to decay via field ionization.
For low-lying states and not too strong fields these lifetimes are so long that
the states can be regarded as bound for all practical purposes, but for highly
excited states and/or very strong fields the lifetimes can be short and the
widths of the resonant states large. Even for an arbitrarily small but finite
field strength perturbation theory loses its justification at sufficiently high ex-
citations. The transition from vanishing to small but finite field strengths is
not continuous at threshold. For vanishing strength of the external field the
long-ranged Coulomb potential supports infinitely many bound states accu-
mulating at threshold. In an arbitrarily weak but non-vanishing electric field
there are no bound states.

Classically, field ionization is possible above the Stark saddle. For a one-
electron atom,

V (r) = −Ze
2

r
+ eEzz , Ez > 0 , (3.237)

the Stark saddle is located on the negative z-axis at the local maximum of
V (x=0, y=0, z). Here the potential energy has a minimum in the two direc-
tions perpendicular to the z-axis (see Fig. 3.16). The position zS and energy
VS of the Stark saddle are:

zS = −
√
Ze

Ez
, VS = −2e

√
ZeEz . (3.238)

For a one-electron atom described by a pure Coulomb potential −Ze2/r, it
is possible in parabolic coordinates to decouple the Schrödinger equation into
ordinary differential equations, even in the presence of an external electric

Fig. 3.16. Potential energy (3.237) for a one-electron atom in an electric field of
f = 0.02 atomic units (see (3.241)). (a) Potential along the z-axis; (b) equipotential
lines in the xz-plane. The point “S” marks the Stark saddle
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field. As the electric field in z-direction doesn’t disturb the rotational symme-
try around the z-axis, it is sensible to keep the azimuthal angle φ as one of the
coordinates. The two other coordinates ξ and η have the physical dimension
of a length and are defined by

ξ = r + z , η = r − z ; r =
1
2
(ξ + η) , z =

1
2
(ξ − η) . (3.239)

The coordinates ξ and η can assume values between zero and +∞. They are
called parabolic, because surfaces defined by ξ = const and η = const are
rotational paraboloids around the z-axis.

In parabolic coordinates and atomic units the Hamiltonian for an electron
under the influence of a Coulomb potential and an external electric field is

Ĥ = − 2
ξ + η

[
∂

∂ξ

(
ξ
∂

∂ξ

)
+
∂

∂η

(
η
∂

∂η

)]
− 1

2ξη
∂2

∂φ2

− 2Z
ξ + η

+ f
ξ − η

2
. (3.240)

Here f is the electric field strength in atomic units:

f =
Ez

E0
, E0 =

e

a2
=
µ2e5

h̄4 ≈ 5.142 × 109V/cm . (3.241)

If we multiply the Schrödinger equation Ĥψ = Eψ by (ξ + η)/2 and insert
the product ansatz

ψ = f1(ξ) f2(η) eimφ (3.242)

for ψ, then we obtain two decoupled equations for f1(ξ) and f2(η)

d
dξ

(
ξ
df1
dξ

)
+
(
E

2
ξ − m2

4ξ
− f

4
ξ2
)
f1 + Z1f1 = 0 ,

d
dη

(
η
df2
dη

)
+
(
E

2
η − m2

4η
+
f

4
η2

)
f2 + Z2f2 = 0 . (3.243)

There are two separation constants, Z1 and Z2, which are related by

Z1 + Z2 = Z . (3.244)

Dividing the upper equation (3.243) by 2ξ and the lower by 2η yields[
−1

2

(
d2

dξ2
+

1
ξ

d
dξ

− m2

4ξ2

)
− Z1

2ξ
+
f

8
ξ

]
f1(ξ) =

E

4
f1(ξ) , (3.245)

[
−1

2

(
d2

dη2
+

1
η

d
dη

− m2

4η2

)
− Z2

2η
− f

8
η

]
f2(η) =

E

4
f2(η) . (3.246)

The equations (3.245), (3.246) have the form of two cylindrical radial
Schrödinger equations with azimuthal quantum number m/2 (cf. (3.228)).
In addition to the cylindrical radial potential (m/2)2/(2ξ2), (3.245) for f1(ξ),
the uphill equation, contains a Coulomb potential −Z1/2ξ and an increasing
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linear potential (f/8)ξ originating from the electric field. For any (positive or
negative) value of the separation constant Z1, this uphill potential supports
a sequence of bound solutions with discrete eigenvalues. Conversely, for each
energy E there is a discrete sequence of values of Z1 for which the uphill equa-
tion has bound solutions, which are characterized by the respective number
n1 = 0, 1, 2, . . . of nodes of f1(ξ) in the region ξ > 0. As Z1 grows larger
and larger (it may even be larger than the nuclear charge Z) the number n1

increases. We obtain a minimal value of Z1 (which may be negative if the
energy E is positive) when the whole uphill potential is just deep enough to
support one nodeless eigenstate. (See Fig. 3.17.)

Fig. 3.17. Effective potentials in the uphill equation (3.245) (a) and in the downhill
equation (3.246) (b) for m = 1 and four different values of the separation constant
Z1 (Z1 + Z2 = 1). The electric field strength is f = 0.02 atomic units

In the field-free case f = 0, (3.246) has the same form as (3.245). In
the negative energy regime there is a discrete sequence of energies, namely
En = −Z2/(2n2) , n = 1, 2, . . . , at which both equations (3.245) and (3.246)
with appropriate values of Z1 and Z2 simultaneously have square integrable
solutions with n1 and n2 nodes respectively. For a given azimuthal quantum
number m = 0, ±1, ±2, . . . ± (n−1) the parabolic quantum numbers n1 =
0, 1, 2, . . . and n2 = 0, 1, 2, . . . are related to the separation constants Z1, Z2

and the Coulomb principal quantum number n by [LL59]

ni +
|m| + 1

2
= n

Zi

Z
, i = 1, 2 ; n1 + n2 + |m| + 1 = n . (3.247)



218 3 Atomic Spectra

If however, the field strength f is non-vanishing (positive), then the down-
hill equation (3.246) can be solved for a given value of the separation constant
Z2 (= Z −Z1) at any energy with the appropriate boundary conditions. The
solutions f2(η) do not behave like regular and irregular Coulomb functions
asymptotically, because the potential decreases linearly and so the kinetic en-
ergy increases linearly with η. The wave function for the asymptotic motion
of an electron accelerated in such a linear potential is a superposition of Airy
functions (see Appendix A.4), and it is increasingly well approximated by the
semiclassical WKB expression (1.289), because the quantality function (1.298)
asymptotically vanishes as the inverse cube of the coordinate. The low-lying
bound states of the field-free case become narrow resonances in the presence
of a finite field, and these can be identified by more or less sudden jumps
through π of a phase shift describing the influence of deviations from the ho-
mogeneous linear potential [TF85], cf. Sect. 1.5. As the energy increases, so
does the width of these resonances corresponding to a decreasing lifetime with
respect to field ionization.

A systematic theoretical investigation of the Stark spectrum of hydro-
gen was published in 1980 by Luc-Koenig and Bachelier [LB80]. Figure 3.18
shows the spectrum for azimuthal quantum number |m| = 1. In the field-
free case each principle quantum number n accommodates n−|m| degenerate

Fig. 3.18. Stark split-
ting and decay widths
with respect to field ion-
ization for the |m| = 1
states in hydrogen. The
thin lines show states
with widths less than
5 × 10−12 atomic units,
the thick lines indi-
cate widths between 5×
10−12 and 5×10−8, and
the dashed lines repre-
sent resonances broader
than 5 × 10−8 atomic
units. The energy of the
Stark saddle is shown by
the thick curve running
from the upper left to
the lower right corner in
the figure (From [LB80])
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eigenstates, which can be labelled by the possible values of the parabolic
quantum number n1 = 0, 1, . . . , n− |m| − 1. A finite field strength lifts the
degeneracy in this n manifold. The energy is shifted downward most for states
with small values of the (uphill) quantum number n1, because they have the
largest fraction of the wave function concentrated in the downhill direction.
Since small values of n1 are connected to small values of the separation con-
stant Z1 and correspondingly large values of Z2 = 1−Z1, these states have the
largest decay widths, because larger values of Z2 imply a more strongly attrac-
tive Coulomb potential and a smaller potential barrier against field ionization
in the downhill equation. Conversely, solutions corresponding to large values
of n1 and small values of n2 can have very small widths and large lifetimes
with respect to field ionization even above the Stark saddle. A pronounced
resonance structure above the Stark saddle and even above the “field-free
ionization threshold” can indeed be observed e.g. in photoionization spectra
[RW86].

Stark states of hydrogen are studied by many authors with continually
improving experimental and calculational techniques [GN85, RW86, Kol89,
Ali92], in particular in the interesting region near the saddle and the field-
free threshold. Kolosov [Kol89] calculated the positions and widths of reso-
nant Stark states appearing as eigenstates of the Hamiltonian with complex
eigenvalues. Results for resonances with maximum uphill quantum number,
n1 = n−1, n2 = 0, m = 0, and with second largest n1 for energies around the
field-free threshold are shown in Fig. 3.19 and compared with experimental
photoionization spectra from Glab et al. [GN85] at three different electric field
strengths. The calculated positions of the resonances with n1 = n− 1, n2 = 0
and with n1 = n−2, n2 = 1 indicated by arrows, and the widths are shown as
hatching or as horizontal bars. A correlation between experimental structures
and calculated resonances is obvious, even at positive energies. Alijah [Ali92]
calculated the photoionization spectrum as function of energy from the wave
functions obtained by direct numerical integration of the Schrödinger equa-
tion. His results are shown in Fig. 3.20 together with the experimental pho-
toionization spectrum of Rottke and Welge [RW86] at a field strength of 5.714
kV/cm. The numerical calulation reproduces all the experimentally observed
features.

3.5.2 Atoms in a Static, Homogeneous Magnetic Field

A static homogeneous magnetic field pointing in z direction can be described
in the symmetric gauge by a vector potential

A(r) = −1
2
(r × B) =

1
2

⎛
⎝−y
x
0

⎞
⎠Bz . (3.248)

In this gauge the Hamiltonian (3.225) keeps its axial symmetry around the
z-axis and has the following special form:
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Fig. 3.19. Experimental photoionization spectra of hydrogen in a Stark field for
three field strengths Ez: (a) 6.5 kV/cm, (b) 8.0 kV/cm, (c) 16.7 kV/cm [GN85].
The arrows show the calculated positions of resonant Stark states with parabolic
quantum numbers (n1, n2) (m = 0). The hatchings show the widths of the states
with maximum uphill quantum number n1 (= n− 1). The widths of the states with
n1 = n − 2, n2 = 1 are shown as horizontal bars (From [Kol89])

Ĥ =
N∑

i=1

p̂2
i

2µ
+ V̂ + ωL̂z +

N∑
i=1

µω2

2
(x2

i + y2i ) . (3.249)

Here ω is one half of the cyclotron frequency which characterizes the energy
eigenstates of an otherwise free electron in a magnetic field (see Problem 3.10):

ω =
ωc

2
=
eBz

2µc
. (3.250)

In the Hamiltonian (3.249) L̂z stands for the z-component of the total orbital
angular momentum of the N electrons, and the contribution ωL̂z is just the
energy −µ ·B of the magnetic moment µ = −e/(2µc)L̂ due to this orbital
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Fig. 3.20. Photoinization
spectrum of hydrogen in an
electric field (5.714 kV/cm)
from the initial state n1 =
1, n2 = 0, m = 0 with
∆m = 0. The upper part of
the figure shows the experi-
mental results of Rottke and
Welge [RW86]; the sharp
lines below the zero field
ionization threshold are la-
belled by the quantum num-
bers (n1, n2, m), while the
oscillations in the positive
energy region are labelled
just by n1. The lower part of
the figure shows the numer-
ical results of Alijah (From
[Ali92])

motion in the magnetic field B. The ratio −e/(2µc) of the magnetic moment
to the orbital angular momentum is the gyromagnetic ratio.

If, for the time being, we neglect the term in the Hamiltonian (3.249) which
is quadratic in the field strength Bz, i.e. quadratic in ω, then the external
magnetic field simply leads to an additional energy ωL̂z. Eigenstates of the
unperturbed (field-free) Hamiltonian, in which effects of spin-orbit coupling
are negligible and in which the total spin vanishes, i.e. in which the orbital
angular momentum equals the total angular momentum, remain eigenstates
of the Hamiltonian in the presence of the magnetic field, but the degeneracy
in the quantum number ML is lifted. Quantitatively the energies are shifted
by

∆EML
=
eh̄Bz

2µc
ML . (3.251)

This is the normal Zeeman effect. Note that the result (3.251) is not based on
perturbation theory, but only on the neglect of spin and of the contributions
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quadratic in ω to the Hamiltonian (3.249). Except for the small difference
between the reduced mass µ and the electron mass me, the constant eh̄/(2µc)
is the Bohr magneton [MT00],

µB =
eh̄

2mec
= 5.788381749(43) × 10−5 eV/Tesla . (3.252)

Except in states with vanishing total spin, we generally cannot neglect the
contributions of the spin to the energy shifts in a magnetic field. The most
important contribution comes from the magnetic moments due to the spins of
the electrons. The interaction of these spin moments with a magnetic field is
obtained most directly if we introduce the field (cf. Sect. 2.4.2) into the Dirac
equation (2.28) via the substitution p̂i → p̂i + (e/c)A(ri) and perform the
transition to the non-relativistic Schrödinger equation (Problem 3.11). To first
order we obtain the following Hamiltonian for a free electron in an external
magnetic field:

Ĥ
(0)
B =

p̂2
i

2µ
+

e

2µc
(L̂i + 2Ŝi)· B . (3.253)

Note the factor two in front of the spin. It implies that the spin h̄/2 of an
electron leads to a magnetic moment just as big as that due to an orbital
angular momentum of h̄.

The interaction of an atom with a magnetic field is thus given to first order
in the field strength by a contribution

ŴB =
e

2µc
(L̂ + 2Ŝ)·B =

eBz

2µc
(L̂z + 2Ŝz) (3.254)

in the N -Electron Hamiltonian. This corresponds to the energy of a magnetic
dipole with a magnetic moment −(L̂+2Ŝ)e/(2µc) in the magnetic field B. The
magnetic moment now is no longer simply proportional to the total angular
momentum Ĵ = L̂ + Ŝ, which means that there is no constant gyromagnetic
ratio. The splitting of the energy levels in the magnetic field now depends not
only on the field strength and the azimuthal quantum number as in the normal
Zeeman effect (3.251); for this reason the more general case, in which the spin
of the atomic electrons plays a role, is called anomalous Zeeman effect.

The unperturbed atomic states can be labelled by the total angular
momentum quantum number J and the quantum number MJ for the z-
component of the total angular momentum, and the unperturbed energies
don’t depend on MJ . If the atom is described in LS coupling, then the un-
perturbed eigenstates ΨL,S,J,MJ

in a degenerate J-multiplet also have a good
total orbital angular momentum quantum number L and a good total spin
quantum number S (cf. Sect. 2.2.4). If the energy shifts due to the perturbing
operator (3.254) are small compared with the separations of the energies of
different J-multiplets, then these energy shifts are given in first-order pertur-
bation theory by the expectation values of the perturbing operator (3.254) in
the unperturbed states ΨL,S,J,MJ

. As shown below, the perturbing operator
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is diagonal in the quantum number MJ within each J-multiplet and hence a
diagonalization according to the formula (1.258) of degenerate perturbation
theory is not necessary.

We can derive a quantitative formula for the matrix elements of the per-
turbing operator (3.254) by applying the Wigner-Eckart theorem for the com-
ponents of vector operators in the angular momentum eigenstates. Thereby
the dependence of the matrix elements on the (spherical) component index
of the vector and on the azimuthal quantum numbers in bra and ket is the
same for all vector operators and is given by appropriate Clebsch-Gordan
coefficients (see Sect. 1.7.1, 2.4.5). In particular,

〈ΨL,S,J,MJ
|Ŝz|ΨL,S,J,MJ

〉 = 〈LSJ ||Ŝ||LSJ〉〈J,MJ |1, 0, J,MJ 〉 ,
〈ΨL,S,J,MJ

|Ĵz|ΨL,S,J,MJ
〉 = 〈LSJ ||Ĵ ||LSJ〉〈J,MJ |1, 0, J,MJ 〉 ,

〈ΨL,S,J,MJ
|Ĵ ·Ŝ|ΨL,S,J,MJ

〉 = 〈LSJ ||Ĵ ||LSJ〉〈LSJ ||Ŝ||LSJ〉{CG} ,
〈ΨL,S,J,MJ

|Ĵ2|ΨL,S,J,MJ
〉 = 〈LSJ ||Ĵ ||LSJ〉〈LSJ ||Ĵ ||LSJ〉{CG} . (3.255)

All matrix elements like (3.255) which are not diagonal inMJ vanish. This fol-
lows in the two lower equations, because we actually calculate matrix elements
of a scalar product of two vector operators, and in the two upper equations,
because we are dealing with the ν = 0 spherical component of a vector op-
erator in both cases. (This also implies that non-diagonal matrix elements of
the perturbing operator (3.254) vanish.) Quantities such as 〈LSJ ||Ŝ||LSJ〉 are
the reduced matrix elements, which are characteristic of the whole J-multiplet
and independent of azimuthal quantum numbers or component indices. The
expression {CG} in the two lower equations stands for the same combination
of Clebsch-Gordan coefficients, and its precise composition is irrelevant for
the following discussion.

Dividing the first equation (3.255) by the second and the third by the
fourth leads to the same number in both cases, namely the quotient of the
reduced matrix elements 〈LSJ ||Ŝ||LSJ〉 and 〈LSJ ||Ĵ ||LSJ〉. Hence the quo-
tients of the left-hand sides must also be equal, giving

〈ΨL,S,J,MJ
|Ŝz|ΨL,S,J,MJ

〉

=
〈ΨL,S,J,MJ

|Ĵ ·Ŝ|ΨL,S,J,MJ
〉

〈ΨL,S,J,MJ
|Ĵ2|ΨL,S,J,MJ

〉
〈ΨL,S,J,MJ

|Ĵz|ΨL,S,J,MJ
〉

=
〈ΨL,S,J,MJ

|Ĵ ·Ŝ|ΨL,S,J,MJ
〉

J(J + 1)h̄2 MJ h̄ . (3.256)

We can replace the operator product Ĵ ·Ŝ by (Ĵ
2
+ Ŝ

2 − L̂
2
)/2 in analogy to

(1.356) and express the expectation value of Ĵ ·Ŝ in terms of the eigenvalues
of Ĵ

2
, Ŝ

2
and L̂

2
:
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〈ΨL,S,J,MJ
|Ŝz|ΨL,S,J,MJ

〉
=
J(J + 1) + S(S + 1) − L(L+ 1)

2J(J + 1)
MJ h̄ . (3.257)

With L̂z + 2Ŝz = Ĵz + Ŝz we obtain the following expression for the energy
shifts of the anomalous Zeeman effect in first-order perturbation theory:

∆EL,S,J,MJ
=
eBz

2µc
〈ΨL,S,J,MJ

|Ĵz + Ŝz|ΨL,S,J,MJ
〉

=
eBz

2µc

(
1 +

J(J + 1) + S(S + 1) − L(L+ 1)
2J(J + 1)

)
MJ h̄

=
eh̄Bz

2µc
gMJ . (3.258)

The dependence of the gyromagnetic ratio on the J-multiplet is contained in
the Landé factor

g = 1 +
J(J + 1) + S(S + 1) − L(L+ 1)

2J(J + 1)

=
3J(J + 1) + S(S + 1) − L(L+ 1)

2J(J + 1)
. (3.259)

For S = 0 and J = L we have g = 1 and recover the result of the normal
Zeeman effect (3.251).

As the strength of the magnetic field increases, the interaction with the
field becomes stronger than the effects of spin-orbit coupling. It is then sensible
to first calculate the atomic states without spin-orbit coupling and to classify
them according to the quantum numbers of the z-components of the total
orbital angular momentum and the total spin: ΨL,S,ML,MS

. The energy shifts
due to the interaction with the magnetic field (3.254) are then – without any
further perturbative assumptions – simply

∆EML,MS
=
eh̄Bz

2µc
(ML + 2MS) . (3.260)

This is the Paschen-Back-Effekt. An example for the transition from the anom-
alous Zeeman effect in weak fields to the Paschen-Back effect in stronger fields
is illustrated schematically in Fig. 3.21.

The perturbing operator (3.254) describes the paramagnetic interaction
between the magnetic field and the (permanent) magnetic dipole moment
of the atom. The operators L̂z and Ŝz commute with L̂

2
and Ŝ

2
. If the

total orbital angular momentum L and the total spin S are good quantum
numbers in the absence of an external magnetic field, then they remain good
quantum numbers in the presence of the perturbing operator (3.254). L is
no longer a good quantum number when the contribution quadratic in ω
in (3.249) (the diamagnetic term) becomes important. This term is a two-
dimensional harmonic oscillator potential in the two directions perpendicular
to the direction of the magnetic field.
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Fig. 3.21. Schematic illustration of level splitting in a magnetic field for the example
of a 2P1/2 and a 2P3/2 multiplet, which are separated by a spin-orbit splitting ∆E0 in
the field-free case. If the product of field strength B and magneton (3.252) is smaller
than ∆E0 we obtain the level splitting of the anomalous Zeeman effect (3.258), for
µBB > ∆E0 we enter the region of the Paschen-Back effect (3.260)

Consider the Schrödinger equation for a free electron (without spin) in
an external field in the symmetric gauge. This is easy to solve in cylindrical
coordinates (Problem 3.10). The eigenfunctions are

ψN,m,k(�, φ, z) = ΦN,m(�) eimφ eikz , (3.261)

and the energy eigenvalues are

EN,m,k = (2N +m+ |m| + 1)h̄ω +
h̄2k2

2µ
, N = 0, 1, 2, . . . ,

m = 0, ±1, ±2, . . ,
−∞ < k < +∞ . (3.262)

Here ΦN,m(�) exp (imφ) are the eigenstates of the two-dimensional harmonic
oscillator (Landau states) labelled by the cylindrical principal quantum num-
ber N and the azimuthal quantum number m for the z-component of the
orbital angular momentum. The factor exp (ikz) describes the free motion of
the electron parallel to the direction of the magnetic field.

We obtain a measure for the relative importance of the diamagnetic term
when we compare the oscillator energy h̄ω in (3.262) with the Rydberg energy
R = µe4/(2h̄2) characterizing the atomic interactions:

γ =
h̄ω

R =
Bz

B0
,

B0 =
µ2e3c

h̄3 ≈ 2.35 × 109 Gauss = 2.35 × 105 Tesla . (3.263)
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For field strengths appreciably smaller than B0, which (still) includes all fields
that can be generated in a terrestrial laboratory, the diamagnetic term has no
influence on low-lying atomic states. This justifies its omission in the treat-
ment of the normal and anomalous Zeeman effects and the Paschen-Back
effect. In an astrophysical context however, magnetic field strengths of the
order of 104 to 108 T have been observed at the surfaces of white dwarfs
and neutron stars. At such field strengths the quadratic contribution to the
Hamiltonian (3.249) can by no means be neglected [WZ88]. The influence of
this term is often called the quadratic Zeeman effect.

At field strengths of several Tesla as can be generated in the laboratory, the
magnetic field strength parameter γ defined by (3.263) is of the order of 10−5

and the quadratic Zeeman effect is not important for low-lying states of atoms.
It may play a role however, in the context of semiconductor physics, where
electrons bound to a shallow donor are often described in a hydrogen model
with an effective mass roughly one power of ten smaller than the electron mass
and an effective charge roughly one power of ten smaller than the elementary
charge e. In such situations effective field strength parameters near unity may
be achieved at field strengths of a few Tesla [KG90].

For small field strength parameters, typically around 10−5 for free atoms in
strong laboratory fields, the quadratic Zeeman effect does have a considerable
influence on highly excited Rydberg states. Since the separation of successive
terms in a Rydberg series decreases as 2R/n3 with increasing principal quan-
tum number n, we can already expect a significant perturbation due to the
diamagnetic term near n = 40 or n = 50.

The intricacy of the quadratic Zeeman effect can already be illustrated
in the simplest example of a one-electron atom, e.g. the hydrogen atom. An
overview of many papers written on the H atom in a magnetic field can be
found e.g. in [FW89, HR89], see also [Gay91]. A monograph devoted to this
subject was published by Ruder et al. [RW94].

Ignoring spin effects the Schrödinger equation for a hydrogen atom in
a uniform magnetic field is, in atomic units and cylindrical coordinates (cf.
(3.249), (3.228)),[

− 1
2

(
∂2

∂�2
+

1
�

∂

∂�
+
∂2

∂z2
− m2

�2

)

+
m

2
γ +

1
8
γ2�2 − 1√

�2 + z2

]
fm(�, z) = Efm(�, z) . (3.264)

Effects of spin-orbit coupling are mainly important for relatively weak fields,
and the centre-of-mass motion, whose separation is not quite as straight-
forward as in the absence of an external field, only becomes important in
extremely strong fields. For values of the field strength parameter between
γ ≈ 10−5 and γ ≈ 10+4, the one-electron Schrödinger equation (3.264) is a re-
liable description of the real physical system. The azimuthal quantum number
m is a good quantum number, as is the parity π which is frequently expressed
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in terms of the z-parity πz = (−1)mπ describing the symmetry of the wave
function with respect to a reflection at the xy-plane (perpendicular to the di-
rection of the magnetic field). In each mπz subspace of the full Hilbert space
the Schrödinger equation remains a non-separable equation in two coordinates,
i.e. there is no set of coordinates in which it can be reduced to ordinary dif-
ferential equations as was possible for the Stark effect. If we drop the trivial
normal Zeeman term (m/2)γ, the potential in (3.264) is independent of the
sign of m:

Vm(�, z) =
m2

2�2
− 1√

�2 + z2
+

1
8
γ2�2 . (3.265)

Equipotential lines of the potential (3.265) are shown in Fig. 3.22 for the case
m = 0.

Fig. 3.22. Equipotential lines
for the potential (3.265) with
m = 0

For very strong fields corresponding to field strength parameters γ near
unity or larger, the energies needed to excite Landau states perpendicular to
the field are larger than the typical Coulomb energies for the motion of the
electron parallel to the field. In this regime it makes sense to expand the wave
function fm(�, z) in Landau channels:

fm(�, z) =
∞∑

N=0

ΦN,m(�)ψN (z) . (3.266)

Inserting the ansatz (3.266) into the Schrödinger equation (3.264) and pro-
jecting onto the various Landau channels yields, in each mπz subspace, a set
of coupled-channel equations for the channel wave functions ψN (z), and the
potentials are

VN,N ′(z) = EN,mδN,N ′ +
∫ ∞

0

�d�ΦN,m(�)
−1√
�2 + z2

ΦN ′,m(�) . (3.267)

The diagonal potentials are asymptotically Coulomb potentials proportional
to 1/|z|, and the channel thresholds EN,m are (without the normal Zeeman
term (m/2)γ)
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EN,m = [N + (|m| + 1)/2]γ = Em +Nγ . (3.268)

The continuum threshold in a given mπz subspace is at Em = (|m| + 1)γ/2,
which lies higher than the “zero-field threshold” above which the atom can
ionize classically. This is because an electron escaping to z = ±∞ must at
least have the zero-point energy of the lowest Landau vibration.

For very strong fields the Schrödinger equation (3.264) thus describes a
system of coupled Coulomb channels, and the separation of successive channel
thresholds is larger than the Coulomb binding energies in the various channels.
In each mπz subspace we obtain a Rydberg series of bound states with wave
functions dominated by the lowest Landau channel N = 0, and a sequence
of Rydberg series of autoionizing resonances corresponding to the excited
Landau channels N > 0. Autoionization occurs, because an excited Landau
state, which would be bound in the absence of channel coupling, can transfer
its energy perpendicular to the field into energy parallel to the field and decay
into the continuum. Autoionization doesn’t require two electrons, only two
(coupled) degrees of freedom! The calculation of bound state spectra and of the
energies and widths of autoionizing states is comparatively easy in the strong
field regime [Fri82, FC83]. Results of numerical calculations in this region
were confirmed experimentally in far-infrared magneto-optical experiments
on shallow donors in the GaAs semiconductor, where a small effective mass
and a small effective charge give access to effective field strength parameters
near unity for laboratory field strengths of a few Tesla [KG90].

Figure 3.23 illustrates the spectrum in the regime of very strong fields for
three values of the field strength parameter in the mπz = 0+ subspace. As
the field strength decreases, the separation of successive Landau thresholds
becomes smaller and smaller and we get interferences between the various
Landau channels. In a comparatively small range of field strengths – down
to γ ≈ 0.01 – the coupled equations can be solved directly and the spectrum
can be interpreted qualitatively in the framework of quantum defect theory.
At laboratory field strengths corresponding to γ ≈ 10−5, the separation of
successive Landau thresholds is of the order of 10−3 to 10−4 eV, so a realistic
calculation in the Landau basis would involve tens of thousands of coupled
Landau channels.

For weak fields γ � 1 and energies clearly below the zero-field threshold
E = 0, the quadratic Zeeman effect can largely be treated with perturbative
methods. In the zero-field case the degenerate states belonging to given values
of the Coulomb principal quantum n and the azimuthal quantum number
m can be labelled by the orbital angular momentum quantum number l =
|m|, |m|+1, . . . , n−1, and states with even l have z-parity (−1)m while states
with odd l have the opposite z-parity. For finite field strengths we initially
observe “l-mixing” and the degeneracy is lifted by a splitting proportional to
the square of the magnetic field strength. It is customary to label the states
originating from a given (n,m) manifold with an integer k, starting with k = 0
for the energetically highest state and ending with k = n − |m| − 1 for the
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Fig. 3.23. Spectrum of bound
states and autoionizing reso-
nances for a hydrogen atom in
a very strong magnetic field in
the mπ = 0+ subspace at three
different values of the field
strength parameter γ (3.263)

energetically lowest state. States from successive n-manifolds in a given mπz

subspace begin to overlap as the field strength (or the principal quantum
number n) increases. The interaction between different states is small at first
and they can still be labelled by the two numbers n and k. With further
increasing field strength or excitation energy, however, the order within the
spectrum is lost more and more (see Fig. 3.24), until finally, as we approach the
zero-field threshold, it becomes impossible to assigne two meaningful quantum
numbers to individual quantum states of this two-dimensional system. As we
shall see in Sect. 5.3.5 (b), this is the region where the classical dynamics
becomes chaotic.

The fact that the hydrogen atom is a two-body system has been ignored
above, except for the use of the reduced mass µ in (3.263). This is, strictly
speaking, not enough, because the reduction of the two-body problem to a
one-body problem for the internal motion of the atom is nontrivial in the
presence of an external magnetic field. The Hamiltonian for the two-body
atom in a uniform magnetic field B = ∇×A is,

Ĥ(re, rp; p̂e, p̂p) =

[
p̂p − e

cA(rp)
]2

2mp

+

[
p̂e + e

cA(re)
]2

2me
− e2

|re − rp| , (3.269)
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Fig. 3.24. Part of the spectrum of the hydrogen atom in a homogeneous magnetic
field with field strengths up to 7 Tesla. The figure shows the bound states in the
mπz = 0+ subspace in an energy region corresponding roughly to principal quantum
numbers around n = 40 (From [FW89])

where mp, rp and p̂p denote the mass and the displacement and momentum
vectors for the proton, while me, re and p̂e are for the electron. Neither the
total canonical momentum p̂p + p̂e nor the total kinetic momentum P̂ k =
p̂p − e

cA(rp) + p̂e + e
cA(re) are conserved in the presence of the external

fields, but the so-called pseudomomentum,

K̂ = p̂p − e

c
A(rp) +

e

c
B×rp + p̂e +

e

c
A(re) − e

c
B×re

= P̂ k − e

c
B×(re − rp) , (3.270)

is. Conservation of the pseudomomentum means that the total Hamiltonian
can be separated into an internal part, depending only on the relative co-
ordinate r = re − rp and its canonically conjugate momentum p̂, and a
pseudomomentum part which however depends on a combination of internal
and centre of mass variables. This pseudoseparation of variables leads to the



3.5 Atoms in External Fields 231

following Hamiltonian describing the internal motion of the hydrogen atom
[DS94, RW94, SC97]:

Ĥint(r, p̂) =
1
2µ

[
p̂ +

e

c

mp −me

mp +me
A(r)

]2

+

[
K̂ + e

cB×r
]2

2(me +mp)
− e2

r
, (3.271)

where µ = memp/(me +mp) is the usual reduced mass.
The Hamiltonian (3.271) contains a correction to the charge in the kinetic

energy term and an additional gauge independent potential term

1
2M

[
K̂ +

e

c
B×r

]2
=

K̂
2

2M
+

e

Mc
K̂×B · r +

e2

2Mc2
(B×r)2 , (3.272)

where the total mass me +mp of the atom has been abbreviated as M . The
first term on the right-hand side of (3.272) is a constant. The last term is
quadratic in B and can easily be seen in the symmetric gauge (3.248) to
cancel the abovementioned charge correction in the diamagnetic (quadratic)
contribution arising from the kinetic energy. The linear term on the right-hand
side of (3.272) corresponds to the effect of an external electric field,

Êms =
1
Mc

K̂×B . (3.273)

Thus the motion of the atom as a whole in a magnetic field B, more precisely:
a non-vanishing component of the pseudomomentum (3.270) perpendicular to
B, effectively leads to an additional electric field (3.273) in the Hamiltonian
describing the internal motion of the atom. This effect is called motional Stark
effect.

The fact that the (conserved) pseudomomentum depends on both the cen-
tre of mass and the internal variables introduces a correlation between the
internal motion and the motion of the centre of mass of the atom. Vanishing
pseudomomentum does not mean that the centre of mass is at rest. In fact
it can be shown [SC97], that the classical centre of mass meanders diffusively
when the (classical) internal motion is chaotic, which is the case for energies
close to the zero-field threshold, see Sect. 5.3.5 (b).

For vanishing pseudomomentum, the internal Hamiltonian (3.271) in the
symmetric gauge differs from the Hamiltionian (3.249) for the one electron
case N=1 only in a correction of the normal Zeeman term by a factor (mp −
me)/(mp +me). The potential (3.265) is unaffected in this case.

The development of high resolution laser spectroscopy and advanced com-
puter technology have made detailed comparisons between measured and cal-
culated spectra of the hydrogen atom in a uniform magnetic field possible,
even in the highly irregular region close to the zero-field threshold [HW87].
Delande et al. [DB91] extended calculations to the continuum region at labo-
ratory field strengths, which was a remarkable achievement. The bottom part
of Fig. 3.25 shows their computed photoabsorption spectrum for transitions
from the 3s state to bound and continuum states around threshold in the
mπ = 0− subspace at a field strength of 6.113 T (γ = 2.6 × 10−5). The top
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Fig. 3.25. Photoabsorption spectra for transitions from the 3s state to bound and
continuum states around threshold in the mπ = 0− subspace in a magnetic field of
6.113 T. The upper half of the figure shows experimental results for lithium, the
lower half shows the calculated spectrum for hydrogen. To facilitate the comparison
the spectra have been convoluted with a Gaussian of width 0.05 cm−1 (From [IW91])

part of the figure shows the corresponding experimental spectrum measured
by Iu et al. [IW91]. The agreement is hardly short of perfect. Interestingly
the experiments were performed with lithium, which is easier to handle than
atomic hydrogen. Obviously the two tightly bound 1s electrons in the lithium
atom have virtually no influence on the near threshold final states of the outer
electron, which are very extended spatially and contain no l = 0 components
because of their negative parity.

3.5.3 Atoms in an Oscillating Electric Field

The theory of the interaction between an atom and the electromagnetic field
as discussed in Sect. 2.4 describes the resonant absorption and emission of
photons between stationary eigenstates of the field-free atom. But an atom
is also influenced by a (monochromatic) electromagnetic field if its frequency
doesn’t happen to match the energy of an allowed transition. For small inten-
sities we obtain splitting and frequency-dependent shifts of energy levels; for
sufficiently high intensities as are easily realized by modern laser technology,
multiphoton processes (excitation, ionization) play an important role.

The most important contribution to the interaction of an atom with a
monochromatic electromagnetic field is the influence of the oscillating electric
field,

E(r, t) = E0 cos (k·r − ωt) . (3.274)
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We assume that the wave length of the field is so much larger than the dimen-
sions of the atom that the spatial inhomogeneity of the field can be neglected,
and we neglect magnetic interactions. In addition to these assumptions, which
amount to the dipole approximation of Sect. 2.4.3, we take the light to be lin-
early polarized in z-direction:

E = E0 cosωt , E0 =

⎛
⎝ 0

0
Ez

⎞
⎠ . (3.275)

In the radiation gauge (2.150) such a field is given by the electromagnetic
potentials

A = − c
ω

E0 sinωt , Φ = 0 . (3.276)

Alternatively, in the field gauge we have

A = 0 , Φ = −E0 ·r cosωt . (3.277)

The field gauge (3.277) has the advantage that the interaction between atom
and field only contributes as an additional oscillating potential energy in the
Hamiltonian. In this case the Hamiltonian (3.225) has the form

Ĥ =
N∑

i=1

p̂2
i

2µ
+ V̂ + eEz

N∑
i=1

zi cosωt . (3.278)

The periodic time dependence of the Hamiltonian (3.278) suggests look-
ing for solutions of the time-dependent Schrödinger equation which are, to
within a phase, also periodic with the same period T = 2π/ω. If we insert the
resulting ansatz

ψ(t) = e−(i/h̄)εt Φε(t) , Φε(t+ T ) = Φε(t) , (3.279)

into the time-dependent Schrödinger equation Ĥψ = ih̄∂ψ/∂t, then we obtain
an equation for determining the periodic function Φε(t):(

Ĥ − ih̄
∂

∂t

)
Φε = εΦε . (3.280)

Equation (3.280) has the form of an eigenvalue equation for the operator

Ĥ = Ĥ − ih̄
∂

∂t
. (3.281)

Its eigenvalues are called quasi-energies and the associated solutions (3.279)
are the quasi-energy states or Floquet states. They are complete in the sense
that any solution of the time-dependent Schrödinger equation can be written
as a superposition of Floquet states with time-independent coefficients. For
each eigenstate Φε of Ĥ with eigenvalue ε there is a whole family of eigenstates
Φεeikωt with the eigenvalues ε+ kh̄ω , k = 0, ±1, ±2, . . . . They all belong to
the same Floquet state (3.279).
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The dynamics described by the Hamiltonian (3.281) become formally sim-
ilar to the quantum mechanics of a time-independent Hamiltonian, if we con-
sider the space spanned by the basis states Φε as functions of the coordinates
and the time in the interval 0 − T . The scalar product of two states φ1 and
φ2 in this Hilbert space is defined as the time average of the ordinary scalar
product over a period T and is denoted by a double bracket:

〈〈φ1|φ2〉〉 :=
1
T

∫ T

0

〈φ1(t)|φ2(t)〉dt . (3.282)

The “quasi-energy method” summarized in equations (3.279)–(3.282), and
extensions thereof, have been applied to numerous problems related to the
dynamics of the interaction of light with atoms. Comprehensive summaries
can be found in the monograph by Delone and Krainov [DK85] and in the
article by Manakov et al. [MO86].

If we want to apply perturbation theory in the spirit of Sect. 1.6.1, we
start with eigenstates ψn of the field-free Hamiltonian Ĥ0 with eigenvalues
En, and we take the products

φn,k = ψn eikωt (3.283)

as the unperturbed states. They are eigenstates of the Hamiltonian

Ĥ0 = Ĥ0 − ih̄
∂

∂t
(3.284)

with the respective eigenvalues

En,k = En + k h̄ω . (3.285)

If we treat the oscillating potential in (3.278) as a small perturbation in the
“Schrödinger equation”, then we can adapt the formalism of time-independent
perturbation theory as described in Sect. 1.6.1 to the present situation. In the
case of non-degenerate unperturbed eigenstates the energy shifts are given
in first order by the expectation values of the perturbation, which trivially
vanish, because the time average (3.282) over one period of the cosine vanishes.
In second order we obtain, in analogy to (1.255),

∆E(2)
n = (eEz)2

∑
Em,k �=En

|〈〈φn,0|
∑N

i=1 zi cosωt|φm,k〉〉|2
En − Em,k

. (3.286)

Time averaging over one period causes all matrix elements
〈〈φn,0|

∑N
i=1 zi cosωt|φm,k〉〉 to vanish – except those for k = +1 and k = −1.

In the two non-vanishing cases we obtain a factor 1/2 times the ordinary
matrix element between ψn and ψm. Equation (3.286) thus becomes

∆E(2)
n =

(eEz)2

4

[ ∑
Em+h̄ω �=En

|〈ψn|
∑N

i=1 zi|ψm〉|2
En − Em − h̄ω

+
∑

Em−h̄ω �=En

|〈ψn|
∑N

i=1 zi|ψm〉|2
En − Em + h̄ω

]
. (3.287)
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The energy shifts in this ac Stark effect thus depend on the frequency ω of the
oscillating (i.e. alternating current) field. In the limit ω → 0 (3.287) reverts
to the formula (3.232) for the ordinary quadratic Stark effect – except for a
factor 1/2 arising from the fact that an ac field of amplitude Ez and intensity
E2

z cos2 ωt corresponds, time averaged, to a dc field of intensity E2
z/2.

Similar to (3.235) we can describe the ac Stark shifts via a frequency-
dependent polarizability, which is defined in analogy to (3.234):

αd(ω) = e2

[ ∑
Em+h̄ω �=En

|〈ψn|
∑N

i=1 zi|ψm〉|2
Em + h̄ω − En

+
∑

Em−h̄ω �=En

|〈ψn|
∑N

i=1 zi|ψm〉|2
Em − h̄ω − En

]
. (3.288)

For ω → 0, αd(ω) becomes the ordinary static (or dc) polarizability αd. As
a function of ω the frequency-dependent polarizability goes through a sin-
gularity whenevever h̄ω passes the energy of an allowed dipole transition. If
the function αd(ω) is known from other sources, e.g. from a non-perturbative
solution of the Schrödinger equation, then its pole structure can be used to
extract the energies and other properties of the states ψm. An example for the
calculation and analysis of frequency-dependent polarizabilities can be found
in [MO88].

The derivation of the formula (3.287) was based on the choice (3.277)
for the gauge of the electromagnetic field. Different gauges lead to different
formulae for the energy shifts in the ac Stark effect. These formulae make sense
despite their gauge dependence, because the physically observable quantities
are not the absolute energy values but only energy differences, and they do
not depend on the choice of gauge. The gauge dependence of energy shifts in
the ac Stark effect is dicussed in more detail e.g. by Mittleman [Mit82].

Beyond the observations which can be described by perturbative means,
there are several experiments concerning the behaviour of matter in an ex-
ternal laser or microwave fields which crucially require a reliable theory for
atoms (and ions) in an oscillating external field. Such a theory is necessary
in order to understand e.g. multiphoton processes occurring in strong fields
or the role played by “chaos” in the microwave ionization of Rydberg atoms.
These special topics will be discussed in more detail in Chapter 5.

Problems

3.1. Consider an electron in a radially symmetric potential

V (r) =
{−e2/r for r > r0 ,
−Ze2/r for r ≤ r0 , Z > 1 .

Use the semiclassical formula (3.80) to discuss, how the quantum defects µn,l

(n large) depend on the angular momentum quantum number l.
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3.2. Use the sum rules (3.99) to show that electromagnetic dipole transitions,
in which the principal quantum number n and the angular momentum quan-
tum number l change in the same sense (i.e. both become larger or both
become smaller), tend to be more probable than transitions in which n and l
change in opposite sense.
Calculate the mean oscillator strengths for the 2p → 3s and the 2p → 3d
transition in hydrogen.

3.3. a) Two bound states φ02(r) and φ03(r) in the closed channels 2 and 3 in-
teract via a channel-coupling potential V2,3(r). Determine the eigenvalues
E+ and E− and the eigenstates,

ψ+ =
(
a2φ02

a3φ03

)
, ψ− =

(
b2φ02

b3φ03

)
,

of the Hamiltonian in the space spanned by these two states, i.e. solve the
two-state problem defined by the lower two lines of (3.142) in the absence
of coupling to the open channel 1.

b) Use the Golden Rule (Sect. 2.4.1) to calculate the lifetimes and widths of
the states ψ+ and ψ− in a) with respect to decay into the open channel 1.
Compare your results with (3.153).

3.4. For two non-interacting resonances,W2,3 = 0, the formula (3.157) for the
oscillator strength determining the photoabsorption cross sections simplifies
to:

dfEi

dE
=

2µ
h̄
ωd 2

1

{D + d2
d1

(E − ε3)W2,1 + d3
d1

(E − ε2)W3,1}2

D2 +N2
,

with

N(E) = π[(E − ε3)W 2
2,1 + (E − ε2)W 2

3,1] ,
D(E) = (E − ε2)(E − ε3) .

Discuss the location of zeros and maxima of dfEi/dE in the two special cases:

|W2,1
d2
d1

| ≈ |W3,1
d3
d1

| � |ε2−ε3| , |W2,1
d2
d1

| ≈ |W3,1
d3
d1

|  |ε2−ε3| .

Hint: The structure of the the oscillator strength function becomes clearer if
written as,

dfEi

dE
=

2µ
h̄
ωd 2

1

{1 + · · ·}2

1 + (N/D)2
.
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3.5. A Rydberg series of bound states characterized by vanishing quantum
defect µ = 0 is perturbed by an isolated pseudo-resonant perturbation of
width Γ located at ER = I − 0.04R. Use graphical methods to determine the
energies and effective quantum numbers of the bound states with quantum
numbers n = 3 to n = 10 for the following values of the width:

Γ = 0.01R , Γ = 0.001R , Γ → 0 .

3.6. a) Extract from Fig. 3.10 numerical values for the energies of the lowest
six 1P o states of the calcium atom relative to the ionization threshold.
b) Give an estimate for the two-channel MQDT parameters µ1, µ2, (both
modulo unity) and |R1,2| in the description of the (4s np) and (3dnp) 1P o

series in calcium.

3.7. An isolated perturbation of constant width Γ (see (3.159)) wanders
through a Rydberg series of bound states,

En = I − R
(n∗)2

,

i.e. its energy ER is a variable parameter. Show that the minimal separa-
tion of two successive energy levels En and En+1 relative to the unperturbed
separation 2R/(n∗)3 is given in the limit of small width Γ by[

En+1 − En

2R/(n∗)3
]
min

≈
(
Γ (n∗)3

πR
) 1

2

.

3.8. The degeneracy of the four orbital wave functions with principal quan-
tum number n = 2 in the hydrogen atom is lifted in the presence of an
external homogeneous electric field of strength Ez. Calculate the matrix
(〈ψn=2,l,m|eEz z|ψn=2,l′,m′〉) of the perturbing operator and determine its
eigenstates and eigenvalues.

3.9. Verify that applying the commutator of the Hamiltonian
Ĥ0 = p̂2/(2µ) − e2/r with the operator b̂ = az(a + r/2) to the ground state
wave function ψ0(r) = exp (−r/a)/(a√πa) of the hydrogen atom amounts to
multiplying this wave function by (h̄2/µ) z (see also Problem 1.11):

[Ĥ0, b̂]ψ0 =
h̄2

µ
z ψ0 .

Use the completeness relation (1.22) to calculate the static dipole polarizabil-
ity

αd = 2e2
∑
m�=0

|〈ψm|z|ψ0〉|2
Em − E0

for the hydrogen atom in its ground state.
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3.10. A homogeneous magnetic field B = Bzez (ez is the unit vector in z-
direction) can be described e.g. by a vector potential As in the symmetric
gauge (3.248),

As(r) = −1
2
(r × B) =

1
2

⎛
⎝−y
x
0

⎞
⎠Bz ,

or by a vector potential AL in the Landau gauge,

AL(r) =

⎛
⎝−y

0
0

⎞
⎠Bz .

a) Determine the scalar function f(r) which transforms one gauge into the
other according to As = AL + ∇f .
b) Show that if the wave function ψL solves the stationary Schrödinger equa-
tion for a free electron in the Landau gauge,

1
2µ

(
p̂ +

e

c
AL

)2

ψL = EψL ,

then the gauge-transformed wave function

ψs(r) = exp
(
− ie
h̄c
f(r)

)
ψL(r)

solves the corresponding equation in the symmetric gauge:
1
2µ

(
p̂ +

e

c
As

)2

ψs = Eψs .

c) Calculate the eigenstates and eigenvalues of the Hamiltonian for a free
electron in a uniform magnetic field B,

Ĥ =
1
2µ

(
p̂ +

e

c
A(r)

)2

,

in both the symmetric gauge and the Landau gauge. Discuss the spectrum
and its degeneracies.

3.11. In the presence of an electromagnetic field, the Dirac equation (2.28)
becomes

σ̂ ·
(
p̂ +

e

c
A
)
ψB =

1
c
(E + eΦ−m0c

2)ψA ,

σ̂ ·
(
p̂ +

e

c
A
)
ψA =

1
c
(E + eΦ+m0c

2)ψB ,

where A is the vector potential and Φ is the scalar potential.
Derive a Schrödinger equation for the large components ψA in the non-
relativistic limit.
Hint: Approximate the expression following from the lower equation for the
small components ψB by replacing c/(E + eΦ+m0c

2) by 1/(2m0c).
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4

Simple Reactions

Next to spectroscopic investigations of atoms, reactions provide one of the
most important sources of information on the structure of atoms and their
interactions. Reaction theory in general is a prominent and well developed
field of theoretical physics [Tay72, Bur77, AJ77, New82, Bra83, Joa87, Sit91].
In this chapter we shall focus on the discussion of simple reactions which are
induced by the collision of a electron as projectile with a target consisting of
an atom or an ion. Nevertheless, many of the results are quite general and
also applicable if the projectile is an ion or an atom. In the simplest case,
where we can assume both projectile and target to be structureless objects,
the projectile-target system is a two-body problem which can be reduced to a
one-body problem for a particle with a reduced mass as described in Sect. 2.1.

4.1 Elastic Scattering

The (elastic) scattering of a particle by a potential is a time-dependent process.
Under typical laboratory conditions it can, however, be adequately described
using the time-independent Schrödinger equation (see e.g. [Mes70]). The pre-
cise form of the boundary conditions, which the wave function must fulfill
in order to correctly describe incoming and scattered particles, depends on
whether the potential is very-long-ranged or of shorter range.

4.1.1 Elastic Scattering by a Shorter-Ranged Potential

In order to describe the elastic scattering of a structureless particle of mass µ
by a shorter-ranged potential V (r),

lim
r→∞ r

2V (r) = 0 , (4.1)

at energy E = h̄2k2/(2µ), we look for solutions of the time-independent
Schrödinger equation,
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− h̄

2

2µ
∆+ V (r)

]
ψ(r) = Eψ(r) , (4.2)

which have the following asymptotic form:

ψ(r) = eikz + f(θ, φ)
eikr

r
, r → ∞ . (4.3)

The first term on the right-hand side of (4.3) describes an incoming plane
wave with particle density � = |ψ|2 = 1, moving with a velocity v = h̄k/µ in
direction of the positive z-axis; the current density (1.157),

j =
h̄

2iµ
(ψ∗∇ψ − ψ∇ψ∗) , (4.4)

is just h̄k/µ times the unit vector in z-direction for such a plane wave. The sec-
ond term on the right-hand side of (4.3) describes an outgoing spherical wave
(see Fig. 4.1); it is modulated by a scattering amplitude f which depends on
the polar angle θ and the azimuthal angle φ [see (1.57)]. This outgoing spher-
ical wave corresponds to an outgoing current density jout which, according to
(4.4), is given in leading order in 1/r by

jout =
h̄k

µ
|f(θ, φ)|2 r

r3
+O

(
1
r3

)
. (4.5)

Asymptotically the particle flux scattered into the solid angle dΩ, i.e. through
the surface r2dΩ = r2 sin θ dθ dφ, is simply (h̄k/µ)|f(θ, φ)|2dΩ; the ratio of
this flux to the incoming current density defines the differential scattering
cross section,

dσ = |f(θ, φ)|2dΩ , dσ
dΩ

= |f(θ, φ)|2 . (4.6)

Integrating over all directions (θ, φ) yields the integrated scattering cross sec-
tion which is also called the total elastic scattering cross section,

σ =
∫

dσ
dΩ

dΩ =
∫ 2π

0

dφ
∫ π

0

sin θ dθ |f(θ, φ)|2 . (4.7)

Each solution of the stationary Schrödinger equation (4.2) fulfills the con-
tinuity equation in the form

∇· j = −∂�
∂t

= 0 , or
∮

j ·ds = 0 . (4.8)

This means that the net particle flux through a closed surface vanishes. For
an asymptotically large sphere (r → ∞) with surface element ds = r2 dΩ r/r,
the integrated contribution of the incoming plane wave in (4.3) to this net flux
vanishes on symmetry grounds, while the contribution Iout from the outgoing
spherical wave is positive unless the scattering amplitude vanishes identically,

Iout =
∮

jout ·ds =
h̄k

µ

∫
|f(Ω)|2 dΩ =

h̄k

µ
σ . (4.9)
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Fig. 4.1. Schematic illustration of the incoming plane wave and the outgoing spher-
ical wave as described by a stationary solution of the Schrödinger equation obeying
the boundary conditions (4.3)

Since the total particle flux through the surface vanishes, the current density
(4.4) must contain terms which cancel the positive contribution (4.9). The
terms describing the interference between the incoming plane wave and the
outgoing spherical wave do just this. An explicit calculation (Problem 4.1)
shows that such interference is only important in the forward direction θ=0,
and this leads to a relation between the scattering amplitude in the forward
direction and the integrated scattering cross section,

1
2i

[f(θ=0) − f∗(θ=0)] = �[f(θ=0)] =
k

4π
σ . (4.10)

The relation (4.10) expresses particle number conservation and is called optical
theorem.

It is often useful to treat scattering problems using an equivalent integral
equation in place of the Schrödinger equation (4.2). In order to derive the
integral equation we rewrite the Schrödinger equation to make it look like an
inhomogeneous differential equation,[

E +
h̄2

2µ
∆

]
ψ(r) = V (r)ψ(r) . (4.11)

This is solved using the free-particle Green’s function

G(r, r′) = − µ

2πh̄2

eik|r−r′|

|r − r′| , (4.12)

which fulfills the following equation:(
E +

h̄2

2µ
∆

)
G(r, r′) = δ(r − r′) . (4.13)
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The Green’s function (4.12) is an extension of the Green’s function defined
in Sect. 1.5.2 to three-dimensional vector arguments. It is the coordinate rep-
resentation of the Green’s operator Ĝ which has the properties of an inverse
operator to E + (h̄2/2µ)∆ = E − p̂2/(2µ):

Ĝ = lim
ε→0

1
E ± iε− p̂2/(2µ)

. (4.14)

An infinitesimally small imaginary contribution ±iε is added to the real energy
E so that we can invert the operator E − p̂2/(2µ). The plus or minus signs
lead to a different asymptotic behaviour of the resulting wave function. A
positive infinitesimal imaginary part of the energy corresponds to the Green’s
function (4.12) above and leads to a solution (4.15) below, containing an
outgoing spherical wave as in (4.3); a negative imaginary part of the energy
corresponds to the complex conjugate Green’s function and leads to incoming
spherical waves in the asymptotic region.

It is easy to verify that the wave function

ψ(r) = eikz +
∫

G(r, r′)V (r′)ψ(r′) dr′ (4.15)

solves the Schrödinger equation (4.11). Since the right-hand side of (4.11) isn’t
a genuinely inhomogeneous term but depends on the solution ψ, equation
(4.15) isn’t an explicit solution of the Schrödinger equation but a transforma-
tion into an equivalent integral equation, which is known as the Lippmann-
Schwinger equation. Its solutions automatically fulfill the boundary conditions
(4.3). For r  r′ we can approximate the free-particle Green’s function (4.12)
by (see Problem 4.2)

G(r, r′) = − µ

2πh̄2

eikr

r

[
e−ikr·r′

+O
(
r′

r

)]
(4.16)

and obtain the form (4.3) with an implicit expression for the scattering am-
plitude,

f(θ, φ) = − µ

2πh̄2

∫
e−ikr·r′

V (r′)ψ(r′) dr′ . (4.17)

In (4.16) and (4.17) kr is the wave vector with length k which points in
direction of the radius vector r (without ′).

We can interpret the integral in (4.17) as the matrix element of an abstract
transition operator T̂ between an initial state ψi(r′) = exp (ikz′) and a final
state ψf(r′) = exp (ikr ·r′) ,

Tfi = 〈ψf |T̂ |ψi〉 def= 〈ψf |V |ψ〉 = −2πh̄2

µ
f(θ, φ) . (4.18)

Using the T-Matrix defined in this way, we can interpret the scattering process
in the spirit of time-dependent perturbation theory (Sect. 2.4.1) as a transition
from the incoming plane wave ψi, travelling in the direction of the z-axis, to
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an outgoing plane wave ψf , travelling outwards in the direction of the vector
r ≡ (r, θ, φ) (Problem 4.3).

If the influence of the potential is small, it may be justified to replace the
exact wave function ψ(r′) in the integrand on the right-hand side of (4.15)
or (4.17) by the “unperturbed” incoming plane wave ψi(r′)=exp (ikz′). This
assumption defines the Born approximation. In the Born approximation equa-
tions (4.15) and (4.17) become explicit expressions for the wave function and
the scattering amplitude respectively. E.g. the scattering amplitude is, in Born
approximation,

fB = − µ

2πh̄2

∫
e−iq·r′

V (r′) dr′ = − µ

2πh̄2 〈ψf |V |ψi〉 . (4.19)

Here q = k(er − ez). The vector ez is the unit vector in the direction of
the positive z-axis and er is the unit vector in the direction of the radius
vector r. The formula (4.19) shows that the scattering amplitude in Born
approximation is derived by a Fourier transformation from the potential. The
argument q is the wave vector of the momentum transfer occurring for elastic
scattering in the direction of the radius vector r:

h̄q = (h̄k)er − (h̄k)ez . (4.20)

Comparing (4.18) and (4.19) shows that the Born approximation amounts to
replacing the transition operator T̂ by the potential V .

If the potential is radially symmetric, V =V (r), then the time-independ-
ent Schrödinger equation can be reduced to radial Schrödinger equations (cf.
Sect. 1.2.2). The boundary conditions (4.3) aren’t radially symmetric, but the
symmetry with respect to rotations around the z-axis is maintained. Hence
we can assume that the azimuthal quantum number ml is a good quantum
number and agrees with the value ml = 0 of the incoming plane wave. Scat-
tering amplitude and cross section do not depend on the azimuthal angle φ.
The solution ψ(r) of the stationary Schrödinger equation can be expanded in
partial waves as follows,

ψ(r) =
∞∑

l=0

φl(r)
r

Yl,0(θ) =
∞∑

l=0

φl(r)
r

√
2l + 1

4π
Pl(cos θ) , (4.21)

and the radial wave functions φl(r) are regular solutions of the respective ra-
dial Schrödinger equation (1.75). The Pl in (4.21) are the Legendre polynomials
(see Appendix A.1). Using the identity

eikz =
∞∑

l=0

(2l + 1) iljl(kr)Pl(cos θ) (4.22)

and the following ansatz for the scattering amplitude,

f(θ) =
∞∑

l=0

fl

√
4π

2l + 1
Yl,0(θ) =

∞∑
l=0

flPl(cos θ) , (4.23)
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the partial-waves expansion of the wave function (4.3) in the asymptotic region
is

ψ(r) r→∞=
∞∑

l=0

[
(2l + 1) iljl(kr) + fl

eikr

r

]
Pl(cos θ) . (4.24)

Here jl(kr) are the spherical Bessel functions introduced in Sect. 1.3.2 (see
Appendix A.4). Asymptotically we have [see (A.47)]

jl(kr) = sin (kr − lπ/2)/(kr) +O(1/r2) ,

so the asymptotic form of the radial wave function φl(r) emerges as

φl(r)
r→∞= il

√
4π

2l+1

[
(2l+1)
k

sin
(
kr − l π

2

)
+ fl ei(kr−lπ/2)

]

= il
√

4π
2l+1

[(
2l+1
k

+ ifl

)
sin

(
kr − l π

2

)
+ fl cos

(
kr − l π

2

)]
. (4.25)

On the other hand, the solution of the radial Schrödinger equation is as-
ymptotically proportional to sin (kr−lπ/2+δl) [cf. (1.116) in Sect. 1.3.2], so
that (4.25) establishes a relation between the partial wave amplitude fl and
the asymptotic phase shift or scattering phase shift δl. Except for a common
complex proportionality constant cl, the coefficient of sin (kr − lπ/2) is equal
to cos δl and the coefficient of cos (kr − lπ/2) is equal to sin δl,

cos δl = cl

(
2l + 1
k

+ ifl

)
, sin δl = clfl . (4.26)

If we use (4.26) to build expressions for exp (±iδl) = cos δl ± i sin δl and for
the quotient exp (2iδl) = exp (+iδl)/ exp (−iδl), then we obtain the following
expression for the partial wave amplitudes:

fl =
2l + 1
2ik

(
e2iδl − 1

)
=

2l + 1
k

eiδl sin δl . (4.27)

The coefficient cl appearing in (4.26) is seen to be

cl =
sin δl
fl

=
k

2l + 1
e−iδl , (4.28)

so the radial wave function asymptotically is,

φl(r)
r→∞=

√
4π

2l + 1
il eiδl

2l + 1
k

sin
(
kr − l π

2
+ δl

)
, (4.29)

and the partial wave expansion of the full wave function (4.21) has the as-
ymptotic form,

ψ(r) r→∞=
∞∑

l=0

2l + 1
kr

il eiδl sin
(
kr − l π

2
+ δl

)
Pl(cos θ) . (4.30)

Equation (4.23) with (4.27) provides us with an explicit expression for the
differential cross section (4.6) in terms of the scattering phase shifts δl,
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dσ
dΩ

= |f(θ)|2

=
1
k2

∑
l,l′

ei(δl′−δl) (2l + 1) sin δl (2l′ + 1) sin δl′ Pl(cos θ)Pl′(cos θ) . (4.31)

In the corresponding formula for the integrated cross section (4.7) we can
exploit the orthogonality of the Legendre polynomials [or of the spherical
harmonics (1.59)] and obtain

σ =
π

k2

∞∑
l=0

(2l + 1) |e2iδl − 1|2 =
4π
k2

∞∑
l=0

(2l + 1) sin2 δl . (4.32)

If we make the radial Schrödinger equation (1.75) look like an inhomoge-
neous differential equation,(

E +
h̄2

2µ
d2

dr2
− l(l + 1)h̄2

2µr2

)
φl(r) = V (r)φl(r) , (4.33)

then we can use the radial free-particle Green’s function (1.227) (see Prob-
lem 1.5)

Gl(r, r′) = −2µk
h̄2

{
r jl(kr) r′nl(kr′) for r ≤ r′
r′jl(kr′) r nl(kr) for r′ ≤ r (4.34)

to formulate a radial Lippmann-Schwinger equation in analogy to (4.15),

φl(r) =
√

2µ
πh̄2k

kr jl(kr) +
∫ ∞

0

Gl(r, r′)V (r′)φl(r′) dr′ . (4.35)

Again nl is the spherical Neumann function, which is asymptotically equal
to cos (kr − lπ/2)/(kr) (see Sect. 1.3.2, Appendix A.4). The first term on
the right-hand side of (4.35) is the (energy normalized) regular solution of
the “homogeneous” equation (V ≡ 0). At large distances r we can insert the
lower line of (4.34) into the integral in (4.35) because of the short range of
the potential,

φl(r) =
√

2µ
πh̄2k

[
kr jl(kr) − kr nl(kr)

×
∫ ∞

0

√
2µπ
h̄2k

kr′jl(kr′)V (r′)φl(r′) dr′
]
, (4.36)

and obtain the following (implicit) equation for the phase shifts:

tan δl = −
√

2µπ
h̄2k

∫ ∞

0

kr′jl(kr′)V (r′)φl(r′) dr′ . (4.37)

If the influence of the potential on the radial wave functions is small, we
can replace the exact radial wave function φl(r′) in the integral in (4.37) by
the regular solution of the “homogeneous equation”. This Born approximation
for the phase shift leads to the following explicit expression for tan δl,
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tan δl ≈ −2µk
h̄2

∫ ∞

0

[jl(kr′)]2V (r′) r′2 dr′ . (4.38)

Even though (4.38) is only an approximation, which should work best at
high energies and wave numbers k, it does allow us to read off some properties
of the phase shift which are more generally valid, e.g. that tan δl vanishes at
k = 0 and k → ∞. Equation (4.38) also shows that the phase shift just
above threshold initially falls in a repulsive potential, V (r) > 0, and initially
rises in an attractive potential, V (r) < 0. (The latter statement need not
hold if the potential is deep enough to support one or more bound states.)
For potentials which vanish exponentially in the asymptotic region, we can
extract the threshold behaviour of the phase shifts from the behaviour of the
spherical Bessel functions near � = kr = 0. Since jl(�) is proportional to �l

for small values of � (A.46), the phase shift δl (modulo π) is proportional to
k2l+1,

δl(k) ≈ nπ − αlk
2l+1 . (4.39)

This result holds quite generally for short-ranged potentials falling off faster
than any power of r asymptotically. More explicitly, the near-threshold be-
haviour of the elastic scattering phase shifts is described by the effective range
expansion [LK63, Tay72, New82],

k2l+1 cot δ k→0∼ − 1
αl

+
rl
2
k2 +O(k4) . (4.40)

Since the contribution of the s-wave becomes dominant towards threshold, the
expansion (4.40) is most useful for l = 0. The parameter α0 is the “scattering
length” and r0 is the “effective range” of the potential V (r).

The results (4.39), (4.40) are not generally applicable for potentials falling
off asymptotically as an inverse power of the distance r. For a potential be-
having asymptotically as

V (r) r→∞∼ V (±)
α (r) = ±Cα

rα
= ± h̄

2

2µ
(βα)α−2

rα
, α > 2 , (4.41)

the near-threshold behaviour (4.39) of the scattering phase shift is only valid
[Tay72] for a finite number of low partial waves l < (α− 3)/2, whereas

tan δl(k)
k→0= O

(
kα−2

)
for l >

α− 3
2

. (4.42)

For a potential behaving asymptotically as

V (r) r→∞∼ −C4

r4
= − h̄

2

2µ
(β4)2

r4
, (4.43)

the leading near-threshold behaviour of the s-wave phase shift is given [OS61,
OR62, BM89] by
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tan δ0
k→0= −α0k

(
1 +

4
3

(kβ4)2 ln (kβ4)
)
− π

3
(kβ4)2 +O

(
(kβ4)3

)
,

tan δl
k→0=

π

(2l + 3)(2l + 1)(2l − 1)
(kβ4)2 +O

(
(kβ4)3

)
, l > 0 . (4.44)

For a discussion of the scattering lengths α0 in this case see [Szm90] and
references therein.

For a potential behaving asymptotically as

V (r) r→∞∼ −C3

r3
= − h̄

2

2µ
β3

r3
, (4.45)

the leading near-threshold behaviour of the s-wave phase shift is given [LK63]
by

δ0(k)
k→0∼ nπ − kβ3 ln (kβ3) , (4.46)

and it is not possible to define a finite scattering length.
For repulsive inverse-power potentials,

V (r) = V (+)
α (r) =

Cα

rα
=
h̄2

2µ
(βα)α−2

rα
, α > 2 , (4.47)

the regular solution ψreg(r) of the s-wave Schrödinger equation is

ψreg(r) ∝
√
rK±ν

(
2ν

(
βα

r

)1/(2ν)
)
, ν =

1
α− 2

, (4.48)

where K±ν is a modified Bessel function (Appendix A.4) of order ±ν. For
large values of r, the argument of K±ν in (4.48) is small and the leading
behaviour of the wave function is,

ψreg(r)
r→∞∝ ν2ν Γ (1 − ν)

Γ (1 + ν)
− r

βα
. (4.49)

Comparing this with the asymptotic behaviour of the regular solution (4.29)
of the Schrödinger equation for l = 0,

ψreg(r) ∝ sin (kr + δ0) = sin [k(r − α0)]
k→0∼ k(r − α0) , (4.50)

we see that the scattering length is the ratio of the first (constant) term on
the right-hand side of (4.49) and the coefficient 1/βα of r in the second term,

α0 = ν2ν Γ (1 − ν)
Γ (1 + ν)

βα , (4.51)

which gives a finite result for α > 3.
When calculating the interaction potential between an electron and a neu-

tral spherical atom according to the considerations in Sect. 3.3.1, we see that
there is no very-long-ranged Coulomb potential (N = Z + 1) and all higher
(l > 0) direct diagonal contributions of the form (3.123) also vanish, because
the internal wave function ψint has vanishing total angular momentum, and
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hence all expectation values of vector operators and higher tensors vanish
according to the Wigner-Eckart theorem. At large electron-atom separations
the leading contribution to the potential comes from the fact that the electric
field of the electron polarizes the atom and induces a dipole moment and this
leads to −1/r4 potential (4.43),

V (r) r→∞= −e2 αd

2r4
, (4.52)

where αd is the static dipole polarizability of the atom (see Problem 4.5).
Comparing (4.52) and (4.43) shows that the αd is related to the potential
strength parameter β4 by

αd =
h̄2

µe2
(β4)2 , β4 =

√
µe2

h̄2 αd . (4.53)

Here h̄2/(µe2) is just the Bohr radius a, so β4 =
√
αd/a. Note that (4.52)

and (4.53) also hold for the polarization potential between any other charged
particle such a positive or negative ion and a polarizable neutral atom (or
molecule) in a spherical state, except that e2 is to be replaced by the square
of the charge of the charged particle; µ stands for the reduced mass of the
charged and the neutral particle.

At smaller separations it is not so obvious that the electron-atom inter-
action can be adequately described by a simple potential. In addition to the
so-called direct static potential involving the density of the electrons in the
occupied states of the target atom (cf. (2.91) or, more generally (3.119) for
i = j), the consideration of exchange effects in the elastic channel alone al-
ready leads to complicated non-local contributions. One consequence of these
exchange contributions is the orthogonality of the scattering wave functions
to the occupied single-particle states in the target atom as required by the
Pauli principle.

Figure 4.2 shows phase shifts for the example of elastic electron scattering
by neon at energies up to about E = h̄2k2/(2µ) = 20 eV in the partial waves
l = 0, 1 and 2 as functions of the wave number k. The crosses are the experi-
mental phase shifts deduced from measured elastic differential cross sections
(such as the one illustrated in Fig. 4.3) by Williams [Wil79]. The solid lines
are the results of solving the radial Schrödinger equation with a simple local
potential consisting of the direct static terms plus a polarization potential
(4.52) which merges into a constant for separations smaller than a certain
value r0. At negative energies this potential supports bound states quite sim-
ilar to the single-particle states occupied in the target atom. The automatic
orthogonality of the scattering wave functions to these bound states already
accounts for a large part of the exchange effects expressing the requirements
of the Pauli principle. The phase shifts δl are only defined to within an inte-
gral multiple of π. If we draw the function δl(E) [or δl(k)] continuously from
k = 0 to k → ∞, then for a local potential the difference δl(0) − δl(∞) is
equal to the number of bound states (in the partial wave l) multiplied by π
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Fig. 4.2. Phase shifts for elastic scat-
tering of electrons by neon. The crosses
show experimental data from [Wil79]. The
solid lines were obtained by solving the ra-
dial Schrödinger equation with a simple lo-
cal potential consisting of the electrostatic
terms plus a polarization potential (4.52)
which merges into a constant for separa-
tions smaller than a phenomenological pa-
rameter r0. The polarizability was taken
to be the experimental value αd = 2.66a3

0

[TP71] and the value of r0 was 0.974a0 for
l =0, 1.033a0 for l =1 and 1.11a0 for l =2
(From [IF92])

Fig. 4.3. Differential scattering cross sec-
tion (in atomic units, a2

0) for the elastic scat-
tering of electrons by neon at E=20 eV as
measured by Register and Trajmar [RT84].
The solid line shows the cross section cal-
culated via (4.31) with the phase shifts of
Fig. 4.2 for l ≤ 2 and the phase shifts given
by (4.44) for l > 2 (From [IF92])

according to Levinson’s theorem (1.241). For a more sophisticated description
involving non-local potentials, a generalization of Levinson’s theorem [Swa55]
tells us that occupied single-particle states in the target atom, which cannot
be occupied by the projectile electron due to the Pauli principle, have to be
included in the bound state count when applying Levinson’s theorem. The
electron-neon phase shifts in Fig. 4.2 are drawn to start at threshold at 2π
for l = 0, at π for l = 1 and at zero for l = 2, corresponding to the occupied
target states (1s, 2s, 2p) [Bur77]. If the simple potential picture were valid
up to arbitrarily high energies, all phase shifts would tend to zero in the high
energy limit in this representation. (There are no genuine bound states in the
electron-neon system.)
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Phase shifts for low energy elastic electron scattering by noble gas atoms
can be derived with more sophisticated theories [OL83], but Figs. 4.2 and 4.3
show that simple model potentials with the correct asymptotic behaviour can
work quite well.

