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PREFACE

The use of moments is quite ubiquitous, and its applications cover many areas of
physical and mathematical sciences. In this regard, subsurface contaminant transport
is no exception with many experimental, numerical, and theoretical studies utilizing
moments to further our understanding of the subject. This book is essentially derived
from a set of course notes that the senior author had developed for a graduate level
course on moment analysis for subsurface contaminant transport problems.

The subject of moments, even when restricted to subsurface contaminant
problems, is very vast. This book focuses on specific aspects of theoretical moment
analysis for partial differential equations governing contaminant transport problems.
Most of the development presented here is for one-dimensional problems, but the
extension to higher dimensions can be performed in similar fashion in most cases
with more investment in algebra. The motivation for this topic arises from applica-
tions in parameter estimation, and for providing insights into solute behavior. While
several books discuss moments in various applications, we did not find a book that
has this particular focus.

There are several other important topics in connection with moments that arise
in subsurface contaminant transport, but are not addressed here. The book is almost
entirely based on deterministic analysis, and stochastic theories are rarely utilized.
There is no discussion on the class of solute transport problems that would result
in nonlinear governing equations, as such problems are not directly addressed by
the techniques discussed in this book.

Probability distributions play a key role in moment analysis. For completeness, we
provide a basic review of moment generating functions as they arise in probability
theory. This is the reason for the first chapter, but the emphasis is on moments
along with a brief introduction to distributions that are possible candidates for solute
transport models. The next two chapters serve as an introduction to Laplace and
Fourier transforms, but they are presented in the context of solute transport models
and, therefore, serve as introduction to topics of temporal and spatial moments
for physical and chemical nonequilibrium models. The differences between flux-
averaged concentrations and volume-averaged concentrations are also emphasized
in these chapters.

The fourth chapter discuses similarities between travel time distributions and
impulse response functions, and the use of stream tube models. Advective-dispersive
models, and stochastic-advective models are presented here. Chapter 5 and Chapter 6

ix
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talk about temporal and spatial moments, respectively, with the dimensionless form
of the physical and chemical nonequilibrium models serving as the motivating
problem. Chapter 7 shows the utility of these techniques for cases where substantial
mass transfer occurs in the vapor phase. Cases of both mobile and immobile air
phases are discussed.

Chapter 8 then presents the more powerful method of moment generating differ-
ential equations. Again, temporal and spatial moments are discussed for the physical
nonequilibrium model, and some cases of layered heterogeneity are examined.
Chapter 9 shows applications of moments to cases when a system of partial differ-
ential equations is utilized for describing sequential chain reactions.

The remaining chapters deal with topics that are somewhat out of the ordinary
use of moments. Chapter 10 explores the connection between interval computing
methods and moment applications along with a few application examples. Chapter
11 deals with subsurface drainage, where the focus is primarily on unsaturated
vertical flow combined with saturated groundwater flow. The governing equations
have to be simplified, and the use of moments in this regard for analyzing flow
data in the context of tile drains is illustrated. Chapter 12 outlines methods of
reconstructing concentration distributions from the knowledge of moments.

The students that we have worked with over the years have contributed greatly to
our learning. The senior author would like to specifically acknowledge (alphabeti-
cally) Mazdak Arabi, T.P. Chan, Shih-Chieh Kao, Nazmun Nahar, Rishi Parashar,
Jennifer Stillman, and Shivam Tripathi for their contributions to this work. Many
of them have been co-authors on manuscripts from which sections of this book
have been derived, while others have provided help with analysis, computations,
and figures. We also like to thank Dr. Peter J. Shouse, and Dr. Heiko M. Langner
for permitting us to use a few experimental solute transport data as example calcu-
lations. Earlier drafts of this manuscript were typed by Mrs. Dinah Hackerd, and
towards the end by Mrs. Judy Haan. Their patience and perseverance is appreciated.
Despite our best efforts, it is likely that errors that could have crept in, and we take
responsibility for them. Please bring them to our attention.

Finally, we hope that this book will serve as a useful tool for both beginners and
advanced researchers interested in moment analysis.

Rao S. Govindaraju
Bhabani S. Das



CHAPTER 1
RANDOM VARIABLES AND GENERATING FUNCTIONS

1.1. INTRODUCTION TO RANDOM VARIABLES

A convenient conceptualization for studying random quantities is to first define
a sample space, S, as the set of all possible outcomes of an experiment. Each
individual outcome is called a sample point, s. An event A consists of a set of
possible outcomes s, and is therefore a subset of S. Two events A, and A, are
mutually exclusive (or disjoint) if they have no sample points in common. To
every event A, one can assign a probability, denoted by P(A), under the following
constraints:

0 < P(A) <1 for any event A (1.1.1)
P(S) =1 (1.1.2)

IfA, i=1, 2, 3...., are mutually exclusive, then
P(A, or Ay or Ayor ...)=)_ P(A) (1.1.3)

A random variable X(s) is a single-valued numerical function that is defined
for all s € S, and is often called as the value of the random variable X at s.
There are two kinds of random variables that are popularly used in applications —
discrete and continuous. A discrete random variable X(s) assumes denumerable
(finite or infinite) number of values. For each such possible value x;, there exists a
corresponding probability p; such that

P[X(s)=x;]=p;, i=0, 1,2, ... (1.1.4)

The sequence {p;} is called the probability mass function of X(s), and the
corresponding cumulative mass function is

Fy(x)=P[X(s) <x]=)_p; (1.1.5)

X<’C



2 CHAPTER 1

In the particular case when the random variable assumes only one value x;, with
pr = 1, then X(s) is called a degenerate distribution, i.e. there is no uncertainty
associated with it. In what follows, we will drop the reference to the sample space
and simply refer to a random variable by a capital letter (X in this instance). As an
example, we note that many phenomena are well-represented by the discrete Poisson
random variable. The probability mass function of a Poisson random variable X with

a single parameter A is

k

A
p=—e"k=0,1,2,...,.1>0

k!

(1.1.6)

The Poisson variable X may be used to describe the number of occurrences of
a random quantity in unit time. The sample space is S = {0, 1, 2,...}. Other
common discrete distributions are listed in Table 1.1.1.

Most of our interest will be centered around the second class of random variables
called continuous random variables. These can be defined in terms of a non-negative

function fy(x) such that

Pm5x§m=/3¢nm

Table 1.1.1. Some discrete random variables

(1.1.7)

Bernoulli random variable
S={0, 1}

E[X]=p; Var[X]=p (1-p)
G(z) = (q+pz)

Binomial random variable
§={0, 1,...,n}

pk = (Z)pk(l—p)"’k k=0,1,....n
E[X]=np; Var[X]=np (1-p)

P(w) = (q+ pw)"

Geometric random variable

S={0, 1, 2,...}

p=p1=pFk=0,1,...
E[X]= 525 Var[X]= =F

D(w) = ﬁ

Va
Negative binomial random variable
S={r, r+1,...}, where r is a positive integer

pk:(];:})p’(l—p)"”k:r,r—',—l,...

E[X]=%; VAR[X]= %

Poisson random variable

S={0, 1, 2,...}
pr="2erk=0,1,...and A > 0
E[X] = \; Var[X] = A

®(w) = oD

This random variable describes an indicator function
that takes a value of 1 (or success) with probability
p and a value of 0 (or failure) with a probability of
g =1 — p. This random variable serves as the
building block for many other random variables.

A random variable X denoting the number of
successes in n Bernoulli trials is the Binomial
random variable. Alternatively, it can be described
as the sum of n independent and identically
distributed Bernoulli random variables.

The random variable X is the number of failures
before the first success in a sequence of Bernoulli
trials.

Here, the random variable X is the number of
Bernoulli trials before the r-th success is observed.

The random variable X denotes the number of
events occurring in unit time. This random variable
also forms the basic building block for many random
processes. The inter-arrival times between Poisson
events is exponentially distributed.




RANDOM VARIABLES AND GENERATING FUNCTIONS 3

The function fy(x) is called the probability density function (pdf) of the random
variable X with the corresponding cumulative distribution function (cdf) defined as

R =PIX=xl= [ £ dy (118)
and from (1.1.7),
Pla <X <b] = Fx(b)— Fx(a) (1.1.9)
For proper random variables, whether discrete or continuous, we have
Fy (00) =1 (1.1.10)

If the cdf possesses sufficient continuity, then

dFy(x)
dx

fy(x) = (1.1.11)

A normal (or Gaussian) random variable Y is described by the following pdf

1 (y—n)’ o
fy(y)—m exp [_W} ,—00 <y<oo.... (1.1.12)

where u and ¢ are the parameters of the distribution. Thus, a random variable is
characterized by the parameters and functional form of its distribution. The Gaussian
random variable belongs to a more general class of exponential-type distributions
described briefly in Appendix A.

A function of random variable is itself a random variable. If X and Y are random
variables and Y = g(X) where g(-) is a monotonic function, then the pdf of Y in
terms of the pdf of X can be easily expressed as a derived distribution

) = F(01 5 (LL13)
y

where x = g~!(y). Consider, for instance, a log-normal random variable X that is
defined as Y =1In X where Y is normally distributed in equation (1.1.12). Using
(1.1.13), the pdf of the log-normal random variable X is obtained as

xp [—M} x>0 (1.1.14)

fx(x) =

202

1
e
xoa/ 21T

Table 1.1.2 provides a list of some of the common continuous probability density
functions that are encountered in practice.
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Table 1.1.2. Some continuous random variables

Uniform random variable

S =la, b]

fx(x) = ﬁ s
__ a+b. _ (b—a)

£ v

Py (0) = o

Exponential random variable

S =10, ]

fx(x)=Xe™ x>0and A=0

E[X] = 1 Var[X] =

a<x<b

D) = 12
Gaussian (normal) random variable
S = (—o0, +00)
—(—p? /207
fx(x)=——F—— —0o<x<ooand >0

270
E[X] = p; Var[X] = o?
(IJX((D) — ej/uu—{rzu)z/Z
Gamma random variable
S = (0, )
A(Ax) @ Le—Ax
fx(x) = ()T
where I'(z) is the gamma function
E[X] = a/A; Var[X] = a/\?
Ox(0) = e
Chi-square random variable with k degrees of freedom
S = (0, +o0)
. k=222
S50 = Sy ¥> 0
Oy (w) = (ﬁ)
Remarks: The sum of k& mutually independent, squared zero — mean, unit — variance Gaussian
random variables is a chi-square random variable with k degrees of freedom. This is a special
case of the Gamma random variable with a = k/2, k is a positive integer and A = 1/2.

Rayleigh random variable
S =10, ]
fr(@) =5 P x>0a>0

E[X] = a/7/2; Var[X] = 2 — 7/2)a?

One can define two discrete random variables on the same sample space. Their
bivariate probability distribution {p;;} is defined as

pijZP[Xin and Y:yj], i,j=0,1,... (1.1.15)
with

> py=1 (1.1.16)
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The marginal sequences or marginal distributions of p; and g; are defined as
pizzljij:ZP[X:xi,Y:yj]ZP[XZXi] (1117)
J J
qj:Zpij:ZP[X:Xi9Y:yj]:P[Y:yj] (1.1.18)

The conditional probability distribution of Y given X = x; is

}))(:x.7 Y: . ii
PlY =y|X=x]= [ P[Xl:x-] ] :%, for p, >0 (1.1.19)

1

The two random variables X and Y are independent if the knowledge of one of
them has no influence on our estimate of the other, i.e.

P[Y:yj|X=xi]=P[Y:yj] (1120)
or

Similar definitions hold when X and Y are continuous random variables. A joint
pdf fxy(x,y) is defined so that

Y2 X2
Plx; <X <x,y =Y <ym]=[[fry(x,y) dx dy (1.1.22)

R

In addition,

f:; [:f”(x, y) dx dy =1 (1.1.23)

The joint cdf of two continuous random variables X and Y is

y X
Foron)=PXsx ¥ <ol=[ [ fu.y)ax ay (1.1.24)

For instance, two jointly distributed Gaussian random variables X and Y have a
joint pdf given by
1

270, 0,\/1— pyy

exp {_2(1 ipz;y [(x;fx)z_szy (;M> (y;“) (y;M”}

—00 <X,y <00 (1.1.25)

fx,y(x’ y) =
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where w,, MKy Oy Oy and py, are the five parameters of this model. In the
(x,y) space, the joint pdf is centered at (u,, u,). Note that the pdf is constant if
the argument of the exponential term is a constant. When py, = 0, the equal pdf
contour is an ellipse whose principal axes are parallel to the x and y axis. When
Pxy # 0, the major axis of the ellipse of equal pdf is oriented at an angle 6 given as

1 2 o, o,
0= 5 are tan (L) (1.1.26)

2 _ g2
o —0;

Just as in the discrete case, marginal density functions are defined as follows for
jointly distributed continuous random variables

fx(x) = /_ Fxy(x,y) dy (1.1.27a)
Fr = furxy) dx (1.1.27b)
For example, the marginal pdf of X from (1.1.25) is obtained as
1 (.X - Iu‘x)2 ]
X)= exXp|———%5— 1.1.28
e = e | U E (1128)

which has the same form as (1.1.12)
For continuous random variables, conditional probability density functions are
defined as

_fx,y(x’ y) -

fx(x/y) _—fy(y) , fr(») >0 (1.1.29a)
_fX,Y(x’ y)

Ty(y/x) = fx(x) >0 (1.1.29b)

It follows that the conditional cdf of X is given by

Lo froy(¥,y) dx’
fr()

For instance, using (1.1.25), (1.1.28) and (1.1.29a) the conditional pdf of X given
Y=yis

FX(x/y):}lin(l)FX(x|y <Y <y+dh)= (1.1.30)

1 1
—_—. X —_—
V202 (1 = p2y) p[ 20— p1)0?

