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Motto

Experimenters are the striking force of
science. The experiment is a question which
science puts to nature. The measurement is
the registration of nature’s answer. But
before the question is put to nature, it must
be formulated. Before the measurement
result is used, it must be explained, i.e., the
answer must be understood correctly. These
two problems are obligations of the
theoreticians.

Max Planck



This book is dedicated to my parents.

Christo Boyanov Boyadjiev



Abstract

The theoretical methods of chemical engineering for modeling and simulation of
industrial processes are surveyed in this book. On this basis it is possible to
formulate correct experimental conditions and to understand correctly the exper-
imental results.

The continuous media approach is used for modeling simple processes such as
hydrodynamic processes, mass transfer processes, and heat transfer processes. The
theory of scalar, vector, and tensor fields permits one to create the basic equations
and boundary conditions. Problems of rheology, turbulence, turbulent diffusion,
and turbulent mass transfer are examined too.

The chemical processes and adsorption models and especially the stoichiom-
etry, reaction mechanism, reaction route, kinetics of simple and complex chemical
reactions, physical and chemical adsorption, and heterogeneous reactions are
discussed.

Different types of complex process models are presented depending on the
process mechanism. The relation between the mechanism and the mathematical
description is shown in the case of physical absorption. Characteristic scales,
generalized variables, and dimensionless parameters are used for analysis of the
process mechanism. Full information about this mechanism permits the creation of
theoretical models. Mass transfer in film flows is an example of such models,
where the effects of a chemical reaction and gas motion and absorption of slightly
and highly soluble gases are considered.

The very complicated hydrodynamic behavior in column apparatuses is a
reason for using diffusion-type models in the cases of mass transfer with a
chemical reaction and interphase mass transfer. An average concentration model
of an airlift reactor is presented.

Similarity theory models are demonstrated in the case of absorption in packed-
bed columns. Generalized (dimensionless) variables and generalized individual
cases are used for formulation of the similarity conditions and similarity criteria.
The dimension analysis, mathematical structure of the models, and some errors in
criteria models are discussed.
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Regression models are preferred when there is complete absence of information
about the process mechanism and the least-squares method is used for parameter
identification.

A theoretical analysis of models of the mass transfer theories is presented in the
cases of linear and nonlinear mass transfer. The model theories, boundary layer
theory, mass transfer in countercurrent flows, influence of the intensive mass
transfer on the hydrodynamics, boundary conditions of the nonlinear mass transfer
problem, nonlinear mass transfer in the boundary layer, and the Marangoni effect
are examined.

A qualitative theoretical analysis is presented as a generalized analysis. The use
of generalized variables permits the analysis of the models of mass transfer with a
chemical reaction, nonstationary processes, and stationary processes and the effect
of the chemical reaction rate.

The generalized analysis permits the analysis of the mechanism of gas–liquid
chemical reactions in the cases of irreversible chemical reactions, homogenous
catalytic reactions, and reversible chemical reactions and the relationships between
the chemical and physical equilibria during absorption.

A comparative qualitative analysis for process mechanism identification is
presented in the cases of different nonlinear effects, nonstationary absorption
mechanisms, and nonstationary evaporation kinetics.

A quantitative theoretical analysis is presented for solution of the scale-up
problems and statistical analysis of the models. The similarity and scale-up, scale
effect and scale effect modeling, scale-up theory and hydrodynamic modeling, and
scale effect and scale-up of column apparatuses are discussed. The statistical
analysis ranges over basic terms, statistical treatment of experimental data, testing
of hypotheses, significance of parameters, and model adequacy of different types
of models.

The stability analysis of the models examines the general theory of stability
(evolution equations, bifurcation theory), hydrodynamic stability (fundamental
equations, power theory, linear theory, stability, bifurcations, and turbulence), the
Orr–Sommerfeld equation (parallel flows, almost parallel flows, linear stability,
and nonlinear mass transfer), and self-organizing dissipative structures (interphase
heat and mass transfer between gas–liquid immovable layers, Oberbeck–Bous-
sinesq equations, gas absorption, and liquid evaporation).

The calculation problems in chemical engineering theory are related to the
solutions of differential equations and identification of the model parameters
(estimation). Different analytical methods, such as the similarity variables method,
Green’s functions, Laplace transforms, the Sturm–Liouville problem, the eigen-
value problem, and perturbation methods, are presented. Numerical methods (finite
differences method, finite elements method) are examined on the basis of com-
mercial software. Iterative solution methods are considered too.

Parameter estimation methods are discussed in the case of incorrect (ill-posed)
inverse problems. An iterative method for parameter identification is presented for
solution of correct, incorrect, and essentially incorrect problems. The optimization
methods are examined as a basis of the least squares function minimization.
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Models of chemical plant systems are presented as a set of process models and
the relations between them. An algorithm for simulation of chemical plants is
proposed. The methods of optimal synthesis of chemical plants are considered in
the case of optimal synthesis of heat recuperation systems. The renovation of
chemical plants is formulated as a mathematical model. The main problems are the
renovation by optimal synthesis, renovation by introduction of new equipment,
and renovation by introduction of new processes.

Examples from the author’s investigations are presented at the end of all
chapters.

Christo B. Boyadjiev
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Preface

The role of theory in science was formulated very brilliantly by Max Planck:
Experimenters are the striking force of science. The experiment is a question which
science puts to nature. The measurement is the registration of nature’s answer. But
before the question is put to nature, it must be formulated. Before the measurement
result is used, itmust be explained, i.e., the answer must be understood correctly.
These two problems are obligations of the theoreticians.

Chemical engineering is an experimental science, but theory permits us to
formulate correct experimental conditions and to understand correctly the exper-
imental results. The theoretical methods of chemical engineering for modeling and
simulation of industrial processes are surveyed in this book.

Theoretical chemical engineering solves the problems that spring up from the
necessity for a quantitative description of the processes in the chemical industry.
They are quite different at the different stages of the quantitative description, i.e., a
wide circle of theoretical methods are required for their solutions.

Modeling and simulation are a united approach to obtain a quantitative
description of the processes and systems in chemical engineering and chemical
technology, which is necessary to clarify the process mechanism or for optimal
process design, process control, and plant renovation.

Modeling is the creation of the mathematical model, i.e., construction of the
mathematical description (on the basis of the process mechanism), calculation of
the model parameters (using experimental data), and statistical analysis of the
model adequacy.

Simulation is a quantitative description of the processes by means of algorithms
and software for the solution of the model equations and numerical (mathematical)
experiments.

The processes in chemical engineering are composed of many simple processes,
such as hydrodynamic, diffusion, heat conduction, and chemical processes. The
models are created in the approximations of continuous media mechanics.

The complex process model is constructed on the basis of the physical mech-
anism hypothesis. In cases where full information is available, it is possible to
create a theoretical type of model. If the information is insufficient (it is not
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possible to formulate the hydrodynamic influence on the heat and mass transfer),
the model is pattern theory, diffusion type or similarity criteria type. The absence
of information leads to the regression model.

The theoretical analysis of the models solves qualitative, quantitative, and
stability problems. The qualitative analysis clarifies the process mechanism or
similarity conditions. The quantitative analysis solves the problems related to the
scale-up and model adequacy. The stability analysis explains the increase of the
process efficiency as a result of self-organizing dissipative structures.

All theoretical methods are related to calculation problems. The solutions of the
model equations use analytical and numerical methods. The identification (esti-
mation) of the model parameters leads to the solutions of the inverse problems, but
very often they are incorrect (ill-posed) and need the application of regularization
methods, using a variational or an iterative approach. The solutions of many
chemical engineering problems (especially parameter identification) use minimi-
zation methods.

The book ideology briefly described above addresses the theoretical foundation
of chemical engineering modeling and simulations. It is concerned with building,
developing, and applying the mathematical models that can be applied success-
fully for the solution of chemical engineering problems. Our emphasis is on the
description and evaluation of models and simulations. The theory selected reflects
our own interests and the needs of models employed in chemical and process
engineering. We hope that the problems covered in this book will provide the
readers (Ph.D. students, researchers, and teachers) with the tools to permit the
solution of various problems in modern chemical engineering, applied science, and
other fields through modeling and simulations.

The solutions of the theoretical problems of modeling and simulations employ a
number of mathematical methods (exact, asymptotic, numerical, etc.) whose
adoption by engineers will permit the optimal process design, process control, and
plant renovation.

The modeling and the simulations of chemical systems and plants can be
achieved very often through a hierarchical modeling. This approach uses the
structural analysis of the process systems. The result of the structural analysis is a
quantitative description allowing further optimal process design, process control,
and plant renovation. The effectiveness of the optimal solutions can be enhanced if
they are combined with suitable methods of optimal synthesis. The latter is a
methodical basis and a guide for process system renovations.

The book incorporates a lot of fundamental knowledge, but it is assumed that
the readers are familiar with the mathematics at engineering level of usual uni-
versity courses.

The above comments are the main reasons determining the structure of this
book.

Part 1 concerns model construction problems. The mechanics of the continuum
approach is used for modeling hydrodynamic, diffusion, and heat conduction
processes as basic (elementary) processes in chemical engineering. The modeling
of complex processes in chemical engineering is presented on the basis of the
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relation between the process mechanism and the mathematical description. The
models are classified in accordance with the knowledge available concerning the
process mechanisms. This means a situation when a theoretical model is available,
i.e., sufficient knowledge of the process mechanism as well as the opposite situ-
ation of knowledge deficiency, which leads to regression models. Theoretical
diffusion, dimensionless, and regression types of models are illustrated. The linear,
nonlinear, and pattern mass transfer theories are considered too.

Part 2 focuses on theoretical analysis of chemical engineering process models.
The qualitative analysis uses generalized (dimensionless) variables and shows the
degree to which the different physical effects participate in a complex process.
On this basis, similarity criteria and physical modeling conditions are shown.
The quantitative analysis concerns the scale-up problems and statistical analysis of
the models. The stability analysis of the models permits the nonlinear mass
transfer effects to be obtained and the creation of the self-organizing dissipative
structures with very intensive mass transfer.

Part 3 addresses the calculation problems in modeling and simulation. Dif-
ferent analytical and numerical methods for the solution of differential equations
are considered. The estimation of the model parameters is related to the solutions
of the ill-posed inverse problems. An iterative method for incorrect problem
solutions is presented. Different methods for function minimization are shown for
the purposes of process optimization and model parameter identification.

Part 4 examines modeling and simulation of the chemical plant systems.
The simulation of the systems on the basis of structure system analysis is pre-
sented. The optimal synthesis of chemical plants is considered in the case of the
optimal synthesis of heat recuperation systems.
This book can be used as a basis for theoretical and experimental investigations in
the field of the chemical engineering. The methods and analyses presented permit
theoretical problems to be solved, the experimental conditions to be correctly
formulated, and the experimental results to be interpreted correctly.

The fundamental suggestion in this book is the necessity for full correspondence
(direct and inverse) between the separated physical effect in the process and the
mathematical (differential) operator in the model equation.

The main part of this book has a monographic character and the examples are
from the author’s papers. The book uses the author’s lectures ‘‘Course of modeling
and optimization’’ (subject chemical cybernetics in the Faculty of Chemistry of
Sofia University ‘‘St. Kliment Ohridski’’), ‘‘Course of modeling and simulation of
chemical plant systems’’ (Bourgas University ‘‘Prof. Asen Zlatarov’’), and
‘‘Master’s classes of theoretical chemical engineering’’ (Bourgas University ‘‘Prof.
Asen Zlatarov’’). That is why, as a whole, it is possible for it to be used as teaching
material for modeling and simulation. This book proposes an exact formulation
and the correct solution of quantitatively described problems in chemical engi-
neering. It may be useful for scientists, Ph.D. students, and undergraduate students.

Some of the results presented in the book were obtained with financial support
from the National Fund ‘‘Scientific Researches’’ of the Republic of Bulgaria
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(contracts no. TH-154/87, TH-162/87, TH-89/91, TH-127/91, TH-508/95, TH-4/99,
TH-1001/00, TH-1506/05).

The author would like to thank Assoc. Prof. PhD Jordan Hristov, Assoc. Prof.
PhD Natasha Vaklieva-Bancheva, Assoc. Prof. PhD Boyan Ivanov, Assist. Prof.
PhD Maria Doichinova, Assist. Prof. Petya Popova, Assist. Prof. Elisaveta
Shopova and Dipl. Eng., M.Sc. Boyan Boyadjiev for their help in the preparation
of this book.

Christo Boyanov Boyadjiev
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Introduction

1 Quantitative Description

Modeling and simulation are the principal approaches employed for quantitative
descriptions of processes and process systems in chemical and process engineering
for the solution of scientific and engineering problems.

From a scientific point of view, the quantitative process description addresses
the process mechanism. The creation of a hypothesis about the process mechanism
is followed by a mathematical model and proof of its adequacy, which in fact is a
proof of the hypothesis.

From an engineering aspect, the quantitative description of a process (and of
process systems too) forms the basis of the engineering optimization of new
chemical plants and control and renovation of older ones as well.

The recovery of quantitative information concerning processes and process
systems through modeling and simulations has some advantages with respect to
physical experiments. The most important of these advantages are:

• Reduction of required material resources.
• Simulations of extreme (or dangerous) conditions give an opportunity to avoid

or eliminate the risks.
• Short time simulations of long technological cycles.

In all cases the quantitative description is oriented towards the kinetics of the
processes and the systems. The rates of nonequilibrium processes (in accordance
with the Onsager approach) depend on the deviations from their equilibrium states.
Thus, the quantitative description needs knowledge concerning the process statics
(thermodynamics).

Besides the variety of the problems mentioned, both the modeling and the
simulation follow almost unified approaches including several stages (see Table 1).
In several particular cases, some stages can be reduced or eliminated.
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2 Modeling and Simulation

The Association for the Advancement of Modeling and Simulation Techniques in
Enterprises (AMSE) defines the purpose of modeling as a schematic description of
the processes and the systems, whereas the simulations areemployments of the
models for process investigations or process optimizations without experiments
with real systems.

Table 1 Modeling and simulation stages

Quantitative description

Modeling
Determination of mathematical description structure
Identification of parameter estimates in the mathematical description using physical

experiments
Verification of the statistical significance of the parameters and model adequacy

Simulation
Creation of an algorithm for solution of the model equations
Computer realization of the solution algorithm
Quantitative description obtained by means of computing (mathematical) experiments

Obviously, it is easy to realize that modeling addresses the first three stages (see
Table 1), whereas the simulations utilize the last three stages, where the final step
means performance of numerical experiments.

On the other hand, the concept of the mathematical modeling as a unified
method employs the assumption that the model building and the simulations are
steps of it. This approach considers the mathematical description as a model after
the creation of computer-oriented algorithms and codes. From this point of view,
the difference between the physical and the mathematical models disappears. The
physical modeling replaces the mathematical analogy, whereas the physical
experiment corresponds to the numerical experiment.

The present book addresses process modeling as a technology concerning
selection (or creation) of mathematical structures (the model equations), param-
eter identification (on the basis of data obtained through physical experiments),
and a check of the model adequacy.

According to the definition of the operator of the direct and inverse problem
solutions, if A and A-1 are the direct and inverse operators, the simulation is a
direct problem solution, namely,

y ¼ Ax; ð2:1Þ

This implies obtaining the target (object) function y of the real process (the big
apparatus on the book cover) if the model parameter values x are known.
Obviously the direct problem solution has an experimental equivalent (the target
function can be obtained experimentally).
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The modeling is an inverse problem solution, i.e.,

x ¼ A�1ye; ð2:2Þ

and addresses obtaining the model parameter value x of the modeled process (the
small apparatus on the book cover). The latter implies that the experimental values
of the target function ye are known; in this case finding the inverse problem
solution is possible by means of calculation only.

3 Chemical Engineering and Chemical Technology

The employment of modeling and simulation during the quantitative description of
processes and systems needs clear determination of the chemical engineering and
the chemical technology problems.

Chemical engineering is a branch of the chemical sciences concerning
implementation of physical chemistry processes at an industrial scale in chemical
plants. Chemical engineering employs modeling or simulation of processes as the
principal tool based on an amalgam of fundamentals of chemistry, physics, and
mathematics. The main target of such investigations is the quantitative description
of the process mechanisms and kinetics under industrial conditions. These
descriptions are the first steps of the optimal process design, process control, and
plant renovation.

The industrial implementation of physical chemistry processes considers purely
chemical and physical phenomena whose performance is affected mainly by the
scale of the contacting devices used.

Chemical technology is a science oriented towards the creation of techno-
logical schemes including the consequences of processes. The flowsheet synthesis
provides all the relationships between the processes at the flowsheet sublevels that
need a systematic approach to be employed. In this context, the objects of the
investigations of chemical technology are technological systems. The analyses of
such systems with the methods of the system techniques are in the domain of
process system engineering. Such an approach is not trivial and it is based on
some common suggestions, among them.

Separate chemical and physical (hydrodynamic, diffusion, thermal, adsorption,
etc.) processes of chemical technologies are the subjects of chemistry and
physics. The simultaneous occurrence of these processes in industrial devices is
the subject of chemical engineering. In this context, the complex interrelations
between the processes of technological systems are a subject of chemical tech-
nology. It should be noted that the system synthesis and optimization are also
branches of process system engineering. These standpoints allow chemical
technology to be described as a chemical engineering system technique
employing both modeling and simulations as working methods based on the
developments of chemical engineering and applied mathematics. The main goal
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of studies employing these methods is the quantitative descriptions of the systems
and the subsequent optimal process design, process control, and plant renovation.

It should be noted that optimal reconstruction (retrofit) could be defined as a
renovation from a more generalized point of view. Thus, the development of the
system towards a better and more efficient (economically) state with respect to the
existing situation is the main purpose of the renovation.

4 Theoretical Problems and Methods

Chemical engineering processes are combinations of basic processes (hydrody-
namic, diffusion, thermal, chemical, etc.) that occur simultaneously (or in
sequence) under conditions imposed by the complex geometry of the industrial
contactors. The ordered sequence of separate stages (elementary processes) is the
mechanism of the chemical engineering process. From this point of view, the
structure of the mathematical description of the process depends on the mathe-
matical description of the elementary processes involved and the interrelations
between them. Therefore, the creation of the mathematical description of the
elementary processes involved is the first step towards the modeling of the entire
chemical engineering process.

The analysis of the separate stages of the modeled process (see Table 1)
shows that the main step is the creation of the mathematical structures of the model
utilizing submodels of elementary process and the interrelation mechanisms.
Obviously, these structures (submodels) depend on the knowledge available about
the process mechanisms.

A very important stage of model development is parameter identification
(on the basis of experimental data) through inverse problem solutions. The main
difficulties are related to the incorrectness of the inverse problem.

The mathematical structures developed (structures with identified parameters)
become models after the evaluation of both the parameter significance and the
model adequacy.

The model created (before the simulations) can be used for a qualitative
analysis of the relation between the process mechanism (and kinetics) and the
values of the model parameters. This allows some levels of a hierarchical mod-
eling to be defined as well as the scale-up effects of the processes. All these steps
facilitate the subsequent simulation and very often they are required preliminary
steps.

The modeling and simulation of both the processes and the systems are related
to a lot of calculation problems. Moreover, there are various approaches of the
optimal process design, process control, and plant renovation.

Many of the calculation problems are related to the solution of differential
equations. Different analytical (similarity variables method, Green’s functions,
Laplace transforms, Sturm–Liouville problem, eigenvalue problem, perturbation
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method) and numerical (finite differences method, finite elements method, iterative
solution methods) methods have to be used.

The calculation problems of the identification of the model parameters need the
use of sets, metric spaces, functionals, variational and iterative methods, as well as
different methods for function minimization.

The modeling and simulation of chemical plant systems deal with quite specific
calculation problems that should be solved with the help of graphs, matrixes,
nonlinear, integer, and heuristic programming, etc.

5 Physical Fundamentals of Theoretical Chemical
Engineering

Theoretical chemical engineering uses physical approximations of the mechanics
of continua. Simply, this implies that the material point of the medium corresponds
to a volume sufficiently small with respect to the entire volume under consider-
ation but at the same time sufficiently large with respect to the intermolecular
distances of the medium. Modeling in chemical engineering utilizes mathematical
structures (descriptions) provided by the mechanics of the continua

The principal problem in theoretical chemical engineering is the necessity for
full adequacy of the mathematical operators in the mathematical models of the
physical effects described. This is very important in the theoretical and diffusion
types of models and the mass transfer theory is a very important example of such
problems.

The theoretical analyses employing similarity theory models demonstrate that if
the mathematical methods are very simple, the formalistic use of the theory could
result in wrong results. This note addresses, for example, incorrect formulation of
similarity conditions, independent and dependent dimensionless parameters, etc.
Physical ideas form the basis of the similarity theory and its mathematical
methods. In this context, the correct physical approach might help in the use of the
similarity theory as a powerful method of quantitative investigations because the
correct understanding of the process physics is of primary importance

Introduction xxix



Part I
Model Construction Problems

Chemical reaction rates are functions of the concentrations of the reagents,
whereas the kinetic constants are functions of the temperature. In industrial
conditions these processes are realized in moving fluids, where the concentrations
of the reagents and the temperature are the results of diffusion, heat and mass
transfer, and convective transfer. As a result, chemical engineering processes are
complex systems of simple processes that interact with each other in a manner
defined by the mechanism of the industrial process. Thus, the model of a particular
chemical engineering process can be represented as a suitable combination of the
models of the simple processes.



Simple Process Models

Simple processes in chemical engineering concern hydrodynamic, diffusion, heat
conduction, adsorption, and chemical processes. These are typical nonequilibrium
processes and the relevant mathematical descriptions concern quantitatively their
kinetics. This gives a ground to utilize the laws of irreversible thermodynamics as
mathematical structures building the models of the simple processes [1].

The quantitative description of irreversible processes depends on the level of
the process description. From such a point of view, one can define three basic
levels of description—thermodynamic, hydrodynamic, and Boltzmann levels.
These different levels of process description form a natural hierarchy. Thus, going
up from one level to the next, the description becomes richer, i.e., more detailed.
This approach allows the kinetic parameters defined at a lower level to be
described through relevant kinetic parameters at an upper level.

The thermodynamic level utilizes quantitative descriptions through extensive
variables (internal energy, volume, and mass). If there is a distributed space, the
volume must be represented as a set of unit cells, where the variables are the same
but have different values in different cells.

The hydrodynamics is the next level, where a new extensive variable partici-
pates in the processes. This variable is the momentum. Therefore, the hydrody-
namic level of description can be considered as a generalization of the lower,
thermodynamic level. Here, the extensive variables (taking into account their
distribution in the space) are mass density, momentum, and energy. In the isolated
systems they are conserved and the conservation laws of mass, momentum, and
energy are used.

The Boltzmann level is the next upper level of description and concerns only
the mass density as a function of the distribution of the molecules in space and
their momenta.

The kinetics of irreversible processes employs mathematical structures fol-
lowing from Onsanger’s linear principle [1]. According to them, the mean values
of the time derivatives of the extensive variables and the mean deviations of their
adjoined intensive variables from the equilibrium are expressed through linear
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relationships. The principle is valid close to the equilibrium and the coefficients of
the proportionality are the kinetic constants. When the process takes place far from
equilibrium (highly intensive processes), the kinetic constants become kinetic
complexes depending on the corresponding intensive variables (in the case of
fusion of two identical systems, the extensive variables double, whereas the
intensive variables remain the same).

The hydrodynamic level is widely applicable in the mechanics of continua.
Here, the material point corresponds to a sufficient volume of the medium that is
simultaneously sufficiently small with respect to the entire volume under consid-
eration and at the same time sufficiently large with respect to the intermolecular
distances of the medium.

Modeling in chemical engineering utilizes mathematical structures (descrip-
tions) provided by the mechanics of the continua. The principal reason for this is
the fact that these structures sufficiently well describe the phenomena in detail.
Moreover, they employ physically well defined models with a low number of
experimentally defined parameters.

Modeling the fundamental processes by the concepts of the continuum
mechanics follows the first three stages defined in Table 1. Levels 2 and 3
(see Page XXVI) will be especially discussed further, so the present chapter
focuses on the mathematical description of the simple processes. The dis-
cussion developed employs a mathematical description following from Ons-
anger’s principle and the field theory widely applicable in the mechanics of
continua.

1 Mechanics of Continuous Media

Simple chemical engineering processes in liquids and gases are of macroscopic
type and must be considered in the continuum approximation [2], i.e., the size of
such an elementary volume of liquid (gas) is sufficiently large with respect to the
intermolecular distances (the elementary volume consists of many molecules).

The simple processes of continua are related to variations of basic physical
quantities, such as density (q), velocity (u), pressure (p), concentration (c), and
temperature (t):

q ¼ q x; y; z; sð Þ; u ¼ u x; y; z; sð Þ; p ¼ p x; y; z; sð Þ; c ¼ c x; y; z; sð Þ; t ¼ t x; y; z; sð Þ;
ð1:1Þ
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where x, y, and z are Cartesian coordinates and s is the time. The quantities q, p, c,
and t are scalars, whereas velocity u is a vector. The scalars are defined by
numbers, and the vector is defined by a number and a direction.

1.1 Scalar and Vector Fields

The mechanics of continua assumes that functions (1.1) are defined and con-
tinuous over a certain area of the space considered as a field. Therefore,
depending on the type of the physical quantity, we have scalar fields or a vector
field [3, 4, 11]. Each point of the scalar field is characterized by one number, i.e.,
the value of the scalar magnitude. The vector field is characterized by three
arranged numbers, i.e., the magnitudes of the vector projections on the Cartesian
coordinates.

The scalar field is represented by the space-distributed scalar function u:

u ¼ u x; y; zð Þ: ð1:2Þ

All the points where u = u0. = const. form a surface:

u x; y; zð Þ ¼ u0: ð1:3Þ

This surface is characterized by the property that sliding on it, the value of u
remains unchanged (constant u0). In all other directions u is inconstant and its
change is maximal (minimal) in the direction of the surface normal. That is why at
each point M (x, y, z) of the scalar field, the biggest change of u is a vector,
directed to the interface normal, i.e., its projections are

ou
ox
;
ou
oy
;
ou
oz
; ð1:4Þ

where as its magnitude is equal to the rate of the growth of the function at point
M. This vector is called a scalar field gradient:

grad u ¼ ou
iþ ou

oy
jþ ou

oz
k; ð1:5Þ

where i, j, and k are the unit vectors of the coordinate axes x, y, and z, respectively.
The vector of the gradient (or antigradient) determines the direction of the

faster (slower) function growth, at a particular point, with respect to the space
coordinates. The variations of the function along any other direction can be
determined through projection of the particular direction vector considered on the
gradient.
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The gradient of a scalar field can also be represented through the differential
operator r (‘‘nabla’’):

r ¼ o

ox
iþ o

oy
jþ o

oz
k; ð1:6Þ

or

ru ¼ grad u: ð1:7Þ

The gradient forms a vector field.
Processes in media with variable properties (density, concentration, or tem-

perature) are very common in chemical engineering. Thus, the function u in (1.7)
can be replaced by a particular scalar quantity (see 1.1).

The vector field represents the space distribution of a vector function:

u ¼ uxiþ uyjþ uzk; ð1:8Þ

where ux, uy and uz are scalars and they are the projections of the vector u on the
coordinate axes (a Cartesian coordinate system in this particular case). For
example, the velocity vector (1.1) may be expressed through its components
(projections at the coordinate axes) as

u ¼ uxiþ uyjþ uzk: ð1:9Þ

The vector fields have some basic properties expressed through elementary
operations on them such as a scalar product and a divergence.

The scalar product of two vectors a and b is a scalar:

ab ¼ axbx þ ayby þ azbz ¼ abcosa; ð1:10Þ

where ai, bi (i = x, y, z) are the vector components, i.e., the scalar product (1.10) is
a product of the vector magnitudesa and b and the cosine function of the anglea
between them.

The vectorflux through a plane surface is the product of the cross-sectional
area and the vector projection on the normal vector of the surface at the point
where the flux crosses the surface. If we have an arbitrary surface S and the flux
J of the vector u crosses it, the flux density at an elementary area ds is:

j ¼ u n ds ¼ u cosað Þds: ð1:11Þ

The integration of j over the all surface S leads to

J ¼
ZZ

S
u n ds ¼

ZZ
S
u cosa ds: ð1:12Þ

The product u:n is a scalar product of the normal vectorn of the surface ds and
vector /. It represents the vector magnitude along the direction defined by the
normal vector n. The same product expressed through the vector magnitudeu and
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the angle between the vector and the normal to the surface is the second integral of
(1.12). Here it is assumed that magnitude of n is 1, i.e., n in the first integral of
(1.12) is the unit vector of the surface normal.

If the surface S encloses a volume v, the flux of the vector / through the surface
S when v ? 0, i.e., the limit lim u

v!0
, is the vector divergence:

div u ¼ lim
v!0

J

v

� �
¼ oux

ox
þ

ouy

oy
þ

ouy

oz
: ð1:13Þ

Therefore, the divergence of a vector field is a scalar field. Formally, the diver-
gence can be represented by a scalar product of the vector u and the symbolic
vector r (1.6):

div u ¼ r � u ¼ o

ox
iþ o

oy
jþ o

oz
k

� �
uxiþ uyjþ uzk
� �

: ð1:14Þ

The vector u could be the fluid velocity u. Thus, the flux of u through a surface
S is the quantity of fluid passing through this surface per unit time. If the surface
S encloses a volume v, the flow rate (input or output flow per unit volume) is the
divergence of the vector u.

1.2 Stress Tensor and Tensor Field

Developing the description of continua through scalar and vector fields and
continuing, we come to tensor fields. The type of the tensors is directly related to
the physical quantities described by them. The simplest and the friendliest is the
stress tensor [3, 4], so we will describe it as an example since it is a basic tool in
continuum mechanics.

Following the Newton law, the product of the mass per unit volume (density)
(q) and its acceleration (a) equals the sum of both the surface (P) and the volume
(K) forces acting on it:

qa ¼ K þ P: ð1:15Þ

Here a is the substantial acceleration, i.e., the velocity change with respect to the
space coordinates and the time.

The volumetric (mass) forces are an effect of the influence of external forces on
the volume (mass) of the medium considered. The latter means that acting on a
mass of the particular volume, they are produced by external physical fields such
as the gravitational force (the body force of gravity), electrical forces (Coulomb
forces between charged bodies), centrifugal forces, and buoyant forces. The vol-
ume forces are proportional to the mass on which they act and are described by the
coordinates of the volume of that mass. Obviously, they form vector fields and
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usually the forces are in proportion to the gradient of the particular scalar field
under consideration.

In the dynamics of continua, the volume forces are usually expressed through the
density of their distribution (k) or, in other words, through the force per unit mass:

dK ¼ qk dvð Þ; ð1:16Þ

where (dv) is a sufficiently small volume. If (Dv) contains the material point M (x,
y, z), the unit vector k is defined as

k ¼ lim
Dm!0

DK

Dm
¼ 1

q
lim

Dv!0

DK

Dv
; ð1:17Þ

where Dm is the mass of the volume Dv.
The density of the force distribution (see 1.17) is in fact the acceleration,

produced by the action on the mass of the medium. For example, when K is the
gravitational force, the density k is the gravity acceleration g.

The surface forces differ principally from the body forces. They also act on a
particular volume of the medium, but are not proportional to its mass. They are
internally determined forces, i.e., they represent the reaction of the medium against
the application of the external (to the volume) forces. Thus, they represent the
stressed state of the medium.

Let us consider an elementary volume under the action of surface forces and let
one of the volume dimensions vanish to zero (i.e., apply the limit approach). As a
result, the volume becomes a surface with surface forces applied on it. The latter
depend on the surface orientation (the orientation of the surface normal vector).
Examples of such forces are pressure and the forces of the internal friction.

The surface forces P are described by the stress vectorp:

dP ¼ p ds; ð1:18Þ

where ds is an infinitely small surface area. If Ds contains point M (x, y, z), the
definition of p is

p ¼ lim
Ds!0

DP

Ds
; ð1:19Þ

where Ds is a small surface area and contains point M. In the above equations, p is
the force acting on a unit surface of a plane containing point M (x, y, z) and
characterized by its normal vectorn, i.e., p depends on the normal vector
components.

The general expression concerning the surface forces per unit volume of a
deformable medium can be derived if a small unit volume of it is considered. If
this volume is a cube, the three normal vectors of the walls characterize the
stressed state of the medium, i.e., nine scalar quantities. Let this volume be
managed in accordance with the Cartesian coordinate system (Fig. 1). The ele-
mentary volume is dv = dxdydz.
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The stresses acting on both surfaces perpendicular to the x-axis are

�px and px þ
opx

ox
dx: ð1:20Þ

The corresponding surface forces can be determined through multiplication of
the stresses and the surface of the elementary volume (where they are applied)
dsx = dydz as follows:

�pxdsx and � pxdsx þ
opx

ox
dv: ð1:21Þ

For the other forces acting on one surface perpendicular to the axes y and z we
have in a similar way that

�pydsy and � pydsy þ
opy

oy
dv; �pzdsz and � pzdsz þ

opz

oz
dv: ð1:22Þ

The integral of the surface force P per unit volume follows from the summation
of (1.21) and (1.22) along the coordinate axes and is expressed as the sum per unit
volume (i.e., dividing by dv after the summation):

P ¼ opx

ox
þ

opy

oy
þ opz

oz
: ð1:23Þ

The vectors px, py, and pz can be expressed through their components along the
coordinate axes.

One of these components is normal to the wall. In the present case (see Fig. 1) it
is parallel to the axis to which the wall is perpendicular. The other two components
are in the plane of the wall and are parallel to the other coordinate axes. The
former is termed a normal stress (r), whereas the latter two are shear stresses (s).
As a result,

Fig. 1 Stresses on a volume
element Dv
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px ¼ rxiþ sxyjþ sxzk;

py ¼ syxiþ ryjþ syzk;

pz ¼ szxiþ szyjþ rzk: ð1:24Þ

The form of (1.24) shows that the stressed state of the medium is determined by
nine scalar quantities forming the so-called stress tensor:

P ¼
rx sxy sxz

syx ry syz

szx szy rz

0
@

1
A: ð1:25Þ

In the general case, the stress tensor is nine numbers arranged as a matrix,
which characterize the stress vector at every point of the field.

The stress tensor depends on the coordinates of point M only and forms a tensor
field. The form of (1.25) indicates that P is a tensor of second rank (the vectors are
tensors of rank 1, whereas the scalars are tensors of rank 0).

The vector of the stress p can be determined if we consider a small polygon
ABC (see Fig. 1) with a normal vector n:

n ¼ nxiþ nyjþ nzk: ð1:26Þ

The vector p represents a stress produced by the surface force P acting on the
polygon ABC with a surface ds. The balance of the surface forces acting on the
volume MABC is

pds ¼ pxdsx þ pydsy þ pzdsz: ð1:27Þ

The surface of the volume MABC can be determined as the sum of their
elements. A more convenient way is to express them as projections of the wall
ABC on the coordinate planes formed by the coordinate axes. This requires
knowing the angles between the normal vector of the plane ABC and the coor-
dinate axes. Thus, we have

dsx ¼ dscos n; xð Þ ¼ nxds;

dsy ¼ dscos n; yð Þ ¼ nyds;

dsz ¼ dscos n; zð Þ ¼ nzds: ð1:28Þ

In this way, with the help of (1.23) and (1.24) we can obtained the stress vector
as

p ¼ nxpx þ nypy þ nzpz: ð1:29Þ
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The projections along the coordinate axes through (1.24) and (1.26) are

px ¼ nxrx þ nysxy þ nzsxz;

py ¼ nxsxy þ nyry þ nzszy;

pz ¼ nxsxz þ nysyz þ nzrz: ð1:30Þ

The expressions developed above, i.e., (1.25), (1.26), and (1.30), permit us to
represent the stress vector (1.29) with components (1.30) as an internal product of
the normal vector (1.26) and stress tensor (1.25), i.e.

p ¼ nP: ð1:31Þ

This result allows us to represent the stress vector only through one vector
depending on the surface (plane) orientation and one tensor of second rank
determined by the coordinates of the plane.

The form of (1.30) shows that the components of the stress vector depend
simultaneously on the coordinates of point M and the orientation of the plane
(defined by ABC) where this point lies. Therefore, the stress vector is defined by
nine numbers and does not form a vector field.

2 Hydrodynamic Processes

The hydrodynamic processes concerning the flow problems of fluids (liquids or
gases) [2, 4] are characterized by five variables—three projections of the velocity
vector ux, uy, uz (Cartesian coordinate system), fluid density q, and the pressure
p. Their determinations employ a set of:

• The continuity equation (mass conservation equation)
• Three equations of motion (momentum conservation equations)
• One equation describing the thermodynamic state (a relationship between the

density and the pressure)

In the case of nonisothermal processes, all the fluid properties depend on the
temperature, and an additional equation for the energy conservation is needed.

The intensive mass transfer in moving fluids as a result of large concentration
gradients induces secondary flows [5] and we must add the convection–diffusion
equation.

2.1 Basic Equations

The basic equations of hydrodynamic processes will be obtained for a small
(control) volume Dv containing point M (x, y, z). This volume belongs to the bulk
of the medium and does not interact with the macroscopic boundaries of the flow.
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Under the assumption of a constant density (the control volume is very small) the
mass of the control volume is

dm ¼ qdv: ð2:1Þ

The velocity of the liquid particle described by the velocity vector (1.9) has
components representing the variations of the coordinates of point M with time:

ux ¼
dx

dt
; uy ¼

dy

dt
; uz ¼

dz

dt
: ð2:2Þ

The forces acting on the volume change the control volume dv = dxdydz and
the rate of its variation with time is

d
dt

dvð Þ ¼ 1
dx

d
dt

dxð Þ þ 1
dy

d
dt

dyð Þ þ 1
dz

d
dt

dzð Þ
� �

dv: ð2:3Þ

If the control volume dv is that described in Fig. 1, its walls are parallel to the
coordinate plane. Concerning the lines of intersection of each neighboring wall, we
could decide that they are parallel to the coordinate axes. Such a line of inter-
section forms the edge of the control volume (specific for the Cartesian system
chosen here). An elementary increment of the length of such an edge with time is
the elementary increment of the velocity in the direction of the corresponding
coordinate axis. Therefore, the deformation with time is the basic definition of a
flow. Thus, the result is

d
dt

dxð Þ ¼ d
dt

x� �xð Þ ¼ ux � �ux ¼ dux ¼
oux

ox
dx: ð2:4Þ

The derivations of the velocities along the other two coordinate axes proceed in
a similar way and the use of (1.3) leads to

d
dt

dvð Þ ¼ dv
oux

ox
þ ouy

oy
þ z

oz

� �
¼ dv div u: ð2:5Þ

The mass conservation equation follows from (2.1) in the form

d
dt

dmð Þ ¼ d
dt

qdvð Þ ¼ 0: ð2:6Þ

The differentiation of (2.6) and the subsequent use of (2.5) gives

dq
dt

dvþ q
d
dt

dv ¼ dq
dt
þ qdiv u

� �
dv ¼ 0; ð2:7Þ

which can be expressed in the most common form of the continuity equation:

dq
dt
þ qdiv u ¼ 0: ð2:8Þ
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Following the rules for differentiation, we have (with the help of 1.5 and 1.9):

dq
dt
¼ oq

ot
þ oq

ox

dx

dt
þ oq

oy

dy

dt
þ oq

oz

dz

dt
¼ oq

ot
þ ux

oq
ox
þ uy

oq
oy
þ uz

oq
oz
¼ oq

ot
þ urq:

ð2:9Þ

The application of the definition of the divergence,

div quð Þ ¼ udivqþ u; ð2:10Þ

allows (2.9) to be expressed as

oq
ot
þ div quð Þ ¼ oq

ot
þ o

ox
quxð Þ þ o

oy
quy

� �
þ o

oz
quzð Þ ¼ 0: ð2:11Þ

For the steady-state processes, the density is time-independent, i.e.,

div quð Þ ¼ 0: ð2:12Þ

When the density does not vary, q = const., i.e.,

div u ¼ 0: ð2:13Þ

As mentioned earlier (see 1.15), the integral action of the surface and the body
forces accelerates the control volume dv with acceleration a:

a ¼ du

dt
¼ ou

ot
þ ou

ox

dx

dt
þ ou dy

dt
þ ou

oz

dz

dt
¼ ou

ot
þ ux

ou

ox
þ uy

ou

oy
þ uz

ou

oz

¼ ou

ot
þ u � rð Þu; ð2:14Þ

where (u�r) is the scalar product of the vectors u and r (see 1.6 and 1.9).
The definitions of the acceleration expressed by (1.15) and (1.17) show that the

principal equation of fluid dynamics for a control volume dv is

dma ¼ qdvð Þa ¼ qgdvþ Pdv ð2:15Þ

or

q a ¼ qgþ P; ð2:16Þ

where g is the acceleration due to the body forces and P is the integral of the
surface force (see 1.23).

Therefore, we have (from 2.14, 2.16, and 1.23)

q
ou

ot

� �
þux

ou

ox
þuy

ou

oy
þuz

ou

oz

¼qgþ orx

ox
þosyx

oy
þoszx

oz

� �
iþ osxy

ox
þory

oy
þþoszy

oz

� �
jþ oszx

ox
þoszy

oy
þorz

oz

� �
k:

ð2:17Þ

2 Hydrodynamic Processes 13



The introduction of the pressure through the normal stresses only,

rx ¼ �pþ r0x; ry ¼ �pþ r0y; rx ¼ �pþ r0z; ð2:18Þ

permits us to express (2.17) in the form

ou

ot
þ urð Þu¼g�1

q
rp

þ1
q

or0x
ox
þosyx

oy
þoszx

oz

� �
iþ osxy

ox
þ

or0y
oy
þþoszy

oz

� �
jþ oszx

ox
þoszy

oy
þor0z

oz

� �
k

� �
:

ð2:19Þ

For many gases and liquids, there are linear relationships (experimentally
derived laws) between the stresses and the shear rates (the deformation rate). The
Stokes postulation [3, 4] employs the idea of the Newton law (Onsanger’s prin-
ciple [1]). In a more general form, including all the components of the stress
tensor, the Stokes postulate gives

r0x ¼ l 2 x

ox
� 2

3
div u

� �
; sxy ¼ l

oux

oy
þ ouy

ox

� �
;

r0y ¼ l 2
ouy

oy
� 2

3
div u

� �
; syz ¼ l

ouy

oz
þ ouz

oy

� �
;

r0z ¼ l 2
ouz

oz
� 2

3
div u

� �
; sxz ¼ l

ouz

ox
þ oux

oz

� �
: ð2:20Þ

The substitution of (2.20) into (2.19) and the subsequent projection along the
coordinate axes gives the so-called Navier–Stokes equations:
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ð2:21Þ
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where gx, gy, gz are the components of the acceleration vector g. If the gravita-
tional field generates the body force (i.e., the force of weight) and the x-axis is
oriented vertically downwards, we have

gx ¼ g; gy ¼ gz ¼ 0; ð2:22Þ

where g is the gravitational acceleration.
Gases can be considered as incompressible if their velocities are subsonic (i.e.,

less than the velocity of sound). At higher velocities it is necessary to utilize the
relationship between the density and the pressure:

p� qRT ¼ 0; ð2:23Þ

where R is the gas constant and T is the absolute temperature.
Incompressible liquids have constant densities, so in the case of a gravity body

force (g = gx) and if divu = 0 (2.13), the Navier–Stokes equations become
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ð2:24Þ

where m ¼ l
q is the fluid kinematic viscosity.

The vector form of (2.24) is

ou

ot
þ u � rð Þu ¼ g� 1

q
rpþ mr2u; ð2:25Þ

where r2 is the Laplacian operator:

r2 ¼ o2

ox2
þ o2

oy2
þ o2

oz2
: ð2:26Þ

2.2 Cylindrical Coordinates

In cylindrical coordinates r, u, z the velocity vector u ¼ ur; uu; uz

� �
must satisfy

the continuity equation, momentum equations, and viscous stresses [4]:

oq
ot
þ 1

r

o qrurð Þ
or

þ 1
r

o quu
� �
ou

þ o quzð Þ
oz

¼ 0;
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2.3 Boundary Conditions

The Navier–Stokes equations (2.21) together with the continuity equation (2.11)
and the equation of state (2.23) form a closed set of five differential equations
allowing us to determine five variables: three velocity components (ux, uy, uz), the
density (q), and the pressure (p).

The boundaries of the macroscopic system should affect the solution through
the boundary conditions. The type of a particular boundary condition depends on
the physical situation at the boundary between the fluid and the surroundings.

Despite the variety of conditions existing at the boundaries, some of them are
common for a large number of hydrodynamic problems. For example, if we have a
phase boundary, commonly represented as a boundary between a flowing fluid and
a confining wall, several types of boundary conditions are possible. If un and us are
the normal and tangential velocity components, nonslip conditions must be used:

us ¼ 0; un ¼ 0: ð2:28Þ

At the mobile (gas–liquid, liquid–liquid) interphase these conditions are

u 1ð Þ
s ¼ u 2ð Þ

s ; u 1ð Þ
n ¼ u 2ð Þ

n ¼ 0; ð2:29Þ

where the last condition expresses that the fluids are immiscible (interphase
impermeability condition).
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The interaction between two mobile phases must be expressed by the equality
of the tangential (Ps) and normal (Pn) components of the stress vector at the
interphase:

P 1ð Þ
s ¼ P 2ð Þ

s ;P 1ð Þ
n ¼ P 2ð Þ

n þ Pr; ð2:30Þ

where Pr is capillary pressure.
The conditions for the interface impermeability (2.30) are not valid if there is an

intensive mass transfer across it.

2.4 Laminar Boundary Layer

Many processes in chemical engineering are realized in two-dimensional flows.
For theoretical analysis of these flows let us consider a semi-infinite solid interface
with coordinates x [ [0, ?) and y = 0, streamlined by a potential flow with
velocity u?. At the fluid–solid interface a nonslip condition exists and the velocity
of the fluid is zero. Far from the interface the velocity is equal to u?. Under these
conditions we will analyze a steady-state and two-dimensional flow. The flow in a
horizontal plane with coordinates x, y, i.e., the Navier–Stokes equations (2.24), has
the form
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ox
þ uy

oux

oy
¼ �1
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op

ox
þ m

o2ux

ox2
þ o2ux

oy2

� �
;
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ouy

ox
þ uy

ouy

oy
¼ �1

q
op

oy
þ m

o2uy

ox2
þ o2uy

oy2

� �
;

oux

ox
þ ouy

oy
¼ 0; ð2:31Þ

with boundary conditions

x ¼ 0; ux ¼ u1;
oux

ox
¼ 0; uy ¼ 0;

ouy

ox
¼ 0;

y ¼ 0; ux ¼ uy ¼ 0; y!1; ux ¼ u1; uy ¼ 0: ð2:32Þ

A generalized analysis (see Chap. 4.1) permits the qualitative investigation of
the process, using generalized (dimensionless) variables.

Let us consider an area of the fluid defined by

0� x� l; 0� y� d; ð2:33Þ
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where the main variations of the fluid velocity (0 B ux B u?) occur. The upper
limit d means that at y ? d the velocity ux ? u?. This allows us to employ l, d,
and u? as naturally defined scales of the process. The dimensionless variables
defined through these scales are

X ¼ x

l
; Y ¼ y

d
; Ux ¼

ux

u1
; Uy ¼

luy

u1d
; P ¼ p

qu2
1
: ð2:34Þ

As a result, the order of magnitude of the dimensionless (generalized) variables
and its derivates is 1.

The dimensionless form of equations (2.31) and the boundary conditions (2.32)
are

Ux

oUx

oX
þ Uy

oUx

oY
¼ �oP

oX
þ ml

u1d2

� �
d2

l2

o2Ux

oX2
þ o2Ux

oY2

� �
;

d2

l2

� �
Ux

oUy

oX
þ Uy

oUy

oY

� �
¼ �oP

oY
þ

u1d2

� �
d2

l2

� �
d2

l2
o2Uy

oX2
þ o2Uy

oY2

� �
;

oUx

oX
þ oUy

oY
¼ 0;

X ¼ 0; Ux ¼ 1;
oUx

oX
¼ 0; Uy ¼ 0;

oUy

oX
¼ 0;

Y ¼ 0; Ux ¼ Uy ¼ 0; Y !1; Ux ¼ 1; Uy ¼ 0; ð2:35Þ

where the orders of magnitude of the physical effects are determined by the orders
of magnitude of the dimensionless parameters.

The dimensionless equations (2.35) defined above indicate, that inertia effects
(left-hand side of the first equation in 2.35) are balanced by the viscous (right-hand
side of the same equation) forces if the order of the dimensionless parameter

vl
u1d2

� 	
is 1, i.e.,

ml

u1d
¼ 1; d ¼

ffiffiffiffiffiffi
ml

u1

r
¼ lffiffiffiffiffiffi

Re
p ; Re ¼ u1l

m
;

d
l
¼ 1ffiffiffiffiffiffi

Re
p ; ð2:36Þ

where Re is the Reynolds number in these conditions.

The results (2.36) indicate that at large Reynolds numbers d2

l2 ¼ 1
Re � 10�2

� 	
the

longitudinal effect of the viscous forces is negligible,

d2

l2
o2U

oX2
� 10�2;

o2U

oX2
� 1; ð2:37Þ

because an effect less than 1% is impossible to register experimentally.
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From (2.36) it follows that a velocity change from 0 to u? is realized in the thin
layer d (laminar boundary layer [4]) if Re C 102. In this case a boundary layer
approximation can be used:

d2

l2
¼ 1

Re
¼ 0: ð2:38Þ

If we introduce (2.36) and (2.38) into (2.35), the boundary layer approximation
of the problem (Prandtl equations) has the form

Ux
oUx

oX
þ Uy

oUx

oY
¼ �oP

oX
þ o2Ux

oY2
;

oP

oY
¼ 0;

oUx

oX
þ oUy

oY
¼ 0;

X ¼ 0; Ux ¼ 1; Y ¼ 0; Ux ¼ Uy ¼ 0; Y !1; Ux ¼ 1: ð2:39Þ

If u? = const., oP
oX ¼ 0; i.e., P = const. [4]. This approximation is widely

applied in chemical engineering for processes occurring in thin layers near the
interphase surface. The scaling approach demonstrated here will be utilized fur-
ther in other problems in the book for generalized (qualitative) analysis of the
models.

2.5 Two-Phase Boundary Layers

Interphase heat and mass transfer in gas–liquid and liquid–liquid systems has a
large range of application in science and technology. These two flow processes are
characterized by a moving interphase surface [6]. The shape of the surface may be
flat [7] or wavy [8] and depends on many interface effects, such as a two-phase
interaction [7], surfactants [7], nonlinear heat and mass transfer effects [5], and
surface instability [8].

Despite the significant number of works devoted to these issues, there is no
single answer to the problems for the mechanism of the appearance of waves and
the approximations of the equations in which the shape of the moving interface has
to be determined.

Let us consider a two-dimensional two-phase co-current flow. The mathemat-
ical description of this flow is given by the Navier–Stokes equations (2.31) for two
phases,
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oy
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þ o2ui

oy2
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oy2

� �
� 1
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opi

oy
;

oui

ox
þ ovi

oy
¼ 0; ð2:40Þ

2 Hydrodynamic Processes 19



with boundary conditions assuming the contact of the potential flows with
velocities ui

?, i = 1,2 and continuity of the components of the velocities and stress
vector at the interface:

y ¼ hðxÞ; x ¼ 0; ui ¼ u1i ; vi ¼ 0; x!1; oui

ox
¼ 0; vi ¼ 0;

y!1; u1 ¼ u11 ; v1 ¼ 0; y! �1; u2 ¼ u12 ; v2 ¼ 0;
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ð2:41Þ

If we use characteristic scales similar to (2.34), the dimensionless variables
have the form

x ¼ lX; y ¼ diYi; ui ¼ u1i Ui; vi ¼ u1i
di

l
Vi; pi ¼ qiu

12
i Pi;

hðxÞ ¼ diHiðXÞ;

h0 ¼ ffiffiffiffi
ei

p
H0i ; ei ¼

di

l

� �2

: ð2:42Þ

As a result, the problem in dimensionless variables has the form
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Y1 !1; U1 ¼ 1; V1 ¼ 0; Y2 ! �1; U2 ¼ 1;V2 ¼ 0;

Y1 ¼ H1ðXÞ; Y2 ¼ H2ðXÞ; U1 ¼ h1U2; V1 ¼ h2V2;
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ð2:43Þ

The balance between inertia and surface forces effects leads to

til

u1i d2
i

¼ 1; i ¼ 1; 2; ð2:44Þ

and the parameters in (2.43) have the forms
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In the approximation of the boundary layer [4], 10-2 [ ei = 0, i = 1, 2 and
problem (2.43) has the form

Ui

oUi
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;
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ð2:46Þ

From (2.43) and (2.45) it follows that increase of the Reynolds numbers Rei,
(i = 1, 2) does not affect the conditions for the existence of boundary layers (in
practice Re C 102).

The shape of the interphase surface can be obtained using the condition that this
surface is impermeable, i.e.,

un1 ¼
v1 x; hð Þ � h

0
u1 x; hð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ h0ð Þ2
q ¼ 0; ð2:47Þ
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where un1 is the normal component of the velocity at the interface y = h(x). The
boundary layer problem (2.46) is solved [25] using the perturbation method [21,
22]. The results obtained show that in this approximation v(x, h) : 0. In the
boundary layer approximation (e1 = 0) from (2.47) and (2.41) it follows that

h0ðxÞ � 0; h � 0; ð2:48Þ

i.e., the moving interface is flat.
The results obtained show that the solution of the boundary layer problem

(2.46) with a flat interface is a partial solution of (2.43) and exists when the two-
phase systems are stable. The interface may not be flat if the systems lose their
stability.

The appearance of random periodic disturbances leads to an increase of their
amplitudes to a stable state. Methods for nonlinear stability analysis have to be
used to obtain the amplitude’s value [9].

2.6 Particular Processes

In some specific cases, the fluid motion equations can be simplified significantly. In
some cases, this is due to certain general assumptions, whereas in other situations
adequate analysis leads to simpler equations. The fluid flow within the laminar
boundary layer discussed earlier is an example of such an adequate analysis.

Let the second approach be applied again to the case of a steady-state (non-
wavy) gravity-driven falling-film flow, and let us consider a falling film flowing
over a smooth solid surface [7]. The situation allows us to consider a two-
dimensional flow of incompressible fluid. Therefore, these general considerations
lead to uz : 0, q = const., and that ux and uy are time-independent. Assuming that
the x-axis is oriented along the flow, i.e., vertically downwards, we have through
(2.1) and (2.24)
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o
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0

udy ¼ h
0
ux � uy ¼ 0; ð2:49Þ

where the last equation expresses the macroscopic mass balance in the film flow.
This equation permits us to obtain the film thickness and follows from the
boundary condition un = 0 too.
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The boundary conditions (2.27–2.30) assume no slip at the solid surface of the
plate at y = 0, whereas at the liquid–air interface y = h(x) the assumption is of
equal tangential velocities of both the phase and the stress vector components.
Along the normal vector of the film surface, no flow of both phases is assumed, so
the surface should be considered as impermeable. These physical conditions can be
expressed as

y ¼ 0; us ¼ ux ¼ 0; un ¼ uy ¼ 0;

y ¼ h xð Þ; us ¼
ux þ h

0
uyffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ h02
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uy � h
0
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p ¼ ung ¼ 0;

Pn ¼ Pr þ Png; Ps ¼ Psg; ð2:50Þ

where Pn, Ps, Png, and Ptg are the stress vector components (2.41) in the liquid and
in the gas, respectively. In the next solution it will be assumed that the gas is
immobile, i.e., gas velocity and stress tensor components are equal to zero.

The components of the liquid stress vector and the capillary pressure Pr are
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The boundary conditions (2.50) of the set of equations (2.49) need four addi-
tional boundary conditions for ux and uy (see the comments later).

2.7 Generalized Variables

A further simplification of the mathematical description can be performed if the
mathematical model of a falling film is expressed though generalized variables
(see Chap. 4). These dimensionless variables are obtained using characteristic
scales. The main condition for the scales is that generalized variables must have an
order of magnitude of unity:

x ¼ lX; y ¼ h0Y ; ux ¼ �uUx; uy ¼ e0�uUy; p ¼ q�u2P; h ¼ h0H;

e0 ¼
h0

l
;

ð2:52Þ

where h0 is the film thickness at x ? ? and �u is the average velocity of the film
flow.
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The introduction of the new variables (2.52) into (2.49) yields
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e0
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oY
¼ 0; ð2:53Þ

where

Re ¼ �uh0

m
; Fr ¼ �u2

gh0
ð2:54Þ

are the Reynolds and Froude numbers, respectively.
Here and to the end of the book, the dimensionless parameters (obtained after

introducing the generalized variables) express the order of magnitude of the
physical effects, expressed by means of the mathematical operators (in generalized
variables) related to them. The neglecting of the physical effect (mathematical
operator) when its parameter a is very small (0 = a B 10-2) may be made
because the relative influence of this effect is less than 1% and practically there are
no experimental techniques for its registration.

In fact, the film thickness is negligible with respect to its length, so practically
e0 � 1. In the cases when e0 B 10-2, we can use e0 = 0 in (2.53) and the
equations defining the velocity profiles and the pressure of the falling liquid flow
under the approximation of a film flow (e0 = 0) are

o2Ux

oY2
¼ �Re

Fr
;

oP

oY
¼ 0;

oUy

oY
¼ 0: ð2:55Þ

The equation defining uy follows from (2.50) and (2.55):

ouy

oy
¼ 0; y ¼ 0; uy ¼ 0: ð2:56Þ

Therefore, we have

uy � 0: ð2:57Þ

The introduction of (2.57) into the expression for un (2.50) yields

h0ux ¼ 0: ð2:58Þ

Hence,

h0 ¼ 0; x!1; h ¼ h0; ð2:59Þ
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i.e.,

h � h0: ð2:60Þ

The boundary conditions for Ux in (2.55) follow directly from (2.50)–(2.52). It
should be taken into account that the continuity equation in (2.49) and (2.57) is an
inherent result of the fact that oUx

oX ¼ 0: Therefore, if the effect of the second phase
in (2.50) is neglected (i.e., psg = 0), we have from (2.49)–(2.51) that the simplified
equations defining ux are

m
o2ux

oy2
þ g ¼ 0;

oux

ox
þ ouy

oy
¼ 0; y ¼ 0; ux ¼ 0; uy ¼ 0; y ¼ h0;

oux

oy
¼ 0:

ð2:61Þ

Thus, the result is

ux ¼
g

2m
2h0y� y2
� �

; uy ¼ 0; �u ¼
Zh0

0

uxdy ¼ gh2
0

3m
; us ¼

gh2
0

2m
; ð2:62Þ

where us is the interface velocity of the film flow.
The second equation in (2.60) gives p = const. The constant is defined by a

condition requiring equality of the normal components of the stress vector:

P ¼ �Png; ð2:63Þ

i.e., the pressure in the liquid is constant and equals the pressure at the liquid–gas
interphase.

The result just derived shows that flow of a nonwavy falling film is stratified
(uy : 0), the thickness is constant (h = h0), and the film velocity does not vary
along its longitudinal axis (qux/qx : 0). The latter fact tells us that the boundary
conditions along the x-axis are not required (see 2.50).

The example discussed illustrates a general approach permitting us to simplify
the mathematical structures describing particular processes using the introduction
of characteristic scales and evaluation of the significance of the terms of the
equations. The latter means that through the evaluation of the order of magnitude
of the terms of the equation, we in fact evaluate the contributions of elementary
physical effects in the process and their weights in the balance equations.

2.8 Basic Parameters

Equations (2.21) describe a broad range of hydrodynamic processes. The model
built suggests a linear relationship between the stress and the shear rate (2.20).
Therefore, the models incorporate the Newtonian rheological law (see the further
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discussion). When the relationship is non-linear, the fluid is non-Newtonian [3].
The rheological laws will be commented on especially in the next section.

The dynamic viscosity coefficient of Newtonian liquids is a basic parameter of
the mathematical models describing their flows. It is a value experimentally
determined by utilization of a simple hydrodynamic model (e.g., Couette flow) [3].
However, this is not a general principle and not every simple hydrodynamic model
can be used for the determination of the dynamic viscosity coefficient. The
problem just discussed (2.61) allows us to determine analytically the velocity
profile (2.62) and the volumetric flow rate (by integration over the film cross-
sectional area). The volumetric flow rate per unit length of the film width is

Q ¼
Zh0

0

uxdy ¼ g

3m
h3

0: ð2:64Þ

From (2.64) it follows directly that

l ¼ gh3
0q

3Q
: ð2:65Þ

Therefore, the dynamic viscosity can be determined through measurements of
the macroscopic flow parameters Q and h0. Unfortunately, this equation is inap-
plicable in practice since the small film thickness cannot be measured accurately.
Usually, Hagen–Poiseuille flow in a cylindrical cross-sectional tube of radius
R and length L is a more convenient experimental situation. For a pressure drop
across the tube section over the distance L, we have for the volumetric flow rate

Q ¼ pR4

8lL
DP: ð2:66Þ

Thus,

l ¼ pR4

8LQ
DP; ð2:67Þ

where R, L, DP, and Q are easily and accurately determinable quantities.
Obviously this is valid for fluids exhibiting linear relationships between the

shear stresses and the sheer rate, i.e., for Newtonian fluids or in other words for
fluids where the Navier–Stokes equation is valid.

2.9 Rheology

Equations (2.20) briefly commented on already show [4] a linear relationship
between the shear stress and the velocity gradient (the Newton law):

s ¼ �l
ou

on
: ð2:68Þ
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The basic assumption of the Newton law is that the flow is laminar and the
shear stress between two elementary layers is proportional to the velocity gradient
in a transverse direction (qu/qn). Here, n is the normal vector of the surface
separating two adjacent fluid layers. The factor (i.e., the coefficient of proportion)
l is defined as a dynamic viscosity coefficient.

In fact, if the fluid is incompressible, relationship (2.68) can be expressed [3] as

s ¼ � l
q

� �
o

on
quð Þ ¼ �m

o

on
quð Þ; ð2:69Þ

where m = l/q is the fluid kinematic viscosity coefficient.
This form of the Newton law is more fundamental and relevant to Onsanger’s

linear principle. Thus, the flux of the momentum (the shear stresses s) and the
momentum gradient [q(qu)/qn] are related through a linear diffusive-type (see
Fick’s law later) law. The kinematic viscosity m is the diffusion coefficient of the
momentum qu under the assumption of a laminar flow.

Equation (2.68) can be defined also as a special case (linear case) of the more
general relationship between the stress tensorP and the tensor of deformation
rates S. If the fluid is isotropic and viscous, the law can be expressed as

P ¼ aSþ be; ð2:70Þ

where e is the unit tensor, and a and b are scalars.
In an arbitrary coordinate system,

eij ¼
0; if i 6¼ j

1; if i ¼ j

( )
i,j ¼ 1; 2; 3: ð2:71Þ

The coordinate axes 1, 2, 3 correspond to x, y, z in the case of Cartesian
coordinates.

The factor a in (2.70) is a constant equal to 2l (independent of the components
of P and S).

If the fluid structure is not isotropic (Newtonian fluids are isotropic), the factor
a is a tensor characterizing the medium anisotropy. The scalar b in (2.70) can be
related linearly to the tensors P and S. In the case of an isotropic fluid, these linear
relationships are linear scalar combinations of the tensor components, i.e., of their
linear invariants.

The linear invariant of P is

p11 þ p22 þ p33; ð2:72Þ

and the linear invariant of S is

S11 þ S22 þ Sss ¼
oV1

1
þ oV2

ox2
þ oV3

ox3
¼ divV ¼ 0: ð2:73Þ
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The scalar b can be obtained if one introduces the linear invariant components
of the stress tensor into (2.69) and the sum of all three equations, then the result is

p11 þ p22 þ p33 ¼ 3b ¼ 3p: ð2:74Þ

Here p = -p11 = -p22 = -p33 is the pressure at an arbitrary point of the fluid.
The final form of (2.69) can be expressed as

P ¼ 2lS� ep: ð2:75Þ

The component form of (2.75) is

pij ¼
l

oVi

oxi

þ oVj

oxi

� �
; at i 6¼ j;

�pþ 2l
oVi

oxi

; at i ¼ j:

8>><
>>:

ð2:76Þ

The result is equal to the results in (2.18) and (2.20).
The hydrodynamic definition of the pressure p in (2.75) is an additional

hypothesis in the generalized form of the Newton law. It cannot be proved because
of pure hydrodynamic assumptions. The problem arises from the fact that pressure
p is an invariant scalar quantity equal to the same thermodynamic characteristics
defined by the ideal gas law.

The rheological equation (2.76) describes the behavior of all gases and a wide
class of liquids. In many cases (fine suspensions, dyes, coating liquids, etc.) this
linear law is not valid. In these practically important liquids, the viscosity coef-
ficients depend on the shear rate and the time. All liquids that do not satisfy the
Newton rheology law are called non-Newtonian.

An important, and widely applicable, rheological model is that describing the
flow of viscous-plastic liquids, known as Bingham liquids:

s ¼ s0 þ l0
ou

on
; ð2:77Þ

where s0 is the yield stress. If s\ s0, the fluid does not flow, which means ou
on ¼ 0:

The plastic coefficient l
0

(the structural viscosity) depends on the shear rate.
Aqueous clay solutions, concretes, some dyes, and pastes are such liquids. Rela-
tionship (2.77) indicates that if s\ s0, in the fluid body there exists a structure that
resists the external deformation and is subsequently broken at s = s0.

Another important rheological model describing the ‘‘pseudo-plastic’’ fluid flow
concerns a law without a yield stress (i.e., s0 = 0):

s ¼ k
ou

ol

� �n

; ð2:78Þ

where k (the consistency index) and n \ 1 (if n ? 1 the liquid approaches
Newtonian behavior) are constants that do not vary over a wide range of shear
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rates. The apparent viscosity coefficients can be expressed as k on
ol

� �n�1
: The fluid

flow decreases with increase of the shear rate and thus exhibits a shear thinning
behavior.

When the power-law model (2.78) applied to a non-Newtonian liquid yields
values of n [ 1, the flow behavior is that of a dilatant, which is very often
exhibited by concentrated suspensions.

Viscoplastic media (epoxy resins, very viscous liquids) exhibit simultaneously
elastic and viscous properties, so the additive Voigt model [3] adequately
describes their rheological behavior:

s ¼ s1 þ l
ou

ol
; ð2:79Þ

where s1 is the elastic stress.
The above examples do not cover all the rheological models available for

describing of non-Newtonian liquid behavior. However, they give the basic idea of
how the shear stresses and the shear rate are related, thus forming the additional
momentum equations in a way already described in detail for Newtonian liquids.
Obviously, the incorporation of the non-Newtonian rheological law into the stress
divergence terms (the viscous Stokes terms in the case of Navier–Stokes equa-
tions) causes mathematical difficulties.

2.10 Turbulence

At high Reynolds numbers, the flow character differs significantly from that dis-
cussed in the previous sections.

Beyond a certain Reynolds number a stationary laminar fluid becomes a non-
stationary chaotic flow and the motions along a particular direction should be
considered on the basis of mean characteristics only. A nonstationary flow regime
with a velocity oscillating around a certain mean value is called a turbulent flow.

Simple experiments on the onset of turbulence indicate that it is related to
instabilities of the preceding laminar flow regime emerging at Re numbers greater
than a critical value Recr [2, 10, 18].

The main assumption is that infinitely small perturbations can be superposed on
the main fluid flow. At Re \ Recr the perturbations occurring in the fluid attenuate
very fast, whereas at Re [ Recr they superimpose on each other and grow rapidly
and produce a turbulent flow. In these conditions the imposition of pulsations
without any deterministic behavior on the main flow results in velocity pulsation
amplitudes that at Re 	 Recr are comparable with the mean flow velocity.

Let us imagine that is possible to follow the motion of a particular small fluid
mass. The observations would demonstrate a complex and irreproducible motion
of the chosen material points. The average flow, however, could be considered as
more oriented. The trajectories of the particular fluid masses resemble the motions
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of gas molecules. Therefore, the unpredictable fluid motion of the turbulent flow
should be stochastic in nature.

Let us consider as a first problem the common qualitative characteristics of the
turbulent flow at Re 	 Recr [2, 10, 18]. This motion is very often called a fully
developed turbulence.

Small perturbations with various amplitudes are imposed on the main flow
having a velocity U. The turbulent pulsations should be characterized not only by a
mean velocity but also by a certain distance over which they propagate. Such a
distance is often called the length scale of the motion. The very fast pulsations
have greater length scales. Their velocities are of order of magnitude of

m0 �DU; ð2:80Þ

where DU is the variation of the mean velocity over a scale of length l. For
example, in a pipe flow, the maximum length scale of the turbulent pulsations lmax

equals the pipe diameter, whereas the velocity scale will be the maximum value at
the pipe axis.

Most of the kinetic energy of the turbulent flow is transported by motions of
such large-scale pulsations (large eddies). The Reynolds numbers of these large
eddies, defined as Rel ¼ DUl

m , are of the order of magnitude of the mean Reynolds
number defined through the mean flow velocity.

Another part of the kinetic energy is transported by eddies with length scales of
k\ l and velocities vk \ v0 and Reynolds number Rek ¼ vkk

m . The comparison of
the Reynolds numbers of the large-scale and small-scale turbulent pulsations
shows Rel 	 Rek. In the case of k = k0, when Rek0 � 1;, the big part of the energy
dissipation (heat generation) is a result of the small-scale (k0) pulsations. The
influence of the viscous forces of the large-scale pulsations (Rel 	 1) is very
small, i.e., energy dissipation is negligible. The superposition of the large eddies
provokes the small eddies with Reynolds numbers vanishing as fast as the cor-
responding length scales decrease.

Furthermore, the small eddies can be considered as a mechanism allowing the
kinetic energy of the large eddies to be transformed into heat. If the flow was under
conditions without large variations, the energy transfer would have a stationary
character. Therefore, despite the fact that turbulence occurs at very high Reynolds
numbers, it is associated with high energy dissipation. From a macroscopic point
of view, the momentum transport of the turbulent flow could be associated with an
‘‘apparent’’ viscosity allowing joining of the energy dissipation (per unit fluid
volume) and the macroscopic flow characteristics:

e ¼ � dE

dt
¼ lturb

DU

l

� �2

: ð2:81Þ

The order of magnitude of the turbulent viscosity can be estimated from an
analysis of the flow similitude. The quantity e ¼ � dE

dt does not depend on the
length scale of the flow and can be assumed to be a characteristic constant (of the
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flow itself). For example, this energy equals the energy dissipation of the largest
eddies used for the creation of motions at lower length scales (lower eddies). This
physically described process occurs at high Reynolds numbers and is practically
unaffected by the molecular viscosity of the fluid l. Therefore, the value of e
should be defined by quantities characterizing the macroscopic flow, i.e., the large
eddy motions. Such quantities are only the velocity DU, the length scale l, and the
fluid density q (these quantities together with the viscosity form all the variables of
the hydrodynamic equations). The use of DU, l, and q allows us to form a common
quantity with dimension e½ � ¼ erg

m3s that can be expressed as

e 
 q
DUð Þ3

l
: ð2:82Þ

From (2.81) and (2.82) it can be derived that the apparent turbulent dynamic
viscosity is

lturb ¼ ql DUð Þ; ð2:83Þ

whereas the corresponding kinematic viscosity is

m ¼ lturb

q
¼ DUl: ð2:84Þ

The formula just derived can be obtained from a different point of view based
on the analogy between the turbulent motions and the chaotic motions of the gas
molecules. If we assume that both phenomena are similar, the length scale l should
be considered as analogous to the free path of the gas molecules, whereas the
velocity pulsations should correspond to the mean velocity of the gas molecules.

Assuming the above physical similarity, we can derive (2.83) and (2.84)
directly from the kinetic theory of gases. Developing the analogy, we find that the
pulsation velocity DU is

DU 
 l
oU

ol
: ð2:85Þ

The effective turbulent viscosity is significantly greater that the turbulent vis-
cosities exhibited by fluids under normal laminar conditions. If we create the ratio
m

mturb
, we find that

m
mturb

¼ m
DUl
� 1

Re
\\1: ð2:86Þ

The friction forces acting on a unit solid surface (e.g., 1 cm2), i.e., the fluid
shear stresses at the boundary interface, can be expressed as

s ¼ F

S

 lturb

DU

l

� �

 lturb

oU

ol

� �

 ql2 oU

ol

� �2

¼ aql2
oU

ol

� �2

; ð2:87Þ

where a is an unknown factor of proportionality.
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The further discussion will consider two special cases of turbulent motions: (1)
turbulence with a scale length k � l, i.e., the small eddy turbulence, far from the
solid surfaces, and (2) turbulent motion near solid surfaces.

Let us consider the small eddy turbulence with k � l in the fluid bulk. The first
assumption that we could make is that k 	 k0, meaning that any viscous effects
are ignored. Now we look for the turbulent pulsation velocity mk with a length scale
k. In other words we try to define the gradient of the velocity mk over a distance
equal to k. The value of mk can depend only on q, k, and the factor of propor-
tionality e, i.e., on quantities characterizing the fluid motion at any scale. At length
scales k 	 k0 the velocity is independent of the viscosity v. Moreover, the value
of v is independent of the macroscopic scales of the flow—the characteristic length
l and the velocity U—since k � l.

The unique combination of q, k, and e, available to define a quantity with a

dimension of a velocity, is ek
q

� 	1
3
; i.e.,

mk�
ek
q

� �1
3

: ð2:88Þ

Expressing e via DU with the help of (2.82), we find that

mk�DU
k
l

� �1
3

: ð2:89Þ

Therefore, the scale of the pulsation velocity of motions, defined by the length

scale k by (2.89), is less than DU because k
l

� �1
3\1:

The decrease of both the velocity and the scale corresponds to a decrease of the
Reynolds numbers expressed through the length scale k as

Rek ¼
vkk
m
¼ DUk

4
3

ml
1
3

¼ Re
k
l

� �4
3

: ð2:90Þ

At a certain value of the length scale k0, very often termed the internal scale of
the turbulence, the Reynolds number Rek0 becomes of an order of unity. Obvi-
ously, k0 has an order of magnitude defined as

k0�
1

Re

� �3
4

� m3q
e

� �1
4

: ð2:91Þ

Starting with this value of the length scale and decreasing its contribution to the
viscous forces on the flow growth, it exhibits a viscous behavior. The turbulent
pulsations with length scales k B k0 do not disappear immediately, but attenuate
gradually, damped by the viscosity.

The turbulence near a solid surface will be discussed below under conditions
allowing the flow to be considered as one along an infinite semiplane (y = 0).
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Let the mean flow velocity along the x-axis be �vx ¼ U: The velocity depends on
the distance from the surface; thus, we have U = U(y). The turbulent pulsation
superposes on the mean flow along the x-axis.

Let us determine the profile U = U(y). Employing (2.87), we have

oU

oy
¼ 1

l

� � ffiffiffiffiffiffi
s
qa

r
: ð2:92Þ

All the points at the solid surface (y = 0) are equivalent and the shear stress can
be assumed to be homogeneously distributed along the x-axis. This should be
interpreted physically in a simple manner. The value of s represents the
momentum flux transferred from the fluid to the wall. In the fluid, flowing along
the solid surface, there is a continuous transfer of momentum from the far-field
points (large distances from the wall) towards the near-field points of the layers
almost at the wall.

Taking into account that the momentum transport equation is in fact a con-
servation law, we can suppose that along the x-axis the momentum remains
unchanged or U is independent of x. This assumption does not consider the energy
dissipation due to the molecular viscosity. Therefore, under the assumption of
s = const., (2.92) becomes

U ¼
ffiffiffiffiffiffi
s
qa

r Z
dy

l
þ const: ¼ v0ffiffiffi

a
p
Z

dy

l yð Þ þ C1; ð2:93Þ

where C1 is a constant of integration, and

v0 ¼
ffiffiffi
s
q

r
: ð2:94Þ

The integration of (2.93) requires the profile l(y), i.e., the variation of the length
scale with the distance to the wall. However, the flow problem discussed does not
consider either the size of the plate streamlined by the fluid or any other macro-
scopic dimension that should be utilized as a length scale of the macroscopic
turbulent pulsations l. Intuitively, we could suggest that

l yð Þ� y: ð2:95Þ

The suggestion (it could be assumed as a condition too) (2.95) indicates that the
scale of the pulsations grows as the point of interest moves from the wall towards
the bulk of the fluid flow. The physical suggestion of that flow description assumes
the solid surface to be a damper, so the pulsations should attenuate as the point of
interest becomes closer to the wall.

The scaling suggestion (2.95) allows utilization of (2.93) to express the mean
velocity profile as

U ¼ v0ffiffiffi
a
p ln yþ C1: ð2:96Þ
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The physical sense of v0 needs some additional explanations. Remember that
the pulsation velocity v0 (2.80) is

v0 
 DU 
 U yþ lð Þ � U yð Þ 
 v0: ð2:97Þ

Thus, v0 is a characteristic velocity scale for the turbulent pulsations. The
determination of the constant C1 should account for the fact that approaching the
wall (y ? 0), the pulsations attenuate. Thus, the Reynolds number

Re ¼ v0l yð Þ
m

ð2:98Þ

will decrease as y ? 0.
At a certain l = d0 the Reynolds number becomes of the order of unity. The

area defined by y \ d0 is called a viscous sublayer since the viscous flow behavior
dominates. The thickness of the viscous sublayer can be defined from the condition

v0d0

m

 1; ð2:99Þ

which gives

d0 ¼ a
m
v0
: ð2:100Þ

Here a is a factor of proportionality. The constant in (2.96) must satisfy the
condition that at l * d the mean flow velocity is negligible with respect to the
characteristic velocity scale of the turbulent pulsations v0.

Under these conditions the logarithmic velocity profile

U ¼ v0ffiffiffi
a
p ln

v0y

am

� 	
ð2:101Þ

represents the mean velocity distribution across the viscous sublayer.
Expressing v0 through the shear stresses s (2.94), we can define that

U ¼
ffiffiffiffiffiffi
s
qa

r
ln

y

am

ffiffiffi
s
q

r
: ð2:102Þ

Thus, the apparent turbulent kinematic viscosity can be expressed as

mturb� v0l� v0y� m
y

d0
: ð2:103Þ

The logarithmic velocity profile (2.102) contains two unknown constants, a and
a. They should be defined on the basis of experimental data of the velocity dis-
tribution near the wall. Very often, it is convenient to introduce a dimensionless
variable:

y� ¼
v0y

m
� y

d0
: ð2:104Þ
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The experimental data (see, e.g., [10]) indicate that the simple logarithmic
profile matches the real velocity distribution at y� � 30 and the corresponding
value of a is about 0.17. The determination of a directly from the experimental
profiles has no a physical sense since this constant (according to the definition
given above) represents the situation at Re = y* * 1, i.e., the area of the viscous
sublayer.

The analysis performed above introduced the viscous sublayer as special zone
of the flow. There are several hypotheses about the velocity profiles across it. The
well-known Prandtl hypothesis suggests that at y \ d0 the flow behavior is purely
laminar. The physical basis of Prandtl’s assumption is the fact that at y \ d0 the
Reynolds number becomes lower that unity.

Within the laminar sublayer the shear stress s0 satisfies the Newton law:

s0 ¼ qm
dU

dy
: ð2:105Þ

Therefore, the velocity profile is expressed through a linear relationship:

U ¼ s0

qm
yþ C: ð2:106Þ

The constant of integration C must be zero because of the nonslip conditions at
the fluid–solid interface. Thus, at y \ d0 we have

U ¼ s0

qm
y: ð2:107Þ

The ‘‘stitch up’’ of the linear and the logarithmic velocity profiles did not satisfy
well the experimental data [2, 10], so a new hypothesis was developed by Karman.

According to Karman, the turbulent flow near the wall is separated into three
sublayers: (1) turbulent flow, (2) ‘‘damping’’ sublayer, and (3) laminar boundary
layer. The ‘‘damping’’ (very often called a buffer sublayer) attenuates the turbulent
pulsation according to the scaling hypothesis l(y) * y (2.95), which is also valid
for the turbulent flow developed. However, within the fame of the buffer sublayer
there is a viscous effect that leads to integration constants of the logarithmic profile
of the mean velocity different from those defined for the turbulent flow.

Another hypothesis was conceived by Landau and Levich [2, 10]. It suggests
that the turbulent motion within the viscous sublayer does not disappear sharply,
but attenuates gradually towards the wall. However, the attenuation law for the
turbulent pulsations, or in other words the scaling relationship l = l(y) for the
viscous sublayer, cannot be defined on the basis of scale analysis as was performed
in the case of a developed turbulence. With the viscous sublayer all the quantities
can depend on the viscositym and the distance to the wall is not a unique length
scale of the flow. The scaling of the turbulent pulsation attenuation within the
viscous sublayer can be developed on the basis of several assumptions.

Let us assume that velocity profile across the viscous sublayer is like that for the
laminar flow, i.e.,
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vx� y: ð2:108Þ

Within the viscous sublayer there are no turbulent pulsations, but they approach it
from the top, i.e., when y [ d0. The velocities of turbulent motion within the viscous
sublayer have the same scale as the mean velocities. Therefore, we can scale as

v0x� y: ð2:109Þ

Taking into account the continuity equation,

ov0x
ox
þ

ov0y
oy
¼ 0; ð2:110Þ

the normal velocity component is

v0y ¼ �
Z

ov0x
ox

dy� y2: ð2:111Þ

The factor of proportionality in the relationship for vy
0

may be expressed from
the condition that at y * d0, i.e., at the boundary of the viscous sublayer, the
pulsation velocity v0y has the same order of magnitude as the characteristic
velocity scale of the turbulent flow v0. Thus,

v0y ¼ v0
y

d0

� �2

: ð2:112Þ

Therefore, the distributions of both the tangential and the normal components of
both the mean and the pulsation velocities across the viscous sublayer are like in
the laminar boundary layer. However, this is the only similarity between the
viscous sublayer and the laminar boundary layer concepts.

The coefficient of apparent turbulent viscosity of the viscous sublayer could be
defined if the length scale of the turbulent motion were known. Looking for the
information required, we could suggest that in the viscous sublayer the Reynolds
number is lower than unity. The latter means that only linear terms of the Navier–
Stokes equation are significant, whereas second-order terms can be neglected. Thus,
the velocity profile of the viscous sublayer can be determined by linearized equa-
tions. If some turbulent pulsations, however, penetrate the viscous sublayer, they are
suppressed rapidly. The motions could be considered as independent periodic
motions whose periods T remain unchanged over the entire viscous sublayer.

Under such considerations, the periods of turbulent motions inside the viscous
sublayer do not depend on the distance to the wall y. Thus, the length scale of the
motion directed along the y-axis (towards the wall) is

l� v0yT : ð2:113Þ

On the other hand, taking into account that the period T is independent of y, we
can scale as

l� y2: ð2:114Þ
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At y * d0 the length scale of the motion should coincide with that of the
turbulent boundary layer, i.e., l * d0. Therefore, the length can be normalized by
a scale of d0, which leads to

l ¼ 1
d0

� �
y2: ð2:115Þ

The scale of the turbulent motions of the viscous sublayer decreases (as a
function of the distance y) faster than the corresponding scale of the turbulent
boundary layer.

Following the definition of the momentum flux transported by the turbulent
pulsations, we have

sturb ¼ qmturb

dU

dy
¼ qv0yl
� 	 dU

dy
� qv0y4

d3
0

 !
dU

dy
: ð2:116Þ

Thus, the kinematic coefficient of the turbulent viscosity is

mturb�
v0y4

d3
0

� m
y

d0

� �4

: ð2:117Þ

At y \ d0 the momentum flux transported by the turbulent pulsations is lower
than the momentum fluxes transported by a molecular mechanism and
vturb \ v. As a result, s * s0 and the velocity profile can be obtained using (2.107).

The turbulent pulsations exist practically in the vicinity of the wall. They
contribute mainly to the mass and heat transfer from the fluid to the solid surface.
The hypothesis of the viscous sublayer and the turbulent pulsation behavior within
it allows us to avoid the problem with the conjunction of the velocity profiles as
commented on above [10]. There is other hypothesis about the damping of tur-
bulent pulsations in the viscous sublayer. It considers the length scale of the
turbulent pulsations defined by (2.95) (i.e., it assumes that l * y). In other words,
the length scale for the viscous sublayer and that in the region of y [ d0 are the
same. This assumption leads to a turbulent viscosity expressed as

mturb� m
y

d0

� �3

: ð2:118Þ

The choice of a hypothesis depends on the assumption concerning the mech-
anism of damping of the turbulent pulsations. The detection of the turbulent pul-
sations and the exact definition of the law of their attenuation can be performed
only experimentally. The problem is not easy, but some satisfactory results can be
derived through studies concerning the diffusion of species dissolved in a turbulent
liquid flow. The experimental data [10] confirm the hypothesis explaining the
turbulent pulsation damping according to the scaling equation (2.115). Therefore,
the further discussion will utilize the length scale defined by (2.115) and the
relevant expression for the turbulent kinematic viscosity mturb (2.117) for the
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velocity profile determination. The velocity profiles within the conjunction zone
can be defined because of the assumption that in that area the turbulent pulsation is
the only mechanism of the momentum exchange with small effects of the
molecular (Newtonian) viscosity. These assumptions mean that the scaling of the
turbulent pulsation suppression (2.103) has no sense in the area of the conjunction
of the velocity profiles. Obviously, the turbulent viscosity for the area of velocity
profile conjunction can be interpolated in a manner that satisfies both scaling
relationships (2.103, 2.117), e.g.,

mturb ¼ bm
y

d0

� �2

: ð2:119Þ

The latter defines the shear stresses as

s ¼ mþ mturbð Þ dU

dy
¼ q mþ bm

y

d0

� �2
" #

dU

dy
; ð2:120Þ

where b is a constant.
The integration of (2.120) gives the profile of the mean velocity over the area of

conjunction:

U ¼ v0ffiffiffi
b
p arctg

ffiffiffi
b
p y

d0

� �
þ C: ð2:121Þ

Assuming that at y� � 5 the velocity distribution is practically equal to that
expressed by (2.107) and at y� � 30 the logarithmic suitable profile matches well
the data, we can define the unknown constants b and C.

Finally, the profiles of the mean velocities can be expressed as

U

v0
¼ y�; 0� y� � 5;

U

v0
¼ 10arctg 0:1y�ð Þ þ 1:2; 5� y� � 30;

u0

v0
¼ 5:5þ 2:5lny�; y�[ 30; ð2:122Þ

fitting satisfactorily the experimental measurements.
The boundary layers in turbulent flows near semi-infinite solid interface are

shown in [10].

3 Mass and Heat Transfer Processes

The sets of equations derived in (1.2) are valid for pure gases (liquids) or
homogeneous gas (liquid) mixtures. If the composition of the mixture is variable,
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the equations change their form. We will consider the cases when the concen-
tration of the one of components is variable.

3.1 Basic Equations

Let us consider the mass transport of component with a local concentration c with
a nonuniform distribution over the flowing fluid [2]. The common definition of the
concentration is the mass of the component per unit mass of the fluid. Concerning
an elementary control volume dv, we have

dm1 ¼ qcdv: ð3:1Þ

The variation of the concentration of the component concerned may be a result
of both mass transfer mechanisms defined later.

The physical model described above can be expressed directly from the con-
tinuity equation (2.11). The simple substitution of the mass of the elementary
volume q in (2.11) by the mass (qc) of the component with a nonuniform con-
centration field leads to

o

ot
qcð Þ þ div qc uð Þ ¼ 0: ð3:2Þ

Let us consider the surface ds which encloses the volume dv. The mass transfer
across this surface will be a result of the molecular diffusion (chaotic motion of the
nonuniform distributed molecules) and convection (arranged motion of these
molecules with the flow).

As a result of the concentration distribution nonuniformity, the density of the
diffusion mass flux across surface ds is

qc ¼ �Dgrad qcð Þ ¼ �Dr qcð Þ; ð3:3Þ

where the linearity of (3.3) follows from Onsanger’s linear principle [1] for small
r(qc) and D is the diffusivity (molecular diffusion coefficient). Equation (3.3) is
Fick’s first law, and for small concentrations D = const.

The diffusion mass flux (3.3) takes part in the mass balance in the elementary
volume dv as divqc:

o

ot
qcð Þ þ div qc uð Þ þ div qc ¼ 0: ð3:4Þ

The combination of (3.3) and (3.4) gives the convection–diffusion equation:

o

ot
qcð Þ þ div qc uð Þ ¼ div Dr qcð Þ½ �: ð3:5Þ
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Assuming D and q are constants and the Cartesian coordinate system as a
default, we have

oc

ot
þ ux

oc

ox
þ uy

oc

oy
þ uz

oc

oz
¼ D

o2c

ox2
þ o2c

oy2
þ o2c

oz2

� �
ð3:6Þ

or

oc

ot
þ urð Þc ¼ Dr2c: ð3:7Þ

Here the Laplacian follows directly from the gradient [11], since

r2 ¼ div rð Þ: ð3:8Þ

If the medium does not flow (i.e., a stagnant fluid), (3.7) reduces to the
molecular diffusion equation (Fick’s second law):

oc

ot
¼ Dr2c: ð3:9Þ

A similar result could be obtained for the heat transfer if in the mass conser-
vation law (3.5) we replace the mass (qc) with the heat, i.e., internal energy (qe) of
the mass, where

e ¼ cpT þ e0: ð3:10Þ

In (3.10) cp is the specific heat of the substance at pressure p, T is the absolute
temperature, and e0 is a nonessential constant.

By analogy to the mass transfer, the heat transfer is a result of conduction and
convection. In chemical engineering processes, radiation heat transfer effects are
not so big because these effects are the result of high temperature.

In many cases the relation between the conductive (molecular) heat flux qT and
the temperature gradient is linear (the first Fourier law):

qT ¼ �k grad T ¼ �krT; ð3:11Þ

where k is thermal conductivity.
The convective heat transfer in moving fluids with variable temperature can be

obtained from (3.2) by replacing the mass concentration with the internal energy
concentration:

o

ot
qeð Þ þ div qeuð Þ ¼ 0: ð3:12Þ

The conductive heat transfer may supplement the convective one and the
convection–conduction equation has the form:

o

ot
qeð Þ þ div qeuð Þ þ divqT ¼ 0: ð3:13Þ
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If q, cp, and k are constants, from (3.11) and (3.12) it follows that

oT

ot
þ div uTð Þ ¼ ar2T; a ¼ k

qcp

; ð3:14Þ

where a is the thermal diffusivity. In the Cartesian coordinate system the con-
vection–conduction equation (3.14) has the form

oT

ot
þ ux

oT

ox
þ uy

oT

oy
þ uz

oT

oz
¼ a

o2T

ox2
þ o2T

oy2
þ o2T

oz2

� �
ð3:15Þ

or

oT

ot
þ urð ÞT ¼ ar2T : ð3:16Þ

For an immobile medium the convective heat transfer is equal to zero and from
(3.16) the Fourier’s second law follows:

oT

ot
¼ ar2T; ð3:17Þ

i.e., the nonstationary conduction equation.

3.2 Boundary Conditions

The boundary conditions leading to uniqueness of the solutions of the differential
equations depend on the physical conditions imposed at the boundaries of the
systems modeled.

The uniqueness conditions of the convection–diffusion equation (3.6) can be of
the first, second, or third kind.

Very often at the phase boundary there exists a thermodynamic equilibrium and
the equilibrium of the concentration is known beforehand (e.g., c = const.). In
these cases the boundary conditions are of the first kind and contain the concen-
tration only (Dirichlet condition).

If the interphase mass transfer through the interphase surface occurs, the
boundary conditions are of the second kind and contain the concentration deriv-
atives only (Neumann conditions). In these cases the boundary condition specifies
the derivative of the concentration along the normal vector to the interface. If the
mass flux though the interface is absent, from Fick’s first law it follows that the
derivative is equal to zero.

In the cases of chemical reaction at the interphase surface, the boundary con-
ditions are of the third kind and contain the concentration and the concentration
derivative.
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The boundary conditions of the convection–conduction equation are usually of
the first kind (the temperature at the boundaries is specified) or of the second kind
(the heat flux at the boundaries is specified).

3.3 Transfer Processes Rate

The diffusion equation has closed-form analytical solutions in different cases. For
example, if we consider one-dimensional liquid vapor diffusion through a layer of
inert gas (consider a long vertical tube with a liquid at the bottom and a gas layer
above, very often known as a Stephan tube), the governing equation (see 3.9) is

oc

ot
¼ D

o2c

ox2
: ð3:18Þ

The boundary conditions consider a constant (equilibrium) concentration c� at
the liquid surface (x = 0) and a null concentration far from the interphase surface
(x ? ?):

x ¼ 0; c ¼ c�; x!1 c ¼ 0: ð3:19Þ

The initial condition defining the onset of the process is t = 0, c = 0.
The solution of (3.18) with the boundary and initial conditions defined above is

well known [10]:

c ¼ c� 1� 2ffiffiffi
p
p

Z x
2
ffiffiffi
Dt
p

0

e�n2
dn

0
B@

1
CA ¼ c�erfc

x

2
ffiffiffiffiffi
Dt
p : ð3:20Þ

Solution (3.20) defines the diffusion rate (mass flux per unit area and per unit
time) as

qc ¼ �D
oc

ox

� �
x¼0

¼ c�
ffiffiffiffiffi
D

pt

r
: ð3:21Þ

On the other hand, the total quantity of the liquid evaporated over time t0 is

Qc ¼
Zt0

0

qcdt ¼ 2c�
ffiffiffiffiffiffiffi
t0D

p

r
: ð3:22Þ

The modeling of the basic diffusion processes is related mainly to the determi-
nation of the diffusion coefficient. This needs experimental data concerning Qc for a
period of time defined by t0. Thus, the solution of (3.22) with respect to D gives

D ¼ Q2
cp

4 c�ð Þ2t0
: ð3:23Þ
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The power law with respect to Qc requires high precision of the experimental
data (owing to the exponent 2 of Qc).

The convection–conduction equation can be solved for different cases. For
example, the heat transfer in a long rod with the ends at fixed temperatures follows
from (3.17):

oT

os
¼ a

o2T

ox2
; ð3:24Þ

with the initial and boundary conditions

t ¼ 0; T ¼ T1; x ¼ 0; T ¼ T1; x!1; T ¼ T1: ð3:25Þ

In (3.24) and (3.25) it is supposed that the surface of the rod is heat-isolated.
The temperature distribution in the rod is obtained by the analogy with (3.20):

T ¼ T2 þ T1 � T2ð Þ erfc
x

2
ffiffiffiffi
at
p : ð3:26Þ

From (3.26) we can obtain the heat transfer rate,

qT ¼ �k
oT

ox

� �
x¼0

¼ k
T2 � T1ffiffiffiffiffiffiffiffi

pa t
p ; ð3:27Þ

and the heat quantity for the time t0,

QT ¼
Zt0

0

qTdt ¼ 2k T2 � T1ð Þ
ffiffiffiffiffiffi
t0
pa

r
: ð3:28Þ

The modeling of the heat transfer processes is related to the identification of the
conductivity (obtaining q and cp is very simple). From (3.28) it follows that

k ¼ p Q2
T

4 T2 � T1ð Þq cpt0
; ð3:29Þ

where QT must be measured very precisely.

3.4 Diffusion Boundary Layer

In many interphase processes the mass transfer is realized through thin layers near
the interphase surface.

In the case of a semi-infinite plate streamlined by a fluid flow, the convection–
diffusion equation takes the form

u
oc

ox
þ v

oc

oy
¼ D

o2c

ox2
þ o2c

oy2

� �
: ð3:30Þ
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In the case of crystallization, the boundary conditions assume a constancy of the
concentration over the volume of the phase (c = c0) and equilibrium concentration
(c = c�) at the solid surface (y = 0):

x ¼ 0; c ¼ c0; y ¼ 0; c ¼ c�; y!1; c ¼ c0: ð3:31Þ

The velocity components in (3.30) satisfy equations (2.31).
For generalized analysis (see Sect. 4.1) we will be use natural scales of the mass

transfer process:

x ¼ lX; y ¼ dDY; c ¼ c0 þ c� � c0ð ÞC;

u ¼ u1U; v ¼ u1
dD

l
V ; ð3:32Þ

where dD is the order of magnitude of the diffusion boundary layer thickness.
This transforms (3.30) into

U
oC

oX
þ V

oC ¼ Dl

u1d2
D

d2
D

l2
o2C

oX2
þ o2C

oY2

� �
: ð3:33Þ

Equation (3.33) indicates that the convective transfer (the left-hand side) is
balanced by diffusive transfer (the right-hand side) if the order of the dimen-

sionless parameter Dl
u1d2

D

� 	
is 1:

Dl

u1d2
D

¼ 1; dD ¼
ffiffiffiffiffiffi
Dl

u1

r
¼ lffiffiffiffiffiffi

Pe
p ; Pe ¼ u1l

D
;

dD

l
¼ 1ffiffiffiffiffiffi

Pe
p ; ð3:34Þ

where Pe is the Péclet number.
For great values of the Péclet number (Pe [ 102) we can use the approximation

of the diffusion boundary layer (Pe-1 = 0), i.e.,

U
oC

oX
þ V

oC

oY
¼ o2C

oY2
;

X ¼ 0; C ¼ 0; Y ¼ 0; C ¼ 1; Y !1; C ¼ 0 ð3:35Þ

is the diffusion boundary layer equation [10].

In this approximation dD

l

� �2¼ 0
h i

the first equation in (2.39) at u1 ¼ const: has

the form

U
oU

oX
þ V

oU

oY
¼ Sc

o2 U

oY2
; ð3:36Þ

where Sc ¼ m
D is the Schmidt number.
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3.5 Turbulent Diffusion

The mass transfer mechanism in turbulent flow is very different in the fluid volume
and near the solid interfaces. That is why these two cases will be analyzed sep-
arately [2, 10].

The turbulent fluid flow in the phase (gas or liquid) volume can be represented
as a combination of a stationary flow (large-scale turbulent pulsations averaged in
time) and a nonstationary flow (chaotic motion of the small-scale turbulent pul-
sations). As a result, only the mass transfer is convective, i.e., the diffusive (by a
molecular mechanism) transfer is negligible.

The mass transfer in turbulent flow is a combination of two components. The
first is a convective mass transfer as a result of the stationary flow:

J ¼ qc u; ð3:37Þ

where u is the velocity of the large-scale turbulent pulsations.
The second is the convective mass transfer as a result of the chaotic motion of

the small-scale turbulent pulsations and is similar to the molecular diffusion
(caused by the chaotic motion of the molecules). It is named turbulent diffusion
and Fick’s first law can be used for the mathematical description:

jturb ¼ �Dturbgradqc; ð3:38Þ

where Dturb is the turbulent diffusion coefficient. If we introduce (3.37) and (3.38)
into (3.5), the equation of turbulent convection–diffusion has the form

o

ot
qcð Þ þ div qcuð Þ ¼ div Dturbgrad qcð Þ½ �: ð3:39Þ

Near the solid interface the velocity decreases to zero and the scale of the
turbulent pulsations decreases too. This damping of the turbulent pulsations near
solid interface influences the turbulent diffusivity, i.e., Dturb depends on the dis-
tance to the solid interface.

The turbulent diffusivity is related to the characteristic quantities of the tur-
bulent flow (q, l, DU). The unique combination between these quantities with
dimensions of meters squared per second is

Dturb 
 DUl; ð3:40Þ

where l is the length of the free path and DU is the average velocity of the
molecules This result is similar to the expression in the kinetic theory of gases,.

From (3.40) it follows directly that

DU 
 oU

ol
l; Dturb 
 l2oU

ol
: ð3:41Þ

From (2.103) and (3.40) it follows that

mturb 
 DUl; ð3:42Þ
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i.e., mturband Dturb have the same order of magnitude (this is from analogy with the
diffusivity and viscosity in the kinetic theory of an ideal gas).

Dturb is proportional to the macroscopic scale of the turbulent pulsations and in
developed turbulent flow is many times greater than the molecular diffusivity. As a
result, the concentration in the volume is constant. This rule is breached in the
boundary layer near the solid interface.

If we introduce (2.95) into (3.41), the expression for the turbulent viscosity has
the form

Dturb 
 y2oU

oy
; ð3:43Þ

i.e., the dependence of Dturb on y is determined by the dependence of U on y in the
turbulent boundary layer (2.101).

For mass flux (turbulent mass transfer in the concentration boundary layer), we
obtain

jturb ¼ Dturb

oc ¼ b0y2oU

oy

oc

oy
; b0 ¼ const: ð3:44Þ

Let us consider a flat solid interface y = 0. From (2.101), we can obtain U and
substitute it into (3.44). As a result,

jturb ¼ bv0y
oc

oy
; b ¼ b0ffiffiffi

a
p : ð3:45Þ

In (3.45) jturb = 0 (according to the mass conservation law) and integration
permits us to obtain the concentration distribution in the turbulent boundary layer:

c11 ¼
jturb

bv0
ln yþ a1: ð3:46Þ

The concentration distribution (3.46) is valid in the layer b0 \ y \ d, where the
viscous sublayer thickness is b0 and d is the turbulent boundary layer thickness
[10]:

d 
 v0x

U0
; ð3:47Þ

where U0 is the velocity of the boundary layer border.
Outside the turbulent boundary layer (y C d), i.e., in the nucleus of the tur-

bulent flow, the velocity U0 and the concentration c0 do not depend on the distance
to the solid interface. Using the boundary condition y = d, c11 = c0, and (3.46)
leads to

c11 ¼
jturb

bv0
ln

y

d
þ c0: ð3:48Þ
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3.6 Turbulent Mass Transfer

The turbulent mass transfer in the phase volume is described by (3.39) if the
velocity is variable in the space, i.e., the difference from laminar flow is only the
diffusivities (Dturb 	 D).

Of special interest is the mass transfer near the solid interface, where the mass
transfer rate is limited by the mass transfer in the diffusion sublayer [10]. This rate
depends on the law (mechanism) of the turbulent pulsations fading in the viscous
sublayer. There are different hypotheses for this mechanism:

• Full fading in the viscous sublayer (Prandtl–Taylor [10, 14–16])
• Gradual fading near the solid interface (Landau–Levich [2, 10])

According to the Prandtl–Taylor hypothesis the turbulent pulsations fade fully
at y \ d0 and the mass transfer is a result of the molecular diffusion, i.e., its rate is
the diffusion flux:

j ¼ D
oc

oy
; ð3:49Þ

where j = const. and the maximum concentration value c = c0is in the main
turbulent flow y C d. Having in mind the boundary condition at the solid interface
y = 0, c = 0, we obtain from (3.49)

c111 ¼
j

D
y: ð3:50Þ

At the boundary y = d0, c11 = c111, and from (2.100), (3.48), and (3.50) we
obtain

j ¼ Dc0

d0 1� 1
abPr ln d0

d

� 	; Pr ¼ m
D
: ð3:51Þ

For liquids Pr & 103, i.e.,

j ¼ Dc0

d0

 c0v0

Pr
: ð3:52Þ

The main results of the Prandtl–Taylor hypothesis are:

• y [ d, c = c1 = c0 = const., developed turbulence area
• d0 \ y \ d, c = c11, see (3.48), turbulent boundary layer
• 0 \ y \ d0, c = c111, see (3.50)–(3.52), viscous sublayer

A change to this hypothesis was proposed by Karman [16], especially the
existence of a buffer sublayer between the turbulent and viscous sublayers. For
Pr 	 1 the results coincide with Prandtl’s result.
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The Landau–Levich hypothesis for gradual fading of the turbulent pulsations
near the solid interface leads to a complicated structure of the concentration
boundary layer, where the turbulent boundary layer is divided into two sublayers—
viscous (d\ y \ d0) and diffusion (0 \ y \ d).

In the viscous sublayer (d\ y \ d0) the mass transfer is a result of the turbulent
diffusion:

j ¼ Dturb

oc

oy
: ð3:53Þ

Dturb can be obtained from (3.41), and v0 is obtained from (2.100):

Dturb 

v0y4

d3
0

: ð3:54Þ

If we introduce (3.54) into (3.53), we obtain the following expressions for the
mass transfer rate and the concentration distribution in the viscous sublayer:

j ¼ cv0
y4

d3

oc

oy
; c ¼ const:; c111 ¼

jd3
0

3mv0

1
y3
þ a2; a2 ¼ const: ð3:55Þ

From (3.54) is seen that Dturb decreases very fast in the viscous boundary layer
and at y = d is equal to the molecular diffusion coefficient:

Dturb dð Þ ¼ cv0d
4

d3
0

¼ D; ð3:56Þ

where d is the diffusion sublayer thickness,

d ¼
ffiffiffi
4
p Dd3

0

cv0
: ð3:57Þ

The expressions for the mass transfer rate and the concentration distribution are
obtained immediately:

j ¼ D
oc

oy
; c1111 ¼

j

D
y: ð3:58Þ

The elimination of the concentrations in (3.55) and (3.58), i.e., c111 = c1111 for
y = d, permits us to obtain the constant a, the mass transfer rate, and the diffusion
sublayer thickness:

a2 ¼
jd3

0

3mv0

1

d3 þ
jd
D
; j ¼ Dc0

� D
bv0

ln d0
d þ

d3
0D

3cv0

1
d3 � 1

d3
0

� 	
þ d

; d ¼ d0ffiffiffi
4
p

10cPr
: ð3:59Þ

The main results of the Landau–Levich hypothesis are:

• y [ d, c = c1 = c0 = const., developed turbulence area
• d0 \ y \ d, c = c11, see (3.48), turbulent boundary layer
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• d\ y \ d0, c = c111, see (3.55), viscous sublayer
• 0 \ y \ d, c = c1111, see (3.58) and (3.59), diffusion sublayer

The results presented show that the fundamental problem of turbulent mass
transfer is the law of the turbulent pulsations fading in the viscous sublayer. A
solution of this problem is possible on the basis of experimental data of heat or
mass transfer in turbulent conditions. Different theoretical results in this field are
shown in [10].

4 Chemical Processes and Adsorption

Chemical processes and adsorption as hydrodynamic, diffusion, and heat processes
are the most important simple processes in process system engineering and
chemical technology. In practice, these simple processes are mutually connected
and depend on each other, but here they will be represented individually, i.e., in
conditions of constant temperature, a static medium, and in the absence of con-
centration gradients. In this way, the basis of these processes becomes homoge-
neous and heterogeneous chemical reactions.

4.1 Stoichiometry

The mathematical description of a chemical reaction is a stoichiometric equation:

Xn

i¼1

aiAi ¼ 0; ð4:1Þ

which expresses that a1; . . .; an0 molecules of substances A1; . . .;An0 (ai [ 0,
i = 1,…, n0) react chemically and as a result an0þ1; . . .; an molecules of substances
An0þ1; . . .;An (ai \ 0, i = n0 ? 1,…, n) are obtained. In (4.1) ai(i = 1,…, n) are
the stoichiometric coefficients and the processes can be convertible or incon-
vertible. Chemical reactions are simple if they are realized in one stage and
n0 B 2. Complex chemical reactions are realized in several stages, in which
intermediate substances take part. They consist of simultaneous and (or) consec-
utive realization of some simple chemical reactions. Their stoichiometric equa-
tions are obtained through summation of the stoichiometric equations of simple
chemical reactions.

4.2 Mechanism and Reaction Route

The combination of stages (simple reactions) in a chemical reaction represents its
mechanism. The stoichiometric equations of different stages can be multiplied by
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proper numbers, so after the summation, the intermediate substances in the
equation of a complex chemical reaction disappear. This set of stoichiometric
numbers determines the route of the chemical reaction [13]. It represents an order
of numbers, arranged in sequence, i.e., it has vector properties. If the mechanism is
as given, it could be realized by more than one linear independent route. Such
vectors cannot be represented by a linear combination of the other ones. All of the
linear independent routes form the basis of the routes from which an arbitrary
number of linear dependent routes can be realized [13].

The considerations mentioned above can be shown with the complex reaction
of vinyl chloride production. It is carried out in four stages, according to one
probable mechanism:

1. HgCl2�HCl ? C2H2()HgCl2�C2H2�HCl 1 0 1
2. HgCl2�HCl ? HCl()HgCl2�2HCl 0 1 1
3 HgCl2�C2H2�HCl ? HCl¼)C2H3Cl ? HgCl2�HCl 1 0 1
4. HgCl2�2HCl ? C2H2¼)C2H3Cl ? HgCl2�HCl 0 1 1

C2H2 ? HCl = C2H3Cl

The vectors of different routes are represented on the right side. The first and
second vectors are linearly independent and form the basis of the routes. The third
vector is linearly dependent and is determined by the summation of the first and
second vectors.

4.3 Kinetics of Simple Chemical Reactions

The main problem in modeling chemical processes is the determination of the
kinetic model for simple chemical processes, which is further used in the model
description of complex reactions and processes. Since hydrodynamic, diffusion,
and heat processes are associated with chemical reactions, it can be done in two
different ways:

1. The rate of the complex process determines the rate of the chemical process,
accounting for the hydrodynamics and mass transfer effects.

2. The rate of mass transfer, accounting for chemical reaction effects, is
considered.

In all cases the chemical reaction kinetics model has to be determined.
Chemical reactions can be realized in the phase volume or at the boundary of

two phases. In the first case, they are called ‘‘homogeneous’’ and their rate is
determined by the amount of substance reacted in a unit volume for a unit time. In
the second case, they are heterogeneous ones and the rate is determined by the
amount of substance reacted on a unit surface for a unit time. This difference is
why they are considered individually.
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The equation for the homogeneous chemical reaction rate represents the law of
mass action. In the case of the simplest chemical reaction,

A1 þ A2 ¼ A3; ð4:2Þ

it is as follows:

r ¼ kc1c2; ð4:3Þ

where k is a rate constant and c1 and c2 are volume concentrations of substances A1

and A2. In (4.3) it is assumed that the number of reacted chemical molecules of
substances A1 and A2 is proportional to the number of collisions between them,
i.e., of the probability that a molecule of A1 and a molecule of A2 will be together
at one point. The coefficient of proportionality is

k ¼ k0exp � E

RT

� �
: ð4:4Þ

This equation expresses the condition that a chemical linkage is formed
between two molecules (as a result of the collision between them) if the collision
energy is not smaller than the activation energy E (T is absolute temperature, R is
the gas constant). From (4.4) it can be seen that not each collision with sufficient
energy is an effective one when k0 \ 1.This can be observed in the case of big
molecules, where it is necessary for the active centers of the molecules to meet and
not just the molecules themselves. In this case, k0 represents a spherical factor and
it gives the probability of collision between active centers of the molecules. The
probability defines the relationship of the surface of the active center over all the
surface of the molecule.

The chemical reaction shown in (4.2) is bimolecular. The monomolecular
reaction

A1 ! A2 ð4:5Þ

has an analogous kinetic equation:

r ¼ kc1; ð4:6Þ

where the probability of transformation of substance A1 into substance A2 is
proportional to its concentration.

The probability of three of molecules being located at one point is negligible.
For this reason, monomolecular and bimolecular reactions are considered as
simple and complex ones (4.1), where n0 [ 2 represents simultaneous and (or)
consecutive realization of some monomolecular and bimolecular reactions. The
rate of homogeneous reactions expresses the change of volume concentration over
time. Taking into consideration that the concentrations of substances A1 and A2

decrease with the time as a result of the chemical reaction for reaction (4.2), we
can write
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r1 ¼ �
dc1

dt
; r2 ¼ �

dc2

dt
; r3 ¼

dc3

dt
; r1 ¼ r2 ¼ r3 ¼ r ¼ kc1c2: ð4:7Þ

Analogously, we obtain for (4.5)

r1 ¼ �
dc1

dt
; r2 ¼

dc2

dt
; r1 ¼ r2 ¼ r ¼ kc1: ð4:8Þ

If we add the required initial conditions, the results obtained allow formulation
of the mathematical description of the kinetics of simple monomolecular and
bimolecular reactions:

dc1

dt
¼ �kc1; c2 ¼ c10 � c1; t ¼ 0; c1 ¼ c10: ð4:9Þ

dc1

dt
¼ �kc1c2; c2 ¼ c20 � c10 þ c1; c3 ¼ c10 � c1; t ¼ 0; c1 ¼ c10;

ð4:10Þ

where the concentrations are expressed as moles for a unit volume, c10 and c20 are
initial concentrations, and k is as in (4.4).

The equations above solve as

c1 ¼ c10expð�ktÞ; c2 ¼ c10 � c10expð�ktÞ: ð4:11Þ

c1 ¼
Dcc10

c20
expð�DcktÞ

1� c10
c20

expð�DcktÞ; Dc ¼ c20 � c10; c2 ¼
Dc

1� c10
c20

expð�DcktÞ;

c3 ¼ c10
1� expð�DcktÞ

1� c10
c20

expð�DcktÞ:
ð4:12Þ

Equations (4.1.4), (4.1.9), and (4.1.10) show that mathematical models of
simple reactions contain two parameters—activation energy (E) and a prefactor
(k0), which have to be determined from experimental data. The experimental
dependence of the concentration on temperature and time or the relationship
between the reaction rate and concentrations of the reagents is used.