4.1.2 Mean Scattering Lengths

Scattering lengths depend sensitively on the positions of near-threshold bound
states or resonances, so they are determined by the potential in the whole
range of r values, not only by the potential tail. The mean value of the scatter-
ing length – averaged, e.g. over a range of well depths – is, however, essentially
a property of the potential tail. If there is a WKB region of moderate r-values,
where the exact solutions of the Schrödinger equation (at near-threshold en-
ergies) are accurately approximated by WKB wave functions, explicit expres-
sions for the scattering length can be derived [GF93, FG99, EM00] from the
wave functions ψ0 and ψ1 defined in Sect. 3.1.2, which are exact threshold
solutions of the Schrödinger equation in the tail region of the potential and
behave asymptotically as (3.8).

In the WKB region, these wave functions can be written in WKB form
(3.9) with well defined amplitudes D0 and D1 and the phases φ0 and φ1.
The asymptotic behaviour of the regular solution of the Schrödinger equa-
tion is given by (4.50) when we insert the near-threshold behaviour (4.40)
of the phase s-wave shift δ0(k). To order k ∝ √

E, the regular solution of
the Schrödinger equation for small k thus corresponds to the following linear
superposition of the zero-energy solutions ψ0 and ψ1 :

ψreg(r) ∝ k [ψ1(r) − α0ψ0(r)] . (4.54)

For values of r in the WKB region, ψ0 and ψ1 are WKB wave functions (3.9),
so

ψreg(r) ∝ k√
p0(r)

[
D1 cos

(
1
h̄

∫ ∞

r

p0(r′) dr′ − φ1

2

)

−α0D0 cos
(

1
h̄

∫ ∞

r

p0(r′) dr′ − φ0

2

)]

∝ 1√
p0(r)

cos
(

1
h̄

∫ ∞

r

p0(r′) dr′ − φ+

4
− η

)
, (4.55)

where p0 is the local classical momentum at threshold, (3.10), and η is an
angle defined by

tan η =
α0 +D1/D0

α0 −D1/D0
tan

(
φ−
4

)
; (4.56)

φ+, φ− are sum and difference of the phases as defined in (3.13).
Coming from the inner turning point rin, the WKB wave function
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ψWKB(r) =
1√
p(r)

cos

(
1
h̄

∫ r

rin(E)

p(r′) dr′ − φin(E)
2

)
(4.57)

is expected to be an accurate approximation of ψreg(r) for r values in the WKB
region. The reflection phase φin at the inner turning point can be expected
to be a smooth analytical function of the energy E near threshold, (3.20);
furthermore, the inner turning point rin depends weakly and smoothly on E,
and for r′ values between rin and a value r in the WKB region, the local
classical momentum p(r′) in (4.57) differs from its threshold value (3.10) only
in order E near threshold. So to order less than E we can assume E = 0 in
(4.57),

ψreg(r) ≈ ψWKB(r) ∝ 1√
p0(r)

cos

(
1
h̄

∫ r

rin(0)

p0(r′) dr′ − φin(0)
2

)
. (4.58)

Equations (4.55) and (4.58) are compatible if and only if the cosines agree at
least to within a sign. This leads to an explicit expression for the angle η in
terms of the threshold value (3.19) of the action integral, namely

η =
S(0)
2h̄

− φin(0)
2

− φ+

4
− nπ = (nth − n)π +

φ−
4
, (4.59)

where nth is the threshold quantum number defined in (3.22). Resolving (4.56)
for α0 and using (4.59) gives

α0 =
D1

D0

tan
(
nthπ + φ−

4

)
+ tan

(
φ−
4

)
tan

(
nthπ + φ−

4

)
− tan

(
φ−
4

)

=
D1

D0
sin

(
φ−
2

) ⎡
⎣ 1

tan
(

φ−
2

) +
1

tan (nthπ)

⎤
⎦ . (4.60)

The factor in front of the square bracket in (4.60) is just the threshold
length b introduced via (3.16) in Sect. 3.1.2. For a uniform distribution of
values of nth, the second term in the square bracket in (4.60) will be distributed
evenly between positive and negative values, so the first term defines a mean
scattering length ᾱ0,

ᾱ0 =
b

tan [(φ0 − φ1)/2]
, α0 = ᾱ0 +

b

tan (nthπ)
. (4.61)

The derivation above implies that there is a WKB region in the potential
well where WKB wave functions are accurate solutions of the Schrödinger
equation at near-threshold energies. This requirement is not very restrictive.
It is well fulfilled for a potential supporting a few bound states, but a potential
too shallow to support any bound state may still have such a WKB region if
it is smooth enough (over an arbitrarily short distance), see example below.
The mean scattering length depends only on the properties of the quantal
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region of the potential tail beyond the WKB region, and it is one of three tail
parameters characterizing the near-threshold properties of the potential, see
Sect. 3.1.2.

As an example consider the radial sharp-step potential,

Vst(r) = − h̄
2(K0)2

2µ
Θ(L− r) = − h̄

2

2µ

{
K2

0 , for 0 < r ≤ L ,
0 , for r > L .

(4.62)

The quantal region where the WKB approximation is poor is restricted to
the single point r = L where the potential is discontinuous. The WKB ap-
proximation is exact for 0 < r < L regardless of whether the potential be
deep or shallow, and the tail region of the potential can be any interval of r
values that includes the discontinuity at r = L. The zero-energy solutions of
the Schrödinger equation with the asymptotic (here: r ≥ L) behaviour (3.8)
are given, in the WKB region 0 < r < L, by

ψst
0 (r) = cos [K0(L− r)] , (4.63)

ψst
1 (r) =

L

cos (φst
1 /2)

cos
(
K0(L− r) − φst

1

2

)
with tan

(
φst

1

2

)
= − 1

K0L
.

The zero-energy reflection phase φ0 at the outer turning point (here at r = L)
is zero. The threshold length b and the mean scattering length are thus given
by

bst =
1
K0

, ᾱst
0 = L . (4.64)

The reflection phase at the inner turning point r = 0 is π corresponding
to reflection at a hard wall, so the threshold quantum number defined by
(3.22) is given by nst

thπ = K0L − π/2. With (4.61) and using tan (nst
thπ) =

−1/ tan (K0L) we obtain the well known result [Joa87] for the scattering
length of the sharp-step potential,

αst
0 = L− tan (K0L)

K0
. (4.65)

For an attractive inverse-power potential,

V −
α (r) = −Cα

rα
= − h̄

2

2µ
(βα)α−2

rα
, α > 2 , (4.66)

the mean scattering length was already given by (3.28) in Sect. 3.1.2. It is
interesting to observe, that the formula (3.28) for the mean scattering length
of the attractive homogeneous potential (4.66) is very similar to the formula
(4.51) for the true scattering length of the repulsive homogeneous potential
(4.47) discussed in Sect. 4.1.1. It simply contains an additional factor cos (πν).

If there is a bound state at an energy E0 = −h̄2(κ0)2/(2µ2) very close to
threshold, then the near-threshold quantization rule (3.21) applies, so

nth = n+
b

π
κ0 +O

(
(κ0)2

)
, (4.67)
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and tan (πnth) = κ0b+O
(
(κ0)2

)
. The dependence of the true scattering length

on κ0 is given, according to (4.61), by

α0
κ0→0∼ 1

κ0
+ const . (4.68)

The true scattering length tends to +∞ when the bound-state energy ap-
proaches the threshold from below, κ0 → 0. On the other hand, the true
scattering length can assume arbitrarily large negative values if the poten-
tial just misses binding a further state, i.e., if nth is marginally less than an
integer, see (4.61).

4.1.3 Near-Threshold Feshbach Resonances

The sensitive dependence of the scattering length on whether the interaction
just binds or just fails to bind a near-threshold state is also observed for the
case of near-threshold Feshbach resonances, which arise through the coupling
of a bound state in a closed channel to the open channel whose threshold we
are considering, see Sect. 1.5.2. According to (1.228), (1.229) the phase shift
of the open-channel wave function in the energy region around the resonance
is given by

δl = δbg − arctan

(
π|〈φ0|V2,1|φreg〉|2

E − E0 − 〈φ0|V2,1ĜV1,2|φ0〉

)
, (4.69)

where δbg is the background phase shift characterizing the asymptotic behav-
iour of the wave function in the uncoupled open channel, E0 is the energy
of the bound state φ0 in the uncoupled closed channel and V1,2 = V ∗

2,1 is the
coupling potential. The Green’s operator Ĝ is defined via the Green’s function
(1.227).

When the “naked” resonance energy E0 is close to threshold, it is not
necessarily a good approximation to assume constant values for the matrix
elements in the argument of the arcus-tangent on the right-hand side of (4.69).
In order to understand the near-threshold behaviour of the phase shift, we look
more closely at the dependence of these matrix elements on E (or on k). They
contain the energy-normalized regular and irregular solutions in the uncoupled
open channel, which are defined by the following asymptotic behaviour:

φreg(r)
r→∞∼

√
2µ
πh̄2k

sin(kr + δbg) ,

φirr(r)
r→∞∼

√
2µ
πh̄2k

cos(kr + δbg) . (4.70)

Since we are interested in scattering lengths we shall focus on the s wave
(l = 0) of the open channel. As long as the potential in the uncoupled open
channel falls off faster than 1/r3 asymptotically, the near-threshold behaviour
of the background phase shift is,
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δbg(l = 0) k→0∼ nπ − αbgk , (4.71)

with a well defined background scattering length αbg. The bound-state wave
function φ0 in the closed channel and the coupling potential V1,2 are assumed
to vanish rapidly at large distances, so the matrix elements in (4.69) depend
essentially on the short-ranged parts of the wave functions (4.70). These are
determined by matching to the asymptotic forms on the right-hand side of
(4.70) at some point rm where φ0(r) and V1,2 can already be assumed to
be negligible, so their near-threshold dependence on k is determined by the
k-dependence of φreg and φirr at rm and beyond,

φreg(rm) =
√

2µ
πh̄2k

sin [k(rm − αbg)]
k→0∼

√
2µk
πh̄2 (rm − αbg) ,

φirr(rm) =
√

2µ
πh̄2k

cos [k(rm − αbg)]
k→0∼

√
2µ
πh̄2k

(
1 +O(k2)

)
. (4.72)

By explicitly factoring the near-threshold k-dependence out of the open-
channel wave functions,

φreg(r) =

√
2µk
πh̄2 φ̃reg(r) , φirr(r) =

√
2µ
πh̄2k

φ̃irr(r) , (4.73)

we can rewrite the phase shift (4.69) in terms of matrix elements containing
only the renormalized wave functions φ̃reg and φ̃irr, which tend to well defined
k-independent functions of finite amplitude at threshold,

δ0 = δbg − arctan

(
2µk
h̄2

|〈φ0|V2,1|φ̃reg〉|2
E − ER

)
. (4.74)

The resonance energy ER is given by (1.232),

ER = E0 + 〈φ0|V2,1ĜV1,2|φ0〉 = E0 +
2µ
h̄2 〈φ0|V2,1

ˆ̃GV1,2|φ0〉 , (4.75)

where ˆ̃G is a renormalized Green’s operator defined in analogy to (1.227), but
with respect to the renormalized k-independent open channel wave functions,

G̃(r, r′) = − φ̃reg(r<) φ̃irr(r>) . (4.76)

The second term on the right-hand side of (4.75) is the energy shift by which
the actual resonance energy ER differs from the “naked” energy E0 of the
bound state causing the Feshbach resonance. This shift is usually quite small,
because it contains the channel-coupling potential in second order, and it is
seen to tend to a finite limit at threshold. To calculate the scattering length
we collect the terms proportional to k in the low-k expansion of the right-hand
side of (4.74) (note that E = h̄2k2/(2µ) is of order k2). This gives,

α0 = αbg − 2µ
h̄2

|〈φ0|V2,1|φ̃reg〉|2
ER

, (4.77)
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where φ̃reg is the regular solution in the uncoupled open channel which is
normalized by matching to sin [k(r − αbg)]/k ∼ r − αbg beyond the range of
the bound state φ0 and the coupling potential V1,2.

The derivation above does not require ER to lie above the threshold E = 0;
it also holds for a bound state in a closed channel with an energy just below
the open-channel threshold. Such a “Feshbach bound state” with ER < 0
intrudes in the bound state spectrum of the uncoupled open channel just
as a bound state coupling into a channel with a very-long-ranged attractive
Coulomb potential perturbs the Rydberg series supported by this potential,
see Sect. 3.3.4. In the present case where the potential in the open channel is of
shorter range, the near-threshold Feshbach bound state affects the phase shifts
of the open-channel wave function just above threshold by leading to large
scattering lengths which tend to +∞ when ER → 0 from below. This is similar
to the divergence caused in the scattering length by a near-threshold bound
state in the uncoupled open channel, see (4.68), but there is a qualitative
difference. If the energy of the bound state is written as −h̄2(κ0)2/(2µ), then
the leading divergent contribution to the scattering length is just 1/κ0 for a
bound state in the uncoupled open channel, whereas for a Feshbach bound
state it is proportional to 1/(κ0)2 with a coefficient depending on the strength
of the channel coupling as seen in (4.77).

4.1.4 Semiclassical Description of Elastic Scattering

The problem of elastic scattering by a radially symmetric potential is a conve-
nient example for demonstrating the use of semiclassical approximations based
on classical mechanics supplemented by interference effects, see e.g. [BM72].
In the semiclassical approximation of the scattering amplitude, the partial
waves expansion (4.23) is transformed into a sum over classical trajectories or
rays. A basic tool for this transformation is the Poisson summation formula,

∞∑
l=0

g(l) =
∞∑

M=−∞

∫ ∞

−1/2

g(l) e2πiMl dl , (4.78)

which follows from the identity,
∞∑

M=−∞
e2πiMl ≡

∞∑
n=−∞

δ(l − n) , (4.79)

and relates the sum over discrete angular momentum quantum numbers to
a sum of integrals over a continuous angular momentum. The length of the
angular momentum vector is

√
l(l + 1)h̄, and it is well approximated by

L = h̄
(
l +

1
2

)
, (4.80)

when l is large. For large l the Legendre polynomial Pl(cos θ) is well approxi-
mated by
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Pl(cos θ) ≈
√

2h̄
πL sin θ

cos
(
Lθ

h̄
− π

4

)
, (4.81)

except for a small range of angles θ within h̄/L of the forward direction θ = 0
or the backward direction θ = π. With this approximation the scattering
amplitude (4.23) with the partial wave amplitudes fl given by (4.27) is

f(θ) =
∞∑

l=0

2l + 1
2ik

(
e2iδl − 1

)
Pl(cos θ)

≈
∞∑

M=−∞
e−iπM

∫ ∞

0

LdL
ih̄2k

e
i
h̄ 2πML

(
e2iδl−1

)√ 2h̄
πL sin θ

cos
(
Lθ

h̄
− π

4

)

=
−i

2
√
πh̄µE sin θ

∞∑
M=−∞

e−iπM
(
e−iπ/4 I+M + e+iπ/4 I−M

)
. (4.82)

The integrals I+M and I−M come from decomposition of the cosine of the second
last line of (4.82) into two exponentials; with the abbreviation

δ̃(L) = h̄δl , (4.83)

where L is related to l via (4.80), we have

I±M =
∫ ∞

0

√
LdL ×{

exp
[

i
h̄

(
2δ̃(L)±Lθ+2πML

)]
− exp

[
i
h̄

(±Lθ+2πML)
]}

. (4.84)

Equation (4.82) with (4.84) re-expresses the scattering amplitude (4.23) in
terms of the angular momentum (4.80) and the phase function (4.83) which
both have the dimensions of an action. If we regard (4.80) as a definition of
the variable L rather than as an approximation, then the only approximation
at this stage is the replacement of the Legendre polynomials according to
(4.81). The phase of the first exponentials in (4.84) contains the contribution
2δ̃(L) which expresses, in terms of an action, the phase shift in the radial wave
function during the scattering process. The contribution ±Lθ+2πML consti-
tutes the action of a projectile with angular momentum L which propagates
through an angle ±θ, 0 < θ < π, in addition to M complete turns through 2π
around the origin. The last line of (4.82) contains terms connecting all possi-
ble angular momenta L with all possible angles ±θ+2πM . This expression is
condensed to a sum over classical trajectories in the spirit of the semiclassical
approximation by exploiting the assumption, that the actions involved are
very large compared to h̄. The contributions of almost all angular momenta
to the integrals over L are assumed to vanish, because of cancellations due to
the very rapid oscillations of the exponential factors. Non-vanishing contribu-
tions are assumed to come only from the immediate vicinity of such angular
momenta for which the phase of the exponential is stationary as a function of
L; this defines the stationary phase approximation.
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The phases of the second exponentials in (4.84) depend linearly on L and
have no stationary points. Points of stationary phase of the first exponentials
are given by

2πM ± θ = −2
dδ̃
dL

. (4.85)

An explicit expression for the phase function δ̃ can be obtained from the WKB
approximation to the radial wave function (cf. (1.300)),

φWKB
l (r) ∝ 1√

pl(r)
cos

(
1
h̄

∫ r

rt

pl(r′) dr′ − φ

2

)
, (4.86)

defined via the radial classical momentum

pl(r) =

√
2µ(E − V (r)) − l(l + 1)h̄2

r2
. (4.87)

The phase φ on the right-hand side of (4.86) is the phase loss of the WKB
wave due to reflection at the classical turning point rt, which corresponds to
the radius of closest approach of the projectile. Equating the asymptotic phase
of the WKB wave function (4.86) and the asymptotic phase of the quantum
mechanical radial wave function (4.29) yields an explicit relation between the
quantum mechanical scattering phase shift δl and the reflection phase φ in
the WKB wave function (cf. Sect. 1.6.3),

δl = l
π

2
+
π

2
+ lim

r→∞

(
1
h̄

∫ r

rt

pl(r′) dr′ − kr
)
− φ

2
. (4.88)

If, in the spirit of the semiclassical approximation, we replace l(l + 1)h̄2

by L2 (cf. (4.80)) and φ by π/2, then the phase function (4.83) becomes

δ̃(L) = L
π

2
+
∫ ∞

rt

(pL(r) − p∞) dr − rtp∞ , (4.89)

where

pL(r) =
√

2µ(E − V (r)) − L2/r2 , p∞ =
√

2µE ; (4.90)

the derivative of the phase function is

dδ̃
dL

=
π

2
−
∫ ∞

rt

Ldr
r2
√

2µ(E − V (r)) − L2/r2
=

1
2
Θ(L) . (4.91)

Here we have introduced the classical deflection function Θ(L), which gives
the total angle Θ through which a classical projectile of mass µ is scattered by
the radially symmetric potential V (r), as function of the (classical) angular
momentum L; it is often expressed in terms of the impact parameter b =
L/

√
2µE, see e.g. [LL71], Paragraph 18, (18.1), (18.2). Thus the condition of

stationary phase (4.85) is

Θ(L) = ∓θ − 2Mπ ; (4.92)
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it selects, for each scattering angle θ, those values of angular momentum L, for
which the total deflection angle Θ is equal to plus or minus θ modulo 2π. In
a typical quantum mechanical scattering experiment, it is only the scattering
angle θ, 0 ≤ θ ≤ π between the incoming and outgoing beam of particles
that can be detected. Classically we can, in addition, distinguish whether the
projectile was deflected in a clockwise or anticlockwise sense and how often, if
at all, it encircled the target completely. The integer M in the relation (4.92)
between Θ and θ counts how many times the classical trajectory encircles the
origin in the clockwise sense. The relation between θ and Θ is illustrated in
Fig. 4.4.

Fig. 4.4. Schematic illustration of classical trajectories for a few angular momenta
(impact parameters) leading to different deflection angles Θ corresponding to the
same scattering angle θ

The contribution of the vicinity of a given point L0 of stationary phase
to the integrals I±M in (4.84) is estimated by expanding the phase of the
exponential around its stationary point,

2δ̃(L) ± Lθ + 2πML ≈ 2δ̃(L0) ± L0θ + 2πML0 +
d2δ̃

dL2
(L− L0)2 . (4.93)

Extending the integral over L in the vicinity of L0 to an integral from −∞ to
∞ and ignoring the L-dependence of the factor

√
L reduces the integral to a

factor depending on L0, times a simple Gaussian integral∫ ∞

∞
exp {−a2(L− L0)2}dL =

√
π

a
, a2 = − i

h̄

d2δ̃

dL2
= − i

2h̄
dΘ
dL

. (4.94)

Inserting this result into the integrals (4.84) in the last line of (4.82) yields the
following expression for the semiclassical approximation fsc(θ) to the scatter-
ing amplitude:
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fsc(θ) =
−i√

2µE sin θ

∑
Li

⎛
⎝eiα

√
Li exp

(
i
h̄ [2δ̃(Li) − LiΘ(Li)]

)
√

|dΘ/dL|Li

⎞
⎠ . (4.95)

For a given scattering angle θ, the sum is to be taken over all angular momenta
Li for which the total deflection angle Θ corresponds to the (observable)
scattering angle θ according to (4.92).

The expression (4.95) illustrates several features which are characteristic
for semiclassical approximations to quantum mechanical amplitudes describ-
ing physical processes:
(i) The amplitude is expressed as a sum over terms each corresponding to a
classical trajectory for realizing the process. Here this is a sum over (classical)
angular momenta (impact parameters) leading to the given scattering angle.
(ii) Each term contains a phase essentially given by the classical action along
the trajectory in units of h̄. Here this phase consists of a radial and an angular
contribution and is [2δ̃ − LiΘ]/h̄.
(iii) Each term also contains a topological phase, which is usually a multiple of
π/4 and is related to the topology of the classical trajectory. Here this phase
is α = −Mπ∓ π/4± π/4, where M is the number of times the trajectory en-
circles the origin completely. The “∓” sign comes from the coefficients e∓iπ/4

in front of I+M and I−M in the last line of (4.82) and corresponds to the sign
in front of θ on the right-hand side of (4.92); the “±” sign stands for the sign
of the gradient dΘ/dL of the deflection function at the point of stationary
phase.
(iv) Each term is weighted by an amplitude depending on the density of clas-
sical trajectories in the vicinity of the trajectory concerned. Here this factor is√
Li |dΘ/dL|−1/2 and diverges at stationary points of the deflection function

corresponding to an accumulation of trajectories deflected by the same angle,
an effect known as rainbow scattering.

If there is only one classical angular momentum contributing to the scat-
tering angle θ according to (4.92), then all the phases in (4.95) drop out of
the expression for the differential cross section, giving(

dσ
dΩ

)
sc

= |fsc(θ)|2 =
L

2µE sin θ

∣∣∣∣dΘdL
∣∣∣∣
−1

=
b

sin θ

∣∣∣∣dΘdb
∣∣∣∣
−1

; (4.96)

this is exactly the same as the classical expression, see [LL71], Paragraph 18,
Eq. (18.8).

If more than one classical trajectory contribute to the semiclassical approx-
imation (4.95) of the scattering amplitude, then the corresponding approxi-
mation to the differential cross section will contain the effects of interference
of the various contributions. The semiclassical cross section goes beyond the
pure classical description in that it contains these quantum mechanical inter-
ference effects.

The semiclassical approximation can be useful in providing an intuitive pic-
ture of a given quantum mechanical process. An application to electron-atom
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Fig. 4.5. Description of electron
krypton scattering at E = 100
eV with a parametrized electron-
atom potential. The upper panel
shows quantum mechanical phase
shifts (open circles) together with
the semiclassical approximation
δ̃(L)/h̄ [cf. (4.83), (4.89)] (solid
line). The lower panel shows the
classical deflection function Θ(L)
in units of π. The abscissa is la-
belled by the angular momentum
L defined by (4.80) (From [BR95])

scattering has been given by Burgdörfer et al. [BR95]. They studied the elastic
scattering of electrons by krypton atoms using a parametrized electron-atom
potential derived from Hartree-Fock calculations. Fig. 4.5 shows the quantum
mechanical and semiclassical (4.89) scattering phase shifts for this potential,
together with the classical deflection angle as functions of the (classical) an-
gular momentum L for an impact energy of 100 eV. The differential scattering
cross section at 100 eV is shown in Fig. 4.6. The solid line is the quantum

Fig. 4.6. Experimental differential cross section (filled circles and triangles) for
electron scattering by krypton at 100 eV [WC75, JH76]. The solid line (QM) is the
calculated quantum mechanical result (4.31), the dashed curve (SC) is the result
obtained by calculating the scattering amplitude according to (4.82) with (4.84), and
the dotted curve (PSC) is the result of the (primitive) semiclassical approximation
based on the scattering amplitude (4.95) (From [BR95])
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mechanical result (4.31), which agrees quite well with the experimental data.
The three distinct minima indicate a dominance of the l = 3 partial wave
in determining the shape of the cross section. The dashed curve shows the
differential cross section obtained by calculating the scattering amplitude ac-
cording to (4.82) with (4.84), and it reproduces the result of the direct par-
tial wave summation very satisfactorily. This shows that the approximation
of the Legendre polynomials according to (4.81) doesn’t cause serious error,
even though low angular momentum quantum numbers provide the dominant
contributions to the cross section. Finally, the dotted line in Fig. 4.6 shows
the result of the semiclassical approximation based on the scattering ampli-
tude (4.95). Although there are noticeable deviations from the full quantum
mechanical result, the semiclassical approximation does reproduce the the
oscillatory structure of the cross very well qualitatively. In the semiclassical
description this oscillatory structure is due to the interference of amplitudes
from three classical trajectories, as can be deduced from the deflection function
in Fig. 4.5 with the help of (4.92). There is always one trajectory with angular
momentum larger than about 3h̄ which is deflected by an angle Θ between
zero and −π, so that Θ = −θ, (M = 0) corresponds to the scattering angle
θ in the intervall [0, π]. There are two further trajectories, one with angular
momentum close to 3h̄ and one with smaller angular momentum, for which
the deflection angle lies between −π and −2π, so that Θ = θ − 2π, (M = 1)
corresponds to the same scattering angle θ. The very good qualitative agree-
ment between the quantum mechanical and the semiclassical cross sections
shows that the two interpretations, one based on a purely quantum mechani-
cal picture and attributing the oscillatory structure to the dominance of the
l = 3 partial wave, and the other semiclassical interpretation attributing it to
the interference of a small number of classical trajectories, are not mutually
exclusive.

4.1.5 Elastic Scattering by a Pure Coulomb Potential

In order to describe scattering by a pure Coulomb potential,

VC(r) = −Ze
2

r
, (4.97)

we have to modify the description of Sect. 4.1.1 substantially because of the
very-long-ranged nature of the potential. There is an analytic solution of the
stationary Schrödinger equation, which is regular at the origin and fulfills
asymptotic boundary conditions appropriate to the scattering problem,

ψC(r) = e−πη/2 Γ (1 + iη) eikz F (−iη, 1; ik(r − z)) . (4.98)

Here η is the Coulomb parameter as in (1.118),

η = −Zµe
2

h̄2k
= − 1

kaZ
, (4.99)
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Γ is the complex gamma function (A.16) and F is the confluent hypergeo-
metric series (A.59). For large values of k(r− z) the wave function ψC(r) has
the form

ψC(r) = ei[kz+η ln k(r−z)]

[
1 +

η2

ik(r − z) + · · ·
]

+ fC(θ)
ei(kr−η ln 2kr)

r

[
1 +

(1 + iη)2

ik(r − z) + · · ·
]

(4.100)

with

fC =
−η

2k sin2 (θ/2)
e−i[η ln (sin2 (θ/2))−2σ0] , σ0 = arg [Γ (1 + iη)] . (4.101)

To the left of the scattering centre, z = r cos θ < 0, the first term on
the right-hand side of (4.100) asymptotically describes an incoming wave
exp (ikeffz), but its effective wave number keff = k + η[ln k(r − z)]/z con-
verges only very slowly to its asymptotic value k. For a given angle θ �= 0, the
contribution jin of this term to the current density according to (4.4) is, in
leading order in 1/r,

jin =
h̄k

µ
ez +O

(
1
r

)
. (4.102)

The second term on the right-hand side of (4.100) describes an outgoing spher-
ical wave with an effective wave number k−η(ln 2kr)/r, which also converges
very slowly to its asymptotic value k as r → ∞. The angular modulation
is asymptotically described by the function fC of (4.101) which is called the
Coulomb scattering amplitude or Rutherford scattering amplitude. The corre-
sponding current density (again for given θ �= 0) is, in leading order in 1/r,

jout =
h̄k

µ
|fC(θ)|2 r

r3
+O

(
1
r3

)
. (4.103)

The differential cross section is again defined as the asymptotic ratio of out-
going particle flux to the incoming current density and is, in analogy to (4.6),

dσC

dΩ
= |fC(θ)|2 =

η2

4k2 sin4 (θ/2)
=

4
a2Zq

4
. (4.104)

Here q is the length of the vector q which stands for the vector difference
of the outgoing and ingoing wave vectors as in (4.20), q = 2k sin (θ/2) (see
Fig. 4.7(c)).

The formula (4.104) is the famous Rutherford formula for elastic scatter-
ing by a pure Coulomb potential. The differential cross section doesn’t depend
on the sign of the potential. Furthermore, it does not depend on energy and
scattering angle independently, but only on the absolute value of the momen-
tum transfer h̄q. The Rutherford cross section (4.104) diverges strongly in
the forward direction (θ → 0) so that the integrated cross section becomes
infinite. This is of course due to the very long range of the Coulomb potential
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Fig. 4.7. (a) Hyperbolical classical orbits of a particle scattered by an attractive
Coulomb potential for k = 1/aZ and η = −1. The coordinates x and z are in units
of the Bohr radius aZ . (b) The Rutherford cross section (4.104). Part (c) illustrates
the identity q = 2k sin (θ/2)

which even deflects particles passing the scattering centre at large distances.
Figure 4.7(a) shows the hyperbolical classical orbits of a particle scattered by
an attractive Coulomb potential, and Fig. 4.7(b) shows the Rutherford cross
section (4.104).

The Rutherford cross section (4.104) is also obtained if the scattering am-
plitude fC(θ) is replaced by its Born approximation according to (4.19). The
classical formula (4.96) also reproduces the Rutherford cross section (4.104)
[LL71]. For Coulomb scattering in three dimensions we are confronted with
the remarkable coincidence that quantum mechanics, classical mechanics and
the Born approximation all give the same differential scattering cross section.
Note however, that the scattering amplitudes are real both in the classical de-
scription and in the Born approximation, and differ from the exact quantum
mechanical expression (4.101), which has a non-trivial phase. It is also inter-
esting to note that the equality of Coulomb cross sections obtained in quantum
mechanics, classical mechanics and the Born approximation is a peculiarity
of three-dimensional coordinate space. It no longer holds for scattering by a
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potential proportional to 1/r e.g. in two-dimensional coordinate space. The
exact quantum mechanical result in this case is just the square root of the
Rutherford cross section (4.104) multiplied by tanh (π|η|); it becomes equal to
the classical cross section in the low-energy limit |η| → ∞ and approaches the
result of the Born approximation in the high-energy limit |η| → 0 [Bar83]. It
should be mentioned in this context, that the potential between two charges is
not inversely proportional to, but depends logarithmically on their separation
in two-dimensional space. The result for two-dimensional scattering by a 1/r
potential does however provide a safeguard against giving too much weight to
the triple coincidence of the cross sections in three-dimensional space. It also
illustrates the fact that the classical limit for 1/r potentials is not reached at
high energies, but for total energy tending to zero, see Sect. 1.6.3.

4.1.6 Elastic Scattering by a Modified Coulomb Potential, DWBA

An important real situation frequently encountered in charged-particle scat-
tering is, that the potential only corresponds to a pure Coulomb potential
at large separations and that there are shorter-ranged modifications due e.g.
to decreasing screening of the nucleus of the target ion by its electrons. (cf.
Fig. 2.2),

V (r) = VC(r) + Vsr(r) , lim
r→∞ r2Vsr(r) = 0 . (4.105)

In order to expose the effect of the additional shorter-ranged potential we
again make the Schrödinger equation look like an inhomogeneous differential
equation [cf. (4.11)], but we now take the “inhomogeneous term” to be only
the part due to the additional shorter-ranged potential,[

E +
h̄2

2µ
∆− VC(r)

]
ψ(r) = Vsr(r)ψ(r) . (4.106)

Let GC(r, r′) be the appropriate Green’s function obeying[
E +

h̄2

2µ
∆− VC(r)

]
GC(r, r′) = δ(r − r′) . (4.107)

The equivalent integral equation in this case is

ψ(r) = ψC(r) +
∫

GC(r, r′)Vsr(r′)ψ(r′) dr′ . (4.108)

In the asymptotic region r → ∞, the second term on the right-hand side of
(4.108) has the form of an outgoing spherical wave (in the very-long-ranged
Coulomb potential),

ψ(r) = ψC(r) + f ′(θ, φ)
ei(kr−η ln 2kr)

r
, r → ∞ . (4.109)

In contrast to (4.17) the angular amplitude f ′ is now not defined via incoming
plane waves but via distorted waves ψ̄C,r,
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f ′(θ, φ) = − µ

2πh̄2

∫
ψ̄∗

C,r(r
′)Vsr(r′)ψ(r′) dr′ . (4.110)

The distorted waves ψ̄C,r(r′) are solutions of the Schrödinger equation with
a pure Coulomb potential, but their asymptotic form [cf. (4.98), (4.100)] cor-
responds to an incoming modified plane wave in the direction of the radius
vector r instead of in the direction of the z-axis, plus an incoming instead of
an outgoing spherical wave [Bra83]. Explicitly,

ψ̄C,r(r′) = e−πη/2 Γ (1 − iη) eikr·r′
F (iη, 1;−i(krr

′ + kr · r′)) . (4.111)

As in (4.16) and (4.17), kr is the wave vector with length k which points in
direction of the radius vector r (without ′).

Since the first term on the right-hand side of (4.109) also contains an
outgoing spherical wave [see (4.100)], modulated by the Coulomb amplitude
(4.101), the total amplitude modulating the outgoing spherical wave is a sum
of the Coulomb amplitude fC and the additional amplitude (4.110),

ψ(r) r→∞= ei[kz+η ln k(r−z)] + [fC(θ) + f ′(θ, φ)]
ei(kr−η ln 2kr)

r
. (4.112)

The differential cross section for elastic scattering is now

dσ
dΩ

= |fC(θ) + f ′(θ, φ)|2 . (4.113)

The scattering amplitude for the elastic scattering of a particle by a po-
tential VC +Vsr is thus a sum of two contributions: the first contribution is the
amplitude for scattering by the “unperturbed” potential VC, the second con-
tribution describes the modification of the exact solution in the unperturbed
potential caused by the additional perturbing potential. This decomposition
is named after Gell-Mann and Goldberger and can be performed quite gen-
erally for a sum of two potentials. The cross section contains a contribution
|fC|2 from the Coulomb scattering amplitude, a contribution |f ′|2 from the
additional scattering amplitude and a further contribution fCf ′

∗ + f∗Cf
′ due

to interference of the two amplitudes fC and f ′.
If the influence of the additional shorter-ranged potential is small, we can

replace the exact wave function ψ in the integrand on the right-hand side of
(4.110) by the (distorted) incoming Coulomb wave (4.98) in the spirit of the
Born approximation. This is the distorted wave Born approximation (DWBA)
and leads to the following explicit expression for the additional scattering
amplitude,

fDWBA = − µ

2πh̄2

∫
ψ̄∗

C,r(r
′)Vsr(r′)ψC(r′) dr′ . (4.114)

If the additional shorter-ranged potential Vsr is radially symmetric, it
makes sense to expand the wave function in partial waves. For an incoming
Coulomb wave ψC(r) travelling in z-direction we have, in analogy to (4.22),
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ψC(r) =
∞∑

l=0

(2l + 1) il eiσl
Fl(η, kr)
kr

Pl(cos θ) . (4.115)

Here Fl are the regular Coulomb functions, which were introduced in Sect. 1.3.2
and which solve the radial Schrödinger equation in a pure Coulomb potential.
The Coulomb phases σl are defined by (1.120). The additional scattering am-
plitude f ′ doesn’t depend on the azimuthal angle φ and can be expanded in
analogy to (4.23):

f ′(θ) =
∞∑

l=0

f ′l Pl(cos θ) . (4.116)

The same steps that lead from (4.24) to (4.27) now allow us to extract from the
wave function (4.109) a relation between the partial wave amplitudes f ′l and
the phase shifts δl due to the effect of the additional shorter-ranged potential
in the respective partial waves [cf. (1.119), (1.121)]:

f ′l =
2l + 1
2ik

e2iσl(e2iδl − 1) =
2l + 1
k

e2iσl eiδl sin δl . (4.117)

Because of the shorter range of the potential Vsr, the additional phase
shifts δl in (4.117) converge rapidly to zero (or to an integral multiple of π)
as the angular momentum quantum number l increases. Hence the expansion
(4.116) is rapidly convergent. On the other hand, the partial waves expansion
of the Coulomb scattering amplitude fC converges very slowly. In order to
calculate e.g. the cross section (4.113) it is thus best to use the analytically
known expression (4.101) for fC and to expand only the additional scattering
amplitude f ′ in partial waves. The phase shifts δl can be extracted from the
asymptotic behaviour of the radial wave functions

φl(r) ∝ Fl(η, kr) + tan δlGl(η, kr) , r → ∞ , (4.118)

(cf. Table 1.3).
We obtain an implicit equation for the phase shifts by extending (4.37) to

the case of modified Coulomb potentials,

tan δl = −
√

2µπ
h̄2k

∫ ∞

0

Fl(η, kr′)Vsr(r′)φl(r′) dr′ . (4.119)

In the spirit of the DWBA we obtain an approximate explicit expression for
tan δl if we replace the exact radial wave function φl in the integrand on the
right-hand side of (4.119) by the regular Coulomb function Fl (multiplied by
[2µ/(πh̄2k)]1/2 to ensure normalization in energy),

tan δl ≈ − 2µ
h̄2k

∫ ∞

0

[Fl(η, kr′)]2Vsr(r′) dr′ . (4.120)

If the Coulomb potential is repulsive, η > 0, then tan δl vanishes at the
threshold k → 0 just as in the case of a shorter-ranged potential alone. For an
attractive Coulomb potential, η < 0, tan δl generally tends to a finite value.
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Remember that the phase shifts at threshold are connected to the quantum
defects of the corresponding Rydberg states below threshold, as expressed
in Seaton’s theorem (3.87) and illustrated in Fig. 3.2 for the e−-K+ system.
A byproduct of this consideration is the insight, that the additional phase
shift δl due to a shorter-ranged potential on top of a pure Coulomb potential
cannot in general be identical to the phase shift caused by the shorter-ranged
potential alone.

4.1.7 Feshbach Projection. Optical Potential

All real applications of the considerations in the preceding sections of this
chapter depend crucially on the potential. For large projectile-target separa-
tions the leading terms are known, e.g. the polarization potential (4.52) for
the scattering of a charged particle by a neutral atoms or the Coulomb po-
tential (4.97) for the scattering of an electron by a target ion of charge Z.
At smaller separations however, excitations of the target become important
as do exchange effects, and the interaction potential may become very com-
plicated. In this region it is not obvious that it is justified to describe e.g. an
electron-atom interaction by a Schrödinger equation with a potential.

One possibility of deriving an equation of motion of the Schrödinger type
is Feshbach’s projection formalism. This involves projection operators P̂ and
Q̂ which decompose the whole space of wave functions into a subspace of wave
functions P̂Ψ , whose dynamics are to be studied further, and an orthogonal
residual space, the Q̂-space, which is only of interest in so far as it is coupled
to and influences the states in P̂-space:

Ψ = P̂Ψ + Q̂Ψ , P̂ + Q̂ = 1 , P̂Q̂ = 0 . (4.121)

Elastic scattering is usually described in a P̂-space in which the target atom
is given by a fixed (generally the ground state) wave function, while arbi-
trary wave functions are allowed for the projectile electron. This corresponds
to a single term in the close-coupling expansion (3.107). All wave functions
orthogonal to P̂-space constitute Q̂-space.

Multiplying from the left by P̂ and by Q̂ enables us to transform the
stationary Schrödinger equation ĤΨ = EΨ for the wave function Ψ in (4.121)
into two coupled equations for P̂Ψ and Q̂Ψ ,

P̂ĤP̂(P̂Ψ) + P̂ĤQ̂(Q̂Ψ) = E(P̂Ψ) ,
Q̂ĤQ̂(Q̂Ψ) + Q̂ĤP̂(P̂Ψ) = E(Q̂Ψ) . (4.122)

Here we used the property of projection operators, viz. P̂P̂ = P̂ and Q̂Q̂ = Q̂.
If we resolve the lower equation (4.122) for Q̂Ψ ,

Q̂Ψ =
1

E − Q̂ĤQ̂Q̂ĤP̂(P̂Ψ) , (4.123)

and insert the result into the upper equation we obtain an effective Schrödin-
ger equation for the component P̂Ψ ≡ ψ,
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Ĥeffψ = Eψ , Ĥeff = P̂ĤP̂ + P̂ĤQ̂ 1
E − Q̂ĤQ̂ Q̂ĤP̂ . (4.124)

The first term P̂ĤP̂ in the formula for the effective Hamiltonian Ĥeff

contains all direct and exchange contributions of the elastic channel, but no
contributions due to coupling to excited states of the target atom. These
are contained in the second term P̂ĤQ̂[E−Q̂ĤQ̂]−1Q̂ĤP̂, which introduces
an explicitly energy-dependent contribution to the effective potential. If the
energy E lies above the continuum threshold of Q̂ĤQ̂, it should be given an
infinitesimally small imaginary part in the denominator in (4.124), similar to
(4.14). This makes the effective Hamiltonian non-Hermitian. The projection
of the Schrödinger equation onto a subpace of the full space of states thus
leads to an explicitly energy-dependent additional potential in the effective
Schrödinger equation for the projection of the total wave function onto this
subspace. If the projectile electron can decay into continuum states of Q̂-space,
this effective P̂-space potential is non-Hermitian. The effective potential V̂eff in
the effective Schrödinger equation in P̂-space is usually called optical potential.

One immediate consequence of the non-Hermitian nature of the optical
potential V̂eff is, that the continuity equation is no longer fulfilled in the form
(4.8). We actually have

∇·j =
h̄

2iµ
(ψ∗∆ψ − ψ∆ψ∗) =

1
ih̄

(ψ∗V̂effψ − ψV̂ †
effψ

∗) ,∮
j ·ds =

∫
∇·j dr =

2
h̄
�[〈ψ|V̂eff |ψ〉] . (4.125)

If the boundary conditions are chosen such that the projectile electron travels
outward in Q̂-space and not inward, then �[〈ψ|V̂eff |ψ〉] is negative, correspond-
ing to a loss of particle flux due to absorption from P̂-space into Q̂-space.

If the non-Hermitian optical potential has the form of a complex radially
symmetric potential Veff(r), then an expansion in partial waves still makes
sense, but the radial wave functions φl and the phase shifts δl are now complex.
The imaginary part of the phase shift is generally positive for a negative
imaginary part of the potential (cf. (4.38)), so the absolute value of exp (2iδl)
is smaller than unity. The formulae (4.31) and (4.32) for the elastic scattering
cross section remain valid in a (shorter-ranged) complex potential. In addition,
the total absorption cross section σabs is defined as the loss of particle flux
relative to the incoming current density h̄k/µ. The asymptotic form of the
wave function (4.30) is

ψ(r) r→∞=
∞∑

l=0

(2l + 1)
2ik

[
e2iδl

e+ikr

r
− (−1)l e

−ikr

r

]
Pl(cos θ) , (4.126)

and the total loss of particle flux is

−
∮

j ·ds =
h̄

4µk

∞∑
l=0

(2l + 1)2 (1 − |e2iδl |2)
∫
Pl(cos θ)2 dΩ , (4.127)
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where we have already exploited the orthogonality of the Legendre polyno-
mials Pl. Using

∫
Pl(cos θ)2 dΩ = 4π/(2l + 1) [cf. (A.3), (1.59)] the loss of

particle flux divided by the incoming current density, i.e. the total absorption
cross section, amounts to

σabs = − µ

h̄k

∮
j ·ds =

π

k2

∞∑
l=0

(2l + 1)(1 − |e2iδl |2) . (4.128)

How well the Schrödinger-type equation (4.124) describes elastic scattering
depends of course on how accurately the effective Hamiltonian Ĥeff or rather
the optical potential V̂eff is calculated. One of the simplest approximations
consists in completely ignoring the coupling to Q̂-space. This leads to the
one-channel version of the close-coupling equations (3.120), which disregards
all excitations of the target atom but includes exactly the exchange effects
between projectile electron and target. The resulting potential is known as
static exchange potential. If the target atom or ion is described by a Hartree-
Fock wave function, then the static exchange potential is simply the associated
Hartree-Fock potential (Sect. 2.3.1).

In order to derive the polarization potential (4.52), one has to go beyond
the static exchange approximation and consider the coupling to Q̂-space. An
exact treatment of the coupling term in (4.124) would however involve an exact
solution of the N -electron problem, which is of course impossible. A successful
approximate access to the coupling potential is provided by replacing the
whole set of eigenstates of Q̂ĤQ̂ by a finite (small) number of cleverly chosen
pseudostates [CU87, CU89]. For a calculation of optical potentials in this spirit
see e.g. [BM88].

4.2 Spin and Polarization

In Sect. 4.1 we didn’t consider the fact that electrons have spin. If the potential
by which an electron is scattered is completely independent of spin, then the
spin state of the electron is not affected by the scattering process and the cross
sections are independent of the state of spin. In general however, electron-atom
interactions at least contain a spin dependence in the form of a spin-orbit
coupling – see Sect. 1.7.3. Hence the spin state is affected by scattering and
the cross sections depend on the state of spin before and after the collision.

4.2.1 Consequences of Spin-Orbit Coupling

Let’s assume for the time being that the spin of the incoming electron is
given by the spin-up state |χ+〉 [cf. (1.341)]. The asymptotic form of the wave
function solving the stationary Schrödinger equation (with a shorter-ranged
potential) is now [instead of (4.3)]
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ψ = eikz

(
1
0

)
+

eikr

r

(
f(θ, φ)
g(θ, φ)

)
, r → ∞ . (4.129)

The differential cross section for elastic scattering is the outgoing particle flux,
which now contains a spin-up and a spin-down contribution, divided by the
incoming current density,

dσ
dΩ

= |f(θ, φ)|2 + |g(θ, φ)|2 . (4.130)

Here g(θ, φ) is the spin-flip amplitude, and its absolute square describes the
probability that the orientation of the spin is reversed by the collision. The
formula (4.130) implies that we do not separate spin-up and spin-down compo-
nents for the outgoing electron, i.e. we don’t measure the spin of the scattered
electron.

If the target atom (or ion) itself has no spin, and if there are no fur-
ther contributions in the potential breaking radial symmetry, then the spin
of the projectile electron and its orbital angular momentum couple to good
total angular momentum labelled by the quantum number j = l ± 1/2. The
stationary Schrödinger equation can be decomposed into radial Schrödinger
equations (1.362), in which the potentials depend not only on the orbital an-
gular momentum quantum number l but also on the total angular momentum
quantum number j. The solutions of these radial Schrödinger equations are
asymptotically characterized by phase shifts δ(j)l .

We choose the quantization axis for all angular momenta to be the z-axis,
which points in the direction of the incoming particle current, and we can
assume the total wave function to be an eigenstate of the z-component of
the total angular momentum. The corresponding quantum number must be
m = +1/2 for consistency with the right-hand side of (4.129). We use the
generalized spherical harmonics Yj,m,l introduced in Sect. 1.7.3 to decompose
the wave function (4.129) into components with good values of j, m and l. In
the special case m = +1/2, (1.358) becomes

Yl+ 1
2 ,m,l =

1√
2l + 1

(√
l + 1Yl,0(θ)√
l Yl,1(θ, φ)

)
,

Yl− 1
2 ,m,l =

1√
2l + 1

( −√
l Yl,0(θ)√

l + 1Yl,1(θ, φ)

)
. (4.131)

These relations can be inverted,(
Yl,0(θ)

0

)
=

√
l + 1
2l + 1

Yl+ 1
2 ,m,l −

√
l

2l + 1
Yl− 1

2 ,m,l ,(
0

Yl,1(θ, φ)

)
=

√
l

2l + 1
Yl+ 1

2 ,m,l +

√
l + 1
2l + 1

Yl− 1
2 ,m,l . (4.132)

Expanding the spatial part of the plane wave according to (4.22) and using
the upper equation (4.132) yields
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eikz χ+ =
√

4π
∞∑

l=0

√
2l + 1 il jl(kr)

(
Yl,0(θ)

0

)

=
√

4π
∞∑

l=0

il jl(kr)
(√
l + 1Yl+ 1

2 ,m,l −
√
lYl− 1

2 ,m,l

)
. (4.133)

If we expand the scattering amplitudes f and g in spherical harmonics in
analogy to (4.23),

f(θ) =
∞∑

l=0

fl

√
4π

2l + 1
Yl,0(θ) ,

g(θ, φ) =
∞∑

l=1

gl
√
l(l + 1)

√
4π

2l + 1
Yl,1(θ, φ) , (4.134)

then we can use (4.132) and decompose the outgoing spherical wave into
components with good j, m and l,(

f(θ)
g(θ, φ)

)
=

∞∑
l=0

√
4π

2l + 1

[
(fl + lgl)

√
l + 1Yl+ 1

2 ,m,l

− [fl − (l + 1)gl]
√
lYl− 1

2 ,m,l

]
. (4.135)

If we now collect the radial parts of the incoming plane wave and the outgoing
spherical wave for given values of l and j, we obtain expressions which look like
the expression in the big square bracket in (4.24), except that the coefficient fl

in (4.24) is now replaced by different linear combinations of fl and gl, namely
fl + l gl for j = l + 1/2 and fl − (l + 1) gl for j = l − 1/2. The same steps
which led from (4.24) to (4.27) now give

fl + l gl =
2l + 1
2ik

[
exp

(
2iδ(l+1/2)

l

)
− 1

]
,

fl − (l + 1)gl =
2l + 1
2ik

[
exp

(
2iδ(l−1/2)

l

)
− 1

]
. (4.136)

Resolving for the partial wave amplitudes fl and gl yields

fl =
l + 1
2ik

[
exp

(
2iδ(l+1/2)

l

)
− 1

]
+

l

2ik

[
exp

(
2iδ(l−1/2)

l

)
− 1

]
,

gl =
1

2ik

[
exp

(
2iδ(l+1/2)

l

)
− exp

(
2iδ(l−1/2)

l

)]
. (4.137)

We can use (4.135), (4.137) to deduce the direct and the spin-flip parts of
the cross section (4.130) from the phase shifts, which can be obtained from the
asymptotic solutions of the radial Schrödinger equations (1.362). By the way,
the dependence of the spin-flip amplitude on the azimuthal angle φ is given
simply by exp (iφ) regardless of l, so the cross section again depends only on
θ. If the effect of spin-orbit coupling is negligible, then the phase shifts are
independent of j for given l; in this case gl vanishes and fl is again given by
the expression (4.27).
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For scattering by a long-ranged modified Coulomb potential we obtain
formulae such as (4.135) and (4.137) for the additional scattering amplitude
due to the shorter-ranged deviations from a pure Coulomb potential, which
now include the effects of spin-orbit coupling. The corresponding extension of
(4.117) reads

f ′l =
l + 1
2ik

e2iσl

[
exp

(
2iδ(l+1/2)

l

)
− 1

]
+

l

2ik
e2iσl

[
exp

(
2iδ(l−1/2)

l

)
− 1

]
,

g′l =
e2iσl

2ik

[
exp

(
2iδ(l+1/2)

l

)
− exp

(
2iδ(l−1/2)

l

)]
. (4.138)

We can also apply the Gell-Mann–Goldberger procedure to a decomposi-
tion of the total potential in the radial Schrödinger equation (1.362) into an
unperturbed part containing everything except the spin-orbit coupling and the
spin-orbit part (h̄2/2)F (j, l)VLS(r). Since the effect of the spin-orbit coupling
is small, we can apply the DWBA formula (4.120) to obtain an approximate
expression for the additional phase due to the spin-orbit term in the radial
potential:(

tan δ(j)l

)
LS

≈ −µ
k
F (j, l)

∫ ∞

0

[φl(r′)]2VLS(r′) dr′ . (4.139)

Now φl is the regular solution [asymptotically normalized to sin(kr + . . .)] of
the radial Schrödinger equation containing the full radial potential with the
exception of the spin-orbit coupling. For a given l the j-dependence of the
right-hand side of (4.139) is determined by the factor F (j, l), which is simply
l for j = l + 1

2 and −(l + 1) for j = l − 1
2 (see Sect. 1.7.3).

4.2.2 Application to General Pure Spin States

A pure state of a physical system is one which can be described by a single
quantum mechanical wave function – in contrast to a mixed state consisting
of a statistical mixture of various quantum mechanical states (see Sect. 4.2.3).
A pure spin state of an electron is defined by a two-component spinor

(
A
B

)
.

In order to describe the scattering of an electron whose incoming wave is in
such a general pure spin state, we have to complement the treatment based
on (4.129) above.

First we consider the case that the incoming electron is in the spin-down
state |χ−〉. Instead of (4.129) we now have

ψ′ = eikz

(
0
1

)
+

eikr

r

(
g′(θ, φ)
f ′(θ, φ)

)
, r → ∞ . (4.140)

The z-component of the total angular momentum is now m′ = −1/2. The
partial wave expansion of the scattering amplitudes is now [instead of (4.134)]
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f ′(θ) =
∞∑

l=0

fl

√
4π

2l + 1
Yl,0(θ) ,

g′(θ, φ) =
∞∑

l=1

gl
√
l(l + 1)

√
4π

2l + 1
Yl,−1(θ, φ) , (4.141)

and leads to the same expressions (4.137) for the partial wave amplitudes fl

and gl (see Problem 4.6). The amplitudes f , g in (4.129) and f ′, g′ in (4.140)
thus only differ in their φ-dependence of the spin-flip amplitude which is given
by the spherical harmonics Yl,±1 and is proportional to ∓ exp (±iφ) [see (A.3),
(A.4)]. We thus have f ′(θ) = f(θ), and the spin-flip amplitudes g, g′ can be
expressed by a common function g0 which depends only on the polar angle θ:

g(θ, φ) = g0(θ) e+iφ , g′(θ, φ) = −g0(θ) e−iφ . (4.142)

The wave function corresponding to an incoming electron in an arbitrary
pure spin state can now be constructed as a linear combination of the two
special cases (4.129) and (4.140),

Aψ +Bψ′ r→∞= eikz

(
A
B

)
+

eikr

r

(
Af(θ) −Bg0(θ) e−iφ

Ag0(θ) e+iφ +Bf(θ)

)
. (4.143)

The differential cross section is again defined by the ratio of the outgoing flux
to the incoming current density and is now

dσ
dΩ

=
|Af(θ) −Bg0(θ) e−iφ|2 + |Ag0(θ) e+iφ +Bf(θ)|2

|A|2 + |B|2

= |f(θ)|2 + |g0(θ)|2 + 2�[f(θ)g0(θ)∗]
2�[AB∗ eiφ]
|A|2 + |B|2 . (4.144)

Again this formula implies that we don’t measure the spin of the scattered
electron. If both A and B are different from zero, the incoming electron is
no longer polarized parallel to the z-axis and the differential cross section
(4.144) depends not only on the polar angle θ but also on the azimuthal angle
φ (see Fig. 4.8). The relative importance of the φ-dependent contribution is
determined by the imaginary part of the product fg∗0 and is usually expressed
with the help of the Sherman function S(θ),

S(θ) = −2
�[fg∗0 ]

|f |2 + |g0|2 = i
fg∗0 − f∗g0
|f |2 + |g0|2 . (4.145)

It is a speciality of spin 1
2 particles, that an arbitrary (pure) spin state

is a spin-up (or a spin-down) state with respect to an appropriately chosen
quantization axis. To see this consider an arbitrary normalized spin state
|χ〉 =

(
A
B

)
, |A|2+ |B|2 = 1 . Using the Pauli spin matrices (1.345) we define

the three-component polarization vector

P = 〈χ|σ̂|χ〉 . (4.146)
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Fig. 4.8. Scattering of electrons polarized perpendicular to the direction of inci-
dence. The cross section depends not only on the polar angle θ but also on the
azimuthal angle φ

In the present case its components are

Px = 2
[A∗B] , Py = 2�[A∗B] , Pz = |A|2 − |B|2 , (4.147)

and its length is unity. The projection of the spin operator σ̂ onto the direction
of P is

σ̂
P

= P ·σ̂ = Pxσ̂x + Pyσ̂y + Pzσ̂z , (4.148)

and it is easy to show (Problem 4.7) that the spinor |χ〉 =
(

A
B

)
is an eigenstate

of σ̂
P

with eigenvalue +1.1

Equation (4.143) shows that scattering of the electron into the direction
(θ, φ) transforms the initial spin state |χ〉 =

(
A
B

)
of the incoming wave into

the new spin state(
A′

B′

)
= S

(
A
B

)

S =
1√|f |2 + |g0|2

(
f(θ) −g0(θ)e−iφ

g0(θ)eiφ f(θ)

)
. (4.149)

The transformation is described by the transformation matrix S, which is in
general not unitary and is not to be confused with the scattering matrix to
be treated later (see Sect. 4.3.2). The polarization vector P ′ of the scattered
electron is

P ′ =
〈χ|S†σ̂S|χ〉
〈χ|S†S|χ〉 . (4.150)

The denominator in (4.150) is needed for correct normalization, because the
transformed spinor S|χ〉 is no longer normalized to unity.

1 The deeper reason for the fact that every two-component spinor uniquely corre-
sponds to a direction of polarization, lies in the isomorphism of the group SU(2) of
special unitary transformations of two-component spinors with the group SO(3)
of rotations in three-dimensional space. A similar correspondence does not apply
for spinors with more than two components, i.e. for spins larger than or equal to
one.
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4.2.3 Application to Mixed Spin States

A mixed state of a quantum mechanical system contains different wave func-
tions with certain statistical probabilities. In order to describe our lack of
knowledge of the precise state of a physical system we imagine a collection or
ensemble of copies the system covering all individual states which are compat-
ible with our limited knowledge. Such a statistical mixture of states cannot
be described by a single wave function, but only by an incoherent superpo-
sition of quantities related to the individual members of the ensemble. An
appropriate quantity for describing an ensemble is the density operator

�̂ =
∑

n

wn|χn
〉〈χ

n
| . (4.151)

Here |χ
n
〉 are (orthonormalized) state vectors (wave functions) for pure quan-

tum mechanical states, and the sum (4.151) covers all states which might be
contained in the ensemble. Partial information which may make some states
more probable than others is contained in the real, non-negative probabilities
wn. The sum of these probabilities is of course unity. If we have no information
at all about the system, then all wn are equal and their value is the inverse
of the number of possible states, i.e. of the number of states in the ensemble.

The density operator (4.151) is a weighted mean of the projection oper-
ators |χ

n
〉〈χ

n
| onto the individual states |χ

n
〉. A density operator is always

Hermitian and its trace is the sum of the probabilities, i.e. unity. In a par-
ticular representation the density operator becomes the density matrix. The
statistical expectation value 〈〈Ô〉〉 of an observable Ô in a mixed state is the
appropriately weighted mean of the quantum mechanical expectation values
in the individual states,

〈〈Ô〉〉 =
∑

n

wn〈χn
|Ô|χ

n
〉 = Tr{Ô�̂} . (4.152)

A pure state corresponds to the special case that one probability wn is unity
while all other probabilities vanish. The statistical expectation value (4.152)
then is identical to the quantum mechanical expectation value in the (pure)
state. The density operator �̂p for a pure state is just the projection operator
onto this state, in particular

�̂p�̂p = �̂p . (4.153)

A completely unpolarized electron is one for which absolutely nothing is
known about its spin state. With respect to an arbitrary axis of quantiza-
tion, both spin states |χ+〉 and |χ−〉 are equally probable. The corresponding
density operator is

�̂ = 1
2 |χ+〉〈χ+ | + 1

2 |χ−〉〈χ− | , (4.154)

and the associated density matrix is just 1/2 times the 2×2 unit matrix. In or-
der to describe the scattering of unpolarized electrons we have to incoherently
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add the cross section (4.130) from Sect. 4.2.1 and the corresponding cross sec-
tion for an incoming electron in a spin-down state, both weighted with the
factor 1/2. (Because of f = f ′ and (4.142) both cross sections are equal in
this case, and the sum (4.130) is unchanged.) This corresponds to averaging
over the initial states compatible with the measured boundary conditions, as
discussed in connection with electromagnetic transitions in Sect. 2.4.4.

A general mixed spin state is neither completely polarized like a pure state,
nor completely unpolarized as in (4.154). In the spirit of (4.152) we define the
polarization vector for a mixed spin state as

P = 〈〈σ̂〉〉 = Tr{σ̂�̂} . (4.155)

If we take the direction of P as the axis of quantization and assume a density
operator

�̂ = w+ |χ+〉〈χ+ | + w− |χ−〉〈χ− | , w+ + w− = 1 , (4.156)

then the component of P in the direction of this axis is obviously the dif-
ference of the probabilities for the spin pointing parallel and antiparallel to
P , namely w+ −w− . This is also the length of the polarization vector, which
is smaller than unity for a mixed spin state. The length of the polarization
vector serves as definition for the (degree of) polarization. The polarization
can vary between zero and unity; it is unity for completely polarized electrons
(pure spin state) and zero for completely unpolarized electrons.

If the incoming electron is partially polarized with respect to an axis of
quantization, which need not be the z-axis, then we describe such a (mixed)
spin state by a density operator like (4.156). In order to calculate the dif-
ferential cross section in such a case, we must first determine the differential
cross sections for the two pure states |χ+〉 and |χ−〉 with respect to the axis of
quantization according to (4.144) and then incoherently superpose the results
with the weights w+ and w− .

Scattering into the direction (θ, φ) transforms an incoming (pure) spin
state |χ〉 into the spin state S|χ〉 according to (4.149). Extending this result
to mixed states shows that the density operator �̂ of an incoming electron is
transformed into the density operator

�̂′ =
S�̂S†

Tr{S�̂S†} (4.157)

by the scattering process. The denominator in (4.157) ensures correct nor-
malization, Tr{�̂′} = 1. With (4.155) we can give a general formula for the
polarization vector P ′ of the electron scattered into the direction (θ, φ),

P ′ = Tr{σ̂�̂′} =
Tr{σ̂S�̂S†}
Tr{S�̂S†} . (4.158)

As an application of the formula (4.158) consider the case that the in-
coming electron is completely unpolarized. Then �̂ is just 1/2 times the unit
matrix and (4.158) simplifies to
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P ′ =
Tr{σ̂SS†}
Tr{SS†} . (4.159)

Inserting the explicit expression (4.149) for the transformation matrix S yields

P ′
x = −S(θ) sinφ , P ′

y = S(θ) cosφ , P ′
z = 0 , (4.160)

here S(θ) again stands for the Sherman function (4.145). This means that
scattered electrons can have a finite polarization even if the incoming electrons
are unpolarized. The direction of the polarization vector is perpendicular to
the scattering plane, which is spanned by the direction of the incoming electron
(the z-axis) and the direction of the scattered electron (θ, φ).

The polarization of electrons by scattering can be exploited in double scat-
tering experiments in which a beam of initially unpolarized electrons is succes-
sively scattered by two targets. After scattering by the first target the electrons
are (partially) polarized, and the cross section for scattering by the second
target acquires a left-right asymmetry due to its dependence on the azimuthal
angle φ. Thus polarization effects can be observed without actually having to
distinguish the spin states of the electrons (see e.g. [Kes85, GK91]).

If the target atom or ion itself has a non-vanishing angular momentum,
then the angular momentum coupling for the whole system becomes much
more complicated. In this case we must consider various states of polarization
not only of the projectile electron, but also of the target atom (or ion). In
general there are several orbital angular momenta l which can couple with
the spin of the projectile electron and the angular momentum of the target
atom to a given total angular momentum quantum number of the system.
This leads to coupled radial Schrödinger equations as they also appear in the
description of inelastic scattering – see Sect. 4.3.2.

The number and quality of experiments with polarized electrons is impres-
sive – see e.g. [Kes85, Kes91]. For a comprehensive monograph on the appli-
cation of density matrix techniques see [Blu81]. The treatment of polarization
effects in electron-atom scattering on the basis of the density matrix formal-
ism is also described extensively in [Bar89]. The density matrix formalism has
also been applied to situations of greater complexity, such as the scattering
of electrons by optically active molecules of given orientation [Kes00].

4.3 Inelastic Scattering

4.3.1 General Formulation

In an inelastic scattering process the target atom (or ion) undergoes a change
from its initial internal state to a different final internal state due to the
collision with the projectile electron. In order to describe such a process, our
ansatz for the wave function must contain contributions from at least two
channels. A natural starting point for the description of inelastic collisions is
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found in the coupled channel equations (3.120), which we shall now write in
the simplified form[

− h̄
2

2µ
∆+ Vi,i

]
ψi(r) +

∑
j �=i

Vi,jψj(r) = (E − Ei)ψi(r) . (4.161)

Again r is the spatial coordinate of the projectile electron, j (or i) labels a
number of open channels defined by various internal states ψ(j)

int of the target
atom and Ej are the associated internal excitation energies. The potentials
Vi,j are largely given by the matrix elements of the interaction operator (3.117)
between the internal states,

Vi,j = 〈ψ(i)
int|ĤW|ψ(j)

int 〉′ + . . . . (4.162)

The dots on the right-hand side stand for the (short-ranged) exchange terms
in the effective potential and for possible contributions due to coupling to a
not explicitly included Q̂-space. The matrix of potentials Vi,j is an operator
in the space of vectors of channel wave functions (ψ1, ψ2, . . .), and it is in
general explicitly energy dependent and non-Hermitian if coupling to and loss
of flux into the Q̂-space is important.

As long as all interactions are shorter ranged, a solution of the coupled
channel equations (4.161) describing an incoming electron in channel i fulfills
the following boundary conditions:

ψj(r) = δj,i eikiz +
eikjr

r
fj,i(θ, φ) , r → ∞ . (4.163)

Here

kj =

√
2µ(E − Ej)

h̄2 (4.164)

is the asymptotic wave number of the outgoing electron in the (open) chan-
nel j. Differential cross sections are defined as in Sect. 4.1.1 by the ratio
of outgoing particle flux through the surface element r2 dΩ to the incoming
current density. For elastic scattering i→ i we again obtain the form (4.6),

dσi→i

dΩ
= |fi,i(θ, φ)|2 , (4.165)

but the differential cross section for inelastic scattering i → j, j �= i has the
slightly modified form

dσi→j

dΩ
=
kj

ki
|fj,i(θ, φ)|2 . (4.166)

The origin of the factor kj/ki on the right-hand side of (4.166) is that the
current density in the entrance channel is h̄ki/µ, while the outgoing current
in channel j is given by a formula similar to (4.5) but with a factor h̄kj/µ. If
we interpret the inelastic scattering amplitude (or transition amplitude) fj,i

as the matrix element of a transition operator (cf. (4.18) and (4.176) below),
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then the expression (4.166) can be derived in the spirit of time-dependent
perturbation theory (Sect. 2.4.1), and the proportionality to kj comes in via
the density of final states in the Golden Rule (2.139) (see Problem 4.3). Thus
the phase space factor kj/ki accounts for the different density of states for
free electrons in the exit channel j and the entrance channel i.

Integrated cross sections are defined in analogy to (4.7),

σi→j =
∫

dσi→j

dΩ
dΩ =

kj

ki

∫
|fj,i(Ω)|2 dΩ . (4.167)

The total cross section (with respect to channel i as the entrance channel) is a
sum of the integrated elastic cross section σi→i, the total inelastic cross section
σi,inel =

∑
j �=i σi→j and the absorption cross section σi,abs, which accounts for

the loss of flux into open channels of Q̂-space,

σi,tot = σi→i +
∑
j �=i

σi→j + σi,abs = σi,el + σi,inel + σi,abs . (4.168)

We can also formulate a Lippmann-Schwinger equation in the many-
channel case. To this end we again proceed by making the Schrödinger equa-
tion (4.161) look like an inhomogeneous differential equation,[

E′ +
h̄2

2µ
∆

]
Ψ = V̂Ψ . (4.169)

We have introduced a more compact notation using vectors and matrices: Ψ
stands for the vector of channel wave functions (ψ1, ψ2, . . .), V̂ stands for
the matrix of potentials (Vi,j), and E′ is the diagonal matrix containing the
asymptotic energies E −Ei in the respective channels as the diagonal matrix
elements. Since the “homogeneous equation” (V̂ ≡ 0) corresponds to a set of
uncoupled free-particle Schrödinger equations, we can easily define a diagonal
matrix G of Green’s functions,

G ≡

⎛
⎜⎝

G1,1 0 0 · · ·
0 G2,2 0 · · ·
0 0 G3,3 · · ·
· · · · · · · · · · · ·

⎞
⎟⎠ , Gi,i = − µ

2πh̄2

eiki|r−r′|

|r − r′| , (4.170)

which fulfills an extension of (4.13) to the many-channel case,[
E′ +

h̄2

2µ
∆

]
G = 1 . (4.171)

Using this multichannel Green’s function we can write the general solution of
(4.169) as

Ψ = Ψhom + ĜV̂Ψ , (4.172)

where Ψhom is a solution of the “homogeneous equation”.
The wave function (4.172) fulfills boundary conditions corresponding to

an incoming plane wave in channel i (and only in channel i) if we define Ψhom

to have the following components:
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ψi(r) = ψin,i(r) = eikiz , ψj = 0 for j �= i . (4.173)

The components of the full wave function (4.172) are then

ψj(r) = δj,i eikiz +
∫

Gj,j(r, r′)
∑

n

Vj,nψn(r′) dr′ . (4.174)

Since all Gj,j have the form (4.16) asymptotically (with kj in place of k), the
channel wave functions ψj have the asymptotic form (4.163), and we obtain a
generalization of (4.17) as an implicit equation for the scattering amplitudes,

fj,i(θ, φ) = − µ

2πh̄2

∑
n

∫
e−ikj·r′

Vj,nψn(r′) dr′ . (4.175)

Here kj is the vector of length kj pointing in the direction of the radius vector
r.

The right-hand side of (4.175) depends on the label i of the entrance
channel, because the channel wave functions ψn to be inserted in the integrand
are those which solve the Schrödinger equation (or the Lippmann-Schwinger
equation) with incoming boundary conditions in the one channel i. Similar to
the one-channel case, we can interpret the sum over the integrals in (4.175) as
the matrix element of a transition operator T̂ between an initial state Ψin,i,
defined by just an incoming plane wave ψin,i(r′) = exp (ikiz

′) in channel i,
and a final state Ψout,j , defined by just a plane wave ψout,j(r′) = exp (ikj · r′)
in the exit channel j:

Tout,j;in,i = 〈Ψout,j |T̂|Ψin,i〉 = 〈Ψout,j |V̂|Ψ〉 = −2πh̄2

µ
fj,i(θ, φ) . (4.176)

As in the one-channel case, the Born approximation now consists in replacing
the exact channel wave functions ψn in (4.174), (4.175) by the “homogeneous
solution” δn,i exp (ikiz

′), which is equivalent to replacing the transition oper-
ator T̂ by the potential V̂. The transition amplitudes in Born approximation
are

fB
j,i = − µ

2πh̄2

∫
e−ikj·r′

Vj,i eikiz
′
dr′ = − µ

2πh̄2 〈ψout,j |Vj,i|ψin,i〉

= − µ

2πh̄2 〈Ψout,j |V̂|Ψin,i〉 . (4.177)

If we ignore the effects of antisymmetrization etc., we can write out the
matrix element in (4.177) explicitly according to (4.162). If we take the in-
teraction ĤW to consist of just the Coulomb attraction between the outer
electron 1 and the target nucleus (charge number Z) and the Coulomb repul-
sion due to the other electrons ν = 2, . . . N , we obtain

fB
j,i = − µ

2πh̄2 〈eikj·r1ψ
(j)
int |

(
N∑

ν=2

e2

|r1 − rν | −
Ze2

r1

)
|eiki·r1ψ

(i)
int〉

= − µ

2πh̄2

∫
dr1 · · ·

∫
drN

∑
mS1 ,...mSN

ei(ki−kj)·r1
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×[ψ(j)
int (r2, . . . rN ; . . .)]∗

(
N∑

ν=2

e2

|r1 − rν | −
Ze2

r1

)

×ψ(i)
int(r2, . . . rN ; . . .) . (4.178)

Here ki is the wave vector of the incoming plane wave in channel i. Because
of the orthogonality of the internal states ψ(i)

int in the entrance channel and
ψ

(j)
int in the inelastic exit channel, the part of the potential which describes the

attraction of electron 1 by the target nucleus, and which depends only on r1,
does not contribute to the matrix element in (4.178). In order to calculate the
contribution of the other part coming from the electron-electron repulsion, we
exploit the fact that 1/|r1−rν | is the Fourier-transform of (2/π)1/2|ki−kj |−2.
The resulting identity,∫

ei(ki−kj)·r1

|r1 − rν | dr1 =
4π

|ki − kj |2 ei(ki−kj)·rν , (4.179)

allows us to perform the integration over r1 in (4.178),

fB
j,i = − 2µe2

h̄2|ki − kj |2
〈ψ(j)

int |
N∑

ν=2

ei(ki−kj)·rν |ψ(i)
int〉′ . (4.180)

As in elastic scattering, we use the wave vector q to describe the momen-
tum transfer, which is now the difference of two momentum vectors of different
length,

q = kj − ki , (4.181)

and the formula for the inelastic scattering cross section is (in Born approxi-
mation)

dσB
i→j

dΩ
=
kj

ki
|fB

j,i|2 =
4
q4a21

kj

ki
|〈ψ(j)

int |
N∑

ν=2

e−iq·rν |ψ(i)
int〉′|2 . (4.182)

The first factor 4/(q4a21) on the right-hand side is a generalization of the
Rutherford differential cross section (4.104) for the scattering of an electron of
mass µ by a singly charged nucleus; a1 = h̄2/(µe2) is the corresponding Bohr
radius. In contrast to the elastic scattering case however, this Rutherford
factor does not diverge in the forward direction, because the wave vector q
(4.181) has a length of at least

qmin = |ki − kj | . (4.183)

The last factor on the right-hand side of (4.182) contains the information
about the structure of the initial and final states of the target atom. In analogy
to the oscillator strengths for electromagnetic transitions (Sect. 2.4.6) we can
define generalized oscillator strengths,

Fj,i(q) =
2µ
h̄2

Ej − Ei

q2
|〈ψ(j)

int |
N∑

ν=2

e−iq·rν |ψ(i)
int〉′|2 , (4.184)
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which depend on the length of the momentum transfer vector. These general-
ized oscillator strengths merge into the ordinary oscillator strengths defined
by (2.216) in the hypothetic limit of vanishing momentum transfer.