Two continuous random variables X and Y are independent if

2
fx(xly) = [x - nyﬁ(y —Ky) = MX}
o,

(1.1.31)

fX,Y(x?y)ZfX(x) fY(Y) (1-1-32)
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The concept of joint distributions can be extended to many random variables leading
to multivariate distributions. Thus, if X, X,,..., X, are a sequence of random
variables then their joint cdf and pdf are related as

Fy, x,ox, (X1 X0, o0, ) = PLX; < x, X, < x5, 0, X, <,

Xn o pXn—1 X2 p Xy
=[[ .../7Kle’XZWX”(x/l,x;,..,x/n)dx/l,dx/z,..,dx; (1.1.33)

1.2 EXPECTATION

Mathematically, the expectation of a random variable, when it exists, is defined for
a discrete random variable as

E[X]=}_ xp; (1.2.1)

i

and for a continuous random variable as
E[X] = [ X fy(x) dx (122)

Thus the expected value of a Poisson random variable whose probability mass
function is given by (1.1.6) is

EX]=) k—e*=2A (1.2.3)

More generally, the expectation of a function of a random variable g(X) is defined
as follows for X a discrete and continuous random variable, respectively.

Z 8(x;) p;
E[g(X)] = /’j; 200) £(0) di (1.2.4)

In particular, equation (1.2.4) may be used to define the n-th moment of a random
variable X as

w, =E[X"]=>" x!' p;, for X discrete (1.2.5a)

=/ x"fy(x) dx, for X continuous (1.2.5b)

The zeroth moment, for which n =0 in (1.2.5a,b), u, = 1 by definition of a random
variable. The first moment w,(n = 1) is called the mean or expectation of the
random variable. The variance of a random variable is defined as

Var[X] = o? = E[(X — E[X])*] = E[X*] — E*[X] (1.2.6)
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where o, is called the standard deviation of X. Moments are measures of central
tendencies of a distribution, and play a key role in the concepts presented in this
book. For instance, consider the random variable Y defined by the Gaussian pdf in
(1.1.12). The distribution is symmetric about the parameter i,

E[Y]=p, (1.2.7)

Since (1.1.12) is a pdf, we have

1 (r—mu,)?
f T [—T; dy=1 (1.2.8)
. : >

Differentiating both sides of (1.2.8) with respect to o, and rearranging, we obtain

VarlY) = E[(Y —,)*] = o2

y

(1.2.9)

Next, consider the log-normal random variable X that was defined in (1.1.14)
through the transformation ¥ =1In X or X = e'. Then from (1.2.4),

) 0.%
E[X]=py= LO e’ f,(y) dy =exp |:My + 7)} (1.2.10)

VariX) =o? = [ (e = £,0) dy
= [ p dy-pe

=exp (ZM),) [exp (20')2,) —exp (0'}2)] (1.2.11)

Conversely, the following relationships hold between the means and variances of
the two random variables X and Y in this case

_ Moy
2
o =tn (1+0—;> (1.2.13)

Along with moments, it is often convenient to define central moments. The n-th
central moment of a random variable X is

m, = E[(X — E[X])"], n=1,2,3... (1.2.14)

From (1.2.6), we observe that the variance of X is its second central moment.
Another measure of central tendency that is of interest is expressed in terms of
factorial moments. The r-th factorial moment is defined as

a, =E[X(X-1)(X=2)...(X=r+1)], r=1,2,3 (1.2.15)
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Factorial moments are related to ordinary moments. For instance
E[X] =« (1.2.16)
VarlX]|=a, +a, —aj (1.2.17)

For multiple random variables, conditional expectations can be defined. Thus, the
conditional expectation of Y given X is

&

ElY|X=x]=)y, =, pi>0 (1.2.18a)
j i
Ex =)= [y 2 (1.2.18b)
o fx(x)
Expectation is a linear operation, i.e., if X;, X,, ..., X,, are random variables, then

Elay+a X, +a, X, +...+a,X,|=ay+a, E[X,]+...+a, E[X,] (1.2.19)

When several variables are involved, we use joint moments to summarize their
behavior. The jk-th joint moment of two random variable X and Y is defined as

EX'Y 1= x/ ¥ p;» X and Y discrete (1.2.20a)

i m

=/ / 'y fyy (x,¥) dxdy, X and Y continuous (1.2.20b)

For j =k =11n(1.2.20), E[XY] is called the correlation of X and Y. If E[XY] =0, X
and Y are called orthogonal random variables. The jk-th central moment of X and
Y is defined as E[(X — E[X])/(Y — E[Y])*]. The covariance of X and Y is their
joint central moment for j =k =1,

Cov[X, Y] =E[(X — E[X])(Y — E[Y])]
—E[XY] - E[X]E[Y] (1.2.21)

If X and Y are independent, then Cov[X, Y] = 0.
The correlation coefficient of the two random variables X and Y is

Cov[X, Y]
Pxy=—""—" (1.2.22)

0,0,

If py y =0, then X and Y are uncorrelated.
Consider a random variable U that is a linear combination of random variables
X, Xy, 0n X

ne

U=a,X,+a,X,+...+a,X, (1.2.23)
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Then
Var[U] = 2": 2”: a;a; Cov [Xl-, Xj] (1.2.24)
i=1 j=1
If the random variables X, X,, ..., X,, are independent,
Var[U] = i a; 0')2(' (1.2.25)
i=1

1.3. THE CHARACTERSITIC FUNCTION

The characteristic function of a random variable X is defined as
bx(@) = E[e"X] = [ e fy(x) dx (1:3.1)

where j =+/—1, and w is a parameter that is as yet unspecified. The characteristic
function may be interpreted as the Fourier transform of the probability density
function fy(x) where X can take values in the range —oo < x < co. A more
formal description of the Fourier transform is given in Chapter 3. Since fy(x) and
¢y (w) are Fourier transform pairs, the pdf can be recovered from the characteristic
function by an inversion formula

Fx(x) = ﬁ f_ : Py (w)e " dw (1.3.2)

The pdf of a random variable is therefore completely defined by its characteristic
function.

If X is a discrete random variable taking on values x, with probability p,, then
one can define a discrete Fourier transform as follows

dx(w) =) & p, (1.3.3)

k

In particular, if the discrete random variable X is integer-valued, then the charac-
teristic function is

$y(@) =Y & p, (134)
k

In the above equation, it can be observed that the Fourier transform is a periodic
function of w with a period of 27, since

ej(w+277)k — ejwk . ejk<277 — eja)k (135)

where we have used the identity ¢/ = cos 6+ jsin .
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The following discrete inversion formula expresses the pmf in terms of the
discrete Fourier transform

1 2 ok
kaE/(; by (w)e* daw (1.3.6)

The probabilities p, are essentially the coefficients of the Fourier series of the
characteristic function ¢ (w). The characteristic function of several discrete and
continuous random variables are given in Tables 1.1.1 and 1.1.2, respectively.

The moments of X are easily obtained from ¢ (w) by expanding exp(jwx) in a
power series so that

butwr= [ jors YL, U --}fx(X) &
—1+]wE[X]+(] ) p E[X?]+ (] )3 E[X]+.. (1.3.7)

where it is assumed that all the moments exist and term-by-term integration is
possible. Differentiating the characteristic function n times with respect to w, the
moments are obtained as

1 a

ElX"|=—
X'1= 5 o

$x(®) | oo (1.3.8)

For example, the pdf of an exponential random variable is
fx(x)=2Ae™, x>0, A>0 (1.3.9)

Its characteristic function is obtained as

A
A—jw

by (@) =/0 el e dx = (1.3.10)

Taking the derivative of ¢, (w) with respect to w and setting it to zero yields

dy (@) Aj J
0= 0= 1.3.11
do |w—0 ()‘ _ ](1))2 |w—0 A ( )
and the mean of X from (1.3.8) forn =1 is
1d 1
E[X]= Ld@xlw) =1 (1.3.12)

i dw oo = A

Hence the characteristic function is also a moment generating function.

The concept of the characteristic function can be extended to several random
variables. If X, X,, ..., X,, are n random variables, their joint characteristic function
is defined as

d’xl,XZ,.‘.,X,, (01, 0y, ..., 0,) = E[exp(jo, X + jo, X, +. . .. +jo,X,] (1.3.13)
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Thus, if X and Y are two continuous random variables with their joint pdf given
by fx,y(xa y), then

(@)= [ [ el f o (x,y) dxdy (1.3.14)

which can be recognized as the two-dimensional Fourier transform of fy ,(x, ).
The corresponding inversion formula to recover the pdf is

1 = = —j(w w
fry(x,y) = m[ /; dxy(0), w))e Jorron) dw,dw, (1.3.15)
We can define a marginal characteristic function as

dx(w) = by y(w, 0), or ¢y(w) =Py (0, w) (1.3.16)

A direct consequence of two random variables X and Y being independent is that
their joint characteristic function factorizes into the product of their marginals, i.e.

¢X,Y(w1’w2) = ¢x(w))py(w,) (1.3.17)

Furthermore, if X and Y are independent, and we define a random variable Z as a
linear combination of X and Y

Z=aX+bY (1.3.18)

then

b2 (w) = px(aw)dy(bw) (1.3.19)

implying that the characteristic function of a sum of independent random variables
can be expressed as a product of the individual characteristic functions. This is
often called the convolution property of the characteristic function.

In particular, if X, X,,..., X, are a sequence of independent and identically
distributed (iid) random variables and Z = X, + X, +...+ X,,, then
¢2(0) = [px(0)]" (1.3.20)

The joint characteristic function (1.3.17) may be utilized to obtain joint moments
as an extension to the case of a single random variable.

dxy(w), ) = ZZ (Jclu!l) (JwZ) E[X'Y"] (1.3.21)

i=0 k=0

Taking derivatives with respect to the transform parameters and setting these param-
eters to zero yields

1 9%
( ])’+k I’ dw’

E[XIY](] [d)X,Y(wl’ w,)] |w1:w2:0 (1.3.22)



RANDOM VARIABLES AND GENERATING FUNCTIONS 13

1.4. THE LAPLACE TRANSFORM

Laplace transforms offer a convenient method for generating moments of non-
negative random variables. A large number of random variables (travel times,
concentrations, physical properties such as conductivities, porosities, velocities,
dispersion coefficients, etc.) do not assume negative values. The Laplace transform
for a non-negative random variable X is defined as

=)

£,(s) = E[e ] = / e f(x) dx (1.4.1)

where s is a transform parameter. The Laplace transform essentially provides the
same information for non-negative random variables as does the characteristic
function. One can expand the exponential term into an infinite series such that

2 3

o s s
LX(S):[ (1—sx+5 x2—§x3+...)fx(x) dx

3

s 3
5 EXT+ (1.4.2)

2
:1—sE[X]+% E[X*]—

assuming, of course, that all the moments exist and term-by-term integration is
allowed. From (1.4.2), the moments are obtained as

n

E[x"] = (~1y"2

Jon [ Ex]li=o (1.4.3)

Let us consider the gamma distribution for a random variable X whose pdf is given
as (Table 1.1.2)

fx(x)=/\a+:)e_m, x>0 (1.4.4)
From (1.4.1), the Laplace transform is
£,(s) = r)(\;) / : Lol g9 gy a fs)a (1.4.5)
From (1.4.3) it follows that
E[X]=a/A (1.4.6)
and
E[X*] = alatl) (1.4.7)

)\2

implying that the variance of the gamma random variable in this case is
Var[X] = a/A%.
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It is sometimes more convenient to work with the cumulative distribution function
Fy(x) of a random variable X. The Laplace-Stieltjes transform is defined as

o)

£4(s) = /0 e dFy(x), s3>0 (1.4.8)

The Laplace transform uniquely defines the corresponding density function.

Let Z denote a random variable defined as the sum of two independent random
variables X and Y with probability density functions fy(x) and g, (y), respectively.
The pdf of Z(= X +7Y) is defined by the convolution

£ = [ =) g0) dy =g (149)

where the subscripts X and Y have been omitted on the last expression in (1.4.9).
Then the Laplace transform of Z as

L,(s) =E[e ] = Ly(s)- Ly(s) (1.4.10)
Indeed, if we define Z as the sum of # iid. random variables X, X,, ..., X,,, then
L(5) =L x 1x,1..4x,(5) = [Lx(9)]" (14.11)

1.5. PROBABILITY GENERATING FUNCTIONS

Generating functions are a powerful tool for analyzing random variables. The proba-
bility generating function (pgf) is particularly useful when dealing with discrete
random variables. If X is a random variable taking integer values such that

PX=kl=p, k=0, 1, 2,.... (1.5.1)

then the pgf of X is given by the power series
Gy()=po+ps+p,s°+... (1.5.2)
Note that each of the p, values lies between 0 and 1, so that the infinite series G y(s)

will definitely converge for |s| < 1. It can be shown that the G, (s) uniquely defines
the pmf of the random variable X. Under some regularity conditions, (1.5.2) implies

_ l d“Gy(s)

Pe= o |y k=0,1,2,... (1.5.3)

It is clear that

Gy()=py+p,+p,+...=10 (1.5.4)
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The power series in (1.5.2) can be thought of as an expectation
Gy(s) = E[s¥] (1.5.5)

The probability generating function may be utilized to evaluate factorial moments
(assuming they exist) as shown

d
E[X]=p,+2p,+...= $G)<(s)|s:1 (1.5.6)

2
E[X(X-1)]= %Gx(s)h:] (1.5.7)

and, in general

dﬂ’l

EX(X=1)..(X=m+1)] = ——

Gx(9)| _, (1.5.8)
In terms of the factorial moments, the variance is obtained as
ol = E[X(X+ )]+ E[X] - {E[X]}? (1.5.9)
The concept of convolution is applicable to discrete random variables as well, and
probability generating functions are useful in this regard. Suppose two discrete
integer-valued random variables X and Y are described as
PIX=il=p; PlY=jl=gq;, i,j=0,1,2,... (1.5.10)
We define their sum Z(= X 4 Y) whose pmf is
PZ=k]=r=pogi+P1G—1+---+DPrq (1.5.11)
The sequence {r,} may be thought of as a convolution of the two sequences

{r.} = {p}*{q:}. The probability generating function of Z is the product of the
probability generating functions of X and Y.