4.4 Kinetics of Complex Reactions

Complex chemical reactions are realized in many stages, and in each of them a
simple reaction takes place. The combination of stages represents the mechanism
of the chemical reaction. The stoichiometric equations of the different stages of
chemical reactions are summed. As a result the overall stoichiometric equation is
obtained. If these equations are multiplied by given stoichiometric numbers, the
overall equations in different routes are obtained. Each route of one complex
reaction has an individual set of stoichiometric equations for the different stages
and leads to a different set of kinetic equations.
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The real rate of reaction determines the reaction rate on the basis of the routes,
using the rule of summation of vectors. The mathematical descriptions using
complex reactions as a combination of the mathematical description of the simple
reactions results in multiparametric models, since each simple reaction has own
activation energy and prefactor. In such a way, the probable mechanism of the
reaction can be determined. This description is useful when the process rate is
limited by the chemical kinetics and all additional processes lead to unessential
additional effects.

Simulation of the stoichiometric equations at the different stages, accounting
for different possible routes, results in the overall stoichiometric equation looks
like (4.1). In this case, the chemical reaction rate can be used in the following
equation:

ri ¼
dci

dt
¼ aik

Yn0

j¼1

c
aj

j ; i ¼ 1; . . .; n0; ð4:13Þ

where parameters aj (j = 1,…, n0) are reaction orders in respect of different
reagents. Using them, we can obtain the overall order of the reaction:

a ¼
Xn0

j¼1

aj: ð4:14Þ

For some comparatively simple reactions the order could be 1 or 2, showing
that the reaction is monomolecular or bimolecular, but in more cases this is not
true and the order is a fraction. In the case of complex reactions with a kinetics
equation of type (4.13), it is necessary to determine the activation energy, pre-
factor, and the reactions’ orders as well. The logarithm of (4.13) leads to linear
equations concerning parameters in the mathematical description of chemical
kinetics.

4.5 Adsorption Processes

Different distances between the molecules in different phases lead to different
strengths of the interactions between them. Because of this, there are layers with
no equilibration strength interactions on the phase boundaries between gas, liquid,
and the solid surface. Equilibration can be attained by changing the concentrations
of the substances on the interphase surface. This results in solid and liquid surfaces
whose molecules combine physically or chemically by physical (van der Waals’s)
or chemical (valence) forces with molecules of the gas or liquid phase of the
volume contacting with them. This process is called ‘‘adsorption.’’ It is a physical
or a chemical process and depends on the strengths of the interactions that com-
bine adsorbed molecules on the surface. The rate of the adsorption process
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determines analogously the rate of the chemical reactions, as law of mass action is
changed by the law of surface action.

4.6 Physical Adsorption

In the case of physical bonds on the interphase surface, the adsorption rate is
proportional to the free surface and the volume concentration of the adsorbed
substance:

r1 ¼ k1c 1� C
C1

� �
; ð4:15Þ

where k1 is the rate constant, c is the volume concentration of the adsorbed
substance, and C and C? are its surface concentrations. In this case the process is
convertible and the desorption rate can be obtained by an analogous consideration:

r2 ¼ k2C; ð4:16Þ

where k2 is the rate constant, which depends on temperature by analogy with (4.4).
The process rate is

r ¼ r1 � r2 ¼ k1c 1� C
C1

� �
� k2C: ð4:17Þ

In the case of physical equilibrium r = 0, i.e.,

C ¼ kc

1þ kc
C1

; k ¼ k1

k2
: ð4:18Þ

Equation (4.18) is the Langmuir isotherm and k is the equilibrium constant.

4.7 Chemical Adsorption

The presence of chemical bonds at the interphase surface leads to the next
expression for the adsorption rate:

r ¼ k0expð�E=RTÞ
Ym
i¼1

zai

i

Yn

j¼1

p
bj

j z
ðmt�
Pm
i¼1

aiÞ

0 ; ð4:19Þ

where zi are the parts of the interphase surface occupied by the molecules of
substances Ai (i = 1,…, m), pj are partial pressures (volume concentrations) of
substances Bj (j = 1,…, n) in the gas (liquid), z0 is the part of the free surface
which is able to form physical bonds with the molecules of substances
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Bj (j = 1,…, n), and mt is the number of active places at the interface which
form the physical bonds.

In (4.19) it is assumed that the molecules Ai (i = 1,…, m) forming the inter-
phase surface react chemically with some of the molecules Bj (j = 1,…, n),
whereas the other molecules form physical bonds with the active places mt. The
heterogeneous reaction rate and the reactions orders are r; aiði ¼ 1; . . .;mÞ and
bjðj ¼ 1; . . .; nÞ:

The adsorption leads to a decrease of the activation energy in (4.19) and the
chemical reaction rate increases (heterogeneous catalytic reaction). Analogous
effects are possible in the cases of homogeneous chemical reactions, but they are
the result of the substances, which change the reaction route and as a result the
general activation energy decreases too.

In the case of reversible heterogeneous chemical reactions, the equation for the
adsorption rate follows from (4.18) and (4.19):

r ¼
k
Qn
j¼1

cj

1þ
Pn
j¼1

kpjcj

 ! ; ð4:20Þ

where kpj are the equilibrium constants of the reagents Bj(j = 1,…,n).
All equations for the adsorption kinetics are based on the ideal adsorption layer

model. Practically, most of the adsorption processes and heterogeneous catalytic
reactions are related to real adsorption layers, i.e., the catalytic surfaces are non-
homogeneous as a result of the changes of the solid-phase structure.

4.8 Heterogeneous Reactions

Heterogeneous reactions can be considered in a broader sense, where ‘‘disap-
pearance’’ (‘‘appearance’’) of the substance on the gas–solid, liquid–solid, or gas–
liquid phase boundary results not only from a chemical reaction. It could be a
result of other processes, since other kinetics laws could hold, which are gen-
eralized as heterogeneous kinetics [12].

If one substance transfers on the phase boundary through convection and dif-
fusion, it could disappear on the phase boundary as a result of different processes:

• Chemical reactions, for example, gas absorption, associated with a fast chemical
reaction with a component of the liquid phase

• Electrochemical reactions, for example, electrochemical crystallization
• Physical or chemical adsorption, for example, ion exchange in synthetic

anionites
• Mass transfer between two phases—in these processes the substance transferred

through the phase boundary towards the second phase ‘‘disappears’’ from the
first phase
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Analogous cases could be considered in the case of the substance ‘‘created’’ on
the phase boundary and its transfer into the phase volume by convection and
diffusion.

In this case the rate of the processes is determined by heterogeneous reactions
kinetics, which depends on the diffusion kinetics (convection–diffusion process)
and the kinetics of heterogeneous processes (chemical, electrochemical, adsorp-
tion, diffusion). In all of the cases, the rate of the common process is limited by the
slow process, i.e., the process with the smallest rate constant. It has not to be
forgotten that mass transfer in the phase and reaction on the phase boundary are
two consecutive processes and their rates (mol m-2 s-1) are equal, but they differ
in their rate constants. A number of concrete cases will be considered next.

5 Examples

5.1 Dissolution of a Solid Particle

The problem of solid particle dissolution is very interesting [17], because the
process is rather complicated as a result of the particle radius decreasing (disso-
lution of a solid particle) and secondary flow at the interface (effect of a large
concentration gradient).

5.1.1 Particle Radius is Constant (r0 5 r0
(0) 5 const.)

Let us consider a neutrally buoyant spherical particle of radius r0 suspended in an
unbounded viscous fluid. The particle medium is soluble in the fluid or it contains
a soluble admixture. For a short time the particle radius is constant and the con-
centration distribution near the sphere satisfies the following equations and
boundary conditions:

oc

ot
¼ D

o2c

o r2
þ 2

r

oc

or

� �
; t ¼ 0; c ¼ c0; r ¼ r 0ð Þ

0 ; c ¼ c�; r !1; c ¼ c0;

c�[ c0ð Þ:
ð5:1Þ

The solution of the problem uses the next dimensionless (generalized)
variables:

t ¼ t0T ; r ¼ r 0ð Þ þ lR; c ¼ c0 þ c � �c0ð ÞC; l ¼
ffiffiffiffiffiffiffi
Dt0
p

: ð5:2Þ

As a result, we obtain

oC

oT
¼ o2C

oR2
þ 2

a0 þ R

oC

oR
; T ¼ 0;C ¼ 0; R ¼ 0; C ¼ 1; R!1;

C ¼ 0; a0 ¼
r 0ð Þ

0

l

 !
:

ð5:3Þ
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The solution of (5.3) is

C ¼ a0

a0 þ R
erfc

R

2
ffiffiffiffi
T
p : ð5:4Þ

This result permits us to obtain the mass transfer rate J,

J ¼ �D
oC

or

� �
r¼r tð Þ

; ð5:5Þ

and the velocity of the decrease of the radius of the solid particle v,

v ¼ �J

q
; ð5:6Þ

where q is the density of the solid phase.
The expression for the change of the particle radius follows directly from these

results:

r0 tð Þ ¼ r 0ð Þ
0 þ

Z t

0

v tð Þ dt ð5:7Þ

and its dimensionless form is

a ¼ a tð Þ ¼ r0 tð Þ
l
¼ a t0Tð Þ ¼ A0 Tð Þ

¼ a0 þ
c� � c0

q

ZT

0

oC
� �

R¼0

dT ¼ a0 �
c� � c0

q
T

a0
þ 2

ffiffiffiffi
T
p
ffiffiffi
p
p

� �
;

A
0

0 Tð Þ ¼ dA0

dT
¼ c� � c0

q
oC

oR

� �
R¼0

¼ �c� � c0

q
1
a0
þ 1ffiffiffiffiffiffi

pT
p

� �
:

ð5:8Þ

5.1.2 Particle Radius Decreases (r0 5 r0(t))

In the case when the dissolution time is not very short, the decrease of the particle
radius and the dimensionless variables are

t ¼ t0T ; r ¼ r0 tð Þ þ lR; c ¼ c0 þ c � �c0ð ÞC ð5:9Þ

and the problem has the form

oC

oT
¼ o2C

oR2
þ A

0 þ 2
Aþ R

� �
oC

oR
; T ¼ 0; C ¼ 0; R ¼ 0; C ¼ 1; R!1;

C ¼ 0:

ð5:10Þ
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The solution of (5.10) uses an iterative approach and solves the following
problem at every step:

oCi

oT
¼ o2Ci

oR2
þ A

0

i�1 þ
2

Ai�1 þ R

� �
oCi

oR
; T ¼ 0; Ci ¼ 0; R ¼ 0; Ci ¼ 1;

R!1;Ci ¼ 0;

ð5:11Þ

where for A0 and A00 we must use (5.8).
The iteration stop criterion is e\ 10-3, where

e ¼

R1
0

oCi
oR

� �
R¼0�

oCi�1
oR

� �
R¼0

h i2
dT

R1
0

oCi
oR

� �
R¼0

h i2
dT

: ð5:12Þ

The solution of (5.10) is shown in Fig. 2.

5.2 Contemporary Approach of Turbulence Modeling

The development of the turbulence theory is difficult owing to the complexity of
the phenomena and the use of semiempirical theory methods. The increase in the
performance of the central processing units of computers permits direct numerical
modeling, i.e., the numerical integration of the nonstationary Navier–Stokes
equations without using additional empirical models and constants. The three-
dimensional turbulent flow parameters obtained permit us to calculate all average
flow characteristics.

Fig. 2 Concentration-time
distribution for R = 0.5,
a = 30, (c* - c0)/
q = 5 9 10-2
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The direct numerical simulation of a three-dimensional turbulent flow is a
numerical experiment based on an effective model, an exact method for the
solution of differential equations, and a multiprocessor computing system.

The theoretical analysis of the turbulent flow as a stochastic process is not a
very good approach because it is a pseudo-chance phenomenon. The transition
from laminar to turbulent flow is accompanied by a loss of stability, but the
deviation of the flow parameters is not so large as a result of the viscous forces.
This three-dimensional process is nonstationary but the average values of the flow
parameters approach those of a stationary process.

The direct solution of the full turbulent flow problem needs a multiprocessor
computing system with an effective performance 1012–1014 floating point opera-
tions per second. At the present time this is not possible, but obtaining solutions
with an error of 10-2–10-4% is possible.

The direct numerical simulation method permits us to obtain different inter-
esting results, such as the modeling of the homogeneous isotropic turbulence at
moderate values of the Reynolds numbers and modeling of the inertia subdomain
of the spectrum of two- and three-dimensional turbulence. As the result it was
obtained that in the case of two-dimensional turbulence the energy transfer is from
a small-scale to a large-scale vortex (pulsations), whereas in the case of three-
dimensional turbulence the energy transfer is in the opposite direction (from the
large-scale to the small-scale vortexes).

The limitations of the direct numerical simulation method is the reason for the
development of modeling of large-scale vortexes—large eddy simulation. This
approach is used for turbulent flow modeling in channels [19] and at the atmo-
spheric boundary layer [20].

The basis of large eddy simulation is the hypothesis concerning the independence
of the large-scale vortexes from the molecular viscosity. As the result, it can create a
numerical model of the large-scale turbulent pulsations without calculation of the
small vortexes (the calculations are independent of the Reynolds number). The
method is used for solution of different interesting problems [21, 22].

The direct numerical simulation and large eddy simulation methods need very
advanced computing resources. That is why a new approach has been presented [23]
for modeling separated flows, named detached eddy simulation. The great potential
advantage of detached eddy simulation over methods and the simplicity of the
realization has led to the introduction of detached eddy simulation in computational
fluid dynamics products such as CFX, COBALT, FLUENT, and STAR CD.

The detached eddy simulation method is very efficient [23, 24] and very good
agreement between computed and experimental data has been obtained.
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Complex Process Models

Chemical engineering processes are aggregates of simple chemical and physical
processes having mathematical descriptions based on fundamental chemical and
physical laws. Establishment of a mathematical model of a certain complex pro-
cess needs information about the interactions between the simple processes
involved. The latter simply means that such complex mechanisms have to permit
mathematical descriptions consisting of mathematical operators corresponding to
the physical and chemical effects contributing to the processes. In accordance with
this standpoint, the basic theoretical models of mass transfer, for instance, contain
equations of hydrodynamics, convection–diffusion, and chemical reactions.

In many cases, the model construction becomes more complicated owing to the
complex hydrodynamic situation (turbulence, fluid motion as drops, bubbles, or
through a bed of particles, etc.). Using physical analogies (e.g., between turbulent
and molecular diffusion) or average velocity and concentration models, one can
solve the modeling problems.

Otherwise, if there is a lack of information about the process mechanism, then
similarity theory models can be employed. In cases when the information about the
process mechanism is completely missing, regression models allow one to create
functional relationships.

1 Mechanism and Mathematical Description

The significance of the models for science and practice is mainly related to their
exactness, which in general addresses the correspondence between the separate
mathematical operators in the model and the physical and the chemical effects in
the process. That is why the principal step in the process of model building is the
correct theoretical analysis of the process mechanism being considered. This will
be exemplified by model building concerning a physical absorption process [1].

C. Boyadjiev, Theoretical Chemical Engineering,
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1.1 Mechanism of Physical Absorption

Let us consider a two-dimensional gas–liquid co-current flow under laminar
conditions in a horizontal channel with a flat interphase surface y = 0. The area of
gas motion is 0 B x B l, 0 B y B d1, whereas that of the liquid phase is
0 B x B l, -d2 B y B 0.

The inlet (x = 0) velocities �u1; �u2ð Þ and the concentrations �c1; �c2ð Þ in the
phases are constant and unaffected in the phase volumes far from the interface
y = 0. If the concentration of the gas component is sufficiently high, i.e.,
�c1 � v�c2 [ 0 (v is Henry’s constant), then absorption of this component is pos-
sible. The mechanism of this process has four stages:

1. Diffusion of the substance from the gas volume to the interphase surface.
2. Adsorption of the substance at the interphase surface.
3. Desorption of the substance in the liquid.
4. Diffusion of the substance from the interphase surface to the liquid volume.

The experimental data analysis [2] shows that the adsorption–desorption
processes are very fast (in comparison with the diffusion processes) and there
exists a thermodynamic equilibrium at the interphase surface. The later implies
that the concentrations in both the gas and the liquid at the interface obey
Henry’s law.

1.2 Mathematical Description

The process mechanism presented reveals that the mathematical description con-
sists of dimension equations of hydrodynamics and convection–diffusion for the
gas (i = 1) and liquid (i = 2) phases, respectively:
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The boundary conditions at the inlet of two phase flows are

x¼0; u ið Þ
x ¼�ui;

ou ið Þ
x

ox
¼0; u ið Þ

y ¼0;
ou ið Þ

y

ox
¼0; pi¼�pi; ci¼�ci; i¼1;2: ð1:2Þ
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At the interphase surface (y = 0) the boundary conditions express the inter-
phase nonslip and the impermeability conditions, the continuity of both the stress
tensor and the mass flux, and the thermodynamic equilibrium (Henry’s law):
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At the frontiers of the area the following boundary conditions are valid:

y ¼ �1ð Þi�1di; u ið Þ
x ¼ �ui; u ið Þ

y ¼ 0; ci ¼ �ci: ð1:4Þ

1.3 Generalized Variables and Characteristic Scales

The mathematical description of the absorption process contains many parameters,
but their number can be reduced if dimensionless parameters are used. Suitably
obtaining these parameters permits us to make a qualitative (generalized) analysis
of the proposed process mechanism concerning order of magnitude analysis of
separate parameters and relevant physical effects. For this purpose, dimensionless
(generalized) variables should be introduced using characteristic (inherent) scales
of the process. These scales have to be selected in a manner allowing the
dimensionless (generalized) variables to be of the order of magnitude of unity, i.e.,
O(1). Consequently, the order of magnitude of the separate terms in the model
equations (separate physical effects) will be equal to the order of magnitude of
their dimensionless parameters.

In the case of the absorption process considered, the following dimensionless
variables will be used:

x ¼ lX; y ¼ diYi ¼ dDiYDi; u ið Þ
x x; yð Þ ¼ �uiU

ið Þ
x X; Yið Þ; u ið Þ

y x; yð Þ ¼ ~uiU
ið Þ

y X; Yið Þ;
p ið Þ x; yð Þ ¼ �piP

ið Þ X; Yið Þ; ci x; yð Þ ¼ �ci � �vð Þ1�i �c1 � v�c2ð ÞCi X; YDið Þ; i ¼ 1; 2;

ð1:5Þ

where l; �ui and �c1 � v�c2ð Þ are known scales, and di ; dDi ; ~ui; and �pi i ¼ 1; 2ð Þ are
unknown scales, which should be obtained as combinations of the known ones.

If by means of (1.5) the continuity equation is transformed, its dimensionless
form is

oU ið Þ
x

oX
þ ~uil

�uidi

oU ið Þ
y

oYi
¼ 0; i ¼ 1; 2: ð1:6Þ
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In the case of

~uil

�uidi
� 1; ~ui ¼

�uidi

l
; i ¼ 1; 2; ð1:7Þ

the flow is stratified (uy
(i) = 0), i.e.,

~uil

�uidi
� 0;

oU ið Þ
x

oX
¼ 0; i ¼ 1; 2; ð1:8Þ

and ~ui i ¼ 1; 2ð Þ cannot be obtained.

1.4 Dimensionless Parameters and Process Mechanism

Introduction of (1.5) into (1.1) leads to a dimensionless (generalized) form of the
model:

U ið Þ
x

oU ið Þ
x

oX
þ U ið Þ

y

oU ið Þ
x

oYi
¼ � �pi

qi�u
2
i

oP ið Þ

oX
þ 1

eiRei
e2

i

o2U ið Þ
x

oX2
þ o2U ið Þ

x

oY2
i

" #
;

e2
i U ið Þ

x

oU ið Þ
y

oX
þ U ið Þ

y

oU ið Þ
y

oYi

" #
¼ � �pi

qi�u
2
i

oP ið Þ

oY
þ ei

Rei
e2

i

o2U ið Þ
y

oX2
þ o2U ið Þ

y

oY2
i

" #
;

oU ið Þ
x

oX
þ oU ið Þ

y

oYi
¼ 0; U ið Þ

x

oCi

oX
þ U ið Þ

y

oCi

oYDi

¼ 1
eDiPei

e2
Di

o2Ci

oX2
þ o2Ci

oY2
Di

� �
; i ¼ 1; 2;

ð1:9Þ

where

ei ¼
di

l
; eDi ¼

dDi

l
; Rei ¼

�uidi

mi
; Pei ¼

�uidDi

Di
; i ¼ 1; 2: ð1:10Þ

In (1.10) Re and Pe are Reynolds and Péclet numbers, respectively.
The order of magnitude of the functions and their derivatives in (1.9) is 1 and

all physical effects are equivalent to each other if the following conditions are
satisfied:

pi

qi�u
2
i

� 1; eiRei� 1; eDiPei� 1; i ¼ 1; 2: ð1:11Þ

This indicates that the unknown scales can be defined as

�pi ¼ qi�u
2
i ; di ¼

ffiffiffiffiffi
mil

�ui

r
; dDi ¼

ffiffiffiffiffiffi
Dil

�ui

r
; i ¼ 1; 2: ð1:12Þ
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Practically, the boundary layer approximations are valid if

0 ¼ e2
i ¼ Re�1

i \10�2; 0 ¼ e2
Di ¼ Pe�1

i \10�2: ð1:13Þ

In gases (i = 1) m1 * D1, whereas in liquids (i = 2) m2 � D2, i.e., d1 * dD1,
d2 � dD2. Hence, using dDi (i = 1, 2) as linear scales in mass transfer problems is
very convenient. As a result, in the diffusion boundary layer approximation of
problem (1.9) we have

U ið Þ
x

oU ið Þ
x

oX
þ U ið Þ

y

oU ið Þ
x

oYDi

¼ �oP ið Þ

oX
þ Sci

o2U ið Þ
x

oY2
Di

;
oP ið Þ

oYDi

¼ 0; Sci ¼
mi

Di
;

oU ið Þ
x

oX
þ oU ið Þ

y

oYDi

¼ 0; U ið Þ
x

oCi

oX
þ U ið Þ

y

oCi

oYDi

¼ o2Ci

oY2
Di

;

ð1:14Þ

where Sc is the Schmidt number.
From the second equation in (1.14) it follows that the pressure in the boundary

layers is equal to the pressure outside them. Moreover, the flows are nonviscous

(potential flows): with yj j[ di ; u ið Þ
x ¼ �ui ; u ið Þ

y ¼ 0: As a result, from the first
equation in (1.1) it follows that

�ui
o�ui

ox
¼ � 1

qi

op ið Þ

ox
; �ui ¼ const:; � op ið Þ

ox
¼ 0; i ¼ 1; 2: ð1:15Þ

The next results will illustrate the case �ui ¼ const:
The boundary conditions corresponding to the new approximation are

X ¼ 0; U ið Þ
x ¼ 1; Ci ¼ 0; YDi ¼ �1ð Þi�1; U ið Þ

x ¼ 1; Ci ¼ 0;

Yi ¼ 0; U 1ð Þ
x ¼ h1U 2ð Þ

x ; h1 ¼
�u2

�u1
; U ið Þ

y ¼ 0; h2
oU 1ð Þ

x

oYD1

¼ oU 2ð Þ
x

oYD2

; h2 ¼
l1�u1d2

l2�u2d1
;

C1þC2 ¼ 1;
oC1

oYD1
¼�e

oC2

oYD2

; e¼ 1
v

ffiffiffiffiffiffiffiffiffiffi
�u2D2

�u1D1

r
; i¼ 1;2;

ð1:16Þ

where the unnecessary conditions are omitted.
For the development of analytical solutions, the boundary condition outside the

boundary layers is very conveniently expressed as

YDi ! �1ð Þi�11; U ið Þ
x ¼ 1; Ci ¼ 0: ð1:17Þ

This analysis simply shows that the mathematical description of the process
was possible because the process mechanism was known. Moreover, the mathe-
matical description permits us to specify the process mechanism and to omit
insignificant physical effects represented by small parameter values.

1 Mechanism and Mathematical Description 65



1.5 Boundary Conditions and Mechanism

The condition 0 = h1 \ 10-2 leads to the boundary condition Ux
(1)(X,0) = 0, i.e.,

the gas phase moves over an immobile (solid) interface and the hydrodynamic
equations can be solved consecutively and independently.

The condition 0 = e\ 10-2 leads to

Y1 ¼ 0 ;
oC1

oYD1

¼ 0 ; C1 � 0; ð1:18Þ

i.e., the mass transfer rate in the gas phase is very large and as a result the
concentration in the gas phase is uniformly distributed. This is the case when the
interphase mass transfer is limited by the mass transfer in the liquid phase. In the
opposite case (0 = e-1 \ 10-2), the diffusion resistance is determined by the gas
phase.

1.6 Kinetics and Mechanism

The theoretical analysis of the interphase mass transfer kinetics requires the
interphase mass transfer coefficient (k) to be obtained. In the case of the process
considered, the process rate (J) relates to the concentration difference as

J ¼ k �c1 � v�c2ð Þ: ð1:19Þ

If ci
*(i = 1, 2) are equilibrium concentrations at the interphase surface (c1

* = vc2
*),

then the interphase mass transfer rate can be represented using the mass transfer
coefficients in the separated phases, namely,

J ¼ k1 �c1 � c�1
� �

¼ k2 c�2 � �c2

� �
; ð1:20Þ

where k1 and k2 are the mass transfer coefficients in the gas and liquid phases.
From (1.19) and (1.20) it follows that

�c1 � v�c2 ¼ �c1 � c�1
� �

þ v c�2 � �c2
� �

¼ J

k
¼ J

k1
þ v

J

k2
: ð1:21Þ

In accordance with the law of diffusion resistance arranged in a series, we have

1
k
¼ 1

k1
þ v

k2
: ð1:22Þ

When highly soluble gases are used, 0 = v\ 10-2 and k = k1, then the
interphase mass transfer is limited by the mass transfer in the gas phase and the
model only allows the equation to be solved for the gas phase.
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Another version of the process rate is

J ¼ ~k
�c1

v
� �c2

� �
;

�c1

v
� �c2 ¼

1
v

�c1 � c�1
� �

þ c�2 � �c2
� �

ð1:23Þ

and consequently the result is
1
~k
¼ 1

vk1
þ 1

k2
; ð1:24Þ

with slightly soluble gases, 0 = v-1 B 10-2 and ~k ¼ k2; the interphase mass
transfer is limited by the mass transfer in the liquid phase and consequently only
the equation for the liquid phase has to be solved.

The results obtained above are correct with respect to the film mass transfer
theory assumptions. The e criterion comes from the diffusion boundary layer
theory and leads to the same result (in comparison with the v criterion) but it is
more precise (see Chap. 3) as a tool.

The mass transfer rate can be represented using the diffusion flux

I ¼ �Di
oci

oy

� �
y¼0

; i ¼ 1; 2 ð1:25Þ

and the average mass transfer rate for length l as

J ¼ 1
l

Z l

0

Idx: ð1:26Þ

From (1.25) and (1.26) and replacing J from (1.19), (1.20), and (4.23), we can
express the Sherwood number (Sh) as

Shi ¼
kl

Di

¼ � 1
�c1 � v�c2

Z l

0

oci

oy

� �
y¼0

dx ¼ �vð Þ1�i ffiffiffiffiffiffiffi
Pei

p Z1

0

oCi

oYDi

� �
dX; i ¼ 1; 2;

Sh
_

1 ¼
k1l

D1
¼ � 1

�c1 � c�1

Z l

0

oc1

oy

� �
y¼0

dx ¼ �c1 � v�c2

�c1 � c�1

ffiffiffiffiffiffiffiffi
Pe1
p Z1

0

oC1

oYD1

� �
dX;

Sh
_

2 ¼
k2l

D2
¼ � 1

c�2 � �c2

Z l

0

oc2

oy

� �
y¼0

dx ¼ �1
v
�c1 � v�c2

c�2 � �c2

ffiffiffiffiffiffiffiffi
Pe2
p Z1

0

oC2

oYD2

� �
dX:

ð1:27Þ

Here, Shi(i = 1, 2) are the Sherwood numbers of the interphase mass transfer,

and Sh
_

i i ¼ 1; 2ð Þ are the Sherwood numbers of the mass transfer in the gas and
liquid phases, respectively.

The analysis of the absorption (desorption) process shows that after the for-
mulation of the mathematical model of the process mechanism it is possible to
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perform a qualitative theoretical analysis of the model equations through nondi-
mensionalization and an order of magnitude analysis. Such a generalized analysis
permits us to specify the order of magnitudes of the different physical effects and
to eliminate insignificant ones, which results in model reduction.

2 Theoretical Models: Mass Transfer in Film Flow

Many processes in chemical engineering are carried out in gas (vapor)–liquid film
flows. In such flows, the effects of different volume (i.e., velocity distributions,
chemical reactions) and interface (gas motion, surfactants, capillary waves) effects
on the mass transfer in liquid film flows [2, 3] have to taken into account, as
exemplified next.

2.1 Film with a Free Interface

Let us consider absorption of a slightly soluble gas in a laminar liquid film, flowing
over a flat vertical surface (y = 0). In Sect. 1.2 the velocity distribution (1.62) was
obtained, and permits us to represent the convection–diffusion equation as

g

2m
2h0y� y2
� �oc

ox
¼ D

o2c

ox2
þ o2c

oy2

� �
; ð2:1Þ

The relevant boundary conditions are

x ¼ 0; c ¼ c0; x!1; c ¼ c�; y ¼ 0;
oc

oy
¼ 0;

y ¼ h0; c ¼ c�;
ð2:2Þ

A thermodynamic equilibrium exists at the film interface (y = h0) and c* denotes
the equilibrium concentration. The solid surface (y = 0) is impenetrable for the
diffusing substance with inlet concentration c0 \ c* (absorption), and a film of
length l will be considered as an example. The diffusion boundary layer thickness
d (see page 44 (3.34)) is less than the liquid film thickness h0 that permits the
diffusion boundary layer approximation to be applied. As a consequence of this
approach, the next generalized variables can be introduced:

x ¼ lX; y ¼ h0 � dY ; c ¼ c0 þ ðc� � c0ÞC; ð2:3Þ

where d � h0 and h0 � l.
The introduction of (2.3) into (2.1) yields

1þ d2

h2
0

Y2

� �
oC

oX
¼ Dl

uavd
2

d2

l2

o2C

oX2
þ o2C

oY2

� �
; ð2:4Þ
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where

uav ¼
gh2

0

3m
; d ¼

ffiffiffiffiffiffi
Dl

uav

r
;

d2

h2
0

¼ Dl

uavh2
0

¼ Fo\10�1;
d2

l2
¼ D

uavl
¼ Pe�1\10�2:

ð2:5Þ

In (2.5) uav is the average velocity of the film flow, Fo is a small parameter (like
the Fourier number), and Pe is the Péclet number. Under these conditions the
problem was solved [4, 5] in the diffusion boundary layer approximation
(10-2 [ Pe-1 = 0), namely,

1þ FoY2
� �oC

oX
¼ o2C

oY2
; X ¼ 0; C ¼ 0; Y ¼ 0; C ¼ 1; Y !1;

C ¼ 0:
ð2:6Þ

The mass transfer rate (J) in a liquid film flow with length l is the average value
of the local mass flux through the interphase surface (y = h0). On the other hand,
this rate can also be represented using the mass transfer coefficient k. Hence, we
have

J ¼ D

l

Z l

0

oc

oy

� �
y¼h0

dx ¼ kðc� � c0Þ: ð2:7Þ

The adimensionalization of (2.6) by (2.3) allows the Sherwood number (Sh) to
be expressed as

Sh ¼ kl

D
¼ �

ffiffiffiffiffiffi
Pe
p Z1

0

oC

oY

� �
Y¼0

dX; ð2:8Þ

In (2.8) the concentration profile C(X, Y) is the solution of (2.6) [4, 5] developed by
a perturbation method [6, 7]. This approach uses an expression of the concen-
tration profile as a series in ascending powers of the small parameter Fo and results
in the following dimensionless expression of the Sherwood number:

Sh ¼
ffiffiffiffiffiffiffiffi
6Pe

p

r
1� Fo

6
� 19Fo2

120

� �
: ð2:9Þ

The expression (2.9) shows the effect of the velocity distribution on the concen-
tration boundary layer and the mass transfer rate. In the approximation of Higbie’s
penetration theory [8], for example, the velocity distribution is a constant and
Fo = 0.
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2.2 Effect of a Chemical Reaction

Homogeneous chemical reactions can be represented as source (sink) terms of the
substances, with intensities equal to the chemical reaction rates. Hence, the mass
balance in the convection–diffusion equation can be expressed as

ux

oc

ox
þ uy

oc

oy
þ uz

oc

oz
¼ D

o2c

ox2
þ o2c

oy2
þ o2c

oz2

� �
� QðcÞ; ð2:10Þ

The term Q(c) denotes the volumetric chemical reaction rate: the plus sign means
of the creation (substance source), whereas the minus sign indicates disappearance
(substance sink) of the transferred substance.

In the case of absorption, the transferred substance reacts with a component in
the liquid. If the concentration of this component is very large, then the chemical
reaction is of first order: Q = k1c, where k1 is the chemical reaction rate constant.
Hence, from (2.10) it follows that

g

2m
2h0y� y2
� � oc

ox
¼ D

o2c

ox2
þ o2c

oy2

� �
� k1c: ð2:11Þ

The solution of (2.11) is obtained similarly to that of (2.1) using the same
boundary conditions. The perturbation method and Green’s functions permit us to
express the Sherwood number [9] as

Sh ¼
ffiffiffiffiffiffiffiffi
6Pe

p

r � 1
2

exp �K1ð Þ þ 3
4

ffiffiffiffiffiffi
p

K1

r
� 1

2

ffiffiffiffiffiffiffiffi
pK1
p� �

erf
ffiffiffiffiffiffi
K1
p

� Fo

� 1
4K1

exp �K1ð Þþ

1
8K1

ffiffiffiffiffiffi
p

K1

r
erf

ffiffiffiffiffiffi
K1
p

2
6664

3
7775�

�Fo2 19
120

exp �K1ð Þ

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

;

K1 ¼
k1l

uav

; erf
ffiffiffiffiffiffi
K1
p

¼ 2ffiffiffi
p
p

ZffiffiffiffiK1
p

0

exp �s2
� �

ds:

ð2:12Þ

2.3 Effect of Gas Motion

Numerous processes in chemical engineering are carried out in gas–liquid film
flows [2, 3]. In a co-current vertical liquid film and a laminar gas flow, the
mathematical problem in the boundary layer approximation has the form

o2ux

oy2
þ g

m
¼ 0;

oux

ox
þ ouy

oy
¼ 0;

vx

ovx

ox
þ vy

ovx

oy
¼ mg

o2vx

oy2
;

ovx

ox
þ ovy

oy
¼ 0:

ð2:13Þ
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The boundary conditions of (2.13) represent the mutual influence of the phases:
the equality of the velocity and the stress tensor at the interphase surface. These
conditions can be obtained by (1.2.41) in the boundary layer approximation,
namely,

x ¼ 0; vx ¼ vav; y ¼ 0; ux ¼ uy ¼ 0;

y ¼ h xð Þ; ux ¼ vx; l
oux

oy
¼ lg

ovx

oy
; y!1; vx ¼ vav:

ð2:14Þ

The film thickness h(x) is a variable dependent on the gas motion, and the
macroscopic balance over the liquid film yields

oh

ot
þ o

ox

Zh

0

uxdy ¼ 0: ð2:15Þ

If no waves are considered in the film oh
ot ¼ 0
� �

; then we have

h0ux x; hð Þ � uy x; hð Þ ¼ 0; h0 ¼ dh

dx
: ð2:16Þ

For large value of x(e0 \ 10-2), we have h xð Þ � h0; which is, in fact, the
boundary condition for (2.16).

The solution of the problem needs the following dimensionless (generalized)
variables to be used:

x ¼ lX; y ¼ h0Y ¼ h xð Þ þ dgYg; dg ¼
ffiffiffiffiffiffi
mgl

vav

r
; h xð Þ ¼ h0H Xð Þ;

e0 ¼
h0

l
; eg ¼

dg

l
; ux ¼ uavUx; uy ¼ e0uavUy; uav ¼

gh2
0

3m
; vx ¼ vavVx;

vy ¼ egvavVy:

ð2:17Þ

The dimensionless form of the governing equations is

o2Ux

oY2
¼ �3;

oUx

oX
þ oUy

oY
¼ 0; H

0
Ux X;Hð Þ � Uy X;Hð Þ ¼ 0; H

0 ¼ dH

dX
;

Vx

oVx

oX
þ Vy

oVx

oYg

¼ o2Vx

oY2
g

;
oVx

oX
þ oVy

oYg

¼ 0; X ¼ 0; Vx ¼ 0; X !1;

H ¼ 1; Y ¼ 0; Ux ¼ Uy ¼ 0; Yg !1; Vx ¼ 1;

Y ¼ H Xð Þ; Yg ¼ 0; Vx ¼ h1Ux;
oUx

oY
¼ h2

oVx

oYg

; Vy ¼ 0;

ð2:18Þ

where h1 and h2 are small parameters in the gas–liquid systems,
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h1 ¼
uav

vav

; h2 ¼
lgvavh0

luavdg

: ð2:19Þ

The solution of (2.18) was obtained in [2, 3, 10] by perturbation methods [6, 7],
expressing the solution as a series in ascending powers of the small parameters h1

and h2. In (2.18) the approximation 0 ¼ e1 ¼ h0
dg

\10�2 for gas–liquid film flow

systems is used.
From (2.18) it can be seen that the velocity distribution in the gas flow depends

on the interface velocity of the liquid film flow (a kinematic condition):

Y ¼ H Xð Þ; Yg ¼ 0; Vx X; 0ð Þ ¼ h1Ux X;Hð Þ ¼ h1A Xð Þ; ð2:20Þ

The function A(X) can be obtained from the velocity distribution in the liquid
film. On the other hand, the velocity distribution in the film flow depends on the
friction force with the gas flow (a dynamic condition):

Y ¼ H Xð Þ; Yg ¼ 0;
oUx

oY
¼ h2

oVx

oYg

¼ h2B Xð Þ: ð2:21Þ

The function B(X) can be obtained from the velocity distribution in the gas
flow.

Introducing the new boundary conditions (2.20) and (2.21) into (2.18), we can
represent the problem as three separate subproblems:

o2Ux

oY2
¼ �3;

oUx

oX
þ oUy

oY
¼ 0; Y ¼ 0; Ux ¼ Uy ¼ 0;

Y ¼ H Xð Þ; oUx

oY
¼ h2B Xð Þ:

ð2:22Þ

H
0
Ux X;Hð Þ � Uy X;Hð Þ ¼ 0; X !1; H ¼ 1: ð2:23Þ

Vx

oVx

oX
þ Vy

oVx

oYg

¼ o2Vx

oY2
g

;
oVx

oX
þ oVy

oYg

¼ 0;

X ¼ 0; Vx ¼ 0; Yg !1; Vx ¼ 1; Yg ¼ 0; Vx X; 0ð Þ ¼ h1A Xð Þ; Vy ¼ 0:

ð2:24Þ

The separate problems (2.22–2.24) have to be solved for arbitrary functions
A(X) and B(X), which, in fact, can be obtained subsequently from (2.20) and
(2.21).

From (2.22–2.24) it follows that the solutions depend on the small parameters
h1 and h2:

Ux ¼ UxðX; Y; h1; h2Þ; Uy ¼ UyðX; Y ; h1; h2Þ; Vx ¼ VxðX; Yg; h1; h2Þ;
Vy ¼ VyðX; Yg; h1; h2Þ;
H ¼ HðX; h1; h2Þ; A ¼ AðX; h1; h2Þ; B ¼ BðX; h1; h2Þ;

ð2:25Þ
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This permits us to look for solutions expressed as a series in ascending powers
of the small parameters h1 and h2, namely,

F ¼ F0 þ h1F1 þ h2F2 þ h2
1F11 þ h2

2F22 þ h1h2F12 þ 	 	 	 ; ð2:26Þ

where

F ¼ Ux;Uy;Vx;Vy;H;A;B
		 		: ð2:27Þ

In (2.26) F0 is the zeroth-order approximation, F1 and F2 are first-order
approximations, and F11, F2, and F12 are second-order approximations of the
solution F. It is necessary for (2.26) to be introduced into (2.22–2.24) for the
equations of the separate approximations to be developed. This implies that the
terms of the separate approximations have to be unified as separate expressions
and then equated to zero.

The zeroth-order approximations follow from (2.22) to (2.24) with
h1 = h2 = 0:

o2U0
x

oY2
¼ �3;

oU0
x

oX
þ

oU0
y

oY
¼ 0; Y ¼ 0; U0

x ¼ U0
y ¼ 0;

Y ¼ H0 Xð Þ; oU0
x

oY
¼ 0:

ð2:28Þ

H00U0
x � U0

y ¼ 0; X !1; H0 ¼ 1: ð2:29Þ

V0
x

oV0
x

oX
þ V0

y

oV0
x

oYg

¼ o2V0
x

oY2
g

;

X ¼ 0; V0
x ¼ 0; Yg !1; V0

x ¼ 1; Yg ¼ 0; V0
x X; 0ð Þ ¼ 0; V0

y ¼ 0:

ð2:30Þ

Problems (2.28) and (2.29) describe the case of a film flow with a free interface
(1.2.62). The solutions in generalized variables (1.5.17) are

U0
x ¼ 3Y � 3

2
Y2; U0

y � 0; H0 � 1: ð2:31Þ

Equations (2.30) describe a laminar boundary layer problem [11] with a solu-
tion expressed with similarity variables:

V0
x ¼ f

0

0; V0
y ¼

1

2
ffiffiffiffi
X
p gf

0

0 � f0


 �
; f0 ¼ f0 gð Þ; g ¼ Ygffiffiffiffi

X
p : ð2:32Þ

Here f0(g) is the Blasius function, obtained as a solution of the problem

2f
000

0 þ f0f
00

0 ¼ 0; f0 0ð Þ ¼ f
0

0 0ð Þ ¼ 0; f
0

0 1ð Þ ¼ 1: ð2:33Þ

The numerical solution of (2.33) is tabulated in [12], where f0
00
(0) = a =

0.33205.
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The approximations of the velocity in the liquid flow are obtained from (2.22)
as

o2Ui
x

oY2
¼ 0;

oUi
x

oX
þ

oUi
y

oY
¼ 0; Y ¼ 0; Ui

x ¼ Ui
y ¼ 0; i ¼ 1; 2; 11; 22; 12;

Y ¼ H0 ¼ 1;
oU1

x

oY
¼ 0;

oU2
x

oY
¼ B0;

oU11
x

oY
¼ 0;

oU22
x

oY
¼ B2;

oU12
x

oY
¼ B1:

ð2:34Þ

The solutions of problems (2.34) are

U1
x ¼ U1

y � 0; U2
x ¼ B0Y ; U2

y ¼ �
1
2

B0
� �0

Y2; U11
x ¼ U11

y � 0;

U22
x ¼ B2Y ; U22

y ¼ �
1
2

B2
� �0

Y2; U12
x ¼ B1Y; U12

y ¼ �
1
2

B1
� �0

Y2:

ð2:35Þ

The approximations of the film thickness are obtained from (2.23), namely,

H1
� �0 ¼ 0;H1 1ð Þ ¼ 0; H2

� �0¼ � 1
3

B0
� �0

; H2 1ð Þ ¼ 0; H11
� �0¼ 0; H11 1ð Þ ¼ 0;

H22
� �0 ¼ 2

9
B0 B0
� �0� 1

2
B2
� �0

; H22 1ð Þ ¼ 0; H12
� �0¼ � 1

3
B1
� �0

; H12 1ð Þ ¼ 0:

ð2:36Þ

The solutions of (2.36) are the following:

H1 � 0; H2 ¼ � 1
3

B0; H11 � 0; H22 ¼ 1
9

B0
� �2� 1

2
B2; H12 ¼ � 1

3
B1:

ð2:37Þ

The approximations of the function A(X) = Ux(X, H), using (2.31) and (2.35)
for H = H0 = 1, are

A0 � 3
2
; A1 � 0; A2 ¼ B0; A11 � 0; A22 ¼ B2; A12 ¼ B1: ð2:38Þ

The approximations of the velocity in the gas are obtained from (2.24) as

V0
x

oV i
x

oX
þ V0

y

oV i
x

oYg

þ V i
x

oV0
x

oX
þ V i

y

oV0
x

oYg

¼ o2V i
x

oY2
g

;
oV i

x

oX
þ

oV i
y

oYg

¼ 0;

X ¼ 0; V i
x ¼ 0; Yg ¼ 0; V i

y ¼ 0; Yg !1; V i
x ¼ 0; i ¼ 1; 2; 22; 12;

Yg ¼ 0; V1
x ¼

3
2
; V2

x ¼ V22
x ¼ V12

x ¼ 0:

ð2:39Þ
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V0
x

oV11
x

oX
þ V0

y

oV11
x

oYg

þ V11
x

oV0
x

oX
þ V11

y

oV0
x

oYg

þ V1
x

oV1
x

oX
þ V1

y

oV1
x

oYg

¼ o2V11
x

oY2
g

;
oV11

x

oX
þ

oV11
y

oYg

¼ 0;

X ¼ 0; V11
x ¼ 0; Yg ¼ 0; V11

x ¼ V11
y ¼ 0; Yg !1; V11

x ¼ 0:

ð2:40Þ

The solution (2.39) needs the following similarity variables to be employed:

Vi
x ¼ f

0

i ; Vi
y ¼

1

2
ffiffiffiffi
X
p gf

0

i � fi


 �
; fi ¼ fi gð Þ; g ¼ Ygffiffiffiffi

X
p ; i ¼ 1; 2; 22; 12:

ð2:41Þ

As a result, (2.39) has the form

2f 000i þ f0f 00i þ f 000 fi ¼ 0; fi 0ð Þ ¼ 0; f 0i 1ð Þ ¼ 0; i ¼ 1; 2; 22; 12;

f 01 0ð Þ ¼ 3
2
; f 02 0ð Þ ¼ f 022 0ð Þ ¼ f 012 0ð Þ ¼ 0:

ð2:42Þ

The solutions of (2.42) are

f1 ¼
3

2a
f 00; f2 ¼ f22 ¼ f12 � 0: ð2:43Þ

For Vx
11and Vy

11 the following similarity variables [10] are used:

V11
x ¼

9
4

f 011;V
11
y ¼

9

8
ffiffiffiffi
X
p gf 011 � f11
� �

; f11 ¼ f11 gð Þ; g ¼ Ygffiffiffiffi
X
p : ð2:44Þ

As a result [10], we have

2f 00011 þ f0f 0011 þ f 000 f11 ¼ �
1
a2

f 00f 000 ; f11 0ð Þ ¼ f 011 0ð Þ ¼ 0; f 011 1ð Þ ¼ 0: ð2:45Þ

The numerical solution of (2.45) is tabulated in [12] with f11
00

(0) =

b = - 0.54470.
From (2.21) it follows that

Bi Xð Þ ¼ oVi
x

oYg

� �
Yg¼0

¼ f 00iffiffiffiffi
X
p ; i ¼ 0; 1; 2: ð2:46Þ

Solutions (2.32), (2.37), (2.38), and (2.43) permit us to obtain the unknown
functions, namely,

B0 ¼ affiffiffiffi
X
p ; B1 ¼ B2 � 0; A2 ¼ bffiffiffiffi

X
p ; A22 ¼ A12 � 0; H2 ¼ � a

3
ffiffiffiffi
X
p :

ð2:47Þ
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From these results, the velocity distributions in dimension form [10] follows:

ux ¼
g

2m
2h0y� y2 þ 2avav

gq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lgqgvav

x

r
y

� �
; uy ¼

avav

4lx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lgqgvav

x

r
y2;

h ¼ h0 �
avav

gq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lgqgvav

x

r
:

ð2:48Þ

vx ¼ vavf 00 þ
3uav

2a
f 000 þ

9u2
av

4vav

f 011;

vy ¼
ffiffiffiffiffiffiffiffiffiffi
vavmg

4x

r
gf 00 � f þ 3uav

2avav

gf 000 � f 00
� �

þ 9u2
av

4v2
av

gf 0110 � f11
� �� �

;

2f 0000 þ f0f 000 ¼ 0; 2f 00011 þ f0f 0011 þ f 000 f11 ¼ �
1
a2

f 00f 000 ; f0 ¼ f0 gð Þ; f11 ¼ f11 gð Þ;

g ¼ y� hð Þ
ffiffiffiffiffiffiffi
vav

mgx

r
; f0 0ð Þ ¼ f 00 0ð Þ ¼ 0; f 000 0ð Þ ¼ a; f11 0ð Þ ¼ f 011 0ð Þ ¼ 0;

f 0011 0ð Þ ¼ b; a ¼ 0:33205; b ¼ �0:54470:

ð2:49Þ

In (2.49) q and qg are the liquid and gas densities, respectively.
This theoretical analysis reveals the effect of the liquid film velocity on the

velocity distribution in the gas phase (the effect of parameter h1) and the friction
force with the effect of the gas phase on the velocity distribution in the liquid
phase (the effect of parameter h2).

2.4 Absorption of Slightly Soluble Gas

The absorption rate of a slightly soluble gas is limited by the mass transfer in the
liquid phase.

For short liquid films (l \ l0) the diffusion boundary layer thickness (dc) is less
than the film thickness:

dc ¼
ffiffiffiffiffiffiffi
Dl0

uav

r
\h0: ð2:50Þ

In this case, the concentration distribution of the absorbed substance can be
obtained by the convection–diffusion equation in the boundary layer
approximation:

ux
oc

ox
þ uy

oc

oy
¼ D

o2c

oy2
; x ¼ 0; c ¼ c0; y ¼ 0; c ¼ c0; y ¼ h xð Þ; c ¼ c�;

ð2:51Þ
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Here the velocity components ux and uy are represented by (2.48) and the
boundary conditions are similar to (2.2). To solve the problem, the following
generalized variables of the diffusion boundary layer are used [13]:

x ¼ lX; y ¼ hþ dcYc; ux x; yð Þ ¼ uavUx X; Ycð Þ; uy x; yð Þ ¼ uav

dc

l
Uy X;Ycð Þ;

c x; yð Þ ¼ c0 þ c� � c0ð ÞC X; Ycð Þ:
ð2:52Þ

With the new variables, problem (2.51) has the form

3
2
� e1Y2

c þ e2
3ffiffiffiffi
X
p

� �
oC

oX
þ e2

3Yc

2X
ffiffiffiffi
X
p oC

oYc

¼ o2C

oY2
c

;

X ¼ 0; C ¼ 0; Yc ! �1; C ¼ 0; Yc ¼ 0; C ¼ 1;

ð2:53Þ

where e1and e2 are small parameters, namely,

e1 ¼
3Dl

2uavh2
0

� 10�1; e2 ¼
avav

qgh0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lgqgvav

l

r
� 10�2: ð2:54Þ

Having in mind the orders of magnitude of the parameters e1 and e2, we can
express the solution as [13]

C ¼ C0 þ e1C1 þ e2C2 þ e2
1C11; ð2:55Þ

ensuring accuracy of about 1%.
The zeroth approximation is

3
2
oC0

oX
¼ o2C0

oY2
c

; X ¼ 0; C0 ¼ 0; Yc ! �1; C0 ¼ 0; Yc ¼ 0; C0 ¼ 1;

ð2:56Þ

The solution of (2.56) was developed by similarity variables [13]:

C0 X; Ycð Þ ¼ erfcgc ¼ 1� 2ffiffiffi
p
p
Zgc

0

exp �s2
� �

ds; gc ¼ �
ffiffiffi
3
8

r
Ycffiffiffiffi

X
p : ð2:57Þ

The next approximation is

3
2
oC1

oX
¼ o2C1

oY2
c

þ Y2
c

oC0

oX
; X ¼ 0; C1 ¼ 0; Yc ! �1; C1 ¼ 0; Yc ¼ 0;

C1 ¼ 0:

ð2:58Þ
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The solution of (2.58) can be obtained by Green’s functions as

C1 X; Ycð Þ ¼ 1
3
ffiffiffi
p
p Yc

ffiffiffiffiffiffi
2X

3

r
þ Y3

cffiffiffiffiffiffi
6X
p

 !
exp � 3Y2

c

8X

� �
: ð2:59Þ

The problem for C2 is analogous to that expressed by (2.56) with zeroth-order
boundary conditions:

C2 X; Ycð Þ � 0: ð2:60Þ

The last boundary value problem is analogous to (2.58):

3
2
oC11

oX
¼ o2C11

oY2
c

þ Y2
c

oC1

oX
; X ¼ 0; C11 ¼ 0; Yc ! �1;C11 ¼ 0; Yc ¼ 0;

C11 ¼ 0;

ð2:61Þ

and the solution is

C11 X; Ycð Þ ¼ 1

3
ffiffiffiffiffiffi
6p
p 38

27
YcX

ffiffiffiffi
X
p
� 19

18
Y3

c

ffiffiffiffi
X
p
þ 4

15
Y5

cffiffiffiffi
X
p þ 1

24
Y7

c

X
ffiffiffiffi
X
p

� �
exp �3Y2

c

8X

� �
:

ð2:62Þ

The solution of problem (2.53) permits us to obtain the Sherwood number (2.8)
and the mass transfer rate (2.7), namely,

Sh ¼ kl

D
¼ Pe

Z1

0

oC

oYc

� �
Yc¼0

dX ¼
ffiffiffiffiffiffiffiffi
6Pe

p

r
1� 2e1

27
� 38e2

1

1443

� �
: ð2:63Þ

In (2.63) e1 ¼ 9
4 Fo; i.e., (2.63) coincides with (2.9). This result shows that the

velocity distribution in the liquid film, affected by the gas motion, is independent
of the mass transfer rate in the liquid phase (the effect is less than 1%).

2.5 Absorption of Highly Soluble Gas

The absorption rate of a highly soluble gas is limited by the mass transfer in the
gas phase. For short liquid films (l \ l0) the diffusion boundary layer thickness

~dg


 �
is

~dg ¼
ffiffiffiffiffiffiffiffiffi
Dgl0
vav

r
� dg; Dg� mg

� �
: ð2:64Þ
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In this case the concentration distribution of the absorbed substance can be
obtained from the convection–diffusion equation in the boundary layer
approximation:

vx

ocg

ox
þ vy

ocg

oy
¼ Dg

o2cg

oy2
; x ¼ 0; c ¼ cg0; y!1; cg ¼ cg0; y ¼ h xð Þ;

c ¼ c�g;

ð2:65Þ

where the velocity components vx and vy are represented in (2.49). For solution of the
problem, the generalized variables of the diffusion boundary layer are used [13]:

x ¼ lX; y ¼ hþ ~dg
~Yg; vx x; yð Þ ¼ vavVx X; ~Yg

� �
; vy x; yð Þ ¼ vav

~dg

l
Vy X; ~Yg

� �
;

cg ¼ c�g þ cg0 � c�g


 �
Cg:

ð2:65aÞ

In new variables, the problem (2.65) has the form

f 00þ
h1

a
f 000 þh2

1f 011

� �
oCg

oX
þ

ffiffiffiffiffiffiffi
Scg

p
2
ffiffiffiffi
X
p gf 00�f0 þ

h1

a
gf 000 �f 00
� �

þh2
1 gf 011�f11
� �� �

oCg

o~Yg

¼o2Cg

o~Y2
g

; X¼0; Cg¼1; ~Yg¼0; Cg¼0; ~Yg!1; Cg¼1; ð2:66Þ

where

g ¼
~Ygffiffiffiffiffiffiffiffiffiffi
ScgX

p ; Scg ¼
mg

Dg

: ð2:67Þ

Having in mind the orders of magnitude of the parameter h1 * 10-1, we obtain
the solution of (2.66) in the form [13]

Cg ¼ C0
g þ h1C1

g þ h2
1C11

g ; ð2:68Þ

with an accuracy of about 1%.
The zeroth approximation leads to the following boundary value problem:

f 00
oC0

g

oX
þ

ffiffiffiffiffiffiffi
Scg

p
2
ffiffiffiffi
X
p gf 00 � f0

� �oC0
g

o~Yg

¼
o2C0

g

o~Y2
g

;

X ¼ 0; C0
g ¼ 1; ~Yg ¼ 0; C0

g ¼ 0; ~Yg !1; C0
g ¼ 1:

ð2:69Þ

With the similarity variable (2.67) we have

C0
g X; ~Yg

� �
¼ F0 gð Þ ¼ b0

Zg

0

exp
Scg

2

Zs

0

f0 tð Þdt

2
4

3
5ds; ð2:70Þ
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where

b0 ¼
1

u0 Scg

� � ; u0 Scg

� �
¼
Z1

0

exp
Scg

2

Zs

0

f0 tð Þdt

2
4

3
5ds: ð2:71Þ

The numerical integration [5] of (2.71) yields

u0 Scg

� �
¼ 3:01Sc�0:35

g : ð2:72Þ

The first approximation to (2.68) is obtained by solving the boundary value
problem [13]:

f 00
oC1

g

oX
þ

ffiffiffiffiffiffiffi
Scg

p
2
ffiffiffiffi
X
p gf 00 � f0

� �oC1
g

o~Yg

¼
o2C1

g

o~Y2
g

� 1
a

f 000
oC0

g

oX
�

ffiffiffiffiffiffiffi
Scg

p
2a

ffiffiffiffi
X
p gf 000 � f 00
� �oC0

g

o~Yg

;

X ¼ 0; C1
g ¼ 0; ~Yg ¼ 0; C1

g ¼ 0; ~Yg !1; C1
g ¼ 0:

ð2:73Þ

The solution of (2.73) is found similarly to that of (2.69), namely,

C1
g X; ~Yg

� �
¼ F1 gð Þ ¼

Zg

0

b2
0

a
� b0Scg

2a
f0 sð Þ

� �
exp

Scg

2

Zs

0

f0 tð Þdt

2
4

3
5ds: ð2:74Þ

To determine Cg
11 the following boundary value problem has to be solved:

f 00
oC11

g

oX
þ

ffiffiffiffiffiffiffi
Scg

p
2
ffiffiffiffi
X
p gf 00 � f0

� �oC11
g

o~Yg

¼
o2C11

g

o~Y2
g

� 1
a

f 000
oC1

g

oX
�

ffiffiffiffiffiffiffi
Scg

p
2a

ffiffiffiffi
X
p gf 000 � f 00
� �oC1

g

o~Yg

� f 011

oC0
g

oX
þ

ffiffiffiffiffiffiffi
Scg

p
2
ffiffiffiffi
X
p gf 011 � f11

� �oC0
g

o~Yg

;

X ¼ 0; C11
g ¼ 0; ~Yg ¼ 0; C11

g ¼ 0; ~Yg !1; C11
g ¼ 0: ð2:75Þ

The solution of (2.73) is found similarly to that of (2.69), namely,

C11
g X; ~Yg

� �
¼ F11 gð Þ ¼

Zg

0

b1 �
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0Scg

2a2
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b0Sc2
g

8a2
f 2
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2

Zs

0
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2

Zs

0
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2
4

3
5ds; b1 ¼

b3
0

a
�

b2
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g
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0Scg
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� �
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f 2
0 sð Þ 
 exp
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2

Zs
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f0 tð Þdt

2
4
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� �
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 exp
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ð2:76Þ
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These results permit the Sherwood number to be obtained [13]:

Shg ¼
kgl

Dg

¼ 2
ffiffiffiffiffiffiffiffi
Reg

p
u Scg

� �
;Reg ¼

vavl

mg

;

u ¼ 1
u0
þ h1

au2
0

þ h2
1

1

au3
0

�
u1Sc2

g

8a2u2
0

þ u2Scg

2u2
0

 !
:

ð2:77Þ

The analysis of the absorption rate

Jg ¼
Dg

l

Z l

0

ocg

oy

� �
y¼h

dx ¼ kg cg0 � c�g


 �
; ð2:78Þ

of highly soluble gas in a laminar liquid film shows the effect on the surface film
velocity (h1).

3 Diffusion-Type Models

The analysis of the theoretical models indicates that the main difficulties are
related to the hydrodynamic equations of the models. The first problem results
from the nonlinearity of the equations, whereas the second one originates from the
very complicated or unidentified shape of the interface separating the phases.
The first problem can be avoided with the help of advanced numerical codes. The
second one is a common problem in columnar devices for performing chemical
reactions in gas–liquid and liquid–liquid systems such as airlifts and bubble col-
umns. In all these cases, the formulation of the boundary conditions at the inter-
phase surface is practically impossible and as a result the velocity distribution in
these devices cannot be obtained. The solution of this problem in model theories
(see Sect. 3.1) results in large discrepancies between the theoretical predictions
and the performance of the real processes. A way to overcome these difficulties
and to develop solutions of existing problems is the use of diffusion-type models.

3.1 Mass Transfer with a Chemical Reaction

Many mass transfer processes in columnar devices may be described by convec-
tion–diffusion equations with volumetric reaction terms [14], among them are gas
absorption in bubble columns and packed beds performing homogeneous or het-
erogeneous reactions [15–18] and airlifts for chemical, biochemical, or photo-
chemical reactions [19–23].

The convective transfer in columns results from laminar or turbulent (large-
scale pulsations) flows. The diffusive transfer is molecular or turbulent (small-
scale pulsations). The volumetric reaction is a mass source (or sink) as a result of
chemical reactions or interphase mass transfer.
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Let us consider a liquid motion in a column with a homogeneous chemical
reaction [14] between two liquid components. If the difference between the
component concentrations is very large, then the chemical reaction will be first
order. Further, if liquid circulation takes place, the process is nonstationary. If we
define the velocity and concentration distributions in the column as

u ¼ u r; zð Þ; v ¼ v r; zð Þ; c ¼ c t; r; zð Þ; ð3:1Þ

the model can be expressed as

oc

ot
þ u

oc

oz
þ v

oc

or
¼ D

o2c

oz2
þ 1

r

oc

or
þ o2c

or2

� �
� kc;

ou

oz
þ ov

or
þ v

r
¼ 0;

t ¼ 0; c ¼ c0; r ¼ 0;
oc

or
¼ 0; r ¼ R;

oc

or
¼ 0;

z ¼ 0; c t; r; 0ð Þ ¼ �c t; lð Þ; �u 0ð Þ�c t; lð Þ ¼ uc� D
oc

oz
;

ð3:2Þ

where u and v are the velocities, c is the concentration of the reagent (with small
concentration), k is the chemical reaction rate constant, t is the time, r and z are
radial and axial coordinates, D is the diffusivity, c0 is the initial concentration,
�c t; lð Þ is the average concentration, �u 0ð Þ is the velocity at the inlet (outlet) of the
column, and R and l are the column radius and height.

In the cases of heterogeneous reactions performed at the surfaces of catalysts,
the chemical reaction rate (mol m-2 s-1) should be multiplied by the specific
catalytic surface (m2 m-3) and inserted into (3.2) as a volumetric mass source
(sink).

3.2 Interphase Mass Transfer

In the case of interphase mass transfer in gas–liquid or liquid–liquid systems,
model (3.2) has to contain convection–diffusion equations for the two phases.
Moreover, the chemical reaction rate has to be replaced by the interphase mass
transfer rate:

k c1 � vc2ð Þ; ð3:3Þ

Here, k is interphase mass transfer coefficient, c1 is the concentration of the
transferred substance in the gas (liquid) phase, c2 is the concentration of the
transferred substance in the liquid phase, and v is Henry’s constant (the liquid–
liquid mass distribution coefficient).

As a result of all these assumptions, the diffusion model for interphase mass
transfer in a column apparatus becomes

eiui

oci

oz
¼ eiDi

o2ci

oz2
þ 1

r

oci

or
þ o2ci

or2

� �
� �1ð Þiþ1k c1 � v:c2ð Þ; ð3:4Þ
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where Di and ei(i = 1, 2) are diffusivities and holdup coefficients (e1 ? e2 = 1).
The boundary conditions for (3.4) are similar to those in (3.2), but differences
depending on the conditions for contact between the two phases are possible.

Let us consider a countercurrent gas–liquid bubble column with column height
l, where c1(z1, r) and c2(z2, r) are the concentrations of the absorbed substance in
the gas and liquid phases (z1 = l - z2). The boundary conditions of (3.4) have the
form

z1 ¼ 0; c1 0; rð Þ ¼ c0
1; �u1 0ð Þc0

1 ¼ u1 0; rð Þc1 0; rð Þ � D1
o c1

o z1

� �
z1¼0

;

z2 ¼ 0; c2 0; rð Þ ¼ c0
2; �u2 0ð Þc0

2 ¼ u2 0; rð Þc2 0; rð Þ � D2
o c2

o z2

� �
z2¼0

;

r ¼ 0;
oc1

or
¼ oc2

or
¼ 0; r ¼ R;

oc1

or
¼ oc2

or
¼ 0;

ð3:5Þ

where �ui 0ð Þ; i ¼ 1; 2; are the inlet average velocities in the gas and liquid phases.
The extraction processes commonly performed in columnar devices are

examples of application of models (3.5).

3.3 Average Concentration Models

Generally, in the diffusion-type models (3.2) and (3.5), the velocity distributions in
the phases cannot be obtained. The problem can be avoided if the average values
of the velocity and the concentration over the cross-sectional area of the column
are used. This approach is more adequate with respect to the experimental data
commonly used for the purpose of parameter identification, because measurements
of average values (velocity or concentration) are simpler with respect to local
(point) measurements.

Let us consider a cylinder with radius R = R (u), where u is the angle in
cylindrical coordinates (z, r, u). The average value of the function f(z, r, u) for the
cross-sectional area of the cylinder is

�f zð Þ ¼
RR

Sð Þf z; r;uð ÞdS

S
; ð3:6Þ

where

S ¼
Z2p

0

R uð Þ½ �2

2
du;

ZZ
Sð Þ

f z; r;uð Þ dS ¼
Z2p

0

ZR uð Þ

0

rf z; r;uð Þ dr

2
64

3
75du: ð3:7Þ
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For a circular cylinder with R = const. and from (3.6) and (3.7) we have

S ¼ pR2;

ZZ
Sð Þ

f z; rð Þ dS ¼ 2p
ZR

0

rf z; rð Þ dr; �f zð Þ ¼ 2
R2

ZR

0

rf z; rð Þ dr: ð3:8Þ

For the average values of the velocity and concentration for the column cross-
sectional area from (3.8) it follows that

�u zð Þ ¼ 2
R2

ZR

0

ru r; zð Þdr; �v zð Þ ¼ 2
R2

ZR

0

rv r; zð Þdr; �c t; zð Þ ¼ 2
R2

ZR

0

rc t; r; zð Þdr:

ð3:9Þ

Functions (3.1) can be represented with the help of the average functions (3.9):

u r; zð Þ ¼ �u zð Þ~u r; zð Þ; v r; zð Þ ¼ �v zð Þ~v r; zð Þ; c t; r; zð Þ ¼ �c t; zð Þ~c r; zð Þ: ð3:10Þ

Here �uðr; zÞ; �vðr; zÞ, and ~c r; zð Þ represent the radial nonuniformity of both the
velocity and the concentration distributions satisfying the conditions

2
R2

ZR

0

r~u r; zð Þdr ¼ 1;
2

R2

ZR

0

r~v r; zð Þdr ¼ 1;
2

R2

ZR

0

r ~c r; zð Þdr ¼ 1: ð3:11Þ

The average concentration model may be obtained if we put (3.10) into (3.2)
and then multiply by r and integrate with respect to r over the interval [0, R]. The
result is

o�c

ot
þ a R; zð Þ�uo�c

oz
þ oa

oz
�u�cþ a�v�c ¼ D

o2�c

oz2
� k�c;

t ¼ 0; �c 0; zð Þ ¼ c0;

t ¼ 0; �c 0; zð Þ ¼ c0; z ¼ 0; �c t; 0ð Þ ¼ �c t; lð Þ; �u 0ð Þ�c t; lð Þ ¼ a R; zð Þ �u �c� D
o�c

oz
;

ð3:12Þ

where

a R; zð Þ ¼ 2
R2

ZR

0

r~u~cdr; a R; zð Þ ¼ 2
R2

ZR

0

r~v
o~c

oz
dr: ð3:13Þ

The average radial velocity component �v may be obtained from the continuity
equation in (3.2) if it is multiplied by r2 and then integrated with respect to r over
the interval [0, R]:

�v ¼ b
o�u

oz
þ ob

oz
�u; b ¼ 2

R2

ZR

0

r2~udr: ð3:14Þ
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If we put (3.14) into (3.12), the diffusion model has the form

o�c

ot
þ a R; zð Þ�u o�c

oz
þ b �u�cþ c�c

o�u

oz
¼ D

o2�c

oz2
� k�c; ð3:15Þ

where

b ¼ oa
oz
þ a

ob

oz
; c ¼ ab: ð3:16Þ

In model (3.15), �u is the average velocity of the laminar or turbulent flow in the
column and D is the diffusivity or turbulent diffusivity (as a result of the small-
scale pulsations). The model parameters a, b, and c are related to the radial
nonuniformities and show the effect of the column radius on the mass transfer
kinetics.

The parameter k in model (2.13.15) may be obtained in advance by chemical
kinetics modeling. If the velocity and the concentration radial nonuniformities are
independent of the axial coordinate z, then the parameters a and c are related to the
column radius only. A constant average velocity in these conditions leads to the

simplest model o�u
oz ¼ 0

 �

:

The parameters in the diffusion model (3.15) show the scale-up effect of
increase of column radius on the mass transfer kinetics if there exists a radial
nonuniformity in the velocity distribution.

The identification of the parameters a, b, c, and D may be performed by means
of experimental data concerning average velocities and concentrations, obtained at
a laboratory scale. In the case of scale-up, only a (R, z), b (R, z), and c (R, z) need
be obtained because the values of D and k are the same for both the laboratory
model and the real-scale column.

The average concentration of the model in the case of interphase mass transfer
may be obtained by the analogy with (3.15), namely,

ai R; zið Þ�ui

o�ci

ozi

þ bi R; zið Þ�ui�ci þ ci R; zið Þ�ci

o�ui

ozi

¼ Di

o2�ci

oz2
i

� �1ð Þiþ1 k

ei

�c1 � v�c2ð Þ:

ð3:17Þ

where ai, biand ci(i = 1, 2) are similar to a, b and c in (3.13), (3.14), and (3.16).
The boundary conditions of (3.17) are

z1 ¼ 0; �c1 0ð Þ ¼ c0
1; �u1 0ð Þc0

1 ¼ a1 R; z1ð Þ�u1 0ð Þ�c1 0ð Þ � D1
o�c1

o z1

� �
z1¼0

;

z2 ¼ 0; �c2 0ð Þ ¼ c0
2; �u2 0ð Þc0

2 ¼ a2 R; z2ð Þ�u2 0ð Þ�c2 0ð Þ � D2
o�c2

o z2

� �
z2¼0

:

ð3:18Þ

The radial nonuniformity of the velocity is the main cause of the scale-up effect
manifesting itself by reduced process efficiency with increasing column diameter.
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The results developed demonstrate that the diffusion models in columnar
devices allow us to replace the radial distributions of both the velocity and the
concentration by the average values over the column cross-sectional area.

These new models permit us to identify the model parameters using a hierar-
chical approach. As a first step, the chemical reaction (or mass transfer) rate
constant should be defined. The next step addresses the identification of the
parametersa, b, c, and D using experimental data, obtained with real liquids. The
scale-up refers to specification of the parameter a, b, and c for the real-scale
device. As a reasonable outcome, the suggested mathematical model may be used
for the simulation of real-scale processes carried out in columnar devices.

3.4 Airlift Reactor

The approach developed for modeling mass transfer and chemical processes in
columnar devices permits us to model complex processes such as chemical,
photochemical, and biochemical reactions in airlift reactors.

The hydrodynamics of the gas and liquid flows in airlift reactors is very
complicated. Investigations of airlift reactors have shown [19–23] that the con-
vection–diffusion equation with a volumetric reaction may be used as a mathe-
matical structure for the model. Under these conditions the convective transfer, the
diffusive transfer, and the volumetric reactions are carried out simultaneously. The
convective transfer is due to laminar or turbulent (large-scale pulsations) flows,
whereas the diffusive transport is of a molecular of nature or is promoted by small-
scale turbulent pulsations. The volumetric reactions are mass sources (sinks) as a
result of chemical (photochemical or biochemical) reactions and interphase mass
transfer.

Let us consider a chemical reaction carried out in an airlift reactor [23] with
cross-sectional area F0 of the riser and F1 of the downcomer. The length of both
working zones is l. The volumetric flow rates are Q0 and Q1 for the gas phase and
liquid phase, respectively. The gas and liquid holdups in the riser are e and (1 - e),
respectively.

The concentration of the active gas component in the gas phase is c(x, r, t),
whereas that in the liquid phase is c0(x, r, t) for the riser and c1(x1, r, t) for the
downcomer, where x1 = l - x. The concentration of the active liquid component
in the downcomer is c2(x1, r, t), whereas that in the riser is c3(x, r, t).

The interphase mass transfer rate in the riser is

R ¼ k c� vc0ð Þ: ð3:19Þ

The average velocities in the gas and liquid phases at the inlet (outlet) of the
column are

u0 ¼
Q0

F0
; u1 ¼

Q1

F0
; u ¼ Q1

F1
: ð3:20Þ
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The chemical reaction rates in the riser and in the downcomer are

R1 ¼ k0ca1
0 ca2

3 ; R2 ¼ k0ca1
1 ca2

2 : ð3:21Þ

The building of the mathematical model of chemical processes in an airlift
reactor will be performed on the basis of the differential mass balance in the
reactor volume [14], which means employment of convection–diffusion equations
with volumetric reactions.

The equations for the active gas component concentration distributions in the
gas and liquid phases in the riser are

e
oc

ot
þ eu0

oc

ox
þ ev0

oc

or
¼ eD

o2c

ox2
þ 1

r

oc

or
þ o2c

or2

� �
� k c� vc0ð Þ;

ou0

ox
þ ov0

or
þ v0

r
¼ 0;

1� eð Þoc0

ot
þ 1� eð Þ u1

oc0

or
þ v1

oc0

ox

� �
¼ 1� eð ÞD0

o2c0

ox2
þ 1

r

oc0

or
þ o2c0

or2

� �

k c� vc0ð Þ � k0ca1
0 ca2

3 ;
ou1

ox
þ ov1

or
þ v1

r
¼ 0:

ð3:22Þ

It is possible to suppose that e = const.
The equations for the concentration distributions for the active liquid and gas

components in the liquid phase in the downcomer are

oc1

ot
þ u

oc1

ox1
þ v

oc1

or
¼ D1

o2c1

ox2
1

þ 1
r

oc1

or
þ o2c1

or2

� �
� k0ca1

1 ca2
2 ;

oc2

ot
þ u

oc2

ox1
þ v

oc2

or
¼ D2

o2c2

ox2
1

þ 1
r

oc2

or
þ o2c2

or2

� �
� k0ca1

1 ca2
2 :

ð3:23Þ

The equation for a concentration distribution for the active liquid component in
the riser is

1� eð Þoc3

ot
þ 1� eð Þ u1

oc3

or
þ v1

oc3

ox

� �
¼ 1� eð ÞD3

o2c3

ox2
þ 1

r

oc3

or
þ o2c3

or2

� �

� k0ca1
0 ca2

3 :

ð3:24Þ

The initial conditions will be formulated for this case, when at t = 0 the process
starts with the beginning of gas motion:

t ¼ 0; c x; r; 0ð Þ ¼ c 0ð Þ; c0 x; r; 0ð Þ ¼ 0; c1 x1; r; 0ð Þ ¼ 0; c2 x1; r; 0ð Þ
¼ c 0ð Þ

2 ; c3 x; r; 0ð Þ ¼ c 0ð Þ
2 ; ð3:25Þ

where c(0) and c2
(0) are the initial concentrations of the reagents in the two phases.

3 Diffusion-Type Models 87



The boundary conditions are, in fact, equalities of the concentrations and the
mass fluxes at both ends of the working zones x = 0(x1 = l) and x = l(x1 = 0).
The boundary conditions for c(x, r, t) and c0(x, r, t) in Eqs. (3.22) are

x¼ 0; c¼ c
0ð Þ
; ��u0c 0ð Þ ¼ u0c 0; r; tð Þ�D

oc

ox

� �
x¼0

; c0 0; r; tð Þ ¼ �c1 l; tð Þ;

��u�c1 l; tð Þ ¼ u1c0 0; r; tð Þ�D0
oc0

ox

� �
x¼0

; r¼ 0;
oc

or
¼ oc0

or
¼ 0; r¼ r0;

oc

or
¼ oc0

or
¼ 0:

ð3:26Þ
The boundary conditions for c1(x1, r, t), c2(x1, r, t) and c3(x1, r, t) in Eqs. (3.23)

and (3.24) are

x1 ¼ 0; c1 0; r; tð Þ ¼ �c0 l; tð Þ; u1�c0 l; tð Þ ¼ uc1 0; r; tð Þ �D1
oc1

ox1

� �
x1¼0

;

r ¼ r0;
oc1

or
¼ 0; r ¼ R0;

oc1

or
¼ 0;

x1 ¼ 0; c2 0; r; tð Þ ¼ �c0 l; tð Þ; u1�c0 l; tð Þ ¼ uc2 0; r; tð Þ �D2
oc2

ox1

� �
x1¼0

;

r ¼ r0;
oc2

or
¼ 0; r ¼ R0;

oc21

or
¼ 0;

x ¼ 0; c3 0; r; tð Þ ¼ �c2 l; tð Þ; u�c2 l; tð Þ ¼ u1c3 0; r; tð Þ �D2
oc3

ox

� �
x¼0

;

r ¼ r0;
oc2

or
¼ 0; r ¼ R0;

oc21

or
¼ 0;

ð3:27Þ

The development of the average concentration model starts with the first
equation in (3.22) by analogy with (3.17) for i = 1 using the average velocities
and concentration:

�u0 xð Þ ¼ 2

r2
0

Zr0

0

ru0 x; rð Þdr; �v0 xð Þ ¼ 2

r2
0

Zr0

0

rv0 x; rð Þdr;�c x; tð Þ ¼ 2

r2
0

Zr0

0

rc x; r; tð Þdr;

ð3:28Þ
where �u0 0ð Þ ¼ ��u0. As a result, the following forms are developed:

o�c

ot
þ A r0; xð Þ �u0

o�c

ox
þ B r0; xð Þ�u0�cþ G r0; xð Þ�c o�u0

ox
¼ D

o2�c

ox2
� k

e
�c� v�c0ð Þ; ð3:29Þ

where

A r0; xð Þ ¼ 2
r2

0

Zr0

0

r ~u0~cdr; g r0; xð Þ ¼ 2
r2

0

Zr0

0

r ~v0
o~c

or
dr;

h r0; xð Þ ¼ 2

r2
0

Zr0

0

r2~u0dr;Bðr0; xÞ ¼
oA

ox
þ g

ox
; G(r0; xÞ ¼ gh:

ð3:30Þ
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The boundary conditions of (3.30) are

t ¼ 0; �c x; 0ð Þ ¼ c 0ð Þ; x ¼ 0; �c 0; tð Þ ¼ c 0ð Þ;

��uoc 0ð Þ ¼ A r0; xð Þ�u0 0ð Þ�c 0; tð Þ � D
o�c

ox

� �
x¼0

;
ð3:31Þ

The parameters in model (3.29) are of two types—specific model parameters
(D, k, e, v) and scale model parameters (A, B, G). The scale parameters are
functions of the column radius ro. They result from the radial nonuniformity in the
velocity and the concentration fields, and show the effect of the scale-up on the
model equations. The parameter v may be obtained by thermodynamic measure-
ments in advance.

From (3.29) it follows that the average radial velocity component affects the
transfer process in the cases when o�u0=ox 6¼ 0: This simply means that the gas
holdup is not constant along the column height. For many practical interesting
cases it is possible to assume e = const., which yields o�u0=ox ¼ 0 and the radial
velocity component �v0 ¼ 0ð Þ can be omitted.

The holdup e can be obtained from the balance relationship:

e ¼ l� l0ð Þ F0 þ F1ð Þ
l� l0ð Þ F0 þ F1ð Þ þ F0l0

; ð3:32Þ

where l and lo are liquid levels in the riser with and without gas motion.
The values of the parameters D, k, A, B, and G should be obtained by means if

experimental data concerning �c x; tð Þ measured at the laboratory scale. In the case
of scale-up, only A, B, and G have to be specified when using a column with a
large diameter since D and k do not change with increase of the scale of the device.

The same technology may be applied to the equations of the model, and the
result is

o�c0

ot
þ A0 r0; xð Þ �u1

o�c0

ox
þ B0 r0; xð Þ�u1�c0 � G0 r0; xð Þ�c0

o�u1

ox

¼ D0
o2c0

ox2
þ k

1� e
�c� vc0ð Þ �M0 r0; xð Þ k0

1� e
�ca1

0 �ca2
3 ;

M0 r0; xð Þ ¼ 2
r2

0

Zro

0

r ~ca1
0 ~ca2

3 dr;

t ¼ 0; c0 x; 0ð Þ ¼ 0; x ¼ 0; c0 0; tð Þ ¼ c1 l; tð Þ;

c1 l; tð Þ��u ¼ A0 r0; xð Þu1 0ð Þc0 0; tð Þ � D0
oc0

ox

� �
x¼0

;

ð3:33Þ
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where A0, B0, and G0 are obtained by analogy with A, B, and G. The actual
expressions for A, B, and G are not of interest because their values should be
obtained by means of experimental data.

The average concentration model for �c1 is obtained by analogy with �c :

oc1

ot
þ A1 r0;R0; x1ð Þ�uoc1

ox1
þ B1 r0;R0; x1ð Þuc1 þ G1 r0;R0; x1ð Þc1

ou

ox1

¼ D1
o2c1

ox2
1

� k0M r0;R0; x1ð Þca1
1 ca2

2

t ¼ 0; �c1 x1; 0ð Þ ¼ 0; x1 ¼ 0; �c1 0; tð Þ ¼ �c0 l; tð Þ;

�c0 l; tð Þ��u1 ¼ A1 r0;R0; x1ð Þ�u 0ð Þ�c1 0; tð Þ � D1
o�c1

ox1

� �
x1¼0

;

ð3:34Þ

where

�u x1ð Þ ¼
2

R2
0 � r2

0

ZR0

r0

ru x1; rð Þdr; �c1 x1; tð Þ ¼ 2

R2
0 � r2

0

ZR0

r0

rc1 x1; r; tð Þdr;

M r0;R0; x1ð Þ ¼ 2

R2
0 � r2

0

ZR0

r0

r ~ca1
1 ~ca2

2 dr

ð3:35Þ

and A1, B1, G1 are obtained by analogy with A, B, and G, but the limits of the
integrals are [r0, R0].

The average concentration model for �c2 is

o�c2

ot
þ A2 r0;R0; x1ð Þ�uo�c2

ox1
þ B2 r0;R0; x1ð Þ�u�c2 þ G2 r0;R0; x1ð Þ�c2

o�u

ox1

¼ D2
o2�c2

ox2
1

�M r0;R0; x1ð Þk0�c
a1
1 �ca2

2 ;

t ¼ 0; �c2 ¼ c 0ð Þ
2 ; x1 ¼ 0; �c2 0; tð Þ ¼ �c3 l; tð Þ;

��u1�c3 l; tð Þ ¼ A2 r0;R0; x1ð Þ�u 0ð Þ�c2 0; tð Þ � D2
o�c2

ox1

� �
x1¼0

;

ð3:36Þ

where

�c2 ¼
2

R2
0 � r2

0

ZR0

r0

rc2 x1; r; tð Þdr; �c3 ¼
2

r2
0

Zr0

0

rc3 x; r; tð Þdr: ð3:37Þ
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The integration of (3.24) leads to the equation for �c3, namely,

o�c3

ot
þA3 r0;xð Þ�u1

o�c3

ox
þB3 r0;xð Þ�u1�c3þG3 r0;xð Þ�c3

o�u1

ox
¼D3

o2�c3

ox2
�M0 r0;xð Þ ko

1�e
�ca1

0 �ca2
3 ;

t¼0; �c3 x;0ð Þ¼c 0ð Þ
2 ; x¼0; �c3 0;tð Þ¼�c2 l;tð Þ;

��u�c2 l;tð Þ¼A3 r0;xð Þ�u1 0ð Þ�c3 0;tð Þ�D3
o�c3

ox

� �
x¼0

;

ð3:38Þ

where A3, B3, and G3 are obtained by analogy with A, B, and G.
For many practically interesting cases the specific volume (m3 m-3) of the

catalytic particles or gas holdup are almost constant along the column, i.e.,

o�u

ox
¼ o�u0

ox
¼ o�u1

ox
¼ 0; �v ¼ �v0 ¼ �v1 ¼ 0; ð3:39Þ

and the number of model parameters decreases, i.e., G = G0 = G1 = G2 =

G3 = 0.
Problems (3.29), (3.33), (3.34), (3.36), and (3.38) are the mathematical model

of an airlift chemical reactor applicable to either homogeneous or heterogeneous
reactions. The model parameters are of five types:

1. Known beforehand (c(0), c2
(0), R0, r0).

2. Obtained beforehand (e, v, a1z, a2, k0).
3. Obtained without a chemical reaction (k, D, D0, A, B, A0, B0, G, G0).
4. Obtained with a chemical reaction (D1, D2, D3, M, M0).
5. Obtained in the modeling and specified in the scale-up (A, A0, A1, A2, A3, B, B0,

B1, B2, B3, G, G0, G1, G2, G3, M, M0).

These results show the possibility to create models for an airlift reactor using
average velocities and concentrations only instead of the corresponding radial
distribution profiles. This approach permits us to solve the scale-up problem
caused by radial nonuniformities in the velocity and concentration fields. The
model parameter identification is based on average values of experimental data
concentration, which results in advantages with respect to local concentration
measurements.

4 Similarity Theory Models

Physical modeling is another possibility for quantitative description of the pro-
cesses in chemical engineering. Obtaining experimental data from a process in a
model apparatus and using scale coefficients, we can find a quantitative description
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of a given process in a real device, if these two processes are similar, of course.
The similarity theory formulates similarity conditions on the basis of a penetrating
physical analysis. This theory uses very simple mathematical methods and many
applications are encountered. However, in many cases when the physical basis of
the similarity theory is ignored, the results of this theory are unreasonable and the
theory of similarity becomes a similarity of theory. However, we follow the correct
approach, which be exemplified by the gas absorption problem developed next.

4.1 Absorption in a Packed-Bed Column

Let us consider absorption of a slightly soluble gas in a packed-bed column [1].
The packed bed is ordered (structured packing) and forms vertical canals of width
d and height l. Both the gas and the liquid move in the canals in gas–liquid film
co-current flow mode. In such a case (see Sect. 2.1 for details) the mathematical
description has the form

u gð Þ
x

ou gð Þ
x

ox
þ u gð Þ

y

ou gð Þ
x

oy
¼ mg

o2u gð Þ
x

oy2
;

ou gð Þ
x

ox
þ ou gð Þ

y

oy
¼ 0;

m
o2ux

oy2
þ g ¼ 0;

oux

ox
þ ouy

oy
¼ 0; ux

oc

ox
þ uy

oc

oy
¼ D

o2c

oy2
;

x ¼ 0; u gð Þ
x ¼ u gð Þ

0 ; y ¼ 0; ux ¼ 0; uy ¼ 0;

y ¼ h; u gð Þ
x ¼ ux; u

gð Þ
y ¼ 0; lg

ou gð Þ
x

oy
¼ l

oux

oy
; c ¼ c�;

y ¼ 0;
oc

oy
¼ 0; y ¼ d

2
;
ou gð Þ

x

oy
¼ 0;

ð4:1Þ

where x = 0 is the canal inlet, y = 0 is the solid interface, h is the film thickness
(obtained from liquid flow rate Q; see 1.2.64), and c*is the equilibrium
concentration.

4.2 Generalized (Dimensionless) Variables

The generalized variables are defined through the characteristic process scales as

X ¼ x

l
; Yg ¼

y� h

d
; Y ¼ y

h
; eg ¼

d

l
; e ¼ h

l
;

U gð Þ
x ¼

u gð Þ
x

u gð Þ
0

; U gð Þ
y ¼

u gð Þ
y

egu gð Þ
0

; Ux ¼
ux

u0
; Uy ¼

uy

eu0
; C ¼ c� c�

c0 � c�
:
ð4:2Þ
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If (4.2) is introduced into (4.1), then the mathematical description has the form

U gð Þ
x

oU gð Þ
x

oX
þ U gð Þ

y

oU gð Þ
x

oYg

¼ 1
egReg

o2U gð Þ
x

oY2
g

;
oU gð Þ

x

oX
þ oU gð Þ

x

oY
¼ 0;

o2Ux

oY2
þ Re

Fr
¼ 0;

oUx

oX
þ oUy

oY
¼ 0; Ux

oC

oX
þ Uy

oC

oY
¼ 1

ePe

o2C

oY2
;

X ¼ 0; U gð Þ
x ¼ 1; Ux ¼ 1; C ¼ 1; Y ¼ 0; Ux ¼ 0; Uy ¼ 0;

oC

oY
¼ 0;

Y ¼ 1; Yg ¼ 0; U gð Þ
x ¼

u0

u gð Þ
0

Ux; U gð Þ
y ¼ 0;

oUx

oY
¼

lghu gð Þ
0

ldu0

oU gð Þ
x

oYg

; C ¼ 0;

Yg ¼
1
2
� h

d
;

oU gð Þ
x

oYg

¼ 0;

ð4:3Þ

where

Reg ¼
u gð Þ

0 h

mg

; Re ¼ u0h

m
; Fr ¼ u2

0

gh
; Pe ¼ u0h

D
; ð4:4Þ

where Re, Fr, and Pe are Reynolds, Froude, and Péclet numbers, respectively.
From (4.3) it can be seen that the mathematical description of the process

contains six dimensionless (generalized) parameters:

A1 ¼ egReg

� ��1
; A2 ¼

Re

Fr
; A3 ¼ ePeð Þ�1; A4 ¼

lghu gð Þ
0

ldu0
; A5 ¼

u0

u gð Þ
0

;

A6 ¼
h

d
;

ð4:5Þ

The parameters A1, …, A4 are of complex type (complex of different dimension
quantity), whereas A5, A6 are of simplex type (ratio of quantities with the same
dimensions).

The absorption (desorption) rate can be presented as

J ¼ k c� � c0ð Þ ¼ D c� � c0ð Þ
h

Z1

0

oC

oY

� �
Y¼1

dX; ð4:6Þ

from which the Sherwood number follows:

Sh ¼ kh

D
¼
Z1

0

oC

oY

� �
Y¼1

dX: ð4:7Þ
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4.3 Generalized Individual Case and Similarity

Problem (4.3) is a mathematical description of a generalized case, which repre-
sents an unlimited set of processes. For particular (individual) values of the
parameters Ai = Ai

0, i = 1, …, 6, there exists a subset, which will be named [24]
generalized individual case. All processes in the generalized individual case are
similar to each other, i.e., each process in the generalized individual case could be
considered as a physical model of the others. The equality of the separate
dimensionless parameters in the mathematical description by means of generalized
variables of the two processes considered is the similarity criterion between them.

From (4.3) it can be seen that the dimensionless concentration distribution
depends only on the independent variables and parameters:

C ¼ F1 X; Y ;A1; . . .;A6ð Þ: ð4:8Þ

Hence, we have

oC

oY

� �
Y¼1

¼ F2 X;A1; . . .;A6ð Þ;
Z1

0

F2 X;A1; . . .;A6ð ÞdX ¼ F A1; . . .;A6ð Þ;

Sh ¼ F A1; . . .;A6ð Þ;

ð4:9Þ

where the function F can be obtained after solution of the problem (4.3).
The particular experimental conditions of a real process (absorption) allow us to

assess the values of the parameters Ai
0, i = 1, …, 6. If the particular experimental

conditions of the model process assess the same parameter values, then an
experimental determination of Sh = Sh0 for the model permits us to determines
the Sherwood number for the real-scale process, because the relation

Sh0 ¼ F A0
1; . . .;A0

6

� �
ð4:10Þ

is valid for both the model and the real process.
Let us denote the model quantities with subscript 1. The absorption rate in the

real process J can be obtained from experimental data taken from the model (J1),
namely,

k1 ¼
J1

c� � c0
; Sh0 ¼ k1h1

D1
; k ¼ Sh0 D

h
; J ¼ k c� � c0ð Þ: ð4:11Þ

These results show that the experimental determination of the absorption rate in
the model determines the absorption rate in the real process. In other words the
experimental results obtained with the model are the same as those obtained with
the real process. The experimental approach for the Sherwood number determi-
nation without solution of problem (4.3) is, in fact, an experimental solution of a
boundary valueproblem.
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This analysis clearly reveals that the similarity condition means the equality of
the similarity criteria in both the model and the real process. However, each
dimensionless parameter is not a similarity criterion. From (1.4.10) it can be seen
that the equality of Sh0 of the model with that of the real process is not a similarity
criterion, but only a result of the process similarity.

4.4 Mathematical Structure of the Models

From (4.10) a similarity criteria model can be obtained if a suitable mathematical

structure of the function F is available and experimental data to obtain Sh
0

for
different values of the parameters Ai

0, i = 1, …, 6 are used.
The function F describes a physical process, i.e., its mathematical structure

must be invariant with respect to similarity transformations [24].
Let us consider the model equation

f x1; . . .; xmð Þ ¼ 0; ð4:12Þ

which is invariant regarding similarity transformations,

�xi ¼ kixi; i ¼ 1; . . .;m; ð4:13Þ

if f is a homogenous function, i.e.,

f k1x1; . . .; kmxmð Þ ¼ u k1; . . .; kmð Þf x1; . . .; xmð Þ ¼ 0: ð4:14Þ

A brief expression of (4.14) is

f �xi½ � ¼ u ki½ �f xi½ �: ð4:15Þ

The problem is expressed in a form allowing us to obtain the function f satis-
fying equation (4.15).

Differentiation of (4.15) concerning k1 leads to

of �xi½ �
ok1

¼ ou
ok1

f xið Þ: ð4:16Þ

On the other hand, we have

of �xi½ �
ok1

¼ of �xi½ �
o�x1

o�x1

ok1
¼ of �xi½ �

o�x1
x1: ð4:17Þ

Equation (4.17) is valid for different values of ki, including
ki = 1(i = 1, …, m). As a result, we get �xi ¼ xi i ¼ 1; . . .;mð Þ and from (4.16) and
(4.17) it follows that

of �xi½ �
o�x1

x1 ¼ b1f xi½ �; ð4:18Þ
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where

b1 ¼
ou
ok1

� �
ki¼1

: ð4:19Þ

From (4.18) it follows that

1
f

of

ox1
¼ b1

x1
; ð4:20Þ

That is,

f ¼ c1xb1
1 : ð4:21Þ

If we reiterate the upper operations for x2, …, xm, then the homogenous
function f takes the form

f ¼ cxb1
1 ; . . .; xbm

m ; ð4:22Þ

which means that the function f is homogenous if it is represented as a product of a
power–law complex. This result is invariant regarding similarity (metric)
transformations.

The result (4.22) defines the use of power–law-function complexes as elements
of mathematical structures of the similarity theory models. Similarly, relations
between primary and secondary quantities can be proved through the so-called
dimension analysis. In this context, the power–law-function complexes are quite
convenient as kinetic models of complicated chemical reactions (introducing
chemical reaction order higher than 1).

From (4.10) and (4.22) it follows that the models of similarity theory (criteria
models) have the power–law-function complexes expressed as

Sh0 ¼ b0

Y6

i¼1

A0bi
i : ð4:23Þ

If the logarithm of (4.23) is applied, then the result is a linear-regression-type
model, namely,

lg Sh0 ¼ lg b0 þ
X6

i¼6

bi lg A0
i ; ð4:24Þ

The model parameters bi, i = 1, …, 6 can be obtained (like in the regression
models; see Sect. 2.5) using the Sherwood number values Shj

0, j = 1, …, N,
N C 7, calculated from experimental data under N different experimental condi-
tions. The calculated similarity criteria values are Aij

0, i = 1, …, 6, j = 1, …, N,
respectively. The determination of b0 after applying an antilogarithm to (4.24) is
very inexact as an approach because b0 has to be calculated after determination of
bi, i = 1, …, 6:
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b0 ¼
1
N

XN

j¼1

Sh0
jQ6

i¼1 A0
ij


 �bi
: ð4:25Þ

The theoretical analysis of the process similarity [24] shows that the similarity
criteria models contain two types of dimensionless parameters—determinant or
independent dimensionless variables determining the similarity conditions and
determined variables (dependent dimensionless variables), whose values are
determined by the similarity conditions imposed. In model (4.23) the determinant
(independent) parameters playing the roles of similarity criteria are A1

0, …, A6
0,

whereas Sh0 is a determined (dependent) parameter (process variable). Obviously,
the specification of the dimensionless model parameters is very important when
building the criteria model. For example, from (2.6) it can be seen that Fo is a
determinant (independent) parameter, whereas the determined parameter is the

ratio Sh
. ffiffiffiffiffiffi

6Pe
p

q
: Hence, the form of the criteria model is

Sh

ffiffiffiffiffiffiffiffi
p

6Pe

r
¼ 1� Fo

6
� 19Fo2

120

� �
: ð4:26Þ

The determinant parameters obtained by scaling the differential equations are
ratios of physical effects represented by the terms (differential operators). More
precisely, A1 for instance, expresses the ratio between the force driving the fluid
representing the convective motion and the surface (viscosity) force representing
the diffusive transport of momentum. In this context, A2 is the ratio of the surface
(viscosity) forces and the body forces (gravitational ones in this particular
example), whereas A3 represents the ratio of the convective and diffusive mass
transfer:

A1 ¼ egReg

� ��1�
u gð Þ

x
ou gð Þ

x

ox þ u gð Þ
y

ou gð Þ
x

oy


 �

mg
o2u gð Þ

x

oy2

;A2 ¼
Re

Fr
�

mo2ux

oy2

g
;A3

¼ ePeð Þ�1�
ux

oc
oxþ uy

oc
oy


 �

Do2c
oy2

: ð4:27Þ

The determinant parameters defined by the boundary conditions are ratios of
physical scales. For example, A4 is the ratio of the tangential components of the
stress tensor in two phases (shear forces), whereas A5 and A6 are ratios of velocity
and linear scales, respectively:

A4 ¼
lghu gð Þ

0

ldu0
�

lg
ou gð Þ

x

oy

loux

oy

; A5 ¼
u0

u gð Þ
o

� u gð Þ
x

ux

; A6 ¼
h

d
: ð4:28Þ
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The determined parameters are usually dimensionless target (subject) functions
such as mass transfer rate (J) and pressure drop (Dp). In the context of the above
comments we have

Sh ¼ kh

D
� k c� � c0ð Þ

D
l

Rl
0

oc
oy


 �
y¼h

dx

; Eu ¼ Dp

qu2
; ð4:29Þ

where Eu is the Euler number.
The presence of N values of Shj

0, j = 1, …, N, N C 7 indicates the existence of
experimental data obtained from N models and characterized by their own
parameter values Aij

0, i = 1, …, 6, j = 1, …, N. Model (4.23) permits us to sim-
ulate all processes with the determinant parameters within the intervals defined by
its minimum and maximum values:

A0 min
ij �A0

ij�A0 max
ij ; i ¼ 1; . . .; 6; j ¼ 1; . . .;N: ð4:30Þ

Hence, (4.23) can be used only for interpolation.
The presentation of the similarity theory models (criteria models) shows that

they are mathematical models through physical modeling of experimental data.

4.5 Dimension Analysis

A possibility for similarity criteria formulation in the case of the absence of the
mathematical description of the process is the dimension analysis approach. It is
applicable if the complete (exact) combinations of the physical quantities involved
in the process are well known, which affects the form of the target (subject)
function of the process.

Let us suppose that the process target function z depends on n physical
quantities:

z ¼ f x1; . . .; xm; y1; . . .; yrð Þ; mþ r ¼ n; ð4:31Þ

where xi(i = 1, …, m) are primary quantities, i.e., their values are the result of
direct measurement (length, time, mass), whereas yj(j = 1, …, r) are secondary
quantities, i.e., their values are the result of the combinations of primary quantity
values:

yj ¼ fj x1; . . .; xmð Þ; j ¼ 1; . . .; r: ð4:32Þ

These functions must be invariant regarding similarity (metric) transformations,
i.e., to represent a power–law-function complex (product):

yj ¼ x
A1j

1 ; . . .; xAmj

m ; j ¼ 1; . . .; r: ð4:33Þ
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The physical quantities have symbols and dimensions. If the symbols of the
primary quantities (length, time, mass) are L, T, M and their dimensions are
denoted by [L], [T], [M], then we may suggest that they are equal, i.e.,

L½ � ¼ L; T½ � ¼ T ; M½ � ¼ M: ð4:34Þ

The dimensions of the secondary quantities can be determined by power–law
functions. For example, for the velocity and the force involved in a certain process,
we have

V½ � ¼ LT�1; F½ � ¼ MLT�2: ð4:35Þ

The main problem of dimension analysis is how to obtain relations between the
physical quantities in a quantitative description of the process. The problem is
solved by employment of the condition of equality of thedimensions of both sides
of the physical equations, i.e., both sides of the equation should be dimensionally
homogeneous.

If the dimensions of the physical quantities in (4.31) are

xi½ � ¼ ki; i ¼ 1; . . .;m; yj

� 
¼ Kj; j ¼ 1; . . .; r; ð4:36Þ

then from (4.33) it follows that

Kj ¼ k
A1j

1 . . .kAmj

m : ð4:37Þ

Let us suppose that the function (4.31) has the form of a product of power–law
functions, namely,

p ¼ xa1
1 . . .xam

m 	 y
b1
1 . . .ybr

r ; ð4:38Þ

Then, the dimension equation is

kp ¼ ka1
1 . . .kam

m 	 K
b1
1 . . .Kbr

r ; ð4:39Þ

and ki, i = 1, …, m; Kj, j = 1, …, r, have to be obtained from the condition of
dimensional homogeneity of both sides of (4.39).

If p is dimensionless, kp = 1 and from (4.39) it follows that

Ym
i¼1

kci

i ¼ 1; ð4:40Þ

where

ci ¼ ai þ
Xr

j¼1

Aijbj ¼ 0; i ¼ 1; . . .;m: ð4:41Þ

4 Similarity Theory Models 99



Let us consider a solution of (4.41), a1
(0), bj

(0), i = 1, …, m, j = 1, …, r, i.e.,

a 0ð Þ
i þ

Xr

j¼1

Aijb
0ð Þ

j ¼ 0; i ¼ 1; . . .;m ð4:42Þ

and the power–law complex x
a 0ð Þ

1
1 . . .a

0ð Þ
m

m 	 yb 0ð Þ
1

1 . . .yb 0ð Þ
r

r is dimensionless. The set of
linear equations (4.42) consists of m equations, n = m ? r unknowns, and
r = n - m independent solutions, i.e., n different physical quantities. m are
primaries, and form r = n - m dimensionless complexes (the ‘‘p-theorem’’ of
Buckingham).

The dimension analysis approach has restricted application owing to some
limitations, among them are:

• Incorrect combinations of physical quantities lead to wrong results.
• It is impossible to specify similarity criteria and determined parameters.

4.6 Some Errors in Criteria Models

The establishment of the criteria model is very simple, but the absence of the
physical analysis leads to incorrect results.

Let us consider heat transfer between solid particles and a column wall in a
fluidized-bed column [25]. There are enough experimental data about the heat
transfer coefficient (k) for particles of various diameters (d) and a variety of gas
velocities (u). With these data the Reynolds and the Sherwood numbers using the
particle diameter as a length scale can be obtained, namely,

Re ¼ udq
l
; Nu ¼ kd

k
; ð4:43Þ

where q, l, k are the density, viscosity, and thermal conductivity of the gas. From
these data, the criteria model has the form

Nu ¼ 0:13Re0:79: ð4:44Þ

A comparison of this model with experimental data is shown in Fig. 1. The
correlation is not very good although the exponent of Re is close to 0.8 (occurring
very often in many empirical heat transfer/fluid flow correlations published in the
literature). It is reasonable to suggest that some devices did work properly.

Another possibility for the process modeling is to use the Weber and the
Stanton numbers in gas–liquid bubbly flows because the existence of bubbles is
natural:

We ¼ u2dq
r
; St ¼ k

qucp

; ð4:45Þ
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In gas-fluidized beds both the gas bypasses through the bubbles together with
the promoted mixing affect the heat transfer. Having in mind that bubbles have a
surface energy associated with the gas–liquid interface, we can reasonably to
suggest that the Weber number may characterize the bed behavior. In (4.45) r and
cp are the liquid surface tension and the specific heat capacity, respectively.
Further, the convective transfer mainly contributes to the heat transfer, which
allows the Nusselt number to be replaced by the Stanton number. Hence, under
these conditions, the model is

St ¼ 0; 2We�0;5: ð4:46Þ

A comparison with the experimental data is shown in Fig. 2.
Other possibilities for the creation of criteria models using the same experi-

mental data are presented in [25], for example,

St ¼ 2Re�1;12; Nu ¼ f1ðFrÞ; Nu ¼ f2ðGrÞ; Nu ¼ d

D
¼ 0; 26Gr0;82;

St ¼ f3 Fr:Weð Þ;Fr ¼ u2

gd
;Gr ¼ d3q2gbD#

l2
;

ð4:47Þ

Here, Fr and Gr are the Froude and Grashof numbers, respectively, g the
gravity acceleration, D the column diameter, b the thermal expansion coefficient,
and D# is the temperature difference. All these models are in good agreement with
the experimental data [25].

In reality, the foregoing example is fictitious. The numbers ascribed to the
quantities u, d, and k from which the various dimensionless groups were created

Fig. 1 Nusselt number–Rey-
nolds number relation

Fig. 2 Stanton number–
Weber number relation
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were taken from adjacent columns in a table of random numbers varying from 0 to
99. Hence, a correlation between the experimental data is completely missing. The
original data are plotted in Fig. 3 on a linear scale as k against u for ‘‘large’’,
‘‘medium,’’ and ‘‘small’’ values of d.

The curious fact mentioned above shows that flagrant errors can be produced in
the creation of the criteria models. This especially refers to the selection of the
determinant and determined dimensionless complexes (groups). The cause of this
curious fact is the presence of a joint (common) quantity contributing simulta-
neously to both the determinant and the determined dimensionless complexes

In the above models, the next correlations are used:

kd

k
! udq

l
;

k

uqcp

! udq
l
;

k

uqcp

! u2dq
r
;

k

uqcp

! u2

gd
;

kd

k
! d3q2gqD#

l2
;

kd

k
d

D
! d3q2gqD#

l2
;

k

uqcp

! u2

gd

u2dq
r
;

ð4:48Þ

Having in mind that in (4.48) the variables are k, u, and d only, the correlations
in (4.48) are very simple:

kd ! ud;
k

u
! ud;

k

u
! u2d;

k

u
! u2

d
; kd ! d3; kd2 ! d3;

k

u
! u4:

ð4:49Þ

From (4.49) it can be seen that if a correlation between k, d, and u does not
exist, kd and ud are correlated because they are dependent on d. A similar situation
exists between k/u and ud, where this ‘‘correlating’’ effect is caused by u. It is
evident that this correlating effect increases if the exponent of the correlating
quantity increases (see other cases in 4.49).

The examples presented show [25, 49] that the absence of serious physical
analysis in the process of using the similarity theory and the similarity criteria
models leads to unusable results.

The theoretical analysis of the similarity theory demonstrates that the usage of
mathematical methods is very simple, but a formal utilization of this theory can

Fig. 3 Heat transfer coeffi-
cient (kcal m-1s-1 C-1)—
velocity relation (m/s)
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lead to a wrong result (e.g., as a result of incorrect formulation of the similarity
conditions and the determinant and determined dimensionless parameters).
Learning the physical ideas, which are the basis of the similarity theory and its
mathematical methods, may lead to the correct understanding of this theory as an
approach for quantitative investigations. Application of the similarity theory
requires first of all good understanding of its physical background. Modeling
without understanding (realization) the similarity may lead to reduction of the
similarity theory to a similarity of the theory.

5 Regression Models

The experimental data of a concrete process can be represented as a discrete
function:

yexp
n ¼ uexp x1n; . . .; xmnð Þ; n ¼ 1; . . .;N; ð5:1Þ

where y is the process subject (target) function, x is an independent variable of the
process, and N is the number of experiments.

The model of the process represents a continuous function:

y ¼ u x1; . . .; xm; b1; . . .; bkð Þ; ð5:2Þ

where b is a model parameter, which must be obtained using the experimental data
(5.1). In the case of full absence of information about the process mechanism,
regression models can be used. The form of function (5.2) is unknown, but we can
suppose that this function is continuous (its derivates too) in the vicinity of point
x0 = x10, …, xm0 and can be represented as a Taylor series:

y xð Þ ¼ y x0ð Þþ
Xm

i¼1

oy xð Þ
oxi

�����
x¼x0

xi� xi0ð Þþ
Xm�1

i¼1

Xm

j¼iþ1

1
2!

o2y xð Þ
oxioxj

�����
x¼x0

x1� x10ð Þ xj� xj10

� �

þ . . .þ
Xm

i¼1

1
2!

o2y xð Þ
ox2

i

�����
x¼x0

xi� xi10ð Þ2þ. . .

ð5:3Þ

The form of the derivates in (5.3) is unknown, but (5.3) can be represented as

y xð Þ ¼ b0 þ
Xm

i¼1

b1x1 þ
Xm�1

i¼1

Xm

j¼iþ1

bijxixj þ
Xm

i¼1

biix
2
i þ 	 	 	 ; ð5:4Þ

where b is a parameter in the regression model (5.4) and will be obtained using the
experimental data (5.1).
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5.1 Regression Equations

The polynomial models (5.4) are applicable to a wide range of problems, but in the
regression models, more complicated functions can be used:

y xð Þ ¼
Xk

i¼1

bifi xð Þ: ð5:5Þ

The choice of the regression model starts with a linear model,

y ¼
Xk

i¼1

bixi; ð5:6Þ

and after adequate verification more complicated (nonlinear) models can be used.

5.2 Parameter Identification

The main problem of regression models is parameter identification (estimation).
Let us consider model (5.5), where x = x1, …, xm. If we put experimental data

(5.1) into (5.5), a set of N equations will be used to obtain the model parameters bi,
i = 1, …, k, k B N:

b1f1 x11; . . .; xm1ð Þ þ 	 	 	 þ bkfk x11; . . .; xm1ð Þ ¼ yexp
1 ;

b1f1 x1n; . . .; xmnð Þ þ 	 	 	 þ bkfk x1n; . . .; xmnð Þ ¼ yexp
n ;

b1f1 x1N; . . .; xmNð Þ þ 	 	 	 þ bkfk x1N; . . .; xmNð Þ ¼ yexp
N :

ð5:7Þ

The set of equations does not have an exact solution and there exists a dif-
ference between both sides of equations (5.7):

b1f1 x1n; . . .; xmnð Þ þ 	 	 	 þ bkfk x1n; . . .; xmnð Þ � yexp
n ¼ en; n ¼ 1; . . .;N: ð5:8Þ

The solution of the parameter identification problem can be obtained as a
minimization of the function

F b1; . . .; bkð Þ ¼
XN

n¼1

e2
n ¼

XN

n¼1

b1f1 x1n; . . .; xmnð Þ þ 	 	 	 þ bkfk x1n; . . .; xmnð Þ � yexp
n

� 
:

ð5:9Þ

5.3 Least-Squares Method

Identification of model parameters uses the least-squares method, i.e., the mini-
mization of the least-squares function (5.9), where the parameter values obtained
must minimize the difference between calculated and experimental values of the
objective function.

104 Complex Process Models



The conditions for a minimum of function (5.9) are

oF

obi
¼ 0; i ¼ 1; . . .; k; ð5:10Þ

i.e.,

XN

n¼1

2fi x1n; . . .; xmnð Þ b1f1 x1n; . . .; xmnð Þ þ 	 	 	 þ bkfk x1n; . . .; xmnð Þ � yexp
n

� 
¼ 0;

i ¼ 1; . . .; k:

ð5:11Þ

The linear set of equations (5.11) is named a normal set and its solution pro-
vides the parameter values in the regression model. This procedure is used in
commercial mathematical software. The mathematical problems of model
parameter identifications are described in the next section.

6 Examples

6.1 Effect of Surfactants

The influence of surfactants on laminar liquid film flows is reduced to two main
effects—damping of the ripples on the film surface and alteration of the velocity
profile. The next theoretical results are related to the effect of soluble surfactants
on the velocity distribution in a waveless liquid film.

Let us consider a vertical film flow containing soluble surfactants with constant
inlet concentration c = c0. The concentration in the film is variable because of the
adsorption on the surface y = h(x). The bulk concentration is denoted by c* = c(x,
h). The surface concentration C and surface tension r are variable along the gas–
liquid interphase surface y = h(x). It has been shown that in these conditions a
surface tension gradient gradr must exist on the flowing liquid surface [26].

For a mathematical description of the film flow, (1.2.49) and (1.2.50) can be
used, where

y ¼ h xð Þ; Png ¼ Psg ¼ 0; Ps ¼
or
os
¼

or
ox þ h0or

oyffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02
p ð6:1Þ

and or
os is a tangential derivate.