The theory summarized in equations (4.178)–(4.184), which was originally
formulated by Bethe, establishes a connection between the cross sections of
inelastic electron scattering and photoabsorption. Conditions for the validity
of the Bethe theory are the applicability of the Born approximation (4.177)
and the negligibility of exchange contributions between the projectile electron
and the electrons of the target atom. It is thus most useful for high energies of
the incoming and outgoing electron. For a detailed treatise on Bethe theory
see [Ino71].

When an electron is scattered by a charged ion, the diagonal potentials
asymptotically have the form of a pure Coulomb potential (4.97). Let i label
the entrance channel; the asymptotic boundary conditions for the channel
wave functions are then [cf. (4.112), (4.163)]

ψj(r) r→∞= δj,i

[
ei[kiz+ηi ln ki(r−z)] + fC(θ)

ei(kir−ηi ln 2kir)

r

]

+
ei(kjr−ηj ln 2kjr)

r
f ′j,i(θ, φ) . (4.185)

Since the asymptotic wave number kj depends on the channel label j via
(4.164), the Coulomb parameter (4.99) also depends on the channel label,
ηj = −1/(kjaZ). The additional scattering amplitudes f ′j,i in (4.185) are
due to the deviations of the full potential from a pure Coulomb potential
−(Ze2/r)δj,i. These deviations consist of additional contributions to the di-
agonal potentials (j= i) and all coupling potentials (j �= i). They are generally
shorter ranged according to the considerations of Sect. 3.3.1. As in the one-
channel case, the elastic scattering cross section is the absolute square of a
sum consisting of the pure Coulomb scattering amplitude fC and the addi-
tional scattering amplitude f ′i,i. The inelastic cross sections are given by the
additional scattering amplitude f ′j,i alone,

dσi→i

dΩ
= |fC(θ) + f ′i,i(θ, φ)|2 ;

dσi→j

dΩ
=
kj

ki
|f ′j,i(θ, φ)|2 , j �= i . (4.186)

The additional scattering amplitudes f ′j,i obey implicit equations of the
form (4.175), except that the plane waves exp (−ikj ·r′) are now replaced
by distorted (Coulomb) waves ψ̄∗

C,j [cf. (4.110), (4.111)]. ψ̄C,j describes a
Coulomb wave in channel j with an incoming modified plane wave travelling in
the direction of the radius vector r plus an incoming spherical wave. With the
usual assumptions of the Born approximation (for distorted waves) we obtain
an explicit expression for the additional scattering amplitude in the elastic
channel (j = i) and for the transition amplitude to the inelastic channels
(j �= i),
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fDWBA
j,i = − µ

2πh̄2 〈ψ̄C,j |Vj,i|ψC〉 . (4.187)

Here ψC is the Coulomb wave (4.98) in the entrance channel i, i.e. with wave
number ki, Coulomb parameter ηi, incoming modified plane wave travelling
in the direction of the positive z-axis and outgoing spherical wave.

4.3.2 Coupled Radial Equations

The internal states ψ(i)
int of the target atom or ion are eigenstates of the to-

tal angular momentum of the N−1 electrons with total angular momentum
quantum number Ji, and we shall assume that they are also eigenstates of
the z-component of the operator with quantum number Mi. For a complete
specification of all possible elastic and inelastic reactions we assume that the
channel label i (or j) characterizes not only the internal state of the target
atom with its angular momentum quantum numbers Ji, Mi, but also the spin
state χ+ or χ− of the projectile electron.

When we expand the channel wave functions in partial waves we can no
longer assume that the z-component of the orbital angular momentum is a
good quantum number and zero (as in (4.21)), so we expand as follows:

ψi(r) =
∞∑

l=0

+l∑
m=−l

φi,l,m

r
Yl,m(θ, φ) . (4.188)

Furthermore, the potentials no longer conserve the orbital angular momentum;
their action on the angular coordinates can be expressed as follows:

Vi,jYl′,m′ =
∑
l,m

Yl,mVi,j(l,m; l′,m′) . (4.189)

The partial waves expansion (4.188) reduces matrix elements of the po-
tentials Vi,j to a sum of radial matrix elements of the “radial potentials”
Vi,j(l,m; l′,m′). The connection between such radial matrix elements and the
matrix elements of the associatedN -electron wave function is given by (4.162),〈

φi,l,m

r
Yl,m

∣∣Vi,j

∣∣φj,l′,m′

r
Yl′,m′

〉

=
〈
φi,l,m

r
Yl,m ψ

(i)
int

∣∣∣ĤW

∣∣∣ φj,l′,m′

r
Yl′,m′ψ

(j)
int

〉
+ . . .

= 〈φi,l,m|Vi,j(l,m; l′,m′)|φj,l′,m′〉 . (4.190)

If we insert the expansion (4.188) into the coupled channel equations
(4.161) we thus obtain the coupled radial equations[

− h̄
2

2µ
d2

dr2
+
l(l + 1)h̄2

2µr2

]
φi,l,m(r)

+
∑

j,l′,m′
Vi,j(l,m; l′,m′)φj,l′,m′(r) = (E − Ei)φi,l,m(r) . (4.191)
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How many and which combinations of channel label j and angular momentum
quantum number l′, m′ have to be included in the sum in (4.191) for given i,
l and m, depends crucially on the angular momentum quantum numbers Ji,
Mi and Jj , Mj of the internal states ψ(i)

int and ψ(j)
int , because they determine

the action of the potentials on the spin and angular variables. Since the total
angular momentum of the N -electron system is a good quantum number, the
coupled channel equations (4.191) reduce to blocks belonging to different an-
gular momentum quantum numbers of the whole system. If we start with a
(truncated) expansion involving a finite number of internal states ψ(j)

int , each
such block contains at most a finite number of equations. A further reduction
of these blocks may be possible if the N -electron Hamiltonian has further
symmetries or good quantum numbers. If e.g. spin-dependent forces can be
neglected, then the total orbital angular momentum and the total spin are
conserved and only partial waves belonging to the same values of the corre-
sponding quantum numbers couple.

For each block of coupled radial equations there are as many linearly in-
dependent vectors Φ of channel wave functions φi,l,m solving the equations as
there are equations in the block. Asymptotically, each radial wave function
of a solution is a superposition of two linearly independent solutions of the
uncoupled free equation, e.g. of [cf. Table 1.3, (1.150)]

φs
i,l(r)

r→∞=

√
2µ
πh̄2ki

sin (kir − l π2 ) ,

φc
i,l(r)

r→∞=

√
2µ
πh̄2ki

cos (kir − l π2 ) . (4.192)

The coefficients of such superpositions can be obtained e.g. by direct numerical
solution of the coupled channel equations if the potentials are known. They
determine the asymptotic form of the wave function for given initial conditions
and hence the observable cross sections.

A frequently used basis of vectors of solutions Φ(i,l,m) is defined by the
following boundary conditions:

φ
(i,l,m)
j,l′,m′ (r)

r→∞= δi,j δl,l′ δm,m′ φs
i,l(r) +Ri,l,m;j,l′,m′ φc

j,l′(r) . (4.193)

The coefficients of the cosine terms define the reactance matrix R =
(Ri,l,m;j,l′,m′), which is also known as the K-matrix.2 In the trivial case that
the coupled channel equations reduce to a single equation of the form (1.75)
or (1.362), the reactance matrix is simply the tangent of the asymptotic phase
shift δ due to the potential,

R = tan δ . (4.194)
2 Not to be confused with the R-matrix. This defines a particular method for solving

the Schrödinger equation by first constructing bound auxiliary states in an inter-
nal region and then matching them to the appropriate scattering wave functions
with the help of the R-matrix (see e.g. [Bra83, MW91a]).
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If the potential is real, this phase shift and its tangent are also real. In the
genuine many-channel case, the reactance matrix is a Hermitian matrix as
long as the potential V̂ contains no non-Hermitian contributions (absorption).
Since the potential matrix is generally not only Hermitian in this case, but
real and symmetric, and since R is defined via real boundary conditions, R
itself is then a real symmetric matrix.

We obtain an alternate basis of vectors of solutions of the coupled channel
equations, Ψ (i,l,m), if we express the radial wave functions as superpositions
not of sine and cosine functions as in (4.192), but of outgoing and incoming
spherical waves,

φ+
i,l(r) = φc

i,l(r) + iφs
i,l(r)

r→∞=

√
2µ
πh̄2ki

e+i(kir−lπ/2) ,

φ−i,l(r) = φc
i,l(r) − iφs

i,l(r)
r→∞=

√
2µ
πh̄2ki

e−i(kir−lπ/2) ; (4.195)

ψ
(i,l,m)
j,l′,m′ (r)

r→∞= δi,j δl,l′ δm,m′ φ−i,l(r) − Si,l,m;j,l′,m′ φ+
j,l′(r) . (4.196)

The asymptotic coefficients of the outgoing components φ+
j,l′ define the scat-

tering matrix or S-matrix: S = (Si,l,m;j,l′,m′).
Since both bases of vectors of solutions, Φ(i,l,m) and Ψ (i,l,m) obeying the

boundary conditions (4.193) and (4.196) respectively, span the same space of
solutions of the coupled channel equations, there must be a linear transfor-
mation which transforms one basis into the other. This transformation is

−i

⎛
⎝Φ(i,l,m) +

∑
j,l′,m′

Si,l,m;j,l′,m′Φ(j,l′,m′)

⎞
⎠ = Ψ (i,l,m) . (4.197)

We can see that (4.197) is correct by looking at the asymptotic behaviour of
both sides of the equation in the sine-cosine basis (4.192). The coefficients of
the sine terms on both sides form the same matrix −i(1 + S). Requiring that
the coefficients of the cosine terms also be the same leads to

−i(1 + S)R = 1 − S . (4.198)

This yields an explicit expression for the S-matrix as a function of R,

S = (1 + iR)(1 − iR)−1 . (4.199)

Leaving effects of absorption aside, the S-matrix (4.199) is unitary, because
R is Hermitian. In the trivial case that the coupled channel equations reduce
to a single equation of the form (1.75) or (1.362), the S-matrix is simply given
by the phase shift δ due to the potential [cf. (4.194)],

S =
1 + i tan δ
1 − i tan δ

= e2iδ . (4.200)

At a given energy E the Hermitian matrix R can always be diagonalized.
The corresponding transformation defines linear combinations of the channels
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labelled by i, l and m; these linear combinations are called eigenchannels.
The eigenvalues � of R are real and can each be written as the tangent of
an angle as suggested by (4.194). The corresponding angles are called eigen-
phases. Each eigenvalue � of R is associated with a vector of solutions of the
coupled channel equations in which all radial wave functions are asymptoti-
cally proportional to a superposition of the sine and cosine functions (4.192)
with the same coefficient, namely � = tan δ, in front of the cosine term. If
the energy dependence of an eigenphase shows a sudden rise by π, then this
points to a resonant, almost bound state just as in the one-channel case. Since
the S-matrix S is a function of R, it is diagonal in the same basis in which
R is diagonal and the eigenvalues of S are simply given by the eigenphases:
exp 2iδ.

We can establish a relation connecting the S-matrix to observable cross
sections by recalling the boundary conditions (4.163) of the channel wave func-
tions for a typical scattering experiment. In a partial waves expansion (4.188)
of the total wave function, we obtain incoming spherical waves only from the
plane wave part of the channel wave function in the entrance channel i [cf.
(4.22)]. A comparison with the spherical waves in (4.195) shows that the solu-
tion of the stationary Schrödinger equation obeying the boundary conditions
(4.163) is given as the following superposition of the basis vectors Ψ (i,l,m=0):

Ψ =
∑

l

(−πh̄) il−1

√
2l + 1
2µki

Ψ (i,l,0) . (4.201)

The associated channel wave functions ψj(r) are corresponding superpositions
of the radial wave functions (4.196),

ψj(r) =
∑
l′,m′

Yl′,m′(θ, φ)
1
r

∑
l

(−πh̄) il−1

√
2l + 1
2µki

ψ
(i,l,0)
j,l′,m′(r)

r→∞= δj,i eikiz +
eikjr

r

∑
l′,m′

Yl′,m′(θ, φ) i
∑

l

il−l′

×
√
π(2l + 1)
kikj

(δj,i δl,l′ δ0,m′ − Si,l,0;j,l′,m′) . (4.202)

The relation connecting the scattering amplitudes defined by (4.163) with the
elements of the S-matrix is thus,

i
√
kikj fj,i(θ, φ) =

∑
l′,m′

Yl′,m′(θ, φ)
∑

l

il−l′

×
√
π(2l + 1) (Si,l,0;j,l′,m′ − δj,i δl,l′ δ0,m′) . (4.203)

If the potentials conserve orbital angular momentum, the S-matrix is diagonal
in l and m ,

Si,l,0;j,l′,m′ = Si,l;j,l δl,l′ δ0,m′ . (4.204)
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The expression (4.203) for the scattering amplitude then simplifies to

fj,i(θ, φ) =
1

i
√
kikj

∑
l

√
π(2l + 1) (Si,l;j,l − δj,i)Yl,0(θ) , (4.205)

and agrees with the result (4.23), (4.27) in the case of elastic scattering.
If the diagonal potentials contain a long-ranged Coulomb contribution,

the preceding considerations have to be modified as in Sect. 4.1.6. The sine
and cosine waves in (4.192) or the spherical waves in (4.195) have to be re-
placed by the appropriate distorted waves of the pure Coulomb potential. The
reactance-matrix R now describes the influence of the short-ranged deviations
from the pure Coulomb potential. This reactance matrix and its continuation
to energies at which some or all channels are closed form the foundation of
Seaton’s formulation of multichannel quantum defect theory (see Sect. 3.4).

So far in this section we have not discussed the complications introduced
by explicitly considering the spin of the electron. How to incorporate the spin
of the projectile electron was discussed in Sect. 4.2 for the example of elastic
scattering by a target atom with vanishing total angular momentum. In gen-
eral, a target atom in an internal state ψ(i)

int may have a non-vanishing angular
momentum Ji associated with 2Ji+1 eigenstates of the z-component of the an-
gular momentum labelled by the quantum numbers Mi =−Ji, −Ji +1, . . . Ji.
An arbitrary pure or mixed spin state of the electron is described by a 2 × 2
density matrix, as discussed in Sect. 4.2. Correspondingly, an arbitrary pure
or mixed state in the quantum numbers Mi of the target atom is described
by a (2Ji + 1) × (2Ji + 1) density matrix. An arbitrary state of polarization
of electron and atom (with angular momentum Ji) is thus described by a
[2(2Ji + 1)] × [2(2Ji + 1)] density matrix. The theoretical description of the
change induced in the polarization of electron and atom by scattering is then
based on a study of the transformations which map the [2(2Ji+1)]×[2(2Ji+1)]
density matrices in the entrance channel onto [2(2Jj +1)]×[2(2Jj +1)] density
matrices in the respective exit channels. For a detailed discussion see [Bar89].

We shall now, for the time being, explicitly specify the quantum num-
bers ms = ±1/2 for the z-component of the electron spin and Mi for the z-
component of the angular momentum of the target atom, so that the channel
label i accounts only for the remaining degrees of freedom in ψ(i)

int. The general
inelastic scattering amplitude is then fj,m′

s,Mj ;i,ms,Mi
(θ, φ) for the transition

from the entrance channel i to the exit channel j accompanied by a transition
of the quantum numbers for the z-components fromms,Mi tom′

s,Mj . A com-
plete experimental determination of all amplitudes for given channel labels i, j
is very difficult in general, because e.g. it is not easy to prepare the target
atom in a definite eigenstate of the z-component of its angular momentum.
The incomplete information about the states of polarization of the electron
and the target atom can be appropriately described using density matrices.
The density matrix e.g. for a totally unpolarized electron and a totally un-
polarized target atom (with angular momentum Ji) in the entrance channel
is simply 1/[2(2Ji + 1)] times the unit matrix. If we also forgo measuring
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the components of the electron spin and the angular momentum of the atom
in the exit channel, then the differential cross section for inelastic scattering
from channel i to channel j is in this case an incoherent superposition of all
contributions in question with a weighting factor 1/[2(2Ji + 1)],

dσi→j

dΩ
=

1
2(2Ji + 1)

+ 1
2∑

ms=− 1
2

Ji∑
Mi=−Ji

+ 1
2∑

m′
s=− 1

2

Jj∑
Mj=−Jj

×kj

ki
|fj,m′

s,Mj ;i,ms,Mi
(θ, φ)|2 . (4.206)

This corresponds to averaging over all initial states and summing over all final
states compatible with the observed boundary conditions (cf. Sect. 2.4.4, last
paragraph, and Sect. 4.2.3).

4.3.3 Threshold Effects

The energy dependence of the cross section (4.166) or (4.167) for inelastic
scattering in the vicinity of a channel threshold E=Ej is largely determined
by the phase space factor kj/ki. The transition amplitude fj,i is given by a
matrix element of the form (4.175) and generally assumes a finite value at
E=Ej . It will be essentially constant in a sufficiently small intervall around
Ej . An exception occurs when lower partial waves are absent in the partial
waves expansion for symmetry reasons. Let l be the lowest orbital angular mo-
mentum quantum number contributing to the integral in (4.175) in a partial
waves expansion of the plane wave ψ∗

out,j = exp (−ikj ·r′). Then the depen-
dence of the integral on the wave number kj is given by the spherical Bessel
function jl(kjr

′) [cf. (4.22)] and is proportional to kl
j (A.46). The absolute

square of the transition amplitude is thus proportional to k2l
j and, remember-

ing the phase space factor kj/ki, we obtainWigner’s threshold law for inelastic
scattering cross sections,

σi→j(E) ∝
(√

E − Ej

)2l+1

. (4.207)

Here l is the lowest orbital angular momentum quantum number observed in
the exit channel.

Wigner’s threshold law is a consequence of the long-ranged centrifugal
potential in the exit channel,

Vj,j(r)
r→∞∼ h̄2

2µ
γ

r2
, γ = l(l + 1) . (4.208)

Whatever happens at short distances, the particle has to penetrate the re-
pulsive potential tail (4.208) in order to be detectable at large distances. If
the potential in the exit channel is attractive at small or moderate distances,
then the cross section for any process can be expected to be proportional to
the probability PT for transmission through the potential barrier formed by
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the long-ranged tail (4.208) and the shorter-ranged attractive terms in the
interaction. If the potential has a WKB region on the near side of the barrier,
then the problem of transmission through and reflection by the barrier can be
formulated as in Sect. 1.4.2, except that on the near side of the barrier where
the potential cannot be assumed to be constant, the plane waves e.g. on the
left-hand side of (1.174), are replaced by appropriate WKB wave functions.
Explicit expressions for the behaviour of the transmission probability through
such a centrifugal barrier at energies E = h̄2k2/(2µ) near threshold are given
in [ME01], see also [FT04], and have the general form

PT
k→0∝ k2µγ , µγ =

√
γ +

1
4

= l +
1
2
. (4.209)

For the special case that the shorter-ranged attractive potential is well repre-
sented by a power-law term in the barrier region,

V (r) r→∞∼ Vγ,m(r) =
h̄2

2µ

(
γ

r2
− (βm)m−2

rm

)
, m > 2 , (4.210)

the near-threshold behaviour of the transmission probability through the bar-
rier is exactly given by

PT
k→0∼ P (m, γ) (kβm)2µγ , (4.211)

with the coefficient

P (m, γ) =
4π2/22µγ

(m− 2)2νµγν [Γ (µγ)Γ (ν)]2
, ν =

2µγ

m− 2
. (4.212)

The equations (4.211), (4.212) hold not only for positive integer values
of l but for any value of the parameter γ larger than −1/4 (corresponding
to l > −1/2), which is the limit below which the (attractive) inverse-square
potential supports an infinite dipole series of bound states, see Sect. 3.1.3.
For vanishing or weakly negative values of the strength of the inverse-square
potential, −1/4 < γ ≤ 0, there no longer is a barrier to tunnel through,
but the potential tail still has a nonclassical quantal region separating the
internal WKB region from the region of asymptotic free-particle motion, and
the probability for transmission through this quantal region of the potential
tail vanishes according to (4.209) near threshold. Thus Wigner’s threshold law
also applies to s waves, (γ = 0, l = 0), and it can even be formally extended
to weakly attractive inverse-square potentials as long as γ > −1/4.

The opening of a channel j at the threshold Ej also affects the energy
dependence of inelastic cross sections to other exit channels as well as the
elastic scattering cross section. The qualitative behaviour of any observable
near a threshold can be understood quite generally using arguments similar
to those already applied for near-threshold quantization in Sect. 3.1.2 or for
deriving (mean) scattering lengths in Sect. 4.1.2. The calculation of the value
of any observable generally involves the full solution of the Schrödinger equa-
tion with contributions from all channels. Directly at an inelastic threshold
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E = Ej , the contribution of channel j involves the threshold wave function
ψ0 which is defined in (3.8) and tends to unity asymptotically. Immediately
above Ej , i.e. at energy E = Ej + h̄2(kj)2/(2µ), the wave function in channel
j is a superposition of the two fundamental solutions which are asymptoti-
cally proportional to exp (±ikjr) and can, to lowest order in kj , be written
as ψ0 ± ikjψ1, where ψ1 is the threshold solution which behaves asymptoti-
cally as r, see (3.8). Immediately below threshold, E = Ej − h̄2(κj)2/(2µ),
the wave function in channel j is asymptotically proportional to exp (−κjr),
i.e. to ψ0 − κjψ1. The full solution of the Schrödinger equation can thus be
expected to contain a contribution proportional to kj ∝ √

E − Ej just above
Ej and a contribution proportional to κj ∝ √

Ej − E just below Ej . The
contributions from all other channels with thresholds away from Ej can be
expected to be smooth functions of energy around E ≈ Ej . When calculat-
ing, e.g., the integrated elastic scattering cross section, we expect a sudden
decline just above the inelastic threshold Ej , because flux is now lost into the
newly opened channel j; this is described by a leading term proportional to√
E − Ej with a negative coefficient. Just below Ej the energy dependence of

the integrated elastic scattering cross section is dominated by a leading term
proportional to

√
Ej − E. If the coefficient is also negative, then we observe

a conspicuous cusp at threshold, as illustrated in Fig. 4.9(a); a positive co-
efficient leads to a rounded step as in Fig. 4.9(b). In both cases the channel
threshold Ej manifests itself as a singularity with infinite gradient in the in-
tegrated elastic cross section, provided s-waves are not excluded in the exit
channel j on symmetry grounds; otherwise the corresponding contributions
are proportional to (kj)2l+1 or (κj)2l+1, l ≥ 1, and they are masked by other
terms depending smoothly on energy, i.e. on (kj)2 or (κj)2.

It may well happen that the internal energy Ei in the entrance channel is
larger than the internal energy Ej in the exit channel. This case, which corre-
sponds to an exothermic reaction in chemistry, is called superelastic scattering.
The exit channel j is then already open at the threshold Ei of the entrance
channel, and the outgoing electron has an asymptotic kinetic energy which is
larger by Ei − Ej than the asymptotic kinetic energy of the incoming elec-
tron. At the reaction threshold Ei, the wave number ki in the entrance channel
starts at zero, but the wave number kj in the exit channel is finite. Unless the

Fig. 4.9. Schematic illustration
of singularities in the integrated
elastic cross section at an inelas-
tic channel threshold Ej : (a) cusp,
(b) rounded step
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corresponding scattering amplitudes vanish, the cross sections (4.166), (4.167)
diverge at the reaction threshold for superelastic scattering.

The threshold behaviour of inelastic scattering cross sections is very differ-
ent when the interaction potentials contain a very-long-ranged Coulomb term.
In the matrix element for the scattering amplitude [cf. (4.175)] we now have
a Coulomb wave instead of the plane wave in the exit channel. The partial
waves expansion (4.115) shows that the energy dependence of the transition
amplitude f ′j,i just above the threshold Ej is given by the regular Coulomb
functions Fl(ηj , kjr) (divided by kjr). In an attractive Coulomb potential we
have according to (1.144), (1.140)

Fl(ηj , kjr)
kjr

E→Ej=

√
πh̄2

2µkjr

1
aZ

√R J2l+1

(√
8r
aZ

)
, (4.213)

so that |f ′j,i|2 is inversely proportional zu kj just above Ej , regardless of which
angular momenta contribute to the partial waves sum. Thus the inelastic cross
sections (4.186) tend smoothly to finite values at the respective thresholds,
when there is an attractive Coulomb potential in the exit channel.

The differential cross section for elastic scattering in the presence of an
attractive Coulomb potential behaves smoothly above an inelastic threshold,
in accordance with the smooth behaviour of the inelastic cross sections –
remember, the integrated elastic cross section diverges. Below an inelastic
threshold however, an attractive Coulomb potential supports whole Rydberg
series of Feshbach resonances. Consider the simple case that only the elastic
channel i is open below the channel threshold Ej and that the electron-ion
interaction can be described by a radially symmetric potential. The phase
shift δl in each partial wave l is then given by a formula like (3.170),

δl = πµi − arctan

[
R 2

i,j

tan [π(νj + µj)]

]
, νj =

√
R

Ej − E . (4.214)

Here µi, Ri,j and µj are just the weakly energy-dependent MQDT parameters
in the two-channel case (Sect. 3.4.1), which also depend on l. Equation (4.214)
describes a Rydberg series of resonant jumps of the phase shift by π (cf.
Fig. 3.9). The individual partial wave amplitudes f ′l [see (4.117)] oscillate
between zero and a maximum value of |f ′l | = (2l + 1)/ki an infinite number
of times just below the threshold Ej , and this leads to increasingly narrow
oscillations in the differential cross section (4.113) as we approach Ej from
below. In practice these oscillations can only be resolved up to a certain energy
above which the observed cross section merges into a smooth function which
connects to the cross section above the threshold.

4.3.4 An Example

A comprehensive review on electron-atom scattering was written by McCarthy
and Weigold in 1991 [MW91a]. Most of the theoretical investigations of inelas-
tic electron-atom scattering have of course been performed for the hydrogen
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atom. Here the spectrum and the eigenstates of the target atom are known
and many matrix elements can be evaluated analytically.

Detailed calculations of cross sections for inelastic electron-hydrogen scat-
tering at comparatively low energies have been performed e.g. by Callaway
[Cal82, Cal88]. Williams [Wil76, Wil88] has performed accurate measurements
in the energy region between the first inelastic threshold (3/4)R ≈ 10.20 eV
and the n=3 threshold at (8/9)R ≈ 12.09 eV, see also [SS89]. In this energy
region the channels in which the hydrogen-atom electron is excited to the
n=2 shell are open, but all higher channels are closed.

The calculations in [Cal82] are based on a close-coupling expansion. Eigen-
states of the hydrogen atom up to principal quantum number n = 3 were
included exactly; higher closed channels were approximated by pseudostates.
When spin-dependent effects are neglected, the coupled channel equations
reduce to blocks labelled by a good total orbital angular momentum quan-
tum number L and a good total spin S. Different variational methods
[Cal78, Nes80] were used to solve the coupled channel equations.

Figure 4.10 shows integrated inelastic scattering cross sections for energies
just above the first inelastic threshold. The upper curve shows the excitation
of the hydrogen atom into the 2p state, the lower curve shows excitation
into the 2s state. The dots are the experimental values and the solid lines
show the results of the calculations of [Cal82], which have been smoothed a
little in order to simulate the finite experimental resolution. This gives the
theoretical curves a finite gradient at threshold (10.20 eV), where it really

Fig. 4.10. Integrated cross sec-
tions for inelastic electron scatter-
ing by hydrogen just above the in-
elastic threshold (10.20 eV). The
upper curve shows the 1s → 2p ex-
citation, the lower curve shows the
1s → 2s excitation. The dots are
the experimental data of Williams
and the solid lines are the theo-
retical results from [Cal82], which
have been smoothed a little in or-
der to simulate finite experimental
resolution (From [Wil88])
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should be infinite. A bit above the inelastic threshold both curves show a
distinct maximum suggesting a resonance. The calculations for L = 1 and
S=0 actually do yield a resonant eigenphase in this region. Fitting its energy
dependence to an analytic form similar to (1.233) gives a resonance position
ER≈10.2 eV and a width of Γ ≈0.02 eV.

Figure 4.11 shows the integrated inelastic cross sections of Fig. 4.10 at
somewhat higher energies just below the n = 3 threshold. Again the upper
curve shows the 1s→ 2p transition while the lower curve shows the 1s→ 2s
transition. The solid curves again show the (smoothed) results of the calcu-
lations [Cal82], and the dots are the data from [Wil88]. Just below the n=3
threshold the barely closed n=3 channels support a number of bound states
which couple to and can decay into the open n= 1 and n= 2 channels and
hence appear as Feshbach resonances. The positions and widths of these res-
onances are derived from the jumps in the eigenphases which are fitted to
the analytic form (1.233) [Cal82]. The irregularly oscillating structure in the
cross sections is obviously due to these resonances, the positions of which are
shown as vertical lines above the abscissa. Similar structures can also be seen
in differential inelastic cross sections as measured by Warner et al. [WR90].

Fig. 4.11. Integrated cross sections for inelastic electron scattering by hydrogen
just below the threshold for n = 3 excitations of the hydrogen atom (12.09 eV).
The upper curve shows the 1s → 2p excitation, the lower curve shows the 1s → 2s
excitation. The dots are the experimental data of Williams and the solid lines are
the theoretical results from [Cal82], which have been smoothed a little in order to
simulate finite experimental resolution. The vertical lines above the abscissa show
the positions of a number of Feshbach resonances (From [Wil88])
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Recent experimental advances have made high precision studies of Fesh-
bach resonances in H− possible [SZ95, BK96]. The hydrogen atom has the
unique property that its excited energy levels include degenerate states of
different parity. This means that the internal states need not be parity eigen-
states, and the leading asymptotic terms in the diagonal channel potentials
can contain inverse-square terms which are attractive and strong enough to
support a dipole series of Feshbach resonances, see Sect. 3.1.4.. Details on
recent studies of H− – and of other negative ions – can be found in the com-
prehensive review by Andersen [And04].

4.4 Exit Channels with Two Unbound Electrons

The considerations of Sects. 4.1–4.3 are based on the assumption that only
one of the spatial coordinates can become very large, namely the displacement
vector of the incoming or scattered electron. The many-electron wave function
vanishes in regions of coordinate space where the coordinates of two or more
electrons are large. In these circumstances the asymptotic boundary condi-
tions of the wave functions are easy to formulate, and an ab initio description
of the possible elastic and inelastic scattering processes can be justified in a
straightforward way, e.g. via the close-coupling ansatz (3.107) in connection
with Feshbach’s projection formalism.

The formulation of reaction theory becomes much more difficult if states
with two or more outgoing electrons become important. This is the case if
the energy of the projectile electron is sufficient to ionize the target atom
or detach an electron from the target ion. This section briefly sketches and
highlights some aspects of the theoretical description of such (e,2e) reactions
with exactly two outgoing electrons in the exit channel. For a more detailed
description of (e,2e) reactions see e.g. [Rud68] or the articles by Byron and
Joachain [BJ89] and McCarthy and Weigold [MW91b].

4.4.1 General Formulation

For a better understanding of the general structure of the wave functions in an
(e,2e) reaction we shall first replace the electrons by distinguishable particles
without electric charge. The complications due to the indistinguishability of
the electrons and the very-long-ranged Coulomb interactions will be discussed
in Sect. 4.4.2.

The dynamics of two outgoing particles is described by continuum wave
functions depending on both displacement vectors r1 and r2, i.e. on six coor-
dinates altogether. The remaining degrees of freedom are described by bound
internal wave functions φ(n)

int depending on the remaining displacement vectors
r3, . . . rN and all spin coordinates. They may be taken to be eigenstates of a
corresponding internal Hamiltonian Ĥint with the respective eigenvalues En.
Each such eigenstate defines a break-up channel n.
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The description of inelastic scattering in Sect. 4.3 was limited to scat-
tering channels with one outer electron. This made it easy to reduce the
equations of motion to the coupled channel equations (4.161) for the orbital
wave functions of the outer electron. If both scattering channels and break-up
channels are important, it is not so easy to formulate a set of coupled chan-
nel equations, because the channel wave functions are functions in different
spaces: either functions of one displacement vector (scattering channels) or
functions of two displacement vectors (break-up channels). We can achieve
a consistent description by working in the space of wave functions of the
whole N -particle system. A channel wave function is always associated to a
corresponding internal wave function depending on the respective remaining
degrees of freedom – φ(n)

int (r3, . . . rN ;ms1 . . . msN
) in the break-up channels

and ψ(j)
int (r2, . . . rN ;ms1 . . . msN

) in the scattering channels.
In order to study the asymptotic structure of the wave function, we

again use the method of Green’s functions. First we write the N -particle
Hamiltonian Ĥ as a sum of the kinetic energies t̂1 = −(h̄2/2µ)∆r1 and
t̂2 = −(h̄2/2µ)∆r2 of particle 1 and particle 2 respectively, plus an inter-
nal Hamiltonian Ĥint and a residual term V̂R containing all contributions not
included in the previous terms,

Ĥ = t̂1 + t̂2 + Ĥint + V̂R , (4.215)

and we make the N -particle Schrödinger equation look like an inhomogeneous
equation,

(E − t̂1 − t̂2 − Ĥint)Ψ = V̂RΨ . (4.216)

The Green’s function Ĝ, which is now also an operator in the space of internal
wave functions φ(n)

int (r3, . . . rN ; . . .), is defined as a solution of the following
equation,

(E − t̂1 − t̂2 − Ĥint)Ĝ = δ(r1 − r′
1) δ(r2 − r′

2)1 . (4.217)

The bold 1 on the right-hand side of (4.217) stands for the unit operator in
the space of internal wave functions φ(n)

int .
A formal solution of the “inhomogeneous equation” (4.216) is

Ψ = ĜV̂RΨ . (4.218)

In contrast to the Lippmann-Schwinger equations for elastic and inelastic
scattering, (4.15) and (4.172), the right-hand side of (4.218) contains no so-
lution of the “homogeneous equation” (V̂R ≡ 0) determined by the incoming
boundary conditions. The reason is that the initial state contains only one free
electron, while all other electrons are bound, and hence it is not a solution of
the homogeneous equation which now describes two free electrons.

We can use the integral equation (4.218) to derive the asymptotic form of
the wave function in the break-up channels. Equation (4.217) can be fulfilled
by a Green’s function of the following structure,
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Ĝ =
∑

n

Gn(r1, r2; r′
1, r

′
2)|φ(n)

int 〉〈φ(n)
int | , (4.219)

where the sum should cover a complete set of internal states φ(n)
int (and not

only bound states). In the break-up channels, E > En, the dependence of
the Green’s function on the displacement vectors is given by the factors
Gn(r1, r2; r′

1, r
′
2) which fulfill the following equations:

(E − En − t̂1 − t̂2)Gn(r1, r2; r′
1, r

′
2) = δ(r1 − r′

1) δ(r2 − r′
2) . (4.220)

E−En is the asymptotic kinetic energy available to the two outgoing particles
in the open break-up channel n.

For a more economical notation we collect the two displacement vectors
r1 and r2 into one six-component displacement vector,

R ≡ (r1, r2) . (4.221)

With the abbreviations

E − En =
h̄2

2µ
K2

n ,

∆6 = ∆r1 +∆r2 =
∂2

∂x2
1

+
∂2

∂y21
+
∂2

∂z21
+
∂2

∂x2
2

+
∂2

∂y22
+
∂2

∂z22
, (4.222)

(4.220) becomes the equation defining the Green’s function for the Helmholtz
equation in six dimensions (except for a factor 2µ/h̄2),

(K2
n +∆6)Gn(R,R′) =

2µ
h̄2 δ(R − R′) . (4.223)

The Green’s function which fulfills (4.223) and which is appropriate for
two outgoing electrons in the break-up channel n, is (see Problem 4.9)

Gn(R,R′) = − µK2
n

8π2h̄2

iH(1)
2 (Kn|R − R′|)
|R − R′|2 . (4.224)

Here H(1)
ν is the Hankel function of order ν (see Appendix A.4). For small

values of |R − R′| we obtain (A.31)

Gn(R,R′) = − µ

2π3h̄2

1
|R − R′|4 , |R − R′| → 0 ; (4.225)

for large values of |R − R′| (A.30),

Gn(R,R′) =
√

i
µ

h̄2K
3/2
n

eiKn|R−R′|

(2π|R − R′|)5/2
, |R − R′| → ∞ . (4.226)

For R R′ we can expand in R′/R, as we did in Sect. 4.1.1 [cf. (4.16)],

Gn(R,R′) =
√

i
µ

h̄2K
3/2
n

eiKnR

(2πR)5/2

[
e−iKR·R′

+O
(
R′

R

)]
. (4.227)

Here KR is the six-component wave vector of length Kn pointing in the di-
rection of the (six-component) displacement vector R.
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We obtain the asymptotic form of the wave function by inserting the
Green’s function given by (4.219) and (4.227) into (4.218),

Ψ
R→∞=

∑
n

√
i
µ

h̄2K
3/2
n

eiKnR

(2πR)5/2
|φ(n)

int 〉 〈φ(n)
int ψ

(KR)
n |V̂R|Ψ〉 + . . . . (4.228)

Here ψ(KR)
n (R′) = exp(iKR ·R′) is a plane wave with a six-component wave

vector KR for the free motion of the two particles 1 and 2, which together
have a kinetic energy E −En. The sum in (4.228) should be understood as a
sum over all genuine break-up channels, for which E > En and φ(n)

int is a bound
state in the internal coordinates. Channels with E < En do not contribute
asymptotically (R → ∞), and unbound internal states, which correspond to
a break-up into more than two unbound particles, are hinted at by the dots
on the right-hand side.

If we divide the six-component wave vector KR into two three-component
parts, k1 for the first three components and k2 for the last three components,
we have

ψ(KR)
n (R′) = eik1·r′

1 eik2·r′
2 . (4.229)

Thus ψ(KR)
n is just a product of two plane waves for the independent free

motion of the two outgoing particles 1 and 2.
Since KR points in the same direction as the six-component displacement

vector R in six-dimensional space, there is a common proportionality constant
β, such that

k1 = βr1 , k2 = βr2 . (4.230)

Equation (4.230) says that the wave vector k1 points in the same direction
as the displacement vector r1 in three-dimensional space and that k2 points
in the same direction as r2. This amounts to four real conditions, because a
direction in three-dimensional space is fixed by two angles. However, a direc-
tion in six-dimensional space is fixed by five angles. The remaining condition
contained in the fact that the six-component vectors KR and R are parallel,
is

k1
k2

=
r1
r2
. (4.231)

The length Kn of the vector KR is fixed by the kinetic energy available in the
exit channel,

h̄2K2
n

2µ
=
h̄2

2µ
(k2

1 + k2
2) = E − En . (4.232)

The distribution of this kinetic energy among the two outgoing particles 1
and 2 is uniquely determined by the ratio (4.231).

The asymptotic form of the wave function Ψ in a break-up channel n
as given by (4.228) is thus a product of the internal eigenstate φ(n)

int and an
outgoing spherical wave in six-dimensional coordinate space, multiplied by a
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phase space factor K3/2
n and a break-up amplitude fn, which depends on the

direction of the (six-component) displacement vector R,

Ψ
R→∞=

∑
n

|φ(n)
int 〉

eiKnR

(2πR)5/2
K3/2

n fn(Ω1, Ω2, α) + . . . . (4.233)

Here Ω1 is the solid angle defining the direction of the vector r1 (in three-
dimensional space), Ω2 is the solid angle for the direction of r2, and α is the
so-called hyper-angle; its tangent is just the ratio (4.231) which determines
the distribution of the asymptotic kinetic energy among the two outgoing
particles,

tanα =
r1
r2
. (4.234)

The length R of the six-component displacement vector is often called the
hyper-radius. The hyper-radius and the five angles Ω1, Ω2, α are the spherical
coordinates of R in six-dimensional coordinate space. These six-dimensional
spherical coordinates are called hyperspherical coordinates.

Comparing (4.233) with (4.228) shows that the break-up amplitude fn is
given by a matrix element containing plane waves for free particle motion in
the bra, in complete analogy to the case of elastic (4.17) or inelastic scattering
(4.175), (4.176),

fn(Ω1, Ω2, α) =
√

i
µ

h̄2 〈φ(n)
int ψ

(KR)
n |V̂R|Ψ〉 . (4.235)

The operator V̂R in the matrix element in (4.235) contains all contributions to
the Hamiltonian which are not already contained in the kinetic energy of the
two particles 1 and 2 or in the internal Hamiltonian for the remaining degrees
of freedom. The wave function Ψ in the ket is a solution of the full stationary
Schrödinger equation which has the form (4.233) in the asymptotic part of
six-dimensional coordinate space for finite values of tanα.

At this point the normalization of the total wave function Ψ and the phys-
ical dimensions of the break-up amplitude fn are not yet determined. The
reason is, that the Lippmann-Schwinger equation (4.218) has the form of a
homogeneous integral equation, so that neither the equation itself nor its as-
ymptotic form (4.228) fix the normalization of the wave function.3

We can fix the normalization of the total wave function by referring to
the boundary conditions in the entrance channel. In the asymptotic region
R → ∞, the hyper-angle α= π/2, tanα= r1/r2 = ∞, just covers that part
of configuration space in which only particle 1 is very far away. In this region
the asymptotic behaviour of the wave function is thus determined by the
boundary conditions in the entrance channel i and all elastic and inelastic
scattering channels,
3 One Lippmann-Schwinger equation is not sufficient to uniquely determine the

total wave function in the presence of break-up channels. A detailed discussion
of this problem can be found in [Glo83].
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Ψ = eikiz1 |ψ(i)
int〉 +

∑
j

eikjr1

r1
fj,i(Ω1)|ψ(j)

int 〉 ,
r1
r2

→ ∞ . (4.236)

The wave functions ψ(j)
int are the internal wave functions in the scattering

channels and are eigenfunctions of a corresponding internal Hamiltonian for
the particles 2 to N . For α = 0, tanα = r1/r2 = 0, the asymptotic region
R → ∞ covers that part of configuration space in which only particle 2 is
very far away. This corresponds to elastic or inelastic scattering in conjunction
with an exchange of the particles 1 and 2. Asymptotically the wave function
is

Ψ =
∑

j

eikjr2

r2
gj,i(Ω2)|ψ(j)

int 〉 ,
r2
r1

→ ∞ . (4.237)

Here ψ(j)
int are the same internal wave functions as in (4.236), but they now

describe particles 1, 3,. . . N . The various asymptotic regions are illustrated in
Fig. 4.12 with the help of hyper-radius and hyper-angle.

Fig. 4.12. Various asymptotic regions
in six-dimensional coordinate space rep-
resented by the hyper-radius R and the
hyper-angle α

In connection with the normalization of the wave functions we can now
discuss the physical dimensions of the quantities appearing in (4.235). The
total wave function Ψ in the ket has the same dimension as a dimensionless
plane wave multiplied by a bound wave function, normalized to unity, for (N−
1) particles in three-dimensional coordinate space, i.e. [length]−(3/2)(N−1). On
the other hand, the wave function in the bra has the dimension of a bound
wave function, normalized to unity, (namely φ(n)

int ) for only (N − 2) particles,
multiplied by two dimensionless plane waves (4.229); thus the dimension of
the wave function in the bra is [length]−(3/2)(N−2). Since the integration over
all 3N spatial coordinates contributes a dimension [length]3N , the dimension
of the matrix element in (4.235) is energy×length9/2, and the dimension of
the break-up amplitude fn is length5/2.
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The definitions of cross sections are based on a generalization of the current
density (4.4) to particle currents in six-dimensional coordinate space,

j6 =
h̄

2iµ
[ψ∗(R)∇6ψ(R) − ψ(R)∇6ψ

∗(R)] . (4.238)

The subscript “6” refers to the six-dimensional space, as in (4.222). For a wave
function of the form (4.233) with a spatial part

ψ(R) R→∞=
eiKnR

(2πR)5/2
K3/2

n fn(Ω1, Ω2, α) , (4.239)

we obtain an outgoing current density in six-dimensional space in complete
analogy to the three-dimensional case (4.5),

j6 =
h̄K4

n

µ

|fn(Ωh)|2
(2πR)5

R

R
+O

(
1
R6

)
. (4.240)

We have abbreviated the solid angle (Ω1, Ω2, α) in six-dimensional space by
Ωh. The corresponding angular element is (see Problem 4.11)

dΩh = sin2 α cos2 α dα dΩ1 dΩ2

= sin2 α cos2 α dα sin θ1dθ1 dφ1 sin θ2dθ2 dφ2 . (4.241)

The quantity

d3σi→n =
|j6|R5dΩh

h̄ki/µ
(4.242)

is the particle flux into the solid angle dΩh, divided by the incoming current
density h̄ki/µ (of one particle) in the entrance channel i. Outgoing particle
flux in the solid angle dΩh implies that particle 1 is travelling in a direction
contained in dΩ1, that particle 2 is travelling in a direction contained in
dΩ2, and that the tangent of the ratio k1/k2 lies between α and α + dα. It
is customary to express this ratio in terms of the asymptotic kinetic energy
T1 = h̄2k2

1/(2µ) of particle 1 or T2 = h̄2k2
2/(2µ) of particle 2. These kinetic

energies are related to the hyper-angle α via

k1 = Kn sinα , k2 = Kn cosα . (4.243)

With

K4
n sin2 α cos2 α|dα| = k2

1k
2
2|dα| = k1k2

2|dk2|
=
k1k2

2
|d(k2

2)| = k1k2
µ

h̄2 dT2 (4.244)

(4.242) becomes the triple differential cross section in its usual form,

d3σi→n

dΩ1dΩ2dT2
=
k1k2
ki

µ

h̄2

|fn(Ω1, Ω2, T2)|2
(2π)5

. (4.245)

This is the number of reactions, normalized to the incoming current density,
in which particle 1 travels away in the direction Ω1 and particle 2 travels
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Fig. 4.13. Schematic illustration of an (e,2e) reaction. ki is the wave vector of
the incoming particle parallel to the z-axis, k1 is the wave vector of the outgoing
particle 1 travelling away in the direction Ω1, and k2 is the wave vector of the
outgoing particle 2 travelling away in the direction Ω2 with the kinetic energy T2 =
h̄2k2

2/(2µ)

away with kinetic energy T2 in the direction Ω2, while the remaining particles
stay behind in the bound eigenstate φ(n)

int of the internal Hamiltonian (see
also Fig. 4.13). Since the square of the break-up amplitude has the physical
dimension of a length to the fifth power (see discussion shortly after (4.237)
above), the triple differential cross section (4.245) has the dimension of an
area divided by an energy.

4.4.2 Application to Electrons

In order to apply the formulation of the preceding section to (e,2e) reac-
tions, we have to take into consideration firstly the indistinguishability of the
electrons and secondly their electric charge which is the origin of the very-
long-ranged Coulomb interaction.

If the target atom (or ion) is a one-electron atom, then there are only two
electrons whose indistinguishability must be considered. If there are more than
two electrons altogether, we must also consider effects of exchange between
the two continuum electrons in the break-up channels and the bound electrons
left behind. Here we shall assume that these latter effects are accounted for
by appropriate modifications in the definition of the interaction V̂R, similar to
the discussion in Sect. 3.3.1 [cf. (3.120)], and we shall only treat the exchange
of the two continuum electrons.

The formulation in Sect. 4.4.1 with the asymptotic equations (4.233),
(4.236), (4.237) assumes that electron 1 is the incoming electron in chan-
nel i. We could just as easily have chosen electron 2 as the incoming electron.
If we call the corresponding solution of the full Schrödinger equation Ψ ′, then
the asymptotic formulae for Ψ ′ are obviously

Ψ ′ R→∞=
∑

n

|φ(n)
int 〉

eiKnR

(2πR)5/2
K3/2

n gn(Ω1, Ω2, α) + . . . , (4.246)
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Ψ ′ = eikiz2 |ψ(i)
int〉 +

∑
j

eikjr2

r2
fj,i(Ω2)|ψ(j)

int 〉 ,
r2
r1

→ ∞ , (4.247)

Ψ ′ =
∑

j

eikjr1

r1
gj,i(Ω1)|ψ(j)

int 〉 ,
r1
r2

→ ∞ . (4.248)

The reciprocity in the direct scattering amplitudes fj,i and the exchange am-
plitudes gj,i is already built into (4.247) and (4.248). The break-up amplitude
gn in (4.246) is given in analogy to (4.235) by

gn(Ω1, Ω2, α) =
√

i
µ

h̄2 〈φ(n)
int ψ

(KR)
n |V̂R|Ψ ′〉 . (4.249)

As can be seen by permutating the labels 1 and 2, it is related to the break-up
amplitude fn by

gn(Ω1, Ω2, α) = fn(Ω2, Ω1,
π

2
− α) or

gn(Ω1, Ω2, T2) = fn(Ω2, Ω1, T1) . (4.250)

The reciprocity relation (4.250) is known as the Peterkop theorem.
How the indistinguishability of the electrons 1 and 2 affects the triple

differential cross section for final states in the break-up channel n, depends
on whether the spins of the two electrons in the exit channel are coupled to
a total spin zero (singlet) or 1 (triplet) [cf. Sect. 2.2.4, (2.81), (2.82)]. In the
singlet case, the total wave function must be symmetric with respect to an
interchange of the spatial coordinates r1 and r2 alone, because the spin part of
the wave function (2.82) is antisymmetric. We obtain an appropriate solution
of the full Schrödinger equation in this case, by adding the solution Ψ defined
by (4.233), (4.236), (4.237) to the solution Ψ ′ defined by (4.246)–(4.248),

ΨS=0 =
1√
2
(Ψ + Ψ ′) . (4.251)

In the formula (4.245) for the triple differential cross section, this amounts to
replacing the break-amplitude fn by the sum of fn and gn (divided by

√
2).

We also have to add the cross sections for Ω1, Ω2, T2 and Ω2, Ω1, T1, because
we cannot distinguish the two electrons in the exit channel. With the help of
the Peterkop theorem (4.250) we thus obtain the following result for singlet
coupling of the spins of the outgoing electrons:(

d3σi→n

dΩ1ddΩ2dT2

)
S=0

=
k1k2
ki

µ

h̄2

|f s
n(Ω1, Ω2, T2)|2

(2π)5
,

f s
n = fn + gn . (4.252)

The analogous result for triplet coupling of the spins of the outgoing electrons
is (

d3σi→n

dΩ1dΩ2dT2

)
S=1

=
k1k2
ki

µ

h̄2

|f t
n(Ω1, Ω2, T2)|2

(2π)5
,

f t
n = fn − gn . (4.253)
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The spin coupling of the outgoing electrons is not measured in general, so
the observed triple differential cross section is the average of the expressions
(4.252), (4.253), weighted with the multiplicity 2S + 1,

d3σi→n

dΩ1dΩ2dT2
=
k1k2
ki

µ

h̄2

1
4 |f s

n|2 + 3
4 |f t

n|2
(2π)5

. (4.254)

The consideration of the very-long-ranged Coulomb interactions poses
more serious problems. In order to formulate an equation like (4.235) we must
know the asymptotic form of the two-electron wave function (in the presence
of Coulomb forces), firstly to determine the “free waves” in the bra and sec-
ondly to fix the solution Ψ of the full Schrödinger equation in the ket. The
crucial difficulty is, that the continuum electrons are never really free, not
even at very large distances, because they feel not only the Coulomb interac-
tion due to the ion left behind (if it doesn’t happen to be a neutral atom),
but also their mutual long-ranged Coulomb repulsion.

An obvious guess for extending the formula (4.235) to charged electrons
in the break-up channel consists in replacing the plane waves in the bra by
Coulomb waves ψ̄C,r1 and ψ̄C,r2 in the field of the residual ion. ψ̄C,r1 and
ψ̄C,r2 are the distorted waves (4.111) introduced in Sect. 4.1.6; the associated
wave vector has the length k1 or k2 and points in the direction of the radius
vector r1 or r2 respectively. The fact that the outgoing electrons do not travel
independently, not even asymptotically, can be incorporated in the form of a
phase φ. The expression for the break-up amplitude then still has the form
(4.235), but the “free wave” (4.229) in the bra is replaced by

ψ̄
(KR)
C (R′) = ψ̄C,r1(r

′
1)ψ̄C,r2(r

′
2) eiφ . (4.255)

For a naked residual ion (no electrons) we are dealing with a pure three-
particle Coulomb problem. In this case the wave function (4.255) actually is
a solution asymptotically if we take φ to be the phase by which a Coulomb
wave for the relative motion of the two electrons differs from a plane wave
(with the same asymptotic wave number) [BB89]. For large separations of the
two outgoing electrons we have

φ = −η′ ln (kr′ + k·r′) ,

k =
1
2
(k1 − k2) , r′ = r′

1 − r′
2 , η′ =

µ′e2

h̄2k
. (4.256)

The Coulomb parameter η′ here is the one for the repulsive electron-electron
interaction (µ′ is the reduced mass of the two electrons).

The wave function (4.255) solves the Schrödinger equation for two elec-
trons in the field of a naked nucleus asymptotically, i.e. for large separations of
the two electrons from the nucleus and from each other, but it becomes inac-
curate for small separations of the two electrons, because their correlations are
insufficiently accounted for by the phase factor eiφ alone. Improvements have
been engineered into the wave function, e.g. by Berakdar and collaborators
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[Ber96, BO97] with some success, but it remains a fact, that a globally accu-
rate wave function for the three-body Coulomb problem is not yet available.
A detailed discussion of the mathematics of the three- (and more-) parti-
cle Coulomb problem can be found in the book by Faddeev and Merkuriev
[FM93].

The Coulomb waves (4.255) represent approximate solutions of a Schrödin-
ger equation for two electrons in the field of a charged ion. If we base the
derivation of the expression for the break-up amplitude on an “inhomogeneous
differential equation” with an appropriate Green’s function for the associated
“homogeneous equation” as for uncharged particles in Sect. 4.4.1, then the
potential in the “inhomogeneous term” should only contain those interactions
which are not already included in the “homogeneous equation”. If we include
the effects of the very-long-ranged Coulomb interactions between the two out-
going electrons and the residual ion by replacing the free wave (4.229) in the
formula (4.235) by the two-electron Coulomb wave (4.255), then we must at
the same time leave the associated Coulomb potentials out of the residual
potential V̂R.

Apart from the problem of finding the correct free waves for the bra in
(4.235) and (4.249), we also need the exact wave functions Ψ and Ψ ′ for the
respective ket. These are of course not available in general. We obtain an
approximate formula in the spirit of the Born approximation (with Coulomb
waves), if we replace the exact wave functions in the ket by Coulomb waves
in the entrance channel. The break-up amplitude (4.235) thus becomes

fDWBA
n (Ω1, Ω2, α) =

√
i
µ

h̄2 〈φ(n)
int ψ̄

(KR)
C |V̂R|ψ(i)

intψC(r′
1)〉 , (4.257)

where ψC is the Coulomb wave (4.98) with incoming part travelling in the
direction of the z-axis and wave number ki. The Born approximation works
best when the energy of the incoming electron is large. If we focus our attention
on final states in which one electron has a large energy while the other electron
has a much smaller energy, then exchange effects become unimportant and
we can identify the fast electron with the incoming electron. Going one step
further and replacing the Coulomb waves of the fast electron in bra and ket by
the corresponding plane waves leads to the following customary form [Rud68,
BJ89] of the break-up amplitude in Born approximation:

fB
n (Ω1, Ω2, α) =

√
i
µ

h̄2 〈φ(n)
int eik1·r′

1 ψ̄C,r2(r
′
2)|V̂R|ψ(i)

inte
ikiz

′
1〉 . (4.258)

According to the considerations in the preceding paragraph, the residual po-
tential V̂R in (4.258) no longer contains the Coulomb interaction between the
slow electron 2 and the residual ion, but it does contain the Coulomb inter-
action between the fast electron and the residual ion as well as the Coulomb
repulsion of the two outgoing electrons. For an (e,2e) reaction on a one-electron
atom (or ion) the residual ion has no electrons at all and the residual potential
to be inserted in (4.258) is simply
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VR′(r′
1, r

′
2) = −Ze

2

r′1
+

e2

|r′
1 − r′

2| . (4.259)

This applies for the “post” form of the (distorted wave) Born approxima-
tion, where the residual interaction is that part of the full Hamiltonian that
is not diagonalized in the bra in (4.258). It can be advantageous to work with
the “prior” form of the DWBA, where the residual interaction refers to the
incoming wave function in the ket.

4.4.3 Example

The interest in cross sections for (e,2e) reactions has been continuously strong
for several years. Special attention has been given to the simplest such reac-
tion,

e− + H → H+ + e− + e− , (4.260)

for which experimental data have been available for some time [4EK85, 4EJ86,
4SE87, CJ04]. As the residual ion H+ has no internal degrees of freedom, there
is precisely one break-up channel in this reaction and the associated internal
energy is zero. Figure 4.14 shows the triple differential cross section for the
reaction (4.260) as a function of the angle θ2 of the slow electron. The other
variables were fixed as follows: asymptotic kinetic energy of the incoming
electron, E=150 eV; kinetic energy of the slow electron after collision, T2 =3
eV; ki, k1 and k2 coplanar. The different parts of the figure correspond to
different scattering angles of the fast electron, namely 4◦, 10◦ and 16◦. Due
to the different magnitudes of the energies of the outgoing electrons and the
plane geometry of the three wave vectors, such a choice of reaction parameters
is called asymmetric coplanar [LM84, BJ85].

In addition to the measured points in Fig. 4.14 [EK85], the dotted lines
show the calculated cross sections obtained in the Born approximation (4.258),
(4.259). Although the Born approximation can be expected to be quite a
good approximation at such high energies, there is still a considerable devi-
ation from the experimental results. Brauner, Briggs and Klar [BB89] were
the first to evaluate the more sophisticated expression (4.257) with a correct
asymptotic form (4.255) for the free three-particle Coulomb wave. The triple
differential cross section calculated in this way is shown as a solid line in
each part of Fig. 4.14 and agrees very well with the experimental data. Note,
however, that the calculated curve in each panel was normalized to the exper-
imental data at one point. Finally the dashed lines show the results obtained
with the formula (4.257) for the case that the incoming particle and the faster
outgoing particle is not an electron but a positron:

e+ + H → H+ + e− + e+ . (4.261)

The difference between the results for electron and positron collisions em-
phasizes the influence of the interaction between the two outgoing particles,
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Fig. 4.14. Triple differential cross section (4.245) for the reaction (4.260) in asym-
metric coplanar geometry as function of θ2 for projectile energy Einc = 150 eV,
T2 = 3 eV and (a) θ1 = 4◦, (b) θ1 = 10◦, (c) θ1 = 16◦. The experimental points are
from [EK85] and from more recent measurements by Ehrhardt et al. The dotted lines
show the results of the Born approximation (4.258). The solid lines were calculated
using a formula similar to (4.257) with the correct asymptotic form (4.255) for the
free three-particle Coulomb wave. They are normalized to the experimental data at
one point in each panel. The dashed lines show the results of the same calculation
for positron collisions (4.261) (From [BB89])



4.4 Exit Channels with Two Unbound Electrons 311

which is repulsive in (4.260) and attractive in (4.261). In the simple Born
approximation the cross sections for (4.260) and (4.261) are equal.

The two maxima in Fig. 4.14 are characteristic for the asymmetric coplanar
geometry. It can be shown within the framework of the Born approximation
[BJ89], that maxima are expected in the direction of the momentum transfer
vector of the fast electron,

q = k1 − ki , (4.262)

and in the direction of −q. Note that the length of the momentum transfer
vector is small if the energy loss of the fast electron is small (Problem 4.12).

If we assume axial symmetry of the whole reaction around the z-axis,
i.e. if we ignore polarization effects, then the triple differential cross section
at a given impact energy depends on four independent variables, namely θ1,
θ2, φ1 − φ2 and T2 or T1. Different geometries allow different approxima-
tions in the theory and illuminate different dynamical aspects of the reaction.
Apart from the asymmetric coplanar geometry discused above, considerable
attention has been given e.g. to the non-coplanar symmetric geometry, which
has been studied in particular by McCarthy and collaborators. Here we have
T1 = T2, θ1 = θ2 and φ1−φ2 �= 0, π. In the framework of the impulse approxi-
mation, in which the electron to be ejected is treated almost as a free electron,
the triple differential cross section in non-coplanar symmetric geometry can
be related to the wave function of the ejected electron before the collision
[MW76, MW88].

The calculations of [BB89] reproduce the angular dependence of the ion-
ization cross section quite well (Fig. 4.14), but they do not predict absolute
cross sections. In fact, the evaluation of absolute cross sections for the reac-
tion (4.260) has proved to be a very difficult problem over the years. The
integrated or total ionization cross section,

σe,2e(E) =
∫
dΩ1

∫
dΩ2

∫ E

0

dT2
d3σ

dΩ1dΩ2dT2
, (4.263)

was measured accurately as a function of energy by Shah et al. in 1987 [SE87],
and many theoretical groups have since tried to reproduce these data. The first
calculation able to reproduce the absolute values and the shape of the cross
section (4.263) over an energy range extending from comparatively small ener-
gies up to high energies was published by Bray and Stelbovics in 1993 [BS93].
In their method the Lippmann-Schwinger equation is solved in momentum
space in the spirit of the close-coupling expansion described in Sect. 3.3.1,
and the judicious choice of basis states representing the target leads to con-
vergent results, in contrast to some other close-coupling techniques; for this
reason the authors call their method the convergent close-coupling (CCC)
method.

The performance of the CCC method in reproducing the total ionization
cross section (4.263) is illustrated in Fig. 4.15. The open circles are the exper-
imental results from [SE87] and the solid line is the calculated cross section
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Fig. 4.15. Total ionization
cross sections for electron im-
pact on hydrogen. The open cir-
cles are the experimental results
from [SE87] and the solid line
is the cross section calculated
via the CCC (convergent close-
coupling) method [BS93]. The
short dashed line shows the re-
sult of the Born approximation
(4.258), the long dashed line is
from “intermediate energy R-
matrix” (IERM) calculation of
Scholz et al. [SW90], and the
asterisks show the pseudo-state
calculation of Callaway and Oza
[CO79] (From [BS93])

from [BS93]. The calculation reproduces the experimental results well all the
way from a bit above threshold (at 13.6 eV) to high energies where the Born
approximation (4.258) works well. The fact that reproducing the shape of this
curve has been no trivial matter is demonstrated by comparison with the less
successful results of other quite sophisticated efforts. The long dashed line
in Fig. 4.15 is from an “intermediate energy R-matrix” (IERM) calculation
by Scholz et al. [SW90], and the asterisks were obtained by Callaway and
Oza [CO79] who calculated excitation probabilities of the target hydrogen
atom using a pseudo-state expansion and extracted the ionization probabili-
ties from the continuum components of the pseudo states. The short dashed
line in Fig. 4.15 shows the result of the Born approximation (4.258), which
becomes accurate only for energies above a few hundred eV.

The complexity of the two-electron problem in three-dimensional coordi-
nate space has encouraged investigations of simplifying models of two electron
atoms. On such model is the s-wave model, in which both electrons are re-
stricted to spherical states. The coordinate space for this model is spanned
by two variables, viz. the radial distances r1 and r2 of the electrons from the
nucleus, and the potential energy is,

V (r1, r2) = −Ze
2

r1
− Ze2

r2
+
e2

r>
. (4.264)

The reduction of variables from vectors in three-dimensional space to one
dimensional variables r1, r2 means that physical cross sections are reduced
to dimensionless probabilities. In a related but not entirely equivalent pic-
ture developed by Temkin and Poet [Tem62, Poe78], the three-dimensional
picture is retained, but the electron-electron interaction is truncated so as
to act only for the s-wave components of the one-electron wave functions,
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Fig. 4.16. Ionization probabilities
for electron impact on hydrogen
in the s-wave model. The dashed
lines show the results for singlet
and triplet symmetry and the solid
line is their average. The open cir-
cles are again the experimental ion-
ization cross sections from [SE87].
The solid line is normalized to have
the same height at maximum as the
data (From [ID95])

corresponding again to the potential energy (4.264). The ionization probabil-
ities in the s-wave model were calculated by Ihra et al. [ID95] by solving the
time dependent Schrödinger equation for wave packets with a small energy
spread; with this technique it is not necessary to know the (stationary) wave
functions for two continuum electrons. The resulting ionization probabilities
are shown in Fig. 4.16 together with the experimental ionization cross sections
of [SE87]; the spin averaged probabilities of the s-wave model (solid line) are
normalized to reproduce the experimental data at the maximum. Consider-
ing how hard it is, for other approximate theories to reproduce the energy
dependence of the total ionization cross section (cf. Fig. 4.15), the agreement
between the ionization probabilities predicted in the s-wave model and the
data in Fig. 4.16 is remarkable. Since angular correlations are completely ab-
sent in the s-wave model, the good agreement in Fig. 4.16 shows, that the net
effects of such angular correlations in the total ionization cross section must
be negligible over a wide range of energies. Note that the ionization cross sec-
tion calculated in the three-dimensional model based on the potential (4.264)
contains a factor proportional to the inverse projectile energy, which describes
the diminishing contribution of the s-wave to the incoming plane wave, so that
the experimental energy dependence of the ionization cross section is not well
reproduced in that picture.

4.4.4 Threshold Behaviour of Ionization Cross Sections

For total energies just above the break-up threshold En, both outgoing par-
ticles in a break-up process must necessarily have small energies and wave
numbers, k1 → 0, k2 → 0. For short-ranged interactions the “free wave”
ψ

(KR)
n (R′) in the break-up amplitude (4.235) is given by (4.229) and tends to

a constant in this limit. The same is true for the break-up amplitude, unless
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the l = 0 components of the plane waves in (4.229) give vanishing contribu-
tions to the matrix element in (4.235), or the matrix element vanishes due to
some other symmetry property. The energy dependence of the cross section
(4.245) near threshold is thus generally dominated by the factors k1 and k2,
which are both proportional to Kn according to (4.243), so the differential
cross section (4.245) depends linearly on the excess energy E −En (4.222) in
the limit of small excess energies. The integrated total break-up cross section
σn, defined in analogy to (4.263) acquires a further factor proportional to
E − En via the integration over T2 from zero to its maximum value (which
is E − En), so the energy dependence of the total break-up cross section is
generally given by,

σn ∝ (E − En)2 , E → En , E > En , (4.265)

as long as the forces on the outgoing particles are of shorter range. Such
situations are not so common in atomic physics (electron detachment from
a negative ion by a neutral projectile would be an example), but they are
important in nuclear physics (e.g. neutron induced ejection of a neutron from
a nucleus).

The situation is more complicated for electron impact ionization, because
the “free wave” (4.229) does not contain the effect of the very-long ranged
Coulomb interaction. It is instructive to look at what could be expected, if the
correlation of the two continuum electrons were neglected, and the “free wave”
(4.229) were replaced by a product of two Coulomb waves, as in (4.255) but
without the correlating factor eiφ. The low-energy behaviour (k → 0) of the
radial Coulomb functions in an attractive Coulomb potetial can be deduced
from (4.213) or from (A.62) in the Appendix and is seen to be proportional
to |η|−1/2 ∝ √

k regardless of the value of the angular momentum quantum
number. This means that Fl(η, kr)/(kr), which enters into the partial wave
expansion of a free Coulomb wave in place of the spherical Bessel functions
in the expansion of the plane wave, is proportional to 1/

√
k for all l. The

break-up amplitude (4.235) is now proportional to 1/
√
k1k2 for small k1, k2,

so the differential ionization cross section (4.254) becomes independent of
energy near the ionization threshold. After integrating over the energy of one
of the outgoing electrons this leads to the statement, that the total ionization
cross section depends linearly on the excess energy near threshold, if (!) the
correlations between the outgoing electrons are neglected.

How these correlations affect the threshold behaviour of ionization cross
sections has been a topic of interest and controversy for more than half a
century. A pioneering study by Wannier from 1953 [Wan53] is still the valid
reference today. Wannier derived a threshold law for ionization by studying the
volume of classical phase space available to the two outgoing electrons. That
this is reasonable can be understood when considering that the classical limit
for Coulombic systems is at total energy zero, which is just the ionization
threshold in a system consisting of a projectile electron and a one-electron
target atom (cf. Sects. 4.1.5, 5.3.4(b)). Wannier’s derivation is based on the
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recognition that, due to the electron-electron repulsion, the two electrons can
only both escape exactly at threshold if they move away from the nucleus in
opposite directions with equal velocities which tend to zero with increasing
separation. For small positive energies a small volume of classical phase space
opens to the ionization process, and carefully analyzing how this happens
leads to the following dependence of the total ionization cross section on the
excess energy E above the ionization threshold, now at E = 0:

σe,2e(E) ∝ EνW , νW =
1
4

(√
100Z − 9
4Z − 1

− 1

)
. (4.266)

This is Wannier’s threshold law. The Wannier exponent νW depends only
on the charge Z of the residual nucleus (or ion). Its value is 1.12689 . . . for
Z = 1, it is 1.05589 . . . for Z = 2, and it approaches unity for Z → ∞. This is
consistent with the result expected when neglecting correlations between the
outgoing electrons, an approximation which should become better and better
with increasing Z.

The experimental and theoretical investigation of the energy region near
the two-electron threshold is a field of continuing and intense activity, see
e.g. [GL93, BS03] and references given there. Extensions have been formu-
lated to account for difference between singlet and triplet coupling of the two
electron spins [KS76, GL93] and for ionization by positron impact [Kla81].
Wannier’s classical theory has been challenged frequently (see [Tem91] and
references given there), but it is still generally accepted as appropriate suffi-
ciently close to threshold. Various generalizations have extended the range of
energies above threshold, where the ionization cross section can be fitted to a
simple analytical form, both for electron induced [Fea93] and positron induced
[IM97a] ionization. The break-up threshold of atoms with more than two elec-
trons has been studied in particular by Kuchiev and Ostrovsky [KO98].

One widely studied simplification of the full two-electron problem is the
collinear model, in which both electrons are restricted to lie on opposite sides
on a straight line through the nucleus. The coordinate space for this model
is spanned by two variables, viz. the respective distances r1 and r2 of the
electrons from the nucleus, and the potential energy is,

V (r1, r2) = −Ze
2

r1
− Ze2

r2
+

e2

r1 + r2
. (4.267)

Classical ionization probabilities were calculated within this model by Rost
[Ros94], simply by initiating classical trajectories corresponding to an incom-
ing projectile electron and a bound target electron oscillating between the
nucleus and an outer classical turning point, and counting those trajectories
which asymptotically (i.e. after long times) describe two outgoing electrons.
The resulting ionization probabilities for electron impact ionization of hydro-
gen are shown in Fig. 4.17 (solid line) together with experimental data from
[MC68]. The dashed line shows the proportionality to E1.127 expected from
Wannier’s threshold law (4.266). The solid and dashed lines are fitted to the



316 4 Simple Reactions

data at one point. Figure 4.17 illustrates two points. Firstly, the threshold
behaviour (4.266) is reproduced accurately for small energies, but the range
where this formula is relevant is quite small, and experimental verification or
falsification of Wannier’s law is difficult, because its deviation from a linear
behaviour is not very pronounced. [This difference is even less pronounced for
nuclear charges larger than one, but it is more pronounced in positron induced
ionization [IM97a].] Secondly, the collinear classical model reproduces the en-
ergy dependence of the experimental (!) data well for energies up to several eV
above the ionization threshold. This indicates that the physics determining
the ionization cross section is already contained in the collinear configura-
tion, and it shows that classical dynamics determines the energy dependence
of the cross section well beyond the regime where Wannier’s law (4.266) is
applicable.