G,(5) = Gy(s) Gy(s) (1.5.12)
Indeed, if Z is the sum of »n independent discrete integer-valued random variables
X, X,,...,X,, the above result can be extended as
G,(s) = Gy, (5) Gy, (s5)....Gx (5) (1.5.13)
Furthermore, if the random variables X, X,, ..., X,, are iid., then

G;(s) =[Gy, (s)]" (1.5.14)
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Consider a random variable X that is Poisson distributed as in (1.1.6). The
probability generating function of X is given as

Go() =3 s gaamy 1.5.15
x(=>"s o= (1.5.15)
k=0 :

If Y is another Poisson random variable independent of X with parameter « such that

e @ k

k'

PlY =k]= k=0,1,2,... (1.5.16)
then its probability generating function is e %", Defining Z = X + Y, the
probability generating function of Z is

G,(5) = Gx(s)- Gy(s) = e X009 (1.5.17)

implying that Z is itself Poisson distributed with the parameter (A + «).

To extract probabilities from the probability generating function, one can resort
to (1.5.3) which involves taking repeated derivatives and can become a tedious
exercise. It is, of course, much more convenient if the pgf can be expanded in a
power series of s as shown in (1.5.2), so that the corresponding probabilities may
be obtained by simple inspection. As an example, say the pgf of a random variable
X can be expressed as

(1.5.18)

where P(s) and Q(s) are polynomials of degrees ¢, and m respectively (£ < m).
Setting Q(s) = 0 would therefore yield m roots (assumed distinct) namely

S5 855 ... 8,. Then G(s) in (1.5.18) can be decomposed into partial fractions as
a a a
G(s)=——+——+...+—= (1.5.19)
$;—8  $—S Sy —S

where the n-th constant is given as

PG
"T0G)

We note that the general term in (1.5.19) may be expressed as

L r=1,2,....m (1.5.20)

1 _ 1 _i ,
—s  s,(1—s/s,) s, [1+s/s,+(s/5,)° +...] (1.5.21)

N

n

for s <'s,. Thus the coefficient of s* in (1.5.19) is

a; a, 43
pk:_k+l+_k+1+"'+_sk+1 (1.5.22)
1 SZ m
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If we select s, to be the smallest root in absolute value, then an approximate result
may be obtained as
a;

P = 5T (1.5.23)
Sy

1.6. CUMULANTS AND CUMULANT GENERATING FUNCTIONS

Cumulants, like moments, are properties that are used to characterize random
variables. Very frequently, the full probabilistic description, in terms of the multi-
variate joint probability density of a random process cannot be found easily. In
many practical applications we restrict our attention to the first few moments. It
is known that cumulants (or semi-invariants) of a random variable, if they exist,
determine the nature of the random variable uniquely (Kendall and Stuart, 1977,
Gardiner, 1985). Cumulants can be applied to a wide variety of problems and are
particularly useful for studying the asymptotic properties of distributions. A brief
discussion of cumulants and their relationships to moments is presented here.

The n-th cumulant, «,,, of a random variable X can be defined through the moment
generating function My (§) as (Meeron, 1957; Kubo, 1962; Fox, 1975, 1976),

My (&) =Elexp(€x)] = . S,
n=0 N
—exp [i g—,] —exp [K(®)] (16.1)

where K, (§) is the cumulant generating function. Definitions in (1.6.1) can be
generalized to multivariate distributions. If X, X,, ..., X,y are N random variables,
then the moment and cumulant generating functions are related as

N
My (&, 65, ....6y) =E |:exp <Z §_/’Xj):|
j=1

:Z(H g’—?) w(v, vy, ..., vy)

x  \j=I v
N gy
=exp {Z <]_[ ’—'/) k(v vy, vN)}
* j=1 vj'
=exp[K (.6, ....8,)] (1.6.2)
where ) denotes summation over v;, v,, ..., vy excluding v; = .v, = ..vy, =0, and
K(¢,, &, ..., &y) is the cumulant generating function. In the above equation, the

following notation has been used.
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w(vy, v .. 0y) = E[X) X5 X\ ]
k(U Vs Uy) = KX X2 XY (1.6.3)

The second part of (1.6.2) indicates the moment of highest order that would occur
when evaluating the cumulant in terms of moments.

An alternative way of defining cumulants is through the characteristic function
of a sequence of n random variables. If & is a vector (¢,,&,,...,&,) and X a
vector of random variables (X,, X,, ..., X,), then the characteristic function of X
is defined as

b(§) = Elexp(j§-X)] (1.6.4)

An important property of the characteristic function arises by considering its
logarithm

K(§) = tng(§) (1.6.5)

After accounting for the complex number j, we recognize the left hand side of
(1.6.5) as the cumulant generating function. If moments of all orders exist, then
both ¢ (&) and K(&) can be expanded in a power series. Equating the like powers
of & yields expressions for the cumulants in terms of moments. Using (1.6.2),
Meeron (1957) expressed the N-th order cumulant k[v,, v,,...vy] in terms of
moments of order not higher than u[v,, v,, ..., vy] and laid the groundwork for
use of cumulants in the context of stochastic differential equations. Most statistical
estimation techniques, like the method of moments, are designed for estimating
moments. Cumulants have the desirable property that if any of the random variables
are uncorrelated with others, then their cumulant is zero. More explicitly, if two
random variables X and Y are independent (uncorrelated), then the moment of
the product factors into the product moments (i.e. E[XY] = E[X]E[Y]) while their
cumulant k[X, Y] = 0. Thus, moments are said to have the ‘product property’ while
cumulants have the ‘cluster property’. The cumulant generating function can also
be defined in terms of the characteristic function (Gardiner, 1985). In either case,
the relationship between moments and cumulants remains unaffected.

Method of moments has traditionally been a popular technique for estimating
model parameters. Thus, many estimation methods have already been designed for
computing moments (Jury and Sposito, 1985; Jury et al., 1991). Direct estimation of
cumulants has not been attempted because of the complicated nature of the resulting
expressions. Govindaraju et al. (1996) described a practical way of computing
cumulants from moments. For instance, the first four cumulants are given by

K =M

Ky = Ho — K

Ky = s — Wy + )

Ky = oy — 4y — 35 + 1205, — 6] (1.6.6)
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It can be observed that the first two cumulants are the mean and covariance respec-
tively. Gardiner (1985) points out some useful applications of cumulants.

1.7. PROBABILITY WEIGHTED MOMENTS

We mention some other kinds of moments that have found applications in hydrology.
Greenwood et al. (1979) defined probability weighted moments in terms of quantiles.
Let X be a random variable with a cumulative distribution function Fy (x), then the
probability weighted moments are expressed as

M,,,=E[X? {Fy (0} {1 - Fy (0)}'] (17.1)

If the inverse of the cdf is available such that if Fy(x) =u, x = Fy'(u) = x(u)
with O < u < 1, then an alternate definition for probability weighted moments is

1
M, = fo [x ()] " (1 — )’ du (1.7.2)
From (1.7.1), we note that for r = s =0, M, , represents the conventional p-th
moment (1.2.5b).

Useful forms of probability weighted moments are generally obtained for either
r or s being equal to zero (Hosking and Wallis, 1997). For instance, we may define

o, =M, ,, = fo ) (- ) du (1.7.3a)

1

B, =M, ,, =/ x(u)u"du (1.7.3b)

and compare them to the conventional definition of moments in (1.2.5)

E[X"] = /_: ¥ fy (x) dx (1.7.4)

Thus while conventional moments of higher orders involve successively higher
powers of x(u), probability weighted moments ¢, and B, raise it only to the first
power while raising u or (1 —u) to higher powers. However, since u is bounded
between 0 and 1, it is believed that probability weighted moments can be estimated
more robustly from experimental data. Note that the two kinds of probability
weighted moments in (1.7.3) are related to each other, so that «, can be represented
in terms of B, (r <s), and vice versa.

1.8. L-MOMENTS

The computation of higher order moments from experimental observations has
always been fraught with uncertainty. In column experiments of solute transport,
for example, the breakthrough data often exhibit very long tails involving very
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low concentration values that are close to the detection limit of the measuring
instrument. Consequently, the uncertainty associated with these measurements can
be quite large. During the computation of higher order moments, a very large weight
is assigned to these data resulting in estimates of moments that may have a large
error associated with them.

To alleviate this problem to some degree, and to have a better representation
of properties such as scale and shape of a distribution, Hosking (1986) developed
L-Moments which could be expressed as linear combinations of probability weighted
moments. Hosking and Wallis (1997) contend that while (1.7.3) are integrals of
x(u) weighted by u” or (1 —u)", more meaningful interpretations are possible
by weighting x(u) with shifted Legendre polynomials P.(u),r =0,1,2,..., that
possess the following properties:

(i) P,(u) is a polynomial of degree r

(ii) P.(1) = I (normalization condition)

(iii) [, P,(u)P,(u)du = 0 if r # s (orthogonality)
These polynomials are defined by

P(u) =3 (=D Q) (M) ut (1.8.1)
k=0

Using these shifted Legendre polynomials as weighting functions, Hosking and
Wallis (1997) defined L-Moments as

L, =f]x(u)P,_1(u)du (1.8.2)
0

L-Moments can be defined in terms of expectations of order statistics. Estimators for
L-Moments from observations have been discussed in Hosking and Wallis (1997).

1.9. EXPERIMENTAL AND THEORETICAL MOMENTS

When discussing moments, we distinguish between experimental and theoretical
moments. For instance, say the time-dependant concentration data observed at the
outlet of a soil column during a steady-flow experiment are denoted by c*(¢). A
more careful definition of concentrations will be provided in Chapter 02. Here,
we use the term loosely to describe an example involving parameter estimation
from different methods. To treat the data like a pdf, we calculate the area M
numerically from

M:/ cH(1)dt (1.9.1)
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We can define normalized concentrations c(f) = ¢*(¢)/M, and treat c(¢) as a pdf.
The nth absolute experimental moment is obtained numerically from

oo

w, = f " c(r)dr (19.2)
0
Numerical evaluation of experimental moments will be described in Section 5.4.

As an illustration, we consider three ‘models’ as possible candidates for describing
c(t). These are the Fickian, lognormal, and gamma pdfs defined, respectively, as:

l (I—Vr)?
c(t) =———=exp [——i|
AW 4Dt
¢ (1) 1 ex |:— —(lnt—,ud)21|
= e LT 20
N0 =)‘;(’—;) exp(— A1) (1.9.3)

We note that the models in equation (1.9.3) treat the quantity ¢ as realizations of the
random variable 7. These three candidate distributions have two parameters each.
The quantity / in the Fickian pdf is the length of the soil column. A brute force
technique would be to minimize the squared error (MSE) between observations and
model results to estimate the model parameters.

Another way to estimate model parameters would be through method of moments
(MOM), the subject of this book. Expressions for the mean and variance of the
log-normal and gamma pdfs can be obtained from Table 1.1.2. The expressions for
the mean and variance of the Fickian pdf are as follows

2Dl
Vi
By equating the experimental moments to expressions for the first and second
moments, we obtain estimates of model parameters.

Another popular alternative method of parameter estimation is called maximum
likelihood estimation (MLE) and is briefly described in Appendix B, along with
some desirable properties of estimators. Parameter estimation methods, such as
MOM and MLE, would require N independent observations of the random variable

T expressed as t;,,i =1,2,3,..., N. Then the MLE estimators are found to be as
follows.

E[T)= i; Var[T] =

% (1.9.4)

1.9.1 Gamma Distribution

>

I

‘ =
[o

(1.9.5a)

M=
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1Y 1 X
na—y(@)=n|=>1,]—=)> Int 1.9.5b
néd— (@) (Nz) N i (19.5b)

where i (&) = [rr((z))] is the Psi (Digamma) function (Abramowitz and Stegun, 1964).
Here we use the notation p to denote the estimator of a parameter p. No closed
form solution is possible for (1.9.5) and a numerical technique must be adopted to
solve the system of equations. A good approximation (within 1.5% of the correct

value) exists in the form of

. 3—s5+/s2+18s+9
a’\l

25 (1.9.5¢)
where s is the right hand side of (1.9.5b).
1.9.2 Fickian Distribution
A l
V=—- (1.9.6a)
2
i=1
. N2
. 1 (l — Vll)
DzﬁZf (1.9.6b)
1.9.3 Log-Normal Distribution
1 N
p==>Int, (1.9.7a)
N i=1
1 N
b == S (Int;— ) (1.9.7b)
=1

To illustrate the use of MSE, MOM, and MLE techniques of parameter estimation,
we use the experimental data reported in Langner et al. (1999). A series of unsat-
urated transport experiments was performed in four intact cores of Amsterdam silt
loam (15.2 cm diameter, 30 cm length) collected from a grassland site at the A.H.
Post Experimental Farm near Bozeman, Montana. Multiple breakthrough curves
for tritiated water and pentafluorobenzoic acid (PFBA) were collected from each
column by varying the upper and lower pressure heads, resulting in a range of flow
rates and residence times. We have selected five tritiated water BTCs (Columns:
I-10, I-24, IV-3, IV-5, IV-11) and two PFBA BTCs (Columns: II-3, 1I-5) from
Langner et al. (1999). The pore water velocities for these BTCs ranged from 4.8 to
27.36cm d .
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Figure 1.9.1 gives a visual indication of how each of the models compares
with observations. It is clear that the three models fit the data reasonably well,
and it is not possible to determine which one would best describe the process
that led to these observations. Table 1.9.1 shows estimates of the model param-
eters by the two methods. The r? error estimate is the standard linear measure of
performance between model results and observations. We note that minimization of
squared errors will generally result in a better ‘fit’, but it does not yield analytical
expressions. The MOM estimates were obtained without correcting for the inlet
boundary condition in this section, and this aspect will be explored further in
Section 5.3.
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Figure 1.9.1a. Fitting of the Fickian model to the data from the seven experiments using different
parameter estimation methods
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Figure 1.9.1b. Fitting of the log-normal distribution model to the data from the seven experiments using
different parameter estimation methods

Table 1.9.1a. Parameter estimation results for the Fickian model

Expt— 1-10 1-24 1I-3 I1-5 IV-11 IV-5 Iv-3
Numerical minimization of squared-errors
D 1.202 0.215 2.707 2.152 0.72 3.103 2.543
Vv 0.531 0.171 0.733 0.889 0.276 0.727 0.666
r? error 0.98 0.990 0.980 0.965 0.98 0.933 0.954
Parameter estimation by method of moments
D 1.463 0.252 2.734 2.263 0.834 4.624 2.695
Vv 0.515 0.171 0.749 0.923 0.277 0.654 0.656
7% error 0.966 0.980 0.980 0.959 0.963 0.857 0.951
Maximum Likelihood Estimation
D 1.437 0.255 3.117 3.087 0.868 4.401 2.724
Vv 0.515 0.171 0.749 0.923 0.277 0.654 0.656
7% error 0.968 0.978 0.960 0.88 0.954 0.876 0.950
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Figure 1.9.1c. Fitting of the Gamma distribution model to the data from the seven experiments using
different parameter estimation methods