In the film flow approximation 10�2 [ e0 ¼ h0
i ¼ 0

� 
the problem has the form (

1.2.61), where

y ¼ h; l
oux

oy
¼ or

ox
: ð6:2Þ
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If we use the generalized variables (1.2.52), from (1.2.61), (1.2.62), and (6.2) it
follows that

o2Ux

oY2
¼ �3;

oUx

oX
þ oUy

oY
¼ 0; Y ¼ 0; Ux ¼ Uy ¼ 0; Y ¼ H;

oUx

oY
¼ �aF Xð Þ;

ð6:3Þ

where

a ¼ r0h0

l�ul
; F Xð Þ ¼ o�r

oX
; �r ¼ r

r0
ð6:4Þ

and r0 is the surface tension of the pure liquid (water).
In the case a * 1 problem (6.3) cannot be solved if F(X) is an arbitrary

function (the interval 0 \ l \ l0 in Fig. 4).
From the boundary conditions in (6.3) it can be seen that for a\ 10-2 the

surfactants do not have an influence on the velocity distribution in the film flow
and in this condition (a = 0) the solution coincides with (1.2.62) (see the interval
l1 \ l \ l2 in Fig. 4).

If ais a small parameter (10-2 \ a\ 1), the solution can be obtained in the
interval

r0h0

l�ul
¼ l0\l\l1 ¼

r0h0

l�ul
102 ð6:5Þ

using the perturbation method:

Ux ¼ U0
x þ aU1

x ; Vx ¼ aV1
x ; H ¼ 1þ aH1; ð6:6Þ

Fig. 4 The film thickness
profile
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where Ux
0 is the solution of problem (1.2.55). As a result, the following is obtained [2]:

Ux ¼ 3Y � 3
2

Y2 þ aF Xð ÞY ; Uy ¼ �
a
2

F0 Xð ÞY2; H ¼ 1þ a
3

F Xð Þ; ð6:7Þ

where the arbitrary function F(X) represents the effect of the surfactants (see 6.4),

F Xð Þ ¼ o�r
oX
: ð6:8Þ

The surface tension r is related to the surface concentration C of the surfac-
tants, i.e.,

y ¼ h;
or
ox
¼ or

oC
oC
ox
; ð6:9Þ

where or
oC can be obtained from the state equation for a two-dimensional gas [2].

The surface concentration C can be obtained using the law of mass conservation
at the film surface [26]. For the steady-state case it has the form

divs jconv � jdiffð Þ þ j ¼ 0; ð6:10Þ

where divs is the surface divergence and jconv and jdiff are the convective and the
diffusive mass flux, respectively:

jconv ¼ Cus; jdiff ¼ Ds grad C; ð6:11Þ

where j is the mass flux from the bulk. The surface velocity and surface diffusivity
of the surfactants are denoted by us and Ds. It is usually assumed that jdiff & 0,
because the convective flux is much greater than the diffusive one. This simpli-
fication can be made when the surfactants are soluble.

The mass flux from the bulk is determined by the rate of diffusion and
adsorption. Further, we will consider the limiting cases when the rate of the
transport of the surfactant from the bulk towards the film surface is controlled by
the bulk diffusion (when the thermodynamic equilibrium is rapidly attained) or by
the adsorption associated with a certain energetic barrier.

The first case of mass transport presumes the rapid establishment of an equi-
librium and C and the volume concentration at the interface c* are related by the
Langmuir isotherm:

C ¼ kc�

1þ kc�
C1

; ð6:12Þ

where C? is the limiting surface concentration, corresponding to the dense
monomolecular layer. In this case the diffusion is slow and the mass flux is
determined by the volume concentration:

j ¼ �D
oc

on

� �
y¼h

; ð6:13Þ
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where D is the surfactant bulk diffusivity and qc/qcqn.qn is the normal derivative.
In the film flow approximation (e0 = 0) and from (6.10), (6.11), and (6.13) it
follows that

y ¼ h; us

oC
ox
¼ D

oc

oy
; ð6:14Þ

where c is the solution of the convection–diffusion equation:

u
oc

ox
¼ D

o2c

oy2
: ð6:15Þ

The boundary conditions of (6.15) will be discussed later.
In the case when the transport process is limited by adsorption, the diffusion is

sufficiently rapid and the bulk concentration is practically constant and equal to the
inlet one, c = c0, because of the small capacity of the surface layer. Then j is the
difference of the rates of desorption P and adsorption Q:

j ¼ P Cð Þ � Q c0;Cð Þ; ð6:16Þ

where

P ¼ a0C; Q ¼ b0c0 1� C
C1

� �
: ð6:17Þ

Here a0 and b0 are rate constants of the processes. From (6.10), (6.11), and
(6.16) it follows that

y ¼ h; us

oC
ox
¼ a0C1

kc0

C1
� 1þ kc0

C1

� �� �
; ð6:18Þ

where k = b0/b0a0.a0 is the equilibrium constant in the Langmuir isotherm.
F(X) in (6.7) is determined in a different way, according to the controlling stage

of the mass transfer of the surfactant from the volume to the interface. For the case
of a diffusion-controlled process, the relation is

F Xð Þ ¼ o�r
oX
¼ o�r

oC

� �
C¼C�

oC

oX

� �
Y¼1

; ð6:19Þ

where

C ¼ c

c0
; C� ¼ c�

c0
: ð6:20Þ

From (6.7) it can be seen that F(X) does not depend on a, i.e., the concentration
C(X, Y) must be determined by (6.15), which is written in the zeroth approximation
of a:

U0
x

oC

oX
¼ h2o

2C

oY2
; h ¼

ffiffiffiffiffiffiffiffiffiffiffi
lD

h2
0uav

s
: ð6:21Þ
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The boundary conditions for solving the convection–diffusion equation (1.6.21)
express the constant concentration at the film inlet, the impermeability of the solid
wall down which the film is flowing, and the convection–diffusion equation at the
interface:

X ¼ 0; C ¼ 1; Y ¼ 0;
oC

oY
¼ 0; Y ¼ 1; U0

x

o�C
oX
¼ �h2c0h0

C1

oC

oY
: ð6:22Þ

The problem (6.21, 6.22) is solved by means of the perturbation method [2].
Then retaining the terms with an order of magnitude h2, we obtain the following
relationship for the function F(X):

F Xð Þ ¼ 2Re

We

o�r
oC

� �
C¼C�

hh0

k

ffiffiffiffiffiffiffiffiffi
3

2pX

r
� hh0

k

� �2

1� 4kc0

pC1

� �" #
: ð6:23Þ

This function can be determined in the case of mass transfer under adsorption
control. For this purpose, the zeroth approximation with respect to a in (6.9) and
(6.18) is used,

Y ¼ 1;
o�r
oX
¼ o�r

o�C

� �
�C¼�C X;1ð Þ

o�C
oX

; ð6:24Þ

o�C
oX
¼ 2a0l

3uav

kc0

C1
� 1þ kc0

C1

� �
�C

� �
ð6:25Þ

with the reasonable boundary condition

X ¼ 0; �C ¼ 0: ð6:26Þ

As a result, for F we obtain [2]

F Xð Þ ¼ Re

We

o�r

o�C

� �
�C¼�C X;1ð Þ

a0l

uav

kc0

C1
exp � a0l

uav

1þ kc0

C1

� �
X

� �
: ð6:27Þ

The solutions obtained are valid in the interval l0 \ l \ l1 (see 6.5). For long
films (l1 \ l \ l2, see Fig. 4) the asymptotic solution (1.2.62) is valid.

The presence of surfactants in a liquid leads to the onset of some interesting effects
at the film exit. At some point near the film exit the surface velocity becomes zero.
This stagnant point could be treated as an apparent barrier at point x = l4 (see Fig. 4).
That is why an accumulation of surfactant molecules near this point takes place and in
the interval l3 B l B l4 on the surface y = h, C = C?, us = 0.

The solution of the problem in the interval l = l3 - l4 is performed [2] in a new
coordinate system, where 0 B x B l. At the two ends of this interval the following
conditions can be specified:

x ¼ 0; u ¼ g

2m
2h0y� y2
� �

; v ¼ 0; h ¼ h0; c ¼ c0; C ¼ C0;

x ¼ l; u ¼ g

2m
2h1y� y2
� �

; v ¼ 0; h ¼ h1 ¼ h0

ffiffi
½

p
3�4; C ¼ C1:

ð6:28Þ
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The solution of (6.3) in the interval 0 B x B l can be obtained by assuming the
film thickness increases linearly with the length:

h ¼ h0 þ h0x; h0 ¼
h1 � h0

l
: ð6:29Þ

The velocity distribution can be found in the following form:

ux ¼ f xð Þy� g

2m
y2; uy ¼ �

1
2

f
0

xð Þy2; ð6:30Þ

where the function f(x) is determined according to the transport mechanism,
assuming that h0 is a small parameter (10-2 \ h0 \ 1).

In the case of diffusion-controlled mass transfer the solution is [2]

f xð Þ ¼ g

2m
� h0f1 xð Þ; ð6:31Þ

where

f1 xð Þ¼2A exp
x

Ah0

� �
�1

� �
�2

x

h0
þa1

ffiffiffi
A
p

3A�2x

h0

� �
exp

x

Ah0

� �
erf

ffiffiffiffiffiffiffiffi
x

Ah0

r
�6

ffiffiffiffiffiffiffi
Ax

ph0

r� �

A¼� 2c0

qgh2
0

1þkc0

C1

� �
o�r
oC

� �
C¼C�

;a1¼
ffiffiffiffiffiffiffiffiffiffiffi
2mD

gh0k2

s
1þkc0

C1

� �2

:

ð6:32Þ

The adsorption-controlled process leads to

f xð Þ ¼ f2 xð Þ þ gh

m
� h2

0
gK

l
; K ¼ �C0

a0

or
oC
: ð6:33Þ

The function f2(x) is a solution of the boundary-value problem,

hf
00

2 þ 2f
0

2 þ
l

Kh2
0

f2 ¼ 0; x ¼ 0; f2 ¼
gKh2

0

lm
; x ¼ l; f2 ¼

gKh2
0

lm
� gh1

2m
;

ð6:34Þ

obtained in terms of the Bessel functions of the first order [2].
These theoretical results are in a good agreement with the experimental data

(see Fig. 5). The film thickness profile is observed [27] in films 10-7 M aqueous
solutions of sodium heptadecyl sulfate. The dotted line in Fig. 5 denotes the case
with a free interface.

The experimental film thickness values fit well equation (6.7), combined with
(6.37) in the case of adsorption-controlled transport, where the constants are
a0 = 0.095 s-1 and (qr/qC)C0 = - 41 9 10-3 Nm-1. These values are in good
agreement with the experimental data [29] for the adsorption kinetics of sodium
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alkyl sulfates at an air–water interface. The experimental determination of the
surface velocity in a film flow in the presence of surfactants [28] provides results
that fit well the computed ones (see Fig. 6) according to equations (6.7) and (6.37).

For the parameters in (6.37), calculation using these experimental data results in
(qr/qC)C0 = - 2.1 9 10-3 Nm-1 and a0 = 5.8 s-1, whereas (qr/qC)C0 =

-2.5 9 10-3 Nm-1 is computed [28] by means of the numerical solution of the
Navier–Stokes equation. Different theoretical and experimental investigations are
presented in [28, 30, 31].

The presence of surfactants in the liquid of the film may affect the mass transfer
rate [2, 32]. The effect differs depending on whether the surfactants form a third
phase at the interface or not.

We will assume that the surfactants are soluble, even though the case of insoluble
substances forming dense surface films is also of great importance [33, 34].

Fig. 5 Comparison of the
theoretical and experimental
values for the film thickness

Fig. 6 Comparison of the
theoretical [27] (line 3) and
experimental [28] values of
the surface velocity us in an
inclined film flow. Line 1
clean water surface, line 2
aqueous solution of heptanoic
acid, us0 = g sin ch0

2/2m
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The quantitative explanation of the hydrodynamic effect of surfactants on the
mass transfer rate is initiated from the solution of the convection–diffusion
equation by introducing a velocity profile modified by their action. Within the
region 0(l0) B x B l1 the velocity profile (1.5.86) should be used and the following
equation for the Sherwood number is obtained:

Sh ¼ Sh0 �
ffiffiffiffiffiffiffiffi
2Pe

3p

r Z1

0

F Xð ÞdX � lim
X!0

R
F Xð ÞdXffiffiffiffi

X
p

� �8<
:

9=
;; ð6:35Þ

where Sh0 is determined from (2.9) and F(X) is determined from (6.23) or (6.27)
depending on the mechanism of transport assumed.

The mass transfer kinetics for l1 B x B l2 can be determined from (2.9).
For the region l2 B x B l3 the velocity profiles (1.5.109) permit a computation

of Sh [2]:

Sh ¼ Sh0 � 4
ffiffi
½

p
3�4� 1


 � ffiffiffiffiffi
h0

p

r
A0

ZA�0:5
0

0

e�s2
ds� A0 �

1
3

0
B@

1
CA; A0 ¼ e0A;

h0 ¼
ffiffi
½

p
3�4� 1

l3 � l2
h0:

ð6:36Þ

Experimental data for oxygen desorption from films of aqueous solutions of
ethylene glycol in the presence of sodium heptadecyl sulfate are presented in [2]
for different film lengths.

6.2 Effect of Interface Waves

There have been many theoretical investigations of the wavy film flow [2, 35].
Here we will present an integral method of moments for calculation of the wave’s
parameters and the velocity profiles in wavy films.

Theoretical analysis [36] shows that the application of the boundary layer
equations to the film flow is justified only in a very small range of the Reynolds
number:

gm4
� �1=3

q=rð ÞRe5=3 � 1; gm4
� �1=12

q=rð Þ1=4Re�1=12 � 1: ð6:37Þ

This range appears to be 1 B Re B 20 for water and 1 B Re B 7 for ethanol.
Later, the analysis of the wavy film flow is proposed [36] without any simplifi-
cations in the two-dimensional equations of motion:

oux

ot
þ ux

oux

ox
þ uy

oux

oy
¼ �1

q
op

ox
þ m

o2ux

ox2
þ o2ux

oy2

� �
þ g; ð6:38Þ
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ouy

ot
þ ux

ouy

ox
þ uy

ouy

oy
¼ �1

q
op

oy
þ m

o2uy

ox2
þ o2uy

oy2

� �
; ð6:39Þ

oux

ox
þ ouy

oy
¼ 0; ð6:40Þ

with the boundary conditions at the free surface y = h(x, t), obtained from (1.2.50)
and (1.2.51) in the case Png = Psg = 0,

pþ rh00

1þ h02ð Þ3=2
þ 2l

1þ h02

1� h02
oux

ox
¼ 0; ð6:41Þ

4h02

1� h02
oux

ox
� oux

oy
þ ouy

ox

� �
¼ 0: ð6:42Þ

At the sold surface y = 0:

ux ¼ uy ¼ 0: ð6:43Þ

The solution of this problem must be represented by the following power series:

ux ¼
XM
m¼0

am nð Þym; uy ¼ �
XM
m¼0

a
0

m nð Þ
mþ 1

ymþ1; M ¼ 2;

am ¼
Xþ1

k¼�1
amk exp ik

2p
k

n

� �
; h nð Þ ¼

Xþ1
k¼�1

hk exp ik
2p
k

n

� �
; n ¼ x� au0t

h0
; a ¼ c

u0
;

ð6:44Þ

where c is the phase velocity, u0 is the mean film velocity defined by

u0 ¼
1

kh0

Zk

0

Zh

0

u n; yð Þdndy; ð6:45Þ

and k is the wavelength.
The functions an(n) and h(n) are determined [36] from Eqs. (6.38–6.43) as

follows:

1. The pressure is eliminated by integrating (6.39) over y, using the boundary
condition (6.41). After differentiation of x, it is introduced into (6.38) to
determine an(n).

2 Expressions (6.44) are introduced into (6.38). Then we can determine ux and uy

with the desired accuracy, depending on the maximum power in the series in
(6.44). After multiplication of (6.38) consequently by 1, y, y2, …, yN-1 and the
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following integration over y on the whole cross section, we get a set of equations
using (6.42) and the macroscopic balance equation:

oh

ot
þ o

ox

Z
uxdy ¼ 0: ð6:46Þ

3. Since the solution of this set is extremely hard to obtained, it is more convenient to
use the Fourier series in (6.44). As a result, a set of algebraic nonlinear equations
will be obtained [36] for the determination of the numerical coefficients.

The numerical analysis of the problem [36] shows that at Re B 20 we can use
N = 2.

The determination of the wave amplitude A = (hmax - h0)/h0 requires an
additional condition to be introduced. The latter expresses the Reynolds principle
of flow stability, i.e., the kinetic energy Ek of the flow should not grow in time:

dEk

dt
¼ q

2

Zk

0

Zh

0

o

ot
v2
� �

dydx� 0; ð6:47Þ

where v is the velocity vector (with components ux and uy).
The method presented [36] permits us to calculate the wave number n = 2ph0/

k, wave amplitude A, and phase velocity a as functions of the Weber number:

We ¼ qh0u2
0

r
: ð6:48Þ

A comparison [36] of the computed wave characteristics with the aid of the
method presented with the experimental data is shown in Figs. 7, 8 and 9.

The solution for the velocity distribution in the film flow permits us to obtain
the instant streamlines w for some fixed moment of time,

ux ¼
ow
oy
; uy ¼ �

ow
ox
; ð6:49Þ

Fig. 7 Theoretical [36] and
experimental [37–39] data for
the wave number (a from
[37], b from [38], d from
[39])
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and the liquid particle trajectories in coordinates translating along the film length
with phase velocity c = au0 with respect to the solid wall,

1
h0

dy

dn
¼ � uy

c� ux

: ð6:50Þ

In the cases of stationary flows these two type of lines are equivalent, but in
wave film flows they are very different. In Fig. 10 these lines for a = 1.98 are
shown. These results demonstrate the absence of the film surface renewal and the
mass transfer in the wave film flow is a result of the velocity distribution only [36].
A numerical solution of the nonstationary convection–diffusion equation in the
case of wavy film flows is presented in [40].

Fig. 8 Theoretical [36] and
experimental [37–39] [37],
data for the phase velocity
(a from [37], b from [38],
c from [39])

Fig. 9 Comparison of the
theoretical [36] and experi-
mental [37, 39] data for the
wave amplitude. (a from [37],
d from [39])
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6.3 Photobioreactor Model

Photobioprocesses include dissolution of an active gas component (CO2, O2) in a
liquid and its reaction with a photoactive material (cells). These two processes may
take place in different systems, such as mixed bioreactors; bubble columns, and
airlift photobioreactors [41–44]. The comparison of these systems shows apparent
advantages in the use of airlift photobioreactors, because of the possibility of
manipulation of the light-darkness history of the photosynthetic cells [45–47].

The hydrodynamic behavior of the gas and the liquid in airlift reactors is very
complicated, but in all cases the process includes convective transport, diffusive
transport, and volume reactions. That is why the convection–diffusion equation
with a volume reaction may be used as a mathematical structure of the model.
Using the average velocities permits us to solve the mass transfer problem without
solution of the hydrodynamic equations. Introducing the average concentrations is
the basis for the scale-up problem solution.

Let us consider an airlift reactor with a horizontal cross-sectional area F0 for the
riser zone and F1 for the downcomer zone. The length of the working zones is
l. The gas flow rate is Q0 and the liquid flow rate (water) is Q1. The gas and the
liquid holdup in the riser are e and (1 - e). The concentrations of the active gas
component (CO2) are c(x, r, t) in the gas phase, and c0(x, r, t) for the riser and
c1(x1, r, t) for the downcomer and in the liquid phase, where x1 = l - x. The
concentration of the photoactive substance in the downcomer is c2(x1, r, t) and in
the riser’s section is c3(x1, r, t).

The average velocities in the gas and liquid phases are

��u0 ¼
Q0

F0
; ��u1 ¼

Q1

F0
; ��u ¼ Q1

F1
: ð6:51Þ

The interphase mass transfer rate in the riser is

I0 ¼ k c� vc0ð Þ; ð6:52Þ

where I0 is a volume source in the convection–diffusion equations (see 6.61, 6.62),
k is the interphase mass transfer coefficient, and v is Henry’s constant.

The photoreaction rates in the downcomer and the riser (for small values of c0,
c1, J, J1) are taken, respectively, as

I ¼ k0c1c2J; I1 ¼ k0c0c3J1; ð6:53Þ

Fig. 10 Instant streamline
particle trajectories (dotted
lines)
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instead of the more general formulation, presented in (6.94). This is done to avoid
mathematical complexity that is not essential in many cases. The photon flux
densities J (x1, r, t) and J1 (x, r, t) are functions of the radial coordinate r, as will be
shown below.

Let us consider a cylindrical surface with radius R0 and length 1 m, which is
regularly illuminated with a photon flux density J0. The photon flux densities over
a cylindrical surface with r \ R0 is

i rð Þ ¼ R0J0

r
: ð6:54Þ

The increase of the photon flux density between r and r – Dr is

DJ1 ¼
J0R0

r � Dr
� J0R0

r
¼ J0R0Dr

r r � Drð Þ: ð6:55Þ

The volume between the cylindrical surfaces (m3 liquid/m2 surface) with
radiuses r and r – Dr is

V ¼ Dr 1� Dr

2r

� �
; ð6:56Þ

and the decrease of the photon flux density as a result of the light absorption (from
the photoactive cells) in this volume is

DJ2 ¼ J x1:; r; tð Þbc2Dr 1� Dr

2r

� �
; ð6:57Þ

where c2 = c2(x1, r, t) is the concentration of the photoactive cells in the
downcomer.

The difference between photon flux densities for r and r - Dr is

DJ ¼ DJ1 � DJ2 ¼
J0R0Dr

r r � Drð Þ � Jbc2Dr 1� Dr

2r

� �
: ð6:58Þ

As a result,

lim
Dr!0

DJ

Dr
¼ oJ

or
¼ R0J0

r2
� bc2J; ð6:59Þ

where J (R0) = J0. The solution of (6.59) for c2 = c2 (x1, r, t) is

J x1;r;tð Þ¼exp b
ZR0

r

c2 x1;q;tð Þdq

0
@

1
A J0�R0J0

ZR0

r

1
q2

exp �b
ZR0

q

c2 x1;g;tð Þdg

2
64

3
75dq

8><
>:

9>=
>;:

ð6:60Þ
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The mathematical model of the process in the airlift photobioreactor will be
built on the basis of the differential mass balances in the reactor volume [14–18].
The convection–diffusion equation with a volume reaction will be used, where
convective transfer will be the result of the laminar flow or large-scale turbulent
pulsations. The diffusivity is taken as being molecular or turbulent (as a result of
the small-scale turbulent pulsations) and the sources (volume reactions) are
interphase mass transfer and photochemical reaction.

The equations for the distribution of the active gas component (CO2) in the gas
and liquid phases in the riser are

e
oc

ot
þ eu0

oc

ox
þ ev0

oc

or
¼ eD

o2c

ox2
þ 1

r

oc

or
þ o2c

or2

� �
� k c� vc0ð Þ;

ou0

ox
þ ov0

or
þ v0

r
¼ 0;

ð6:61Þ

1� eð Þoc0

ot
þ 1� eð Þ u1

oc0

or
þ v1

oc0

ox

� �
¼ 1� eð ÞD0

o2c0

ox2
þ 1

r

oc0

or
þ o2c0

or2

� �

þ k c� vc0ð Þ � ak0c0c3J1;

ou1

ox
þ ov1

or
þ v1

r
¼ 0:

ð6:62Þ

It will be assumed, that e = const.
The equations for the distribution of the active gas component (CO2) and

photoactive substance (cells) in the downcomer are

o c1

o t
þ u

o c1

o x1
þ v

o c1

o r
¼ D1

o2 c1

o x2
þ 1

r

oc1

or
þ o2 c1

o r2

� �
� a k0c1c2J; ð6:63Þ

o c2

o t
þ u

o c2

o x1
þ v

o c2

o r
¼ D2

o2 c2

o x2
þ 1

r

oc2

or
þ o2 c2

o r2

� �
� k0c1c2J;

ou

ox1
þ ov

or
þ v

r
¼ 0;

ð6:64Þ

where x1 = 1 - x.
A photochemical reaction may take place in riser too, and the equation for the

cell concentration is

1� eð Þo c3

o t
þ 1� eð Þ u1

o c3

o r
þ v1

o c3

o x

� �

¼ 1� eð ÞD3
o2 c3

o x2
þ 1

r

oc3

or
þ o2 c3

o r2

� �
� k0c0c3J1;

ð6:65Þ
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where J1 = J1 (x, r, t) is photon flux density in the riser

oJ1

or
¼ r0J x1; r0; tð Þ

r2
� b c3J1; r ¼ r0; J1 ¼ J x1; r0; tð Þ; x1 ¼ l� x ð6:66Þ

and c3 = c3 (x, r, t) is the concentration of the photoactive substance in the riser.
The initial conditions will be formulated for the case of thermodynamic equi-

librium between gas and liquid phases, i.e., a full liquid saturation with the active
gas component and the process starts on starting the illumination:

t ¼ 0; c x; r; 0ð Þ ¼ c 0ð Þ; c0 x; r; 0ð Þ ¼ c 0ð Þ

v
;

c1 x1; r; 0ð Þ ¼ c 0ð Þ

v
; c2 x1; r; 0ð Þ ¼ c 0ð Þ

2 ; c3 x; r; 0ð Þ ¼ c 0ð Þ
2 ;

ð6:67Þ

where c(0) and c2
(0) are the initial concentrations of the active gas component in gas

phase and the photoactive substance in the liquid phase.
The boundary conditions are equalities of the concentrations and mass fluxes at

both ends of the working zones x = 0(x1 = l) and x = l (x1 = 0).
The boundary conditions for c(x, r, t) and c0(x, r, t) in (6.61) and (6.62) are

x ¼ 0; c 0; r; tð Þ ¼ c 0ð Þ; ��u0c 0ð Þ ¼ u0c 0; r; tð Þ � D
oc

ox

� �
x¼0

;

x ¼ 0; c0 0; r; tð Þ ¼ �c1 l; tð Þ; �c1 l; tð Þ��u ¼ c0 0; r; tð Þu1 � D0
oc0

ox

� �
x¼0

;

r ¼ 0;
oc

or
¼ oc0

or
¼ 0; r ¼ r0;

oc

or
¼ oc0

or
¼ 0:

ð6:68Þ

The boundary conditions for c1(x1, r, t), c2(x1, r, t) and c3(x, r, t) are

x1 ¼ 0; c1 0; r; tð Þ ¼ �c0 l; tð Þ; �c0 l; tð Þ��u1 ¼ c1 0; r; tð Þu� D1
oc1

ox1

� �
x1¼0

;

r ¼ r0;
oc1

or
¼ 0; r ¼ R0;

oc1

or
¼ 0;

x1 ¼ 0; c2 0; r; tð Þ ¼ �c3 l; tð Þ; �c3 l; tð Þ��u ¼ c2 0; r; tð Þu� D2
oc2

ox1

� �
x1¼0

;

r ¼ r0;
oc2

or
¼ 0; r ¼ R0;

oc2

or
¼ 0;

x ¼ 0; c3 0; r; tð Þ ¼ �c2 l; tð Þ; �c2 l; tð Þ��u1 ¼ c3 0; r; tð Þu1 � D3
oc3

ox

� �
x¼0

;

r ¼ 0;
oc3

or
¼ 0; r ¼ r0;

oc3

or
¼ 0:

ð6:69Þ
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In (6.68) and (6.69) �c0;�c1;�c2;�c3 are the average concentrations for the cross-
sectional area at the ends of the column. In these boundary conditions (Danckwerts
conditions) a balance between convective and diffusive transfer is used (like
convection–diffusion equation).

The column scale effect (decreasing process efficiency with increasing column
diameter) in the column scale-up is result of the radial nonuniformity of the
velocity only. In the specific case of photoreactions, an additional factor is the
local variations of light availability. Here the average velocity and concentration in
any cross-sectional area are used. This approach has a sensible advantage in the
collection of experimental data for the parameter identification, because mea-
surements of the average concentrations are very simple in comparison with local
concentration measurements.

Let us consider equation (6.61). The velocity u0(x, r) and concentration c (x, r,
t) in cylindrical coordinates practically do not depend on the angular coordinate
since symmetry is assumed. In this case the average velocities and concentration in
any cross-sectional area are

�u0 xð Þ ¼ 2

r2
0

Zr0

0

ru0 x; rð Þdr; �v0 xð Þ ¼ 2

r2
0

Zr0

0

rv0 x; rð Þdr;

�c x; tð Þ ¼ 2

r2
0

Zr0

0

rc x; r; tð Þdr:

ð6:70Þ

The velocity (concentration) distribution can be represented using the average
functions:

u0 x; rð Þ ¼ �u0 xð Þ~u0 x; rð Þ; v0 x; rð Þ ¼ �v0 xð Þ~v0 x; rð Þ; c x; r; tð Þ ¼ �c x; tð Þ~c x; rð Þ;
ð6:71Þ

where the velocity (concentration) nonuniformity is the ratio between the velocity
(concentration) distribution and its average value.

In (6.71) the velocity (concentration) distribution practically is not a function of
time. If we multiply (6.71) by r and integrate over r in the interval [0, r0], the
following properties [14] of the average functions are valid:

2

r2
0

Zr0

0

r~u0ðx; rÞdr ¼ 1;
2

r2
0

Zr0

0

r~v0ðx; rÞdr ¼ 1;
2

r2
0

Zr0

0

r~cðx; rÞdr ¼ 1. ð6:72Þ

To introduce (6.70) into (6.61) we must put (6.71) into (6.61), multiply by r and
integrate over r in the interval [0, ro]. As a result, the following equation for �c is
obtained:

o�c

ot
þ A r0; xð Þ�u0

o�c

ox
þ oA

ox
�u0�cþ g r0; xð Þ�v0�c ¼ D

o2�c

ox2
� k

e
�c� v�c0ð Þ; ð6:73Þ
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where

A r0; xð Þ ¼ 2

r2
0

Zr0

0

r ~u0~cdr; g r0; xð Þ ¼ 2

r2
0

Zr0

0

r ~v0
o~c

or
dr;

o~c

or

� �
r¼r0

¼ 0: ð6:74Þ

Introduction of (6.72) into the second equation in (6.61), multiplication by r2,
and integration over r in the interval [0, r0], leads to

�v0 ¼ hðr0; xÞ
o�u0

ox
þ oh

ox
�u0; ð6:75Þ

where

h r0; xð Þ ¼ 2

r2
0

Zr0

0

r2~u0dr: ð6:76Þ

Introducing (6.75) into (6.73), the final form of the model is

o�c

ot
þ A r0; xð Þ�u0

o�c

ox
þ B r0; xð Þ�u0�cþ G r0; xð Þ�co�u0

ox
¼ D

o2�c

ox2
� k

e
�c� v�c0ð Þ; ð6:77Þ

where

B r0; xð Þ ¼ oA

ox
þ g

oh

ox
; G r0; xð Þ ¼ gh: ð6:78Þ

The boundary condition of (6.77) has the form

t ¼ 0; �c x; 0ð Þ ¼ c 0ð Þ;

x ¼ 0; ��u0c 0ð Þ ¼ A r0; xð Þ�u0 0ð Þ�c 0; tð Þ � D
o�c

ox

� �
x¼o

;

x ¼ l; �c l; tð Þ ¼ v�c0 l; tð Þ:

ð6:79Þ

The holdup e can be obtained using

e ¼ l� l0ð Þ F0 þ F1ð Þ
l� l0ð Þ F0 þ F1ð Þ þ F0l0

; ð6:80Þ

where l and lo are liquid levels in the riser with and without gas motion.
The parameters in the model (6.77, 6.79) are of two types: specific model

parameters (D, k, e, v) and model scale parameters (A, B, G). The scale parameters
are functions of the column radius ro. They are the result of the radial nonuniformity
of the velocity and the concentration and show the influence of the scale-up on the

6 Examples 121



model equations. The parameter v may be obtained beforehand as a result of ther-
modynamic measurements.

From (6.73, 6.75, 6.77) it follows that the radial velocity component influences
the transfer process in cases, where o�u0=ox 6¼ 0; i.e., when the gas holdup is not
constant along the column height. For many cases of practical interest e = const.
and �v0 ¼ 0: As a result, o�u0

ox ¼ 0;B ¼ oA
ox and model (6.77) has the form

o�c

ot
þ A r0; xð Þ�u0

o�c

ox
þ oA

ox
�u0�c ¼ D

o2�c

ox2
� k

e
�c� v�c0ð Þ; ð6:81Þ

where �u0 ¼ ��u0:
The values of the parameters D, k, and A must be obtained using experimental

data for the average velocity and concentration, measured on the laboratory col-
umn. In the case of scale-up, only A must be specified because it is a function of
the column radius and the radial nonuniformity of the velocity and concentration
(D and k do not change at scale-up).

The same procedure may be used for (6.62) and (6.68) and as a result

o�c0

ot
þ A0 r0; xð Þ�u1

o�c0

ox
þ B0 r0; xð Þ�u0�cþ G0 r0; xð Þ�c0

o�u1

ox

¼ D0
o2�c0

ox2
þ k

1� e
�c� v�c0ð Þ � ak0

1� e
M3 r0; xð Þ�c0�c3�J1;

t ¼ 0; �c0 x; 0ð Þ ¼ c 0ð Þ

v
; x ¼ 0; �c0 0; tð Þ ¼ ��c1 l; tð Þ;

��c1 l; tð Þ��u ¼ A r0; xð Þ�u1 0ð Þ�c0 0; tð Þ � D0
o�c0

ox

� �
x¼0

;

ð6:82Þ

where

�J1 ¼
2

r2
0

Zr0

0

rJ1 x; r; tð Þdr; M3 r0; xð Þ ¼ 2

r2
0

Zr0

0

r~c0~c3~J1dr: ð6:83Þ

A0, B0 and G0 are obtained in the same way as A, B and G (see 6.74, 6.76, 6.78).
The concrete expressions of A0, B0 and G0 are not very important because those
values must be obtained using experimental data in all cases. In the practically
interesting cases e = const. and o�u1

ox ¼ 0; B0 ¼ oA0
ox ; �u1 ¼ ��u1:

In (6.63) and (6.64) with boundary conditions (6.69) we must put the average
velocity, concentrations, and photon flux density:

u x1; rð Þ ¼ �u x1ð Þ~u x1; rð Þ; c1 x1; r; tð Þ ¼ �c1 x1; tð Þ~c1 x1; rð Þ;
c2 x1; r; tð Þ ¼ �c2 x1; tð Þ~c2 x1; rð Þ; J x1; r; tð Þ ¼ �J x1; tð Þ~J x1; rð Þ;

ð6:84Þ
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where

�u x1ð Þ ¼
2

R2
0 � r2

0

ZR0

r0

ru x1; rð Þdr; �c1 x1; tð Þ ¼ 2

R2
0 � r2

0

ZR0

r0

rc1 x1; r; tð Þdr;

�c2 x1; tð Þ ¼ 2

R2
0 � r2

0

ZR0

r0

rc2 x1; r; tð Þdr; �J x1; tð Þ ¼ 2

R2
0 � r2

0

ZR0

r0

rJ x1; r; tð Þdr:

ð6:85Þ

Using the same procedure, after integration of (6.63) and (6.64) over r in the
interval [r0,R0], the problem has the form

o�c1

ot
þ A1 r0;R0; x1ð Þ�uo�c1

ox1
þ B1 r0;R0; x1ð Þ�u�c1 þ G1 r0;R0; x1ð Þ�c1

o�u

ox1

¼ D1
o2�c1

ox2
1

� ak0M r0;R0; x1ð Þ�c1�c2�J;

t ¼ 0; �c1 x1; 0ð Þ ¼ c 0ð Þ

v
; x1 ¼ 0; �c1 0; tð Þ ¼ �c0 l; tð Þ;

�c0 l; tð Þ��u1 ¼ A1 r0;R0; x1ð Þ�u 0ð Þ�c1 0; tð Þ � D1
o�c1

ox1

� �
x1¼0

;

ð6:86Þ

o�c2

ot
þ A2 r0;R0; x1ð Þ�uo�c2

ox1
þ B2 r0;R0; x1ð Þ�u�c2 þ G2 r0;R0; x1ð Þ�c2

o�u

ox1

¼ D2
o2�c2

ox2
1

þ k0M r0;R0; x1ð Þ�c1�c2�J;

t ¼ 0; �c2 ¼ c 0ð Þ
2 ; x1 ¼ 0; �c2 0; tð Þ ¼ �c3 l; tð Þ;

�c3 l; tð Þ��u1 ¼ A2 r0;R0; x1ð Þ�u 0ð Þ�c2 0; tð Þ � D2
o�c2

ox1

� �
x1¼0

;

ð6:87Þ

where

M r0;R0; x1ð Þ ¼ 2

R2
0 � r2

0

ZR0

r0

r~c1~c2~Jdr ð6:88Þ

and A1, A2, B1, B2, G1, G2 are obtained in a similar way as A, B, G (see 6.74, 6.76,
6.78), but taking into account that the limits of the integrals are [r0, R0]. For
e = const., �u ¼ ��u;B1 ¼ oA1

ox and B2 ¼ oA2
ox :

�J may be obtained by introducing (6.84) into (6.59), multiplying (6.59) by r3,
and integrating over r in the interval [r0, R0]. As a result,

�J ¼ 1
N1 þ bN2�c2

; ð6:89Þ
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where

N1 r0;R0; x1ð Þ ¼ 2

R0J0ðR2
0 � r2

0Þ

ZR0

r0

r3o
~J

or
dr;

N2 r0;R0; x1ð Þ ¼ 2
R0J0ðR2

0 � r2
0Þ

ZR0

r0

r3~c2~Jdr:

ð6:90Þ

The same procedure for (6.65) and (6.69) leads to the equation for �c3:

o�c3

ot
þ A3 r0; xð Þ�u1

o�c3

ox
þ B3 r0; xð Þ�u1�c3 � G3 r0; xð Þ�c3

o�u1

ox
¼ D3

o2�c3

ox2
þ k0

1� eð ÞM3 r0; xð Þ�c0�c3�J1;

t ¼ 0; �c3 x; 0ð Þ ¼ c 0ð Þ
2 ; x ¼ 0; �c3 0; tð Þ ¼ �c2 l; tð Þ;

�c2 l; tð Þ��u ¼ A3 r0; xð Þ�u1 0ð Þ�c3 0; tð Þ � D3
o�c3

ox

� �
x¼0

;

ð6:91Þ

where

�c3 x; tð Þ ¼ 2

r2
0

Zr0

0

rc3 x; r; tð Þdr; M3 r0; xð Þ ¼ 2

r2
0

Zr0

0

r~c0~c3~J1dr ð6:92Þ

and A3, B3, and G3 are obtained in a way similar to A, B, and G.
�J1 may be obtained from (6.66), by analogy with (6.89):

�J1 x; tð Þ ¼
�J x1; tð Þ

P1 � bP2�c3
; ð6:93Þ

where

P1 r0; xð Þ ¼ 2

r3
0

Zr0

0

r3o
~J1

or
dr; P2 r0; xð Þ ¼ 2

r3
0

Zr0

0

r3~c3~J1dr: ð6:94Þ

For many cases of practical interest e = const., i.e.,

o�u

ox
¼ o�u1

ox
¼ 0; �u ¼ ��u; �u1 ¼ ��u1; B1 ¼

oA1

ox
; B2 ¼

oA2

ox
; B3 ¼

oA3

ox
;

ð6:95Þ

and the number of parameters in the model decrease.
The photochemical reaction rate equations shown in (6.53) are acceptable when

J and c1 are very small. A more general form of the photochemical reaction rate
equation [48] (written here for the downcomer) is:
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I ¼ ImaxJ

kj þ J þ J2=kinhb

c1c2

kc þ c1
: ð6:96Þ

Another possible form for equations (6.53) could be

I ¼ �k0cc1
1 cc2

2 Jc; I1 ¼ �k0cc1
0 cc2

3 Jc
1 ; ð6:97Þ

where the kinetic parameters �k0; c; c1; c2 must be obtained using experimental data.
Applying expressions (6.97) in equations (6.86–6.88) and (6.91), the photo-
chemical reaction rate equations has the form

�ak0M r0;R0; x1ð Þ�cc1
1 �cc2

2
�Jc; þk0M r0;R0; x1ð Þ�cc1

1 �cc2
2

�Jc;

þ k0

1� e
M3 r0; xð Þ�cc1

0 �cc2
3

�Jc
1 ;

ð6:98Þ

where

M r0;R0; x1ð Þ ¼ 2

R2
0 � r2

0

ZR0

r0

r~cc1
1 ~cc2

2
~Jcdr; M3 r0; xð Þ ¼ 2

r2
0

Zr0

0

r~cc1
0 ~cc2

3
~Jc

1dr: ð6:99Þ

Problems (6.81), (6.82), and (6.86–6.88) are mathematical model of an airlift
photobioreactor. The model parameters are of five types:

1. Known beforehand (c(0), c2
(0), R0, J0, r0).

2. Obtained beforehand (e, v, a, b, ko, c, c1, c2).
3. Obtained without a photobioreaction (k, D, D0, A, A0).
4. Obtained with a photobioreaction (D1, D2, D3), because diffusion of the gas and

the photoactive substance is the result of the photobioreaction.
5. Obtained in the modeling and specified in the scale-up (A, A0, A1, A2, A3, M,

M3, P1, P2), because they are functions of the column radius and radial non-
uniformity of the velocity concentration.

The parameters c(0), c2
(0), J0, e, v, a, b, k0, c, c1, c2, k, D, D0, D1, D2, D3 are

related to the process (gas absorption with a photobioreaction in the liquid phase),
but the parameters R0, r0, A, A0, A1, A2, A3, M, M3, P1, and P2 are related to the
apparatus (column radius and radial nonuniformity of the velocities and
concentrations).
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Mass Transfer Theories

The contemporary development of the chemical, power, biotechnology, oil pro-
cessing, and food processing industries, for example, requires the creation of
devices with high throughput and is associated with mass transfer rate problems in
both theoretical model building and the background mass transfer theory. In this
context, particularly when small concentration gradients control the process of
interest, linear mass transfer models are widely applicable.

1 Linear Mass Transfer Theory

The balance of the convective and the diffusive transfer mechanisms determines
the overall mass transfer in a moving fluid. If both the velocity distribution and the
concentration field are denoted as u(x, y, z) and c(x, y, z), then the mass flux (j) per
unit surface of a given elementary volume is the sum of the convective and the
diffusive fluxes, namely,

j ¼ uc� Dgrad c; ð1:1Þ

where D is the molecular diffusivity.
When a stationary process takes place and a substance volumetric source (sink)

is missing, the mass balance of the substance in an elementary volume is, in fact,
an integration of the flow over the whole surface of this volume, namely,

div j ¼ 0: ð1:2Þ

From (1.1) and (1.2) we have

u grad c ¼ Dr2c: ð1:3Þ

Further, using (1.3), one can formulate a two-dimensional mass transfer prob-
lem within an area with dimensions L and h. Here, y = 0 is the surface (interphase
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surface), through which the mass transfer towards another phase (solid, liquid, and
gas) takes place:

u
oc

ox
þ v

oc

oy
¼ D

o2c

ox2
þ o2c

oy2

� �
;

x ¼ 0; y [ 0; c ¼ c0; x ¼ L; 0� y\h;¼ c�;

y ¼ 0; 0� x\L; c ¼ c�; y ¼ h; c ¼ c0:

ð1:4Þ

From (1.4) the mass transfer rate (J) can be defined through the mass transfer
coefficient (k) and the local mass flux (i), namely,

J ¼ kðc� � c0Þ ¼
h

L

ZL

0

idx; i ¼ �D
oc

oy

� �
y¼0

: ð1:5Þ

In a dimensionless form, this leads to the definition of the Sherwood number:

Sh ¼ kL

D
¼ � 1

c� � c0

ZL

0

oc

oy

� �
y¼0

dx : ð1:6Þ

Expressions (1.5) and (1.6) reveal that the determination of the mass transfer
rate requires the mass transfer coefficient k or the Sherwood number Sh to be
known, i.e., problem (1.4) has to be solved. The principal problem emerging in this
solution is the determination of the velocity field since the Navier–Stokes equa-
tions are strongly nonlinear [1]. The problem can be avoided by application of
some model theories of the mass transfer, as outlined next.

1.1 Model Theories

The basic difficulties in the mathematical description of mass transfer processes
are related to the problem of modeling complicated hydrodynamic conditions
forming the process background. In many mass transfer theories, the accepted
simplifications replace the real conditions by to some extent unjustified hydro-
dynamic models.

The first mass transfer theory, conceived by Nernst, was the so-called film
theory [2]. Similar theories concerning gas–liquid and liquid–liquid systems are
those of Langmuir [5] and Lewis and Whitman [6]. The film theory states that the
mass transfer is performed by steady-state diffusion processes through an
immovable fluid film with thickness h. The film theory, in fact, is an approxi-
mation of the linear mass transfer theory (1.4) if the film theory conditions are
accepted, namely,

u ¼ v ¼ 0; const: ¼ h� L: ð1:7Þ
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In this way, from (1.4) it follows that.

o2c

oy2
¼ 0; y ¼ 0; c ¼ c�; y ¼ h; c ¼ c0; ð1:8Þ

i.e.,

c ¼ c0 � c�

h
yþ c�; k ¼ D

h
: ð1:9Þ

The principal disadvantages of the film theory are due to the linear relationship
of k and the molecular diffusivity D, a fact that does not match the experimental
results. In this context, the unknown film thickness h avoids the need for the mass
transfer coefficient to be predicted theoretically. However, to some extent, some
ideas and outcomes of this theory are still valid and have a more fundamental
background. Precisely, the assumption that the mass transfer takes place in a thin
layer near the phase boundary and there is thermodynamic equilibrium at the
interphase surface are principal outcomes of the film theory, together with
the assumption that the diffusional resistances are connected in series (additivity of
the diffusion resistances) [3, 4]. In the cases of mass transfer complicated with a
fast chemical reaction, where the mass transfer rate does not depend on the
velocity of the flow, the outcomes of this theory are valid.

Higbie’s penetration theory [7] is another approach to approximate linearly the
mass transfer process assuming the process is nonstationary in a coordinate system
moving with interphase velocity u0:

oc

os
¼ D

o2c

oy2
; s ¼ x

u0
: ð1:10Þ

This case, in fact, is equivalent to mass transfer in a thin layer of thickness d
flowing with a constant fluid velocity u0:

u ¼ u0; v ¼ 0; d� h\L: ð1:11Þ

As a result of this assumption, from (1.4) one can obtain.

u0
oc

ox
¼ D

o2c

oy2
; x ¼ 0; c ¼ c0; y ¼ 0; c ¼ c�; y!1; c ¼ c0:

ð1:12Þ

The solution of (1.12) has been obtained by means of Green’s functions [8, 9] in
the form.

c ¼ c0 þ c� � c0ð Þerfc y

ffiffiffiffiffiffiffiffiffi
u0

4Dx

r
; ð1:13Þ

which yields.

Sh ¼ 2ffiffiffi
p
p Pe

1
2; Pe ¼ u0L

D
: ð1:14Þ
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In fact, the velocity in the thin layer varies [3, 4, 10, 11, 77] and (1.14) is the
zeroth approximation in the solution of the problem, assuming a homogeneous
velocity profile.

The first attempts to account for the real hydrodynamic conditions near fluid–
solid interfaces were made by Prandtl [12] and Taylor [13]. They supposed that in
turbulent conditions a laminar flow (like Couette flow) exists near the solid
interface.

On the other hand, the surface renewal theory of Kishinevsky [14, 15] and
Danckwerts [16], looks more deeply at the processes occurring near the interface.
The main idea of this theory is there is a permanent replacement of the fluid
elements contacting the solid surface. The motion of the fluid elements
approaching the surface, contacting it for a certain time, and then going back to the
bulk of the fluid phase is promoted by the turbulence. The contact time Ds between
a given fluid element and the solid surface is either constant as was assumed by
Kishinevsky or spans a range of values as stated by Danckwerts. The contact time
Ds cannot be predicted theoretically and its determination needs experimental data
to be processed. The turbulent pulsations vanish near the solid surface within the
viscous sublayer, and this forms the basis of the turbulent mass transfer theory.
During the time of contact Ds, the mass transfer in the fluid element is only due to
transient diffusion.

There exist versions of the penetration and the renewal theories, such as the
film-penetration model of Toor and Marchelo [17] and the development of Ruc-
kenstein [18–20]. However, the introduction of the transient (nonstationary) dif-
fusion mechanism in the model theories has no clear physical basis. The
parameters calculated on the basis of experimental data are in good agreement
with the experimental results but do not allow prediction of the process behavior
under new conditions.

The theoretical analysis of the turbulent mass transfer (see also Sect. 1.3)
shows that the calculation of the mass transfer rate is possible if the turbulent
pulsation fading law in the viscous sublayer (Dturb * yn) is known. Different
values of n (n = 2 [21], n = 3 [22–25], n = 4 [26–30], n = 5) have been sug-
gested in the literature [31]. Obviously additional experimental data are neces-
sary.

Several other model theories of linear mass transfer exist but they do not differ
significantly from those mentioned above and have similar disadvantages of
insufficient physical reasoning of their basic assumptions. In the context of these
critical comments, the mass transfer in the boundary layer approximation has the
best physical reasoning.

1.2 Boundary Layer Theory

The interface mass transfer in gas (liquid)–solid systems [1, 32, 33] takes place
through an immobile phase boundary. In this context, a potential flow with a
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constant velocity u0 on a semi-infinite flat plate will be discussed next. Under such
assumptions, from (1.2.39) and (1.3.35) one can obtain directly.

u
ou

ox
þ v

ou

oy
¼ m

o2u

oy2
;

ou

ox
þ ov

oy
¼ 0; u

oc

ox
þ v

oc

oy
¼ D

o2c

oy2
;

x ¼ 0; u ¼ u0; c ¼ c0; y ¼ 0; u ¼ 0; v ¼ 0; c ¼ c�; y!1;
u ¼ u0; c ¼ c0:

ð1:15Þ

Here the boundary conditions state there is a thermodynamic equilibrium at the
phase boundary.

(y = 0). Depending on the sign of the difference (c*– c0), a process of dissolving
or crystallization takes place. Problem (1.15) has a solution if the following
similarity variables are used:

u ¼ 0; 5u0eu
0; v ¼ 0; 5

u0v

x

� �0;5
gu0 � uð Þ; c ¼ c0 þ c� � c0ð Þw; y ¼ g

u0

4Dx

� ��0;5
;

e ¼ Sc0;5; u ¼ u gð Þ; w ¼ w gð Þ:
ð1:16Þ

The introduction of (1.16) into (1.15) leads to.

u000 þ e�1uu00 ¼ 0; w00 þ euw0 ¼ 0;

uð0Þ ¼ 0; u0ð0Þ ¼ 0; wð0Þ ¼ 1; u0ð1Þ ¼ 2e�1; wð1Þ ¼ 0:
ð1:17Þ

The solution of (1.17) is obtained [32] through the Blasius function f (z):

u gð Þ ¼ f zð Þ; z ¼ 2
e
g; w gð Þ ¼ 1� 1

u

Zz

0

E e; pð Þdp;

E e; pð Þ ¼ exp � e2

2

Zp

0

f sð Þ

2
4

3
5ds;

u ¼
Z1

0

E e; pð Þdp �
3; 01 Sc�0;35—for gases

3; 12 Sc�0;34—for liquids

(
:

ð1:18Þ

The Blasius function is the solution of the problem.

2f 000 þ ff 00 ¼ 0; f ð0Þ ¼ 0; f 0ð0Þ ¼ 0; f 00ð0Þ ¼ 0; 33205 ð1:19Þ

and its values are given elsewhere [34].
The introduction of (1.18) into (1.6) determines the Sherwood number:

Sh ¼ kL

D
¼ �Pe0;5w0ð0Þ � 2

3

ffiffiffiffiffiffi
Re
p ffiffi

½
p

3�Sc: ð1:20Þ

1 Linear Mass Transfer Theory 131

http://dx.doi.org/10.1007/978-3-642-10778-8_1
http://dx.doi.org/10.1007/978-3-642-10778-8_3


1.3 Two-Phase Boundary Layers

The mass transfer in gas–liquid and liquid–liquid systems occurs at a mov-
ing phase boundary. In the boundary layer approximation, the problem is
expressed as.

uj

ouj

ox
þ vj

ouj

oy
¼ mj

o2uj

oy2
;

ouj

ox
þ ovj

osy
¼ 0;

uj

ocj

ox
þ vj

ocj

oy
¼ Dj

o2cj

oy2
; j ¼ 1; 2:

ð1:21Þ

The boundary conditions take into account the continuity of the velocity, stress
tensor, and mass flux at the phase boundary:

x ¼ 0; uj ¼ uj0; cj ¼ cj0; j ¼ 1; 2; y ¼ 0; u1 ¼ u2; l1
ou1

oy
¼ l2

ou2

oy
;

c1 ¼ vc2; D1
oc1

oy
¼ D2

oc2

oy
; vj ¼ 0; j ¼ 1; 2;

y!1; u1 ¼ u10; c1 ¼ c10; y! �1; u2 ¼ u20; c2 ¼ c20:

ð1:22Þ

The subscripts are j = 1 for the first phase (gas or liquid) and j = 2 the second
one (liquid). At the phase boundary, a phase equilibrium is assumed and v is the
distribution coefficient: the Henry constant in the case of gas–liquid systems or the
coefficient of separation of liquid–liquid counterparts.

The average rate of mass transfer between the phases is determined in a similar
way by integration and averaging of the local mass fluxes, namely,

J ¼ K1 c10 � vc20ð Þ ¼ 1
L

ZL

0

I1dx ¼ k1ðc10 � c�1Þ

¼ K2
c10

v
� c20

� �
¼ 1

L

ZL

0

I2dx ¼ k2ðc�2 � c20Þ;

c�1 ¼ vc�2:

ð1:23Þ

Here Kj (j = 1, 2) are the interphase mass transfer coefficients, kj (j = 1, 2) are
mass transfer coefficients, and c1

* and c2
* are the concentrations of both phases at

the interphase surface (y = 0). The local mass fluxes (after solution of 1.21, 1.22)
are.

Ij ¼ �Dj

ocj

oy

� �
y¼0

; j ¼ 1; 2: ð1:24Þ

Then, from (1.23) and (1.24) it follows that the Sherwood numbers are.
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Shj ¼
KjL

Dj

¼ vj�1

c10 � vc20

ZL

0

ocj

oy

� �
y¼0

dx; j ¼ 1; 2: ð1:25Þ

From (1.23) the law of additivity of the diffusion resistances follows directly,
namely,

K�1
1 ¼ k�1

1 þ vk�1
2 ; v ¼ 0; K1 ¼ k1; K�1

2 ¼ ðvk1Þ�1 þ k�1
2 ; v!1;

K2 ¼ k2:

ð1:26Þ

Expressions (1.26) reveal that when the interphase mass transfer rate is limited
by the diffusion resistance in one of the phases, then the interphase mass transfer
coefficient equals the mass transfer coefficient in the same phase.

The problem (1.21, 1.22) has a solution after introducing the following simi-
larity variables:

uj ¼ 0; 5juj0eju
0
j; vj ¼ ð�1Þj�10; 5j

uj0mj

x

� �0;5
gju

0
j � uj

� �
;

cj ¼ cj0 � ð�vÞ1�j c10 � vc20ð Þwj; uj ¼ ujðgjÞ; wj ¼ wjðgjÞ;

gj ¼ ð�1Þj�1y
uj0

4Djx

� �0;5

; ej ¼ Sc0;5
j ; Scj ¼

vj

Dj

; j ¼ 1; 2:

ð1:27Þ

As a result, it follows that.

u000j þ je�1
j uju

00
j ¼ 0; w00j þ jejujw

0
j ¼ 0;

ujð0Þ ¼ 0; u0jð1Þ ¼
2
jej

; wjð1Þ ¼ 0; j ¼ 1; 2;

u01ð0Þ ¼ 2h1
e2

e1
u02ð0Þ; u002ð0Þ ¼ �0; 5h2

e1

e2

� �2

u001ð0Þ;

w01ð0Þ ¼
v
e0

w02ð0Þ; w1ð0Þ þ w2ð0Þ ¼ 1;

h1 ¼
u20

u10
; h2 ¼

l1

l2

� �
m1

m2

� ��0;5 u10

u20

� �1;5

; e0 ¼
D2

D1

u20

u10

� �0;5

:

ð1:28Þ

The solution of (1.28) allows the determination of the interphase mass transfer
rate between two phases with a moving phase boundary:

Shj ¼ �
ffiffiffiffiffiffiffi
Pej

p
w0jð0Þ; Pej ¼

uj0L

Dj

; j ¼ 1; 2: ð1:29Þ

Problem (1.28) has been solved numerically [35]. In the case of a gas–liquid
system an asymptotic solution using the perturbation method (see Page 414 and the
next) has been developed [11, 36]. This asymptotic solution is a series of the orders

1 Linear Mass Transfer Theory 133



of the small parameters h1 and h2. For wj
0
(0) (j = 1, 2) the following expressions are

obtained as a first approximation regarding the small parameters h1 and h2:

w01ð0Þ ¼ �
2

e1u10

1
1þ a

� 2h1

au2
10e1

1

ð1þ aÞ2
� 8h2a

e2

e1

�u2

u10

a

ð1þ aÞ2
;

w02ð0Þ ¼ �
2ffiffiffi
p
p a

1þ a
� h1

2ffiffiffi
p
p

au10

a

ð1þ aÞ2
� 8h2

ae2 �u2ffiffiffi
p
p a2

ð1þ aÞ2
;

ð1:30Þ

where.

u10 �
3ffiffi
½

p
3�Sc

; a ¼ v
ffiffiffi
p
p

e0e1u10
; a ¼ 0; 33205; �u2 ¼

1
8

ffiffiffiffiffiffiffi
p

Sc2

r
: ð1:31Þ

In the cases when the interphase mass transfer is limited by the mass transfer in
the gas phase v/e0 ? 0, a ? 0, the Sherwood number can be expressed as.

Sh1 ¼
ffiffiffiffiffiffiffiffi
Pe1
p 2

e1u10
þ 2h1

e1au2
10

� �
: ð1:32Þ

When the interphase mass transfer is limited by the mass transfer in the liquid
phase, the Sherwood number can be determined in a similar way, namely,

Sh2 ¼
ffiffiffiffiffiffiffiffi
Pe2
p 2ffiffiffi

p
p þ 8h2

ae2 �u2ffiffiffi
p
p

� �
: ð1:33Þ

Similar results obtained for the hydrodynamics and the mass transfer in co-
current flows for gas–liquid systems [35, 37–39] are in a good agreement with the
experimental data.

2 Mass Transfer in Countercurrent Flows

Chemical technologies based on countercurrent flows in gas–liquid systems are
widely encountered in practice. The analyses of such flows [9] reveal that there is a
possibility to obtain asymptotic solutions for gas–liquid systems which are in
agreement with the experimental data, obtained from thermoanemometrical
measurements in the boundary layers. The correctness of the asymptotic method
proposed in [9] was confirmed by numerical experiments concerning the exact
solution of the problem [40]. The theoretical analysis of the countercurrent flow
[41], for example, shows that it is a nonclassical problem of mathematical physics
insufficiently discussed in the literature. The parabolic boundary value problem
with changing direction of time [42, 43] is a typical problem of this type. It was
shown in [41] that this nonclassical problem can be described as consisting of
several classical subproblems.
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2.1 Velocity Distribution

The mathematical description of the countercurrent flow in the boundary
approximation is.

uj

ouj

ox
þ vj

ouj

oy
¼ mj

o2uj

oy2
;

ouj

ox
þ ovj

oy
¼ 0; j ¼ 1; 2;

x ¼ 0; y� 0; u1 ¼ u11 ; x ¼ L; y� 0; u2 ¼ �u12 ;

y!1; 0� x� L; u1 ¼ u11 ; y! �1; 0� x� l; u2 ¼ �u12 ;

y ¼ 0; 0\x\L; u1 ¼ u2; l1
ou1

oy
¼ l2

ou2

oy
; v1 ¼ v2 ¼ 0:

ð2:1Þ

Problem (2.1) can be represented in a dimensionless form using two different
coordinate systems for the two phases. The flow in each phase is oriented along the
longitudinal coordinate, which yields the following dimensionless variables and
parameters:

x ¼ LX1 ¼ L� LX2; y ¼ d1Y1 ¼ �d2Y2;

u1 ¼ u11 U1; v1 ¼ u11
d1

L
V1; u2 ¼ �u12 U2; v2 ¼ �u12

d2

L
V2;

dj ¼
ffiffiffiffiffiffi
mjL

u1j

s
; j ¼ 1; 2; h1 ¼

u12
u11

; h2 ¼
q1l1

q2l2

� �1
2 u11

u12

� �3
2

:

ð2:2Þ

In the new coordinate systems, the model of countercurrent flows takes the
form.

Uj

oUj

oXj

þ Vj

oUj

oYj

¼ o2Uj

oY2
j

;
oUj

oXj

þ oVj

oYj

¼ 0;

Xj ¼ 0; Uj ¼ 1; Yj !1; Uj ¼ 1;

Y1 ¼ Y2 ¼ 0; U1 ¼ �h1U2; h2
oU1

oY1
¼ oU2

oY2
; Vj ¼ 0; j ¼ 1; 2:

ð2:3Þ

Problem (2.3) cannot be solved directly, because the velocities Ui(i = 1, 2)
change their directions within the ranges 0 B Xi B 1, 0 B Yi \?, (i = 1, 2).
This nonclassical problem of mathematical physics can be converted to a classical
one by introduction of the following similarity variables:

Uj ¼ f 0j ; Vj ¼
1

2
ffiffiffiffiffi
Xj

p ðgjf
0
j � fjÞ; fj ¼ fjðgjÞ; gj ¼

Yjffiffiffiffiffi
Xj

p : ð2:4Þ

The substitution of (2.4) into (2.3) yields.

2 Mass Transfer in Countercurrent Flows 135



2f 000j þ fjf
00
j ¼ 0; fjð0Þ ¼ 0; fjð1Þ ¼ 1; j ¼ 1; 2;

f 01ð0Þ ¼ �h1f 02ð0Þ; h2

ffiffiffiffiffi
X2

X1

r
f 001 ð0Þ ¼ f 002 ð0Þ; X1 þ X2 ¼ 1: ð2:5Þ

It is obvious from (2.5) that problem (2.3) has no solution in similarity
variables.

However, problem (2.5) can be solved after the introduction of new parameter
�h2 for each X1 2 (0, 1):

�h2 ¼ h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X1

X1

r
: ð2:6Þ

Hence, the problem has a local similarity solution. In this way problem (2.5) is
substituted by several separate problems for each X1 2 (0, 1).

The solutions of these separate problems can be obtained after the introduction
of the function.

F a; bð Þ ¼
Z7

6

f 01 � 1
� �2

dg1 þ
Z7

6

f 02 � 1
� �2

dg2; a ¼ f 01 0ð Þ; b ¼ f 001 0ð Þ: ð2:7Þ

The solution of (2.5) for each X1 [ (0,1) is obtained after searching for the
minimum of the function F(a,b). At each step of the minimization procedure, the
boundary problem has to be solved:

2f 000j þ fjf
00
j ¼ 0; fj 0ð Þ ¼ 0; j ¼ 1; 2; f 01 0ð Þ ¼ a; f 02 0ð Þ ¼ � a

h1
; f 001 0ð Þ ¼ b;

f 002 0ð Þ ¼ �h2b:

ð2:8Þ

Problem (2.8) was solved numerically for countercurrent gas and liquid flows
for the following parameters values: h1 = 0.1 and h2 = 0.152. In accordance with
the requirement for a minimum of F(a,b) in (2.7), the boundary conditions a, b and
F(a,b) were determined [40].

The energy dissipated in the laminar boundary layer [6, 7] is described for both
phases by the equations.
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r

miqiu
12
j

; j ¼ 1; 2:

ð2:9Þ

For gas–liquid countercurrent flows, the introduction of similarity variables
leads to.
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f
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In the case of co-current flows, the function fj
0 0
* does not depend on Xj and for

energy dissipation one can obtain.

Ej� ¼ 2
Z1

0

f
00

i �
� �2

dgi; i ¼ 1; 2: ð2:11Þ

Here fj* (i = 1, 2) is the solution of equations (2.8) with boundary conditions
for co-current flows:

h1� ¼ �0:1; h2� ¼ h2 ¼ 0:152; f 01 � 0ð Þ ¼ 0:0908; f
00

1 � 0ð Þ ¼ 0:32765:

ð2:12Þ

The comparison of the energy dissipated in the laminar boundary layer [6, 7] for
the case of gas–liquid countercurrent and co-current flows is shown in Table 1.
These results reveal that the energy dissipation for the gas phase in co-current
flows is lower than that in countercurrent flows, whereas in the liquid phase there
are no significant changes.

2.2 Concentration Distribution

The mathematical model of mass transfer in gas–liquid systems with counter-
current flow in a laminar boundary layer with a flat phase boundary takes the
following form:

uj

o cj

o x
þ vj

o cj

o y
¼ Dj

o2cj

oy2
; j ¼ 1; 2;

x ¼ 0; y� 0; c1 ¼ c11 ; x ¼ L; y� 0; c2 ¼ c12 ;

y!1; 0� x� L; c1 ¼ c11 ; y! �1; 0� x� L; c2 ¼ c12 ;

y ¼ 0; 0\x\L; c1 ¼ vc2; D1
oc1

oy
¼ D2

oc2

oy
:

ð2:13Þ

Table 1 Comparison between countercurrent and co-current flows

h3 = 0 h3 ? ? h3 = 1

J1 J1* J2 J2* J1 J1* J2 J2*
0.554 0.720 4.380 4.822 0.432 0.626 0.432 0.626
A1 A1* A2 A2* A1 A1* A2 A2*
1.06 1.57 739 750 0.82 1.37 72.8 97.3
E1 E1* E2 E2* E1 E1* E2 E2*
0.525 0.458 0.00593 0.00643 0.525 0.458 0.01328 0.00643
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Here uj and vj (j = 1, 2) are the velocity components in the gas and in the liquid
phase determined by the solution of (2.8).

The solution of (2.13) was performed [44] by introducing the following simi-
larity variables:

gj ¼ ð�1Þjþ1y

ffiffiffiffiffiffiffiffiffiffiffi
u1j

mjLXj

s
; X1 ¼

x

L
; X2 ¼

L� x

L
; X1 þ X2 ¼ 1;

uj ¼ �1ð Þjþ1u1j f 0j ; vj ¼ �1ð Þjþ11
2

ffiffiffiffiffiffiffiffiffiffi
mju1j
LXj

s
gjf
0
j � fj

� �
; fj ¼ fj gj

� �
;

cj ¼ c1j � v1�jðc11 � vc12 Þwj; wj ¼ wjðgjÞ; j ¼ 1; 2:

ð2:14Þ

The substitution of equations (2.14) into equations (2.13) leads to.

2f
0000

j þ fjf
00

j ¼ 0; 2w
00

j þ Scjfjw
00

j ¼ 0; j ¼ 1; 2;

f1 0ð Þ ¼ 0; f 01 0ð Þ ¼ a; f
00

1 0ð Þ ¼ b; f2 0ð Þ ¼ 0; f 02 0ð Þ ¼ � a

h1
; f

00

22 0ð Þ ¼ h2b;

w1ð0Þ þ w2ð0Þ ¼ 1; �h3w
0
1ð0Þ ¼ w02ð0Þ; wjð1Þ ¼ 0; j ¼ 1; 2;

ð2:15Þ

where.

Scj ¼
mj

Dj

ðj ¼ 1; 2Þ; h1 ¼
u12
u11

; h2 ¼
q1l1

q2l2

� �1
2 u11

u12

� �3
2

;

�h2 ¼ h2

ffiffiffiffiffi
X2

X1

r
; h3 ¼ v

D1

D2

ffiffiffiffiffiffiffiffiffiffiffi
u11 m2

u12 m1

s
; �h3 ¼ h3

ffiffiffiffiffi
X2

X1

r
:

ð2:16Þ

The boundary conditions a and b are determined by (2.8).
Obviously, it is evident from (2.15) that it is possible to develop a similarity

solution for different values of X1 = 1 - X2.
The solution of (2.15) was carried out [44] under new boundary conditions for

wj(j = 1, 2):

w1ð0Þ ¼ a; w01ð0Þ ¼ b; w2ð0Þ ¼ 1� a; w02ð0Þ ¼ �h3b: ð2:17Þ

Here a and b are determined for different values of X1 = 1 - X2, so the
conditions wj(?) = 0, (j = 1, 2) have to be satisfied.

The Sherwood number may be obtained analogously to (1.25) as.

Shj ¼ �
ffiffiffiffiffiffiffi
Rej

p Z1

0

w01 0ð Þffiffiffiffiffi
Xj

p dXj; Rej ¼
u1j L

mj

; j ¼ 1; 2: ð2:18Þ
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The dimensionless diffusive flux has the form.

Jj ¼ �
Z1

0

w0j 0ð Þffiffiffiffiffi
Xj

p dXj; j ¼ 1; 2: ð2:19Þ

2.3 Comparison Between Co-current and Countercurrent Flows

The comparison between the mass transfer rates in the countercurrent and the co-
current flow modes will be performed by solving equation (2.15) with parameters
corresponding to the case of co-current flow, namely,

h1 ¼ �0:1; h2 ¼ 0:152; f 01 0ð Þ ¼ 0:0908; f 001 0ð Þ ¼ 0:37265;
�h3 ¼ h3; J�j ¼ �2w0j 0ð Þ; j ¼ 1; 2:

ð2:20Þ

The results obtained for Jj
*(j = 1, 2) are summarized in Table 1. These results

definitely indicate that with the co-current flow the mass transfer rate is higher than
that exhibited under the countercurrent flow conditions.

The numerical results allow us to determine the ratio (A) between the mass
transfer rate (Sh) and the corresponding energy dissipation (E) with both flow
modes, namely,

Ai ¼
Shi

Ei

; A�i ¼
Sh�i
E�i

; i ¼ 1; 2: ð2:21Þ

The data summarized in Table 1 indicate the better performance of the co-
current flow mode with a higher mass transfer rate per unit energy dissipation
required to perform the process. This theoretical analysis shows that the linear
mass transfer theory permits us to predict the mass transfer resistance distribution
in two-phase systems. In the diffusion boundary layer approximation, the mass
transfer is governed by the parameter v/e0 (see 1.28). The process is limited by the
mass transfer in the first phase if v/ve0 C 102.e0 C 102; if v/ve0.e0 B 10-2 the
process is limited by the mass transfer in the second phase. The diffusion resis-
tances are of the same order of magnitude if v/ve0 * 1.e0 * 1. In the film theory
mass transfer approximation, the theory reveals that v is the only governing
parameter (see 1.26).

The results obtained so far represent the linear mass transfer theory in the
boundary layer approximation with a flat phase boundary. Such problems (the
linear mass transfer theory) can be solved in similar manners (in the boundary
layer approximation) with conditions imposed by different forms of the interphase
surface (wavy, spherical, cylindrical, and other shapes) in processes involving film
flows, droplets, bubbles, jets, etc.
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3 Nonlinear Mass Transfer

The theoretical analysis of linear mass transfer shows that such a process exists
when the equation of convection–diffusion (1.4) is linear, i.e., the velocity (u, v)
and the diffusivity (D) are independent of the concentration (c) of the transferred
substance. These conditions are valid in systems where the mass transfer does not
affect the hydrodynamics and the mass flux is related linearly to the concentration
gradient. The linear mass transfer theory, built with these assumptions, has two
main outcomes: (1) the mass transfer coefficient is independent of the concen-
tration and (2) the mass transfer rate is unaffected by the direction of interphase
mass transfer.

Any deviations in experiments apart from these two principal theoretical out-
comes indicate that nonlinear effects are taking place. The latter are mainly due to
secondary flows caused by high mass transfer rates or concentration effects on
transport coefficients such as viscosity and diffusivity. The secondary flows can be
caused by a concentration gradient (nonlinear mass transfer), a surface tension
gradient (Marangoni effect), a density gradient (natural convection), or a pressure
gradient (Stefan flow). Under such conditions, the effect of concentration on both
the velocity field and the convection–diffusion equation becomes nonlinear. The
secondary flows may affect the mass transfer rate through changes in the velocity
field, i.e., the result is a changed ratio of the convective and the diffusive transfer in
the convection–diffusion equation. The effect may increase many times when the
system becomes unstable as a result of secondary flows and attains a new hier-
archical state of self-organization (recall, the systems are dissipative structures).

One of the most interesting nonlinear effects arises from the conditions which
are imposed by high concentration gradients. Such high gradients induce sec-
ondary flows at the phase boundaries. This effect is discussed in detail in this book
for a variety of systems and is termed the ‘‘nonlinear mass transfer effect’’.

The development of modern processing (e.g., power production, chemical and
oil processing, food engineering) calls for systems with intensive mass transfer.
Most of these processes are carried out in two-phase systems and it is possible to
use large concentration gradients of the transferred substance to develop process
intensifications. Under such conditions, the large mass fluxes through the phase
boundaries induce secondary flows at the vicinity of the interphase surfaces. The
latter affect the flow conditions and change significantly both the mechanisms and
the kinetics of mass transfer processes.

The analysis of the mechanism and kinetics of the interphase mass transfer in
two-phase systems in many cases is possible if the velocity distribution is deter-
mined at the beginning. Then, after its substitution in the convection–diffusion
equation, the rate of interface mass transfer can be determined. However, this
procedure cannot be applied to systems with large concentration gradients because
the flow at the interphase surface is induced by the intensive mass transfer. The
velocity of this flow is perpendicular to the interphase surface and is directed
towards the mass transfer direction.
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The physical reason of this movement is the mechanical impulse transferred
from one phase to the other through the particles responsible for the mass transfer.
In the linear mass transfer theory, this impulse is considered to be insignificant, but
when large mass fluxes cross the interphase surface, it has to be taken into account.
Since the transferred impulse is proportional to the diffusive flux of particles
involved in the mass transfer, the velocity field at the vicinity of the interphase
boundary depends on the concentration field and the corresponding relationships
have to be defined. The particular forms of such relationships are determined by
a set of coupled equations of mass transfer and momentum transfer under
boundary conditions relating the fluxes of mass and momentum at the interphase
boundary.

3.1 Influence of Intensive Interphase Mass Transfer
on the Hydrodynamics

The induced flow velocity at the interphase surface is determined by the hydro-
dynamic effects caused by the intensive mass transfer. This effect concerns mainly
the boundary conditions relevant to the coupled equations of the hydrodynamics
and the mass transfer. These equations cannot be solved independently, in contrast
with the cases of low mass transfer rates at the phase boundaries. The relationship
between the velocity of the induced flow at the phase boundary and the rate of the
interphase mass transfer will be exemplified by an isothermal process of transfer of
a dissolved substance from phase 1 into phase 2. Let us assume that each phase is a
two-component mixture (a solution of substance m in the corresponding solvent)
and that the two solvents are immiscible. The diffusive flux jm

(i) of substance m at
each point of the space inside phase i is.

j ið Þ
m ¼ Mmc ið Þ

m v ið Þ
m � v ið Þ

� �
; i ¼ 1; 2: ð1Þ

Here cm
(i) is the molar concentration of the transferred substance in phase i, Mm

is the molecular mass of this substance, vm
(i) is the average statistical velocity of

movement of particles of substance m in an arbitrary, but fixed coordinate system,
and v(i) is the velocity of the mass center of the whole liquid mixture in the same
coordinate system. The velocity v(i) is defined by the set of equations of hydro-
dynamics (in the case of laminar flow, the set of Navier–Stokes equations).
Besides, by definition, this velocity is connected to the velocities of movement of
the mixture components through the relationship.

q ið Þv ið Þ ¼ Mmc ið Þ
m vm þM0c ið Þ

0 v
ið Þ

0 : ð3:2Þ

The variables with subscripts 0 refer to the corresponding solvent, and
q(i) = Mmcm

(i) + M0c0
(i) is the common density of the solution in phase i (in the

general case this density is a function of the space coordinates and time).
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Let us represent each of the velocities in equation (3.2) as the sum of the
velocity of movement at the interphase surface drs /dt (rs is the radius vector of an
arbitrary point at the phase boundary) and the velocity of movement in regard to
this surface vrk

(i)(k = m, 0). Owing to the fact that the two solvents are immiscible,

the normal components of velocities v
1ð Þ

r 0 and vr0
(2) at the interphase boundary must be

equal to zero. Hence, when Eq. (3.2) is being projected in the direction of the
normal vector (n) to the interphase boundary at each point of this boundary, we have

q ið Þ v ið Þ
r ; n

� �
¼ Mmc ið Þ

m v ið Þ
rm; n

� �
: ð3:3Þ

Similarly, the projection of Eq. (3.1) on the direction of the normal vector n
(taking into account relationship 3.3) yields

v ið Þ
s ; n

� �
¼ drs

dt
;n

� �
þ

j ið Þ
ms; n
� �

q ið Þ
s �Mmc ið Þ

ms

: ð3:4Þ

This equation is correct at each point of the interphase surface. The subscript s
denotes the variable related to the phase boundary. If the form of the surface is
defined by the equations

y ¼ f1ðx; tÞ; z ¼ f2ðr; tÞ; r ¼ f3ðh; tÞ; ð3:5Þ

then for the first term on the right side of (3.4), the following expressions are valid:

drs

dt
;n

� �
¼

1þ o f1
o x

� �� 1
2o f1
o t in Cartesian coordinate system,

1þ o f2
o r

� �� 1
2o f2
o t in cylindrical coordinate system,

1þ o f3
f3 oh

� �� 1
2o f3
o t in spherical coordinate system:

8>>>>><
>>>>>:

ð3:6Þ

From (3.4) it follows that in the case of high interphase mass transfer rates the
solution of the hydrodynamic problem is not independent of the solution of the
convection–diffusion problem because the velocity distribution is a function of
the concentration distribution and the convection–diffusion equation is nonlinear
(in linear mass transfer theory the hydrodynamic problem is independent of the
diffusion problem).

The published literature refers to many systems of practical interest [71, 108]
where intensive mass transfers lead to significant effects on the hydrodynamic
conditions. Good examples of such systems are vapor condensation on a cooled
wall [45, 46], evaporation of liquids from surfaces of droplets or bubbles [47–51],
crystallization and dissolution of salts [52–56], and heat and mass transfer under
conditions of intensive injection (or suction) of gases through a porous walls [57–
61]. It is important to mention that the nonlinear mass transfer effects discussed
further are mainly due to large concentration gradients in the liquid phase or large
partial pressure gradients in the gas phase. In such cases the mass fluxes through
the phase boundaries are determined by the mass transfer rates. In this context,
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such systems defined by large concentration gradients differ from Stefan systems
[62, 63], where the flows are mainly induced by gradients of the general pressure.

3.2 Boundary Conditions of the Nonlinear Mass
Transfer Problem

The mathematical formulation of mass transfer problems taking into account the
mass transfer effect on the hydrodynamics was reported first in [64–66]. Equation
(3.4) relates in general the velocity of the induced flow to the mass flux across the
phase boundary, but in each particular case an exact specific relationship has to be
defined.

Generally, with a two-phase system, in Cartesian coordinates [3] the phase
boundary can be defined by the function y = h(x) and differentiation of (3.4) can
be performed under the assumption that the interphase surface does not vary in
time, i.e., waves and any disturbances on the surfaces of growing droplets or
bubbles are neglected. The mass flux of the transferred substance at each point of
the phase discussed can be expressed by means of the average statistical velocity
of this substance (molecules, atoms, ions) v and the mass center velocity of the
mixture (phase) particles v1:

j ¼ Mc v� v1ð Þ: ð3:7Þ

Velocity v1 should satisfy the hydrodynamic equations and should be related to
the velocities of the mixture (phase) components through the equation

qv1 ¼ M0c0v0 þMcv: ð3:8Þ

Here q is the phase (mixture) density, and subscript 0 denotes the phase
(mixture) parameters in the absence of a transferred substance. In this way, the
density of the phase discussed can be expressed as

q ¼ M0c0 þMc ¼ q0 þMc: ð3:9Þ

The projection of the vector equation (3.8) on the normal to the interphase
surface (vector n) is

q� v�1; n
� �

¼ Mc� v�; nð Þ: ð3:10Þ

The asterisks denote the value of the function at the phase boundary. To obtain
(3.10), the condition for complete mutual insolubility of both phases is used:

v0; nð Þ ¼ 0: ð3:11Þ

Equation (3.11) expresses the availability of a normal velocity component of
the liquid or the gas (v1

*, n) at the interphase surface, determined by the diffusion
rate (v*, n). The velocity at the interphase surface only has a tangential component.

The induced flow at the interphase surface creates a convective mass flux. This
implies that the mass flux of the transferred substance through the interphase
surface has both convective and diffusive components:
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I ¼ �MD
oc

on

� �
y¼h

þMc� v�1; n
� �

: ð3:12Þ

Here q/qn is the derivative in the direction of the normal vector of the inter-
phase surface.

The diffusion component may be expressed by means of the projection of the
vector equation (3.7) on the normal vector of the interphase surface:

j�; nð Þ ¼ �MD
o c

o n

� �
y¼h

¼ Mc� v;nð Þ �Mc� v�1; n
� �

: ð3:13Þ

From Eqs. (3.10–3.13) one can obtain

I ¼ q� v�1; n
� �

¼ � q�

q� �Mc�
MD

oc

on

� �
y¼h

; ð3:14Þ

where

q� ¼ M0c�0 þMc� ¼ q�0 þMc�: ð3:15Þ

For small concentrations of the transferred substance we have

q�0 � q0: ð3:16Þ

Expression (3.14) may be presented in the form

I ¼ q�
v� � h0u�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ h02
p ¼ MDq�

q�0

h0 oc
ox

� �
y¼h�

oc
oy

� �
y¼hffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ h02
p : ð3:17Þ

Here u* and v* are the components of velocity v1 along the x- and y-axes,
respectively.

Equation (3.17) gives the relation between the gas (or liquid) velocity at the
interphase surface and the concentration gradient of the transferred substance. It
will used further as a boundary condition for the Navier–Stokes equations. In the
approximations of the linear mass transfer theory, relationship (3.17) represents a
condition at an impermeable surface y = h (x):

v� � h0u�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02
p ¼ 0: ð3:18Þ

The processes of nonlinear mass or heat transfer in multicomponent systems
involving gas (liquid)–solid interphase surfaces will be exemplified by the case of
streamlining of a semi-infinite flat plate in the boundary layer approximation. In
this case, the nonlinear effect is encountered through the velocity of the induced
flow v* at the interface y = 0. This velocity is defined by (3.17) with u* = 0 at
h : 0, namely,

v� ¼ �MD

q�0

oc

oy

� �
y¼0

: ð3:19Þ
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3.3 Nonlinear Mass Transfer in the Boundary Layer

The kinetics of nonlinear mass transfer in the boundary layer approximations [67–
69] will be discussed through solutions of momentum and convection–diffusion
equations with boundary conditions imposing mass transfer effects on the
hydrodynamics. In Cartesian coordinates, where

y = 0 corresponds to the gas (liquid)–solid interphase surface, the mathematical
description of the nonlinear mass transfer is represented by

u
ou

ox
þ v

ou

oy
¼ m

o2u

oy2
;

ou

ox
þ ov

oy
¼ 0; u

oc

ox
þ v

oc

oy
¼ D

o2c

oy2
;

x ¼ 0; u ¼ u0; c ¼ c0; y ¼ 0; u ¼ 0; v ¼ �MD

q�0

oc

oy
; c ¼ c�;

y!1; u ¼ u0; c ¼ c0:

ð3:20Þ

Here a potential flow with velocity u0 streamlines the plate. The concentration
of the transferred substance is assumed to be c0. As a result of the rapid estab-
lishment of thermodynamic equilibrium, the concentration c* is always constant
on the solid surface. The normal component of the velocity at the interphase
surface is determined by (3.19) as a consequence of intensive interface mass
transfer.

The mass transfer rate for a plate of length L can be determined from the
average mass flux as

J ¼ Mk c� � c0ð Þ ¼ 1
L

ZL

0

Idx: ð3:21Þ

Here k is the mass transfer coefficient and I can be expressed from (3.17) as
follows:

I ¼ �MDq�

q�0

oc

oy

� �
y¼0

: ð3:22Þ

To solve problem (3.20), it is necessary to introduce the similarity variables

u ¼ 0:5u0eu
0; v ¼ 0:5

u0m
x

� �0:5
gu0 � uð Þ; c ¼ c0 þ c� � c0ð Þw;

y¼g
u0

4Dx

� ��0:5
;

ð3:23Þ

where

e ¼ Sc0:5; Sc ¼ m
D
; u ¼ uðgÞ; w ¼ wðgÞ: ð3:24Þ
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As a result of these substitutions, problem (3.20) has the following form:

u
0000 þ e�1uu

00 ¼ 0; w
00 þ euw0 ¼ 0; h ¼ Mðc� � c0Þ

eq�0
;

u 0ð Þ ¼ hw0 0ð Þ; u0 0ð Þ ¼ 0; u0 1ð Þ ¼ 2e�1; w 0ð Þ ¼ 1; w 1ð Þ ¼ 0;

w 0ð Þ ¼ 1; w 1ð Þ ¼ 0:

ð3:25Þ

Here h is a small parameter that reflects the effect of the nonlinear mass
transfer. In the linear theory of the diffusion boundary layer we have h = 0.

Considering the new variables and Eq. (3.21), one can obtain

Sh ¼ kL

D
¼ � q�

q�0
Pe0:5w0 0ð Þ; Pe ¼ u0L

D
: ð3:26Þ

From (3.26) it is clear that the mass transfer kinetics is determined by the
dimensionless diffusive flux w

0
(0), which is a solution of (3.25). The solution was

achieved using the perturbation method (see Sect. 7.1) by representing u and w as
power series of the small parameter h [70]:

u ¼ u0 þ hu1 þ h2u2 þ 	 	 	 ; w ¼ w0 þ hw1 þ h2w2 þ 	 	 	 : ð3:27Þ

If (3.27) is substituted into (3.25), then a series of boundary problems (solved in
[67]) is the outcome. For the functions in (3.27) we may write that

u0 gð Þ ¼ f zð Þ; z ¼ 2
e
g; w0 gð Þ ¼ 1� 1

u0

Zz

0

E e; pð Þdp; E e; pð Þ ¼ exp � e2

2

Zp

0

f sð Þds

2
4

3
5;

u1 gð Þ ¼ � 2
eu0

u zð Þ; w1 gð Þ ¼ eu3

u3
0

Zz

0

E e; pð Þdp� e

u2
0

Zz

0

Zp

0

u sð Þds

2
4

3
5E e; pð Þdp;

u2 gð Þ ¼ � 2u3

u3
0

u zð Þ � 4

e2u2
0

�u zð Þ;

w2 gð Þ ¼ � 2e2u2
3

u5
0

þ e2u33

2u4
0

þ 2�u33

u4
0

� �Zz

0

E e; pð Þdpþ 2e2u3

u4
0

Zz

0

Zp

0

u sð Þds

2
4

3
5E e; pð Þdp

� e2

2u3
0

Zz

0

Zp

0

u sð Þds

2
4

3
5

2

E e; pð Þdp� 2

u3
0

Zz

0

Zp

0

�u sð Þds

2
4

3
5E e; pð Þdp:

ð3:28Þ

In (3.28) the functions f, u, and �/ are solutions of the boundary problems:

2f
0000 þ f

00 ¼ 0; 2u
000 þ f u

00 þ f
00
u ¼ 0; 2u

000 þ f u
00 þ f

00
u ¼ uu

00
;

f 0ð Þ ¼ 0; f 0 0ð Þ ¼ 0; f 0 1ð Þ ¼ 1; f 00 0ð Þ ¼ 0; 33205;

u 0ð Þ ¼ 1; u0 0ð Þ ¼ 0; u0 1ð Þ ¼ 0; �u 0ð Þ ¼ 0; �u0 0ð Þ ¼ 0; �u0 1ð Þ ¼ 0:

ð3:29Þ
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In (3.28) the parameters u0;u3;u33; �u33 are functions of the Schmidt number:

u0 ¼
Z1

0

E e; pð Þdp �
3:01 Sc�0:35—for gases,

3:12 Sc�0:34—for liquids,

(

u3 ¼
Z1

0

Zp

0

u sð Þds

2
4

3
5E e; pð Þdp �

6:56 Sc�0:80—for gases,

5:08 Sc�0:67—for liquids,

(

u33 ¼
Z1

0

Zp

0

u sð Þds

2
4

3
5

2

E e; pð Þdp �
24:0 Sc�1:3—for gases,

12:2 Sc�1:0—for liquids,

(

�u33 ¼
Z1

0

Zp

0

�u sð Þds

2
4

3
5E e; pð Þdp �

0:326 Sc�1:63—for gases,

0:035 Sc�1:1—for liquids:

(

ð3:30Þ

The dimensionless diffusive flux in the Sherwood number (3.26) is obtained
directly from (3.28):

w0ð0Þ ¼ � 2
eu0
þ h

2u3

u3
0

þ h2 � 4eu2
3

u5
0

þ eu33

u4
0

þ 4�u33

eu4
0

� �
: ð3:31Þ

Equation (3.31) shows that the precision of this basic result from the asymptotic
theory of the diffusion boundary layer significantly depends on h and e. If it is
necessary to develop a theoretical result with an error less than 10%, then the
second-order approximation of the small parameter h should be smaller than one
tenth of its zeroth-order approximation, i.e.,

h2 � 4eu2
3

u5
0

þ eu33

u4
0

þ 4�u33

eu4
0

� �				
				\ð0:1Þ � 2

eu0

				
				: ð3:32Þ

From (3.32) it follows that

e ¼ 1; h\0; 41; e ¼ 2; h\0; 23; e ¼ 10; h\0; 056;

e ¼ 20; h\0; 025;
ð3:33Þ

To check the precision of the asymptotic theory of nonlinear mass transfer in a
diffusion boundary layer, the finite problem (3.25) was solved through a numerical
method [40].

In Table 2 results of the asymptotic theory w
0
(0) are compared with results of

the numerical experiments wN
0

(0). The data missing from the table correspond to
cases when singular disturbances in the numerical solution of the problem
increase. To this end, from (3.33) it is obvious that these cases go beyond the limits
of the accepted precision of the asymptotic theory.

The results developed show that the direction of intensive mass transfer sig-
nificantly affects the mass transfer kinetics and this cannot be predicted in the
approximations of the linear theory
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(h = 0). When the mass transfer is directed from the liquid bulk towards the
phase boundary (h \ 0), then the increase in the concentration gradient in the
diffusion boundary layer (c* c0) leads to an increase in the diffusive mass transfer.
In the cases when the mass transfer is directed from the phase boundary towards
the bulk (h[ 0), the increase in the concentration gradient leads to a decrease in
the diffusive mass transfer.

The nonlinear effects in the mass transfer kinetics under conditions of intensive
mass transfer occur in a thin layer near the interphase surface [67], having a
thickness approximately three times smaller than that of the diffusion boundary
layer. At the boundary of this ‘‘layer of nonlinear mass transfer’’ the local diffusive
flux depends on the concentration gradient and the value of the parameter h
correspondingly. Inside the ‘‘nonlinear mass transfer layer’’ for h\ 0 (h[ 0) the
flux increases (decreases) with increase in the absolute value of h, and outside this
layer this dependence is the opposite [71].

3.4 Two-Phase Systems

The interphase mass transfer in gas–liquid and liquid–liquid systems is associated
primarily with absorption or extraction processes at industrial scales. The process
intensification through the generation of large concentration gradients in the gas
and the liquid leads to the manifestation of nonlinear effects in the kinetics of the
mass transfer in the gas and liquid phases. In this way, the interphase mass transfer
in gas–liquid and liquid–liquid systems becomes nonlinear.

Industrial gas absorption is most frequently performed in packed-bed columns.
The sizes of the packing particles used being small, the interphase transfer of the
absorbed material is effected through the thin layers bordering the phase boundary

Table 2 Comparison of the results of the asymptotic theory w
0
(0) with the results of the

numerical experiment wN
0

(0)

h e = 1 e = 2 e = 10 e = 20

-wN
0

(0) -w
0
(0) -wN

0
(0) -w

0
(0) -wN

0
(0) -w

0
(0) -wN

0
(0) -w

0
(0)

0.00 0.664 0.664 0.535 0.535 0.314 0.305 0.250 0.246
+0.03 0.650 0.650 0.515 0.516 0.270 0.265 0.190 0.199
-0.03 0.679 0.679 0.553 0.555 0.384 0.365 0.406 0.363
+0.05 0.641 0.641 0.503 0.504 0.248 0.250 0.166 0.205
-0.05 0.689 0.689 0.572 0.570 0.459 0.415 – 0.479
+0.10 0.620 0.620 0.475 0.478 0.207 0.250 – 0.500
-0.10 0.716 0.716 0.616 0.611 – 0.581 – 0.903
+0.20 0.581 0.584 0.429 0.442 0.160 0.418 – 1.229
-0.20 0.779 0.776 0.736 0.707 – 1.080 – 2.325
+0.30 0.548 0.555 0.393 0.425 – 0.808 – 2.868
-0.30 0.855 0.843 0.936 0.822 – 1.800 – 4.512
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between the gas and the liquid. The main change in the absorbed material con-
centration takes place in these layers, which allows the theoretical analysis of the
kinetics of nonlinear interphase mass transfer to be performed by making use of
the approximation of the diffusion boundary layer.

The kinetics of the nonlinear interphase mass transfer in the cases of a flat phase
interface and co-current movement of the gas and the liquid [3, 27] will be dis-
cussed. If the gas and the liquid are

designated as the first and the second phase respectively, Eqs. (3.20) take the
form

uj

ouj

ox
þ vj

ouj

oy
¼ mj

o2uj

oy2
;

ouj

ox
þ ovj

oy
¼ 0;

uj

ocj

ox
þ vj

ocj

oy
¼ Dj

o2cj

oy2
; j ¼ 1; 2;

ð3:34Þ

with boundary conditions accounting for the continuity of the distribution of the
velocities and the flows of momentum and mass at the interphase surface:

x ¼ 0; uj ¼ uj0; cj ¼ cj0; j ¼ 1; 2; y ¼ 0; u1 ¼ u2; l1
ou1

oy
¼ l2

ou2

oy
;

vj ¼ �
MDj

q�j0

o cj

o y
; j ¼ 1; 2; c1 ¼ vc2;

D1q�1
q10

oc1

oy
¼ D2q�2

q�20

oc2

oy
;

y!1; u1 ¼ u10; c1 ¼ c10; y! �1; u2 ¼ u20; c2 ¼ c20:

ð3:35Þ

The interphase mass transfer rate for a surface of length L is determined by
averaging the local mass fluxes,

J ¼ MK1 c10 � vc20ð Þ ¼ � 1
L

ZL

0

I1dx ¼ MK2
c10

v
� c20

� �
¼ � 1

L

ZL

0

I2dx; ð3:36Þ

where Kj (j = 1,2) are the interphase mass transfer coefficients, and the local mass
fluxes are obtained from (3.22):

Ij ¼ �
MDjq�j

q�j0

ocj

oy

� �
y¼0

; j ¼ 1; 2: ð3:37Þ

From (3.36) and (3.37) the Sherwood number is obtained as

Shj ¼
KjL

Dj

¼
q�j
q�j0

vj�1

c10 � vc20

ZL

0

ocj

oy

� �
y¼0

dx; j ¼ 1; 2:; ð3:38Þ
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Equations (3.34) and (3.35) can be solved by introducing similarity variables:

uj ¼ 0:5juj0eju
0

j; vj ¼ �1ð Þj�10:5j
uj0mj

x

� �0:5
nju

0

j � uj

� �
;

cj ¼ cj0 � �vð Þ1�j c10 � vc20ð Þwj;

uj ¼ uj nj

� �
; wj ¼ wj nj

� �0:5
; nj ¼ �1ð Þj�1y

uj0

4Djx

� �0;5

;

ej ¼ Sc0:5
j ; Scj ¼

mj

Dj

; j ¼ 1; 2:

ð3:39Þ

Thus, as a result, we obtain

u000j þ je�1
j uju

00
j ¼ 0; w00j þ jejujw

0
j ¼ 0;

uj 0ð Þ ¼ �1ð Þjhjþ2w
0
j 0ð Þ; u0j 1ð Þ ¼

2
jej

; wj 1ð Þ ¼ 0; j ¼ 1; 2;

u01 0ð Þ ¼ 2h1
e2

e1
u02 0ð Þ; u002 0ð Þ ¼ �0:5h2

e1

e2

� �2

u001 0ð Þ;

w
0

2 0ð Þ ¼ v
e0

w
0

1 0ð Þ; w1 0ð Þ þ w2 0ð Þ ¼ 1;

ð3:40Þ

where

h1 ¼
u20

u10
; h2 ¼

l1

l2

� �
m1

m2

� ��0:5 u10

u20

� �1:5

;

h3 ¼
M c10 � vc20ð Þ

e1q�10

; h4 ¼
M c10 � vc20ð Þ

2e2q�20v
; e0 ¼

q�10q
�
2

q�20q
�
1

D2u20

D1u10

� �0:5

:

ð3:41Þ

It follows from (3.40) that the concentration of the absorbed material on the
interphase surface (y = 0) is constant. This allows a set of new boundary conditions
to be used:

w1ð0Þ ¼ A; w2ð0Þ ¼ 1� A; ð3:42Þ

where A is determined from the conditions of the mass flow continuity on the
phase interface. Thus, (3.42) permits the solution of (3.40) as two independent
problems.

The parameters h1 and h2 account for the kinematic and dynamic interactions
between the phases, whereas h3 and h4 account for the rate of the nonlinear effects
in the gas and the liquid phases. For cases of practical interest, hk\1 (k = 1,…,4)
is valid and the problem can be solved by making use of the perturbation method
[36], expressing the unknown functions by an expansion of the following type:

F ¼ F 0ð Þ þ h1F 1ð Þ þ h2F 2ð Þ þ h3F 3ð Þ þ h4F 4ð Þ þ 	 	 	 ; ð3:43Þ

where F is a vector function
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F ¼ F u1;u2;w1;w2;Að Þ: ð3:44Þ

The zeroth-order approximation is obtained from (3.40) when hk = 0, k = 1,…,4
is substituted.

The first-order approximations are obtainable from the equations

u kð Þ0000
j þ je�1

j u kð Þ00
j u 0ð Þ

j þ u 0ð Þ00
j u kð Þ

j

� �
¼ 0;

w kð Þ00
j þ jej u kð Þ

j w 0ð Þ0
j þ u 0ð Þ

j w kð Þ0
j

� �
¼ 0; k ¼ 1; . . .; 4; j ¼ 1; 2;

ð3:45Þ

with boundary conditions

u kð Þ
j 0ð Þ ¼ 0; k ¼ 1; 2; j ¼ 1; 2; u 3ð Þ

1 0ð Þ ¼ �w 0ð Þ0
1 0ð Þ; u 4ð Þ

2 0ð Þ ¼ �w 2ð Þ0
2 0ð Þ;

u 4ð Þ
1 0ð Þ ¼ 0; u 3ð Þ

2 0ð Þ ¼ 0;

u kð Þ0
1 0ð Þ ¼ 0; k ¼ 2; 3; 4; u 1ð Þ0

1 0ð Þ ¼ 2
e2

e1
u 0ð Þ0

2 0ð Þ; u kð Þ0
j 0ð Þ ¼ 0;

k ¼ 1; . . .; 4; j ¼ 1; 2;

w kð Þ0
j 0ð Þ ¼ A kð Þ; w kð Þ

j 1ð Þ ¼ 0; k ¼ 1; . . .; 4; j ¼ 1; 2;

u kð Þ00
2 0ð Þ ¼ 0; k ¼ 1; 3; 4; u 2ð Þ00

2 0ð Þ ¼ � 1
2

e1

e2

� �2

u 0ð Þ00
1 0ð Þ; w kð Þ

2 0ð Þ ¼ �A kð Þ; k ¼ 1; . . .; 4:

ð3:46Þ

The values for A(k) (k = 1,…,4) are calculated from the equation

w kð Þ0
2 0ð Þ ¼ v

e0
w kð Þ0

1 0ð Þ; k ¼ 1; . . .; 4: ð3:47Þ

The solutions of problems of type (3.40) have been reported in a number of
publications [11, 72–79]. Using these solutions, we can write

u 0ð Þ
1 n1ð Þ ¼ f zð Þ; z ¼ 2

e1
n1; w 0ð Þ

1 n1ð Þ ¼ A 0ð Þ 1� 1
u10

� �Zz

0

E e1; pð Þdp;

E e1; pð Þ ¼ exp � e2
1

2

Zp

0

f sð Þds

2
4

3
5;

u 0ð Þ
2 n2ð Þ ¼ e�1

2 n2; w 0ð Þ
2 n2ð Þ ¼ 1� A 0ð Þ

� �
erfcn2; A 0ð Þ ¼ 1

1þ a
; a ¼ v

ffiffiffi
p
p

e0e1u10
;

u 1ð Þ
1 n1ð Þ ¼

1
a

f 0 zð Þ; u 1ð Þ
2 n2ð Þ 
 0; a ¼ f 00 0ð Þ;

w 1ð Þ
1 n1ð Þ ¼ A 1ð Þ þ A 0ð Þ

au10
1� E e1; zð Þ½ � � A 1ð Þ

u10
þ A 0ð Þ

au2
10

� �Zz

0

E e1; pð Þ dp;
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w 1ð Þ
1 n2ð Þ ¼ �A 1ð Þerfcn2; A 1ð Þ ¼ � 1

au10

a0

1þ a0ð Þ2
; u 2ð Þ

1 n1ð Þ 
 0;

u 2ð Þ
2 n2ð Þ ¼ a

ffiffiffi
p
p Ze2=E2

0

erfcpdp;

w 2ð Þ
1 n1ð Þ ¼ A 2ð Þ 1� 1

u10

Zz

0

E e1; pð Þdp

2
4

3
5;

w 2ð Þ
2 n2ð Þ ¼ �A 2ð Þ þ A 2ð Þ � 4ae2 1� A 0ð Þ

� �
�u2

h i
erfcn2 þ 4ae2 1� A 0ð Þ

� �
Q e2; n2ð Þ;

Q e2; n2ð Þ ¼
Zn2

0

exp �q2
� � Zq

0

Zp=e2

0

erfcsds

0
B@

1
CAdp

2
64

3
75dq

� 1
8

ffiffiffiffiffiffiffi
p

Sc2

r
erf n2 �

1

4
ffiffiffiffiffiffiffi
Sc2
p n2 exp �n2

2

� �
;A 2ð Þ ¼ 4ae2 �u2

a

1þ að Þ2
;

�u2 ¼ Q e2;1ð Þ ¼ 1
8

ffiffiffiffiffiffiffi
p

Sc2

r
; u 3ð Þ

1 n1ð Þ ¼
2A 0ð Þ

e1u10
u zð Þ;

u 3ð Þ
2 n2ð Þ 
 0 w 3ð Þ

1 n1ð Þ

¼ A 3ð Þ � A 3ð Þ

u10
þ e1A 0ð Þu13

u3
10

� �Zz

0

E e1; pð Þdp

þ e1A 0ð Þ

u2
10

Z z

0

Zp

0

u sð Þds

2
4

3
5E e1; pð Þdp;

w 3ð Þ
2 n2ð Þ ¼ �A 3ð Þerfcn2; A 3ð Þ ¼ � e1u13

u2
10

a0

1þ a0ð Þ2
;

u 4ð Þ
1 n1ð Þ 
 0; u 4ð Þ

2 n2ð Þ ¼ �
2ffiffiffi
p
p 1� A 0ð Þ
� �

;

w 4ð Þ
1 n1ð Þ ¼ A 4ð Þ 1� 1

u10

Zz

0

E e1; pð Þdp

0
@

1
A;

A 4ð Þ ¼ � 4e2

p
a2

1þ að Þ3
;w 4ð Þ

2 n2ð Þ

¼ �A 4ð Þ � 4e2

p
1� A 0ð Þ
� �2

þ 4e2

p
1� A 0ð Þ
� �2

exp �n2
2

� �

þ A 4ð Þ þ 4e2

p
1� A 0ð Þ
� �2


 �
erf n2;

ð3:48Þ
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where f and u are solutions of (1.29), and u10 and u13 are expressed as

u10 ¼
Z1

0

E e1; pð Þdp � 3:01 Sc�0:35
1 ;

u13 ¼
Z1

0

Zp

0

u sð Þds

2
4

3
5E e1; pð Þdp � 6:56 Sc�0:8

1 ;

ð3:49Þ

i.e., their values can be obtained from u0 and u3 in (3.30) if e = e1 (Sc = Sc1) is
substituted.

The nonlinear interphase mass transfer rate (the Sherwood number) is obtain-
able from (3.38),

Shj ¼ �
q�j
q�j0

ffiffiffiffiffiffiffi
Pej

p
w0j 0ð Þ; Pej ¼

uj0L

Dj

; j ¼ 1; 2; ð3:50Þ

where w1
0
(0) and w2

0
(0) can be determined from (3.48):

w01 0ð Þ ¼ � 2
e1u10

1
1þ a

� 2h1

au2
10e1

1

1þ að Þ2
� 8h2a

e2

e1

�u2

�u10

a

1þ að Þ2

� 2h3
�u13

�u3
10

1

1þ að Þ2
þ 8h4

e2

pu10e1

a2

1þ að Þ3
; ð3:51Þ

w02 0ð Þ ¼ � 2ffiffiffi
p
p a

1þ a
� h1

2ffiffiffi
p
p

au10

a

1þ að Þ2
� 8h2

ae2 �u2ffiffiffi
p
p a2

1þ að Þ2

� 2h3
e1u13ffiffiffi
p
p

h2
10

a

1þ að Þ3
þ 8h4

e2

p
ffiffiffi
p
p a3

1þ að Þ3
:

In the cases where the rate of the interface mass transfer is limited by the
diffusion resistance in the gas phase, from the last condition in (3.40) it follows
that v/ve0.e0 ? 0, i.e., a ? 0. Thus, the Sherwood number can be expressed in the
form

Sh1 ¼
q�1
q�10

Pe0:5
1

2
e1u10

þ 2h1

e1au2
10

þ 2h3
u13

u3
10

� �
: ð3:52Þ

When the process is limited by the resistance in the liquid phase,
v/ve0.e0 ? ?, a ? ?, i.e.,

Sh2 ¼
q�2
q�20

Pe0:5
2

2ffiffiffi
p
p þ 8h2

ae2 �u2ffiffiffi
p
p � 8h4

e2

p
ffiffiffi
p
p

� �
: ð3:53Þ

The comparison of the nonlinear effects in both the gas and the liquid [79]
shows that the ratio of the parameters h3 and h4 takes the form
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h3

h4
¼ 2e2q�20v

e1q�10

� 1 ð3:54Þ

and is always greater than unity. The minimum value of this ratio occurs in cases
of gases of high solubility, where h3 is greater than h4 by more than two orders of
magnitude, i.e., for numerical calculation it is always possible to assume h4 = 0.

A numerical solution of equations (3.45) and (3.46) was performed as a check
of the asymptotic theory [79, 80]. The analysis of the results demonstrates that the
nonlinear effects are most significant in cases where the nonlinear interphase mass
transfer is limited by the mass transfer in the gas phase (v/e0 = 0). When the
diffusion resistances are commensurable (v/e & 1), the nonlinear effects are
considerably smaller and their appearance in the liquid phase is a result of the
hydrodynamic influence of the gas phase. However, these effects are totally absent
when the process is limited by the mass transfer in the liquid phase. The influence
of the direction of the interphase mass transfer on the kinetics of the mass transfer
in gas–liquid systems is similar to that observed in systems with a gas (liquid)–
solid interphase surface, i.e., the diffusive transfer in the case of absorption is
greater than that in the case of desorption.

The results of the asymptotic theory (3.52) show that in the cases of absorption
and desorption the deviation of the nonlinear mass transfer theory from the linear
theory (h3 = 0) is symmetric, whereas the numerical results show a nonsymmetric
deviation. This ‘‘contradiction’’ with the asymptotic theory is possible to explain
by the absence of the quadratic terms (proportional to h3

2).
It is evident that the asymptotic theory has to be made more precise and to

include all the quadratic terms. In the case of a nonlinear interphase mass transfer
limited by mass transfer in the gas phase, Eqs. (3.40) take the form

u0001 þ e�1u1u
00
1 ¼ 0; u0002 þ 2e�1

2 u2u
00
2 ¼ 0; w001 þ e1u1w

0
1 ¼ 0;

u1 0ð Þ ¼ �h3w
0
1 0ð Þ; u2 0ð Þ ¼ 0; u01 1ð Þ ¼

2
e1
; u02 1ð Þ ¼

1
e2
; u01 0ð Þ ¼ 2h1

e2

e1
u002 0ð Þ;

u002 0ð Þ ¼ �0:5h2
e1

e2

� �2

u001 0ð Þ; w1 0ð Þ ¼ 1; w1 1ð Þ ¼ 0:

ð3:55Þ
To solve problem (3.55), expansion (3.43) is used, where the terms

h1
2F(11) + h3

2F(33) + h1h3F(13) should be added and a0 = 0 should be substituted
into relationships (3.48).

Approximations proportional to h1
2 were obtained in [11, 74]:

u 11ð Þ
1 n1ð Þ ¼ F zð Þ; u 11ð Þ

2 n2ð Þ 
 0; w 11ð Þ
1 n1ð Þ

¼ e4
1u11

8a2u3
10

� e2
1u12

2u2
10

� e1

2a2u3
10

� �Zz

0

E e1; pð Þ dpþ e2
1

2u10

Zz

0

Zp

0

F sð Þds

2
4

3
5E e1; pð Þdp

þ e1

2a2u2
10

1� E e1; zð Þ½ � � e4
1

8a2u10

Zz

0

f 2 pð ÞE e1; pð Þdp; ð3:56Þ
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where the function F is the solution of the problem

2F000 þ fF00 þ f 00F ¼ � 1
a2

f 0f 000; F 0ð Þ ¼ F0 0ð Þ ¼ F0 1ð Þ ¼ 0 ð3:57Þ

and was tabulated in [34]. u11 and u12 were obtained in [11]:

u11 ¼
Z1

0

f 2 pð ÞE e1; pð Þdp � 3:01 Sc�1:608
1 ;

u12 ¼
Z1

0

Zp

0

F sð Þ ds

2
4

3
5E e1; pð Þ dp � 3:05 Sc�1:285

1 :

ð3:58Þ

Approximations proportional to h3
2 were obtained in [81]:

u 33ð Þ
1 n1ð Þ ¼

2u3

u3
10

u zð Þ � 4

e2
1u

2
10

�u zð Þ; u 33ð Þ
2 n2ð Þ 
 0;

w 33ð Þ
1 n1ð Þ ¼ � e2

1u
2
13

u5
10

þ e2
1u133

2u4
10

þ 2�u133

u4
10

� �Zz

0

E e1;; p
� �

dp

þ e2
1u13

u4
10

Zz

o

Zp

0

u sð Þds

2
4

3
5E e1; p
� �

dp� e2
1

2u3
10

Zz

0

Zp

0

f sð Þds

2
4

3
5

2

E e1; pð Þdp

� 2

u3
10

Zz

0

Zp

0

�u sð Þds

2
4

3
5E e1; pð Þdp;

ð3:59Þ

where �u is the solution of (1.29). Thus, u133 and �u133 take the forms

u133 ¼
Z1

0

Zp

0

u sð Þds

2
4

3
5

2

E e1; pð Þdp � 24Sc�1:3
1 ;

�u133 ¼
Z1

0

Zp

0

�u sð Þds

2
4

3
5E e1; pð Þdp � 0:326 Sc�1:63

1 ;

ð3:60Þ

i.e., they may be obtained from u33 and �u33 in (3.30) via the substitution
e = e1(Sc = Sc1). From (3.28) and (3.59) it is obvious that w1

(33)(n1) : w2(g), if
e1 = e. Approximations, proportional to h1h3, were obtained in [81]:
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u 13ð Þ
1 ¼ 1

au2
10

u zð Þ � 2
e1au10

��u zð Þ; u 13ð Þ
2 n2ð Þ 
 0;

w 13ð Þ
1 n1ð Þ ¼ � e1u13

2au4
10

þ e1u113

au3
10

þ e1 �u113

au3
10

� 2e1u13

au4
10

� �Zz

0

E e1; pð Þ dp

þ e1

au3
10

þ e2
1

2au3
10

� �Zz

0

Zp

0

u sð Þds
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ð3:61Þ

where ��u is the solution of the problem

2��u000 þ f ��u00 þ f 00��u ¼ f 0u00 þ f 000u; ��u 0ð Þ ¼ ��u0 0ð Þ ¼ ��u 1ð Þ ¼ 0: ð3:62Þ

/113 and �/113 were obtained in [103]:

u113 ¼
Z1

0

Zp

0

��u sð Þds

2
4

3
5E e1; pð Þdp � Sc�1:3

1 ;

�u113 ¼
Z1

0

u pð ÞE e1; pð Þdp � 4:18Sc�0:46
1 :

ð3:63Þ

The expressions derived allow us to determine the rate of the nonlinear inter-
phase mass transfer in a gas–liquid system when the process is limited by the mass
transfer in the gas phase.