Fig. 4.17. Total ionization cross sec-
tions for electron impact on hydro-
gen in the near threshold region. The
circles are the experimental results
from [MC68] and the solid line is the
classical ionization probability cal-
culated within the collinear model
(4.267). The dashed line shows the
proportionality to E1.127 expected
from Wannier’s threshold law (From
[Ros94])

The convincing results in Fig. 4.17 may conceal the fact that the relation
between classical mechanics and quantum mechanics for Coulomb systems
near the break-up threshold is enriched with unexpected subtleties. If for ex-
ample we consider the unphysical case of a continuously varying nuclear charge
Z smaller than one, then (4.266) shows that the Wannier exponent tends to
infinity as Z → 1/4.4 Indeed, for Z = 1/4 two classical electrons at equal
distances on opposite sides of the nucleus feel no force at all, because the at-
traction by the nucleus is exactly cancelled by the repulsion due to the other
electron. Recent calculations by Ihra et al. predict an exponential damping
of the ionization cross section by a factor proportional to exp (−const./Eν)
in this case, but the power ν and the constant involved are different in
the classical and quantum calculations [IM97b, CI98]. A further interesting

4 The unphysical case Z = 1/4 is however equivalent to a situation in which two
particles of charge −4Z move in the field of a central particle of charge +Z, which
could be realized physically, at least in principle.
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example is the s-wave model defined by the potential energy (4.264) in
Sect. 4.4.3, where classical ionization is strictly forbidden in a finite energy in-
tervall above threshold [HD93]. A semiclassical treatment based on Wannier’s
picture predicts an exponential damping of the quantum ionization probability
in this case [MI97, CI00].

Problems

4.1. a) Verify the identity

lim
a→∞ a

∫ 1

−1

(1 + x)f(x) eia(1−x) dx = 2if(1) .

b) When we use the stationary scattering wave function (4.3) to calculate
the particle flux

∮
j ·ds through the surface of an asymptotically large

sphere, we obtain a contribution Iout as in (4.9) and a contribution Iinterf

coming from interference terms between the incoming plane wave and the
outgoing spherical wave. Use the identity a) to show that

Iinterf =
h̄

µ
2πi[f(θ=0) − f∗(θ=0)] ,

which leads to the optical theorem (4.10).

4.2. Show that the free-particle Green’s function in three-dimensional coor-
dinate space,

G(r, r′) = − µ

2πh̄2

eik|r−r′|

|r − r′| ,

can be approximated by the expression (4.16) for r  r′,

G(r, r′) = − µ

2πh̄2

eikr

r

[
e−ikr·r′

+O
(
r′

r

)]
, kr = k

r

r
.

4.3. a) Calculate the density of states �(E) for plane waves of unit ampli-
tude in three-dimensional coordinate space, ψ(k) = exp (ik·r) , E =
h̄2k2/(2µ). (Impose periodic boundary conditions in a cube of length L
and study the limit L→ ∞).

b) Use the Golden Rule (2.139) to give an expression for the transition prob-
ability per unit time from an initial state ψi into final states consisting of
the plane waves above with wave vectors pointing in directions contained
in the angular element dΩ.
Confirm the following observation: If the matrix element of the transition
operator T̂ is related to the scattering amplitude f as in (4.18), then the
transition probability per unit time is just the differential scattering cross
section |f |2 multiplied by the incoming current density h̄k/µ.
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4.4. Use the phase shifts (1.132) for elastic scattering by a hard sphere,

tan δl = − jl(kr0)
nl(kr0)

,

to discuss the dependence of the integrated scattering cross section (4.32),

σ =
4π
k2

∞∑
l=0

(2l + 1) sin2 δl ,

on energy. Which partial waves l contribute significantly to the cross section
at high energy E ?

4.5. An electron at a distance r from an atom generates an electric field
E = er/r3 at the position of the atom. An electric field of strength E induces
an electric dipole moment d = αdE in an atom with a dipole polarizability
αd. The force F which a dipole of dipole moment d exerts on an electron at
a distance r is

F = (e/r3)[d − 3r(r ·d)/r2] .

Show that an electron, which is brought from infinity to a point at a distance
r from an atom with dipole polarizability αd, does the work

W (r) = e2
αd

2r4
.

4.6. An electron (spin 1
2 ) is scattered by a potential. Consider the solution ψ′

of the stationary Schrödinger equation with the boundary conditions (4.140)

ψ′ = eikz

(
0
1

)
+

eikr

r

(
g′(θ, φ)
f ′(θ)

)
, r → ∞ .

Show that the partial wave amplitudes f ′l and g′l in the expansions

f ′(θ) =
∞∑

l=0

f ′l

√
4π

2l + 1
Yl,0(θ) ,

g′(θ, φ) =
∞∑

l=1

g′l
√
l(l + 1)

√
4π

2l + 1
Yl,−1(θ, φ)

are given by formulae like (4.137),

f ′l =
l + 1
2ik

[
exp

(
2iδ(l+1/2)

l

)
− 1

]
+

l

2ik

[
exp

(
2iδ(l−1/2)

l

)
− 1

]
,

g′l =
1

2ik

[
exp

(
2iδ(l+1/2)

l

)
− exp

(
2iδ(l−1/2)

l

)]
.

Hint: Repeat the considerations following (4.131) for a z-component of the
total angular momentum m′ = −1/2 .
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4.7. Consider a two-component spinor normalized to unity,

|χ〉 =
(
A
B

)
, |A|2 + |B|2 = 1 .

Show that the polarization vector P = 〈χ|σ̂|χ〉 has the components given in
(4.147),

Px = 2
[A∗B] , Py = 2�[A∗B] , Pz = |A|2 − |B|2 .
σ̂ is the vector of the three Pauli spin matrices,

σ̂x =
(

0 1
1 0

)
, σ̂y =

(
0 −i
ı 0

)
, σ̂z =

(
1 0
0 −1

)
.

Show that the projection σ̂P = P ·σ̂ = Pxσ̂x +Pyσ̂y +Pzσ̂z onto the direction
of P is given by

σ̂P =
( |A|2 − |B|2 2AB∗

2A∗B |B|2 − |A|2
)
,

and that the spinor |χ〉 is an eigenstate of σ̂P with eigenvalue +1.

4.8. Consider the elastic scattering of two electrons with parallel spins (total
spin S = 1). In the centre-of-mass system this corresponds to the scattering
of a particle of reduced mass µ = me/2 in the repulsive Coulomb potential
e2/r. The indistinguishability of the two electrons leads to a modification of
the formulae for scattering amplitude and cross section.

a) Show that the Rutherford formula (4.104) for the differential cross section
is replaced by the following Mott formula,

dσt
M

dΩ
=
η2

4k2

[
1

sin4 1
2θ

+
1

cos4 1
2θ

− 2
cos (η ln tan2 1

2θ)
sin2 1

2θ cos2 1
2θ

]
.

b) Which orbital angular momentum quantum numbers l contribute to the
partial waves expansion of the wave function?

c) What changes in a) and b) if we consider the scattering of two electrons
whose spins are coupled to S=0 ? Which differential cross section do we
observe in the scattering of unpolarized electrons?

4.9. Show that the Green’s function of the Helmholtz equation in n dimen-
sions,

G(x,x′) = −
(
K

2π

)ν iH(1)
ν (K|x − x′|)
4|x − x′|ν , ν =

n

2
− 1 ,

fulfills the defining equation
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(K2 +∆n)G(x,x′) = δ(x − x′) .

Here H(1)
ν (�) is the Hankel function of order ν (Appendix A.4). It is a solution

of Bessel’s differential equation

d2w

d�2
+

1
�

dw
d�

+
(

1 − ν2

�2

)
w = 0

with the boundary conditions

iH(1)
ν (�)

�→0
=

Γ (ν)
π

(�
2

)−ν

, iH(1)
ν (�)

�→∞
=

√
2i
π

ei�

iν
√
�
.

4.10. Evaluate the integral

In =
∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dxn e−x2

1−x2
2··· −x2

n

in two different ways: (i) as a product of n one-dimensional integrals, (ii) by
transforming it into a radial integral. Show that this leads to the following
formulae for the surface Sn(R) and the volume Vn(R) of the n-dimensional
sphere of radius R:

Sn(R) =
2πn/2

Γ (n
2 )
Rn−1 , Vn(R) =

πn/2

Γ (n
2 + 1)

Rn .

4.11. Two displacement vectors r1 and r2 are described in hyperspherical
coordinates by the length R of the six-component vector (r1, r2) and the five
angles θ1, φ1, θ2, φ2, α,

x1 = R sinα sin θ1 cosφ1 , x2 = R cosα sin θ2 cosφ2 ,
y1 = R sinα sin θ1 sinφ1 , y2 = R cosα sin θ2 sinφ2 ,
z1 = R sinα cos θ1 , z2 = R cosα cos θ2 ,

where α = 0, . . . π
2 , θi = 0, . . . π and φi = 0, . . . 2π.

a) Show that the hyperspherical angular element dΩh is given by

dΩh = sin2 α cos2 α dα dΩ1 dΩ2

= sin2 α cos2 α dα sin θ1dθ1dφ1 sin θ2dθ2 dφ2 .

b) The surface Sn of an n-dimensional sphere of radius R is given by (Prob-
lem 4.10)

Sn =
2π

n
2

Γ (n
2 )
Rn−1 .

Verify that integration over the hyperspherical solid angle Ωh gives the
correct result for n=6, namely π3.
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4.12. a) Determine the length and the direction of the momentum transfer
vector (4.262), q = k1−ki, for the (e,2e) reaction in asymmetric coplanar
geometry with the parameters of Fig. 4.14.

b) Determine the length and the direction of the momentum transfer vector
q for the (e,2e) reaction (4.260) in symmetric coplanar geometry (θ1 = θ2,
T1 = T2) with incoming kinetic energy Einc = 150 eV.
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5

Special Topics

The last few decades have seen great advances in experimental atomic physics.
Exotic states of atoms can be prepared with the help of intense and short laser
pulses, experiments can be performed on individual atoms and ions in electro-
magnetic traps and the dependence of their properties on their environment
can be investigated, and high resolution laser spectroscopy has made preci-
sion studies of the finest details of complicated atomic spectra possible. The
experimental advances have confronted the theory with new challenges. It has
become apparent that intricate and interesting effects can occur even in seem-
ingly simple systems with only few degrees of freedom, and that their theoret-
ical description often is by no means easy. Complementary to high precision
spectroscopy, the availability of ultra-short light pulses on the femtosecond
time scale has made it possible to study highly localized excitations in atoms
and molecules and follow the evolution of wave packets on an atomic scale.
The availability of ultra-cold atoms has made experimental tests of fundamen-
tal postulates of quantum mechanics possible, and it has led to the realization
in the laboratory of degenerate condensates of gases of bosonic and of fermi-
onic atoms. The new experimental techniques enable active manipulation of
ultra-cold atoms in the extremely quantum mechanical regime.

In order to describe multiphoton processes, which typically occur in intense
light fields, it is necessary to go beyond traditional perturbative treatments
of the interaction of atoms with light. This is the subject of Sect. 5.1. The
power of classical and semiclassical methods in understanding and describing
structure and dynamics on an atomic scale has become increasingly apparent
since the mid-1980’s. Sect. 5.2 presents a brief discussion of how far the concept
of coherent wave packets moving along classical trajectories can be formulated
in a quantum mechanically consistent way, and Sect. 5.3 describes recent
advances of our understanding of the relation between classical and quantum
dynamics, in particular for the interesting case that the classical motion is
chaotic. Section 5.4 is devoted to the subject of Bose-Einstein condensates of
atomic gases, which were prepared and observed for the first time in 1995 and
have since proved to be an abounding source of exciting new physics. Finally,
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Sect. 5.5 contains a brief introduction to some aspects of atom optics, where
the guiding and trapping of atom waves is the focus of attention.

5.1 Multiphoton Absorption

The description of electromagnetic transitions in Sect. 2.4 is based on the as-
sumption that the interaction of the electromagnetic field with an atom can
be regarded as a small perturbation. This justifies applying first-order per-
turbation theory in the form of the Golden Rule and yields probabilities for
transitions in which one photon is absorbed or emitted (Sect. 2.4.4). Transi-
tions in which two or more photons are absorbed or emitted simultaneously
only become important in very strong fields. Nowadays such strong fields can
be produced by very intense lasers, and the investigation of atomic processes
in the presence of a laser field, in particular of multiphoton processes, has
become a very important subfield of atomic physics and optics. A summary
of experimental and theoretical work up to the early eighties is contained in
[CL84]. For comprehensive monographs see [DK85, Fai86]. Further develop-
ments are summarized in [SK88]; see also [NC90, Gav92, DK94, DF00].

5.1.1 Experimental Observations on Multiphoton Ionization

If the energy of a single photon is smaller than the ionization potential of an
atom (in a given initial state), then photoionization can only proceed via the
absorption of several photons. The intensity of the laser determines how much
electromagnetic field energy is available in the immediate vicinity of the atom
(see Problem 5.1). Laser powers well beyond 1012 W/cm2 with pulses lasting
for nanoseconds have been available for several years. Early experiments on
multiphoton ionization involved just counting the ions created by a strong
laser pulse. An example is shown in Fig. 5.1, where strontium atoms were
exposed to the pulses of a Nd:YAG laser (=neodymium:yttrium-aluminium-
garnet). The wave length of the laser light is 1.064µm corresponding to a
photon energy of h̄ω = 1.165 eV. At least five photons are needed to ionize
a strontium atom; at least fifteen photons are needed to eject two electrons
[FK84].

The number of ions as a function of the laser intensity I follows a straight
line over large stretches in the doubly logarithmic representation of Fig. 5.1,
which indicates a power law. Extending the perturbation theory of Sect. 2.4
to higher orders gives the probability P (n) for absorbing n photons in lowest
non-vanishing order as

P (n) ∝ In . (5.1)

The expected proportionality to I5 for singly ionized strontium is well ful-
filled in Fig. 5.1, but the probability for double ionization rises more slowly
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Fig. 5.1. Numbers of Sr+ and Sr++

ions observed in multiphoton ionization
by a Nd:YAG-Laser (h̄ω = 1.165 eV)
as functions of the laser intensity (From
[FK82])

than the minimum number (fifteen) of photons would suggest. The devia-
tions from the straight lines at higher intensities in Fig. 5.1 can be attributed
to a saturation effect which occurs when all atoms in the region hit by the
laser pulse are ionized. The applicability of lowest-order perturbation theory
is limited to non-resonant absorption. Resonance effects involving appropriate
intermediate states can make the picture much more complicated [TL89].

The general interest in multiphoton ionization grew rapidly after first in-
vestigations of the ejected electrons revealed that these could have kinetic
energies much larger than expected for absorption of the minimum number
of photons necessary. A first explanation of these observations was, that an
electron already excited into the continuum could acquire a higher final ki-
netic energy by the further absorption of photons. This picture corresponds
to ionizing an atom out of a continuum state and has led to the rather unfor-
tunate name of above-threshold ionisation (ATI). A more appropriate name is
excess-photon ionization EPI, which merely expresses the observed fact that
electrons absorb more photons than necessary for ionization and refrains from
further interpretation.

Figure 5.2 shows ATI or EPI spectra for the ionization of xenon by photons
from a Nd:YAG-Lasers (h̄ω=1.165 eV) at four different laser intensities. The
minimum number of photons needed depends on whether the Xe+ ion is left
behind in one or the other of two states energetically separated by 1.31 eV. If
the ion is left behind in the lower P3/2 state, which corresponds to the ejection
of an electron from a 5p3/2 state, then at least eleven photons are needed; for
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a Xe+ ion in the P1/2 state corresponding to ejection of a 5p1/2 electron we
need at least twelve photons. The asymptotic kinetic energy of an electron
after absorption of n photons is just the difference of nh̄ω and the ionization
potential IP,

Ekin(n) = nh̄ω − IP . (5.2)

These energies are shown at the top of Fig. 5.2 for the two ionization chan-
nels. The maxima in Fig. 5.2 show appreciable absorption of up to eight excess
photons. The figure also shows features which have been established as char-
acteristic in the course of many further experiments. Amongst these are the
observation that the relative probability for absorbing a larger number of ex-
cess photons increases with increasing laser intensity, and that the probability
for absorbing no or only one excess photon is smaller than the probability for
absorption of a larger number of excess photons at sufficiently high intensity
(see also Fig. 5.3 below).

Fig. 5.2. Energy spectra of
electrons ejected in the multi-
photon ionization of xenon by
a Nd:YAG laser (h̄ω = 1.165
eV) for various intensities
(≈ numbers shown as mJ×2×
1012 [W/cm2]) and pressures.
The asymptotic kinetic energy
expected according to (5.2)
for electrons having absorbed
n photons is shown for the
two ionization channels at the
top edge of the figure (From
[KK83])
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Fig. 5.3. The upper
picture shows angle inte-
grated ionization proba-
bilities (5.17) decomposed
into contributions from
various photon numbers
n. The parameters corre-
spond to the ionization
of xenon by photons with
h̄ω = 1.165 eV and a field
strength characterized by
a ponderomotive energy of
EP/h̄ω = 1 (from [Rei87]).
The lower picture shows
the energy spectra of
photo-electrons from the
ionization of xenon by
circularly polarized pulses
from a Nd:YAG laser
(h̄ω =1.165 eV) at various
intensities (from [MB87])

Whereas perturbative methods may be applied to multiphoton ionization
as long as the field strengths are not too high, they are not appropriate for de-
scribing the non-monotonic dependence of the heights of the absorption peaks
on the number of excess photons. (For a discussion of perturbative methods
see [Cra87, Kar91].) The explanation of simple-looking spectra such as those
in Fig. 5.2 is already a serious challenge to theory. Further experimental data
such as angular distributions of the ejected electrons have become available
[FW88], and they should enable us to sort out the merits of various theoret-
ical approaches. The following two sections briefly sketch two examples for
a non-perturbative description of multiphoton ionization. Both sections treat
the example of an atom in a spatially constant monochromatic field. Further
complications arise when considering the finite temporal duration of a light
pulse and the rise and fall of its intensity explicitly. Large scale numerical cal-
culations which directly solve the time-dependent Schrödinger equation have
been quite successful in such situations, see e.g. [KS97] and references given
there.
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5.1.2 Calculating Ionization Probabilities via Volkov States

Consider a one-electron atom in an oscillating electromagnetic field described
by a vector potential A. In the radiation gauge (2.150) the vector potential
for light polarized linearly in the x-direction is

A(r, t) = −A0ex sinωt . (5.3)

For right or left circular polarization around the z-axis we have

A(r, t) = −A0√
2

(ex sinωt∓ ey cosωt) . (5.4)

According to (2.148)the associated electric field E for linear or circular polar-
ization is

E(r, t) = E0ex cosωt , or

E(r, t) =
E0√

2
(ex cosωt± ey sinωt) . (5.5)

In both cases the amplitudes E0 and A0 are related by

E0 =
ω

c
A0 . (5.6)

Since the wave length of the laser light is much larger than typical spatial
dimensions of the atom, we can assume a spatially homogeneous field, i.e.
constant amplitudes E0, A0 (dipole approximation). The Hamiltonian is (cf.
(2.151))

Ĥ =
[p̂ + (e/c)A(r, t)]2

2µ
+ V (r) . (5.7)

Apart from the vector potential A it also contains the static potential V (r)
describing the interaction of the electron with the residual ion in the absence
of a laser field.

If we decompose the Hamiltonian (5.7) into an atomic part p̂2/(2µ) + V
and an additional term Ĥ1 due to the laser field, then

Ĥ1 =
e

µc
A·p̂ +

e2

2µc2
A2 . (5.8)

The technique of using a Green’s function to formally solve a Schrödinger
equation, which was repeatedly demonstrated in Chap. 4, can be generalized
to the time-dependent Schrödinger equation

ih̄
∂

∂t
ψ(r, t) = Ĥψ(r, t) (5.9)

(see e.g. Appendix A of [Rei80]). This yields an implicit expression for the
probability amplitude afi describing a transition caused by the time-dependent
interaction (5.8), in which an initial atomic state ψi(r, t)=φi(r) exp [−(i/h̄)Eit]
evolves into a final state ψf(r, t), which is a solution of the full Schrödinger
equation (5.9),
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afi =
1
ih̄

∫ ∞

−∞
〈ψf |Ĥ1|ψi〉dt . (5.10)

If the ionization limit of the field-free atom is at E = 0 then the (negative)
energy eigenvalue Ei of the initial bound state is just minus the (positive)
ionization potential IP, which has to be overcome for ionization out of this
state.

The formula (5.10) looks similar to the expression (2.134) for transition
amplitudes in time-dependent perturbation theory. In contrast to this ex-
pression however, (5.10) is exact (like analogous formulae (4.17), (4.175) in
time-independent scattering theory), provided the final state wave function
ψf really is an exact solution of the Schrödinger equation.

In an approximation originally due to Keldysch and developed by Reiss
[Rei80], the exact solution ψf in (5.10) is replaced by solutions of the
Schrödinger equation for a free electron in a laser field. The ket of the matrix
element in (5.10) then contains a solution of the (time-dependent) Schrödinger
equation including the atomic potential but without a laser field, while the bra
contains a solution of the Schrödinger equation containing the laser field but
no atomic potential. For a spatially homogeneous monochromatic laser field
these latter solutions are known analytically and are called Volkov states.

In the absence of an atomic potential the Hamiltonian (5.7) is

Ĥ0 =
[p̂ + (e/c)A(r, t)]2

2µ
. (5.11)

For linearly polarized light (5.3) we have

Ĥ0 =
p̂2

2µ
− eA0

µc
p̂x sinωt+

e2A2
0

2µc2
sin2 ωt , (5.12)

and it is straightforward to verify that the following Volkov states are solutions
of the time-dependent Schrödinger equation:

ψV(r, t) = exp

[
ik·r − i

h̄k2

2µ
t− ikx

eA0

ωµc
cosωt

− i
h̄

e2A2
0

2µc2

(
t

2
− 1

4ω
sin 2ωt

)]
. (5.13)

For circular polarization (5.4) we have

Ĥ0 =
p̂2

2µ
− eA0√

2µc
(p̂x sinωt∓ p̂y cosωt) +

e2A2
0

4µc2
, (5.14)

and the corresponding Volkov states are

ψV(r, t) = exp

[
ik·r − i

h̄k2

2µ
t

− i
eA0√
2ωµc

(kx cosωt± ky sinωt) − i
h̄

e2A2
0

4µc2
t

]
. (5.15)
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The Volkov states (5.13), (5.15) look like ordinary plane waves with an
additional oscillating phase,

ψV = exp [ik·r − (i/h̄)EVt+ δosc] .

The oscillating phase describes the wiggling of the electron in the oscillating
field. In the energy there is an additional term which is constant in space and
time and depends quadratically on the amplitude of the field. It is called the
ponderomotive energy EP,

EV =
h̄2k2

2µ
+ EP , EP =

e2A2
0

4µc2
=
e2E2

0

4µω2
. (5.16)

The Keldysch approximation allows an analytic evaluation of the integral
in (5.10). In the case of circular polarization (5.15) we obtain the following
expression for the probability per unit time that an electron is ejected into
the solid angle dΩ:

dP
dΩ

∝
∞∑

n=n0

(
n− EP

h̄ω

)2 √
n− ε |φ̃i(k)|2 J2

n

(
2 sin θ

√
EP

h̄ω

√
n− ε

)
, (5.17)

where Jn is the ordinary Bessel function (Appendix A.4). The quantity ε in
(5.17) stands for the sum of the ionization potential and the ponderomotive
energy in units of the photon energy h̄ω,

ε =
IP + EP

h̄ω
. (5.18)

φ̃i(k) is the Fourier transform of the spatial part of the initial wave function
φi(r), and θ is the angle between the wave vector k and the z-axis. The right-
hand side of (5.17) depends only on the direction of the outgoing wave vector
k (more precisely: only on the polar angle θ); the length of k is fixed by energy
conservation,

h̄2k2

2µ
= nh̄ω − (IP + EP) = (n− ε)h̄ω . (5.19)

The summation index n stands for the number of photons absorbed in the
ionization process. The summation in (5.17) begins with the smallest number
n0 for which n−ε is positive. Note that the energy to be overcome consists of
the ionization potential IP plus the ponderomotive energy EP. More energy
is needed to ionize the atom in the presence of the electromagnetic field.

A formula like (5.17) can also be derived for linearly polarized light (see
[Rei80]). Expressions similar to (5.17) were already found in 1973 by Faisal
[Fai73].

The Keldysch approximation is quite successful if the atomic potential V
is very short ranged [BM89]. In realistic situations the Keldysch-Faisal-Reiss
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theory (KFR) is not always so successful in describing the multiphoton ioniza-
tion data quantitatively [Buc89]. This may be due to the fact that the effect of
the static long ranged Coulomb potential between the ejected electron and the
residual ion is not included. Furthermore, the consequences of the Keldysch
approximation are not gauge invariant. The KFR theory nevertheless is able
to reproduce some of the qualitative features of the energy spectra of the
ejected electrons. As an example Fig. 5.3 shows ionization probabilities (5.17)
integrated over all angles in comparison with experimental spectra from the
multiphoton ionization of xenon by circularly polarized pulses from a Nd:YAG
laser. The calculated ionization probabilities have been decomposed into con-
tributions from various photon numbers n which are related to the energy of
the ejected electron via (5.2).

If the duration of the laser pulses is not too short, the energy of the photo-
electrons registered in the detector is given by (5.2) and the ponderomotive en-
ergy need not be subtracted. The reason lies in the fact that the field strength
and hence the ponderomotive energy, which are regarded as constant over a
few wave lengths of the laser, fall off from their respective maximum values to
zero over a distance corresponding to the spatial extension of the pulse. The
resulting gradient of the ponderomotive energy exerts a force on the electron,
the ponderomotive force. After absorbing n photons the electron leaves the
atom with a kinetic energy given by (5.19). The ponderomotive force then ac-
celerates the electron away from the centre of the pulse so that it reaches the
detector with the asymptotic kinetic energy given by (5.2). Such acceleration
due to the ponderomotive force can also be observed in different contexts,
e.g. in the scattering of free electrons by a strong laser pulse [Buc89]. For
very short laser pulses (shorter than picoseconds) the laser field has subsided
before the acceleration by the ponderomotive force becomes effective, and the
energy shifts due to the ponderomotive energy in (5.19), which can also be
interpreted as ac-Stark shifts of the bound state energies (see Sect. 3.5.3), are
observed in the detectors [RW90a, DP90].

5.1.3 Calculating Ionization Probabilities via Floquet States

This section briefly sketches the use of the theory of Floquet states introduced
in Sect. 3.5.3 for the nonperturbative treatment of multiphoton ionization. For
more details the reader is referred to an article on this subject by Potvliege
and Shakeshaft [PS92].

In the field gauge (3.277) the Hamiltonian Ĥ for an atom in a spatially con-
stant and monochromatic field is the sum of the time-independent Hamilton-
ian ĤA for the field-free atom and an additional potential oscillating with the
circular frequency ω. As discussed in Sect. 3.5.3 we can use the ansatz

ψ = exp [−(i/h̄)εt]Φε(t) , Φε(t+ 2π/ω) = Φε(t) (5.20)

to reduce the time-dependent Schrödinger equation to an eigenvalue equation
for the generalized Hamiltonian
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Ĥ = Ĥ − ih̄
∂

∂t
(5.21)

(cf. (3.279), (3.280)). The eigenvalues of (5.21) are the quasi-energies ε, and
the associated solutions (5.20) are the Floquet states or quasi-energy states.
In a monochromatic field the Hamiltonian including the atom-field interaction
has the general form

Ĥ = ĤA + Ŵ eiωt + Ŵ † e−iωt , (5.22)

and the precise nature of the time-independent coupling operator Ŵ depends
on polarization and gauge. If we express the periodic time dependence of the
Φε in terms of a Fourier series,

Φε =
∑

n

e−inωtψε,n , (5.23)

then the eigenvalue equation for the generalized Hamiltonian (5.21) becomes
a set of time-independent coupled equations for the Fourier components ψε,n,

ĤAψε,n + Ŵψε,n+1 + Ŵ †ψε,n−1 = (ε− nh̄ω)ψε,n . (5.24)

Potvliege and Shakeshaft solved the coupled equations (5.24) numeric-
ally for the case that ĤA describes a hydrogen atom [PS89]. This involves the
consideration of asymptotic (r → ∞) boundary conditions whose explicit form
depends on the choice of gauge. The calculations yield complex eigenvalues

εi = Ei +∆i − i
Γi

2
, (5.25)

where Ei are the energy eigenvalues of the field-free hydrogen atom, and
∆i are real energy shifts which should become the ac-Stark shifts (3.287)
in the weak-field limit. The origin of the imaginary part in (5.25) is that
each initially bound state can couple to and decay into continuum states for
sufficiently large n, i.e. by coupling to a sufficient number of photons. As
a consequence the absolute square of the wave function of the Floquet state
decreases proportional to exp [−Γit/h̄] corresponding to an ionization rate per
unit time of Γi/h̄ (see also [PS90]). Figure 5.4 shows Γi/h̄ for ionization from
the 1s ground state of the hydrogen atom by a linearly polarized Nd:YAG laser
(h̄ω = 1.165 eV) as a function of the laser intensity. The dashed lines show
for comparison the results of lowest non-vanishing order perturbation theory
for ionization by n= 12 or n= 13 photons. The resonance-like structures in
the non-perturbative curve occur when the quasi-energy of the Floquet state
which corresponds to the 1s state of the H atom in the field-free limit crosses
or almost crosses the quasi-energies of other states as the laser intensity is
varied.

One remarkable feature of Fig. 5.4 is that the non-perturbative result,
which includes ionization by an arbitrary number (at least twelve) of photons,
lies substantially lower than the perturbative ionization probabilities for ex-
actly twelve or exactly thirteen photons. The authors of [PS89] conclude that
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Fig. 5.4. Probability per unit time for ionization of a hydrogen atom from its 1s
ground state by a strong laser field with the Nd:YAG frequency (h̄ω=1.165 eV) as
a function of the laser intensity. The dashed lines show the results of perturbation
theory in lowest non-vanishing order (5.1) for the absorption of n = 12 (S = 0) or
n=13 (S =1) photons (From [PS89, PS92])

perturbative treatments can overestimate the probability for ionizing an atom
in a strong laser field by orders of magnitude. Perturbative methods have, on
the other hand, been successful in reproducing the angular distributions of the
photo-electrons. Figure 5.5 shows angular distributions of electrons ejected in
the multiphoton ionization of hydrogen by photons with an energy of 3.5 eV.
The minimum number of photons needed for ionization is four. The various
parts of the figure correspond to absorption of up to three excess photons.
The perturbative calculation reproduces the measured angular distributions
quite well in all cases.

The investigation of atoms under the influence of intense Laser pulses has
been refined considerably in the last ten years or so. Spectra of the type shown
in Fig. 5.2 with dozens of excess-photon peaks have been observed, revealing
a not necessarily monotonic dependence of the intensities of the higher-order
peaks on their order. Similar structures are also observed in photon spectra
emitted by atoms under the influence of intense laser pulses, the remarkable
feature here being the occurrence of higher-energy photons corresponding to
odd harmonics of the frequency of the original laser pulse. This generation of
higher harmonics is a useful mechanism for creating light pulses of very short
wave lengths. The strengths of higher-order peaks both in above-threshold
(excess-photon) ionization and in higher-harmonic generation show character-
istic plateaus in their dependence on order, meaning that the expected decline
of intensity with order is attenuated over several peaks. The nontrivial depen-
dence of the peak intensity on order has been explained very successfully on
the basis of a classical picture in which the electron which is ejected from the
atom by the intense field is accelerated back towards the residual ion when the
oscillating field of the laser changes direction. The subsequent “re-scattering”
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Fig. 5.5. Angular distribu-
tions of photo-electrons ob-
served in the multiphoton
ionization of hydrogen by
photons with an energy of 3.5
eV. The various parts of the
figure correspond to the ab-
sorption of S = 0 to S = 3 ex-
cess photons. The left half of
the picture shows the results
of a perturbative calculation,
the right half shows the mea-
sured distributions whose ab-
solute heights were fitted to
the calculated curves (From
[KM88])

of the electron by the ion strongly influences the observed peak intensities in
the spectra of the (higher-harmonic) photons or of the photo-electrons. For
details see the comprehensive recent review by Becker et al. [BG02].

5.2 Classical Trajectories and Wave Packets

Many effects which are correctly and satisfactorily described by quantum me-
chanics can already be largely explained within the framework of classical
mechanics, which is frequently considered easier to understand and visualize.
It thus makes sense to compare the two theories, to establish the correspon-
dence of classical and quantum mechanical descriptions and to highlight the
genuine quantum effects which cannot be explained classically.
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5.2.1 Phase Space Densities

In classical mechanics a physical system with f degrees of freedom is described
by a Hamiltonian function H(q1, . . . qf ; p1, . . . pf ; t) which depends on the f
coordinates qi, on f canonically conjugate momenta pi and perhaps also on
the time (see textbooks on mechanics, e.g. [Gol80, LL71] or [Sch90]). The
temporal evolution of the system is described by a trajectory (qi(t), pi(t)) in
phase space. The trajectory is a solution of the following system of 2f coupled
ordinary differential equations:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (5.26)

These are the canonical equations of classical mechanics. The initial conditions
qi(t0), pi(t0) uniquely determine the evolution of the system for all times.

If we don’t know the state of the system at time t0 exactly, we can describe
it by a classical phase space density �cl(qi, pi; t0). It is the probability density
for finding the system in the state qi, pi at time t0. Being a probability density
�cl cannot be negative, and its integral over all possible states in phase space
must be unity at all times,∫

dfqi

∫
dfpi �cl(qi, pi; t) = 1 . (5.27)

We obtain an equation of motion for the classical phase space density by re-
alizing that the probability for a state of the system cannot change along a
trajectory in phase space, because this just describes the evolution of the sys-
tem. This means that �cl(qi(t), pi(t); t) must be constant in time if qi(t), pi(t)
are solutions of the canonical equations (5.26),

d
dt
�cl(qi(t), pi(t); t) =

N∑
i=1

(
q̇i
∂�cl
∂qi

+ ṗi
∂�cl
∂pi

)
+
∂�cl
∂t

= 0 . (5.28)

Inserting the expressions given by the canonical equations (5.26) for q̇i and ṗi

into (5.28) and writing the resulting sum as a Poisson bracket,

{H, �cl} def=
N∑

i=1

(
∂H

∂pi

∂�cl
∂qi

− ∂H

∂qi

∂�cl
∂pi

)
, (5.29)

reduces (5.28) to the compact form

∂�cl
∂t

= −{H, �cl} . (5.30)

Equation (5.30) is the equation of motion for the classical phase space density
in a system described by the Hamiltonian function H, and it is called the
Liouville equation.

For simplicity we now consider a system consisting of a particle in a con-
servative potential in three spatial dimensions. The Hamiltonian function is
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H(r,p) =
p2

2µ
+ V (r) , (5.31)

and the Liouville equation has the form

∂

∂t
�cl(r,p; t) = −p

µ
· ∇r �cl − F (r) · ∇p �cl , F (r) = −∇rV (r) . (5.32)

It describes the flow of �cl in phase space under the influence of the inertial
term (the first term on the right-hand side) and a field of force F .

In quantum mechanics we describe the state of a system by a wave function
|ψ(t)〉 which (in coordinate representation) is a function of the displacement
vector, ψ(r, t), and should be normalized to unity. The time evolution of |ψ〉
is determined by the Hamiltonian operator Ĥ and is described by the time-
dependent Schrödinger equation,

ih̄
∂

∂t
|ψ〉 = Ĥ|ψ〉 . (5.33)

We can alternatively describe a pure state |ψ〉 by the associated density op-
erator

�̂(t) = |ψ(t)〉〈ψ(t)| (5.34)

(cf. Sect. 4.2.3). In coordinate representation the density operator is an inte-
gral operator with the integral kernel

�(r, r′; t) = ψ(r, t)ψ∗(r′, t) . (5.35)

The quantum mechanical wave function in momentum representation is a
function ψ̃ depending on the momentum variable p, and it is related to the
wave function ψ(r, t) in coordinate representation by a Fourier transformation:

ψ̃(p, t) =
1

(2πh̄)3/2

∫
e−ip ·r/h̄ψ(r, t) dr . (5.36)

In momentum representation the density operator for the pure state (5.34)
has the form

�̃(p,p′; t) = ψ̃(p, t) ψ̃∗(p′, t) . (5.37)

A mixed quantum mechanical state is described by an incoherent super-
position of pure states with (non-negative) probabilities wn (see Sect. 4.2.3),

�̂(t) =
∑

n

wn |ψn(t)〉〈ψn(t)| , (5.38)

and its coordinate and momentum representations are corresponding gener-
alizations of (5.35) and (5.37) respectively.

If the wave function |ψ(t)〉 of a pure state (5.34) or the wave functions
|ψn(t)〉 of the mixed state (5.38) fulfill the time-dependent Schrödinger equa-
tion (5.33), then the associated density matrix fulfills the von Neumann equa-
tion
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∂�̂

∂t
= − i

h̄
[Ĥ, �̂] . (5.39)

Here [Ĥ, �̂] = Ĥ�̂− �̂Ĥ is the commutator of Ĥ and �̂ as usual.
The von Neumann equation (5.39) is more flexible than the Schrödinger

equation, in particular because it can be generalized to describe dissipative
effects, see e.g. [Haa73]. If an initial (pure) state with a given energy E is
subject to dissipative effects due to coupling to other degrees of freedom such
as internal excitations of the particle, then the density matrix will generally
evolve into a mixed state containing contributions corresponding to other
(lower) energies than E. This can be described in by an additional dissipative
term on the right-hand side of (5.39); the structure of such a dissipative term
is more complicated than a simple commutator of a given operator with ρ̂.

The von Neumann equation (5.39) for the quantum mechanical density op-
erator has the same form as the Liouville equation (5.30) for the classical phase
space density if we identify the Poisson bracket in the classical equation with
(i/h̄) times the commutator of quantum mechanics. The similarity between
classical and quantum mechanics becomes more apparent if we represent the
density operator, which depends on two displacement vectors in coordinate
representation and on two momentum vectors in momentum representation,
by its Wigner function �W(R,P ; t), which depends on one displacement vec-
tor and one momentum vector. We obtain the Wigner function of �̂ either from
the coordinate representation �(r, r′; t) by a Fourier transformation with re-
spect to the variable r − r′, or from the momentum representation �̃(p,p′; t)
by a Fourier transformation with respect to the variable p − p′,

�W(R,P ; t) =
1

(2πh̄)3

∫
e−iP ·s/h̄ �

(
R +

s

2
,R − s

2
; t
)

ds

=
1

(2πh̄)3

∫
e+iR·q/h̄ �̃

(
P +

q

2
,P − q

2
; t
)

dq . (5.40)

The Wigner function (5.40) is real, because the density operator is Hermitian.
The coordinate or momentum representation of the density operator can be
recovered from the Wigner function by inverting the corresponding Fourier
transformation in (5.40).

The Wigner function has several properties reminiscent of a classical phase
space density. Integrating over the momentum variables yields the (quantum
mechanical) probability density in coordinate space, e.g. for the pure state
(5.34),∫

�W(R,P ; t) dP = �(R,R; t) = |ψ(R, t)|2 . (5.41)

Conversely, integrating over the spatial variables yields the quantum mechan-
ical probability density in momentum space,∫

�W(R,P ; t) dR = �̃(P ,P ; t) = |ψ̃(P , t)|2 . (5.42)
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Integrating the Wigner function over the whole of phase space we obtain the
conservation of total probability [cf. (5.27)],∫

�W(R,P ; t) dR dP =
∫

|ψ(R, t)|2 dR

=
∫

|ψ̃(P , t)|2 dP = 1 . (5.43)

However, the Wigner function is also different from a classical phase space
density in some crucial aspects. In particular, the values of the function can
be negative, and it is only after integrations such as in (5.41)–(5.43) that
genuine probability interpretations become possible.

We obtain an equation of motion for the Wigner function by formulating
the von Neumann equation (5.39) in the Wigner representation. We assume
a Hamiltonian operator

Ĥ = T̂ + V̂ , T̂ =
p̂2

2µ
, V̂ ≡ V (r) . (5.44)

The Wigner function [T̂ , �̂]W of the commutator of T̂ and �̂ is most easily cal-
culated by Fourier transformation from the momentum representation [lower
line (5.40)],

[T̂ , �̂]W =
1

(2πh̄)3

∫
dq e+iR·q/h̄ 1

2µ

[(
P +

q

2

)2

−
(
P − q

2

)2
]

×�̃
(
P +

q

2
,P − q

2
; t
)

=
h̄

i
P

µ
∇R �W(R,P ; t) . (5.45)

The Wigner function for the commutator of the potential energy and �̂ is more
easily calculated by Fourier transformation from the coordinate representation
(upper line (5.40)),

[V̂ , �̂]W =
1

(2πh̄)3

∫
ds e−iP ·s/h̄

[
V
(
R+

s

2

)
− V

(
R− s

2

)]
×�

(
R+

s

2
,R− s

2
; t
)
. (5.46)

The Wigner representation of the von Neumann equation now reads

∂

∂t
�W = − i

h̄

(
[T̂ , �̂]W + [V̂ , �̂]W

)
, (5.47)

with the two terms [T̂ , �̂]W and [V̂ , �̂]W given by (5.45) and (5.46) respectively.
The kinetic energy term given by (5.45) has the same structure as the inertial
term in the classical Liouville equation (5.32). The potential energy term
acquires the same structure as the contribution due to the force-field in (5.32),
if the potential V (R± s/2) in (5.46) is expanded to second order in a Taylor
series about V (R),

V
(
R± s

2

)
= V (R) ± 1

2
s · ∇RV (R) +

1
8

∑
i,j

sisj
∂2V

∂Ri∂Rj
± . . . . (5.48)
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If we insert the expansion (5.48) into (5.46) the even terms vanish and the
Wigner representation of the von Neumann equation becomes

∂

∂t
�W(R,P ; t) = −P

µ
· ∇R �W + ∇RV (R) · ∇P �W + . . . . (5.49)

The dots on the right-hand side of (5.49) stand for contributions from cubic
and higher terms in the expansion of the potential (5.48).

For potentials depending at most quadratically on the coordinates the ex-
pansion (5.48) is exact and the quantum mechanical von Neuman equation in
Wigner representation is identical to the classical Liouville equation (5.32).
A Wigner function given at a certain time t0 will thus evolve in phase space
exactly as if it were a classical phase space density obeying the Liouville equa-
tion, provided the potential contains no anharmonic terms. Many phenomena
which are often taught as typical examples of quantum mechanical behaviour,
such as the spreading of a wave packet describing free particle motion, can be
completely understood classically. If, in the case of a free particle, an initial
phase space density containing a distribution of momenta spreads in coordi-
nate space in the course of time, then this is not a quantum mechanical effect,
just think e.g. of a 100-metre race with athletes running at different speeds.
The uncertainty relation of quantum mechanics does however forbid an initial
state with a finite uncertainty in coordinate space together with a sharply
defined momentum as would be necessary – both classically and in quantum
mechanics – to avoid dispersion of the probability distribution in coordinate
space. (See Problem 5.2.)

5.2.2 Coherent States

The concept of coherent states is useful for the description of the time-
dependent motion of wave packets, in particular if the Hamiltonian is the
Hamiltonian of a harmonic oscillator. To keep formulae simple we restrict the
discussion in this section to a one-dimensional harmonic oscillator,

Ĥ =
p2

2µ
+
µ

2
ω2 x2 = − h̄

2

2µ
∂2

∂x2
+
µ

2
ω2 x2 . (5.50)

(For a discussion of coherent states of a three-dimensional harmonic oscillator
see [AB91].)

The eigenvalues of the Hamiltonian (5.50) are En = (n + 1/2)h̄ω , n =
0, 1, 2, . . . . The associated eigenstates (normalized to unity) are |n〉, and in
coordinate representation they are polynomials of degree n multiplied by a
Gaussian. The ground state wave function consists of this Gaussian alone,

|0〉 ≡ ψ0(x) = (β
√
π)−1/2 e−x2/(2β2) . (5.51)

According to (1.83) the natural oscillator width β is related to the oscillator
frequency ω by
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β =

√
h̄

µω
. (5.52)

In momentum representation the ground state wave function is also a Gaussian
(cf. (5.36)),

ψ̃0(p) =
1√
2πh̄

∫ ∞

−∞
e−ipx/h̄ ψ0(x) dx

= (
√
πh̄/β)−1/2 e−p2β2/(2h̄2) . (5.53)

We define the operators

b̂ =
µωx+ ip̂√

2µh̄ω
, b̂† =

µωx− ip̂√
2µh̄ω

. (5.54)

The commutation relations for b̂ and b̂† follow from the commutation relations
(1.33) for position and momentum,

[b̂, b̂†] = 1 . (5.55)

The Hamiltonian (5.50) has a very simple form if it is expressed in terms of
the operators b̂†, b̂,

Ĥ = h̄ω(b̂†b̂+ 1/2) . (5.56)

From (5.55), (5.56) we obtain the commutation relations between b̂† or b̂ and
Ĥ,

[Ĥ, b̂†] = h̄ωb̂† , [Ĥ, b̂] = −h̄ωb̂ . (5.57)

It follows from the first equation (5.57) and the commutation relation [̂b, b̂†] =
1 that the operator b̂† transforms the eigenstate |n〉 of Ĥ into the eigenstate
|n+1〉 (except for a normalization constant), i.e. b̂† is a quantum creation op-
erator. In the same way it follows from the second commutation relation (5.57)
that b̂ is a quantum annihilation operator which transforms the eigenstate |n〉
into an eigenstate with n−1 quanta. Together with the correct normalization
and phase convention we have

b̂|n〉 =
√
n |n− 1〉 , b̂†|n〉 =

√
n+ 1 |n+ 1〉 (5.58)

(see also Problem 2.6). b̂†b̂ is an operator which just counts the number of
oscillator quanta excited in the eigenstates of the Hamiltonian (5.50) or (5.56),

b̂†b̂|n〉 = n |n〉 . (5.59)

The coherent states |z〉 are defined as superpositions of eigenstates of the
Hamiltonian (5.50),

|z〉 = e−zz∗/2
∞∑

n=0

(z∗)n

√
n!

|n〉 = e−|z|2/2 ez∗b̂† |0〉 , (5.60)
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where z is an arbitrary complex number. The states (5.60) are normalized to
unity,

〈z|z〉 = e−|z|2 ∑
n,n′

zn(z∗)n′

√
n!n′!

〈n|n′〉 = e−|z|2
∞∑

n=0

(|z|2)n

n!
= 1 , (5.61)

but they are not orthogonal. The mean number of quanta excited in the
coherent state |z〉 is

〈z|b̂†b̂|z〉 = |z|2 (5.62)

(see Problem 5.3).
In order to obtain the wave function of the coherent state |z〉 in coordinate

representation, we start from the second equation (5.60). We can factorize the
operator exp (z∗b̂†) into a product

ez∗b̂† = exp
(
z∗(µωx− ip̂)√

2µh̄ω

)

= exp
(

(z∗)2

4

)
exp

( −iz∗p̂√
2µh̄ω

)
exp

(
z∗x√
2β

)
. (5.63)

In doing so we have used the relation

e(Â+B̂) = eÂ eB̂ e−[Â,B̂]/2 (5.64)

for the operators Â = −iz∗p̂/
√

2µh̄ω and B̂ = z∗x
√
µω/(2h̄) = z∗x/(

√
2β).

The relation (5.64) is a special case of the Baker-Campbell-Hausdorff relation
which applies when the commutator [Â, B̂] – here it is the constant −(z∗)2/2 –
commutes both with Â and with B̂ (see Problem 5.4). Before applying (5.63)
we recall that the action of an operator of the form exp (iap̂) on an arbitrary
wave function ψ(x) merely consists in shifting the argument by ah̄ [cf. (1.67)],

eiap̂ψ(x) = eah̄ ∂/∂x ψ(x) =
∞∑

n=0

(ah̄)n

n!
∂n

∂xn
ψ(x) = ψ(x+ ah̄) . (5.65)

The coordinate representation of |z〉 is thus

|z〉 ≡ ψz(x)

= e−[|z|2−(z∗)2]/2 (
√
πβ)−1/2 exp

(
− (x− z∗√2β)2

2β2

)
. (5.66)

The coherent state |z〉 is just a Gaussian wave packet which is shifted in
position and momentum from the harmonic oscillator ground state (5.51),
(5.53). To see this we construct the associated Wigner function according to
(5.40),
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�W(X,P ) =
1

2πh̄

∫ ∞

−∞
e−iPs/h̄ ψz(X + s/2)ψ∗

z(X − s/2) ds

= e(z−z∗)2/2 (
√
πβ)−1

2πh̄

∫ ∞

−∞
e−iPs/h̄ exp

(
− (X+ s

2−z∗
√

2β)2

2β2

)

× exp

(
− (X− s

2−z
√

2β)2

2β2

)
ds

=
1
πh̄

e−(X−Xz)2/β2
e−(P−Pz)2β2/h̄2

. (5.67)

The shifts Xz, Pz in position and momentum are

Xz =
√

2β
(z) =
β√
2
(z + z∗) ,

Pz = −
√

2
h̄

β
�(z) =

ih̄√
2β

(z − z∗) . (5.68)

The Wigner function (5.67) of a coherent state is positive everywhere so there
exists a corresponding classical system described by a numerically identical
phase space density.

Coherent states evolve in time in a particularly simple way. Consider a
coherent state |z0〉 which is characterized at time t0 by the complex number
z0. In order to apply the time evolution operator exp [−(i/h̄)Ĥ(t− t0)], cf.
(1.41), to the first form (5.60) of |z0〉, we only have to multiply the eigenstates
|n〉 of Ĥ by the respective phase factors exp [−i(n+ 1/2)ω(t− t0)],

exp
[
− i
h̄
Ĥ(t− t0)

]
|z0〉 = e−|z0|2/2

∞∑
n=0

(z∗0)n

√
n!

e−i(n+1/2)ω(t−t0) |n〉

= e−iω(t−t0)/2e−|z|2/2
∞∑

n=0

(z(t)∗)n

√
n!

|n〉

= e−iω(t−t0)/2 |z(t)〉 , (5.69)

where |z(t)〉 again is a coherent state, namely the one characterized by the
complex number

z(t) = eiω(t−t0) z0 . (5.70)

Except for a phase factor exp [−iω(t− t0)/2], which doesn’t affect probabil-
ities, the time evolution of a coherent state is simply given by a rotation of
the characteristic number z in the complex plane. Thus both real and imag-
inary part of z oscillate with the oscillator frequency ω, and the coherent
wave packet |z(t)〉 oscillates in position and momentum without changing its
Gaussian shape or its widths, see Fig. 5.6(a).

The coherent state (5.60) represents a minimal wave packet in which the
product of position uncertainty ∆x = β/

√
2 and momentum uncertainty

∆p = h̄/(
√

2β) takes on the minimum value h̄/2 allowed by the uncertainty
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relation (1.34). This minimal property is a property of any Gaussian wave
packet. Consider for example a Gaussian wave packet of the form (5.66) but
with a different width β′ in place of the natural oscillator width β of (5.52).
Now the position uncertainty is ∆x = β′/

√
2 and the momentum uncertainty

is ∆p = h̄/(
√

2β′). If β′ is smaller than the natural oscillator width β given
by (5.52), then the wave packet is squeezed in coordinate space in comparison
with the coherent states; the momentum space distribution is correspondingly
broader. If β′ is larger than the natural oscillator width β, then the momen-
tum distribution is narrower than for the coherent states; the wave packet is
squeezed in momentum space.

The time evolution of squeezed states is not quite as simple as for the coher-
ent states, but almost. The Wigner function of any Gaussian wave packet has
the form (5.67) (with the appropriate width parameter) and is non-negative.
Its time evolution follows the quantum mechanical von Neumann equation
and is exactly the same as the time evolution of a numerically identical phase
space density according to the Liouville equation, because the potential is har-
monic. So the Wigner function follows the classical trajectories in phase space,
and these are concentric circles which are traversed uniformly with a period
2π/ω. The Wigner function thus executes a circular motion in phase space,
during which it keeps its shape but changes its orientation with respect to the
position and momentum axes as illustrated in Figs. 5.6(b) and (c). (Note that
all Wigner functions, and not only Gaussian wave packets, evolve in this way
as long as the potential is harmonic.) Figure 5.6(b) shows the time evolution
of a minimal wave packet which is squeezed in position (β′ = β/2) and starts
at its maximum (positive) displacement at time t = 0. After one quarter of
a period, ωt = π/2, it has moved to x = 0 and is now squeezed in momen-
tum, after half a period it has moved to its maximum negative displacement
and is again squeezed in position, and so it goes on until it returns to the
original state after a whole period. Figure 5.6(c) on the other hand shows
the time evolution of a minimal wave packet which is squeezed in momentum
at t = 0, after a quarter of a period it is squeezed in position, etc., etc.. A
time-independent way of classifying the squeezed nature of the states is to call
the wave packet in Fig. 5.6(b) squeezed in amplitude, (p2/µ+ µω2x2)1/2, and
the wave packet in Fig. 5.6(c) squeezed in phase,arctan (p/µωx).

In the quantum mechanical description of the electromagnetic field in
Sect. 2.4.2 we treated the photons in a given mode as quanta of a harmonic
oscillator. For a single mode λ the equations (2.159), (2.160) become

A =
πλ

L3/2
(qλe−iωλt + q∗λe+iωλt) ,

E =
πλ

L3/2

iωλ

c
(qλe−iωλt − q∗λe+iωλt) ,

B =
ikλ × πλ

L3/2
(qλe−iωλt − q∗λe+iωλt) . (5.71)
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Fig. 5.6. Time evolution of minimal wave packets in phase space under the influence
of a harmonic oscillator potential with the natural oscillator width β. The wave
packet starts at its maximum (positive) displacement at time t = 0. Each part of
the picture shows contour lines of the Wigner function (corresponding from the inside
outwards to �W/(�W)max = 0.9 , 0.7 , 0.5) at t = 0, ωt1 = 75◦ and ωt2 = 150◦. (a)
shows the coherent state, (b) a state squeezed in amplitude and (c) a state squeezed
in phase

We have invoked the dipole approximation (exp (ikλ ·r) ≈ 1), because this
keeps formulae simple and we are not concerned with the spatial structure
of the fields at the moment. If we replace the amplitudes qλ and q∗λ by po-
sition and momentum variables according to (2.162) and drop the factors
exp (±iωλt) in order to move from the Heisenberg representation to the
Schrödinger representation as suggested by (2.170), then we obtain the fol-
lowing relations connecting the electromagnetic field operators to the position
and momentum operators x̂λ and p̂λ of the harmonic oscillator associated with
the mode λ (in the Schrödinger representation):

Â =
πλ

L3/2

√
4πc2 x̂λ ,

Ê = − πλ

L3/2

√
4π p̂λ , B̂ = −kλ × πλ

|kλ|L3/2

√
4π p̂λ . (5.72)

In a given mode λ the vector potential together with the electric or the
magnetic field strength thus play the role of conjugate position and momen-
tum variables for the harmonic oscillator describing this mode. (See also Prob-
lem 5.3.)

Coherent states play an important role in the investigation of the stat-
istical properties of light in the framework of quantum optics. States of the
electromagnetic field are usually called “classical” if they can be written as
a superposition of coherent states |z〉 with a regular, non-negative amplitude
function P (z). A coherent state |z0〉 itself would correspond to P (z)=δ(z−z0),
which would be at the edge of the classical regime defined in this way. A
state of the field in which the photon number distribution is more sharply
peaked than in a coherent state can in general not be represented in terms
of superpositions of coherent states with regular, non-negative amplitudes
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P (z). This is the regime of “nonclassical light”. An eigenstate of the field
with a fixed finite number nλ of photons in a given mode λ is an example of
nonclassical light. The Wigner function (5.40) of such a state takes on negative
values and hence cannot be interpreted as a classical phase space density, see
Problem 5.3(c).

The time evolution of coherent states reflects the classical dynamics. The
finite widths of their position and momentum distributions satisfy the re-
quirements of the uncertainty relation. In recent years there has been a con-
siderable interest in the creation and observation of squeezed states of light.
The popularity of squeezed states stems from the fact that their uncertainty
(in amplitude or phase) lies below the natural quantum mechanical uncer-
tainty (of the coherent state), and this makes it possible to overcome limits
to resolution due to natural quantum fluctuations in sensitive measurement
processes [MS83]. For a detailed treatment of the quantum theory of light see
e.g. [KS68, MS90, Lou00]. A special illumination of quantum optics from the
point of view of phase space representations is given in [Sch01].

After all that has been said in this section we must not forget that the
simple picture of a wave packet evolving along classical trajectories without
changing its shape is bound to the harmonic nature of the Hamiltonian. This
makes the classical oscillation frequency independent of the amplitude and
the quantum mechanical energy levels equidistant. Life isn’t always so simple
as can already be seen in the example of wave-packet spreading for a free par-
ticle. The concept of coherent states can however be used with advantage in
other physical systems, e.g. in a space of angular momentum eigenstates. The
eigenvalues of the z component of angular momentum are actually equidis-
tant, but the spectrum for a given angular momentum quantum number l
is bounded from above and below (1.58). For a general description of co-
herent states in systems characterized by various symmetry groups see e.g.
[Per86, Hec87, ZF90].

5.2.3 Coherent Wave Packets in Real Systems

The harmonic oscillator treated in the preceding section is untypical for the
dynamical evolution of wave packets in as far as two important results cannot
be transferred to more general systems. Firstly, the evolution of the classical
and the quantum mechanical phase space distributions is no longer the same
if the potential contains anharmonic terms. Secondly, phase space distribu-
tions with finite uncertainties in position and momentum usually spread in
coordinate space, even classically. A wave packet for a particle moving in a
general potential may follow a classical trajectory in an average way, but be-
yond this there usually is dispersion, which can be understood classically, and
there are genuine quantum mechanical effects resulting from terms indicated
by the dots on the right-hand sides of equations (5.48), (5.49).

Considerable effort has gone into the search for coherent wave packets
which are exact solutions of the Schrödinger equation and at the same time
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expose the correspondence to classical mechanics more clearly than the usual
stationary eigenstates [Nau89, GD89, DS90, YM90]. The behaviour of wave
packets in a Coulomb potential (1.133) is obviously of special interest in atomic
physics. In a pure Coulomb potential the energy eigenvalues En = −R/n2

are highly degenerate. For each eigenvalue there are (without spin) n2 eigen-
states which can be labelled by the angular momentum quantum number
l = 0, 1, . . . n−1 and the azimuthal quantum number m = −l, . . . l. In a pure
Coulomb potential there is a further constant of motion in the form of the
Runge-Lenz vector

M̂ =
1
2µ

(
p̂ × L̂ − L̂ × p̂

)
− e2 r

r
. (5.73)

Classically its length is a measure for the excentricity of the closed Kepler
ellipses, and it points in the direction of the larger principal axis. Using the
components of the angular momentum L̂ and the Runge-Lenz vector (5.73)
Nauenberg [Nau89] and Gay et al. [GD89] constructed a generalized angu-
lar momentum in two and three spatial dimensions respectively and searched
for solutions of the Schrödinger equation with a minimum uncertainty in ap-
propriate components of this generalized angular momentum. Superposing
degenerate eigenstates with a given principal quantum number n in this way
leads to a stationary solution of the Schrödinger equation which is no longer
characterized by good angular momentum quantum numbers l and m, but
which is optimally localized around a classical Kepler ellipse (see Fig. 5.7).

In order to construct a non-stationary wave packet to simulate classical
motion along a Kepler ellipse we have to superpose eigenstates with different
principal quantum numbers n. The time evolution of a Gaussian superposition
is shown in Fig. 5.8. Figure 5.8(a) shows a wave packet localized around
the perihelion of a Kepler ellipse at time t = 0. After half a revolution the

Fig. 5.7. Probability density |ψ(r)|2 for a stationary solution of the Schrödinger
equation in a pure Coulomb potential showing optimal localization around a Kepler
ellipse of given excentricity (0.6 in this case) (From [GD89])
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Fig. 5.8. Probability density for an initial wave packet which is localized around
the perihelion of a Kepler ellipse (a). After half a revolution it is localized around
the aphelion (b). In the course of time, spreading and interference effects become
noticeable, as can already be seen after two revolutions (c) (From [Nau89])

wave packet has arrived at the aphelion, Fig. 5.8(b). Localization along the
trajectory is even a little narrower here. This is due to the slower speed near
the aphelion and simply illustrates congestion. As time goes on the wave
packet actually spreads. After two revolutions it has already spread out over
the whole Kepler ellipse, Fig. 5.8(c). Figure 5.8(c) also shows signs of quantum
mechanical interference where the faster head of the wave packet has caught
up with the slower tail. These interference effects, which lead to oscillations in
the probability density, are genuine quantum effects which cannot be described
classically.

Coherent wave packets which are sharply localized and move along classi-
cal trajectories must be superpositions of stationary states involving different
energies. Such wave packets can only be produced in the laboratory by per-
turbations of the Hamiltonian which are strongly localized both in space and
in time. This can be achieved with intense laser pulses of durations of the
order of picoseconds.

Figure 5.9 shows the results of an experiment in which Rydberg states
around n = 65 in potassium were excited by a laser pulse of 15 picoseconds.
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Fig. 5.9. Photoionization proba-
bility for n ≈ 65 Rydberg states
of a potassium atom which were
excited by a 15 ps laser pulse. The
abscissa shows the time-delay of
the second, the ionizing, pulse.
(a) Experiment, (b) theoretical
calculation (From [YM90])

At the corresponding energy the period of revolution for a classical Kepler
ellipse is near 40 ps. The potassium atom is ionized by a second time-delayed
laser pulse. Most of the time the excited electron is far away from the K+

ion and, similar to a free electron, cannot absorb energy from the laser field
(cf. Problem 5.5). There is an appreciable probability for ionization only if
the electron is close to the K+ ion, which happens every 40 picoseconds.
The observed photoionization rate as a function of the time delay of the
second laser pulse indeed shows maxima corresponding to this period. The
signal is washed out after several periods due to spreading of the wave packet.
A little later we observe a revival to a more or less coherent wave packet
with oscillations again corresponding to the period of the classical revolution.
The reason for this revival is that the time evolution of a state consisting
of a superposition of a finite number of energy eigenstates always is quasi-
periodic (or periodic). The coherence of the various interfering contributions
is maintained during the evolution and enables the regeneration (to a large
extent) of the original localized wave packet.

Review articles on electronic wave packets in Rydberg atoms have been
published by Alber and Zoller [AZ91] and by Jones and Noordham [JN98]. For
a recent review on the subject of quantum wave packet revivals see [Rob04].
With continuing progress on the experimental side, very short laser pulses
on the femtosecond timescale are now available, and time resolved studies of
wave-packet evolution are increasingly being used to analyze the dynamics of
atomic and molecular systems, see e.g. [EK99] and references therein.
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5.3 Regular and Chaotic Dynamics in Atoms

The relation between classical mechanics and quantum mechanics is under-
stood reasonably well for systems which are integrable, meaning essentially
that the classical motion is quasiperiodic and corresponds, in an appropriate
representation, to a superposition of one-dimensional oscillations. Integrabil-
ity is, however, the exception rather than the rule in classical mechanics, even
for seemingly simple systems with few degrees of freedom. Although this has
been known in principle since the work of Poincaré and others more than a
hundred years ago, the far-reaching implications only became generally real-
ized and accepted in the late 1970’s [LL83, SJ05]. A tangible consequence of
this realization was the explosive development field of the field of nonlinear
dynamics, “chaos”, which by now has permeated into virtually all fields of
physics and beyond. The continuing progress in understanding the rich and
diverse behaviour in classical dynamics made it urgently desirable to under-
stand if and how the nonlinearity of classical evolution survives the transition
to strictly linear quantum mechanics [Haa01]. Simple atoms have provided
important examples of naturally occuring and experimentally accessible sys-
tems in which the quantum manifestations of classical chaos can be studied.
The study of simple atoms, with or without the presence of external fields,
has led to important and exciting advances in our understanding of the rela-
tion between classical and quantum dynamics [GG89, Gay91, CK97, SS98]. A
collection of articles by some of the most prominent researchers in this field is
contained in [FE97]. A monograph on the subject has been written by Blümel
and Reinhardt [BR97].

5.3.1 Chaos in Classical Mechanics

The trajectories (qi(t), pi(t)) describing the evolution of a system with f de-
grees of freedom are solutions of the canonical equations (5.26) and, given
initial conditions qi(t0), pi(t0), they determine the state of the system for all
later times. It is helpful to collect the 2f components q1, . . . qf ; p1, . . . pf of a
point in phase space in one symbol x. How regular or “chaotic” the classical
motion is depends on how rapidly a small deviation ∆x from a given trajec-
tory x(t) can grow in time. We generally regard a system as chaotic if a small
deviation can increase exponentially in time which means that neighbouring
trajectories diverge exponentially.

In order to formulate this statement more precisely we consider a given
trajectory x(t) and a small deviation ∆x(t0) at time t0. At a later time t1
the trajectory which started at x(t0) +∆x(t0) will deviate from the original
trajectory by a separation∆x(t1). In the limit of infinitesimal deviations there
is a linear relation connecting the deviations at time t0 and at time t1. Since
the phase space points as well as the deviations ∆x are quantities with 2f
components, this linear relation is mediated by 2f ×2f matrix which is called
the stability matrix M(t1, t0):
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∆x(t1) = M(t1, t0)∆x(t0) . (5.74)

Since∆x has several components, an initial deviation in one direction in phase
space may grow strongly in the course of time, while an initial deviation in a
different direction might increase at a slower rate or even become smaller. In
a conservative system the Hamiltonian function H does not depend explicitly
on time, and it follows from the special structure of the canonical equations
(5.26) that the stability matrix is a symplectic matrix, which means,

MJM† = J , J =
(

0 1
−1 0

)
; (5.75)

here 0 is the f×f matrix full of zeros and 1 is the f×f unit matrix. If λ1 is an
eigenvalue of M, so are λ∗1, 1/λ1 and 1/λ∗1. The 2f eigenvalues of the stability
matrix occur in quartets or, if they are real or have unit modulus, in pairs.
Their product is unity, expressing the fact that the total phase space volume
of a set of initial conditions doesn’t change in the course of the dynamical
evolution in a conservative system (Liouville’s theorem).

The definition of chaos is based on the fastest growing deviation from a
given trajectory, and the growth rate is related to the matrix norm of the
stability matrix. A matrix norm ||M|| is non-negative and can e.g. be defined
as the square root of the largest eigenvalue of the Hermitian matrix M†M
[HJ85]. The dynamics is unstable in the point x in phase space if the norm
of the stability matrix increases exponentially along the trajectory beginning
with x(t0) – more precisely, if the Liapunov exponent

λ
def= lim

t−t0→∞
ln ||M(t, t0)||
t− t0 , (5.76)

which is defined in the long-time limit, does not vanish but is positive. Roughly
speaking this says that neighbouring trajectories diverge exponentially, and
the Liapunov exponent (5.76) is the factor in the exponent which determines
the rate of divergence (see Fig. 5.10).

The Liapunov exponent is a property of the classical trajectory; all phase
space points along one trajectory have the same Liapunov exponent (see Prob-
lem 5.6). Every trajectory is either stable (if its Liapunov exponent vanishes),
or unstable (if its Liapunov exponent is positive). An unstable trajectory need
not be very complicated. Simple periodic trajectories (periodic orbits) can be

Fig. 5.10. Schematic illustration of the exponential
divergence of neighbouring trajectories in phase space
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stable or unstable. The Liapunov exponent of a periodic orbit of period T can
be defined via the eigenvalues of the stability matrix over one period – the
monodromy matrix M(T, 0). If Λ is the largest modulus of an eigenvalue of
M(T, 0), then the norm of M(T, 0)n becomes equal to Λn for large n [HJ85]
and the Liapunov exponent is given by,

λ = lim
n→∞

ln (Λn)
nT

=
lnΛ
T

. (5.77)

Instability of a periodic orbit means that infinitesimally small deviations lead
to trajectories which move away from the periodic orbit at an exponential
rate and hence cannot themselves be periodic (see Problem 5.7).

A region in phase space is chaotic if all trajectories are unstable. Chaos
can already occur in a system with only one spatial degree of freedom if the
Hamiltonian function depends explicitly on time. A periodic time dependence
as caused by an oscillating external field is an important example. The simplest
example of a mechanical system driven by a periodic force is the periodically
kicked rotor, which has been studied in considerable detail in particular by
Blümel and collaborators [BR97]. The Hamiltonian function is

H(θ; p; t) =
p2

2
+ k cos θ

∑
n

δ(t− nT ) . (5.78)

The coordinate θ describes the rotation around a fixed axis and p is the
associated canonically conjugate angular momentum (the moment of inertia
is unity). At the end of each period T the rotor gets a kick, the strength
of which is determined by the coefficient k and the momentary angle θ (see
Fig. 5.11). The kick changes the angular momentum by k sin θ. Between two
kicks the rotor rotates freely so that the angle increases by pT in a period.
The angle θn+1 and the angular momentum pn+1 after n+1 periods can thus
be expressed by the following recursion relation:

pn+1 = pn + k sin θn , θn+1 = θn + pn+1T . (5.79)

This equation describes the entire dynamics of the kicked rotor as a mapping
of the two-dimensional phase space into itself. Because of its fundamental
importance it is known as the standard mapping. A trajectory which begins

Fig. 5.11. The periodically kicked rotor. At time nT it expe-
riences a torque k sin θ δ(t−nT ). Whether a kick accelerates
or decelerates the rotational motion depends on the sense of
rotation and the angle θ at the time of the kick
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at θ = θ0 , p = p0 at time t = 0 is completely described by the sequence of
points (θn, pn) , n = 0, 1, 2, . . . .

The dynamics described by the standard mapping (5.79) can be quite com-
plicated, as can be seen by studying the sequence of points (θn, pn) in phase
space. In the integrable limit k=0 we have uniform rotation, the angular mo-
mentum p is constant and the angle θ increases by pT each period. The points
(θn, pn) of a trajectory in phase space all lie on the straight line p = const..
Obviously a small deviation in initial conditions can only grow linearly in time
in this case. For finite values of k – actually kT is the relevant quantity – we ob-
serve more structure in phase space. Figure 5.12 shows the sequence of points
(θn, pn) generated by five different sets of initial conditions for kT =0.97. We
can clearly distinguish two different types of trajectories: regular trajectories
for which all points lie on a one-dimensional curve, and irregular trajectories
whose points (θn, pn) are spattered more or less uniformly over a finite area
in phase space. The two regular trajectories in Fig. 5.12 describe quasiperi-
odic motion and the associated curves in phase space form boundaries which
cannot be crossed by other trajectories and hence divide phase space into sep-
arated regions. Detailed numerical calculations by Greene [Gre79] and others
have shown that the share of irregular or chaotic trajectories increases with
increasing values of the parameter kT . For large values of kT the boundary
curves break up and the irregular trajectories can explore the whole of phase
space. Numerical calculations also show that the distribution P (p) of angular
momenta becomes a Gaussian after a large number n of kicks, provided kT
is sufficiently large, and that the square of the width of this Gaussian grows
linearly with n as in ordinary diffusion or random walk processes. After n

Fig. 5.12. Trajectories of
the periodically kicked ro-
tor (5.78), (5.79) in phase
space for a coupling con-
stant kT = 0.97 (from
[Gre79])
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periods we have [CF86]

P (p) ≈ (
kT

√
nπ

)−1 e−p2/[n(kT )2] ,

〈p2〉 =
∫
p2P (p) dp ≈ 1

2
n(kT )2 . (5.80)

As p2 is proportional to the kinetic energy of the system, (5.80) implies that
the energy distribution of the system broadens as in diffusion.

In a conservative system the Hamiltonian function H does not depend
explicitly on time, the energy H(q1(t), . . . qf (t); p1(t) . . . pf (t)) of the system
is always an integral of motion and all trajectories with the same energy
move on a (2f −1)-dimensional subspace of phase space called the energy
shell. In a one-dimensional conservative system any bound motion is a (not
usually harmonic) oscillation between two classical turning points and hence
is periodic. The trajectories are closed curves in the two-dimensional phase
space, see Figs. 5.13(a) and (b). A small deviation from a given trajectory leads
to a slightly different trajectory which again is periodic and the separation of
two trajectories can only grow linearly in time. Such a system has no chaos
(although there may be isolated unstable points).

The simplest conservative potentials capable of being chaotic have f = 2
degrees of freedom. Chaos is possible if the system is not integrable, i.e. if there
is no further integral of motion. Otherwise the motion of the system is usually
periodic or quasiperiodic. In a two-dimensional system with two independent
integrals of motion a trajectory in four-dimensional phase space is confined
to a two-dimensional surface which usually has the topology of a torus. The
parameters of the torus are determined by the energy and the second integral
of motion, see Fig. 5.13(c). More generally: a mechanical system with f degrees
of freedom is called integrable if its Hamiltonian function can be written as a
function of f independent integrals of motion and no longer depends on the
associated canonically conjugate variables [Gol80]. In an integrable system all
Liapunov exponents vanish [Mey86]. The f integrals of motion confine the
trajectories in 2f -dimensional phase space to f -dimensional subspaces which
are also called “tori” if f > 2.

Fig. 5.13. (a) Bound motion in a one-dimensional conservative system, H(q, p) =
1
2
p2 + V (q). (b) Periodic trajectories of the one-dimensional conservative system in

phase space. (c) Two-dimensional torus in the three-dimensional energy shell of a
conservative system with f = 2 degrees of freedom
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Two anharmonically coupled oscillators already provide an example of a
two-dimensional conservative system which isn’t integrable. To be specific let’s
consider the Hamiltonian function

H = 1
2

(
p21 + p22 + q41 + q42 + γq21q

2
2

)
. (5.81)

The potential energy V = (q41 + q42 + γq21q
2
2)/2 in (5.81) is a homogeneous

function of the coordinates, V (σq1, σq2) = σdV (q1, q2) , with d=4. Hence the
dynamics is essentially independent of energy, see Sect.5.3.4. The properties of
the dynamics are determined by the coupling parameter γ. In the integrable
limit γ=0 the motion factorizes into two independent periodic oscillations in
the variables q1 and q2.