Table 1.9.1b. Parameter estimation results for the log-normal distribution model

Expt— 1-10 1-24 11-3 1I-5 IV-11 V-5 Iv-3
Numerical minimization of squared-errors
w 3.818 4.989 343 3.28 4.49 3.46 3.563
a? 0.163 0.093 0.258 0.177 0.181 0.282 0.253
r? error 0.981 0.992 0.988 0.970 0.985 0.944 0.960
Parameter estimation by method of moments
" 3.835 4.984 3.419 3.248 4.48 3.51 3.584
a? 0.196 0.106 0.248 0.173 0.202 0.421 0.266
r? error 0.971 0.984 0.989 0.97 0.977 0.894 0.956
Maximum likelihood estimation
w 3.836 4.984 3.411 3.233 4.479 3.514 3.581
a? 0.192 0.108 0.275 0.223 0.207 0.4 0.27
r? error 0.972 0.983 0.982 0.923 0.973 0.906 0.957
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Table 1.9.1c. Parameter estimation results for the Gamma distribution model

Expt— 1-10 1-24 I1-3 I1-5 IV-11 V-5 Iv-3
Numerical minimization of squared-errors
a 6.653 11.256 4.586 6.035 6.283 4.206 4.689
A 0.142 0.075 0.141 0.22 0.068 0.127 0.127
r? error 0.973 0.993 0.992 0.967 0.99 0.945 0.947
Parameter estimation by method of moments
a 4.63 8.921 3.546 5.283 4.476 1.909 3.287
A 0.091 0.058 0.103 0.188 0.046 0.046 0.08
r? error 0.928 0.974 0.963 0.952 0.953 0.667 0.892
Maximum Likelihood estimation
o 5.328 9.511 3.927 5.096 5.053 2.563 3.83
A 0.104 0.062 0.114 0.182 0.052 0.062 0.093
r? error 0.937 0.978 0.975 0.949 0.967 0.817 0.896

APPENDIX A: EXPONENTIAL DISTRIBUTIONS

Exponential-type distributions arise very commonly in first-order stochastic differ-
ential equations with random quantities. These kinds of distributions are easily
motivated by considering the complete gamma function.

INa) = /Oooy“’l e?Vdy, a>0 (A1)
Integration by parts reveals
INa+1)=aI'(a) (A2)
when « takes on positive integer values, then
T(n+1) = fowy"e*y dy = n! (A3)

which follows from (A.2) and because I'(1) = 1. It can also be shown that

I(1/2) =@ (A4)
From (A.1) and (A.4), we have the relationship
Jr= / V12 e dy=+/2 / e dy . (A.5)
0 0

where the last integral is obtained from the transformation y = z?/2. This last
integral is symmetric about the origin and an even function of z. This leads us to
the definition of the standard normal distribution i.e.

© 1 2
e dz=1 A6
/. T (A.6)
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The incomplete gamma function is defined as

B
I(a, B) =/ y“ledy, a,p>0 (A7)
0
Again if & — 1 = n is an integer, then
B 0
T+ 1B = ¥ edy=ni—[ y e dy
0 B
n g—ﬁ Bk

which can be recognized as being described in terms of cumulative mass function
of the Poisson distribution. Upon substituting y = Bx in (A.1), we have
o0 Ba xafl
o Ia)

e P dx=1 (A.9)

The integrand is the probability density function of the two-parameter gamma
distribution. Thus a random variable X is gamma-distributed if its pdf is

Baxa—l
I(a)

Further, for the particular case of 8 =1/2 and a = ”/2, the resulting pdf is known
as the Chi-square density function with n degrees of freedom

fx(x) = e, x>0 (A.10)

x(n—Z)/Z A
fx(x)zme . N x>0 (All)

2

APPENDIX B: MAXIMUM LIKELIHOOD ESTIMATION

The method of moments is the main focus of this book. However, the maximum-
likelihood estimation (MLE) method also plays an important role and is briefly
mentioned here. Let X, X,,..., X, be a sequence of random variables that are
independent and identically distributed (iid) with the probability density function
denoted by fy(x;0) where 0 = {6,,6,,...,0,} is the parameter vector of the
distribution. The joint pdf of X,, X,, ..., X, is defined as the likelihood function

L(0; x) = fx(x;; 0)fx(x2: 0) ... fx(x,; 0) (B.1)

The likelihood function is clearly a function of the parameter vector 6.
The problem then is one of finding an appropriate parameter set 6 given the
observed sequence X, X,,...,x,. The statistic 6(x,, x,,...,x,) is a maximum
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likelihood estimator of it maximizes the likelihood function (B.1). Thus the param-
eters are obtained by solving the following k equations simultaneously

d

— L(0;x)=0; i=1,2,...,k B.2

Jg L0 =0 (B2)
Since the log function is monotonically increasing, it is often more convenient to
maximize the natural logarithm of the likelihood function

d
ﬁ[én L(0;x)]=0; i=1,2,...,k (B.3)

A unique solution often exists to equation sets (B.2) or (B.3). The form of (B.3) is
particularly convenient when dealing with distributions belonging to the exponential
family.

There are a few desirable properties that one seeks in estimators.

Unbiasedness: The statistic or estimator @(X,,X,,...,X,) is said to be
unbiased if

E[0(X,,X,,....X,)]=0 (B.4)
Thus for instance, unbiased estimator of the sample mean is

N 1 n
b,==>x=X (B.5)
ni_

The MLE for the sample variance is

n

=1y (x,— X (B.6)
i=l

n
The variance estimator is biased by a factor of % However as n — oo, the bias
is negligible and this estimator is said to be asymptotically unbiased.

Consistency: An estimator 6, of a parameter 6, is called consistent if it converges
to 6, in probability, i.e. for every £ > 0,

limP[

n—oo

én—oo‘ > s] —0 (B.7)

Efficiency: The efficiency of an estimator is based on its variance. If 0 is the most
efficient estimate, then for any other estimate 6, we have

Var [(9] <Var [é] (B.8)

Asymptotic normality: As the sample size n tends to oo, the pdf of the estimator @,,
tends to be normally distributed with mean 6 and variance

) 1
var [0"] Tk [ 2 on L(6; X)]

a6%

(B.9)
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LAPLACE TRANSFORMS FOR SOLUTE
TRANSPORT MODELS

Transform methods are useful for solving linear partial differential equations. The
choice of the appropriate transform depends on the kinds of boundary conditions and
whether the domain is finite, infinite or semi-infinite. This chapter deals with the
use of Laplace transforms, with emphasis on their role in solving partial differential
equations that frequently arise in models of solute transport. In Section 1.4, Laplace
transforms were introduced as moment generating functions of continuous random
variables.

2.1. DEFINITION OF THE TRANSFORM AND ITS INVERSE

The Laplace transform of a function f(¢) is defined as

LLf(H)] = F[s] = /0 T e () dt @.1.1)

assuming that the integral converges. This places a restriction on the class of
functions for which the transform exists. The Laplace transform of many functions
can be obtained by direct integration. Extensive sets of tables are available and
these can be consulted for those cases where integration can be daunting.

The definition of Laplace transform in (2.1.1) suggests that it is suitable for
semi-infinite domains. Clearly f(#) needs to be defined for 7 > 0, and it is often
assumed that f(¢) = 0 for ¢ = 0. Consider the unit Heaviside step function

0,t<b
H(t_b)_{l,t>b (2.1.2)
The Laplace transform of H(?) is
L[H(D)] = / edt =1/s (2.1.3)
0

29
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If f(¢) in (2.1.1) is the delta-function 6(¢ — @), then
L[8(t—a)] = / 8(1 —a)e " dt = exp(—sa) (2.1.4)
0

Similarly, if f(r) = ¢", we have

n!
SVH—I

L[ = / e dt = (2.1.5)
0
A partial list of Laplace transforms of some functions in provided in Table 2.1.1.
A more complete list is available in references such as Abramowitz and
Stegun (1964).
The inverse transform is the process of recovering the function f(¢) from the
transform F(s) and is written as

f(=L7'[F(s)] = 2]71 / fjoo F(s)e"ds (2.1.6)

Y—J®

Table 2.1.1. A partial list of Laplace transforms of some common functions

f(@ F(s) = L[f(D] = [y f(nye"dr

1 1

" (n>-1) nls~ (D

et 1

sin wt ﬁ

cos wt ﬁ

sinh at = § (e — ™) =

cosh at = 1 (e" +¢7") e

& sF(s) - f10)

2

f $*F(s) — s£(0) — 9£(0)
d

(1) &

e f(1) F(s—a)

H(t-b)f(t-b) e F(s) (b > 0)

Jo ft=Dg()dr F(s)G(s)

8(t—b) e (b>0)

t—l/le—az/m‘ ze—aﬁ (a>0)

1—3/Ze—az/4r ﬂe—aﬁ (a - 0)
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where 7 is a positive constant, and j = ~/—1 . The inverse transform operation
involves a line integral in the complex plane. The constant vy is chosen large enough
so that all singularities of the function F(s) lie to the left of the line perpendicular
to the real axis at the point yy. Other than that, the integral is not dependent on 7y as
in Figure 2.1.1.

The evaluation of integrals involving complex variables is achieved using
Cauchy’s theorem. This theorem states that if g(s) is analytic at all points inside
and on a closed contour G, then the closed line integral is zero

/ g(s)ds =0 (2.1.7)
G

Closed line integrals are nonzero only because of singularities of g(s). The residue
theorem states that such closed line integrals (anti-clockwise direction) can be
generally evaluated from the residues of the singularities s, inside the contour
(if there are no branch points)

_/Gg(s)ds =2mi )y res(s,) (2.1.8)

If g(s) can be expressed as R(s) / Q(s), and has simple poles at simple zeros s, of
Q(s) inside the contour, then

R(s,)
Q'(s,)

As shown in Figure 2.1.1, the inversion integral in (2.1.6) is over an infinite straight
line to the right of all singularities of F(s), and not over any closed loop. To
accommodate this, the integral is computed over a semicircle, with the straight
portion coincident with the infinite straight line. Letting the radius tend to infinite,
the desired result is obtained by making the line integral along the arc of the
semi-circle to vanish. Observing the integral in (2.1.6), F(s) — 0 as s — oo, therefore

res(s,) = (2.1.9)

Imaginary
axis
Complex
plane
All singularities
of F(s)
this region
»
: + Y Real axis

Figure 2.1.1. Schematic sketch showing the region of line integration of F(s) for inverse Laplace
transform operation
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Imaginary Imaginary
axis axis
A A

[

el
Real axis

Real axis

(a) (b)

Figure 2.1.2. Closing line integrals. (a) For t < 0; (b) For t > 0

we want e* to vanish as the radius of the semi-circle approaches infinity. Consider
the case for < 0 when ¢ decays exponentially as the real part of s increases so
the integral is closed to the right as shown in Figure 2.1.2. Note that y was chosen
so as to have no singularities to the right, so that for t < 0

f(H=L7"[F(s)]=0 (2.1.10)

As mentioned earlier, it is required that f(f) = 0 for ¢ < 0. For the more interesting
case of 1 > 0, ¢* will decay exponentially when s < 0 suggesting that we close the
contour to the left (Figure 2.1.2), and account for all the singularities. From (2.1.6)
and (2.1.9) we have

1 Yoo 1
= oy ‘/yim F(s)e"ds = oy ?g F(s)e"ds=_res(s,) (2.1.11)

when F(s) has no branch points.

Rather than compute the inverse transform, tables of Laplace transforms
are generally utilized for determining inverse transforms. Numerical evalu-
ation of (2.1.6) is possible provided the function f(f) is reasonably smooth.
Efficient algorithms (see Jury and Roth, 1990) are available and are often
preferable to analytical evaluation through contour integration which can be quite
cumbersome.

2.2. SINGULARITIES OF THE LAPLACE TRANSFORM

If the function f(¢) = e“, a simple exponential, then the growth rate a is also a
singularity of its Laplace transform F(s) = —— (see Table 2.1.1). In general, the
singularities of the Laplace transform correspond, in some sense, to the growth
rates of f(¢). This is called as the singularity property.
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For instance, the transform functions w/(s’+®”) and s/(s*+w?) have
singularities at s = +jw , implying that their inverse Laplace transforms will have
the form e*, where s = +jw . Table 2.1.1 shows the inverse Laplace transforms
to be sinwt? and cos wt which can be expressed as linear combinations of e*/®!
according to Euler’s formulas.

When performing the inverse Laplace transform operation, we are often faced
with forms that can be expressed as F(s) = ¢g(s)/p(s), where the numerator and
denominator are polynomials. We expect F(s) — 0 as s — oo . Thus p(s) is a higher
degree polynomial than g(s). The use of partial fractions is particularly convenient
for performing inverse Laplace transform operations. Consider the case where p(s)
has simple roots (i.e. no multiple roots). Then we can express p(s) in terms of its
n distinct roots s, 5, ..., S, as

p(s)=(s—s)(s—5,)...(s—s,) (2.2.1)
The roots s,,s,,...,s, are the simple poles of F(s) whose partial-fraction
expansion is
q(s) a; ay a4,
Fs)=—=——+—"+4....+ (2.2.2)
p(s) s—s  s—s5, s—s,

where the coefficients a; can be evaluated by the formula

a; = lim (s —s;) q(s)

lim =" (22.3)

For simple poles, (2.2.3) can be evaluated by using L’Hospitals rule since the right
hand side has a 0 / 0 form in the limit.