From (3.50), we find

Sh1 ¼
K1L

D1
¼ q�1

q�10

ffiffiffiffiffiffiffiffi
Pe1
p

w
0

1 0ð Þ; ð3:64Þ

where w1
0
(0) is calculated taking all the quadratic approximations into account:
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� 4�u133

e1u4
10

� �
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ð3:65Þ

Expression (3.65) is the main result from the asymptotic theory of nonlinear
interphase mass transfer in gas–liquid systems and is in good agreement with the
results from the numerical solution of problem (3.40) obtained in [80].
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3.5 Nonlinear Mass Transfer and the Marangoni Effect

Intensification of the mass transfer in industrial gas–liquid systems is obtained
quite often by the creation of large concentration gradients. This can be achieved
in a number of cases as a result of a chemical reaction of the transferred substance
in the liquid phase. The thermal effect of the chemical reactions creates temper-
ature gradients. The temperature and concentration gradients can considerably
affect the mass transfer kinetics in gas–liquid systems. Hence, the experimentally
obtained mass transfer coefficients differ significantly from those predicted by the
linear mass transfer theory.

As shown in a number of papers [8, 82–93], the temperature and concentration
gradients on the gas–liquid or liquid–liquid interphase surface can create a surface
tension gradient. As a result of this, a secondary flow is induced. The velocity of
the induced flow is directed tangentially to the interphase surface. It leads to a
change in the velocity distribution in the boundary layer and therefore to a change
in the mass transfer kinetics. These effects are thought to be of the Marangoni type
and could provide an explanation for all experimental deviations from the pre-
diction of the linear mass transfer theory.

Obviously, the Marangoni effect can exist together with the effect of the large
concentration gradients. These two effects can manifest themselves separately as
well as in combination. That is why their influence on the mass transfer kinetics
has to be assessed.

Co-current gas and liquid flows in the laminar boundary layer along the flat
interphase surface will be considered. One of the gas components is absorbed by
the liquid and reacts with a component in the liquid phase. The chemical reaction
rate is of first order. The thermal effect of the chemical reaction creates a tem-
perature gradient, i.e., the mass transfer together with a heat transfer can be
observed. Under these conditions, the mathematical model takes the following
form:

uj

ouj

ox
þ vj

ouj

oy
¼ mj

o2uj

oy2
;

ouj

ox
þ ovj

oy
¼ 0; uj

ocj

ox
þ vj

ocj

oy
¼ Dj

o2cj

oy2
� j� 1ð Þkcj;

uj

otj
ox
þ vj

otj

oy
¼ aj

o2tj
oy2
þ j� 1ð Þ q

qjcpj

kcj; j ¼ 1; 2;

ð3:66Þ

where the indexes 1 and 2 refer to the gas and the liquid, respectively. The
influence of the temperature on the chemical reaction rate is not included in (3.66)
because it does not have a considerable effect in the comparative analysis of these
two effects.

The boundary conditions of (3.66) determine the potential two-phase flows far
from the phase boundary. Thermodynamic equilibrium and continuity of the
velocity, stress tensor, and mass and heat fluxes can be detected on the phase
boundary. It was shown in [94] that in gas–liquid systems the effect of nonlinear
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mass transfer is confined to the gas phase. Taking into account these consider-
ations, the boundary conditions assume the following form:

x ¼ 0; uj ¼ uj0; c1 ¼ c10; c2 ¼ 0; tj ¼ t0; j ¼ 1; 2;

y!1; u1 ¼ u10; c1 ¼ c10; t1 ¼ t0; y! �1; u2 ¼ u20; c2 ¼ 0; t2 ¼ t0;

y ¼ 0; u1 ¼ u2; l1
ou1

oy
¼ l2

ou2

oy
� or

ox
; v1 ¼ �

MD1

q�10

oc1

oy
; v2 ¼ 0; q�1 ¼ q�10 þMc�1;

c1 ¼ vc2; D1
q�1
q�10

oc1

oy
¼ D2

oc2

oy
; t1 ¼ t2; k1

ot1

oy
þ q1cp1v1t1 ¼ k2

ot2

oy
:

ð3:67Þ

At high enough values of c10 a large concentration gradient directed normally to
the interphase surface (qc1/qy)y=0 can be observed, which induces a secondary flow
with rate v1. The tangential concentration and temperature gradients along the
phase boundary create a surface tension gradient,

or
ox
¼ or

oc2

oc2

ox
þ or

ot2

ot2

ox
; ð3:68Þ

which induces a tangential secondary flow and its velocity is proportional to qr/
qr. Later, the use of a substance which is not surface-active, i.e., qr/ qc2 & 0,
will be examined.

The mass transfer rate (Jc) and the heat transfer rate (Jt) can be determined from
the local mass (Ic) and heat (It) fluxes after taking the average of these fluxes along
a length (L) of the interphase surface:

Jc ¼ kcc0 ¼
1
L

ZL

0

Icdx; Ic ¼
MD1q�1

q�10

oc1

oy

� �
y¼0

;

Jt ¼ ktt0 ¼
1
L

ZL

0

Itdx; It ¼ �k1
ot1
oy

� �
y¼0

þq1cp1ðv1t1Þy¼0;

ð3:69Þ

where c1 and t1 are determined upon solving problems (3.66–3.68). To do
this, the following dimensionless (generalized) variables (see Sect. 4.1) are
introduced:

x ¼ LX; y ¼ �1ð Þjþ1djYj; dj ¼
ffiffiffiffiffiffi
vjL

uj0

s
; uj ¼ uj0Uj X; Yj

� �
; vj ¼ �1ð Þjþ1uj0

dj

L
Vj X; Yj

� �
;

cj ¼ �vð Þ1�jc0Cj X; Yj

� �
; tj ¼ t0 þ �1ð Þjþ1t0Tj X; Yið Þ; j ¼ 1; 2:

ð3:70Þ

The introduction of (3.70) into (3.66) and (3.67) leads to the following
equations:
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ð3:71Þ

where

Da ¼ kl

u20
; Q ¼ qc0

vq2cp2t0
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ð3:72Þ

From (3.69) and (3.70) the expressions for the Sherwood and Nusselt numbers
are directly obtained:
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ð3:73Þ

The solution of (3.71) allows the determination of
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ð3:74Þ
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The introduction of (3.74) into (3.73) allows us to determine the Sherwood and
Nusselt numbers:

Sh ¼ M
ffiffiffiffiffiffiffiffi
Re1
p

J1 þ h3Sc1J2ð Þ; Nu ¼ �
ffiffiffiffiffiffiffiffi
Re1
p

J3 þ h3Pr1 J1 þ J4ð Þ½ �: ð3:75Þ

Problem (3.71) can be solved conveniently using an iterative algorithm, where
six problems are solved consecutively, until there is convergence with respect to
the integral J1 in (3.74):
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1

o U kð Þ
1

o X
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ð3:76Þ

U kð Þ
2

oU kð Þ
2

oX
þ V kð Þ

2
oU kð Þ

2

oY2
¼ o2U kð Þ

2

oY2
2

;
oU kð Þ

2

oX
þ oV kð Þ

2

oY2
¼ 0; X ¼ 0; U kð Þ

2 ¼ 1;

Y2 ¼ 0;
oU kð Þ

2

oY2
¼ �h2

oU kð Þ
1

oY1

 !

Y1¼0

þh4
oT k�1ð Þ

2

oX

 !

Y2¼0

; V kð Þ
2 ¼ 0;

Y2 !1 Y2� Y21ð Þ; U kð Þ
2 ¼ 1; 0�X� 1; 0� Y2� Y21;

h2 ¼ 0:145; Y21 ¼ 6; at the first iteration h4 ¼ 0ð Þ:
ð3:77Þ
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ð3:79Þ
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ð3:81Þ

The values of the parameters in (3.76–3.81) have been calculated for the pro-
cess of absorption of NH3 in water or water solutions of strong acids.

The results obtained by solving these problems are shown in Tables 3, 4 and 5.
The comparative analysis of the nonlinear mass transfer effect and the Ma-

rangoni effect in gas–liquid and liquid–liquid systems shows (Tables 3, 4) that the
Marangoni effect does not affect the heat and mass transfer kinetics, because in
real systems the parameter h4 is very small.

However, in cases where the velocity of the second phase is very low, the
occurrence of the Marangoni effect is expected because of its velocity dependence
from u20

-3/2. To evaluate the case described above, systems with the velocity in the
volume of the second phase equal to zero (u20 = 0) have been investigated. The
numerical results (Table 5) show that under these conditions the Marangoni effect
is negligible.

The results obtained show that the Marangoni effect is negligible in two-phase
systems with a movable phase boundary and the absence of surface-active agents.
The deviations from the linear mass transfer theory has to be explained by the
nonlinear mass transfer effect in conditions of large concentration gradients.

In this chapter the terms ‘‘mathematical description,’’ ‘‘mathematical model,’’
and ‘‘theory’’ are used. The difference between these terms is as follows:

• A mathematical description is a set of differential equations, where full corre-
spondence between mathematical operators and physical effects exists.

• A mathematical model is a mathematical description, where all parameters are
known or obtained (using experimental data).

• The solution of the model equations is theory.

The use of different methods for solution of the equations (analytical, numer-
ical, asymptotic etc.) leads to analytical, numerical, and asymptotic theories.
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4 Examples

The nonlinear mass transfer effect of large concentration gradients is investigated
[71] in the cases of:

• Heat transfer [95, 96] and mass transfer in countercurrent flows [98].
• Mass transfer in channels [99, 100] and liquid films [101, 102].

Table 4 Influence of the nonlinear mass transfer effect and the Marangoni effect on the heat and
mass transfer kinetics in liquid–liquid systems (h1 = 0.9, h2 = 3, u2 (X,Y2) = 1)

No. h31 h32 h4 J1 J2 J3 J4

1 0 0 0 21.1000 4.8778 0.3320 -0.0524
2 4910-4 -8910-4 0 22.5419 5.7854 0.4288 -0.0628
3 0 0 2910-4 21.1000 4.8778 0.3320 -0.0524
4 0 0 1910-3 21.0999 4.8778 0.3320 -0.0524
5 0 0 1910-2 21.0990 4.8774 0.3320 -0.0524
6 0 0 1910-1 21.0899 4.8736 0.3319 -0.0524
7 0 0 5 20.5698 4.6527 0.3291 -0.0513

Table 3 Influence of the nonlinear mass transfer effect and the Marangoni effect on the heat and
mass transfer kinetics in gas–liquid systems (h1 = 0.1, h2 = 0.145)

No. h3 h4 J1 J2 J3 J4

1 0 0 0.5671 0.09721 0.01855 -0.01337
2 0.2 0 0.6129 0.01155 0.02143 -0.01554
3 -0.2 0 0.5274 0.08542 0.01623 -0.01162
4 0 10-4 0.5671 0.09721 0.01855 -0.01338
5 0 10-3 0.5671 0.09721 0.01855 -0.01337
6 0 10-2 0.5670 0.09718 0.01857 -0.01339
7 0 10-1 0.5658 0.09696 0.01879 -0.01364
8 0 1 0.5658 0.09696 0.01879 -0.01364
9 0 5 0.5660 0.09696 0.01854 0.01345

Table 5 Influence of the nonlinear mass transfer effect and the Marangoni effect on the heat and
mass transfer kinetics in liquid–liquid systems, when the second liquid is immobile (h1 = 1, h2 =
1, u2 (X,Y2) = 10-4)

No. h31 h32 h4 J1 J2 J3 J4

1 0 0 0 16.9333 3.3960 0.3041 -0.0460
2 4 9 10-4 -8 9 10-4 0 18.3164 4.0715 0.3967 -0.0551
3 0 0 2 9 10-4 16.9333 3.3960 0.3041 -0.0460
4 0 0 1 9 10-3 16.9331 3.3959 0.3042 -0.0460
5 0 0 1 9 10-2 16.9314 3.3952 0.3041 -0.0596
6 0 0 1 9 10-1 16.9145 3.3885 0.3040 -0.0592
7 0 0 1 16.7421 3.3201 0.3026 -0.0456
8 0 0 5 15.8955 2.9669 0.2968 -0.0437
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• Multicomponent mass transfer in gas (liquid)–solid [97], gas–liquid and liquid–
liquid [103, 104], and gas–liquid film [78] systems.

• Large concentrations [36, 105, 106].
• Electrochemical systems [71, 108].

Heat transfer and multicomponent mass transfer will be considered as processes
accompanying nonlinear mass transfer.

4.1 Heat Transfer in the Conditions of Nonlinear
Mass Transfer

The intensive mass transfer leads to a change of the velocity distribution in the
boundary layer. As a result, its influence on the heat and mass transfer should be
analogous because the induced secondary flow at the interphase surface leads to
convective heat and mass transfer. The theoretical analysis of the heat transfer
kinetics that is accompanied by a nonlinear mass transfer was carried out [95, 96]
for cases where the thermodiffusion and the diffusion thermal conductivity are not
considered.

The influence of the nonlinear mass transfer on the heat transfer may be
determined if problem (3.20) is completed with the equation of convection–con-
duction in the boundary layer approximations:

u
ot

ox
þ v

ot

oy
¼ a

o2t

oy2
x ¼ 0; t ¼ t0; y ¼ 0; t ¼ t � y!1; t ¼ t0; ð4:1Þ

where t0 and t* are the temperatures in the volume and on the solid surface, and a is
the thermal diffusivity.

In (4.1) it is necessary to introduce similarity variables (3.23), and the result
obtained is

T 00 þ �etuT 0 ¼ 0; T 0ð Þ ¼ 1; T 1ð Þ ¼ 0; ð4:2Þ

where

T ¼ T gð Þ ¼ t � t0
t� � t0

; �et ¼ eat; at ¼
D

a
¼ Le�1: ð4:3Þ

In (4.2) it is necessary to substitute u (g) from (3.27) and (3.28), which
allows us to seek T (g) in the form of a series of the orders of the small para-
meter h:

T ¼ T0 þ hT1 þ h2T2 þ 	 	 	 : ð4:4Þ
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In this way, a series of finite problems for the separate approximations [95] are
obtained and their solutions have the form
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ð4:5Þ
where
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t : ð4:6Þ

Expressions (4.5) and (4.6) are correct for gases only. In [94] it was shown that
for big values of the Lewis number for liquids (at & 10-2) the nonlinear mass
transfer does not influence the heat transfer, because the thickness of the diffusion
boundary layer is much lower than the thickness of the temperature boundary
layer. The nonlinear mass transfer influences the hydrodynamics only in the thin
diffusion boundary layer and this influence is not essential for the heat transfer in
the thick temperature boundary layer. This result may be obtained from (4.2),
where the big hydrodynamic effects of the intensive mass transfer (u(0) = 0) for
high values of the Lewis number may be ignored.

164 Mass Transfer Theories



The heat transfer rate in the gas at the boundary with a solid surface with length
L is determined by the average value of the heat flux:

Jt ¼ kt t� � t0ð Þ ¼ 1
L

ZL

0

Itdx; ð4:7Þ

where It has a convective component as a result of the induced flow,

It ¼ �k
ot

oy

� �
y¼0

þq�0cp vtð Þy¼0: ð4:8Þ

Using (3.23), (4.3), (4.7), and (4.8), we can obtain an expression for the Nusselt
number:

Nu ¼ ktL

k
¼ �Pe0:5 T 0 0ð Þ þ h�et

t�

t� � t0
w0 0ð Þ


 �
; ð4:9Þ

where Pe is determined from (3.26). In (3.73) w
0
(0) is determined from (3.31), and

T 0(0) is obtained from (4.4) and (4.5):

T 0 0ð Þ ¼ � 2
eu0t

þ h
2atu3t

u0u
2
0t

� h2 2�etu3t

u2
0u

2
0t

u3

u0
þ atu3t

u0t

� �
� at�etu33t

u2
0u

2
0t

� at �u33t

eu2
0u

2
0t


 �
:

ð4:10Þ

The check of the accuracy of the asymptotic theory for the joint heat and
mass transfer in the boundary layer under conditions of intensive mass transfer
was carried out in the solution of problem (4.2) through a numerical method
[94].

The results of the asymptotic theory T0(0) are in good agreement with the results
of the numerical experiment TN

0
(0) (Table 6). It is obvious that under conditions of

intensive mass transfer (h = 0) the nonlinear mass transfer and heat transfer are
not independent of each other, as follows from the linear theory (h = 0) for small
concentration gradients. In cases where the nonlinear mass transfer is directed
towards a rigid wall (h\0), the increase of the concentration gradient leads to an
increase of T

0
(0). In contrast, the increase of h leads to a decrease of T

0
(0) when

the intensive interphase mass transfer is from the solid wall towards the gas phase
(h[ 0).

4.2 Multicomponent Mass Transfer

The hydrodynamic nature of the nonlinear effect in the mass transfer kinetics
under conditions of intensive mass transfer is a reason to assume that an analogous
effect may occur under conditions of multicomponent mass transfer for all
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components if there is a mass transfer of one of them in conditions of a very large
concentration gradient.

The theory of diffusion in multicomponent systems [58, 63] shows that the
independent diffusion approximation is valid in two cases: when the concentra-
tions of the components are low and when their diffusivities do not differ con-
siderably. This together with the mass transfer at a high concentration gradient
provides a sufficient basis to discuss in an analogous way the mass transfer of the
other components, for which the concentration gradients ci (i = 1,…,n) are low.
With this aim, the following should be added to Eq. (3.20):

u
oci

ox
þ v

oci

oy
¼ Di

o2c

oy2
;

x ¼ 0; ci ¼ c0i; y ¼ 0; ci ¼ c�i ; y!1; ci ¼ c0i; i ¼ 1; . . .; n:

ð4:11Þ

Using the dimensionless variables (3.23), we can complete equation (3.25) as
follows:

w00i þ �eiuw0i ¼ 0; wið0Þ ¼ 1; wið1Þ ¼ 0; i ¼ 1; . . .; n; ð4:12Þ

where

�ei ¼ eai; ai ¼
ei

e

� �2
; ei ¼ Sc0:5

i ; Sci ¼
m

Di

; wi ¼ wiðgÞ ¼
ci � c0i

c�i � c0i

;

i ¼ 1; . . .; n:

ð4:13Þ

In (4.12) the function u (g) is determined (3.27) in the form of a series of the
orders of the small parameter h, which allows us to seek the solution of (3.93)
analogously:

wi ¼ w 0ð Þ
i þ hw 1ð Þ

i þ h2w 2ð Þ
i þ 	 	 	 ; i ¼ 1; . . .; n: ð4:14Þ

The separate problems for the determination of the unknown functions in (4.14)
are solved through the method of disturbances, where for u0, u1 and u2 (3.28) is
used. In this way, the following expressions are obtained [97]:

Table 6 Comparison of the
asymptotic theory prediction
[T
0
(0)] with results from

numerical experiments
[TN
0

(0)] for e ¼ 1; at ¼ 2;
and �et ¼ 2

h - TN
0

(0) - T
0
(0)

0.0 0.864 0.847
+0.1 0.762 0.765
-0.1 0.943 0.945
+0.2 0.690 0.700
-0.2 1.063 1.059
+0.3 0.633 0.652
-0.3 1.212 1.190
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wð0Þi gð Þ ¼ 1� 1
u0i

Zz

0

E ei; pð Þdp;

w 1ð Þ
i ðgÞ ¼

�eiu3i

u0u
2
0i

Zz

0

E ei; pð Þdp� �ei

u0u0i

Zz

0

Zp

0

u sð Þds

2
4

3
5E ei; pð Þdp;

wð2Þi gð Þ ¼ � �eieu3i

u2
0u

2
0i

u3

u0
þ �eiu3i

eu0i

� �
� �e2

i u33i

2u2
0u

2
0i

� �ei �u33i

2eu2
0u

2
0i


 � Zz

0

E ei; pð Þdp

þ �eie

u2
0u0i

u3

u0
þ �eiu3i

eu0i

� �Zz

0

Zp

0

u sð Þds

2
4

3
5E et; pð Þdp

� �e2
i

2u2
0u0i

Zz

0

Zp

0

u sð Þds

2
4

3
5E ei; pð Þdp

� �ei

2eu2
0u0i

Zz

0

Zp

0

�u sð Þds

2
4

3
5E ei; pð Þdp; i ¼ 1; . . .; n;

ð4:15Þ

where

E ei; pð Þ ¼ exp � e2
i

2

Zp

0

f sð Þds

2
4

3
5; u0i ¼

Z1

0

E ei; pð Þdp �
3; 01 Sc�0;35

i —for gases;

3; 12 Sc�0;34
i —for liquids;

8<
:

u3i ¼
Z1

0

Zp

0

u sð Þds

2
4

3
5E ei; pð Þdp �

6; 56 Sc�0;8
i —for gases;

5; 08 Sc�0;67
i —for liquids;

8<
:

u33i ¼
Z1

0

Zp

0

u sð Þds

2
4

3
5

2

E ei; pð Þdp �
24 Sc�1;3

i —for gases;

12; 2 Sc�1
i —for liquids;

(

�u33i ¼
Z1

0

Zp

0

�u sð Þds

2
4

3
5E ei; pð Þdp �

0; 326 Sc�1;63
i —for gases;

0; 035 Sc�1;1
i —for liquids;

8<
: i ¼ 1; . . .; n:

ð4:16Þ

The multicomponent mass transfer rate in gases (liquids) at a boundary with a
solid surface with length L is determined by the average value of the mass flux,

Ji ¼ Miki c�i � c0i

� �
¼ 1

L

ZL

0

Iidxi; i ¼ 1; . . .; n; ð4:17Þ
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which has a convective component as well as a result of the induced flow:

Ii ¼ �MiDi

oci

oy

� �
y¼0

þMi civð Þ ¼ �MiDi

oci

oy

� �
y¼0

þMai

q�0
ci

oc

oy

� �
y¼0

" #
;

i ¼ 1; . . .; n:

ð4:18Þ

The expression for the Sherwood number is derived from (3.23), (4.12), (4.17),
and (4.18):

Shi ¼
kiL

Di

¼ Pe0:5 w0ið0Þ þ h�ei

c�i
c�i � c0i

w0ið0Þ

 �

; i ¼ 1; . . .; n; ð4:19Þ

where w
0
(0) is determined from (3.31) and wi

0
(0) is determined from (4.15),

w0ið0Þ ¼ �
2

eu0i

þ h
2�eiu3i

eu0u
2
0i

� h2 2�eiu3i

u2
0u

2
0i

u3

u0
þ �eiu3i

eu0i

� �
� �e2

i u33i

eu2
0u

2
0i

� �ei �u33i

e2u2
0u

2
0i


 �
;

i ¼ 1; . . .; n:

ð4:20Þ

The accuracy of the basic result (4.20) of the asymptotic theory for multi-
component mass transfer under conditions of intensive mass transfer depends on
the parameters h, e and ei

(i =1,…,n). The limits of validation of this theory may be determined through
an expression of type (3.32). For example, for e = 20 and �ei ¼ 10; the admissible
values for h are less than 0.033.

The evaluation of the accuracy of the asymptotic theory of multicomponent
mass transfer (4.20) (under conditions of interphase mass transfer for one of the
components) has been made using numerical solution of problem (4.12). The
comparison of the results of the numerical experiment wiN

0
(0) [97] with the

asymptotic theory data wi
0
(0) is shown in Tables 7 and 8. It can clearly be seen that

intensive interphase mass transfer of one of the components from the volume
towards the solid surface (h\0) increases the diffusive mass transfer for all of the
components. In the cases where the direction of intensive interface mass transfer is
from the solid surface towards the volume (h [ 0), the multicomponent mass
transfer decreases. These effects do not depend on the change in the direction of
the interphase mass transfer for components with low concentration gradients.

Table 7 Comparison of the
asymptotic theory [wi

0
(0)]

with the numerical

experiments w
0

iN 0ð Þ
h i

;

i ¼ 1; . . .; n; for gases
for e ¼ 1; ai ¼ 2; and �ei ¼ 2

h -wi
0
(0) -wiN

0
(0)

0.0 0.845 0.847
+0.1 0.762 0.765
-0.1 0.943 0.945
+0.2 0.689 0.700
-0.2 1.060 1.061
+0.3 0.633 0.652
-0.3 1.212 1.190
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4.3 Concentration Effects

The theoretical analysis of the nonlinear mass transfer and the hydrodynamic
stability in the system

with intensive the mass transfer which has been done so far considers the
‘‘pure’’ effect of large concentration gradients. Under these conditions, however,
the concentrations themselves are high and their influence is manifested by the
concentration dependencies of density, viscosity, and diffusivity. To determine
these effects, the use of the basic model of nonlinear mass transfer is needed.

The theoretical analysis of the dependence of the velocity of induced flow from
the concentration gradient will be developed in the case of laminar gas flow
flowing over a solid surface.

Consider a binary gas mixture, where gas 2 has partial density q2 and flows over
the surface with an average mass velocity of w2, whereas gas 1 is injected through
the solid surface with an average mass velocity of w1 and has partial density q1,
i.e.,

q ¼
X2

i¼1

qi; w ¼

P2
i¼1

qiwi

q
: ð4:21Þ

The diffusion velocity Wi is the deviation of the velocity wi from the gas
mixture velocity w:

W i ¼ wi � w; i ¼ 1; 2: ð4:22Þ

From (4.22) it directly follows that

X2

i¼1

qiwi ¼ w
X2

i¼1

qi �
X2

i¼1

qiW i ¼ wqþ
X2

i¼1

qiW i: ð4:23Þ

Hence, from (4.21) and (4.22) we obtain

X2

i¼1

qiW i ¼ 0: ð4:24Þ

The law of conservation of mass holds for each component:

div qiwið Þ ¼ div qi wi þWð Þi
� 

¼ 0; i ¼ 1; 2; ð4:25Þ

Table 8 Comparison of the
asymptotic theory [wi

0
(0)]

with the numerical

experiments w
0

iN 0ð Þ
h i

;

i ¼ 1; . . .; n; for liquids for
e ¼ 20; ai ¼ 0:5; and �ei ¼ 10

h -wi
0
(0) -wiN

0
(0)

0.00 0.198 0.194
+0.03 0.167 0.169
-0.03 0.275 0.250
+0.05 0.154 0.170
+0.10 0.132 0.234
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and if i is a summation index for the mixture, we find

div qwð Þ ¼ 0: ð4:26Þ

Consider isothermal diffusion of gas 1 into gas 2. The mass flux of gas 1 as a
result of the diffusion is defined from the mass concentration gradient:

J1 ¼ c1W1 ¼ �D12 grad c1; c1 ¼
q1

q
; ð4:27Þ

where D12 is the diffusivity and ci is the mass concentration of gas 1 (weight
factors).

From (4.22), (4.25), and (4.27) we obtain

div q1w ¼ div qD12 grad c1ð Þ: ð4:28Þ

Using the formula

div abð Þ ¼ b grad aþ a div b; ð4:29Þ

we obtain the following expression directly:

div c1qwð Þ ¼ qw:grad c1 þ c1div qw: ð4:30Þ

Taking into account (4.25), we obtain from (4.30) that

qw: grad c1 ¼ div qD12 grad c1ð Þ: ð4:31Þ

Having denoted by u and v the components of the velocity w and applying the

boundary layer approximation o2

ox2 � o2

oy2

� �
from (4.31), we can obtain the

following:

q u
oc1

ox
þ v

oc1

oy

� �
¼ o

oy
qD12

oc1

oy

� �
; ð4:32Þ

where u and v satisfy the equations of the gas mixture motion.
Only one limitation is applied while obtaining the above results—the processes

are assumed to be isothermal. Further, for definiteness one will be considered to be
a potential gas flow with a constant velocity u0 over a semi-infinite flat plate. Thus,
the equations of motion of the gas mixture assume the following form:

q u
ou

ox
þ v

ou

oy

� �
¼ o

oy
l

ou

oy

� �
; div qw ¼ 0;

x ¼ 0; u ¼ u0; y ¼ 0; u ¼ 0; v ¼ vn; y!1; u ¼ u0;

ð4:33Þ

where vn is the induced flow velocity (induced by the intensive interphase mass
transfer). This velocity is a normal component of the velocity w to the solid
surface. If it is assumed that the second component of the gas does not go through
the solid surface (w2 = 0), from (4.21) we can directly obtain
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y ¼ 0; w ¼ �W2: ð4:34Þ

From (4.24) and (4.27) it is found that

�c1W1 ¼ c2W2 ¼ 1� c1ð ÞW2 ¼ D12grad c1 ð4:35Þ

and from (4.34) and (4.35) we obtain the following form:

w ¼ � D12

1� c1
6: c1

� �
y¼0

¼ � D12q
q2

grad c1

� �
y¼0

: ð4:36Þ

If we express the concentration of gas 1 in (4.36) in moles per unit volume, and
if for D12, q and q2 on the solid surface (y = 0) the denotations D, q* and q0

* are
used, we have

c ¼ q1

M
; D ¼ D12; q� ¼ q; q�0¼q2 y ¼ 0ð Þ: ð4:37Þ

Thus, from (4.36) we can obtain the normal component of the velocity on the
phase boundary:

vn ¼ �
MDq�

q�0

o

oy

c

q

� �
 �
y¼0

: ð4:38Þ

The results obtained so far, i.e., (4.32), (4.33), (4.37), and (4.38), allow us to
formulate in general the mass transfer in the diffusion boundary layer in the case of
gas or liquid flow over a semi-infinite flat plate in the boundary layer
approximations:

q u
ou

ox
þ v

ou

oy

� �
¼ o

oy
l

ou

oy

� �
; u

oq
ox
þ v

oq
oy
þ q

ou

ox
þ ou

oy

� �
¼ 0;

q u
oc

ox
þ v

oc

oy

� �
¼ o

oy
qD

oc

oy

� �
;

x ¼ 0; u ¼ u0; c¼c0; y!1; u ¼ u0; c ¼ c0;

y ¼ 0; u ¼ 0; v ¼ �MD

q�0

oc

oy

� �
y¼0

�
D q� � q�0
� �

q�q�0

oq
oy

� �
y¼0

; c ¼ c�;

ð4:39Þ

where

q� ¼ q�0 þMc�: ð4:40Þ

An equation for q should be added to (4.39). At constant pressure and
temperature, q cannot be obtained from the equation of state. According to (4.21),
q depends only on the concentration of the components:

q ¼ q2 þMc: ð4:41Þ
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Comparison of (4.39–4.41) with models (3.20) shows that the results of the
asymptotic theory of nonlinear mass transfer in systems with intensive interphase
mass transfer were obtained in the following approximations:

q ¼ const:; l ¼ const:; D ¼ const: ð4:42Þ

The theoretical analysis of the influence of the diffused substance concentration
on the density, viscosity, and diffusivity shows that in a number of cases these
effects can be considered as small [105] (first-order approximation):

q ¼ q0 1þ �qCð Þ; l ¼ l0 1þ �lCð Þ; D ¼ D0 1þ �DCð Þ; C¼ c� c0

c� � c0
; ð4:43Þ

where �q; �l and �D are small parameters defined from the experimental data for the
dependence of q, l and D in c.

The introduction of (4.43) into (4.39) leads to a complete mathematical
description of the hydrodynamics and the mass transfer in systems with intensive
interface mass transfer. These are practically simplified Oberbeck–Boussinesq
equations, where the gravitational effect is negligible in the boundary layer
approximations in the case of a horizontal flat plate if the following condition is valid:

g

u2
0

ffiffiffiffiffiffi
m0l

u0

r
\10�2; m0 ¼

l0

q0
; ð4:44Þ

i.e., the second Navier–Stokes equation has the usual form in the boundary layer
approximations:

op

oy
¼ 0: ð4:45Þ

The concentration effects were investigated within the concentration range
0 – cmax, where there is a significant effect of nonlinear mass transfer (h = 0.3).
The concentration difference Dc can be determined by

Dc ¼ M c� � c0ð Þ
q0

ð4:46Þ

and can be used to normalize a scale of concentrations:

C ¼ c

Dc
; C� ¼ c�

Dc
; Cmax ¼

cmax

Dc
: ð4:47Þ

From Table 9 it is evident that for the diffusion of ammonia into air, the
influence of the ammonia concentration on the density �qCmaxð Þ and viscosity
�lCmaxð Þ is about 15–16%. For a more precise analysis, these effects must be taken

into account. For gas mixtures the effect of concentration on the diffusivity is
negligible.

For liquid mixtures the effect of the concentration on the density (Table 9) is a
few percent (under 5%), which is valid for a great number of completely mixing
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pairs of liquids. There is a similar effect of the viscosity, but with many exceptions
(acetic acid/toluene, water/acetone).

The effect of the concentration on the diffusivity for a liquid diffused in another
one is often significant [107]. For acetone/water (Table 9), the dependence devi-
ates from linearity. In cases of the parameters �q; �l and �D exceeding 0.3, the linear
approximation (4.43) is not accurate enough, since neglecting the second-order
approximations leads to error of more then 10%.

The analysis of the approximations of nonlinear mass transfer theory [106]
which was developed for �q ¼ �l ¼ �D ¼ 0 shows that the results are valid in the
cases where these parameters are small enough (e.g., less than 0.05). It is valid for
different systems: gas (liquid)–solid, gas–liquid, and liquid–liquid. At these con-
ditions the hydrodynamics and the mass transfer depend on the concentration
gradient (h). When the parameters �q; �l and �D are within the interval 0.1–0.3, the
concentration affects the mass transfer and this effect can be considered by
introducing the linear approximation (4.43). For systems in which these parame-
ters assume values greater than 0.3, the nonlinear terms should be added to (4.43).

4.4 Influence of High Concentration on the
Mass Transfer Rate

The mass transfer rate can be expressed by the mass transfer coefficient. It will be
defined from the average diffusive flux through an interphase surface with specific
length L:

J ¼ Mk c� � c0ð Þ ¼ M

L

q�

q�0

ZL

0

D
o c

o y

� �
y¼0

dx: ð4:48Þ

Table 9 Maximum concentration effect on the density, viscosity, and diffusivity

System Ammonia/
air

Acetic acid/
water

Acetic acid/
toluene

Acetone/
water

Water/
acetone

cmax (kmol/
k molm3 m3)

0.0134 3.80 3.40 3.68 10.60

h 0.3 0.3 0.3 0.3 0.3
Dc (kmol/

k molm3 m3)
0.0160 3.92 3.52 3.81 10.9

Cmax 0.837 0.969 0.967 0.967 0.968
�q -0.149 0.0134 0.0420 -0.518 0.0461
�qCmax -0.125 0.0130 0.0420 -0.050 0.0450
�l -0.190 0.0208 0.263 -0.0854 0.746
�lCmax -0.159 0.0200 0.254 -0.0830 0.722
�D 0 0 0 -0.336 -0.843
�DCmax 0 0 0 -0.325 -0.816
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The thickness of the diffusion boundary layer in gases and liquids is of a
different order of magnitude. That is why different numerical algorithms [94] are
used.

The thickness of the laminar and diffusion boundary layers in gases is of the
same order of magnitude, so one characteristic scale can be applied:

d0 ¼
ffiffiffiffiffiffiffiffiffi
D0L

u0

r
: ð4:49Þ

Problem (4.39) can be expressed in terms of the following dimensionless
variables:

x ¼ LX; y ¼ d0Y ; u ¼ u0U; v ¼ v0
d0

L
V ; c ¼ c0 þ c� � c0ð ÞC: ð4:50Þ

The introduction of (4.50) into (4.39) leads to the following equations:

u U
oU

oX
þ V

oU

oY

� �
¼ Sc

o

oY
w

oU

oY

� �
;

o

oX
uUð Þ þ o

oY
uVð Þ ¼ 0;

u U
oC

oX
þ V

oC

oY

� �
¼ o

oY
ux

oC

oY

� �
; X ¼ 0; U ¼ 1; C ¼ 0;

Y ¼ 0; U ¼ 0; V ¼ �h
o

oY

c0
Dcþ C

u

� �
;

C ¼ 1; Y !1; U ¼ 1; C ¼ 0;

ð4:51Þ

where

h0 ¼
MDc0

q�0
u 1ð Þx 1ð Þ; q� ¼ q0u 1ð Þ; q�0 ¼ q0u 1ð Þ �Mc�;Dc0 ¼ c� � c0;

Sc ¼ l0

q0D0
;u ¼ u Cð Þ ¼ q

q0
; w ¼ w Cð Þ ¼ l

l0
;

x ¼ x Cð Þ ¼ D

D0
; u 0ð Þ ¼ 1;w 0ð Þ

ð4:52Þ

The solution of problem (4.51) can be obtained after introducing the similarity
variables:

uU ¼ U0; uV ¼ 1

2
ffiffiffiffi
X
p U0g� Uð Þ; C ¼ F;

U ¼ U gð Þ; F ¼ F gð Þ; g ¼ Yffiffiffiffi
X
p ; U0 ¼ dU

dg
:

ð4:53Þ

Hence, directly from (4.51), we obtain the following:
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2Sc u2wU000 þ u2UU00 � uu0UU0F0 þ 2Sc u uw0 � u0wð ÞU00F0

� 2Sc u0 uw0 � 2u0wð ÞU0F02 ¼ 0;

2uxF00 þ 2 u0xþ u0wð ÞF02 þ UF0 ¼ 0; U 0ð Þ ¼ �hF0 0ð Þ; U0 0ð Þ¼ 0; U0 1ð Þ ¼ 1;

F 0ð Þ ¼ 1; F 1ð Þ ¼ 0; h ¼ 2h0
Dc0u 1ð Þ � c�u0 1ð Þ

Dc0u 1ð Þ :

ð4:54Þ

The functions /, w and x in (4.54) are set outwardly by spline approximations
of the experimental dependencies of q, l and D on c. For a wide range of gas
mixtures these functions can be obtained with enough accuracy through the linear
approximation:

u ¼ 1þ �qC; w ¼ 1þ �lC; x ¼ 1þ �DC: ð4:55Þ

The introduction of (4.55) into (4.54) leads to the following equations:

2Sc 1þ �qFð Þ2 1þ �lFð ÞU000 þ 1þ �qFð Þ2UU00 � �q 1þ �qFð ÞUU0F0þ
þ 2Sc 1þ �qFð Þ �l 1þ �qFð Þ½ � �q 1þ �lFð Þ�U00F0 � 2Sc�q �l 1þ �qFð Þ½ � 2�q 1þ �lFð Þ�U0F02 ¼ 0;

2 1þ �qFð Þ 1þ �DFð ÞF00 þ 2 �q 1þ �DFð Þ½ þ �D 1þ �qFð Þ�F02 þ UF0 ¼ 0;

h ¼ 2h0

1� c0
Dc0

�q

1þ �q
:

ð4:56Þ

The parameters �q and �l in (4.56) are small, whereas �D ¼ 0: Omitting the
square terms regarding the small parameters �q and �l leads to

2Sc 1þ 2�qF þ �lFð ÞU000 þ 1þ 2�qFð ÞUU00 � �qUU0F0 þ 2Sc �l� �qð ÞU00F0 ¼ 0;

2 1þ �qFð ÞF00 þ 2�qF02 þ UF0 ¼ 0;

U 0ð Þ ¼ �hF0 0ð Þ; U0 0ð Þ ¼ 0; U0 1ð Þ ¼ 1; F 0ð Þ ¼ 1; F 1ð Þ ¼ 0:

ð4:57Þ

Problem (4.57) can be solved conveniently using the following algorithm:

1. Determination of the zeroth approximations of U and F by solving the
boundary problem:

2U000 0ð Þ þ U 0ð ÞU00 0ð Þ ¼ 0; U 0ð Þ 0ð Þ ¼ 0; U0 0ð Þ 0ð Þ ¼ 0; U00 0ð Þ 0ð Þ ¼ 0:33206;

U0 0ð Þ 1ð Þ ¼ 1
h i

; 2F00 0ð Þ þ U 0ð ÞF0 0ð Þ ¼ 0; F 0ð Þ 0ð Þ ¼ 1;

F0 0ð Þ 0ð Þ ¼ 0:33205; F 0ð Þ 1ð Þ ¼ 0
h i

:

ð4:58Þ

4 Examples 175



2. Determination of U at the kth iteration:

2Sc 1þ 2�qF k�1ð Þ þ �lF k�1ð Þ
� �

U000 kð Þ þ 1þ 2�qF k�1ð Þ
� �

U kð ÞU00 kð Þ�

� �qU k�1ð ÞU0 k�1ð ÞF0 k�1ð Þ þ 2Sc �l� �qð ÞU00 k�1ð ÞF0 k�1ð Þ ¼ 0;

U kð Þ 0ð Þ ¼ �hF0 k�1ð Þ 0ð Þ; U0 kð Þ 0ð Þ ¼ 0; U0 kð Þ 1ð Þ ¼ 1:

ð4:59Þ

The value of U
0(k)(0) is varied till the condition U

0(k)(6) = 1 is reached with
accuracy 10-3.
3. Determination of F at the kth iteration:

2 1þ �qF k�1ð Þ
� �

F00 kð Þ þ 2ð�qF0 k�1ð ÞÞ2 þ U kð ÞF0 kð Þ ¼ 0; F kð Þ 0ð Þ ¼ 1;

F kð Þ 1ð Þ ¼ 0:
ð4:60Þ

The value of F
0(k)(0) is varied till F(k)(?) = 0 with accuracy 10-3.

4. The calculation procedure (from step 2 of the algorithm) is repeated until a
result confirming

U00 kð Þ 0ð Þ � U00 k�1ð Þ 0ð Þ
		 		� 10�3; F0 kð Þ 0ð Þ � F0 k�1ð Þ 0ð Þ

		 		� 10�3 ð4:61Þ

is obtained.

The integration of (4.58–4.60) is performed numerically with step h = 10-2 in
the interval 0 B g B 6.

The results for U
0 0
(0) and F

0
(0) in the case of Sc = 1 are shown in Table 10 for

different values of h; �q; �l. They are obtained with three to four iterations.
The mass transfer rate in gases can be determined from the data in Table 10. To

do this, (4.54) and (4.57) are introduced into (4.52):

Sh ¼ kL

D0
¼ �2

q�
q0

Pe1=2F0ð0Þ; Pe¼ u0L

D0
: ð4:62Þ

The results given in Table 10 show that the dependence of U
0 0
(0) and F

0
(0) on

h; �q and �l is monotonous. The change in viscosity �l has no effect of practical
importance on the mass transfer rate [F

0
(0)], whereas the effect of the density �q is

six to seven times greater than that of the nonlinear mass transfer (h).
The thicknesses of the laminar and diffusion boundary layers in liquids are of

different orders of magnitude, so two specific scales should be applied:

d1 ¼
ffiffiffiffiffiffiffiffiffi
l0L

q0u0

s
; d2 ¼

ffiffiffiffiffiffiffiffiffi
D0L

u0

r
;

d1

d2
¼ e ¼ Sc1=2: ð4:63Þ
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Considering these two scales, we should introduce the following dimensionless
variables:

x¼ LX; y¼ d1Y1 ¼ d2Y2; u¼ u0U1 X;Y1ð Þ ¼ u0U2 X;Y2ð Þ;

v¼ u0
d1

L
V1 X;Y1ð Þ ¼ u0

d2

L
V2 X;Y2ð Þ; c¼ c0þDc0C1 X;Y1ð Þ ¼ c0þDc0C2 X;Y2ð Þ;

ð4:64Þ
where

Y2 ¼ eY1; U2 X; Y2ð Þ ¼ U1 X; e�1Y2
� �

; U1 X; Y1ð Þ ¼ U2 X; eY1ð Þ;
V2 X; Y2ð Þ ¼ eV1 X; e�1Y2

� �
; V1 X; Y1ð Þ ¼ e�1V2 X; eY1ð Þ;

C2 X; Y2ð Þ ¼ C1 X; e�1Y2

� �
; C1 X; Y1ð Þ ¼ C2 X; eY1ð Þ:

ð4:65Þ

In the new variables, the problem has the following form:

u1 U1
oU1

oX
þ V1

oV1

oY1

� �
¼ o

oY1
w1

oU1

oY1

� �
;

o

oX
u1U1ð Þ þ o

oY1
u1V1ð Þ ¼ 0;

u2 U2
oC2

oX
þ V2

oC2

oY2

� �
¼ o

oY2
u2x2

oC2

oY2

� �
; X1 ¼ 0; U1 ¼ U2 ¼ 1; C1 ¼ C2 ¼ 0;

Y1 ¼ Y2 ¼ 0; U1 ¼ U2 ¼ 0; C1 ¼ C2 ¼ 0; V2 ¼ �h0
o

oY2

C0

Dc
þ C2

u2

0
B@

1
CA;

Y1 ¼ Y2 !1; U1 ¼ U2 ¼ 1; C1 ¼ C2 ¼ 0:

ð4:66Þ

This boundary problem can be expressed by the following similarity variables:

Table 10 Comparative data
for the momentum transfer
[U

0 0
(0)] and the mass transfer

[F
0
(0)] at high concentrations

[effect due to density
�q 6¼ 0ð Þ; viscosity �l 6¼ 0ð Þ

and large concentration
gradients h 6¼ 0ð Þ in gases]
for Sc = 1

h �q �l U
0 0
(0) -F

0
(0)

0 0 0 0.332 0.332
0.3 0 0 0.301 0.299
-0.3 0 0 0.373 0.372
0.3 0.15 0 0.356 0.187
0 0.15 0 0.379 0.198
-0.3 -0.15 0 0.329 0.531
0.3 0 0.2 0.264 0.292
0 0 0.2 0.290 0.322
-0.3 0 -0.2 0.447 0.386
0.3 0.15 0.2 0.320 0.187
0 0.15 0.2 0.340 0.198
-0.3 0.15 0.2 0.362 0.211
0 -0.15 0 0.280 0.446
0 0 -0.2 0.394 0.343
0 -0.15 -0.2 0.347 0.469
-0.3 -0.15 -0.2 0.417 0.558
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u1U1 ¼ U01 g1ð Þ; u2U2 ¼ U02 g2ð Þ; g1 ¼
Y1ffiffiffiffi

X
p ; g2 ¼

Y2ffiffiffiffi
X
p ;

u1V1 ¼
1

2
ffiffiffiffi
X
p U01g1 � U1

� �
; u2V2 ¼

1

2
ffiffiffiffi
X
p U02g2 � U2

� �
;

C1 ¼ F1 g1ð Þ; C2 ¼ F2 g2ð Þ; g2 ¼ eg1:

ð4:67Þ

For /, wandx linear approximations can be used:

ui ¼ 1þ �qFi; wi ¼ 1þ �lFi; xi ¼ 1þ �DFi; i ¼ 1; 2: ð4:68Þ

In the new variables (4.66) gets the following form

2 1þ 2�qF1 þ �lF1ð ÞU0001 þ 1þ 2�qF1ð ÞU1U
00
1 � �qU1U

0
1F01 þ 2 �l� �qð ÞU001F01 ¼ 0;

2 1þ �qF2 þ �DF2ð ÞF002 þ 2ð�qþ �DÞF022 þ U2F02 ¼ 0;

U2 0ð Þ ¼ �hF02 0ð Þ; U01 0ð Þ ¼ 0; U01 1ð Þ ¼ 1; F2 0ð Þ ¼ 1; F2 1ð Þ ¼ 0;

ð4:69Þ

where

F1 g1ð Þ ¼ F2 g2ð Þ ¼ F2 eg1ð Þ; F01 g1ð Þ ¼ eF02 eg1ð Þ;
U2 g2ð Þ ¼ eU1 g1ð Þ ¼ eU1 e�1g2

� �
; U2 0ð Þ ¼ eU1 0ð Þ ¼ �hF02 0ð Þ:

ð4:70Þ

Problem (4.69) can be directly solved using the following algorithm:

1. Determination of the zeroth approximations of U1(g1) by integration of the
equation

U000 0ð Þ
1 þ U 0ð Þ

1 U00 0ð Þ
1 ¼ 0; U 0ð Þ

1 0ð Þ ¼ 0; U0 0ð Þ
1 0ð Þ ¼ 0; U0 0ð Þ

1 0ð Þ ¼ 1; ð4:71Þ

with step h1 = 0.06/e in the interval 0 B g1 B 6.U
0

1
(0)is varied until the con-

dition U
0

1
(0)(6) C 0.999 is satisfied.

2. Determination of the zeroth approximations of U2(g2):

U 0ð Þ
2 g2ð Þ ¼ eU 0ð Þ

1 g1ð Þ; g2 ¼ eg1; 0� g1� 6: ð4:72Þ

3. Determination of the zeroth approximations of F2(g2) by integration of the
equation

F00 0ð Þ
2 þ U 0ð Þ

2 F0 0ð Þ
2 ¼ 0; F 0ð Þ

2 0ð Þ ¼ 1; F 0ð Þ
2 1ð Þ ¼ 0; ð4:73Þ

with step h2 = 0.06 in the interval 0 B g2 B 60. To do this F
0

2
(0)(0) is varied

until the condition F2
(0)(60) B 0.001 is satisfied.

4. Determination of the zeroth approximations of F1(g1)and F1
0
(g1):

F 0ð Þ
1 g1ð Þ ¼ F 0ð Þ

2 g2ð Þ ¼ F 0ð Þ
2 eg1ð Þ; F0 0ð Þ

1 g1ð Þ ¼ eF0 0ð Þ
2 g2ð Þ ¼ eF0 0ð Þ

2 eg1ð Þ: ð4:74Þ

5. Determination of U1(g1) at the kth iteration:
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2 1þ 2�qF k�1ð Þ
1 þ �lF k�1ð Þ

1

� �
U000 kð Þ

1 þ 1þ 2�qF k�1ð Þ
1

� �
U kð Þ

1 U00 kð Þ
1 �

� �qU k�1ð Þ
1 U0 k�1ð Þ

1 F0 k�1ð Þ
1 þ 2 �l� �qð ÞU00 k�1ð Þ

1 F0 k�1ð Þ
1 ¼ 0;

U kð Þ
1 0ð Þ ¼ � h

e
F0 k�1ð Þ

2 0ð Þ; U0 kð Þ
1 0ð Þ ¼ 0; U0 kð Þ

1 1ð Þ ¼ 1:

ð4:75Þ

The value of U1
0 0(k)(0) is varied till the condition U

0

1
(k)(6) C 0.999 is reached.

6. Determination of U2(g2) at the kth iteration:

U kð Þ
2 g2ð Þ ¼ eU kð Þ

1 g1ð Þ ¼ eU kð Þ
1 e�1g2

� �
; 0� g2� 60: ð4:76Þ

7. Determination of F2(g2) at the kth iteration with step h2 in the interval
0 B g2 B 60:

2 1þ �qF k�1ð Þ
2 þ �DF k�1ð Þ

2

� �
F00 kð Þ

2 þ 2ð�qþ �DÞ F0 k�1ð Þ
2

� �2
þU kð Þ

2 F0 kð Þ
2 ¼ 0;

F kð Þ
2 0ð Þ ¼ 1; F kð Þ

2 1ð Þ ¼ 0:
ð4:77Þ

The value of F
0

2
(k)(0) is varied till the condition F1

(k)(60) B 0.001 is satisfied.
8. Determination of F1(g1)andF1

0
(g1) at the kth iteration:

F kð Þ
1 g1ð Þ ¼ F kð Þ

2 g2ð Þ ¼ F kð Þ
2 eg1ð Þ; F0 kð Þ

1 g1ð Þ ¼ eF0 kð Þ
2 g2ð Þ ¼ eF0 kð Þ

2 eg1ð Þ;
0� g1� 6:

ð4:78Þ

9. The calculation procedure (from step 5 of the algorithm on) is repeated until
convergence is reached:

U00 kð Þ
1 0ð Þ � U00 k�1ð Þ

1 0ð Þ
			

			� 10�3; F0 kð Þ
2 0ð Þ � F0 k�1ð Þ

2 0ð Þ
			

			� 10�3; ð4:79Þ

The results obtained for U1
0 0
(0)and F2

0
(0) at e = 10 and for different values of

h; �q; �l and �D are shown in Table 11. They are obtained with three to four
iterations.

The mass transfer rate in liquids can be determined from the data in Table 11.
To do this, (4.64) and (4.67) are introduced into (4.48):

Sh ¼ �2
q�

q0
1þ �Dð ÞPe1=2F02 0ð Þ: ð4:80Þ

The results given in Table 11 show that the influence of density �q and viscosity
�l on the hydrodynamics [U1

0 0
(0)] is similar to that observed in the case of gases,

whereas their influence on the mass transfer rate [F2
0
(0)] is practically insignificant.

The change in diffusivity �D does not affect U1
0 0
(0) as much as F2

0
(0).

The theoretical analysis of the influence of high concentration gradients of the
transferred substance on the hydrodynamics [U

0 0
(0)] and mass transfer [F

0
(0)]

through the concentration dependencies of density �qð Þ; viscosity �lð Þ; and
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diffusivity �Dð Þ shows that the change of the density with the concentration affects
the hydrodynamics in gases and liquids but does not influence the mass transfer in
gases. The change in the viscosity with the concentration affects the hydrody-
namics in gases and liquids and the mass transfer. The change in the diffusivity
with the concentration does not influence the hydrodynamics and the mass
transfer.

These results show that the predictions of the nonlinear theory of mass transfer
at constant values of density, viscosity, and diffusivity [94] are of acceptable
accuracy for gases and liquids if the density of the transferred substance is not
sufficiently different from the density of the gas mixture. That is why the models
of mass transfer in systems with intensive interphase mass transfer could be
considerably simplified.

4.5 Nonlinear Mass Transfer in Countercurrent Flows

In this case the mathematical description can be obtained [98] using (2.15) and
(3.40), i.e.,

2f 000i þ fif
00
i ¼ 0; 2u00i þ Scifiu

0
i ¼ 0; i ¼ 1; 2;

fið0Þ ¼ �h ið Þu0i 0ð Þ; f 01 0ð Þ ¼ �h1f 02 0ð Þ; �h2f 001 0ð Þ ¼ f 002 0ð Þ;
u1 0ð Þ þ u2 0ð Þ ¼ 1; �h3u

0
1 0ð Þ ¼ u02 0ð Þ; ui 1ð Þ ¼ 0; i ¼ 1; 2;

ð4:81Þ

where

Table 11 Comparative data for the momentum transfer [U
0 0
(0)] and the mass transfer [F

0
(0)] at

high concentrations [effect due to density �q 6¼ 0ð Þ; viscosity �l 6¼ 0ð Þ; and large concentration
gradients (h = 0)] in liquids for Sc = 100

h �q �l �D U
0 0
(0) -F

0
(0)

0 0 0 0 0.332 0.332
0.03 0 0 0 0.330 0.176

-0.03 0 0 0 0.334 0.206
0 0.15 0 0 0.397 0.194
0 -0.15 0 0 0.201 0.181
0 0 0.2 0 0.272 0.186
0 0 -0.2 0 0.418 0.194
0 0 0 0.30 0.332 0.192
0 0 0 0.30 0.332 0.186
0.03 0.15 0.2 0.30 0.272 0.177

-0.03 0.15 0.2 0.30 0.275 0.200
0.03 -0.15 -0.2 -0.30 0.243 0.164

-0.03 -0.15 -0.2 -0.30 0.247 0.206
0.3 0 0 0 0.318 0.135

-0.1 0 0 0 0.342 0.268
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Sci ¼
ti

Di

; h1 ¼
u12
u11

; h2 ¼
q1l1

q2l2

� �1=2 u11
u12

� �3=2
; h ið Þ ¼ 2ðc11 � vc12 Þv1�i

q�0iSci

; i ¼ 1; 2;

�h2 ¼ h2

ffiffiffiffiffi
X2

X1

r
; h3 ¼ v

D1

D2

ffiffiffiffiffiffiffiffiffiffiffi
u11 t2

u12 t1

s
; �h3 ¼ h3

ffiffiffiffiffi
X2

X1

r
:

ð4:82Þ

In gas–liquid systems it was shown (Sect. 3.3) that the nonlinear effect in the
liquid phase may be neglected in comparison with that in the gas phase

hð2Þ ¼ 0
� �

; i.e., it manifests itself when the mass transfer is limited by the mass

transfer in the gas phase (h3 = 0). At these conditions it directly follows that
u2(g2) : 0, i.e.,

2f 0001 þ f1f 001 ¼ 0; 2u001 þ Sc1f1u
0
1 ¼ 0; 2f 0002 þ f2f 002 ¼ 0;

fi 0ð Þ ¼ hu0i 0ð Þ; f2 0ð Þ ¼ 0; f 01 0ð Þ ¼ �h1f 02 0ð Þ; �h2f 001 0ð Þ ¼ f 002 0ð Þ;
u1 0ð Þ ¼ 1; u1 1ð Þ ¼ 0; f 0i 1ð Þ ¼ 1; i ¼ 1; 2:

ð4:83Þ

The numerical results are presented in [98].
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Part II
Theoretical Analysis of Models

The models need to be analyzed theoretically prior to starting the simulations. The
analysis helps us to understand the process mechanism, define the minimum
number of model parameters, and solve the problem under consideration in the
context of scale-up, model adequacy, etc.



Qualitative Analysis

The qualitative analysis addresses a generalized analysis of models [1] to obtain a
measure of the contributions of the elementary processes such as diffusion and
convection that contribute to the modeled process. An order of magnitude analysis
allows us to estimate the order of the terms in the model representing physical
effects. As a result of the order of magnitude analysis, some terms remain, whereas
others are neglected, which finally results in reduced models, i.e., reduced with
respect to the starting mathematical descriptions where both significant and
insignificant physical effects are represented by terms (operators). Commonly,
terms representing particular physical effects contributing to the process whose
orders of magnitudes are less than 0.01 (i.e., the effect of this process is not
possible to measure experimentally) are insignificant, whereas those remaining in
the submodel have orders of magnitude of unity.

1 Generalized Analysis

The generalized analysis uses generalized variables [2], where the scales used to
perform the adimensionalization of the model should be chosen in a manner
ensuring that the dimensionless terms (generalized variables) have orders of
magnitude of unity, O(1). All those with order of magnitude 0.01 are omitted as
insignificant. Hence, all dimensionless terms remaining have order of magnitude
O(1) and the submodel is well balanced.

1.1 Generalized Variables

The selection of the scales used for the generalized variables needs knowledge of
the physics of the process and to some extent is an art. After selection of the scales,
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adimensionalization of the model equations has to be carried out. The next step is
to perform inspection of the dimensionless variables with respect to their order of
magnitude. As mentioned already, only those with O(1) remain in the dimen-
sionless equations, i.e., the maximum orders of magnitude of the different terms
(mathematical operators) in the model equations must be equal to 1. In the context
of these general remarks, let us see how these initial steps have to be performed.

Consider we have x and y = (x) in domains x1 B x2 B x3 and y1 B y2 B y3

with y1 = y(x1) and y2 = y(x2). In this case the generalized variables are

X ¼ x� x1

x2 � x1
; Y ¼ y� y1

y2 � y1
: ð1:1Þ

The adimensionalization uses as scales the domain widths (x2 - x1) and (y2 -

y1), respectively, i.e., the maximum variations of the dimensional variables x and
y, respectively. This change of variables yields unified domains for both X and Y,
i.e., 0 B X B 1 and 0 B Y B 1. If x1 = 0 and y1 = 0, the characteristic scales are
the maximum values x2 and y2. In cases where the minimum and maximum values
of the variables are unknown, the scales are the average values.

1.2 Mass Transfer with a Chemical Reaction

Let us consider a transient mass transfer with a bulk chemical reaction [1] within a
domain defined by 0 B x B L, 0 B y B d and where the fluid flows along the x-
axis. The mathematical description of the process is

oc

ot
þ ux

oc

ox
þ uy

oc

oy
¼ D

o2c

ox2
þ o2c

oy2

� �
� kc;

oux

ox
þ ouy

oy
¼ 0: ð1:2Þ

The initial and boundary conditions are

t ¼ 0; c ¼ 0; x ¼ 0; c ¼ 0; y ¼ 0; c ¼ 0; x ¼ L; c ¼ c�; y ¼ d; c ¼ c�:

ð1:3Þ

The use of scales of the variables involved in (1.2) allows us to transform them
into dimensionless ones.

T ¼ t

s
; X ¼ x

L
; Y ¼ y

d
; Ux ¼

Ux

U0
; Uy ¼

Uy

V0
; C ¼ c

c�
; ð1:4Þ

where s is the process timescale and U0 and V0 are velocity scales along the x and
y directions, respectively. The length scales are L along the x-axis and d along the
y-axis. In other words, this initial step of adimensionalization (1.4) simply means a
change of variables from x to X and from y to Y. This change of variables also
transforms the initial domain from x1 B x2 B x3 into 0 B X B 1 and from
y1 B y2 B y3 into 0 B Y B 1.
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With the new variables X and Y defined by (1.4), Eq. 1.2 can be expressed as

oUx

oX
þ V0L

U0d
oUy

oY
¼ 0: ð1:5Þ

If all characteristic scales in (1.4) are known and V0L
U0d
� 1; from (1.5) it follows

that

oUx

oX
¼ 0; Uy � 0; ð1:6Þ

i.e., the flow is stratified and the scale V0 is unnecessary. In the opposite case
V0L
U0d
� 1 and the stratified flow is directed in the Y direction. In all other cases the

characteristic velocity V0 must be obtained from the condition

V0L

U0d
� 1; ð1:7Þ

i.e.,

V0 ¼ U0
d
L
;

oUx

oX
þ oUy

oY
¼ 0: ð1:8Þ

The results obtained show that the characteristic scales must be known con-
stants (determinant scales) or must be obtained as a combination from known
characteristic scales (determined scales). Introducing (1.4) and (1.8) into (1.2) and
(1.3) leads to a model in generalized variables

Sth
oC

oT
þ Ux

oC

oX
þ Uy

oC

oY
¼ Fo a2 o2C

oX2
þ o2C

oY2

� �
� DaC;

T ¼ 0;C ¼ 0; X ¼ 0;C ¼ 0; Y ¼ 0;C ¼ 0; X ¼ 1;C ¼ 1; Y ¼ 1;C ¼ 1;

Sth ¼ L

U0s
; Fo ¼ DL

U0d
2 ; a ¼ d

L
; Da ¼ KL

U0
:

ð1:9Þ

Here Sth, Fo, and Da are the Sthruchal, Fourier, and Damkohler numbers,
respectively. When there is a large difference in the length scales, i.e.,
0 = a2 \ 10-2, the longitudinal mass transfer (along the X-axis) is negligible with
respect to that in the Y direction.

Each term in the first equation in (1.9) represents a physical effect and the order
of magnitude of this effect is equal to the parameter value (dimensionless pre-
factor) in this term. If there is no prefactor, like in the case with the first term in
(1.5), which is actually equal to 1, then the order of magnitude of the entire term is
O(1). If the model equation contains dimensionless parameters greater than 1, this
equation must be divided by the parameter with maximum value. As a result, all
effects in the complicated process are of three types: main effects (the terms do
not contain dimensionless parameters), small effects (the parameter values are in
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the range [10-2, 10-1]), and negligible effects (the parameter values are less than
10-2).

1.3 Nonstationary Processes

In the cases of mass transfer in thin layers (0 = a2 B 10-2), the model equation
has the form

Sth
oC

oT
þ Ux

oC

oX
þ Uy

oC

oY
¼ Fo

o2C

oY2
� DaC;

T ¼ 0;C ¼ 0; X ¼ 0;C ¼ 0; Y ¼ 0;C ¼ 0; Y ¼ 1;C ¼ 1:
ð1:10Þ

For nonstationary processes the timescale can be expressed as the ratio of the
longitudinal length scale L and the convection velocity scale U0, i.e., s = L/U0.
With a timescale defined in this manner, we have Sth = 1, which reduces the
number of parameters (prefactors) in (1.10).

With short-term processes, the real time is too short and Sth � 1. Then, all the
terms in (1.10) have to be divided by Sth and Eq. 1.10 has to be represented by the
approximation 0 = Sth-1 \ 10-2, which yields

oC

oT
¼ Fo

Sth

o2C

oY2
� Da

Sth
C;

T ¼ 0;C ¼ 0; X ¼ 0;C ¼ 0; Y ¼ 0;C ¼ 0; Y ¼ 1;C ¼ 1:
ð1:11Þ

The form of (1.11) reveals that terms representing the fluid convection are
neglected. In fact with short-term processes, the convection does not affect the
mass transfer process.

With long-term processes (Sth � 1) Eq. 1.10 has to be represented by the
approximation 0 = Sth \ 10-2, which yields

Ux

oC

oX
þ Uy

oC

oY
¼ Fo

o2C

oY2
� DaC;

X ¼ 0;C ¼ 0; Y ¼ 0;C ¼ 0; Y ¼ 1;C ¼ 1:
ð1:12Þ

The form of (1.12) reveals that the transient processes practically approach
steady-state conditions when s � L/U0.

1.4 Steady-State Processes

With slow diffusion or a very large velocity scale, the flow can be approximated by
(with 0 = Fo \ 10-2)
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Ux

oC

oX
þ Uy

oC

oY
¼ � DaC;

X ¼ 0;C ¼ 0; Y ¼ 0;C ¼ 0:
ð1:13Þ

When Fo * 1, the diffusion boundary layer thickness (see Sect. 1.3 in Chap. 1)
can be defined as

d ¼
ffiffiffiffiffiffiffi
DL

U0

r
; ð1:14Þ

where d is the order of magnitude. The diffusion boundary layer thickness for
transient cases (see 1.11) follows from the condition (Fo/Sth) * 1, which yields

d ¼
ffiffiffiffiffiffi
Ds
p

: ð1:15Þ

1.5 Effect of the Chemical Reaction Rate

The effect of the chemical reaction rate is negligible if Da � 1 and (1.12), which
requires the approximation 0 = Da \ 10-2, is used, namely,

Ux

oC

oX
þ Uy

oC

oY
¼ Fo

o2C

oY2
;

X ¼ 0;C ¼ 0; Y ¼ 0;C ¼ 0; Y ¼ 1;C ¼ 1:
ð1:16Þ

When fast chemical reactions take place (Da � 1), the terms in (1.12) have to
be divided by Da and the approximation 0 = Da-1 \ 10-2 has to be applied. The
results is

0 ¼ Fo

Da

o2C

oY2
� C; Y ¼ 0;C ¼ 0; Y ¼ 1;C ¼ 1: ð1:17Þ

Hence, the flow does not affect the mass transfer. From (1.17) it is possible to
define the diffusional length scale d (the order of magnitude of the diffusion
boundary layer), namely,

Fo�Da) d ¼
ffiffiffiffi
D

K

r
: ð1:18Þ

Introducing this characteristic scale into (1.17) leads to

0 ¼ o2C

oY2
� C; Y ¼ 0;C ¼ 0; Y ¼ 1;C ¼ 1: ð1:19Þ

The cases Fo � Da and Fo � Da correspond to processes dominated by
molecular diffusion and a chemical reaction at the interphase surface.
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From (1.16) it follows that the model is valid when Fo * 1. The limits Fo � 1
and Fo � 1 correspond to diffusion in an immobile medium and complete mixing
(C = 0), respectively.

The examples of qualitative analysis exemplified above by means of model
(1.9) do not represent all possible versions since we have four parameters (pre-
factors) and each of them may be of order approximately 1 or much less than 1 (or
much greater than 1). The main lesson is that the scales have to be defined
preliminarily either by the macroscopic process variables and the geometry of the
domain or as combinations of the former ones and transport coefficients.

2 Mechanism of Gas–Liquid Chemical Reactions

Chemical processes in gas–liquid systems [3, 4] are widely encountered in
chemical processing, power generation, food processing, material synthesis, sep-
arations by absorption and for heat potential augmentation in heat pumps. Gen-
erally, all these processes span various situations where one or several gaseous
components are absorbed by liquids accompanied by chemical reactions in the
liquid phase. The reaction can occur either between the gaseous components or
some of them and a liquid-phase component. Generally, these processes cover a
wide range of situations where one or several components in the gas phase are
absorbed by a liquid, accompanied by chemical reactions between either the
gaseous components themselves or some of them and the liquid phase.

When chemical reactions take place in the liquid phase, they affect significantly
the overall mass transfer through the gas–liquid interface. The reaction rate defines
the mass transfer across the interface surface and the entire mass transfer mech-
anism could be changed. The increase in the reaction rate, for instance, yields
augmentation of mass transfer across the interface. As a consequence of the
increased reaction rate, a high concentration gradient occurs in the vicinity of the
interface, which macroscopically results in a secondary flow [5].

The effects of the reaction kinetics in the liquid phase on both the mechanism
and the rate of the mass transfer across the interphase surface will be analyzed
next. The analysis will address both the linear and the nonlinear reaction kinetics
laws as well as reversible and irreversible chemical transformations. In all cases
homogenous catalytic reactions are considered.

2.1 Irreversible Chemical Reactions

Gas absorption accompanied by a chemical reaction in the liquid phase is a widely
encountered process for separation of gas mixtures performed either in bubble or in
packed-bed columns. With a packed-bed column we have to take into consideration
the size of the packing elements. The trickling liquid spreads as thin films over the
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surfaces of the packing elements, thus forming the gas–liquid interface. Since the
diffusion boundary layer theory [6] is widely used for analyses of chemical reactions
in liquids, we will use this theoretical tool for the further analysis.

Let us consider gas absorption in a liquid with an irreversible chemical reaction
in the liquid phase. The evaluation of the effect of the chemical reaction rate on the
overall mass transfer mechanism will be performed by convection–diffusion
equations with a volumetric term of a first-order chemical reaction:

~u
o~c

ox
þ o~c

oy
¼ ~D

o2~c

oy2
; u

oc

ox
þ v

oc

oy
¼ D

o2c

oy2
� kc: ð2:1Þ

If a potential co-current flow of both phases is assumed and the interphase
surface is flat, the boundary conditions of Eq. 2.1 are

x ¼ 0;~c ¼ ~c0; c ¼ 0; y ¼ 0;~c ¼ vc; ~D
o~c

oy
¼ D

oc

oy
;

y!1;~c ¼ ~c0; y! �1; c ¼ 0:
ð2:2Þ

Here constant concentrations ~c0 of the absorbed substance at the flow inlet as
well as in the bulk of the gas flow are assumed. The thermodynamic equilibrium
and the mass flow continuity are satisfied at the interphase surface y = 0.

The analysis of Eqs. 2.1 and 2.2 requires the following dimensionless
(generalized) variables to be introduced:

X ¼ x

L
; Y ¼ y

d
; ~Y ¼ y

~d
; ~U ¼ ~u

~u0
; ~V ¼ ~v

~e~u0
; ~C ¼ ~c

~c0
;

U ¼ u

u0
;V ¼ ~v

eu0
;C ¼ c

c0
; e ¼ d

L
;~e ¼

~d
L
; c0 ¼

~c0

v
;

ð2:3Þ

where L is the length scale at the gas–liquid interface, d and ~d are the thicknesses
of the diffusion boundary layers in the liquid and the gas, u0 and ~u0 are the
velocities of the potential flows in the bulk of the gas and the liquid respectively,
and v is Henry’s constant. The scales used in (2.3) allow the magnitude of all the
dimensionless functions and their derivatives to be of the order of unity. In this
way, from (2.1) to (2.3) we obtain

~U
o~C

oX
þ ~V

o~C

o~Y
¼ ~Fo

o2 ~C

o~Y2
; U

oC

oX
þ V

o2C

oY2
¼ Fo

o2C

oY2
� KC;

X ¼ 0; ~C ¼ 1;C ¼ 0; Y ¼ ~Y ¼ 0; ~C ¼ C;
v
e0

o~C

o~Y
¼ oC

oY
;

~Y !1; ~C ¼ 1; Y ! �1;C ¼ 0;

ð2:4Þ

where

Fo ¼ DL

u0d
2 ;

~Fo ¼
~DL

~u0
~d2
; e0 ¼

D~d
~Dd
; K ¼ kL

u0
: ð2:5Þ
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In Eq. 2.4 all the functions and their derivatives are of the order of magnitude of
unity and the contribution of the terms, i.e., the effect of the physical and chemical
phenomena, is determined by the order of the dimensionless parameters.

The mass transfer in the gas phase is a result of the balance between the
convective and the diffusive transport; thus, in the first equation in (2.4) the left
and the right sides must have equal orders of magnitude. Taking into account that
the order of magnitude of the left side is unity, the order of magnitude of the
Fourier number must be of unity too:

~Fo� 1: ð2:6Þ

Equations (2.5) and (2.6) allow us to determine the order of magnitude of the
diffusion boundary layer thickness in the gas phase, namely,

~d ¼

ffiffiffiffiffiffiffi
~DL

~u0

s
: ð2:7Þ

The second equation in (2.4) shows that for slow chemical reactions, where
K \ 10-2, the term KC may be omitted. Thus, in the convection–diffusion
equation in the liquid phase K = 0 may be assumed and (2.4) becomes a math-
ematical description of the physical absorption (in accordance with the approxi-
mation of the boundary layer). From the above considerations it follows that at

kL

u2
\10�2 ð2:8Þ

the chemical reaction has no practical effect on the mass transfer rate in the liquid
phase. In these cases (K = 0), it follows from (2.4) that

Fo� 1: ð2:9Þ

Thus, the order of magnitude of the diffusion boundary layer thickness in the
liquid phase becomes

d ¼
ffiffiffiffiffiffiffi
DL

u0

r
: ð2:10Þ

The chemical reaction rate affects the mass transfer rate when K [ 10-2. In the
range:

10�2\K\1 ð2:11Þ

the effect of the chemical reaction rate in the liquid is always less than that of the
convective transport if both the convective and the diffusive transport are of equal
orders of magnitude. In cases when condition (2.11) is satisfied, the orders of
magnitude of the Fourier number and the boundary layer thickness can be eval-
uated from (2.9) to (2.10). Thus, the order of magnitude of the boundary layer
thickness in the liquid can be determined from (2.10) when
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kL

u0
\1: ð2:12Þ

The effect of the chemical reaction rate on the mass transfer, when K [ 1, may
be analyzed if the second equation in (2.4) is expressed in the form

1
K

U
oC

oX
þ V

oC

oY

� �
¼ Fo

K

o2C

oY2
� C: ð2:13Þ

From (2.13) it follows that the increase in the chemical reaction rate leads to a
decrease in the convective transport, whereas the other two effects (the diffusive
transport and the chemical reaction) should have equal orders of magnitude if
K � 1, i.e.,

K�1 � 1;
Fo

K
� 1: ð2:14Þ

From (2.5) to (2.14) it follows also that in the cases when

kL

u0
� 1; ð2:15Þ

the order of magnitude of the boundary layer thickness may be determined from
(2.14), i.e.,

d ¼
ffiffiffiffi
D

k

r
: ð2:16Þ

The analysis of (2.13) shows that at high rates of the chemical reaction
(K [ 102), the convective transport may be neglected with respect to the effect of
the chemical reaction. In this case the hydrodynamics does not affect the mass
transport if the condition

kL

u0
[ 102 ð2:17Þ

is satisfied. When K-1 = 0 is substituted in (2.13), the boundary layer thickness
can be determined from (2.16).

It is evident from (2.4) that the parameter v
e0

determines the distribution of the

diffusion resistance in both the liquid phase and the gas phase. In a situation where

v
e0

[ 102; ð2:18Þ

the interphase mass transfer is limited by the transport in the liquid, whereas if

v
e0

\10�2; ð2:19Þ

the mass transfer in the gas phase is the limiting effect. In the range
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10�2\
v
e0

\102 ð2:20Þ

both diffusion resistances are comparable.
The terms in (2.5) indicate that the parameter e0 depends on d, i.e., on the

chemical reaction rate:

K\1; e0 ¼
ffiffiffiffiffiffiffiffi
Du0

~D~u0

s
; K [ 1; e0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Du0K
~D~u0

s
: ð2:21Þ

Hence, reasonable cases occur when

D
~D
� 10�4;

u0

~u0
� 10�1: ð2:22Þ

Thus, from (2.21) it follows that e0 * 10-1 when K \ 1.
The distribution of the diffusion resistances strongly depends on the physical

solubility of the gas, i.e., on Henry’s constant (v). For low-solubility gases (N2, O2,
CH4) the value of v is between 20 and 60. For gases with medium solubility (CO2,
C2H2, Cl2, H2S, Br2, SO2) Henry’s constant is in the range 0.02–2. For highly
soluble gases (HCl, NH3) the values of v are in the range 1 9 10-3 to 2 9 10-3.

The analysis of the mutual effects of the physical solubility of the gas (v) and
the chemical reaction rate (K) on the distribution of the diffusion resistance
between a gas and a liquid shows that for highly soluble gases v

e0
� 1 if K \ 1. This

contradicts the experimental data [3] showing the interphase mass transfer during
absorption of HCl and NH3 is limited by the mass transfer in the gas phase. Thus,
the process in the gas may limit the interphase mass transfer only in cases when the
reaction rate in the liquid phase is high (K [ 1). From (2.19), (2.21), and (2.22) it
follows that in the case of highly soluble gases the interphase mass transfer is
limited by the process in the gas if K [ 103.

When K [ 1 and 10-3 \ v\ 102, the ratio v
e0

depends on K, i.e., the increase of

the chemical reaction rate may lead to a change of the limiting stage of the process.
It is evident from (2.15) to (2.19) that at

K [ 1; v

ffiffiffiffiffiffiffiffiffiffiffiffi
~D~u0

Du0K

s
\10�2 ð2:23Þ

the interphase mass transfer is limited by the process in the gas phase and its rate is
independent of the chemical reaction rate.

Figure 1 shows the variations of v
e0

with variations of K for several cases of

practical interest (2.22) and various values of v. The data plotted allow us to
determine 12 areas with different interphase mass transfer mechanisms:

1. The chemical reaction rate does not affect the mass transfer and the limiting
stage is the process in the liquid.

2. Absorption of low-solubility gas is limited by the mass transfer in the liquid
and it is strongly dependent on the chemical reaction rate.
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3. The case is the same as that in point 2, but the mass transfer rate is inde-
pendent of the liquid hydrodynamics.

4. The case is the same as that in point 3, but the diffusion resistances in both
phases are comparable.

5. Absorption of low-solubility gas is limited by the mass transfer in the gas
phase and it is independent of the chemical reaction rate.

6. Absorption of gases of medium solubility is limited by the mass transfer in the
liquid phase and it is affected by the chemical reaction rate.

7. The case is the same as that in point 6, but the diffusion resistances in both
phases are comparable.

8. The case is the same as that in point 7, but the mass transfer is independent of
the liquid hydrodynamics.

9. Absorption of gases of medium solubility is limited by the mass transfer in the
gas phase and is independent of the chemical reaction rate.

10. There is absorption of highly soluble gas with comparable diffusion resis-
tances in both phases and a significant effect of the chemical reaction rate.

11. The case is the same as that in point 10, but the liquid hydrodynamics does not
affect the mass transfer.

12. Absorption of highly soluble gases is limited by the mass transfer in the gas
phase and there are no effects of the chemical reaction rate in the liquid phase.

It is clear that the chemical reaction rate affects the mass transfer rate. The
lower boundary of the range of variations is the rate of the physical absorption
limited by the mass transfer in the liquid phase. The upper boundary is the rate
of the physical absorption limited by the mass transfer in the gas phase. The
lower boundary of the range in the case of highly soluble gases is a special
situation.

Fig. 1 Distribution of the
diffusion resistance in the gas
and liquid phases for various
chemical reaction rates (in the
liquid phase)
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The situations listed above have mathematical descriptions following from (2.4)
with suitable substitutions of the parameters and functions listed in Table 1.

The effect of the chemical reaction rate on the interphase mass transfer
mechanism becomes more complicated if irreversible chemical reactions of
arbitrary order occur. This case is discussed in [7] with the following chemical
reaction:

a1A1 þ a2A2 ¼ a3A3; ð2:24Þ

where component A1 of the gas mixture reacts with component A2 of the liquid
absorbent and the yield is substance A3.

The reaction rate is determined by

ri ¼ �kic
m
1 cn

2;
k

ai
¼ k0 [ 0; i ¼ 1; 2; ð2:25Þ

where ki are the rate constants and ci are the concentrations of substances Ai

(i = 1, 2) in the liquid.
In fact substances A2 and A3 are nonvolatile and for the determination of their

concentrations only equations for the liquid phase are required. Thus, the math-
ematical description of the absorption process may be obtained form (2.1), where ~c
is the concentration of substance A1 in the gas, whereas the desired equation for
c must be replaced with two equations for c1 and c2 in the liquid:

u
oci

ox
þ v

oci

oy
¼ Di

o2ci

oy2
� kic

m
1 cn

2; i ¼ 1; 2;

x ¼ 0; ~c ¼ ~c0; c2 ¼ c02;

y ¼ 0; ~c ¼ vc1; ~D
o~c

oy
¼ D1

oc1

oy
;
oc2

oy
¼ 0;

y!1; ~c ¼ ~c0; y! �1; c1 ¼ 0; c2 ¼ c02;

ð2:26Þ

where the boundary conditions follow from (2.2) taking into account the non-
volatility of substance A2.

The theoretical analysis of the effect of the irreversible reaction on the inter-
phase mass transfer mechanism needs the dimensionless variables defined by (2.3)
to taken into consideration with the assumption that there are two diffusing sub-
stances in the liquid phase:

Table 1 The values of the parameters in model (2.4)

K \ 10-2 Fo = 1, K = 0
K \ 1 Fo = 1
K [ 1 Fo

K ¼ 1

K [ 102 Fo
K ¼ 1; K�1 ¼ 0

v
e0

\10�2 v
e0
¼ 0; C � 0

v
e0

[ 10�2 v
e0
¼ 0; ~C � 1
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Yi ¼
y

di
; Vi ¼

v

eiu0
; ei ¼

di

L
; Ci ¼

ci

c01
; i¼ 1; 2; ð2:27Þ

where

c01 ¼
~c0

v
: ð2:28Þ

Hence, Eq. 2.4 take the form

~U
o~C þ ~V

o~C

o~Y
¼ ~Fo

o2 ~C

o~Y2
; U

oCi

oX
þ Vi

oCi

oYi
¼ Foi

o2Ci

oY2
i

� KiC
m
1 Cn

2; i¼ 1; 2;

X ¼ 0; ~C ¼ 1; C1 ¼ 0; C2 ¼ 1;

~Y ¼ Y1 ¼ Y2 ¼ 0; ~C ¼ C1;
oC2

oY2
¼ 0;

v
e01

o~C

o~Y
¼ oC1

oY1
;

~Y !1; ~C ¼ 1; Y1 ! �1; C1 ¼ 0; Y2 ! �1; C2 ¼ 1;

ð2:29Þ

where

Foi ¼
DiL

u0d
2
i

; Ki ¼
kiL

u0

~cm�2þi
0 cnþ1�i

02

vm�2þi
; e01 ¼

D1
~d

~Dd1
; i ¼ 1; 2 ð2:30Þ

and ~d may be obtained from (2.7).
The dimensionless rate constants of the chemical reaction are always interre-

lated, namely,

K1

K2
¼ c02=a2

~c0=va1
; ð2:31Þ

where the ratios c02
a2

and ~c0
va1

may be considered as the maximum values of the

concentrations of substances A1 and A2 in the liquid. It is clear that K1
K2

may vary in

an unlimited range.
Equations (2.29) show that in the case of slow chemical reactions, we have

K1 \ 10-2, which allows the term K1C1
mC2

n on left-hand side of the equation to be
neglected. In this way it is possible to substitute K1 = 0 in (2.29), but the result is
that the equation for C2 becomes redundant because the interphase mass transfer of
substance A1 between the gas and the liquid no longer depends on the mass transfer
of substance A2 in the liquid phase. Hence, it follows that at

k1L

u0

~cm�1
0 cn

02

vm�1
\10�2 ð2:32Þ
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the change in the chemical reaction rate, the change in the initial concentrations of
the reagents, as well as the change in the physical solubility of the absorbing gas
have no effects on the mass transfer process in the liquid phase.

From (2.32) it follows that it is possible to substitute K1 = 0 in (2.29), which
yields

Fo1� 1: ð2:33Þ

This allows us to establish the order of magnitude of the diffusion boundary
layer thickness:

d1 ¼
ffiffiffiffiffiffiffiffiffi
D1L

u0

r
: ð2:34Þ

It is evident that the chemical reaction rate and the initial concentrations of the
reagents as well the physical solubility of the absorbing substance affect the mass
transfer rate in the liquid phase if K1 [ 10-2. Within the range,

10�2\K1\1; ð2:35Þ

the effect of the chemical reaction in the liquid is always less than the effect of the
convective transport. Taking into account that the convective and the diffusive
transport have to be of equal orders of magnitude, the value of d1 should be
evaluated from (2.34) when

K1\1: ð2:36Þ

It is clear from (2.31) that within the range defined by (2.35) the order of K2

may vary in an unlimited range. If K2 \ 10-2, then K2 = 0 is assumed in (2.29).
Thus, for C2 the result is

C2 � 1: ð2:37Þ

If (2.29) is substituted in (2.37), the result is a mathematical description of an
absorption process with a chemical reaction of pseudo-order m. For m = 1 the
resulting equation is of pseudo-first order [8].

When 10-2 \ K \ 1, it is possible to obtain in a similar way the following
relations:

Fo2� 1; d2 ¼
ffiffiffiffiffiffiffiffiffi
D2L

u0

r
: ð2:38Þ

The effects of the parameters K1 and K2 on the interphase mass transfer
mechanism are considerable when K1 [ 1 and K2 [ 1. For the purposes of the
theoretical analysis of the absorption process under these conditions, the equation
for Ci (i = 1, 2) should be represented in the form:

1
Ki

U
oCi

oX
þ Vi

oCi

oYi

� �
¼ Foi

Ki

o2Ci
2
i

� Cm
1 Cn

2 ; i ¼ 1; 2: ð2:39Þ
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It follows from (2.39) that in the range defined by (2.35) the increase in K2 [ 1
leads to a decrease in the convective transport of substance A2, while at the same
time the effects of both the diffusive transport and the chemical reaction must be of
equal orders of magnitude:

Fo2

K2
� 1: ð2:40Þ

Thus, when K2 [ 1, the thickness of the diffusion boundary layer for substance
A2 has an order of magnitude defined by

d2 ¼
ffiffiffiffiffiffi
D2

K2

r
vm=2

~cm=2
0 c n�1ð Þ=2

02

: ð2:41Þ

When K2 [ 102, the hydrodynamics does not affect the interphase mass transfer
of substance A2 and one may substitute K2

-1 = 0 in (2.29).
The increase in the parameter K1 [ 1 leads to significant changes in the mass

transfer mechanism for substance A1 in the liquid as well as in the overall gas–
liquid interphase mass transfer mechanism. It is evident from (2.39) that this is
accompanied by a decreasing effect of the convective transport. In this case it is
possible to establish the thickness of the diffusion boundary layer with respect to
substance A1 in the liquid phase:

d1 ¼
ffiffiffiffiffiffi
D1

K1

r
v m�1ð Þ=2

c m�1ð Þ=2
0 cn=2

02

; ð2:42Þ

i.e.,

Fo1�K1: ð2:43Þ

There are no hydrodynamic effects on the mass transfer when K1 [ 102. This
allows us to substitute K1

-1 = 0 in (2.29). Under all conditions when K1 [ 1, the
parameter K2 may take values within an unrestricted range. Despite this, all the
conclusions about the effect of K2 on the transport of substance A2 in the liquid
already have drawn for K1 \ 1 are valid in the case when K1 [ 1 too.

The distribution of the diffusion resistances in both phases is determined like in
the case of first-order chemical reactions. It is clear from (2.29) that the transport

processes in the liquid (in the gas) limit the mass transfer if v
e01

[ 102 v
e01

\10�2
� �

:

The diffusion resistances are commensurable if 10�2\ v
e01

\102:

If K1 [ 1, the parameter v
e01

depends on the chemical reaction rate and the initial

concentrations of the reagents. Thus, it is possible to derive conditions under
which the process is only limited by the mass transport in the gas phase,

v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~D~u0

D1u0K1

s
¼ v mþ1ð Þ=2

c m�1ð Þ=2
0 cn=2

02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~D~u0

D1K1L

s
\10�2; ð2:44Þ

and the mass transfer rate is independent of the reaction rate.
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The effect of a chemical reaction rate of arbitrary order on the interphase mass
transfer mechanism discussed here depends on the physical solubility of the gas.
The relationship may be obtained (see Fig. 1) by replacing e0 and K with e01 and
K1, i.e., the zones in the figure remain the same.

The existence of mass transport of substance A2 in the liquid phase is the reason
for various possible interphase mass transfer mechanisms and the respective
mathematical models in comparison with the pseudo-first-order chemical reaction.
All of these mathematical descriptions of the process may be obtained from (2.29)
if suitable parameters and functions are used (see Table 2). In Table 2, it is noted
by convention that C2 : 0 because when K1 \ 10-2 the equation for C2 in (2.29)
is unnecessary.

The effect of the chemical reactions on the interphase mass transfer mechanism
becomes more complicated with increase of the number of reactions considered.

2.2 Homogenous Catalytic Reactions

Homogenous catalytic processes in gas–liquid systems are widely used for the
synthesis of a new substance [3], as well as for enhancement of the separation of

Table 2 The values of the parameters in model (2.29)

K1 \ 10-2
K1 ¼ 0

Fo1 ¼ 0

K2\10�2

K2\1

K2 [ 1

K2 [ 102

K2 ¼ 0 C2 � 0

C2 � 0

C2 � 0

K�1
2 ¼ 0 C2 � 0

K1 \ 1 Fo1 = 1 K2\10�2

K2\1

K2 [ 1

K2 [ 102

K2 ¼ 0 C2 � 1

Fo2 ¼ 1

Fo2=K2 ¼ 1

K�1
2 ¼ 0 Fo2=K2 ¼ 1

K1 [ 1 Fo1
K1
¼ 1 K2\10�2

K2\1

K2 [ 1

K2 [ 102

K2 ¼ 0 C2 � 1

Fo2 ¼ 1

Fo2=K2 ¼ 1

K�1
2 ¼ 0 Fo2=K2 ¼ 1

K1 [ 102
K�1

1 ¼ 0

Fo1

K1
¼ 1

K2\10�2

K2\1

K2 [ 1

K2 [ 102

K2 ¼ 0 C2 � 1

Fo2 ¼ 1

Fo2=K2 ¼ 1

K�1
2 ¼ 0 Fo2=K2 ¼ 1

10-2 \ K1 \ 102 v
e01

\10�2

v
e01

[ 102

v
e01
¼ 0

e01

v
¼ 0

C1 � 1

~C1 � 1
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gas mixtures by absorption [4]. In these cases there are at least two chemical
reactions in the liquid phase. Consider a simple example of a homogenous cata-
lytic process:

A1 þ A3 ¼ A4; A2 þ A4 ¼ A5 þ A3; ð2:45Þ

where A3 is the catalyst for the interaction between A1 and A2 in the liquid phase.
The reaction rates may be expressed as

r1 ¼ �
oc1

ot
¼ k1c1c3; r2 ¼ �

oc2

ot
¼ k2c2c4;

r3 ¼ �
oc3

ot
¼ r1 � r2; r4 ¼ �

oc4

ot
¼ �r1 þ r2;

ð2:46Þ

where ci are the concentrations of substances Ai (i = 1; . . .; 4).
The equations describing the process are

~u
o~ci

ox
þ ~v

o~ci

oy
¼ ~Di

o2ci

oy2
; u

oci

ox
þ v

oci

oy
¼ Di

o2ci

oy2
� ri; u

ocj

ox
þ v

ocj

oy
¼ Dj

o2cj

oy2
� rj;

x ¼ 0; ~ci ¼ ~c0i; ci ¼ 0; cj ¼ c0j; c04 ¼ 0ð Þ;

y ¼ 0; ~ci ¼ vici; ~Di
o~ci

oy
¼ Di

oci

oy
;
ocj

oy
¼ 0;

y!1; ~ci ¼ ~c0i; y ¼ �1; ci ¼ 0; cj ¼ c0j; c04 ¼ 0ð Þ;

i ¼ 1; 2; j ¼ 3; 4;

ð2:47Þ

where the symbols are the same as those used in (2.1) and (2.2).
The analysis of (2.47) requires dimensionless variables such as those in (2.3):

X ¼ x

L
; ~Yi ¼

y
~di

; Yi ¼
y

di
; ~U ¼ ~u

~u0
;Vi ¼

~v
~ei~u0

; ~Ci
~ci

~c0i
;

U ¼ u

u0
;Vi ¼

v

eiu0
;Vj ¼

v

eju0
;Ci ¼

ci

c0i
;Cj ¼

cj

c03
; c0i ¼

~c0i

vi
;

~ei ¼
~di

L
; ei ¼

di

L
; ej ¼

dj

L
; i ¼ 1; 2; j ¼ 3; 4:

ð2:48Þ

In this way six coupled boundary problems are obtained:

~U
o~Ci

oX
þ Vi

o~C

o~Yi
¼ ~Foi

o2Ci

o~Y2
i

;

X ¼ 0; ~Ci ¼ 1; ~Yi ¼ 0; ~Ci ¼ Ci; ~Yi !1; ~Ci ¼ 1; i ¼ 1; 2:

ð2:49Þ
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U
oCi

oX
þ Vi

oCi

oYi
¼ Foi

o2Ci

oY2
i

� Ri;

X ¼ 0; Ci ¼ 0; Yi ¼ 0;
dCi

dYi
¼ vi

e0i

o~Ci

o~Yi

� �
~Yi¼0

; Yi ! �1; Ci ¼ 0; i ¼ 1; 2:

ð2:50Þ

U
oCj

oX
þ Vj

oCj

oYj
¼ Foj

o2Cj

oY2
j

� Rj; X ¼ 0; C3 ¼ 1; C4 ¼ 0; Yj ¼ 0;
oCj

oYj
¼ 0;

Yj ! �1; C3 ¼ 1; C4 ¼ 0; j ¼ 3; 4:

ð2:51Þ

~Foi ¼
~DiL

~ud2
i

; Foi ¼
DiL

ud2
i

; Foj ¼
DjL

ud2
j

; Ki ¼
kiL

u0
; e0i ¼

Di
~di

~Didi
; i ¼ 1; 2; j ¼ 3; 4;

R1 ¼ K1c03C1C3; R2 ¼ K2c03C2C4; R3 ¼ K1
c01

v1
C1C3 � K2

~c02

v2
C2C4;

R4 ¼ �K1
~c01

v1
C1C3 þ K2

~c02

v2
C2C4:

ð2:52Þ

The boundary problems (2.49)–(2.51) allow us to determine the effect of the
chemical reaction rate (and the physical solubility of substances A1 and A2 in the
liquid too) on the interphase mass transfer mechanism by the method described
above.

In situations where the following conditions are satisfied,

K1c03 [ 102; K2c03 [ 102; K1
~c01

v1
�K2

~c02

v2
[ 102; ð2:53Þ

Eqs. 2.50 and 2.51 take the form

o2Ci

oY2
i

¼ CiCiþ2; Yi ¼ 0;
oCi

oYi
¼ vi

e0i

oCi

o~Yi

� �
~Yi¼0

; Yi ! �1; Ci ¼ 0; i ¼ 1; 2:

ð2:54Þ

o2C3

oY2
3

¼ C1C3 � aC2C4;
o2C4

oY2
4

¼ �C1C3 þ aC2C4;

Yj ¼ 0;
oCj

oYj
¼ 0; Yj ! �1; C3 ¼ 1; C4 ¼ 0;

ð2:55Þ

where

a ¼ K2~c02v1

K1~c01v2
; di

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DiL

u0Kic03

r
; i ¼ 1; 2; dj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DjLv1

u0K1~c01

r
; j ¼ 3; 4: ð2:56Þ
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From (2.55) it follows that if D3 & D4, one may write C4 & 1 – C3.
When reactions (2.45) are fast, di = 0, e0i ? ? (i = 1, 2), the homogenous

reaction becomes a heterogeneous one. In these cases reactions (2.45) may
occur at the liquid surface and the mass transfer in the gas phase limits the
entire process.

2.3 Reversible Chemical Reactions

Reversible gas absorption is applied in cases when the regeneration of absorbents
is needed. In practical situations, the absorption is reversible owing to the
reversibility of the chemical reaction. The rates of both the forward and the
backward reactions affect the interphase mass transfer mechanism as in the case of
irreversible processes. These effects become more complicated owing to simul-
taneous reversibilities of both the physical and the chemical parts of the absorption
process.

An example of reversible absorption was described in [9] with a simple
reversible chemical reaction:

a1A1 þ a2A2 , a3A3: ð2:57Þ

Here, the assumption that absorbed substance A1 from the gas reacts with
substance A2 in the liquid is used. Far from the equilibrium, the rate of interaction
between substances A1 and A2 is

ri ¼ �
oci

ot
¼ kic

m
1 cn

2 � k3ic
p
3; ð2:58Þ

k1

a1
¼ k2

a2
¼ � k3

a3
¼ k0 [ 0: ð2:59Þ

Here ci are the concentrations of substances Ai (i = 1, 2, 3).
The introduction of the chemical equilibrium constant

R ¼ k3i

ki
; i ¼ 1; 2; 3 ð2:60Þ

from (2.58) leads to

ri ¼ ki cm
1 cn

2 � Rcp
3

� �
; i ¼ 1; 2; 3; ð2:61Þ

i.e., the equilibrium constants and the forward reaction rate constant may be used
to express the overall process rate.

The mathematical description of absorption with a reversible chemical reaction
in the liquid phase is
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~u
o~c

ox
þ ~v

o~c

oy
¼ ~D

o2~c

oy2
; u

oci

ox
þ v

oci

oy
¼ Di

o2ci

oy2
� ki cm

1 cn
2 � Rcp

3

� �
; i ¼ 1; 2; 3;

x ¼ 0; ~c ¼ ~c0; c1 ¼ 0; c2 ¼ c02; c3 ¼ 0; y ¼ 0; ~c ¼ vc1; ~D
o~c

oy
¼ D1

oc1
;

oc2

oy
¼ 0;

oc3

oy
¼ 0; y!1; ~c ¼ ~c0; y! �1; c1 ¼ 0; c2 ¼ c02; c3 ¼ 0:

ð2:62Þ

The analysis of the effect of the reversible reaction on the interphase mass
transfer mechanism needs the following dimensionless variables:

X ¼ x

L
; ~Y ¼ y

~d
; ~C ¼ ~c

~c0
; Yi ¼

y

di
; Ci ¼

ci

c0i
; c01 ¼

~c0

v

� �
;

~U ¼ ~u

~u0
; ~V ¼ ~t

~e~u0
; U ¼ u

u0
; Vi ¼

v

eiu0
; ~e ¼

~d
L
; ei ¼

di

L
; r0 ¼

k0~cm
0 cn

02

vm
;

~Fo ¼
~DL

~u0
~d
; Foi ¼

DiL

u0d
2
i

; a ¼ r0L

u0
; a1 ¼

a1a
c01

; a2 ¼
a2a
c02

; a3 ¼ �
a3a
c03

;

c03 ¼
cm=p

01 cn=p
02

vm=p
; e01 ¼

D1
~d

~Dd1
; i ¼ 1; 2; 3:

ð2:63Þ

In this manner, Eq. 2.62 take the form

~U
o~C

dX
þ ~V

o~C

d~Y
¼ ~Fo

o2 ~C

d~Y2
; U

oCi

dX
þ Vi

oCi

dYi
¼ Foi

o2Ci

dY2
i

� ai Cm
1 Cn

2 � RCp
3

� �
;

X ¼ 0; ~C ¼ 1; C1 ¼ 0; C2 ¼ 1; C3 ¼ 0;

~Y ¼ Yi ¼ 0; ~C ¼ C1;
oC1

1
¼ v

e01

o~C

o~Y
;
oC2

oY2
¼ oC3

oY3
¼ 0;

~Y !1; ~C ¼ 1;i! �1; C1 ¼ 0; C2 ¼ 1; C3 ¼ 0:

ð2:64Þ

From (2.64) it follows that the process depends on the parameters K, ai,Foi, and
v

e01
: Their values determine the interphase mass transfer mechanism.

If R [ 102, the chemical reactions are practically irreversible. If we substitute
R = 0 in (2.64), the problem of determination of C3 results. Thus, for R [ 102 the
equations for Ci (i = 1, 2, 3) become

U
oCi

oX
þ Vi

i

oYi
¼ Foi � Rai

1
R

Cm
1 Cn

2 � Cp
3

� �
; i ¼ 1; 2; 3; ð2:65Þ

Here it is possible to substitute R-1 = 0. From the boundary problem for C3 it
follows that C3 : 0 and consequently C2 : 1. For C1 the resulting equations
describe the case of physical absorption of substance A1.
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Reversible absorption occurs if 10-2 \ R \ 102 and the mass transfer mech-
anism depends strongly on the rate of the forward reaction, i.e., on the parameters
ai (i = 1, 2, 3).

If a1 \ 10-2, it is possible to substitute a1 = 0 in (2.64), which corresponds to
the case of physical absorption (at various values of a2 and a3). If a2 \ 10-2, it
follows from (2.64) that a2 = 0 and C2 : 1, i.e., this is the case of a forward
reaction of pseudo mth order. When a3 \ 10-2, it follows that C3 : 0 and the
case corresponds to the situation of an irreversible reaction.

The correlation between the effects of both the diffusive and the convective
transport as well as the diffusion boundary layer thickness depends on the values
of the parameters ai and R.

At ai [ 10-2 and 10-2 \ R \ 1 (i = 1,2,3) it is possible to substitute
ai

-1 = 0(i = 1, 2, 3) in (2.64). This means that the convective transport may be
neglected and the thickness of the diffusion boundary layer may be evaluated from
the condition

Foi� ai; i ¼ 1; 2; 3; ð2:66Þ

i.e.,

di ¼
ffiffiffiffiffiffiffiffi
DiL

u0ai

r
; i ¼ 1; 2; 3: ð2:67Þ

At aiR [ 102 and 1 \ R \ 102 one may substitute (aiR)-1 = 0 (i = 1, 2, 3) in
(2.64) and neglect the left-hand sides of the equations for Ci (i = 1, 2, 3). In this
case the result for the boundary layer thickness is

Foi� aiR; i ¼ 1; 2; 3; ð2:68Þ

i.e.,

di ¼
ffiffiffiffiffiffiffiffiffiffiffi
DiL

u0aiR

r
; i ¼ 1; 2; 3: ð2:69Þ

In the case of slow reactions ai \ 1, aiR \ 1, i = 1, 2, 3, the thickness of the
diffusion boundary layer may be obtained from a relationship similar to (2.10),
namely,

di ¼
ffiffiffiffiffiffiffiffi
DiL

u0

r
; i ¼ 1; 2; 3: ð2:70Þ

The distribution of the diffusion resistances is determined by the conditions
(2.18–2.20), where e must be replaced by e01 from (2.63). The determination of
~dand d1 must be performed from (2.7), (2.67), (2.69), and (2.70).

The analysis of the boundary problem (2.64) does not consider processes in
which

Cm
1 Cn

2 � RCp
3 	 0; a1 Cm

1 Cn
2 � RCp

3

� �
6¼ 0: ð2:71Þ
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This corresponds to a situation when in the bulk of the liquid there is a chemical
equilibrium and the rates of both the forward and the backward reactions are
significant, but the difference between them significantly affects the mass transfer.
In this situation the solution must take into account both the physical and the
chemical equilibrium.

2.4 Relationships Between the Chemical Equilibrium
and the Physical Equilibrium During Absorption

The absorption process in systems such as NH3–H2O and SO2–H2O is char-
acterized by the fast establishment of the chemical equilibrium in the liquid
phase. The chemical reaction significantly increases the gas–liquid mass transfer
rate. The mathematical description uses a model of physical absorption, where
Henry’s constant may be assumed as a conditional value relating the physical
solubility of the gas and the chemical equilibrium in the liquid [41]. Under
these assumptions, the liquid absorbs substance A1 from the gas. After that,
substance A1 reacts with the liquid component A2 and the reaction is followed
by dissociation of the reaction product. Generally, the reversible reaction may
be expressed [9] as

A1 þ a2A2 , A3 þ a4A4; ð2:72Þ

where A1 represents the reagent molecule in the gas (NH3, SO2, HCl, etc.), A2 is
the molecule of the reagent in the liquid (H2O), A3 is the ionic form of molecule
A1, and A4 is a hydroxyl or hydrogen ion.

The kinetic equations are

ri ¼ �
oci

ot
¼ ki cm

1 cn
2 � Rcp

3cq
4

� �
; i ¼ 1; . . .; 4; ð2:73Þ

where

k1 ¼
k2

a2
¼ �k3 ¼ �

k4

a4
¼ k0 [ 0 ð2:74Þ

and R is the chemical equilibrium constant.
Substituting ri (i ¼ 1; . . .; 4) from (2.73) in (2.62) yields the mathematical

description of an absorption process with a reversible chemical reaction (2.72). It
should take into account that the boundary conditions for c3 and c4 are equal.

In the situations where the rate of establishment of the chemical equilibrium is
high and the corresponding rates of both reactions (forward and backward) are also
significant, Eq. 2.73 indicate that

cm
1 cn

2 � Rcp
3cq

4 	 0; k1 cm
1 cn

2 � Rcp
3cq

4

� �
6¼ 0; i ¼ 1; . . .; 4: ð2:75Þ
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The conditions of the physical and chemical equilibrium are

c1 ¼
~c

v
; cm

1 cn
2 � Rcp

3cq
4 ¼ 0 ð2:76Þ

and as a result

c1 þ c3 ¼
~c

v
1þ ~cm=p�1cn=p

2

vm=p�1R1=pcq=p
4

 !
: ð2:77Þ

The concentration of substance A1 in the liquid (c) may be expressed by the
concentrations of its molecular and ionic forms,

c ¼ c1 þ c3; ð2:78Þ

whereas their diffusivities may be assumed to be practically equal:

D1 ¼ D3 ¼ D: ð2:79Þ

From (2.57) to (2.62) it can be seen that in the case of the reversible chemical
reaction (2.72)

a1 ¼ a3 ¼ 1; k1 ¼ �k3: ð2:80Þ

This allows a summation in (2.62) for the equations for c1 and c3:

u
oc

ox
þ v

oc

oy
¼ D

o2c

oy2
ð2:81Þ

with boundary conditions

x ¼ 0; c ¼ 0; y!1; c ¼ 0;

y ¼ 0; c ¼ ~c

v
1þ ~cm=p�1cn=p

2

vm=p�1R1=pcq=p
4

 !
; D

oc

oy
¼ ~D

o~c

oy
:

ð2:82Þ

The boundary conditions follow from the conditions imposed by the physical
and chemical equilibriums:

c1 ¼ ~c=v;m1 cn
2 � Rcp

3cq
4 ¼ 0: ð2:83Þ

The boundary conditions (2.82) permit us to obtain [41] an apparent Henry’s
constant:

H ¼ v 1þ ~cm=p�1cn=p
2

vm=p�1R1=pcq=p
4

 !�1

; ð2:84Þ

which takes into account both the physical equilibrium and the chemical
equilibrium.

In most of the cases of practical interest substance A2 is water, so c2 has a large
value that does not change during the process. This means that the reaction is of
pseudo-first order:
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c2 � c02 ¼ const:; m ¼ n ¼ p ¼ q ¼ 1: ð2:85Þ

Moreover, it follows from (2.72) to (2.76) that

c1 ¼ c� c3; c3 ¼ c4=a4: ð2:86Þ

Hence, the mathematical description of the process may be expressed in the
following form:

~u
o~c

ox
þ ~v

o~c

oy
¼ D

o2~c

oy2
; u

oc

ox
þ v

oc

oy
¼ D

o2c

oy2
;

u
oc4

ox
þ v

oc4

oy
¼ D4

o2c4

oy2
� k4 c02c� 1

a4
c02c4 � R

1
a4

c2
4

� �
;

x ¼ 0; ~c ¼ ~c0; c ¼ 0; c4 ¼ 0; y ¼ 0; ~c ¼ HC; ~D
o~c

oy
¼ D

oc

oy
;
oc4

oy
¼ 0;

y!1; ~c ¼ ~c0; y! �1; c ¼ 0; c4 ¼ 0;

ð2:87Þ

where

H ¼ v 1þ c02

Rc4

� ��1

: ð2:88Þ

In the cases when there is no chemical reaction in the liquid phase (R ? ?), it
follows from (2.84) that H = v. When the chemical reaction is irreversible
(R = 0) and the rate constant is high, relationship (2.84) gives H = 0, i.e., the
mass transfer is limited by the mass transfer in the gas phase.

In the situations when c4 = c04 = const. (there is absorption of SO2 or NH3 by
means of buffer solutions and c4 is the concentration of the hydrogen or hydroxyl
ions), the equation for c4 in (2.87) is not needed. A model of physical absorption
may describe the process with a Henry’s constant given by (2.88).

The evaluations of the boundary layer thickness as well as the distribution of
the diffusion resistances in both phases are similar to those discussed above.

3 Comparative Qualitative Analysis for Process
Mechanism Identification

The existence of experimental data on the process kinetics permits is to decipher
the process mechanism. The solution of this problem is made difficult by the
possibility of the existence of different physical effects and their combination in
the process mechanism (e.g., different nonlinear effects). The comparative quali-
tative analysis permits us to reject the negligible effects. For example, in many
cases there is a big difference between the experimental data and the predictions of
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the linear mass transfer theory as a result of nonlinear effects. These effects are
caused by secondary flows, where the velocity is a function of the concentration.
This influence of the mass transfer on the hydrodynamics is result of a big con-
centration gradient, a surface tension gradient (Marangoni effect), a pressure
gradient (Stefan flow), or a vertical density gradient (natural convection).

3.1 Comparison of the Nonlinear Effects

The theoretical analysis of nonlinear mass transfer was developed in [10]. The
main idea follows from the nonlinearity of the convection–diffusion equation:

q cð ÞW cð Þgrad c ¼ div q cð ÞD cð Þgrad c½ 
 þ kcn: ð3:1Þ

The velocity W is governed by the hydrodynamic equations. However, the
principal nonlinear phenomenon is due to the concentration effects on the velocity
W(c), density q(c), viscosity l(c), diffusivity D(c), and the chemical reaction rate
kcn (for n = 1).

It was shown [10, 11] that there are a number of cases with nonlinear mass
transfer behavior. The well-known linear mass transfer theory can be successfully
applied in these cases. However, in the case of two-phase interphase mass transfer
with a flat interface, the above equation permits a nonlinear mass transfer model to
be derived by means of the boundary layer approximation:

qi uj
ouj

ox
þvj

ouj

oy

� �
¼lj

o2uj

oy2
þAi;

ouj

ox
þouj

oy
¼0; uj

ocj

ox
þvj

ocj

oy
¼D

o2cj

oy2
þBj ; j¼1;2;

x¼0; uj¼uj0; cj¼ cj0; y¼0; u1¼u2; l1
ou1

oy
¼l2

ou2

oy
; vj¼0;

c1¼vc2;D1
oc1

oy
¼D2

oc2

oy
; y¼ �1ð Þjþ11; uj¼uj0; cj¼ cj0; j¼1;2;

ð3:2Þ

where the index 1 is used to denote the gas or the liquid phase, whereas the index 2
designates the liquid or the solid phase. The terms Aj and Bj (j = 1, 2) are the
contributions of some additional physical effects.

There are a number of processes where uj, vj, lj, qj, Dj, Aj, and Bj are inde-
pendent of the concentration cj (j = 1, 2). These situations are the basis of the
linear mass transfer theory.

In systems with high concentrations, and exhibiting large concentration gra-
dients, the deviations from the linear Fick’s diffusion law are significant. Under
such conditions, the higher concentrations can affect the diffusivity, viscosity, and
density:

Dj ¼ Dj cj

� �
; mj ¼ lj cj

� �
; qj ¼ qj cj

� �
; j ¼ 1; 2: ð3:3Þ

3 Comparative Qualitative Analysis for Process Mechanism Identification 211



The concentration effects introduce a nonlinearity in the convection–diffusion
equations, discussed in detail in [12, 13].

The other nonlinear effect, due to the nonuniform concentration distributions

Aj ¼ g qj � q0j

� �
; qj ¼ qj cj

� �
; ð3:4Þ

leads to a natural convection [14, 15].
The next reason why the mass transfer process may be intensified is the exis-

tence of a chemical reaction with rate Bj in the bulk of the phases:

Bj ¼ Bj cj

� �
; j ¼ 1; 2: ð3:5Þ

The studies reported in [10, 16] show that in gas–liquid systems with a chemical
reaction B1 = 0, whereas B2 = kcn. Moreover, the chemical reaction rate can
significantly affect the interface mass transfer mechanism between the phases.

The thermal effect of the chemical reactions can lead to temperature nonuni-
formity at the interface and to subsequent surface tension gradients. This calls for
new boundary conditions taking into account the equality of the tangential com-
ponents of the stress tensor at the interface:

y ¼ 0; l1
ou1

oy
¼ l2

ou2

oy
� or

ox
: ð3:6Þ

The investigation of this effect (Marangoni effect) [17, 18] shows that it is
negligible when there are no surfactants in the system.

One of the most interesting nonlinear effects arises from the conditions imposed
by the high concentration gradients. The latter induce secondary flows at the
interface. This effect is discussed in detail in [10] for a large number of systems as
examples and it has been termed the ‘‘nonlinear mass transfer effect.’’

Under the conditions imposed by high concentration gradients, secondary flows
are induced. They cause convective components of the mass transfer flux in
addition to the main mass flux. In this case the mass transfer rate is

J ¼ MDq�

Lq0

ZL

0

oc

oy

� �
y¼0

dx; ð3:7Þ

where the secondary flow affects both the diffusive mass transfer D oc
oy

� �
y¼0

and the

convective mass transfer Mq�

q0
: In gas–liquid and liquid–liquid systems [19, 20] the

nonlinearity is the effect of the induced secondary flow on the diffusive transfer. In
liquid–solid systems the induced flow affects mainly the convective transfer. These
effects are clearly demonstrated in the electrochemical systems [10, 16] owing to
the high molecular mass of the metals.