We can visualize the dynamics in a conservative system with f=2 degrees
of freedom in a way similar to Fig. 5.12 if we look at a two-dimensional
surface of section of the three-dimensional energy shell and register the points
at which a trajectory pierces this surface (perhaps subject to a condition
concerning the direction of the motion normal to the surface). The resulting
figure is called a Poincaré surface of section. A periodic trajectory appears
on a Poincaré surface of section as a single point or a finite (small) number of
points. A quasiperiodic trajectory running on a two-dimensional torus in the
energy shell appears as a one-dimensional curve on the Poincaré surface of
section, similar to Fig. 5.12. An irregular or chaotic trajectory, which densely
fills a finite three-dimensional volume in the energy shell, covers a finite area
of the Poincaré surface of section with more or less uniformly spattered points.
Figure 5.14 shows Poincaré surfaces of section for the system (5.81) at four
different values of the coupling constant γ. At γ=6 the motion is still largely
on regular tori. With increasing values of the coupling constant the share of
phase space filled with irregular trajectories becomes bigger and bigger. At
γ = 12 the whole of phase space is filled with irregular trajectories, except
for small islands of regularity. For a numerical calculation of the Liapunov
exponents of the trajectories in this example see [Mey86].

5.3.2 Traces of Chaos in Quantum Mechanics

Both the concept of Liapunov exponents and the picture of Poincaré surfaces
of section are defined via classical trajectories and cannot be transferred to
quantum mechanics in an obvious way. We shall not enter here into the fre-
quently controversial discussion on how to define “quantum chaos” or whether
or not this concept makes sense at all. Instead we shall turn to the more mod-
est question of how the fact that a classical system is chaotic affects the
corresponding quantum mechanical system.

The quantum mechanical version of the periodically kicked rotor (5.78) is
described by the Hamiltonian operator

Ĥ = − h̄
2

2
∂2

∂θ2
+ k cos θ

∑
n

δ(t− nT ) . (5.82)
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Fig. 5.14. Poincaré surfaces of section for the system (5.81) with the following
values of the coupling parameter γ: 6 (a), 7 (b), 8 (c) and 12 (d). The surface of
section is the p1q1-plane at q2 =0 (From [Eck88])

Solutions of the time-dependent Schrödinger equation (1.38) can easily be
constructed with the help of the time evolution operator (1.40). To this end
we expand the wave function ψ(θ, t) in a Fourier series in the angle θ,

ψ(θ, t) =
∞∑

ν=−∞
cνeiνθ , (5.83)

which is the same as expanding in eigenstates of the free rotor (k = 0).
The Hamiltonian is time-independent between two kicks so that the time
evolution (1.41) simply amounts to multiplication of the basis functions
exp (iνθ) by the respective factors exp [−i(h̄/2)ν2T ]. In the infinitesimally
short time between t− immediately before and t+ immediately after a kick
the Hamiltonian depends explicitly on time and we have to replace the pro-
duct Ĥ(t+ − t−) in the time evolution operator by the integral

∫ t+
t−
Ĥ(t)dt.

Thus the wave function ψ is just multiplied by exp (−ik cos θ/h̄) during a kick.
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If ψn(θ) =
∑

ν cν(n) exp (iνθ) is the wave function immediately after the nth
kick, then the wave function one period later is

ψn+1(θ) = e−ik cos θ/h̄
∞∑

ν=−∞
cν(n) ei(νθ−h̄Tν2/2) , (5.84)

and its expansion in a Fourier series defines a new set of coefficients cν(n+1)
(see e.g. [Eck88]).

The search for traces of chaos led to the question, whether the quantum
mechanical evolution according to (5.84) involves diffusive behaviour and a
linear increase of the kinetic energy in time or in number of kicks as in (5.80).
If the period T is an integral multiple of 4π/h̄, then the wave function is
simply multiplied by a factor exp (−ik cos θ/h̄) each period. In case of such
a resonance the kinetic energy even increases quadratically with the number
of kicks. According to [IS79] such resonances, for which there is no classical
equivalent, occur whenever the period T is a rational multiple of π/h̄. The
time evolution (5.84) away from resonances was investigated numerically by
Casati et al. [CF86]. This led to the following picture: For small times an
initially localized distribution with only one or few non-vanishing coefficients
cν spreads diffusively at first, but with a smaller diffusion constant than in the
corresponding classical case. After a certain time tS a saturation is reached, the
diffusive spreading ceases and we have quasiperiodic motion in phase space.
The time tS is larger if h̄ is smaller. Thus classical chaos is supressed in
quantum mechanics by the finite value of h̄ [Cas90]. For more details on the
classical and quantum dynamics of the kicked rotor the reader is referred to
[Blu97, BR97, Haa01].

A conservative quantum mechanical system is primarily characterized by
its spectrum of energy eigenvalues. In a bound system the spectrum is dis-
crete. A state in a bounded energy interval is always a superposition of a
finite number of energy eigenstates and so its time evolution must be (at
least) quasiperiodic. At sufficiently high excitation energies and level densi-
ties the spectrum may nevertheless be very complicated, and the investigation
of statistical properties of spectra has revealed connections to the regular or
chaotic nature of the corresponding classical dynamics. Some of the more basic
results are presented below; more details are contained e.g. in the monograph
by Haake [Haa01].

The opposite of a (classically) chaotic system is an integrable system with
a Hamiltonian function which can be expressed in terms of integrals of motion.
The corresponding quantum mechanical Hamiltonian operator should then be
a corresponding function of constants of motion so that the energy eigenvalues
depend on several independent good quantum numbers. The eigenvalues e.g.
of a separable Hamiltonian of the form

Ĥ = Ĥ1 + Ĥ2 + · · · + ĤN (5.85)

are just sums of the eigenvalues Eni
of the operators Ĥi,
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En1,n2,... nN
= En1 + En2 + · · · + EnN

. (5.86)

If the individual eigenvalue sequences Eni
, ni = 1, 2, . . . are not correlated,

then the summation in (5.86) produces a rather irregular sequence of eigen-
values for the whole system, somewhat similar to a sequence of randomly
distributed numbers. Such a random spectrum is called a Poisson Spectrum.

If the classical system is chaotic it will probably not be possible to label the
energy eigenvalues of the corresponding quantum mechanical system by good
quantum numbers in a straightforward way. The energy eigenvalues are eigen-
values of a Hermitian matrix. When there are no good quantum numbers at
all (apart from the energy) one tries to understand the spectrum by studying
the spectra generated by random matrices; these are matrices whose elements
are distributed randomly subject to certain restrictions. One generally con-
siders a whole ensemble of Hamiltonian matrices whose matrix elements Hi,j

independently follow a Gaussian distribution, i.e. the probability P (Hi,j) for
a particular value Hi,j of the element (i, j) of the matrix is given by

P (Hi,j) ∝ exp
(−const. H2

i,j

)
. (5.87)

The probability for the realization of a particular matrixH should not depend
on the choice of basis in Hilbert space. A change of basis |ψ′〉 =

∑
j Ui,j |ψj〉

mediated by the unitary matrix U involves a unitary transformation of the
Hamiltonian matrix,

H ′
i,j = 〈ψ′

i|Ĥ|ψ′
j〉 =

∑
k,l

U∗
k,iHk,lUl,j or H ′ = U†HU . (5.88)

Requiring invariance with respect to basis transformations means that the
probability for a certain matrix H, which is just the product of the N × N
independent element probabilities (5.87), is invariant under unitary transfor-
mations. The corresponding ensemble of random matrices is called a Gaussian
unitary ensemble GUE.

In some cases, e.g. for the coupled oscillators (5.81), we can assume that the
matrix of the quantum mechanical Hamiltonian is not only Hermitian but real
and symmetric. It is then reasonable to replace the requirement of invariance
under unitary transformations by the requirement that the probability for
a given real and symmetric random matrix be invariant under orthogonal
transformations; these are transformations of the form (5.88) except that the
unitary matrix U is replaced by an orthogonal matrix O (whose transposed
matrix is equal to its inverse). The ensemble of random matrices is now called
a Gaussian orthogonal ensemble GOE.

Although exact proofs are scarce the results of many numerical experi-
ments indicate that a quantum mechanical spectrum shows similarities to a
random or Poisson spectrum if the corresponding classical system is regular,
and to the spectrum of random matrices (GOE or GUE) if the corresponding
classical system is chaotic.
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In order to formulate these statements more quantitatively we consider a
spectrum E1 ≤ E2 ≤ . . . ≤ En ≤ . . . . Such a spectrum can be expressed in
terms of the mode number

N(E) =
∑

n

Θ(E − En) . (5.89)

The step function Θ(x) vanishes for x < 0 and is unity for x ≥ 0, so that
N(E) is just the number of eigenstates with energies up to (and including)
E. The mode number N(E) is a staircase function; it fluctuates around the
mean mode number Ñ(E), which can be obtained by dividing the classically
allowed region in 2f -dimensional phase space by the fth power of 2πh̄ – see
also (1.308)). An example for N(E) and Ñ(E) is illustrated in Fig. 5.15. The
derivative of the mode number with respect to energy is the level density, and
the derivative of the mean mode number defines the mean level density,

d(E) =
dN(E)

dE
=
∑

n

δ(E − En) , d̃(E) =
dÑ(E)

dE
. (5.90)

Fig. 5.15. Examples for
the mode number N(E)
and the mean mode num-
ber Ñ(E) (dashed)

The statistical properties of a spectrum can best be studied if the weakly
energy-dependent effects reflecting the mean level density are normalized
away. This can be achieved by replacing the spectrum En by the sequence
of numbers

εn = Ñ(En) =
∫ En

E1

d̃(E) dE , (5.91)

which has all the fluctuation properties of the original spectrum but corre-
sponds to a mean level density of unity.

A frequently studied property of spectra is the distribution of the sepa-
rations between neighbouring levels, En+1 − En or εn+1 − εn, the so-called
nearest neighbour spacings NNS. It is relatively straightforward to show that
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the NNS of a Poisson spectrum follow an exponential distribution (see Prob-
lem 5.8). For a mean level density unity the probability density P (s) for a
separation s of neighbouring levels is given by

P (s) = e−s . (5.92)

The high probability for small separations of neighbouring levels expresses the
fact that degeneracies or near degeneracies are not unusual if there are other
good quantum numbers beside the energy, as is the case when the correspond-
ing classical system is regular. On the other hand, if there are no further good
quantum numbers, the residual interaction leads to repulsion of close lying
states and hinders degeneracies (see Problem 1.6). It can actually be shown
[Eck88, Haa01] that the NNS distribution P (s) for the eigenvalue spectra of
random matrices is proportional to s for small separations in the GOE case
and to s2 in the GUE case. The NNS distribution in the GOE case is quite
well approximated by a Wigner distribution

P (s) =
π

2
s e−(π/4)s2

. (5.93)

Figure 5.16 shows the NNS distributions for energy spectra of the Hamilton-
ian operator corresponding to the Hamiltonian function (5.81). The four
parts of the picture belong to the same four values of the coupling parame-
ter as in Fig. 5.14. Note the transition from a Poisson distribution (5.92)
at γ = 6 (a), where the classical dynamics is still largely regular, to the
Wigner distribution (5.93) at γ= 12, where the classical dynamics is largely
irregular.

Higher correlations of the spectrum can be studied via various statistical
measures [BG84, BH85]. One popular measure is the spectral rigidity ∆3(L)

Fig. 5.16. NNS distribu-
tions of the quantum me-
chanical energy spectrum
for the coupled oscillators
(5.81). The four parts of the
picture belong to the same
values of the coupling pa-
rameter γ as in Fig. 5.14.
The curve in (a) is the Pois-
son distribution (5.92). The
curve in (d) is the Wigner
distribution (5.93) (From
[Eck88])
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which measures the deviation of the mode number from a straight line over a
stretch of spectrum of length L,

∆3(L) =
1
L

min
A,B

∫ x+L

x

[N(ε) −Aε−B]2 dε . (5.94)

∆3 is on the average independent of the starting point x in the special cases
discussed above. The dependence of ∆3 on L is linear for a Poisson spectrum,

∆3(L) =
L

15
, (5.95)

and approximately logarithmic for a GOE spectrum,

∆3 ≈ 1
π2

ln (L) − 0.007 , L 1 . (5.96)

(See e.g. [BG84] for further details.) Figure 5.17 shows the spectral rigidity for
the coupled oscillators (5.81). The four parts of the figure again correspond
to the same four values of the coupling constant γ as in Figs. 5.14 and 5.16.

Fig. 5.17. Spectral rigidity
of the quantum mechanical
energy spectrum of the cou-
pled oscillators (5.81). The
four parts of the figure cor-
respond to the same values
of the coupling parameter γ
as in Figs. 5.14 and 5.16.
The straight line in (a) is
the expectation (5.95) for
a Poisson spectrum. The
curve in (d) is the function
(5.96) expected for a GOE
spectrum (From [Eck88])

Figures 5.14, 5.16 and 5.17 clearly show that the transition from regularity
to chaos in the classical system is accompanied by a simultaneous transition in
the statistical properties of the energy spectrum of the corresponding quantum
mechanical system. The NNS distribution and the spectral rigidity (and fur-
ther statistical measures – see e.g. [BH85]) correspond to the expectations for
a Poisson spectrum in the classically regular regime and to the expectations
for an ensemble of random matrices in the classically chaotic regime. Beware
of over-interpretations of this statement! It does not mean that the quantum
mechanical spectrum of a classically chaotic system is identical in detail to a
random matrix spectrum. All the eigenvalues of a Hamiltonian together con-
tain much more information than a small number of statistical measures. The
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identity of the physical system itself is still contained in the spectrum and can
be extracted e.g. by analysing long ranged spectral correlations, as discussed
in the following section. It is equally obvious that the spectrum of a classically
regular system won’t be identical in detail to a Poisson spectrum, even if the
NNS distribution and other statistical measures agree with the corresponding
expectations.

This section concludes with a further warning, namely that there are indi-
vidual physical systems whose behaviour deviates from the generic behaviour
described above. Consider e.g. a system of harmonic oscillators which is always
integrable and can be characterized by its normal modes. If the frequencies
are commensurable, then all energy eigenvalues (without zero-point energy)
are integral multiples of a smallest energy. There are many exact degeneracies
but no level spacings between zero and this smallest energy. The NNS dis-
tribution will never approach the Poisson distribution (5.92) no matter how
many states are included in the statistical analysis.

5.3.3 Semiclassical Periodic Orbit Theory

The use of classical trajectories and in particular of periodic orbits in the
analysis of quantum mechanical spectra has a long history [Gut97], and it
has in recent years become an important instrument for understanding and
describing the quantum mechanics of systems whose corresponding classical
dynamics may be integrable or not integrable [Cha92, FE97, BR97]. Elements
of the theory are sketched here for the case of a conservative system with f
degrees of freedom. A detailed elaboration is contained in the book by Brack
and Bhaduri [BB97a].

The starting point is the quantum mechanical propagator or Green’s func-
tion G(qa, ta; qb, tb), which describes the time evolution of a quantum mechan-
ical wave function in coordinate space,

ψ(qb, tb) =
∫
G(qa, ta; qb, tb)ψ(qa, ta)dqa , (5.97)

and is just the coordinate representation of the time evolution operator intro-
duced in Sect. 1.1.3,

G(qa, ta; qb, tb) = 〈qb|Û(tb, ta)|qa〉 . (5.98)

In Feynman’s path integral formulation of quantum mechanics, the propagator
is written as

G(qa, ta; qb, tb) =
∫

D[q] exp
(

i
h̄

∫ tb

ta

L(q, q̇) dt
)
, (5.99)

where L(q1, . . . qf ; q̇1, . . . q̇f ) is the classical Lagrangian, which is related to the
Hamiltonian function H(q1, . . . qf ; p1 . . . pf ) by

L(q1, . . . qf ; q̇1, . . . q̇f ) =
f∑

i=1

piq̇i −H(q1, . . . qf ; p1 . . . pf ) . (5.100)
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The symbol
∫ D[q] in (5.99) stands for a mathematically non-trivial integra-

tion over all paths in coordinate space connecting the initial coordinate qa at
time ta to the final coordinate qb at time tb.

A semiclassical approximation of the propagator is derived using the sta-
tionary phase approximation in much the same way as it was used to derive
a semiclassical approximation to the integral representation of the scattering
amplitude in Sect. 4.1.4. The condition of stationary phase for the integrand
in (5.99) selects those paths between (qa, ta) and (qb, tb) for which the La-
grangian action,

W (qa, qb; tb − ta) =
∫ tb

ta

L(q, q̇) dt , (5.101)

is stationary under infinitesimal variations of path, and these are just those
paths which fulfill the classical equations of motion, i.e. the classical trajecto-
ries [LL71]. The resulting semiclassical expression for the propagator is,

Gsc(qa, ta; qb, tb) = (2πih̄)−f/2

×
∑

cl.traj

√∣∣∣∣det
∂2W

∂qa∂qb

∣∣∣∣e−iκtrajπ/2 exp
[

i
h̄
W (qa, qb; tb−ta)

]
. (5.102)

The significance of the various contributions to the expression on the right
hand side of (5.102) can be appreciated by recalling the expression (4.95) for
the semiclassical scattering amplitude in Sect. 4.1.4. Each term in the sum
corresponds to a classical trajectory and carries a phase given by the action
along the trajectory. The weight of each contribution is related to the density
of trajectories and is given by the square root of the determinant of the f × f
matrix of second derivatives of the Lagrangian action, which is called the
van Vleck determinant and becomes singular at focal points. Each term also
contains an additional phase κtrajπ/2 where κtraj counts the number of focal
points along the trajectory.

A connection to the quantum mechanical energy spectrum can be made by
realizing that the Fourier transform of the time evolution operator, Û(tb, ta) =
exp

[
− i

h̄Ĥ(tb − ta)
]
, is,∫ ∞

0

e(i/h̄)EtÛ(t, 0) dt =
∫ ∞

0

e(i/h̄)(E−Ĥ)tdt

=
h̄ e(i/h̄)(E−Ĥ)t

i(E − Ĥ)

∣∣∣∣
∞

0

=
ih̄

E − Ĥ , (5.103)

where the contribution at t = ∞ is argued to vanish via an infinitesimal posi-
tive imaginary contribution to the energy E. An analogous Fourier transform
of the Green’s function (5.98) is just the coordinate representation of the term
on the right of lower line of (5.103),
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G̃(qa, qb;E) def=
1
ih̄

∫ ∞

0

e(i/h̄)EtG(qa, 0; qb, t) dt

= 〈qb| 1
E − Ĥ |qa〉 =

∑
n

ψn(qb)ψn(qa)∗

E − En
. (5.104)

The expression on the right-hand side of the lower line of (5.104) is obtained
by inserting the unit operator expressed via a complete set of energy eigen-
functions ψn(q) with eigenvalues En according to (1.22). The Green’s function
(5.104) is thus a sum over pole terms, one for each eigenstate, and the respec-
tive residua are defined by the product of the eigenfunctions’ values at qa and
qb. Taking the trace eliminates the dependence on the wave functions,

Tr[G̃(E)] =
∫
G̃(q, q;E)dq =

∑
n

1
E − En

. (5.105)

The pole terms 1/(E − En) consist of a real principle value singularity at
E = En plus an imaginary component proportional to δ(E − En), which
can be traced back to the infinitesimal imaginary contribution to the energy
mentioned above,

lim
ε→0

1
E + iε− En

= P
(

1
E − En

)
− iπδ(E − En) , (5.106)

so the imaginary part of the trace of the Green’s function is directly propor-
tional to the energy level density (5.90),

d(E) = − 1
π
�
{

Tr[G̃(E)]
}
. (5.107)

A semiclassical approximation to the energy level density can thus be
obtained by subjecting the semiclassical approximation (5.102) of the time
Green’s function (propagator) to the Fourier transformation (5.104) and in-
serting the trace of the result into (5.107). The Fourier transformation in-
troduces an integral over time, so the Fourier transformed Green’s function
contains contributions from all classical trajectories which travel from qa to
qb in any time t. Approximating the time integrals with the help of the sta-
tionary phase approximation selects only those trajectories whose conserved
energy is equal to the energy E in the argument of the Fourier transformed
(approximate) Green’s function, and the result is,

G̃sc(qa, qb;E)

=
2π

(2πih̄)(f+1)/2

∑
cl.traj.

√
|D| exp

[
i
h̄
S(qa, qb;E) − iµtraj

π

2

]
. (5.108)

Now the phase in the contribution of each trajectory is dominantly determined
by the action,

S(qa, qb;E) =
∫ qb

qa

pdq , (5.109)
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which resembles the action integral introduced in Sect. 1.6.3 and is often
referred to as the reduced action in order to distinguish it from the Lagrangian
action (5.101). The amplitude factor

√|D| now involves the determinant of
an (f+1) × (f+1) matrix,

D = det

(
∂2S

∂qa∂qb

∂2S
∂qa∂E

∂2S
∂E∂qb

∂2S
∂E2

)
, (5.110)

and the index µtraj counts the number of focal points along the trajectory.
Taking the trace over the semiclassical Green’s function (5.108) leads to

a sum of integrals over all coordinates q involving classical trajectories which
begin and end at q, qa =qb =q. The f coordinates are reexpressed locally as one
coordinate in the instantaneous direction of the respective trajectory and f−1
coordinates transverse to the instantaneous motion, and the integral over these
latter f−1 coordinates is performed via the stationary phase approximation.
This selects just those trajectories for which also p(qa) = p(qb), so the sum
over trajectories closed in coordinate space is now reduced to the sum over
trajectories closed in phase space, i.e. the periodic orbits. The integration
over the coordinate along the trajectory is performed explicitly, yielding a
factor proportional to period of the orbit. The resulting approximation of the
expresssion (5.107) for the energy level density eventually is,

d(E) = d̃(E) − 1
πh̄



⎧⎨
⎩
∑
ppo

Tppo

∞∑
np=1

exp
[
i
(

Sppo
h̄ − νppo

π
2

)
np

]
√|det(Mppo

np − 1)|

⎫⎬
⎭ . (5.111)

The sums in (5.111) are over all “primitive periodic orbits”, i.e. periodic orbits
run around just once, and over all numbers np of passages around each “ppo”.
Sppo is the action (5.109) integrated over one passage of the ppo,

Sppo =
∮

ppo

pdq , (5.112)

and Tppo is its period. Mppo stands for the 2(f−1)×2(f−1) reduced monodromy
matrix over one period of the orbit; it involves only the f −1 coordinates
and conjugate momenta transverse to the orbit. The topologically invariant
phase index νppo is a generalized Maslov index which counts the focal points
along the trajectory and contains additional contributions arising from the
evaluation of integrals via the stationary phase approximation – for more
details see [BB97a]. Finally, the first term d̃(E) on the right-hand side of
(5.111) is a smoothly energy-dependent term due to the contribution of the
trajectories of zero length (qb → qa with no detours) to the trace of the
semiclassical Green’s function. It is identified with the mean level density
introduced in (5.90).

The formula (5.111) connects the fluctuating part d(E)−d̃(E) of the quan-
tum mechanical energy level density to the periodic orbits of the corresponding
classical system and is known as Gutzwiller’s trace formula [Gut97]. In the
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form given here it assumes that the periodic orbits are isolated, but extensions
to more general situations have been formulated [BB97a]. The beauty of the
trace formula is, that it is applicable, irrespective of whether the classical sys-
tem is regular with stable orbits or chaotic with unstable periodic orbits. The
information on the stability or instability of an orbit is contained in the am-
plitude factors 1/

√|det(Mppo
np − 1)| and their dependence on the number

of passages np.
The amplitude factors have a particularly simple form in the case of two

degrees of freedom, where there is only one coordinate transverse to the orbit
and the reduced monodromy matrix has just two eigenvalues, Λ1 and Λ2.
The two further eigenvalues of the full monodromy matrix are both unity.
Because of the symplectic property of the monodromy matrix, there are only
two essentially different possibilities. If Λ1 and Λ2 are complex, they must
have unit modulus and

Λ1,2 = e±2πiw ⇒ det(Mppo
np − 1) = 4 sin2 (πnpw) . (5.113)

In this case the orbit is stable. Such orbits are called elliptic periodic orbits
and are characterised by the winding number w in (5.113). If the eigenvalues
Λ1, Λ2 of the reduced monodromy matrix have moduli different from unity,
then they must be real and

Λ1 = ±eλTppo , Λ2 = ±e−λTppo

⇒ det(Mppo
np − 1) =

{−4 sinh2 (npλTppo/2)
4 cosh2 (npλTppo/2)

. (5.114)

In this case the orbit is unstable and its Liapunov exponent is |λ| according to
(5.77). Such an orbit is called a hyperbolic orbit for the “+” version of ± signs
in (5.114), and it is called an inverse hyperbolic orbit for the “−” versions.

The contributions corresponding to several passages of a ppo in the trace
formula (5.111) interfere constructively at energies fulfilling

Sppo =
∮

ppo

pdq =
(
n+

νppo

4

)
2πh̄ . (5.115)

This equation strongly resembles a quantization condition, cf. (1.308), but
it must now be interpreted differently. E.g. for unstable periodic orbits the
amplitudes in (5.111) fall off exponentially with np and the leading terms
will produce smooth maxima of constructive interference at energies fullfilling
(5.115). Equation (5.115) is thus a resonance condition describing the positions
of modulation peaks due to constructive interference of phases of multiple
passages of the periodic orbit.

The modulation frequency due to a periodic orbit is the inverse of the
separation of successive peaks given by (5.115). From the definitions (5.100),
(5.101) and (5.109) it follows [LL71], that S(qa, qb;E) =W (qa, qb; t)+Et and
that ∂S/∂E = t, where t is time a classical trajectory takes to travel from qa
to qb with (conserved) energy E. For the primitive periodic orbits this implies
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d
dE
Sppo(E) = Tppo , (5.116)

so the separation of successive energies fulfilling (5.115) is approximately
2πh̄/Tppo. The modulations due to a ppo thus appear as prominent peaks
in the Fourier transformed spectra at times corresponding to the period of
the orbit. The classical periodic orbits with the shortest periods are respon-
sible for the longest ranged modulations in the quantum mechanical energy
spectra.

Gutzwiller’s trace formula underlines the importance of the periodic or-
bits for the phase space structure of a mechanical system. The periodic orbits
may form a subset of measure zero in the set of all classical trajectories, but
it is a dense subset, because any (bound) trajectory can be well approximated
for a given time by a periodic orbit of sufficiently long period. The sum over
all periodic orbits in the trace formula is extremely divergent, and its math-
ematically safe evaluation has been the subject of extensive work by many
authors, see e.g. [Cha92, FE97]. Terms due to individual primitive periodic
orbits tend to diverge at points of bifurcation, and Main [Mai97] has discussed
techniques for smoothly bridging such points; they are based on connection
procedures similar to the uniform approximation of WKB wave functions near
classical turning points. As a semiclassical expression Gutzwiller’s trace for-
mula contains just contributions of leading order in h̄. Only few authors have
so far addressed the question of higher order corrections [GH97]. Diffractive
corrections related to orbits “creeping” along the edge of the classically al-
lowed region have been discussed in particular by Wirzba [Wir92, Wir93]. It
may also be worth mentioning, that allowing nonintegral Maslov indices in
the trace formula to account for finite wave length effects at reflections and
focal points could be one possibility of improving results without too much
additional effort [FT96, BB97b].

After Gutzwiller derived the trace formula around 1970 [Gut97], it was all
but ignored for one and a half decades. Its first application to spectra of a real
physical system was the case of a hydrogen atom in a uniform magnetic field
[Win87a, FW89]. As a practical aid for understanding gross features of quan-
tum spectra on the basis of simple classical orbits it has since been remarkably
successful in describing such diverse phenomena as the magic numbers of shell
structure observed in alkali metal clusters [BB97a] and conductance fluctua-
tions in semiconductor microstructures [RU96, DS97].

5.3.4 Scaling Properties for Atoms in External Fields

One important advantage of studying atoms (or molecules) in external fields
is, that the field parameters are tunable variables, and investigation of the
properties of the atom as function of these variables provides a much richer
body of information than can be observed in the isolated specimen. Due to
scaling properties, the classical dynamics of an atom in external fields depends
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on some combinations of field parameters in a trivial way. This section sum-
marizes these scaling properties for the case of an external electric or magnetic
constant or time-dependent field, or any superposition thereof, see also [Fri98].

(a) Classical Mechanics

We start by discussing the concept of mechanical similarity for a conserva-
tive system Σ with a finite number of degrees of freedom. Such a system is
described by a kinetic energy,

T =
m

2

(
dr

dt

)2

, (5.117)

and a potential energy U(r ). [The mass m can be different for the various
degrees of freedom, but this is irrelevant for the following.] The similarity
transformation,

r ′ = σr , t′ = τt ,
dr ′

dt′
=
σ

τ

dr

dt
, (5.118)

with the two positive constants σ and τ , transforms the systemΣ into a system
Σ′, whose kinetic energy T ′ is related to the kinetic energy T in (5.117) by

T ′ =
(σ
τ

)2
T . (5.119)

Suppose the potential energy in the system Σ is given by a homogeneous
function V (r ) of degree d, i.e.

V (σr ) = σdV (r ) , (5.120)

multiplied by a parameter F , which gives us a handle on the potential strength,
U(r ) = FV (r ). Let the potential energy U ′ in the system Σ′ be given by
the same (homogeneous) function V , multiplied by a strength parameter F ′,
U ′(r ′) = F ′V (r ′). Because of homogeneity (5.120), the potential energy U ′

is related to the potential energy U in Σ by

U ′(r ′) =
F ′

F
σdU(r ) . (5.121)

If and only if the field strengths fulfill the relation

σdF ′ =
(σ
τ

)2

F , (5.122)

then the potential energies are related by the same multiplicative factor (σ/τ)2

as the kinetic energies (5.119). The classical Lagrangian T ′−U ′ in the system
Σ′ is then just a multiple of the Lagrangian L = T − U in Σ, and the equa-
tions of motion in both systems are the same [LL71]. The coordinate space
trajectory r(t) is a solution of the equations of motion in Σ if and only if
the trajectory r ′(t′), which is related to r(t) by the similarity transformation
(5.118), is a solution of the equations of motion in Σ′. This is the property
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of mechanical similarity of the systems Σ and Σ′, and the condition for me-
chanical similarity is, that the field strengths obey (5.122). The (conserved)
energy E = 1

2mṙ(t)2 + U(r(t)) of motion along the trajectory r(t) in Σ is
related to the associated energy E′ in Σ′ via

E′ =
(σ
τ

)2

E . (5.123)

The condition (5.122) contains two parameters σ and τ and can always
be fulfilled for any values of the field strengths F and F ′. Together with
the relation (5.123) we can, for any field strengths F and F ′ and energies
E and E′ uniquely determine the constants σ and τ defining the similarity
transformation (5.118) connecting the trajectory r(t) in Σ with the trajectory
r ′(t) in Σ′,

σ =
(
F

F ′
E′

E

)1/d

, τ = σ

√
E

E′ . (5.124)

[It shall be taken for granted throughout, that potential strengths and energies
have the same sign in Σ′ as in Σ.] From (5.124) we see e.g., that trajectories
at different energies E, E′ for one and the same potential strength, F ′ = F ,
are related by a stretching factor σ = (E′/E)1/d in coordinate space, whereas
the traversal times are stretched by the factor σ

√
E/E′.

The considerations above are readily generalized to a potential which can
be written as a sum of n homogeneous terms of degree di, i = 1, . . . , n. The
potential U in the system Σ is now

U(r ) =
n∑

i=1

FiVi(r ) ; Vi(σr ) = σdiVi(r ) , i = 1, . . . , n , (5.125)

and the potential U ′ in the system Σ′ differs only through different potential
strengths,

U ′(r ′) =
n∑

i=1

F ′
iVi(r ′) . (5.126)

The systems Σ and Σ′ are mechanically similar, if U ′ is just U multiplied
by (σ/τ)2, when r ′ and t′ are related to r and t via (5.118). The condition
(5.122) must now be fulfilled for each of the n terms independently, and the
first equation (5.124) is replaced by the n equations,

σ =
[(σ
τ

)2 Fi

F ′
i

]1/di

=
(
E′

E

Fi

F ′
i

)1/di

, i = 1, . . . , n . (5.127)

The relation between the total energies E and E′ is again given by (5.123).
Equating the right-hand sides of (5.127) for two different terms i and j

and collecting unprimed and primed quantities on separate sides leads to the
condition
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|Fi/E|dj

|Fj/E|di
=

|F ′
i/E

′|dj

|F ′
j/E

′|di
. (5.128)

If we consider an ensemble of systems Σ corresponding to different field
strengths Fi and energies E (excluding changes of sign), then (5.128) shows
that the classical dynamics within the ensemble is invariant within mechanical
similarity if

|Fi/E|dj

|Fj/E|di
= const. (5.129)

for each pair of labels i, j. For n > 2 these conditions are not independent.
The n+ 1 parameters E, Fi (i = 1, . . . , n) are effectively subjected to n− 1
independent conditions, because σ and τ generate a two-parameter manifold
of mechanically similar systems.

The Coulomb potential describing the forces in an atom (or molecule or
ion) is homogeneous of degree d1 = −1, and the corresponding strength pa-
rameter F1 may be assumed to be constant for a given specimen. This fixes
the scaling parameters,

σ =
E

E′ , τ =
(
E

E′

)3/2

, (5.130)

according to (5.123), (5.127). In the presence of n− 1 homogeneous external
fields of degree dj (j = 2, . . . , n) the conditions (5.129) reduce to

Fj/|E|dj+1 = const. , j = 2, . . . n , (5.131)

when inserting d1 = −1, F1 = const. for i = 1. The n − 1 conditions for
mechanical similarity are thus, that the scaled field strengths F̃j , defined by

F̃j = Fj/|E|dj+1 , (5.132)

be constant. The values of these n − 1 scaled field strengths determine the
properties of the classical dynamics which are invariant to within similarity
transformations (5.118). For each set of values of the scaled field strengths
there is now a one-parameter family of mechanically similar systems and not
a two-parameter family, because the field strength F1 is kept fixed.

For a homogeneous external electric field the potential V2 is homogeneous
of degree one, and F2 is the electric field strength f . The scaled electric field
strength is

f̃ = f/E2 , (5.133)

and all systems with the same value of f̃ (and the same sign of E) are me-
chanically similar.

A homogeneous external magnetic field is studied more conveniently by
directly subjecting the equations of motion for a charged particle in such
a magnetic field to the similarity transformation (5.118). The equations of
motion in the systems Σ and Σ′ are seen to be equivalent if the respective
magnetic field strengths γ and γ′ are related by
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γ′ = γ/τ . (5.134)

Comparing with (5.122) shows that this corresponds to the behaviour of a
homogeneous potential of degree two, and the square of the magnetic field
strength plays the role of “field strength” F . For an atom (d1 = −1, F1 =
const.) in a constant homogeneous magnetic field of strength γ, the scaled
magnetic field strength γ̃ is thus defined via (5.132) with Fj = γ2, dj = 2, as

γ̃2 = γ2/|E|3 , γ̃ = γ/|E|3/2 . (5.135)

The conditions for invariant classical dynamics of an atom in an external
electric or magnetic field are conventionally stated as the condition of constant
scaled energy, which is E/

√
f for the electric field and E/γ2/3 for the magnetic

field. The nomenclature evolved historically [FW89], and has probably been
a mistake from the pedagogical point of view. This becomes clear when we
consider an atom in a superposition of homogeneous electric and magnetic
fields. We are then confronted with two different definitions of scaled energy,
and usually the conditions of mechanical similarity are expressed as requiring
one of these scaled energies and the ratio f3/γ4 to be constant. The more
natural statement of the conditions for mechanical similarity for an atom in
a superposition of electric and magnetic fields is surely that both scaled field
strengths, f̃ and γ̃, be constant. This of course implies the constance of the
above mentioned scaled energies and of the ratio f̃3/γ̃4, which is equal to
f3/γ4 and is independent of energy.

In the presence of a time-dependent external field the expression (5.125)
for the potential energy of the system Σ must be generalized, e.g. to

U(r, t) =
n∑

i=1

FiVi(r ) + F0V0(r )Φ(ωt) ;

Vi(σr ) = σdiVi(r ) , i = 0, 1, . . . , n , (5.136)

where we have added a homogeneous potential V0 with strength F0 multiplied
by a time-dependent function Φ(ωt), which is usually, but not necessarily, a
harmonic function (sine, cosine or exp (±iωt)). The time function Φ need not
even be periodic, but the parameter ω (> 0) is included explicitly to give us
a handle on the time scale. The corresponding potential energy in the system
Σ′ is

U ′(r ′, t′) =
n∑

i=1

F ′
iVi(r ′) + F ′

0V0(r ′)Φ(ω′t′) . (5.137)

Again we study the effect of the similarity transformation (5.118) on the
kinetic and potential energy. The systems Σ and Σ′ are mechanically similar,
if kinetic and potential energies in Σ′ differ from those in Σ by the same
multiplicative factor. The time function Φ is generally assumed to be bounded,
so it cannot be a homogeneous function. Hence we have no freedom to choose
the parameter τ connecting the times t and t′; if U ′ is to be proportional to
U there is no choice but to set
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τ =
ω

ω′ , so that ω′t′ = ωt . (5.138)

The time scale parameter ω replaces the energy of the time-independent
case as additional parameter (beside the field strengths) determining the clas-
sical dynamics of the system. Whereas (5.123) fixes the ratio σ/τ in the time-
independent case, (5.138) fixes the time stretching parameter τ in the time-
dependent case. This leaves one free parameter σ and the n+ 1 conditions,

σdiF ′
i =

(
σ
ω′

ω

)2

Fi , i = 0, 1, . . . , n . (5.139)

Resolving for σ now yields

σ =

[(
ω′

ω

)2
Fi

F ′
i

] 1
di−2

for all i = 0, 1, . . . , n . (5.140)

For any pair (i, j) of labels this implies

|Fi/ω
2|dj−2

|Fj/ω2|di−2
=

|F ′
i/ω

′2|dj−2

|F ′
j/ω

′2|di−2
, (5.141)

in other words, mechanical similarity is given if

|Fi/ω
2|dj−2

|Fj/ω2|di−2
= const. (5.142)

The potential (5.136) may contain more than one time-dependent contri-
bution. As long as the dependence of each contribution on the coordinates is
homogeneous, the results derived for the label i = 0 above are easily general-
ized to a finite number of time-dependent terms. Note, however, that only one
time scale parameter ω can be accommodated, because there can be only one
time stretching factor τ , see (5.138). If the potential contains e.g. a superpo-
sition of several harmonic terms with different frequencies, then the mutual
ratios of these frequencies have to be the same in all mechanically similar sys-
tems, so that there is effectively only one parameter defining the time scale.

For an atom (or ion) in a time-dependent field and n − 1 external static
fields we again assume the label i = 1 to describe the constant (F1 =const.)
Coulomb field (d1 = −1) of the atom, and this fixes the stretching parameter
σ via (5.140),

σ =
( ω
ω′
)2/3

. (5.143)

The conditions (5.142) now suggest the following definition for the scaled field
strengths:

F̃j
def= Fj/ω

2
3 (dj+1) . (5.144)

With these definitions the n conditions for mechanical similarity can be ex-
pressed as the requirement
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F̃j = const. j = 0, 2, 3 . . . , n . (5.145)

For an atom described by a constant Coulomb field (i = 1) in a superposition
of one (j = 0) time-dependent and n− 1 (j = 2, . . . , n) static external fields,
the classical dynamics is determined to within mechanical similarity by the
values (5.145) of these n scaled field strengths.

The time-dependent field is very often the oscillating electric field of mi-
crowave or laser radiation, so F0 = frad is the amplitude of the oscillating field
of circular frequency ω, and d0 = 1. The corresponding scaled field strength
f̃rad, which is constant under the conditions of mechanical similarity, is

f̃rad = frad/ω4/3 (5.146)

according to (5.144). For an external static electric field of strength f , the
scaled field strength f̃ is analogously given by f̃ = f/ω4/3. For an additional
magnetic field of strength γ (with Fj corresponding to γ2), the scaled field
strength γ̃ is given by

γ̃2 = γ2/ω2 , γ̃ = γ/ω , (5.147)

according to (5.144). Under the conditions of mechanical similarity, f̃rad, f̃
and γ̃ are constant, and so are f3

rad/γ
4 and f3/γ4 as in the time-independent

case.

(b) Quantum Mechanics

The quantum mechanical system corresponding to the classical system Σ
introduced above is described by the Schrödinger equation,

− h̄
2

2m
∆ψ(r, t) + U(r, t)ψ(r, t) = ih̄

∂

∂t
ψ(r, t) , (5.148)

and can be obtained by quantization via the canonical commutation relations
between the coordinates ri and the momenta pj = mdrj/dt,

[ri, pj ] = ih̄δi,j . (5.149)

When the classical dynamics of the system Σ is related to the classical dynam-
ics of the system Σ′ via the non-canonical similarity transformation (5.118),
the coordinates transform as r′i = σri and the momenta as p′j = (σ/τ)pj .
[The latter also holds if the momentum pj contains a term proportional to a
vector potential describing a homogeneous magnetic field, because the vector
potential must be proportional to a product of the magnetic field strength,
transforming according to (5.134), and a linear function of the coordinates.]
The same quantum mechanics is thus obtained by quantization of the system
Σ′ via the non-canonical commutation relations,

[r′i, p
′
j ] = ih̄′δi,j , (5.150)

where h̄′ is an effective Planck’s constant,
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h̄′ =
σ2

τ
h̄ . (5.151)

If the field strengths Fi in Σ are varied under the conditions of mechani-
cal similarity, then canonical quantization in the system Σ leads to the same
quantum mechanics as non-canonical quantization in the mechanically simi-
lar “scaled system” system Σ′ according to (5.150), with a variable effective
Planck’s constant (5.151).

For a system with one time-independent homogeneous potential of degree
d, U(r ) = FV (r ), the constants σ and τ are given by (5.124), and the effective
Planck’s constant in the scaled system Σ′ is

h̄′ =
σ2

τ
h̄ =

(
F

F ′

) 1
d
(
E′

E

) 1
d + 1

2

h̄ . (5.152)

For given energy E′ and field strength F ′ in the scaled system, the semiclas-
sical limit can now be defined as the limit h̄′ → 0, and the anticlassical or
extreme quantum limit is h̄′ → ∞, see also Sect. 1.6.3 in Chap. 1. Equa-
tion (5.152) determines which combination of energy E and field strength F
corresponds to the semiclassical limit h̄′ → 0. This obviously depends in the
following way on the degree d of homogeneity of the potential:

0 < d : F → 0 or |E| → ∞ (5.153)
−2 < d < 0 : |F | → ∞ or E → 0 (5.154)

d = −2 : |F | → ∞ and E arbitrary (5.155)
d < −2 : |F | → ∞ or |E| → ∞ . (5.156)

When d > 0 or d < −2, the semiclassical limit for a given field strength
F corresponds to the high energy limit |E| → ∞. However, if the degree d
of homogeneity of the potential lies between zero and −2, then the semiclas-
sical limit of the Schrödinger equation for a given field strength corresponds
to the limit of vanishing values of the energy E. This applies in particular to
all Coulomb systems, where d = −1, and it is perhaps not surprising when
remembering that the energies of the bound states of a one-electron atom
vanish in the (semiclassical) limit of large quantum numbers. It is, however,
not trivial and not widely appreciated, that large energies, E → ∞, actu-
ally correspond to the anticlassical or extreme quantum limit in Coulombic
systems, see also last paragraph in Sect. 4.1.5.

Now consider a potential U in (5.148) consisting of n contributions,
U(r ) =

∑n
i=1 FiVi(r ), where Vi is a (time-independent) homogeneous po-

tential of degree di. The equivalence of the canonical Schrödinger equation
for energy E and field strengths Fi with the non-canonical Schrödinger equa-
tion containing the modified Planck’s constant (5.151) is maintained, as long
as energy and field strengths are varied under the conditions of mechanical
similarity described above. This implies

h̄′ =
σ2

τ
h̄ =

(
Fi

F ′
i

) 1
di
(
E′

E

) 1
di

+ 1
2

h̄ for all i . (5.157)



376 5 Special Topics

The conditions of the semiclassical limit correspond in each contribution i
to the limiting behaviour (5.153) – (5.156), depending on the degree di of
homogeneity of the respective term. These conditions are compatible in the
case of mechanical similarity (5.128). For example, if the label i=1 describes
the fixed Coulomb potential in an atom, then the condition of constant scaled
field strengths (5.132) implies

Fj ∝ |E|1+dj . (5.158)

The semiclassical limit h̄′ → 0 corresponds to E → 0. For any further contri-
butions with a positive degree of homogeneity, e.g. an external electric field
with dj = 1, or an external magnetic field with dj = 2, the strengths Fj must
tend to zero as prescribed by (5.158) in the semiclassical limit. Note in par-
ticular, that a fixed strength of the Coulomb potential and a non-vanishing
external electric and/or magnetic field are incompatible with the conditions
of the semiclassical limit.

(c) Scaled-Fields Spectroscopy

The energy and the n − 1 strengths of the static external fields in which
an atom is placed have n − 1 conditions to fulfill for mechanical similarity
to hold, e.g. that the scaled field strengths (5.132) be constant. When the
field strength of the Coulombic forces describing the atom is kept fixed, there
remains one continuous parameter, which can be varied without changing the
classical dynamics, except to within a similarity transformation (5.118). This
makes it possible to study the variations of the quantum system corresponding
to different values of the effective Planck’s constant without changing the
classical dynamics. Although the energy itself or any one of the external field
strengths could be chosen as the variable parameter, a prudent choice is

χ =
τ

σ2

1
h̄

=
1
h̄′
, (5.159)

which has the dimensions of an inverse action and is just the inverse of the
effective Planck’s constant h̄′.

A justification for this choice can be found by looking at Gutzwiller’s trace
formula (5.111) or variations thereof [Cha92, FE97], which typically express
the energy level density or some other quantum mechanical property in terms
containing the actions Straj along classical trajectories,

property of qm spectrum = function
[
exp

(
i
h̄
Straj

)]
,

Straj =
∫

traj

p · dr . (5.160)

Regarding both sides of the upper line of (5.160) as functions of the variable
χ defined by (5.159) leads to the following form of this general equation:

property of qm spectrum(χ) = function
(
exp

[
iχS′

traj

])
, (5.161)
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where we have expressed the actions Straj through the “scaled actions”

S′
traj =

∫
traj

p ′ · dr ′ =
σ2

τ
Straj =

h̄′

h̄
Straj . (5.162)

The scaled classical actions (5.162) depend only on the fixed energy E′, which
defines the energy at which the effective Planck’s constant h̄′ assumes its
physical value h̄, and on the n− 1 values of the scaled field strengths (5.132),
which determine the classical dynamics. In the general formula (5.161) these
scaled actions appear as Fourier conjugates to the variable χ. Applying a
Fourier transform to (5.161) will thus reveal structures associated with classi-
cal trajectories at values of the conjugate variable corresponding to the scaled
actions of the trajectories. An example is given in Sect. 5.3.5 (b).

For an atom in external static fields the scaling parameters σ and τ are
given by (5.130) and the natural variable (5.159) is,

χ =
1
h̄

√
E′

E
∝ 1
h̄
√|E| . (5.163)

The definition of the natural variable χ depends on which field strength we are
keeping constant, and not on which external fields (of variable strength) are
present; the constance of the strength F1 of the Coulombic (d1 = −1) potential
describing the atom leads to the simple result (5.163), χ ∝ 1/

√|E|. For an
external magnetic field of variable strength γ, this corresponds to χ ∝ γ−1/3

when the scaled field strength γ̃ is kept constant, cf. (5.135). For an external
static electric field of variable strength, χ ∝ 1/

√|E| corresponds to χ ∝ f−1/4

when the scaled field strength f̃ is kept fixed, cf. (5.133). In a superposition of
electric and magnetic fields both relations apply, which is consistent because
f3/γ4 is constant under the conditions of mechanical similarity.

The technique of scaled-fields spectroscopy is well established for the exam-
ple of atoms in external electric and magnetic fields and has been been called
“scaled-energy spectroscopy” [MW91] and also “recurrence spectroscopy”
[MM97, DS97], because of the dominating role which periodic and recurring
classical orbits play in appropriately Fourier transformed spectra.

(d) Time-dependent Potentials

The Schrödinger equation (5.148) with the time-dependent potential (5.136)
is equivalent to a non-canonical Schrödinger equation containing the effective
Planck’s constant (5.151) with the scaled potential (5.137) as long as the
frequency parameter and the potential strengths obey the conditions (5.138)
and (5.140) for mechanical similarity. If the label i = 1 describes the fixed
(F1 = F ′

1) Coulomb potential (d1 = −1) of an atom, the stretching parameter
σ is given by (5.143), and the conditions for mechanical similarity reduce to
the requirement that the scaled field strengths (5.144) be constant.

For a concrete experiment with a one-electron atom in a time-dependent
field, the initial (unperturbed) state of the atom is described by a quantum
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number n0, and n02πh̄ is the classical action S of the electron on the corre-
sponding orbit. The similarity transformation (5.118) transforms actions as

S′ =
σ2

τ
S =

( ω
ω′
)1/3

S , (5.164)

according to (5.138) and (5.143), hence n0ω
1/3 is the corresponding scaled

quantum number which remains constant under the conditions of mechanical
similarity. The cube of the scaled quantum number, n3

0ω, is naturally called
the scaled frequency. Using the initial quantum number n0 as reference rather
than the frequency parameter ω leads to

f̃ = f n4
0 (5.165)

as an alternative definition [instead of (5.146)] for the scaled strengths of
the time-dependent or static electric fields [Koc92, Ric97]. The corresponding
alternative to (5.147) for the scaled strength of an external magnetic field is

γ̃ = γ n3
0 . (5.166)

With σ and τ given by (5.143) and (5.138), the effective Planck’s constant
is

h̄′ =
( ω
ω′
)1/3

h̄ , (5.167)

and the semiclassical limit h̄′ → 0 corresponds to ω → 0. Note that a finite
time scale for the time-dependent part of the potential is incompatible with
the semiclassical limit under the conditions of mechanical similarity. For fixed
field strength of the Coulomb potential describing the atom, the semiclassical
limit for an atom in external time-dependent and/or time-independent electric
and magnetic fields corresponds to the static limit according to (5.167) and
to vanishing field strengths according to (5.144), (5.158).

5.3.5 Examples

(a) Ionization of the Hydrogen Atom in a Microwave Field

General interest in simple Hamiltonians with a periodic time dependence re-
ceived a great boost after Bayfield and Koch observed the ionization of hy-
drogen atoms in a microwave field in 1974 [BK74, BG77]. Hydrogen atoms
in an initial state with principal quantum number n0 = 66 were ionized in
a microwave field of about 10 GHz. This corresponds to a photon energy of
h̄ω ≈ 4 ·10−5 eV, so that more than 70 photons would have to be absorbed to
ionize a H atom (from the n0 = 66 level). The perturbative approach, which
may be useful at least for relatively weak intensities and which was discussed
in connection with multiphoton ionization in Sect. 5.1, is not practicable when
so many photons are absorbed. Consequently intensified efforts have been un-
dertaken to solve the time-dependent Schrödinger equation directly for this
case.
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There are experimental grounds (e.g. strong polarization of the H atom
prepared in an additional electric field) which may justify treating the problem
in only one spatial dimension. This can of course only work if the microwave
field is linearly polarized in the direction of this one spatial coordinate. The
Hamiltonian is then (in atomic units)

Ĥ = −1
2
∂2

∂z2
− 1
z

+ f z cosωt , z > 0 , (5.168)

where f is the strength of the oscillating electric field. This Hamiltonian is
somewhat similar to the Hamiltonian (5.82) of the kicked rotor. In the corre-
sponding classical system the periodic trajectories in the field-free case (f=0)
are just straight-line oscillations between the position of the nucleus (z = 0)
and a maximal displacement which depends on the energy. The similarity to
a free rotor becomes most apparent when we perform a canonical transfor-
mation from the variables p, z to the appropriate action-angle variables I, θ.
Here I = S/(2πh̄) = [

∮
pdz]/(2πh̄) is the action in units of 2πh̄ and is the

classical counterpart of the principal quantum number, and θ is the canoni-
cally conjugate angle variable, which varies from zero to 2π during a period
of oscillation starting at the nucleus and ending with the return to the nu-
cleus [Jen84]. In the field-free case the trajectories in phase space are simply
straight lines I = const. as for the rotor. The influence of a microwave field
can be seen in Fig. 5.18 showing trajectories in phase space for a microwave
frequency of 7.11 GHz and a field strength of 9.1 V/cm.

Fig. 5.18. Classical Tra-
jectories as calculated
by Jensen for the one-
dimesional hydrogen atom
in a microwave field of 7.11
GHz and a field strength of
9.1 V/cm (From [Bay86])
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Figure 5.18 shows that most classical trajectories are quasiperiodic for ac-
tions smaller than 65 to 70, while irregular trajectories dominate at higher
actions. These irregular trajectories, along which the action can grow to ar-
bitrarily large values as in the case of the kicked rotor, are interpreted as
ionizing trajectories. Thus the phase space picture Fig. 5.18 is interpreted as
indicating that initial states with an action (i.e. principal quantum number)
up to about 65 remain localized in quantum number (and hence bound) in
a microwave field of the corresponding frequency and strength, while initial
states above n0 ≈ 68 are ionized. The threshold above which ionization is pos-
sible depends on the field strength and the frequency of the microwave field.
For increasing frequency and/or field strength ionization becomes possible for
smaller and smaller quantum numbers of the initial state. For a given mi-
crowave frequency ω and a given initial quantum number n0 there is a critical
field strength or threshold fcr above which ionization begins. According to the
scaling properties of an atom in a time oscillating field, cf. (5.164), (5.165), we
expect this (classical) condition for ionization to relate the scaled quantum
number n0ω

1/3 to the scaled electric field strength fn4
0. Casati et al. [CC87]

derived the estimate fcrn4
0 ≈ 1/(50n0ω

1/3) for the threshold for ionization.
More sophisticated calculations going beyond the one-dimensional model

(5.168) can be performed nowadays. Figure 5.19 shows a comparison of ex-
perimental ionization thresholds with the results of a full three-dimensional
classical calculation. The scaled electric field strengths at which the ionization
probability reaches 10% and 90% are plotted as functions of the scaled fre-
quency n3

0ω and include initial quantum numbers between n0 =32 and n0 =90
for a microwave frequency of 9.923 GHz [KL95]. The classical calculations are
due to Rath and Richards and include the effect of switching on and switch-
ing off the microwave field. The classical calculations reproduce the nontrivial
structure of the experimental threshold fields well for scaled frequencies below
about 0.8 atomic units, except perhaps near simple fractions, 1/2, 1/3, etc.

Fig. 5.19. Experimental scaled field
strengths at which the probability for
ionizing a hydrogen atom in a mi-
crowave field of 9.923 GHz reaches
10% (dots) and 90% (squares) as
functions of the scaled frequency n3

0ω.
The dotted lines show the results of a
classical calculation due to Rath and
Richards (From [KL95])
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These discrepancies are attributed to quantum mechanical resonance effects,
because they occur at scaled frequencies at which just two, three, etc. pho-
tons of energy ω (in atomic units) are needed to excite the initial state with
quantum number n0 to the next excited state with quantum number n0+1.

Further work on atoms in oscillating electromagnetic fields includes the
study of ionization by circularly or elliptically polarized microwaves and the
use of alkali atoms in place of hydrogen [Ric97, DZ97, BR97]. Progress is
continuing with shorter wavelengths and higher intensities [PK97]. Amongst
the many interesting properties exhibited by a Rydberg atom in a temporally
oscillating field, one which has received particular attention is the occurrence
of non-dispersing wave packets which are well localized and follow a classical
periodic orbit without spreading [BD02].

(b) Hydrogen Atom in a Uniform Magnetic Field

The hydrogen atom in a uniform magnetic field has, in the last twenty years,
become one of the most widely studied if not the most widely studied example
for a conservative Hamiltonian system with chaotic classical dynamics [TN89,
FW89, HR89, Gay91, RW94, Mai97, SS98]. Its popularity is mainly due to
the fact that it is a real system for which observed spectra and the results of
quantum mechanical calculations agree down to the finest detail (see Fig. 3.25
in Sect. 3.5.2). The system corresponds very accurately to a point particle
moving in a two-dimensional potential (see (3.265) and Fig. 3.22). For a given
value Lz of the z-component of the orbital angular momentum this potential
is (in cylindrical coordinates (3.226) and atomic units),

V (�, z) =
L2

z

2�2
− 1√

�2 + z2
+

1
8
γ2�2 . (5.169)

The Hamiltonian describing the quantum mechanics of the system contains
the potential (5.169) and the operator p̂2/(2µ) [cf. (3.249)], where p̂ is the
canonical momentum. The classical velocity dr/dt is however related to the
(classical) kinetic momentum,

µv = µ
dr

dt
= p +

e

c
A . (5.170)

If we transform the equations of motion to a coordinate system rotating
around the direction of the magnetic field with an angular frequency ω, then
the velocity v′ in the rotating frame is given by [LL71]

v′ = v + r×ω , (5.171)

where ω is the vector of length ω pointing in the direction of the magnetic
field. The canonical momentum p in the inertial frame is,

p = µv − e

c
A = µ

(
v +

e

2µc
r×B

)
= µv′ , when ω =

eB

2µc
, (5.172)
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where we have used the definition A = −r×B/2 of the symmetric gauge,
on which the derivation of the potential (5.169) was based. The canonical
momentum in the inertial frame thus corresponds to the kinetic momentum
in the frame of reference which rotates around the z-axis pointing in the
direction of the magnetic field with the constant rotational frequency ω equal
to half the cyclotron frequency.

According to Sect. 5.3.4 the classical dynamics of the system depends not
on the energy E and the field strength γ independently, but only on the scaled
field strength γ̃ = γ |E|−3/2 or on the scaled energy ε = Eγ−2/3 = ±γ̃−2/3.
In the bound regime (negative energies) the separable limit corresponding to
a hydrogen atom without an external field is given by ε = −∞, γ̃ = 0. The
“field-free threshold” E = 0 corresponds to ε= 0 (|γ̃| = ∞) and is identical
to the classical ionization threshold. Because of the finite zero-point energy
of the electron’s motion perpendicular to the field the (quantum mechanical)
ionization threshold actually lies higher (see (3.268)).

Numerical solutions of the classical equations of motion were obtained
already in the 1980’s by various authors [Rob81, RF82, HH83, DK84]. Fig-
ure 5.20(a–d) shows Poincaré surfaces of section for four different values of
the scaled energy and Lz = 0. The surface of section is the � p�-plane at z=0.
Similar to Fig. 5.14 we clearly see an increasing share of phase space filled
with irregular trajectories as the parameter ε increases. This is demonstrated
again in the bottom panel of Fig 5.20 in which the share of regular trajectories
in phase space is plotted as a function of the scaled energy. Around ε ≈ −0.35
there is a more or less sudden transition to dominantly irregular dynamics,
but the share of regular trajectories is not a monotonic function of ε. Above
ε ≈ −0.1 virtually all of phase space is filled with irregular trajectories.

In the field-free case, all bound orbits are periodic (Kepler ellipses). Near
the field-free limit there are only three periodic orbits which exist even for
arbitrarily weak but non-vanishing fields: the straight-line orbit perpendicu-
lar to the direction of the field (which is labelled I1 for historical reasons),
the straight-line orbit parallel to the field (I∞) and the almost circular orbit
(C) which merges into an exact circle in the field-free limit. It is compar-
atively easy to investigate the stability of these orbits by calculating their
Liapunov exponents [Win87b, SN88, SN93]. The almost circular orbit is un-
stable for all finite values of ε and its Liapunov exponent increases monotoni-
cally with ε. The straight-line orbit perpendicular to the field is stable below
ε0 = −0.127268612. The larger dip in Fig. 5.20 (e) is attributed to the con-
fluence of an unstable orbit with the perpendicular orbit I1 at ε=−0.316186
[SN93]. Above ε0 the Liapunov exponent of I1 grows proportional to the square
root of ε−ε0. The straight-line orbit parallel to the field, I∞, is stable up to
ε=−0.391300824, and then intervals of instability and stability alternate (see
Fig. 5.21). Whenever I∞ becomes unstable, a new periodic orbit is born by
bifurcation. These orbits (labelled I2, I3, . . .) are initially stable but soon be-
come unstable at higher values of ε at which further periodic orbits are born
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Fig. 5.20. Poincaré surfaces of section for Lz = 0 and four different values of the
scaled energy ε (a–d). The surface of section is the � p�-plane at z=0. The bottom
panel is taken from [SN93] and shows a measure for the share of regular orbits in
phase space as function of the scaled energy

by renewed bifurcation. As ε increases the growing chaos is accompanied by
a proliferation of periodic orbits.

The transition to chaos manifests itself in the statistical properties of the
quantum mechanical spectrum of the hydrogen atom in a uniform magnetic
field, just as it does for the coupled harmonic oscillators (cf. Figs. 5.16, 5.17).
This was shown almost simultaneously in 1986 in [WF86], [DG86] and
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Fig. 5.21. Liapunov exponent of the periodic orbit I∞ parallel to the direction of
the magnetic field. Whenever I∞ becomes unstable a further initially stable orbit
I2, I3, . . . is born by bifurcation. The inset demonstrates schematically how such a
bifurcation shows up in the Poincaré surfaces of section

[WW86]. Figure 5.22 shows e.g. the NNS distributions for four different values
of the scaled energy ε. The transition from a distribution close to a Poisson
distribution (5.92) at ε=−0.4 to a Wigner distribution (5.93) at ε=−0.1 is
apparent.

Figure 5.23 shows the spectral rigidity (5.94) for values of ε between −0.4
and −0.15. The “odd curve out” at ε=−0.30 clearly reveals what can also be
observed by closer inspection for other statistical measures: the transition from
Poisson statistics in the regular regime to GOE statistics in the chaotic regime
is not monotonic. This is due to non-universal properties of the dynamics
which are specific to the system under investigation. Attempts to find simple
universal laws or rules for the statiatical properties of energy spectra in the
transition region between regularity and chaos have been only moderately
successful [PR94].

Statistical measures such as NNS distributions and the spectral rigidity
describe correlations of short and medium range in the spectrum and show a
universal behaviour in the regular or classically chaotic limits. On the other
hand, long ranged correlations of the spectrum generally reflect specific prop-
erties of the physical system under consideration. This is expressed quantita-
tively in Gutzwiller’s trace formula (5.111) which relates the fluctuating part
of the quantum mechanical level density to the classical periodic orbits.

As discussed in Sect. 5.3.4 (c), spectra of an atom in a uniform mag-
netic field of strength γ are most appropriately recorded for fixed scaled field
strength (corresponding to fixed scaled energy) as functions of the natural
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Fig. 5.22. NNS distributions for scaled
energies between −0.4 and −0.1. (The
dashed and solid lines show attempts to
fit analytic formula to the distributions
in the transition region between regu-
larity and chaos (see [FW89]))

Fig. 5.23. Spectral rigidity (5.94) for various scaled energies ε
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Fig. 5.24. Absolute square of the Fourier transformed spectrum as function of the
variable ḡ, which is conjugate to γ−1/3, in the mπz =2+ and mπz =2− subspaces at
ε = −0.2. The positions of the peaks are numerically equal to the scaled actions of
the classical periodic orbits shown in the right half of the figure (From [Fri90])

variable χ = γ−1/3, which is proportional to the inverse of the effective
Planck’s constant. The Fourier transformed spectra then reveal prominent
structures at values of the conjugate variable corresponding to the scaled ac-
tions of the periodic orbits. This is illustrated in Fig. 5.24 showing the absolute
square of the Fourier transformed spectrum in the mπz =2+ and the mπz =2−

subspaces for ε=−0.2. The maxima in the Fourier transformed spectra can
uniquely be related to simple classical periodic orbits; the corresponding orbits
are shown in the right half of the figure.

The relation between simple periodic classical orbits and modulations in
quantum mechanical spectra can also be extended to other observables such
as e.g. photoabsorption spectra. Figure 5.25 shows the famous photoabsorp-
tion cross sections for barium atoms as measured by Garton and Tomkins in
1969 [GT69]. Near the field-free threshold E = 0 we notice modulation peaks
separated by about 1.5 times the energy separation of the Landau states of
free electrons in a magnetic field. It was soon noticed that these modulation
peaks, which are called quasi-Landau resonances, can be connected to the clas-
sical periodic orbit perpendicular to the field by a relation like (5.115). Later
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Fig. 5.25. Photoabsorption spectra of barium atoms in a uniform magnetic field
(From [GT69])

investigations of the photoabsorption cross sections revealed whole series of
modulations which can be related to classical periodic orbits in essentially the
same way as the modulations in the energy spectra (Fig. 5.24) [HM90]. (The
difference between barium and hydrogen is not so important in the present
context, where we are dealing with highly excited states extending over large
regions in coordinate space, because it only affects the potential V (�, z) in
a very small region around the origin.) The quasi-Landau modulations are a
very instructive experimental example for how unstable periodic classical or-
bits in a classically chaotic system manifest themselves in quantum mechanical
spectra.

The role of periodic classical orbits in shaping the structure of the quan-
tum spectra of atoms in a magnetic field is continuing to be a subject of
considerable interest. Further advances have been achieved in understanding
the influence of the non-Coulombic core of the potential in atoms other than
hydrogen [O’M89, DM95a, HM95] and in incorporating “ghost orbits” into the
periodic orbit theory. Ghost orbits occur close to points of bifurcation and are
periodic solutions of the classical equations of motion in complex phase space,
which become real periodic orbits after bifurcation. For an overview of recent
developments see [Mai97, BM99, FM05].

The problem of one electron moving in an attractive Coulomb field and
a uniform magnetic field becomes substantially more complicated when an
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additional electric field is applied. One reason for studying this problem is,
that the real hydrogen atom is a two-body system, and its motion in a mag-
netic field effectively induces an electric field in the Hamiltonian describing its
internal motion, see Sect. 3.5.2. All features of regular and chaotic motion and
their manifestations in quantum spectra are of course present for an atom in
a superposition of electric and magnetic fields, and the richness and diversity
of effects is enormous, see, e.g. [MU97, MS98] and references therein.

(c) The Helium Atom

The successful description of the spectrum of the hydrogen atom on the basis
of the Bohr-Sommerfeld quantization condition (see Sect. 3.2.1) in the early
days of quantum mechanics brought forth numerous attempts to describe the
energy spectrum of the helium atom in a similar way [Bor25]. These attempts
were unsuccessful for more than sixty years, because a two-electron atom or
ion is a nonintegrable system, and the relation between classical mechanics
and quantum mechanics was not at all well understood for such systems.
Atoms (or ions) with at least two electrons are essentially different from one-
electron atoms, because they are, at any total energy, classically unstable for
most initial conditions. This is so, because one of the electrons can approach
the nucleus arbitrarily closely and so acquire an arbitrarily low energy which
leaves enough energy to be transferred to another electron for it to be ex-
cited into the continuum. In phase space, a thin skeleton of periodic orbits
and nonperiodic trapped orbits remains bound, but most trajectories lead
to ionization. Various periodic orbits of the classical helium atom had been
known early on [Bor25], but naive applications of the Bohr-Sommerfeld quan-
tization condition had failed to reproduce the energy eigenvalues of low-lying
states which were known accurately from experiment and from approximate
solutions of the Schrödinger equation.

A satisfactory semiclassical approximation of the energy levels in helium
was achieved in 1991 on the basis of periodic orbit theory by Ezra, Richter,
Tanner and Wintgen [ER91, WR92]. The method is based on approximating
the so-called “dynamical zeta function”, whose logarithmic derivative with
respect to energy is just the trace of the Green’s function (5.105). Individual
energy levels are identified with the zeros of the dynamical zeta function, which
correspond to the poles of the trace of the Green’s function. The dynamical
zeta function can be approximated by a product of terms associated with
classical periodic orbits such that the logarithmic derivative of this product
yields the semiclassical approximation to the trace of the Green’s function
as summarized in Gutzwiller’s trace formula (5.111). If the periodic orbits
can be classified by a digital code, then the product over all orbits can be
expanded in terms of the lengths of the codes and the expansion truncated
after a certain length. This method is known as cycle expansion technique
[CE89]. The zeros of the approximate dynamical zeta function obtained in
this way provide approximations to the energy levels of the system.
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The analysis in [ER91] was based on the collinear model of helium, in
which both electrons are restricted to lie on different sides on a straight line
through the nucleus, see (4.267). In this model there are two spatial coordi-
nates, namely the separations r1, r2 of the two electrons from the nucleus, and
its four-dimensional classical phase space is a genuine subpace of the phase
space of the full two-electron problem in three dimensions. The periodic or-
bits within this model are easily classified in a systematic way by registering
collisions of each of the electrons with the nucleus. All orbits of the collinear
model are unstable, i.e. have positive Liapunov exponent, but the collinear
motion is seen to be stable against bending away from the straight line. The
symmetric vibration of both electrons has an infinite Liapunov exponent due
to the highly singular triple collision when both electrons meet at the nucleus
simultaneously. This so-called “Wannier” mode plays an important role for
the ionization process, as discussed in Sect. 4.4.4, but its relevance for the
line spectrum well below the break-up threshold is not so clear [Ros94]. The
next simplest periodic motion of two electrons in collinear helium is the asym-
metric stretch vibration in which both electrons alternately collide with the
nucleus and are reflected at their outer turning point. In the application in
[ER91] the cycle expansion was truncated so as to include the contributions
of all primitive periodic orbits with up to six collisions of one of the electrons
with the nucleus during one period. The energies obtained in this way are
compared in Table 5.1 with the results of exact quantum mechanical calcula-
tions for some of the (n1s, n2s) states with similar quantum numbers n1, n2.
The results show that the energies of several low-lying states of helium can

Table 5.1. Energies (in atomic units) of some (n1s, n2s) states of the helium atom.
The quantum mechanical energy Eqm is compared with the semiclassical approx-
imation Esc based on the cycle expansion and with the energies Eas obtained via
modified Bohr-Sommerfeld quantization of the asymmetric stretch vibration. (From
[ER91])

n1, n2 Eqm Esc Eas

1, 1 −2.904 −2.932 −3.100
2, 2 −0.778 −0.778 −0.804
2, 3 −0.590 −0.585
3, 3 −0.354 −0.353 −0.362
3, 4 −0.281 −0.282
4, 4 −0.201 −0.199 −0.205
4, 5 −0.166 −0.166
4, 6 −0.151 −0.151
5, 5 −0.129 −0.129 −0.132
5, 6 −0.110 −0.109
5, 7 −0.100 −0.101
6, 6 −0.0902 −0.0895 −0.0917
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be approximated in the framework of semiclassical periodic orbit theory and
the collinear model with an accuracy of a few per cent of the level spacing.

The simplest version of the cycle expansion includes only one periodic or-
bit, viz. the asymmetric stretch vibration mentioned above, and it corresponds
to a modified Bohr-Sommerfeld quantization of this periodic orbit,

Sas(En) =
∮

as

pdq = 2πh̄(n+ µd) . (5.173)

The constant µd on the right-hand side plays the role of a negative quantum
defect, i.e. a quantum excess, and contains the Maslov index divided by 4 to-
gether with a winding number correction accounting for the zero point motion
of the (stable) bending mode. Because the potential is homogeneous of degree
−1, the energy dependence of the action on the left-hand side of (5.173) is [cf.
(5.162), (5.163) in Sect. 5.3.4 (c)],

Sas(E) =
Sas(−1)√−E , (5.174)

and the quantization condition (5.173) yields a Rydberg formula,

En = − [Sas(−1)/(2πh̄)]2

(n+ µd)2
. (5.175)

The quantum mechanical energies of the symmetrically excited (ns, ns) states
in helium actually follow such a Rydberg formula quite well, and the data
correspond to a value of 1.8205 for Sas(−1)/(2πh̄) and a quantum excess
µd = 0.0597. The deviation of the value 1.8205 from the value two, which one
would expect for two non-interacting electrons in the field of the Z = 2 nu-
cleus, is attributed to mutual screening of the nucleus by the partner electron.
The action of the asymmetric stretch vibration is Sas(−1)/(2πh̄) = 1.8290.
Our experience with quantization of the one-dimensional Coulomb problem
in Sect. 3.2.1, (3.75), indicates that a contribution 3 rather than 1 to the
Maslov index is appropriate for reflection at an attractive Coulomb singu-
larity. In any case, the two reflections during one period of the asymmetric
stretch vibration lead to a half-integral contribution to µd, and together with
the winding number correction the quantum excess µd acquires a theoretical
value 0.039 modulo unity [ER91]. The resulting energies (5.174) for the sym-
metrically excited states are shown in the column Eas in Table 5.1. Modified
Bohr-Sommerfeld quantization of the asymmetric stretch vibration thus gives
a fair account of the energies of the symmetrically excited states.