S16=90a0) g5

a = lim - (2.2.4)
Loy d / S;
o) T
s
The inverse transform for this form of F(s) can be obtained as
=3 9S1) (2.2.5)

i=1 pl(si)

The shift theorem is also very useful for finding inverse transforms. If F(s) is the
Laplace transform of f(¢) then

£ [Flas+b)] = exp (ﬁ> £ [Flas)] = éexp (%“) f (é) (2.2.6)

a
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The use of Laplace transforms finds applications when the functions are derivatives.
Integration by parts reveals

[ } / df e "'dt = sF(s) — f(0) (2.2.7)

In a similar fashion

2
dr?
This process can be extended to compute higher order derivatives. Clearly, infor-
mation about the function f(¢) and its higher order derivatives is required at t =0
in the form of initial conditions. The calculations can be substantially simplified if
these initial conditions are all zero.
The concept of convolution can be applied to Laplace transforms as well. Let us

say we are trying to obtain the function whose Laplace transform is the product of
two transforms. If

c [ﬂ] _ 4o _ (2.2.8)

dt dt

F(s) = L[f(1)] and G(s) = L[g(1)] (2.2.9)

then
LF(5)G(s)] = /0 () f(t—)dt = g% f (2.2.10)

2.3. GREEN’S FUNCTIONS FOR INITIAL VALUE PROBLEMS
Consider the linear second-order nonhomogeneous ordinary differential equation

d2 + bd + f(®) (2.3.1)
— — 4 cy= .
Car T a Y
subject to the initial conditions

dy(O) _

y(0)=0: == =0 (2.3.2)

Non-zero initial conditions can be accounted for by including appropriate homoge-
neous solutions. Taking Laplace transforms of both sides of (2.3.1), we have

(as>+bs+c) Y(s) = F(s) (2.3.3)

where Y(s) and F(s) are Laplace transforms of y(z) and f(¢) respectively. Equation
(2.3.3) may be expressed as

Y(s) = F(s)QO(s) (2.3.4)
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where Q(s) =1 / (as2+bs+c). Utilizing the convolution theorem (2.2.10), the
solution may be obtained as

v = [ St 1)ar (2.3.5)

where ¢(7) is the inverse Laplace transform of Q(s) and can be determined from
tables or using partial fractions.

Let us consider the particular case of the forcing function in (2.3.1) when f(¢) =
6(¢). This corresponds to a unit impulse applied to the system. From Table 2.1.1, we
know that F(s) = 1.0. From (2.3.5), ¢() is the impulse response and is interpreted
as the Green’s function of the initial value problem. Essentially, ¢(¢) is the response
at some time ¢ due to a concentrated source of unit magnitude applied at time ¢t =0
and can be symbolically represented as

q(t) = G(1,0) (2.3.6)

Equation (2.3.5) involving convolution shows that we are interested in g(t —¢') =
G(t—1,0). Since the governing differential equation of (2.3.1) contains constant
coefficients, the translation property implies that the response at time ¢ due to an
impulse at ¢ depends only on the elapsed time # — ¢’ and not on the particular values
of t and 7.

G(t,!)=G(—1,0)=q(t—1) (2.3.7)

The generalized superposition principle reflected in (2.3.5) can be expressed as

y(t) = /0 (G 1) (2.3.8)

The causality principle applies for such linear differential equations so that the
influence of an impulse at ¢’ is felt only for time # > ¢'. The Green’s function G(z, 0)
is simply given as

1
Gt,0) =L ———— 2.3.9
(.0) |:as2+bs+c:| ( )

24. SOLUTE TRANSPORT BY DIFFUSION

The use of Laplace transforms can be motivated by examples from solute transport
in porous media. We first consider the process of pure diffusion, a process that
accounts for transport of solute mass resulting from random molecular movement
causing solute particles to move from regions of higher to lower concentrations. This
is mathematically expressed through Fick’s first law for a single spatial dimension
(x) as

dc

Jyrp=—D,—
diff m ox

(2.4.1)



36 CHAPTER 2

Equation (2.4.1) states that the diffusional mass flux (Jd,-ff) is proportional to the
gradient of the concentration ¢, and the molecular diffusion coefficient (D,,) is the
constant of proportionality. Fick’s second law expresses the conservation of mass
for solute in the fluid phase

dc ad ¢

—=——(J, =D — 242

o~ ax Vanr) = Do (242)

Equation (2.4.2) has the same form as the one arising in heat conduction in solids.
The molecular (self) diffusion coefficient in the gas phase D,,(g) is derived from
kinetic theory and ideal gas law (Bird et al., 1960)

D, (g) = 3])2 7 (:3?13 (2.4.3)

In (2.4.3), p is absolute pressure, d is the molecular diameter, K is Boltzmann’s
constant, T is the absolute temperature and m is the mass per molecule (m = M / N,
where M is the molecular weight and N is Avogadro’s number). For liquids, the
hydrodynamic theory is used to obtain the Stokes-Einstein equation for predicting
the diffusion coefficient D,,(I)

D, ()= KT (2.4.4)
3mud
Here, u is the dynamic viscosity of the liquid, and d is the molecular diameter of
the diffusing substance.

Fick’s first and second laws are applied to describe diffusion-controlled transport
through porous media with some modifications. First, an effective diffusion coeffi-
cient, D, is utilized to account for the complicated pore structure. Fick’s first law
is restated as

dc
Jaipr = —nDSa—x’ (2.4.5)
where 7 is the porosity, and c,(x.f) is the resident solute concentration in the
liquid phase expressed as mass of soute per unit volume of solution. The effective
diffusion coefficient in soil, D, is smaller than the diffusion coefficient in a free
liquid because of tortuosity effects. It is not uncommon to define tortuosity as

r=D,/D,, (2.4.6)

to account for the fact that the x coordinate in (2.4.5) measures linear distance
while the path taken by the solute particle could be much larger. Substituting this
modified Fick’s law (2.4.5) in the continuity equation (2.4.2) which for porous
media has the form

d(nec,) 9

o ' ax

(Jairr) =0 (2.4.7)
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yields

dc, Pc,
= p, 25 (2.4.8)

where D, is the effective diffusion coefficient. We consider (2.4.7) under the
following conditions that reflect diffusion from a constant source.

¢ (x,0)=0 (2.4.9a)
¢, (00,) =0 (2.4.9b)
¢, (0,t>0)=¢, (2.4.9¢)

Defining ¢, (x; s) as the Laplace transform of ¢,(x, ), i.e.
& (x;s) = / e (x, 1)dr (2.4.10)
0

and taking Laplace transform of (2.4.8), we obtain

d2¢
WC;—)&@ —0 (2.4.11)

where A = /s/D, . From (2.4.9), we have
¢,(00;8)=0; ¢,(0;5) = —. (2.4.12)

Equation (2.4.11) is a second order differential equation with constant coefficients
and has the general solution

¢, (x;5) = Ae ™ + BeM* (2.4.13)
where A and B are constants (i.e. independent of x) to be determined from the end

conditions of (2.4.11). Since A > 0, the condition for x — oo requires that B=0.
The condition for x = 0 yields A = c,/s so that

& (x5) = Lexp (—Ax) (2.4.14)
N

The inverse Laplace transform yields

X
1) = — 2.4.15
cr(x ) Co erfc |:2\/D_Sl‘:| ( )
where the complementary error function is defined as
2 17 2 > .
— - — -
erfe(z) =1— — e *d _—/ e *d 2.4.16
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The solution given by (2.4.15) also suggests that a self-similar scaled variable x//t
would have converted the partial differential equation in (2.4.7) to an ordinary
differential equation in the similarity variable.

The solute flux may be evaluated from (2.4.5) as

J p, % _ D% x (2.4.17)
iep — — T — €X — 4.
airf M5 0x 7Dt P 4Dt

Of particular interest is the total mass flux that enters the porous medium at x = 0.
This may be evaluated as

21D
07% 2 (2.4.18)
.

t
/0 Jairr (0, T)dT =

5

2.5. ADVECTIVE - DISPERSIVE SOLUTE TRANSPORT MODEL

In this section, we consider the case of solute transport in the presence of bulk
movement of fluid along with mixing processes that account for diffusive transport
as described in the previous section.

Advection refers to the transport of chemical species associated with average bulk
movement of the fluid. Given our inability to describe the extremely complicated
pore geometry in any detail, advective transport is essentially a representation
of average behavior. The transport processes that are associated with deviations
from this average behavior are characterized by mechanical dispersion. Deviations
from average bulk movement may occur due to different pore velocities, velocity
variations within a single pore tube, and from tortuosity effects. The process of
molecular diffusion is always present, except that its influence is much smaller
when compared to mechanical dispersion. The processes of mechanical dispersion
and molecular diffusion are often combined together into hydrodynamic dispersion
represented through the coefficient D.

In this section, we restrict our attention to the transport of a conservative solute
(also called as an ideal tracer). Such a tracer moves through the porous medium
without any physical, chemical or biological interactions with the porous matrix,
nor does it undergo any transformations. In the absence of any sources or sinks,
the transport equation for a conservative species in a one-dimensional flow field is
given by

dc, dc ) dc
— t=—|nD— 2.5.1
ot +4 dx  0x |:”fl ox ] ( )

where 7 is the saturated water content, c,, is the bulk resident concentration, which
for a conservative solute is given as

¢, = ¢, (2.5.2)
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Note that ¢, is expressed as mass of solute per unit bulk volume of soil. Equation
(2.5.2) is valid if the solute resides in the liquid phase alone. The expression for
the total resident concentration would need to be modified if solute mass was to be
present in the solid (absorbed) phase and vapor (volatized) phase. Jury and Roth
(1990) provide a detailed description of flux and resident concentrations along with
the use of Laplace transform applications.

The Darcian flux ¢ in (2.5.1) is related to the seepage velocity (also called as
effective or pore water velocity) V as

g=nV (2.5.3)

Strictly speaking, the porosity appearing in (2.5.1) and (2.5.3) is the effective areal
porosity or kinematic porosity, while the one appearing in (2.5.2) is the volumetric
porosity. The volumetric and effective areal porosities are commonly assumed to
be the same for natural soils with random pore structure, resulting in the following
transport equation

dc dc d dc
t+V—=—|D- 254
ot + ox  Ox |: ax] ( )

Equations (2.5.1) and (2.5.4) are often called as the advection-dispersion equation
(ADE) in solute transport applications. While some empirical equations have been
proposed for estimating the dispersion coefficient, it is often evaluated experimen-
tally from saturated column experiments where a chemical tracer moves through a
column under known conditions at the inlet end, and the effluent concentration is
measured as a function of time. Analytical solutions of (2.5.4) under the appropriate
boundary conditions are fit to the experimental data to find the parameter values
that provide the best agreement between the theory and the observed data. This
aspect was briefly described in Section 1.9.

Before proceeding further, it is important to distinguish between different types
of concentrations that appear in advection-dispersion models of solute transport.
When thinking in terms of inflow and outflow across a cross-section of a soil
column, we use flux concentrations cy - For one-dimensional flows, ¢y is defined
as the ratio of solute mass flux g, crossing the plane to the volumetric water flux, ¢,
so that

cr=9q,/q (2.55)

Thus in column experiments, the effluent concentration is the flux concentration
(Figure 2.5.1). On the other hand, the resident concentration ¢, measures the instan-
taneous mass density of solute in solution within the porous medium, and is defined
as the mass of solute per unit volume of solution. If a column experiment is inter-
rupted, and liquid concentrations are measured at various sections of the soil column,
the measurements would yield resident concentrations. For now, we assume that
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Mass of solute present in unit
volume B yields total resident
concentration, c;,.

Unit volume, B

The solute flux g, and Darcian
water flux g crossing a unit area
in section A-A’ yield the flux
concentration ¢;=¢q,/q.

Section A-A’

Figure 2.5.1. An illustration of flux and resident concentrations. The dark regions represent solid soil
particles

the solute resides only in the liquid solution phase, even though it could exist in
the solid phase (absorption) or gas phase (volatilization).

The one-dimensional mass conservation equation for a solute with no sources
and sinks may be expressed as

de, | dq, _dc,  dcp

% 0 25.6
ar oax o Tox (2.5.6)

The boundary conditions for a semi-infinite soil column can be expressed as

¢, (x,0) = ¢, 4(x) (2.5.7)
¢ (0,1) = cs(2) (2.5.8)

The flux and resident concentrations can be related by integrating (2.5.6). Thus

a t
cp(x, t)—cb’o(x):—qa |:f0 cr(x, T)d7i| (2.5.9)
or conversely,
19 p~
1) — f)=——— ', t)dx’' 2.5.10
e === 2 [ e ndx (2.5.10)

It is also a straightforward matter to relate the Laplace transforms of the two
concentrations as

dc(x;
&, (xs 8) = cb~os(x) _% Cf;;c 9 (2.5.11)

A A s g ~ / / 1 * / /
Cr(x;8) = Cro(s) — —/ ¢, (x'; 8)dx' + —/ Cpo(x)dx (2.5.12)
’ ’ qJo qJo
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These expressions show that a series of fairly detailed experiments are required to
link the two concentrations since enough points in space and time are needed to
evaluate the integrals in an accurate fashion. In most instances, we use mathematical
models allowing for some form of analytical relationship that can be fit to data. As
mentioned earlier, the advection-dispersion model is popular. The solute mass flux
(mass/area/time) is expressed in terms of resident concentrations as

dc

~ +qc, (2.5.13)

=-mD
g n ax

where both the hydrodynamic dispersion and advection modes of transport are
represented. The solute mass conservation equation without sources or sinks (see
also equation (2.5.6)) is

d(nc aq,
(ne,) | 94,

=0 2.5.14
ot ox ( )
Combining (2.5.13) and (2.5.14) leads to
a P c, a
S _pl& vy (2.5.15)
ot dx? dx

where V = ¢ / 7 . Note that we continue to use the saturated water content, even
though the mathematics would remain unaltered for any constant water content
0 < 7. Parker and van Genuchten (1984) show that the governing equation for the
flux concentration has the same form as (2.5.15), i.e.

dc; e, dc;
T _plY % (2.5.16)
ot dx? 0x

The boundary conditions in terms of flux concentrations are slightly simpler for
Laplace transform operations.

cp(x,0)=0 (2.5.17)
c;(0,1) = Go(1) (2.5.18)
(00, 1) =0 (2.5.19)