All of the nonlinear effects influence the velocity fields, which leads to changes
in the hydrodynamic stability of the system. The loss of stability could cause an
increase of the amplitudes of the random disturbances until a new stable state or a
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stable periodic process is reached [10]. The latter is a self-organizing dissipative
structure with a mass transfer rate growing sharply, which is not the case for
conventional systems. The problem is discussed in detail in [14, 15] in the case of
nonstationary absorption of pure gases in an immobile liquid layer with a flat
interface.

Nonlinear effects in the mass transfer kinetics, induced by the secondary flows,
lead to qualitative changes of the mass transfer rate, since they are related to
physical mechanisms inducing secondary flows. In this sense, the most interesting
secondary flows are the Stefan flow [21] (occurring as volume change at the
interface), the flow induced by large concentration gradients [10, 22], and the flow
resulting from surface tension gradients [17, 18]. These secondary flows require
the introduction of new boundary conditions at the interface (between gas–solid,
gas–liquid, liquid–liquid, and liquid–solid phases). A comparative analysis of the
occurrence of these secondary flows will be presented further.

Stefan flow occurs in the cases of heterogeneous reactions at the interface
between two phases as a result of the disappearance (or the generation) of sub-
stances at this interface. The ‘‘disappearance’’ (or ‘‘generation’’) of substances
might be a consequence of surface reactions such as adsorption (or desorption
processes), a liquid–vapor phase transition (boiling or condensation), or interphase
mass transfer.

Some of the above-mentioned heterogeneous reactions lead to changes of the
volume (and the pressure too) of the phase at the interface, which lead to the
occurrence of a pressure gradient and as a result a hydrodynamic flow, called
Stefan flow. These reactions at the interphase surface are chemical reactions when
a difference between the number of molecules of the reagents and reaction
products exists, and a liquid–vapor phase transition in the cases of boiling and
condensation.

Let us consider a heterogeneous chemical reaction [22] expressed by the stoi-
chiometric equation

XN

i¼1

tiAi ¼ 0; ð3:8Þ

where Ai and ti (i ¼ 1; . . .;N) correspond to the substances participating in the
reaction and their stoichiometric coefficients. For the initial substances (reagents)
ti [ 0, whereas for the reaction products ti \ 0. The rate of the heterogeneous
reaction ji (mol/m2s) is defined for the separate substances (i ¼ 1; . . .;N), where
N is their total number. For the reagents ji [ 0, and for the reaction products ji \ 0.

The reagents (reaction products) are supplied to (taken from) the surface
reaction by a diffusion and a convection:

j ¼ �D grad cþ vc; ð3:9Þ

where j is the vector of the mass transfer rate, D (m2/s) is the diffusivity, grad is
the vector of the gradient, c (mol/m3) is the molar concentration, and v is the
velocity vector. For the separate substances the molar flux has the following form:
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ji ¼ �Di grad ci þ vci; i ¼ 1; . . .N: ð3:10Þ

The projection of the vectors in the vector Eq. 3.10 over the normal vector of
the interphase surface n can be expressed as

ji ¼ ji � nð Þ; oci

on
¼ grad ci � nð Þ; v ¼ v � nð Þ; ð3:11Þ

where ji (mol/m2s) are molar fluxes (which have to be equal to the rates of the
reactions of the separate substances), oci

on is the normal derivate at the interface, and
v is the rate induced as a result of the heterogeneous reaction at certain conditions
and is termed ‘‘the velocity of the Stefan flow.’’ It is positive when v is oriented
towards the phase boundary and negative in the opposite case.

The introduction of (3.11) into (3.10) leads to

ji ¼ �Di
oci

on
þ vci; i ¼ 1; . . .;N; ð3:12Þ

where ji (i ¼ 1; . . .;N) should satisfy the condition for the stoichiometry of the
flows:

j1

t1
¼ j2

t2
¼ � � � ¼ jN

tN
: ð3:13Þ

From (3.13) it can be seen that the stoichiometric coefficients ti (mol/m2s)
represent the number of moles of the substances (i ¼ 1; . . .;N) which participate in
the heterogeneous reaction (per unit area, per unit time). They can be represented
as

ti ¼
vi

wi
; i ¼ 1; . . .;N; ð3:14Þ

where vi (m3/m2s) is the volume reaction rate of the substances in the gas (vapor)
phase and wi (m3/mol) is their molar volume.

The gas (vapor)–liquid (solid) systems where the Stefan flow occurs in the gas
(vapor) phase will be considered below, because it is practically not physically
applicable in liquid and solid phases.

The summation of the stoichiometric coefficients leads to

t ¼
XN

i¼1

ti; ð3:15Þ

where t[ 0 (t\ 0) means the increase (decrease) of the number of moles (the
volume) of the reaction mixture as a result of the heterogeneous reaction.

From (3.13) it follows directly that

ji ¼
ti

t1
j1; i ¼ 1; . . .;N: ð3:16Þ
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The summation of (3.16) yields

XN

i¼1

ji ¼ cj1; c ¼ t
t1
; ð3:17Þ

where we consider substance A1 as limiting, i.e., the rate of its reaction limits the
rate of the heterogeneous reaction.

In the case of gases and vapors, we can express the concentration through the
partial pressure:

ci ¼
Pi

RT
; i ¼ 1; . . .;N; ð3:18Þ

where R is the universal gas constant and T is the temperature. Then, from (3.12) it
directly follows that

ji ¼
Di

RT

oPi

on
þ vPi

RT
; i ¼ 1; . . .;N: ð3:19Þ

The summation of (3.19) yields

XN

i¼1

ji ¼ �
1

RT

XN

i¼1

Di
oPi

on
þ vP

RT
; ð3:20Þ

where P ¼
PN
i¼1

Pi is the total pressure of the mixture.

The velocity of the Stefan flow is obtained directly from (3.17) to (3.20):

v ¼ RT

P
cj1 þ

1
P

XN

i¼1

Di
oPi

on
: ð3:21Þ

In the case of two-component mixtures and D1 = D2 = D,

v ¼ RT

P
cj1 þ

D

P

oP

on
: ð3:22Þ

It can be seen from (3.22) that the velocity of the Stefan flow is determined by
the relative change in the volume of the reaction mixture c as a result of changes in
the volume velocity vi or in the case of a phase transition (the change of the molar
volume wi). The velocity decreases as a result of hydraulic resistance oP

on \0
� �

: In
the absence of a hydraulic resistance P = const. and the velocity of the Stefan flow
takes the form

v ¼ RT

P
cj1: ð3:23Þ

In the case of a reduction of the reaction mixture volume (as a result of a
heterogeneous reaction), the Stefan flow is oriented towards the reaction interface
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(c[ 0, v [ 0). In the opposite case (c\ 0, v \ 0), it is oriented away from the
reaction interface.

In the case of heterogeneous chemical reactions without phase transitions

w1 ¼ w2 ¼ � � � ¼ wN; c ¼

PN
i¼1

vi

v1
; ð3:24Þ

i.e., v [ 0, when the total volume rate of the chemical reaction of the substances in
the mixture is positive and the volume increases. In the opposite case v \ 0.

In the cases when the heterogeneous reaction has a liquid–vapor phase transi-
tion at the interface (boiling, condensation), the molar rates and (as a result) their
volume rates are equal:

v1 ¼ v2; c ¼
1

w1
� 1

w2

1
w1

¼ w2 � w1

w2
; ð3:25Þ

i.e., in the case of condensation (boiling) w1 [ w2, c\ 0 (w2 [ w1, c[ 0) and the
Stefan flow is oriented towards (away from) the interface.

In cases when the heterogeneous reaction involves adsorption (desorption)
v1 = v2, c = 0, i.e., the conditions for the Stefan flow do not exist. In the anal-
ogous situation of absorption (desorption), the product transfer occurs into the
second phase, i.e., t1 = t2, v = 0.

The result obtained (3.25) shows that the Stefan flow at the interface arises
when the heterogeneous reaction leads to changes of the total volume of the
reaction mixture. Obviously, this could happen only at the phase boundary of
the gas (or the vapor) phase and it is practically impossible at the boundary of the
liquid (or the solid) phase.

A significant nonlinear mass transfer effect occurs in systems with intense
interphase mass transfer, where large concentration gradients induce secondary
flows whose velocities are oriented normally to the interface.

For simplicity of explanation, a two-component fluid will be considered [10,
16]. Component A is a substance dissolved in component B (solvent). The density
of the solution q (kg/m3) can be represented through the mass concentrations of
component A (Mc) and solvent B (M0c0):

q ¼ M0c0 þMc ¼ q0 þMc; ð3:26Þ

where M and M0 are the molar masses (kg/mol) of components A and B and c and
c0 are their molar concentrations (mol/m3).

Any elementary volume of the solution has velocity V, which can be expressed
through the velocities of the substances A(v) and B(v0). Thus, the velocity of the
mass flow transferred by any elementary volume is the sum of the mass flows of
components A and B:

qV ¼ q0v0 þMcv: ð3:27Þ
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Equation (3.28) can be projected on the normal vector n of the interphase
surface:

q� V � nð Þ ¼ q�0 v0 � nð Þ þMc� v � nð Þ; ð3:28Þ

where the asterisks denote the values at the interface. From (3.28) the velocity of
the secondary flow v (m/s), induced by the diffusion (large concentration gradient),
can be determined as

v ¼ V � nð Þ: ð3:29Þ

At the boundary between two immiscible phases the mass flux is zero, i.e.,

v0 � nð Þ ¼ 0: ð3:30Þ

The molar flux of the dissolved substance (at the interface) N (mol/m2s) can be
expressed through the rate (mol/m2s) of the diffusive and convective transfer
terms:

N ¼ c� v � nð Þ�¼ �D
oc

on

� ��
þvc�: ð3:31Þ

The introduction of (3.29–3.31) into (3.28) yields

v ¼ �MD

q�0

oc

on

� ��
; q�0 ¼ M0c�0; ð3:32Þ

where c0
* is the molar concentration of component B at the interface. For a flat

phase boundary y = 0 can be obtained directly [10, 16]:

v ¼ �MD

q�0

oc

oy

� �
y¼0

: ð3:33Þ

Some approximations, assumed in [22], allow the flux N to be expressed only
by its diffusion component:

N ¼ �D
oc

oy

� �
y¼0

: ð3:34Þ

Thus, the velocity of the secondary flow is

v ¼ MD

q�0

oc

oy

� �
y¼0

; q� ¼ q�0 þMc�: ð3:35Þ

Obviously, the results obtained (3.33, 3.35) coincide at c* = 0 (e.g., at a
desorption of gases).
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It can be seen from (3.33) that in systems with intense interphase mass transfer
the normal component of the velocity is not zero (as in the systems with linear
mass transfer). Moreover, it depends on the concentration of the transferred sub-
stance, i.e., the convection–diffusion equation is nonlinear. The latter requires the
boundary condition at y = 0 (v = 0) to be replaced by (3.33).

The result (3.33) shows that the local mass flux at the phase boundary has
diffusive and convective components:

i ¼ �MD
oc

oy

� �
y¼0

þMvc� ¼ MD
q�

q�0

oc

oy

� �
y¼0

: ð3:36Þ

The mass transfer rate can be directly determined by averaging the mass flux
i (kg/m2s) over the interface.

The comparison between the Stefan flow velocity (3.23) and the velocity of the
secondary flow induced by large concentration gradients (3.35) indicates that
Stefan flow arises in the gas (or the vapor) phase as a result of changes in the phase
volume (pressure gradient). Such changes occur in some heterogeneous reactions
accompanied by changes of the reaction mixture volumes and phase transitions
(boiling and condensation).

The secondary flow induced by large concentration gradients (partial pressure
gradients in gas phases) is a result of the intense interphase mass transfer that can
be observed in gas and liquid phases (Stefan flow in a liquid phase is physically
impossible).

The Marangoni effect is a result of a secondary flow whose velocity is oriented
tangentially to the interface and it is induced by a surface tension gradient. The
latter is a result of concentration (or temperature) gradients at the interface. Here,
the Marangoni effect will be concerned only with gas–liquid systems.

The influence of the secondary flows on the mass transfer rate is a result of their
velocity component oriented normally to the interface. It creates an intense con-
vective transfer which contributes to the total transfer process (the diffusive
transfer exists in its absence). Upon provoking the Marangoni effect, the induced
flow is tangential and the normal component appears from the flow continuity
equation:

ou

ox
þ ov

oy
¼ 0: ð3:37Þ

The flows in the boundary layer are characterized by two characteristic scales of
velocity (u0, v0) and two linear scales (d, L), which are related to the dimensionless
variables of the flow:

u ¼ u0U; v ¼ v0V; x ¼ LX; y ¼ dY; d ¼
ffiffiffiffiffiffiffi
lL

u0q

s
: ð3:38Þ
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The introduction of (3.38) into (3.37) leads to a dimensionless equation:

oU

oX
þ v0L

u0d
oV

oY
¼ 0: ð3:39Þ

Here, the flow continuity is expressed as a ratio of characteristic scales:

v0L

u0d
¼ 1; v0 ¼

d
L

u0 ¼ u0

ffiffiffiffiffiffiffi
t

u0L

r
: ð3:40Þ

Let us suppose that the Marangoni effect is a result of the temperature gradient
at the interface. In this case the characteristic velocity of the Marangoni effect can
be determined from the equation [37]

l
ou

oy

� �
y¼0

¼ or
ox
¼ or

ot

ot

ox
: ð3:41Þ

If (3.38) is introduced into (3.41) (and the temperature scale is Dt), we can
obtain the condition for the existence of the Marangoni effect and its characteristic
velocity:

u0 ¼
d
L

Dt

l
or
ot
: ð3:42Þ

The introduction of (3.42) into (3.40) allows us to find the characteristic
velocity of the secondary flow responsible for the increase of the mass transfer
rate:

v0 ¼
Dt

qu0L

or
ot
: ð3:43Þ

For example, in the case of absorption of CO2 in H2O and a temperature
changes due to a chemical reaction, the order of magnitude of the velocity v0 can
be evaluated as

v0� 10�8m=s: ð3:44Þ

In the cases of nonlinear mass transfer, the characteristic scales have to be
introduced into (3.33) as

v ¼ v0V ; c ¼ DcC; y ¼ dcY ; dc ¼

ffiffiffiffiffi
dl

u0

s
: ð3:45Þ

From (3.33) to (3.45) it follows directly that the condition for the existence of
the nonlinear mass transfer effect and its characteristic velocity is

v0 ¼
MDc

q�0

ffiffiffiffiffiffiffiffi
u0D

L

r
: ð3:46Þ
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The order of the magnitude of the velocity v0 in (3.46) under similar conditions
imposed by (3.44) can determined directly:

v0� 10�6m=s: ð3:47Þ

The results obtained (3.44 and 3.47) show that in systems with an intense
interphase mass transfer the nonlinear effects are a result of the concentration
gradients oriented normally to the interface and are not the result of the temper-
ature gradients at the phase boundary. The difference between the effect of non-
linear mass transfer and the Marangoni effect is based mainly on the following
three reasons:

1. The normal component of the velocity v0 is always smaller than the tangential
velocity component (see 3.40).

2. The small temperature gradients Dt, due to the small heat effect of the
absorption.

3. The absence of surface-active substances.

The nonlinear mass transfer effect and the Marangoni effect can affect the mass
transfer rate not only by additional convective flows, but also by a loss of stability.
In such cases the accidental perturbations lead to self-organized dissipative
structures with very intense mass transfer [10]. The stability of such systems
depends mainly on v0, which is the reason why the process is limited again by the
nonlinear mass transfer.

Natural convection arises in fluids as a result of the vertical gradient of the
density:

q ¼ q0 þ q1 c; hð Þ; ð3:48Þ

where q1 is a function of the concentration and temperature. If the coordinate x-
axis is vertical and directed upward, natural convection exists when qq1/qx [ 0.
The mathematical description of the process can be obtained from (1.2.24) if the
Newtonian force is replaced by the buoyant force:
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ð3:49Þ

From (3.49) it can be seen, that a solution ux = uy = uz = 0 exists if the
boundary conditions (the velocities on the border of the system) are equal to zero
too. In this case it is possible for the system to be stable and
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op

ox
¼ gq1: ð3:50Þ

For large values of the gradient qq1/qx [ 0 the system is unstable and small
disturbances lead to natural convection in a form of Benard cells [23]. All sec-
ondary flows at the border of the system provoke natural convection too.

3.2 Nonstationary Absorption Mechanism

The theoretical analysis of the Marangoni effect in the cases of gas absorption
shows [11] that the characteristic velocity (3.43) of the secondary flow increases if
the characteristic velocity of the main flow decreases, i.e., the maximum
Marangoni effect will exist in an immovable liquid. The experimental investiga-
tion [24] of the mass transfer between two immovable phases in the case of
absorption of pure gases in an immovable liquid shows that under these conditions
three processes can take place: natural convection, nonlinear mass transfer, and the
Marangoni effect.

Let us consider a vertical tube with radius r0 in which an immovable liquid
(H2O) contacts an immovable gas (CO2, SO2, NH3). The gas is absorbed in the
liquid, and the process is accompanied by a thermal effect. As a result, several
effects in the liquid may occur, having the form of secondary flows owing to the
large concentration gradients (nonlinear mass transfer), the difference in density
(natural convection), and the surface tension gradient (Marangoni effect).

The mathematical description of this process will be done in cylindrical
coordinates [25–28]. The influence of the density gradient, the concentration
gradient, and the surface tension gradient will be considered. In this way, the
problem has the form
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ð3:51Þ
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where q0 is the density, l is the viscosity, D is the diffusivity, k is the conductivity,
and h0 is the initial liquid temperature. Equations (3.51) permit us to obtain the
Oberbeck–Boussinesq approximations (c : 0, 0 = b\ 10-2).

The boundary conditions account for the induced secondary flows at the liquid
surface as a result of the significant gradients of the concentration (c) and the
surface tension (r). Moreover, the change of the temperature is a result of the heat
effect of absorption (q), under the assumption that the chemical reaction (gas–
liquid) is fast and only exists at the interface (z = 0). Thus, the initial and the
boundary conditions are

t ¼ 0; vz ¼ vr ¼ c ¼ 0; h ¼ h0; z!1; vz ¼ vr ¼ c ¼ 0; h ¼ h0;

z ¼ 0; vz ¼ �
D

q0

oc

oz
; l

ovr

oz
¼ or

or
¼ or

oh
oh
or
; c ¼ c�; k

oh
oz
¼ qD
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;

r ¼ 0; vr ¼ 0;
ovz

or
¼ oc

or
¼ oh

or
¼ 0; r ¼ r0; vz ¼ vr ¼ 0;

oc

or
¼ oh

or
¼ 0;

ð3:52Þ

where c* is the gas solubility at the initial temperature h0.
The process considered has some characteristic scales that are known:

t0� 102s, r0� 10�2m, c� � 102kg
�

m3; h0� 10�C: ð3:53Þ

The characteristic scales of the velocity (v0) and the depth where the main
changes of the velocity (l), concentration (d), and the temperature (h) take place
must be determined from the analysis of the process mechanism. Thus, the
dimensionless variables are

t ¼ t0T; z ¼ lZ1 ¼ dZ2 ¼ hZ3; r ¼ r0R; p ¼ q0v2
0P;

vz t; z; rð Þ ¼ v0Vz T ; Z1;Rð Þ ¼ v0 ~Vz T ; Z2;Rð Þ ¼ v0
~~Vz T ; Z3;Rð Þ;

vr t; z; rð Þ ¼ v0r0

l
Vr T; Z1;Rð Þ ¼ v0r0

d
~Vr T ; Z2;Rð Þ ¼ v0r0

h
~~V r T; Z3;Rð Þ;

c t; z; rð Þ ¼ c�C T; Z1;Rð Þ ¼ c� ~C T ; Z2;Rð Þ ¼ c� ~~C T ; Z3;Rð Þ;

h t; z; rð Þ ¼ h0H T ; Z1;Rð Þ ¼ h0
~H T; Z2;Rð Þ ¼ h0

~~H T; Z3;Rð Þ:

ð3:54Þ

The dimensionless (generalized) variables (3.54) allow the hydrodynamic, the
diffusion, and the heat transfer processes to be described in terms of the scales.
Moreover, they permit us to evaluate the limiting states in the mechanism of this
complicated process.

The mechanisms of the nonstationary diffusion with a nonlinear mass transfer,
natural convection, and the Marangoni effect may be elucidated by substitution of
(3.54) in (3.51) and (3.52). The resulting dimensionless parameters of the different
terms (differential operators) permit us to evaluate the roles of each elementary
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process taking part in the complex process. From this point of view, the dimen-
sionless parameters are of an order of magnitude of unity, lower than unity and
negligible compared with unity. The later allows an evaluation of the weight of
each term (elementary process): a significant role, a low role, and an insignificant
role. From these positions the problem may be rewritten as follows:
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where a ¼ k
q0cp
� 10�7m2

�
s and q = 3 9 102 kcal/kg.
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Under the assumption that the flow is a result of natural convection, induced by
diffusion and heat transfer, the characteristic linear scales may be determined from
the conditions

lv0

gl2c�
¼ 1;

Dt0

d2 ¼ 1;
at0

h2
¼ 1: ð3:56Þ

The characteristic velocity scale may be determined from the condition

Dc�

v0q0d
¼ 1 ð3:57Þ

if the nonlinear mass transfer effect is important.
From (3.56) to (3.57) it may be evaluated that the unknown characteristic scales

are
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ð3:58Þ

The latter allows determination of the order of magnitude of all the dimen-
sionless parameters in (3.55) and the estimation of the role of each elementary
process in the complex one as well:
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From (3.56) to (3.59) evidently the parameter of the Marangoni effect
or
oh

h0
lv0

l2

r2
0
� 10�3

� �
has an order of 10-2, whereas the effects of the natural con-

vection lv0

gl2c�

� �
and the nonlinear mass transfer Dc�

v0q0d

� �
are of the order of unity.

If the characteristic velocity is limited by natural convection lc�
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� 106; then the characteristic velocity is limited by the

nonlinear mass transfer.
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Taking into account (3.59), we may express problem (3.55) in a zeroth-order
approximation for a parameter of order lower than 10-2:

o2Vz

oZ2
1

þC¼ 0;
o2Vr

oZ2
1

¼ 0; 1þ eCð Þ oVz

oZ1
þVr

R
þ oVr

oR

� �
þ e Vz

oC

oZ1
þVr

oC

oR

� �
¼ 0;

o~C

oT
þ e ~Vz

o~C

oZ2
þ ~Vr

o~C

oR

� �
¼ o2 ~C

oZ2
2

; 1þ e~~C
� �o

~~H
oT
¼ o2 ~~H

oZ2
3

; T ¼ 0; ~C¼ 0; ~~H¼ 1;

Z1 ¼ Z2 ¼ Z3 ¼ 0; Vz ¼�
o~C

oZ2
;
oVr

oZ1
¼ 0; ~C¼ 1;

o
~~H

oZ3
¼ ea1 1þ eð Þ o

~C

oZ2
;

Z1 ¼ Z2 ¼ Z!1; Vz ¼ Vr ¼ ~C¼ 0; ~~H¼ 1; R¼ 0; Vr ¼ 0;
o~C

oR
¼ 0:

ð3:60Þ

From (3.60) it is clear that both the natural convection and the nonlinear mass
transfer are independent of the heat transfer.

In (3.60) e is a small parameter and the solutions may be obtained by a
perturbation method:

Vz ¼ V 0ð Þ
z þ eV 1ð Þ

z þ . . .; Vr ¼ V 0ð Þ
r þ eV 1ð Þ

r þ . . .;

~C ¼ ~C 0ð Þ þ e~C 1ð Þ þ . . .;
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0ð Þ þ e ~~H
1ð Þ þ . . .:

ð3:61Þ

The zeroth-order approximations (e = 0) may be obtained directly from (3.60):
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ð3:65Þ

Initially, the solution must start with (3.64) and the solution is

~C 0ð Þ ¼ erfc
Z2

2
ffiffiffiffi
T
p : ð3:66Þ
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From (3.54) it is clear that

Z2 ¼ aZ1; a ¼ l

d
� 10�3; C ¼ ~C; ð3:67Þ
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Thus, (3.62) takes the form
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In (3.69) the boundary condition at infinity is replaced with a condition for
velocity attenuation at z C l. The solution of problem (3.69) is
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Taking into account (3.70), we may express problem (3.63) as
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and for Vr
(0) the result is
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The zeroth-order approximation for temperature may be obtained from (3.65),
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and the solution is
~~H
ð0Þ � 1: ð3:74Þ

The first approximation of the concentration ~Cð1Þ follows from (3.60), taking
into account (3.66) and (3.70):
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where
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1
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Z2: ð3:76Þ

From (3.69), (3.70) and (3.76) it is clear that Vz
(0) differs from zero in the

interval 0 B Z1 \ 1, 0 B Z2 \ a, i.e., in (3.75) the volume source (mass produc-
tion rate per unit volume) is a surface source (Z2 = 0) because
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Thus, problem (3.75) takes the form
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It is evident that the expressions for ~C 1ð Þ and V 1ð Þ
z are identical to those for
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The average absorption rate J for a time interval t0 may be expressed by means
of the mass transfer coefficient k. It may be determined from the average mass
flux I:

J ¼ kc� ¼ 1
t0

Zt0

0

Idt; I ¼ �Dq�

q0

oc

oz

� �
z¼0

; q� ¼ q0 þ c�: ð3:81Þ
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Thus, Eq. 3.81 may be used to obtain the Sherwood number for nonstationary
diffusion:

Sh ¼ kt0

D
¼ � 1þ eð Þ

ffiffiffiffi
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The amount of gas absorbed (Q, kg/m2) for time interval t0 (s) is

Q ¼
Zt0

0

Idt ¼ 2c�
ffiffiffiffiffiffiffi
Dt0

p

r
1þ eð Þ2: ð3:83Þ

The results of the qualitative analysis show that in the case of mass transfer
between two immovable phases (absorption of pure gases, when the mass transfer
is limited by the diffusion resistance in the liquid phase), the effects of the non-
linear mass transfer and the natural convection are comparable, whereas the
Marangoni effect is negligible in comparison. These two effects influence the mass
transfer kinetics and induce a secondary flow in the liquid. It would be expected
for them to affect the flow hydrodynamic stability too.

In cases where the liquid surface is heated [29] with sufficient intensity, the
Marangoni effect occurs within a thin layer of the liquid phase (2 9 10-3 to
3 9 10-3 m).

3.3 Nonstationary Evaporation Kinetics

The studies described in the previous sections addressed the absorption (desorption)
of low-solubility gases when the liquid mass transfer resistance limits the mass
transfer rates. Obviously, it is interesting to focus the investigations on a situation
where the mass transfer is limited by the gas phase. An adequate example is the case
of nonstationary evaporation of a stagnant liquid layer in a stagnant gas phase above
it. Detailed experimental investigations of such systems were reported in [30].

The nonstationary evaporation of a liquid with a moderate partial pressure
(water, methanol, ethanol, and isopropyl alcohol) at 20 �C in an inert gas (nitro-
gen, argon, and helium) is investigated. The process occurs in a thermostatic
condition, corresponding to the experiments reported in [30]. Under such condi-
tions, the nonstationary mass transfer of the liquid vapors in the gas phase limits
the process rate.

The mechanism of the nonstationary evaporation may be considered as a
nonstationary diffusion complicated by additional effects of a variable temperature
at the liquid surface (as a result of the thermal effect of the evaporation phe-
nomenon) and a convection (secondary Stefan flow) as well as a natural con-
vection. The effects of these phenomena on the evaporation rate will be analyzed
subsequently.

228 Qualitative Analysis



The investigations [30] on the evaporation rates of liquids (H2O, CH3OH,
C2H5OH, i-C3H7OH) show a time-dependent average liquid temperature. In fact,
the process depends only on the surface temperature (h*, �C).

The temperature distribution in a layer of an evaporating liquid is described by

oh
ot
¼ a

o2h
oz2

; t ¼ 0; h ¼ h0; z ¼ 0; k
oh
oz
¼ qJ; z ¼ h; h ¼ h0; ð3:84Þ

where the coordinate z-axis is oriented normally to the liquid–gas interface
(z = 0), h and h0 (�C) are the temperatures of the liquid and its initial value, t (s) is
time, k (kcal/ms �C) is the thermal conductivity of the liquid, a (m2/s) is the
temperature diffusivity, q (kcal/kg) is the latent heat of the evaporation, J (kg/m2s)
is the evaporation rate, and h (m) is the thickness of the evaporating liquid.

The evaporation rate J in (3.84) may be determined from experimental data
concerning the amount of evaporated liquid Q (kg/m2) at time t (s). Such data are
available in [30]. After a sufficiently large initial time interval (where J has its
greatest value), the relationship may be expressed as

Qe ¼ Ae

ffiffi
t
p
; ð3:85Þ

where Ae (kg/m2s�) may be determined on the basis of the experimental data
reported in [30] for systems such as H2O–N2, H2O–He, H2O–Ar, CH3OH–Ar,
C2H5OH–Ar, and i-C3H7OH–Ar (see Table 3). This allows us to define (by means
of 3.85) the values of Je as

Table 3 Characteristic parameters of gas–liquid systems (20 �C)

Parameters Systems

H2O–N2 H2O–He H2O–Ar CH3OH–
Ar

C2H5OH–
Ar

i-C3H7OH–
Ar

q (kcal/kg) 584.3 584.3 584.3 280.0 217.9 179.1
a 9 107 (m2/s) 1.43 1.43 1.43 1.05 0.888 0.752
k 9 105 (kcal/

ms oC)
1.448 1.448 1.448 4.875 4.015 3.657

D 9 105 (m2/s) 2.41 2.57 8.86 0.98 1.0 0.846
h0 - h* (�C) 0.3 0.3 0.2 3.4 0.6 0.4
Ae 9 104 (kg/m2s1/2) 2.051 2.190 1.633 19.47 3.963 3.287
AD 9 104 (kg/m2s1/

2)
0.936 0.967 1.79 5.09 3.89 1.51

A 9 104 (kg/m2s1/2) 0.954 0.961 1.94 5.92 4.28 1.57
c* (kg/m3) 0.0142 0.0143 0.0161 0.142 0.0995 0.0939
c0

* (kg/m3) 1.13 1.66 0.162 1.48 1.57 1.63
# 9 105 (m2/s) 1.441 1.360 12.12 1.360 1.360 1.360
q0 (kg/m3) 1.16 1.66 0.166 1.66 1.66 1.66
Qmax 9 102 (kg/m2) 0.3660 0.3684 0.4129 3.644 2.558 2.414
a -0.555 0.778 -1.216 -0.246 0.133 0.335
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Je ¼
dQe

dt
¼ Ae

2
ffiffi
t
p : ð3:86Þ

The substitution of (3.86) into (3.86) permits us to define [31] the temperature
distribution within the evaporating liquid layer with thickness h:

h ¼ h0 �
qAe

ffiffiffiffiffiffi
pa
p

2k

X1
n¼0

�1ð Þn erfc
2nhþ z

2
ffiffiffiffi
at
p � erfc

2 nþ 1ð Þh� z

2
ffiffiffiffi
at
p

	 

: ð3:87Þ

Equation (3.87) allows us to determine the temperature variations at the liquid
top surface (z = 0) as a result of the evaporation process:

h0 � h� ¼ qAe

ffiffiffiffiffiffi
pa
p

2k
1þ 2

X1
n¼1

�1ð Þnerfc
nhffiffiffiffi

at
p

" #
; ð3:88Þ

where the liquid thickness was assumed to be 3 9 10-3 m. It follows from (3.88)
that the maximum temperature at the interface may be reached at the limiting
situations of t ? 0 or h ? 0:

h0 � h� ¼ qAe

ffiffiffiffiffiffi
pa
p

2k
: ð3:89Þ

The result (3.89) can also be obtained in the case when the liquid layer is not
under thermostatic conditions. In such a situation the last boundary condition in
(3.84) becomes

z!1; h ¼ h0 z [ ha ¼
ffiffiffiffi
at
p� �

; ð3:90Þ

where ha is the thickness of the thermal boundary layer. Thus, the temperature
distribution is

h ¼ h0 �
qAe

ffiffiffiffiffiffi
pa
p

2k
erfc

z

2
ffiffiffiffi
at
p : ð3:91Þ

Equation (3.91) shows that the results (3.89) follow directly at z = 0.
The results concerning the interface temperature h – h0 are listed in Table 3. It

is clear that the temperature at the liquid surface practically remains unchanged as
a result of the evaporation process. Some deviations from that ‘‘rule’’ are dem-
onstrated by the CH3OH–Ar system, but they change the partial pressure of the
vapors above the liquid in the range of 10%, which should be neglected (the data in
[30] have the same experimental error).

The experimental relationship h
ffiffi
t
p� �

(obtained in [30]) shows that the

asymptotic value Q = Qmax is reached at large values of
ffiffi
t
p
: It allows the deter-

mination of the exact vapor concentration at the interface c� ¼ Qmax

h kg
�

m3
� �

: The
results are shown in Table 3. For example, the results show that the CH3OH
surface temperature is 15–16 �C.
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The experimental data reported in [30] allow the value of Ae in (3.85) to be
determined and the results are summarized in Table 3. If the evaporation rate is
limited by the nonstationary diffusion, the concentration distribution is [32–35]

c ¼ c�erfc
z

2
ffiffiffiffiffi
Dt
p ; ð3:92Þ

where c and c* (kg/m3) are the concentrations of the vapors in the gas phase and at
the interface respectively, and D (m2/s) is the diffusivity. Solution (3.92) permits
us to obtain the rate of the diffusion:

JD ¼ �D
oc

oz

� �
z¼0

¼ c�
ffiffiffiffiffi
D

pt

r
¼ AD

2
ffiffi
t
p ; ð3:93Þ

where

AD ¼ 2c�
ffiffiffiffi
D

p

r
: ð3:94Þ

The values of AD are collected in Table 3. The comparison between the values
of AD and Ae indicates significant differences that may be attributed to the
occurrence of a Stefan flow [11]. Some strange behaviors are demonstrated by the
C2H5OH–Ar (Ae & AD) and H2O–He (Ae \ AD) systems.

The difference between the evaporation rate and the rate of the nonstationary
diffusion indicates that a convective contribution exists. The evaporation of a
liquid in an inert gas is a result of a liquid–vapor phase transition, so there is a
volumetric effect of a heterogeneous reaction at the interface [11] that creates the
Stefan flow. If the process occurs in thermostatic conditions and it is limited by
both the diffusive and the convective transports in the gas phase, the evaporation
rate can be expressed as

J ¼ �D
oc

oz

� �
z¼0

þc�vs; ð3:95Þ

where vs (m/s) is the velocity of the Stefan flow.
The mass transfer rate of the inert gas (in the gas phase) in the case of a gas–

vapor binary system may be expressed in a similar manner:

J0 ¼ �D
oc0

oz

� �
z¼0

þc�0vs; ð3:96Þ

where c0 and c0
* (kg/m3) are the concentrations of the inert gas in the bulk of the

gas phase and at the interface. If the evaporating liquid is saturated by the inert gas
(like in the experiments described in [30]), it follows that

J0 ¼ 0; c0 þ c ¼ q ¼ q0 þ ac;
oc0

oz
¼ � 1� að Þ oc

oz
; a ¼ qV � q0

qV

; ð3:97Þ
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where qV (kg/m3) is the density of the vapor of the liquid, q0 (kg/m3) is the density
of the inert gas, and q (kg/m3) is the density of the gas phase. In this way, we
obtain from Eqs. (3.95) and (3.96) that

vs ¼ �
D 1� að Þ

c�0

oc

oz

� �
z¼0

; J ¼ �D
q0

c�0

oc

oz

� �
z¼0

: ð3:98Þ

The comparison between the velocity of the Stefan flow (3.98) and the velocity
of the secondary flow induced by the large concentration gradients [10] shows that
they are different when there is evaporation of a liquid in inert gases under iso-
thermal conditions (a thermostated system) since q0 = q*. Here

q� ¼ q0 þ ac�: ð3:99Þ

The convective mass transfer upon nonstationary evaporation from a stagnant
liquid into a stagnant gas above it (within a large initial time interval) could be
attributed to the Stefan flow and the natural convection. Let us consider a gaseous
layer above a stagnant liquid. The momentum equations of the gas phase and the
convection–diffusion equations of the liquid vapors (under the assumption of a
one-dimensional approximation) are

ov

ot
þ v

ov

oz
¼ # o2v

oz2
� 1

q0

op

oz
� gac

q0
;

oc

ot
þ v

oc

oz
¼ D

o2c

oz2
; t ¼ 0; v ¼ c ¼ 0;

z ¼ 0; v ¼ �D 1� að Þ
c�0

oc

oz

� �
Z¼0

; c ¼ c�; z!1; v ¼ c ¼ 0;

ð3:100Þ

where # (m2/s) is the kinematic viscosity .
The z coordinate is oriented vertically upwards and the liquid interface is z = 0.

In the cases when the Stefan flow does not exist (see 3.98), its velocity is zero,

m 0; tð Þ ¼ 0; ð3:101Þ

which leads to a stable solution of (3.100):

�v � 0; �c ¼ a1zþ a2;
o�p

oz
¼ gac; ð3:102Þ

i.e., the gas phase is stagnant, the concentration distribution is linear, and the
pressure gradient depends on the concentration distribution along the gaseous layer
depth [36]. This is a stable state of the system, but small disturbances could lead to
a new stable state, where the motion of the gas phase is a result of the natural
convection.

It is possible to introduce into (3.100) the dimensionless (generalized) variables

t ¼ t0T ; z ¼ dZ; v ¼ u0V ; p ¼ q0u2
0P; c ¼ c�C; ð3:103Þ
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where t0 (s) is the characteristic timescale of the process. The length d denotes the
depth of the gaseous layer above the liquid, where the principal changes of both
the concentration and the velocity distributions occur. The value of u0 is the
characteristic velocity scale. The results is

oV

oT
þ u0t0

d
V

oV

oZ
¼ � u0t0

d
oP

oZ
þ #t0

d2

o2V

oZ2
� gat0c�

q0u0
C;

oC

oT
þ u0t0

d
V

oC

oZ
¼ Dt0

d2

o2C

oZ2
;

T ¼ 0; V ¼ C ¼ 0; Z ¼ 0; V ¼ �Dc� 1� að Þ
c�0du0

oC

oZ

� �
z¼0

; C ¼ 1;

Z !1; V ¼ C ¼ 0:

ð3:104Þ

The existence of the Stefan flow leads to the occurrence of flow inside the gas
phase whose characteristic velocity is defined by condition (3.104):

Dc� 1� að Þ
c�0du0

� 1; u0 ¼
Dc� 1� að Þ

c�0d
: ð3:105Þ

If the evaporation rate is limited by the nonstationary diffusion, the parameters
of both the nonstationary and the diffusion terms of the diffusion equation in
(3.104) should have equal orders of magnitude:

Dt0

d2 � 1; d ¼
ffiffiffiffiffiffiffi
Dt0
p

� 10�2m if t0� 102s: ð3:106Þ

In this way the characteristic velocity of (3.105) is

u0 ¼
c�

c�0

ffiffiffiffi
D

t0

r
� 10�5m=s: ð3:107Þ

From the first equation in (3.104) and (3.106) it follows that

#t0
d2 ¼ Sc� 1; Sc ¼ #

D
; ð3:108Þ

If we suggest that the flow is limited by the natural convection, the first
equation in (3.104) becomes

q0u0

gat0c�
oV

oT
þ q0u2

0

gadc�
V

oV

oZ
¼ � q0u2

0

gadc�
oP

oZ
þ #q0u0

d2gac�
o2V

oZ2
� C: ð3:109Þ

In this particular case the parameters of the last two terms in (3.109) should
have equal orders of magnitude:

#q0u0

d2gac�
� 1; d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vq0

gac�0

ffiffiffiffi
D

t0

rs
� 10�5m: ð3:110Þ

Conditions (3.109) and (3.110) indicate that the effects of the Stefan flow and the
natural convection occur in different zones of the gaseous layer above the liquid
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surface. This fact permits us to separate these effects if the velocity, pressure, and
concentration in the first equation in (3.100) may be expressed in the form

v ¼ vþ �v; p ¼ �p; c ¼ �c: ð3:111Þ

Here �v; �p and �care determined by (3.102), whereas (3.100) (with neglected last
two terms of the first equation) determines the values of v, p, and c. In this way, the
form of (3.104) becomes

oV

oT
þ bV

oV

oZ
¼ Sc

o2V

oZ2
;

oC

oT
þ bV

oC

oZ
¼ o2C

oZ2
;

T ¼ 0; V ¼ C ¼ 0; Z ¼ 0; V ¼ � oC

oZ
; C ¼ 1; Z !1; V ¼ C ¼ 0;

ð3:112Þ

where b follows directly from (3.104) to (3.106–3.108):

b ¼ 1� að Þ c
�

c�0
� 10�1: ð3:113Þ

Obviously Eq. 3.112 are valid within a broad initial time interval t0 when the
thickness of the diffusion boundary layer d ¼

ffiffiffiffiffiffiffi
Dt0
p

is less than of the depth of the
gas phase l (in the cases studied in [30], l = 0.257 m).

The solution of (3.112) may be obtained as a series of the powers of a small
parameter b:

V ¼ V0 þ bV1; C ¼ C0 þ bC1: ð3:114Þ

Thus, the zeroth-order approximation is

oV0

oT
¼ Sc

o2V0

oZ2
;

oC0

oT
¼ o2C0

oZ2
;

T ¼ 0; V0 ¼ C0 ¼ 0; Z ¼ 0; V0 ¼ �
oC0

oZ
; C0 ¼ 1; Z !1;

V0 ¼ C0 ¼ 0:

ð3:115Þ

The solution for C0 is

C0 ¼ erfc
Z

2
ffiffiffiffi
T
p : ð3:116Þ

The problem for V0 is

oV0

oT
¼ Sc

o2V0

oZ2
; T ¼ 0; V0 ¼ 0; Z ¼ 0; V0 ¼ u Tð Þ ¼ 1ffiffiffiffiffiffi

pT
p ;

Z !1; V0 ¼ 0:

ð3:117Þ
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The solution of (3.117) may be obtained by Green’s function [37]:

V0 ¼ u Tð Þ exp � Z2

4ScT

� �
�
ZT

0

u sð Þ þ 2su0 sð Þffiffiffi
s
p

ZsZffiffiffiffiffiffiffiffiffiffiffiffiffi
4ScTs T�sð Þ
p

0

exp �u2
� �

du

2
664

3
775ds;

ð3:118Þ

This permits us to determine directly the value of V0 at u = (pT)-�:

V0 ¼
exp � Z2

4ScT

� �
ffiffiffiffiffiffi
pT
p : ð3:119Þ

The problem formulation for C1 follows from (3.112):

oC1

oT
� o2C1

oZ2
¼ V0

oC0

oZ
¼ �

exp � Z2

4T 1þ 1
Sc

� �h i

pT
;

T ¼ 0; C1 ¼ 0; Z ¼ 0; C1 ¼ 0; Z !1; C1 ¼ 0:

ð3:120Þ

The solution of (3.120) is obtained through Green’s functions [37]:

C1 ¼
exp � Z2

4T

� �

2p
ffiffiffi
p
p

ZT

0

1

s
ffiffiffiffiffiffiffiffiffiffiffi
T � s
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exp � n T � Zsð Þ2
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" #
� exp � nT þ Zsð Þ2

4Ts T � sð Þ
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� exp � n2

4Scs
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ð3:121Þ

From (3.121) it follows that

oC1

oZ

� �
Z¼0

¼ � 2
p

ffiffiffiffiffiffi
Sc

pT

r
arctg Sc�1=2

� �
: ð3:122Þ

The amount of evaporated liquid Q (kg/m2) from (3.98), (3.114), (3.116), and
(3.122) is

Q ¼
Zt0

0

Jdt ¼ �c�
q�

c�0

ffiffiffiffiffiffiffi
Dt0
p Z1

0

oC0

oZ

� �
Z¼0

þ c� 1� að Þ
c�0

oC1

oZ
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Z¼0

	 

dT ¼ A

ffiffiffiffi
t0
p

;

ð3:123Þ

where

A ¼ 2c�
q0

c�0

ffiffiffiffi
D

p

r
þ 2c� 1� að Þ

pc�0

ffiffiffi
#

p

r
arctg Sc�1=2

� � !
: ð3:124Þ
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Expression (3.124) permits us to calculate the parameter A for various systems,
summarized in Table 3. The values are close to those of AD, but in the dominating
situations are quite different from the values of Ae. This indicates that the existence
of an additional convective transport, which could be induced by a loss of stability
of the system. Thus, the small disturbances grow to the establishment of stable
amplitudes and the dissipative structures formed have a greater rate of the trans-
port processes.

4 Example

4.1 Sulfuric Acid Alkylation Process in a Film Flow Reactor

Film flow reactors are usually designed as a bundle of tubes with liquid flowing
down on their inner surfaces. The flow is oriented upward and the absorption
occurs in a countercurrent mode. A cooling agent cools the bundle of tubes
enclosed in a cylindrical shell.

Film flow reactors are employed for gas–liquid reactions in two principal cases.

1. When the gas absorbed by the liquid reacts with the reagents of the absorbent.
2. When the liquid absorbs two components of a gas mixture, which react

thereafter in the bulk of the absorbent.

In the second case the reaction is usually a homogenous catalytic reaction,
where the liquid plays the role of the catalyst.

In film flow reactors the conditions allow intense heat exchange (cooling). In
this way these reactors are suitable for carrying out gas–liquid reactions accom-
panied by high thermal effects. An example for such a type of reaction is the
alkylation of isobutane with butene with concentrated sulfuric acid as a catalyst
[38].

The process is performed in the following manner. The gas mixture of isobu-
tane (A1) and butene (A2) flows downward in a co-current mode with the liquid
film inside a cylindrical tube. Both gases are absorbed in the liquid, where
homogeneous catalytic reactions of alkylation and oligomerization take place.

A1 þ A2 ¼ A3;

A2 þ A2 ¼ A4:
ð4:1Þ

The reaction products are isooctane (A3) and octene (A4). The first reaction in
(4.1) gives the desired products, whereas in the second reaction a by-product is
generated.

Reactions (4.1) are exothermic with large thermal effects. The cooling is
effected by water flowing on the outer surface of the tube. In this way a constant
temperature along the tube length is maintained.
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The mathematical description of the mass transfer process [38, 39] may be
obtained by means of (2.1) and (2.2):

~u
o~ci

ox
þ ~v

o~ci

oy
¼ ~Di

o2~ci

oy2
; u

oci

ox
¼ Di

o2ci

oy2
� ri; y ¼ 0; ci ¼ 0;

y ¼ h0; ~ci ¼ vici; ~Di
o~ci

oy
¼ Di

oci

oy
; y!1; ~ci ¼ ~c01; i ¼ 1; 2;

ð4:2Þ

where

r1 ¼ �
oc1

ot
¼ k1c1c2; r2 ¼ �

oc2

ot
¼ k1c1c2 þ k2c2

2: ð4:3Þ

The solution of the boundary problem requires dimensionless variables and
parameters as follows:

X ¼ x

L
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~u0
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DiL

u0d
2
i
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kiL

u0
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Ri ¼
riL

u0c0i
; ~ei ¼

~di

L
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L
; e0i ¼

Di
~di

~Didi
; i ¼ 1; 2; ð4:4Þ

where ~di; di i ¼ 1; 2ð Þ are the orders of magnitude of the diffusion boundary layer
thicknesses in the gas and the liquid. In this way (4.2) takes the form

~U
o~Ci

oX
þ ~Vi

o~Ci

o~Yi
¼ ~Foi

o2 ~Ci

o~Y2
i

; U
oCi

oX
¼ Foi

o2 ~Ci
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i

� Ri; X ¼ 0; ~Ci ¼ 1;

Ci ¼ 0;

~Yi ¼ Yi ¼ 0; ~Ci ¼ Ci;
o~Ci

o~Yi
¼ e0i

vi

oCi

oYi
;

~Yi !1; ~Ci ¼ 1; Yi !1; Ci ¼ 1; i ¼ 1; 2; ð4:5Þ

where

R1 ¼ K1c02C1C2; R2 ¼ K2c01C1C2 þ K2c02C2
2: ð4:6Þ

It is possible to express the mass transfer rate as

Ji ¼ ~bi~c0i ¼ bic0i; i ¼ 1; 2: ð4:7Þ
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This rate is determined by means of the average value of the diffusive flux. For
a liquid film of length L the results are

Ji ¼
1
L

ZL

0

~Di
o~ci

oy

� �
y¼h

dx ¼ 1
L

ZL

0

Di
oci

oy
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dx; i ¼ 1; 2: ð4:8Þ

or for the Sherwood number,

fShi ¼
~biL
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¼ ~e�1

i
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0

o~Ci

o~Yi
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dX; Shi ¼
biL
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oYi

� �
Y¼0

dX;

i ¼ 1; 2:

ð4:9Þ

Relationships (4.9) permit us to determine the kinetics of the sulfuric acid
alkylation process on the basis of the solution of (4.5).

The second reaction in (4.1) is undesirable. Because of that, in practical situ-
ations the condition c02 � c01 is satisfied. From experimental data [40] for the
microkinetics of the reaction (4.1) and on the basis of the findings of the experi-
ments reported in [38, 39] (u0 = 0.224 m/s, L = 2 m) one obtains that

K1 ¼ 0; 4� 107; K2 ¼ 1; 6� 107: ð4:10Þ

From (4.5), (4.6), and (4.10) it is evident that the liquid hydrodynamics does not
affect the mass transfer.

In practical situations, the condition K1c01 [ K2c02 is satisfied and the orders of
magnitude of the diffusion boundary layers thicknesses can be determined:

gFoi 	 1; Foi ¼ K1
c01c02

c0i
; ~di ¼

ffiffiffiffiffiffiffiffi
~DiL

~u0

s
; di ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DiLc0i

u0K1c01c02

r
; i ¼ 1; 2:

ð4:11Þ

The experimental conditions reported in [38, 39] ~u0 ¼ 0:23m=sð Þ and the data
published in [40] permit us to establish that

e01

v1
¼ 0; 53;

e02

v2
¼ 0; 36; ð4:12Þ

i.e., the diffusion resistances are located in both phases.
The results obtained (1.10–1.12) allow us to solve problem (4.5) subsequently

for the gas and the liquid phases:

~U
o~Ci

oX
þ ~Vi

o~Ci

o~Yi
¼ ~Foi

o2 ~Ci

o~Y2
i

; X ¼ 0; ~Ci ¼ 1;

~Yi ¼ 0; ~Ci ¼ ~C�i ; ~Yi !1; ~Ci ¼ 1; i ¼ 1; 2: ð4:13Þ
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o2C1

oY2
2

¼ d2

d1
C1C2;

o2C2

oY2
2

¼ C1C2 þ
k2c20

k1c10
C2

2 ;

Y2 ¼ 0; Ci ¼ ~C�i ; Y2 !1; Ci ¼ 0; i ¼ 1; 2; ð4:14Þ

where Y1 is replaced by Y2. The unknown constants ~C�i i ¼ 1; 2ð Þ must be deter-
mined in a way allowing satisfaction by ~Ci and Ci i ¼ 1; 2ð Þ of the following
boundary condition:
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; i ¼ 1; 2: ð4:15Þ

Problem (4.13) was solved in [39]. In this case (4.15) takes the form
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1
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01
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; i ¼ 1; 2; ð4:16Þ

where

Ai ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Di~u0v1D2

D2
i u0K1~c01

s
; i ¼ 1; 2; h1 ¼

u0

~u0
; a ¼ 0; 332 ð4:17Þ

and u01 is a function of the Schmidt number of the gas phase [5].
Problem (4.14) was solved numerically [38, 39] by an iterative procedure. The

values of ~C�i i ¼ 1; 2ð Þ were varied to satisfy condition (4.4.16). After the deter-

mination of ~C�i i ¼ 1; 2ð Þ, the Sherwood number was established by means of (4.9):

Sh1 ¼ ~Sh0i 1� ~C�i
� �

; i ¼ 1; 2; ð4:18Þ

where

~Sh0i ¼
vi

Di

ffiffiffiffiffiffiffiffiffiffiffiffi
~DiL~u0

q
u�1

0i þ
h
a
u�2

0i

� �
; i ¼ 1; 2; ð4:19Þ

is the Sherwood number in the case of a mass transfer limited by the transport in
the gas. The term 1� ~C�i

� �
; i ¼ 1; 2; indicates that the diffusion resistance in the

liquid plays an important role.
The process discussed here depends strongly on the effective utilization of the

butene. This indicates that the values of Sh2 and b2 are enough to establish the
macrokinetics. Because of the fact that butene reacts vigorously during its disso-
lution in sulfuric acid, the evaluation of Henry’s constant is practically impossible.
It may, however, be done through a comparison of Sh2 with experimental data.

The analysis of the experimental data for the Sherwood number (Shexp) pub-
lished in [38] shows that the turbulence in the gas phase must be taken into account
(a linear relationship between the coefficient of a turbulent diffusion and the gas
velocity). Thus, ~D2 in (4.2) may be replaced by ~Dt

2:
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~Dt
2 ¼ d ~D2u0; ð4:20Þ

where d is a constant.
This demonstrates the possibility to obtain a theoretical relationship for the

Sherwood number by means of (4.19):

ShT ¼
v2

ffiffiffi
d
p

~u0

ffiffiffiffiffiffiffiffiffi
~D2L

p
D2

u�1
02 þ

h
a

u�2
02

� �
1� ~C�2
� �

: ð4:21Þ

The comparison of the experimental data and ShT permits us to establish that

v2

ffiffiffi
d
p
¼ 14:5 ð4:22Þ

and to substitute it in (4.22). A parity plot of the theoretical and experimental
values of the Sherwood number is shown in Fig. 2.
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Quantitative Analysis

The quantitative analysis of the models is the last step before using the models for
modeling and simulation of the real processes. The quantitative results obtained
from small-scale laboratory models must be ‘‘remade’’ for large-scale real process
simulation. This ‘‘scale-up’’ from the models to the real processes is a very
important stage in the modeling and simulation.

The quantitative results obtained from the models are random numbers because
the experimental data used for parameter identification are random numbers too. A
statistical analysis of the significance of the parameters and the adequacy of the
model is needed.The model becomes a model after the statistical proof of its
adequacy has been done.

1 Scale-Up

As mentioned earlier, the quantitative description of industrial processes is the
main problem in chemical engineering. The solutions of such problems need
experimental data obtained from laboratory models and permit us to study the
process mechanisms or to realize their optimal design, control, or improvement. In
physical modeling, these experimental data are used directly through scaling
coefficients. In mathematical modeling, however, the experimental data are needed
to determine the model parameters, whereas the quantitative description is a result
of a mathematical (numerical) experiment. The quantitative description of an
industrial process through a quantitative description of the laboratory model is the
essence of the chemical engineering scale-up [1].

The design of industrial apparatuses, especially those with high capacities,
faces two principal scale-up problems:

1. The occurrence of incompatible similarity criteria.
2. The scale-up effect.

C. Boyadjiev, Theoretical Chemical Engineering,
DOI: 10.1007/978-3-642-10778-8_5, � Springer-Verlag Berlin Heidelberg 2010
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The theory of similarity [2] shows that the increase of the linear scale in the
transition from the laboratory model to the industrial prototype, in most cases,
leads to an incompatibility of the similarity criteria. This occurs because the
criteria values cannot be identical (equal) for both the model and the prototype.
The reason is that in such situations there are big differences between the geo-
metrical (linear) scales. This inconvenience can be avoided (in mathematical
modeling) by the direct introduction into the model of the linear scale of the
prototype, i.e., by nonemployment of scaling.

However, the scale-up theory shows that in the mathematical modeling the
problem of the scale effect arises if the size of the modeled device increases.
The most frequently occurring scale-up effect is the decrease of the efficiency of
the industrial process with respect to the laboratory model. The reason is that a
physical effect occurs only in industrial devices. This indicates that during the
determination of the model parameters, on the basis of the experimental data from
the laboratory model, the scale effect is not taken into account. Therefore, the
mathematical model is not able to predict the scale effect.

The solution of the scale effect requires answers to several questions about the
similarity and the scale-up, the physical essence of the scale effect, and the pos-
sibilities of the scale-up theory and hydrodynamic modeling to diminish and to
predict the scale effect [1].

1.1 Similarity and Scale-Up

It was demonstrated earlier that the introduction of proper (characteristic) scales of
the process leads to a mathematical description in terms of generalized (dimen-
sionless) variables (a set of generalized equations). As a result, the mathematical
description contains dimensionless parameters. For concrete values of the system
parameters, the set represents the mathematical description of a generalized
individual case [2]. Thus, it concerns many processes that are similar owing to
their identical mathematical descriptions and equal values of the dimensionless
parameters. For a particular set of parameters, the generalized descriptions become
a description of a particular process through generalized variables. Therefore, each
process of the generalized individual case may be used as a model for the other
ones.

The theory of similarity is widely used for single-phase systems. For example,
the fluid flow along a semi-infinite plate has the following mathematical
description [3]:

ux
oux

ox
þ uy

oux

oy
¼ m

o2ux

oy2
;

oux

ox
þ ouy

oy
¼ 0;

x ¼ 0; ux ¼ u0; y ¼ 0; ux ¼ uy ¼ 0; y!1; ux ¼ u0:

ð1:1Þ

The introduction of the characteristic scales
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x ¼ LX; y ¼ LY ; ux ¼ u0Ux; uy ¼ u0Uy; ð1:2Þ

into (1.1) leads to

Ux

oUx

oX
þ Uy

oUx

oY
¼ 1

Re

o2Ux

oY2
;

oUx

oX
þ oUy

oY
¼ 0;

X ¼ 0; Ux ¼ 1; Y ¼ 0; Ux ¼ Uy ¼ 0; Y !1; Ux ¼ 1;
ð1:3Þ

where Re ¼ u0L
m : Here, L is a predetermined length along the plate.

Thus, for Re ¼ Re0 all the flows described by the generalized individual case
have identical dimensionless velocity profiles obtained by solving (1.3):

Ux ¼ UxðX; Y;Re0Þ; Uy ¼ UyðX; Y ;Re0Þ: ð1:4Þ

The various velocity profiles of the generalized individual case follow from
(1.4) through the introduction of the scale coefficients:

ux ¼ u0Ux

x

L
;
y

L
;Re0

� �
; uy ¼ u0Uy

x

L
;
y

L
;Re0

� �
: ð1:5Þ

Solutions (1.5) represent the velocity profiles of the different flows of a gen-
eralized individual case with Re0 ¼ const:, i.e., they are similar flows.

Let us consider two flows described by (1.5) with characteristic linear dimen-
sions L1 and L2 (L1 [ L2). Besides, the first flow is a model of the second one. If
the conditions of similarity are satisfied, it is necessary that the following condition
to held:

u01L1

m
¼ u02L2

m
¼ Re0: ð1:6Þ

Thus, the characteristic velocities are

u01 ¼
Re0m
L1

; u02 ¼
Re0m

L2
: ð1:7Þ

The above relationships indicate that if the velocity profile of the model
flow (with characteristic parameters u0 ¼ u01 and L = L1) is known, then we
have

ux1 ¼ u01Ux

x

L1
;

y

L1
;Re0

� �
; uy1 ¼ u01Uy

x

L1
;

y

L1
;Re0

� �
ð1:8Þ

The velocity distribution of the prototype follows directly from (9.1.8) in the
form

ux2 ¼ u02Ux

x

L2
;

y

L2
;Re0

� �
; uy2 ¼ u02Uy

x

L2
;

y

L2
;Re0

� �
: ð1:9Þ
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The results obtained above show that the scale-up is done correctly if the
characteristic scale of velocity u0 decreases when the linear scale L is increased, so
the following condition is satisfied:

u01L1 ¼ u02L2 ¼ mRe0 ¼ const: ð1:10Þ

As a second example, let us consider gravity-driven film flow down to an
inclined plate. The force balance yields an equation defining the velocity profile:

ux

oux

ox
þ uy

oux

oy
¼ m

o2ux

oy2
þ g: sin a; ð1:11Þ

where a is the angle of plate inclination with respect to the horizon. Under the new
conditions, problem (1.3) takes the form

Ux

oUx

oX
þ Uy

oUx

oY
¼ 1

Re

o2Ux

oY2
þ sin a

Fr
;

oUx

oX
þ oUy

oY
¼ 0;

X ¼ 0; Ux ¼ 1; Y ¼ 0; Ux ¼ Uy ¼ 0; Y !1; Ux ¼ 1;
ð1:12Þ

where Fr ¼ u2
0

gL is the Froude number.

The comparison between Re and Fr indicates that these similarity criteria are
incompatible with the scaling rules, because two conditions must be satisfied
simultaneously:

u0L ¼ mRe ¼ const:;
u2

0

L
¼ gFr ¼ const: ð1:13Þ

The first condition requires the increase of the linear scale L to be compensated
by the reduction of the characteristic velocity u0. On the other hand, the second
condition needs just the opposite behavior of the characteristic scales.

The above example shows that if single-phase flows have a characteristic
velocity (incorporated in Re) and depend on the gravity (incorporated in Fr), the
latter considers the fact that the increase of L cannot be compensated by a sig-
nificant change of the fluid kinematic viscosity to satisfy conditions (1.13).
Therefore, the similarity theory cannot be employed for a scale-up procedure of all
the flows depending on Re and Fr only owing to the incompatibility of both
dimensionless numbers under the imposed conditions (1.13).

Industrial processes in gas–liquid and liquid–liquid two-phase systems are
carried out in dispersions with a continuous phase and dispersed phase. This
indicates that both phases have different characteristic linear scales. The dispersion
phase moves through the continuous one in the form of bubbles, drops, liquid
films, jets, etc. This specific form of movement determines a characteristic length
scale d usually employed as a constant linear dimension in the scaling. The
continuous phase occupies almost the entire apparatus volume and consequently
its characteristic length scale depends on the linear dimension L of the vessel
(column diameter or height).
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In two-phase systems [3], the flow similarity is determined by

• The momentum equations of both phases

uðiÞx

ouðiÞx

ox
þ uðiÞy

ouðiÞx

oy
¼ mðiÞ

o2uðiÞx

oy2
; i ¼ 1; 2; ð1:14aÞ

• The boundary conditions at the interphase surface y = 0

y ¼ 0; uð1Þx ¼ uð2Þx ; lð1Þ
ouð1Þx

oy
¼ lð2Þ

ouð2Þx

oy
: ð1:14bÞ

assuming a continuity of both the velocity and the stress tensor.

In a way similar to (1.2), the characteristic scales

x ¼ LðiÞXðiÞ; y ¼ LðiÞY ðiÞ; uðiÞx ¼ uðiÞ0 UðiÞx ; uðiÞy ¼ uðiÞ0 UðiÞy ð1:15Þ

transform (1.14) into dimensionless forms:

UðiÞx

oUðiÞx

oX
þ UðiÞy

oUðiÞx

oY
¼ 1

ReðiÞ
o2UðiÞx

oY2
; i ¼ 1; 2; ð1:16aÞ

Y ð1Þ ¼ Y ð2Þ ¼ 0; Uð1Þx ¼ #1Uð2Þx ; #2
oUð1Þx

oY
¼ oUð2Þx

oY
; ð1:16bÞ

where

ReðiÞ ¼ uðiÞ0 LðiÞ

mðiÞ
; i ¼ 1; 2; ð1:17aÞ

#1 ¼
uð2Þ0

uð1Þ0

; ð1:17bÞ

#2 ¼
l1uð1Þ0 Lð2Þ

l2uð2Þ0 Lð1Þ
: ð1:17cÞ

Let us consider the first phase is the dispersion phase (L 1ð Þ ¼ d ¼ const:) and
the second phase is the continuous one with a characteristic scale L(2) = L. The

scale-up procedure concerns the increase of L(2) from L 2ð Þ
1 to L 2ð Þ

2 . The condition

Reð2Þ0 ¼ const: requires that

uð2Þ01 L1 ¼ uð2Þ02 L2 ¼ m2Reð2Þ0 ¼ const: ð1:18Þ

Thus, the increase of L(2) needs a reduction (decrease) of uð2Þ0 .
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Expression (1.17c) indicates that the similarity condition #2 ¼ const yields

L1

uð2Þ01

¼ L2

uð2Þ02

¼ #2
l2d

l1uð1Þ0

¼ const: ð1:19Þ

Condition (1.19) states that the increase of L = L(2) must be compensated by an

increase of uð2Þ0 and vice versa.
Conditions (1.18) and (1.19) form two incompatible similarity criteria, Re 2ð Þ

and #2, that must be satisfied with the variations of the linear dimension L = L(2).

Therefore, the data obtained from the model with characteristic scale L 2ð Þ
1 cannot

be employed for a quantitative description of the prototype with characteristic

dimension L 2ð Þ
2 .

The results of this example show that the theory of similarity cannot be
employed for a scale-up of two-phase systems with a significant hydrodynamic
interphase interaction (#2� 1). This restriction is removed in the case of weak
interphase interactions (#2\\1 or #2 [ [ 1, when the flows do not depend on
#2).

The mass transfer complicated by a chemical reaction is a typical case of when
incompatibility of criteria occurs after the scale-up procedure. The basic equation
represents a mass balance between convective transfer, diffusive transfer, and
chemical reaction rate (as a volume source):

ux

o c

o x
þ uy

o c

o y
¼ D

o2c

o y2
þ kc : ð1:20Þ

The use of the characteristic scales (1.2) yields

Ux

o C

o X
þ Uy

o C

o Y
¼ 1

Pe

o2C

o Y2
þ Da C ; ð1:21Þ

where two dimensionless number occur,

Pe ¼ u0L

D
; ð1:22aÞ

where Pe is the Péclet number, and

Da ¼ kL

u0
; ð1:22bÞ

where Da is the Damkohler number. Obviously, both dimensionless numbers are
incompatible in the scale-up procedure owing to the requirement for the following
conditions to be satisfied simultaneously:

u01L1 ¼ u02L2 ¼ Pe0D ¼ const:; ð1:23aÞ
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L1

u01
¼ L2

u02
¼ Da0

k
¼ const: ð1:23bÞ

The three examples discussed above span a large number of processes with
incompatible similarity criteria during the scale-up procedure. This hinders the
employment of the physical modeling approach for the scale-up problems. The
mathematical modeling allows us to overcome the problem. Three basic
assumptions form its skeleton:

1. The first assumption is that the mathematical model is not related to the linear
scale of the process. Thus, the numerical experiments are addressed to the
prototype (in an industrial scale) as an object of modeling. Despite this, the
scaling sets up problems related to the experimental data needed to determine
the model parameters.

2. The hierarchical approach is the second basic assumption allowing the
mathematicalmodeling to solve the scale-up problem. The existence of
incompatible similarity criteria in the mathematical description needs experi-
ments to be carried out on the industrial prototype. The scale-up problems could
be avoided by the use of the hierarchical modeling approach. It allows a sep-
arate determination of the model parameters that are incompatible similarity
criteria in the scale-up. For example, Pe and Da in (9.1.21) (i.e., D and k) could
be determined experimentally with different laboratory models. The hierar-
chical approach is inapplicable to the physical modeling because the hierar-
chical models do not satisfy the similarity conditions.

3. The employment of both the scale-up theory and the hydrodynamic modeling is
the third and the most important assumption that allows the scale-up problems
to be solved. The reason is that there are significant discrepancies between the
efficiencies of the process performed in laboratory and that performed on
industrial scales.

1.2 Scale Effect

The increase of the dimensions of apparatuses from the laboratory model to the
industrial prototype leads to a decrease of the process efficiency. The reduction of
the process efficiency usually has hydrodynamic origins. Practically, there are
several reasons for that: the velocity nonuniformity in the cross-sectional area of
larger devices, the increase of the turbulence scale, etc. Usually these reasons
manifest themselves through an increased axial mixing in the apparatuses.

The scale-up coefficient is the ratio of the height of the transfer units in the
industrial prototype to that of the laboratory model. It can vary over a very large
range. For example, in liquid–liquid extraction columns with plates [1], it varies
between 5 and 10, whereas the use of valve plates and perforated bubble plates for
gas–liquid systems shrinks the range from 2 to 3.
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The scale effect can have other manifestations as well. For example, in
chemical reactors the appearance of new undesirable by-products usually has a
scale-up origin.

The nonuniformity of both the velocity and the phase holdups in the cross
sections of industrial devices is the hydrodynamic origin of the scale effect. For
example, the increase of the radial nonuniformity of the velocity (as a result of the
increase of the dimensions the apparatus) leads to an augmentation of the axial
mixing, an increase of the turbulence scale, stagnant (dead) zone formation, bypass
currents, etc.

The flows in industrial apparatuses are generally turbulent and two types of
turbulence pulsations characterize them [3]:

1. Large-scale pulsations. They play the principal role in the flow formation and
introduce most of the kinetic energy. The scale of the large-scale pulsations
depends on the characteristic length of the region where the flow passes. This
length is a basic (important) scale of the turbulent motion. The large-scale
pulsation transmits energy to the low-scale pulsations without energy
dissipation.

2. Low-scale pulsations. They are not important for the general flow structure.
They contribute a small amount of the flow kinetic energy and their scale could
be different. The minimum scale depends on the Reynolds flow number, i.e.,
the pulsations decrease with the increase of Re. The flow energy dissipation (the
transformation of kinetic energy into heat) occurs at the level of the low-scale
pulsations. Usually the dissipated energy is a small amount of the flow kinetic
energy.

Very often, the scale-up changes the main scale of the turbulent flow. For
example, in a columnar device with plates, the increase of the column diameter is
followed by an increase of the plate spacing to satisfy the condition of geometrical
similarity. However, this changes the scale of the large-scale pulsations of the flow
between the plates.

The radial flow nonuniformity is also a manifestation of the scale effect
occurring parallel to the changes of the turbulence scale. It can be predicted
theoretically and expressed by the axial mixing [1].

The physical modeling cannot detect the occurrences of stagnation zones and
recirculation currents as well as the bypass flows. The same effects cannot be
predicted theoretically by the mathematical model too. Therefore, they must be
minimized by the method of hydrodynamic modeling and their consequences must
be expressed through the axial mixing.

The analysis of the manifestations of the scale-up effect given above indicates
that the nonuniformities can be arranged in four groups:

1. The first type is the nonuniformities at the boundaries. They represent the
nonuniform flow distributions (in the apparatus cross section) at both the inlet
and the outlet of the device. The main reasons for such nonuniformities are the
designs of the distributors, the diffusers, etc.
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2. The second type represents the internal nonuniformities due to specific prop-
erties of the two-phase flows and the design of the contactors, where the
interaction between the phases takes place. Some examples are the liquid
distribution over random packing, liquid flow bypass along the column walls,
the axial flow mixing, the wave formation on bubbling plates, and the recir-
culation flows in bubble columns and fluidized beds.

3. The third type is nonuniformities due to incorrect assembly of the contacting
devices. Usually, they can be observed at nonhorizontal contacting plates,
nonuniformly arranged packing, or catalysts in columns, etc.

4. The fourth type is nonuniformities due to a number of design imperfections of
the contacting devices. The bypass flows or the stagnation zones are results of
such types of nonuniformities.

The types of nonuniformity described above can exist in various combinations
in the contacting devices and they are often specific for a particular type of
contactor. For example, the first three types of nonuniformities occur in counter-
current packed columns. On the other hand, the boundary effects are not significant
in contactors with mechanical flow stirring (by impellers). In this case the tur-
bulence pulsation scale determines the scale effect, the axial mixing intensity, and
the dimensions of the circulation loops.

The types of nonuniformities considered cannot be modeled on small-diameter
apparatuses, because they are typical for large-scale (large-diameter) industrial
devices. Attempts to predict these effects have met with no success owing to the
effect of the contactor design on the flow structure that cannot be predicted the-
oretically with existing engineering tools. The only reasonable approach in such
situations is:

• To take measures through the contactor design to minimize the nonuniformities.
• To incorporate the residual scale effect in the mathematical model for deter-

mining the industrial apparatus efficiency.

The approach can be performed by the approximate scale-up theory [1].

1.3 Diffusion Model

The use of the diffusion model to solve the scale-up problems is made very
conditionally [1], and so the terms need to be formulated exactly.

The equalization of the concentration in a volume is possible by mixing (dif-
fusion mechanism) and by stirring (convection mechanism). In the first case, the
effect is represented in the model as a diffusion term (second derivative of the
concentration), whereas in the second case the effect is presented as a convection
term (first derivative of the concentration). In the theory presented [1] different
stirring effects are substituted for the diffusion equivalents. This exchange of
physical effects and their mathematical descriptions is possible on the basis of an
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experimentally obtained parameter, but its value is a constant within a very small
interval of the experimental conditions.

The diffusion model is widely used for modeling of column apparatuses. In the
case of a single-phase flow, the model expresses the convective mass transfer
(through the velocity w) and the diffusive transfer (through the axial diffusivity Djj):

Djj
d2c

dz2
� w

dc

dz
¼ 0; z ¼ 0; wðc0 � cÞ ¼ �Djj

dc

dz
; z ¼ L;

dc

dz
¼ 0: ð1:24Þ

Here, w does not depend on the apparatus radius r (i.e., it is the superficial
velocity). In this case Djj is the axial diffusion coefficient.

The presence of a radial nonuniformity of the velocity w(r) leads to a radial
diffusion with a radial diffusivity D?:

D?
1
r

o

or
r
oc

or

� �
þ Djj

o2c

oz2
� wðrÞ oc

oz
¼ 0; z ¼ 0; wðc0 � cÞ ¼ �Djj

oc

oz
;

z ¼ L;
oc

oz
¼ 0; r ¼ 0;

oc

or
¼ 0; r ¼ r0;

oc

or
¼ 0:

ð1:25Þ

The boundary conditions of (1.25) assume that the column wall (r = r0) is
impermeable for the diffusing substance; the concentration profile is symmetric
with respect to the column axis at r = 0 [if the velocity profile w(r) is symmetric
too].

A common characteristic feature of the single-parameter model (1.24) and the
two-parameter model (1.25) is that if the diffusive transfer is determined by the
molecular and turbulent diffusion, then Djj ¼ D?. Addition of the mass transfer as
a result of the large-scale eddies (pulsations) leads to different diffusivity values
(Djj 6¼ D?).

The diffusion model with a chemical reaction is the core of the plug-flow model
of chemical reactors. It follows from the above-mentioned models through the
introduction of a volumetric mass source term, which is equal to the chemical
reaction rate R(c). The latter depends on the concentration of the transported
substance:

Djj
d2c

dz2
� w

dc

dz
� RðcÞ ¼ 0; z ¼ 0; wðc0 � cÞ ¼ �Djj

dc

dz
; z ¼ L;

dc

dz
¼ 0:

ð1:26Þ

If a radial nonuniformity w(r) exists, the source term R(c) contributes in a way
similar to that employed in the building of model (1.25).

The case of a mass transfer between two countercurrently moving phases can be
described by (1.25), denoting the concentration in the phases by c ¼ ci i ¼ 1; 2ð Þ
and taking into account the phases holdup ei i ¼ 1; 2ð Þ, where e1 þ e2 ¼ 1. In that
case the source term R(c) expresses the mass transfer rate between the phases:

R ¼ k c1 � mc2ð Þ; ð1:27Þ
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where k is the volumetric mass transfer coefficient and m is Henry’s constant (or a
coefficient of distribution between the liquid phases). If a radial nonuniformity
exists, the two-phase diffusion model with an interphase mass transfer has the form

eiDi?
1
r

o

or
r
oci

or

� �
þ eiDijj

o2ci

oz2
� eiwiðrÞ

oci

oz
� �1ð Þi�1k c1 � mc2ð Þ ¼ 0; i ¼ 1; 2;

z ¼ 0; w1 rð Þ c10 � c1ð Þ ¼ �D1jj
oc1

oz
;

oc2

oz
¼ 0; z ¼ L;

w2 rð Þ c20 � c2ð Þ ¼ �D2jj
oc2

oz
;

oc1

oz
¼ 0;

r ¼ 0;
oci

or
¼ 0; i ¼ 1; 2; r ¼ r0;

o ci

o r
¼ 0; i ¼ 1; 2:

ð1:28Þ

1.4 Scale-Up Theory

The formulation of the mathematical models described in the previous sections
encounters substantial difficulties owing to the scale effect especially in the case of
high-capacity contacting devices. The reasons are the various types of nonuni-
formities that can be avoided through the design, but that cannot be eliminated
completely. This means that the determination of the model parameters must be
done on the basis of experimental data obtained from the prototype (industrial
scale) under industrial conditions (technical experiment). Obviously, this is too
expensive and too inaccurate, and sometimes it is an impossible way to solve the
problem. The scale-up theory has tools that overcome the situation. It can explain
the scale effects and can find suitable design solutions. Moreover, it creates a
method of modeling (hydrodynamic) that does not use data from industrial-scale
technological experiments for model formulation and evaluation of the contactor
efficiency.

The scale-up theory shows the hydrodynamic nature of the scale effect and the
ways for its elimination through hydrodynamic modeling [1]. According to this
approach, the mathematical modeling gives the ‘‘ideal’’ industrial apparatus,
whereas the hydrodynamic modeling provides a real possibility to come closer to
the ‘‘ideal’’ one. Two principal problems have to be solved for that purpose:

1. The reduction of the scale effect, i.e., the efficiency of the industrial device must
be close to that achieved with the laboratory model.

2. Information for the flow structure in the industrial apparatus. This information
is needed owing to the impossibility to achieve equal hydrodynamic conditions
in both the laboratory and the industrial device. The latter permits us to
determine the residual scale effect and to evaluate the industrial apparatus
efficiency under these conditions.

The approach is applicable to different types of models (of processes and
apparatuses) in chemical engineering [1]. Its universality lies in the fact that the
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principal aim is not to achieve similarity, but to obtain the identity of the specific
flow patterns in both the model and the prototype. The hydrodynamics conditions
imposed concern mainly equal mean velocities in both the model and the proto-
type, as well as a uniform velocity distribution in the prototype.

The method of the scale-up theory will be considered through an example of
mass transfer in columnar contactors with a countercurrent flow mode.

Let us consider, for simplicity of explanation, the longitudinal and the radial
mixing in one of the phases having a nonuniform velocity profile in the radial
direction [1]. The diffusion model (1.25) assumes that the concentration distri-
bution depends on the balance of the convective mass transfer w rð Þ oc

oz ; the axial

diffusion mass transfer Djj o
2c

o z2, and the radial diffusion mass transfer D? 1
r

o
o r r o c

o r

� �
.

The axial diffusion represents a pseudo-diffusion mass transfer combining the
simultaneous effects of both the turbulent diffusion and the convective macro-
scopic flows. The macroscopic flow length scale L is defined by the inequality
L� da�H, where da is the column diameter and H is the height of the contacting
zone. Thus, Djj can be expressed as follows :

Djj ¼ DT þ DAS; ð1:29Þ

where DT is the turbulent diffusivity and DAS expresses the axial stirring effect.
The radial nonuniformity of the velocity profile w(r) leads to a mass transfer

that can be expressed as a superposition of both the turbulent diffusion and the
convective stirring:

D? ¼ DT þ DRS; ð1:30Þ

where DRS expresses the radial stirring effect.

1.5 Axial Mixing

A model incorporating an effective diffusive transport represented by the effective
axial diffusion can replace the diffusion model (1.25). Let us consider as an
example non-steady-state diffusions in both the axial (along z) and the radial
(along r) directions in a device with an arbitrary cross section in a coordinate
system which moves with the mean flow velocity �w:

o c

o t
þ w� �wð Þ o c

o z
¼ Djj

o2c

o z2
þ D?

o2c

o r2
: ð1:31Þ

The contactor walls at r = 0 and at r = d are impermeable, so the diffusive
fluxes are zero:

r ¼ 0;
o c

o r
¼ 0; r ¼ d;

o c

o r
¼ 0 : ð1:32Þ
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The averaging of (1.31) with respect to r over the range from 0 to d yields

o�c

o t
¼ o

o z
DAM z; tð Þ o�c

o z

� 	
; ð1:33Þ

where

�c ¼ 1
d

Zd

0

c dr: ð1:34Þ

Thus, DAM(t) can be presented as a sum of two terms [1]:

DAM z; tð Þ ¼ Djj þ DRNU z; tð Þ; ð1:35Þ

where DRNU z; tð Þ is a coefficient which transforms the effect of the radial non-
uniformity of the velocity into an additional axial mixing effect. Thus, the coef-
ficient DAM z; tð Þ takes the form:

DAM z; tð Þ ¼ DT þ DAS þ DRNU z; tð Þ; ð1:36Þ

Expression (1.36) unifies the contributions of the turbulent diffusion, the axial
stirring, and the radial nonuniformity, i.e., DAM z; tð Þ contains both diffusive and
convective components. It combines the diffusion mixing with the axial stirring in
the so-called axial mixing coefficient.

The analysis of (1.33) indicates [1] that DRNU z; tð Þ decreases as the radial
diffusion increases:

DRNU ¼
f0Dw2d2

a

D?
; ð1:37Þ

where the velocity profile nonuniformity Dw ¼ w1 � w0 is expressed as the
difference between the maximum mean velocity w1 and the minimum mean
velocity w0. The coefficient f0 depends on the character of the nonuniformity and
da is the apparatus diameter. Therefore, the axial mixing coefficient can be
expressed as

DAM ¼ Djj þ
f0Dw2d2

a

D?
: ð1:38Þ

The axial diffusivity can be expressed (in a way similar to that applied to the
molecular and the turbulent diffusion) by a specific linear scale Ljj (i.e., the mean
free path of molecules or the scale of turbulence pulsation) and a effective velocity
weff (i.e., the mean velocity of molecules or the velocity of the turbulence pul-
sation) [1]:

Djj ¼ jjjLjjweff : ð1:39Þ
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For example for packed-bed or catalyzed-bed columns j = 0.5, Ljj is the
packing (catalyzer particles) size, and weff is the average velocity. The parameters
in (1.39) can be determined also for a number of columnar contactors such as
perforated plate columns and rotary disk columns.

The radial diffusivity is expressed in a similar way as

D? ¼ j?L?weff : ð1:40Þ

Therefore, the axial mixing coefficient is

DAM ¼ jjjLjjweff þ
f0Dw2d2

a

j?L?weff

: ð1:41Þ

The form of (1.41) indicates that DAM ¼ f weffð Þ. It reaches a minimum at a
certain value of weff that defines the optimal effective velocity wopt

eff

� �
and the

minimum value of DAM:

wopt
eff ¼ Dwda

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0

jjjLjjj?L?

s
: ð1:42Þ

1.6 Evaluation of the Scale Effect

In the case of a laboratory device, da is small parameter and (1.41) can be
expressed as

Dlab
AM ¼ jjjL

lab
jj weff : ð1:43Þ

This approach allows us to evaluate the scale effect DD:

DD ¼ DAM � Dlab
AM ¼ jjj Ljj � Llab

jj

� �
weff þ

f0Dw2d2
a

j?L?weff

: ð1:44Þ

Expression (1.44) indicates that the scale effect has two main origins [1]:

1. The radial flow nonuniformity Dw, if the specific scales of the contactor
(packing size or plate parameter) in both the model and the prototype are equal,
i.e., Ljj ¼ Llab

jj :

2. The increase of the specific linear dimension of the prototype Ljj[ Llab
jj

� �
; if

the radial diffusion (D?) is so intense that the effect of the radial nonuniformity
of the velocity can be neglected (i.e., Dw � 0). In this case DD is determined
only by the first term in (1.44).

The above comments show [1] that the increase of the packed column diameter

without change of the packing size dp Ljj ¼ Llab
jj ¼ dp

� �
leads to
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DD ¼ f0Dw2d2
a

j?L?weff

: ð1:45Þ

Thus, the scale effect grows with the increase of both the column diameter and
the velocity nonuniformity, and diminishes with the increase of the effective
velocity.

For example, the increase of the dimensions of a rotary extractor [1], charac-
terized by a strong radial mixing, reduces the scale effect to

DD ¼ jjj Ljj � Llab
jj

� �
weff ; ð1:46Þ

because the distance between disks L ¼ Ljj increases with increase of the column
diameter dp to satisfy the conditions of the geometrical similarity. However, in
many cases the scale effect is determined by both terms in (1.44).

1.7 Hydrodynamic Modeling

The hydrodynamic nature of the scale effect allows us to employ hydrodynamic
approaches to solve two principal problems of the hydrodynamic modeling:

1. The reduction of the scale effect through rational design of the contactors
2. The evaluation of the influence of the residual scale effect on the efficiency of

industrial devices

The hydrodynamic modeling takes into account the specificity of the particular
device under consideration. However, it follows a slender common scheme
independent of the contactor type [1]:

• The laboratory-scale experiments must determine the mass transfer efficiency,
the hydrodynamic characteristics, and the axial mixing coefficient under the
operating conditions.

• The laboratory-scale experiments must define the hydrodynamic characteristics
(phase holdup, response curve, residence time distribution, etc.) by means of
model liquids.

• The experiments on a hydrodynamics stand (a test rig) must allow us develop
the design to obtain uniform velocity distributions of the phase in the cross
section of an industrial-scale contactor with a small height.

• The experiments on a hydrodynamics stand (a test rig) must define the hydro-
dynamic characteristics (phase holdup, response curve, residence time distri-
bution, etc.) by means of model liquids.

The approach does not need technological testing procedures for the industrial
devices. Their efficiencies can be determined numerically, taking into account the
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deviation of the hydrodynamic characteristics obtained with the laboratory model
and the hydrodynamic stand.

The scale-up theory and the hydrodynamic modeling allow us not only to solve
the design problems of high-capacity contactors, but also to determine the way to
enhance their efficiencies.

The discussed approach above allows the formulation of the conditions that
must be satisfied to increase the efficiencies of industrial-scale devices [1]:

1. Formation of uniform velocity profiles (Dw) at the apparatus inlets using
distributors, diffusers, structured or nonstructured packed beds, etc.

2. The increase of the radial mixing (D?) by means of additional pulsations,
vibrations, stirrers, plates with directed motion of the phases, etc.

3. Operating conditions concerning the optimal velocity wopt
eff

� �
range to mini-

mize the axial mixing DAM.
4. Regime intensification (high velocities weff) if conditions for invariability of

the turbulence scale (Ljj) can be created.
5. Reduction of the radial mixing by decreasing of the turbulence scale of the

recirculation currents and circulation flows (Ljj) through the apparatus design.
6. Reduction of the bypass effects by formation of short contact sections in

packed-bed columns.
7. Reduction of the axial mixing (and of the effect of wave formation) on per-

forated bubbling plates.
8. Elimination of the liquid bypass on the bubbling plates through the contactor

design.
9. Reduction of the scale of recirculation loops in bubble columns and fluidized

beds by dishes or grids.
10. If the elimination of the scale effect is impossible, an alternative solution is to

employ a number of smaller devices.

The above recommendations were formulated by Rosen [1] for a number of
scale-up problems concerning fixed-bed reactors, packed columns, moving-bed
adsorption columns, bubble plate absorbers, bubble columns, fluidized beds, etc.

The efficiency of the method of hydrodynamic modeling depends on the type of
contacting device considered. However, it leads to very useful results:

1. For example, the height of the transfer units of a packed distillation column [1]
with a diameter of 0.3 m has been reduced 10 times as a result of the uniform
liquid distribution inside the packing.

2. In the case of a packed-bed absorber of 4.5-m diameter, the good distribution of
the phases increases the mass transfer coefficient by 36%.

3. The shutter rotary plates in a sieve-plate extraction column reduce 5 times the
height of the transfer unit. The reduction from 0.030 to 0.015 m of the deviation
from the horizontal surface of a plate with a diameter of 3.2 m increases the
degree of absorption by 15%. There are reports [4] of hydrodynamic stands for
testing of plates with a diameter of 20 m.
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2 Average Concentration Model and Scale-Up

The approximate scale-up theory shows the hydrodynamic nature of the scale
effect and the ways for its elimination through hydrodynamic modeling [1], where
the scale effect is related to the axial mixing coefficient. The defects of this
approach are the expression of the stirring effects as mixing (diffusion-type)
effects and the use of the concentration (1.34), averaged with respect to r, because
it is not possible to measure this average concentration experimentally. These
shortcomings can be eliminated by use of a diffusion-type model, where the
concentration is averaged for the column apparatus’s cross-sectional area, and the
effect of the radial nonuniformity of the velocity is represented as a convective
mass transfer. On the basis of a simple model, we will present the influence of the
radial nonuniformity of the velocity on the efficiency of chemical processes, the
scale-up, and the possibility of modeling the scale effect.

2.1 Diffusion-Type Model

Let us consider gas motion in a column with radius r0 through a layer of catalyzer
particles. One of the gas components reacts on the catalytic interface. If the vol-
ume concentration of the active sites at the catalytic interface is very large, a
volume chemical reaction of first order is possible.

The volume chemical reaction and radial nonuniformity of the velocity lead to
convective and diffusive mass transfer, i.e., a convection–diffusion equation with
volume reaction [5, 6] can be used for the mathematical description of the process:

u
oc

oz
¼ D

o2c

oz2
þ 1

r

oc

or
þ o2c

or

� �
� kc; ð2:1Þ

where u(r) and c(r, z) are the velocity and concentration distributions in the
column.

The radial component of the gas velocity is equal to zero if the catalytic particle
distribution in the column is uniform. The volume reaction rate v = kc
(mol m-3 s-1) is obtained using the surface catalytic reaction rate vs

(mol m-2 s-1) and specific catalytic particle surface a (m2 m-3), i.e., v = avs.
The boundary conditions are the inlet concentration c0 and mass balance of the

active gas component:

z ¼ 0; c ¼ c0; �uc0 ¼ uc0 � D
oc

oz
; r ¼ 0;

oc

or
¼ 0; r ¼ r0;

oc

or
¼ 0; ð2:2Þ

where �u is the average velocity at the cross-sectional area of the column. In (2.2) it
is supposed that a symmetric radial velocity distribution will lead to a symmetric
concentration distribution.
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Different expressions for the velocity distribution in the column apparatuses
permit us to analyze [7] the influence of the radial nonuniformities of the velocity
distribution on the process efficiency:

unðrÞ ¼ �u
nþ 1

n
� 2

n
r2

r2
0

� �
; n ¼ 1; 2; . . .;1; uiðrÞ ¼ �u 1þ ai

r2

r2
0

þ bi
r4

r4
0

� �
;

i ¼ 1; 2;

ð2:3Þ

where n = 1 (Poiseuille flow), n = 2, n!1 (plug flow), a1 ¼ 2; b1 ¼ �3;
a2 ¼ �2; b2 ¼ 3. The velocity distributions in (2.3) have identical average
velocities (for the cross-sectional area), equal to the average velocity of the
Poiseuille flow �u, i.e., to the plug flow velocity.

As the mass transfer efficiency of the column, we will use the amount of reacted
substance q, i.e., the difference between the inlet and the outlet average convective
mass flux:

q ¼ �uc0 �
2
r2

0

Zr0

0

rucðr; lÞdr; �u ¼ 2
r2

0

Zr0

0

ruðrÞdr; ð2:4Þ

where l is the column height (catalytic zone height).

2.2 Influence of the Radial Nonuniformity of the Velocity
Distribution on the Process Efficiency

The solution of problem (2.1) and (2.2) permits us to obtain the mass transfer
efficiency q in the column under the influence of the radial nonuniformity of the
velocity distribution. For this purpose dimensionless variables must be used:

r ¼ r0R; z ¼ lZ; uðrÞ ¼ �uUðRÞ; cðr; zÞ ¼ c0CðR; ZÞ: ð2:5Þ

Introducing (2.5) into (2.1) and (2.2), the dimensionless problem has the form

U
oC

oZ
¼ Fo b

o2C

oZ2
þ 1

R

oC

oR
þ o2C

oR2

� �
� DaC;

Z ¼ 0; C ¼ 1; 1 ¼ U � 1
Pe

oC

oZ
; R ¼ 0;

oC

oR
¼ 0; R ¼ 1;

oC

oR
¼ 0;

ð2:6Þ

where Fo and Da are similar to the Fourier and Damkohler numbers:

Fo ¼ Dl

�ur2
0

; Da ¼ kl

�u
; b ¼ r0

l

� �2
: ð2:7Þ
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The parameter b is very small and the solution of (2.6) can be obtained in the
approximation 0 ¼ b\10�2:

U
oC

oZ
¼ Fo

1
R

oC

oR
þ o2C

oR2

� �
� DaC;

Z ¼ 0; C ¼ 1; R ¼ 0;
oC

oR
¼ 0; R ¼ 1;

oC

oR
¼ 0:

ð2:8Þ

The numerical solution of problem (2.8) permits us to obtain the relative mass
transfer efficiency of the column (the conversion degree):

Q ¼ q

�uc0
¼ 1� 2

Z1

0

RUðRÞCðR; 1ÞdR: ð2:9Þ

From (2.3) it is possible to obtain different dimensionless velocity distributions:

U0ðRÞ ¼ 1; U1ðRÞ ¼ 2� 2R2; U2ðRÞ ¼ 1þ 2R2 � 3R4;

U3ðRÞ ¼ 1� 2R2 þ 3R4; U4ðRÞ ¼
3
2
� R2:

ð2:10Þ

The differences between the maximum and minimum velocity values
DUj ¼ Umax

j � Umin
j ðj ¼ 1; . . .; 4Þ are the radial nonuniformity parametersof

thevelocity distribution (DU1 ¼ 2;DU2 ¼ DU3 ¼ 4
3 ; DU4 ¼ 1).

Figure 1 shows velocity distributions Uj; j ¼ 0; 1; . . .; 4:
The concentration distributions after the solution of (2.8) for Da = 2 and

Fo = 0.1 are shown in Fig. 2 and 3.
Numerical simulation, based on the mathematical model (2.8), using different

velocity profiles (2.10), gives the effect of the radial nonuniformity of the velocity
on the process efficiency (see Table 1, where Da ¼ 2). It can be seen in Table 1
[Da = 2, Fo = 0.1(‘‘laboratory’’ column) and Fo = 0.01 (‘‘industrial’’ column)]
that the process efficiency decreases if the column radius and the velocity distri-
bution radial nonuniformity parameter increase.
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Fig. 1 Velocity distribu-
tions: 0U0, 1U1, 2U2, 3U3,
4U4
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Let us consider the effect of the radial nonuniformity of the velocity DUj,
j = 1,…,4, on the relative process efficiency decrease (in comparison with the
plug flow):

DQj ¼
Q0 � Qj

Qj
� 100%; j ¼ 1; 2; 3: ð2:11Þ

The results obtained show (see Table 2) the influence of the increase of the
column radius and the radial nonuniformity of the velocity distribution.

Let us consider the column heights Hj (j = 1,…,4) for column efficiency Q0 =
0.8643, Fo = 0.1, and Da = 2, i.e., the necessary column heights Hj (j = 1,…,4)

Da=2, Fo=0.1
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Fig. 2 Concentration distri-
butions using the velocity
profiles: 0U0, 1U1, 2U2, 3U3,
4U4
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Fig. 3 Process efficiency for
different radial nonuniformi-
ties of the velocity: 0U0, 1U1,
2U2, 3U3, 4U4

Table 1 Process efficiency Q at Z = 1 and column height H = Z at Q0 = 0.8643

Fo U0 U1 U2 U3

0.1 (‘‘laboratory’’) Q0 = 0.8643 Q1 = 0.8143 Q2 = 0.8516 Q3 = 0.8513
H0 = 1 H1 = 1.2 H2 = 1.05 H3 = 1.05

0.01 (‘‘industrial’’) Q0 = 0.8645 Q1 = 0.7870 Q2 = 0.8349 Q3 = 0.8371
H0 = 1 H1 = 1.34 H2 = 1.12 H3 = 1.12
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to realize plug flow column efficiency. The result obtained shows an increase of the
column heights (see Table 1) as a result of the radial nonuniformity of the velocity.
The relative column height increases DHj, j = 1,…,4, can be obtained from

DHj ¼
Hj � H0

H0
� 100%; j ¼ 1; 2; 3: ð2:12Þ

The numerical results (Table 2) show the necessity of an essential augmenta-
tion of the column height to compensate for the effect of the radial nonuniformity
of the velocity distribution.

The comparison of the results in Tables 1 and 2 shows that the effects of
DU2and DU3are similar, i.e., the effects of the radial nonuniformity of the velocity
distribution are caused by the nonuniformity of the velocity DUj ¼ Umax

j � Umin
j

(j ¼ 1; . . .; 3), but not by the velocity distribution Uj; j ¼ 1; . . .; 3ð Þ:

2.3 Scale Effect

Let us consider a ‘‘laboratory’’ column (Da = 2, Fo = 0.1,r0 = 0.2 m) and an
‘‘industrial’’ column (Da = 2, Fo = 0.01, r0 = 0.5 m). The relative scale effect
DQscale�up can be obtained using Table 1:

DQscale�up
j ¼

Qlaboratory
j � Qindustrial

j

Qindustrial
j

� 100%; j ¼ 1; 2; 3: ð2:13Þ

The results obtained are shown in Table 3.
The comparison between these two columns shows that the scale-up leads to a

decrease of the column efficiency (for a constant column height). If we consider
columns with constant process efficiency, it leads to a column height increase as
result of the radius increase. The scale effect on the column height (at
Q ¼ Q0 ¼ 0:8643) can be obtained using Table 1:

DHscale�up
j ¼

Hindustrial
j � Hlaboratory

j

Hlaboratory
j

� 100%; j ¼ 1; . . .; 4 ð2:14Þ

Table 2 Effect of the radial nonuniformity of the velocity on the relative process efficiency and
column height

Fo U1 U2 U3

0.1 (‘‘laboratory’’) DQ1 = 6% DQ2 = 1.4% DQ3 = 1.5%
DH1 = 20% DH2 = 5% DH3 = 5%

0.01 (‘‘industrial’’) DQ1 = 9.8% DQ2 = 3.5% DQ3 = 3.3%
DH1 = 34% DH2 = 12% DH3 = 12%

2 Average Concentration Model and Scale-Up 263



and the results are shown in Table 3.
The results in Tables 1, 2 and 3 demonstrate the influence of the radial non-

uniformity of the velocity on the column process efficiency and scale-up. Very
complicated hydrodynamic behavior in industrial column apparatuses is an
obstacle to the use of Eqs. 2.1 and 2.2 for the scale effect modeling and average
concentration models must be used.

2.4 Average Concentration Model

At the page 84 it was shown that the velocity and concentration in diffusion-type
models can be replaced by the average velocity and concentration (3.9) for the
cross-sectional area of the column:

�u ¼ 2

r2
0

Zr0

0

ruðrÞdr; �cðzÞ ¼ 2

r2
0

Zr0

0

rcðr; zÞdr; ð2:15Þ

i.e., the velocity and concentration distributions may be represented with the help
of the average functions:

uðrÞ ¼ �u~uðrÞ; cðr; zÞ ¼ �cðzÞ~cðr; zÞ; ð2:16Þ

where

2

r2
0

Zr0

0

r~uðrÞdr ¼ 1;
2

r2
0

Zr0

0

r~cðr; zÞdr ¼ 1: ð2:17Þ

The average concentration model may be obtained if put (2.16) into (2.1) and
(2.2), multiply by r, and integrate over r within the interval [0, r0]:

aðr0; zÞ�u
d�c

dz
þ da

dz
uc ¼ D

d2�c

dz2
� k�c; z ¼ 0; �c ¼ c0;

d�c

dz
¼ 0; ð2:18Þ

where the scale effect function aðr0; zÞ is the result of the radial nonuniformity of
the velocity and the concentration,

aðr0; zÞ ¼
2

r2
0

Zr0

0

r~uðrÞ~cðr; zÞdr; aðr0; 0Þ ¼ 1: ð2:19Þ

Table 3 Comparison of the
scale effect for different
velocity profiles

U1 U2 U3

DQscale-up (%) 3.5 1.9 1.7
DHscale-up (%) 11.6 6.6 6.6
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The function a can be obtained [8] using the solution of problem (2.1) and (2.2)
in dimensionless variables (2.5). If we put (2.16) and (2.5) into (2.5), the
dimensionless form of a is the following:

AðZÞ ¼ aðr0; lzÞ ¼
2

�CðZÞ

Z1

0

RUðRÞCðR; ZÞdR; ð2:20Þ

where the dimensionless concentration C(R,Z) is solution of (2.8) and the average
dimensionless concentration �CðZÞ is obtained from

�CðZÞ ¼ 2
Z1

0

RCðR; ZÞdR: ð2:21Þ

The values of the average concentration �C and the scale effect function A(Z)
were obtained in the case of Fo = 0.1, Da = 2 (r0 = 0.2 m) and Fo = 0.01,
Da = 2 (r0 = 0.5 m) (see Fig. 4).

From Fig. 4 it can be seen that the maximum scale effect exists in the case of a
Poiseuille flow (U = U1), whereas for plug flow (U = U0) the scale effect is
absent (~u ¼ ~c ¼ 1; i.e., A : 1). Because of this we will only consider the mod-
eling of the Poiseuille flow scale effect.

The scale effect function can be represented using the linear or quadratic
approximation:

A Zð Þ ¼ 1þ aZ; A Zð Þ ¼ 1þ a1Z þ a2Z2; ð2:22Þ

where the approximation parameters are shown in Table 4.
Figure 5 shows a comparison between the function A(Z) and its polynomial

(linear and quadratic) approximations.
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2.5 Scale Effect Modeling

The connection between the scale effect and the radial nonuniformity of the
velocity shows that the model established which gives the radial nonuniformity
will allow the modeling of the scale effect, i.e., the influence of radius r0 on a.

The influence of the column radius r0 on the function A(z) = a(r0, lz) is a result
of the influence of Fo on the solution C(R,Z) (see 2.8).

Consider the dimensionless form of (2.18) using dimensionless variables:

r ¼ r0R; z ¼ lZ; uðrÞ ¼ �uUðRÞ; cðr; zÞ ¼ c0CðR; ZÞ;
�cðzÞ ¼ �cðlZÞ ¼ c0

�CðZÞ; ð2:23Þ

i.e.,

AðZÞ o
�C

oZ
¼ 1

Pe

o2 �C

oZ2
� Daþ oA

oZ

� �
�C; Z ¼ 0; �C ¼ 1;

d �C

dZ
¼ 0; ð2:24Þ

where Pe ¼ �ul=D, i.e., Pe�1 ¼ bFo.
Comparison of models (2.8) and (2.24) shows that the average concentration

model is equivalent to the longitudinal diffusion model with a volume reaction,
where the chemical reaction rate is corrected by the effect of the radial nonuni-
formity of the velocity and concentration distributions.

Table 4 Values of the approximation parameters

Fo = 0.1 a = 0.4347
a1 = -0.3732
a2 = 0.6221

Fo = 0.01 a = 0.6778
a1 = -0.5362
a2 = 0.9538
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Fig. 5 Comparison between function A(Z) and its polynomial (linear and quadratic) approxi-
mations for different values of Fourier number. 1U1
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The determination of A(z) in polynomial form (2.22) permits us to obtain the
average concentration �C in the column using (2.21). Figure 6 shows a comparison
of the values for �C obtained using (2.21).

2.6 Scale-Up Parameter Identification

The results in Fig. 6 demonstrate the possibility to represent the scale effect by one
parameter (a).

Let us consider the case of a linear approximation for A(Z). As a result, (1.24)
has the form

ð1þ aZÞ o
�C

oZ
¼ 1

Pe

o2 �C

oZ2
� Daþ að Þ�C; Z ¼ 0; �C ¼ 1;

d �C

dZ
¼ 0: ð2:25Þ

The identification of the scale effect parameter a is possible using experimental
data for the average concentration. Here we will use ‘‘experimental data’’ �CexpðZiÞ,
i = 1,…,N, obtained from the exact solution of model (2.8), and random numbers
dj (j = 1,…,M), obtained using a generator for random numbers:

�Cexp
ij ðZiÞ ¼ �CðZiÞ½0:95þ dj�; 0� dj� 1; i ¼ 1; . . .;N; j ¼ 1; . . .;M

ðN ¼ 10Þ: ð2:26Þ

Obviously the maximum relative error of the ‘‘experimental data’’ is ± 5%.
The parameter identification of model (2.25) will be made by minimization of

the least-squares function A :

U að Þ ¼
XN

i¼1

XM
j¼1

½�CðZiÞ � �Cexp
ij ðZiÞ�2: ð2:27Þ
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Fig. 6 Comparison of concentration distribution functions calculated for different approxima-
tions [C(a), linear; C(a1,a2), quadratic] of the scale effect function A(Z) and different values of
Fourier number

2 Average Concentration Model and Scale-Up 267



Model (2.25) is characterized by a small parameter (Pe�1\10�3) at the highest
derivative, i.e., the inverse identification problem will be incorrect (ill-posed) and
for its solution we must use a regularization method [9].

The next calculations are made for the case

Fo ¼ 10�1 Fo ¼ 10�2
� �

; Da ¼ 2; N ¼ 10; Zj ¼ 0:1j; j ¼ 1; . . .; 10;

ð2:28Þ

and the values of the parameter a which minimize the least-squares function U
(2.27) are 0.6357 (Fo = 0.1) and 0.6773 (Fo = 0.01).

The next case is parameter identification using ten ‘‘experimental data’’ values
only at one point (Z = 0.2, 0.4, 0.6, 0.8, 1) (see Table 5).

In Fig. 7 the concentration distribution functions, calculated using (2.25), are
shown, where the parameter a was obtained using ‘‘experimental data’’ at ten
points (Z ¼ 0:1; 0:2; . . .; 1) and at separate points (Z = 0.2, Z = 0.4,…,Z = 1).

The results obtained (Fig. 7) show that the scale effect is related to one
parameter which can be calculated using experimental data for the average con-
centration at some different points of the column height. It is possible to use some
different values for the average concentration at one point at the middle column
height.

3 Statistical Analysis

The use of models for quantitative descriptions of real processes as well as for
subsequent engineering designs sets up a demand concerning the accuracy of the

Table 5 Values of a

Z = 0.2 Z = 0.4 Z = 0.6 Z = 0.8 Z = 1

Fo = 0.1 a = -0.573 a = 1.331 a = 6.333 a = 14.656 a = 25.175
Fo = 0.01 a = -0.537 a = 1.475 a = 5.988 a = 13.317 a = 22.296
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Fig. 7 Comparison of concentration distribution functions calculated for different values of
a and different values of Fourier number
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information obtained through simulations. The accuracy of the information
depends on both the exactness of the mathematical model chosen and the deter-
mination of the model parameters. On the other hand, the exactness of the model
parameters depends on the accuracy of the experimental data and the calculation
method. The errors of the experimental data have a random nature and the con-
sequently the calculated model parameters and objective functions are random
values too.

The stochastic nature of the errors during the experimental determination of the
objective function leads to subsequent errors of the model parameters and the
calculated values of the objective function during simulations. This sets up two
basic questions with respect to the model:

1. Significance of the model parameters. Are they different from zero owing to the
accumulated errors of the experimental data only?

2. Is the model adequate or not? This question concerns the adequacy of the
objective function because of the simulation. What are the error dispersions of
both the calculated and the experimentally determined function? Are they equal
or not?

The answers to both questions can be found out through a statistical analysis of
the models [3] developed next.

3.1 Basic Terms

The statistical determination of a particular quantity X looks for its true lx. The
experimentally measured value X differs from lx and the error X � lx is a result of
the measurements and is practically unknown since lxis unknown. The errors
should be classified as coarse errors, systematic errors, and random errors. The
former two types are relevant to the methods employed for the measurements and
the information registration. They are external with respect to the process inves-
tigated. The random errors follow from the nature of the process and very often are
the result of uncontrollable and unpredictable variations of both the process
parameters and the operation of the measuring device.

The experimental data employed for the purposes of the modeling should not
contain coarse and systematic errors, so the further explanation will only focus on
the random errors.

The observation of the values of a particular variable X is a stochastic event. If
N observations were made and X was observed m times, the frequency of the event
is p ¼ m

N. As the number of the observations N increases, the frequency of the event
tends to a limited value of its probability P p! Pð Þ. This allows us to define a
sum of events as a cumulativeobserved event as well as a product of events
representing a simultaneous observation of several events. The law of its random
distribution gives the relationship between the random values of X and the
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probability of its experimental determination. Each random variable is charac-
terized by its distribution function F xð Þ (sometimes called a cumulative distribu-
tion function), which represents the probability P that the measured X is lower than
x:

F xð Þ ¼ P X� xð Þ;�1\x\1; ð3:1Þ

where the probability P X� xð Þmeans the probability associated with event X� xf g.
In other words, when the experiments are done, the measured value of X (the
random variable) should not take on a value larger than the number x, i.e.,
�1\X� x. Obviously, the distribution function varies within the interval [0, 1]
and 0�F Xð Þ� 1 for all x. Moreover, F Xð Þ is not decreasing, which means if
x1\x2, then F x1ð Þ�F x2ð Þ. Since X takes only finite values, then lim F Xð Þ

x!1
¼ 1

and lim F Xð Þ ¼ 0
x!�1

.

A random (stochastic) variable is a discrete one if it can take at most a
countable number of values. Countable means that the set can be put one to one
with a set of positive integers. An example of an uncountable set is all real
numbers between 0 and 1. Therefore, if the random variable takes only a finite
number of values x1; x2; . . .; xn, it is a discrete one. The probability that the discrete
random value X takes on the value xi is p xið Þ ¼ P X ¼ xið Þ for i = 1,2,. . ., which

means that it must have
P1
i¼1

p xið Þ ¼ 1. The probability p xð Þ allows us to compute

all the probability statement of X, i.e., the so-called the probability mass function
for the discrete random variable X. If I ¼ a; b½ �, where a and b are real numbers
such that a� b, then

P X 2 Ið Þ ¼
X

a� xi � b

p xið Þ; ð3:2Þ

where the symbol 2 means ‘‘contained in.’’ The summation concerns the addition
of p xið Þ, such that a� xi� b. The distribution function F Xð Þ for the discrete
random variable X is

F Xð Þ ¼
X
xi � x

p xið Þ; �1\x\1: ð3:3Þ

If a random variable X can takes each value within a given interval. i.e., an
uncountable infinite number of different values (all also negative real numbers), it
can be considered as a continuous random variable X. Furthermore, this statement
means that a random variable X is said to be continuous if there exists a non-
negative function f(x) such that for any set of real numbers B

P X 2 Bð Þ ¼
Z

B

f xð Þdx and
Z1

�1

f xð Þ ¼ 1: ð3:4Þ
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All probability statements about X can be calculated from f(x), termed the
probability density function for the continuous random variable X .

If X takes on values within the interval x1; x2½ Þ, such thatx1�X\x2, that are
predetermined by the experiment designed, the probability is

P x1�X\x2ð Þ ¼ P X\x1ð Þ ¼ F x2ð Þ � F x1ð Þ ¼ D F: ð3:5Þ

Taking into account that X is a continuous random variable, the probability density
function is

f xð Þ ¼ dF

dx
¼ lim

D x!0

D F

D x
; D x ¼ x2 � x1: ð3:6Þ

Thus, by means of (3.2) and (3.3) it is possible to find that

P x1�X\x2ð Þ ¼
Zx2

x1

f xð Þ dx: ð3:7Þ

Since F xð Þ is not a decreasing function of X [taking into account that
F �1ð Þ ¼ 0 and F 1ð Þ ¼ 1] (3.4), we can say that

f xð Þ	 0 ;
Z1

�1

f xð Þ dx ¼ 1: ð3:8Þ

The distribution function F xð Þ for a continuous random variable X is

F xð Þ ¼ P X 2 �1; x½ �ð Þ ¼
Zx

�1

f xð Þdx for all �1\x\1: ð3:9Þ

Thus, f xð Þ ¼ F0 xð Þ [the derivative of F(x)]. Moreover, if the interval is defined
as I ¼ a; b½ �, where a and b are real numbers, such thata\b, then we have

P X 2 Ið Þ ¼
Zb

a

f xð Þdx ¼ F bð Þ � F að Þ; ð3:10Þ

since f xð Þ ¼ F0 xð Þ, which is an example of the application of the fundamental
theorem of calculus.

If X and Y are discrete random variables, then

p x; yð Þ ¼ P X ¼ x; Y ¼ yð Þ ð3:11Þ

for all x,y, where p x; yð Þ is the joint probability mass function of X and Y. Both
variables are independent if

p x; yð Þ ¼ px xð Þpy yð Þ ð3:12Þ

3 Statistical Analysis 271



for all x,y, where px(x) and py(y) are the (marginal) probability mass functions of
X and Y, defined such that

px xð Þ ¼
X
ally

p x; yð Þ; py yð Þ ¼
X
allx

p x; yð Þ: ð3:13Þ

The random variables are jointly continuous if there exists a nonnegative
function f xð Þ, termed the joint probability density function of X and Y, such that for
all sets of real numbers A and B

P X 2 A; Y 2 Bð Þ ¼
Z

B

Z

A

f x; yð Þ dxdy: ð3:14Þ

The random variables X and Y are independent if f x; yð Þ ¼ fx xð Þ : fy yð Þ for all
x, y, where fx xð Þ and fy yð Þ are the (marginal) probability density functions of X and
Y, such that

fx xð Þ ¼
Z1

�1

f x; yð Þdy; fy yð Þ ¼
Z1

�1

f x; yð Þdx: ð3:15Þ

Generally, from an intuitive point of view, the random variables X and Y,
discrete or continuous, are independent if the value of one of them is known; this
does not inform us about the distribution of the other. Thus, if X and Y are not
independent, they are dependent random variables.