The interpretation that symmetrically excited states in helium are strongly
influenced by the asymmetric stretch vibration of the collinear configuration
is supported by quantum mechanical calculations. In the subspace defined by
total orbital angular momentum zero there are three independent coordinates,
viz. r1, r2 and r12 = |r1 − r2|. Figure 5.26 shows the probability distribution
|ψ(r1, r2, r12)|2 of the eigenfunction with n1 = 6, n2 = 6 on the section of
coordinate space defined by r12 = r1 + r2, corresponding to the collinear



5.3 Regular and Chaotic Dynamics in Atoms 391

Fig. 5.26. Probability distribution
|ψ(r1, r2, r12)|2 of the (6s, 6s) he-
lium atom eigenfunction on the sec-
tion of coordinate space defined by
r12 = r1 + r2. The solid line labelled
‘AS’ shows the asymmetric stretch
orbit, the dashed line is the Wan-
nier orbit, r1 = r2 (From [WR92])

configuration. The localization of the wave function along the asymmetric
stretch orbit, shown as a solid line, is quite apparent.

The analysis of the classical dynamics of two-electron atoms and ions has
revealed some interesting and curious results. The so-called “Langmuir or-
bit”, which corresponds to a maximal vibrational bending of the symmetric
electron-nucleus-electron configuration, has been shown to be stable for nu-
clear charge Z=2 [RW90b]. Further stable orbits exist in the “frozen planet”
configuration in which both electrons are on the same side of the nucleus at
very different separations, and the farther electron (“frozen planet”) moves
slowly in a limited region of coordinate space, while the nearer electron os-
cillates rapidly to and from the nucleus [RW90c]. Although most classical
trajectories are unstable, the existence of such stable orbits means, that the
classical dynamics of the helium atom is not fully ergodic.

In highly asymmetric configurations of a two-electron atom or ion, one
electron can move for a long time on a very extended Kepler orbit, while the
other electron stays near the nucleus. Even though such orbits are generally
unstable, their Liapunov exponent can be arbitrarily small, because the mo-
tion of the two electrons is almost independent, being on individual and only
slightly perturbed Kepler ellipses for an arbitrarily long time. This phenom-
enon of long intervals of regularity on trajectories which are in fact unstable is
called “intermittency”. The quantum analogue in two-electron atoms is pro-
vided by the highly excited states in Rydberg series, where one electron is
excited to very high quantum numbers, while the other electron is in a state
of low or medium quantum number. Adaptations of periodic orbit theory have
been quite successful in establishing the link between classical and quantum
dynamics in these situations [RT97, BQ97, Ros98]. For a comprehensive re-
view on two-electron atoms, which still represent one of the richest and most
challenging fundamental problems in atomic physics, see [TR00].



392 5 Special Topics

The developments over the last two decades have reinstated classical me-
chanics as a relevant theory, even in the atomic domain. It remains undis-
puted, that quantum mechanics is the formalism for a correct quantitative
description of atomic phenomena. It is also clear that the uncertainty prin-
ciple holds and that it would be wrong to picture the electrons in an atom
as point particles moving on classical trajectories with well defined positions
and momenta. Through the advances described in this section it has however
become apparent, that the properties of a classical system, in particular of its
periodic orbits, are visible in spectra of the corresponding quantum system,
and that we can understand and sometimes quantitatively describe features
of the quantum mechanical observables on the basis of our knowledge of the
classical orbits.

5.4 Bose-Einstein Condensation in Atomic Gases

5.4.1 Quantum Statistics of Fermions and Bosons

Consider a large number of independent identical particles, each described
by the same one-body Hamiltonian with eigenstates |ν〉 and eigenvalues εν ,
ν = 1, 2, 3, . . .. We can construct a basis of eigenstates of the many-body sys-
tem from the products of the one-body eigenstates, which should be antisym-
metrized or symmetrized if the particles are fermions or bosons respectively.
Due to the indistinguishability of the particles, a many-body state depends
only on the numbers nν of particles occupying the various one-body eigen-
states |ν〉, and we shall collect all these numbers n1, n2, . . . , nν , . . . in one
label r. The total energy Er in the many-body state r is,

Er =
∞∑

ν=1

nνεν , (5.176)

and the total number Nr of particles is,

Nr =
∞∑

ν=1

nν . (5.177)

The standard procedure for describing such a system in the framework of
statistical mechanics is to imagine an ensemble of systems corresponding to
all possible realizations of the many body state, and the values we deduce
for observable physical quantities depend on the probability with which the
various possibilities are realized. In the grand canonical ensemble the prob-
abilities are determined by the temperatur T and the chemical potential µ,
and are proportional to exp [−(Er − µNr)/(kBT )], where kB is Boltzmann’s
constant. This is generally expressed with the help of the grand canonical
partition function,

Y =
∑

r

e−β(Er−µNr) , β = 1/(kBT ) , (5.178)
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so the probability Pr for realizing an individual state r of the whole many-
body system is,

Pr =
1
Y

e−β(Er−µNr) =
1
Y

e−β
∑∞

ν=1
nν(εν−µ) =

1
Y

∞∏
ν=1

e−β(εν−µ)nν . (5.179)

The full many-body partition function (5.178) can be rearranged to a
product,

Y =
∞∏

ν=1

Yν , Yν =
∑

n

e−β(εν−µ)n , (5.180)

and each factor Yν is actually a one-state partition function for a grand canon-
ical ensemble of one-state systems, in which the particles can only occupy the
one single-particle quantum state |ν〉. For fermions, each state |ν〉 can only
be occupied by n=0 or n=1 particles because of the Pauli principle, and the
summation over n is easily performed, Yν = 1 + exp [−β(εν − µ)]. The prob-
ability for the state |ν〉 being unoccupied is P0 = 1/Yν and the probability
for being occupied is P1 = exp [−β(εν − µ)]/Yν , so the average occupation
number 〈nν〉 is,

〈nν〉 =
∑

n=0,1

nPn =
exp [−β(εν − µ)]

1 + exp [−β(εν − µ)] =
1

exp [β(εν − µ)] + 1
. (5.181)

For bosons there is no restriction on the number of particles which can occupy
a given single particle state |ν〉, and Yν is a geometric series which sums to
Yν = 1/(1 − exp [−β(εν − µ)]), provided εν > µ. The average occupation
number in the state |ν〉 is now

〈nν〉 =
∞∑

n=0

nPn =
(
1 − e−β(εν−µ)

) ∞∑
n=1

n e−β(εν−µ)n . (5.182)

The right-hand side of (5.182) can be evaluated by writing the sum as 1/β
times the derivative of

∑∞
n=0 exp [−β(εν − µ)n] = 1/ (1 − exp [−β(εν − µ)])

with respect to µ, and this yields

〈nν〉 =
1

exp [β(εν − µ)] − 1
. (5.183)

At energies much larger than the chemical potential, εν − µ  kBT , the
difference between fermions (5.181) and bosons (5.183) disappears and the
(small) occupation probabilities approach an exponential behaviour, 〈nν〉 =
exp [−β(εν − µ)], typical for classical particles. At low temperatures, β → ∞,
the occupation probability (5.181) for fermions degenerates to 1−Θ(εν − µ),
i.e. the chemical potential corresponds to the Fermi energy [cf. (2.102)] up to
which all single-particle states are filled, while all higher-lying single-particle
states are unoccupied. This is the extreme case of a degenerate Fermi gas. For
bosons (5.183) the chemical potential must be smaller than the lowest single
particle energy, and the occupation probability tends to infinity when εν → µ.
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The condensation to a degenerate Bose gas, i.e. Bose-Einstein condensation,
is conveniently illustrated for the example of an ideal gas.

An ideal gas can be considered to be a system of free particles of mass
m moving in a large cube of side length L. The single-particle states can
be labelled by three positive integers (νx, νy, νz) ≡ ν, and the corresponding
single-particle energies are (cf. Problem 2.4),

εν =
h̄2π2

2mL2

(
ν2

x + ν2
y + ν2

z

)
= C

( ν
L

)2

, with C =
h̄2π2

2m
. (5.184)

The average total number of particles 〈N〉 is,

〈N〉 =
∑

νx,νy,νz

〈nν〉 ≈ 4π
8
L3

∫ ∞

0

ν̃2 dν̃
1

exp [β(Cν̃2 − µ′)] − 1
, (5.185)

where the sum over the discrete lattice νx, νy, νz has been replaced by an
integral over the vector ν̃ = (νx − 1, νy − 1, νz − 1)/L in the octant, ν̃i ≥ 0,
and µ′ = µ − εgs is the chemical potential relative to the energy of the non-
degenerate ground state, ν̃ = 0.† The integral on the right-hand side of (5.185)
can be evaluated by decomposing the quotient into a geometric series, yielding,

〈N〉
L3

=
π

2

∞∑
l=1

∫ ∞

0

ν̃2 e−lβ(Cν̃2−µ′)dν̃ =
π

2

∞∑
l=1

elβµ′
√
π

4(lβC)3/2
. (5.186)

Inserting the expression for C as given in (5.184) yields

〈N〉
L3

=
(
mkBT

2πh̄2

)3/2 ∞∑
l=1

elβµ′

l3/2
. (5.187)

Equation (5.187) defines the temperature dependence of the chemical po-
tential µ′. As T is decreased from some high value, µ′ must increase from
some large negative value, if the total average particle number 〈N〉, or num-
ber density 〈N〉/L3 is to remain constant. At a critical temperature Tc, the
value of µ′ reaches zero. As the temperature is reduced below Tc, µ′ remains
zero. The formula (5.185) now only accounts for the particles in excited states,
because its derivation relied on the condition µ < εν . The critical temperature
is defined by inserting µ′ = 0 in (5.187),

〈N〉
L3

=
(
mkBTc

2πh̄2

)3/2 ∞∑
l=1

1
l3/2

. (5.188)

The sum on the right-hand side of (5.188) is just the value of the zeta function,
ζ(x) =

∑∞
l=1 l

−x, for argument x = 3/2, ζ(3/2) = 2.612 . . .. The critical
temperature Tc is reached when the number density � = 〈N〉/L3 is, except

† Terms of order ν̃/L are neglected in the exponent on the right-hand side of (5.185),
but reference to the energy of the non degenerate ground state, εgs = O(1/L2) is
retained for pedagogical reasons.
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for the factor ζ(3/2) = 2.612 . . ., equal to the inverse cube of the thermal wave
length λ(T ) = 2πh̄/

√
2πmkBT ,

� =
2.612 . . .
λ(Tc)3

. (5.189)

The thermal wave length λ(T ) is the de Broglie wave length 2πh̄/p of a particle
whose kinetic energy p2/(2m) is equal to πkBT . At the critical temperature
the thermal wave length becomes so large that it is of the order of the linear
dimensions of the volume �−1 available to each particle.

As the temperature is reduced below Tc, the chemical potential µ′ remains
zero and the number Nexc of particles in excited states is given by,

Nexc

L3
=
(
mkBT

2πh̄2

)3/2 ∞∑
l=1

1
l3/2

=
(
T

Tc

)3/2 〈N〉
L3

, T ≤ Tc , (5.190)

The number N0 of particles which has condensed into the non-degenerate
ground state is,

N0 = 〈N〉
[
1 −

(
T

Tc

) 3
2
]
, T ≤ Tc . (5.191)

For T → 0 all particles condense into the ground state. This is the extreme
case of a degenerate Bose gas.

The condensation of a significant fraction of the Bose gas into its ground
state has dramatic consequences for its thermodynamical properties. The con-
densed particles don’t contribute to the pressure of the gas, and they don’t
participate in the transfer of heat. Below Tc the specific heat of the gas falls
off with diminishing temperature due to the diminishing fraction of particles
participating.

Atoms as a whole behave like fermions if their total number of nucleons
(neutrons and protons) and electrons is odd, and like bosons if it is even. The
standard text-book example for Bose-Einstein condensation was, for many
years, liquid 4He, which shows a phase transition to superfluidity at a tem-
perature of 2.17◦K.

Homogeneous Bose-Einstein condensates have been a topic of continuing
study and interest in the field of condensed matter physics for many years.
The condensation of atoms trapped in an external potential produces spatially
confined Bose-Einstein condensates which have a finite volume and a surface
and hence exhibit new and interesting features not present in the homogeneous
case. The successful preparation of such condensates of atomic gases in 1995
greatly stimulated interest in their theoretical description. A representative
introduction to the theory of non-homogeneous Bose-Einstein condensates is
contained in the papers collected in [BEC96].
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5.4.2 The Effect of Interactions in Bose-Einstein Condensates

The Hamiltonian for a system of identical particles of mass m in a common
external potential V (r), which interact via a two-body potential W (ri − rj)
is [cf. (2.53)],

Ĥ =
N∑

i=1

p̂2
i

2m
+

N∑
i=1

V (ri) +
∑
i<j

W (ri − rj) . (5.192)

The Hartree-Fock method described in Sect. 2.3.1 treats a system of inter-
acting fermions on the basis of Slater determinants, so that the independent
particle picture is formally kept, but a part of the interaction between the
particles is taken into account in the form of a mean field. An analogous
ansatz for bosons is to start with a many-body wave function Ψ consisting of
a product of single-particle wave functions,

Ψ(r1, . . . , rN ) =
N∏

i=1

ψi(ri) . (5.193)

The right-hand side of (5.193) should in principle be symmetrized with re-
spect to the particle labels. In a product ansatz for the ground state of the
many-boson system we assume all particles to occupy the same single-particle
state, ψi(r) = ψ(r), i = 1, . . . , N , so the symmetry requirement is fulfilled
automatically. Minimizing the expectation value of the Hamiltonian (5.192)
with respect to variations of the single-particle wave functions leads to an
equation for ψ. The calculations are now simpler than for the fermion case
in Sect. 2.3.1, in particular, there is no exchange potential. Instead of the
Hartree-Fock equations (2.88) we obtain a “Schrödinger equation” with the
one-body Hamiltonian,

ĥΨ =
p̂2

2m
+ V (r) +Wmf(r) , (5.194)

and the mean-field contribution is [cf. (2.90), (2.91)],

Wmf(r) =
∫

dr′
N∑

i=1

|ψi(r′)|2W (r − r′)

=
∫

dr′N |ψ(r′)|2W (r − r′) . (5.195)

The resulting “Schrödinger equation” is usually formulated for the renormal-
ized the wave function,

ψN (r) =
√
Nψ(r) , (5.196)

and its time-dependent version reads [Gro63],
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ih̄
∂ψN

∂t
=
(
− h̄

2

2m
∆+ V (r)

)
ψN (r, t)

+ ψN (r, t)
∫

|ψN (r′, t)|2W (r − r′) dr′ . (5.197)

Since this equation is nonlinear in ψN it is necessary to specify the normal-
ization condition,∫

|ψN (r, t)|2dr = N . (5.198)

Equation (5.197) is known as the Gross-Pitaevskii equation or also as the
nonlinear Schrödinger equation. Its time-independent version reads,(

− h̄
2

2m
∆+ V (r)

)
ψN (r) + ψN (r)

∫
|ψN (r′)|2W (r − r′) dr′

= µψN (r) , (5.199)

where we have written the chemical potential µ for the energy εgs of the
single-particle ground state, in accordance with the conditions for condensa-
tion described in Sect. 5.4.1.

The two-body potential W may be expected to disturb the independent-
particle picture only weakly, if its range is short compared to the spatial
extension of the condensate wave function ψN . In this case we may approxi-
mate

∫ |ψN (r′)|2W (r−r′) dr′ by |ψN (r)|2 ∫ W (r′) dr′ in (5.197) and (5.199).
According to (4.19), the spatial integral over the potential W is, except for
a constant, identical to the low-energy limit of the Born approximation fB

to the amplitude for particle-particle scattering under the influence of the
two-body potential W ,∫

W (r′) dr′ = − lim
k→0

4πh̄2

m
fB . (5.200)

[Remember that the reduced mass of relative motion of two particles of massm
is m/2.] In the low-energy limit the scattering amplitude (4.23) reduces to the
partial wave amplitude fl=0 for the s-wave, which in turn can be expressed via
the scattering length α0 according to (4.27), (4.39), fl=0 = (1/k) sin δl=0 +
. . . = −α0 + O(k) for k → 0. If the effect of the interaction is sufficiently
weak, we may identify fB with −α0 and obtain the following generally used
forms [DG97] of the time-dependent and time-independent Gross-Pitaevskii
equation:

ih̄
∂ψN

∂t
=
(
− h̄

2

2m
∆+ V (r) +

4πh̄2

m
α0|ψN (r, t)|2

)
ψN (r, t) , (5.201)

(
− h̄

2

2m
∆+ V (r) +

4πh̄2

m
α0|ψN (r)|2

)
ψN (r) = µψN (r) . (5.202)

The effect of two-body interactions on the condensate wave function is thus,
in a first approximation, controlled by the scattering length of the two-body
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potential. The importance of atom-atom collisions for the understanding of
Bose-Einstein condensates has rekindled interest in quantum and semiclassical
analyses of the atom-atom interaction, in particular in the regime of extremely
low energies [Jul96, MW96, CH96, TE98, EM00]. In certain cases it is actually
possible to tune the scattering length of the atom-atom interaction by varying
the strength of an external magnetic field [CC00]. This works via a near-
threshold Feshbach resonance in an inelastic channel of the atom-atom system.
The energy ER of such a Feshbach resonance relative to the elastic-channel
threshold generally depends on the strength of the magnetic field, so it can
be tuned to any small positive or negative value simply by adjusting the field
strength appropriately. The leading contribution to the scattering length is
proportional to 1/ER as described by (4.77) in Sect. 4.1.3.

The condensate wave function ψN can be obtained by numerical solution
of the Gross-Pitaevskii equation. An example has been given by Dalfovo et al.
[DP96] for the case of a cylindrically symmetric harmonic external potential,

V (r) =
m

2
ω2
⊥(x2 + y2 + λ2z2) . (5.203)

Calculations were performed for a perpendicular oscillator width, β⊥ =√
h̄/(mω⊥) cf. (1.83), of 1.222×10−4 cm corresponding to about 23000 Bohr

radii, and the frequency ratio λ was chosen as
√

8. The physical parameters
of the particles correspond to 87Rb atoms; the scattering length α0 was taken
to be 100 Bohr radii and positive, corresponding to a repulsive atom-atom
potential; the number of atoms in the condensate was assumed to be 5000.
The resulting wave function along the x-axis perpendicular to the axis of sym-
metry is shown in Fig. 5.27. The dashed line shows the x-dependence of the
wave function in the non-interacting case, where it is just the Gaussian for
the harmonic oscillator ground state. The solid line shows the result of nu-
merically solving the Gross-Pitaevskii equation (5.202). The repulsive atom-
atom interaction clearly stretches and flattens the profile of the wave func-
tion. The dash-dotted line in Fig. 5.27 shows the result corresponding to
|ψN (r)|2 = [m/(4πh̄2α0)][µ − V (r)], which is obtained simply by neglect-
ing the kinetic energy term −[h̄2/(2m)]∆ψN in the Gross-Pitaevskii equation
(5.202). This so-called “Thomas-Fermi approximation” implies a large prod-
uct of scattering length and density; it describes the profile of the condensate
wave function in Fig. 5.27 quite well in the interior but poorly near the surface.

One example of differences between homogeneous and confined conden-
sates is provided by work [OS97, DG97] on the excitation spectrum of a
trapped condensate. Excitations of the condensate wave function are described
in the framework of the Hartree-Fock approximation as one-particle-one-hole
excitations, in which one of the particles occupies an excited single particle
state rather than the ground state ψ, cf. Sect. 2.3.1. A further reaching the-
ory due to Bogoliubov is based on the concept of quasiparticles, which is more
general, because a single-quasiparticle state involves a superposition of occu-
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Fig. 5.27. Ground state wave
function ψN (x, 0, 0) (in arbitrary
units) for a Bose-Einstein con-
densate of 5000 87Rb atoms in
the external potential (5.203).
The length labelling the ab-
scissa is in units of the oscil-
lator width β⊥. The solid line
shows the solution of the Gross-
Pitaevskii equation, the dashed
line is the Gaussian grond state
harmonic oscillator wave func-
tion describing the non-interacting
case, and the dot-dashed line
is the result of the Thomas-
Fermi approximation, ψN (r) =√

[m/(4πh̄2α0)][µ − V (r)] (From
[DP96])

pied and unoccupied particle states, see e.g. [ED96]. Bogoliubov’s theory has
a long history of successful applications to the description of superfluidity in
condensed matter and nuclear physics. It is able to describe collective exci-
tations such as the phonons in a homogeneous Bose-Einstein condensate, but
as a generalization of the Hartree-Fock approximation it can also account for
excitations dominantly of a single-particle nature.

Dalfovo et al. [DG97] have recently used Bogoliubov theory to calculate
the excitation spectrum of a condensate of 10000 Rubidium atoms in a spher-
ical external harmonic oscillator potential of oscillator width 0.791×10−4 cm
corresponding to about 15000 Bohr radii; the (positive) scattering length is
110 Bohr radii. The excitation spectrum obtained in this way is shown in the
top half of Fig. 5.28. The bottom half shows the spectrum obtained in the
Hartree-Fock approximation, in which the quasiparticles of Bogoliubov the-
ory reduce to single particle excitations. The lengths of the lines in Fig. 5.28
are proportional two 2l + 1, where l is the orbital angular momentum quan-
tum number of the respective state. Also shown in Fig. 5.28 are the chemical
potential µ, which follows from the solution of the Gross-Pitaevskii equation
(5.202) for the ground state of the condensate, and critical temperature kBTc

which would apply in the case of non-interacting particles in the given exter-
nal potential. In the non-interacting case the chemical potential is equal to
the energy 3

2 h̄ω of the non-degenerate single-particle ground state, and the
excitation spectrum consists of positive integral multiples of h̄ω.

The lowest few excitations shown in the top half of Fig. 5.28 correspond
to collective phononic excitations and cannot be accounted for in the sim-
ple Hartree-Fock approach based on single-particle excitations. Apart from
these very low states, the Hartree-Fock approach does however reproduce the
general structure of the excitation spectrum well, even for excitation energies
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Fig. 5.28. Excitation spectrum of
a Bose-Einstein condensate of 10000
rubidium atoms in a spherically sym-
metric harmonic potential with fre-
quency parameter ω. The top half
shows the results derived using Bo-
goliubov theory, the bottom half is
based on simple single-particle exci-
tations. The lengths of the lines are
proportional to 2l + 1, where l is
the orbital angular momentum quan-
tum number. µ labels the chemical
potential obtained from the solution
of the Gross-Pitaevskii equation for
the ground state wave function, kBTc

denotes the critical temperature for
non-interacting bosons in the exter-
nal harmonic oscillator potential. All
energies are in units of h̄ω = hνHO

(From [DG97])

lower than the chemical potential. The occurrence of single-particle excita-
tions at low energies is attributed the existence of a surface region where the
density is low, cf. Fig. 5.27, and hence is a characteristic feature in which
confined systems differ from homogeneous Bose gases [DG97].

5.4.3 Realization of Bose-Einstein Condensation in Atomic Gases

In order to experimentally realize Bose-Einstein condensation in an atomic
gas, it is necessary to accumulate a large number of atoms at very low tem-
perature. Neutral atoms can be trapped in an inhomogeneous magnetic field,
provided they have a substantial magnetic dipole moment, as is the case for
alkali atoms. Deceleration of moving atoms can be achieved by irradiation
with laser light which is tuned to be selectively absorbed by the faster atoms.
Modern procedures are quite intricate and subtle and involve e.g. the intel-
ligent exploitation of the hyperfine structure of the atomic sublevels, which
are temporarily populated in order to shield the coldest atoms from emission
and absorption of photons and hence optimize their survival rates. Progress in
the development of techniques for trapping and cooling atoms was rewarded
in 1997 by the award of the Noble Prize in Physics to S. Chu, C. Cohen-
Tannoudji and W. Phillips.

A further process, viz. evaporative cooling, proved vital in achieving tem-
peratures low enough at densities high enough to enable condensation. A
radio-frequency magnetic field causes a spin-flip in the faster atoms near the
edge of the sample, these are no longer trapped and evaporate, thus cool-
ing the sample. The radio frequency is continuously reduced, thus peeling off
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layer after layer of comparatively faster atoms. The final frequency νevap is a
measure for the temperature of the atoms remaining in the sample.

The procedure sketched above was applied in 1995 by Anderson et al.
[AE95] at the Joint Institute for Labotoratory Astrophysics (JILA) in Boul-
der, Colorado, and by Davis et al. [DM95b] at the Massachussetts Institute
of Technology (MIT) to cool trapped samples of alkali atoms. The velocity
distribution of the atoms was then determined by time-of-flight measurements
after the confining trap potential had been switched off. Resulting velocity dis-
tributions are shown in Fig. (5.29) for different values of the radio frequency
νevap which steeres the evaporative cooling process and determines the final
temperature of the sample. The left-hand part of the figure shows the results
of Anderson et al. [AE95] who cooled a vapour of 87Rb atoms. As νevap falls
below 4.25 MHz, an increasing fraction of the sample belongs to a sharp peak
around velocity zero. This is seen as evidence of condensation of this fraction
of atoms to the lowest quantum state in the trap potential. The sample at
4.25 MHz, where the transition begins, has a temperature of 1.7×10−7 ◦K and
contains 2×104 atoms at a number density of 2.6×1012 per cubic centimetre;
this corresponds to � = 0.3/λ(T )3, cf. (5.189). Near 4.1 MHz the sample still
contains 2000 atoms which are virtually all in the condensate. The right-hand
part of Fig. (5.29) shows the analogous results of Davis et al. [DM95b], who
worked with sodium atoms. Here the condensation of atoms sets in at a fre-
quency of 0.7 MHz, where the temperature of the sample is estimated to be
2×10−6 ◦K. Davis et al. observed condensates of up to 5×105 atoms at number
densities up to 1014 cm−3.

The pioneering experimental work at JILA and MIT in 1995 established
the existance of Bose-Einstein condensates of atomic gases and was rewarded
with the Nobel Prize in Physics in 2001, which was awarded in equal parts
to Eric Cornell, Wolfgang Ketterle and Carl Wieman. It is remarkable that,
after the 1997 Nobel Prize mentioned above, a further Prize was awarded for
such closely related achievements only four years later. This shows that the
importance of the new devolopments related to cold atoms is well appreciated
in the academic community.

Many other groups have since succeeded in manufacturing Bose-Einstein
condensates. Subsequent work concentrated on understanding the properties
of this new state of matter and focussed e.g. on the internal energy and the
specific heat of condensates, on the stability of condensates of atoms with
attractive interactions, on the collective and single-particle excitations of con-
densates (cf. Sect. 5.4.2), on collisions between two condensates, and on the
possibility of constructing intensive coherent atomic beams analogous to laser
beams [Ket97].

Further breakthroughs have been made recently in the observation of Bose-
Einstein condensates of diatomic molecules [JB03], which are of particular
interest when the individual atoms are fermionic [RG04]. In the latter refer-
ence, Regal et al. describe a system of cold fermionic atoms (40K) which is
subjected to an external magnetic field in order to tune the atom-atom scat-



402 5 Special Topics

Fig. 5.29. Velocity distributions of atoms released from a magneto-optical trap after
being evaporatively cooled. The various curves correspond to different final radio
frequencies νevap which steer the evaporative cooling process and are a measure for
the temperature of the sample. The left-hand part of the figure shows the results of
Anderson et al. for samples of 87Rb atoms (from [AE95]), the right-hand part of the
figure shows the results of Davis et al. for samples of sodium atoms (from [DM95b])

tering length α0 via an appropriate Feshbach resonance, as described at the
end of the paragraph containing equations (5.201) and (5.202) in Sect. 5.4.2.
When the energy of the Feshbach resonance is marginally below the elas-
tic threshold of the atom-atom system, the atoms pair off in weakly bound
diatomic molecules which are bosonic and form a molecular Bose-Einstein
condensate. When the energy of the Feshbach resonance is marginally above
the threshold, it no longer supports such weakly bound molecules. On this
“attractive side of the Feshbach resonance” (so called because of the negative
scattering length, see (4.77) in Sect. 4.1.3), Regal et al. infer a condensation
of fermionic atom pairs similar to the formation of Cooper pairs in the BCS
theory of superfluids [DL05]. (See also [CS05].)

5.5 Some Aspects of Atom Optics

When experimenting with ultra-cold atoms under extremely quantum me-
chanical conditions it is helpful to be able to guide and manipulate the atomic
matter waves in much the same way as electromagnetic waves can be guided
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and manipulated in optical devices. One obvious difference between atom
waves and light is the rich internal structure of an atom which allows a large
variety of inelastic processes in addition to conventional reflection and refrac-
tion. Beside this, there are several similarities but also essential differences in
the properties of matter waves and light waves.

For stationary states of a particle of mass M moving with energy E =
h̄2k2/(2M) under the influence of a potential V (r) = v(r) h̄2/(2M), the time-
independent Schrödinger equation is,(

∆− v(r) + k2
)
ψ(r) = 0 , (5.204)

which has essentially the same structure as the wave equation for light with
a spatially varying index of refraction proportional to

√
k2 − v(r). Hence

some results of conventional wave optics can be transferred to the atom-wave
situation. However, typical potentials occuring in atomic systems do not nec-
essarily correspond to the behaviour of the index of refraction for typical
optical systems, so many problems arising in atom optics have not received
the corresponding attention in the optical community.

The time-dependent wave equations for massive particles and for light
contain an essential difference in the terms involving time derivatives. The
time-dependent Schrödinger equation (1.154) contains the first derivative with
respect to time, whereas the wave equation (2.152) for electromagnetic waves
contains the second derivative. Whenever time evolution is important, the
behaviour of the quantum mechanical matter wave can be expected to be
different from the behaviour of an electromagnetic wave. E.g. for a plane
monochromatic wave whose amplitude is a function of k ·r−ωt, the frequency
ω and wave vector k are connected via the dispersion relation. For a particle
wave described by the Schrödinger equation this is given by (1.161), whereas
for an electromagnetic wave the dispersion relation is

ω = ck = c
√

k · k . (5.205)

As a consequence, the wave packet of electromagnetic waves in the vacuum,
or in a dielectric medium with constant index of refraction, does not show the
spreading decribed in Sect. 1.4.1 for matter waves.

When constructing wave guides for atoms or other atom-optical devices it
is desirable to keep the atoms away from material surfaces in order to avoid
unwanted inelastic reactions and adsorption (“sticking”). This is a nontrivial
problem, because atom-wall interactions generally feature long-ranged attrac-
tive potential tails as described in Sect. 5.5.1. One technique of keeping atoms
away from surfaces is based on evanescent-wave mirrors, which exploit forces
generated by laser light as explained in Sect. 5.5.2. Finally, Sect. 5.5.3 de-
scribes the phenomenon of quantum reflection, through which atoms can be
reflected by the nonclassical region of the attractive tail of an atom-surface
potential before they come close to the surface. [A detailed review of quantum
reflection is contained in Chap. 5 of [FT04].] This section gives only a brief
introduction to these few aspects of the interesting and highly topical field of
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atom optics. For a comprehensive coverage of the field the reader is referred
to the recent book by Meystre [Mey01].

5.5.1 Atom-Wall Interactions

In order to understand or construct an atom-optical device it is important
to understand the interaction of the atom waves with the surfaces defining
the device. At close distances of the order of a few atomic units, the atom-
surface interaction is strongly influenced by the forces between the individual
electrons in the atom and the electrons and ions in the surface, and it is quite
complicated. Beyond this “close” region of a few atomic units, the atom-
surface interaction becomes weaker and is well described by a simple local
potential.

Let us first consider the interaction of a neutral polarizable particle with a
perfectly conducting plane wall. Assume that the wall lies in the half-space z ≤
0 and that the particle is located at a distance z > 0 from the surface, which
lies in the xy-plane. The presence of the particle leads to induced charges
on the surface of the wall, and these induced charges generate an electric
field which seems to come from a mirror-image particle located at a distance
z behind the surface. Since the particle is electrically neutral, the leading
contributions come from its electric dipole moment d which is subjected to
the influence of the apparent image dipole d′ as illustrated in Fig. 5.30. The
potential energy of such a system of two dipoles is the dipole-dipole interaction
[Jac75]

V =
1
D3

[
d · d′ − 3(e · d)(e · d′)

]
, (5.206)

where D is the spatial separation of the two dipoles and e is the unit vector
pointing from one to the other. In the situation illustrated in Fig. 5.30, e

dd’

z

Fig. 5.30. Schematic illustration of a dipole in front of a conducting wall together
with its image dipole
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is the unit vector in z direction, i.e. normal to the surface of the wall, the
separation D is 2z and the dipole moments are related by d′⊥ = d⊥ and
d′
‖ = −d‖. (The subscript ⊥ denotes the component normal to the surface

and the subscript ‖ denotes the projection of the vector onto the xy-plane
parallel to the surface.) Furthermore, the potential energy of the atom in the
electric field of the induced charges on the surface of the wall is only half the
potential of the (fictitious) dipole-dipole system, because the electric field in
the half-space z < 0 containing the conducting wall actually vanishes. This
gives the electrostatic van der Waals potential between a neutral particle and
a conducting wall,

V vdW(z) = − 1
16z3

[
(d‖)2 + 2(d⊥)2

]
. (5.207)

When the polarizable particle is a neutral atom in a quantum mechanical
stationary eigenstate ψ0, (5.207) is readily adapted to

V vdW(z) = −C3

z3
, C3 =

1
16z3

〈ψ0|(d̂‖)2 + 2(d̂⊥)2|ψ0〉 ; (5.208)

now d̂ stands for the dipole operator (2.186) of the atomic electrons,

d̂ = −e
Z∑

i=1

ri , (5.209)

where Z is the total number of electrons in the (neutral) atom. Note that the
components of the dipole operator enter quadratically on the right-hand side
of (5.208), so we get non-vanishing contributions even when ψ0 is a parity
eigenstate with no permanent dipole moment. If the atom is in a spherical
state, the expectation value of (d̂‖)2 = (d̂x)2 + (d̂y)2 is twice the expectation
value (d̂⊥)2 = (d̂z)2, so

C3 =
1
12

〈ψ0|d̂2|ψ0〉 =
1
12

∑
n

〈ψ0|d̂|ψn〉〈ψn|d̂|ψ0〉 . (5.210)

The far right-hand side of (5.210) contains the sum over a complete set of
eigenstates of the atom (including continuum states) and exposes the potential
strength as a sum of contributions corresponding to dipole transitions from
the initial state to all possible states of the atom. In 1948 Casimir and Polder
pointed out [CP48] that the electrostatic formula (5.208) only applies for
distances z smaller than the wavelengths of all non-vanishing transition matrix
elements contributing to the sum,

z � λ̄0,n , λ̄0,n =
λ0,n

2π
=

h̄c

|En − E0| ; (5.211)

En is the energy eigenvalue of the atomic eigenstate ψn. At distances larger
than the relevant transition wavelengths of the atom, the corresponding tran-
sition time becomes shorter than the time a light signal needs to travel be-
tween the atom and the wall. We can no longer ignore relativistic effects
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(“retardation”) and radiative corrections accounting for the modification of
the electromagnetic vacuum through the presence of the atom and the wall.
These effects are discussed in detail in [CP48, Bar74, Har90], and they depend
crucially on whether the atom is in its ground state or in a metastable state,
or if there are non-vanishing dipole transition matrix elements to lower-lying
states. If the wall is not perfectly conducting, then a more sophisticated theory
is necessary to take this into account.

If the deviations from perfect conductivity are accurately described by a
fixed dielectric constant ε, then the interaction between an atom in a spherical
ground state or a metastable state and the dielectric wall can be compactly
written (in atomic units) as [TS93, YD97]

Vε(z) = − (αfs)3

2π

∫ ∞

0

αd(iω)ω3

∫ ∞

1

exp (−2ωzpαfs)h(p, ε)dpdω , (5.212)

where

h(p, ε) =
s− p
s+ p

+ (1 − 2p2)
s− εp
s+ εp

, with s =
√
ε− 1 + p2 ; (5.213)

αfs ≡ 1/c = 0.007297353 . . . is the fine-structure constant and ε is the dielec-
tric constant of the wall; αd is the frequency-dependent dipole polarizability
of the projectile atom in its eigenstate ψ0, see (3.288) in Sect. 3.5.3,

αd(iω) =
∑

n

2(En − E0)
|〈ψ0|

∑Z
j=1 xj |ψn〉|2

(En − E0)2 + ω2
. (5.214)

For a perfectly conducting surface, a simpler formula is obtained by taking
ε→ ∞ in (5.213) and integrating over p in (5.212),

V∞(z) = − 1
4πz3

∫ ∞

0

αd(iω)
[
1 + 2αfsωz + 2(αfsωz)2

]
exp (−2αfsωz) dω

= − 1
4παfsz4

∫ ∞

0

αd

(
i
x

αfsz

)
[1 + 2x+ 2x2] exp (−2x) dx . (5.215)

For small z values, we can put z = 0 in the upper line of (5.215) and obtain
the van der Waals potential between the atom and a conducting surface,

V vdW
∞ (z) = −C3(∞)

z3
, C3(∞) =

1
4π

∫ ∞

0

αd(iω)dω . (5.216)

Inserting the expression (5.214) for αd(iω) and using
∫∞
0

dω/(η2 + ω2) =
π/(2|η|) brings us back to (5.210). For finite values of the dielectric constant
ε, the derivation of the small-z behaviour of the potential is a bit more subtle,
but the result is quite simple [TS93, YB98],

V vdW
ε (z) = −C3(ε)

z3
, C3(ε) =

ε− 1
ε+ 1

C3(∞) . (5.217)

For large z values, we can assume the argument of αd in the lower line
of (5.215) to be zero and perform the integral over x. This gives the highly
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retarded limit of the Casimir-Polder potential between the atom and a con-
ducting surface,

V ret
∞ (z) = −C4(∞)

z4
, C4(∞) =

3
8π
αd(0)
αfs

. (5.218)

For finite values of the dielectric constant ε, we have [YD97, YB98]

V ret
ε (z) = −C4(ε)

z4
, C4(ε) =

ε− 1
ε+ 1

φ(ε)C4(∞) , (5.219)

where φ(ε) = 1
2

ε+1
ε−1

∫∞
0
h(p+1, ε)(p+1)−4dp is a well defined smooth function

which increases monotonically from the value 23
30 for ε = 1 to unity for ε→ ∞.

Explicit expressions for φ(ε) and a table of values are given in [YD97].
The atom-surface potential behaves as −C3/z

3 for “small” distances
[(5.216), (5.217)] and as −C4/z

4 for large distances [(5.218), (5.219)]. The
ratio

L =
C4

C3
=

(β4)2

β3
(5.220)

defines a length scale separating the regime of “small” z values, z � L,
from the regime of large z values, z  L. In (5.220) we have introduced the
parameters β3 and β4 which express the potential strength in the respective
limit in terms of a length, as for the homogeneous potentials (3.1) discussed
in Sect. 3.1.

The expressions (5.212) and (5.215) were evaluated for the interaction of a
hydrogen atom with a conducting surface by Marinescu et al. [MD97] and for
the interaction of metastable helium 2 1S and 2 3S atoms with a conducting
surface (ε = ∞) and with BK-7 glass (ε = 2.295, φ(ε) = 0.761425) and fused
silica (ε = 2.123, φ(ε) = 0.760757) surfaces by Yan and Babb [YB98]. A list
of the potential parameters determining the “short”-range and the long-range
parts of the respective potentials is given in Table 5.2.

The lengths β3 and β4 are natural length scales corresponding to typical
distances where quantum effects associated with the “short”- or long-range
part of the potential are important. These distances are of the order of hun-
dreds or thousands or even tens of thousands of atomic units. The words
“small” or “short” refer to lengths which are small compared to these very
large distances, a few tens of atomic units, say, but larger than the close dis-
tances of a few atomic units, where more intricate details of the atom-surface
interaction involving the microscopic structure of the atom and of the surface
become important.

For the potential (5.215) between the atom and a conducting surface, we
can also make some general statements about the next-to-leading terms at
large and “small” distances. For large distances we can exploit the fact that
the dipole polarizability (5.214) is an even function of the imaginary part of its
argument, so V∞(z) as given in the second line of (5.215) is an even function
of 1/z and the next term in the large-distance expression (5.218) must fall off
at least as 1/z6,
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Table 5.2. Parameters determining the “short”-range behaviour (5.216), (5.217)
and the long-range behaviour (5.218), (5.219) of the atom-surface potentials calcu-
lated by Marinescu et al. [MD97] for hydrogen and by Yan and Babb [YB98] for
metastable helium. The length L is the distance (5.220) separating the regime of
“small” distances from the regime of large distances; ρqr = β3/β4 is the parameter
determining the relative importance of the “small”-distance regime and the large-
distance regime for quantum reflection, see (5.271) in Sect. 5.5.3. All quantities are
in atomic units.

atom H He(21S) He(23S)
ε ∞ ∞ 2.295 2.123 ∞ 2.295 2.123

C3 0.25 2.6712 1.0498 0.9605 1.9009 0.7471 0.6836
C4 73.61 13091 3918 3582 5163 1545 1413
β3 919 38980 15320 14017 27740 10902 9975
β4 520 13820 7561 7230 8680 4748 4540

L 294 4901 3732 3729 2716 2068 2067
ρqr 1.77 2.82 2.03 1.94 3.20 2.30 2.20

V∞(z) z→∞∼ −C4

z4
+O

(
1
z6

)
. (5.221)

For small distances z we can calculate a correction to the expression (5.216)
via a Taylor expansion of the integral in the first line of (5.215),

V∞(z) = −I(z)
z3

z→0∼ − 1
z3

(
I(0) + z

dI
dz

∣∣∣∣
z=0

)
with I(0) = C3(∞) and

I(z) =
1
4π

∫ ∞

0

αd(iω)
[
1 + 2αfsωz + 2(αfsωz)2

]
exp (−2αfsωz) dω ,

dI
dz

= − 1
π

∫ ∞

0

αd(iω) (αfsω)3 z2 exp (−2αfsωz) dω

= −αfs

4π

∫ ∞

0

αd

(
iy

2αfsz

)[
y

2αfsz

]2

y exp (−y) dy . (5.222)

The last line in (5.222) follows from the second-last line via a change of vari-
able, y = 2αfsωz, ω = y/(2αfsz). The limit of small z corresponds to the limit
of large ω and with (5.214) we have

lim
ω→∞αd(iω)ω2 =

∑
n

2(En − E0)|〈ψ0|
Z∑

j=1

xj |ψn〉|2 = Z . (5.223)

The fact that the sum over n in (5.223) reduces to the total number Z of
electrons in the atom is just the sum rule (2.220) formulated in Sect. 2.4.6. In
the limit z → 0, the product of the dipole polarizability and the square of the
square bracket in the integrand in the last line of (5.222) can thus be replaced
by Z,

dI
dz

∣∣∣∣
z=0

= −Zαfs

4π

∫ ∞

0

y exp (−y) dy = −Zαfs

4π
. (5.224)
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The leading and next-to-leading contributions to the potential between the
atom and the conducting wall at “small” distances are thus,

V∞(z) z→0∼ −C3(∞)
z3

+
Zαfs

4π
1
z2
. (5.225)

Remember that “small” means small compared to the lengths listed in Ta-
ble 5.2, but this can still be quite large in atomic units. The second term on
the right-hand side of (5.225), i.e. the leading retardation correction to the
van der Waals potential between an atom and a conducting surface at “small”
distances, was first derived by Barton for one-electron atoms in 1974 [Bar74].
An intriguing feature of this correction is, that it is universal: it depends only
on the number Z of electrons in the atom and not on its eigenstate ψ0.

If we factor the van der Waals term out of the potential,

V (z) = −C3

z3
v , (5.226)

then the transition from the “small”-distance regime to the large-distance
regime is contained in the shape function v, which tends to unity for “small”
distances and behaves as (C4/C3)/z = (z/L)−1 at large distances. A simple
rational approximation which fulfills these boundary conditions is

v
( z
L

)
=

1 + ξ z/L
1 + η z/L+ ξ(z/L)2

, (5.227)

containing two parameters η and ξ. For the simplest case of a ground-state
hydrogen atom in front of a conducting wall, the static dipole polarizability
which determines the coefficient of the asymptotic −1/z4 part of the poten-
tial according to (5.218) is known, αd(0) = 9/2 au, see Problem 3.9. Also,
the expectation value of r2 which determines the van der Waals coefficient
according to (5.209), (5.210) is known [BS77] to be 〈ψ0|r2|ψ0〉 = 3 au, so in
this case,

C3 =
〈ψ0|r2|ψ0〉

12
= 0.25 au , C4 =

3αd(0)
8παfs

≈ 73.61 au . (5.228)

In the rational approximation (5.227) for the shape function, the parameter
η must be unity in order to reproduce the next-to-leading behaviour (5.221)
at large distances, and the parameter ξ must be chosen as

ξ = 1 − Zαfs

4π
C4

(C3)2
(5.229)

in order to reproduce the universal next-to-leading correction at “small” dis-
tances (5.225). For the hydrogen atom in front of a conducting wall we have
Z = 1 and the values (5.228) giving ξ = 0.31608 . . .. The rational approxi-
mation (5.227) thus leads to the following atom-surface potential (in atomic
units),
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VH(z) = −C3

z3

[
1 + ξ z/L

1 + z/L+ ξ(z/L)2

]
,

C3 = 0.25 au , ξ = 0.31608 . . . , L = C4/C3 ≈ 294 au . (5.230)

This expression does in fact approximate the exact potential between a
ground-state hydrogen atom and a conducting wall very well as illustrated
in Fig. 5.31, where it is compared to the numerical results calculated and
tabulated in [MD97]. The rational approximation (5.230) actually reproduces
the numerical values to within a relative error of 0.6% in the whole range of
z values.

0 5 10
z/L
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Fig. 5.31. Shape function
for the potential between a
ground-state hydrogen atom
and a conducting wall. The
solid line shows the quotient
in the square bracket on the
right-hand side of (5.230);
the filled diamonds show the
exact numerical results cal-
culated by Marinescu et al.
[MD97]

The large-distance behaviour of the atom-surface potential becomes more
complicated, when the atom is not in its ground state or a metastable state,
but rather in an excited state with non-vanishing dipole matrix elements to
lower-lying states. For more detailed discussions see [Bar74] and [Har90]. For
the case of a conducting surface, the asymptotic behaviour of the atom-surface
potential is (in atomic units) [Bar74],

V (z) z→∞∼ −C4

z4
+
∑

n

Θ(E0 − En)
|λ̄0,n|3

×
[
|〈ψn|d̂‖|ψ0〉|2

(
cos (ζn)
ζn

− sin (ζn)
(ζn)2

− cos (ζn)
(ζn)3

)

− 2|〈ψn|d̂⊥|ψ0〉|2
(

sin (ζn)
(ζn)2

+
cos (ζn)
(ζn)3

)]

+ O

(
1

(ζn)6

)
. (5.231)

Here C4 is as defined in (5.218), d̂‖ and d̂⊥ are the parallel and normal parts
of the dipole operator (5.209) and ζn = 2z/λ̄0,n is the n-dependent ratio of
the round-trip distance from the atom to the wall and back and the transition
wavelength λ̄0,n connecting the initial state ψ0 to the respective lower-lying
state ψn, cf. (5.211). The first term −C4/z

4 on the right-hand side of (5.231)
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only represents the leading asymptotic behaviour of the atom-surface potential
at large distances if there are no lower-lying states with non-vanishing dipole
transition matrix elements. Otherwise the sum over n contributes terms of
longer range with coefficients that oscillate as functions of z. The theta func-
tion in the sum ensures that only lower-lying states contribute to this term.
The wavelengths of the oscillations are just half the transition wavelengths
λ0,n (without bar) to the lower-lying states. An interesting special case arises
for the metastable 2S state of the hydrogen atom[FJ05]; it is connected via
a non-vanishing dipole matrix element to the 2P state, with which it can be
considered degenerate as long as the effects of relativity and quantum electro-
dynamics (Lamb shift) on the atomic structure are negligible.

The effect of further details of the structure of the atom, the surface
and the electromagnetic field in between on the interaction between an atom
and a surface have recently been receiving increasing attention. For example,
Al-Amri and Babiker [AB04] investigated the influence of replacing the empty
space in front of a conducting wall by a dielectric medium, and Shresta et al.
[SH03] studied the effects of the movement of the atom on the various correc-
tions to the atom-wall potential. Babb et al. [BK04] studied the joint effect of
the dynamic polarizability of the atom, finite conductivity of the wall metal
and nonzero temperature of the system. A rough estimate of where a finite
surface temperature T might affect the derivation of the atom-surface poten-
tials above can be obtained by comparing the thermal energy kBT with the
corresponding photon energy h̄ω = 2πh̄c/λ. One degree Kelvin corresponds
to roughly 3 × 10−6 au and a wavelength of roughly 3 × 108 au. A wall at
room temperature, T ≈ 300 K, can thus be expected to substantially modify
the results derived for zero temperature at distances near 106 au and larger.

5.5.2 Evanescent-Wave Mirrors

A neutral polarizable atom in an electric field acquires an induced electric
dipole moment and, if the field is non-homogeneous, it exerts a force on the
induced dipole. This is one way of understanding the polarization potential
(4.52) between an atom and a charged particle. Electromagnetic light fields
can also exert forces on polarizable atoms if they are strong enough, and this is
the case for sufficiently intense lasers. The forces which an intense light field
exerts on an atom can be understood on the basis of the simplest possible
nontrivial model of the atom, namely the “two-level atom” which has only
two internal stationary eigenstates, the ground state |g〉 and the excited state
|e〉.

The Hamiltonian ĤA describing the centre-of-mass motion and the internal
structure of such a two-level atom of mass M is,

ĤA =
p̂2

2M
+ h̄ω0|e〉〈e| . (5.232)
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We have written the excitation energy of the excited state in terms of the
frequency ω0, so the wave functions solving the time-dependent Schrödinger
equation with the Hamiltonian (5.232) are

|g〉 or |e〉 e−iω0t (5.233)

multiplied by a wave function ψ(r, t) describing the free-particle motion of
the centre of mass of the atom.

The dipole operator describing the internal dipole moment of the two-level
atom is introduced as

d̂ = d ed(|e〉〈g| + |g〉〈e|) . (5.234)

As for realistic atoms, where the expectation value of the dipole operator
vanishes in eigenstates of given parity (see Sect. 2.4.5), the expectation value
of the operator (5.234) vanishes in both states of the two-level atom, but the
transition matrix element connecting the two states is finite,

〈g|d̂|g〉 = 〈e|d̂|e〉 = 0 , 〈g|d̂|e〉 = 〈e|d̂|g〉 = d ed . (5.235)

The (real) parameter d describes the strength of the dipole transition and
the unit vector ed describes the orientation of the dipole; such a vector of
orientation has to be included explicitly, because the two-level atom has no
internal spatial coordinates.

Let us now look at the effect on the atom of a light field oscillating with
a frequency ω. The difference between this frequency and the resonance fre-
quency ω0 of the two-level atom is the detuning

δ = ω − ω0 . (5.236)

The light field is described classically, and the electric field at the position r
of the atom is written as

E(r) = ε E(r) cos [ωt+ Φ(r)] , (5.237)

where ε is a vector describing the direction (polarization) of the field, E(r)
is a slowly varying amplitude factor and Φ(r) is a spatially varying phase
which, e.g. for a monochromatic wave with wave vector k, is simply −k · r.
The interaction energy of the dipole (5.234) with the electric field (5.237) is

ĤAL = −d̂ · E(r) = h̄Ω(r) cos (ωt+ Φ)(|e〉〈g| + |g〉〈e|) with
Ω(r) = −d (ε · ed) E(r)/h̄ . (5.238)

Here Ω(r) is the Rabi frequency; when ε, E and Φ are all independent of r,
the time-dependent Schrödinger equation with the Hamiltonian ĤA + ĤAL

has approximate solutions in which the internal state of the atom oscillates
between |g〉 and |e〉 with a frequency near Ω.

The influence of the dipole coupling term (5.238) on the centre-of-mass
motion of the atom depends on the internal state of the atom. Transitions
between the ground state and the excited state are forced by the external light
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field, but additionally the excited state can decay via spontaneous emission
with a rate given by (2.192), (2.193) in Sect. 2.4.4,

P =
4
3
d2ω3

0

h̄c3
. (5.239)

The decay rate (5.239) corresponds to a width Γ = h̄P of the excited state
of the free (i.e. without external field) two-level atom, see Sect. 2.4.1. Sponta-
neous emission brings a statistical element into the internal dynamics of the
atom, so it is appropriate to describe its internal state via the von Neumann
equation (5.39) for the density operator

ρ̂int = ρgg|g〉〈g| + ρge|g〉〈e| + ρeg|e〉〈g| + ρee|e〉〈e| . (5.240)

In this way, it is also possible to describe dissipative effects, as are exploited
in “laser cooling”. Here an atom moving upstream in a laser beam absorbs
photons (and their momentum) and spontaneously re-emits them in arbitrary
directions, which leads to a net loss of momentum.

The time evolution of the density matrix (5.240) is influenced by the sat-
uration parameter

s =
1
2

Ω(r)2

δ2 + (P/2)2
. (5.241)

For large values of the saturation parameter, the internal state of the atom
evolves into a steady configuration in which both the ground state and the
excited state are almost equally populated. For small values of s it evolves
into a steady configuration in which the population of the ground state is
significantly higher than the population of the excited state. Detailed analy-
sis of the equations of motion [Ash78, CD92, Mey01, For01] reveals that the
effect of the light field on the centre-of-mass motion of the atom due to the
dipole coupling term (5.238) contains a conservative and a dissipative compo-
nent, and that the conservative component is well described by the effective
potential

Vdip(r) =
h̄δ

2
ln
(

1 +
Ω(r)2/2
δ2 + (P/2)2

)
; (5.242)

the associated force −∇Vdip is called the dipole force.
The sign of the potential (5.242) depends on the sign of the detuning

(5.236). For blue detuning, i.e. for ω > ω0, δ > 0, the potential is positive
and the atom is attracted to regions of small field intensities, it is “weak-field
seeking”. For red detuning on the other hand, i.e. for ω < ω0, δ < 0, the
potential is negative and the atom is attracted to regions of large field intensi-
ties, it is “strong-field seeking”. The possibility of exerting mechanical forces
on neutral atoms through light has paved the way to many new fascinating
experiments. One example is the trapping and guiding of atoms in an “op-
tical lattice”, which is a spatially periodic electric field due to the standing
waves generated by appropriately adjusted counter-propagating lasers, see e.g.
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Fig. 5.32. Total internal reflection of a plane wave
in a medium – with refractive index (relative to the
outside) nm – at the surface in the xy plane

[Blo04] and references therein. In this section we focus on another example
with direct practical use, namely the evanescent wave mirror.

When light in a dielectric medium is incident on a surface to an optically
less dense outside, it undergoes total internal reflection if the angle of inci-
dence θi is large enough: sin (θi) > 1/nm, where nm is the refractive index
of the dielectric medium relative to the outside. Some light does penetrate
into the outside as a decaying, “evanescent” wave characterized by a finite
penetration depth. To be precise, assume that the surface is the xy plane and
the dielectric medium is the half-space z < 0. A monochromatic plane wave is
totally reflected at the surface as sketched in Fig. 5.32. Outside the medium,
i.e. for positive z values, there is an electric field (5.237) oscillating with the
frequency ω and propagating parallel to the surface. In the normal direction,
the amplitude E decays with a penetration depth 1/κ,

E(z) = E0 e−κz , κ = k
√

(nm)2 sin2 (θi) − 1 ; (5.243)

here k is the wave number outside the medium, which is connected to the fre-
quency ω by the dispersion relation (5.205). This translates into the following
behaviour of the square of the Rabi frequency,

Ω(z)2 = (Ω0)2 e−2κz , (Ω0)2 =
d2(E0)2

h̄2 (ε · ed)2 . (5.244)

For small values of the saturation parameter (5.241) we can expand the loga-
rithm in (5.242); when the detuning (5.236) is so large that we can neglect the
contribution of the spontaneous decay rate in the demominator δ2 + (P/2)2,
the potential simplifies to

Vdip(z) =
h̄Ω(z)2

4δ
=
h̄(Ω0)2

4δ
e−2κz . (5.245)

By shining a laser into a prism so that it is totally reflected by one of
the prism surfaces, we can generate a repulsive or attractive dipole force for
atoms approaching the prism on the other side. If the laser is blue detuned with
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respect to the relevant dipole transition in the approaching atoms (δ > 0),
then the atoms are subject to a repulsive force due to the evanescent light wave
in front of the prism surface. The interaction of an atom with the surface also
contains the attractive atom-surface potential discussed in Sect. 5.5.1. If the
repulsive dipole potential is strong enough, the total atom-surface potential
has a barrier as sketched in Fig. 5.33. If the energy of the atom is lower than
the barrier height, it is reflected at the outer classical turning point of the
barrier. Thus the dipole force of the evanescent light wave helps to make a
mirror which reflects sufficiently cold approaching atoms with near to 100%
efficiency.

zprism

blue
detuned
laser

atom

effective potential

reflected

Fig. 5.33. Schematic illustration of an evanescent wave atomic mirror. The blue
detuned laser light incident on the vertical surface from the left generates a repulsive
dipole potential (5.245) which, together with the attractive atom-surface potential
discussed in Sect. 5.5.1 produces an effective potential with a barrier (From [CS98],
courtesy of Robin Côté)

The strength of the evanescent-wave potential (5.245) depends on the in-
tensity (E0)2/2 of the electric field at the surface, on the strength d of the
dipole transition matrix element (5.235), and on a factor of order unity re-
lated to the polarization of the electric field and the orientation vector ed

of the dipole transition. The electric field intensity at the surface is related
to the power of the laser light and other circumstances [For01]. For a rough
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estimate we can refer to Problem 5.1, from which it follows that a laser power
of 1017 W/cm2 corresponds to an energy density of the order of an atomic
unit. The inverse pentration depth κ is necessarily less than the wave number
nmk of the incoming wave in the prism and depends on the angle of incidence
according to (5.243). Towards the critical angle, nm sin (θi) → 1, κ tends to
zero corresponding to infinitely large values of the penetration depth.

For practical applications it is convenient to work with atoms which ap-
proximately fulfill the requirements of the two-level model with a level sep-
aration in the range of available laser frequencies. One popular choice is the
metastable 2 3S state of helium which is connected by a dipole matrix ele-
ment to the higher-lying 2 3P2 state. The transition wavelength is λ = 1083
nm = 20466 au, so ω0 = 0.04207 au. The upper 2 3P2 state can only de-
cay via spontaneous emission to the lower 2 3S state and its lifetime is 98 ns
= 4.05 × 109 au, so the spontaneous decay rate is P = 0.247 × 10−9 au; this
corresponds to a dipole strength d2 = 6.4 au according to (5.239). Dall et
al. have used evanescent light fields to guide such metastable helium atoms
through hollow optical fibres consisting of fused silica capillaries [DH99]. This
is just one example of how evanescent light fields can be used to construct
atom-optical devices.

5.5.3 Quantum Reflection

The transmission through and reflection by a potential barrier were described
in Sect. 1.4.2. For an incident particle with an energy greater than the bar-
rier height (i.e. the maximum of the potential), there is no classical turning
point; reflection of the particle is classically forbidden and is a purely quan-
tum mechanical effect. This “quantum reflection” is the above-barrier analog
of below-barrier tunnelling through the classically forbidden region in coordi-
nate space. Quantum reflection can also occur in the absence of a barrier in
a purely attractive potential. The only condition is, that there be a quantal
region of coordinate space in which the quantality function (1.298) is signifi-
cantly non-vanishing and that to either side there be semiclassical regions in
which the WKB approximation is accurate, so that we can construct solutions
of the Schrödinger equation which can unambiguously be classified as leftward
travelling or rightward travelling. A simple example is the sharp step poten-
tial, see (4.62) in Sect. 4.1.2. Here the quantal region reduces to the the single
point at which the potenial is discontinuous, while the WKB approximation
is exact on either side of this discontinuity. Further examples are attractive
potential tails falling off faster than the inverse square of the coordinate. At a
given energy E = h̄2k2/(2M) > 0, semiclassical approximations are good at
large distances z → ∞, where the Schrödinger equation essentially describes
free-particle motion, and again at “small” distances z → 0. In between there
is a quantal region which is typically localized around a point zE , where the
absolute value of the potential is equal to the total energy of the particle,
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|V (zE)| = E =
h̄2k2

2M
. (5.246)

This can be shown analytically for homogeneous attractive potential tails
(4.66), see Problem 1.10, and it was shown numerically in [FJ02] for retarded
van der Waals potentials of the type (5.226). The corresponding repulsive
potential −V (z) has a classical turning point at z = zE .

Quantum reflection by a step potential or an attractive potential tail is al-
ways important towards threshold, E → 0, because the reflection probability
approaches unity in this limit. In contrast to reflection by a potential bar-
rier, however, the reflection remains classically forbidden all the way down to
threshold. For a potential barrier, the classical reflection probability is unity
below the barrier and zero above, and the contribution of quantum mechan-
ics is merely a smoothing of the edges of this step function, see top half of
Fig. 5.34. For a potential step or a purely attractive potential tail, reflection
is classically forbidden at all energies (above threshold) and all reflection is a
purely quantum mechanical phenomenon, see bottom half of the figure.

In order to describe reflection by and transmission through the quantal
region of an attractive potential tail falling off faster than −1/z2 at large and
small distances, we have to modify the formulation (1.174) of the boundary
conditions, because the potential is rapidly varying in the semiclassical regime
to the left of the quantal region,

ψ(z) z→∞∼ 1√
h̄k

{exp (−ikz) +Rr exp (ikz)} , (5.247)

ψ(z) z→0∼ Tr
1√
p(z)

exp
[
− i
h̄

∫ z

z0

p(z′)dz′
]
. (5.248)

Here z0 is a point of reference needed to define the action integral in the
WKB wave function unambiguously. The use of a WKB wave to define the
transmission amplitude in (5.248) does not imply any semiclassical approxi-
mation of this amplitude. The Schrödinger equation should be solved exactly,
and the exact wave functions matched to the incoming and reflected waves
or the transmitted wave in the semiclassical domains on either side of the
quantal region. If there were no semiclassical domain on the near side of the
quantal region, then the “transmitted” wave could not be defined consistently.
The subscript r on the amplitudes reminds us that the boundary conditions
(5.247) (5.248) are defined with respect to an incoming wave from the right.
The transmission and reflection probabilities,

PT = |T |2 , PR = |R|2 , PT + PR = 1 , (5.249)

do not depend on the direction from which the incident wave approaches,
but the phases of the transmission and reflection amplitudes depend on this
choice. Throughout this section, the reflection amplitude is always defined
with respect to incoming plane waves incident from the right as in (5.247).



418 5 Special Topics

0

Vb

P

z

R

1

0

0
1

VbM2hkb
=

hk

hk

potential barrier

V(z)

V(z) PR

class.

qm

step or attractive tail

0

z

Fig. 5.34. Schematic illustration of the qualitative behaviour of the reflection prob-
ability PR in a one-dimensional potential. For reflection by a potential barrier of
height Vb, the contribution of quantum mechanics is merely to smooth out the step
function describing the classical reflection probability (top half). For a potential step
or a purely attractive tail, reflection is classically forbidden at all energies (above
threshold) and all reflection is a purely quantum mechanical phenomenon (bottom
half)

Whenever the phase of R is important, we retain the subscript “r” to remind
us of this choice.

For an attractive potential going to zero faster than 1/z2 for large z and
with a semiclassical WKB region at moderate or small z values, the near-
threshold behaviour of the reflection amplitude can be derived from the thresh-
old solutions (3.8) of the Schrödinger equation, which go unity resp. z for large
z and behave as (3.9) for small z. From these solutions we can construct the
wave function

ψ(z) =
D0ψ1(z) exp (iφ0/2) −D1ψ0(z) exp (iφ1/2)

D0D1 sin [(φ0 − φ1)/2]
, (5.250)
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which is proportional to a leftward travelling WKB wave of the form (5.248)
in the semiclassical region z → 0. Matching the asymptotic (z → ∞) form of
the wave function (5.250) to the superposition

1√
h̄k

[exp (−ikz) +Rr exp (ikz)]
kz→0∝ 1 +Rr − ikz(1 −Rr) (5.251)

gives the leading near-threshold contribution to the reflection amplitude,

Rr
k→0∼ −1 − ik exp [−i(φ0 − φ1)/2]D1/D0

1 + ik exp [−i(φ0 − φ1)/2]D1/D0
. (5.252)

For the modulus |R| of the reflection amplitude, (5.252) implies

|R| k→0∼ 1 − 2kb = exp (−2kb) +O(k2) , b =
D1

D0
sin

(
φ0 − φ1

2

)
. (5.253)

(5.253) implies that the probability for quantum reflection behaves as 1− 4kb
near threshold, so the transmission probability must be given by PT

k→0∼ 4kb.
This is consistent with Wigner’s threshold law for s-waves, as discussed in
Sect. 4.3.3.

The parameter b in (5.253) is just the threshold length already defined in
(3.16). We now see that this characteristic parameter determines not only the
near-threshold quantization rule (3.21) and the near-threshold level density
(3.23), but also the reflection and transmission properties of the potential tail
near threshold.

The near-threshold behaviour of the phase of the reflection amplitude also
follows from (5.252) and the result is,

arg (Rr)
k→0∼ π − 2kᾱ0 , ᾱ0 =

b

tan [(φ0 − φ1)/2]
. (5.254)

The parameter ᾱ0 determining the near-threshold behaviour of the phase of
the reflection amplitude is just the mean scattering length defined in (3.24).
Scattering lengths and mean scattering lengths are only defined for potentials
falling off faster than −1/z3. For a potential proportional to −1/z3,

V
(−)
3 (z) = −C3

z3
= − h̄2

2M
β3

z3
, (5.255)

the wave function which is proportional to a leftward travelling WKB wave of
the form (5.248) in the semiclassical region z → 0 is ψ(z) ∝ H

(1)
1 (ζ)/ζ with

ζ = 2
√
β3/z, and matching to the asymptotic waves (5.251) gives

arg (Rr)
k→0∼ π − 2kβ3 ln (kβ3) . (5.256)

Note that the formula (5.253) for the near-threshold behaviour of |R| holds
for all potentials falling off faster than −1/z2, even for those such as (5.255),
where the phase of the reflection amplitude diverges at threshold.

The energy dependence of the phase of the reflection amplitude can be re-
lated to the time gain or delay of a wave packet during reflection as described
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in Sect. 1.4.3. If the momentum distribution of the incoming wave packet is
sharply peaked around a mean momentum h̄k0, then the shape of the reflected
wave packet is essentially the same as for the incident wave packet. The deriv-
ative of arg [Rr(k)] with respect to k, taken at k0, describes an apparent shift
∆z in the point of reflection,

∆z = −1
2

d
dk

[arg (Rr)]k=k0
. (5.257)

[Note that this is −1/2 times the shift (1.200) which corresponded to twice
the distance by which the apparent point of reflection lay behind the origin
(for a particle incident from the left).] The time evolution of the reflected wave
packet corresponds to reflection of a free wave at the point z = ∆z rather than
at z = 0. For a free particle moving with the constant velocity v0 = h̄k0/M
this implies a time gain [cf. (1.201)]

∆t =
2∆z
v0

= − M

h̄k0

d
dk

[arg (Rr)]k=k0

= −h̄ d
dE

[arg (R)]E=h̄2k2
0/(2M) . (5.258)

For a positive (negative) value of ∆z the reflected wave packet thus experi-
ences a time gain (delay) relative to a free particle (with the same asymptotic
velocity v0) travelling to z = 0 and back. Note however, that the classical
particle moving under the accelerating influence of the attractive potential is
faster than the free particle; the quantum reflected wave packet may experi-
ence a time gain with respect to a free particle but nevertheless be delayed
relative to the classical particle moving in the same potential (see (5.268) and
Fig. 5.38 below).

Equation (5.254) implies that the near-threshold behaviour of the space
shift (5.257) and of the time shift (5.258) is

∆z
k0→0∼ ᾱ0 , ∆t

k0→0∼ 2M
h̄k0

ᾱ0 . (5.259)

The near-threshold behaviour of the time shift due to reflection for a wave
packet with a narrow momentum distribution is determined by the mean scat-
tering length ᾱ0. Near threshold, the quantum reflected wave packet evolves
as for a free particle reflected at z = ᾱ0.

For homogeneous potential tails,

V (−)
α (z) = −Cα

zα
= − h̄

2(βα)α−2

2Mzα
, (5.260)

the threshold length b and mean scattering length α0, which determine the
near-threshold behaviour of modulus and phase of the quantum reflection
amplitude, are given by the potential strength parameter βα multiplied by
a coefficient depending on α, see (3.27), (3.28) and Table 3.1 in Sect. 3.1.2.
For homogeneous potentials (5.260), the properties of the Schrödinger equa-
tion do not depend on the energy E = h̄2k2/(2M) and potential strength
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parameter βα independently, but only on the product kβα, see (1.322) in
Sect. 1.6.4. For energies above the near-threshold region, analytical solutions
of the Schrödinger equation are not available (except for α = 4), and the reflec-
tion amplitudes have to be obtained numerically. Figures 5.35 and 5.36 show
the real and imaginary parts of lnRr, namely ln |R| and argRr, as functions
of kβα for various values α.
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Fig. 5.35. Natural logarithm of the modulus of the quantum reflection amplitude
for a homogeneous attractive potential (5.260) as function of kβα for various powers
α (from [FJ02])

In the limit of large energies, we may use a semiclassical expression for the
reflection amplitudes which was derived by Pokrovskii et al. [PS58, PU58]. We
use the reciprocity relation (1.175) to adapt the formula of Refs. [PS58, PU58]
to the reflection amplitude Rr defined via the boundary conditions (5.247),
(5.248),

Rr(k)∗
k→∞∼ i exp

(
2i
h̄

∫ zt

p(z) dz
)
. (5.261)

Here zt is the complex turning point with the smallest (positive) imaginary
part. For a homogeneous potential (5.260) it can be written as

zt = (−1)1/α zE = eiπ/αzE , (5.262)

where zE is defined by (5.246),
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Fig. 5.36. Phase φ = arg Rr of the quantum reflection amplitude for a homogeneous
attractive potential (5.260) as function of kβα. From top to bottom the curves show
the results for α = 3, 4, 5, 6 and 7 (from [FJ04])

zE = βα(kβα)−2/α . (5.263)

Real values of the momentum p(z) only contribute to the phase of the
right-hand side of (5.261), so |R| is unaffected by a shift of the lower in-
tegration point anywhere along the real axis. Integrating along the path
z/zE = cos (π/α) + iξ sin (π/α) with ξ = 0 → 1 gives the result [FJ02]

|R| k→∞∼ exp (−BαkzE) = exp
[
−Bα(kβα)1−2/α

]
,

Bα = 2 sin
(π
α

)


{∫ 1

0

√
1 +

[
cos

(π
α

)
+ iξ sin

(π
α

)]−α

dξ

}
. (5.264)

In terms of the energy E, the particle mass M and the strength parameter
Cα of the potential (5.260), the energy-dependent factor in the exponent is

(kβα)1−2/α =
1
h̄
E

1
2− 1

α (Cα)1/α
√

2M =
paszE
h̄

, (5.265)

where pas = h̄k is the asymptotic (z → ∞) classical momentum. The high-
energy behaviour (5.264) of the reflectivity as function of h̄ is an exponential
decrease typically expected for an analytical potential which is continuously
differentiable to all orders, see [Ber82]. Numerical values of the coefficients Bα

are listed in Table 5.3.
The phase of the right-hand side of (5.261) depends more sensitively on

the choice of lower integration limit, which is not specified in Refs. [PS58,
PU58]. The k-dependence of the integral in the exponent is determined by the
complex classical turning point (5.262), zt = zE [cos (π/α) + i sin (π/α)]. If we
assume that the real part of the integral becomes proportional to h̄k×
(rt) =
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Table 5.3. The coefficients Bα, which are given by (5.264) and appear before
(kβα)1−2/α in the exponents describing the high-energy behaviour of the modulus
of the quantum reflection amplitude for attractive homogeneous potential tails

α 3 4 5 6 7 8 α → ∞
Bα 2.24050 1.69443 1.35149 1.12025 0.95450 0.83146 2π/α

h̄kzE cos (π/α) for large k, then the high-energy behaviour of the phase of the
reflection amplitude is

argRr
k→∞∼ c− c0 kzE = c− c0(kβα)1−2/α (5.266)

with real constants c, c0. This conjecture is supported by numerical calcula-
tions as demonstrated in [FJ04], and it implies that the space shift (5.257) is
given for large energies by

∆z
k0→∞∼ c0

2

(
1 − 2

α

)
zE . (5.267)

The space shifts (5.257) obtained from the numerical solutions of the
Schrödinger equation are plotted in Fig. 5.37 as functions of kβα for α =
3, 4, 5, 6 and 7. Except for α = 3 and values of kβ3 less than about 0.15, the
space shifts are always positive: according to (5.258) this corresponds to time
gains relative to the free particle reflected at z = 0. For α = 3 and energies
close to threshold there are significant time delays. Note, however, that the
classical particle accelerated under the influence of the attractive potential is
faster than the free particle [with the same asymptotic velocity v0 = h̄k0/M ],
and its time gain is
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Fig. 5.37. Space shift (5.257) for quantum reflection by the homogeneous potential
(5.260) as function of k0βα. From bottom to top the curves show the results for
α = 3, 4, 5, 6 and 7 (from [FJ04])
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(∆t)cl = 2M
∫ ∞

0

(
1
h̄k0

− 1
p(z)

)
dz =

2M
h̄k0

τ(α) zE , (5.268)

where τ(α) depends only on α,

τ(α) =
1√
π
Γ

(
1
2

+
1
α

)
Γ

(
1 − 1

α

)
. (5.269)

Numerical values of τ(α) are given in Table 5.4.