These conditions correspond to a soil column that is initially free of solute. At the
inlet boundary (x = 0), a mass M of solute is applied instantaneously at = 0. The
Darcian flux ¢ is kept constant. Following Kreft and Zuber (1978), the quantity
G in (2.5.18) is M/(qA) where A is the cross-section area of the soil column (see
Figure 2.5.1) perpendicular to the flow direction. The value of G is chosen as unity
for convenience, and the total solute mass inside an infinitely long soil column
should sum to unity. Taking Laplace transforms of both sides of (2.5.16) yields

d*¢;(x; 5) Vdéf(x; s)
dx> dx

s cp(x;8) —cp(x,0) =D (2.5.20)
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Substituting the initial condition of (2.5.17), we obtain

d*c.(x; s dc,
7 )_v_f_saj:o 2.5.21)

dx? dx
Laplace transforms of the boundary conditions yield
¢ (0;5) =1 (2.5.22)

& (003 5) =0 (2.5.23)

The general solution to the second-order differential equation (2.5.21) may be
expressed as

¢r(x;8) = aexp [;—;(1 - f):| + Bexp [;—;(1 +§)i| (2.5.24)
where,
4sD\'*
&= (1 + 7) (2.5.25)

The constants « and 8 are chosen so as to satisfy the conditions of (2.5.22) and
(2.5.23). Thus B = 0 ensures that the solution bounded, and o = 1.0. Consequently,

¢r(x;s) =exp [:—;(l — §):| (2.5.26)

Using appropriate tables (for example Table 2.1.1) we have the solution as

X (x—Vi)°
cf(x, t) = m exp [—W} (2527)

The solution in (2.5.27) is often referred to as the Fickian pdf and was one of the
models in Section 1.9. There are two important aspects to this solution. Because of
the chosen boundary condition (2.5.18), the expression for flux concentration may
be thought of as a probability function, where we substitute probability mass for
solute mass. Secondly (2.5.27) also serves as the Green’s function for this problem,
following the logic used in the previous section. Thus if some arbitrary input c; (%)
is imposed at x = 0, the solution is expressed through convolution as

! X (x—Vr)?
L) = t—7)—— ———|d 2.5.28
cp(x, 1) /0 Cro(t—1) Tono exp |: D7 :| T ( )
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We are now in a position to evaluate the bulk resident concentration solution for

the advection dispersion model. Combining (2.5.11) and (2.5.26) we obtain the
following expression for the Laplace transform of the resident concentration

N qdaf 27] Vx
O W S A B —(1— 2.5.2
&(xis) == =T P [ZD( 3] (25.29)

The inverse transform yields

Y e |:_(x——Vt)2:| LG (Vx) erfe (x+ V’) (2.5.30)

c(x, )= el
p(x: 1) VDt 4Dt 2D D V4Dt

The resident concentration in the liquid phase c,(x.f) can be obtained from (2.5.30)
and (2.5.2).

2.6. ROLE OF BOUNDARY CONDITIONS

The importance of clearly identifying flux and resident concentrations, and the
imposition of physically meaningful boundary and initial conditions has been
emphasized in numerous studies (for e.g., Kreft and Zuber, 1978; Parker and van
Genuchten, 1984). Here we examine how the nature of the solution of the advection-
dispersion equation is influenced by different kinds of boundary conditions. Only
a few simple cases are described here, and readers are referred to van Genuchten
and Alves (1982) for a more complete list of solutions. We write the governing
equation as

8c+v(3c_D82c 2.6.1)
ot ax  ox2 o

where D expresses the combined effects of molecular diffusion and mechanical
dispersion. In (2.6.1), c(x,t) could represent flux or resident concentrations. In
this section, we merely examine the various mathematical solutions to different
boundary conditions. Consider the soil column to be of length L along the direction
of average water movement.

Specification of any particular boundary condition at the outlet x = L for solute
movement is difficult. It is customary to mathematically impose the boundary
condition at x = oo, and examine the solution at x = L. The evaluation of ¢(L, t)
in this manner allows solute efflux by both advection and dispersion mechanisms.

For a semi-infinite soil column, a simple inlet condition at x = 0 is to impose
a Dirichlet (first type) boundary condition of a constant prescribed value for the
resident concentration of the form

c(0,1) = ¢, (2.6.2)
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where ¢, would be solute concentration in the source reservoir at the inlet end.
Ogata and Banks (1961) provide the solution for this case as

Co x—Vt xV x+Vt
c(x, 1) = > {erfc<@>+exp< D )erfc<m>} (2.6.3)
It should be noted that the contribution of the second term on the right hand side
of (2.6.3) is negligible when xV /D is large (e.g. for xV /D > 500, the error is less
than 3%).
Consider a case of an infinite column (—oco < x < o0) where solute mass is
continuously injected in the column at a location x = 0. Here again, we interpret
¢(x, t) as a resident concentration and impose

/ ne(x, t)dx = qgeyt (2.6.4)

In this case even though there is a constant advective field in the positive x direction,
dispersion causes some spreading of solute mass in both positive and negative
directions. Sauty (1980) presented the solution for this case as

o x—Vt) <xV> <x+Vt>}
c(x,t)= = {erfc| — ) —exp| — ) erfc| — 2.6.5
o= {erte () o (5 ) erre (Vi 063
One should note that (2.6.3) and (2.6.5) provide the same solution for large xV/D.

The condition of a well-mixed reservoir at the upstream end is represented by a
Cauchy (or third type) boundary condition for the resident concentration c(x, t)

dc
qco = |:‘IC - nDa—] lio (2.6.6)
X

Thus solute flux at the upstream end enters the column by pore advection alone.
Lindstrom et al. (1967) provide a solution to this case as

) Co f x—Vt N 4v2t (x—Vr)?
c(x,t) = —{erfc exp|————
2 " V4Dt wD P 4Dt

Vx V%t Vx x4+ Vi
(1 5+ 5 ) e (5) e ()| (26D

It is clear that the only variables appearing in the equations are c(x, t), ¢y, X, t, V
and D. The quantity c(x, t)/c, appears as the scaled concentration with respect to
the source. For a column of length L, the effluent concentrations are obtained by
setting x = L in the above solutions. Rearranging these variables leads to the Peclet
number

pP=— (2.6.8)
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The Peclet number plays an important role in our understanding of the model
solution. Indeed, selecting the following dimensionless variables

tV
the transport equation becomes
dc  dc 1 Pc
—t === 2.6.10
oT * dx P iX? ( )

The Peclet number is a measure of the relative importance of advection versus
dispersion as transport processes. Equation (2.6.8) suggests that the Peclet number
may be interpreted as the ratio of travel time due to dispersion and travel time due
to advection. For large Peclet numbers, advection is the dominating mechanism. In
the limit as P — oo, we have a hyperbolic partial differential equation

fe Lo 2.6.11)

aT ~ ox o
describing purely advective transport. In the other limit, for diffusion dominated
process, we obtain the parabolic differential equation

dc 1 ¢ 26.12

T~ P dx> (26.12)
The column length was chosen as the length scale when defining the Peclet number
in (2.6.8). Depending on the application, other length properties may be more
appropriate as the length scaling parameter.

Figure 2.6.1 shows the values of relative concentrations as a function of time for
some typical parameter values. The shapes of the curves are quite similar to each
other, with the similarity increasing with increasing Peclet number. As P — oo , the
ADE model approaches a piston-flow model, and dispersion effects are negligible.

Column studies seem to indicate that the extent of spreading seems to be scaled
in terms of the velocity and length of the soil column. The Peclet number appears
to remain constant, and the dispersion is therefore linearly dependent on V.

D L

V=P o (2.6.13)
The quantity «; is called longitudinal dispersivity and is interpreted as the charac-
teristic length of the soil determining dispersion effects. In laboratory column
experiments, «, values range from 0.01 to 0.1 cm. Some models for dispersion
account for both diffusion and mechanical dispersion

D=1D,+a,V (2.6.14)

where 7 is a tortuosity coefficient and D,, is the molecular diffusion coefficient. In
this form, Bear (1979) refers to D as the hydrodynamic dispersion coefficient.
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Figure 2.6.1. Plot of dimensionless concentration (C = ¢/c, ) versus dimensionless time (7 = tV/L)
for dimensionless distance X =1 (X = x/L). In the figure, models 1, 2, and 3 refer to equations (2.6.3),
(2.6.5), and (2.6.7), respectively

2.7. THE MOBILE - IMMOBILE WATER MODEL

The results of the advective-dispersive model generally tend to have a symmetric
Gaussian shape as V/D increases. However, many experimental studies, both in
saturated and unsaturated soils, yield very non-symmetric shapes for resident and
flux concentrations. Many breakthrough curves exhibit significant tailing behavior
with low concentrations persisting for a long time in the effluent solution. These
asymmetrical concentration profiles were attributed to the presence of stagnant or
immobile water in dead-end or blind pores. Further, aggregated soils have rapidly-
conducting pores that are primarily responsible for bulk water movement, but a
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IX L Average Darcian flux only in
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Diffusive mass transfer
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Figure 2.7.1. A conceptual sketch for the MIM model

significant portion of the total pore space is locked up within the aggregates where

the pores are small and not conducive to advective transport. Solute movement in

and out of the immobile water regions is conceptualized as occurring by diffusion

alone. The physical nonequilibrium model was proposed by van Genuchten (1974)

and extended further in van Genuchten and Wierenga (1976). A simpler version

called the mobile-immobile (MIM) model is considered first.

For solute movement with a diffusion-controlled mechanism for mass transfer
between mobile and immobile water zones, the soil void space is conceptualized as
having three different regions (Figure 2.7.1):

(i) Air Space (assumed to have no solute vapor mass).

(i1) Mobile or dynamic water region in the inter-aggregate region where advective
water movement occurs along with advection and longitudinal dispersion of
solute mass. The mobile water content is 0,, and the resident solute concen-
tration is c,, ..

(iii) Immobile (dead or stagnant) water region in the intra-aggregate pores, from
where solute can only move by diffusion in response to concentration difference
between mobile and immobile regions. The immobile water content is denoted
by 6,,, and the resident solute concentration is denoted by c;, .

The total water content § = 6,, 4 0,,,, . If the soil is saturated, then 6 = 7 the porosity,

else 6 < 7. Based on these definitions, the bulk resident concentration is

¢, =86,c,, +0,.c (2.7.1)

m=mr m=im,r

and the solute mass flux is given by

qS = qCWl,r - HmDm 8"2’r (2'7'2)

where D,, is the hydrodynamic dispersion coefficient in the mobile water region.
From the continuity equation (2.5.6) we obtain

0 acn1,1'+0 acim,r 0 D é)zc aCm,r (273)
m ot im ot — Ym™~m axz q dx ol

m,r
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We have two unknowns c,, .(x, ?) and ¢, .(x, ). A second equation is obtained

by assuming a diffusion-controlled rate law to describe mass transfer of solutes
from mobile to immobile regions (Coats and Smith, 1956).

dc;
l-m% =« (cm’r — cl-m,,) (2.7.4)
Equation (2.7.4) suggests that when the rate of mass transfer as described by «
tends to infinite, then mass transfer from mobile to immobile regions and vice-
versa occurs instantaneously, so that changes in c,, , are followed by an immediate
adjustment in c,, ., and these two concentrations are said to be in equilibrium. An

appropriate set of end conditions is

Cpr(x,0)=0 (x,0) =03 ¢, (00, 6)=03 ¢, (0,1) = G&(¢) (2.7.5)

5 Cim,r
where ¢, ;(x, ) refers to the flux concentration of solute in the mobile water region.
As indicated in (2.5.18), the quantity G is taken as unity. The mobile flux and
resident concentrations are related as

D,, dc
Cmf(x’ t) = & =Cy r__m£
’ q TV, 0x

m

(2.7.6)

where V,, = ¢q/0,, is the average seepage velocity of water in the mobile region.
Notice that the solute in the immobile region cannot exit the control volume except
by diffusing into the mobile region. Therefore, c,, (x, t) represents the total flux
concentration.

Defining the Laplace transforms of the mobile and immobile concentrations as

o)

&y (s ) = / e=e, (X, 0)dt, &y (x15) = / ee, (x.0)dt (2.7.7)
0 0

we obtain from (2.7.3), (2.7.4), and (2.7.5)

0,2, -+ 50, = 0,,D Plns _  om,s (2.7.8)
s mcm,r S i,mcim,r_ m~m axz l] ax o
Sgi,meim,r = (am,r - 2‘im,r) (279)

Eliminating ¢;,, , from these equations, one obtains

e, . ac,,
HWI Dm - -
0x? ox

- —g(5)0,,¢,,=0 (2.7.10)

where

0.
S0 im 2.7.11)

g(S) = Hm (a + seim)
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From (2.7.6), we obtain

\%4 ax

m

(2.7.12)

E‘m,f('x’ S) = 6‘m,r('x’ S) -

One can see that ¢,,, and d¢,, ,/dx satisfy (2.7.10), and so does ¢,, ,(x; s) from
linearity. Hence

2 ~ ~
d Crm 8cf,m

" 9x2 ) ox

0,D —8(5)0,,¢, ;=0 (2.7.13)

with end conditions of (2.7.5). The general solution to (2.7.13) is expressed as

V,

e @714

Cppp = QEXP |:

where ¢ is now defined as

4g(5)D,, 1"
&= |:1+V—31:| (2.7.15)
and
Cps(055)=1.0 (2.7.16)
Therefore, a = 1, 8 =0 and (2.7.14) simplifies to
V,.x
& (xrs) = LT 2.7.17
b (9) =exp| 75519 717
From (2.5.11), we have
R 126,g(s) V,.x
i) = ——" “(1-— 2.7.18
G = g | 5 (1-0 (27.18)

2.8. THE PHYSICAL NONEQUILIBRIUM MODEL

The model of van Genuchten and Wierenga (1976) includes further sophistication
by considering that some solutes interact with the soil particles and a certain mass
of the solute is said to reside in the solid phase. In the physical nonequilibrium
(PNE) model, the soil is conceptualized as being partitioned into five regions-two
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Figure 2.8.1. A conceptual sketch of the PNE model

additional regions have to be included than those for the MIM model. The additional

regions (Figure 2.8.1) to be considered for solid phase concentrations are:

e A dynamic (or active) soil region that is in close enough contact with the mobile
water region so that the solute concentration in the solid phase, (S, =mass
of solute/mass of dry soil), is assumed to be in equilibrium with the solute
concentration in the mobile phase C,, .. The fraction of the total soil comprising
the dynamic soil region is denoted as f.