The probability density function cannot be determined easily from the exper-
imental data, but it allows us to introduce parameters characterizing the random
variable, such as the mathematical expectation and the dispersion.

If a random variable X takes different values X1; . . .;Xn, the random value of
mx ¼ M X½ � can be defined in a such manner that at n!1, mxwill approach its
true value, i.e., lim

n!1
mx ¼ lx. The mean or expected value of the random variable

Xi (i ¼ 1; . . .; n) is defined as

mx ¼ M X½ � ¼ lim
n!1

1
n

Xn

i¼1

Xi; ð3:16Þ

which follows from a feature of a converging series of numbers X1; . . .;Xn having
a convergence point mx. This allows us to create a converging series:

X1;
X1 þ X2

2
; . . .;

X1 þ X2 þ . . .Xn

n
; . . . ð3:17Þ

which also approaches lx when n!1.
Taking into account the definitions of the probability density function, we can

define the meanvalue [mathematical expectation, sometimes denoted here as
M Xið Þ] as
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lx ¼

X1
j¼1

xjpxi xið Þ if Xi is discrete;

Z1

�1

xfxi xð Þdx if Xi is continuous:

8>>>>><
>>>>>:

ð3:18Þ

The mean is a measure of the central tendency, similar in sense to gravitational
acceleration.

If ai is a real number, the important properties of the mean are

M aXð Þ ¼ aM xð Þ;

M
Xn

i¼1

aiXi

 !
¼
Xn

i¼1

aiM Xið Þ even Xi are dependent: ð3:19Þ

The median x0:5 of a random variable Xi is an alternative to the measure of the
central tendency and is defined as the smallest value of x such that Fx Xð Þ	 0:5. If
Xi is a continuous, then Fx Xð Þ ¼ 0:5. Sometimes the median can better represent
the central tendency than the mean, e.g., in the case of very small or very large
values. The latter means that extreme values (very small or very large) greatly
affect the mean; such is not the case with the median.

The variance of a random variable Yi, frequently denoted by r2
i or Var Yið Þ, is a

measure of the dispersion of the random variable about its mean. The definition
considers r2

i as a mathematical dispersion of the random variable about its mean.
The definition also considers r2

i as a mathematical expectation of the square of the

differences Yi

0
¼ Yi � ly

� �
, such that

r2
y ¼ M Yi

0
� 	

¼ lim
n!1

1
n

Xn

i¼1

Yi � ly

� �
or r2

y ¼ M Yi � ly

� �2
h i

¼ M Y2
i

� �
� l2

y:

ð3:20Þ

The larger the variance, the further the random variable is from the mean. The
definition of the variance allows us to define the following properties:

Var Yð Þ	 0; Var aYð Þ ¼ a2Var Yð Þ; Var
Xn

i¼1

aiYi

 !
¼
Xn

i¼1

Var Yið Þ; ð3:21Þ

if the random values of Yi are independent. The standard deviation of the random

variable Yi is defined as ry ¼
ffiffiffiffiffi
r2

i

p
.

If we have two random variables Xi andXj, where i = 1,. . .; n; j = 1,. . .; n, the
question is how to measure their dependence (linear dependence). The covariance,
denoted by Ci j or Cov Xi; Yj

� �
, is defined by
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Ci j ¼ M Xi � lið Þ Xj � lj

� �� �
¼ M XiXj

� �
� lilj: ð3:22Þ

The covariances are symmetric, such that Cij ¼ Cji. Moreover, if i ¼ j, then
Cij ¼ Cii ¼ r2

i . If Cij ¼ 0, the random variables are uncorrelated (or indepen-
dent—see the third property of the variance). The opposite statement is not gen-
erally true, but if Xi and Yj are jointly normally distributed (Gauss distribution—
see below) with Cij ¼ 0, they are also independent.

If Cij [ 0, then Xi and Yj are positively correlated. If the random variables are
positively correlated, then Xi [ li and Xj [ lj tend to occur together (and Xi\li

and Xj\ljalso tend to do so). This means at Cij [ 0 if the random variable Xi is
large, the other random variable Yj is also likely to be large.

The negatively correlated random variables exhibit Cij\0. In this case Xi [ li

and Xj\lj tend to occur together (and Xi\li and Xj [ lj tend to occur together).
Therefore, for negatively correlated random variables if one is large, the other is
likely to be small.

The main difficulty in applying the covariance Cij is that this is not a dimen-
sionless measure of the dependence between Xi and Yj, which causes difficulties in
the interpretations. For example, if Xi and Yj are in units of Newton’s, Cij in units
of Newton’s squared. This problem is easily eliminated by the use of the corre-
lation qij defined as

qij ¼
Cijffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
i r

2
j

q ; i = 1,2,. . .; n ; j = 1,2,. . .; n ð3:23Þ

as a measure of the linear dependence of the random variables Xi and Yj. The
denominator of qij is always positive, which means it has the same sign as Cij.

The correlation qij varies within the interval �1� qij� 1 for all i and j. Thus, if
qij ! þ1, then Xi and Yj are positively correlated, whereas at qij ! �1, they are
highly negatively correlated.

The mathematical expectation and the dispersion characterize the random
variable for a particular distribution law. There are different distribution laws. The
most important, in fact the most frequently utilized, is the Gaussian law, or a
normal density function. It is valid when the random variable depends on a set of
independent or weakly dependent variables with arbitrary distribution laws, but
without dominating one of them (the central limit theorem) [10].

The normal density function is

f xð Þ ¼ 1

r
ffiffiffiffiffiffi
2p
p exp � 1

2r2
x� mxð Þ2

� 	
: ð3:24Þ

It reaches a maximum 1
r
ffiffiffiffi
2p
p at x ¼ mx.

The probability that a particular random variable with a normal distribution is
associated with the interval �1; xð Þ follows from (3.7) and (3.24):
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F Xð Þ ¼
ZX

�1

f xð Þ dx ¼ 1

r
ffiffiffiffiffiffi
2p
p

ZX

�1

exp � 1
2r2

x� mxð Þ2
� 	

dx

¼ 1ffiffiffiffiffiffi
2p
p

Zx�m
r

�1

exp � t2

2

� �
dt ¼ U

x� mx

r

� �
; ð3:25aÞ

where U is the Laplacian function

U zð Þ ¼ 1ffiffiffiffiffiffi
2p
p

ZZ

�1

exp � t2

2

� �
dt: ð3:25bÞ

Similarly, if the random variable is associated with the interval X1;X2½ �, the
normal density distribution gives

P x1�X\x2ð Þ ¼ U
x1 � mx

r

� �
� U

x2 � mx

r

� �
:: ð3:26Þ

If we substitute x1 ¼ mx � 3r and x2 ¼ mx þ 3r, the value of P is about 0:998.
Therefore, this means that practically almost all values of the random variable
should be associated with the interval mx � 3r (the rule of 3r). If this is not
satisfied, the observation is assumed as one containing a strong error.

There are many important features of the Gaussian density function and some
of them are:

1. It is a model of many random physical phenomena, so it is possible to be
justified theoretically.

2. The linear combination of Gaussian random variables is also a Gaussian ran-
dom variable.

3. The process described by the Gaussian random variable as a model can be
specified completely from a statistical point of view by the first and the second
moments only if it is not true for the other processes.

4. In the analysis of complex systems the Gaussian law provides a suitable model
for both linear and nonlinear processes.

Both the Gaussian density function f xð Þ and the Gaussian distribution functions
are shown in Fig. 8. The most important points for these curves are:

1. The only maximum 1
r
ffiffiffiffi
2p
p coincides with the mean value (see 3.24).

2. The density function is symmetric with respect to the mean.
3. The width of the density function is directly proportional to the standard

deviation r. For example, the weight of 0.607 of the maximum values corre-
sponds to 2r, whereas at 3r almost all the band random variations of the
variable are spanned.
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4. The maximum of the Gaussian density function is proportional to inverse value
of the standard deviation r (see 3.24).

5. The density function has an area of unity and can be successfully applied to
represent the impulse delta function. The delta function d follows from
(6.1.25) at r! 0:

d x� mxð Þ ¼ lim
r!0

1ffiffiffiffiffiffi
2p
p

r
exp

� x� mxð Þ2

2r2

" #
: ð3:27Þ

This form of the delta function has the advantage that it is infinitely
differentiable.

A function closely related to the Gaussian density function is the Laplacian
function defined above. It is usually tabulated in many textbooks for only positive
values of x. This requires an additional relationship to be introduced:

U �xð Þ ¼ 1� U xð Þ: ð3:28Þ

A more convenient expression related to U xð Þ is the Q function:

Q xð Þ ¼ 1ffiffiffiffiffiffi
2p
p

Z1

x

exp � u2

2

� �
du; ð3:29aÞ

Q �xð Þ ¼ 1� Q xð Þ: ð3:29bÞ

Thus,

Q xð Þ ¼ 1� U xð Þ; ð3:30Þ

or if we make a comparison with the definition of the Laplacian function, (3.25b)
becomes

F xð Þ ¼ 1� Q
x� mx

r

� �
: ð3:31Þ

Fig. 8 Gaussian random variable: a density function and b distribution function
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Some alternative types of notation are often used for both functions defined
above. Usually,

erf xð Þ ¼ 2ffiffiffi
p
p
Zx

0

exp �u2
� �

du ð3:32Þ

is called the error function, whereas

erfc xð Þ ¼ 1� erf xð Þ ð3:33Þ

is termed the complementary error function. Sometimes the definition of the error
function (see, e.g., the comment in [10]) is given by

erf xð Þ ¼ 1� 2U
ffiffiffi
2
p

x
� �

: ð3:34Þ

Despite the fact the both U(x) and Q(x) are widely tabulated, some advantages
in calculations are provided by the utilization of Q(x) if some deficiency of values
occurs (the values needed are not in the table). A simple calculation procedure is
explained in detail in [10].

The Gaussian density function has for many reasons a famous position among
the probability density functions. However, there are many other density functions
arising from practical situations and they can be derived from the Gaussian law.

When a current flows through a circuit and the voltage is a random variable, the
power dissipation W in the resistor is proportional to the square of the current I:

W ¼ RI2: ð3:35Þ

A similar situation exists when a fluid is flowing through a tube. The pressure
drop DP is proportional to a square of the superficial velocity V (or the volumetric
flow rate QV), whereas the power dissipated is proportional to the product (DPQV).
The latter gives Np : DPQ : Q3, or Np * V2 if the superficial velocity is
employed.

Despite the variety of practical situations leading to power laws, the further
explanation will be developed on the basis of (3.35). We have I(t1) and assume that
the density function fi(i) is Gaussian. We want to find the probability density
function fW(W), so we have [10]

fw wð Þ ¼ 1

2
ffiffiffiffiffiffiffi
Rw
p fi

ffiffiffiffi
w

R

r� �
þ fi �

ffiffiffiffi
w

R

r� �� 	
; w	 0; fw wð Þ ¼ 0; w\0:

ð3:36aÞ

If I is Gaussian with a zero mean assumed, then

fi ið Þ ¼ 1ffiffiffiffiffiffi
2p
p

rI

exp � i2

2r2
I

� �
; ð3:36bÞ
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where rI is the variance of I. Therefore, the variance rI physically signifies the root
mean square value of the current. Taking into account the symmetry of the density
function fi(i) = fi(-i), we can easily to recognize that the two terms on the right-
hand side of (3.36) are identical, so

fw wð Þ ¼ 1

rI

ffiffiffiffiffiffi
2p
p

Rw
exp � w

2Rr2
I

� �
; w	 0; fw wð Þ ¼ 0; w\0: ð3:37Þ

The density function is a decreasing function of w and the calculation of the
mean power dissipated yields

�W ¼ M RI2
� �

¼ Rr2
I ð3:38aÞ

and its variance is

r2
w ¼ �W � �Wð Þ2¼ M R2I4

� �
� �Wð Þ2¼ 3R2r4

I � Rr2
I

� �2¼ 2R2r4
I : ð3:38bÞ

The classical thermodynamic problems considering the probability density
function of the velocity of the molecules in a perfect gas lead to the Maxwell
distribution. The principal assumption considers that each velocity component is
Gaussian with zero mean, whereas the variance is r2 ¼ kT

m0
, where k is the Boltz-

mann constant, T is the absolute temperature, and m0 the mass of the molecule.

The total velocity V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

x þ V2
y þ V2

z

q
has a Maxwell distribution with a prob-

ability density function

fV vð Þ ¼
ffiffiffi
2
p

r
v2

r3
exp � v2

2r2

� �
; v	 0; fV vð Þ ¼ 0; v\0: ð3:39Þ

The mean value of a random variable exhibiting a Maxwell distribution gives
the average velocity of the molecules:

�V ¼
ffiffiffi
8
p

r
r: ð3:40Þ

The mean squares and the variance are

�V2 ¼ 3r2; r2
V ¼ V2 � �Vð Þ2¼ 3� 8

p

� �
r2 ¼ 0:435r2; r2 ¼ kT

m0
: ð3:41Þ

Thus, the mean kinetic energy, proportional to V2, and its expectation are

e ¼ 1
2

m0V2; M e½ � ¼ 1
2

m0V2 ¼ 3m0r
2 ¼ 3

2
kT ; ð3:42Þ

which is the Maxwell classical result.
If a random variable is defined as the sum of the squares of independent

Gaussian random variables with zero mean and variance 1
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X2 ¼ Y2
1 þ Y2

2 þ . . .þ Y2
n ; ð3:43Þ

we have a random variable X2 with a v2distribution. The probability density
function with ndegrees of freedom is

f x2
� �

¼ x2ð Þ
n
2�1

2
n
2 n

2� 1
� �

!
exp � x2

2

� �
; x2	 0; f x2

� �
¼ 0; x2\0: ð3:44Þ

With a suitable normalization of the random variable to obtain unit variance,
the power distribution presented above is in fact a v2 distribution with n ¼ 1.
Moreover, the Maxwell distribution of the square of the velocity V2ð Þ is v2 with
n ¼ 3.

The mean and the variance of the v2 random variable are

X2 ¼ n, rx2

� �
2 ¼ 2n: ð3:45Þ

These simple results are due to the initial assumption of unit variance of
components.

v2 arises in many signal detection problems where one is trying to determine if
just noise or a signal is detected. If the observed random variable is a signal, the
mean values of the samples are not zero, whereas the noise has a zero mean. The
random variable defined by (3.43) has a noncentralv2 distribution.

Sometimes the random variables are defined as logarithms of other random
variables:

Y ¼ ln X or X ¼ eY: ð3:46Þ

The assumption of a Gaussian Y with a mean �Y and a variance r2
Y leads to the

log-normal density function:

fx xð Þ ¼ 1

x
ffiffiffiffiffiffi
2p
p

rY

exp � ln x� �Yð Þ2

2r2
Y

" #
; x	 0; fx xð Þ ¼ 0; x\0: ð3:47Þ

It cannot be expressed in terms of elementary functions. If calculations are
required, numerical integrations are often necessary.

The mean and the variance of a log-normal variable are

�X ¼ exp �Y þ 1
2
r2

Y

� �
; r2

x ¼ exp r2
y

� �
� 1

h i
exp 2 �Y þ 1

2
r2

Y

� �
: ð3:48Þ

If p is the probability an event will happen in any simple trial (usually called a
success) and q ¼ 1� p is the probability of an event not happening (usually called
failure), the probability the event will happen X times in N trials, i.e., Xsuccesses
and N� Xfailures will happen, is

p Xð Þ ¼
N

X

 !
pXqN�X ¼ N!

X! N� Xð Þ! pXqN�X; ð3:49Þ
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where X ¼ 0; 1; 2; . . .;N; N! ¼ N N� 1ð Þ N� 2ð Þ. . .1; and 0! ¼ 1.
The discrete probability function (3.49) is often called the binomial distribution

since X = 0,1,2,. . .;N corresponds to the terms of the binomial formula (binomial
expansion):

qþ pð ÞN¼ qN þ
N

1

 !
qN�1pþ

N

2

 !
qN�1p2 þ . . .þ pN; ð3:50Þ

where 1;
N

1

 !
;

N

2

 !
; . . .are the binomial coefficients.

Distribution (3.49) is also called the Bernoulli distribution after James
Bernoulli.

If N is large and neither p nor q is too close to zero, the binomial distribution
can be closely approximated by a normal distribution with a standardized variable
expressed as

z ¼ X� Npffiffiffiffiffiffiffiffiffi
Npq
p : ð3:51Þ

In fact if both Np and
ffiffiffiffi
N
p

qare greater than 5, a good approximation is achieved
[11].

In some applications (e.g., the test of hypotheses), it is important to know the
sampling distribution of the difference of the means �X1 � �X2ð Þ of two samples. In a
similar way, the distribution of the difference of variances s2

1 � s2
1

� �
may be

considered. The latter is rather complicated, so it is easier to consider the distri-
bution of the ratio s2

1


s2

2

� �
. The main idea is that small or large ratios would

indicate large differences, whereas a ratio close to 1 would indicate small dif-
ferences. The sampling distribution in such a case is called an F distribution.

Let us take samples of size N1 and N2 drawn from two normal (or nearly
normal) populations with variances r2

1 and r2
1, respectively. The F-statistic is

defined as

F ¼
ŝ2

1

r2
1

� �
ŝ2

2

r2
2

� � ¼
N1s1

N1�1ð Þr2
1

N2s2

N2�1ð Þr2
2

; ð3:52Þ

where

ŝ2
1 ¼

N1s2
1

N1 � 1
; ŝ2

2 ¼
N2s2

2

N2 � 1
ð3:53Þ

are the modified variances. To elucidate the problem, we note that the sample
variance s2 is a biased estimate of the population balance r2. With the help of the
modified variance ŝ2, we find an unbiased estimate of r2.
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The sampling distribution F is called Fisher’s F distribution (briefly F distri-
bution) with degrees of freedom m1 ¼ N1 � 1 and m2 ¼ N2 � 1. The distribution is
given by

Y ¼ CF
m1
2�1

m1F þ m2ð Þ
m1þm2

2

: ð3:54Þ

The constant C depends on v1 and m2.
In addition to the density functions related to the Gaussian ones, many other

functions arise in engineering practice. Some of them are presented below to
simplify the further discussions.

The uniform distribution very often arises in a physical situation where there
are no preferable values for the random variable. The uniform probability density
function can generally be expressed as

f xð Þ ¼ 1
x2 � x1

; x1\x� x2; f xð Þ ¼ 0; otherwise: ð3:55Þ

The mean and the dispersion are

�X ¼ x1 þ x2

2
; r2

x ¼
1

12
x2 � x1ð Þ2: ð3:56Þ

The probability distribution function follows from f xð Þ through integration:

Fx xð Þ ¼ 0; x� x1; Fx xð Þ ¼ x� x1

x2 � x1
; x1\x� x2; Fx xð Þ ¼ 1; x [ x2:

ð3:57Þ

One important application of the uniform distribution is to describe the dis-
persion of the errors of the models (see later).

3.2 Statistical Treatment of Experimental Data

The parameters of the random variable defined above can be derived from an
infinite number of experimental data. Obviously, this is unrealistic because often
experiments provide a limited number of observations, i.e., these limited experi-
mental data will give not the exact values of the parameter, but some estimates of
them.

Let Y be random variable and a a parameter of its random distribution. The
value ~a is an estimate of the real parameter a if it satisfies the following conditions:

• Consistency, meaning that ~a approaches a as the number of observations is
increased.

• It is unbiased, i.e., M ~a½ � ¼ a (it has no systematic errors).
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• Efficiency, i.e., r2 ~að Þ ! min(the dispersion of ~a is minimal with respect to the
other estimates). If the sampling distributions of two statistics have the same
mean (or expectation), then the statistic with the smaller variance is called an
efficient estimator of the mean, whereas the other statistic is an inefficient
estimator. The corresponding values of the statistics are termed efficient esti-
mates, respectively.

The estimates can be determined from a sample drawn (with size n) from the
population of the random variable Y - y1; y2; . . .; yn corresponding to n observa-
tions .

3.3 Estimates of the Expectation and the Dispersion

As already defined, the estimates are parameters defined from samples with a finite
number of data derived from experiments:

~my ¼
1
n

Xn

u¼1

yu; ~r2 ¼ 1
n

Xn

u¼1

yu � ~my

� �2
: ð3:58Þ

Here, the estimate ~r2
y is a biased one, but an unbiased one can be determined as

s2
y ¼

n
n� 1

~r2 ¼ 1
n� 1

Xn

u¼1

yu � ~my

� �2 ¼ 1
m

Xn

u¼1

yn � ~my

� �2
; ð3:59Þ

where m ¼ n� 1 is the degree of freedom.
The estimates defined above are called point estimates. Each one them is given

by a single number of the parameter. In other cases, an estimate of the population
parameter given by an interval defined by two numbers with which the parameter
may be associated is termed an interval estimate of the parameter.

Therefore, considering an interval of length of 2d, where the difference a� ~aj j
should lie, i.e., a� ~aj j\d, with probability b (of about 0.90–0.99), we have

P a� ~aj j\dð Þ ¼ b: ð3:60Þ

The latter means the probability of an observation taking a value outside the
interval ~a� d; ~aþ dð Þ is very low. In other words, the level of the significance a is
defined as a ¼ 1� b, where b is the confidence limit, or fiducial limit. The per-
centage confidence is often called the confidence level. The numbers of the con-
fidence limits define the confidence intervals for estimating the parameter a.

The definition of the confidence intervals faces some difficulties since the law
of distribution of ~a depends on the unknown value of a (i.e., the parameters of the
probability distribution of ~a depend on the parameters of a). This difficulty can be
avoided if a particular function of y1; . . .; yn is defined. The definition of such a
function should be managed in a way that allows its distribution to be independent
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of the value of a, but it should depend only on the sample size and on the dis-
tribution law of Y . If Y has a normal law of distribution, the value

t ¼
ffiffiffi
n
p my � ~my

sy

ð3:61Þ

is the Student distribution law [3, 10].
The Student distribution depends on the degree of freedom (i.e., on the sample

size), which is defined by the number of the observations N, reduced by the
number of the linear relationships between them. Here, the estimate of the
mathematical expectation ~my (see 3.58) is one linear relationship between
y1; . . .; yn. Thus, the degree of freedom is m ¼ n� 1. The Student distribution
depends on the degree of freedom and when m!1 (very often m[ 30), it
coincides with the Gaussian law.

If a degree of freedom m and a confidence level b (or a level of significance
a ¼ 1� b) are preliminarily defined, it is possible to determine the confidence
limits of t:

�t m;
a
2

� �
� t� t m;

a
2

� �
: ð3:62Þ

The latter means that the limit b defines the interval where the true value of t
belongs. The values of b can be determined from tabulated data of t [10].

The introduction of the variable t (3.61) and the interval (3.62) allows us to
determine the confidence interval of the mathematical expectation:

~my � t m;
a
2

� � syffiffiffi
n
p � ~my� ~my þ t m;

a
2

� � syffiffiffi
n
p : ð3:63Þ

The length of the confidence interval is 2d, where d is defined as

d ¼ t m;
a
2

� � sffiffiffi
n
p : ð3:64Þ

Obviously, the value of d decreases as the number of the experimental obser-
vations (the sample size) increases.

The confidence interval of the dispersion can be defined in a similar manner.
For that purpose, we need the v2 distribution:

v 2 ¼
Xn

u¼1

yu � ~my

r

� �2

: ð3:65Þ

As discussed earlier (see 3.43) the value of v 2 represents the distribution of the
random variable y2

1; . . .; y2
n (where y1; . . .; yn have a Gaussian distribution)

depending on the degree of freedom m and the level of significance a, so

v 2 m;
a
2

� �
	 0: ð3:66Þ
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The v2 distribution is noncentral, which means it is an asymmetric one within
the interval 0;1ð Þ. The increase of the value of m diminishes the asymmetry. The
confidence limits of the confidence interval where v 2 belongs are

�v2 m;
a
2

� �
� v2� v2 m; 1� a

2

� �
: ð3:67Þ

The forms of (3.59) and (3.65) allow us to define

s2
y ¼

r2

m
v2: ð3:68Þ

Therefore, the final form of the confidence interval of the dispersion is

m s2
y

v2 m; 1� a
2

� � � r2�
m s2

y

v2 m; a
2

� � : ð3:69Þ

3.4 Tests of Hypotheses

The building of the models is related to various hypotheses and their tests [3, 10].
First, the hypothesis concerning the structure of the model should be considered,
which involves a test of the model adequacy. Other important hypothesis concerns
the factors affecting the process, i.e., a check of model parameter significance.

Despite the variety of hypotheses, their tests concern some principal conse-
quences of them, very often represented by random variables. Generally, we
suggest that a particular statistical distribution is associated with the hypothesis,
i.e., we suppose that this statistical hypothesis is true. However, if the results of the
random sample differ from those expected under the hypothesis chosen, then we
need to decide if the observed differences are significant or not. This test requires a
sequence of rules, or in other words criteria of hypothesis significance.

The procedures that allow us to decide whether the observed sample differ from
the results expected, or in other words whether we should accept or reject the
hypothesis, are often called tests ofhypotheses, tests of significance, rules of
decision, or simply decision rules.

If the hypothesis that should be accepted was rejected owing to the test, a type I
error occurred. Otherwise, if we accept a hypothesis that should be rejected, this
means a type II error occurred. Therefore, the decision rules should be designed in
a manner that minimizes the possibility of wrong decisions. Very often, this is not
a simple procedure, since if we reduce some types of errors in a particular sample,
we obviously increase the other types of errors. The only general rule to minimize
both types of errors is to increase the sample size if this is possible.

In the test of a given hypothesis, the maximum probability of minimizing the
risk of a wrong decision, e.g., type I, is called the level of significance or the
significance level of the test performed. This probability, denoted by a, is generally
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defined before the sample is drawn. This means that the result obtained does not
affect the choice.

It is customary to use significance levels of 0:05 and 0:01. This common
practice does not prevent the use of other values of a. The value of a ¼ 0:05 (5%)
is often chosen at the beginning of test. This means that there are five chances in
100 to reject the correct hypothesis or, in other words, we are about 95%confident
that the decision is right. Otherwise, if the hypothesis is rejected under the prolific
assumption of a 0:05 significance level, this means that the hypothesis has 5%
probability of being wrong.

The main idea of the test supposes that the parameter of the random variable
distribution Y takes a particular value a0. This is the so-called null hypothesis:

H0 : a ¼ a0: ð3:70Þ

Any hypotheses differing from a given hypothesis are called alternative
hypotheses. For example, if one hypothesis is p ¼ 0:5, alternatives could be
p ¼ 0:9, p 6¼ 0:5, or p [ 0:5. The alternative hypothesis to the null hypothesis is
often denoted by H1:

H1 : a 6¼ a0: ð3:71Þ

The test of H0 looks for a random variable n að Þ depending on the parameter a.
First, the distribution density of n að Þ must be determined assuming that the
hypothesis is true. The next step is to determine the confidence interval of n að Þ.
Under the assumption of a confidence limit b and a level of significance a ¼ 1� b,
the confidence interval is

n m;
a
2

� �
� n a0ð Þ� n m; 1� a

2

� �
: ð3:72Þ

The next step is to define the estimate ~a of the parameter a. If the hypothesis is
true, n ~að Þ satisfies condition (3.72), i.e., n ~að Þ belongs to the confidence interval.

In many cases of the statistical analysis of the models, a test of a null hypothesis
of the variances is required. Obviously, the null hypothesis concerns

H0 : r2
1 ¼ r2

2: ð3:73Þ

The procedure needs the application of the distribution of the F statistic (3.52):

F ¼
s2

1

s2
2

� �
r2

1

r2
2

� �: ð3:74Þ

If the null hypothesis is true, (3.74) becomes

F ¼ s2
1

s2
2

: ð3:75Þ

The confidence interval at a level of significance 2a is
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F0 a; m1; m2ð Þ� s2
1

s2
2

�F a; m1; m2ð Þ: ð3:76Þ

If we utilize the fact that for the F statistic

F0 a; m1; m2ð Þ ¼ 1
F a; m1; m2ð Þ ; ð3:77Þ

it follows immediately that

1

F a; m1; m2

� � � s2
1

s2
2

�F a; m1; m2

� �
: ð3:78Þ

The tabulated values of F (see, e.g., [12, 13]) indicate that F a; m1; m2ð Þ	 1, i.e.,
1=F� 1. This allows us to apply a one-sided criterion in the case of s2

1 [ s2
2. This

means that we have

s2
1

s2
2

�F a; m1; m2ð Þ; m1 ¼ n1 � 1; m2 ¼ n2 � 1ð Þ: ð3:79Þ

If condition (3.79) is satisfied, the null hypothesis is true; otherwise, it must be
rejected. Condition (3.79) means that the dispersions are equal and F	 1 is the
maximum deviation of the ratio s2

1


s2

2

� �
from 1 owing to random errors.

In some tests concerning the statistical analysis of the models, the problem is to
verify the homogeneity of the dispersion. This requires applying the null
hypothesis:

H0 : r2
1 ¼ r2

2 ¼ . . . ¼ r2
k: ð3:80Þ

For that purpose the random variable

G ¼ smaxð Þ2

s2
1 þ s2

2 þ . . .þ s2
k

ð3:81Þ

must be created. Here, s2
k is the maximum value of the estimates s2

1; . . .; s2
k.

The calculated value of G must be compared with the tabulated values of
G a; k; mð Þ [12] at a particular significance level under the condition imposed by the
number of the samples drawn from the population k and sizes n (v ¼ n� 1). If the
comparison between the calculated and the tabulated values gives

G�G a; k; mð Þ; ð3:82Þ

the null hypothesis is true; otherwise, it should be rejected.
If coarse errors occur in the sample, this could lead to wrong results despite the

correct statistical tests having been performed. The tests assume that all the errors
have a random nature, so the preliminary detection of the coarse errors and their
rejections is an important step of model analysis. The deviation of the coarse error
y
 from the estimate of the mathematical expectation ~my and the ratio
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s ¼
y
 � ~my

�� ��
sy

ð3:83Þ

allow us to detect coarse errors among the sample drawn.
The values of s 1� a; nð Þ at given significance level a and a sample size n are

available in a tabulated form [12]. If s � s 1� a; nð Þ, the deviation y
 is not a
result of a coarse error; otherwise, the observation must be rejected.

3.5 Dispersion Analysis

In many cases, the analysis of the dispersion enables us to detect some important
facts about it [3, 9]. For example, if we consider a particular model, it is important
to minimize the number of factors determining the objective function. Usually, the
analysis looks for factors whose magnitudes are comparable with the order of
magnitude of the experimental error. They should be rejected as unimportant for
the model.

The dispersion analysis concerning the effect of a factor A on the objective
function y needs experimental data yij at different levels of the factor
Ai i = 1,. . .; kð Þ. Each level of the factor requires n experiments j = 1,. . .; nð Þ. If
li i = 1,. . .; kð Þ denotes the mathematical expectation of the experimental data at
each ith level of A, the test needed is the null hypothesis, i.e.,

H0 : l1 ¼ l2 ¼ . . . ¼ lk: ð3:84Þ

Obviously, if the null hypothesis is true, the factor A does not affect the
objective function and it should be omitted from the model.

The mathematical expectations li require us to determine the arithmetic means
of the experiments performed (i.e., the mean of the samples drawn from the
experiments):

�y1 ¼
1
n

Xn

j¼1

yi j ; �y ¼ 1
k

Xk

i¼1

�yi ¼
1

nk

Xk

i¼1

Xn

j¼1

yi j: ð3:85Þ

Let us consider the dispersion S2of the random variable Y following from (3.59)
at ~my ¼ �y:

S2 ¼ Q

m
; ð3:86Þ

where

Q ¼
Xk

i¼1

Xn

j¼1

yij � �y
� �2

; m ¼ kn� 1: ð3:87Þ

The degrees of freedom m ¼ kn� 1 result from the number of experiments
knreduced by one linear relationship (3.85) between yij i = 1,. . .k, j = 1,. . .; nð Þ in
the expression for �y.
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The sum Q may be expressed as

Q ¼
Xk

i¼1

Xn

j¼1

yi j � �yi þ �yi � �y
� �2

: ð3:88Þ

This allows us to obtain directly that

Q ¼ Q1 þ Qe; Q1 ¼
Xk

i¼1

Xn

j¼1

�y1 � �yð Þ
2

¼ n
Xk

i¼1

�yi � �yð Þ2;

Qe ¼
Xk

i¼1

Xn

j¼1

yij � �yi

� �2

;

ð3:89Þ

where the following relationship is valid:

Xk

i¼1

Xn

j¼1

yi j � �yi

� �
�yi � �yð Þ ¼

Xk

i¼1

Bi �yi � �y
� �

¼ 0; ð3:90Þ

since from (3.85) we have

Bi ¼
Xn

j¼1

yi j � �yi

� �
¼
Xn

j¼1

yi j � n�yi ¼ 0: ð3:91Þ

The degree of freedom m1 results from Q1, where the random variables
�yi i = 1,. . .; kð Þ participate. One linear relationship exists between them in the form
(3.89) (i.e., the relationship between �y and �yi, i = 1,. . .; k, so we have m1 ¼ k� 1).
In a similar way it is possible to determine me ¼ nk� k = k n� 1ð Þ since the
number of experiments in Qe is kn and the linear relationships between them are k
through �yi i = 1,. . .; kð Þ.

The above manipulations of the formulae permit us to determine the dispersion
estimates:

S2
1 ¼

Q1

m1
; S2

e ¼
Qe

me
; S2 ¼ Q

m
: ð3:92Þ

The form of (3.92) indicates that both the error of the experiments and that of
the factor A effect contribute to the dispersion S2. On the other hand, in S2

1 and S2
e

these effects are separated.
Let us suppose that factor A does not affect the random variable y if the

dispersion r2
1 relevant to its effect equals the dispersion of the experimental errors,

i.e., r2
1 ¼ r2

e . In this case, a more convenient way is to utilize the random variable
(3.75), expressed through the F statistic:

F ¼ S2
1

S2
e
; ð3:93Þ
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where S2
1 and S2

e have v2 distributions since Q1 and Qe are sums of random variable
with normal density distributions. The ratio of two v2-distributed random variables
has an F distribution and if F from (3.93) satisfies the condition

F�F a; m1; m2ð Þ; ð3:94Þ

the factor A does not affect the random variable, since the null hypothesis H0 :

r2
1 ¼ r2

2 is true.
Otherwise, the effect of the factor A is significant.

3.6 Significance of Parameter Estimates and Model Adequacy

The main problem arising during the statistical analysis of models is the test of the
significances ofthe parameter estimates and model adequacy. The problem solu-
tion needs testing for two statistical hypotheses:

1. The first hypothesis is H : b ¼ 0, where b is the estimate of the parameter under
consideration.

2. The second step is to test the hypothesis that H : r2 ¼ r2
e , where r2 is the

dispersion of the model and r2
e is the dispersion of the experimental data.

The test concerning the significance of the parameter estimates and the model
adequacy can be performed through an example of a regression model (see, e.g.,
2.5.5). The regression models permit us to perform the test in a more general form.
The approach will be described in detail in the cases of particular models discussed
further.

The test of the significance of the regression model (2.5.5) requires the
hypothesis of the existence of null coefficients to be proved [12]. At the beginning,
several experimental values of the objective function
yu0 ; u0¼ 1;. . .; n0 n0¼ 5� 10ð Þ, obtained under the same conditions, are required.
The latter means the factors x

u0
¼ x1u0 ; . . .; xmu0ð Þ must be kept constant. These

experiments should be designed either as part of the experiments required deter-
mining the parameters bi i ¼ 1; . . .; kð Þ or as special experiments concerning only
the statistical analysis of the model.

Let us assume that the coefficients bi i ¼ 1; . . .; kð Þ of the model (2.6.6) are
independent. The insignificance of the estimate bi0 can be determined by utilizing
the Student density distribution (3.61), which in this particular case is

ti0 ¼
bi0 � bi0

s bi0ð Þ
: ð3:95Þ

It is necessary to put bi0 ¼ 0 in (3.95) and for the dispersion estimate s bi0ð Þ of
the coefficients bi0 to be expressed through the dispersion of error of the experi-
mental data:
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s bi0ð Þ ¼
ffiffiffiffiffiffiffiffi
ci0i0
p

se; ð3:96Þ

where cij are diagonal elements of the matrix C, i.e., inverse matrix of A (see
3.6.9):

C ¼ cij

�� �� ¼ A�1; i = 1,. . .; k; j = 1,. . .; k: ð3:97Þ

As a result,

ti0 ¼
bi0

se
ffiffiffiffiffiffiffiffi
ci0i0
p ; i = 1,. . .; k, ð3:98Þ

where s2
e is the biased estimate of the dispersion of the random variable y taking

values of yu0 , u0¼ 1;. . .; n0,

se ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n0 � 1

Xn0

u0¼1

yu0 � ~my

� �2

vuut ; ð3:99Þ

determined through the estimate of the mathematical expectation of y,

~my ¼
1
n0

Xn0

u0¼1

yu0
: ð3:100Þ

At a preliminarily chosen level of significance a, it is possible to determine the
tabulated value [9] of the Student distribution t a

2 ; me

� �
, where the degree of free-

dom is me ¼ n� 1. The

ti0k k� t
a
2
; me

� �
ð3:101Þ

condition concerning the coefficient bi0 confirms the hypothesis bi0 ¼ 0, i.e., it
proves the insignificance of the coefficient.

The employment of models for process simulation is the correct approach if
their adequacy is proved. The term adequacy means the calculated and the
experimental values of the objective function are congruent, i.e., the variances of
the errors of the calculated and experimental values of the objective function are
equal. The adequacy of the model depends both on the chance of building a
suitable mathematical structure and the subsequent correct calculation of the
model parameters. Obviously, as already mentioned for the parameter significance,
the adequacy depends on the right choice of the function fi i ¼ 1; . . .; kð Þ utilized in
(2.5.5).

The methods testing the adequacy do not depend on the model structure and the
form of its expression. They are defined by data from several measurements of the
objective function, at fixed values of the factors, performed for few typical regimes
of the process. In many cases, however, it is necessary to compare the effect of the
nonadequacy on the calculated values of the objective function. Thus, that effect
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of the nonadequacy needs to be compared with the effect of the random errors on
the objective function. The latter means that a hypothesis test concerning the
equality of the dispersion of both the model and the experimental error is required.

Let us consider, as the previous example, that the test of adequacy is performed
based on n additional experiments performed at fixed values of the factors. The
model parameters are determined preliminarily through treatment of the data of N
experiments. Therefore, the residual sum of squares [12, 13] can be formed:

Qres ¼
XN

u¼1

yu � ŷuð Þ2; ð3:102Þ

where ŷu values of y are calculated through model (2.5.6). It is clear that Qres is a
random variable representing the error of the model. The estimation of the dis-
persion of Qres is

sres ¼
Qres

mres

¼ Qres

N� k
: ð3:103Þ

The degree of freedom mres ¼ N� k depends on both the number of experi-
ments N and the number of linear relationships between yu in (3.6.9). Obviously,
the number of linear relationships equals the number of the model coefficients k.

The random error dispersion s2
e from the experiments should be calculated

through (3.99) and (3.100), which allows us to form the dispersion ratio

F ¼ s2
res

s2
e

: ð3:104Þ

Very often, s2
res [ s2

e since s2
res accumulate both the model nonadequacy and the

experimental errors.
The adequacy condition means

F�F a; mres; með Þ; ð3:105Þ

where F a; mres; með Þ is a tabulated value of the F distribution [12, 13]
A second important case is the situation where there are multiple observations

under the conditions of several regimes. This case does not require additional
experiments for the evaluation of the dispersion estimate s2

e .
If p is the number of experiments p ¼ 1; . . .; nð Þ and q is the number of

observations during these p experiments q ¼ 1; . . .;Vp

� �
, the total number of

experimental data is

N ¼
Xn

p¼1

Vp ¼ nþ
Xn

p¼1

Vp � 1
� �

: ð3:106Þ

In this case [12, 13]

Qres ¼ QL þ Qe: ð3:107Þ
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Here, QL is relevant to the model nonadequacy (a systematic error), whereas Qe

is the experimental error (random error).Thus,

Qe ¼
Xn

p¼1

XVp

q¼1

ypq � �yp

� �2
; �yp ¼

1
Vp

XVp

q¼1

ypq;

QL ¼ Qres � Qe ¼
Xn

p¼1

Vp �yp � ŷp

� �2
:

ð3:108Þ

The degrees of freedom are [13]

me ¼
Xn

p¼1

Vp � 1
� �

¼ N� n, mL ¼ mres � me ¼ N� k� N� nð Þ ¼ n� k:

ð3:109Þ

The adequacy test considers both the estimates of the dispersions and the
dispersion ratio:

s2
L ¼

QL

mL

; s2
e ¼

Qe

me
; F ¼ s2

L

s2
e

: ð3:110Þ

Comparison with the tabulated data of the F distribution F a; mL; með Þ should lead
to the adequacycondition:

F�F a; mL; með Þ: ð3:111Þ

The existence of multiple observations through several experiments (regimes)
permits us to test the dispersion homogeneity. The latter means that the distri-
bution of the dispersion of the experimental error should be uniform over the area
where the factors vary. The procedure concerns forming the criterion G (see 3.81).
The condition G�G a; k; mð Þ is a necessary condition of the model adequacy.

3.7 Model Suitability

In some situations, there is no possibility to repeat the experiments several times to
define s2

e as was mentioned earlier. Very often this situation follows from passive
experiments concerning the determination of the parameters bi or when the
experiments are very expensive or a long time is needed for a single experiment
(e.g., a biotechnology experiment). In this case the model suitability, from the
point of view of process simulation, can be evaluated on the basis of the coefficient
of multiple correlations R. The latter requires the sum

Q ¼
XN

u¼1

yu � �yð Þ2; �y ¼ 1
N

XN

u¼1

yu ð3:112Þ
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and its decomposition [13]

Q ¼ QR þ Qres; QR ¼
XN

u¼1

ŷu � �yð Þ2; Qres ¼
XN

u¼1

yu � ŷuð Þ2: ð3:113Þ

Obviously, the degrees of freedom of the sums Q ; QR, and Qres are

m ¼ N� 1; mR ¼ k� 1; mres ¼ N� k: ð3:114Þ

The coefficient of multiple correlation [2, 12, 13] is

R ¼
ffiffiffiffiffiffi
QR

Q

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Qres

Q

s
: ð3:115Þ

The condition for model suitability requires R to be very close to 1. Sometimes
R ¼ 1 but the model is not adequate [12, 13]. The reliability of the estimation of
the model adequacy increases as the degree of freedom mres increases. This can be
estimated through the ratio of dispersions:

F ¼
Q�Qres

k�1

� �
Qres

N�k

� � ¼ R2 N� kð Þ
1� R2ð Þ k� 1ð Þ : ð3:116Þ

The tabulated values of the F distribution allow two conclusions to be drawn:

1. If F [ F a; mR; mresð Þ, the coefficient of multiple correlation is significant and the
model is suitable for simulation.

2. If F�F a; mR; mresð Þ, the coefficient of multiple correlation is insignificant and
the model is unsuitable for simulation.

The tests concerning the significance of the estimates of the model coefficients
and the adequacy of the criteria models are similar to those of the regression
models after taking logarithms.

3.8 Adequacy of the Theoretical Models and Model Theories

The parameters of the theoretical models and model theories are considered as
exactly defined, i.e., they are not random variables. Therefore, there is no need to
perform procedures for their determination as well as tests of their significances.
The analysis of the significance of the dimensionless parameters is a problem that
was especially discussed (See page 187 and the next). Thus, the problem con-
cerning the adequacy of the theoretical models will be discussed only. The results
are valid also for the model theories and vice versa.

Let the objective function of a theoretical model (model theory) is expressed in
a general form:
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ŷ ¼ / x1; . . .; xm ; b1; . . .; bkð Þ; ð3:117Þ

where the parameters b1; . . .;bk participate with their true values (they are not
random variables) and very often / is nonlinear with respect the parameters
b1; . . .; bk.

The existence of experimentally determined values of the objective function yu

derived under different regimes x1u; . . .; xmu; u ¼ 1; . . .;N allows us to calculate
the residual sum of the squares:

Qres ¼
XN

u¼1

yu � ŷuð Þ2; ð3:118Þ

where ŷu are calculated through the model (3.117), i.e.,

ŷu ¼ / x1u; . . .; xmu; b1; . . .; bkð Þ; u ¼ 1; . . .;N: ð3:119Þ

In this case ŷu u = 1,. . .;Nð Þ are not random variables, since they are calculated
through the exact values of x and b. Therefore, the degree of freedom of Qres and
mres is N, which allows us to determine the dispersion estimate:

s2
res ¼

Qres

N
: ð3:120Þ

The dispersion of the random experimental error s2
e can be determined in a way

similar to that applied to the regression models (3.99). The determination the
dispersion ratio

F ¼ s2
res

s2
e

ð3:121Þ

permits us to apply the condition of model adequacy:

F�F a;N; n� 1ð Þ; ð3:122Þ

where F a;N; n� 1ð Þ is the tabulated value [12] of the F distribution at signifi-
cance level a.

The analysis of the model adequacy would be very successful if multiple
measurements from several experiments were available. Such a situation would
allow us to determine the uniform distribution of the dispersion of the experi-
mental error over the area where the factors vary. Under such conditions, the
adequacy can be determined through a method similar to that applied to the
regression models, but mres ¼ N mL ¼ nð Þ. This requires applying randomized
experimental plans like those ones discussed further (See page 268 and the next).

The nonlinear relationship between ŷ and b1; . . .; bk does not permit us to apply
the coefficient of multiple correlations for estimation of the model suitability when

294 Quantitative Analysis



there are no additional observations. In other words, the multiple observations
performed under different regimes are obligatory for the analysis of the adequacy
of the theoretical models.

4 Example

4.1 Statistical Analysis of Diffusion Type Models

The parameters of the diffusion-type models are determined using experimental
data and as a result they are random numbers, but the test of significance can be
performed, like in the case of the theoretical models.

The statistical analysis of the model adequacy faces difficulties mainly because
of the nonlinearity of the objective function (with respect to the parameters). This
leads to methods applicable (as discussed earlier) to the theoretical models.
However, there is a small difference since ŷu n ¼ 1; . . .;Nð Þ are random variables
because of the errors of the determination of b1; . . .; bk. The latter sets up the
problem of the degree of freedom mres. The problem can be solved with a certain
approximation like in the case of the linear regressions, i.e., mres ¼ N� k. The idea
is that close to the area of the parameters determined the objective function can be
expressed through a Taylor series with respect to the parameters. Thus, (3.120) can
be expressed as

s2
res ¼

Qres

N� k
: ð4:1Þ

The further analysis is like that discussed for the theoretical models.
The statistical analysis of the model adequacy permits us to confirm or to reject

a particular mathematical structure employed for a process description. In the case
where the mathematical structure follows directly from the process mechanism,
the proof of the model adequacy can be utilized to test whether the suggested
mechanism is adequate or not. Thus, the modeling can be applied for the analysis
of the process mechanism by means of experimental data.

The methods of statistical model analysis presented are valid under three
conditions:

1. The objective function is a random variable with a Gaussian density
distribution.

2. The dispersion of the experimental error (determined through multiple mea-
surements) is the same, i.e., does not vary because of the regime.

3. The errors occurring during the measurements of the factors are negligible with
respect to the errors introduced when the measurement of the objective function
take places.

There are methods for solving the problems when these conditions are not
satisfied.
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Stability Analysis

The theoretical analysis of the non-linear mass transfer shows (See page 140 and
the next) that the systems with intensive mass transfer are characterized by a
number of nonlinear effects. They change significantly both the kinetics and the
mass transfer mechanism as a result of the mass transfer effects on the hydrody-
namics of the system. The change may have a significantly greater effect if the
system loses its stability and reaches a new stable state (a self-organization of a
dissipative system). The mathematical description of these systems may be done on
the basis of the stability theory.

1 Stability Theory

Various problems concern the behavior of systems (mechanical, chemical, phys-
ical, and economic) when they are far from their equilibrium state. The behavior
depends on the system stability, i.e., it is related to the ability of a system to
undergo a sharp change for a smooth change of the external conditions.

The system stability is also a feature of its mathematical description. This needs
a short description of the theory of the mathematical stability required for further
development of the hydrodynamic stability theory. However, in all situations the
stability will be considered as a specific feature of a particular process.

1.1 Evolution Equations

Let us assume that the features of the systems may be determined by the quantities
xi (i = 1,…,n). This permits us to consider the state of the system as a point in
n-dimensional space with coordinates xi (i = 1,…,n) (a phase space) [1–3].
The rate of change of the system features in time is a vector in the n-dimensional
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space. The projections on the coordinate axis dxi
dt i ¼ 1; � � � ; nð Þ satisfy the evolution

law of the system:

dxi

dt
¼ Xi x1; � � � ; xn; tð Þ; xi 0ð Þ ¼ xi0; i ¼ 1; � � � ; n: ð1:1Þ

The evolution Eq. 1.1 for systems with laws independent of time are termed
autonomous equations:

dxi

dt
¼ Xi x1; � � � ; xnð Þ; xi 0ð Þ ¼ xi0; i ¼ 1; � � � ; n: ð1:2Þ

The components of the phase velocity Xi (i = 1,…,n) are the coordinates of the
vector field of the same phase velocity and determine the velocity of the system in
the phase space. The points xi tð Þ; i ¼ 1; � � � ; n; represent a curve (a phase tra-
jectory) in the scalar phase space (field).

Let us consider the autonomous equation for simplicity of explanation:

dx

dt
¼ X xð Þ; x 0ð Þ ¼ x0: ð1:3Þ

Let us assume that

X xð Þ ¼ 0; ð1:4Þ

i.e.,

X að Þ ¼ 0: ð1:5Þ

It follows from (1.5) that the point x = a may be considered as a stationary
point (the system velocity is zero). If a = x0, it is clear that

xðtÞ � a ð1:6Þ

is a solution of (1.3) for a = x0, where a is a singular point.
Let us consider the linear version of Eq. 1.3 and its solution for exactness:

dx

dt
¼ kx; x 0ð Þ ¼ x0; x ¼ x0 exp ktð Þ: ð1:7Þ

It is clear from (1.7) that x = 0 is a singular point, i.e., x0 = 0 and the solution
of (1.7) has the following features (see Fig. 1):

k\0; lim
t!1

x tð Þ ¼ 0; 8x0; ð1:8Þ

k ¼ 0; x ¼ x0; 8x0; ð1:9Þ

k[ 0; x ¼ x0 and x ¼ 0;

k [ 0; lim
t!1

x tð Þ ! 1; 8x0 [ 0;
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k[ 0; lim
t!1

x tð Þ ! �1; 8x0\0: ð1:10Þ

The multiformity of the solution at k[ 0 is not a result of its nonuniqueness,
but t is due to the solution instability with respect of the small perturbation of the
initial condition (x0).

Inequality (1.8) leads to the following conclusions:

1. The solution (the process) is unstable at k[ 0 and the small deviations of the
initial state x0 = 0 lead to deviations of the solution x = 0.

2. At k B 0 the solution is unstable for each x0.
3. At k B 0 the solution approaches the singular point x = 0, i.e., the stationary

point becomes a focus of attraction of the solution (an attractor).

Linear equation (1.7) together with the conditions for the solution stability are
attractive ones because they provide the basis of the kinetics models of many
important processes (evolution of organisms, nuclear processes, chemical reac-
tions, etc.). These features in the area of real numbers (R) become more interesting
in the complex area (C), where Eq. 1.7 has the form

dz

dt
¼ kz; z 2 C; k 2 C; t 2 R;

z 0ð Þ ¼ z0; z tð Þ ¼ z0 exp ktð Þ: ð1:11Þ

It follows from (1.11) that if k is a real number, the same is valid for z.
In the cases when k is an imaginary number (k = ix, i2 = -1), the solution of

(1.11) is a complex number because the Euler formula gives

z ¼ z0 exp ktð Þ ¼ z0 exp ixtð Þ ¼ z0 cos xt þ i sin tð Þ ¼ fþ ig: ð1:12Þ

Thus, the solution (1.12) is a circle in the plane of the complex numbers (Fig. 2)
and the phase points moves along that circular trajectory clockwise (x \ 0) or in
the opposite direction (x[ 0).

When k is complex number,

k ¼ aþ ixt; ð1:13Þ

it follows directly from (5.11) that

t t t
λ>0 λ<0 λ=0 

eλt

eλt eλt

Fig. 1 Solution of Eq. 1.7
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z ¼ z0 exp ktð Þ ¼ z0 exp atð Þ exp ix tð Þ ¼ z0 exp atð Þ cos xt þ i sin x tð Þ ¼ xþ iy;

ð1:14Þ

i.e., the solution is a complex number. However, this periodic solution has variable
amplitude z0 exp (at) depending on a. At a[ 0 the solution is unstable

lim
t!1

z tð Þ ¼ �1
h i

:

At a B 0 the solution (1.14) is stable (see Fig. 3). The solution (1.14) shows
that at z = 0 is the unique singular point, termed a focus. The focuses may be
stable or unstable depending on whether they are or are not attractors for the
solution (see Fig. 4). At a\ 0 the focuses are stable, whereas at a[ 0 they are
unstable.

At a = 0 and x = 0 the phase curves are circles (Fig. 2) and the singular
point is their center.

The use of complex variables provides a number of advantages for the math-
ematical analysis of the process stability. However, with real processes the real

a=0, ω >0
a<0, ω >0

Fig. 3 Complex solution (1.14). C denotes the complex plane (x,y) and R corresponds to the real
axis t

ω >0 ω <0

ζ ζ

η η

Fig. 2 The solution of Eq. 1.12 in the plane of complex numbers
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parts make sense, i.e., the physical solutions are identical to the real parts of the
mathematical solutions. Thus, for real processes it follows from (5.14) that

z ¼ r exp atð Þ cos xt; r ¼ z0: ð1:15Þ

The solution obtained is a periodic solution and it may be stable (a\ 0) or
unstable (a[ 0), as shown in Fig. 5.

The simulation of stable processes may be carried out with stable models. The
unstable models are applicable for investigations on the transitions from one stable
state to the next one. They have been applied for the simulation of the transition
from stable to unstable states (processes such as explosions) and provide the basis
of the theory of catastrophes.

1.2 Bifurcation Theory

The bifurcation theory [4] is wide applied for investigations of jump reactions of
systems as responses to smooth changes of the external conditions. For real

α =0 
ω >0 

α <0 
ω<0 

α >0 
ω >0 

α >0 
ω <0 

Fig. 4 Stable (a\ 0) and unstable (a[ 0) focuses

α >0 α <0reαt

reαt

x x

t t

2π 2π
ω ω

Fig. 5 Stable (a\ 0) and unstable (a[ 0) periodic solutions

1 Stability Theory 301



systems it has been developed recently as a theory of catastrophes. Here, the
bifurcation theory will only be considered in two-dimensional phase space.

For clarity of explanation, let us consider a real evolutionary process occurring
in the phase plane (x,y). Its corresponding model is

dx

dt
¼ X x; y; lð Þ; dy

dt
¼ Y x; y; lð Þ; x 0ð Þ ¼ x0; y 0ð Þ ¼ y0: ð1:16Þ

The system evolution in time is represented by the phase trajectory (the tra-
jectory of the phase point) of the process:

F x; y; lð Þ ¼ 0; ð1:17Þ

where x(t) and y(t) in (1.16) are determined from the solution of (1.16). Depending
on the form of the relationships for X and Y in (1.16), the parameter l, and the
initial conditions x0 and y0, various phase trajectories are possible.

The variations of the parameter l lead to several interesting cases of the
solution of (1.16), as shown in Fig. 6. The case shown in Fig. 6a corresponds to a
periodic process which attenuates with time and approaches a focus (a stationary
state point). If another value of l is chosen, the process might be unstable and
periodic (Fig. 6b). The stable periodic processes (limit cycles) have closed tra-
jectories in the phase space (Fig. 6c). The change of the initial state (y0) of the
stable processes leads to attenuating processes approaching a stable periodic state
(Fig. 6d).

Figure 6 may be developed further for more complicated cases (see Fig. 7). It is
possible for two limit cycles (periodic processes and solutions) to exist, where one
of them (the internal one) is stable if the initial conditions are in the entire internal
area of the large cycle. The internal cycle attracts all the solutions, whereas the
external cycle is the unstable one (Fig. 7a).

The variations of the parameter l may lead to a junction of both cycles
(Fig. 7b). The junction of both an unstable cycle and a stable cycle (as those in
Fig. 7a) may lead to an abnormal limit cycle (Fig. 7b). In this case the solutions go
from the initial conditions in the internal area, approach the cycle, and then owing

Fig. 6 Phase trajectories: a periodic process which attenuates with time and approaches a focus
(a stationary state point); b unstable and periodic process; c stable periodic processes (limit
cycles); d stable periodic state
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to small perturbations may go out of the cycle, so the process becomes an unstable
one.

The further changes of l may lead to a situation where the limit cycle disap-
pears and the process becomes unstable (Fig. 7c).

The results obtained here show that the bifurcation theory considers qualita-
tively the changes of the movement of a phase point as a result of a continuous
variation of the model parameters. Parallel to the existence of stable points
(focuses), stable cycles exist. They describe stationary periodic oscillations of the
systems (self-oscillations). They differ from the free oscillations (e.g., of a pen-
dulum), where the system does not interact with the environment as well as from
the forced oscillations provoked by external periodic impacts.

The focuses and the limit cycles attracting the solution (the phase point) are
termed attractors.

The phase trajectory (1.17) depends on l because from (1.16) it follows that

x ¼ x t; lð Þ; y ¼ y t;lð Þ: ð1:18Þ

Let us assume that �x and �y are the coordinates of a singular point moving with a
liquid having a dynamic viscosity l:

�x ¼ x 1; lð Þ\1; �y ¼ y 1;lð Þ\1; ð1:19Þ

The different values of l determine different singular points (1.19) forming a
continuous curve in the phase space:

F �x;�y; lð Þ ¼ F p lð Þ½ � ¼ 0: ð1:20Þ

Here p(l) is a continuous function and is the geometric locus of the singular
points for various values of the parameter l.

Let us assume that the point [l,p(l)] attracts the solution for l[ l0. In this case
the point [l0,p(l0)] is pitchfork point (a bifurcation point) of the flux F(x,y,l) in
the vector field determined by (1.16). This means that at t ? ? the trajectory of

Fig. 7 Limit cycles: a two limit cycles (periodic processes and solutions); b junction of both an
unstable cycle and a stable cycle; c limit cycle disappears and the process becomes unstable
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the flux approaches p(l) for l\l0. At l[ l0 the singular point p(l) is unstable.
Further, such bifurcations leading to stable regimes for l[ l0 will be considered.

Let us suppose that there are several curves pi(l), i = 1, 2,…, where
F(pi(l)) = 0, i = 1, 2,…. At l = l0 it is possible to find a common point of the
curves p1(l0) = p2(l0) = …. Moreover, it is possible for some of these curves to
be stable ones at l[ l0, so they are a locus of singular points. Thus, different
types of bifurcations are possible. The further discussion will consider a bifurca-
tion leading to a developed cycle from a focus that is important for hydrodynamic
stability.

Figure 8 shows bifurcations of cycle transitions from focuses; the space map of
F(x,y,l) is used. The case in Fig. 8a corresponds to a supercritical bifurcation
(stable closed trajectories), whereas the case in Fig. 8b corresponds to a subcritical
bifurcation (unstable and closed trajectories).

In Fig. 8a the points (x,y,l) are singular at x = 0, y = 0, l B 0 [i.e.,
F(0,0,l) = 0] and become stable at l B 0. The points (0,0,l) at (l[ 0) are
unstable singular points. The trajectories F(x,y,l0) = 0 at l0 [ 0 are closed and
stable. Moreover, it is clear from Fig. 8a that owing to the shape of the surface
F(x,y,l) = 0 there are closed unstable trajectories F(x,y,l0) = 0 at l0 \ 0.

Further, Fig. 8a shows the mechanism of a transition from a stable point (focus)
towards a stable orbit (cycle). This type of bifurcation is shown in Fig. 9. The
stages of the transition are (1) a stable point, (2) the occurrence of a closed
trajectory, and (3) an increase of the amplitude of the closed trajectory. This order
leads to the existence of a stable three-dimensional torus.

Fig. 8 Bifurcation of cycle
transitions from focuses: a
supercritical bifurcation (sta-
ble closed trajectories); b
subcritical bifurcation
(unstable and closed
trajectories)
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1.3 Eigenvalue Problems

The analysis of the processes and the systems made in the previous section con-
cerns the stability of the solutions as functions of the model parameters. This
requires a solution of differential equations with parameters. When the boundary
conditions contain function values at two different points, this leads to eigenvalue
problems. The solution of such a problem will be demonstrated by an example of a
homogeneous equation in the real numbers area:

y0 þ f xð Þ � kg xð Þ½ � y ¼ 0; ð1:21Þ

with boundary condition

y bð Þ ¼ ay að Þ; a 6¼ 0; ð1:22Þ

where k is a parameter y(a) = C is an arbitrary number.
The solution of (1.21) is well known:

y ¼ C exp �
Zx

a

f � k gð Þ dx

2
4

3
5: ð1:23Þ

The substitution of (1.23) into (1.22) (made to estimate the constant C) shows
that condition (1.22) is satisfied only in the case of k = k0:

k0 ¼
ln kþ

R b

a
fdxR b

a
gdx

; ð1:24Þ

which is well known as an eigenvalue. The substitution of (1.24) into (1.23) leads
to an eigenfunction. Thus, for example, at f : 0 and g : 1 it follows directly that

k0 ¼
ln a

b� a
; y ¼ C exp � ln a x� að Þ

b� a

� �
: ð1:25Þ

It is well demonstrated in the differential equation theory [5] that if
Rb
a

g dx 6¼ 0;

there is an infinite set of eigenvalues:

Fig. 9 Mechanism of a tran-
sition from a focus towards a
cycle
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kk ¼ k0 þ
2kpi
Rb
a

gdx

; k ¼ 0;�1;�2; � � � ð1:26Þ

2 Hydrodynamic Stability

Most industrial-scale processes depend on the stability of the fluid flow. The
equations describing such fluid (gas or liquid) flows are typical evolutionary
equations and relate to the change of both the velocity and the pressure with time.
This permits us to use the approaches developed already for stability analysis of
evolutionary equations for these hydrodynamic equations [6].

2.1 Fundamental Equations

Let us consider a fluid (liquid or gas) flow with kinematic viscosity m under the
action of external forces F(x,t) or due to the movement of the boundary S(t) of a
closed volume V(t). The velocity field U(x,t) is determined by the Navier–Stokes
equations expressed for the velocity U and the pressure p in a volume V:

oU

ot
þ grad � Uð ÞU � mr2U þ grad p� F x; tð Þ ¼ 0; div U ¼ 0; ð2:1Þ

where x is the coordinate vector. The boundary conditions for (2.1) are

U x; tð Þ ¼ Us x; tð Þ; x 2 S tð Þ; t� 0; ð2:2Þ

The corresponding initial conditions are:

U x; 0ð Þ ¼ U0 xð Þ; x 2 V 0ð Þ: ð2:3Þ

The solution of (2.1)–(2.3) is the function

U ¼ U x; t; m;U0ð Þ: ð2:4Þ

In (2.4) there is no term for p because the pressure is determined directly by the
velocity function solution U and it may be omitted [7] in (2.1).

The hydrodynamic stability will be considered as the flow stability (solution
stability) under the variation of the parameters U0 and m. Two solutions at a given
value of m and different initial conditions will be considered:

U ¼ U x; t; U0ð Þ; Ua ¼ U x; t; U0 þ u0ð Þ; ð2:5Þ
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where U is the velocity of the main flow, Ua is the velocity of the disturbed flow,
and u0 = u0 (x) is a perturbation. The difference between the velocity of the main
flow and that of the disturbed flow is a function representing the perturbation
evolution:

u x; tð Þ ¼ Ua � U: ð2:6Þ

It may be determined directly from (2.1) to (2.6) that

ou

ot
þ grad � Uð Þuþ grad � uð ÞU þ grad � uð Þu� mr2uþ grad P ¼ 0;

div u ¼ 0; u sj ¼ 0; u t¼0j ¼ u0 xð Þ; P ¼ pa � p: ð2:7Þ

Equations (2.7) are the vector forms of the evolutionary hydrodynamics
equations. If the flow is stable, one of the solutions ua confluences with U at
t ? ?, i.e.,

u x; tð Þ � 0 at t!1: ð2:8Þ

The problem concerning the stability of U at t ? ? with respect to the per-
turbation of the initial conditions u0 = 0 leads to the problem of the stability of
the zeroth-order solution of the system (2.7). This problem may be solved in the
case of arbitrary perturbations (nonlinear stability) or small perturbations (linear
stability). The linear theory does not predict the perturbation amplitudes. The
problem may be solved by the nonlinear theory, which usually employs power
conditions.

2.2 Power Theory

The mean kinetic energy of the perturbation is

E tð Þ ¼ 1
2

uj j2
D E

; ð2:9Þ

where the symbol hi means a suitable (usually integrating) averaging procedure. In
accordance with the power theory [6], the condition for the stability of the zeroth-
order solution u(x,t) with respect to the perturbations of the initial conditions u0(x)
is

lim
t!1

E tð Þ
E 0ð Þ ¼ 0: ð2:10Þ

Here E(0) is the initial energy of the perturbation, i.e., u ? 0 at t ? 0. Con-
dition (2.10) is a criterion for an asymptotic stability if

E 0ð Þ\d; d[ 0: ð2:11Þ
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For every d[ 0 there is a set of initial perturbations u0 that attract the solution
u0 : 0, i.e., d is the radius of attraction of the conditionally stable solution
u0 : 0. If d ? ?, the zeroth-order solution is absolutely (globally) stable. If the
solution is asymptotically stable and dE

dt � 0 (at t [ 0), the zeroth-order solution is
a monotonous stable solution.

There is a second formulation of the stability conditions in accordance with the
power theory, i.e.,

U x; t; U0ð Þ � U x; t; U0 þ u0ð Þj jh i ! 0 at t!1; when uj j2
D E

\2d: ð2:12Þ

The solution U = U(x,t;m,U0) of the system (2.1)–(2.3) at fixed external con-
ditions (u0) gives a one-parameter family of solutions with a variable parameter m
(the Reynolds number in the dimensionless form of the equations). The solution of
the problem for the absolute stability requires values of m and d which allow
u(x,t;m,u0) to be a stable solution of (1.33), i.e., U = U(x,t;m,U0) is the stable
solution of (2.1)–(2.3).

For every value of d, condition (2.12) may be disturbed for various values of
m = mc, which depend on d and will be termed critical conditions. The stability
limit may be obtained similarly to the relationship F (mc,d) = 0, i.e., d (mc) and mc

(d). This allows us to express (2.11) in the form

E 0ð Þ\d mcð Þ: ð2:13Þ

In this way, the power theory formulates various critical values of the viscosity
mc. They are shown in Fig. 10. For clarity of presentation, a coordinate axis m-1

which is proportional to the Reynolds number at fixed external flow conditions is
introduced. Thus, the following four zones are defined in the figure:

1. m[ mE is the area of the monotonic and global stability.
2. mG \ m\ mE is the area of the global stability because it is possible to achieve

dE
dt [ 0 at t [ 0 for given perturbations.

3. mL \ m\ mG is the area of the conditional stability with a radius of attraction d
(m).

4. m\ mL and m\ mc (d) determine the area of the instability.

E(0)

1 2 3

4

ν=νc(δ)

1/νE 1/νG 1/νL

Fig. 10 Zones of stability
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There are also absolutely stable flows, i.e., mc = 0. This is possible under
special conditions such as:

• A flow in a tube when the perturbations do not vary along its longitudinal axis.
• Some flows with infinitely small perturbations.
• Flows without velocity gradients under arbitrary perturbations.

In many cases the stable solutions of (2.1)–(2.3) are independent of the initial
conditions, i.e.,

U x; t; m;U0 þ u0ð Þ ! U x; t; mð Þ for uj j2
D E

\2d: ð2:14Þ

The boundary flow U(x,t;m) depends mainly on the boundary conditions (2.12).
When m[ mc, the flow is called a basic flow.

The analysis of the flow stability by means of the power theory shows that
the flow is stable if the perturbation energy is transmitted to the main flow. On the
other hand, if the energy of the main flow is transmitted to the perturbation,
the flow becomes unstable. Thus, the first critical viscosity mE shows the existence
(or not) of perturbations whose energy at the initial stage grows with time.
At m[ mE there is unique stable flow and all other flows are approaching it.

In the situations where m\ mE there are perturbations with energy growing with
time, but at m[ mG that energy is approaching zero. Thus, mG is the limit of the
global stability.

If m B mG, there is more than one stable solution. However, questions about the
number of these solutions, their dependence on the parameters, and the stability
conditions could be set. These problems are solved particularly by the bifurcation
theory. The latter is a nonlinear theory of periodic motions with small but finite
amplitudes. By its application one can follow the behavior of the stable solutions,
which are branched out from the main flow in the case of loss of stability owing to
the perturbations with infinitely small amplitudes. Under these conditions the
perturbations grow, i.e., their amplitudes increase with time, approaching a finite
value. The decrease of m leads to a decrease of the stability of these bifurcations
and causes the onset of new bifurcations. This demonstrates that the bifurcation
theory starts with the linear stability analysis with respect to infinitely small
perturbations.

2.3 Linear Theory

The linear theory [6] of hydrodynamic stability considers the main flow U(x,m) and
its nonstationary perturbation u(x,t;m) satisfying the set of equations (1.33). If one
assumes that the perturbations are small, it is possible to write

u ¼ e m; P ¼ e p; e	 1: ð2:15Þ
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The substitution of (2.15) into (2.7) leads to

ov

ot
þ L U; m½ � þ e � grad � vð Þvþ gradp ¼ 0; div v ¼ 0; v Sj ¼ 0; v t¼0j ¼ v0;

ð2:16Þ

where L is a linear differential operator that represents all the differential operators
(gradients, Laplacians, etc.).

At e = 0 Eq. 2.16 become an autonomous linear set of equations with solutions
in an exponential form,

v x; tð Þ ¼ exp �rtð Þn xð Þ; ð2:17Þ

upon setting the condition that there are numbers r for which the spectral problem
(an eigenvalue problem) with respect to n is

r nþ L U; m½ �nþ grad p ¼ 0; div n ¼ 0; n Sj ¼ 0: ð2:18Þ

The problem has a nontrivial solution n = 0. The values of r are the eigen-
values of Eq. 2.18 and n are the corresponding eigenfunctions (for every r).

In the general situation r may be a complex number and the eigenvalues may
be expressed as

r ¼ rn ¼ rnr þ irni; n ¼ 1; 2; � � � ; ð2:19Þ

i.e.,

v x; tð Þ ¼
Y1
n¼1

exp �rnrtð Þ exp �irniyð Þn xð Þ: ð2:20Þ

The solution of (2.18) leads to the determination of rnr; rni; and n xð Þ; n ¼
1; 2 � � � It follows from (2.20) that

1. The flow is stable if rnr [ 0; n ¼ 1; 2; � � �
2. The flow is unstable if rnr\0; n ¼ n0:
3. The flow is neutrally stable when rn0r ¼ 0; rnr [ 0; n ¼ 1; 2; � � � ;

n0 � 1; n0 þ 1; � � �
4. The flow is stationary stable when rnr ¼ 0; rni 6¼ 0; rnr [ 0; n ¼ 1; 2; � � �
5. When rn0r ¼ 0; rn0i 6¼ 0; rnr [ 0; n ¼ 1; 2; � � � n0 � 1; n0 þ 1; the flow is

periodically stable.

The eigenvalues may be ordered as follows:

r1r\r2r\ � � � ð2:21Þ

In this case r1r is the principal eigenvalue (the perturbation with greatest
amplitude), r2r is the second eigenvalue, etc.
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The eigenvalues depend on the viscosity:

rnr ¼ rnr mð Þ; rni ¼ rni mð Þ; n ¼ 1; 2; � � � ð2:22Þ

This allows us to define the first critical viscosity mL. The value of mL is the
greatest value of m (the minimum critical Reynolds number) that allows r1r

(mL) = 0 to be satisfied. Thus, mL coincides with the critical viscosity of the
nonlinear (power) theory for a conditional stability at d 	 1.

The hydrodynamic stability of a periodic main flow may be investigated in a
similar way:

U x; t; mð Þ ¼ U x; t þ T; mð Þ: ð2:23Þ

Then

v x; tð Þ ¼ exp �ctð Þn x; tð Þ; ð2:24Þ

where

c ¼ cr þ i ci ð2:25Þ

are Floke’s powers. When cr [ 0, the periodic flow is stable, i.e., the stable
periodic flow is superposed by a secondary stable periodic perturbation.

Comparison of the linear and the nonlinear (power) theories shows that

mL� mE ð2:26Þ

and several main conclusions follow:

1. If the flow is unstable in accordance with the linear theory (m\ mL), it is
unstable according to the nonlinear theory too.

2. If the flow is stable in accordance with the linear theory (m[ mL), it may be
unstable according to the nonlinear theory [E(0) [ d] or may conditionally
stable [E(0) \ d], where d is the radius of attraction.

3. The linear theory does not predict the value of d and the condition (m[ mL) does
not guarantee global stability.

4. The linear theory guarantees only the instability at r1r \ 0 (m\ mL), which
explains the cases of disagreement between the prediction of the linear theory
and the experimental results (where the perturbation amplitudes are not infi-
nitely small).

2.4 Stability, Bifurcations, and Turbulence

The invariant form of the flow corresponds to its stable periodic solution (neutral
stability) that occurs as a solution of (2.18) at r1r = 0. Then

r1 ¼ r1 mLð Þ ¼ �i x0: ð2:27Þ
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If x0 = 0 at e0 = 0, problem (2.16) becomes a linearized problem with a
unique stationary solution with amplitude

e2 ¼ E tð Þ ¼ E 0ð Þ: ð2:28Þ

This is a boundary solution (at e = 0) for the one-parameter family of sta-
tionary branched-out solutions of the nonlinear problem (2.20).

If x0 = 0, the linearized (at e = 0) problem (2.16) has periodic (with time t)
complex conjugate solutions:

v x; t; mð Þ ¼ exp �ix0tð Þ n x; tð Þ: ð2:29Þ

In this case there is a unique family of one-parameter periodic solutions of
(2.16) with a parameter e that branches out from the solution for U. Different
methods are available for the determination of e, but the most convenient approach
is to express it as the energy of the stationary branched out solution (the average
energy of the cycle for one period):

e2 ¼ 1
T

ZT

0

E tð Þdt: ð2:30Þ

The set of Eq. 2.16 does not have solutions for every e. Because of that, the
problem is focused on a family of solutions with a parameter e, ensuring that for
every small value of e there is a corresponding value of m(e). Moreover, the values
of m(e) allow a periodic solution of (2.16). Thus, m(e) is a bifurcation curve.

If m(e) [ mL, it is possible to obtain a periodic flow with invariant form
U x; mð Þ þ u x; t; eð Þ with amplitude e (sufficiently small) which permits the per-
turbation energy to be constant within the time. The branched-out solutions at
m(e) [ mL (the linear theory guarantees stability in that range) are subcritical,
whereas at m(e) \ mL the bifurcations are supercritical.

The stability of the secondary stable periodic flows has been investigated too [5,
6]. Let the branched-out solution be considered:

U x; m eð Þð Þ þ u x; s; eð Þ; ð2:31Þ

where u is periodic with respect to s with a period of 2p. A condition for the
stability of U + u with respect to the small perturbations q ¼ q x; tð Þ is required.
The problem may be solved by an equation similar to (2.16). After linearization,
(2.16) takes the form:

oq

ot
þ Lqþ grad p ¼ 0; div q ¼ 0; q sj ¼ 0; ð2:32Þ

where L is a linear differential operator representing all linear operators,
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L ¼ L U þ u; m½ �: ð2:33Þ

Here U x; m eð Þð Þ; u x; s; eð Þ, and m(e) are calculated at a fixed value of e. It was
proved in [5, 6] that for small e the subcritical solutions (bifurcations) are unstable,
whereas the supercritical solutions are stable. In these cases m = m(e2).

The laminar flow of a fluid may turn into a turbulent flow if the flow parameter
changes (e.g., the viscosity). However, in real situations there is a continuous
transition with the reduction of the viscosity. The continuous decrease of the fluid
viscosity leads to a continuous transition from an organized (laminar regime) flow
through a self-organized flow (dissipative structures) towards a complex nonor-
ganized flow (turbulent regime). This continuous transition is a series of super-
critical bifurcations. The following sequence of physical phenomena takes place:

1. At v [ vL the basic stationary flow exists.
2. At v = vL the flow loses its stability and a secondary (more complex) periodic

flow occurs. This secondary flow is stable at v \ vL and its amplitude
approaches zero when (vL - v) ? 0.

3. At v = v2 \ vL (the second critical point) the secondary flow becomes unstable
and a next solution pitchfork occurs. The next tertiary flow is more complex
and is stable until v \ v2 (when the next bifurcation will start).

The transition from one stable flow regime to the next one through a series of
supercritical bifurcations is a continuous process, because the amplitudes of the
subsequent flows approach zero when (m - mL) ? 0 and (m - m2) ? 0. Thus,
there are ‘‘sharp’’ changes of the flow regime.

There is the possibility of a transition to a turbulent flow through a series of
subcritical bifurcations. In this case m\ mL and the branched-out solution is
unstable and there is no area of attraction. An arbitrary initial perturbation ‘‘goes
away’’ from the basic flow, branches out into a secondary unstable flow, and
approaches a flow (or a family of flows) with large amplitude.

The transition from a laminar flow to a turbulent flow regime as a continuous
process of supercritical bifurcations is a basic idea of Landau and Hopf [4, 6, 11,
12] for the onset of the turbulence.

2.5 Stability of Parallel Flows

The theory of hydrodynamic stability uses the stability analysis of various flow
types. Here, several results of the nonlinear theory will be discussed to investigate
parallel fluid flows (Poiseuille and Couette flows).

The stability of flows in pipes far away from the inlet region depends on the
Reynolds number:

Re ¼ Um b� að Þ
m

; ð2:34Þ
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where Um is the maximum velocity, and a and b are the radii of the coaxial tubes
forming the annulus when the fluid flows. At a = 0 there is Hagen–Poiseuille flow
in the pipe. In a parallel-plate channel, a = 0 and b is the channel width (parallel
Poiseuille flow). In these cases there are several critical values of the Reynolds
number:

1. The flow is globally and monotonously stable at Re\ReE 
 85� 100.
2. The flow is globally stable at ReE \ Re \ ReG, where ReG 
 2; 000� 2; 300.
3. The flow is conditionally stable at ReG\Re\ReL [ 11 ; 000 40; 000;ð

106; etc:Þ.
4. The flow is unstable at Re [ ReL.

When ReE [ ReG, there are various stable and periodic flows having equal
coefficients of wall drag resistance. The state is termed a stable turbulence.

The next example of a parallel flow is the Couette flow between two rotating
cylinders. At given Reynolds numbers a laminar flow exists. The increase of the
Reynolds number is followed by the occurrence of Taylor vortexes (a stationary
bifurcation), which is in fact a stable periodic flow. The further increase of Re
leads to the next stable periodic flow—wavy Taylor vortexes (nonstationary
bifurcations).

A large class of problems analyzed by the hydrodynamic stability theory are
related to the Oberbeck–Boussinesq equations. They followed from the Navier–
Stokes equations by means of the introduction of additional terms taking into
consideration the natural convection as a result of the density differences. These
differences may occur owing to concentration or temperature gradients and require
additional equations considering the diffusion and the heat transfer [6, 8]. Among
these problems, Benard cell convection has been the subject of extensive inves-
tigation [6, 8]. In fact the phenomenon is a series of supercritical bifurcations (a
consequence of transitions into secondary, tertiary flows, etc.).

Under controllable conditions the thermoconvective instability may pass into a
thermocapillary instability [9] and approach the Marangoni effect.

3 Orr–Sommerfeld Equation

The linear analysis of hydrodynamic stability may be applied in the cases of
parallel fluid flows (Poiseuille or Couette flows) [6, 7, 10] as well as to almost
parallel flows such as flows in jets or in laminar boundary layers [6, 10, 11]. All
these situations lead to the solution of the Orr–Sommerfeld equation. It may be
derived from (2.18) with the substitutions

v ¼ u; vð Þ; x ¼ x; yð Þ; e ¼ 0; U ¼ U yð Þ; u ¼ oW
oy

; v ¼ � oW
ox

;

W x; y; tð Þ ¼ u yð Þ exp i ax� b tð Þ½ �; ð3:1Þ
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where u, a, and b/a are the perturbation amplitude, the wave number, and the
phase velocity respectively. It is assumed in (3.2) that the amplitude and the
frequency are complex, whereas k is the wavelength of the perturbation:

u ¼ ur þ iui; a ¼ 2p
k
; b ¼ br þ ibi; ð3:2Þ

where br is the critical frequency and bi is the increment factor. Thus, the current
function of the perturbation may be expressed as

W x; y; tð Þ ¼ u yð Þ expðbitÞ exp i ax� brtð Þ½ �; ð3:3Þ

where u may be determined from the Orr–Sommerfeld equation:

u� cð Þ u00 � a2/
� �

� U00u ¼ i

aRe
uIV � 2a2u00 þ a4u: ð3:4Þ

The boundary conditions of (3.4) have various forms [14] for parallel flows and
almost parallel flows. In the former cases u( ± 1) = u0( ± 1) = 0, whereas in the
latter ones u(0) = u0(0) = u(?) = u0(?) = 0.

3.1 Parallel Flows

In the case of parallel flow, the parameters of the Orr–Sommerfeld equations are

c ¼ b
a
¼ cr þ ici; Re ¼ Umd

m
: ð3:5Þ

Equation (3.4) is a typical eigenvalue problem with respect to a, Re, cr, and ci.
At a given value of Re (or a) there is a need for variations of a (or Re) to find cr

satisfying the condition ci = 0. The a(Re) neutral curve plot obtained (see Fig. 11)
allows determination of the critical Reynolds numbers.

The analysis of the hydrodynamic stability of parallel flow shows that the
stability is a feature of the velocity profile shape U(y) changing by Re.
At Re = Recr this profile becomes unstable.

α

Recr Re

Fig. 11 The neutral curve
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3.2 Almost Parallel Flows

The almost parallel flows in jets and laminar boundary layers are characterized by
the fact that the velocity profile U(y) changes along the boundary layer length. At a
certain distance it becomes unstable, i.e., at a certain length the perturbation
amplitude starts to grow. Finally, this leads to turbulence developing further along
the flow direction at lengths greater than its critical value. If the boundary layer is
laminar the value of d in (3.5) is a‘ function of the distance along the flow. Thus,
there are coupled critical values of the length and the Reynolds number.

The relationship between the velocity of the main flow and the velocity com-
ponents U = [u(x, y), v(x, y)] leads to additional terms [16] in the Orr–Sommer-
feld equation:

u� b
a

� �
u00 � auð Þ � o2u

oy2
u ¼ � iv

a
u00 � 2a2u00 þ a4u
� �

þ i

a
vu000 þ o2u

oxoy
� a2v

� �
u0

� �
; ð3:6Þ

where u and v satisfy the Prandtl equations

u
ou

ox
þ v

ou

oy
¼ m

o2u

oy2
;

ou

ox
þ ov

oy
¼ 0;

x ¼ 0; u ¼ U1; y ¼ 0; u ¼ v ¼ 0; y!1; u ¼ U1: ð3:7Þ

The results obtained are the basis of further theoretical development of the
stability analysis in the case of systems with intensive mass transfer.

3.3 Linear Stability and Nonlinear Mass Transfer

Several problems has been discussed concerning the influence of large con-
centration gradients on the velocity fields in the laminar boundary layer (See page
145 and the next). The results obtained for the mass transfer rate coincide quali-
tatively with the experimental data, which deviate from the linear mass transfer
theory predictions. However, sometimes the theory of non-linear mass transfer
misses the experimental results quantitatively. This could be explained with the
lost flow stability which leads to the significant mass transfer rate arising.
The induced secondary flow on the phases interface is the cause of the above
phenomenon, which depends on the mass transfer direction, produces suction
(injection) from (to) the boundary layer and leads to increase (decreasing) the
hydrodynamic stability in the laminar boundary layer [7]. This effect will be
discussed for different systems with intensive interphase mass transfer.
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Theoretical studies of the influence of the suction (injection) from (into) the
boundary layer on the hydrodynamics and hydrodynamic stability have been
carried out in cases where the normal component of the velocity on the phase
boundary is constant along the boundary layer. In cases of nonlinear mass transfer
the rate of the suction (injection) effects on the local diffusive flux (see page 145
and the next) and changes from ? to 0 when x changes from 0 to ?. The letter
leads to a significant change in the flow stability.

The hydrodynamic stability in gas (liquid)–solid systems will be demonstrated
in the case of nonlinear mass transfer in a stream flow along a semi-infinite plate
[13, 14, 18]. In this case the mathematical model takes the following form:

u
ou

ox
þ v

ou

oy
¼ m

o2u

oy2
;

ou

ox
þ ov

oy
¼ 0; u

oc

ox
þ v

oc

oy
¼ D

o2c

oy2
;

x ¼ 0; u ¼ u0; c ¼ c0; y ¼ 0; u ¼ 0; v ¼ �MD

q�0

oc

oy
; c ¼ c�;

y!1; u ¼ u0; c ¼ c0:
ð3:8Þ

The solution of problem (3.8) can be obtained if the following similarity
variables are used:

u ¼ 0:5u0eU
0; v ¼ 0:5

u0m
x

� 	0:5
gU0 � Uð Þ; c ¼ c0 þ c� � c0ð ÞW; U ¼ UðgÞ;

W ¼ WðgÞ;

g ¼ y
u0

4Dx

� 	0:5
; e ¼ Sc0:5; Sc ¼ m

D
; ð3:9Þ

where Sc is the Schmidt number.
Substitution of (3.9) into (3.9) leads to a system of ordinary differential

equations:

U000 þ e�1UU00 ¼ 0; W00 þ eUW0 ¼ 0; Uð0Þ ¼ hW0ð0Þ; U0ð0Þ ¼ 0;
U0ð1Þ ¼ 2e�1;

Wð0Þ ¼ 1; Wð1Þ ¼ 0; ð3:10Þ

where h is a small parameter which characterizes the nonlinearity of the mass
transfer and depends on the intensity of the interphase mass transfer.

Problem (3.10) has been solved [14, 18, 20] numerically and asymptotically as
well. The results obtained by asymptotic theory [18] were confirmed through
direct numerical experiments [18, 20] and show that the secondary flow with rate
U(0) = hW0(0) does not change the character of the flow in the boundary layer but
only the shape of the velocity profile U(g) [14]. This can also be proven by the
following theoretical evaluations. The induction of secondary flows on the inter-
face surface has the effect of injection into (suction from) the boundary layer,
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depending on the direction of the interphase mass transfer. This effect affects the
potentiality of the flow at y ? ? and is not in contradiction with the boundary
layer approximations used [7]:

v0\u0Re�1=2
L ; ReL ¼

u0L

m
; ð3:11Þ

where v0 is the mean rate of injection (suction) through a solid surface of a length
L,

v0 ¼
1
L

ZL

0

vdx; v ¼ MD
q�0

oc

oy

� �
y¼0

: ð3:12Þ

The introduction (3.9) into (3.12) leads to the following expression:

v0 ¼ �h u0Re�1=2
L W0ð0Þ: ð3:13Þ

Comparison of (3.12) with Eq. 3.13 shows that (3.13) is valid if

hW0ð0Þj j\1: ð3:14Þ

Taking into account that W0ð0Þj j\1, it is obvious that at hj j\1 condition (3.14)
is always valid.

Analytical and numerical solutions of problem (3.10) for different values of e
and h allow the initial values of U and its derivatives to be found,

Uð0Þ ¼ a; U0ð0Þ ¼ 0; U00ð0Þ ¼ b; ð3:15Þ

and these values [18] are shown in Table 1.
The linear analysis was made easier by considering (3.10) as a Cauchy problem.
Table 1 also shows the initial conditions a and b as the effect of the mass

transfer on the velocity profiles in the boundary layer. They depend considerably
on the magnitude and the direction of the rate of the induced flow, i.e., on the
direction and the rate of the intensive interphase mass transfer.

At high values of h in the case of liquids ðe 1Þ, the numerical solution cannot
converge, owing to an increasing singular perturbation (or stiffness) of the solution
in the boundary layer.

It can be seen from Table 1 that h[ 0(h\ 0) corresponds to injection into
(suction from) the boundary layer and according to the theory of hydrodynamic
stability [7] a decrease (increase) of the hydrodynamic stability of the flow in the
boundary layer should be expected.

The influence of intensive interphase mass transfer on the hydrodynamic sta-
bility of the flows in a laminar boundary layer was investigated by applying the
linear stability theory [7, 10]. This theory will be applied also for a almost parallel
flow in a boundary layer, such as was done in [6, 21] taking into account two linear
scales:
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x and d ¼
ffiffiffiffiffi
mx

u0

r
: ð3:16Þ

The relation of these two scales for x = L is connected with the Reynolds
number:

ReL ¼
u0L

m
¼ L

d

� �2

 1: ð3:17Þ

The approximations of the boundary layer (3.8) are zeroth-order approxima-
tions regarding the small parameter (d/L)2, i.e., the following relations are
applicable

o2v

oxoy

 o2u

ox2
	 o2u

oy2
;

o2v

ox2
	 o2v

oy2
; ð3:18Þ

and will be used in the subsequent analysis.
The linear stability analysis considers a nonstationary flow (U, V, P, C),

obtained as a combination of a basic stationary flow (u, v, c) and two-dimensional
periodic disturbances (u1, v1, p1, c1) with small amplitudes (x 	 1):

Uðx; y; tÞ ¼ uðx; yÞ þ xu1ðx; y; tÞ; Vðx; y; tÞ ¼ vðx; yÞ þ xv1ðx; y; tÞ;

Pðx; y; tÞ ¼ xp1ðx; y; tÞ; Cðx; y; tÞ ¼ cðx; yÞ þ xc1ðx; y; tÞ: ð3:19Þ

The nonstationary flow thus obtained satisfies the full system of Navier–Stokes
equations:

Table 1 Initial values of U, its derivatives, and parameter k in (3.33)

e h a b k

1 -0.30 0.2546 1.710 1.232
-0.20 0.1557 1.557 1.414
-0.10 0.07162 1.432 1.576

0.0 0.0 1.329 1.718
0.10 -0.06196 1.239 1.849
0.20 -0.1162 1.162 1.968
0.30 -0.1643 1.095 2.076

10 -0.05 0.02295 0.01359 1.673
0.0 0.0 0.01328 1.718
0.05 -0.01237 0.01309 1.745
0.10 -0.02074 0.01298 1.763
0.20 -0.03196 0.01281 1.786

20 -0.05 0.02395 0.003389 1.668
-0.03 0.01219 0.003375 1.697

0.0 0.0 0.003321 1.718
0.03 -0.00570 0.003321 1.734
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ox2
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oy2
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;
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ox
þ oV

oy
¼ 0;

oC

ot
þ U

oC

ox
þ V

oC

oy
¼ D

o2C

ox2
þ o2C

oy2

� �
;

x ¼ 0; U ¼ u0; V ¼ 0; P ¼ p0; y ¼ 0; U ¼ 0; V ¼ �hA0
oC

oy
;

y!1; U ¼ u0; V ¼ 0; P ¼ p0; ð3:20Þ

where

A0 ¼
eD

c� � c0
: ð3:21Þ

After linearization of (3.20), i.e., in the zeroth approximation of the small
parameters x2 and hx, the substitution of (3.18) and (3.19) into (3.20) leads to the
following problem:

ou1

ot
þ u

ou1

ox
þ v

ou1

oy
þ u1

ou

ox
þ v1

ou

oy
¼ � 1

q
op1

ox
þ m

o2u1

ox2
þ o2u1

oy2

� �
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ov1

ot
þ u

ov1

ox
þ v

ov1

oy
þ u1

ov

ox
þ v1

ov

oy
¼ � 1

q
op1

oy
þ m

o2v1

ox2
þ o2v1

oy2

� �
;

ou1

ox
þ ov1

oy
¼ 0; x ¼ 0; u1 ¼ 0; v1 ¼ 0; p1 ¼ p0;

y ¼ 0; u1 ¼ 0; v1 ¼ 0; p1 ¼ p0; y!1; u1 ¼ 0; v1 ¼ 0: ð3:22Þ

Equations (3.22) skip the equation for c1 since in the linear approximation
(hx = 0) the disturbances in the velocity do not depend on the disturbances in the
concentration.

The differentiation for y and x of the first two equations provides the oppor-
tunity to exclude the pressure p1. The stability of the basic flow will be examined
considering periodic disturbances of the form

u1 ¼ F0ðyÞ exp iðax� btÞ; v1 ¼ �iaFðyÞ exp iðax� btÞ; ð3:23Þ

where F(y) is the amplitude of a one-dimensional disturbance (regarding y); a and
b/a are its wave number and phase velocity, respectively:
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a ¼ 2p
k
; b ¼ br þ ibi: ð3:24Þ

In expression (3.24) k is the wavelength, br is the circle frequency, and bi is the
increment. Obviously, the condition for stability of the flow is

bi\0: ð3:25Þ

In the case of bi [ 0 the basic flow is unstable (the amplitude grows with time).
Introducing (3.23) into Eq. 3.22 leads to Orr–Sommerfeld-type equations [11,

22, 23] for the amplitude of the disturbances:

u� b
a

� �
F00 � a2F
� �

� o2u

oy2
F ¼ � im

a
F0_ � 2a2F00 þ a4F
� �

þ i

a
vF000 þ o2u

oxoy
� a2v

� �
F0

� �
;

y ¼ 0; F ¼ 0; F0 ¼ 0; y!1; F ¼ 0; F0 ¼ 0: ð3:26Þ

In (3.26) F = F(y), whereas u and v depend on y and vx; hence, the dependence
on x is insignificant. This gives us an opportunity to consider x as a parameter [11].
There are four constants in Eq. 3.26, where v and a are known beforehand, whereas
the eigenvalues br and bi of the eigenfunction F(y) are the sought ones. Obviously,
the eigenvalues br and bi thus determined depend on x, and at some xcr

biðxcrÞ ¼ 0; ð3:27Þ

i.e., the velocity profile u(x, y) becomes unstable.
The assumption that the variable x is a parameter in Eq. 3.26 allows a new

variable to be introduced:

n ¼ y

d
¼ y

u0

mx

� 	0:5
¼ 2

e
g: ð3:28Þ

Hence, all functions in Eq. 3.26 can be expressed by the new variable n (3.28):

u ¼ u0f 0 nð Þ; v ¼ 0:5
u0m
x

� 	0:5
nf 0 � fð Þ; F yð Þ ¼ u nð Þ; F jð Þ ¼ d�ju jð Þ;

j ¼ 1; � � � ; 4:
ð3:29Þ

It can be seen from (3.10), (3.11), and (3.29) that f can be determined from

2f 000 þ ff 00 ¼ 0; f 0ð Þ ¼ a; f 0 0ð Þ ¼ 0; f 00 0ð Þ ¼ e2

4
b: ð3:30Þ

The introduction of (3.29) into Eq. 3.26 leads to the following Orr–Sommerfeld
type of equation:
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f 0 � Cð Þ u0 � A2u
� �

� f 000u

¼ � i

ARe
u0_ � 2A2u00 þ A4u
� �

� 1
2

nf 0 � fð Þu000 þ 1
2

�
nf 000 þ f 00ð Þ þ A2

2
nf 0 � fð Þ�u0

� �
;

uð0Þ ¼ 0; u0ð0Þ ¼ 0; uð1Þ ¼ 0; u0ð1Þ ¼ 0; ð3:31Þ

where

A ¼ ad; C ¼ b
au0
¼ Cr þ iCi; Re ¼ 1:72

u0d
m
: ð3:32Þ

The linear analysis of the hydrodynamic stability of a laminar boundary layer
under the condition of intensive interphase mass transfer is finally reduced to
determining Cr and /(n) at Ci = 0 when Re and A are given. The minimum
Reynolds number, i.e., the critical Reynolds number Recr at which the flow
becomes unstable, can be obtained from the dependence Cr(Re).

Problem (3.31) is an eigenvalue problem about C when Re and A are given. The
imaginary part of the eigenvalue C determines whether or not the basic flow is
stabile relative to the infinitesimal disturbances. Since this is a linear eigenvalue
problem, in this theory it can be solved for C = C(Re, A). The solutions of this
problem are usually presented in two ways: (1) for specific values of the param-
eters A and Re, the corresponding values of C are tabulated and (2) the locus plane
where Ci = 0 (the ‘‘neutral stability curve’’) is plotted on (Re, A). The critical
Reynolds number is the minimum Reynolds number at which an infinitesimal
disturbance will grow. The growing with time disturbances are applied when Re
and A are given real values, whereas the parameter C is the complex eigenvalue
searched for.

To solve problem (3.31) numerically in an infinite interval, the boundary
conditions ðuð1Þ ¼ 0; u0ð1Þ ¼ 0Þ are assumed valid at finite distance
n = n?  1 far from the plate. The boundary conditions there will be replaced
with two differential equations. To obtain these equations, the solution [7] of
(3.30) is used at high values of n:

f nð Þ ¼ n� k þ 0:231
Zn

1

dn
Zn

1

exp � 1
4

n� kð Þ2
� �

dn: ð3:33Þ

Comparison of the numerical solutions of (3.30) and (3.33) shows that
an accuracy of 10-4 to 10-6 is achieved when n is greater than 6, and we can
assume

f 0 ¼ 1; f 00 ¼ f 000 ¼ 0; n f 0 � f ¼ k; n f 000 ¼ 0: ð3:34Þ

Thus, introducing (3.34) into (3.31), we obtain the following expression, which
is valid in case of n C 6:
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1� Cð Þ u00 � A2u
� �

¼ � i
ARe

u0_ � 2A2u00 þ A4u
� �

� 1
2

ku000 þ A2

2
ku0

� �
:

ð3:35Þ

The solution of (3.35) depends on four constants [14, 20], two of them being
equal to zero, because two of the solutions of the characteristic Eq. 3.35 are
positive, i.e., conditions u(?) = u0(?) = 0 are satisfied:

u ¼ C1 expð�AnÞ þ C2 expð�cnÞ; ð3:36Þ

where the constants C1 and C2 are determined using boundary conditions. The
exclusion of these constants from (3.36) leads to the following relations for
n C n? = 6,

ðu00 � A2uÞ0 � cðu00 � A2uÞ ¼ 0; n ¼ n1;

ðu00 � c2uÞ0 þ Aðu00 � c2uÞ ¼ 0; ð3:37Þ

and for c the following is obtained:

c ¼ k

4
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 16A Aþ iReð1� CÞ½ �

p
4

: ð3:38Þ

The numerical solution of (3.30) for different values of h shows that k depends
on h (Table 1). In the case of h = 0, comparison of Recr & 500 obtained in [26,
27] in the approximations of parallel flows and Recr = 501 obtained by us in the
case of almost parallel flows shows that Recr depends slightly on k. Analogous
results have been obtained at h = 0.

The matrix form of Eq. 3.31 is as follows:

b1

b2

b3

b4

2
6664

3
7775

0

þ

0 �1 0 0

0 0 �1 0

0 0 0 �1

a1 a2 a3 a4

2
6664

3
7775

b1

b2

b3

b4

2
6664

3
7775 ¼ 0; ð3:39Þ

and aj (j = 1, …, 4) are obtained directly from Eq. 3.31:

a1 ¼ iA3Re f 0 � Bð Þ � iARef 000 þ A4
 �

;

a2 ¼
1
2

nf 000 � f 00ð Þ þ A2

2
nf 0 � fð Þ; a3 ¼ � iARe f 0 � Bð Þ þ 2A2

 �
;

a4 ¼ �
1
2

nf 0 � fð Þ; ð3:40Þ

where bj j ¼ 1; � � � ; 4ð Þ are b1 ¼ u; b2 ¼ u0; b3 ¼ u00; b4 ¼ u000:
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The boundary conditions are transformed in

1 0 0 0
0 1 0 0

� � b1
b2
b3
b4

2
64

3
75 ¼ 0; n ¼ 0; ð3:41Þ

and

�cA2 �A2 c 1
�Ac2 �c2 A 1

� � b1
b2
b3
b4

2
64

3
75 ¼ 0; n ¼ n1 ¼ 6; ð3:42Þ

respectively.
Using the substitutions

bj ¼ u jð Þ nð Þ; j ¼ 1; . . .; 4ð Þ; B ¼ b1; b2; b3; b4ð ÞT;

we can rewrite the eigenvalue problem (3.41, 3.42) in the form

B0 nð Þ þ A n; Cð ÞB nð Þ ¼ 0; n 2 0; n1½ �;

WT
0 B ¼ 0; n ¼ 0; WT

1 B ¼ 0; n ¼ n1; ð3:43Þ

where A(n; C) is 4 9 4 matrix of the continuous components of n 2 [0, ?] and
depends on C; WT

1 and WT
0 are scalar matrixes of order 4 9 2 (WT denotes the

transposed matrix of W).
To solve the eigenvalue problem (3.43) the method proposed by Abramov [15–

17] is used. Let B(n; C) be an arbitrary solution of the system (5.103) satisfying
the boundary condition at n ¼ n1. Then, as shown in [15], the solution Wðn; CÞ of
the initial value problem

W0 � ðAT þWðWTWÞ�1WT ATÞW ¼ 0; n 2 0;1½ �; W ¼ W1; n ¼ n1;

ð3:44Þ

satisfies

W n; Cð ÞB n; Cð Þ ¼ 0 for any n 2 0;1½ �; ð3:45Þ

i.e., it can have the boundary conditions at n = n? transferred to any n 2 [0, ?].
Hence, integrating (3.44) up to n = 0, we obtain the required eigenvalue

relation in the form

det
WT

0
WT

1;0ðCÞ

� �
¼ 0; ð3:46Þ

where W1;0ðCÞ denotes the solution of (3.44) at n = 0.
The proposed method is reliable and WWT ¼ const along the integration

path. The basic procedure is to iterate C until the solution C* of the characteristic
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Eq. 3.46 is obtained with a given accuracy. The same procedure has to be repeated
at greater n? with a view to achieving convergence of the successive approxi-
mations C*. When convergence has been established with the prescribed accuracy,
the last computed C* is taken as an eigenvalue of the original problem (3.31). The
numerical experiments show that an accuracy of 10-4 to 10-6 is achieved when
n? is greater than 5–6.

The neutral curves for A as a function of Re and for C as a function of Re are
shown in Figs. 12, 13, 14 and 15. They were obtained for gases (e = 1) and for
liquids (e = 10).

The critical Reynolds numbers Recr corresponding to the wave velocities Cr and
wave numbers A have been obtained. Cr min and Amin were obtained from these
results too. Let Cr min and Amin denote the minimum values of the wave velocities
and wave numbers at which the flow is stable for any value of the Reynolds
number. They are shown in Table 2 for the dependence on the magnitude and on
the direction of the concentration gradient under the conditions of an intensive
interphase mass transfer.

It can be seen from Figs. 12, 13, 14 and 15 and from Table 2 that the intensive
interphase mass transfer directed towards the phase boundary (h\ 0) (the effect of
‘‘suction’’) stabilizes the flow, i.e., the increase of the concentration difference
|c0 - c*| leads to an increase of Recr and to a decrease of Cr min and Amin. In the
case of intensive interphase mass transfer directed from the phase boundary
towards the volume (h[ 0) (the effect of ‘‘injection’’) a destabilization of the flow
is observed, i.e., the increase of the concentration difference |c0 - c*| leads to a
decrease of Recr and to an increase of Cr min and Amin.

The high concentration gradients have a significantly stabilizing effect at h\ 0;
the destabilizing effect occurs in the case of a change in the direction of the mass
transfer (h[ 0).

Fig. 12 The neutral curve
for the wave number A as a
function of the Reynolds
number Re in the case of
e = 1: 1 h = 0.3, 2 h = 0.2,
3 h = 0.1, 4 h = 0.0, 5
h = -0.1, 6 h = -0.2, 7
h = -0.3
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In the above discussions the fact that the diffusive fluxes through the interface
surface at (h\ 0) increase with the rise of the concentration difference c0 � c�j j,
while at (h[ 0) they decrease with the rise of |c* - c0|.

The results obtained can be used for clarification of the mechanism and the
kinetics of a number of practically interesting processes. For instance, in liquid–
solid systems the anode dissolution of metals in the electrolyte flow under the
condition of intensive interphase mass transfer can increase substantially before
flow turbulence for comparatively small values of the Reynolds number, whereas
the electrode deposition of metals out of concentrated solutions can be imple-
mented under laminar conditions at high values of the Reynolds number. Intensive

Fig. 13 The neutral curve
for the wave number A as a
function of the Reynolds
number Re in the case of
e = 10: 1 h = 0.2, 2 h = 0.1,
3 h = 0.05, 4 h = 0.0, 5
h = 0.05

Fig. 14 The neutral curve
for the wave velocity Cr as a
function of the Reynolds
number Re in the case of
e = 1: 1 h = 0.3, 2 h = 0.2,
3 h = 0.1, 4 h = 0.0, 5
h = -0.1, 6 h = -0.2, 7
h = -0.3
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interphase mass transfer is of interest for the process of ablation (e.g., launching a
spacecraft in denser atmospheric layers). Intensive evaporation of a substance from
a solid surface leads to an increase of the interphase heat transfer coefficients, i.e.,
to a decrease of the ‘‘undesired’’ heat flux towards the rounded fuselage nose of
spacecraft (missiles). It is evident that from the results obtained under these
conditions that turbulence of the gas at considerably small Reynolds numbers is
possible, which will also affect the rate of the interphase heat transfer.

Fig. 15 The neutral curve
for the wave velocity Cr as a
function of the Reynolds
number Re in the case of
e = 10: 1 h = 0.2, 2 h = 0.1,
3 h = 0.05, 4 h = 0.0, 5
h = 0.05

Table 2 Values of the critical Reynolds number Recr, corresponding to the wave velocities Cr,
wave numbers A, and Cr min and Amin obtained

e h Recr A Cr Amin Cr min

1 -0.30 1619 0.259 0.3281 0.301 0.3310
-0.20 1014 0.285 0.3587 0.322 0.3599
-0.10 689 0.290 0.3816 0.340 0.3848

0.0 501 0.305 0.4035 0.359 0.4067
0.10 386 0.309 0.4196 0.373 0.4243
0.20 310 0.320 0.4351 0.387 0.4396
0.30 258 0.331 0.4488 0.398 0.4526

10 -0.05 555 0.300 0.3960 0.351 0.3990
0.0 501 0.305 0.4035 0.359 0.4067
0.05 476 0.305 0.4062 0.360 0.4097
0.10 459 0.305 0.4085 0.361 0.4124
0.20 437 0.310 0.4123 0.367 0.4155

20 -0.05 558 0.305 0.3959 0.351 0.3978
-0.03 528 0.305 0.4010 0.354 0.4037

0.0 501 0.305 0.4035 0.359 0.4067
0.03 488 0.305 0.4064 0.362 0.4099
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The observed influence of intensive interphase mass transfer on the hydrody-
namic stability in gas (liquid)–solid systems is much more interesting for systems
with a movable phase boundary (gas–liquid, liquid–liquid).

4 Self-Organizing Dissipative Structures

In Sect. 2.4 it was shown, that in the cases of supercritical bifurcations (Re [ Recr)
the amplitudes of the small disturbances (perturbations) increase and reach a stable
amplitude. In these mass transfer in the flow is very intensive. These flow regimes
are very useful because the energy dissipation is less than that in turbulent flow
regimes.

The theoretical analysis of the self-organizing dissipative structures in the
approximations of the linear stability theory is embarrassed by the absence of a
condition for amplitude determination. It is possible to be use an additional
physical hypothesis and an equivalent mathematical condition or experimental
data.

Theoretical analysis of systems with intensive interphase mass transfer as a
result of large concentration gradients shows that the large mass flux induces
secondary flow at the interphase surface [69]. The velocity of this flow is directed
normally to this interface. In the cases of interphase mass transfer between a gas
(liquid) and a solid interface, the following was obtained [69]:

v ¼ � D

q�0

d ~c

d n

� �
s

; ð4:1Þ

where D is the diffusivity, q0* is the density of gas (liquid) at the interface, and
ðd~c=dnÞs is the normal derivative of the concentration at the interface.

The solution of this problem in the approximation of the boundary layer uses
the Prandtl equations and the convection–diffusion equation

~u
o~u

ox
þ ~v

o~u

oy
¼ t

o2~u

oy2
;

o~u

ox
þ o~v

oy
¼ 0; ~u

o~c

ox
þ ~v

o~c

oy
¼ D

o2~c

oy2
ð4:2Þ

with boundary condition

x ¼ 0; ~u ¼ �u; ~c ¼ ~c0; y ¼ 0; ~u ¼ 0; ~v ¼ � D

q�0

o~c

oy
; ~c ¼ ~c�;

y!1; ~u ¼ �u; ~c ¼ ~c0: ð4:3Þ

To solve problem (4.2, 4.3), it is necessary to introduce the similarity variables

~u ¼ �uF0; ~v ¼ �ut
4x

� �0:5

gF0 � Fð Þ; ~c ¼ ~c0 þ ð~c� � ~c0Þw;
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y ¼ g
�u

tx

� ��0:5

; F ¼ FðgÞ; w ¼ wðgÞ: ð4:4Þ

The introduction of (4.4) into (4.2, 4.3) leads to

2F00 þ FF00 ¼ 0; w00 þ Sc

2
Fw0 ¼ 0; Fð0Þ ¼ hw0ð0Þ; F0ð0Þ ¼ 0;

F0ð1Þ ¼ 2
Sc
;

w 0ð Þ ¼ 1; w 1ð Þ ¼ 0; Sc ¼ t
D
; ð4:5Þ

where h is a nonlinear mass transfer parameter:

h ¼ ~c� � ~c0

q�0
ffiffiffiffiffi
Sc
p : ð4:6Þ

Problem 4.5) was solved for different systems [69] and the solutions obtained
permit us to use the next boundary conditions for hydrodynamic problems:

F 0ð Þ ¼ a; F0 0ð Þ ¼ b; F00 0ð Þ ¼ c; ð4:7Þ

where a, b, and c are obtained (see Table 3) for the linear mass transfer case
(a = b = h = 0), gas–solid (Sc = 1, b = 0) and liquid–solid (Sc = 400, b = 0)
systems [70], and gas–liquid (in the gas phase, Sc = 1) and liquid–liquid
(Sc = 400) systems [29–31, 36].

The secondary flows obtained as a result of the large mass flux are suction from
(h\ 0) or injection into (h[ 0) the boundary layer and change the hydrodynamic
stability of the flow [69].

The linear stability analysis [7–9] shows that critical Reynolds number Recr ¼

1:72
ffiffiffiffi
�ux
t

q
increases (h\ 0, stabilization) or decreases (h[ 0, destabilization) for

different mass transfer directions (see Table 4).
The comparative analysis of the nonlinear mass transfer effect (as a result of the

large concentration gradient) and the Marangoni effect (as a result of the surface

Table 3 Boundary condition
values in (4.7)

Sc h a b c

0 0 0 0.33205
1 -0.2 0.1557 0 0.3892
1 -0.2 -0.1162 0 0.2905
400 -0.03 0.01219 0 0.3389
400 0.03 -0.00570 0 0.3321
1 -0.2 0.1703 0.1083 0.3800
1 0.2 -0.1283 0.1059 0.2710
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tension gradient) shows that the Marangoni effect is negligible in systems with
moving phase boundaries [28, 43].

The theoretical deviation of the nonlinear mass transfer rate from the prediction
of the linear mass transfer theory is practically 10–30%, but in many cases the
deviation of the experimental data is larger. This deviation may be explained by
the loss of stability of the system, i.e., small disturbances increase to form a new
stable state [6, 8]. As a result, the amplitude of the disturbances of this self-
organized dissipative structure is a constant. This problem was solved in the cases
of gas absorption [58, 65, 66] and liquid evaporation [67, 68], where the ampli-
tudes of the disturbances were obtained using experimental data for the mass
transfer rate.

The main problem of the theoretical analysis of self-organized structures is to
obtain the amplitude of the disturbances [10]. There are practically two approa-
ches—to use experimental data and to use an additional theoretical condition. In
[71] a method was proposed for stability analysis of the nonlinear mass transfer
processes using a balance between kinetic energies of the main flow and the
disturbance.