Table 5.4. Numerical values of τ(α) as defined in (5.269)

α 3 4 5 6 7 8 α → ∞
τ(α) 0.862370 0.847213 0.852623 0.862370 0.872491 0.881900 1

The time gain (5.268) corresponds to the space shift

(∆z)cl =
v0 (∆t)cl

2
= τ(α) zE ; (5.270)

the classical particle which is accelerated in the potential and reflected at z = 0
eventually returns at the same time as a free particle reflected at (∆z)cl. The
classical space shifts (5.270) are generally larger than the space shifts of the
quantum reflected wave, as illustrated in Fig. 5.38 for the example α = 4. At
high energies both the classical space shifts (5.270) and the quantum space
shift (5.267) show the same dependence on k0βα, i.e., proportionality to zE ,
but the coefficient τ(α) in the classical case is larger than the coefficient in
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Fig. 5.38. Space shift (5.257) for quantum reflection by the homogeneous potential
(5.260) with α = 4 as function of k0β4. The solid line shows the space shift of the
quantum reflected wave whereas the dot-dashed line shows the classical space shift
(5.267) (from [FJ04])
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the quantum case. At small energies, the classical space shift diverges as zE ,
see (5.263), whereas the quantum space shift remains bounded by a positive
distance of the order of the potential strength parameter βα, see Figs. 5.37,
5.38. Although the quantum reflected wave may experience a time gain relative
to the free particle reflected at z = 0, it is always delayed relative to the
classical particle which is accelerated in the attractive potential [FJ04].

As discussed in detail in Sect. 5.5.1, a realistic atom-surface potential is
not homogeneous but is typically given by a retarded van der Waals potential
which behaves as −C3/z

3 for “small” distances [(5.216), (5.217)] and −C4/z
4

for large distances [(5.218), (5.219)]. A detailed study of quantum reflection
probabilities has been given for such potentials in [FJ02], and the phases of
the quantum reflection amplitude, which determine the space and time shifts
in the course of quantum reflection, are studied in [JF04]. Which part of
the potential dominantly determines the reflection probability depends on a
crucial parameter

ρqr =
√

2MC3

h̄
√
C4

=
β3

β4
. (5.271)

For small values of ρqr, the quantum reflection probability resembles that of
the non-retarded van der Waals potential −C3/z

3 at all energies. For large val-
ues of ρqr, the quantum reflection probability resembles that of a homogeneous
potential −C4/z

4 up to quite high energies. At very high energies, however, the
behaviour will eventually be determined by the −C3/z

3 part of atom-surface
potential. A necessary condition for this is, that the point (5.263) around
which the quantal region is localized lie in the “small”-z regime. This implies
zE = β3(kβ3)−2/3 � L = (β4)2/β3 which is equivalent to (kβ3)1/3  ρqr.
The probability for quantum reflection, |R|2 ∼ exp [−2B3(kβ3)1/3] is then
very small for large values of ρqr.

Values of ρqr are listed in the bottom row of Table 5.2 in Sect. 5.5.1 for a
few examples, and they are all clearly larger than unity. This is actually not
unusual. Large values of ρqr are ubiquitous in realistic systems [FJ02]. This
means that the quantum reflection probabilities are dominantly determined
by the highly retarded −C4/z

4 part of the atom-surface potential in the range
of energies where they are not negligible.

Similar arguments apply for the phase of the quantum reflection amplitude,
which depends more sensitively than the reflection probability on the shape
of the potential [JF04]. Note that a retarded van der Waals potential falls off
faster than −1/z3 asymptotically, so a finite mean scattering length can be
defined. It tends to be negative, showing the influence of the −C3/z

3 part of
the potential. As an example, Fig. 5.39 shows the space shift derived from
the phase of the amplitude for quantum reflection by the potential (5.230)
describing the interaction of a ground-state hydrogen atom with a conducting
surface.

The apparent space shift ∆z describes the location of an apparent plane of
reflection, which lies behind the surface when ∆z < 0. This merely expresses a
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Fig. 5.39. Space shift (5.257) for quantum reflection by the potential (5.230) de-
scribing the interaction of a ground-state hydrogen atom with a conducting surface
(from [FJ05])

time delay of the reflected wave relative to a free particle. The space shift ∆z,
whether positive or negative, is not related to where the wave function itself
is significantly non-vanishing. The reflected part of the wave function does
not penetrate the quantal region centred around zE as defined by (5.246).
Since quantum reflection is dominantly generated in the −C4/z

4 part of the
atom-surface potential, we can assume zE ≈ β4/

√
kβ4 according to (5.263).

Appreciable reflection probabilities are only obtained if kβ4 is not a large
number, so the region where quantum reflection is generated is located in
front of the surface at a distance at least of the order of β4, i.e. many hun-
dreds or thousands of atomic units. The condition that kβ4 should not be too
large also allows an estimate of the energy range where appreciable quantum
reflection can be expected, namely at energies near or lower than the energy
Eβ4 corresponding to kβ4 = 1,

Eβ4 =
h̄2

2M(β4)2
. (5.272)

This is quite a small energy in atomic units, because β4 is large, and so is the
atomic mass M , which is near 1837 times the atomic mass number. E.g. for a
metastable helium atom in the 2 3S state and a fused silica surface (ε = 2.123),
the numbers in Table 5.2 together with M ≈ 4 × 1837 give Eβ4 ≈ 3 × 10−12

au. This corresponds to a thermal energy kBT with a temperature near one
µK.

Experiments involving quantum reflection by solid surfaces have become
feasible in the last few years. Shimizu [Shi01] measured the probabilities for
the quantum reflection of metastable neon atoms, e.g., by a silicon surface,
near grazing incidence. Near-grazing incidence reduces the component of the
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Fig. 5.40. Modulus |R| of the quantum reflection amplitude as observed by Shimizu
[Shi01] for the scattering of metastable neon atoms by a silicon surface (filled dots).
The figure shows ln (− ln |R|) as function of ln k (natural logarithms) with k mea-
sured in atomic units. The straight line in the top-right part of the figure shows the
“high”-energy behaviour expected for a homogeneous −1/r4 potential according to
(5.264) with β4 = 11400 a.u. The straight line in the bottom-left part of the figure
shows the near-threshold behaviour (5.253) for b = β4 = 11400 a.u. The curves were
obtained by numerically solving the Schrödinger equation with a retarded van der
Waals potential (5.226) with potential shapes given by the shape function v1 (5.273)
or by the shape function vH defined by the quotient in the square bracket on the
right-hand side of (5.230). The value of β3 defining the −C3/z3 part of the potential
was either 11400 a.u. (ρ = 1) or 114000 a.u. (ρ = 10)

atom’s velocity normal to the surface, and this is the component relevant for
quantum reflection. The transition from the linear dependence of ln |R| on k
near threshold to the proportionality of − ln |R| to k1−2/α at “high” energies
is nicely exposed by plotting ln (− ln |R|) as a function of ln k, see Fig. 5.40. At
the “high”-energy end of the figure, the data clearly approximate a straight
line with gradient near 1

2 corresponding to α = 4. Fitting a straight line
of gradient 1

2 through the last six to ten data points yields ln (− ln |R|) =
5.2 + 1

2 ln k (straight line in top-right corner of Fig. 5.40), and comparing this
with ln (− ln |R|) = lnB4 + 1

2 ln k + 1
2 lnβ4 according to (5.264) yields β4 ≈

11400 a.u. The corresponding near-threshold behaviour (5.253), ln (− ln |R|) =
ln (2β4)+ ln k is shown as a straight line in the bottom-left corner of Fig. 5.40
and fits the data well within their rather large scatter. Also shown in Fig. 5.40
are the results obtained by numerically solving the Schrödinger equation with
a retarded van der Waals potential of the type (5.226) with two different
shape functions. One, vH, given by the quotient in the square bracket on the
right-hand side of (5.230), and another given by
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v1

( z
L

)
=

1
1 + z/L

. (5.273)

The large-ρ curves clearly fit the data well confirming that the quantum re-
flection probability is essentially that of the −C4/z

4 part of potential (5.219).
In a more recent experiment, Druzhinina and DeKieviet [DD03] measured

the probability for quantum reflection of (ground state) 3He atoms by a rough
quartz surface, and they measured up to energies high enough to detect sig-
nificant deviations from the results expected for the −C4/z

4 potential alone.
Shimizu and collaborators have also investigated reflection from surfaces struc-
tured with roof- or wall-like ridges [SF02, OK05, OT05]. This can significantly
enhance the reflection probability and be used in the development of atom-
optical imaging devices.

A significant advance towards lower temperatures and higher reflection
probabilities has been reported by Pasquini et al. [PS04], who collided a Bose-
Einstein condensate of sodium atoms with a silicon surface at temperatures
of the order of nano-Kelvins. Pasquini et al. observed evidence for quantum
reflection probabilities above 50 % at normal incidence, i.e. without resorting
to near-grazing angles to reduce the normal component of the incident veloc-
ity. The demonstrated possibility of achieving such high quantum reflection
probabilities irrespective of angle of incidence raises the question of whether
one might base the construction of atom wave guides or traps on the phenom-
enon quantum reflection alone [Jur05]. Quantum reflection is a very universal
and insensitive mechanism independent of auxiliary requirements such as the
laser fields needed to generate the repulsive potential of an evanescent-wave
mirror. It requires the atoms to be cooled to extremely low temperatures, but
the walls of the device need not be cold.

Problems

5.1. Consider an atom of radius n2a0, a0 being the Bohr radius. Give an esti-
mate for the power in W/cm2 which a laser must have, if the electromagnetic
field energy in the volume occupied by the atom is to be roughly as big as the
binding energy R/n2 (R is the Rydberg energy).

5.2. a) Consider a free particle of mass µ in one spatial dimension. At time
t=0 it is described by a minimal Gaussian wave packet of width β moving
with the mean velocity v0 = h̄k0/µ in the direction of the positive x-axis,

ψ(x, t=0) = (
√
πβ)−1/2 e−x2/(2β2) eik0x .

Calculate the wave functions ψ(x, t) in coordinate space and ψ̃(p, t) in
momentum space as well as the associated probability densities |ψ(x, t)|2
and |ψ̃(p, t)|2 at a later time t.
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b) Calculate the density matrix � and the Wigner function �W for the pure
state described by the wave function ψ(x, t) in a).

c) Classically the free particle may be described at time t= 0 by an initial
phase space density with finite uncertainty in position and momentum,

�cl(x, p; t=0) =
1
αβπ

e−x2/β2
e−(p−p0)

2/α2
.

Use the classical trajectories p(t)=p(0) , x(t) = x(0) + (p/µ)t and the
form (5.28) of the Liouville equation,

d
dt
�cl(x(t), p(t); t) = 0 ,

to calculate the phase space density at a later time t. Compare the re-
sulting probability densities in position and momentum with the quantum
mechanical results.

5.3. a) Show that the coherent state (5.60) is an eigenstate of the quantum
annihilation operator with eigenvalue z∗,

b̂|z〉 = z∗|z〉 ,
and use this result to calculate the expectation value of the number oper-
ator b̂†b̂.

b) Use (5.72) to calculate the time average of the expectation value of the
energy (Ê

2
+ B̂

2
)L3/(8π) of a monochromatic field in the coherent state

|z〉 = |z0eiωt〉. Compare the result with the quantity h̄ω〈z|b̂†b̂ + 1/2|z〉
following from a).

c) Calculate the Wigner function (5.40) for the ground state (5.51) of the
one-dimensional harmonic oscillator and for the first excited state,

ψ1(x) = b̂†ψ0(x) = (β
√
π)−1/2 2x

β
√

2
e−x2/(2β2) .

5.4. Verify the special form (5.64) of the Baker-Campbell-Hausdorff relation
for two operators Â and B̂, which both commute with their commutator,
[Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0 ,

eÂ+B̂ = eÂ eB̂ e−[Â,B̂]/2 .

Hint: Study the derivative of the function f̂(λ) = eλÂeλB̂ with respect to λ.

5.5. A photon (rest mass zero) behaves like a particle with energy E = h̄ω
and momentum p = h̄ω/c . Show that a free electron cannot absorb or emit
a photon without violating energy and momentum conservation.
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5.6. Show that the stability matrix defined by (5.74) for motion following a
classical trajectory x(t) obeys a chain rule of the form

M(t2, t0) = M(t2, t1)M(t1, t0) ,

and conclude that the Liapunov exponent defined by (5.76) is the same for
all phase space points on the trajectory.
Hint: Matrix norms fulfill the triangle inequality

||M1M2|| ≤ ||M1|| · ||M2|| .

5.7. Consider a square of length L. In the centre of the square there is a cir-
cular disc of radius a. A point particle travels from the middle of one side
of the square towards the disc at an angle α (see Fig. 5.41). It is reflected
by the sides of the square and the edge of the disc. Determine the direction
of motion of the particle after up to five collisions with the disc for L=2 m,
a=5 cm and an initial angle of α = 0.3◦, 0.0003◦, 0.0000003◦, 0.0000000003◦.
(Follow the trajectory only as long as collisions with the initial side of the
square and the disc alternate.) Estimate the Liapunov exponent for the peri-
odic orbit α=0.

Fig. 5.41. Realization of Sinai’s billiard [Sin70].
The parameters in Problem 5.7 were chosen to cor-
respond roughly to the dimensions in real billards

5.8. Start with a number x from a randomly distributed set of numbers (Pois-
son spectrum) and choose N further numbers y in the intervall x < y < x+L.
How big is the probability that none of the numbers y lies in the intervall
(x, x+s)? Consider the limit N → ∞ , L → ∞ at constant level density
d = N/L, and show that the probability density P (s) for a nearest neighbour
spacing s is given by

P (s) = d e−ds .
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[CH96] R. Côté, E.J. Heller and A.Dalgarno, Phys. Rev. A 53 (1996) 234.
[CP48] H.B.G. Casimir and D. Polder, Phys. Rev. 73 (1948) 360.
[Cra87] M. Crance, Phys. Reports 144 (1987) 117.
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A

Special Mathematical Functions

For completeness this appendix briefly lists without further discussion the de-
finitions and some important properties of the special functions occurring in
the book. More detailed treatments can be found in the relevant literature.
The “Handbook of Mathematical Functions” [AS70], the “Tables” by Grad-
shteyn and Rhyzik [GR65] and the compilation by Magnus, Oberhettinger and
Soni [MO66] are particularly useful. Apart from these comprehensive works
it is worth mentioning Appendix B in “Quantum Mechanics I” by Messiah
[Mes70], which describes a selection of especially frequently used functions.

A.1 Legendre Polynomials, Spherical Harmonics

The lth Legendre Polynomial Pl(x) is a polynomial of degree l in x,

Pl(x) =
1

2ll!
dl

dxl
(x2 − 1)l , l = 0, 1, . . . . (A.1)

It has l zeros in the interval between −1 and +1; for even (odd) l, Pl(x) is an
even (odd) function of x.

The associated Legendre functions Pl,m(x) , |x| ≤ 1 , are products of
(1 − x2)m/2 with polynomials of degree l −m (m = 0, . . . , l) ,

Pl,m(x) = (1 − x2)m/2 dm

dxm
Pl(x) . (A.2)

The spherical harmonics Yl,m(θ, φ) are products of exp (imφ) with polyno-
mials of degree m in sin θ and of degree l−m in cos θ, where the θ-dependence
is given by the associated Legendre functions (A.2) as functions of x = cos θ.
For m ≥ 0 , 0 ≤ θ ≤ π we have

Yl,m(θ, φ) = (−1)m

[
(2l + 1)

4π
(l −m)!
(l +m)!

]1/2

Pl,m(cos θ) eimφ

= (−1)m

[
(2l + 1)

4π
(l −m)!
(l +m)!

]1/2

sinm θ
dm

d(cos θ)m
Pl(cos θ) eimφ . (A.3)
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The spherical harmonics for negative azimuthal quantum numbers are ob-
tained via

Yl,−m(θ, φ) = (−1)m (Yl,m(θ, φ))∗ . (A.4)

A reflection of the displacement vector

x = r sin θ cosφ , y = r sin θ sinφ , z = r cos θ

at the origin (cf. (1.68)) is achieved by replacing the polar angle θ by π−θ and
the azimuthal angle φ by π+φ. This does not affect sin θ, but cos θ changes to
− cos θ. In the expression (A.3) for Yl,m spatial reflection introduces a factor
(−1)l−m from the polynomial in cos θ and a factor (−1)m from the exponential
function in φ. Altogether we obtain

Yl,m(π−θ, π+φ) = (−1)l Yl,m(θ, φ) . (A.5)

The integral over a product of two spherical harmonics is given by the
orthonormality relation (1.59),∫

Y ∗
l,m(Ω)Yl′,m′(Ω)dΩ = δl,l′ δm,m′ . (A.6)

The completeness relation is
∞∑

l=0

l∑
m=−l

Yl,m(Ω)Y ∗
l,m(Ω′) = δ(Ω −Ω′) = δ(cos θ − cos θ′) δ(φ− φ′) . (A.7)

For a given l-value we have,
l∑

m=−l

Yl,m(Ω)Y ∗
l,m(Ω′) =

2l + 1
4π

Pl(cos θ) , (A.8)

where θ is the angle between the two directions defined by Ω and Ω′. For two
vectors r and r′ with |r′| < |r|, say, we have

1
|r − r′| =

∞∑
l=0

|r′|l
|r|l+1

Pl(cos θ) , (A.9)

where θ is the angle between r and r′.
The integral over three spherical harmonics is a prototype example for

the Wigner-Eckart theorem, which says that the dependence of the matrix
elements of (spherical) tensor operators in angular momentum eigenstates
on the component index of the operator and the azimuthal quantum num-
bers of bra and ket is given by appropriate Clebsch-Gordan coefficients (see
Sect. 1.7.1). For the spherical harmonics YL,M as an example for a spherical
tensor of rank L we have∫

Y ∗
l,m(Ω)YL,M (Ω)Yl′,m′(Ω) dΩ

= 〈l,m|L,M, l′,m′〉
[
(2l′ + 1)(2L+ 1)

4π(2l + 1)

]1/2

〈l, 0|L, 0, l′, 0〉 . (A.10)
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The special Clebsch-Gordan coefficient 〈l, 0|L, 0, l′, 0〉 is given by [Edm60]

〈l, 0|L, 0, l′, 0〉 =
√

2l + 1 (−1)(l−L−l′)/2

×
[
(J−2l)!(J−2L)!(J−2l′)!

(J + 1)!

]1/2

× (J/2)!
(J/2 − l)!(J/2 − L)!(J/2 − l′)! . (A.11)

The sum J = l + L + l′ of the three angular momentum quantum numbers
must be even. The Clebsch-Gordan coefficient (A.11) vanishes for odd J .

Explicit expressions for the spherical harmonics up to l = 3 are given in
Sect. 1.2.1 in Table 1.1. For further details see books on angular momentum
in quantum mechanics, e.g. [Edm60, Lin84].

A.2 Laguerre Polynomials

The generalized Laguerre polynomials Lα
ν (x) , ν = 0, 1, . . . are polynomials

of degree ν in x. They are given by

Lα
ν (x) =

ex

ν!xα

dν

dxν

(
e−x xν+α

)
=

ν∑
µ=0

(−1)µ

(
ν + α
ν − µ

)
xµ

µ!
(A.12)

and have ν zeros in the range 0 < x < ∞. The ordinary Laguerre polynomi-
als Lν(x) correspond to the special case α= 0. In general α is an arbitrary
real number greater than −1. The binomial coefficient in (A.12) is defined as
follows for non-integral arguments:(

z

y

)
=

Γ (z + 1)
Γ (y + 1)Γ (z − y + 1)

. (A.13)

Here Γ is the gamma function, see A.3.
The orthogonality relation for the generalized Laguerre polynomials reads∫ ∞

0

e−x xα Lα
µ(x)Lα

ν (x) dx =
Γ (ν+α+1)

ν!
δµ,ν . (A.14)

The following recursion relation is very useful, because it enables the numer-
ically efficient evaluation of the Laguerre polynomials for a given index α:

(ν+1)Lα
ν+1(x) − (2ν+α+1−x)Lα

ν (x) + (ν+α)Lα
ν−1(x) = 0 ,
ν = 1, 2, . . . . (A.15)

Note: The Laguerre polynomials defined by (A.12) correspond to the defini-
tions in [AS70, GR65, MO66]. The Laguerre polynomials in [Mes70] contain
an additional factor Γ (ν+α+1).
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A.3 Gamma Function

The gamma function Γ (z) is defined by

Γ (z + 1) =
∫ ∞

0

tz e−t dt (A.16)

and has the property

Γ (z + 1) = zΓ (z) . (A.17)

For positive integers z = n we have Γ (n+ 1) = n!. For half-integral z we can
derive Γ (z) recursively from the value Γ (1/2) =

√
π via (A.17).

For small z we have
1
Γ (z)

=
z

Γ (z + 1)
= z + γz2 +O

(
z3
)
, (A.18)

where γ = 0.5772156649 . . . is Euler’s constant.
The argument z may be complex, and

Γ (z∗) = [Γ (z)]∗ . (A.19)

Useful product formulae are,

Γ (iy)Γ (−iy) = |Γ (iy)|2 =
π

y sinh (πy)
, (A.20)

Γ (1 + iy)Γ (1 − iy) = |Γ (1 + iy)|2 =
πy

sinh (πy)
, (A.21)

Γ

(
1
2

+ iy
)
Γ

(
1
2
− iy

)
=
∣∣∣∣Γ

(
1
2

+ iy
)∣∣∣∣

2

=
π

cosh (πy)
, (A.22)

Γ

(
1
4

+ iy
)
Γ

(
3
4
− iy

)
=

π
√

2
cosh (πy) + i sinh (πy)

. (A.23)

The right-hand sides of these formulae also apply if y is not real, e.g. for
y = ix, (A.21) becomes

Γ (1 + x)Γ (1 − x) =
πx

sin (πx)
. (A.24)

For large arguments we have Stirling’s formula,

Γ (z) z→∞∼ e−zzz−1/2
√

2π
[
1 +

1
12z

+
1

288z2
+O

(
1
z3

)]
. (A.25)
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A.4 Bessel Functions

The Bessel functions of order ν are solutions of the following second-order
differential equation:

z2
d2w

dz2
+ z

dw
dz

+ (z2 − ν2)w = 0 . (A.26)

The ordinary Bessel function Jν(z) is the solution which fulfills the following
boundary condition near the origin z = 0:

Jν(z) z→0=
( 1
2z)

ν

Γ (ν + 1)
, (ν �= −1, −2, −3, . . .) . (A.27)

As a power series in z we have

Jν(z) =
(z

2

)ν ∞∑
k=0

(−1
4z

2)k

k!Γ (ν+k+1)
. (A.28)

For |z| → ∞ the asymptotic form of Jν is

Jν(z)
|z|→∞

=

√
2
πz

cos
[
z −

(
ν +

1
2

)
π

2

]
. (A.29)

From the Bessel function Jν with the asymptotic behaviour (A.29) and
a second solution of (A.26), which oscillates like a sine asymptotically,
we can construct two linear combinations asymptotically proportional to
exp±i(z − . . .). They are called the first and second Hankel functions, H(1)

ν

and H(2)
ν . Their asymptotic form is

H(1)
ν (z)

|z|→∞
=

√
2
πz

exp
{

+i
[
z −

(
ν +

1
2

)
π

2

]}
,

H(2)
ν (z)

|z|→∞
=

√
2
πz

exp
{
−i

[
z −

(
ν +

1
2

)
π

2

]}
. (A.30)

Near z = 0 we have (for 
ν > 0)

H(1)
ν (z) = −H(2)

ν (z) = − i
π

Γ (ν)
( 1
2z)

ν
, z → 0 , 
ν > 0 . (A.31)

The derivative of the Bessel function is given by,

d
dz
Jν(z) = Jν−1(z) − ν

z
Jν(z) = −Jν+1(z) +

ν

z
Jν(z) , (A.32)

and this also holds if we replace Jν by other Bessel functions such as H(1)
ν .

The modified Bessel functions Iν(z) of order ν are connected to the ordi-
nary Bessel functions by the simple relation

iν Iν(z) = Jν(iz) , (−π < arg z ≤ π/2) . (A.33)

They are hence solutions of the differential equation
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z2
d2w

dz2
+ z

dw
dz

− (z2 + ν2)w = 0 , (A.34)

and their behaviour for small |z| is, as for Jν ,

Iν(z) z→0=
( 1
2z)

ν

Γ (ν + 1)
, (ν �= −1, −2, −3, . . .) . (A.35)

For |z| → ∞ the asymptotic form of Iν is

Iν(z)
|z|→∞

=
ez

√
2πz

, (| arg(z)| < π/2) . (A.36)

For non-integral values of ν the modified Bessel functions Iν(z) and I−ν(z)
defined by (A.33), (A.28) are linearly independent, and there is a linear com-
bination

Kν(z) =
π

2
I−ν(z) − Iν(z)

sin (νπ)
, (A.37)

which vanishes asymptotically,

Kν(z)
|z|→∞

=
√
π

2z
e−z , (| arg z| < 3π/2) . (A.38)

The derivative of the modified Bessel function is given by,

d
dz
Iν(z) = Iν−1(z) − ν

z
Iν(z) = Iν+1(z) +

ν

z
Iν(z) , (A.39)

and this also holds if we replace Iν by other modified Bessel functions such as
Kν .

The Bessel functions of half-integral order ν = l + 1/2, l = 0, 1, . . . play
an important role as solutions of the radial Schrödinger equation (1.75) with
angular momentum quantum number l in the absence of a potential. The
connection to the radial Schrödinger equation becomes clear when we write
the equations (A.26) and (A.34) as differential equations for the function

φ(z) =
√
z w(z) . (A.40)

(A.26) then becomes (with ν = l+ 1
2 )

d2φ

dz2
− l(l + 1)

z2
φ+ φ = 0 , (A.41)

and (A.34) becomes

d2φ

dz2
− l(l + 1)

z2
φ− φ = 0 . (A.42)

If we write z as kr (for E= h̄2k2/(2µ)>0) or as κr (for E=−h̄2κ2/(2µ)<0),
then (A.41) or (A.42) respectively is just the radial Schrödinger equation
(1.75) for V ≡ 0.

For the modified Bessel function Kl+1/2 of half-integral order l+1/2 there
is a series expansion
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Kl+1/2(z) =
√
π

2z
e−z

l∑
k=0

(l + k)!
k!(l − k)! (2z)−k . (A.43)

The derivative of Kl+1/2 can be expressed in terms of Kl+1/2 and Kl−1/2,

d
dz
Kl+1/2(z) = − l +

1
2

z
Kl+1/2(z) −Kl−1/2(z) . (A.44)

The spherical Bessel function jl(z) is defined as

jl(z) =
√
π

2z
Jl+1/2(z) . (A.45)

For small z we have, according to (A.27),

jl(z)
z→0=

zl

(2l + 1)!!
, (A.46)

and asymptotically according to (A.29)

z jl(z)
|z|→∞

= sin
(
z − l π

2

)
. (A.47)

With (A.40) we see that zjl(z) is a solution of (A.41), the radial Schrödinger
equation for positive energy. The linearly independent solution, which differs
asymptotically from (A.47) in that the sine is replaced by a cosine, is z nl(z),
where nl is the spherical Neumann function,

z nl(z)
|z|→∞

= cos
(
z − l π

2

)
. (A.48)

For small arguments,

nl(z)
z→0=

(2l + 1)!!
2l + 1

1
zl+1

. (A.49)

For the derivatives of the spherical Bessel functions we have the simple
formula

d
dz
jl(z) = jl−1(z) − l + 1

z
jl(z) , l ≥ 1 . (A.50)

The Airy functions are essentially Bessel functions of order 1/3,

Ai(z) =
1
3
√
z
[
I−1/3(ζ) − I1/3(ζ)

]
=

1
π

√
z

3
K1/3(ζ) ,

Bi(z) =
√
z

3
[
I−1/3(ζ) + I1/3(ζ)

]
, where ζ =

2
3
z2/3 . (A.51)

The Airy functions are solutions of the differential equation

d2w

dz2
− z w(z) = 0 , (A.52)

which has the structure of a Schrödinger equation with a linear potential.
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A.5 Whittaker Functions, Coulomb Functions

Whittaker functions appear as solutions of the radial Schrödinger equation in
the form (A.42) when it contains an (attractive) Coulomb potential −2γ/z in
addition to the centrifugal potential l(l + 1)/z2,

d2φ

dz2
− l(l + 1)

z2
φ+

2γ
z
φ− φ = 0 . (A.53)

The Whittaker functions Wγ,l+1/2(2z) are solutions of (A.53) with the follow-
ing behaviour for large values of |z|:

Wγ,l+1/2(2z)
|z|→∞

= e−z (2z)γ . (A.54)

For positive energies (cf. (A.41)) the radial Schrödinger equation including
a Coulomb potential has the form

d2φ

dz2
− l(l + 1)

z2
φ− 2η

z
φ+ φ = 0 , (A.55)

where a negative η corresponds to an attractive and a positive η to a repulsive
Coulomb potential. Two linearly independent solutions of (A.55) are the reg-
ular Coulomb function Fl(η, z) and the irregular Coulomb function Gl(η, z).
Their asymptotic (z → +∞) behaviour is

Fl(η, z)
z→∞= sin

(
z − η ln 2z − l π

2
+ σl

)
,

Gl(η, z)
z→∞= cos

(
z − η ln 2z − l π

2
+ σl

)
. (A.56)

The constants σl are the Coulomb phases,

σl = argΓ (l + 1 + iη) . (A.57)

The regular Coulomb function can be expressed in terms of the confluent
hypergeometric series,

Fl(η, z) = 2l e−
1
2 πη |Γ (l + 1 + iη)|

(2l + 1)!
e−iz zl+1 F (l+ 1− iη, 2l+ 2; 2iz) .(A.58)

The confluent hypergeometric series F is defined by

F (a, b; z) =
∞∑

n=0

Γ (a+ n)
Γ (a)

Γ (b)
Γ (b+ n)

zn

n!
. (A.59)

For small arguments z (and fixed Coulomb parameter η) we have

Fl(η, z)
z→0= 2l e−

1
2 πη |Γ (l + 1 + iη)|

(2l + 1)!
zl+1 . (A.60)

For |η| → ∞, which corresponds to approaching the threshold according to
(1.118), we have

|Γ (l + 1 + iη)| |η|→∞
=

√
2π e−

1
2 π|η| |η|l+1/2 . (A.61)
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In order to obtain a formula for the regular Coulomb function of small argu-
ment z = kr close to threshold we combine (A.60) and (A.61) to

Fl(η, kr)
k→0, r→0

=
√

π

2|η|
(2kr|η|)l+1

(2l + 1)!
e−

1
2 π(η+|η|) . (A.62)

References

[AS70] M. Abramowitz and I.A. Stegun (eds.), Handbook of Mathematical Func-
tions, Dover Publications, New York, 1970.

[Edm60] A.R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton
University Press, Princeton, 1960.

[Lin84] A. Lindner, Drehimpulse in der Quantenmechanik, Teubner, Stuttgart,
1984.

[GR65] I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Series and Products,
Academic Press, New York, 1965.

[Mes70] A. Messiah, Quantum Mechanics, vol. 1, North Holland, Amsterdam, 1970.
[MO66] W. Magnus, F. Oberhettinger and R.P. Soni, Formulas and Theorems for

Special Functions of Mathematical Physics, Springer-Verlag, Berlin, Hei-
delberg, 1966.



Solutions to the Problems

1.1. Bound states only exist for energies

E ≡ − h̄
2κ2

2µ
< 0 , E + V0 =

h̄2k2

2µ
> 0 , κ2 + k2 =

2µ
h̄2 V0 .

The solution of the radial Schrödinger equation for l = 0 is

φ(r) ∝ sin kr , for r ≤ r0 ; φ(r) ∝ e−κr , for r ≥ r0 .
The matching condition (1.92) implies

cot kr0 = −κ/k = −
√

2µV0

h̄2k2
− 1 . (1)

Each intersection of the left-hand side and the right-hand side of (1) (as
functions of k) yields a bound state. The right-hand side varies from −∞
at k = 0 to zero at kmax = (1/h̄)

√
2µV0. The number of branches of cot kr

which intersect the right-hand side is given by the largest number n for which
(n− 1

2 )π/r0 < kmax, thus the number of bound states is near r0
πh̄

√
2µV0. Note

that there is no bound state if (2µr20/h̄
2)V0 < (π/2)2.

1.2. a) 〈φ|φn〉 =
√

2
(

2βb
β2 + b2

) 3
2
(
β2 − b2
β2 + b2

)n [ 1
2 · 3

2 · · · (n+ 1
2 )

n!

]1/2

b) 〈φ|φn〉 =
(na
b

) 3
2
(
s− n+ 1

2

)
(s− 1)n−2s−(n+2) , s =

na+ b
2b

c) Harmonic oscillator, b = β/2:

n 0 1 2 3 4 5

|〈φ|φn〉|2 0.5120 0.2765 0.1244 0.0523 0.0212 0.0084∑n |〈φ|φν〉|2 0.5120 0.7885 0.9129 0.9652 0.9864 0.9948

Coulomb potential, b = a/2:
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n 1 2 3 4 5

|〈φ|φn〉|2 0.7023 0.0419 0.0110 0.0045 0.0022∑n |〈φ|φν〉|2 0.7023 0.7442 0.7552 0.7597 0.7619

d) Coulomb potential, b = a (use orthonormality relations rather than
formula b) above):

n 1 2 3 4 5

|〈φ|φn〉|2 1 0 0 0 0∑n |〈φ|φν〉|2 1 1 1 1 1

Coulomb potential, b = 2a:

n 1 2 3 4 5

|〈φ|φn〉|2 0.7023 0.25 0.0127 0.0039 0.0017∑n |〈φ|φν〉|2 0.7023 0.9523 0.9650 0.9689 0.9706

1.3. From (1.138) and abbreviating 2r/(na) as x, we have

〈φn,l|r|φn,l〉 =
(n− l − 1)!
4(n+ l)!

a

∫ ∞

0

x2l+1
[
xL2l+1

n−l−1(x)
]2

e−x dx .

From (A.15) we have

xL2l+1
n−l−1(x) = 2nL2l+1

n−l−1(x) − (n− l)L2l+1
n−l (x) − (n+ l)L2l+1

n−l−2(x) ,

and, exploiting (A.14), we obtain

〈φn,l|r|φn,l〉
=

(n− l − 1)!
4(n+ l)!

a

[
(2n)2

(n+ l)!
(n− l − 1)!

+ (n− l)2 (n+ l + 1)!
(n− l)!

+(n+ l)2
(n− l − 1)!
(n− l − 2)!

]

=
a

4
[
4n2 + (n+ l + 1)(n− l) + (n+ l)(n− l − 1)

]
=
a

2
[
3n2 − l(l + 1)

]
.

1.4.

ψ̃(k, 0)

=
1

π3/4
√

2β

∫ ∞

−∞
exp

{
− 1

2β2

[
x2 − 2x

(
x0 − iβ2(k − k0)

)
+ (x0)2

]}
dx

=
1

π3/4
√

2β

∫ ∞

−∞
exp

{
− 1

2β2

[
x− (

x0 − iβ2(k − k0)
)]2}

dx ×

exp
{
−i(k − k0)x0 − β2

2
(k − k0)2

}
.
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The integral over x is the Gaussian integral,
∫∞
−∞ exp

{−[x− . . .]2/(2β2)
}

dx =
β
√

2π, so

ψ̃(k, 0) = (β/
√
π)1/2 e−i(k−k0)x0e−(k−k0)

2 β2/2 .

In momentum representation, the Hamiltonian for the free particle simply acts
as a multiplication by p2/(2µ) = h̄2k2/(2µ), so the time evolution operator
(1.41) acts by multiplying the wave function ψ̃(k) with exp

[−ih̄k2t/(2µ)
]
,

ψ̃(k, t) = (β/
√
π)1/2 e−i(k−k0)x0 e−ik2a(t)2/2 e−(k−k0)

2 β2/2 ;

here we have introduced the abbreviation a(t) =
√
h̄t/µ. Note that the time

evolution does not affect the probability distribution in momentum space,

|ψ̃(k, t)|2 =
β√
π

e−β2(k−k0)
2
.

Transforming back to coordinate space gives

ψ(x, t) =
1√
2π

∫ ∞

−∞
eikxψ̃(k, t) dk

=

√
β/2
π3/4

∫ ∞

−∞
exp

{
−i(k − k0)x0 − β2

2
(k − k0)2 − i

a2

2
k2 + ikx

}
dk .

The integrand above can be written as

exp

{
−β

2 + ia2

2

(
k − β2k0 + i(x− x0)

β2 + ia2

)2
}

×

exp
{

ik0β2(2x− k0a2) − (x− x0)2 − 2k0a2x0

2(β2 + ia2)

}
.

The second factor is independent of the integration variable k and the integral
over the first factor is a Gaussian integral with value

√
2π/(β2 + ia2), so the

time dependent wave function in coordinate space is

ψ(x, t) =
(β

√
π)−1/2√

1 + ia2/β2
exp

[−(x− x0)2 − 2k0a2x0 + ik0β2(2x− k0a2)
2(β2 + ia2)

]
.

The structure of this wave packet is easier to appreciate if we look at the
corresponding probability density |ψ(x, t)|2 = ψ∗(x, t)ψ(x, t),

|ψ(x, t)|2 =
1

b(t)
√
π

exp
[
− (x− x0 − k0a2)2

b(t)2

]
, b(t) = β

√
1 +

a4

β4
.

Recalling the abbreviation above, a(t)2 = h̄t/µ and k0a2 = v0t, brings us to
the result (1.167).

For a normalized Gaussian distribution

P (y) =
1
σ
√
π

e−(y−y0)
2/σ2

,

∫ ∞

∞
P (y) = 1 ,
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with mean value y0 and width paramater σ, the square of the uncertainty
(variance, fluctuation) ∆y can be written as

(∆y)2 =
∫ ∞

∞
y2P (y)dy − (y0)2 =

1
σ
√
π

∫ ∞

∞
(y − y0)2e−(y−y0)

2/σ2
dy =

σ2

2

giving ∆y = σ/
√

2. For the uncertainty ∆x of the wave packet in coordinate
space replace y by x, P (y) by |ψ(x, t)|2 and σ by b(t), so

∆x =
1√
2
b(t) =

β√
2

√
1 +

h̄2t2

µ2β4
.

For the uncertainty in momentum space replace y by k, P (y) by |ψ̃(k, t)|2 and
σ by 1/β, so

∆k =
1
β
√

2
, ∆p = h̄∆k =

h̄

β
√

2
.

Note that the momentum probability distribution remains unchanged during
the time evolution of the free-particle wave function, whereas the wave packet
spreads in coordinate space. This shows that the uncertainty relation (1.34)
is an inequality in general. In the present case

∆x∆p =
h̄

2

√
1 +

h̄2t2

µ2β4
≥ h̄

2
.

Wave packets fulfilling the equality, ∆x∆p = h̄/2, are called minimum un-
certainty wave packets. The initial Gaussian wave packet (1.166) is such a
minimum uncertainty wave packet.

1.5. One way is to show that∫ ∞

0

[(
E +

h̄2

2µ
d2

dr2

)
G0(r, r′)

]
f(r) dr = f(r′) (1)

for sufficiently well behaved square integrable trial functions f . For r �= r′ the
integrand vanishes, because h̄2

2µ
d2

dr2G0(r, r′) always equals −EG0(r, r′). Thus
showing (1) reduces to showing that

lim
ε→0

∫ r′+ε

r′−ε

[(
k2 +

d2

dr2

)
sin(kr<) cos(kr>)

]
f(r) dr = −k f(r′) . (2)

The contribution proportional to k2 on the left-hand side of (2) vanishes in
the limit ε → 0. For the remaining contribution we integrate by parts twice
and obtain (for finite and positive ε)
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l.h.s =
[(

d

dr
sin(kr<) cos(kr>)

)
f(r)

]r′+ε

r′−ε

−
[
sin(kr<) cos(kr>)

df

dr

]r′+ε

r′−ε

+
∫ r′+ε

r′−ε

sin(kr<) cos(kr>)
d2f

dr2
dr .

(3)

The latter two terms in (3) vanish in the limit ε→ 0 and the remaining term
yields

l.h.s = {−k sin[k(r′ + ε)] sin[k(r′ − ε)]}f(r′ + ε)
−{k cos[k(r′ − ε)] cos[k(r′ + ε)]}f(r′ − ε) ,

which clearly becomes equal to the right-hand side of (2) in the limit ε→ 0.

1.6. In this Hilbert space the state vectors are two-component vectors
(
a1
a2

)
,

and the eigenstates of Ĥ0 are ψ(0)
1 =

(
1
0

)
and ψ(0)

2 =
(
0
1

)
with (unperturbed)

eigenvalues ε1 and ε2 respectively.

a) In lowest non-vanishing order perturbation theory (1.253) yields

ψ1 = ψ(0)
1 + ψ(1)

1 = ψ(0)
1 +

w

ε1 − ε2ψ
(0)
2 ,

ψ2 = ψ(0)
2 + ψ(1)

2 = ψ(0)
2 +

w

ε2 − ε1ψ
(0)
1 ,

and (1.255) yields

E1 = E(0)
1 + E(2)

1 = ε1 +
w2

ε1 − ε2 ,

E2 = E(0)
2 + E(2)

2 = ε2 − w2

ε1 − ε2 .

b) To diagonalize Ĥ in this case we first solve the secular equation (cf. (1.259),
(1.279))

det
(
ε1 − E w
w ε2 − E

)
= (ε1 − E)(ε2 − E) − w2 = 0 ,

yielding the exact eigenvalues

E± =
ε1 + ε2

2
±
√
w2 +

(
ε1 − ε2

2

)2

.

The corresponding eigenstates
(
a1
a2

)
follow from solving the simultaneous

equations

(E − ε1)a1 = wa2 , (E − ε2)a2 = wa1 ,
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for the respective eigenvalue. The eigenstates can be characterized by the
ratios

a1
a2

=
ε1 − ε2

2w
± w

|w|

√
1 +

(
ε1 − ε2

2w

)2

,

and a1, a2 are of course only defined to within a common arbitrary factor.
The perturbative results are good for |ε1 − ε2|  |w|, but they give poor
results for |ε1 − ε2| � |w|.

1.7 a) For energy E the classical turning points b and a = −b are given by
b =

√
2E/(µω2). From (1.308) we have(
n+

µφ

4

)
πh̄ =

∫ b

−b

µω
√
b2 − x2 dx = µω

π

2
b2 =

πE

ω
,

which yields En = (n + µφ/4)h̄ω in agreement with the exact result,
when the Maslov index µφ is taken to be two, corresponding to a
phase loss of π/2 of the WKB wave at each turning point.

b) The classical turning points are a = 0 and b = L independent of E.
With p =

√
2µE we have

∫ b

a
p dx =

√
2µE L, and the quantization

condition (1.308) yields the exact quantum mechanical result En =
(πh̄)2(n+1)2/(2µL2) , n = 0, 1, 2, . . ., provided the Maslov index µφ

is taken to be four, corresponding to a phase loss of π at each turning
point.

c) For x > L we have |p(x)| = h̄κ =
√

2µ(V0 − E) = const., and the
WKB wave function,

ψWKB(x) =
N√
h̄κ

e−κ(x−L) , x > L , (1)

exactly solves the Schrödinger equation. For x < L we have p(x) =
h̄k =

√
2µE = const.′, and the (real) WKB wave function

ψWKB(x) =
2√
h̄k

cos
(
k(L− x) − φ

2

)
, x < L , (2)

is an exact solution of the Schrödinger equation in this region as well.
Matching these (exact) wave functions and their derivatives at x = L
fixes the two constants N and φ in (1) and (2),

φ = 2arctan (κ/k) , N = 2
√
κk/(κ2 + k2) . (3)

The exact wave function constructed in this way coincides with the
WKB wave function, except at the classical turning point L, where
the WKB wave function is not defined.
For the particle in the well bounded by two steps, the WKB wave
functions represent exact solutions of the Schrödinger equation in the
regions x < 0, 0 < x < L and x > L. The (exact) wave functions
decay as exp [−κ|x|] for x < 0 and as ± exp [−κ(x− L)] for x > L;
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the “+” and “−” signs refer to solutions which are symmetric or
antisymmetric with respect to reflection at x = L/2. Matching the
WKB wave functions at each turning point is the same as matching
the exact solutions; it leads to two expressions for the wave function
in the classically allowed region, and the condition that these be equal
is,

cos
(
kx− φ

2

)
= ± cos

(
k(L− x) − φ

2

)
, 0 < x < L , (4)

which is fulfilled if and only if kL = φ+ nπ, i.e. h̄kL = πh̄
(
n+ 1

4µφ

)
with µφ = 2φ/(π/2). This is just the quantization condition (1.308),
(1.309) with the phase loss φ at each turning point as given by (3).
With the Maslov index corresponding to the correct reflection phase(s)
φ the quantization condition (1.308) gives the exact energy eigenval-
ues. When matched with the correct phase φ and amplitude factor
N (3), the WKB wave function in the regions x < 0, 0<x<L and
x > L is equal to the corresponding continuous exact wave function
with continuous derivative.
[Note that the quantization condition for the ground state (n=0) is

tan (kL/2) = κ/k =
√

2µV0/(h̄2k2) − 1 and always has a solution, no
matter how small L and V0 are. This is in contrast to the potential
step in the radial Schrödinger equation of three-dimensional space (see
Problems 1.1 and 1.8).]

1.8. For the kinetic energy T̂ = − h̄
2

2µ
d2

dx2
we have

〈ψ|T̂ |ψ〉 = (
√
πb)−1 h̄

2

2µ

∫ ∞

−∞

(
d

dx
e−x2/(2b2)

)2

dx

= (
√
πb)−1 h̄

2

2µ
1
b4

∫ ∞

−∞
x2 e−x2/b2 dx =

h̄2

4µb2
,

which tends to zero as 1/b2 as b→ ∞.
For any potential V (x) the expectation value

〈ψ|V |ψ〉 = (
√
πb)−1

∫ ∞

−∞
V (x) e−x2/b2 dx

approaches 1/(
√
πb) times the constant

∫∞
−∞ V (x) dx as b → ∞. If this con-

stant is negative, then the more slowly vanishing negative contribution of
the potential energy will outweigh the more rapidly vanishing positive contri-
bution of the kinetic energy for sufficiently large b, giving in sum a negative
energy expectation value, which in turn must be larger than the lowest energy
eigenvalue due to (1.272).
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The same reasoning cannot be applied in three dimensions, because there
the normalized Gaussian is (

√
πb)−3/2 e−x2/(2b2) and the potential energy ex-

pectation value vanishes as b−3 for large b. Indeed, from problem 1.1 we see
that the attractive spherical square well has no bound state if V0 is too small.
In two dimensions the Gaussian trial function does not lead to conclusive re-
sults, but an alternative choice of trial functions can be used to prove the
existence of at least one bound state in a dominantly attractive potential (see
e.g. Perez, Malta and Coutinho, Am. J. Phys. 58 (1990) 519).

1.9. For energies E = −|E| sufficiently close to threshold the outer classical
turning point b(E) is given by

E = −Cl

b2
, b(E) =

√
Cl

|E| > r0 , Cl = C − h̄2

2µ

(
l +

1
2

)2

. (1)

From (1.308) we have(
n+

µφ

4

)
πh̄ =

∫ b

a

p(r) dr =
∫ r0

a

p(r) dr +
∫ b

r0

p(r) dr . (2)

As E approaches zero the first term on the right-hand side of (2) tends to a
constant, but the second term grows beyond all bounds:

∫ b(E)

r0

p(r) dr=
∫ b

r0

√
2µ

(
Cl

r2
− |E|

)
dr =

√
2µCl

b

∫ b

r0

√
b2 − r2
r

dr

=
√

2µCl

b

[√
b2 − r2 − b ln

(
b+

√
b2 − r2
r

)]b

r0

=
√

2µCl

[
ln

(
b+

√
b2 − r20
r0

)
−
√

1 − r20
b2

]

b→∞→
√

2µCl ln b+ const .

(3)

For E → 0, which implies b→ ∞ and n→ ∞, we have

b ∝ exp
[
(n+ µφ/4)πh̄√

2µCl

]
or E = −Cl

b2
= −c1 e−c2(l)n

with c2(l) =
2πh̄√
2µCl

=
2πh̄√

2µC − (l + 1/2)2h̄2
. (4)

The magnitudes of the energies are determined by the constant c1 which
depends on the constants entering in (2) and (3). These in turn depend cru-
cially on the parameter r0 and the nature of the potential inside r0. An infinite
sequence of bound states exists as long as Cl = C − (l+ 1/2)2h̄2/(2µ) is posi-
tive. The ratio En/En+1 of successive binding energies is exp [c2(l)]. If Cl ≤ 0
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there is at most a finite number of bound states. Although these statements
were derived using the WKB approximation including the Langer modifica-
tion, they agree with the exact quantum mechanical results (see Morse and
Feshbach, Methods of Theoretical Physics Part II, (McGraw-Hill, New York,
1953) p. 1665), Sect. 3.1.3.

1.10. The quantality function is,

Q(r) =
5α2(βα)2α−4

16r2α+2 [k2 + (βα)α−2/rα]3
− α(α+ 1)(βα)α−2

4rα+2 [k2 + (βα)α−2/rα]2

and maxima of |Q(r)| occur when

k2 =Fα
(βα)α−2

rα
,

where

Fα =
5
4
− 9

2α+ 4
± 9α

4α+ 8

√
1 − 20

27

(
α+ 2
α+ 1

)
. (1)

The positions of these maxima are

rmax = [Fα]1/α
rE ,

with rE as given by (1.324). For α > 4, the function Q(r) has a zero at
r = 1

4 [1 − 5/(α+ 1)]1/4
rE ; there is a larger maximum of |Q(r)| above [cor-

responding to the plus sign in (1)] and a smaller one below [corresponding to
the minus sign in (1)] this zero. For α = 3, 4, only the plus sign in (1) yields
a positive value for Fα. For the plus sign in (1), the values of [Fα]1/α are:

α 3 4 5 6 7 8 9 10
[Fα]1/α 0.8952 1 1.0370 1.0511 1.0560 1.0569 1.0560 1.0543

The fact that the maximum of |Q(r)| lies close to the point rE defined by
|V (rE)| = E has also been demonstrated for more general attractive potential
tails, e.g. those of the Casimir-van der Waals type which behave as −1/r3 for
small and as −1/r4 for large distances [FJM02]. This can, however, not be
a general theorem. Sharp or smooth step potentials, for which |V (r)| never
exceeds the depth (or height) of the step, provide a counter-example.

1.11.

[p̂2, r] = −h̄2[∆, r] = −h̄2

[
∂2

∂r2
+

2
r

∂

∂r
, r

]
.

The first identity follows immediately once we realize that

∂2

∂r2
rφ− r ∂

2φ

∂r2
= 2

∂φ

∂r
,
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and that
2
r

∂

∂r
rφ− 2

∂φ

∂r
=

2
r
φ for all φ(r) .

Second identity:

[p̂2, r2] = [p̂2, r]r + r[p̂2, r]

= −2h̄2

(
∂

∂r
r + 1 + r

∂

∂r
+ 1

)
= −2h̄2

(
2r
∂

∂r
+ 3

)
.

2.1. Using the properties (1.350), (1.352) we obtain,

(σ̂·A)(σ̂·B)= (σ̂xAx + σ̂yAy + σ̂zAz)(σ̂xBx + σ̂yBy + σ̂zBz)
= σ̂2

xAxBx + σ̂2
yAyBy + σ̂2

zAzBz

+σ̂xσ̂yAxBy + σ̂yσ̂zAyBz + σ̂zσ̂xAzBx

+σ̂yσ̂xAyBx + σ̂zσ̂yAzBy + σ̂xσ̂zAxBz

=A·B + iσ̂x(AyBz −AzBy)
+iσ̂y(AzBx −AxBz) + iσ̂z(AxBy −AyBx)

=A·B + iσ̂·(A × B) .

For A = r and B = p̂ we have

(σ̂·r)(σ̂·p̂) = r·p̂ + iσ̂·(r × p̂) =
h̄

i
r
∂

∂r
+ iσ̂·L̂ .

For A = B = r we have

(σ̂·r)(σ̂·r) = r2 ,

hence

(σ̂·p̂) =
1
r2

(σ̂·r)(σ̂·r)(σ̂·p̂)

=
1
r2

(σ̂·r)
(
h̄

i
r
∂

∂r
+ iσ̂·L̂

)
.

2.2. The unperturbed eigenfunctions of the hydrogen atom (Z = 1) or a
hydrogenic ion (Z > 1) for fixed quantum numbers n and l and arbitrary
quantum numbers j and m are degenerate with respect to the unperturbed
Hamiltonian (2.13). All three relativistic corrections are diagonal in j and m
so we choose the unperturbed eigenfunctions as

Φn,j,m,l ≡ φn,l(r)
r

Yj,m,l , (1)

where φn,l(r) are the radial eigenfunctions (1.138) (with Bohr radius (2.15))
and Yj,m,l are the generalized spherical harmonics (1.358).
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For the spin-orbit term we obtain for l > 0:

〈Φn,j,m,l| 1
r3

L̂·Ŝ|Φn,j,m,l〉 =
∫ ∞

0

[φn,l(r)]2

r3
dr × h̄2

2
F (j, l) ,

where F (j, l) is the factor from (1.362) which is equal to l for j = l+ 1/2 and
equal to −(l + 1) for j = l − 1/2. Using the substitution x = 2r/(naZ) the
energy shift in first-order perturbation theory is thus

∆ELS

=
Ze2

2m2
0c

2

4(n− l − 1)!
n4a3Z(n+ l)!

∫ ∞

0

x2l−1
[
L2l+1

n−l−1(x)
]2 e−x dx

h̄2

2
F (j, l) .

(2)

The only non-vanishing case up to n = 2 is that of the quantum numbers
n = 2, l = 1, for which the Laguerre polynomials are unity and the integral
in (2) can be easily calculated. A more general formula can be obtained using
the expectation value of 1/r3 as given by Bethe and Salpeter [BS77]:

∆ELS =
Z4e2

2m2
0c

2

1
a30n

3(l + 1)(l + 1
2 )l
h̄2

2
F (j, l)

=
1
4
m0c

2(Zαfs)4
F (j, l)

(l + 1)(l + 1
2 )l

,

(3)

where we have inserted a0/Z = h̄2/(Zm0e
2) for aZ , and αfs = e2/(h̄c) ≈ 1/137

is the fine structure constant. For l = 1 the factor F (j, l) is unity for j = 3/2
and −2 for j = 1/2.

The Darwin term contributes only for l = 0 implying j = 1/2, and we
have

〈Φn,j,m,l=0|ĤD|Φn,j,m,l=0〉=
πh̄2Ze2

2m2
0c

2
|Φn,j,m,l=0(r = 0)|2

=
h2Z4e2

2m0c2
1

(na0)3
=

1
2n3

m0c
2(Zα)4 ,

(4)

where we have again written a0/Z for aZ .
Combining the formula (3) for l �= 0 and the formula (4) for l = 0 we have

〈Φn,j,m,l|ĤLS + ĤD|Φn,j,m,l〉

=
1

4n3
m0c

2(Zα)4
{

[(l + 1)(l + 1
2 )]−1 for j = l + 1/2

−[(l + 1
2 )l]−1 for j = l − 1/2

.
(5)

The kinetic energy correction can be written as

− p̂2p̂2

8m3
0c

2
= − 1

2m0c2

(
ĤZ +

Ze2

r

)(
ĤZ +

Ze2

r

)
,

where ĤZ is the unperturbed Hamiltonian (2.13). Hence
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〈Φn,j,m,l|Ĥke|Φn,j,m,l〉 =
1

2m0c2
〈Φn,j,m,l|

(
ĤZ +

Ze2

r

)2

|Φn,j,m,l〉

= − 1
2m0c2

×[(RZ

n2

)2

− 2
RZ

n2
〈Φn,j,m,l|Ze

2

r
|Φn,j,m,l〉 + 〈Φn,j,m,l|Z

2e4

r2
|Φn,j,m,l〉

]
.

(6)

The expectation value of the potential energy −Ze2/r in the unperturbed
eigenstates is just twice the total unperturbed energy −RZ/n

2 by the virial
theorem. For the last term in the big square bracket in (6) we need to calculate
an integral as in (2) above, but with x2l instead of x2l−1 in the integrand. This
is easy to do directly for n ≤ 2. A more general formula can be derived using
the expression for the expectation value of 1/r2 as given by Bethe and Salpeter
[BS77]:

〈Φn,j,m,l| 1
r2

|Φn,j,m,l〉 =
1

n3(l + 1
2 )a2Z

=
Z2

n3(l + 1
2 )a20

. (7)

Combining (6) and (7) gives

〈Φn,j,m,l|Ĥke|Φn,j,m,l〉 =
m0c

2

2
(Zα)4

[
3

4n4
− 1
n3(l + 1

2 )

]
. (8)

Note that the sum (5) + (8) of the relativistic corrections in first-order
perturbation theory agrees with the leading terms of the expansion of the
exact eigenvalues according to (2.36).

2.3. The wave function ψ(r) is the normalized 1s eigenfunction of the single-
particle hydrogenic Hamiltonian corresponding to a charge number Z ′, defined
such that the Bohr radius h̄2/(Z ′µe2) coincides with β,

h̄2

Z ′µe2
= β , Z ′e2 =

h̄2

µβ
. (1)

The two-electron wave function Ψ is essentially the symmetric product
ψ(r1)ψ(r2) of the spatial one-electron wave functions; the antisymmetric spin-
parts give trivial factors unity in all matrix elements.

The expectation value of the one-body part of the Hamiltonian is given ac-
cording to (2.73), and the one-electron matrix elements can be calculated in a
straightforward way. It is more elegant to exploit the virial theorem by which
the expectation value of the one-electron kinetic energy in ψ is just minus
the one-electron total energy −RZ′ = −(Z ′)2R of the hydrogenic Hamil-
tonian corresponding to charge number Z ′. Similarly, the expectation value
of the one-electron potential energy −Z ′e2/r is twice the total energy and
hence the expectation value of −Ze2/r is −2ZZ ′R. Summing the contribu-
tions for the two electrons we obtain the following result for the expectation
value of the one-body terms in the Hamiltonian Ĥ:
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〈Ψ |
∑

i=1,2

(
p̂2

i

2µ
− Ze2

ri

)
|Ψ〉 = [2(Z ′)2 − 4ZZ ′]R . (2)

For the expectation value of the interaction term we exploit the hint and
obtain

〈Ψ | e2

|r1 − r2| |Ψ〉=
4πe2

π2β6
×

∑
l,m

∫
dr1

∫
dr2 e−2r1/β e−2r2/β rl<

(2l + 1)rl+1
>

Y ∗
l,m(Ω1)Yl,m(Ω2)

=
e2

2β

∫ ∞

0

dx1

∫ ∞

0

dx2
x2

1x
2
2

x>
e−(x1+x2) ,

(3)

where we have used the substitutions xi = 2ri/β and x> is the larger of x1, x2.
The integral can be evaluated with elementary means,∫ ∞

0

dx1x
2
1 e−x1

[
1
x1

∫ x1

0

x2
2 e−x2 dx2 +

∫ ∞

x1

x2 e−x2 dx2

]
=

5
4
,

and hence

〈Ψ | e2

|r1 − r2| |Ψ〉 =
5
4
e2

2β
=

5
4
Z ′R . (4)

Thus the total energy expectation value is

〈E〉 = 〈Ψ |Ĥ|Ψ〉 =
[
2(Z ′)2 − 4ZZ ′ +

5
4
Z ′
]
R .

The minimum of 〈E〉 corresponding to d〈E〉/dZ ′ = 0 occurs at

Z ′ = Z − 5
16

corresponding to β =
h̄2

µe2(Z − 5/16)
, (5)

and the minimum energy is

〈E〉min =
(
−2Z2 +

5
4
Z − 25

128

)
R .

For charge numbers up to Z = 10 we obtain the following energies (in atomic
units, 2R) which compare quite favourably with the results of Hartree-Fock
calculations as listed in Table 2.1 in Sect. 2.3.2:

Z 1 2 3 4 5
〈E〉min −0.473 −2.848 −7.223 −13.598 −21.973

Z 6 7 8 9 10
〈E〉min −32.348 −44.723 −59.098 −75.473 −93.848

For part b) of the problem we need the 1s wave function of Problem 2.3
a) and the 2p one-electron wave functions ψp,m:
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ψs(r) =
φ1(r)
r
Y0,0(Ω) , ψp,m(r) =

φ2(r)
r
Yl=1,m(Ω) . (6)

Note that both one-electron wave functions correspond to the Bohr radius
β defined by (1). The two-electron singlet and triplet wave functions in LS
coupling are

Ψs =
1√
2
[ψs(r1)ψp,m(r2) + ψs(r2)ψp,m(r1)]χ(S = 0) ,

Ψt =
1√
2
[ψs(r1)ψp,m(r2) − ψs(r2)ψp,m(r1)]χ(S = 1) .

(7)

The symbol χ stands for the antisymmetric (S = 0) or symmetric (S = 1)
spin part of the two-electron wave function. The subscript m in (7) labels the
azimuthal quantum number of the one-electron p-orbital and is at the same
time the quantum number of the z-component of the total orbital angular
momentum.

The expectation value of the one-body part of Ĥ can be calculated as
in part a) above, except that the total one-body energy of the hydrogenic
Hamiltonian corresponding to charge number Z ′ now is −Z ′ 2R/4 in the sec-
ond single-particle state. Thus equation (2) above is modified to

〈Ψ |
∑

i=1,2

(
p̂2

i

2µ
− Ze2

ri

)
|Ψ〉 =

[
5
4
(Z ′)2 − 5

2
ZZ ′

]
R , (8)

and this holds for both singlet and triplet states (7).
The difference between singlet and triplet states shows up in the expecta-

tion value of the interaction term. E.g. for the singlet state we have

〈ψs| e2

|r1 − r2| |Ψs〉

=
1
2

[
〈ψs(r1)ψp,m(r2)| e2

|r1 − r2| |ψs(r1)ψp,m(r2)〉

+〈ψp,m(r1)ψs(r2)| e2

|r1 − r2| |ψp,m(r1)ψs(r2)〉

+〈ψs(r1)ψp,m(r2)| e2

|r1 − r2| |ψp,m(r1)ψs(r2)〉

+〈ψp,m(r1)ψs(r2)| e2

|r1 − r2| |ψs(r1)ψp,m(r2)〉
]

=Ed + Eex ,

(9)

where we have introduced the abbreviations
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Ed = 〈ψs(r1)ψp,m(r2)| e2

|r1 − r2| |ψs(r1)ψp,m(r2)〉

= 〈ψp,m(r1)ψs(r2)| e2

|r1 − r2| |ψp,m(r1)ψs(r2)〉 ,

Eex = 〈ψs(r1)ψp,m(r2)| e2

|r1 − r2| |ψp,m(r1)ψs(r2)〉

= 〈ψp,m(r1)ψs(r2)| e2

|r1 − r2| |ψs(r1)ψp,m(r2)〉 .

(10)

For the triplet state (9) is replaced by

〈Ψt| e2

|r1 − r2| |Ψt〉 = Ed − Eex . (11)

The task now is to calculate the direct and exchange parts of the interaction
energy as defined by (10).

For the direct part we have

Ed =
∑
l′,m′

e2

2l′ + 1
×

∫
dr1

∫
dr2

[φ1(r1)φ2(r2)]2

r21r
2
2

|Y1,m(Ω2)|2 r
l′
<

rl
′+1

>

Y ∗
l′,m′(Ω1)Yl′,m′(Ω2)

= e2
∫ ∞

0

dr1

∫ ∞

0

dr2
[φ1(r1)φ2(r2)]2

r>
.

(12)

The last line in (12) follows from the fact that the integral over the angles Ω1

reduces the sum over l′ and m′ to the single term l′ = 0. Inserting the explicit
forms of the radial wave functions,

φ1(r) =
2r
β3/2

e−r/β , φ2(r) =
r2

2
√

6β5/2
e−r/(2β) , (13)

and implementing the substitutions xi = ri/β leads to

Ed =
e2

6β

∫ ∞

0

dx1

∫ ∞

0

dx2
x2

1x
4
2

x>
e−2x1 e−x2 =

e2

6β
118
81

=
118
243

Z ′R .

For the exchange part we have

Eex =
∑
l′,m′

e2

2l′ + 1

∫
dr1

∫
dr2

φ∗1(r1)φ
∗
2(r2)φ2(r1)φ1(r2)
r21r

2
2

×

Y ∗
1,m(Ω2)Y1,m(Ω1)

rl
′

<

rl
′+1

>

Y ∗
l′,m′(Ω1)Yl′,m′(Ω2)

=
e2

3

∫ ∞

0

dr1

∫ ∞

0

dr2 φ1(r1)φ2(r2)φ2(r1)φ1(r2)
r<
r2>

.

(14)
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The last line in (14) follows from the fact that the integral over the angles Ω1

and Ω2 reduces the sum over l′ and m′ to the single term corresponding to
l′ = 1 and m′ = m. Note that the result does not depend on the azimuthal
quantum number m of the trial functions (7). Inserting the explicit forms
of the radial wave functions (13) and implementing the substitutions xi =
3ri/(2β) leads to

Eex =
e2

18β

(
2
3

)7 ∫ ∞

0

dx1

∫ ∞

0

dx2
x3

1x
3
2x<

x2
>

e−x1 e−x2

=
e2

18β

(
2
3

)7 21
4

=
224
6561

Z ′R .

2.4. The wave functions obeying the correct boundary conditions, namely
ψ(x, y, z) = 0 if x = 0, y = 0 or z = 0, or if x = L, y = L or z = L, are

ψ ∝ sin(kxx) sin(kyy) sin(kzz) ,

kz =
π

L
nz , ky =

π

L
ny , kz =

π

L
nz ;

nx = 1, 2, . . . , ny = 1, 2, . . . , nz = 1, 2, . . . .

Note that only positive k’s count. Changing the sign of one of the wave num-
bers merely multiplies the total wave function by −1. The energy eigenvalues
are

Enx,ny,nz
=
h̄2π2

2µL2

(
n2

x + n2
y + n2

z

)
.

The number of states with energy up to EF corresponds to the number of
cubes of side length π/L which fit into the octant kx > 0, ky > 0, kz > 0 of
the sphere of radius kF, and hence the number of states including spin is

N = 2 × 1
8
× 4

3
πk3

F

(
L

π

)3

=
V

3π2
k3
F ,

in agreement with (2.103).

2.5. The eigenfunctions ψ(x) obeying the correct boundary condition ψ(0) =
ψ(L) = 0 are

ψn(x) =

√
2
L

sin knx , kn =
nπ

L
, n = 1, 2, . . . ;

the factor
√

2/L ensures normalization to unity. The number ρk of eigenstates
per unit wave number k is the reciprocal of the separation of k-values and is
equal to L/π. With E = h̄2k2/(2µ) the number ρE of eigenstates per unit
energy is

ρE = ρk

(
dE

dk

)−1

=
L

2π

√
2µ
h̄2E

.
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2.6. Using [Â2, B̂] = Â[Â, B̂] + [Â, B̂]Â and remembering (1.33) we have

[Ĥ, b̂†] =
1√
2h̄ω

(
ω

2
[p̂2, x] − iω2

2
[x2, p̂]

)
= h̄ωb̂† ,

[Ĥ, b̂] =
1√
2h̄ω

(
ω

2
[p̂2, x] +

iω2

2
[x2, p̂]

)
= −h̄ωb̂ .

(1)

Hence

Ĥ(b̂†ψn) =
(
n+

3
2

)
h̄ω(b̂†ψn) , Ĥ(b̂ψn) =

(
n− 1

2

)
h̄ω(b̂ψn) ,

showing that b̂†ψn is, within a factor, ψn+1 and b̂ψn is, within a factor, ψn−1.
Each ψn is an eigenstates of b̂†b̂ = (Ĥ − 1

2 h̄ω)/(h̄ω) with eigenvalue n. Let
b̂ψn = cnψn−1. Then

〈ψn|b̂†b̂|ψn〉 = n = |cn|2〈ψn−1|ψn−1〉 = |cn|2 .
Except, possibly, for a phase, cn must be equal to

√
n, and this also holds for

n = 0. If b̂†ψn = dnψn+1, then

〈ψn+1|b̂†|ψn〉 = dn = 〈ψn|b̂|ψn+1〉∗ = c∗n+1 ,

hence dn must be equal to
√
n+ 1 (except, possibly, for a phase).

2.7. Since the transition matrix element in (2.192) does not depend on spin
we ignore the spin degrees of freedom and take the initial state to be

Ψi =
φ2(r)
r
Yl=1,m(Ω) , φ2(r) =

r2

2
√

6a5/2
e−r/(2a) , (1)

where a is the Bohr radius. The only final state to which Ψi can decay is

Ψf =
φ1(r)
r
Y0,0(Ω) , φ1(r) =

2r
a3/2

e−r/a . (2)

If we express the vector r in spherical components as in (2.204), (2.206), then

|rfi|2 = |〈Ψf |r|Ψi〉|2 =
1∑

ν=−1

|〈Ψf |r(ν)|Ψi〉|2

=
(∫ ∞

0

φ1(r)φ2(r)r dr
)2

× (CG)2 ,

(3)

with the Clebsch-Gordan coefficient

(CG) = 〈00|1,−m, 1,m〉 = ± 1√
3
.

The last line of (3) can be obtained e.g. by exploiting (A.10), (A.11).
The total decay probability per unit time is given by (2.192), (2.193) and

is



466 Solution to the Problems

Pi =
4
3
e2ω3

h̄c3
|rfi|2 =

4
9
e2ω3

h̄c3

(
1√
6a4

∫ ∞

0

r4 e−3r/(2a) dr

)2

=
4
9
e2ω3

h̄c3
a2

6

(
2
3

)10 (∫ ∞

0

x4 e−x dx

)2

=
4
9
e2ω3

h̄c3
96a2

(
2
3

)10

=
4
9
96

(
2
3

)10
α3

4
ω

(
h̄ω

R
)2

= 6.268 × 108 s−1 ,

and so the lifetime of the state is τ = 1/Pi = 1.595 × 10−9 seconds. Note
that the decay probability does not depend on the m quantum number of
the initial state, so averaging over the three degenerate initial p-states states
doesn’t affect the result.

2.8. In this case we have

µ
i
h̄

[ĤA, ri] = p̂i +
µ

2mnuc

∑
k �=l

[p̂k·p̂l, ri] .

Using [ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂ and remembering (1.33) we have

[p̂k·p̂l, ri] =
h̄

i
(p̂kδl,i + p̂lδk,i) ,

and so

µ
i
h̄

[ĤA, ri] = p̂i +
µ

mnuc

∑
k �=i

p̂k . (1)

In obtaining (2.189) we inserted
∑N

i=1 µ
i
h̄ [ĤA, ri] for

∑N
i=1 p̂i, whereas (1)

shows that
N∑

i=1

µ
i
h̄

[ĤA, ri] =
N∑

i=1

p̂i + (N − 1)
µ

mnuc

N∑
i=1

p̂i ,

i.e. we should have inserted

mnuc

mnuc + (N − 1)µ

N∑
i=1

µ
i
h̄

[ĤA, ri] for
N∑

i=1

p̂i .

Formulae such as (2.189), (2.220) are modified in that the right hand sides
acquire an additional factor m2

nuc/[mnuc + (N − 1)µ]2.

3.1. The contributions of the two integrals in (3.79) in the region r > r0
cancel, provided the (common) outer classical turning point lies beyond r0,
which is the case for sufficiently large n, i.e. sufficiently close to the threshold
E = 0. The energy E can be neglected in the remaining finite integrals, giving

πµn,� =
∫ r0

aV

√
2
aZr

− (l + 1/2)2

r2
dr −

∫ r0

aC

√
2
ar

− (l + 1/2)2

r2
dr (1)
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in the limit n→ ∞. In (1) a = h̄2/(µe2) is the Bohr radius (corresponding to
charge number unity), aZ = a/Z is the Bohr radius corresponding to charge
number Z, aV is the inner classical turning point of the full potential given
by

aV =
(l + 1/2)2

2
a

Z
, (2)

and aC is the inner classical turning point of the pure Coulomb potential,

aC =
(l + 1/2)2

2
a . (3)

We have made use of the Langer modification and replaced l(l+1) by
(
l+ 1

2

)2.
For sufficiently small l-values analytic integration of (1) gives

πµn,l
n→∞= (2l + 1)[λZ − arctanλZ − (λ− arctanλ)] , (4)

with the l-dependent parameters

λ=

√
2r0

a(l + 1/2)2
− 1 ,

λZ =

√
2r0

aZ(l + 1/2)2
− 1 =

√
2Zr0

a(l + 1/2)2
− 1 .

(5)

If l+ 1
2 >

√
2r0/a, then the inner turning point in the pure Coulomb potential

lies beyond r0 and the terms containing λ in (4) don’t contribute. If l + 1
2 >√

2Zr0/a, then the inner turning point in the full potential also lies beyond
r0 and the (semi-classical) quantum defect vanishes.

Taking r0 = a/3 and Z = 19 as a rough model for potassium yields the
following quantum defects according to (4): 1.667 for l = 0, 0.970 for l = 1,
0.352 for l = 2, 0.005 for l = 3 and zero for higher l-values. (Compare Figure
3.2.)