e A stagnant soil region that is not in immediate contact with mobile liquid,
and is primarily associated with immobile water pockets. The solute concen-
tration associated with this solid phase is expressed as S;, (=mass of solute
associated with unit mass of dry soil). The stagnant soild fraction is (1 — f).
Defining the bulk density of the soil as p (mass of soil/bulk volume of soil),
we have

Cb(x7 t) = Omcm,r + Bimcim,r +fpSm + (1 - f)pSzm (281)
Note that the solid phase concentrations are always immobile and do not contribute

directly to any solute flux. The solute flux is again given by (2.7.2), and combining
with (2.8.1) yields

dc ac, as as,
0 m,r 0 m.,r m 1_ m
m—gy TOm— = TP +( f)p—at
6 p, Zonr _ Fons (2.8.2)
oM ax2 1 dx o

To relate the solid and liquid phase concentrations, van Genuchten and Wierenga
(1976) assumed instantaneous adsorption described by the Freundlich isotherm

s, =kC" 5, =kCl. (2.8.3)

m,r >l im,r
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where k is a proportionality constant. Hence

Su _ pnont e B _ - n i
— = Kn ;
ot mre ot ot ot

im,r

(2.8.4)

Furthermore, solute mass transfer from mobile to immobile water regions is
assumed to occur by a diffusion mechanism, and a transfer equation of the following
form is proposed

0 aclm r
im ot

For linear isotherms, n = I in (2.8.3) and (2.8.4), and k is called a distribution
coefficient. Substituting (2.8.4) with n = [ in (2.8.2) and (2.8.5), respectively, yields

=alc,, — Cim,] (2.8.5)

azcm r aCm r
[6,, +fpk] + [0, + (1 - f)pk] =0,D,—5" —qg—= (2.8.6)
ox? ox
[Gtm + (1 - f) k] Cim.r =« [Cm,r - Cim,r] (287)

ot

For simplicity, the same boundary condition as in (2.7.5) would be applicable. The
flux concentration C,, ,(x, 7) has the same definition as (2.7.6) as do the definitions
of the Laplace transforms in (2.7.7). Taking transforms of (2.8.6) and (2.8.7), we
obtain

azém r aem r
s[em +fpk] mr+s[91m+(1 _f)pk] tmr_emDm ——q : (288)
ax? dx
[01m + (1 - f)pk] zm = [Em,r - Elim,r] (289)

Solving for ¢;, , from (2.8.9) and substituting in (2.8.8) yields

0 D azem,r ae'm
m~m 2 q o

= —0,8(s)c,.,=0 (2.8.10)

with

fpk] L 310w+ (1= Ppk]a/6, (2.8.11)

0 5[0, + (1 — NHpk]+«a

As in the previous section, the Laplace transform of the flux concentration ¢, ,, also
satisfies the same differential equation (2.8.10) so that

o) =51+

m

’e, o, s
"ox? T x

0,D 0,8(s)C,, =0 (2.8.12)
subject to ¢, ((0;s) = 1. The analysis follows along similar lines with the new
definition of g(s) in (2.8.11). Otherwise, the expressions for ¢,, ;(x; s) and ¢, (x; s)
have the same form as in (2.7.17) and (2.7.18), respectively. Analytical solutions
for c,, .(x, t) and c;,, ,(x, t) were derived by van Genuchten and Wierenga (1976).

m,r m,r
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2.9. THE CHEMICAL NONEQUILIBRIUM MODEL

A somewhat different conceptualization of the soil containing both equilibrium and
kinetic adsorption sites was proposed by several researchers (Selim et al., 1976;
Cameron and Klute, 1977; Hoffman and Rolston, 1980) and has been described
by Nkedi-Kizza et al. (1984) as a model involving surface reaction rate laws.
The soil surface area is assumed to comprise of two different kinds of adsorption
sites: type 1 sites where adsorption is achieved instantaneously, and type 2 sites
with time-dependant kinetic sorption. This model is often termed as the chemical
nonequilibrium (CNE) model. The water content 6 is not partitioned into mobile and
immobile fractions in this model, and the resident liquid concentration is C,(x, f)

The solid phase concentrations S, (x, 7) and S,(x, ¢) are the mass of solute per
weight of soil at type 1 and type 2 sites, respectively. At equilibrium, these concen-
trations are related to the liquid phase resident concentration as

S, =K,c=K,Fc, (2.9.1)
S, =K,c=K,(1-F)c, (2.9.2)
where K, K,, and K, are distribution coefficients, and F is the fraction of soil sites

(type 1) where adsorption is assumed to occur instantaneously. For type 1 sites, we
have

1 _ px, 2 (2.9.3)
a T Pa o

while for type 2 sites, adsorption process is described by a linear first-order equation

as
a—; =a,[(1=F)Kpc, —S,] (2.9.4)

with a, representing a first-order kinetic rate coefficient. The bulk resident concen-
tration is

cp(x, 1) =0c,+p[S, +5,] (2.9.5)

where 6 is the water content (= porosity 7 under saturated conditions). The solute
flux is

dc,
dx

q,=—DO0— +qc, (2.9.6)

From the continuity equation (2.5.6), we have

P 2
o g% (2.9.7)

9 [0c, + p(S, +5,)] = 6D
g Vo T P R = VR G T4,
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and substituting (2.9.3) and (2.9.4), we obtain

dc A P*c dc
0+ pFKp| —+p—=0D— —g— 29.8
[0+pFKp] —=+p— Fra (2.9.8)
Equation (2.9.8) and (2.9.4) are the two governing partial differential equations.

The flux concentration is

D
=L =5y ve
’ q

— 2.9.9
V dx ( )

where V = ¢/0. The end conditions are
¢, (x,0) = 8(x,0) = 8,(x,0) =0 ; cp(00, 1) =0 ; c,(0, 1) = 5(¢) (2.9.10)

Defining Laplace transforms of the concentrations as

¢, (x,s) :/ e~e,(x, 1)dt 5 5,(x, 5) :/ eS8, (x, 1)drt (2.9.11)
0 0
and taking transforms of (2.9.8) and (2.9.4) yields
A A 0%¢ ac
s[04+ pFK,| C, +s5pS, = DTS — g% (2.9.12)
dx? dx
58, = a, [(1 —P)Kpe, — sz)] (2.9.13)
Eliminating 3‘2 from (2.9.13) and substituting in (2.9.12) yields
¢ ac
L —g——6 ¢, =0 2.9.14
T 95, ~0sle ( )
with g(s) now defined as
pFK, spa,(1-F)K)
=s|1 2.9.15
o0 =s[14 2552 ] 4 222020 (29.15)
From (2.9.9) we note that
D ac
Cr(x;8) =———+Ve 2.9.16
6 9) =~ L+ VE, (29.16)
and ¢, also satisfies (2.9.14)
e, dey R

Following the same steps as in the previous sections, the expression for ¢,(x; s)
and ¢, (x; s) have the same form as in (2.7.17) and (2.7.18) respectively with g(s)
now defined as in (2.9.15). Haggerty and Gorelick (1995) further expand on this
model by allowing for multiple mass transfer rates at different sorption sites. The
PNE and CNE models will be revisited in Chapter 5.
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2.10. NONEQUILIBRIUM SORPTION BY DIFFUSION
INTO SPHERICAL GRAINS

Several researchers (Rosen, 1952; Rao et al, 1980; Valocchi, 1985, Cunningham
and Roberts, 1998) have conceptualized that nonequilibrium sorption in soils can
be represented by solute diffusion into spherical grains. The tailing behavior in
breakthrough curves is attributed to the slow approach to equilibrium from diffusion
of the solute into the porous spherical aggregates that are assumed to be filled with
stagnant water. As nonequilibrium is manifested by diffusion into spherical grains,
Cunningham and Roberts (1998) refer to this as the DSG model (see Figure 2.10.1)

Solute mass is presumed to exist in the liquid phase with a resident concentration
of ¢,(x, 1) and in the solid phase with a concentration described by S(x, 7). Using
definitions of previous sections,

¢, = 0c,(x, 1)+ pS(x, 1) (2.10.1)
9
g, = —0D ;’ +qc, (2.10.2)
X

and the governing equation is

eac,.(x, t) +paS(x, 1) _op %c,(x, 1) B q(?c,(x, 1)

2.10.3
ot ot dx? ox ( )

To relate the solid and liquid phase concentrations, it is assumed that the soil
contains spherical aggregates of radius a. The solute concentration within the
aggregate at any spatial location x is described by c,(x, r, f) where r denotes radial
distance from the center of the aggregate. The mathematical model for diffusion
into spherical grains is represented by the following equations.

3 a
S(x, t) = kd;fo rlc,(x, r, t)dr (2.10.4)

Average Darcian flux
only in mobile region,

— with advection and
longitudinal dispersion
of solute.

A

= Air pockets —— :

Y — Mobile region

4 Diffusive mass transfer
poasal  between mobile and
=41 immobile regions.

soib— Immobile region
=

;-{.:;%.ﬁ.: Stagnant soil
g " = "} H
R region

.......
iRt e

- Instantaneous reaction
71 between immobile water
region and stagnant soil
region .

Figure 2.10.1. A conceptualization of the DSG model
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where k, is the distribution coefficient relating the solid phase concentration to the
average liquid-phase concentration within the grain. Further, the governing equation
for diffusion into a spherical aggregate is

—aca(z; n) _p, r_lzﬂir [r2 ealx. 12 1) (;r r } (2.10.5)

under the end conditions
c,(x,r=a,t)=c,(x,1) (2.10.6)
112(1) [re,(x,r,0)]=0 (2.10.7)

In (2.10.5), D, is the diffusion coefficient in the liquid phase within the grain. The
end conditions for (2.10.3) are the same as in (2.7.5).
Taking Laplace transforms of (2.10.3) and (2.10.4) yields

R 82/\ ) a/\
506, +spS =T — g% (2.10.8)
0x? ox
~ 3 a
§= kd—3/ e dr (2.10.9)
a’ Jo

Taking the Laplace transform of (2.10.5) and then integrating with respect to r
within the limits of [0, a], we have

a D, ,dc
/ re,dr = —a? % l._,
0 s ar
To evaluate (2.10.10), we take the Laplace transform of (2.10.5), and make the
substitution

(2.10.10)

z=r S/D (2.10.11)

a
so that the governing equation for ¢, is given as

ac ac
2 a a 24

+2 — =0 2.10.12

072 ¢ 0z “ ( )

Z

Equation (2.10.12) admits solutions in terms of modified spherical Bessel functions
(Abramowitz and Stegun, 1964)

[ [
c(z,x;8)=A[—I,(z)+B | —K,(z) (2.10.13)
2z ® 2z "7

We note that as z — 0, I‘/Z(Z) — 1.0, K}, — oo, so that from (2.10.7), B=0. From
(2.10.6), we observe that the second constant in (2.10.13) is evaluated as

C,(x;9)

A= BV
\/QEZIVZ(Z/)

(2.10.14)
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Further, using the mathematical identity

/2
1,(z) =/ —sinhz (2.10.15)
Tz

the solution for ¢, is obtained as

, 6 (x50
a2, 138) = —Fm— (2.10.16)
7
with
Z=a//p (2.10.17)

a

From (2.10.9), (2.10.10), and (2.10.16), we obtain after simplification

S th/st, 1
2 W(s) = 3k, [CO—” . —} (2.10.18)
¢, NGH st,
where ¢, is the time-scale suggested by Crank (1975)
="/p (2.10.19)

Substituting (2.10.18) into (2.10.8) results in the equation
Pc.(x;8)  9C.(x; )
—q

6D —0g(s)c,(x;5) =0 (2.10.20)
ox? dx
with g(s) now defined as
Wi
g(s) = s+¥ (2.10.21)

Note that (2.10.20) is also the governing equation for the Laplace transform of
the flux concentration. The quantities ¢,(x; s) and ¢,(x; s) are given as in (2.7.17)
and (2.7.18), respectively, with g(s) now defined in (2.10.21). To account for
nonuniform grain-size distribution, Cunningham and Roberts (1998) consider a
distribution of diffusion travel time scale 7, to examine the behavior of travel times
through a column.

Apart from the simple advection dispersion equation, different conceptualiza-
tions result in different models such as the MIM, PNE, CNE, and DSG models.
From measurements of effluent flux concentrations, it is not possible to uniquely
determine which model is the appropriate choice. Given the number of model
parameters, it is likely that these and other models fit the experimental observa-
tions reasonably well. Moreover, some of these models, notably the PNE and CNE
models, have been shown to have similar responses by Nkedi-Kizza et al. (1984).
Therefore, the choice of a particular model is based on what the user thinks best
describes the experimental conditions, and which model is capable of explaining
the observations most satisfactorily.



CHAPTER 3

FOURIER TRANSFORMS FOR SOLUTE TRANSPORT
MODELS

The concept of Fourier transforms was introduced in Chapter 1 (Section 1.3) in
the context of characteristic functions. We pursue Fourier transforms further in this
chapter as a tool for analyzing linear partial differential equations in infinite and
semi-infinite domains, thereby focusing on cases where the boundaries are far away
and their influence is expected to be negligible in the region of interest.

3.1. SOLUTE TRANSPORT BY DIFFUSION

To motivate the discussion on Fourier transforms, let us consider the equation for
diffusive transport of a conservative solute in the absence of sources and sinks (see
also Section 2.4)

dc #c
S =pS G.1.1)

for —oo < x < oo, under the initial condition
c(x,0) = ¢y(x) (3.1.2)

At this stage, we think of c(x,#) as a resident concentration of a solute and D as a
diffusion coefficient. We first look at the mathematical aspects of the solution, and
later in Section 3.3 discuss how to apply the solution of this equation to diffusive
transport in porous media. While it is not often stated explicitly, c¢(—oo, t) =
¢(o0, t) = 0. Similarly, it is expected that C,(x) at x = oo is also zero. This would
imply that we have ‘imposed’ Dirichlet boundary conditions.