4.1 Nonlinear Mass Transfer in the Boundary Layer

Let us consider the velocity distribution in the laminar boundary layer flow ~u;~vð Þ.
The existence of disturbances in the system leads to their interaction with the main
flow ~u;~vð Þ. If the main flow is unstable, a small disturbance can accept the energy
from the main flow ~u;~vð Þ and increases to form a stable state (dissipative struc-
ture). As a result, the main flow ~u;~vð Þ loses energy and reduces to new main flow
(u, v, p). This flow and disturbance are a new flow (U, V, P). The new flow
(U, V, P) is nonstationary because of the nonstationary character of the
disturbance:

Uðx; y; tÞ ¼ uðx; y; tÞ þ u0ðx; y; tÞ; Vðx; y; tÞ ¼ vðx; y; tÞ þ v0ðx; y; tÞ;

Pðx; y; tÞ ¼ pðx; y; tÞ þ p0ðx; y; tÞ: ð4:8Þ

It is obvious that the kinetic energies E of the main flow ~u; ~vð Þ and the non-
stationary flow (U, V, P) are equal. In the cases when the main flow is unstable,
the disturbances increase on account of the energy of the main flow [6]. As a

Table 4 Critical Reynolds
number

h Recr

-0.3 1,014
-0.2 1,619
0 501
0.2 310
0.3 258
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result, the nonstationary flow is a superposition of the ‘‘new main flow’’ (u, v, p)
with kinetic energy E0 and flow of disturbances with constant amplitude (u0, v0, p0)
and kinetic energy E1, i.e.,

E ¼ E0 þ E1: ð4:9Þ

Condition (4.9) permits us to obtain the amplitude of the disturbances.
The new flow (4.8) satisfies the full system of Navier–Stokes equations:

oU

ot
þ U

oU

ox
þ V

oU

oy
¼ � 1

q
oP

ox
þ t

o2U

ox2
þ o2U

oy2

� �
;

oV

ot
þ U

oV

ox
þ V

oV

oy
¼ � 1

q
oP

oy
þ t

o2V

ox2
þ o2V

oy2

� �
;

oU

ox
þ oV

oy
¼ 0: ð4:10Þ

The introduction of (4.8) into (4.10) permits us to eliminate the pressure, using
the differentiation and subsequent subtraction of the first two equations in (4.10),
and the following result is obtained:

ow
ot
þ uþ u0ð Þ ow

ox
þ vþ v0ð Þ ow

oy
¼ t

o2w
ox2
þ o2w

oy2

� �
;

ou

ox
þ ov

oy
¼ 0;

ow0

ot
þ uþ u0ð Þ ow0

ox
þ vþ v0ð Þ ow0

oy
¼ t

o2w0

ox2
þ o2w0

oy2

� �
;

ou0

ox
þ ov0

oy
¼ 0; ð4:11Þ

where

w ¼ ou

oy
� ov

ox
; w0 ¼ ou0

oy
� ov0

ox
: ð4:12Þ

Thus, (4.11) stresses the segregation of the effects:

• The first equation provides an account of the influence of the disturbance on the
new main flow.

• The second equation provides an account of the influence of the new main flow
on the disturbance.

However, the influences in both equations have nonlinear character.
The particular solutions of (4.11) in the form of ‘‘normal’’ disturbances [8], i.e.,

periodic disturbances whose amplitude depends exponentially on the time, will be
discussed further:

u x; y; tð Þ ¼ exp �x tð Þu0 x; yð Þ; v x; y; tð Þ ¼ � exp �x tð Þ
Z

ou0

ox
dy;

u0 x; y; tð Þ ¼ exp �xtð Þ v0 x; yð Þ þ u1 x; yð Þ sin nxþ v1 x; yð Þ cos nx½ �;
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v0 x; y; tð Þ ¼ � exp �x tð Þ
Z

ov0

ox
þ ou1

ox
� nv1

� �
sin nxþ ov1

ox
þ nu1

� �
cos nx

� �
dy;

ð4:13Þ

where n = 2p/k is the wave number of the disturbance and k is the wavelength.
The substitution of (4.13) into (4.11) allows the determination of a stable dis-

sipative structure as a partial solution at x ¼ 0. As a result, two equations for
u0, v0, u1, v1, corresponding to (4.11) were obtained, where cos2 nx = 1 - sin2

nx. From these equations it is possible to obtain a set of equations, if we put the
aperiodic parts and all parts containing sin nx, cos nx, sin2 nx, and sin nx cos nx to
be equal to zero.

From the aperiodic parts we can obtain directly two equations to determine u0

and v0:

u0 þ v0ð Þ o2u0

oxoy
þ
Z

o3u0

ox3
dy

� �
�

Z
ou0

ox
dyþ
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¼ t
Z
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ox4
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ox2oy
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� �
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ð4:14aÞ
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oxoy
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ð4:14bÞ

The periodic part in the first equation in (4.11) contains terms with sin nx and
cos nx. After summing up separately the parts containing sinx and cosx and
equalization of these sums through division by zero, we obtain

u1
o2u0

oxoy
þ
Z

o3u0

ox3
dy

� �
þ o2u0

ox2
þ o2u0

oy2

� �Z
nv1 �

ou1

ox

� �
dy ¼ 0; ð4:15aÞ

v1
o2u0

oxoy
þ
Z

o3u0

ox3
dy

� �
� o2u0

ox2
þ o2u0

oy2

� �Z
nu1 þ

ov1

ox

� �
dy ¼ 0: ð4:15bÞ

By analogy, from the terms with sin nx and cos nx in the second equation in
(4.11), we obtain two equations for the determination of u1 and v1:
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From the terms with sin2 nx and sin nx cos nx in the second equation in (4.11),
we obtain
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ð4:17aÞ
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Here it must be noted that the right side of (4.16b) is different if we put sin2

nx = 1 - cos2 nx. On the other hand, from (4.16a) it can be seen that for these two
cases the right sides are equal.

The similarity variables (4.4) can be also introduced into (4.14a)–(4.17b):

u0 ¼ �uf 00ðgÞ; v0 ¼ �ubu00ðgÞ; u1 ¼ �ubf 0ðgÞ; v1 ¼ �ubu0ðgÞ; b ¼ �u1

�u
;

ð4:18Þ

where �u and �u1 are characteristic velocities of the main flow and disturbances and
b is the dimensionless amplitude of the disturbances.

The problem will be solved in an approximation of the laminar boundary layer
theory, where c is a small parameter:

c ¼ d
x

� �
¼ Re�1=2; d ¼

ffiffiffiffiffi
tx

�u

r
; Re ¼ �ux

t
; A ¼ nd

c
: ð4:19Þ

In this approximation c2 = 0 and the parameters of the problem are A and b.
The parameter b will be considered as small and the problem will be solved in the
zeroth approximation of b2 (b2 = 0).

The introduction of similarity variables (4.4) and the approximation (c2 = 0)
into (4.14a) leads to the equations for f0 and u0:

2f 0000 þ f0 þ bu0ð Þf 000 ¼ 0; ð4:20aÞ

2u0000 þ f0 þ bu0ð Þu000 ¼ b 2A f 00u0 � f u000ð Þ þ u0u00 þ uu000½ �: ð4:20bÞ

The introduction of similarity variables (4.4) and the approximation (c2 = 0)
into (4.15a) leads to the conditions

2f 0000 þ
2f 0

f � 2Au
f 000 ¼ 0; 2f 0000 þ

2u0

uþ 2Af
f 000 ¼ 0: ð4:21Þ

From (4.21) to (4.20a) the following conditions are obtained:

f0 þ bu0 ¼
2f 0

f � 2Au
¼ 2u0

uþ 2Af
: ð4:22Þ
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The introduction of (4.22) into (4.20a) leads to new equations for f0 and u0:

2f 0000 þ
2f 0

f � 2Au
f 000 ¼ 0;

2u0000 þ
2u0

uþ 2Af
u000 ¼ b 2A f 00u0 � f u000ð Þ þ u0u00 þ uu000½ �:

ð4:23Þ

The introduction of similarity variables (4.4) and the approximation (c2 = 0)
into (4.16a) leads to the equations for f and u:

2f IV þ f 00f 00 þ f0f 000 þ 2Af 00u
00 þ b f 0u000 þ f 00u00 þ f 000u0 þ f u0000

� �
þ 2bA u00u

00 � u000u0

� �
¼ 0;

2uIV þ f 00u
00 þ f0u

000 � 2Af 00f 00 þ b u0u000 þ u00u00 þ u000u0 þ uu0000
� �

� 2bA u00f 00 � f u0000
� �

¼ 0:
ð4:24Þ

In the approximations used (b2 = 0 and c2 = 0) the equations in (4.17a) are
eliminated.

The boundary conditions are obtained with the help of two conditions:

1. The boundary conditions for F and f0 are equal.
2. The dependencies of the disturbances from the main flow are identical in the

volume and at the interface.

From (4.5) to (4.7) it follows that

F 0ð Þ ¼ a; F0 0ð Þ ¼ b; F00 0ð Þ ¼ c; F000 0ð Þ ¼ �F00 0ð ÞF 0ð Þ
2

¼ � ac

2
;

FIV 0ð Þ ¼ � bc

2
þ a2c

4
; FV 0ð Þ ¼ � c2

2
þ 3abc

4
� a3c

8
; ð4:25Þ

where FIV(0) and FV(0) were obtained after double differentiation of (4.5).
From (4.20a) it follows that

u0 ¼ �
2f 0000

bf 000
� f0

b
: ð4:26Þ

The double differentiation of (4.26) and the introduction of g = 0 into u0, u0
0 b

u0
00 and use of (4.26) allows the determination of the boundary conditions in f0 and

u0:

f0 0ð Þ ¼ a; f 00 0ð Þ ¼ b; f 000 ¼ c; u0 0ð Þ ¼ 0; u00 0ð Þ ¼ 0; u000 ¼ 0: ð4:27Þ

From conditions (4.22), we directly obtain

2f 0 ¼ ðf0 þ bu0Þðf � 2AuÞ; 2u0 ¼ ðf0 þ bu0Þðuþ 2Af Þ: ð4:28Þ

If a1 = f(0) and a2 = u(0), the boundary conditions for (4.24) after differen-
tiation (4.28) and use of (4.27) can be determined from (4.28):
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ð4:29aÞ

u 0ð Þ ¼ a2; u0 0ð Þ ¼ a

2
a2 þ 2Aa1ð Þ;

u00 0ð Þ ¼ Aa1 a2 þ b
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þ a2

2
bþ 1

2
a2 � 2a2A2

� �
:

ð4:29bÞ

The parameter b might be determined from the condition that the kinetic energy
(E) of the main flow is distributed between the energy of the new main flow E0 and
the energy of the disturbance E1 (see 4.9).

The kinetic energies are proportional to the squares of the velocities, which are
integrated in the area of the boundary layer (s). In the case x = 0, one obtains
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The introduction of (4.31) into (4.9) allows the determination of b:

b ¼
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Equations (4.23) and (4.24) with boundary conditions (4.27) and (4.29a) rep-
resent an eigenvalue problem where a1, a2, b, and A are eigenvalues. The
amplitude of the disturbances (b) can be obtained using an iterative procedure if
the normal velocity component (a1, a2) and the wavelength (A) of the disturbances
are specified. The procedure starts from initial value b0, followed by solution of
the problem (4.23, 4.24, 4.27, 4.29a), and calculation of b from (4.32). The cal-
culated value of b is an initial value for the next step of the iterative procedure.
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Numerical results were obtained for mass transfer in a gas–solid system
(Sc = 1, b = 0). As a result, three cases are possible:

1. A self-organized structure exists if the calculated value of b is in the interval
0 \b\ 0.5 (b must be a small parameter).

2. A self-organized structure does not exist if b2 B 0.
3. A self-organized structure does not exist if the calculated value of b oscillates

between two values (b1 \ b\ b2). For b0 in the interval (b1, b2), calculated
values of b2 \ 0 exist.

In the case of linear mass transfer (h = 0) the solution of the problem (4.23,
4.24, 4.27, 4.29a) shows that b2 \ 0. The same results were obtained in the cases
of injection into the boundary layer as a result of the large mass flux (h[ 0).

In the cases of suction from the boundary layer (h\ 0) the nonlinear mass
transfer effect stabilizes the flow. The dimensionless amplitude of the disturbances
(b) depends on the wave number A (Table 5) and the intensity of the disturbance
a1 = a2 = a. For some wave numbers self-organized structures are not possible.
The parameter b2 is negative for large values of a.

The influence of a and A is shown in the Table 6 for different intensities of the
nonlinear mass transfer effect (h\ 0). The increase of the intensity of the dis-
turbances at the interface (a) leads to an increase of the suction effect and as a
result the disturbance amplitude decreases (stabilization of the flow).

The results obtained show that self-organized dissipative structures exist for
h\ 0, i.e., in the cases when the mass transfer is directed from the volume towards
the interphase surface.

In gas–liquid systems h\ 0 is equivalent to gas absorption and many experi-
mental data show [69] that the mass transfer rate in gas absorption is larger than
the desorption rate.

Theoretical analysis of the gas absorption between gas and liquid immobile
layers shows [58, 65, 66] that absorption rate is larger than that predicted by the
linear mass transfer theory as a result of self-organized dissipative structures. The
desorption rate is equivalent to that predicted by the linear mass transfer theory.

Table 5 Amplitude values for different wave numbers

A (h = -0.2, a = 0.1557) b (a = 1, b = 0, c = 0.3892)

0.217 0.015888
0.218 –a

0.219 0.029576
0.220 0.033220
0.221 0.041680
0.222 0.049298
0.223 0.055280
0.224 0.055725
0.225 0.057790
a b1 \b\b2
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The existence of self-organized dissipative structures in laminar boundary
layer flow [72] for h\ 0 creates the condition for the mass transfer rate increasing
when the critical Reynolds number increases. In this case the self-organized dis-
sipative structure is supercritical bifurcation and intensifies the mass transfer
processes.

4.2 Gas Absorption

Experimental studies of systems with intensive mass transfer show in many cases
serious deviations from the linear theory of mass transfer, which presumes inde-
pendence of the velocity field from the fields of concentration and temperature.

Table 6 Amplitude values for different intensities of the disturbances and the nonlinear mass
transfer effect

a A b A b A b

h = -0.2 h = -0.3 h = -0.2 h = -0.3 h = -0.2 h = -0.3

0.1 0.217 –a 0.5599 0.222 –b 0.7305 0.226 –b 0.8609
0.2 0.0824 0.2799 0.2481 0.3653 –b 0.4304
0.4 0.0397 0.13961 0.1232 0.1826 0.1594 0.2152
0.5 0.0318 0.1117 0.0986 0.1461 0.1275 0.1722
0.9 0.0176 0.0620 0.0548 0.0812 0.0736 0.0956
1.0 0.0159 0.0558 0.0493 0.0731 0.0662 0.0861
3.0 0.0053 0.0186 0.0164 0.0244 0.0221 0.0287
0.1 0.219 0.3208 0.6333 0.223 0.5108 0.7512 0.227 0.6901 –b

0.2 0.1533 0.3166 0.2764 0.3756 0.3450 –b

0.4 0.0739 0.1583 0.1382 0.1878 0.1652 –b

0.5 0.0591 0.1266 0.1106 0.1502 0.1321 0.1772
0.9 0.0328 0.0704 0.0614 0.0835 0.0768 –b

1.0 0.0296 0.0633 0.0553 0.0751 0.0691 –b

3.0 00098 0.0211 –a 0.0249 0.0230 –b

0.1 0.220 0.2027 0.6613 0.224 0.5108 0.7952 0.228 0.7153 0.9208
0.2 0.1876 0.3307 0.2764 0.3976 0.3576 0.4604
0.4 0.0831 0.1653 0.1382 0.1988 0.1772 0.2302
0.5 0.0665 0.1323 0.1106 0.1590 0.1418 0.1842
0.9 0.0369 0.0735 0.0614 0.0884 0.0796 0.1018
1.0 0.0332 0.0661 0.0553 0.0795 0.0716 0.0921
3.0 0.0111 0.0220 –a 0.0271 0.0239 0.0309
0.1 0.221 0.4419 0.6992 0.225 0.5779 0.8349 0.230 –b –b

0.2 0.1981 0.3496 0.2889 0.4175 –b –b

0.4 0.1042 0.1748 0.1445 0.2087 –b –b

0.5 0.0834 0.1398 0.1155 0.1670 –b –b

0.9 0.0463 0.0777 0.0642 0.0928 –b –b

1.0 0.0417 0.0699 0.0578 0.0835 0.0688 –b

3.0 0.0139 0.0233 0.0193 0.0278 0.0229 0.0311

a b2 \ 0
b b1 \b\b2
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These effects are usually considered as Marangoni-type effect [18, 20, 49] and are
explained by the occurrence of tangential secondary flow on the phase boundary,
caused by the surface tension gradient as a result of surface gradients of con-
centration or (and) temperature on the mass transfer surface [56, 57].

Theoretical studies of systems with intensive interphase mass transfer [69] as a
result of large concentration gradients show [14, 23, 24, 31, 36] that these gra-
dients induce normal secondary flows on the phase boundary. On this basis the
nonlinear theory of mass transfer [33] was built and provides a satisfactory
explanation for the deviations of the experimental results from the predictions of
the linear theory of mass transfer.

The above-mentioned results illustrate the possibility for a simultaneous or an
independent role of two mechanisms of heat mass transfer in systems with
intensive mass transfer. This needs the definition of the conditions for the
occurrence of the Marangoni effect and effect of nonlinear mass transfer, which
would allow the creation of adequate models of chemical engineering processes
under the condition of intensive interphase mass transfer between two phases.

The linear analysis of the hydrodynamic stability in systems with intensive
interphase mass transfer was given in [16, 34, 35, 40, 69] The normal and the
tangential components of the velocity on the phase boundary influence the
hydrodynamic stability of the flows in the boundary layer, but the influence of
the normally directed velocity component is significantly greater. This suggests
that a considerable difference in the intensities of the Marangoni effect and the
effect of nonlinear mass transfer is possible.

The comparative analysis of these two effects was made in the cases of mass
transfer between two phases (gas–liquid and liquid–liquid) [28, 43], when a sub-
stance from the first phase goes into the second phase and the chemical reaction
takes place. The large concentration gradients of the transferred substance create a
normally directed secondary flow on the phase boundary. On the other hand, the
thermal effect of the chemical reaction creates a gradient of the surface tension as
a result of the temperature inhomogeneity at the phase interface.

The theoretical results show [28, 43] that the Marangoni effect is negligible
compared with the effect of the nonlinear mass transfer, i.e., the kinetics of mass
transfer and the hydrodynamic stability do not depend on the surface tension
gradient, caused by the temperature inhomogeneity at the phase interface as a
result of the thermal effect of the chemical reaction. It should be noted, however,
that the parameter representing the Marangoni effect increases with decrease of the
characteristic velocity in the second phase. The results obtained [28] show in the
case of an immovable phase that under these conditions the Marangoni effect is
also considerably smaller. Thus, the Marangoni effect may be expected in the
limited case of interphase mass transfer between two immovable phases (e.g., in
the absorption of pure gases in an immovable liquid). Under these conditions three
processes are likely to take place: natural convection, nonlinear mass transfer,
and the Marangoni effect.

Actually, these three effects may exhibit a dual influence on the mechanism and
kinetics of the heat and mass transfer in systems with intensive interphase mass
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transfer. The first influence is relatively weak and it is a result of the secondary
flows, which change the velocity field. However, this may lead to changes in the
hydrodynamic stability and therefore to the creation of self-organizing dissipative
structures, having the form of stable periodic flows, which have a very strong
influence on the mechanism and the kinetics of mass transfer. These two types of
influences will be discussed next.

Let us consider a vertical tube with radius r0, in which an immovable liquid
(H2O) contacts an immovable gas (CO2, SO2, NH3) [48]. The gas is absorbed in
the liquid, and the process is accompanied by a thermal effect. As a result, several
effects in the liquid may occur in the form of secondary flows owing to the large
concentration gradients on the phase boundary (nonlinear mass transfer), a density
gradient in the volume (natural convection), and a surface tension gradient (Ma-
rangoni effect) [48, 58].

The mathematical description of the process uses the Oberbeck–Boussinesq-
type equations [6, 8, 33], where the influence of the density gradient [50, 51], the
concentration gradient [39], and the surface tension gradient will be considered
[52–54]. In this way, in cylindrical coordinates the problem assumes the form
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with the corresponding initial and boundary conditions,

t ¼ 0; vz ¼ vr ¼ vu ¼ c ¼ 0; h ¼ h0;

z ¼ 0; vz ¼ �
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ð4:34Þ

Let us assume that for angle u the processes are periodic ones with period 2p.
Equations (4.33) and (4.34) refer to the natural convection by means of

the Archimedean force g(q - q0), the large concentration gradients through
the connection between the velocity vz and the concentration gradient oc

oz, and the
surface tension (r) gradient by means of its components on r and u and their
connection with the tangential components of the stress tensor at the surface z = 0.

The problem (4.33, 3.34) may be represented in a dimensionless form if the
individual scales of the physical independent and dependent variables are used.
These characteristic scales should be selected in such a way that the values of the
dimensionless variables and parameters are not greater in order of magnitude than
unity.

The characteristic scales may be set in advance and for the example discussed
they are of the following order for the time, radial coordinate, concentration, and
temperature:

t0� 102s; r0� 10�2m; c� � ð1� 100Þkg
�

m3 for different gasesð Þ;
h0� 10 �C:

ð4:35Þ

The characteristic scales will be known in advance or will be unknown and will
be determined as a result of the qualitative analysis of the model (4.33, 4.34). If the
characteristic scale of the velocity along the z-axis is indicated by u0, then
the scales of the other velocity components are determined in a way so that the
equation of continuity is satisfied in dimensionless variables, and for a charac-
teristic scale of pressure the dynamic pressure q0u0

2 is used.
The difference in the orders of magnitude of l, D, and k shows that the basic

changes of the velocity, the concentration, and the temperature will be reached at
different water depths in the tube. These characteristic depths for the velocity (l),
concentration (d), and temperature (h) will be determined by the qualitative
analysis of (4.33).
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Using the above-mentioned considerations, we obtain the following dimen-
sionless variables:

t ¼ t0T ; z ¼ lZ1 ¼ dZ2 ¼ hZ3; r ¼ r0R; u ¼ 2pU; p ¼ q0u2
0P;

vz t; z; r;uð Þ ¼ u0Vz T; Z1;R;Uð Þ ¼ u0 ~Vz T; Z2;R;Uð Þ ¼ u0
e~V z T ; Z3;R;Uð Þ;

vr t; z; r;uð Þ ¼ u0r0

l
Vr T; Z1;R;Uð Þ ¼ u0r0

l
~Vr T ; Z2;R;Uð Þ ¼ u0r0

l
e~V r T ; Z3;R;Uð Þ;

vu t; z; r;uð Þ ¼ 2p
u0r0

l
Vu T ; Z1;R;Uð Þ ¼ 2p

u0r0

l
~Vu T; Z2;R;Uð Þ

¼ 2p
u0r0

l
e~V u T ; Z3;R;Uð Þ;

c t; z; r;uð Þ ¼ c�C T ; Z1;R;Uð Þ ¼ c� ~C T ; Z2;R;Uð Þ ¼ c� e~C T ; Z3;R;Uð Þ;

h t; z; r;uð Þ ¼ h0H T ; Z1;R;Uð Þ ¼ h0
~H T; Z2;R;Uð Þ ¼ h0

e~H T ; Z3;R;Uð Þ: ð4:36Þ

The introduction of (4.36) into (4.33, 4.34) converts the problem to a dimen-
sionless form, where the dimensional characteristic parameters (scales) are
grouped in such a way that the dimensionless parameters obtained are on the order
of unity, less than unity (10-1), and many times less than unity (10-2 or much
less):
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T ¼ 0; Vz ¼ Vr ¼ Vu ¼ ~C ¼ 0; ~~H ¼ 1; ð4:43Þ
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Z1 ¼ Z2 ¼ Z3 !1; Vz ¼ Vr ¼ Vu ¼ ~C ¼ 0; ~~H ¼ 1; ð4:45Þ

R ¼ 0; Vz;Vr;Vu; ~P; ~C; ~H� finite; ð4:46Þ

R ¼ 1; Vz ¼ Vr ¼ Vu ¼ 0;
o~C

oR
¼ o

~~H
oR
¼ 0: ð4:47Þ

The qualitative analysis of the model (4.37–4.47) begins with the determination
of the unknown characteristic scales. The process under consideration is a result of
the absorption of the gas and its thermal effect, i.e., the fields of concentration and
temperature are determined by the diffusion and the heat transfer. It directly
follows that the parameters in front of the Laplacians in (4.41) and (4.42) should
be of the order of magnitude of unity:

Dt0

d2 ¼ 1;
at0
h2
¼ 1; ð4:48Þ
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which makes the determination of the characteristic linear scales of d and h
possible,

d ¼
ffiffiffiffiffiffiffi
Dt0
p

� 10�4m; h ¼
ffiffiffiffiffiffi
at0
p

� 10�3m: ð4:49Þ

As a result of the diffusion and the heat transfer, conditions for a natural
convection arise, the influence of which on the velocity field appears when the
parameter in front of the Laplacian in (4.37)–(4.39) is of the order of magnitude of
unity (viscous flow):

lu0

gl2c�
¼ 1: ð4:50Þ

From (4.50) it is obvious that it is not necessary to determine the characteristic
velocity of the flow, which depends on the limitation process. Natural convection
cannot limit the velocity, because for diffusion and heat transfer in a stagnant
liquid [6, 8, 32] there is a mechanical equilibrium (vz = vr = vu : 0) and the
natural convection is only a result of the loss of stability.

The large concentration gradients induce a secondary flow, the characteristic
velocity of which may be determined if the parameter of the nonlinear mass
transfer in (4.44) is of the order of magnitude of unity:

Dc�

u0q0d
¼ 1: ð4:51Þ

In this way the characteristic scales l and u0 are obtained directly from (4.50) to
(4.51):
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The attempt to define the characteristic velocity from the Marangoni effect, i.e.,
from the condition

or
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¼ 1; ð4:53Þ

is not successful because there is no value of u0 that can satisfy both (4.50) and
(4.53). The natural convection and the Marangoni effect can arise simultaneously
in cases where the characteristic radius is very small:

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
or
oh
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s
� 10�3m: ð4:54Þ

The characteristic scales determined in this way in (4.49) and (4.52) allow the
determination of the order of magnitude of the parameters in (4.37)–(4.45):
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The dimensionless parameters determined in this way in the model (4.37–4.47)
are not of an order of magnitude greater than unity, which is a necessary condition
for validity of the result from the qualitative analysis.

From (4.55) it is evident that the parameter of the Marangoni effect (4.50) is of
order of magnitude 10-3 and does not influence the velocity, the concentration,
and the temperature field. Similar results have been obtained [52–54] in the
analysis of the simultaneous influence of the natural convection and the Marangoni
effect in cases of a fixed thickness of the water layer, greater than 10-3 m. This
result shows that under the condition of intensive mass transfer the natural con-
vection and the nonlinear mass transfer lead to a flow whose characteristic velocity
is two orders greater than the velocity at which the Marangoni effect may occur.

Another significant result of (4.55) is that bh0 	 c�

q0
\1; i.e., the temperature

change does not influence the density q, and further we will assume b = 0. This
result explains the original approximation in the Oberbeck–Boussinesq equations
[6, 8, 33], where (see 4.33) b = 0 in the expression for q and b = 0 in the
Archimedean force g(q - q0).

The different effects in the complex process take place when their corre-
sponding parameters are greater than 10-2, i.e., the problem (4.37–4.47) may
be expressed in a zeroth-order approximation regarding the parameters of order
lower than 10-2 (and smaller). In this way from (4.37)–(4.47) to (4.55) it follows
that

o2Vz

oZ2
1

þ C ¼ 0;
o2Vr

oZ2
1

¼ 0;
o2Vu

oZ2
1

¼ 0;

1þ eCð Þ oVz

oZ1
þ Vr

R
þ oVr

oR
þ 1

R

oVu

oU

� �
þ e Vz

oC

oZ1
þ Vr

oC

oR
þ 1

R
Vu

oC

ou

� �
¼ 0;

o~C

oT
þ e ~Vz

o~C

oZ2
þ ~Vr

o~C

oR
þ

~Vu

R

o~C

oU

� �
¼ o2 ~C

oZ2
2

; 1þ e~~C
� 	 o

~~H
oT
¼ o2 ~~H

oZ2
3

;

T ¼ 0; ~C ¼ 0; ~~H ¼ 1;
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Z1 ¼ Z2 ¼ Z3 ¼ 0; Vz ¼ �
o~C

oZ2
;

oVr

oZ1
¼ 0;

oVu

oZ1
¼ 0; ~C ¼ 1;

o
~~H

oZ3
¼ ea1 1þ eð Þ o~C

oZ2
;

Z1 ¼ Z2 ¼ Z3 !1; Vz ¼ Vr ¼ Vu ¼ ~C ¼ 0; ~~H ¼ 1; R ¼ 0; Vr ¼ 0:

ð4:56Þ

The solution of (4.56) depends on two parameters (a, e), where e is a small
parameter, and the solutions may be expressed in an expansion of e in the form

Vz ¼ V 0ð Þ
z þ e V 1ð Þ

z þ � � � ; Vr ¼ V 0ð Þ
r þ e V 1ð Þ

r þ � � � ; Vu ¼ V 0ð Þ
u þ e V 1ð Þ

u þ � � � ;

~C ¼ ~C 0ð Þ þ e ~C 1ð Þ þ � � � ; ~~H ¼ ~~H
0ð Þ þ e ~~H

1ð Þ þ � � � ð4:57Þ

The introduction of (4.57) into (4.56) allows us to find the zeroth-order
approximations e = 0:

o2V 0ð Þ
z

oZ2
1

þ C 0ð Þ ¼ 0; Z1 ¼ 0; V ð0Þz ¼ � o~C 0ð Þ

oZ2

� �
Z2¼0

; Z1 !1; V 0ð Þ
z ¼ 0:

ð4:58Þ

o2V 0ð Þ
u

oZ2
1

¼ 0; Z1 ¼ 0;
oV 0ð Þ

u

oZ1
¼ 0; Z1 !1; V 0ð Þ

u ¼ 0: ð4:59Þ

oV 0ð Þ
r

oR
þ V 0ð Þ

r

R
¼ � oV 0ð Þ

z

oZ1
� 1

R

oV 0ð Þ
u

oU
; R ¼ 0; Vð0Þr ¼ 0 finiteð Þ: ð4:60Þ

o~C 0ð Þ

oT
¼ o2 ~C 0ð Þ

oZ2
2

; T ¼ 0; ~C 0ð Þ ¼ 0; Z2 ¼ 0;

~C 0ð Þ ¼ 1; Z2 !1; ~C 0ð Þ ¼ 0:

ð4:61Þ

o
~~H

0ð Þ

oT
¼ o2 ~~H

0ð Þ

oZ2
3

; T ¼ 0; ~~H
0 ¼ 1; Z3 ¼ 0;

o
~~H

0ð Þ

oZ3
¼ 0; Z3 !1;

~~H
0ð Þ ¼ 1:

ð4:62Þ

The solutions of (4.59), (4.61), and (4.62) are obtained directly:

V 0ð Þ
u ¼ 0; ~C 0ð Þ ¼ erfc

Z2

2
ffiffiffiffi
T
p ;

~~H
0ð Þ � 1: ð4:63Þ
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From (4.36), (4.49), and (4.52) it is clear that

C 0ð Þ ¼ erfc
l

d
Z1

2
ffiffiffiffi
T
p

� �

 1; a0 ¼

l

d
� 10�3: ð4:64Þ

The introduction of (4.64) into (4.58) allows the determination of Vz
(0), replacing

the infinity condition with Vz(1) = 0:

V 0ð Þ
z ¼ � 1

2
Z2

1 þ
1
2
� 1ffiffiffiffiffiffiffi

p T
p

� �
Z1 þ

1ffiffiffiffiffiffiffi
p T
p : ð4:65Þ

Substitution of (4.63) and (4.65) into (4.60) leads to

V 0ð Þ
r ¼ 1

2
Z1 þ

1

2
ffiffiffiffiffiffi
pT
p � 1

4

� �
R: ð4:66Þ

The problem for determination of the first approximation of the concentration
~C 1ð Þ is of the type

o~C 1ð Þ

oT
¼ o2 ~C 1ð Þ

oZ2
2

� ~V 0ð Þ
z

o~C 0ð Þ

oZ2
; T ¼ 0; ~C 1ð Þ ¼ 0; Z2 ¼ 0; ~C 1ð Þ ¼ 0;

Z2 !1; ~C 1ð Þ ¼ 0;
ð4:67Þ

where

~V 0ð Þ
z Z2; Tð Þ ¼ V 0ð Þ

z Z1; Tð Þ; Z1 ¼
1
a0

Z2: ð4:68Þ

From (4.68) it directly follows that the volume source in (4.67) is

~V 0ð Þ
z

o~C 0ð Þ

oZ2
6¼ 0 for 0� Z2\a0� 10�3; ð4:69Þ

i.e., its influence on the mass transfer is practically confined to the interface
(Z2 = 0) and may be replaced by a surface flow as>

S ¼
Za

0

~V0
z

o~C 0ð Þ

oZ2
dZ2: ð4:70Þ

Thus, problem (4.67) takes the form

o~C 1ð Þ

oT
¼ o2 ~C 1ð Þ

oZ2
2

; T ¼ 0; ~C 1ð Þ ¼ 0; Z2 ¼ 0;
o~C 1ð Þ

oZ2
¼ �S; Z2 !1;

~C 1ð Þ ¼ 0;
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S ¼ �
ffiffiffiffi
T

p

r
a0e�

a2
4T �

ffiffiffi
p
p

erf a
2
ffiffiffi
T
p

a2
0

�
ffiffiffiffi
T

p

r
� 2

p

 !
e�

a2
4T � 1
a0

� 1ffiffiffiffiffiffi
pT
p erf

a0

2T
: ð4:71Þ

From (4.71) is clear that for small values of a0 (a0 * 10-3), S & 0; therefore,

~Cð1Þ � 0: ð4:72Þ

It is not difficult to show that

V 1ð Þ
z � 0; V 1ð Þ

r � 0; V 1ð Þ
u � 0; ~~H

1ð Þ � 0: ð4:73Þ

The average absorption rate J (per unit interface) for a time interval t0 may be
expressed by means of the mass transfer coefficient k. It may be determined from
the average mass flux I:

J ¼ kc� ¼ 1
pr2

0t0

Zt0

0

I dt; I ¼ pr2
0i; i ¼ �Dq�

q0

o c

o z

� �
z¼0

; q� ¼ q0 þ c�;

q�

q0
¼ 1þ e:

ð4:74Þ

Thus, Eq. 4.74 may be used to obtain the Sherwood number for nonstationary
diffusion:

Sh ¼ kl

D
¼ � 1þ eð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

gt0

ffiffiffiffiffiffiffi
1

Dt0

rs Z1

0

o~C

oZ2

� �
Z2¼0

dT ; ð4:75Þ

e.g.,

Sh ¼ 2 1þ eð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

pgt0

ffiffiffiffiffiffiffi
1

Dt0

rs
: ð4:76Þ

The amount of the gas absorbed Q (kg/m2) for the time interval t0 (s) is

Q ¼ 1

pr2
0

Zt0

0

Idt ¼ 2 1þ eð Þ c�
ffiffiffiffiffiffiffi
Dt0

p

r
: ð4:77Þ

The results reported (4.63, 4.65, 4.66) show that the temperature has practically
a constant value and does not influence the fields of velocity and concentration.
These results differ from the solution of the Benard problem [32, 50, 51], where
Vz = Vr = Vu = 0, because the effect of the nonlinear mass transfer does not
allow the existence of a mechanical equilibrium, where the liquid may remain
stagnant.
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The experimental results from the absorption of CO2 in an immobile layer of
water [55] show that the rate of the absorption is significantly greater than that
which can be determined from (4.77). This fact indicates that the nonstationary
process that is described by Eqs. 4.63, 4.65, and 4.66 (analogous to the Benard
problem) is unstable regarding small periodic disturbances. Their increase may
lead to new periodic flows with constant amplitude, which will evidently change
the mechanism and the kinetics of mass and heat transfer.

The results obtained show that in cases of absorption of pure gases in a
cylindrical liquid column, a second flow is induced as a result of a natural con-
vection and a nonlinear mass transfer. Under these conditions the Marangoni effect
is negligible and for the velocity, temperature, and concentration the following
expressions in dimension form have been obtained:

vz ¼ e � g

2m
z2 þ 1

2
�

ffiffiffiffiffi
t0

pt

r� � ffiffiffiffiffiffiffiffiffiffiffiffi
g

m

ffiffiffiffi
D

t0

rs
zþ

ffiffiffiffiffi
D

pt

r2
4

3
5;

vr ¼ e þ g

2m
z� 1

4
� 1

2

ffiffiffiffiffi
t0
pt

r� � ffiffiffiffiffiffiffiffiffiffiffiffi
g

m

ffiffiffiffi
D

t0

rs2
4

3
5r;

vu � 0; p � 0; c� ¼ erfc
z

2
ffiffiffiffiffi
Dt
p ; h � h0; e ¼ c�

q0
; m ¼ l

q0
: ð4:78Þ

These results differ significantly from the Benard problem [50, 51], where
under certain conditions a mechanical equilibrium (vz = vr = vu = 0) is possible.
The reason for this difference is the nonlinear mass transfer, i.e., the large mass
flux induces a secondary flow on the phase boundary,

z ¼ 0; vz ¼
ffiffiffiffiffi
D

pt

r
; ð4:79Þ

and in this way violates the necessary condition for a mechanical equilibrium [8,
32].

The process described by expressions (4.78) as may be expected, analogous to
the Benard problem, is unstable regarding small disturbances, which makes the
usage of the linear stability analysis [64, 66] possible.

A process represented as a superposition of the basic process (4.78) and small
disturbances in the velocity (vz

0, vr
0, vu

0), pressure (p0), concentration (c0), and
temperature (h0) will be considered:

vz þ v0z; vr þ v0r; vu þ v0u; pþ p0; cþ c0; hþ h0: ð4:80Þ

This new process should satisfy (as well as the basic one) the Oberbeck–
Boussinesq equations (4.33, 4.34). Introducing (4.78) and (4.80) into Eqs. 4.33 and
4.34, we obtain a system of equations concerning vz

0, vr
0, vu

0, p0, c0, and h0. We will
analyze the process in a linearized form with regard to these small disturbances:
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ð4:81Þ
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r
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ov0u
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t ¼ 0; v0z ¼ v0r ¼ v0u ¼ c0 ¼ h0 ¼ 0;

z ¼ 0; v0z ¼ �
D

q0

oc0

oz
; l

ov0r
oz
þ ov0z

or

� �
¼ or

oh
oh0

or
;

l
ov0u
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þ 1
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ov0z
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� �
¼ 1

r

or
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oh0
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; c0 ¼ 0; k

oh0
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¼ qD

oc0

oz
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z!1; v0z ¼ v0r ¼ v0u ¼ c0 ¼ h0 ¼ 0; r ¼ 0; v0z; v
0
r; v
0
u; c
0; p0; h0 � finite;

r ¼ r0; v0z ¼ v0r ¼ v0u ¼ 0;
oc0

or
¼ oh0

or
¼ 0: ð4:84Þ

Equations (4.82) are obtained from the equation of continuity using the con-
dition b 	 1. Boundary conditions for the pressure are not used because it will be
eliminated in Eq. 4.81. Boundary conditions regarding the coordinate u are not
included because periodic disturbances regarding u will be discussed.

The set of Eqs. 4.81–4.84 have partial solutions (‘‘normal’’ disturbances) which
depend exponentially on time:
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v0z ¼ �vz t; z; r;uð Þ exp �x tð Þ; p0 ¼ �p t; z; r;uð Þ exp �x tð Þ;

v0z ¼ �vr t; z; r;uð Þ exp �x tð Þ; c0 ¼ �c t; z; r;uð Þ exp �x tð Þ;

v0u ¼ �vu t; z; r;uð Þ exp �x tð Þ; h0 ¼ �h t; z; r;uð Þ exp �x tð Þ; ð4:85Þ

where the pre-exponential parts depend on time because the basic process (4.78) is
nonstationary. The disturbances presented in this way decrease or increase with
time, depending on the value of x, and for x = 0 the disturbances are ‘‘neutral,’’
i.e., a process which neither slows down nor intensifies with time. The mathe-
matical description of this process is obtained from (4.81) to (4.84) after intro-
ducing (4.85) and x = 0:
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ð4:86Þ
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r ¼ r0; �vz ¼ �vr ¼ �vu ¼ 0;
o�c

or
¼ o�h

or
¼ 0: ð4:89Þ

Problem (4.86)–(4.89) obviously has partial solutions for which the velocity,
the concentration, and the temperature harmonically depend on u, i.e., the fol-
lowing range of neutral disturbances may be introduced into (4.86)–(4.89):

�vz ¼
X1
n¼0

vn t; z; rð Þ cos nuð Þ; �vr ¼ �vu ¼ 0; �p ¼
X1
n¼0

pn t; z; rð Þ cos nuð Þ;

�c ¼
X1
n¼0

cn t; z; rð Þ cos nuð Þ; �h ¼
X1
n¼0

hn t; z; rð Þ cos nuð Þ: ð4:90Þ

Introducing (4.90) into (4.86)–(4.89), we obtain the following eigenvalue
problem:
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z ¼ 0; vn ¼ �
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¼ 0;

n ¼ 0; 1; 2; . . .;1:
ð4:94Þ

In (4.91)–(4.93) c = c* is accepted because the thickness of the velocity
change layer is many times less than the thickness of the concentration change
layer.
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The pressure in (4.91) may be eliminated if the second equation is integrated
regarding r and then differentiated in regard to z:

1þ eð Þ
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; n ¼ 0; 1; 2; . . .;1: ð4:95Þ

The introduction of (4.95) into (4.91) and (4.92) into (4.93) leads to the final
form of the equations for determination of the ‘‘neutral’’ velocity, concentration,
and temperature disturbances:
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with boundary conditions
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Problem (4.96) will be solved by introducing the dimensionless variables and a
partial separation of the variables:

t ¼ t0T ; z ¼ lZ; r ¼ r0R; vn ¼ u0 Vn Z; Tð Þ � Bfn Rð Þ½ �;

cn ¼ c� Cn Z; Tð Þ þ Zfn Rð Þ½ �; hn ¼
qDc�

k
fn Rð Þ; B ¼ De

u0l
; n ¼ 0; 1; 2; . . .;1;

ð4:98Þ

where the dependence of the disturbances on the coordinates is supposed to be
analogous to the basic process (4.78) for small values of z.

4 Self-Organizing Dissipative Structures 353



The introduction of (4.98) into (4.96) and (4.97) leads to
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f 00n þ
1
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R2
fn ¼ 0;

� 1þ eð Þ u0l

eD
oVn

oZ
¼ o2Cn

oZ2
� l2

r2

n2

R2
Cn; n ¼ 0; 1; 2; . . .;1; ð4:99Þ

with boundary conditions

Z ¼ 0; Vn ¼ �B
oCn

oZ
; Cn ¼ 0; R ¼ 0; fn � finite; R ¼ 1; f 0n ¼ 0;

n ¼ 0; 1; 2; . . .;1;
ð4:100Þ

where

u0 ¼ e

ffiffiffiffi
D

t0

r
� 10�7m=s; l ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
m
g

ffiffiffiffi
D

t0

rs
� 10�7m;

u0

egt0
� 10�9;

u2
0

egt0
� 10�7;

u2
0r2

0

egl3
� 103;

m u0

e gl2
� 1;

m u0

e gr2
0

� 10�9;
u0l

e D
� 10�8; e� 10�1: ð4:101Þ

The solution of the Euler equation in (4.99) is obtained through Green’s
functions [5], searching for the eigenvalues and the eigenfunctions for n = 0, 1,
2,…,?:

f0 ¼ const:; fn ¼
nn þ n�n

2n
Rn; R\n; fn ¼

nn

2n
Rn þ R�nð Þ; R [ n;

fn ¼
n2n

2n
þ 1

2n
; R ¼ n; 0\n\1; n ¼ 1; 2; . . .;1; ð4:102Þ

where the eigenvalue n is a parameter that cannot be determined in the approxi-
mations of the linear stability theory.

Having in mind the order of the dimensionless variables in (4.101), one can
directly obtain from (4.99)

o2Cn

oZ2
¼ 0; Z ¼ 0; Cn ¼ 0; Cn ¼ cnZ;
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oVn

oZ
¼ 0; Z ¼ 0; Vn ¼ �B

oCn

oZ
; Vn ¼ �Bcn; n ¼ 0; 1; 2; . . .;1;

ð4:103Þ

where the eigenvalue cn \ 0 cannot be determined in the approximations of the
linear stability analysis.

The solutions obtained (4.78, 4.102, 4.103) allow us to produce the final
expressions for the velocity, the concentration, and the temperature:
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r
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;;
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z

2
ffiffiffiffiffi
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m
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D
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" #8<
:
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;;
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qc�D

k
f0 þ

X1
n¼1

fn
r

r0

� �
cos nu

" #
; c ¼ c0 þ f0: ð4:104Þ

From (4.104) is possible to determine the mass flow at a given moment:

i ¼ �Dq�

q0

o c

o z

� �
z¼0

¼ Dq�c�

q0

1ffiffiffiffiffiffiffiffi
pDt
p
�

�

ffiffiffiffiffiffiffiffiffiffiffiffi
g
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ffiffiffiffi
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D
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cþ

X1
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cn þ fnð Þ cos nu

" #9=
;;

q� ¼ q0 þ c�; fn ¼ fn
r

r0

� �
; n ¼ 1; 2; . . .;1: ð4:105Þ

The amount of absorbed substance that passes through the cross-sectional area
is determined directly from (4.105), integrating over u in the range (0, 2p), and
having in mind that the integrals of the harmonic functions are equal to zero:

I ¼ pr2
0c� 1þ eð Þ

ffiffiffiffiffi
D

pt

r
� �c

 !
; �c ¼ cD

ffiffiffiffiffiffiffiffiffiffiffiffi
g

m

ffiffiffiffi
t0
D

rs
: ð4:106Þ

From (4.106) the absorption rate (J), the Sherwood number (Sh), and the mass
of the absorbed substance (Q) for a period of time t0 through a unit surface are
directly obtained:

J ¼ kc� ¼ 1

pr2
0t0

Zt0

0

Idt ¼ 1þ eð Þc� 2

ffiffiffiffiffiffiffi
D

p t0

r
� �c

� �
; ð4:107Þ
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Sh ¼ kl

D
¼ 1þ eð Þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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pgt0

ffiffiffiffiffiffiffi
1

Dt0

rs
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0
@

1
A; ð4:108Þ

Q ¼ 1

pr2
0

Zt0

0

Idt ¼ 1þ eð Þc� 2

ffiffiffiffiffiffiffi
Dt0

p

r
� �ct0

 !
; �c ¼ cD

l
; ð4:109Þ

where k is the mass transfer coefficient of the nonstationary absorption.
In this way Eqs. 4.107–4.109 allow the determination of the absorption rate

with an accuracy defined by the parameter �c, the value of which cannot be
determined in the approximations of the linear stability analysis. The parameter �c
may be determined by introducing an additional physical condition, or from
experimental data.

The study of nonstationary absorption of pure CO2 in H2O [55] provides
experimental data for the dependence of Q on

ffiffiffiffi
t0
p

: They have been used for the
determination of �c in (4.109) by means of the least-squares method. The value of �c
was calculated as -1.787 9 10-6 m/s. In Fig. 16 Eq. 4.109 is shown for �c = -

1.787 9 10-6 m/s, and the dots are experimental data from [55].
An attempt to explain the discrepancy between the experimental data for

nonstationary absorption of pure CO2 in H2O and the linear theory of mass transfer
with the Marangoni effect was made in [55]. There it was correctly shown that
(h* - h0) & 0.02 �C (h*—is the temperature of the phase boundary), but the
assumption that the fluctuations of h* as a result of a surface tension gradient are
enough to cause the loss of stability is unreasonable. The use of the experimental
data for the determination of the characteristic velocity of the flow
u0 = 1.12 9 10-6 m/s shows that the velocity obtained is very close to the
characteristic one in the cases when it is a result of a nonlinear mass transfer:

Fig. 16 Relation between
the amount of absorbed gas
(Q kg/m2) and the timeffiffiffiffi

t0
p

s�1=2
� �

s-1/2

(D = 1.78 9 10-9,
c* = 1.6 kg/m3,
�c = –1.787 9 10-6 m/s,
e = 1.6 9 10-3). Dots
experimental data from [55]
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u0 ¼
c�

q0

ffiffiffiffi
D

t0

r
¼ 0:876 � 10�6 m=s; t0 ¼ 10 s: ð4:110Þ

The solution of the Benard problem taking into account the surface tension
gradient [8, 60–62] shows that the Marangoni effect may occur in layers with
thickness not greater than several millimeters. Further, it is evident that in the case
of nonstationary absorption at large concentration gradients the occurrence of the
Marangoni effect cannot be expected.

The interphase mass transfer in a stagnant gas–liquid system has been inves-
tigated, as follows: in the case of an irreversible chemical reaction [59]; when an
absorbed component is surface-active [60]; in the case of stagnant liquid evapo-
ration [61], in the case of the presence of waves at the interface [62], etc.

Most of the experimental studies [55, 63, 64] indicate that under gas absorption
the mass transfer rate is significantly greater than that predicted by the linear
theory. On the other hand, under desorption such differences have not been
observed. This fact has been explained in different ways [55]. It is possible to
demonstrate that the difference between the absorption and desorption rates fol-
lows directly from the nonlinear theory of the mass transfer and the hydrodynamic
stability [65].

Carbon dioxide desorption from a saturated stagnant water solution into a
nitrogen gas phase has been investigated experimentally by several research
groups [55, 63, 64]. In this case the CO2 concentration in the gas phase changes
from the equilibrium value at the interface to zero in the bulk of the gas. Thus, it is
necessary to use the Oberbeck–Boussinesq equations (4.33) for both phases, where
the temperature is practically constant. Thus, (4.33) gives the following equations
for the gas (i = 1) and the liquid (i = 2) phase, respectively:
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where q01 is the water density and q02 is the density of nitrogen.
Under CO2 diffusion in N2 (20 �C) a is determined through the densities of both

gases:

a ¼
qCO2

� qN2

qCO2

¼ 0:367: ð4:112Þ

The boundary conditions of (4.111) follow from (4.34), taking into account the
interaction between the phases during the desorption process:
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ð4:113Þ

The solution of problems (4.111) and (4.113) requires dimensionless variables
such as (4.36) for both phases:

t ¼ t0T ; z ¼ liZ
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1 ¼ diZ
ið Þ

2 ; r ¼ r0R; u ¼ 2pU; pi ¼ q0iu
2
0iP

ið Þ;
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where the order of the following characteristic scales is known,

t0� 102s; r0� 10�2m; v ¼ 1:06; c0 ¼ 1:6 kg
�

m3; c�01 ¼ vc0; c�02 ¼ c0:

ð4:115Þ

The substitution of (4.114) into (4.112) and (4.113) converts the problem into a
dimensionless form:
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where �c�0i ¼ a2�ic�0i; i ¼ 1; 2:
The qualitative analysis of (4.116) may be performed in a way similar to that

employed when considering the absorption. This allows us to evaluate the char-
acteristic scales for both phases as

Dit0
d2

i

¼ 1; di ¼
ffiffiffiffiffiffiffiffi
Dit0
p

; d1� 10�2m; d2� 10�4m,
liu0i

gl2
i �c
�
0i

¼ 1;

Dic�0i

u0iq0idi
¼ 1;

u0i ¼
c�i
q0i

ffiffiffiffiffi
Di

t0

r
; u0i� 10�4m=s; u02� 10�8m=s;

li ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�ili

q0ig

ffiffiffiffiffi
Di

t0

rs
; l1� 10�5m, l2� 10�7m: ð4:117Þ
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The characteristic scales (4.117) permit the evaluation of the parameter orders
in (4.116):
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where the values in square brackets are for the gas phase and the liquid phase
[i = 1, i = 2], respectively.

The order of magnitude (10-2) of the last parameter in (4.118) shows that the
mass transfer under desorption of CO2 from saturated water is limited by the mass
transfer in the liquid phase, i.e., C(1) : 0. Further, only the equations for the liquid
phase will be considered. For simplicity, the superscript 2 will be omitted. In this
way, the set (4.116) gives

o2Vz

oZ2
1

þ C ¼ 0;
o2Vr

oZ2
1

¼ 0;
o2Vu

oZ2
1

¼ 0;
oVz

oZ1
þ Vr

R
þ oVr

oR
þ 1

R

oVu

oU
¼ 0;

o~C

oT
¼ o2 ~C

oZ2
2

;

T ¼ 0; ~C ¼ 0; Z1 ¼ Z2 ¼ 0; Vz ¼ �
o~C

oZ2
;

oVr

oZ1
¼ 0;

oVu

oZ1
¼ 0; ~C ¼ 0;

Z1 ¼ Z2 ! �1; Vz ¼ Vr ¼ Vu ¼ 0; ~C ¼ 1; R ¼ 0; Vr � finite:

ð4:119Þ

It follows from (4.119) that the solution for ~C is the following:

~C ¼ �erf
Z2

2
ffiffiffiffi
T
p Z2� 0ð Þ; ~C ¼ erfc

Z2

2
ffiffiffiffi
T
p Z2� 0ð Þ

� �
; Z2 ¼ a0Z1;

a0 ¼
l

d
� 10�3:

ð4:120Þ

Solution (4.120) gives

C ¼ �erf a0
Z1

2
ffiffiffiffi
T
p

� �

 0; C ¼ erfc a

Z1

2
ffiffiffiffi
T
p

� �

 1

� �
: ð4:121Þ
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Here the results concerning absorption are shown in angled brackets.
The substitution of (4.121) into (4.119) shows that in the case of desorption of

gas from a stagnant liquid there are no conditions allowing a natural convection.
Thus, for the flow velocity components (induced by the mass transfer in the liquid
phase), we obtain

o2Vz

oZ2
1

¼ 0;
o2Vz

oZ2
1

¼ 1

� �
: Z1 ¼ 0; Vz ¼ �

o~C

oZ2

� �
Z2¼0

; Z1 ¼ �1;

Vz ¼ 0:

oVr

oR
þ Vr

R
¼ � oVz

oZ1
� 1

R

oVu

oU
; R ¼ 0; V 0ð Þ

r � finite:

o2Vu

oZ2
1

¼ 0; Z1 ¼ 0;
oVu

oZ1
¼ 0; Z1 ¼ �1; Vu ¼ 0: ð4:122Þ

In the above problems the boundary condition at (-?) is substituted by the
condition at (-1), i.e., at the border of the boundary layer. The solutions were
obtained in [65]:

Vz ¼
1ffiffiffiffiffiffiffi
p T
p Z1 þ 1ð Þ; Z1� 0ð Þ;

Vz ¼ �
1
2

Z2
1 þ

1
2
� 1ffiffiffiffiffiffi

pT
p

� �
Z1 þ

1ffiffiffiffiffiffi
pT
p Z1� 0ð Þ

� �
;

Vr ¼ �
1

2
ffiffiffiffiffiffiffi
p T
p R; Vr ¼

1
2

Z1 þ
1

2
ffiffiffiffiffiffi
pT
p � 1

4

� �
R

� �
; Vu � 0: ð4:123Þ

The result (4.123) indicates that a larger concentration gradient in the liquid (at
the interface) induces the flow in a liquid bulk.

The velocity field (4.123) and the concentration distribution in the liquid
(4.120) may be expressed as

vz ¼ e0

ffiffiffiffiffi
D

pt

r
z

l
þ 1

� 	
; vr ¼ �

e0

2l

ffiffiffiffiffi
D

pt

r
r;

e0 ¼
c0

q0
; vu � 0; c ¼ �c0erf

z

2
ffiffiffiffiffi
Dt
p ; l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

q0g

ffiffiffiffi
D

t0

rs
: ð4:124Þ

The mass transfer rate may be obtained in a manner similar to that employed
for (4.74). The relationships for the Sherwood number and the amount of desorbed
substance are similar to those obtained for the absorption process, where in case of
desorption c* = 0 and q* = q0:

Sh ¼ kl

D
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

pg t0

ffiffiffiffiffiffiffi
1

Dt0

rs
; Q ¼ 2c0

ffiffiffiffiffiffiffiffi
D t0

p

r
kg
�

m2; ð4:125Þ
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The linear stability of the desorption process may be studied by means of small
perturbations of the axial velocity, the pressure, and the concentration,

vz þ v0z; pþ p0; cþ c0; ð4:126Þ

in the complete set of equations of Oberbeck and Boussinesq (4.111, 4.113). The
perturbations may be expressed through Fourier series of eigenfunctions, where x
and n are eigenvalues:

v0z ¼ exp x tð Þ
X1
n¼0

vn t; z; rð Þ cos nuð Þ; p0 ¼ exp x tð Þ
X1
n¼0

pn t; z; rð Þ cos nuð Þ;

c0 ¼ exp x tð Þ
X1
n¼0

cn t; z; rð Þ cos nuð Þ: ð4:127Þ

There are stable periodic solutions at x = 0. After elimination of the pressure,
the eigenvalue problem takes the form

ovn

ot
þ vn

ovz

oz
þ vz

ovn

oz
þ vr

ovn

or
¼ m

o2vn

oz2
þ 1
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or2
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r2
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� �
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q0
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Z
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dr

� �
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� ovn
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¼ D

q0
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þ o2cn

or2
þ 1

r

ocn

or
� n2

r2
cn

� �
;

z ¼ 0; vn ¼ �
D

q0

ocn

oz
; cn ¼ 0; z ¼ �1; vn ¼ �

D

q0

ocn

oz
;

r ¼ 0; vn; cn � finite; r ¼ r0; vn ¼ 0;
ocn

or
¼ 0; n ¼ 0; 1; 2; . . .;1:

ð4:128Þ

Comparison of (4.128) and (4.96) shows that the difference between the
absorption and the desorption processes is determined by the velocity distribution
in the main flow (under desorption ovr

oz ¼ 0).
The solution of (4.128) may be presented in the form of (4.98):

vn ¼ u0 VnðZ; TÞ � BfnðRÞ½ �; cn ¼ c0 Cn Z; Tð Þ þ Zfn Rð Þ½ �; n ¼ 0; 1; 2; . . .;1:

T ¼ t

t0
; Z ¼ z

l
; R ¼ r

r0
; B ¼ De0

u0l
; e0 ¼

c0

q0
: ð4:129Þ
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The introduction of the new variables into (4.128) leads to

l2

mt0

oVn

oT
þ u0l

m
Vn � Bfnð Þ oVz

oZ
þ Vz

oVn

oZ
� BVrf

0
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� �
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� �
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e0D

oVn

oZ
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oZ2
� l2

r2
0

n2

R2
Cn; f 00n þ

1
R

f 0n �
n2

R2
fn ¼ 0;

Z ¼ 0; Vn ¼ �B
oCn

oZ
; Cn ¼ 0; Z ! �1; Vn ¼ �B

oCn

oZ
;

R ¼ 0; fn � finite; R ¼ 1; f 0n ¼ 0; n ¼ 0; 1; 2; . . .;1; ð4:130Þ

where (4.102) is the solution for fn(n = 0, 1, 2, …, ?).
The orders of magnitude of the dimensionless parameters in (4.130) are as

follows:

l2

m t0
� 10�10;

u0l

m
� 10�9;

l2

r0
� 10�10;

e0l2g

m u0
� 10�2;

u0l

e0D
� 10�3;

u0l

m
r2

0

l2
� 10

� �
:

ð4:131Þ

The small parameters in (4.130) may be assumed to be zero and the resulting set
for the determination of Vn and Cn (n = 0, 1, 2,…, ?) is

o2Vn

oZ2
¼ 0

oVn

oZ
¼ 0

� �
;

o2Cn

oZ2
¼ 0;

Z ¼ 0; Vn ¼ �B
oCn

oZ
; Cn ¼ 0; Z ! �1; Vn ¼ �B

oCn

oZ
;

n ¼ 0; 1; 2; . . .;1:
ð4:132Þ

Problem (4.132) has a solution for Vn(n = 0, 1, 2, …, ?) depending linearly
on Z. This leads to a result similar to (4.103):

Vn ¼ �Bcn; Cn ¼ cnZ; cn� 0; Z� 0; n ¼ 0; 1; 2; . . .;1; ð4:133Þ

where the velocity and the concentration are determined with the accuracy of an
unspecified constant that could not be obtained in the approximation of the linear
stability theory.

The result obtained [65] shows that under desorption of CO2 from stagnant
saturated water the desorption rate may be expressed by a relationship similar to
one obtained for the absorption. So, the process rate can be determined from
(4.107) to (4.109). This result could be derived more precisely by taking into
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account the weak dependence of �c on t0 �c�
ffiffiffi
4
p

t0
� �

. Thus, from (4.109) to (4.106),
it directly follows that

Sh ¼ kl

D
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
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ffiffiffiffiffiffiffi
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4t

5
4
0

" #
: ð4:134Þ

The result obtained (4.134) is valid in case of absorption as well, when
c0 = c*(e 	 1).

The eigenvalue c is determined by the least-squares method applied to the
experimental data obtained in [55, 63, 64]. In the case of absorption c = -

4.204 9 10-4, whereas in the case of desorption c = 3.032 9 10-5. This result
shows that the desorption process is stable, in contrast to the absorption process. In
this case the mass transfer rate may be determined by (4.124). Figure 17 presents
the relationship Q ¼ Q

ffiffiffiffi
t0
pð Þ in (4.134) for absorption, desorption, and according

to the linear theory of mass transfer, i.e., c = 0, compared with the experimental
data [55, 63, 64].

The comparative analysis of both processes shows that under desorption of CO2

from stagnant saturated water there are no conditions allowing a natural convec-
tion. As a result, the axial velocity component depends linearly on the axial
coordinate (see 4.125), whereas the radial component is independent of the same
coordinate. This result is opposite that obtained under absorption, where the
relationship of the axial coordinate is a power of 2. Thus, the axial perturbations of
the concentration attenuate and the respective axial perturbations of the velocity
attenuate too. The radial perturbations are symmetric and do not affect the mass
transfer rate. The concentration gradient at the interface induces a flow, but its
velocity is small and has no effect on the mass transfer rate. This fact together with
the absence of a natural convection in desorption make the induced flow stable
with respect to the axial perturbations provoked by the perturbations of the
concentration.

Owing to the stability of the desorption process and the absence of a nonlinear
mass transfer effect, the process rate may be determined by the linear theory of
nonstationary mass transfer (4.25). This result is confirmed by the experimental
data [55, 63, 64] shown in Fig. 17.

The theoretical analysis of the mechanism and the kinetics of the transport
processes in systems with intensive mass transfer shows that in the case of gas
absorption at great concentration gradients and a chemical reaction in the liquid
phase, the mass transfer rate is significantly higher than that predicted by the linear
theory of mass transfer. In the absence of surface-active agents and the availability
of a temperature field, caused by the thermal effect of the chemical reaction, the
surface tension gradient is not enough for the occurrence of the Marangoni effect.
In the case of nonstationary absorption of a gas in a stagnant liquid, a flow is
induced as a result of a natural convection and a nonlinear mass transfer (a density
gradient in the volume and a large mass flux through the phase boundary). This
problem differs significantly from the Benard problem, as the large concentration
gradient at the interphase induces a secondary flow, oriented normally to this
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surface, and in this way does not allow the existence of a mechanical equilibrium
(diffusion in an immobile liquid). In this way the basic process considered
(simultaneous momentum, mass and heat transfer) is unstable regarding distur-
bances (that may not be small). As a result, the process becomes unstable and it is
transformed into a periodic stable process, i.e., a self-organizing dissipative
structure (velocity, concentration, and temperature field). The mass transfer rate is
significantly greater than that predicted by the linear theory. In the case of
desorption, the process is stable and the mass transfer kinetics is determined
according to the linear theory. These results are confirmed by a large amount of
experimental data.

The theoretical results obtained show [58, 65] that the mass transfer rate under
nonstationary absorption of concentrated gas admixtures by a stagnant liquid layer
may be determined (see 4.109) by the amount of substance absorbed per time t0
(s):

Q ¼ 1þ eð Þc� 2
Dc0

p

� �1
2

þc
g

m

� 	1
2
D

3
4t

5
4
0

" #
; ð4:135Þ

where for low-solubility gases e 	 1 and c* is the concentration at the liquid
surface. In the case of a desorption process (see 4.134) from a saturated solution
(e.g., a saturated aqueous solution of CO2 contacting with a gas phase containing
N2), c* = 0 and the amount of desorbed substance is

Q ¼ c0 2
Dc0

p

� �1
2

þc
g

m

� 	1
2
D

3
4t

5
4
0

" #
; ð4:136Þ

where c0 is the initial gas concentration in the solution.
In the relationships for Q, the first term depends on the rate of the nonstationary

diffusion in the stagnant liquid. The second term occurs owing the loss of stability

Fig. 17 Comparison of the
absorption and desorption
rates (4.134) of CO2 in H2O:
1 absorption
(c = –4.204 9 10-4),
2 desorption
(c = 3.029 9 10-5),
3 linear theory (c = 0).
Experimental data: squares
absorption, triangles
desorption
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of the process provoked by small perturbations of the concentration of absorbed
gas at the liquid surface. These periodic perturbations with small amplitude grow
continuously until a new stable state is established (i.e., self-organizing dissipative
process). The parameter c of this self-organizing dissipative structure is related to
the amplitude of the new stable state and can be obtained using the experimental
data [55, 63, 64] summarized in Table 7.

The experimental data [55, 63, 64] permit us to obtain the parameter c in
(4.135) and (4.136) using the least-squares method [66]. The average values
obtained for every process (cav) are shown in Table 7.

Obviously the values of cav depend on the interphase concentration c*. The
suitable correlation developed is

c ¼ 3:29 � 10�4 c�ð Þ
1
4: ð4:137Þ

The values of c, calculated from (4.137), are presented in Table 7.
The substitution of (4.137) into (4.135) and (4.136) leads to a definitive rela-

tionship [66] expressing the amount of absorbed (desorbed) substance:

Q ¼ 2c�
Dt0

p

� �1
2

þ3:29 � 10�4c�
5
4

g

m

� 	1
2
D

3
4t

5
4
0; ð4:138Þ

Q ¼ 2c0
Dt0

p

� �1
2

: ð4:139Þ

Figures 18, 19, 20, 21, 22 and 23 show experimental data concerning the
systems summarized in Table 7. They correlate well with the values of cav

(obtained from the least-squares method) and with the values of c calculated from
(4.137).

The theoretical analysis of the absorption kinetics complicated by a chemical
reaction in the liquid phase done here continues the investigations performed in
[28, 43, 58, 65, 66, 69]. The main results show that the deviations from the linear
mass transfer theory cannot be explained by the Marangoni effect. The latter
assumption is based on the fact that the thermal effect of the absorption is not
sufficient to create a gradient of the liquid surface tension and a consequent loss of
stability of the system.

Table 7 Systems considered in [55, 63, 64]

Process System T (oC) D (9109

m2/s)
v (9106

m2/s)
c
(kg/m3)

c
(9104)

cav

(9104)

Absorption 100% CO2–H2O 23 1.88 0.97 1.60 3.70 4.20
Absorption 30% CO2(N2)–H2O 23 1.88 0.97 0.471 2.73 2.68
Absorption 7.1% CO2(N2)–H2O 23 1.88 0.97 0.112 1.90 1.20
Absorption 100% Ar–H2O 20 0.47 1.00 0.0599 1.63 1.79
Absorption 100% Ar–H2O 10 0.35 1.30 0.0719 1.70 2.12
Absorption 100% Ar–C2H5OH 20 0.49 1.52 0.427 2.66 3.29
Desorption (CO2/H2O)–N2 20 1.88 0.97 0 0 -0.303
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The differences observed may be explained directly by the nonlinear mass
transfer effects as a result of the large concentration gradients which induce sec-
ondary flows oriented along the normal with respect to the interphase boundary.
The result of these secondary flows is the loss of stability of the system with
respect of the small perturbations of concentration at the interface. The final result
is that the perturbations grow until to a new stable (self-organizing) dissipative
structure with a mass transfer rate significantly greater than one predicted by the
linear mass transfer theory.

In the cases of a non-stationary absorption of a gas in a stagnant liquid, these
secondary flows are induced as a result of the natural convection and the large
concentration gradients.

4.3 Liquid Evaporation

The studies described in the previous section addressed the absorption (desorption)
of low-solubility gases when the liquid mass transfer resistance limits the mass
transfer rates. Obviously, the situation where the mass transfer is limited by the gas
phase is interesting. An adequate example is the case of nonstationary evaporation
of a stagnant liquid layer in a stagnant gas phase above it [67, 68]. The detailed
experimental investigation of such systems was reported in [73].

The nonstationary evaporation of a liquid with a moderate partial pressure
(water, methanol, ethanol, and isopropyl alcohol) at 20 �C in an inert gas (nitro-
gen, argon, and helium) is now investigated. The process occurs in a thermostatic
condition, corresponding to the experiments performed reported in [73]. Under

Fig. 18 Absorption of 100%
CO2 in water (c* = 1.60 kg/
m3) at 23 �C. Circles experi-
mental data, 1 cav obtained
from the least-squares
method, 2 c calculated from
(4.37)
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such a condition the nonstationary mass transfer of the liquid vapor in the gas
phase limits the process rate.

The mechanism of nonstationary evaporation may be considered as a non-
stationary diffusion complicated with additional effects of a variable temperature
at the liquid surface (as a result of the thermal effect of the evaporation phe-
nomenon) and a convection (secondary Stefan flow) as well as a natural con-
vection. The contribution of these phenomena to the evaporation rate will be
analyzed next.

The investigations [73] on the evaporation rates of liquids (H2O, CH3OH,
C2H5OH, i-C3H7OH) showed a time-dependent average liquid temperature. In
fact, the process only depends on the surface temperature (h*, �C).

Fig. 19 Absorption of 30%
CO2 (70% N2) in water
(c* = 0.471 kg/m3) at 23 �C.
Circles experimental data,
1 cav obtained from the
least-squares method, 2 c
calculated from (4.137)

Fig. 20 Absorption of 7.1%
CO2 (92.9% N2) in water
(c* = 0.112 kg/m3) at 23 �C.
Circles experimental data, 1
cav obtained from the least-
squares method, 2 c calcu-
lated from (4.137)
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The temperature distribution in a layer of an evaporating liquid is described by

oh
ot
¼ a

o2h
oz2

; t ¼ 0; h ¼ h0; z ¼ 0; k
oh
oz
¼ qJ; z ¼ h; h ¼ h0;

ð4:140Þ

where the coordinate z-axis is oriented normally to the liquid–gas interface
(z = 0), h and h0 (�C) are the temperatures of the liquid and the initial tempera-
ture; t (s) is time, k (kcal/ms �C) is the thermal conductivity of the liquid, a (m2/s)
is the temperature diffusivity, q (kcal/kg) is the latent heat of the evaporation, J
(kg/m2s) is the evaporation rate, and h (m) is the thickness of the evaporating
liquid.

Fig. 21 Absorption of
100% Ar in water
(c* = 0.0599 kg/m3) at 20 C.
Circles experimental data,
1 cav obtained from the least-
squares method, 2 c
calculated from (4.137)

Fig. 22 Absorption of 100%
Ar in water (c* = 0.0719 kg/
m3) at 10 �C. Circles experi-
mental data, 1 cav obtained
from the least-squares
method, 2 c calculated from
(4.137)
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The evaporation rate J in (4.140) may be determined through experimental data
(J = Je) concerning the amount of evaporated liquid Qe (kg/m2) at time t (s). Such
data are available in [73]. After a sufficiently large initial time interval (where J
has its greatest values), the relationship may be expressed as

Qe ¼ Ae

ffiffiffi
t;
p

ð4:141Þ

where Ae (kg/m2s1/2) may be determined on the basis of the experimental data
reported in [73] for systems such as H2O–N2, H2O–He, H2O–Ar, CH3OH–Ar,
C2H5OH–Ar, and i-C3H7OH–Ar (see Table 8). This allows us to define (by means
of 4.141) the values of Je as

Je ¼
dQe

dt
¼ Ae

2
ffiffi
t
p : ð4:142Þ

Substitution of (4.142) into (4.140) permits us to define [74] the temperature
distribution within the evaporating liquid layer with thickness h:

h ¼ h0 �
qAe

ffiffiffiffiffiffi
pa
p

2k

X1
n¼0

�1ð Þn erfc
2nhþ z

2
ffiffiffiffi
at
p � erfc

2 nþ 1ð Þh� z

2
ffiffiffiffi
at
p

� �
: ð4:143Þ

Equation (4.143) allows us to determine the temperature variations at the liquid
top surface (z = 0) as a result of the evaporation process:

h0 � h� ¼ qAe

ffiffiffiffiffiffi
pa
p

2k
1þ 2

X1
n¼1

�1ð Þnerfc
nhffiffiffiffi

at
p

" #
; ð4:144Þ

where the liquid thickness was assumed to be 3 9 10-3 m.
It follows from (4.144) that the maximum temperature at the interface may be

reached at the limiting situations of t ? 0 or h ? 0:

Fig. 23 Absorption of 100%
Ar in C2H5O (c* = 0.427 kg/
m3) at 20 �C. Circles experi-
mental data, 1 cav obtained
from the least-squares
method, 2 c calculated from
(4.137)
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h0 � h� ¼ qAe

ffiffiffiffiffiffi
pa
p

2k
: ð4:145Þ

The result (4.145) can be obtained also in the case when the liquid layer is not
subject to thermostatic conditions. In such a situation the last boundary condition
in (4.140) becomes z ? ?, h. = h0 (z [ ha =

ffiffiffiffi
at
p

), where ha is the thickness of
thermal boundary layer. Thus, the temperature distribution is

h ¼ h0 �
qAe

ffiffiffiffiffiffi
pa
p

2k
erfc

z

2
ffiffiffiffi
at
p : ð4:146Þ

Equation (4.146) shows that the results (4.145) follow directly at z = 0.
The results concerning the interface temperature (h0 - h*, �C) are listed in

Table 8. It is clear that the temperature at the liquid surface practically remains
unchanged as a result of the evaporation process. Some deviations from that
‘‘rule’’ are demonstrated by the CH3OH–Ar system, but they change the partial
pressure of the vapors above the liquid in the range of 10%, which should be
neglected (the data in [73] have the same experimental error).

The experimental relationship h
ffiffi
t
p� �

(obtained in [73]) shows that the

asymptotic value Q = Qmax is reached at large values of
ffiffi
t
p

. It allows determi-
nation of the exact vapor concentration at the interface c� ¼ Qmax=l kg

�
m3

� �
;

where l = 0.257 m is the gas-phase thickness (depth).
If the evaporation rate is limited by the nonstationary diffusion, the concen-

tration distribution is [58, 65, 66]

Table 8 Characteristic parameters of gas–liquid systems (20 �C)

Parameters Systems

H2O–N2 H2O–He H2O–Ar CH3OH–Ar C2H5OH–Ar i-C3H7OH–Ar

q (kcal/kg) 584.3 584.3 584.3 280.0 217.9 179.1
a 9 107 (m2/s) 1.43 1.43 1.43 1.05 0.888 0.752
k 9 105 (kcal/msC) 1.448 1.448 1.448 4.875 4.015 3.657
D 9 105, (m2/s) 2.41 2.57 8.86 0.98 1.0 0.846
h0 - h* (�C) 0.3 0.3 0.2 3.4 0.6 0.4
Ae 9 104 (kg/m2s1/2) 2.051 2.190 1.633 19.47 3.963 3.287
AD 9 104 (kg/m2s1/2) 0.936 0.967 1.79 5.09 3.89 1.51
A 9 104 (kg/m2s1/2) 0.954 0.961 1.94 5.92 4.28 1.57
c* (kg/m3) 0.0142 0.0143 0.0161 0.142 0.0995 0.0939
c0* (kg/m3) 1.13 1.66 0.162 1.48 1.57 1.63
# 9 105 (m2/s) 1.441 1.360 12.12 1.360 1.360 1.360
q0 (kg/m3) 1.16 1.66 0.166 1.66 1.66 1.66
Qmax 9 102 (kg/m2) 0.3660 0.3684 0.4129 3.644 2.558 2.414
a -0.555 0.778 -1.216 -0.246 0.133 0.335
b 0.332 0 0.332 0.332 0 0
c 1.70 0 1.7 1.7 0 0
e 2.40 0 2.40 2.40 0 0
q0/c0*c0* 1.02 1.02 1.02 1.12 1.05 1.04
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c ¼ c�erfc
z

2
ffiffiffiffiffi
Dt
p ; ð4:147Þ

where c and c* (kg/m3) are the concentrations of the vapors in the gas phase and at
the interface respectively, and D (m2/s) is the diffusivity. The solution (4.147)
permits us to obtain the rate of the diffusion:

JD ¼ �D
oc

oz

� �
z¼0

¼ c�
ffiffiffiffiffi
D

pt

r
¼ AD

2
ffiffi
t
p ; AD ¼ 2c�

ffiffiffiffi
D

p

r
: ð4:148Þ

Comparison of the values of AD and Ae (see Table 8) indicates significant
differences that may be attributed to the occurrence of a Stefan flow [75]. Some
strange behaviors are demonstrated by the C2H5OH–Ar (Ae & AD) and H2O–He
(Ae \ AD) systems.

The difference between the evaporation rate and the rate of the nonstationary
diffusion indicates that a convective contribution exists. The evaporation of a
liquid in an inert gas is a result of a liquid–vapor phase transition, so there is a
volumetric effect of a heterogeneous reaction at the interface [75] that creates the
Stefan flow. If the process occurs in thermostatic conditions it is limited by both
the diffusive and the convective transports in the gas phase. Thus, the evaporation
rate can be expressed as

J ¼ �D
oc

oz

� �
z¼0

þc�vs; ð4:149Þ

where vs (m/s) is the velocity of the Stefan flow.
The mass transfer rate of the inert gas (in the gas phase) in the case of a binary

gas–vapor system may be expressed in a similar manner:

J0 ¼ �D
oc0

oz

� �
z¼0

þc�0vs; ð4:150Þ

where c0 and c0* (kg/m3) are the concentrations of the inert gas in the bulk of the
gas phase and at the interface. If the evaporating liquid is saturated by the inert gas
(like in the experiments reported in [73]), it follows that

J0 ¼ 0; c0 þ c ¼ q ¼ q0 þ ac;
oc0

oz
¼ � 1� að Þ oc

oz
; a ¼ qV � q0

qV

; ð4:151Þ

where qV (kg/m3) is the density of the vapor of the liquid, q0(kg/m3) is the density
of the inert gas, and q (kg/m3) is the density of the gas phase. In this way, we
obtain from Eqs. 4.149 and 4.150

vs ¼ �
D 1� að Þ

c�0

oc

oz

� �
z¼0

; J ¼ �D
q0

c�0

oc

oz

� �
z¼0

; ð4:152Þ
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Comparison of the velocity of the Stefan flow (4.152) and the velocity of the
secondary flow induced by the large concentration gradients [69] shows that they
are different when there is evaporation of liquid in inert gases under isothermal
conditions (a thermostated system) since q0 = q*. Here

q� ¼ q0 þ ac�: ð4:153Þ

The convective mass transfer upon nonstationary evaporation from a stagnant
liquid into a stagnant gas above it (within a large initial time interval) could be
attributed to the Stefan flow and the natural convection. In the case of a gaseous
layer above a stagnant liquid, the momentum equations of the gas phase and the
convection–diffusion equations of the liquid vapors (under the assumption of a
one-dimensional approximation) are

ov

ot
þ v

ov

oz
¼ # o2v

oz2
� 1

q0

op

oz
� gac

q0
;

oc

ot
þ v

oc

oz
¼ D

o2c

oz2
;

t ¼ 0; v ¼ c ¼ 0; z ¼ 0; v ¼ �D 1� að Þ
c�0

oc

oz

� �
Z¼0

; c ¼ c�; z!1; v ¼ c ¼ 0;

ð4:154Þ

where # (m2/s) is the kinematic viscosity .
The coordinate z is oriented vertically upwards and the liquid interface is z = 0.

In cases when the Stefan flow does not exist (see 4.152), the velocity is zero,

m 0; tð Þ � 0; ð4:155Þ

which leads to a stable solution of (4.154),

�m � 0; �c ¼ a1zþ a2;
o�p

oz
¼ gac; ð4:156Þ

i.e., the gas phase is stagnant, the concentration distribution is linear, and the
pressure gradient depends on the concentration distribution along the gaseous layer
depth [8]. This is a stable state of the system, but small disturbances could lead to a
new stable state, where the motion of the gas phase is a result of the natural
convection.

It is possible to introduce into (4.154) the dimensionless variables

t ¼ t0T ; z ¼ dZ; v ¼ u0V ; p ¼ q0u2
0P; c ¼ c�C; ð4:157Þ

where t0 (s) is the characteristic timescale of the process. The length d denotes the
depth of the gaseous layer above the liquid where the principal changes of both the
concentration and the velocity occur. The value of u0 is the characteristic velocity
scale. The results are

oV

oT
þ u0t0

d
V

oV

oZ
¼ � u0t0

d
oP

oZ
þ #t0

d2

o2V

oZ2
� gat0c�

q0u0
C;

oC

oT
þ u0t0

d
V

oC

oZ
¼ Dt0

d2

o2C

oZ2
;
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T ¼ 0; V ¼ C ¼ 0; Z ¼ 0; V ¼ �Dc� 1� að Þ
c�0du0

oC

oZ

� �
z¼0

; C ¼ 1;

Z !1; V ¼ C ¼ 0:

ð4:158Þ

The existence of the Stefan flow leads to the occurrence of flow inside the gas
phase whose characteristic velocity is defined by the boundary condition in
(4.158):

Dc� 1� að Þ
c�0du0

� 1; u0 ¼
Dc� 1� að Þ

c�0d
; ð4:159Þ

i.e., both terms in the boundary conditions of the Stefan flow should have equal
orders of magnitude.

If the evaporation rate is limited by the nonstationary diffusion, the parameters
of both the nonstationary and the diffusion terms of the diffusion equation of the
set (4.158) should have equal orders of magnitude:

Dt0

d2 � 1; d ¼
ffiffiffiffiffiffiffi
Dt0
p

� 10�2m if t0� 102s: ð4:160Þ

In this way the characteristic velocity of (4.159) is

u0 ¼
c�

c�0

ffiffiffiffi
D

t0

r
1� að Þ� 10�5m=s: ð4:161Þ

Including (4.160) in the first equation in (4.158) leads to

#t0
d2 ¼ Sc� 1; Sc ¼ #

D
; ð4:162Þ

If we assume that the flow is limited by the natural convection, the first equation
in (4.158) becomes

q0u0

gat0c�
oV

oT
þ q0u2

0

gadc�
V

oV

oZ
¼ � q0u2

0

gadc�
oP

oZ
þ #q0u0

d2gac�
o2V

oZ2
� C: ð4:163Þ

In this particular case the parameters of the last two terms of (4.163) should
have equal orders of magnitude:

#q0u0

d2gac�
� 1; d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vq0

gac�0

ffiffiffiffi
D

t0

rs
� 10�5m: ð4:164Þ

Conditions (4.160) and (4.164) indicate that the effects of the Stefan flow and
the natural convection occur in different zones of the gaseous layer above the
liquid surface. This fact permits us to separate these effects if the velocity,
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pressure, and concentration in the first equation in (4.158) may be expressed in the
form

vþ �m; �p; �c; ð4:165Þ

Here �m; �p, and �c are determined by (4.156), whereas (4.154) with the last two
terms of the first equation neglected determines the values of v and c. In this way,
the form of (4.158) becomes

oV

oT
þ bV

oV

oZ
¼ Sc

o2V

oZ2
;

oC

oT
þ bV

oC

oZ
¼ o2C

oZ2
;

T ¼ 0; V ¼ C ¼ 0; Z ¼ 0; V ¼ � oC

oZ
; C ¼ 1; Z !1; V ¼ C ¼ 0;

ð4:166Þ

where b follows directly from (4.158) to (4.160)–(4.162),

b ¼ 1� að Þ c
�

c�0
� 10�1: ð4:167Þ

Obviously Eq. 4.166 are valid within a broad initial time interval t0, when the
thickness of the diffusion boundary layer d ¼

ffiffiffiffiffiffiffi
Dt0
p

is less than the depth of the
gas phase l (in the cases studied in [73], l = 0.257 m).

The solution of (4.166) may be obtained as series of the powers of a small
parameter b:

V ¼ V0 þ b V1; C ¼ C0 þ b C1: ð4:168Þ

Thus, the zeroth-order approximation is

oV0

oT
¼ Sc

o2V0

oZ2
;

oC0

oT
¼ o2C0

oZ2
; T ¼ 0; V0 ¼ C0 ¼ 0;

Z ¼ 0; V0 ¼ �
oC0

oZ
; C0 ¼ 1; Z !1; V0 ¼ C0 ¼ 0:

ð4:169Þ

The solution for C0 is

C0 ¼ erfc
Z

2
ffiffiffiffi
T
p : ð4:170Þ

The problem for V0 is

oV0

oT
¼ Sc

o2V0

oZ2
; T ¼ 0; V0 ¼ 0; Z ¼ 0; V0 ¼ u Tð Þ ¼ 1ffiffiffiffiffiffi

pT
p ; Z !1;

V0 ¼ 0:

ð4:171Þ

The solution of (4.171) may be obtained by Green’s function [23]:
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V0 ¼ u tð Þ exp � Z2

4ScT

� �
�
ZT

0

u sð Þ þ 2su0 sð Þffiffiffi
s
p

Zs Zffiffiffiffiffiffiffiffiffiffiffiffiffi
4ScTs T�sð Þ
p

0

exp �u2
� �

du

2
664

3
775ds:

ð4:172Þ

This permits us to determine V0 at u = (pT)-1/2:

V0 ¼
exp � Z2

4ScT

� 	
ffiffiffiffiffiffi
pT
p : ð4:173Þ

The problem formulation for C1 follows from (4.166):

oC1

oT
� o2C1

oZ2
¼ V0

oC0

oZ
¼ �

exp � Z2

4T 1þ 1
Sc

� �h i

pT
;

T ¼ 0; C1 ¼ 0; Z ¼ 0; C1 ¼ 0; Z !1; C1 ¼ 0:

ð4:174Þ

The solution obtained for (4.174) through Green’s functions [23] is

C1 ¼
exp � Z2

4T

� 	

2p
ffiffiffi
p
p

ZT

0

1

s
ffiffiffiffiffiffiffiffiffiffiffi
T � s
p

Z1

0

exp � n T � Zsð Þ2

4Ts T � sð Þ

" #
� exp � nT þ Zsð Þ2

4Ts T � sð Þ

" #( )

� exp � n2

4Scs

� �
dnds:

ð4:175Þ

From (4.175) it follows that

oC1

oZ

� �
Z¼0

¼ � 2
p

ffiffiffiffiffiffi
Sc

pT

r
arctg Sc�1=2

� �
: ð4:176Þ

The amount of evaporated liquid Q (kg/m2) is obtained from (4.152), (4.168),
(4.170), and (4.176):

Q ¼
Zt0

0

Jdt ¼ �c�
q�

c�0

ffiffiffiffiffiffiffi
Dt0
p Z1

0

oC0

oZ

� �
Z¼0

þ c� 1� að Þ
c�0

oC1

oZ

� �
Z¼0

� �
dT ¼ A

ffiffiffiffi
t0
p

;

ð4:177Þ

where

A ¼ 2c�
q0

c�0

ffiffiffiffi
D

p

r
þ 2c� 1� að Þ

pc�0

ffiffiffi
#

p

r
arctg Sc�1=2

� � !
: ð4:178Þ

Expression (4.178) permits us to calculate the parameter A for various systems,
summarized in Table 8. The values are close to those of AD, but in the dominating
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situations are quite different from the values of Ae. This indicates the existence of
an additional convective transport, which could be provoked by a loss of stability
of the system. Thus, the small disturbances grow until stable amplitudes are
established and the dissipative structures formed have a greater rate of the trans-
port processes.

The results obtained here and their comparisons with the experimental data in
[73] indicate that during the evaporation of low-volatility liquids (H2O, CH3OH,
C2H3OH, i-C3H7OH) in gaseous media of indifferent gases (N2, He, Ar) and
external thermostatic conditions the temperature of the liquid surface is practically
constant. This shows that there is no possibility to create thermocapillary flow as
suggested in [73]. Under such conditions the mass transfer in the gas phase limits
the evaporation rate, where the convective contribution depends on the Stefan
flow.

Comparison of the theoretical and the experimental results shows the existence
of an additional convective transport probably induced not only by the Stefan flow
but also by the loss of stability of the system.

The experimental data in [73] show that at large characteristic time
d ¼

ffiffiffiffiffiffiffi
Dt0
p

� l ¼ 0:257mð Þ; Q = const., which may be explained by the non-
stationary diffusion between both surfaces. Thus, the boundary condition in
(4.154), z ? ?, c = 0, must be replaced by z ¼ l; oc

oz ¼ 0: Under conditions
imposed by small characteristic times (where d\ 1), the determination of the
additional convective transport (induced by the system instability and the onset of
a natural convection) is required.

The stability of the evaporation process described by model (4.154) will be
investigated [68] by means of perturbations of the velocity (v0), pressure (p0), and
concentration (c0). Their superposition on the main process leads to

vþ v0; pþ p0; cþ c0; ð4:179Þ

where (4.179) satisfies model (4.154). The result is two sets of equations:

ov

ot
þ v

ov

oz
¼ # o2v

oz2
;

oc

ot
þ v

oc

oz
¼ D

o2c

oz2
;

t ¼ 0; v ¼ c ¼ 0; z ¼ 0; v ¼ �D 1� að Þ
c�0

oc

oz

� �
z¼0

; c ¼ c�; z ¼ l; v ¼ 0;
oc

oz
¼ 0:

ð4:180Þ

ov0

ot
þ v0

ov0

oz
þ v

ov0

oz
þ v0

ov

oz
¼ � 1

q0

op

oz
þ op0

oz

� �
þ # o2v0

oz2
� ag

q0
cþ c0ð Þ;

oc0

ot
þ v0

oc0

oz
þ v

oc0

oz
þ v0

oc

oz
¼ D

o2c0

oz2
;

z ¼ 0; v0 ¼ c0 ¼ 0; z ¼ 0; v0 ¼ �D 1� að Þ
c�0

oc0

oz

� �
z¼0

; c0 ¼ 0; z ¼ l; v0 ¼ 0:
ð4:181Þ

The dimensionless variables
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t ¼ t0T ; z ¼ lZ; v ¼ u0V; c ¼ c�C; ð4:182Þ

may be introduced into (4.180) and the new form of the sets of equations becomes

oV

oT
þ u0t0

l
V

oV

oZ
¼ #t0

l2
o2V

oZ2
;

oC

oT
þ u0t0

l
V

oC

oZ
¼ Dt0

l2
o2C

oZ2
;

T ¼ 0; V ¼ C ¼ 0; Z ¼ 0; V ¼ �D 1� að Þc�
c�0lu0

oC

oZ

� �
z¼0

;

C ¼ 1; Z ¼ 1; V ¼ 0;
oC

oZ
¼ 0:

ð4:183Þ

The characteristic velocity of the flow as a result of the Stefan flow is deter-
mined from the boundary condition at the interface (z = 0):

D 1� að Þc�
c�0lu0

� 1; u0 ¼
D 1� að Þc�

c�0l
� 10�6m=s: ð4:184Þ

This allows us to determine also the orders of magnitude of the other param-
eters in (4.183):

u0t0
l
� 10�2;

vt0

l
� Dt0

l2
� 1: ð4:185Þ

It is clear that from (4.183) to (4.185) if we neglect the convective terms we
may obtain the solution of (4.180):

v
ov

oz
� v

oc

oz
� 0: ð4:186Þ

The solution of (4.180) with respect to the concentration (under condi-
tion 4.186) can be obtained by a Laplace transformation [74] in the form

c ¼ c�
X1
n¼0

�1ð Þn erfc
2nlþ z

2
ffiffiffiffiffi
Dt
p þ erfc

2nþ 2ð Þl� z

2
ffiffiffiffiffi
Dt
p

� �
: ð4:187Þ

Thus,

oc

oz

� �
z¼0

¼ � c�ffiffiffiffiffiffiffiffi
pDt
p 1þ 2

X1
n¼1

�1ð Þnexp � n2l2

Dt

� �" #
; ð4:188Þ

and the velocity of the Stefan flow is

v 0; tð Þ ¼ 1� að Þ c
�

c�0

ffiffiffiffiffi
D

pt

r
1þ 2

X1
n¼1

�1ð Þnexp � n2l2

Dt

� �" #
: ð4:189Þ
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The solution of (4.181) is derived in the form of ‘‘normal’’ perturbations:

v0 ¼ v1 z; tð Þ exp �ktð Þ; p0 ¼ p1 z; tð Þ exp �ktð Þ; c0 ¼ c1 z; tð Þ exp �ktð Þ;
ð4:190Þ

where v1, p1, and c1 are amplitudes of the perturbations.
The problem concerning the determination of v1, p1, and c1 is an eigenvalue

problem, where k is the eigenvalue and v1, p1, and c1 are the eigenfunctions. The
solution is derived in the form of ‘‘neutral’’ perturbations, whose amplitudes
neither attenuate nor grow with time, i.e., eigenfunctions at k = 0. Thus, from
(4.180) to (4.181) we obtain

v1
ov1

oz
þ v

ov1

oz
þ v1

ov

oz
¼ � 1

q0

op

oz
þ op1

oz

� �
þ # o2v1

oz2
� ga

q0
cþ c1ð Þ;

v1
oc1

oz
þ v

oc1

oz
þ v1

oc

oz
¼ D

o2c1

oz2
;

t ¼ 0; v1 ¼ c1 ¼ 0; z ¼ 0; v1 ¼ �
D 1� að Þ

c�0

oc1

oz

� �
Z¼0

; c1 ¼ 0; z ¼ l; v1 ¼ 0:

ð4:191Þ

The solution of (4.191) is achieved by means of dimensionless variables:

t ¼ t0T ; z ¼ l1Z1; v ¼ u1V ; v1 ¼ u1V1; c ¼ c�C; c1 ¼ c�C1; p ¼ q0u2
1P; p1

¼ q0u2
1P1;

ð4:192Þ

The substitution of (4.192) into (4.191) leads to

u2
1q0

l1gac�
V1

oV1

oZ
þ V

oV1

oZ
þ V1

oV

oZ

� �
¼ � u2

1q0

l1gac�
oP

oZ
þ oP1

oZ

� �
þ #u1q0

l2
1gac�

o2V1

oZ2
� C

� C1;

u1l1
D

V1
oC1

oZ
þ V

oC1

oZ
þ V1

oC

oZ

� �
¼ o2C1

oZ2
; T ¼ 0; V1 ¼ C1 ¼ 0;

Z ¼ 0; V1 ¼ �
D 1� að Þc�

u1l1c�0

oC1

oZ

� �
z¼0

; C1 ¼ 0; Z ¼ 1; V1 ¼ C1 ¼ 0:

ð4:193Þ

It is possible to suggest that in (4.193) the process is limited by the natural
convection and the velocity at the interface, i.e.,

#u1q0

l2
1gac�

¼ 1;
D 1� að Þc�

u1l1c�0
¼ 1: ð4:194Þ

This permits us to define the characteristic parameters (the velocity and the
thickness of the boundary layer) and their orders of magnitude:
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u1 ¼ D 1� að Þ c
�

c�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gac�0

D 1� að Þ#q0

3

s
�10�3m=s; l1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� að Þ#q0D

�
0

3

s
�10�4m:

ð4:195Þ

Expressions (4.195) permit us to define the order of magnitude of the dimen-
sionless parameters of (4.193) too:

u2
1q0

l1gc�
� 10�2;

u1l1

D
� 10�2: ð4:196Þ

This allows us to express (4.193) in a zeroth-order approximation with respect
to the small parameters (4.196):

o2V1

oZ2
1

¼ C þ C1;
o2C1

oZ2
1

¼ 0;

Z1 ¼ 0;
oC1

oZ

� �
Z¼0

¼ �V1 0; Tð Þ; C1 ¼ 0; Z1 ¼ 1; V1 ¼ C1 ¼ 0:

ð4:197Þ

The concentration c = c*C in (4.197) varies within a layer with thickness
d * 10-2 m (see 4.182), whereas the concentration c1 = c1*C varies within the
range defined by a layer of depth l * 10-4. Thus, the form of (4.197) allows us to
introduce C = 1 for the surface concentration.

The solution of (4.197) concerning C1 may be obtained with accuracy defined
by an arbitrary function V1(0,T):

C1 ¼ 1� Z1ð ÞV1 0; Tð Þ: ð4:198Þ

The solution concerning the velocity can be obtained in a similar manner:

V1 ¼
1
2

Z2
1 þ V1 0; Tð Þ Z2

1

2
� Z3

1

6

� �
� 1

2
þ 4

3
V 0; Tð Þ

� �
Z1 þ V1 0; Tð Þ: ð4:199Þ

The velocity V1 0;Tð Þ ¼ v1 0;tð Þ
u1

cannot be determined theoretically under the

basic assumptions (approximations) of the linear stability theory because the
normal component of the disturbance velocity v1(0,t) is related to the disturbance
amplitude. However, it is possible to establish it from experimental data.

If we suppose [68] that the velocity of the disturbance differs from the velocity
of the main flow (4.189), v1(0,t) can be represented as

v1 0; tð Þ ¼ c 1� að Þ c
�

c�0

ffiffiffiffiffi
D

pt

r
1þ 2e

X1
n¼1

�1ð Þnexp � n2l21
Dt

� �" #
; l1 ¼ b l; ð4:200Þ

where c is the scale of the disturbance velocity, e is the scale of the influence of the
nonlinear mass transfer effect on the disturbance, and b is the scale of the
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penetrating depth of the influence of the nonlinear mass transfer effect on the
disturbance. The parameters b, c, and e should be obtained from experimental data.

Introduction of Eq. 4.200 into the boundary condition in (4.191) at z = 0 leads
to

oc1

oz

� �
z¼0

¼ �c
c�ffiffiffiffiffiffiffiffi
pDt
p 1þ 2e

X1
n¼1

�1ð Þnexp � n2l2
1

Dt

� �" #
; ð4:201Þ

The mass transfer rate upon evaporation depends on both the diffusive and the
convective transports through the liquid–gas interface:

J ¼ �D
oc

oz
þ oc1

oz

� �
z¼0

þc� vþ v1ð Þz¼0¼ �
Dq0

c�0
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oz
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oz

� �
z¼0

; ð4:202Þ

The introduction of (4.188) and (4.201) into (4.202) leads to

J ¼ q0c�

c�0

ffiffiffiffiffi
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ffiffiffiffiffi
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n¼1

�1ð Þnexp � n2b2l2

Dt

� �" #
: ð4:203Þ

Taking into account that

q� ¼ q0 þ ac� ¼ c�0 þ c�; ð4:204Þ

it is possible to find the amount of evaporated liquid through (4.203):

Q ¼
Zt0

0

Jdt ¼ A 1þ cð Þ
ffiffi
t
p
þ
X1
n¼1

�1ð Þn
Zt0

0

1ffiffi
t
p exp � n2l2

Dt

� �
dt

2
4

þ ec
X1
n¼1

�1ð Þn
Zt0

0

1ffiffi
t
p exp � n2b2l2

Dt

� �
dt;�

ð4:205Þ

where

A ¼ 2
q0c�

c�0

ffiffiffiffi
D

p

r
: ð4:206Þ

The experimental data concerning evaporation of various liquids in [73] permits
the determination of the values of b, c and e. In the calculation of the sums in
(4.205) three to four terms were required for the first sum and six to eight terms
were required for the second sum.

Figures 24, 25, 26, 27, 28 and 29 show a comparison between the values of Q
determined through (4.205) and the experimental data in [73]. The corresponding
values of b, c, and e are given in Table 8.
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The effect of the Stefan flow is determined by the ratio q0/c0*, whose values are
shown in Table 8. The results obtained show that the Stefan flow is greatest for the
evaporation of CH3OH.

The results presented [68] indicate that the rate of evaporation from a stagnant
liquid into a gaseous layer having a limited depth is controlled by the rate of the
nonstationary diffusion. The concentration of the vapors at the liquid surface is
practically constant, whereas the upper boundary of the gaseous layer is
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Fig. 24 Evaporation in the
H2O–N2 system
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Fig. 25 Evaporation in the
H2O–He system
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impermeable for the vapors (i.e., diffusive flux is zero). This effect is augmented
by the contribution of a convective transport in the gas phase. Both the Stefan flow
and the natural convection contribute to this latter effect. The Stefan flow occurs
owing to the phase transition at the interface, whereas the natural convection is
caused by the loss of stability of the entire process as a result of the growth of
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Fig. 26 Evaporation in the
H2O–Ar system
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Fig. 27 Evaporation in the
CH3OH–Ar system
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small perturbations. The latter leads to a self-organization of the system and the
formation of dissipative structures.

It can be seen from Table 8 that in the cases when the vapors of the liquid are
denser than the inert gas (H2O–He, C2H5OH–Ar, i-C3H7OH–Ar) the process is
stable (b = c = e = 0) and the rate of evaporation can be determined from the
nonstationary diffusion rate (increased by 2–5% by the Stefan flow effect, q0/c0*).
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Fig. 28 Evaporation in the
C2H5OH–Ar system
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Fig. 29 Evaporation in the i-
C3H7OH–Ar system
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The process is unstable when the vapors are less dense than the gas. In these
conditions a natural convection appears as a result of the instability. Thus, the
evaporation rate (c = 1.70) is essentially increased and is 2.7 times larger than the
diffusion rate.

It is important to note that the parameters of the dissipative structure (as a result
of instability) are equal (b = 0.332, c = 1.7, e = 2.4) for different liquid–gas
systems (H2O–N2, H2O–Ar, CH3OH–Ar). The deviation of the CH3OH–Ar system
could be a result of experimental errors [68].

5 Examples

5.1 Gas–Liquid System

Significant interaction between flows in gas and liquid will be observed if a
movable liquid surface replaces the unmovable solid surface. There will also be
the effect of induction of secondary flows as a result of intensive interphase mass
transfer in gas–liquid systems, but this effect is superposed with the hydrodynamic
interaction between the above-mentioned two phases. The stability under these
conditions is not only of theoretical interest, but is also of practical interest in view
of the fact that it defines the rate of a number of industrial absorption and
desorption processes.

The mathematical model of the nonlinear mass transfer in gas–liquid systems
(see Sect. 3.3 in Chap. 3) will be considered in the approximations of the boundary
layer theory [29, 30, 41], taking into account that the diffusive resistance is con-
centrated in the gas phase [31]. It was shown in [32] that the nonlinear effects in
the liquid can be neglected. The mathematical description has the following form:

uj
ouj

ox
þ vj

ouj

oy
¼ mj

o2uj

oy2
;

ouj

ox
þ ovj

oy
¼ 0; j ¼ 1; 2; u1

oc

ox
þ v1

oc

oy
¼ D1

o2c

oy2
;

ð5:1Þ

where the indexes 1 and 2 denote the gas and the liquid, respectively. The
boundary conditions of (5.1) are

x ¼ 0; u ¼ uj0; c ¼ c0; j ¼ 1; 2; y ¼ 0; u1 ¼ u2; c ¼ c�;

l1
ou1

oy
¼ l2

ou2

oy
;

v1 ¼ �
MD1

q�0j

oc

oy
; v2 ¼ 0; y!1; u1 ¼ u10; c ¼ c0; y! �1;

u2 ¼ u20:

ð5:2Þ
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Problem (5.1) and (5.2) was solved numerically and asymptotically [13, 29, 33].
Further, similarity variables will be applied:

uj ¼ 0:5juj0ejU
0
j; vj ¼ �1ð Þj�10:5j

uj0mj

x

� 	0:5
njU

0
j � Uj

� 	
;

c ¼ c0 � c0 � c�ð ÞW;

Uj ¼ Uj gj

� �
; Wj ¼ Wj gj

� �
; gj ¼ �1ð Þj�1y

uj0

4Djx

� �0:5

; ej ¼ Sc0:5
j ;

Scj ¼
mj

Dj
; j ¼ 1; 2:

ð5:3Þ

The substitution of (5.3) into (5.1, 5.2) leads to

U0001 þ e�1
1 U1U

00
1 ¼ 0; U0002 þ 2e�1

2 U2U
00
2 ¼ 0; W00 þ e1U1W

0 ¼ 0;

U1 0ð Þ ¼ �h3W
0 0ð Þ; U2 0ð Þ ¼ 0; U01 1ð Þ ¼

2
e1
; U02 1ð Þ ¼

1
e2
;

U01 0ð Þ ¼ 2h1
e2

e1
U02 0ð Þ;

U002 0ð Þ ¼ �0:5h2
e1

e2

� �2

U001 0ð Þ; W 0ð Þ ¼ 1; W 1ð Þ ¼ 0: ð5:4Þ

The solution of Eq. 5.4 is obtained [13, 33] by determining the initial values of
f, which allows us to define the velocity profiles in the gas and the liquid as
solutions of a problem with initial conditions

2f 000j þ fjf
00
j ¼ 0; fj ¼ fj nj

� �
; nj ¼

2
ej

gj;

fj 0ð Þ ¼ aj; f 0j 0ð Þ ¼ bj; f 00j 0ð Þ ¼ cj; f 0j 1ð Þ¼ 1; j ¼ 1; 2; ð5:5Þ

where

a1 ¼ a10; b1 ¼
e1

2
b10; c1 ¼

e2
1

4
c10; a2 ¼ 0; b2 ¼ e2b20; c2 ¼ �

e2
2

2
c20;

ð5:6Þ

where the values of a10, b10, c10, b20, and c20 for e1 = 1, e2 = 20, h1 = 0.1, and
h2 = 0.152 are given in Tables 9 and 10.

It was shown in [34] that the Orr–Sommerfeld equation in the approximations
of almost parallel flows has the same form for the gas and the liquid, as follows:

f 0 � Cð Þ u00 � A2u
� �

� f 000u

¼ � i

ARe
u0_ � 2A2u00 þ A4u
� �

� 1
2

nf 0 � fð Þu000 þ 1
2

nf 000 þ f 00ð Þ þ A2

2
nf 0 � fð Þ

� �� �
u0;
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n ¼ 0; u ¼ 0; u0 ¼ 0; n ¼ n1 � 6; u00 � A2u0
� �

� c u00 � A2u
� �

¼ 0;
k ¼ lim

n!1
nf 0 � fð Þ;

u00 � c2u0
� �

þ A u00 � c2u
� �

¼ 0; c ¼ k

4
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 16A Aþ iRe 1� Cð Þ½ �

p
4

;

ð5:7Þ

where

f nð Þ ¼ fj nj

� �
; n ¼ nj; u ¼ uj; c ¼ cj; k ¼ kj; j ¼ 1; 2: ð5:8Þ

The values of kj (j = 1, 2) are calculated and are shown in Tables 9 and 10.
The neutral curves (Re,A) and (Re,Cr) for the gas are obtained and the critical

Reynolds numbers, corresponding to wave numbers and phase velocities, are
presented in Tables 11 and 12.

It can be clearly seen that the direction of the influence of the intensive
interphase mass transfer on the hydrodynamic stability of the flow in the gas-phase
boundary layer is analogous to the case of the solid interphase surface. Hence, in
the case of absorption (h3 [ 0), increase of stability is observed. In the opposite
case of desorption (h3 \ 0), the stability decreases. The motion of the interface
[f0(0) [ 0] leads to a decrease of the velocity gradients, which is the cause of
stabilization of the flow in all cases (increase of Recr).

The solution of (5.7) for the liquid phase (f = f2) shows that the flow is stable at
large Reynolds numbers (Re & 25,000), which can be explained by the fact that
the velocity gradient in the liquid boundary layer is low and is shaped as the profile
of the Couette flow.

The effects of the intensive interphase mass transfer in gas–liquid systems
appear as a difference in the rates of absorption and desorption. In the cases where
the process is limited by the diffusion resistance in the gas phase, this difference is

Table 9 Liquid flow
(e2 = 20, h1 = 0.1,
h2 = 0.152, h3 = h)

h b20 c20 k

-0.3 0.0546 0.00033 -0.1
0.0 0.0536 0.00026 -0.086
0.3 0.0527 0.00022 -0.13

Table 10 Gas flow (e1 = 1,
h1 = 0.1, h2 = 0.152,
h3 = h)

h a10 b10 c10 k

-0.3 0.2797 0.2185 1.662 0.953
-0.2 0.1703 0.2166 1.520 1.133
-0.1 0.07852 0.2152 1.402 1.301
0.0 0.0 0.2138 1.304 1.428
0.1 -0.06822 0.2129 1.220 1.552
0.2 -0.1283 0.2118 1.084 1.665
0.3 -0.1816 0.2107 1.084 1.768
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explained by the Marangoni effect, which manifests itself in the liquid phase. The
higher rate of absorption (compared with the rate of desorption) can be explained
by the effect of nonlinear mass transfer, i.e., the influence of the induced secondary
flow on the kinetics of the mass transfer. Cases where the desorption rate is higher
than the absorption rate can be explained by loss of stability and transition to
turbulence, since it is possible for the flow in the gas phase to be turbulent for
desorption and laminar for absorption at equal Reynolds numbers.

5.2 Liquid–Liquid System

The nonlinear effects in the case of an intensive interphase mass transfer between
two liquids can manifest themselves with the same intensity in both phases. In a
number of extraction processes where the motion of one of the phases (the dis-
persion medium) induces motion in the other (the dispersed phase), these effects

Table 11 Values of the critical Reynolds numbers Recr, wave velocities Cr, wave numbers A,
Amin, and Cr min

h Recr A Cr Amin Cr min

-0.3 2,511 0.270 0.3863 0.304 0.3878
-0.2 1,605 0.285 0.4095 0.325 0.4108
-0.1 1,078 0.295 0.4264 0.341 0.4281
0.0 795 0.305 0.4469 0.356 0.4493
0.3 397 0.330 0.4866 0.398 0.4902
0.2 483 0.320 0.4749 0.386 0.4786
0.1 605 0.315 0.4620 0.373 0.4645

Table 12 Computed values of Aj, Bj, Cj, and k; (m/b = 0, h1 = h, h2 = 0), (b/m = 1,
h1 = h2 = h)

e = 10 h Aj Bj Cj k

m/b = 0 -0.5 0.6652 0.439 0.265 0.673
m/b = 0 -0.3 0.0329 0.420 0.265 0.747
m/b = 0 -0.1 0.0094 0.405 0.265 0.805
m/b = 0 0.0 0.0 0.400 0.265 0.823
m/b = 0 0.1 -0.0082 0.394 0.265 0.846
m/b = 0 0.3 -0.0221 0.384 0.265 0.883
m/b = 0 0.5 -0.0334 0.375 0.265 0.915
b/m = 1 -0.5 0.0211 0.413 0.265 0.773
b/m = 1 -0.3 0.0128 0.407 0.265 0.800
b/m = 1 -0.1 0.0043 0.402 0.265 0.820
b/m = 1 0.0 0.0 0.400 0.265 0.823
b/m = 1 0.1 -0.0043 0.396 0.265 0.836
b/m = 1 0.3 -0.0128 0.390 0.265 0.862
b/m = 1 0.5 -0.0211 0.385 0.265 0.880
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are of great interest. Further, one could consider [35] the hydrodynamic stability
under the condition of an intensive interphase mass transfer between two liquid
phases where the velocity in the volume of one of them is zero.

The mathematical model of the nonlinear mass transfer in liquid–liquid systems
where the first liquid is in motion over the second one (which is at rest) can be
obtained from the ‘‘gas–liquid’’ model (equations 3.3.34, 3.3.35) when u20 = 0
and v = m, where m is the distribution coefficient and the indexes 1 and 2 in
equations (3.3.34) and (3.3.35) denote liquid 1 and liquid 2, respectively.

The problem formulated has been solved numerically [29, 36] and the boundary
values for the velocity and its derivatives have been obtained. This gives us the
opportunity to generate the velocity profiles of the following hydrodynamic
problem:

uj
ouj

ox
þ vj

ovj

oy
¼ mj

o2uj

oy2
;

ouj

ox
þ ovj

oy
¼ 0;

x ¼ 0; u1 ¼ u0; u2 ¼ 0; y ¼ 0; uj ¼ uj0; vj ¼ vj0;
ouj

oy
¼ Rj;

j ¼ 1; 2;
ð5:9Þ

where uj0, vj0 and Rj (j = 1, 2) were determined in Sect. 3.3 in Chap. 3.
The introduction of the following similarity variables

uj ¼ u0f 0j nj

� �
; vj ¼

u0mj

4x

� 	0:5
njf
0
j � fj

� 	
; nj ¼ �1ð Þj�1y

u0

mjx

� �0:5

; j ¼ 1; 2;

ð5:10Þ

leads to a problem which allows us to determine the velocity profiles:

2f 000j þ fjf
00
j ¼ 0;

fj 0ð Þ ¼ Aj; f 0j 0ð Þ ¼ Bj; f 00j 0ð Þ ¼ Cj; j ¼ 1; 2; f 01 1ð Þ ¼ 1; f 02 1ð Þ ¼ 0
� �

;

ð5:11Þ

where Aj, Bj, and Cj are results of the numerical solution [36] and they are dis-
played in Table 6.