3.2. The sign of an oscillator strength fnf ,ni (or mean oscillator strength
f̄nf ,ni) is determined by the sign of the transition energy h̄ω = εf − εi (see
Sect. 2.4.6). Oscillator strengths are negative for emission, εf < εi, and positive
for absorption, εf > εi, from a given initial state Φi. The inequalities in energy
can be replaced by inequalities in the principal quantum number n, because
ε depends monotonically on n. For transitions in which the orbital angular
momentum quantum number l increases by unity, the upper equation (3.99)
says that the sum of all mean oscillator strengths is positive, i.e. the sum of
all (positive) oscillator strengths corresponding to an increase of the n must
outweigh the sum of all (negative) oscillator strengths corresponding to a
decrease of n. Conversely, the sum of all oscillator strengths for transitions in
which l decreases by unity is negative according to the lower equation (3.99),
and hence the oscillator strengths in which n decreases dominate.
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According to Table 1.4 the three radial wave functions relevant for the
concrete example are

φ2p(r) =
r2

2
√

6a5/2
e−r/(2a) , φ3d(r) =

4
81
√

30
r3

a7/2
e−r/(3a) ,

φ3s(r) =
r

9
√

3a3/2

(
6 − 4

r

a
+

4
9
r2

a2

)
e−r/(3a) ,

and the corresponding radial integrals are∫ ∞

0

φ3s(r)rφ2p(r) dr=
1

54
√

2

∫ ∞

0

( r
a

)4
(

6 − 4
r

a
+

4
9
r2

a2

)
e−5r/(6a) dr

=
4a

9
√

2

(
6
5

)6

,∫ ∞

0

φ3d(r)rφ2p(r) dr=
1

243
√

5

∫ ∞

0

( r
a

)6

e−5r/(6a) dr =
21134

56
√

5
a .

With h̄ω = (1
4 − 1

9 )R = 5
72 h̄

2/(µa2) we have

f̄3s,2p =
5

108
1

3a2

(∫ ∞

0

φ3s(r)rφ2p(r) dr
)2

=
21334

511
= 0.0136 ,

f̄3d,2p =
5

108
2

3a2

(∫ ∞

0

φ3d(r)rφ2p(r) dr
)2

=
22134

512
= 0.6958 .

Transitions from the 2p state to d-states must have non-negative oscillator
strengths, because the n = 1 shell only contains s-states. According to the
upper equation (3.99) the sum of all these oscillator strengths is 10/9. As
shown above, the transition to the 3d state already exhausts more than sixty
per cent of the sum.

3.3. Part a) of the problem is essentially the same as Problem 1.6b) in Chap-
ter 1. Writing 〈φ02|V2,3|φ03〉 as W2,3, the energy eigenvalues are

E± =
E02 + E03

2
±
√
W 2

2,3 +
(
E02 − E03

2

)2

, (1)

and the (normalized) eigenstates can be expressed as

a2 =
1√
2

√
1 +

α√
1 + α2

, a3 =
1√
2

√
1 − α√

1 + α2
,

b2 =
1√
2

√
1 − α√

1 + α2
, b3 =− 1√

2

√
1 +

α√
1 + α2

.

(2)

We have assumed phases chosen such thatW2,3 ≥ 0 and used the abbreviation

α =
E02 − E03

2W2,3
. (3)



Solution for the Problems 469

In the spirit of the Golden Rule, the decay width due to decay to the
energy normalized regular wave function φreg in the open channel 1 is (cf.
(1.231), (2.144))

Γ± = 2π|〈ψ±|V |φreg〉|2 .
Inserting the wave function ψ+ given by the (real) coefficients a2, a3 in (2) we
obtain

Γ+ = 2π|a2〈φ02|V2,1|φreg〉 + a3〈φ03|V3,1|φreg〉|2

= π
(
W 2

2,1 +W 2
3,1

)
+ π

E02−E03
2

(
W 2

2,1 −W 2
3,1

)
+ 2W2,1W3,1W2,3√(

E02−E03
2

)2
+W 2

2,3

(4)

where we have written Wi,1 for 〈φ0i|Vi,1|φreg〉, i = 2, 3. The same calculation
for the second solution ψ− gives

Γ− = π
(
W 2

2,1 +W 2
3,1

)− π E02−E03
2

(
W 2

2,1 −W 2
3,1

)
+ 2W2,1W3,1W2,3√(

E02−E03
2

)2
+W 2

2,3

. (5)

Equations (4), (5) have the same structure as equation (3.153), which was ob-
tained via the exact solution of the Schrödinger equation in the space spanned
by the whole continuum channel 1 and the two isolated bound states in the
channels 2 and 3. Also equation (1) above has the same structure as equa-
tion (3.152). The perturbative treatment in this problem misses the Green’s
function corrections to the resonance energies (cf. (3.145)) and to the direct
coupling matrix element (3.146).

3.4. The structure of the oscillator strength function becomes clearer if we
write

dfEi

dE
=

2µ
h̄
ωd21 ×Q , Q =

(
1 + d2

d1

W2,1
E−ε2

+ d3
d1

W3,1
E−ε3

)2

1 +
(

πW 2
2,1

E−ε2
+

πW 2
3,1

E−ε3

)2 . (1)

The quotient Q can formally be written as a Beutler-Fano function,

Q =
(q + ε)2

1 + ε2
, (2)

with the energy dependent parameter q and the “reduced energy” ε given by

q =
d2
d1
W2,1(E − ε3) + d3

d1
W3,1(E − ε2)

πW 2
2,1(E − ε3) + πW 2

3,1(E − ε2) ,

ε =

(
πW 2

2,1

E − ε2 +
πW 2

3,1

E − ε3

)−1

.

(3)

The reduced energy ε has a pole at the energy
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EP =
W 2

2,1ε3 +W 2
3,1ε2

W 2
2,1 +W 2

3,1

, (4)

which lies between ε2 and ε3. The reduced energy varies from ε = −∞ at
E = −∞ to ε = +∞ at E = EP, and again from ε = −∞ at E = EP

to ε = +∞ at E = +∞. Near ε2 the reduced energy ε is approximately
(E − ε2)/(πW 2

2,1), near ε3 it is approximately (E − ε3)/(πW 2
3,1). Thus we

expect two Beutler-Fano type resonances whose low-energy or high-energy
tails are contracted into the region above or below EP respectively. If the
widths 2πW 2

2,1 and 2πW 2
3,1 are sufficiently small, then the parameter q in (3)

is roughly constant over the width of a resonance and we can assign shape
parameters

q2 =
d2/d1
πW2,1

, q3 =
d3/d1
πW3,1

(5)

to the resonances around ε2 and ε3 respectively. The zeros of dfEi/dE lie
at ε = −q2, ε = −q3 and the maxima at ε = 1/q2 an ε = 1/q3. For small
magnitudes of d2/d1, d3/d1 (compared with the magnitudes ofW2,1 andW3,1)
we expect window resonances, for large magnitudes we expect pronounced
peaks (cf. Fig. 3.6).

The above considerations assume weak energy dependence of the parame-
ter q in (3) over the width of a resonance. The zeros Z± of dfEi/dE are given
exactly as the zeros of the quadratic form

(E − ε2)(E − ε3) +
d2
d1
W2,1(E − ε3) +

d3
d1
W3,1(E − ε2)

and are

Z± =
ε2 + ε3

2
− 1

2

(
d2
d1
W2,1 +

d3
d1
W3,1

)

±1
2

√[
ε2 − ε3 −

(
d2
d1
W2,1 − d3

d1
W3,1

)]2

+ 4
d2d3
d21

W2,1W3,1 .

(6)

Note that W2,1d2/d1 and W3,1d3/d1 have the dimensions of an energy. If the
magnitudes of these numbers are small compared to |ε2 − ε3|, then we can
neglect the term proportional to d2d3/d21 under the square root in (6) and
obtain the two zeros

Z = ε2 − d2
d1
W2,1 , and Z = ε3 − d3

d1
W3,1 . (7)

This result agress with the result following from zeros of the reduced energy
ε ≈ (E − ε2)/(πW 2

2,1) at −q2 or of ε ≈ (E − ε3)/(πW 2
3,1) at −q3 as ob-

tained above. If W2,1d2/d1 and W3,1d3/d1 have large magnitudes compared
to |ε2 − ε3|, then we can neglect the epsilons under the square root in (6) and
obtain one zero near the average energy (ε2 + ε3)/2 and one zero shifted by
−[(d2/d1)W2,1 + (d3/d1)W3,1].
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3.5. It is more accurate first to read off the quantum defects µn and then to
calculate the energies via En/R = −1/(n− µn)2. Results for Γ = 0.01R are
(approximately):

n 3 4 5 6 7 8 9 10

−En/R 0.1126 0.0647 0.0445 0.0349 0.0267 0.0199 0.0154 0.0122
µn 0.02 0.07 0.26 0.72 0.88 0.92 0.93 0.94

Results for Γ = 0.001R are (approximately):

n 3 4 5 6 7 8 9 10

−En/R 0.1111 0.0628 0.0415 0.0386 0.0277 0.0204 0.0156 0.0123
µn 0 0.01 0.09 0.91 0.99 0.995 1.0 1.0

For Γ → 0 the perturber only affects the n = 5 state at E = −0.04R. For
small but finite Γ there is one energy just below and one just above −0.04R.
For vanishing Γ this energy becomes degenerate. Explicitly we have

n 3 4 5 6 7 8 9 10

−En/R 0.1111 0.0625 0.04 0.04 0.0277 0.0204 0.0156 0.0123
µn 0 0 0 1 1 1 1 1

3.6. The quantum defects (modulo unity) of the bound states in Fig. 3.10 can
be read off to be: −0.07, 0.04, 0.21, 0.48, 0.68, 0.76, 0.80 and 0.83. The first
dot with an energy near −0.25R must correspond to an effective quantum
number near 2, so we know where to start counting. The effective quantum
numbers of the first eight states are thus 2.07, 2.96, 3.79, 4.52, 5.32, 6.24, 7.20
and 8.17, and the corresponding binding energies (−E) are (in Rydbergs):
0.233, 0.114, 0.070, 0.049, 0.035, 0.026, 0.019 and 0.015.

The energy of the perturber is the point of maximum gradient of µ(E),
which lies near E = −0.05R. The width can be estimated according to (1.235)
as 2/π divided by this maximum gradient which has a numerical value of at
least 14.3/R. The background quantum defect is the amount by which the
value of µ(E) differs from 1/2 at the energy of the perturber. In the present
example the parameters ER = −0.052R, Γ = 0.035R and a background
quantum defect of −0.06, inserted in the formula (3.159), give quantum defects
which differ by less than 0.02 from the values in Fig. 3.10 (except for the lowest
and the highest energy when the difference is 0.04 and 0.03 respectively). The
energy of the perturber relative to the series limit of the second channel (ε2 = 0
in Fig. 3.10) is E − I2 = ER − 0.125R = −0.177R, which corresponds to an
effective quantum number (in channel 2) ν2 =

√R/(I2 − E) = 2.38. At the
energy of the perturber ν2 + µ2 should be an integer, so µ2 is 0.62 (modulo
unity). From the width formula (3.193) we derive R2

1,2 = πν3
2Γ/4R = 0.371.

Summary: |R1,2| = 0.61 , µ1 = −0.06 , µ2 = 0.62 .
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3.7. Near a perturber the quantum defects lie on a curve (3.159)

µn = µ0 − 1
π

arctan
Γ/2

E − ER
. (1)

The closest approach of two adjacent levels n and n+1 can be expected when
the state n is on the low-energy tail and the state n+ 1 is on the high energy
tail of the arcus-tangent curve. Appropriate expansions of the arcus-tangent
yield

2π(µn − µ0) = − Γ

En − ER
, 2π(µn+1 − µ0 − 1) = − Γ

En+1 − ER
. (2)

It is convenient to introduce the parameter α describing the ratio of the dis-
tance of En+1 from ER to the separation of En and En+1:

En+1 − ER = α(En+1 − En) , En −ER = (α− 1)(En+1 − En) . (3)

From the energy formula in the (perturbed) Rydberg series we have
1
En

− 1
En+1

= − 1
R

[
2n(µn+1 − 1 − µn) + µ2

n − (µn+1 − 1)2
]
. (4)

We neglect the small (compared with n) quantities µ2
n and (µn+1−1)2 on the

right-hand side of (4) and replace the difference µn+1 − 1 − µn according to
(2), (3):

(En+1 − En)2

En+1En
=
nΓ

πR
(

1
α

+
1

1 − α
)
. (5)

We replace the product EnEn+1 by R2/(n∗)4, where n∗ is an effective quan-
tum number corresponding to an energy between En and En+1. This gives:

(En+1 − En)2

4R2/(n∗)6
=
Γ (n∗)3

πR
1
4

(
1
α

+
1

1 − α
)
, (6)

where we have neglected the difference between the quantum number n in
(5) and the effective quantum number n∗. The left-hand side of (6) is just
the square of the energy difference relative to the unperturbed energy dif-
ference 2R/(n∗)3. The expression in the big brackets on the right-hand side
has its minimum at α = 0.5 and the minimum value is four, hence the mini-
mum of the energy difference relative to the unperturbed energy difference is√
Γ (n∗)3/(πR). (See also [FW85].)

3.8. Since z is the ν = 0 spherical component of the vector r we must have
m′ = m. The triangle condition and parity demand l′ = l± 1. Hence the only
non-vanishing matrix elements are between

ψ0,0 =
e−r/(2a)

a3/22
√

2π

(
1 − r

2a

)
and ψ1,0 =

r e−r/(2a)

2
√

6a5/2
Y1,0(θ) .

When calculating the matrix element of eEzz between these states we can
exploit the fact that z is

√
4π/3r times the (real) function Y1,0 and that the

angle integral over Y 2
1,0 gives unity. Thus



Solution for the Problems 473

〈ψ0,0|eEzz|ψ1,0〉 =
eEz

12a4

∫ ∞

0

(
1 − r

2a

)
r2 e−r/ar2 dr

=
eEza

12

∫ ∞

0

(
x4 − 1

2
x5

)
e−x dx = −3eEza .

The matrix W of the perturbing operator is thus

W =
(

0 −3eEza
−3eEza 0

)
.

Its eigenvalues follow from the secular equation (cf. (1.259)), which in this
case reads E2 = (3eEza)2 yielding

E± = ±3eEza .

The corresponding (normalized) eigenstates are

ψ+ =
1√
2
(ψ0,0 − ψ1,0) , ψ− =

1√
2
(ψ0,0 + ψ1,0) .

(See Fig. 3.15)

3.9. Remembering that [ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂ and exploiting (1.33)
and Problem 1.11 gives

[Ĥ0, b̂] = −ah̄
2

µ

[
∂

∂z

(
a+

r

2

)
+
z

2

(
∂

∂r
+

1
r

)]
.

Remembering that ∂/∂z = (z/r)∂/∂r we can verify the identity by straight-
forward differentiation.

Now

|〈ψm|z|ψ0〉|2
Em − E0

=
µ

h̄2

〈ψ0|z|ψm〉〈ψm|[Ĥ0, b̂]|ψ0〉
Em − E0

=
µ

h̄2 〈ψ0|z|ψm〉〈ψm|b̂|ψ0〉 .

Summing over all m gives (µ/h̄2)〈ψ0|zb̂|ψ0〉 via the completeness relation, so
the expression for the dipole polarizability becomes

αd =
2µe2

h̄2 〈ψ0|zb̂|ψ0〉

=
2µe2

h̄2

[
a2〈ψ0|z2|ψ0〉 +

a

2
〈ψ0|z2r|ψ0〉

]

=
2µe2

h̄2

(
a4 +

5
4
a4
)

=
9
2
a3 .

3.10.

As(r) = AL(r) +
1
2

⎛
⎝ yx

0

⎞
⎠Bz = AL(r) + ∇

(xy
2
Bz

)
. (1)
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From

p̂ψs =
h̄

i
∇
(
e−

ie
h̄c fψL

)
= −e

c
∇f e−

ie
h̄c fψL + e−

ie
h̄c f h̄

i
∇ψL

we deduce(
p̂ +

e

c
(AL + ∇f)

)
e−

ie
h̄c fψL = e−

ie
h̄c f

(
p̂ +

e

c
AL

)
ψL . (2)

Applying the big bracket on the left-hand side a second time yields an expres-
sion similar to the right-hand side of (2), but with (p̂ + (e/c)AL)ψL taking
the place of ψL. Thus(

p̂ +
e

c
(AL + ∇f)

)2

e−
ie
h̄c fψL = e−

ie
h̄c f

(
p̂ +

e

c
AL

)2

ψL

= e−
ie
h̄c f2µEψL ,

(3)

where the lower line follows from the Schrödinger equation for ψL. Except for
the factor 2µ equation (3) is just the Schrödinger equation for ψs = e−

ie
h̄c fψL

with the vector potential As = AL + ∇f .
In the symmetric gauge the Hamiltonian is (cf. (3.249)):

Ĥs =
p̂2

2µ
+ ωL̂z +

µ

2
ω2(x2 + y2) , (4)

where ω = eBz/(2µc) = ωc/2 is half the cyclotron frequency. The azimuthal
quantum numberm is a good quantum number, and the motion of the electron
parallel to the z-axis is that of a free particle. The motion perpendicular to
the z-axis is that of a two-dimensional harmonic oscillator. A discussion of
the two-dimensional harmonic oscillator (which is frequently neglected in the
shadow of detailed treatments of the one- and the three-dimensional case)
can be found e.g. in: J.D. Talman, Nuclear Physics vol. A141 (1970) p. 273.
In polar coordinates (ρ =

√
x2 + y2, tanφ = y/x) the eigenfunctions of the

two-dimensional oscillator are

ΨN,m(ρ, φ) = eimφΨN,m(ρ) .

ψN,m are the radial eigenfunctions

ψN,m(ρ) =
(
b
√
π
)−1

[
N !

(N + |m|)!
]1/2 (ρ

b

)|m|
L
|m|
N

(
ρ2

b2

)
e−ρ2/(2b2) ,

where b =
√
h̄/(µω) is the oscillator width and L|m|

N stands for the Laguerre
polynomials. The corresponding eigenvalues of the two-dimensional oscillator
part of the Hamiltonian are (2N + |m| + 1)h̄ω.

The full wave functions are thus characterized by the good quantum num-
bers N and m for the motion perpendicular to the field and by the wave
number kz for the free motion parallel to the field:

Ψkz,N,m = eikzz eimφψN,m(ρ) . (5)
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The total energy eigenvalues including h̄2k2
z/(2µ) from the motion parallel to

the field and mh̄ω from the normal Zeeman term ωL̂z are:

Ekz,N,m =
h̄2k2

z

2µ
+ (2N + |m| +m+ 1)h̄ω , (6)

with −∞ < kz <∞, m = 0,±1,±2, . . . and N = 0, 1, 2, . . . .
In the Landau gauge the Hamiltonian is

ĤL =
µ

2
ω2

c

(
y − p̂x

µωc

)2

+
p̂2y
2µ

+
p̂2z
2µ

. (7)

The electron moves freely in the z-direction. Its momentum in x-direction
is also a good quantum number, and the value of the x-momentum fixes the
centre of the harmonic oscillator motion in y-direction. Note that the oscillator
frequency for this one-dimensional vibratory motion now is the full cyclotron
frequency ωc.

The eigenfunctions in the Landau gauge are characterized by the wave
numbers kx and kz for the good momenta in x- and z-directions and by the
oscillator quantum number n for the one-dimensional oscillator motion in y-
direction:

Φkx,kz,n = eikxx eikzz ψn(y) , (8)

where ψn(y) are the eigenstates of the one-dimensional harmonic oscillator
(cf. Sect. 5.2.2). The corresponding energy eigenvalues are

Ekx,kz,n =
h̄2k2

z

2µ
+
(
n+

1
2

)
h̄ωc . (9)

In both the symmetric gauge and the Landau gauge the energy contains a
continuous term h̄2k2

z/(2µ) for the free motion of the electron parallel to the
field, as well as a discrete part consisting of odd multiples of 1

2 h̄ωc (= h̄ω) for
the so-called Landau states describing the motion perpendicular to the field.
All eigenvalues are highly degenerate. For given values of kz and n in the
Landau gauge, all values of kx yield the same total energy, the corresponding
wave functions differ by the reference point y0 = h̄kx/µωc around which the
oscillatory motion is centered. For given values of kz and Eosc = (2Nmax+1)h̄ω
in the symmetric gauge, all wave functions (5) with m = 1, N = Nmax − 1,
m = 2, N = Nmax − 2, . . ., N = 0, m = Nmax, as well as all eigenfunctions
with N = Nmax, m ≤ 0 belong to the same energy (6).

From parts a) and b) we know that eigenstates in the different gauges are
related by

ψs(r) = exp
(
− i
h̄
µωxy

)
ψL(r) = e

−ixy

b2 ψL(r) , (10)

where b =
√
h̄/(µω) is the oscillator width associated with half the cyclotron

frequency. Because of the degeneracies (10) doesn’t imply a one-to-one relation
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between the eigenstates (5) and (8). If, for example, we wish to relate the
eigenstate

Ψ0,0,0 =
1
b
√
π

e−(x2+y2)/(2b2) (11)

in the symmetric gauge to eigenstates of the same total energy E = h̄ω =
h̄ωc/2 in the Landau gauge, we must allow superpositions of eigenstates
Φkx,kz=0,n=0 with various wave numbers kx, i.e.

Ψ0,0,0 = e
−ixy

b2

∫ ∞

−∞
a(kx) eikxx

( √
2√
πb

)1/2

exp

[
− 1
b2

(
y − h̄kx

2µω

)2
]
dkx ,

with an appropriate amplitude a(kz). (Note that the oscillator width in the
Landau gauge is bc = b/

√
2.) The choice

a(kx) =

√
b

(2π)3/4
e−b2k2

x/4

does indeed produce the wave function (11).

3.11. Using the hint we obtain the approximate expression

ψB =
1

2m0c
σ̂·

(
p̂ +

e

c
A
)
,

which we insert into the upper equation to obtain

1
2m0

[
σ̂·

(
p̂ +

e

c
A
)] [

σ̂·
(
p̂ +

e

c
A
)]
ψA = (E + eΦ−m0c

2)ψA .

With the help of the identity in Problem 2.1 we obtain[
1

2m0

(
p̂ +

e

c
A
)2

+
e

2m0c
iσ̂ · (p̂ × A + A × p̂) − eΦ

]
ψA = (E −m0c

2)ψA .

The term (p̂ × A + A × p̂) does not vanish, because p̂ does not commute with
A(r). An operator ∂

∂xAy actually means ∂Ay

∂x +Ay
∂
∂x by virtue of the product

rule, so (p̂ × A + A × p̂) = (h̄/i)∇ × A = (h̄/i)B and the corresponding
contribution to the Hamiltonian is

eh̄

2m0c
σ̂ · B =

e

m0c
Ŝ · B .

This is the spin contribution to the Hamiltonian (3.253). Note that the factor
2 in front of the the spin in (3.253) follows without further assumption from
the Dirac equation.

4.1. Integrating the left-hand side of the asserted identity by parts we obtain
for the left-hand side

−a
ia

eia(1−x)(1 + x)f(x)
∣∣∣1
−1

+ lim
a→∞

a

ia

∫ 1

−1

eia(1−x) d

dx
[(1 + x)f(x)] dx .
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The first term above is independent of a and equals 2if(1) as required for
the identity. The second term vanishes in the limit a → ∞ because of the
increasing frequency of the oscillating factor in the integrand.

Inserting the asymptotic form (4.3) for the wave function into the definition
(4.4) of the current density gives

j
r→∞=

h̄k

µ
ez + jinterf + jout , (1)

where jout is the current density (4.5), and

jinterf =
h̄k

2µ

[
eikzf∗(θ, φ)

e−ikr

r
(er + ez) + e−ikzf(θ, φ)

eikr

r
(er + ez)

]

=
h̄k

2µr

[
f(θ, φ) eikr(1−cos θ)(er + ez) + f∗(θ, φ) e−ikr(1−cos θ)(er + ez)

]
.

Introducing x = cos θ and writing jr for the radial component of jinterf , i.e.
jr = jinterf · r/r, we have

Iinterf =
∮

jinterf · ds = r2
∫ 1

−1

dx

∫ 2π

0

dφ jr

=
h̄kr

2µ

[ ∫ 1

−1

dx eikr(1−x)(1 + x)
∫ 2π

0

f(θ, φ) dφ

+
∫ 1

−1

dx e−ikr(1−x)(1 + x)
∫ 2π

0

f∗(θ, φ) dφ
]
.

In the limit kr → ∞ the first integral on the right-hand side contributes
(ih̄/µ)× 2πf(θ = 0), because of the identity a). Note that f(θ, φ) is indepen-
dent of φ at θ = 0. The corresponding identity for −kr → −∞ shows us that
the second integral gives a contribution −(ih̄/µ) × 2πf∗(θ = 0). Thus

Iinterf = − h̄
µ

4π�[f(θ = 0)] , r → ∞ . (2)

The optical theorem follows from the observation that, since the first term
in (1) doesn’t contribute to the net flux on symmetry grounds, the sum of
the fluxes Iout from (4.9) and Iinterf from (2) above must vanish according to
(4.8).

4.2. For r′ � r we have

|r − r′| = r

√
1 − 2

r·r′

r2
+
(
r′

r

)2

≈ r − r·r′

r
+O

(
r′ 2

r

)
,

and so the exponential can be approximated by

eik|r−r′| = eikr e−ikr·r′
[
1 +O

(
kr′
r′

r

)]
.
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Furthermore we have
1

|r − r′| =
1

r

√
1 − 2r·r′

r2 +
(

r′
r

)2 ≈ 1
r

[
1 +O

(
r′

r

)]
,

showing that the corrections to the leading term in the expression for G are
smaller by a factor of the order r′/r.

4.3. In a cube of length L periodic boundary conditions are fulfilled for wave
vectors

k =

⎛
⎝ kx

ky

kz

⎞
⎠ , with kx =

2π
L
nx , ky =

2π
L
ny , kz =

2π
L
nz ,

nz = 0,±1,±2, . . . , ny = 0,±1,±2, . . . , nz = 0,±1,±2, . . . .

In k-space there is one normalizable state for each cube of volume (2π/L)3,
hence the density of states is (L/2π)3. In order to obtain the density of states
with respect the modulus k of the wave vector, we write the volume element
in k-space as ∆Vk = 4πk2∆k, giving

∆N

∆Vk
=
(
L

2π

)3

=
∆N

4πk2∆k
.

Hence we have

ρk =
∆N

∆k
= 4πk2 L

3

8π3
=
k2L3

2π2
.

For the density of states with respect to the energy E = h̄2k2/(2µ) we obtain

∆N

∆E
= ρk

(
dE

dk

)−1

=
L3µk

2π2h̄2 .

States normalized to unity carry an amplitude factor 1/L3/2. When working
with bound states of unit amplitude, the density of states must absorb the
factor 1/L3 so that products such as occur in the Golden Rule remain inde-
pendent of the choice of amplitude. Thus the density of states for plane waves
with unit amplitude is

ρE =
µk

2π2h̄2 =
µ3/2

h̄3

√
2E

2π2
.

If we now visualize the scattering process as a transition from incoming
plane waves ψi (travelling in the direction of the z-axis) to final plane waves
ψf (travelling in the direction dΩ), then the transition probability per unit
time is, according to the Golden Rule,

dP (θ, φ) =
2π
h̄
|〈ψf |T̂ |ψi〉|2ρE × dΩ

4π

=
kµ

4π2h̄3 |〈ψf |T̂ |ψi〉|2 dΩ .
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The perturbing operator causing the transition is called T̂ . If we relate the
matrix element of the transition operator T̂ to the scattering amplitude f(θ, φ)
as suggested by (4.18), then we obtain

dP (θ, φ)
dΩ

= |f(θ, φ)|2 h̄k
µ
.

By dividing the transition rate per unit time for scattering into the solid angle
dΩ by the incoming current density, we return to the original definition (4.6)
for the differential scattering cross section.

4.4. The integrated cross section can be written as a sum of contributions σl,
which originate from the partial waves l and vary between zero (for δl = nπ)
and maximum values of 4π(2l + 1)/k2 (for δl = (n+ 1

2 )π),

σ =
∞∑

l=0

σl , σl =
4π
k2

(2l + 1) sin2 δl . (1)

For a given partial wave l we have

tan δl
k→∞= − sin(kr0 − lπ/2)

cos(kr0 − lπ/2)
= − tan(kr0 − lπ/2) ,

and hence

δl =
(
n+

l

2

)
π − kr0 , for k → ∞ .

The oscillatory asymptotic (kr0 → ∞) behaviour of jl(kr0), nl(kr0) turns to
a monotonic decrease of jl/nl to zero as the argument kr0 goes to zero (cf.
(A.46)). An estimate of where this turnover takes place can be obtained by
looking at the wave number kl, where the classical radial kinetic energy at r0,

E − l(l + 1)h̄2

2µr20
≈ h̄2

2µ

(
k2 − (l + 1

2 )2

r20

)
vanishes, and this happens at

klr0 = l +
1
2
. (2)

Note that we have utilized the Langer modification replacing l(l + 1) by (l +
1/2)2. For large values of l we have (see e.g. Ch. 9.3 in Ref. [AS70] quoted in
the Appendix)

jl(kr0)
nl(kr0)

l→∞=
1
2

(
e kr0
2l + 1

)2l+1

. (3)

For a given energy, i.e. for a given wave number k, partial waves up to
lmax ≈ kr0 contribute significantly to the cross section, contributions from
higher partial waves fall off rapidly according to (3). An approximate value
for the total cross section is
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σ ≈ 4π
k2

lmax∑
l=0

(2l + 1) sin2

(
kr0 − l

2
π

)

=
4π
k2

[ lmax∑
l=1

l

[
sin2

(
kr0 − l

2
π

)
+ sin2

(
kr0 − l − 1

2
π

)]

+(lmax + 1) sin2

(
kr0 − lmax

2
π

)]

≈ 4π
k2

lmax∑
l=0

l =
4π
k2

lmax(lmax + 1)
2

≈ 4π
k2

(kr0)2

2
= 2πr20 .

For scattering by a finite potential of depth (or height) V0 = h̄2k2
0/(2µ)

and range r0, the phase shifts will fall off rapidly for values of l above k0r0, so
the upper limit to the sum over contributing partial waves no longer depends
on k. An approximate upper bound for σ is

σmax ≈ 4π
k2

∑
0≤l<k0r0

(2l + 1) ≈ 4π
k2

× (k0r0)2 = 4π
k2
0r

2
0

k2
.

At high energies E → ∞ we expect the integrated scattering cross section to
decrease at least as fast as 1/E.

4.5. The work dW done in going from r to r − dr is

dW = F ·dr =
eαd

r3

[
er

r3
− 3

r

r2
er2

r3

]
·dr

= −2
e2αd

r5
dr ,

where we have assumed the differential displacement to be in the radial direc-
tion, dr = (r/r)dr. The work done in coming from infinity to a finite position
r is

W = −2e2αd

∫ r

∞

1
r′ 5

dr′ =
e2αd

2r4
.

4.6. In the special case m = −1/2 (1.358) becomes

Yl+ 1
2 ,m,l =

1√
2l + 1

(√
l Yl,−1(θ, φ)√
l + 1Yl,0(θ)

)
,

Yl− 1
2 ,m,l =

1√
2l + 1

(−√
l + 1Yl,−1(θ, φ)√
l Yl,0(θ)

)
.

These relations can be inverted,
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(
Yl,−1(θ, φ)

0

)
=

√
l

2l + 1
Yl+ 1

2 ,m,l −
√
l + 1
2l + 1

Yl− 1
2 ,m,l ,(

0
Yl,0(θ)

)
=

√
l + 1
2l + 1

Yl+ 1
2 ,m,l +

√
l

2l + 1
Yl− 1

2 ,m,l .

(1)

Expanding the spatial part of the plane wave according to (4.22) and using
the upper (1) yields

eikzχ− =
√

4π
∞∑

l=0

√
2l + 1 iljl(kr)

(
0

Yl,0(θ)

)

=
√

4π
∞∑

l=0

iljl(kr)
(√
l + 1Yl+ 1

2 ,m,l +
√
lYl− 1

2 ,m,l

)
.

We can use (1) and decompose the outgoing spherical wave into components
with good j, m and l,(

g′(θ, φ)
f ′(θ)

)
=

∞∑
l=0

√
4π

2l + 1

[
(f ′l + lg′l)

√
l + 1Yl+ 1

2 ,m,l

+[f ′l − (l + 1)g′l]
√
lYl− 1

2 ,m,l

]
.

If we now collect the radial parts of the incoming plane wave and the outgoing
spherical wave for given values of l and j, we obtain expressions which look
like the big square bracket in (4.24), except that the coefficient fl in (4.24) is
now replaced by different linear combinations of f ′l and g′l, namely f ′l + lg′l for
j = l+ 1/2 and f ′l − (l+ 1)g′l for j = l− 1/2. The same steps which led from
(4.24) to (4.27) now give

f ′l + lg′l =
2l + 1
2ik

[
exp

(
2iδ(l+1/2)

l

)
− 1

]
,

f ′l − (l + 1)g′l =
2l + 1
2ik

[
exp

(
2iδ(l−1/2)

l

)
− 1

]
.

Resolving for the partial wave amplitudes f ′l and g′l yields

f ′l =
l + 1
2ik

[
exp

(
2iδ(l+1/2)

l

)
− 1

]
+

l

2ik

[
exp

(
2iδ(l−1/2)

l

)
− 1

]
,

g′l =
1

2ik

[
exp

(
2iδ(l+1/2)

l

)
− exp

(
2iδ(l−1/2)

l

)]
.

4.7.

Px =
(
A∗

B∗

)
·
[(

0 1
1 0

)(
A
B

)]
=
(
A∗

B∗

)
·
(
B
A

)
= A∗B +B∗A = 2
[A∗B] ,

Py =
(
A∗

B∗

)
·
[(

0 −i
i 0

)(
A
B

)]
= −i

(
A∗

B∗

)
·
(
B
−A

)
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=
1
i
(A∗B −B∗A) = 2�[A∗B] ,

Pz =
(
A∗

B∗

)
·
[(

1 0
0 −1

)(
A
B

)]
=
(
A∗

B∗

)
·
(
A
−B

)
= |A|2 − |B|2 .

σ̂P = Pxσ̂x + Pyσ̂y + Pzσ̂z =
(

Pz Px − iPy

Px + iPy −Pz

)

=
( |A|2 − |B|2 2[
(A∗B) − i�(A∗B)]

2[
(A∗B) + i�(A∗B)] (|B|2 − |A|2)
)

=
( |A|2 − |B|2 2AB∗

2A∗B |B|2 − |A|2
)
.

Operating on the spinor |χ〉 =
(
A
B

)
with σ̂P and recalling that |A|2 + |B|2

= 1 yields

σ̂P

(
A
B

)
=
(

(|A|2 − |B|2)A+ 2A|B|2
2|A|2B + (|B|2 − |A|2)B

)
=
(

(|A|2 + |B|2)A
(|A|2 + |B|2)B

)
=
(
A
B

)
.

4.8. In order to describe triplet scattering, we must work with solutions of the
Schrödinger equation which are antisymmetric with respect to the interchange
of the spatial coordinates r1 and r2 of the two electrons, i.e. the wave functions
must have negative parity with respect to the reflection of the relative distance
coordinate r = r1 − r2 at the origin, r → −r. Such solutions are readily
constructed from the wave functions (4.100),

ψt(r) = ψC(r) − ψC(−r) . (1)

For all spatial directions excluding θ = 0 and θ = π the asymptotic form of
the wave function (1) is

ψt(r) = ei[kz+η ln k(r−z)] − e−i[kz−η ln k(r+z)]

+[fC(θ) − fC(π − θ)] e
i(kr−η ln 2kr)

r
.

(2)

The differential scattering cross section is as usual defined as the outgoing
particle flux divided by the incoming current density which is given by the
e+i[kz...] term in (2):

dσt
M

dΩ
= |fC(θ) − fC(π − θ)|2 . (3)

Noting that sin(π − θ)/2 = cos(θ/2) and that ln sin2(θ/2) − ln cos2(θ/2) =
ln tan2(θ/2) we use the expression (4.101) for the Coulomb scattering ampli-
tude to obtain
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dσt
M

dΩ
=
η2

4k2

∣∣∣∣∣e
−iη ln sin2(θ/2)

sin2(θ/2)
− e−iη ln cos2(θ/2)

cos2(θ/2)

∣∣∣∣∣
2

=
η2

4k2

[
1

sin4(θ/2)
+

1
cos4(θ/2)

− eiη ln tan2(θ/2) + e−iη ln tan2(θ/2)

sin2(θ/2) cos2(θ/2)

]

=
η2

4k2

[
1

sin4(θ/2)
+

1
cos4(θ/2)

− 2
cos[η ln tan2(θ/2)]
sin2(θ/2) cos2(θ/2)

]
.

(4)

Only odd angular momentum quantum numbers l contribute to the partial
waves expansion, because the even partial waves have positive parity and drop
out in the superposition (1).

In singlet scattering the spatial wave function must be symmetric and
the difference (1) is replaced by a sum. The corresponding formula for the
differential scattering cross section becomes

dσs
M

dΩ
= |fC(θ) + fC(π − θ)|2

=
η2

4k2

[
1

sin4(θ/2)
+

1
cos4(θ/2)

+ 2
cos[η ln tan2(θ/2)]
sin2(θ/2) cos2(θ/2)

]
.

(5)

In the scattering of unpolarized electrons (with no measurement of spin in
the final states) we observe a mean of the singlet and triplet cross sections,
weighted with the respective multiplicities 2S + 1 which are unity for S = 0
and three for S = 1:

dσM

dΩ
=

1
4

(
dσs

M

dΩ
+ 3

dσt
M

dΩ

)

=
η2

4k2

[
1

sin4(θ/2)
+

1
cos4(θ/2)

− cos[η ln tan2(θ/2)]
sin2(θ/2) cos2(θ/2)

]
.

4.9. G(x,x′) and the delta-function in the defining equation depend only on
the difference x − x′ def= ρ of the two coordinates, and for fixed x′ we can
replace the derivatives with respect to the components of x by the derivatives
with respect to the corresponding components of ρ. Thus we have to show
that the function

G(ρ) = −
(
K

2π

)ν iH(1)
ν (K|ρ|)
4|ρ|ν (1)

fulfills the equation

(K2 +∆n)G(ρ) = δ(ρ) . (2)

Since G depends only on ρ = |ρ|, the n-dimensional gradient is

∇G(ρ) =
ρ

ρ

dG

dρ
,
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and the corresponding Laplacian applied to G is

∆nG(ρ) = ∇ ·
(

ρ

ρ

dG

dρ

)
=

n∑
i=1

∂

∂ρi

(
ρi

ρ

dG

dρ

)

=
n∑

i=1

[
1
ρ

∂G

∂ρ
+ ρi

∂

∂ρi

(
1
ρ

dG

dρ

)]

=
n

ρ

dG

dρ
+

n∑
i=1

ρi
d

dρ

(
1
ρ

dG

dρ

)
∂ρ

∂ρi

=
n

ρ

dG

dρ
+

n∑
i=1

ρi

(
− 1
ρ2
dG

dρ
+

1
ρ

d2G

dρ2

)
ρi

ρ

=
n

ρ

dG

dρ
+

n∑
i=1

ρ2i
ρ

(
− 1
ρ2
dG

dρ
+

1
ρ

d2G

dρ2

)
=
d2G

dρ2
+
n− 1
ρ

dG

dρ
.

Now G is equal to a constant (namely −(i/4)(K/2π)ν) times H(1)
ν (Kρ)/ρν ,

and writing 2ν + 1 for n− 1 we have

∆n
H

(1)
ν (Kρ)
ρν

=
d2

dρ2

(
H

(1)
ν (Kρ)
ρν

)
+

2ν + 1
ρ

d

dρ

(
H

(1)
ν (Kρ)
ρν

)

=
1
ρν

(
d2H

(1)
ν (Kρ)
dρ2

+
1
ρ

dH
(1)
ν (Kρ)
dρ

− ν2

ρ2
H(1)

ν (Kρ)

)
.

(3)

Bessels differential equation for H(1)
ν (Kρ) tells us that

d2H
(1)
ν (Kρ)

d(Kρ)2
+

1
Kρ

dH
(1)
ν (Kρ)
d(Kρ)

− ν2

K2ρ2
H(1)

ν (Kρ) = −H(1)
ν (Kρ) ,

and so (3) amounts to

∆n
H

(1)
ν (Kρ)
ρν

= −K2H
(1)
ν (Kρ)
ρν

,

showing that (K2 + ∆n)G(ρ) must vanish as long as ρ is not the singular
point, ρ �= 0.

To complete the proof that G(ρ) fulfills (2) we show that∫
V

f(ρ)(K2 +∆n)G(ρ) dρ = f(0) (4)

for a small n-dimensional volume V enclosing the singular point ρ = 0. Equa-
tion (4) should hold for any appropriately well behaved trial function f .

Since we are now operating in a small volume around ρ = 0 we may use
the leading term in the appropriate expansion for H(1)

ν (Kρ) and obtain

G(ρ)
ρ→0
= − Γ (ν)

4πν+1ρ2ν
. (5)
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As the radius of the small volume decreases, its volume will decrease as the
n = (2ν+2) nd power in the radius, and the surface of the volume will decrease
as the (2ν + 1) st power of the radius. The integral over fK2G vanishes in
the limit of vanishing volume V as long as f remains bounded in the vicinity
of ρ = 0. The remaining contribution to the integral on the left-hand side of
(4) can be rewritten using Green’s theorem,∫

V

f(ρ)∆nG(ρ)dρ =
∫

V

G(ρ)∆nf(ρ)dρ

+
∮

S(V )

[f(∇G) −G(∇f)] · do .
(6)

In the limit of vanishing volume V and vanishing surface S(V ) of the volume,
the volume integral on the right-hand side of (6) and the second term in the
surface integral vanish as long as ∇f and ∆f remain bounded in the vicinity
of ρ = 0. The only non-vanishing contribution on the right-hand side of (6) is
thus∮

S(V )

f∇G · do S(V )→0
= f(0)

(
νΓ (ν)
2πν+1

)∮
S(V )

1
ρ2ν+1

ρ

ρ
· do . (7)

For a small sphere of radius ρ the surface integral on the right-hand side of
(7) is just 1/ρ2ν+1 times the surface of the sphere, which is 2πn/2ρn−1/Γ (n/2)
according to Problem 4.10. Recalling that n = 2ν + 2 this amounts to
2πν+1/Γ (ν + 1), so that the right-hand side of (7) reduces to f(0).

4.10. As a product of n one-dimensional integrals we have

In =
(√
π
)n

. (1)

Transforming to a radial integral yields

In =
∫ ∞

0

e−R2
Sn(R) dR , (2)

where Sn(R) = Sn(1)Rn−1 is the surface of a sphere of radius R in n dimen-
sions; Sn(1) is the surface of the unit sphere. Equation (2) can be integrated,

In = Sn(1)
∫ ∞

0

Rn−1 e−R2
dR = Sn(1)

Γ (n/2)
2

,

and equating this result to the right-hand side of (1) gives

S(1) =
2πn/2

Γ (n/2)
, S(R) =

2πn/2

Γ (n/2)
Rn−1 . (3)

The volume of the n-dimensional sphere is obtained by integrating the surface
(3):

Vn(R) =
∫ R

0

Sn(r) dr =
2πn/2

Γ (n/2)

∫ R

0

rn−1 dr =
πn/2

Γ (n
2 + 1)

Rn .
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4.11. In ordinary spherical coordinates the six-dimensional volume element
is

dr = r21dr1 r
2
2dr2 dΩ1 dΩ2 = r21dr1 r

2
2dr2 sin θ1 dθ1 dφ1 sin θ2 dθ2 dφ2 . (1)

Transformation to hyperspherical coordinates only affects the coordinates r1
and r2. The corresponding differential dr1 dr2 transforms as

dr1 dr2 =
∣∣∣∣

∂r1
∂α

∂r1
∂R

∂r2
∂α

∂r2
∂R

∣∣∣∣ dRdα
=
∣∣∣∣ R cosα sinα
−R sinα cosα

∣∣∣∣ dRdα = RdRdα .

Inserting this result into (1) and remembering that r21 = R2 sin2 α, r22 =
R2 cos2 α gives

dτ = R5 dR sin2 α cos2 αdα dΩ1 dΩ2 = R5 dR dΩh

with Ωh = sin2 α cos2 αdα dΩ1 dΩ2 .

Integrating over the hyperspherical solid angle from zero to π/2 gives∫
dΩh =

∫ π/2

0

sin2 α cos2 αdα
∫ π

0

sin θ1 dθ1
∫ 2π

0

dφ1

∫ π

0

sin θ2 dθ2
∫ 2π

0

dφ2

= (4π)2
∫ π/2

0

sin2 α cos2 αdα = (4π)2
π

16
= π3 .

4.12. It is convenient to work in atomic units, where energies are given in
units of 2 Rydbergs ≈ 27.21 eV and wave numbers are in units of the inverse
Bohr radius ≈ 1.89× 108 cm−1. ki is a vector pointing in the direction of the
momentum of the incoming electron (the z-axis), and its length follows from
Einc = k2

i /2: ki = 3.32. In the asymmetric coplanar geometry we have

T1 =
k2
1

2
= Einc − 0.5 − T2 = 4.90 , k1 = 3.13 .

Length and direction of the momentum transfer vector q can be derived by
applying elementary geometry to the triangle formed by the vectors k1, ki

and q; θ1 is the angle between k1 and ki.
By the cosine rule

q2 = k2
1 + k2

i − 2k1ki cos θ1 , q =

{ 0.32 for θ1 = 4◦

0.61 for θ1 = 10◦

0.92 for θ1 = 16◦
.

The angle θq through which q is turned from the direction of −ki (i.e. the
negative z-axis) is given by the sine rule:

sin θq =
k1
q

sin θ1 , θq =

{ 43◦ for θ1 = 4◦

63◦ for θ1 = 10◦

70◦ for θ1 = 16◦
.
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In symmetric geometry

T1 + T2 = Einc − 0.5 = 5.01 , T1 = T2 = 2.51 , k1 = k2 = 2.24 .

The length of the momentum transfer vector depends on θ1 = θ2 and is given
as above by the cosine rule

q2 = k2
1 + k2

i − 2k1ki cos θ1 , q =

{ 1.18 for θ1 = 10◦

2.35 for θ1 = 45◦

3.66 for θ1 = 80◦
.

The angle θq is again given by the sine rule:

sin θq =
k1
q

sin θ1 , θq =

{ 19◦ for θ1 = 10◦

42◦ for θ1 = 45◦

37◦ for θ1 = 80◦
.

Note that θq reaches a maximum when k1 is orthogonal to q. In the right-
angled triangle formed by k1, ki and q we then see that sin(θqmax) = k1/ki.

5.1. The power P of a laser in Watt per cm2 can be expressed as the energy
density ρ (in Joule per cm3) times the speed of light c (in cm per second).
The total energy in the volume occupied by the atom is simply the product
of the energy density (assumed to be constant) times the volume,

E =
4π
3

(n2a0)3ρ =
4π
3

(n2a0)3
P

c
,

and the ratio Q of E to the binding energy is

Q =
4π
3

(n2a0)3
P

c

n2

R =
8π
3

(n2a0)4

αh̄c2
P ,

where α ≈ 1/137 is the fine structure constant. For a ratio Q ≈ 1 we have

P ≈ 3
8π
αh̄c2

n8a40
≈ 1017

n8

W
cm2

.

5.2. The initial wave packet is the same as in Problem 1.4 in Chap. 1 for the
special case x0 = 0, so the time-dependent wave function ψ̃(p, t) in momentum
representation (p ≡ h̄k) is,

ψ̃(p, t) =
(
β√
πh̄

)1/2

exp
[
− i
h̄

p2

2µ
t− β2

2h̄2 (p− h̄k0)2
]
. (1)

The corresponding wave function in coordinate representation is

ψ(x, t) =
[√
πβ

(
1 +

ih̄t
µβ2

)]−1/2

e−β2k2
0/2 exp

⎡
⎣− (x− ik0β2)2

2β2
(
1 + ih̄t

µβ2

)
⎤
⎦ . (2)

The probability density in coordinate space is
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|ψ(x, t)|2 =
1√
πB

exp

[
− 1
B2

(
x− h̄k0

µ
t

)2
]
, B = β

√
1 +

h̄2t2

µ2β4
. (3)

The probability density in momentum space does not depend on time,

|ψ̃(p, t)|2 =
β√
πh̄

e−(p−h̄k0)
2β2/h̄2

. (4)

The expression for the density matrix is a little simpler in momentum
representation:

ρ̃(p, p′; t) =
β√
πh̄

exp
[
− i
h̄

p2 − p′ 2
2µ

t

]
×

exp
{
− β2

2h̄2

[
(p− h̄k0)2 + (p′ − h̄k0)2

]}
.

(5)

Introducing sum and difference variables, P = (p + p′)/2, q = p − p′, and
reorganising the exponents in (5) gives

ρ̃
(
P +

q

2
, P − q

2
; t
)

=
β√
πh̄

e−β2k2
0 exp

[
− β2

4h̄2

(
q − 2

ih̄t
µβ2

)2
]
×

exp
[
−B

2

h̄2 P
2 +

2β2

h̄
Pk0

]
,

where B is as defined in (3).
The Wigner function is given by the lower line of (5.40) adapted to the

one-dimensional situation:

ρw(X,P ; t) =
1

2πh̄

∫ ∞

−∞
eiXq/h̄ρ̃

(
P +

q

2
, P − q

2
; t
)

dq

=
1
πh̄

e−(X−Pt/µ)2/β2
e−(P−h̄k0)

2β2/h̄2
.

(6)

Equation (6) already looks very much like classical evolution in phase
space. Indeed, the evolution of the classical phase space density in part c) can
be formulated by exploiting the fact that ρcl is constant along the classical
trajectories, because dρcl/dt = 0. The trajectory going through the point
(x, p) at time t started at the point (x− pt/µ, p) at time zero, hence

ρcl(x, p; t) = ρcl

(
x− p

µ
t, p; 0

)
=

1
αβπ

e−(x−pt/µ)2/β2
e−(p−p0)

2/α2
. (7)

This is quantitatively equal to the quantum mechanical result (6), if we choose
the width α describing the initial (and time-independent) spread in momen-
tum according to α = h̄/β.
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5.3. Applying b̂ according to (5.58) we have

b̂|z〉 = e−zz∗/2
∞∑

n=0

(z∗)n

√
n!

√
n|n− 1〉 = e−zz∗/2

∞∑
n=1

(z∗)n√
(n− 1)!

|n− 1〉

= z∗e−zz∗/2
∞∑

n=0

(z∗)n

√
n!

|n〉 = z∗|z〉 .

The conjugate equation is 〈z|b̂† = 〈z|z and hence

〈z|b̂†b̂|z〉 = 〈z|zz∗|z〉 = |z|2 . (1)

We use (5.72) to express the electric and magnetic field strengths in terms
of the momentum operator p̂ and obtain

L3

8π
〈z|Ê2 + B̂2|z〉 = 〈z| p̂

2

2
+
p̂2

2
|z〉 = 〈z|p̂2|z〉 . (2)

The expectation value of p̂2 is related to the uncertainty ∆p (which is equal
to h̄/(2

√
β) in the present case) and the expectation value of p̂ according to

(1.35):

∆2
p =

h̄2

2β2
= 〈p̂2〉 − 〈p̂〉2 , 〈z|p̂2|z〉 =

h̄2

2β2
+ 〈z|p̂|z〉2 . (3)

From (5.67) we expect that the expectation value of p̂ in the coherent state
|z〉 is Pz as given in the lower line of (5.68). This is in fact the case and can
be verified by calculating the expectation value in momentum representation,

〈z|p̂|z〉 =
∫ ∞

−∞
p|ψ̃z(p)|2dz .

Note that the absolute square of the momentum wave function above can be
derived directly from the Wigner function (see (5.42))

|ψ̃z(p)|2 =
∫ ∞

−∞
ρw(x, p) dx =

β√
πh̄

e−(p−Pz)2β2/h̄2
.

Since |z| does not depend on time and �(z) = |z| sinω(t − t0) for an
appropriately chosen t0, we have

〈z|p̂2|z〉 =
h̄2

2β2
+

2h̄2

β2
|z|2 sin2 ω(t− t0) .

Time averaging the sin2 term gives a factor 1/2 so

〈z|p̂2|z〉 =
h̄2

β2

(
1
2

+ |z|2
)
. (4)

Now h̄2/β2 = h̄ω and |z|2 is the expectation value of b̂†b̂ according to the
result of part a). Equation (4) merely expresses the fact that the energy of
the field is given by the harmonic oscillator Hamiltonian h̄ω(b̂†b̂+ 1/2).
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The harmonic oscillator ground state is just the coherent state |z = 0〉,
and, according to (5.67), its Wigner function is

ρw(X,P ) =
1
πh̄

e−X2/β2
e−P 2β2/h̄2

.

The density matrix for the first excited state is

ρ(x, x′) =
2xx′√
πβ3

e−[x2+(x′)2]/(2β2) .

Introducing sum and difference coordinates, X = (x+ x′)/2, s = x− x′, this
amounts to

ρ
(
X +

s

2
, X − s

2

)
=

1√
πβ3

(
2X2 − s2

2

)
e−X2/β2

e−s2/(4β2) .

The Wigner function is

ρw(X,P ) =
1

2πh̄

∫ ∞

−∞
e−iPs/h̄ ρ

(
X +

s

2
, X − s

2

)
ds

=
1
πh̄

(
2
β2
X2 +

2β2

h̄2 P
2 − 1

)
e−X2/β2

e−P 2β2/h̄2
.

5.4. Following the hint we calculate

df̂

dλ
= Â eλÂ eλB̂ + eλÂB̂ eλB̂ = (Â+ B̂) eλÂ eλB̂ + [eλÂ, B̂] eλB̂ . (1)

Now

[eλÂ, B̂] =
∞∑

n=0

λn

n!
[Ân, B̂] , (2)

and it is easy to show by induction that

[Ân, B̂] = nÂn−1[Â, B̂] , (3)

(remember that [Â, B̂] commutes with both Â and B̂). Inserting (3) into (2)
gives

[eλÂ, B̂] = [Â, B̂]
∞∑

n=1

λn

(n− 1)!
Ân−1 = λ[Â, B̂] eλÂ .

Thus (1) becomes

df̂

dλ
=
{
Â+ B̂ + λ[Â, B̂]

}
f̂(λ) . (4)

The differential equation (4) is obviously also fulfilled by the operator function

f̂1 = eλÂ+λB̂+(λ2/2)[Â,B̂] .

Since f̂(λ) and f̂1(λ) go through the same point, namely unity (i.e. unit op-
erator) at λ = 0, they must be identical solutions of the differential equation
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(4). Equating the values of f̂(λ) and f̂1(λ) at λ = 1 yields the required special
form of the Baker-Campbell-Hausdorff relation.

5.5. Let Ei be the energy and pi the momentum of a free electron. The
relativistic energy momentum relation is

Ei = c
√
m2

0c
2 + p2i .

After absorbing a photon of energy h̄ω and momentum h̄ω/c, the final energy
Ef and momentum pf of the electron obey

Ef = c
√
m2

0c
2 + p2f .

Obviously the energy difference is

Ef − Ei = h̄ω = c
√
m2

0c
2 + p2f − c

√
m2

0c
2 + p2i .

Since the maximum final momentum of the electron is pi + h̄ω/c,

Ef − Ei ≤ c
√
m2

0c
2 + (pi + h̄ω/c)2 − c

√
m2

0c
2 + p2i

= c
√
m2

0c
2 + p2i

(√
1 +

2pih̄ω/c+ (h̄ω/c)2

m2
0c

2 + p2i
− 1

)

< c
pih̄ω/c√
m2

0c
2 + p2i

.

The right-hand side of the last inequality is always smaller than h̄ω showing
that even a maximal transfer of momentum is insufficient to produce the
required energy gain for the electron.

The corresponding calculation swapping the roles of initial and final states
shows that a free electron cannot emit a single photon. Note however, that
the inelastic scattering of photons, which can be pictured as simultaneous ab-
sorption and emission of a photon, is kinematically allowed (Compton effect).

5.6. Assume t0 ≤ t1 ≤ t2 and consider the propagation of an infinitesimal de-
viation ∆x(t0) from a given trajectory. According to (5.74) the corresponding
deviations ∆x(t1) at time t1 and ∆x(t2) at time t2 are

∆x(t1) = M(t1, t0)∆x(t0) ,
∆x(t2) = M(t2, t1)∆x(t1) = M(t2, t1)M(t1, t0)∆x(t0) .

(1)

On the other hand, the defining equation for M(t2, t0) is

∆x(t2) = M(t2, t0)∆x(t0) .

Since (1) holds for all infinitesimal ∆x(t0), the matrix M(t2, t0) must be equal
to M(t2, t1)M(t1, t0).
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If t0 and t1 define two different starting points on a given trajectory, then
the Liapunov exponent defined by (5.76) is

λ0 = lim
t→∞

ln ‖M(t, t0)‖
t− t0 , λ1 = lim

t→∞
ln ‖M(t, t1)‖
t− t1 ,

depending on which starting point we choose. According to the chain rule
however,

λ0 = lim
t→∞

ln ‖M(t, t1)M(t1, t0)‖
t− t0

≤ lim
t→∞

ln ‖M(t, t1)‖
t− t0 + lim

t→∞
ln ‖M(t1, t0)‖

t− t0 ,

(2)

the lower line following from the inequality in the hint. The second term on
the right-hand side in the lower line in (2) vanishes. The first term can be
rewritten as

lim
t→∞

ln ‖M(t, t1)‖
t− t0 = lim

t→∞ ln ‖M(t, t1)‖
[

1
t− t1 − t1 − t0

(t− t1)(t− t0)
]

= lim
t→∞

ln ‖M(t, t1)‖
t− t1 ,

which is just the definition of λ1. We have thus shown: λ0 ≤ λ1.
From M(t, t1) = M(t, t0)[M(t1, t0)]−1 we have,

λ1 = lim
t→∞

ln ‖M(t, t0)[M(t1, t0)]−1‖
t− t1

≤ lim
t→∞

ln ‖M(t, t0)‖
t− t1 + lim

t→∞
ln ‖[M(t1, t0)]−1‖

t− t1 ,

(3)

The second term on the right-hand side in the lower line in (3) vanishes, and
the first term is equal to λ0 by reasoning analogous to that following (2). Thus
we have also shown: λ1 ≤ λ0.

Hence we conclude that the Liapunov exponent is the same for all phase
space points along a given trajectory.

5.7. Let yn be the vertical distance above the centre of the disc and xn the
horizontal distance from the centre of the disc of the point where the particle
hits the disc the nth time. Since all points (xn, yn) lie on the circle of radius
a we have

x2
n + y2n = a2 . (1)

Let Yn be the vertical height above the middle at which the particle leaves
the side of the square before the nth collision, and let Tn be the tangent of
the angle to the horizontal at which it leaves the side of the square.

Initially we have T1 = tanα, Y1 = 0. The coordinates of the first collision
can be determined from (1) together with
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T1 =
y1 − Y1

l − x1
, (2)

yielding

x1 =
T1Y1 + T 2

1 l +
√

(a2 − Y 2
1 )(1 + T 2

1 ) + T 2
1 (Y 2

1 − l2) − 2lT1Y1

1 + T 2
1

,

y1 = Y1 + T1(l − x1) ,
(3)

where we have written a small l for L/2. After hitting the disc the particle is
reflected at an angle to the horizontal given by

α2 = α+ 2β , tanβ =
y1
x1
, (4)

and it returns to the side of the square at Y2 = y1+(l−x1) tanα2. Subsequently
it travels to the disc (at an angle α2) which it hits at (x2, y2). (See figure.)

A general recurrence formula for the coordinates of the nth collision with
the disc can be derived from (1) together with the generalization

Tn = tanαn =
yn − Yn

l − xn
(5)

of (2). The result is
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xn =
TnYn + T 2

n l +
√

(a2 − Y 2
n )(1 + T 2

n) + T 2
n(Y 2

n − l2) − 2lTnYn

1 + T 2
n

,

yn = Yn + Tn(l − xn) .
(6)

For the next iteration

αn+1 = αn + 2arctan
(
yn

xn

)
and Yn+1 = yn + (l − xn) tanαn+1 .

Inserting the lengths l = 100 cm (L = 2m), a = 5 cm given in the text, we
obtain the following coordinates (xn, yn) (in cm) for successive collisions with
the disc:

α = 0.3◦

xn 4.975
yn 0.4975

α = 0.0003◦

xn 5.0 5.0 3.983
yn 4.974×10−4 3.880×10−2 3.023

α = 0.0000003◦

xn 5.0 5.0 5.0 4.995
yn 4.974×10−7 3.880×10−5 3.007×10−3 2.330×10−1

α = 0.0000000003◦

xn 5.0 5.0 5.0 5.0 5.0
yn 4.974×10−10 3.880×10−8 3.007×10−6 2.330×10−4 1.806×10−2

The vertical deviations yn at collision with the disc provide a suitable mea-
sure for the deviation of a trajectory from the periodic straight-line trajectory
α = 0. Plotting these deviations on a logarithmic scale reveals the following
dependence of yn on the collision number n:

yn = const.× 101.9n = const.× e4.4n .

Thus the Liapunov exponent of the trajectory defined by α = 0 is 4.4 in
dimensionless units where the collision number defines the time scale. The
period of the orbit at (constant) velocity v of the particle is 2(l−a)/v and the
Liapunov exponent in physical units (s−1) is λ = 4.4× v/[2(l− a)]. Note that
the initial angle has to be accurate to roughly one ten-millionth of a degree if
the particle is to hit the disc at least five times.

5.8. The probability W (s) that none of the N numbers y lie in the intervall
(x, x+ s) is [(L− s)/L]N . For N → ∞ we have

W (s) = lim
N→∞

(
1 − s

L

)N

= lim
N→∞

(
1 − ds

N

)N

= e−ds . (1)
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At the same time, the probability defined in (1) gives us the probability for
the spacing to the next number being at least the distance s, i.e.W is the sum
(integral) over all probabilities (probability densities) for nearest neighbour
spacings P (s′) larger or equal to s:

W (s) =
∫ ∞

s

P (s′) ds′ , P (s) = −dW
ds

= d e−ds .
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matrix norm 352
matrix of operator 5
mean field 100
mean level density 360
mean mode number 360
mean oscillator strengths 172, 173
mean scattering length 254
mean single-particle potential 100
mechanical similarity 369
minimum uncertainty wave packets

344, 452
mixed spin state 280
mixed state 276, 279, 338
mode label 125
mode number 360
modified Bessel functions 443
modified Coulomb potential 276
momentum representation 32, 338
momentum transfer 247
monodromy matrix 353
motional Stark effect 231
Mott formula 319

MQDT parameters 295
multi-configurational Dirac-Fock

method 112
multi-configurational Hartree-Fock

method 112
multipole expansion 180
multipole matrix elements 181
multipole moments 181

natural line width 133
natural oscillator width 341, 345
natural variable 386
near-threshold level density 147, 150,

157
near-threshold quantization rule 147,

149, 155, 157
nearest neighbour spacings 360
negative parity 12
Neumann functions

spherical 21
NNS distributions 384
non-coplanar symmetric geometry 311
non-degenerate eigenvalue 51
non-Hermitian Hamiltonian 272
non-separable 227
nonclassical light 347
nonintegral Maslov indices 368
nonlinear Schrödinger equation 397
nonlocal potential 109
norm 2
normal Zeeman effect 221
normalizable wave function 2
nuclear spin 94

observables 5, 6
odd parity 97, 106
one-body operator 99
one-channel quantum defect theory

172
one-dimensional harmonic oscillator

81
one-particle-one-hole excitation 100,

108
open channels 43
optical lattice 413
optical potential 272
optical theorem 245, 317
orbital angular momentum quantum

numbers 91, 92
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ordinary Bessel function 62, 443
ordinary Laguerre polynomials 441
ortho-helium 105
orthogonal transformations 359
orthogonal wave functions 2
orthogonality relation 441
orthonormal basis 3, 5
orthonormality relation 440
oscillator strengths 138, 172, 175, 193,

196
oscillator width 14, 79
overlap 51
overlap matrix 56

para-helium 105
parabolic coordinates 215
parabolic quantum numbers 217
paramagnetic interaction 224
parity 12, 25
parity of a many-body wave function

106
partial wave amplitude 248, 270, 275,

295
partial waves 247
partial waves expansion 287, 292
partition function 392
Paschen-Back effect 224, 225
path integral 363
Pauli principle 97, 104, 105, 252, 393
Pauli spin matrices 76, 89, 277
periodic table 102
periodically kicked rotor 353
perturbation theory for degenerate

states 52
perturbed Rydberg series of autoioniz-

ing resonances 209
Peterkop theorem 306
phase shift 171, 295

background 45
phase shifted reactance matrix 200,

203
phase space 64, 337
phase space factor 283, 292, 302
phase velocity 31
photoabsorption 172, 196
photoabsorption cross sections 175,

193
photoabsorption spectrum 197, 386
photoionization 172

photoionization cross section 135, 139
Planck’s constant 6, 59
Poincaré surface of section 356
Poisson bracket 337, 339
Poisson equation 115
Poisson spectrum 359, 362, 430
Poisson statistics 384
Poisson summation formula 259
polarization

degree of 280
polarization vector 125, 277, 278
ponderomotive energy 332
ponderomotive force 333
position and momentum operators 7
position of resonance 46
position variables 7
positive parity 12
positron 309
post-diagonalization 57
potential barrier 34, 41, 48
potential energy 7, 9
pre-diagonalized states 52
principal quantum number 16, 25, 91
probabilities 5
probability density 2, 30, 76
projection operator 4, 98
propagator 363

semiclassical 364
pseudo-resonant perturbation 192, 197
pseudomomentum 230
pseudoseparation of variables 230
pseudostates 273
pure state 276, 338

q-reversal 209
QDT equation 191
quadratic Stark effect 213, 235
quadratic Zeeman effect 226
quantality function 61, 67, 166, 416
quantization of the electromagnetic field

125
quantization rule 64, 65, 80, 81, 146,

165
Bohr-Sommerfeld 64, 81
conventional WKB 64, 81

quantum annihilation operator 342
quantum creation operator 342
quantum defect function 167, 169, 172,

191, 195
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quantum defect theory 228
quantum defects 165, 166
quantum fluctuations 347
quantum reflection 34, 416
quasi-continuum 171
quasi-energies 233, 334
quasi-energy method 234
quasi-energy states 233, 334
quasi-Landau modulations 386, 387
quasiparticles 398
quasiperiodic motion 354

R-matrix 288
Rabi frequency 412
radial Dirac equation 91
radial eigenfunctions 25

for the harmonic oscillator 15, 79
in a Coulomb potential 25, 26, 79

radial Lippmann-Schwinger equation
249

radial potentials 287
radial Schrödinger equation 50, 79,

152, 444
radial wave function 12, 79
radiation gauge 124, 129, 233
radiative corrections 114
rainbow scattering 263
random matrices 359, 362
reactance matrix 200, 288
reciprocity relations 35
recurrence spectroscopy 377
recursion relation 441
reduced action 366
reduced energy 184, 196, 197
reduced mass 86
reduced matrix element 137, 223
reduced monodromy matrix 366
reduced operator 42, 55
reference potential 22, 50
reflection amplitude 34
reflection phase 61, 63, 80, 81, 148,

261, 455
for centrifugal potential 63

regular multiplets 106, 107
regular solution 19, 23
regularity 362
relative distance coordinate 85, 95
relative momentum 85
relativistic correction 140

relativistic energy momentum relation
88

renormalization 128, 174
renormalized wave functions 27
representation 6
repulsive Coulomb potential 50
residual antisymmetrizer 177
residual two-body interaction 101
resonance 358
resonance condition 367
resonance position 297
rest energy 90, 92, 93
restricted Hartree-Fock method 110,

113
retardation 112
revival 350
Ritz variational method 55, 107
rounded step 294
Runge-Lenz vector 348
Russell-Saunders coupling 107
Rutherford differential cross section

266, 285
Rydberg atoms 145
Rydberg energy 24, 86, 87, 164, 165,

167
Rydberg formula 147, 165, 166
Rydberg series 165, 167, 391

of autoionizing resonances 194, 195,
197, 228, 295

of bound states 228

S-matrix 289
saturation parameter 413
scalar potential 124
scalar product 2, 136, 234

of two spinors 76
scaled action 377, 386
scaled energy 72, 372, 382
scaled field strength 371, 382
scaled frequency 378
scaled quantum number 378
scaled-energy spectroscopy 377
scaling 368
scattering amplitude 244
scattering amplitude 290

semiclassical 262
scattering cross section

inelastic 285
integrated 244
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total elastic 244
scattering length 250, 251, 257, 397,

402
scattering matrix 289
scattering phase shift 248
scattering plane 281
Schrödinger equation

radial 13, 16, 23, 26
reduced 41
stationary 9
time-dependent 7, 30
time-independent 9

Schrödinger representation 7, 8, 128
Seaton’s Theorem 171
secular equation 52, 56
selection rules 136
self-consistency 110
self-energies 110
semiclassical approximation 171
semiclassical limit 60, 62, 375
shape parameter 185, 189, 196
Sherman function 277, 281
shift 46
short-ranged potential 16
short-wave limit 62
shorter-ranged potentials 70
similarity transformation 369
Sinai’s billiard 430
single-particle density 109, 115, 118,

119
single-particle orbital angular mo-

mentum quantum numbers
106

singlet states 104, 105
Slater determinant 98, 100
Slater-type orbitals 113
small components 90
space shift 37, 39
spectator modes 130
spectral rigidity 361, 384
spectrum 4
speed of light 88, 112

in atomic units 91
spherical Bessel function 248, 445
spherical billiard 65
spherical components 135, 173
spherical coordinates 10
spherical harmonics 10, 439
spherical Neumann function 249, 445

spin-flip amplitude 274, 275, 277
spin-orbit coupling 94, 103, 140
spinors 76
spontaneous emission 125
spreading of a wave packet 32, 341,

349
squeezed states 345
squeezed states of light 347
stability matrix 351, 430
standard mapping 353
standard representation 89
Stark effect

linear 213, 214
quadratic 214

Stark saddle 215, 219
static (dc) polarizability 235
static exchange potential 273
stationary phase approximation 260,

364, 365
statistical expectation value 279
Stirling’s formula 442
strong coupling 202
strong-field seeking atoms 413
Sturm-Liouville basis 113
subshells 102
sum rule 139, 408
summing over final states 135
superelastic scattering 294
symmetric gauge 219, 238
symmetry group 12
symplectic matrix 352

T-Matrix 246
tail parameters of a potential 150, 256
Temkin-Poet model 312
temperature 392
thermal wave length 395
Thomas-Fermi approximation 398
Thomas-Fermi equation 116, 118, 120
Thomas-Fermi function 116, 117
Thomas-Fermi model 115, 116,

118–120
Thomas-Reiche-Kuhn sum rule 139,

176
threshold 171
threshold quantum number 149
threshold length 148, 150, 419
time delay 37, 39, 40, 48
time evolution 120
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time evolution operator 8, 363

time gain 38

time ordering 8

time-dependent perturbation theory
120

time-dependent Schrödinger equation
121, 330, 338

time-independent Dirac equation 89

time-independent perturbation theory
234

time-independent Schrödinger equation
58

topological phase 263

torus 355

total absorption cross section 272

total angular momentum 103

total angular momentum quantum
number 90

total cross section 283

total inelastic cross section 283

total ionization cross section 311

total momentum 85

total orbital angular momentum 103

total orbital angular momentum
quantum number 92, 103

total spin 103

total spin quantum number 103

totally symmetric wave functions 97

trace formula 376

trajectory 337

transition amplitude 34, 122, 282

transition operator 246

transition probability per unit time
122

transmission through a centrifugal
barrier 293

transverse gauge 124

triangle condition 75, 78, 104

triple differential cross section 304,
306, 309

triplet states 104, 105

tunnelling 34

two-channel quantum defect theory
199

two-component spinors 89, 90

two-electron excitation 182

two-level atom 411

two-particle-two-hole excitation 100

unbound states 9, 20
uncertainty relation 7, 124, 345
uncoupled representation 74
uniform approximation 368
unit operator 5
unitary operator 8, 10
unitary transformation 52, 359
unrestricted Hartree-Fock procedure

110, 113
unstable (classical) dynamics 352
uphill equation 216
uphill potential 217
uphill quantum number 219

van der Waals potential 405
van Vleck determinant 364
vanishing width (of resonance) 206
variation after diagonalization 57
vector operator 6
vector potential 124
very-long-ranged potentials 70, 146
Volkov states 331
von Neumann equation 338

Wannier exponent 315
Wannier’s threshold law 315
wave function 1
wave lengths 130
wave number 19
wave packet 30
wave vector 125
weak coupling 201
weak-field seeking atoms 413
Wentzel, Kramers and Brillouin 58
Whittaker functions 18, 446
width of resonance 46, 124, 297
wiggling 332
Wigner distribution 361
Wigner function 339, 343, 429
Wigner representation 340
Wigner representation of the von

Neumann equation 340
Wigner’s threshold law 419
Wigner’s threshold law for inelastic

scattering cross sections 292
Wigner-Eckart theorem 137, 223, 252,

440
winding number 367, 390
window resonance 186
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WKB approximation 58
WKB method 58

z-parity 227

zero-field threshold 228
zeta function 394
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