We will pursue the method of separation of variables initially. It is assumed that
the solution c(x, f) can be factored into two parts: one that is a function of x alone,
and other that is a function of ¢ alone,

c(x, 1) = o(x) (1) (3.1.3)
57
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Substituting (3.1.3) in (3.1.1) yields

1 dh 1d>
_ar_ 1A%\ (3.1.4)
Dh dt ¢ dx?
where A is a constant arising from the fact that a function of ¢ can uniformly equal
a function of x only if they are both equal to a constant. Separation of variables
has now yielded two ordinary differential equations

dh

& — _ADh (3.1.5)
dt

d*¢

— = 3.1.6
I ® (3.1.6)

Note that A in (3.1.4) to (3.1.6) is as yet undetermined. The relevant values of A are
called eigenvalues. The problem now needs to be approached with some caution
as a ‘naive’ application of the boundary conditions at x = o0 to (3.1.6) would
not yield meaningful results. At this stage, we simply require that the solution be
bounded at x = 0.

We first consider the following eigenvalue problem

d2
d—);f+Ago=o (3.1.7)
lp(Fo0)| < 00 (3.1.8)

If A <0, then the general solution will be expressed as
o(x) = ae™M 4 BV (3.1.9)

and it would be impossible to satisfy (3.1.8) at x = both +o0 and —oo. It must be
concluded that A cannot be less than zero (i.e. no negative eigenvalues). If A > 0,
then the general solution is

o(x) = acos VA x+ B sinv/A x (3.1.10)

which is bounded for all x. Thus all eigenvalues are positive (A > 0), and the
eigenfunctions are sines and cosines. If A =0, then the corresponding eigenfunction
is a constant. Since all continuous values of A are possible, we have a continuous
spectrum of A > 0.

Equation (3.1.5) can be solved to yield

h(t) = Ae ™" (3.1.11)

where A is constant (i.e. not a function of time). For linear problems, we use
the principle of superposition and integrate (instead of a discrete sum) over the
continuous spectrum of A values to obtain

c(x, 1) = /w [c, () cos VAx e 2P 4 ¢, (M) sin x/Xxe_)‘D’] dA (3.1.12)
0
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where ¢,(A) and c,(A) are arbitrary functions of A. It is customary to make the
substitution A = w? for simplicity of notation so that

c(x, 1) :/0 [A(w) coswx e P + B(w) sin wx e’D‘“z’] dw (3.1.13)

where A(w) = ¢,(0?)2w and B(w) = ¢,(0?*)2w are also arbitrary functions of @
and must be determined by the initial condition (3.1.2).

¢o(x) =/Ow[A(w) cos wx+ B(w) sinw x]dw (3.1.14)

The spatial eigenfunctions cos wx and sinwx can be replaced by the complex
exponentials e/** and e/, for all positive w. It is more expedient to instead
consider e™/** as the spatial eigenfunction and let  range from —oo to +oo (i.e. both
positive and negative values). Thus the solution may be conveniently expressed as

c(x, 1) :/ co(@)e e P dw (3.1.15)
The initial condition to be satisfied is
co(x) = / co(w)e ™ dw (3.1.16)

which allows us to determine the form of the ¢,(w) function.
Let us consider the discrete Fourier series representation of a function, in this
case the initial condition on an interval —L < x < L

co(x)E——i-Z(a cos%—i—b smnTm) (3.1.17)

n=1

where the Fourier coefficients are determined from orthogonality of the eigenfunc-
tions as

1 L
a, = Z/—L ¢o(x) cos %dx (3.1.18)

1 (L . nTX
b=7 L co(x) sin = dx (3.1.19)

Using Euler’s formulas (cos 0= sing =<5 ) equation (3.1.17) can be

written as

a 1z . 1> o
W)= 242 (@, = jb) LY (4, k) e (31.20)
n=1

n=1
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In the first summation, we change the dummy summation index from n to —n
so that

~ 1 & —II’JT’C/L 1 & —jnmx/L
co(¥) = 3 + Y lacwy—ibiny] e Z a,+jb,le”’ (3.1.21)

n——l n=1

N |

From (3.1.18) and (3.1.19), we find a_,, = a, and b_,, = —b,. Further, defining

ib,
¢, = 232 we have

co(x)= > c,e "™/t (3.1.22)

This is commonly referred to as the complex form of the Fourier series, with the
complex Fourier coefficients determined from orthogonality as

1 (L .
=57 /7L co(x)e ™/ dx (3.1.23)

3.2. FOURIER TRANSFORM PAIR
Substituting (3.1.23) into (3.1.22), one obtains

o)

1 L o .
co(x) = Z [Z /_L co(x')e"™ /de’] eI/t (3.2.1)

n=—00

In keeping with the original problem definition over infinite domain, we consider
setting L to oo. For periodic functions over —L < x < L, the wave numbers
(= number of waves in a distance of 277) are the infinite set of discrete values

n
w,=27T— (3.2.2)
2L

The constant spacing between successive wave numbers is

T

Aw=— 323
0=7 (323)
Consequently, from (3.2.1), we obtain
* [Aw L . .
co(x) = ,,;_w [% /_L co(x)e™ dx'i| e (3.2.4)

As L - o0 Aw — do, the wave numbers (and the eigenvalues) approach a
continuum. The function ¢y(x) can be represented by an integral, instead of the
infinite sum, as

1 [} =) L, .
— /Y ,J0X / —Jjwx
co(x) = = ﬁw |:/DO co(x") e’ dx :| e "dw (3.2.5)
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Table 3.2.1. Partial list of some Fourier transform pairs

) = [, Flw)e do

1 .« )
Flw) = e S f(x)el dx

61

efaxz e—w2/4a
VamTa
o 2 2
T 214 B
U5
of aF
at ot
5 .
En —jwF(w)
s .
Evs (—jo)*F(w)
Y= [T fw)g(x —w)dw Fw)G(w)
1 .
8(x = xo) Temo
T
f(x=B) P F(w)
dF
xf(x) —j
e dw
i elele
X“t+a
0]x]>a 1 sinaw
) = -
x| <a T W

Based on this, the Fourier transform of a function f(x) is defined as

1, .
Flo) = — / f(x)e dx' (3.2.6)
27 J
and the inverse Fourier transform as
f(x) = / F(w)e " dw (3.2.7)

The functions f(x) and F(w) are called a Fourier transform pair. A brief table of
Fourier transform pairs is included in Table 3.2.1.

3.3. FOURIER TRANSFORM OF THE DIFFUSION EQUATION

With this introduction, we are now in a position to use Fourier transform techniques.
The previous sections showed that the solution to (3.1.1) could be expressed as
(see 3.1.15)

c(x, 1) =/ co(@) e e do (3.3.1)
with the initial condition of (3.1.2) satisfied by

co(x) = /m co(w) e dw (3.3.2)
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Equation (3.3.2) is the Fourier transformation representation of the initial distri-
bution of solute concentration, where c,(w) is the Fourier transform of ¢,(x). As
such, (3.3.1) can be expressed as

o 1 o . . 2
c(x, 1) =/_ [Z/_ co(x)e™ dx'i| e e P (3.3.3)

Changing the order of integration, (3.3.3) can be expressed in the following way to
express the influence of the initial condition clearly

1 ] o . ,
c(x, 1) = E[ co(X) [/ eD"’Z’ef“’()‘X)dw:| dx' (3.3.4)

From (3.3.4), one can clearly identify how the solution is obtained as convolution
of the influence function (also called Green’s function) with the initial condition.
We define the function

o(x) = [ D gmi0x g (3.3.5)

Table 3.2.1 shows that the above integral is

a 2
8(x) =,/ 5e 14pt (3.3.6)

and the solution for concentration as a function of space and time coordinates is

© 1 ,
C(.x, t) = /; co(x')me_(x_x )2/4Dtdx/ (337)

which brings out the dependence of the solution on the initial condition. The Green’s
function can now be defined as

1 /
G(x,1;x,0) = WE—W /4Dt (3.3.8)

This function expresses the influence of the initial concentration at x’" on the solution
at a spatial location x and some time ¢. The influence function is a maximum at
x = x/, (i.e. at the source) and the influence decreases as the separation |x — x'|
increases. Similarly, as t — 0, the influence function approaches a spike,

lim

1
t—0 v 4Dt

For application to diffusive transport in porous media, consider the release of mass
M of contaminant per unit area perpendicular to flow instantaneously at x = x,

e—(xfx')2/4Dt — 5()(? _ x/) (339)
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and at time ¢ = 0 without any loss of generality. Then defining c, as the bulk
concentration, the initial condition is expressed as

cp(x,0) = M&(x — x,) (3.3.10)
so that

/wcb(x, 0)dx =M (3.3.11)

The governing differential equation (3.1.1) is usually written in terms of the resident
concentration in the liquid phase ¢, (= c,/n, where 7 is porosity), so that

¢ (x,0)= %6()(—)60) (3.3.12)

Using (3.3.7), we obtain

M ’ 1 (x_x/)z ’
¢ (x, 1) = /700 ?8(x —Xxp) NZeT exp [—W} dx
M _ 2
= ———exp [—M] (3.3.13)
n/4mDt 4Dt

As expected, it can be shown that
/ ne,(x, )dx =M (3.3.14)

The similarity in functional form between (3.3.13) and the normal pdf (1.1.12) is
useful. If we think of the distance coordinate x as the random variable, and nc,/M
as a probability density function that evolves in time, then we conclude that the
center of solute mass is located at the mean location x,,, and that the spread of the
solute mass about this mean location is indicated by the variance ¢ that changes
with time

0% =2Dt (3.3.15)

34. FOURIER TRANSFORMS OF DERIVATIVES

The discussion this far was motivated by the need to understand the basic concept
of Fourier transforms. However, in practice, it is often simpler to apply Fourier
transforms directly to linear partial differential equations without having to resort
to the process of separation of variables. By definition, the Fourier transform of
c(x, 1) is

Fle(x, )] = &(w: 1) = % / " e(x, )i dx (34.1)
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Note that unlike Laplace transforms in the previous chapter, the Fourier transform
involves integration of the space variable with ¢ remaining fixed in this application.
The Fourier transform of the time derivative is

d 1 [*dc . ar1 rp= 9¢
Flllo L [T ey = 2| L / ceidx | = 2 (3.4.2)
ot 27 J—oo Ot ot | 27 J -

Fourier transforms of spatial derivatives are obtained as

ox Zﬁ—max 2T

—o0

) 1 > dc . Jox 0w *° .
?[ C] Cporgy = > L [ ceiorgy (3.4.3)
2T
Assuming that ¢ — 0 as x — oo, we note that

F [%} =—jow Flc] = (—jo) ¢(v,1) (3.4.4)
dx

In a similar manner, one can show that

K .
F|—=|=(—jow) ¢(w,r1) (3.4.5)
_aXZ -
and, in general
[0"c] ) 5
F| oo | = o) w0 (3.4.6)
L xn -

In an analogous fashion to Laplace transforms, Fourier transforms are useful
for converting partial differential equations to ordinary differential equations. For
instance, taking Fourier transforms of both sides of (3.1.1), we have

%E(w, 1) = —Dw’ &(w, 1) (3.4.7)

whose general solution is
E(w; 1) = Ae P (3.4.8)

where the integration of (3.4.7) was carried out in time for a fixed w. The quantity
A in the right hand side of (3.4.8) is therefore, in general, a function of w. To
determine A(w) one must apply Fourier transform to the initial conditions of (3.1.2),
so that

Aw) = % [ : co(x)e ™ dx (34.9)

It is convenient to introduce the idea of convolution for Fourier transforms at this
stage. From (3.4.8), we note that ¢(w, f) is a product of two functions of w : A(w)
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and e’D“’z’, both of which, in turn, are transforms of other functions of x. From
(3.4.9) we know A(w) to be the Fourier transform of the initial solute distribution
¢o(x). From Table 3.2.1, e~? is the transform of ,/Ze¢*/*”". The product of
transforms of two functions arises frequently in linear problems of solute transport.

Consider two functions f(x) and g(x) whose Fourier transforms are F(w) and
G (w) respectively. The two Fourier transform pairs are mathematically expressed as

Flo) = %/:f(x) e dx; f(x) = /:F(w) e % d gy

G(w) = %[: g(x) €%dx; g(x) = /:) G(w) e ™™ dw (3.4.10)

Our immediate goal is to determine the inverse Fourier transform of H(w) =
F(w) G(w). We may write this as

W) =7 [H(w)] = : F(0)G(w)e 7 dw (3A4.11)

After eliminating F(w) or G(w) and interchanging the order of integration, one
obtains

h(x) = % [ : 2() f(x — x') dx’ (34.12)

which is the convolution of the two functions g(x) and f(x) and is denoted by
f*g=g"f. Applying the convolution equation to (3.4.8), we find that

1 o !
e(x.0)=5— /_ ¢o(x) /Dlt e GX)ADL g1 (3.4.13)

as expected from the analysis involving separation of variables.

3.5. FOURIER SINE AND COSINE TRANSFORMS

The Fourier series is versatile enough to be applicable to semi-infinite domains
with suitable modifications. We consider the following partial differential equation
and end conditions describing solute movement by pure diffusion

de _pre 0 (3.5.1)
-— = -— > .
a - Do
(0,1)=0 (3.5.2)
c(x,0)=cy(x), x>0 (3.5.3)

Note the difference in the end conditions from those considered in the previous
chapter (2.4.9). Using separation of variables, we express c(x, t) as

c(x, 1) = d(x) h(r) (3.5.4)
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which leads to the two ordinary differential equations

dh

— =—ADh (3.5.5)
dt

d*¢

— =-A 3.5.6
o = (3.5.6)

Now, the boundary conditions needed to determine the eigenvalues and eigenfunc-
tions for the spatial part are

¢(0)=0; lim [¢ (x)] < oo (3.5.7)
Nontrivial solutions are only available for A > 0, and the general solution is
¢(x) =c¢;sinvVA x =c¢, sin wx (3.5.8)
Solution to (3.5.5) yields
h(t) = Ae P = AeP" (3.5.9)
and the solution for the concentration has the for