The velocity profiles fj0(nj)(j = 1, 2) depend substantially on the effect of the
nonlinear mass transfer (Aj, j = 1, 2), which is characterized by the parameters
hj(j = 1, 2) [36]:

hj ¼
M mc20 � c10ð Þ

q�j0mj�1
; j ¼ 1; 2: ð5:12Þ

This effect is superposed with the effect of the hydrodynamic interaction
between the phases (Cj, j = 1, 2). Hence, the interface velocity (Bj, j = 1, 2)
takes into account both of the above-mentioned effects.

390 Stability Analysis

http://dx.doi.org/10.1007/978-3-642-10778-8_3
http://dx.doi.org/10.1007/978-3-642-10778-8_3
http://dx.doi.org/10.1007/978-3-642-10778-8_3
http://dx.doi.org/10.1007/978-3-642-10778-8_3
http://dx.doi.org/10.1007/978-3-642-10778-8_3


The linear analysis of the hydrodynamic stability in liquid–liquid systems is
made similarly to that in the case of gas–liquid systems. The velocity profiles
(5.10) are introduced into the Orr–Sommerfeld equation. The results obtained
show that the stability of the profiles depends considerably on the nonlinear effects
of the mass transfer hj(j = 1, 2), as well as on the interface velocity (Bj, j = 1, 2).

The effect of the nonlinear mass transfer in liquid 1 and the effects of the
increase of the interface velocity are superposed and their total influence on the
stability of the flow in phase 1 is shown in Table 13 (m/b = 0).

Under the conditions of commensurable diffusive resistances in the two liquids,
the nonlinear effects are lower (Table 13, m/b = 1). The influence of the nonlinear
effects (h) on the stability of the flow decreases.

The linear analysis of the hydrodynamic stability of phase 2 [35] produces
results analogous with those for the gas–liquid system. The flow is stable up to
large Reynolds numbers (Re & 25,000), which can be explained by the shape of
the velocity profile (approximately the same as the Couette one).

Studies on the hydrodynamic stability in systems with intensive interphase mass
transfer have shown that the stability increases with the increase of the interface
velocity and the increase of concentration gradients in the case of interphase mass
transfer directed from the volume to the phase boundary. The decrease of the
interface velocity and the change of direction of the interphase mass transfer
destabilize the flow in the boundary layer.

Experimental studies [37–39] of mass transfer in systems with intensive
interphase mass transfer between two liquids have shown in a number of cases a
higher mass transfer rate compared with that predicted by the linear theory of mass
transfer. So far this has been explained by the Marangoni effect, i.e., the creation
of interfacial tension gradients as a result of temperature or concentration heter-
ogeneity on the phase boundary. The interfacial tension gradient induces

Table 13 Values of the critical Reynolds numbers Recr, wave velocities Cr, wave numbers A, Cr

min, and Amin (m/b = 0, h1 = h, h2 = 0 and b/m = 1, h1 = h2 = h)

e = 10 h Recr A Cr Amin Cr min

m/b = 0 -0.5 3,145 0.315 0.6235 0.358 0.6246
m/b = 0 -0.3 2,663 0.320 0.6155 0.364 0.6163
m/b = 0 -0.1 2,343 0.325 0.6092 0.372 0.6101
m/b = 0 0.0 2,243 0.330 0.6081 0.372 0.6085
m/b = 0 0.1 2,145 0.320 0.6042 0.374 0.6053
m/b = 0 0.3 1,983 0.320 0.5997 0.375 0.6009
m/b = 0 0.5 1,859 0.330 0.5969 0.377 0.5974
m/b = 0 -0.5 2,503 0.325 0.6130 0.367 0.6135
m/b = 0 -0.3 2,398 0.325 0.6099 0.370 0.6111
m/b = 0 -0.1 2,288 0.325 0.6079 0.371 0.6086
b/m = 1 0.0 2,243 0.330 0.6081 0.372 0.6085
b/m = 1 0.1 2,170 0.330 0.6064 0.374 0.6066
b/m = 1 0.3 2,079 0.320 0.6020 0.375 0.6036
b/m = 1 0.5 1,999 0.325 0.6008 0.375 0.6015
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secondary flows directed tangentially to the phase boundary. They change the
velocity profiles in the boundary layer. Thus, the mass transfer rate is directly
affected. In the case of hydrodynamic instability of the new profiles, the flow
spontaneously evolves from laminar into turbulent and the mass transfer rate
increases drastically.

The results obtained shows that under the condition of intensive interphase
mass transfer high mass fluxes induce secondary flows directed normally to the
phase boundary. These secondary flows change the velocity profiles, and conse-
quentially they change the kinetics of mass transfer (nonlinear mass transfer) and
the hydrodynamic stability of the flow. This is a radically different mechanism for
the influence of the intensive interphase mass transfer on the kinetics of the mass
transfer and the hydrodynamic stability in liquid–liquid systems.

The theoretical results obtained allow a comparative analysis of the influence of
the Marangoni effect and the effect of the nonlinear mass transfer on the mass
transfer rate and the hydrodynamic stability of systems with intensive interphase
mass transfer.

The results obtained for gas–liquid and liquid–liquid systems show that the
stability of the flow in the boundary layer depends considerably on the interface
velocity. This velocity is a result of the superposed influence of the flux of
momentum (hydrodynamic interaction between the two phases) and the mass flux
(inducing of parallel secondary flows) through the phase boundary. On this basis,
the influence of the normal and the tangential components of the interface velocity
on the hydrodynamic stability of the velocity profiles have been demonstrated [40,
41].

The results obtained allow us to obtain the dependence of the critical Reynolds
number Recr on the tangential interface velocity component f

0
(0) under the con-

dition of a constant value of the normal velocity component on the interface f(0)
(Fig. 30) and the influence of the normal velocity component on the interface f(0)
at a constant value of the tangential interface velocity component f

0
(0) on the

critical Reynolds number Recr (Fig. 31).

Fig. 30 The dependence of
Recr on f

0
(0) at f(0) = const.:

1 f (0) = 0.25, 2 f (0) = 0.15,
3 f (0) = 0.03, 4 f (0) = 0.0,
5 f (0) = -0.03, 6 f (0) =

-0.15
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The comparison of the effects of the normal and tangential velocity components
on the critical Reynolds number Recr show a powerful influence of the normal
velocity component.

Systems with intensive interphase mass transfer are characterized by the fact
that the kinetics of mass transfer does not follow the linear theory of the mass
transfer and obvious changes in the hydrodynamic stability are observed. These
effects have been explained quite often [37–39, 42] by the Marangoni effect, i.e.,
the induction of tangential secondary flow on the phase boundary. The investi-
gations of the kinetics of mass transfer in systems with intensive interphase mass
transfer [33] and their hydrodynamic stability show that the same effects can be
explained by the influence of the nonlinear mass transfer, i.e., the induction of
normal secondary flows on the phase boundary. A comparison of the Marangoni
effect with the effect of the nonlinear mass transfer will be made.

5.3 Effect of Concentration

In many cases large concentration gradients are realized in large concentration
conditions, where density, viscosity, and diffusivity are a function of the con-
centration, i.e.,

q ¼ q cð Þ; l ¼ l cð Þ; D ¼ D cð Þ: ð5:13Þ

The influence of the concentration and its gradient on the velocity distribution is
investigated in the laminar boundary layer approximation:
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; x ¼ 0; u ¼ u0; c ¼ c0;

Fig. 31 The dependence of
Recr on f(0) at f

0
(0) = const.:

1 f (0) = 0.40, 2 f (0) = 0.23,
3 f (0) = 0.11, 4 f (0) = 0.0
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y ¼ 0; u ¼ 0; v ¼ �MDq�

q�0

o

oy

c

q

� �
; c ¼ c�; y!1; u ¼ u0; c ¼ c0:

ð5:14Þ

The linear stability analysis [43] considers a nonstationary flow (U, V, P),
obtained as a combination of a basic stationary flow (u, v) and two-dimensional
periodic disturbances (u1, v1, p1) with small amplitudes x:

U x; y; tð Þ ¼ u x; yð Þ þ x u1 x; y; tð Þ; V x; y; tð Þ ¼ v x; yð Þ þ x v1 x; y; tð Þ;

P x; y; tð Þ ¼ x p1 x; y; tð Þ; C x; y; tð Þ ¼ c x; yð Þ þ x c1 x; y; tð Þ: ð5:15Þ

The nonstationary flow (U, V, P), satisfies the full system of Navier–Stokes
equations:
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with the boundary conditions

x ¼ 0; U ¼ u0; V ¼ 0; P ¼ p0; y ¼ 0; U ¼ 0;

V ¼ �h0
q0D0

Dc0

o

oy

c

q

� �
;

y!1; U ¼ u0; V ¼ 0; P ¼ p0; ð5:17Þ

where

h0 ¼
DqDc0

q�0q0D0

� �
y¼0

; Dc0 ¼ c� � c0: ð5:18Þ

Linear approximations can be introduced into (5.16)–(5.18) for the dependen-
cies of the density, viscosity, and diffusivity on the concentration:

q ¼ q0 1þ �q�cð Þ; l ¼ l0 1þ �l�cð Þ; D ¼ D0 1þ �D�cð Þ; �c ¼ c� h1c1 � c0

Dc0
;

ð5:19Þ

where the parameters �q; �l and �D are small.
Upon consequential introduction of (5.14), (5.15), and (5.19) into (5.16) and

(5.17) and after long transformations, using the linear approximations regarding
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the small parameters h0; x; �q; �l and �D, a set of equations describing the evolution
of the superposed periodic flow (disturbance) is obtained:

ou1

ot
þ u

ou1

ox
þ v

ou1

oy
þ u1

ou

ox
þ v1

ou

oy
¼ � 1

q0

op1

ox
þ m0

o2u1

ox2
þ o2u1

oy2

� �
;

ov1

ot
þ u

ov1

ox
þ v

ov1

oy
þ u1

ov

ox
þ v1

ov

oy
¼ � 1

q0

op1

oy
þ m0

o2v1

ox2
þ o2v1

oy2

� �
;

ou1

ox
þ ov1

oy
¼ 0; x ¼ 0; u1 ¼ 0; v1 ¼ 0; p1 ¼ p0;

y ¼ 0; u1 ¼ 0; v1 ¼ 0 : y!1; u1 ¼ 0; v1 ¼ 0; p1 ¼ p0: ð5:20Þ

No equations for the concentration (c1) are included in (5.20) because for the
linear approximation for the small parameters h0 and x the disturbances do not
influence the velocity (u1, v1).

The periodic disturbances can be considered as a running wave with variable
amplitude:

u1 ¼ G0 yð Þ exp i ax� btð Þ; v1 ¼ �iaG yð Þ exp i ax� btð Þ; b ¼ br þ ibi;

ð5:21Þ

where G(y) is the amplitude of the disturbance (regarding y) and a and b/a are its
wave number and phase velocity respectively.

It can be clearly seen that the amplitude of the disturbance decreases when
bi \ 0 (ci \ 0), i.e., the basic flow is stable. At bi [ 0 (ci \ 0) the flow is unstable.

Hence, from (5.20) to (5.21) an equation of the Orr–Sommerfeld type is directly
obtained (for almost parallel flow):

u� b
a

� �
G00 � a2G
� �

� o2u

oy2
G ¼ � im0

a
G0_ � 2a2G00 þ a4G
� �

þ i

a
vG000 þ o2u

oxoy
� a2v

� �
G0

� �
;

y ¼ 0; G ¼ 0; G0 ¼ 0; y!1; G ¼ 0; G0 ¼ 0: ð5:22Þ

The analysis of stability requires the introduction of the basic flow velocity into
(5.22). In the case of gases, one obtains (see Sect 3.4 in Chap. 3):

u x; yð Þ ¼ u0
U0 gð Þ

u
; v ¼ u0d

2x

gU0 gð Þ � U gð Þ
u

; G yð Þ ¼ c gð Þ; �q	 1;

g ¼ y

d
; d ¼

ffiffiffiffiffiffiffiffi
D0x

u0

r
; u ¼ 1þ �qF gð Þ; F gð Þ ¼ c x; yð Þ � c0

c� � c0
: ð5:23Þ
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The introduction of (5.23) into (5.22) leads to

U0

u
� C

� �
c00 � A2

0c
� �

� U000

u
� 2�qF0

U00

u2
� �qF00

U0

u2

� �
c

¼ � i

A0Re0
c0_ � 2A2

0c
00 þ A4

0c
� �

þ i

2e2A0Re0

gU0 � U
u

c000

� i

2e2A0Re0

gU000 þ U00

u
� 2�qgF0U00 þ �qgF00U0 þ �qF0U0

u2
þ A2

0
gU0 � U

u

� �
c0;

ð5:24Þ

where

A ¼ ad; C ¼ b
au0
¼ Cr þ iCi; Re0 ¼

u0d
m0
: ð5:25Þ

The solution of (5.25) was in obtained [41] and the results are shown in Table 8
for the dependence on the concentration of the transferred substance ð�q and �lÞ
and its gradient (h), where Re = 1.72Re0.

The results obtained show that the effect of the concentration dependencies of
the viscosity �lð Þ is analogous to that of the large concentration gradient (h0),
whereas the change in the density �qð Þ has an insignificant effect and this depen-
dence is not monotonous.

In the case of liquids, the basic flow velocity (see Sect 3.4 in Chap. 3),

u x; yð Þ ¼ u0
U01 g1ð Þ

u
; v ¼ u0d1

2x

g1U
0
1 g1ð Þ � U1 g1ð Þ

u
; G yð Þ ¼ c1 g1ð Þ;

g1 ¼ y

ffiffiffiffiffiffiffi
u0

m0x

r
; d1 ¼

ffiffiffiffiffiffiffi
m0x

u0

r
; u ¼ 1þ �qF1 g1ð Þ; ð5:26Þ

is introduced into (5.22) and the Orr–Sommerfeld-type equation can be obtained
directly from (5.24) using the substitutions

U gð Þ ¼ U1 g1ð Þ; F gð Þ ¼ F1 g1ð Þ; c gð Þ ¼ c1 g1ð Þ;

g ¼ g1; A0 ¼ A1 ¼ ad1; Re0 ¼ Re1 ¼
u0d1

m0
; e ¼ 1; Re ¼ 1:72Re1:

ð5:27Þ

The data presented in Tables 14 and 15 permit us to obtain the dependence
(Figs. 32, 33) of Recr on the parameters characterizing the concentration depen-
dencies on the density �qð Þ, viscosity �lð Þ, diffusivity �Dð Þ, and large concentration
gradients (h0).

The data presented in Tables 14 and 15 and in Figs. 32 and 33 show that in
gases and liquids:

• The stability of flows (Recr) increases if the density depends on concentration
�q 6¼ 0ð Þ.
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• The decrease of the concentration gradient (h0) leads to a decrease of the sta-
bility (Recr).

• In cases where the increase of the concentration leads to an increase (a decrease)
of viscosity, i.e., �l[ 0 ð�l\0Þ, one can observe an increase of stability, i.e.,
high concentrations lead to high (low) mass transfer rates in gases.

• A change in diffusivity �Dð Þ does not influence the stability.
• Additivity of the separated effects is observed.

5.4 Effect of Temperature

A great number of investigations [9, 17, 19, 21, 25, 27, 37–39, 42, 44–47]) have
shown that the tangential flows (as a result of interfacial tension gradients) affect
considerably the hydrodynamic stability of the interface and the flow in the
boundary layer.

Table 14 Effects of high
concentrations (�q 6¼ 0, �l 6¼ 0)
and large concentration
gradients (h0 = 0) on the
critical Reynolds numbers
Recr in gases

h0 �q �l Recr

0.0 0.0 0.0 501
0.0 0.0 0.2 285
0.0 0.0 -0.2 1,135
0.0 0.15 0.0 608
0.0 0.15 0.2 443
0.0 -0.15 0.0 559
0.0 -0.15 -0.2 2,972
0.3 0.0 0.0 1,619
-0.3 0.0 -0.2 2,238
0.3 -0.15 0.0 1,508
0.3 0.15 0.2 547
0.3 0.0 0.0 345
0.3 0.0 0.2 215
0.3 0.15 0.0 491
0.3 0.15 0.2 367

Table 15 Effects of high
concentrations (�q 6¼ 0, �l 6¼ 0,
�D 6¼ 0) and large
concentration gradients
(h0 = 0) on the critical
Reynolds numbers Recr in
liquids

h �q �l �D Recr

0.0 0.0 0.0 0.0 501
0.3 0.0 0.0 0.0 422
-0.1 0.0 0.0 0.0 564
0.0 0.15 0.0 0.0 556
0.0 -0.15 0.0 0.0 1,073
0.0 0.0 0.2 0.0 373
0.0 0.0 -0.2 0.0 742
0.0 0.0 0.0 0.3 502
0.0 0.0 0.0 -0.3 501
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Fig. 32 Dependence of the
critical Reynolds numbers
(Recr) on high concentrations
through the viscosity (�l) and
density (�q), and the influence
of large concentration gradi-
ents (h0) in gases

Fig. 33 Dependence of the
critical Reynolds numbers
(Recr) on high concentrations
through the viscosity (�l),
density (�q), and diffusivity
(�D), and large concentration
gradients (h0) in liquids
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The induction of normal flows (due to large concentration gradients) has an
effect of ‘‘injection’’ or ‘‘suction’’ of fluid in the boundary layer, which also
changes the hydrodynamic stability in the boundary layer [16, 23, 27, 34, 35, 40].
It has been shown [40] that changes in the normal component of the velocity on the
interface influence the hydrodynamic stability more strongly than changes in the
tangential component.

The results obtained in Sect. 3.3 in Chap. 3 give us the opportunity to define the
influence of the nonlinear mass transfer and the Marangoni effect on the hydro-
dynamic stability of the flow in the boundary layer.

The numerical analysis [43] of the influence of the effect of nonlinear mass
transfer and the Marangoni effect on the hydrodynamic stability in gas–liquid
systems leads to some basic conclusions:

1. In the case of absorption, the increase of intensity of the mass transfer directed
from the volume of the gas phase towards the phase boundary leads to an
increase of the critical Reynolds numbers, i.e., the flow is stabilized.

2. In the case of desorption, the increase of intensity of the mass transfer directed
from the phase boundary towards the volume of the gas phase leads to a
decrease of the critical Reynolds numbers, i.e., the flow is destabilized.

3. The increase of the temperature gradient along the phase boundary length leads
to a decrease of the critical Reynolds numbers, i.e., destabilizes the flow. This
Marangoni effect, however, is insignificant in gas–liquid systems with a
movable phase boundary.

4. The flow in the liquid phase is globally stable.
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Part III
Calculation Problems

The calculation problems in chemical engineering arise with every step of the
modeling and simulation procedures. Most chemical engineering models are built
on the basis of differential equations and the process simulations are the results of
their solutions.

The calculation problems of the modeling are related to parameter
identification, where the inverse problem solutions use the solutions of
differential equations and function minimization methods.

All these methods permit us to solve the process optimization problems using
mathematical programming methods



Solution of Differential Equations

The basic part of chemical engineering processes occurs in thin layers near the
phase interface. That is why the mathematical models for the hydrodynamics, heat
transfer, and mass transfer are used in the boundary layer approximation, i.e., in
the form of parabolic partial differential equations.

1 Analytical Methods

Analytical solutions of the parabolic partial differential equations in the general
case use the canonical form:

oU

ot
¼ o2U

ox2
þ F x; tð Þ: ð1:1Þ

The methods for solution of (1.1) are different depending on the function F and
the kind of boundary conditions.

1.1 Green’s Functions

The solution of (1.1) can be obtained with the help of Green’s functions in the
domain 0� x\1; 0� t\1ð Þ and initial and first kind of boundary conditions:

U 0; tð Þ ¼ 0; U 1; tð Þ ¼ 0; U x; 0ð Þ ¼ u xð Þ: ð1:2Þ

The solution of (1.1, 1.2) is

U x; tð Þ ¼
Z t

0

Z1

0

G x; n; t � sð ÞF n; sð Þdndsþ
Z1

0

G x; n; tð Þu nð Þdn; ð1:3Þ
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where G is Green’s function:

G x; n; tð Þ ¼ 1ffiffiffiffiffiffiffi
4pt
p e�

x�nð Þ2
4t � e�

xþnð Þ2
4t

� �
: ð1:4Þ

If the boundary conditions are of the second kind

oU

ox
0; tð Þ ¼ 0;

oU

ox
U 1; tð Þ ¼ 0; U x; 0ð Þ ¼ u xð Þ: ð1:5Þ

Green’s function has the form:

G x; n; tð Þ ¼ 1ffiffiffiffiffiffiffi
4pt
p e�

x�nð Þ2
4t þ e�

xþnð Þ2
4t

� �
: ð1:6Þ

In the domain 0� x� l; 0� t\1ð Þ; the solution is

U x; tð Þ ¼
Z t

0

Z l

0

G x; n; t � sð ÞF n; sð Þdn dsþ
Z l

0

G x; n; tð Þu nð Þdn ð1:7Þ

and Green’s function has the form

G x; n; tð Þ ¼ 2
l

X1
n¼1

sin
pnx

l
sin

pnn
l

e�k2
nt; kn ¼

pn
l

ð1:8Þ

if the boundary conditions are of the first or the second kind:

U 0; tð Þ ¼ 0; U l; tð Þ ¼ 0; U x; 0ð Þ ¼ u xð Þ;

oU

ox
0; tð Þ ¼ 0;

oU

ox
U l; tð Þ ¼ 0; U x; 0ð Þ ¼ u xð Þ: ð1:9Þ

In the cases when

U 0; tð Þ ¼ l1 tð Þ; U l; tð Þ ¼ l2 tð Þ; ð1:10Þ

the solution is

U x; tð Þ ¼ W x; tð Þ þ x

l
l2 tð Þ þ l� x

l
l1 tð Þ ð1:11Þ

and the solution for W is like (1.3).
In many cases [1, 2] the function F in (1.1) (volume source or sink) has the

form
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F x; tð Þ ¼ w tð Þxke�
x2
4t ; ð1:12Þ

i.e. in (1.7) the integral has to be solved:

Jk¼
Z1

0

nke�
n2

4s e�
x�nð Þ2
4 t�sð Þ �e�

xþnð Þ2
4 t�sð Þ

� �
dn¼e�

x2
4t

Z1

0

nk e�
nt�xsð Þ2
4ts t�sð Þ �e�

ntþxsð Þ2
4ts t�sð Þ

� �
dn¼J 0ð Þ

k x;t;sð Þe�x2
4t ;

J 0ð Þ
k ¼

Z1

0

nk e�
nt�xsð Þ2
4ts t�sð Þ �e�

ntþxsð Þ2
4ts t�sð Þ

� �
dn¼a

Z1

�c

auþbð Þke�u2
du�a

Z1

c

au�bð Þke�u2
du;

ð1:13Þ

where

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ts t � sð Þ

p
t

; b ¼ xs
t
; c ¼ xsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ts t � sð Þ
p ; b ¼ ac: ð1:14Þ

The solutions of (1.13) for k = 0, 1, 2,… lead to

J 0ð Þ
0 ¼

ffiffiffi
p
p

aerfc; erfc ¼ 2ffiffiffi
p
p
Zc

0

e�u2
du; J 0ð Þ

1 ¼
ffiffiffi
p
p

ab;

J 0ð Þ
2 ¼ a2be�c2 þ

ffiffiffi
p
p a3

2
þ ab2

� �
erfc; J 0ð Þ

3 ¼
ffiffiffi
p
p 3

2
a3bþ ab3

� �
;

J 0ð Þ
4 ¼ a2b3 þ 5

2
a4b

� �
e�c2 þ

ffiffiffi
p
p 3

4
a5 þ 3a3b2 þ ab4

� �
erfc;

J 0ð Þ
5 ¼

ffiffiffi
p
p 15

4
a5bþ 5a3b3 þ ab5

� �
:

ð1:15Þ

The cases of F x; tð Þ ¼ w tð Þx2k lead to the integral

Jk ¼
Z1

0

n2k e�
x�nð Þ2
4 t�sð Þ þ e�

xþnð Þ2
4 t�sð Þ

� �
dn ¼ b�

Z1

�1

x� buð Þ2ke�u2
du� 2b

�
Z1

0

x� buð Þ2ke�u2
duþ 2b

Za

0

x� buð Þ2ke�u2
du;

a ¼ x

2
ffiffiffiffiffiffiffiffiffiffi
t � s
p ; b ¼

ffiffiffiffiffiffiffiffiffiffi
t � s
p

:

ð1:16Þ

The solutions of (1.16) for k = 0, 1, 2,… lead to
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J0 ¼
ffiffiffi
p
p

berfa; J1 ¼
ffiffiffi
p
p

bx2 þ 1
2

b3

� �
erfaþ b2xe�a2

;

J2 ¼
ffiffiffi
p
p

bx4 þ 3x2b3 þ 3
4

b5

� �
erfaþ x3b2 þ 5

2
xb4

� �
e�a2

;

J3 ¼
ffiffiffi
p
p

x6bþ 15
2

x4b3 þ 45
4

x2b5 þ 15
8

b7

� �
erfaþ x5b2 þ 7x3b4 þ 33

4
xb6

� �
e�a2

;

J4 ¼
ffiffiffi
p
p

bx8 þ 14b3x6 þ 105
2

b5x4 þ 105
2

b7x2 þ 105
16

b9

� �
erfa

þ x7b2 þ 27
2

x5b4 þ 185
4

x3b6 þ 279
8

xb8

� �
e�a2

:

ð1:17Þ

In many cases the problem is presented in noncanonical form (1.1) and for it to
be used Green’s functions are necessary to introduce new functions. A typical
example is the interphase mass transfer [1, 2]:

Vi
oci

oz
¼ Di

o2ci

oy2
; z ¼ 0; ci ¼ c 0ð Þ

i ; y ¼ �1ð Þiþ11; z ¼ 0; ci ¼ c 0ð Þ
i ;

i ¼ 1; 2;

ð1:18Þ

where the boundary conditions at the interphase surface are

y ¼ 0; c1 ¼ vc2; D1
oc1

oy
¼ D2

oc2

oy
: ð1:19Þ

Problem (1.18) and (1.19) can be presented as two separate problems if we
introduce an arbitrary function w(z) in the first boundary condition of (1.19):

y ¼ 0; c1 ¼ w zð Þ; c2 ¼
1
v
w zð Þ: ð1:20Þ

After the solution of the two separate problems (1.18) and (1.20), the functions
obtained ci(y, z), i = 1, 2, must be replaced in the second boundary condition of
(1.19) to obtain the arbitrary function w(z). In this way the solution of the inter-
phase mass transfer problem [1, 2] reduces to the next problem:

V
oc

oz
¼ D

o2c

oy2
; c ¼ c y; zð Þ; y; 0ð Þ ¼ c 0ð Þ; c 0; zð Þ ¼ w zð Þ; c 1; zð Þ ¼ c 0ð Þ:

ð1:21Þ

Green’s function (1.4) can be used to solve (1.21) if we introduce the new
function U(x, t):
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U x; tð Þ ¼ c y; zð Þ � c 0ð Þ � w zð Þ � c 0ð Þ
h i

e�
y2

z ; ð1:22Þ

where

t ¼ D

V
z; x ¼ y; w zð Þ ¼ w

V

D
t

� �
¼ u tð Þ: ð1:23Þ

The introduction of (1.22) and (1.23) leads to

oU

ot
¼ o2U

ox2
� u0 tð Þ þ D

V
u tð Þ � c 0ð Þ
h i x2

t2
1� 4D

v

� �
þ 2

t

� �� �
;

U x; 0ð Þ ¼ 0; U 0; tð Þ ¼ 0; U 1; tð Þ ¼ 0:

ð1:24Þ

The solution of (1.24) is obtained [1, 2] by (1.3), using Green’s function (1.4)
and after replacement of the old variables the solution is

c z; yð Þ ¼ w zð Þe�
Vy2

4Dx � 1ffiffiffiffiffi
px
p e�

Vy2

4Dx

Zx

0

w nð Þ þ 2nw0 nð Þffiffiffi
n
p

Z
ynffiffiffiffiffiffiffiffiffiffiffiffi

4Dx
V n x�nð Þ

p

0

e
�s2

ds

2
6664

3
7775dn: ð1:25Þ

1.2 Similarity Variables Method

The similarity variables method transforms the parabolic parcel differential
equations into ordinary differential equations. The two-variable problem (1.1) and
(1.2) can be solved as a one-variable problem

U x; tð Þ ¼ f gð Þ; g ¼ xffiffi
t
p ; ð1:26Þ

if

F x; tð Þ ¼ tw gð Þ; u xð Þ � 0: ð1:27Þ

The introduction of (1.26) and (1.27) into (1.1) and (1.2) leads to

2f 00 þ gf 0 þ 2w ¼ 0; f 0ð Þ ¼ 0; f 1ð Þ ¼ 0; ð1:28Þ

where problem (1.28) must be solved numerically.
In the case when w : 0, the solution is U(x, t) = f(g) : 0, but for another

boundary conditions the solutions are
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U 0; tð Þ ¼ 0; U 1; tð Þ ¼ 1; U x; 0ð Þ ¼ 1; U ¼ 2ffiffiffi
p
p
Z x

2
ffi
t
p

0

e�s2
ds ¼ erf

x

2
ffiffi
t
p ;

U 0; tð Þ ¼ 1; U 1; tð Þ ¼ 0; U x; 0ð Þ ¼ 0; U ¼ 1� erf
x

2
ffiffi
t
p ¼ erfc

x

2
ffiffi
t
p :

ð1:29Þ

The similarity variables are used (see Chap. 3.1) to solve the boundary layer
problems (3.1.15). The similarity variables model (3.1.17) shows that all processes
in the boundary layer approximation are similar and the model parameter is only
the Schmidt number.

1.3 Eigenvalue Problem

The transformation of the parabolic parcel differential equations into ordinary
differential equations can be done using the separated variables method.

Let us consider the problem

oU

ot
¼ a2o

2U

ox2
; U 0; tð Þ ¼ 0; U l; tð Þ ¼ 0; U x; 0ð Þ ¼ u xð Þ: ð1:30Þ

The function U can be represented as

U x; tð Þ ¼ X xð ÞT tð Þ: ð1:31Þ

Substitution of (1.31) into (1.30) leads to

1
a2

T 0

T
¼ X00

X
¼ �k2; ð1:32Þ

i.e.,

X00 þ k2X ¼ 0; T 0 þ k2a2T ¼ 0: ð1:33Þ

From (1.30) and (1.31) it follows that

U 0; tð Þ ¼ X 0ð ÞT tð Þ ¼ 0; X 0ð Þ ¼ 0; ð1:34Þ

U l; tð Þ ¼ X lð ÞT tð Þ ¼ 0; X lð Þ ¼ 0: ð1:35Þ

The first equation in (1.33) leads to

X xð Þ ¼ A cos kxþ B sin kx; ð1:36Þ

but from the boundary condition X(0) = 0 it follows that A = 0, i.e.,

X xð Þ ¼ B sin kx: ð1:37Þ
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Solution (1.37) satisfies the boundary condition X(l) = 0,

X lð Þ ¼ B sin kl ¼ 0; ð1:38Þ

if sin kl = 0, i.e.,

k ¼ kn ¼ n
p
l
; n ¼ 1; 2; . . .: ð1:39Þ

The numbers kn, n = 1, 2,… are eigenvalues of the first equation in (1.33) with
boundary conditions X(0) = 0 and X(l) = 0 (spectrum of the equation).

The introduction of (1.39) into (1.37) leads to

Xn xð Þ ¼ Bn sin
np
l

x; n ¼ 0; 1; 2; . . .: ð1:40Þ

The introduction of (1.39) into the second equation in (1.33) leads to

T 0 þ knað Þ2T ¼ 0; Tn ¼ e�
np
lð Þ

2
t; n ¼ 0; 1; 2; . . .; ð1:41Þ

i.e.,

Un x; tð Þ ¼ Bne�
np
lð Þ

2
t sin

np
l

x; n ¼ 0; 1; 2; . . .: ð1:42Þ

If function (1.42) satisfies (1.30), its sum must satisfy (1.30) too, i.e.,

U x; tð Þ ¼
X1
n¼1

Bne�
np
lð Þ

2
t sin

np
l

x; ð1:43Þ

where the coefficients Bn, n = 0, 1, 2,…, must be obtained from the initial con-
dition in (1.30) and (1.43),

U x; 0ð Þ ¼ u xð Þ ¼
X1
n¼1

Bn sin
np
l

x; ð1:44Þ

i.e., u(x) allows a representation as a sine trigonometric series. This condition
permits us to obtain the coefficients Bn, n = 0, 1, 2,… if we use the new variable
n ¼ px

l :

u
l

p
n

� �
¼
X1
n¼1

Bn sin nn; ð1:45Þ

i.e., Bn; n ¼ 0; 1; 2; . . . are Fourier coefficients of the function w nð Þ ¼ u l
pn
	 


:

According to the Euler–Fourier formulas

Bn ¼
2
p

Zp

0

w nð Þ sin nndn ¼ 2
p
u
Zp

0

u
l

p
n

� �
sin nndn; ð1:46Þ
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i.e.

Bn ¼
2
l

Z l

0

u xð Þ sin
np
l

x dx: ð1:47Þ

1.4 Laplace Transformation

Linear differential equations can be solved by making use of the Laplace trans-
formation. This method transforms ordinary differential equations into algebraic
equations, whereas partial differential equations lead to ordinary differential
equations [3].

Let us consider two functions f(t) and F(p):

F pð Þ ¼ p

Z1

0

e�ptf tð Þdt; ð1:48Þ

where p is a complex-valued variable, f(t) = 0 at t \ 0. Expression (1.48) is the
Laplace transformation of the function f(t) and will be symbolized as

F pð Þ ¼ Lf tð Þ; ð1:49Þ

where f(t) is the original and F(p) is the image. The inverse operator is L-1:

f tð Þ ¼ L�1F pð Þ: ð1:50Þ

The Laplace transformation of the derivative of the function f(t) is expressed
through F(p):

L
dt

dt

� �
¼ p

Z1

0

e�pt dt

dt

� �
dt ¼ pe�ptf tð Þjt¼1t¼0 þp2

Z1

0

e�ptf tð Þdt; ð1:51Þ

where

lim
t!1

e�ptf tð Þ½ � ¼ 0; ð1:52Þ

i.e.

L
dt

dt

� �
¼ �pf0 þ pF; f0 ¼ f 0ð Þ: ð1:53Þ
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To obtain the second-order derivative we must use w(t) = df/dt:

L
d2f

dt2

� �
¼ L

dw
dt

� �
¼ �pw0 þ pL

dt

dt

� �
¼ �pf1 � p2f0 þ p2F; f1 ¼

df

dt

����
t¼0

:

ð1:54Þ

Let us consider the problem

df

dt
þ af ¼ 0; f 0ð Þ ¼ f0: ð1:55Þ

The Laplace transformation (1.48) of problem (1.55) leads to

pF � pf0 þ aF ¼ 0; ð1:56Þ

i.e.

F ¼ pf0

pþ a
¼ L fð Þ: ð1:57Þ

From the table of the originals and images [3] it is possible to obtain

f ¼ L�1 pf0

pþ a
¼ f0e�at: ð1:58Þ

As an example of a partial differential equation we will solve (1.1) and (1.2) at
F : 0, u = u0, and boundary conditions

U 0; tð Þ ¼ 0;
oU

ox
1; tð Þ ¼ 0: ð1:59Þ

The image of U will be V:

V ¼ p

Z1

0

e�ptUdt: ð1:60Þ

The multiplication of (1.1) and (1.2) with e�pt and integration over t in the
interval [0,?) leads to

p

Z1

0

oU

ot
e�ptdt ¼ p

Z1

0

o2U

ox2
e�ptdt;

x ¼ 0;
Z1

0

Ue�ptdt ¼ 0; x!1;
Z1

0

oU

ox
e�ptdt ! 0:

ð1:61Þ

After the integration in (1.61) we obtain

d2V

dx2
� pV þ pu0; x ¼ 0; V ¼ 0; x!1; dV

dx
! 0: ð1:62Þ

1 Analytical Methods 413



The solution of (1.62) is

V ¼ u0 1� e�x
ffiffi
p
p	 


: ð1:63Þ

From the table of the originals and images [3] we find that the original of (1.63)
is

U ¼ 2ffiffiffi
p
p
Z x

2
ffi
t
p

0

e�s2
ds: ð1:64Þ

The analytical methods presented lead to exact solutions of the differential
equations. The check of the functions obtained is whether they satisfy the equa-
tions and boundary conditions.

2 Perturbation Methods

Many complicated problems can be solved using an approximate method. For that
purpose asymptotic methods may be applied. The perturbation method is an
asymptotic method of the small parameter for the solution of differential equa-
tions. The small parameter methods are the most vigorous means in contemporary
applied mathematics [4–6].

The asymptotic methods of the perturbations use as a solution the first two or
three terms of the asymptotic expansion. The expansions can be with respect to
small or big parameters (expansions with respect to a parameter). Another pos-
sibility is expansions with respect to the a coordinate (for small or big values).
Nonuniform expansions are possible too. All these methods find wide application
in chemical engineering theoretical investigations [1, 2].

2.1 Expansions with Respect to a Parameter

Let us consider a solution of the differential equation

y ¼ f x; að Þ; ð2:1Þ

where a is small parameter in the differential equation or in the boundary con-
ditions. The Taylor series presentation of function (2.1) for small values of the
parameter a is

f x; að Þ ¼ f x; 0ð Þ þ f 0 x; 0ð Þ
1!

aþ f 00 x; 0ð Þ
2!

a2 þ � � � ð2:2Þ
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It is obvious that the solution of the differential equation can be searched for as
a power series with respect to the small parameter a:

y ¼ y 0ð Þ þ y 1ð Þaþ y 2ð Þa2 þ � � � ð2:3Þ

As an example we will use the solution of the velocity distribution problem in
gas–liquid boundary layers with a flat interphase surface [1, 2, 7]. If the charac-
teristic velocities are constants, from (1.2.46) it follows that

Ui

oUi

oX
þ Vi

oUi

oYi

¼ o2Ui

oY2
i

;
oUi

oX
þ oVi

oYi

¼ 0;

X ¼ 0; Ui ¼ 1; Y1 !1; U1 ¼ 1; Y2 ! �1; U2 ¼ 1;

Y1 ¼ Y2 ¼ 0; U1 ¼ h1U2;
oU1

oY1
¼ h2

oU2

oY2
; i ¼ 1; 2;

ð2:4Þ

where

h2 ¼ h3=2
1

t12
t11

� �1=2

: ð2:5Þ

In (2.4) the orders of magnitude of all the functions and their derivatives are
equal to 1 and the orders of magnitude of the different terms in (2.4) are equal to
the orders of magnitude of the parameters in these terms, i.e. the orders of mag-
nitude of the physical effects (mathematical operators) in the model are equal to
the orders of magnitude of the parameters. In a gas–liquid system the parameters
h1 and h2 are small h1� 10�1; h2� 10�1ð Þ and second-order approximations lead
to 1% error of the solution (the error of the velocity measurements is greater).

Problem (2.4) can be solved in similarity variables:

U1 ¼ f 0; V1 ¼
1

2
ffiffiffiffi
X
p gf 0 � fð Þ; f ¼ f gð Þ; g ¼ Y1ffiffiffiffi

X
p ;

U2 ¼ u0; V2 ¼ �
1ffiffiffiffi
X
p nu0 � uð Þ; u ¼ u nð Þ; n ¼ � Y2

2
ffiffiffiffi
X
p :

ð2:6Þ

In similarity variables problem (2.4) has the form

2f 000 þ f 00f ¼ 0; u000 þ 2u00u ¼ 0; f 0ð Þ ¼ u 0ð Þ ¼ 0; f 0 1ð Þ ¼ u0 1ð Þ ¼ 1;

f 0 0ð Þ ¼ h1u
0 0ð Þ; u00 0ð Þ ¼ �2h2f 00 0ð Þ:

ð2:7Þ

The solution of (2.7) will be searched for in the form:

f ¼ f0 þ h1f1 þ h2f2 þ h2
1f11 þ h2

2f22 þ h1h2f12;

u ¼ u0 þ h1u1 þ h2u2 þ h2
1u11 þ h2

2u22 þ h1h2u12:
ð2:8Þ
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The introduction of (2.8) into (2.7) and the unification of the terms with the
same order of magnitude leads to

2f 0000 þ f 000 f0
	 


þ h1 2f 0001 þ f 000 f1þ f 001 f0
	 


þ h2 2f 0002 þ f 000 f2þ f 002 f0
	 


þ h2
1 2f 00011 þ f 000 f11þ f 0011f0þ f 001 f1
	 


þ h2
2 2f 00022 þ f 000 f22þ f 0022f0þ f 002 f2
	 


þ h1h2 2f 00012 þ f 000 f12 þ f 0012f0þ f 001 f2þ f 002 f1
	 


þ � � � ¼ 0;

2u0000 þu000u0

	 

þ h1 2u0001 þu000u1þu001u0

	 

þ h2 2u0002 þu000u2þu002u0

	 

þ h2

1 2u00011þu000u11þu0011u0þu001u1

	 

þ h2

2 2u00022þu000u22þu0022u0þu002u2

	 

þ h1h2 2u00012þu000u12þu0012u0þu001u2þu002u1

	 

þ � � � ¼ 0;

f0 0ð Þ þ h1f1 0ð Þ þ h2f2 0ð Þ þ h2
1f11 0ð Þ þ h2

2f22 0ð Þ þ h1h2f12 0ð Þ ¼ 0;

u0 0ð Þ þ h1u1 0ð Þ þ h2u2 0ð Þ þ h2
1u11 0ð Þ þ h2

2u22 0ð Þ þ h1h2u12 0ð Þ ¼ 0;

f 00 1ð Þ� 1þ h1f 01 1ð Þþ h2f 02 1ð Þþ h2
1f 011 1ð Þþ h2

2f 022 1ð Þþ h1h2f 012 1ð Þ ¼ 0;

u0 1ð Þ� 1þ h1u
0
1 1ð Þþ h2u

0
2 1ð Þþ h2

1u
0
11 1ð Þþ h2

2u
0
22 1ð Þþ h1h2u

0
12 1ð Þ ¼ 0;

f 00 0ð Þ þ h1 f 01 0ð Þ �u00 0ð Þ
� 

þ h2f 02 0ð Þ þ h2
1 f 011 0ð Þ �u01 0ð Þ
� 

þ h2
2f 022 0ð Þ

þ h1h2 f 012 0ð Þ �u02 0ð Þ
� 

¼ 0;

u000 0ð Þ þ h1u
00
1 0ð Þ þ h2 u002 0ð Þ þ 2f 000 0ð Þ

� 
þ h2

1u
00
11 0ð Þ

þ h2
2 u0022 0ð Þ þ 2f 002 0ð Þ
� 

þ h1h2 u0012 0ð Þ þ 2f 001 0ð Þ
� 

¼ 0: ð2:9Þ

Solution (2.8) satisfies equations (2.7) if the zeroth-, first-, and second-order
approximations are equal to zero. As a result, the next problems are obtained:

2f 0000 þ f 000 f0
	 


¼ 0; f0 0ð Þ ¼ 0; f 00 0ð Þ ¼ 0; f 00 1ð Þ� 1¼ 0;

2f 0001 þ f 000 f1þ f 001 f0
	 


¼ 0; f1 0ð Þ ¼ 0; f 01 0ð Þ�u00 0ð Þ ¼ 0; f 01 1ð Þ¼ 0;

2f 0002 þ f 000 f2þ f 002 f0
	 


¼ 0; f2 0ð Þ ¼ 0; f 02 0ð Þ ¼ 0; f 02 1ð Þ¼ 0;

2f 00011þ f 000 f11þ f 0011f0þ f 001 f1
	 


¼ 0; f11 0ð Þ ¼ 0; f 011 0ð Þ�u01 0ð Þ ¼ 0; f 011 1ð Þ¼ 0;

2f 00022þ f 000 f22þ f 0022f0þ f 002 f2
	 


¼ 0; f22 0ð Þ ¼ 0; f 022 0ð Þ ¼ 0; f 022 1ð Þ¼ 0;

2f 00012þ f 000 f12þ f 0012f0þ f 001 f2þ f 002 f1
	 


¼ 0; f12 0ð Þ ¼ 0; f 012 0ð Þ�u02 0ð Þ ¼ 0;

2u0000 þu000u0

	 

¼ 0; u0 0ð Þ ¼ 0; u000 0ð Þ ¼ 0; u00 1ð Þ� 1¼ 0;

2u0001 þu000u1þu001u0

	 

¼ 0; u1 0ð Þ ¼ 0; u001 0ð Þ ¼ 0; u01 1ð Þ¼ 0;

2u0002 þu000u2þu002u0

	 

¼ 0; u2 0ð Þ ¼ 0; u002 0ð Þþ 2f 000 0ð Þ ¼ 0; u02 1ð Þ¼ 0;

2u00011þu000u11þu0011u0þu001u1

	 

¼ 0; u11 0ð Þ ¼ 0; u0011 0ð Þ ¼ 0; u011 1ð Þ¼ 0;

2u00022þu000u22þu0022u0þu002u2

	 

¼ 0; u22 0ð Þ ¼ 0; u0022 0ð Þþ 2f 002 0ð Þ ¼ 0;

u022 1ð Þ¼ 0;

2u00012þu000u12þu0012u0þu001u2þu002u1

	 

¼ 0; u12 0ð Þ ¼ 0;

u0012 0ð Þþ 2f 001 0ð Þ ¼ 0; u012 1ð Þ¼ 0:

ð2:10Þ
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The solutions of the separate equations in (2.10) can be made in determinate
sequence. The solution of the first equation in (2.10) is the Blasius function f0,
which is tabulated in [8], and the value a ¼ f 00 0ð Þ ¼ 0:3320 permits us to solve this
problem as a Cauchy problem. The solutions for u0; f1;u1; f2 can be obtained [1, 2,
7] immediately:

u0 ¼ n; f1 ¼
1
a

f 00; u1 � 0; f2 � 0: ð2:11Þ

The values of f11 are tabulated in [8] after the numerical solution of the next set:

2f 0000 þ f 000 f0 ¼ 0; f0 0ð Þ ¼ 0; f 00 0ð Þ ¼ 0; f 00 1ð Þ ¼ 1;

2f 00011 þ f 000 f11 þ f 0011f0 ¼ �a�2f 000 f 00; f11 0ð Þ ¼ 0; f 011 0ð Þ ¼ 0; f 011 1ð Þ ¼ 0;

ð2:12Þ

where the value b ¼ f 0011 0ð Þ ¼ �0:5447 permits us to solve (2.12) as a Cauchy
problem.

The solutions of the rest of the problems are

u2 ¼ a
ffiffiffi
p
p Zn

0

erfc zdz; f12 ¼
ffiffiffi
p
p

f 00; u12 � 0;

u22 ¼ a2 ffiffiffi
p
p Zn

0

�z e�z2
erfc zþ

ffiffiffi
p
p

2
erf z erfc z� 2ffiffiffi

p
p e�z2 þ 1ffiffiffi

p
p e�2z2

� �
:

ð2:13Þ

The expansions with respect to a parameter are correct if the solution of the
differential equation has a Taylor series representation. It is obvious that this check
is not possible and the check of the correctness of solution (2.8) can only be made
by means of comparison with the numerical solution of (2.7).

2.2 Expansions with Respect to a Coordinate

Let us consider the influence of surfactants on the vertical laminar film flows [1].
The velocity distribution in the film u(x, y) is the solution of the problem

u
ou

ox
� ou

oy

Z
ou

ox
dy ¼ m

o2u

oy2
þ g; y ¼ 0; u ¼ 0; y ¼ h xð Þ; �l

ou

oy
þ or

ox
¼ 0;

ð2:14Þ

where m and l are the kinematic and the dynamic viscosity, g is gravity, r is the
surface tension at the gas–liquid interface y ¼ h xð Þ; and y ¼ 0 is the solid
interface.
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The vertical laminar film flows are very thin y� h	 1ð Þ and the solution of
problem (2.14) can be searched for as a power series with respect to the small
coordinate y:

u ¼
X1
k¼0

fk xð Þyk: ð2:15Þ

The introduction of (2.15) into (2.14) permits us to obtain the functions
fk; k ¼ 0; 1; 2; . . . :

f0 ¼ 0; f1 ¼ f ; f2 ¼ �
g

2m
; f3 ¼ 0; f4 ¼

ff 0

24m
; f5 ¼ 0; f6 ¼ 0;

f7 ¼
4f 02f þ 4f 2f 00 � 5ff 0

5040m2
; f8 ¼ �

g ff 00 þ f 02ð Þ
4480m3

; f9 ¼ 0;

f10 ¼
1

90m
7
8

f 07f þ 1
5

f4f 04 �
5
2

f7f 0
� �

;

ð2:16Þ

where f0 and f1 must be obtained from the boundary conditions in (2.14).

2.3 Nonuniform Expansions (Poincaret–Lighthill–Ho Method)

The perturbation method often to leads considerable difficulties ensuing from the
inappropriate choice of the scale for the different coordinate axes [4]. As a result, a
‘‘contraction’’ of one of them appears to lead to divergence of the solution. This
divergence vanishes after an appropriate ‘‘stretching’’ of the scale. This stretching
is known as the Poincaret–Lighthill–Ho method [1] and it will be demonstrated in
the case of mass transfer in liquid film flow [9], where the film thickness h0 is
much greater than the diffusion boundary layer thickness d. The mathematical
description of the process (see Chap. 2.2) is

g

2m
2h0y� y2
	 
oc

ox
¼ D

o2c

ox2
þ o2c

oy2

� �
; ð2:17Þ

with boundary conditions

x ¼ 0; c ¼ c0; x!1; c ¼ c
; y ¼ 0;
oc

oy
¼ 0; y ¼ h0; c ¼ c
:

ð2:18Þ

The film thickness h0 and the diffusion boundary layer thickness d will be used
as linear scales for the velocity and concentration distributions:
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x ¼ h0X; y ¼ h0 � dg; c ¼ c
 þ c0 � c
ð ÞC; d ¼ h0

ffiffiffiffiffiffiffiffi
2

3Pe

r
; Pe ¼ uavh0

D
;

uav ¼
gh2

0

3m
:

ð2:19Þ

The mass transfer rate J can be represented by the mass transfer coefficient
k and the average mass flux for a liquid film with length l:

J ¼ k c0 � c
ð Þ ¼ �D

l

Z l

0

oc

oy

� �
y¼h0

dx: ð2:20Þ

The introduction of (2.19) into (2.17), (2.18), and (2.20) leads to

1� ag2
	 
oC

oX
¼ a

o2C

oX2
þ o2C

og2
; X ¼ 0;¼ 1; X !1; C ! 0;

g ¼ 0;¼ 0; g!1; C ! 1:

ð2:21Þ

Sh ¼ kl

D
¼ a�1=2

Z1=e

0

oC

og

� �
g¼0

dX; ð2:22Þ

where

a ¼ Fo ¼ 2
3Pe
	 1: ð2:23Þ

The solution of (2.21) can be sought as a power series expansion:

C X; gð Þ ¼ C0 X; gð Þ þ aC1 X; gð Þ þ a2C2 X; gð Þ þ � � � : ð2:24Þ

The use of the traditional perturbation method is impossible, because if we put
(2.24) in (2.21) and replace the different approximations obtained in (2.22),

oC1

og

� �
g¼0

�X�3=2: ð2:25Þ

The singularity at X = 0 is amplified in the further corrections obtained from
(2.25). To avoid the singularity in the local mass flux at X = 0, new coordinates
are necessary:

X ¼ nþ au n; gð Þ; g ¼ g; ð2:26Þ

where u is an arbitrary function to be determined in such a way that the singularity
in C1 X; gð Þ at X ¼ 0 will be dominated by a singularity in C0 X; gð Þ. In new
coordinates C X; gð Þ ¼ Ĉ n; gð Þ
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oC

oX
¼ oĈ

on
on
oX
;

o2C

oX2
¼ o2Ĉ

on2

on
oX

� �2

þoĈ

on
o2n
oX2

;

oC

og
¼ oĈ

on
on
og
þ oĈ

og
;

o2C

og2
¼ o2Ĉ

on2

on
og

� �2

þoĈ

on
o2n
og2
þ o2Ĉ

og2
;

ð2:27Þ

where on
oX;

o2n
oX2;

on
og and o2n

og2, must be obtained after differentiation of (2.26),

1 ¼ on
oX
þ a

ou
on

on
oX
;

og
oX
¼ 0

� �
; 0 ¼ o2n

oX2
þ a

o2u

on2

on
oX

� �2

þou
on

o2n
oX2

" #
;

0 ¼ on
og
þ a

ou
og
; 0 ¼ o2n

og2
þ a

o2u
og2

:

ð2:28Þ

The new function C n; gð Þ can be represented as a power series expansion
(2.24):

Ĉ n; gð Þ ¼ Ĉ0 n; gð Þ þ aĈ1 n; gð Þ þ � � � ð2:29Þ

The Taylor series representation of the function C X; gð Þ ¼ C nþ au n; gð Þ; g½ �
for small values of the parameter a is

C X; gð Þ ¼ C X; gð Þ½ �a¼0þa
oC

oX

� �
a¼0

oX

oa
; ð2:30Þ

where

C X; gð Þ½ �a¼0¼ Ĉ0 n; gð Þ; oC

oX

� �
a¼0

oX

oa
¼ oĈ0

on
u n; gð Þ ¼ Ĉ1 n; gð Þ; ð2:31Þ

i.e.,

C X; gð Þ ¼ Ĉ0 n; gð Þ þ aĈ1 n; gð Þ: ð2:32Þ

From the boundary conditions in (2.21) and (2.31) and (2.32) the boundary
conditions of the new functions follow:

Ĉ0 0; gð Þ ¼ 1; Ĉ0 n; 0ð Þ ¼ 0; Ĉ0 n;1ð Þ ¼ 1: ð2:33Þ

Ĉ1 n; 0ð Þ ¼ lim
g!0

u n; gð ÞoĈ0

on

" #
; n[ 0;

Ĉ1 n;1ð Þ ¼ lim
g!1

u n; gð ÞoĈ0

on

" #
; n [ 0;

Ĉ1 0; gð Þ ¼ lim
n!0

u n; gð ÞoĈ0

on

" #
; g[ 0:

ð2:34Þ
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The results presented permit us to obtain the zeroth approximation a ¼ 0ð Þ in
(2.32) and its solution:

oĈ0

on
¼ o2Ĉ0

og2
; Ĉ0 n; gð Þ ¼ erf

g

2
ffiffiffi
n
p

� �
: ð2:35Þ

The first approximation of the problem has the form

oĈ1

on
¼ o2Ĉ1

og2
þ

g exp �g2
�

4n
	 

ffiffiffiffiffiffiffiffiffiffi
4pn3

p g2 þ ou
on
� o2u

og2
þ g2

4n2 �
3

2n
� 2

ou
og

1
g
� g

2n

� �� �� �
:

ð2:36Þ

The strongest singularity of the local mass flux (2.25) is caused by the terms

g2

4n2 �
3

2n
ð2:37Þ

on the right-hand side of (2.36). Obviously / n; gð Þ has to be chosen so that the
terms in the square brackets in (2.36) will vanish, i.e.,

w00 þ 2
f
� f

2

� �
w0 ¼ f2

4
� 3

2
; ð2:38Þ

where

w fð Þ ¼ u n; gð Þ; f ¼ gffiffiffi
n
p : ð2:39Þ

The boundary conditions of (2.38) are specified with respect to physical con-
siderations, according to the limitedness of the concentration and the local mass
flux.

Finally, we can write

u n; gð Þ ¼ � g2

4n2 ð2:40Þ

and for Ĉ1 n; gð Þ we obtain

oĈ1

on
¼ o2Ĉ1

og2
�

g3 exp �g2
�

4n
	 

ffiffiffiffiffiffiffiffiffiffi
4pn3

p ; Ĉ1 0; gð Þ ¼ 0; Ĉ1 n; 0ð Þ ¼ 0; Ĉ1 n;1ð Þ ¼ 0;

Ĉ1 ¼
g
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 1� g2

3n

� �s
exp �g2

4n

� �

ð2:41Þ
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and for the Sherwood number we obtain

Sh ¼
ffiffiffiffiffiffiffiffi
6Pe

ep

r
1� Fo

6

� �
; e ¼ h0

l
: ð2:42Þ

The function obtained (2.40) cannot avoid the singularity in the next approxi-
mations (Ĉ2; etc.). The solution of this problem requires the introduction of
another function into (2.26) and its appropriate determination:

X ¼ nþ au n; gð Þ þ a2u1 n; gð Þ: ð2:43Þ

The necessity of use of the Poincaret–Lighthill–Ho method arises in cases of a
bad choice of the linear scale. The use of h0 as a linear scale in (2.19) leads to the
singularity at X ¼ 0 because X � 1. Replacement of h0 with the film length l leads
to 0�X� 1 and the singularity problem is avoided [9].

The analytical methods presented can be combined very usefully with
numerical methods (see 2.12).

3 Numerical Methods

The analytical methods permit us to solve linear ordinary differential equations. In
cases of weak nonlinearity, when the nonlinear effects are related to small
parameters, the use of the perturbation method linearizes the problem. Multidi-
mensional or strong nonlinear problems need numerical methods.

The different types of the partial differential equations of mathematical physics
use a variety of numerical methods, such finite differences, finite elements, integral
relations, and characteristics, which have different degrees of universality [10].
The most applicable methods in chemical engineering for solving convection–
diffusion problems [11–14] are the methods of finite differences and finite
elements.

3.1 Finite Differences Method

Let us consider a stationary one-dimensional convection–diffusion equation:

u xð Þ dc

dx
¼ d

dx
D xð Þ dc

dx

� �
þ f xð Þ; 0\x\l; c 0ð Þ ¼ 0; c lð Þ ¼ 0: ð3:1Þ

The values of x and c xð Þ at the knots of a lattice in the interval 0; l½ � are

x ¼ xi ¼ ih; i ¼ 0; 1; . . .;N; Nh ¼ l; ci ¼ c xið Þ: ð3:2Þ

The formula of the Taylor expansion in the neighborhood of an arbitrary point
xi is
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ci�1 ¼ ci � h
dc

dx

� �
x¼xi

þh2

2
d2c

dx2

� �
x¼xi

�h3

6
d3c

dx3

� �
x¼xi

þO h4
	 


: ð3:3Þ

From (4.3) it is possible to obtain the finite differences derivatives cx; cxxð Þ;
where for the sake of convenience the index i is omitted. The first derivatives are
on the left c�xð Þ or on the right cxð Þ:

c _x �
ci � ci�1

h
¼ dc

dx

� �
x¼xi

� h

2
d2c

dx2

� �
x¼xi

þO h2
	 


;

cx �
ciþ1 � ci

h
¼ dc

dx

� �
x¼xi

þ h

2
d2c

dx2

� �
x¼xi

þO h2
	 


:

ð3:4Þ

Obviously, the finite differences derivatives (4.4) can be used to approximate
the first derivate in (4.3) and the approximation error is O hð Þ: By analogy, is
possible to obtain the central finite differences derivative c _xð Þ and the second
derivative c�xx:

c _x �
ciþ1 � ci�1

2h
¼ dc

dx

� �
x¼xi

þh2

3
d3c

dx3

� �
x¼xi

þO h3
	 


;

c�xx ¼
cx � c�x

h
¼ ciþ1 � 2ci þ ci�1

h2
¼ d2c

dx2

� �
x¼xi

þO h2
	 


:

ð3:5Þ

The differential operator of diffusive transfer can be represented as

d

dx
D xð Þ dc

dx

� �
¼ dD

dx

dc

dx
þ D xð Þd

2c

dx2
; ð3:6Þ

where the next approximation is used:

Di ¼ D xið Þ; i ¼ 0; 1; . . .;N;
Diþ1 þ Di

2
¼ D xið Þ þ O h2

	 

; ð3:7Þ

Dx ¼
Diþ1 � Di

h
¼ dD

dx

� �
x¼xi

þO h2
	 


; ð3:8Þ

The approximations of u xð Þ and f xð Þ are similar to (4.7). The introduction of
finite differences derivatives and functions into (3.1) leads to a set of linear
equations for c xið Þ; i ¼ 0; 1; . . .;N:

3.2 Finite Elements Method

The finite elements scheme for problem (3.1) will be made using Galerkin’s
method [15] and the function c xð Þ searched for will be represented as a sum:
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c xð Þ ¼
XN�1

i¼1

ciwi xð Þ; ð3:9Þ

where wi xð Þ are linear elements,

wi xð Þ ¼

0; x\xi�1;
x�xi�1

h ; xi�1� x� xi;
xiþ1�x

h ; xi� x� xiþ1;

0; x [ xiþ1:

8>>><
>>>:

9>>>=
>>>;
: ð3:10Þ

The finite elements scheme for problem (3.1) may be obtained if we multiply
(3.1) by wi xð Þ and integrate over x in the interval xi�1; xiþ1½ �: As a result, we obtain

Zxiþ1

xi�1

u xð Þ dc

dx
wi xð Þdxþ

Zxiþ1

xi�1

k xð Þ dc

dx

dwi

dx
dx ¼

Zxiþ1

xi�1

f xð Þwi xð Þdx; ð3:11Þ

having in mind that wi xð Þ ¼ 0 for x� xi�1 and x xiþ1: The introduction of
(3.10) into (3.11) leads to a set of linear equations for c xið Þ; i ¼ 1; . . .;N� 1:

An increase of the exactness of the approximation is possible by the method of
Petrov and Galerkin [13], which uses quadratic or cubic polynomials in (3.10).

4 Examples

4.1 Application of Green’s Functions

Many problems in the modeling of mass transfer kinetics [1, 2] lead to the
necessity to solve (1.1) for different functions F x; tð Þ and boundary conditions:

F x; tð Þ ¼ xffiffiffiffiffiffiffiffiffi
4pt3
p f tð Þ þ 2tf 0 tð Þ½ �e�x2

4t ; U 0; tð Þ ¼ 0; U 1; tð Þ ¼ 0; U x; 0ð Þ ¼ 0;

U x; tð Þ ¼ xffiffiffiffiffiffiffiffiffi
4pt3
p 2tf tð Þ �

Z t

0

f sð Þds

2
4

3
5e�

x2
4t :

ð4:1Þ

F x; tð Þ ¼ xffiffiffiffiffiffiffi
pt3
p f tð Þ þ tf 0 tð Þ½ �; U 0; tð Þ ¼ 0; U 1; tð Þ ¼ 0; U x; 0ð Þ ¼ 0;

U x; tð Þ ¼ xffiffiffiffiffi
pt
p f tð Þe�x2

4t :

ð4:2Þ
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F x; tð Þ ¼ � f tð Þ þ 2tf 0 tð Þ
2t

e�
x2
4t ; U 0; tð Þ ¼ 0; U 1; tð Þ ¼ 0; U x; 0ð Þ ¼ 0;

U x; tð Þ ¼ � 1ffiffiffiffiffi
pt
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x2
4t
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f sð Þ þ 2sf 0 sð Þffiffiffi
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Zsxffiffiffiffiffiffiffiffiffi
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775ds:

ð4:4Þ

F x; tð Þ ¼ x3ffiffiffiffiffiffiffiffiffi
4pt3
p e�

x2
4t ; U 0; tð Þ ¼ 0; U 1; tð Þ ¼ 0; U x; 0ð Þ ¼ 0;

U x; tð Þ ¼ x

2

ffiffiffi
t

p

r
1þ x2

3t

� �
e�

x2
4t :

ð4:5Þ

4.2 Sturm–Liouville Problem

Theoretical analysis of the mass transfer in liquid film flow [1, 16–20] leads to the
problem

1� Y2
	 
oC

oX
¼ o2C

oY2
; C 0; Yð Þ ¼ 1; C X; 1ð Þ ¼ 0;

oC

oY
X; 0ð Þ ¼ 1: ð4:6Þ

The separated variables approach leads to next solution of (4.6):

C X; Yð Þ ¼
X1
n¼1

AnHn Yð Þ exp �k2
nX

	 

: ð4:7Þ

Substitution of (4.7) into (4.6) leads to the Sturm–Liouville problem:

H00n þ k2
n 1� Y2
	 


Hn ¼ 0; H 1ð Þ ¼ 0; H0 0ð Þ ¼ 0; ð4:8Þ

where kn and Hn n ¼ 1; 2; . . .ð Þ are eigenvalues and eigenfunctions. The solution
of (4.8) is obtained [21] in terms of confluent hypergeometric functions:

Hn Yð Þ ¼ exp �kn

Y2

2

� �
u a;

1
2
; z

� �
; a ¼ 1

4
1� knð Þ; z ¼ knY2;

u a; c; zð Þ ¼
X1
k¼0

a aþ 1ð Þ. . . aþ k � 1ð Þ
c cþ 1ð Þ. . . cþ k � 1ð Þ

zk

k!
:

ð4:9Þ
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From the first boundary condition in (4.6) it follows that

X1
n¼1

AnHn Yð Þ ¼ 1 ð4:10Þ

and the orthogonality of the eigenfunctions is easily proved:

An ¼
R 1

0 1� Y2ð ÞHn Yð ÞdYR 1
0 1� Y2ð ÞH2

n Yð ÞdY
: ð4:11Þ

The results obtained permit us to calculate the Sherwood number [19]:

Sh ¼ �Pe
X1
n¼1

AnH0n 1ð Þ
k2

n

; ð4:12Þ

where kn;An;H0n 1ð Þ; n ¼ 1; 2; . . .; 10 are presented [19] in Table 1.
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Parameter Identification (Estimation)

The separate stages of the modeling and simulation lead to specific calculation
problems.

The modeling at the stage of parameter estimation must solve incorrect inverse
problems and minimize multiextremal functions, where the calculation of the
least-squares function needs the solution of differential equations. The simulation
at the stages of optimal control and design uses the methods of solution of dif-
ferential equations and minimization of functions. Model parameter identification
(estimation) is an inverse problem solution [1], i.e., a mathematical procedure to
calculate parameter values using experimental data.

1 Inverse Problems

The determination (identification) of the model parameters (except the cases of
theoretical models and the model theories) is a procedure utilizing experimental
data only. In the common case, the mathematical description is a set of equations
(algebraic, differential, integral, or integral–differential equations) and the corre-
sponding initial and boundary conditions. These equations link the dependent
variables (the objective functions) y, the independent variables (the factors) x, and
the constants (parameters) b:

f x; y; bð Þ ¼ 0; ð1:1Þ

where f, x, y, and b can be considered as vectors:

f ¼ f1; . . .; fp
� �

; x ¼ x1; . . .; xmð Þ; y ¼ yp; . . .; yn

� �
; b ¼ b1; . . .; bkð Þ: ð1:2Þ

When the objective function is time-independent and located at a point in space,
the models have nondistributed parameters. This corresponds to a mathematical
structure of ordinary differential equations. The models with distributed
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parameters have space-distributed objective functions (and time-dependent too)
and consequently their mathematical structures contain partial differential
equations.

1.1 Direct and Inverse Problems

Mathematical description (1.1) allows us to solve two main problems:

1. To find the objective function through algorithms for given values of the factors
and the parameters:

y ¼ u x; bð Þ: ð1:3Þ

Thus, the forward (direct) problem is usually solved through a process of
simulations. A characteristic feature of the forward problem is that the objective
function can be determined via both experiments and simulations.

2. The inverse problem is the process of parameter identification:

b ¼ w x; yð Þ: ð1:4Þ

It allows us to calculate the parameter values for known experimentally
determined values of both the factors and the objective function. In contrast to the
forward problems, the inverse problems can be solved through calculation only.
Obviously, the inverse problem solution (1.4) strongly depends on the mathe-
matical structure of the model considered.

1.2 Types of Inverse Problems

The inverse problems [8–15] have various natures. They can be:

• Retrospective, i.e., considering nonstationary problems with the so-called
inverse time.

• Coefficient problems or parameter identification.
• Structural problems looking for the structure of the model.
• Geometrical problems identifying the geometrical boundaries.
• Boundary problems identifying the boundary conditions and values.

Moreover, the inverse problems can occur under various conditions, such as:

• Inverse problems on control problem solutions considering the identification of
the control parameters or functions allowing the achievement of desired values
of the objective function.

• Design problems identifying the parameters of the equipment allowing the
establishment of the desired output values as a function of the input variables.
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The next comments are concerned mainly with the inverse problems consid-
ering parameter identification and particularly some structural problems (related to
the model adequacy).

The identification of the model parameters depends on the mathematical
structure. Some simple models allow that to be done easily as shown in (1.2.67)
after the analytical solution of the direct problem. In this case substitution of the
objective function with its experimental value leads to an algebraic equation for
the model parameter.

In most cases the parameter identification utilizes integral methods. As an
example, we will use a model with one parameter:

Pe
dC

dX
¼ d2C

dX2
; X ¼ 0; Pe ¼ PeC0 þ C00; X ¼ 1; C01 ¼ 0; ð1:5Þ

where

C0 ¼ C 0ð Þ; C00 ¼
dC

dX

� �
X¼0

; C01 ¼
dC

dX

� �
X¼1

: ð1:6Þ

The double integration of EQUATION (1.5) with respect to X within the ranges
[0, X) and [0.1] yields

J:Pe� C0Pe ¼ C1 � C0 � C00; ð1:7Þ

where

J ¼
Z1

0

C Xð ÞdX; C1 ¼ C 1ð Þ: ð1:8Þ

Expression (1.7) and the first boundary condition of (1.5) permit us to evaluate Pe:

Pe ¼ C1 � C0

J � 2C0 þ 1
: ð1:9Þ

Thus, the determination of the parameter Pe requires experimental data
C(X) within the range 0 B X B 1.

In the general case the values of the parameters can be determined through a
minimization of the least-squares function:

Q bð Þ ¼
XN

n¼1

yn � ŷnð Þ2; ð1:10Þ

where ŷn n ¼ 1; . . .;Nð Þ are calculated values of the objective function through (1.3):

ŷn ¼ u xn; bð Þ; n ¼ 1; . . .;N: ð1:11Þ

Here, xn and yn(n = 1, …, N) are experimentally determined values of both the
factors and the objective function from N experiments.
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1.3 Incorrectness of the Inverse Problems

The explanation could create the illusion that the inverse problem solution of (1.4)
cannot encounter any difficulties except those of the nonlinear programming for
the determination of the minimum of Q(b) (see 1.10). However, the reality for this
type of problem is rather different. For example, if J - 2C0 ? 1 & 0 in (1.9), the
value of Pe cannot be determined since under these conditions C1 & C2 More-
over, when the values of the denominator of (1.9) are very small, the experimental
errors during the determination of the numerator grow significantly.

These specific characteristics of the inverse problems will be considered below
through an example of diffusion in a flowing liquid film [4]. The distribution of the
concentration (c) depends on both the coordinates (x, y) and the film surface
velocity (m) The diffusivity D is the model parameter:

v
oc

ox
¼ D

o2c

oy2
; x ¼ 0; c ¼ 0; y ¼ 0; c ¼ c�; y!1; c ¼ 0:

ð1:12Þ

The solution of (1.12) using similarity variables is

c

c�
¼ erfc

gffiffiffiffi
D
p ; g ¼ yffiffiffiffiffiffiffiffiffiffi

4x=m
p : ð1:13Þ

The plots in Fig. 1 illustrate the variations of the dimensionless concentration
with the diffusion coefficient for various values of g. Thus, they represent the
forward (direct) problem solution.

Let suppose that the inverse problem (1.4) must be solved, i.e., the diffusion
coefficient of CO2 (D = 1.8 9 10-9 m2 s-1) in water must be determined on the
basis of experimental data (sets of experimentally determined dimensionless
concentrations c/c* as functions of x, y and x/y = 1 s). The solution uses the plots
in Fig. 1. Obviously, only one experiment is needed to determine D through a
graphical treatment of a particular curve. However, if we assume a constant
accuracy of the measurement of c/c*, the final accuracy of the result depends on
the curve used. For example, if the experimental error of c/c* is about 5%, the
consequent errors for D through the solution of the inverse problem are 44% (line
1), 18% (line 2), 8% (line 3), and 3% (line 4). Unfortunately, line 5 practically
does not allow the determination of D.

Let focus our attention on the physical sense of the problem considering
different sections of the curves potted in Fig. 1. The value of D determined
through line 1 (accuracy of 44%) can be employed to determine c/c* via line 3 as a
solution of the forward problem (accuracy of 28%). The value of D determined
through line 3 (accuracy of 8%) can be employed to find c/c* in the area of line
1 as a solution of the forward problem (accuracy of 1%). The experimental data
defined by line 5 cannot be employed to determine D since the inverse problem
(1.4) has a discontinuity point.
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The examples discussed above show how erroneous results could be obtained if
the specific features of the inverse problems are not taken into account. For
example, the experimental data c/c* (presented by curve 2) permit us to determine
the values of D within the range 10-10 \ D \ 10-9(area of stability). From this
point of view, the range 10-9 \ D \ 10-8 is an area of instability, whereas
108 \ D \ 10-7is an area of impossible solutions since near the point c/c* = 1
the function has discontinuities.

The data in Fig. 1 indicate that the diffusion coefficient can be determined
successfully if a tentative value is known. This allows us to choose a suitable curve
for further solution of the problem. For example, if D * 10-8, the corresponding
data are from curve 4, whereas at D * 10-9 curve 3 must be used and if
D * 10-10, curve 2 must be employed, etc.

The plots in Fig. 1 show that the minimization of Q(b) (see 1.10) cannot allow
determination of the parameter with the desired accuracy if the objective function
error is high.

2 Sets and Metric Spaces

The specific features of the inverse problems are relevant to the theory of functions
and the functional analysis considered next.

2.1 Metrics

The population of elements x forms a set X, i.e., x [ X [5]. The metric space
R(X, q) is a population of elements of X and the distances q between them. The
distance q between the elements x and y of the set X(x 2 X, y 2 X), q(x, y) C 0,

Fig. 1 Graphical explanation of the inverse problem solution concerning the determination of
the diffusivity of CO2 in water based on experimental data with flowing liquid films
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is termed the metric of the space. It satisfies the following three conditions for
every x, y 2 X:

q x; yð Þ ¼ 0 at x ¼ y; q x; yð Þ ¼ q y; xð Þ

q x; yð Þ þ q y; zð Þ� q x; zð Þ; z 2 X triangle inequalityð Þ: ð2:1Þ

The series of points of the metric space {xn} = x1, …, xn has a limit if

lim
n!1

q x; xnð Þ ¼ 0; ð2:2Þ

which is valid for any series (subset). If two arbitrary points xn1 and xn2 of a series
satisfy the condition

q xn1 ; xn2½ �\e; e [ 0; n1�Ne; n2�Ne; ð2:3Þ

it can be considered as a fundamental series. Obviously the convergent series

lim
n!1

q x; xnð Þ ¼ 0 ð2:4Þ

is a fundamental one.
If any series of the space converges, it is a complete space. Therefore, it is

possible to find arbitrary close points converging to a certain unique limit.
The set A of the metric space R is an e network with respect to another set

(M) from the same space if for x [ M and a [ L

qða; xÞ� e; ð2:5Þ

i.e., the elements of the space are contained by a ball q(a,x) depending on the value
of e. This allows us to define a completely bounded set M if for any e[0 there is a
finite e network. This means that if e is decreased in any case, the set remains finite
(the set is bounded by the network). Thus, the set M is bounded not only with
respect to the number of the elements, but it is also bounded with respect to the
distances between the elements and the finite network (mesh).

The set M is a compact set if it is completely bounded in a complete metric
space R. It is characterized by elements that are densely located everywhere, but is
completely bounded by the finite mesh. Obviously, the e network is also compact.
The compact metric space is usually termed compact.

2.2 Linear Spaces

The set of R elements x, y, z, … forms a linear space [5] if the following conditions
are satisfied:
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xþ y ¼ yþ x; xþ yþ zð Þ ¼ xþ yð Þ þ z; xþ 0 ¼ x; xþ �xð Þ ¼ 0;

a bxð Þ ¼ abð Þx; 1:x ¼ x; aþ bð Þx ¼ axþ bx; a xþ yð Þ ¼ axþ bx:

ð2:6Þ

The linear spaces are normalized spaces if for any element x [ R there is a
positive value xk k-a norm of x, where

xk k ¼ 0 at x ¼ 0; axk k ¼ aj j � xk k; xþ yk k ¼ xk k þ yk k: ð2:7Þ

The straight line, with the conventional arithmetic operations, is the simplest
normalized space with a norm equal to the modulus of the real number:

xk k ¼ xj j: ð2:8Þ

The linear Euclidean space has a norm equal to the length of the vector, i.e., in
an n-dimensional case x = x1,…,xn, and

xk k ¼
Xn

i¼1

x2
i

" #1
2

: ð2:9Þ

Let consider two vectors of the linear Euclidean space
x = x1, …, xn, y = y1, …, yn and their sum x ? y. Obviously, from (2.9) and the
equality

Xn

i¼1

x1 þ y1½ �2 ¼
Xn

i¼1

x2
1 þ

Xn

i¼1

y2
1 þ

Xn

i¼1

x1y1 ð2:10Þ

it follows that the norm of the sum may be expressed as

xþ yk k2¼ xk k2þ yk k2þ2 x; yð Þ: ð2:11Þ

Here, (x, y) denotes the scalar product of the vectors x and y in a Euclidean
space, i.e.,

x; yð Þ ¼ xk k � yk k � cos u ¼
Xn

i¼1

x1y1: ð2:12Þ

and u is the angle between x and y.
Any normalized space is a metric space if

q x; yð Þ ¼ x� yk k: ð2:13Þ

The complete normalized space is termed a Banach space (B-space). If x and
y are two points in a linear normalized space, the piece which connect points x and
y is all points z satisfying the conditions

z ¼ axþ by; a� 0; b� 0; aþ b ¼ 1: ð2:14Þ
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The set M of a linear space R is a convex set if the piece z which connect the
points x [ M and y [ L are elements of the same set, i.e., z [ L.

2.3 Functional

If the elements of the set R are functions f, we can consider a set F whose elements
are numbers a, so that for every f [ R there is a [ F. Thus, the set F is a functional.
For example, the functional

F ¼
Z1

0

u x; f xð Þ½ �dx ð2:15Þ

takes a specific form for different functions f(x) if

u x; f xð Þ½ � ¼ xf xð Þ; ð2:16Þ

i.e.,

f xð Þ ¼ 1; F fð Þ ¼
Z1

0

xdx ¼ 1
2
; f xð Þ ¼ x; F fð Þ ¼

Z1

0

x:xdx ¼ 1
3
;

f xð Þ ¼ ex; F fð Þ ¼
Z1

0

xexdx ¼ 1: ð2:17Þ

2.4 Operator

Let x [ X and y [ Y be elements of two Banach spaces R and R0, and a law
(algorithm) A is defined so that for every element x 2 X , R it is possible to
obtain element y 2 Y , R0. This defines an operator on the set X,

y ¼ Ax; ð2:18Þ

with an area of values in the space R0.
Equation (2.18) is an operator equation of the first order. The operators (like

functionals) could be linear or nonlinear, continuous or discontinuous, etc. It
follows from (2.18) that over x 2 X it is possible to define an (operator) algorithm
that gives y 2 Y , R

0
. The inverse problem (to find x if y is known) can be solved

through the inverse operator:

x ¼ A�1y: ð2:19Þ
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The operator A is fully continuous if it converts every bounded set into a
compact set. In this case the corresponding inverse operator A-1 is not continuous.

Consider the bounded linear operator (2.18) converting (mapping) x 2 X to
R
0
(y 2 R0). Suppose we have the functional

F xð Þ ¼ Ax; yð Þ; ð2:20Þ

where x 2 X and y 2 Y are fixed elements in R and R
0
, and (Ax, y) is a scalar

product. From the boundedness of the operator (2.18) it follows that y = y* 2 R
exists, so

F xð Þ ¼ x; y�ð Þ; ð2:21Þ

i.e.,

Ax; yð Þ ¼ x; y�ð Þ: ð2:22Þ

The elements y* are defined by F(x). Moreover, y* are defined by y through
(2.20), i.e., there is an operator A* which converts y to Y*:

y� ¼ A�y: ð2:23Þ

The last two definitions (2.22, 2.23) give

Ax; yð Þ ¼ x;A�yð Þ; ð2:24Þ

which allows us to define the operator A* conjugated to A. For both operators

A�k k ¼ Ak k: ð2:25Þ

2.5 Functional of the Misfit

If both sides of (2.18) are not equal (owing to some errors), the norm of the misfit
is the functional

D xð Þ ¼ Ax� yk k; ð2:26Þ

which will be termed hereafter as misfit or error function.
Similarly, it is possible to define the functional

J xð Þ ¼ 1
2

Ax� yk k2¼ 1
2

D2 xð Þ: ð2:27Þ

If the operator A is defined close to x0 and Dx is the increment of x close to x0,

A0x0
¼ lim

Dx!0

A x0 þ Dxð Þ � Ax0

Dx
ð2:28Þ

2 Sets and Metric Spaces 437



is the operator derivative (Freshet’s derivative). If the operator is linear,

A0x ¼ A: ð2:29Þ

The last expression (2.29) allows us to define the strong [8] differential
(Freshet’s differential) of the operator A:

A xþ Dxð Þ � Ax ¼ A0xDxþ a x;Dxð Þ; ð2:30Þ

where

lim
Dxk k!0

a x;Dxð Þk k
Dx

¼ 0: ð2:31Þ

In a similar way it is possible to derive (through 2.30) the differential of the
functional J(x):

J xþ Dxð Þ � J xð Þ ¼ 1
2

A xþ Dxð Þ � yk k2� 1
2

Ax� yk k2

¼ 1
2

Ax� yþ A0xDxþ a x;Dxð Þ
�� ��2� 1

2
Ax� yk k2:

ð2:32Þ

With the help of (2.11), we can transform expression (2.32) into

J xþ Dxð Þ � J xð Þ ¼ Ax� y;A0xDx
� �

þ 1
2

A0xDxþ a
�� ��2þ Ax� y; að Þ;

a ¼ a x;Dxð Þ:
ð2:33Þ

Substitution of (2.25) into (2.33) leads to

J xþ Dxð Þ � J xð Þ ¼ A0�x Ax� yð Þ;Dx
� 	

þ e x;Dxð Þ; ð2:34Þ

where e(x, Dx) denotes all small terms and

lim
Dxk k!0

e x;Dxð Þk k
Dxk k ¼ 0: ð2:35Þ

The above expressions allow the gradient of the functional J(x) to be repre-
sented as

J0x ¼ A0�x Ax� yð Þ: ð2:36Þ

If the operator is linear, i.e., Ax
0

= A,

J0x ¼ A� Ax� yð Þ: ð2:37Þ

The normalization of the operators employs the inequalities

A1 þ A2k k� A1k k þ A2k k; Axk k� Ak k � xk k: ð2:38Þ
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2.6 Some Properties of the Direct and Inverse Operators

The solution of the inverse identification problems needs to consider some prop-
erties of both the direct (forward) and the inverse operators.

Let us consider a model of mass transfer with a volume reaction [1]:

d2C

dX2
� Pe

dC

dX
� PeNC ¼ 0; X ¼ 0;

dC

dX
� PeC þ Pe ¼ 0;

X ¼ 1;
dC

dX
¼ 0:

ð2:39Þ

Equations (2.39) can be considered as operator equations, i.e., Ax = y, which
allows us to solve both the direct problem (y = Ax) and the inverse one
(x = A-1y). The direct problem solution is

C ¼ a1 exp A1X þ a2 exp A2X; ð2:40Þ
where

A1 ¼
Peþ k

2
; A2 ¼

Pe� k
2

; k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2 þ 4NPe

p
; ð2:41Þ

a1 ¼
PeA2 exp A2

�A2
1 exp A1 þ A2

2 exp A2
; a2 ¼

PeA1 exp A1

�A2
2 exp A2 þ A2

1 exp A1
: ð2:42Þ

The solution of (5.2.40–5.2.42) is valid for every value of Pe [ 0 and for
Pe ? ?, i.e.,

Pe!1; C ¼ exp �NXð Þ: ð2:43Þ

The inverse problem solution comes through a double integration of (2.39) from
0 up to X and from 0 up to 1. The results is an equation containing two unknown
values of Pe and N. The second equation needed can be obtained in a similar way
through multiplication of the first equation in (2.39) by X. By the employment of
the boundary condition of (2.39), the inverse problem solution is

Pe ¼ J1 2J0 � 2C1ð Þ þ J2 C1 � C0ð Þ
J1 C1 � 2J1ð Þ þ J2 J0 � C1ð Þ ; N ¼ 2 J0 � C1ð Þ2þ C0 � C1ð Þ C1 � 2J1ð Þ

J1 2J0 � 2C1ð Þ þ J2 C1 � C0ð Þ ;

ð2:44Þ

where

C0 ¼ C 0ð Þ; C1 ¼ C 1ð Þ; J0 ¼
Z1

0

C Xð ÞdX; J1 ¼
Z1

0

XC Xð ÞdX;

J2 ¼
Z1

0

X2C Xð ÞdX:

ð2:45Þ
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Figure 2 shows the function C(X) for various values of Pe at N = 1. The plot
indicates that despite the infinite variations of Pe the direct operator (2.40–2.42)
always defines a limited function. Thus, the forward operator is a completely
continuous (fully bounded) operator. At high values of Pe, however, the variations
of Pe cause insignificant variations of C(X). Therefore, during the inverse problem
solution, small errors in the determination of C(X) may cause strong errors (several
orders of magnitude) of the values of Pe. This effect is a characteristic feature of
completely limited operators, since experimental data errors often cause instability
of their inverse operators.

The graphs in Fig. 2 demonstrate that every function outside the area bounded
by the curves Pe = 10-3 and Pe = ? cannot lead to the inverse problem solution.
Moreover, the use of experimental values of C(X) at X[0.4 does not give unique
solution of the inverse problem.

3 Incorrectness of the Inverse Problems

The models of the processes (1.1) can be considered as operator equations:

Ab ¼ y: ð3:1Þ

Here, A is the operator (algorithm) allowing calculation of the objective
function y if the model parameters b are known and the values of the independent
model variables x are available. This direct problem is characterized by the fact
that it has a physical analog, i.e., it is possible to determine the objective function
y experimentally.

The inverse identification problem is

b ¼ A�1y: ð3:2Þ

Fig. 2 The variations of the
function C(X) with X for
various values of the param-
eter Pe at N = 1

440 Parameter Identification (Estimation)



The solution of the inverse identification problem is physically impossible since
it is not possible to measure experimentally the parameter values. Thus, the only
available way is to find them through mathematical methods.

In the common case, it will be assumed that in (3.1) both the objective function
y (due to the experiments) and the operator A (due to the mathematical model)
could be inaccurate (determined with some errors). Thus, following (3.1) and (3.2),
we may write

A~b ¼ ~y; ~b ¼ A�1~y; ~A~b ¼ ŷ; ð3:3Þ

where ~y and ŷ are the experimental and the calculated values, respectively, ~A is the
inaccurate operator, and ~b are the inaccurate parameters.

Let q(y1, y2) be a metric describing the difference between both functions. The
triangle inequality expresses the difference between y and ~y as (see 2.1)

q y;~yð Þ ¼ q Ab;A~b
� �

� q Ab; ~A~b
� �

þ q ~A~b;A~b
� �

; ð3:4Þ

Here, q Ab; ~A~b
� �

comes from the systematic error of the model, whereas

q ~A~b;A~b
� �

is the statistical (random) error of the experiments.
The quality of the model depends on the minimization of (3.4), i.e., the mini-

mization of the errors of both the model and the experiments. This can be achieved
though a more complete mathematical description and more precise experiments.
Both types of errors depend on ~b; i.e., on the accuracy of the determination of
b through the inverse problem (3.2) solution. The main difficulties arise very often
from the fact that inverse problem is incorrect (ill posed).

3.1 Correctness After Hadamard

According to Hadamard [2, 3], the correctly posed problems must satisfy three
conditions:

1. The solution must exist.
2. The solution must be unique.
3. The solution must be a continuous function of the input data.

The first two conditions concern the deterministic nature of the problem,
whereas the third one is relevant to its physical sense.

The inverse problems (employed for parameter identification) presented by
(3.2) are incorrect if some of the above conditions are not satisfied. Usually, the
incorrectness is due to the nonexistence of the third condition. The operator A-1 is
not usually continuous and small errors of the experimental values of y cause large
errors of the calculated values of b.

The main reason leading to the incorrectness of the inverse problems is the
‘‘integral character’’ of the operator A in (3.1). This means that a large difference
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between the values of b results in small errors of the values of y. The result of
application of the inverse operator A-1 is the same: small errors of y cause large
errors of the values of b.

3.2 Correctness After Tikhonov

Tikhonov developed some possible ways to solve the inverse problem defined by
Hadamard. Following him, the conditions of the inverse problem correctness were
formulated by Lavrentiev [2]:

1. The solution is known a priori and it belongs to a set B.
2. The solution is unique.
3. Infinitesimal variations of the input data y, for which the solution for b belongs

to B, cause infinitesimal variations of b.

The above conditions permit the problems that were incorrect after Hadamard
to be solved through conditionally correct methods (correctness after Tikhonov).

There are different methods for the inverse problem solution, but very often
only two approaches are employed—the selection method and the regularization
method.

4 Methods for Solving Incorrect (Ill-Posed) Problems

Consider two metric spaces B and Y (Fig. 3) and a correctly defined operator
A mapping B to Y:

AB ¼ Y : ð4:1Þ

The elements of both sets b 2 B and y 2 Y must satisfy the equation

Ab ¼ y: ð4:2Þ

Fig. 3 Graphical representation of the mapping procedures of the inverse problem solution
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The explanation developed below supposes that the metrics of both spaces
B and Y are uniform and quadratic metrics, so

qB b1; b2ð Þ ¼ max
t2 t1;t2½ �

b1 tð Þ � b2 tð Þk k; qY y1; y2ð Þ ¼
ZX2

X1

y1 xð Þ � y2 xð Þ½ �2dx

8<
:

9=
;

1
2

:

ð4:3Þ

The above relationships supposes that parameters b depend on the variable
t (e.g., assumed as a temperature), whereas the objective function depends on the
independent variables x, which allows the integral to be replaced by finite sums.
Suppose y = yT is the exact objective function

(Fig. 3). It permits us to determine bT, i.e., the exact solution of (4.2):

AbT ¼ yT: ð4:4Þ

In fact the known data are the experimental values of the objective function ~yð Þ
only. This is the reason to look for an approximate solution of the equation

Ab ¼ ~y: ð4:5Þ

Very often A is a fully continuous operator, so A-1 is not discontinuous. This is
the reason why the approximate solution of (4.2) cannot be found as an exact
solution of (4.5).

Hence,

~b ¼ A�1~y ð4:6Þ
owing to the fact that if ~y 2 AB (the set AB contains all the elements Ab, b 2 B)
such a solution could not exist ~b 62 B

� �
: If such a solution were possible, it would

be unstable owing to the discontinuous character of the operator A-1. These
features of the ill-posed inverse problems are discussed with the example illus-
trated in Fig. 1. If in this particular case the order of the parameter D is about
10-9 m2/s, the experimental values of the objective functions (line 5) cannot be
employed to determine the value of D. On the other hand, the data for line 1 lead to
an unstable (incorrect) determination of the values of D. The plots in Fig. 1
demonstrate that a stable solution exists if suitable input (experimental) data are
chosen (e.g., those for line 3) and the interval of variations of the exact solution is
known preliminarily. For example, if the diffusion coefficient is 1 order lower
(approximately 10-10 m2/s), it must be determined by line 2.

Practically the experimental values of the objective functions contain some
error d, i.e.,

qY yT;~yð Þ� d: ð4:7Þ

The elements ~y; satisfying the inequality (4.7), form a subset Yd (see Fig. 3).
Every ~y corresponds to an element b 2 Bd that satisfies the equation

ABd ¼ Yd: ð4:8Þ
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The suggestion from Fig. 3 is that all the elements bd 2 Bd could be considered
as an approximate solution. In fact, however, owing to the instability of the inverse
operator A-1 the distance between the elements of Bd could be large. The con-
sequent effect is they differ significantly from the true values bT.

The difficulties could be avoided if additional information concerning y (or b)
were available. In many cases this information could be quantitative. Such an

example is the problem looking for a narrow class of possible solutions ~dT 2 M
(remember bT 2 M). In other cases the information could be qualitative
concerning, for example, the smoothness of the function ~y: This allows the
development of specific methods [2, 3, 15, 16, 22] for solution of (3.4). Hereafter,
four methods will be considered:

1. The method of selections.
2. The method of quasi-solutions.
3. The method of substitution of equations.
4. The method of the quasi-reverse.

4.1 Method of Selections

The method employs a preliminarily known set M containing the exact solution
bT 2 M. The first step is to find the set N as a solution of the forward problem:

AN ¼ N: ð4:9Þ

After that the set Y1 formed by elements satisfying simultaneously (4.8) and
(4.9) must be determined. This set contains common elements of N and Yd (the
dashed area in Fig. 3). It is easy to prove [2] that the minimization of

qYt
A~b;~y
� �

ð4:10Þ

leads to qM
~b; bT

� �
! 0; where ~b 2 M;~y 2 Y1, and the metrics qM and qY1

are
defined by (5.4.3).

The set Y1 is characterized by the fact that the problem

b ¼ A�1~y; ~y 2 Y1 ð4:11Þ

is correctly posed. The set Y1 is termed a class of correctness, i.e., problem (4.11)
is correct after Tikhonov. Obviously b 2 M1, where M1 contains the common
elements of M and Bd (the dashed area in Fig. 3).

4.2 Method of Quasi-Solutions

In many cases experimental errors of the values ~y lead to the fact that ~y 62 N:
Moreover, there are no unique criteria proving that ~y 2 N ¼ A: In such cases it is
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possible to show that A�1~y is nonsense and a quasi-solution ~b 2 M must be
obtained [2] that minimizes the functional

qY A~b; y
� �

¼ inf
b2M

qY Ab; yð Þ: ð4:12Þ

The quasi-solution ~bis a unique solution if the projection of ~y 2 Y on the set
N = AM 2 Y is unique. This means that N contains only one element
h 2 N minimizing qY h;~yð Þ: In other words, the idea is to find ~y that is very close to
the unique objective function h 2 N.

4.3 Method of Substitution of Equations

The problems where ~y 62 N ¼ AM can be solved [2] if the operator equation (4.2)
is substituted by

Aþ aEð Þb � Abþ ab ¼ y; ð4:13Þ

where E is a unit operator. The parameter a[ 0 must be specified in a manner
ensuring the continuity of the inverse operator defining the solution ba:

ba ¼ Aþ aEð Þ�1y: ð4:14Þ

4.4 Method of the Quasi-Reverse

In some cases the change of the operator (4.13) is not enough to satisfy the
condition of the continuity of the inverse operator (4.14). Under such a condition
the method of the quasi-reverse [2] avoids the difficulties through the formation of
a significantly new operator.

4.5 Summary

The methods mentioned in the previous sections employ some additional
information about the parameters b and the objective function y. The plots in
Fig. 1 show that this additional information is very important through the
problem solution. For example, the information about the order of magnitude of
D is enough to define the experimental data (curves) permitting its
determination.
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5 Methods for Solving Essentially Ill-Posed Problems

The previous point (Sect. 4) considered several methods for solving the operator
equation (8.4.2) when the class of the possible solutions is a compact. However,
there are situations when this is impossible and there are experimental errors of the
objective function (y) that put it outside the metric space (y 2 Y = AB). This
follows from the fact that B is not a compact set. These are the essentially ill-posed
problems and the methods discussed in Sect. 4 cannot be applied. Despite this,
there are possibilities to create approximate solutions of that class of problems.
The basis of that approach is the regularization operator [2, 3].

5.1 Regularization Operator

Let us consider the operator equations Ab = y, b 2 B, y 2 Y, but B is not a
compact set and the experimentally obtained objective function ~y 2 Y does not
belong to the set AB ~y 62 ABð Þ: Moreover, let bT be a solution of AB = yT i.e.,
AbT = yT Really, the objective function yT is unknown, but there are experimental
values yd obtained with an error of d, so

qY yd; yTð Þ� d: ð5:1Þ

The next assumption is that A is an exact operator. The problem must be solved
with the data concerning yd, A, and d only being available. The target is an
approximate solution bd that approaches bT and exhibits a stable behavior with
small variation of yd. As mentioned earlier, bT cannot be obtained as an exact
solution of

bd ¼ A�1yd ð5:2Þ

since the essential incorrectness means that this solution could not exist for every
yd 2 Y and that it could be unstable with small variations of y.

Obviously, the approximate solution bd must depend on the number parameter
d[ 0 characterizing the accuracy of the experimentally obtained objective func-
tion yd. Taking into account these assumptions, we cannot define the approximate
solution of (5.2) as an exact solution of (5.2), but we can define it through the
solution of

bd ¼ R yd; dð Þ: ð5:3Þ

Here, R(yd, d) is the regularization operator of Ab = y (with respect to the ele-
ment yT). The equation Ab = y has an exact solution AbT = yT,
bT 2 B, yT 2 Y. The regularizing operator must have several features as follows:

The operator R(yd, d) maps Y to B. It is defined for every d(0 B d B d1) and
every yd 2 Y such that qY(yd, yT) B d.
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For every e [ 0 there is d0 = d0(e, yd) B d1 such that qB(bd, bT) B e follows
directly from the condition qY(yd, yT) B d B d0, where bd is the exact solution of
(5.3).

The above definition of the regularizing operatorR(yd, d) does not suggest its
uniqueness, so there are possibilities to create various regularization operators
(algorithms) for the solution of one incorrect inverse problem.

Very often a more general formulation is needed that considers a dependence of
the regularization operator on a parameter a (regularization parameter). The
operator R(y,a) is defined for 0 \ a\ a1 and for every y [ Y, such that
qY(y, yT) B d1 [ 0. The regularization parameter is defined as a functional
a = a(y, d), so y 2 Yand qY(y, yT) B d1. The creation of this functional follows a
procedure such that for every e [ 0 a number d B d(e) must be found. If ~y 2 Y and
qY(y, yT) B d B d(e), qB(bT, ba) B e, where ba is the exact solution of the
equation

ba ¼ R ~y; a ~y; dð Þ½ �: ð5:4Þ

The operator in (5.4) is not unique like in (5.3), but at a = d they are
equivalent.

Equation (5.4) shows that the approximate solution of (4.5) could be an element
ba = R(yd, a), where a = a(yd) = a1(d) confirms the error of the experimental data.
The approximate solution ba is termed a regularized solution. The R operator may
not be unique and its particular form depends on the type of the operator A.
The parameter a must be chosen in a way that confirms the solutions with the
experimental error as well as defining a solution having insensitivity to small
variations of the experimental data y.

The above explanation demonstrates that the regularization method is an
approach looking for regularization operators and regularization parameters
under conditions imposed by additional information (e.g., the magnitude of the
error defined by yd).

The determination of the regularization operators may be performed through
variational or iterative approaches.

5.2 Variational Approach

As mentioned in Sect. 4, the approximate solutions bd should be found within the
class Bd satisfying condition (4.8). This means that the solution accuracy should
confirm the accuracy of the input data yd 2 Yd. It was demonstrated that the set Bd

is sufficiently large, so the selection of a solution must be performed (from Bd) so
it will be stable with respect to small variations of yd. Here the selection will be
performed by means of a preliminarily defined functional X(b) following from the
problem formulation. It should be noted that in many cases in the problems of
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parameter identification the solutions (the parameters) are constants, whereas
X(b) are functions.

5.2.1 Stabilizing Functional

A stabilizing functionalX(b) can be used to aid in the selection of possible
solutions. The functional X(b) [ 0 is defined for b 2 M1 , M, where M1 is a
dense subset. It is characterized by the fact that the exact solution exists in its
domain of definition, i.e., bT 2 M1 for every d[0, such that F1,d , F1, for which
X(b) \ d is a compact.

Let consider only those elements of Bd (the domain) where the functional
X(b) is defined. Their subset F1,d is defined by

F1;d ¼ F1 \ Bd: ð5:5Þ

We must find this element bd 2 F1,d that minimizes X(b). This element could
be considered as a solution of the operator equation

bd ¼ ~R yd; dð Þ; ð5:6Þ

since it is easy to prove [2] that ~R y; dð Þ is a regularization operator of the equation
Ab = y.

The main problem of this approach is the minimization of the functional
X(b) under restrictions expressed as the inequality

qY Ab; ydð Þ� d: ð5:7Þ

5.2.2 Smoothing Functional

An approach that transforms that variational problem into a classic one with the
help of (5.7) in the form of an equality employs the Lagrange method [2], i.e., the
use of undefined coefficients (multipliers). Let the set M0 contain the elements
b 2 Y1 corresponding to the exact lower limit of the functional X(b). Suppose, for
simplicity of explanation, that M0 contains one element. Under such conditions
two situations are possible:

The sets M0 and Y1,d have a common domain, i.e., qY(Ab0, yd) B d.
The opposite case exists when qY(Ab0, yd) [ d.
The first case means that b0 minimizes the functional X(b), i.e., the desired

solution is insensitive to small variations of yd.
In the second case (it is possible to prove) the approximate solution bd can be

found among the elements satisfying the condition

dY Abd; ydð Þ ¼ d; bd 2 M0 ð5:8Þ
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and the approximate solution bd minimizes the functional

Ma b; ydð Þ ¼ q2
Y Ab; ydð Þ þ aX bð Þ; ð5:9Þ

where the parameter a is defined by (5.5.8).
The functional Ma(b, y) is a smoothing functional and its minimization is

related to the minimization of X(b), since (5.9) indicates that at X(b) = 0 the
minimum of qY

2 (Ab, yd) with respect to b exists.
The explanation above elucidates the fact that the principal element of the

variational regularization method is the choice of the stabilizing functionalX(b).
Usually its form follows from the type of the problem, but in many cases its choice
is not unique, so various stabilizing functionals through the inverse problem
solution can be employed. These problems require specific comments that will be
given further when the types of the models are discussed.

5.3 Iterative Approach

An alternative approach to the inverse problem solution is iterative regularization.
The method concerns the building of regularization algorithms based on various
iterative methods where the regularization parameter is the number of the itera-
tion [8].

Many iterative methods looking for a minimum of a function (the gradient
methods too) are insensitive with respect to the input data, but the errors of the
calculations can start grow after a certain number of iterations. This requires
stopping the iteration procedure at a certain n = N that results in a stable
approximation. Thus, N has the sense of a regularization parameter.

The convergence of the iterative methods employed for inverse problem
solutions depend on their convergence for correct formulation of the problem. As a
first step, let us consider the equation

Ab ¼ y; b 2 B; y 2 Y ð5:10Þ

with an exact solution �b:

5.3.1 Gradient Methods

There are gradient methods [8] allowing the solution of (5.10). They tend to
minimize the functional representing the misfit D(b) of (2.26) via movement in a
direction defined by the antigradient of the functional J(b) (see 2.27). The
movement employs a step b[ 0 that depends on the strategy of the particular
method chosen for the problem solution. The above explanation concerns the
choice of an iterative procedure:
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bnþ1 ¼ bn � bnJ0bn; n ¼ 0; 1; 2; . . .; ð5:11Þ

where (through 2.27)

J0bn ¼ A� Abn � yð Þ; n ¼ 0; 1; 2; . . .: ð5:12Þ

The first problem that occurs when a particular gradient method is applied is the
determination of the step of each iteration as a function of the minimization

strategy. The case of a simple iteration usually supposes bn = b[ 0,
n = 0, 1, 2, …. The minimization strategies of the more effective methods con-
sider optimizations of each iteration step to enhance the convergence of the pro-
cedures. These strategies usually use the minimum condition of a certain
functional as a measure of the iteration quality.

The method of minimum errors employs the minimum of the error at each
iteration as a criterion for the step determination. Thus, bn follows from the

condition ensuring the minimum of bnþ1 � �b
�� ��2

: Through (2.11) and (5.11) it
follows that

bnþ1 � �b
�� ��2¼ bn � bnJ0bn � �b

�� ��2¼ bn � �b
�� ��2�2bn bn � �b; J0bnð Þ þ b2

n J0bnk k2
:

ð5:13Þ

The condition ensuring the minimum of (5.13) with respect to bn (it follows
from 5.12, 2.25) is

bn ¼
bn � �b; J0bnð Þ

J0bnk k2 ¼ bn � �b; Abn � yð Þ½ �
J0bnk k2 ¼ Abn � y;Abn � yð Þ

J0bnk k2 ¼ D2
n

J0bnk k2 ;

ð5:14Þ

where

Dn ¼ D bnð Þ ¼ Abn � yk k2; n ¼ 0; 1; 2; . . .: ð5:15Þ

The method of the faster slope [8] uses a step that minimizes the misfit func-
tional with respect to bn:

D2
nþ1 ¼ Abnþ1 � yk k2¼ Abn � yk k2�2bn Abn � y; J0bnð Þ þ b2

n AJ0bnk k2
; ð5:16Þ

i.e.,

bn ¼
Abn � y;AJ0bnð Þ

AJ0bnk k2 ¼ J0bnk k2

AJ 0bnk k2 : ð5:17Þ

It is possible to use methods having a greater rate of convergence and especially
some versions of the conjugated gradients [8].

The result presented above permit us to develop further three sequences
of approximations towards the exact solution—{un}1, {un}2, and {un}3—that
follow from (5.11) via a substitution bn = b = const. in (5.14) and (5.17).
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These conditions make the iterative procedure convergent for every operator
A whose inverse operator A-1 is continuous.

5.3.2 Uniqueness of the Solution

Let us consider the equation

~Ab ¼ y; ð5:18Þ

where ~A is not continuous, i.e., problem (5.18) does not have a unique solution. Let
Ry be a set of solutions and b0 2 Ry be one of them. This solution is termed normal
with respect to the elementb0 2 B if it can be obtained through a minimization of

b� b0k k: Thus, b0 is a solution that may be obtained via gradient methods if an
initial approximation u0 is the starting point since the distance between them is
minimal. However, a problem concerning the iteration step occurs. The step must
be defined in a way that allows the iterative pass b0 ? b0 to coincide with the
approach of bn to the exact solution �b: To do that, a step bn satisfying an additional
condition is required. This additional condition must ensure the convergence of the
iterative procedure. This means the following inequalities must be satisfied
simultaneously:

D2
n � D2

nþ1� 0; bn � �b
�� ��2� bnþ1 � �b

�� ��2� 0: ð5:19Þ

In the case of a simple iteration EQUATION (5.19) the conditions take the
following forms (with the help of 2.24, 2.28, 5.11, 5.12, 5.15):

D2
n � D2

nþ1 ¼ 2b J0bnk k2�b2 AJ0bnk k2� b J0bnk k2 2� b Ak k2

 �

� 0;

bn � �b
�� ��2� bnþ1 � �b

�� ��2¼ 2bD2
n � b2 J0bnk k2� bD2

n 2� b Ak k2

 �

� 0: ð5:20Þ

These conditions, ensuring the convergence of the iterative procedure, lead
directly to the fact that the successive approximations approach the exact solution
when

2� b Ak k2 [ 0; ð5:21Þ

i.e.,

0\b\
2

Ak k2 : ð5:22Þ

The summation in (5.20) (n = 0, 1, 2, …, ?) indicates that the sum
P1
n¼0

D2
n is

limited, so Dn ? 0 at n ? ?. The latter means that the iterative procedure
approaches the exact solution.
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As already mentioned, b0 is a solution of (5.18). The use of the simple iteration
method with a step satisfying (5.22) leads to the solution bc ¼ lim

n!1
bn: It is easy to

prove that bc = b0.
Let us denote Db = bc - b0. Hence,

ADb ¼ Abc � Ab0 ¼ f � f ¼ 0; ð5:23Þ

since bcand b0are exact solutions of (5.10). The conditions ensuring the conver-
gence lead (at n ? ?) to

bn;Dbð Þ � bc;Dbð Þ ¼ bn;Dbð Þ � b0 � Db;Db
� �

¼ bn;Dbð Þ � b0;Db
� �

� Db;Dbð Þ ¼ bn � b0;Db
� �

� Dbk k2! 0:
ð5:24Þ

The first term of the final expression in (5.24) can be represented as

bn � b0;Db
� �

¼ b0 � b0;Db
� �

�
Xn�1

i¼0

ui � uiþ1ð Þ;Db

" #

¼ b0 � b0;Db
� �

� b
Xn�1

i¼0

Abi � fð Þ;ADb

" #
¼ b0 � b0;Db
� �

:

ð5:25Þ

The latter result follows directly from (5.11), (5.12), and (5.23). The vectors
(b0 - b0, Db) and Db are orthogonal (in accordance with the definition) and their
scalar product (5.25) is zero. Thus, in accordance with (5.24), it follows that
Dbk k ¼ 0; i:e:; bc ¼ b0:

The conditions defining the steps of both the minimum errormethod and the
faster slope method [8] can be obtained in a similar way:

bn�
1

Ak k2 ; n ¼ 0; 1; 2; . . . ð5:26Þ

5.3.3 Approximate Equations

Practically, the input data (A and f) needed to solve Eq. (5.10) are tentatively
known. The operator A is defined by a set of equations that describes approxi-
mately the process mechanism. In other cases the differential operator A could be
approximated by finite differences assuming an appropriate error. The objective
function is also defined with errors depending on the accuracy of the experimental
findings of y. Owing to the above reasons, the following explanations discus the
solution of the equation

Ahb ¼ yd; b 2 B; yd 2 Y; ð5:27Þ
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where Ah is a linear continuous operator approximating A in a way that

Ah � Ak k� h; yd ¼ yþ ~y; ~yk kY� d: ð5:28Þ

The iterative gradient methods discussed here could be inapplicable to problem
(5.27) for three reasons:

The minimization problem has no solution since A-1fd is an element that does
not belong to the set of available solutions of (5.27).

The minimization problem has a solution br that depends on h and
d(r = {h, d}), but the difference �b� br may be unacceptably large.

If the iterative procedure converges and br ? b0 at r ? 0, but b0 6¼ �b, the
approximate solution does not approach the exact solution of (5.10).

In addition, for sufficiently small errors of the input data (h, r), the difference
between the first approximations of the gradient methods applied to solve (5.27)
and the approximations found through the solution of (5.10) are insignificant.
Thus, they approach the exact solution. Proof is available elsewhere [8].

The increase of the iteration number could lead to an uncontrolled discrepancy
from the desired solution. Taking into account that effect, we can consider the
iterative regularization as a procedure based on a priori information (h, r) that
should find an approximate solution as close as possible to the exact solution of
(5.10). The number of the iteration at which the desired approximation is achieved
is a regularization parameter of the iterative method. A necessary condition is the
convergence of the iterative method for exact input data given by the solution of
(5.10). It was proved [8] that the iterative methods mentioned satisfy both the
necessary and the sufficient conditions required to solve problem (5.27). The latter
means that these methods create regularization operators (algorithms) with the
iteration number as a regularization parameter.

The regularized approximation bn approaches the solution b0, which is normal
with respect to the initial approximation b0 when r(h, d) ? 0. This approach
reduces the main problem (for sufficiently small r) to detection of the iteration
number N(r) at which the approximate solution bN(r) is insensitive with respect to
the input data errors.

5.3.4 Criteria for Stopping the Iterations

The criterion needed to stop the iterations could be related to the misfit functional
(2.26), i.e., the misfit of (5.27) with respect to b = b0:

Ahb0 � yd

�� �� ¼ Ah � Að Þb0 þ Ab0 � yd

�� �� ¼ Ah � Að Þb0 þ y� yd

�� ��
¼ Ah � Að Þb0 � ~y
�� ��� h b0

�� ��þ d ¼ DH;
ð5:29Þ

i.e.,

Dn�DH: ð5:30Þ
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Condition (5.30) is the misfit criterion. Practically, instead of Dn in (5.30) it is
more convenient to use the functional U(n) depending on Dn, whereas DH could be
replaced by a monotonically rising estimator W(DH) [ DH. Thus, inequality (5.30)
can be expressed as

U nð Þ\W DHð Þ: ð5:31Þ

Here, the form of U(n) depends on the particular gradient method applied. The
desired solution depends on the number of the iteration NH, i.e., the procedures
looks for the minimum n at which (5.31) is satisfied. The procedure concerns the
difference

bn � bk k2� bnþ1 � bk k2 ð5:32Þ

and looks for n [ NH at which it is negative. Thus, the iteration does not converge.
On the other hand, at n B NH the procedure converges and NH is the number of the
last iteration.

When the simple iteration method is applied, the difference (5.32) has the form
[8]:

bn�bk k2� bnþ1�bk k2¼ bn�bk k2� bn�bJ0bn�bk k2¼b 2 bn�b;J0bnð Þ�b J0bbk k2
h i

¼b 2D2
n�b J0bnk k2þ2 Ahbn�fd; A�Ahð Þbþ~yð Þ

h i

�b 2D2
n�b J0bnk k2�2Dn h bk kþdð Þ

h i
�b 2�b Ahk k2


 �
D2

n�2DnDH

h i
:

ð5:33Þ

Relationship (5.33) is valid since J0bnk k2� Ahk kDn: The last iteration number
is the minimum n that causes a negative value of (5.33). Thus, the following
inequality can be developed:

2� b Ahk k2

 �

D2
n � 2DnDH\0: ð5:34Þ

This leads to

2� b Ahk k2

 �

Dn

2
� U01 nð Þ\DH\W DHð Þ; ð5:35Þ

i.e., the desired functional of (5.31) is U1
0
(n).

The substitution of

b J0bnk k2�
D2

n � D2
nþ1

2� b Ahk k2 ð5:36Þ

454 Parameter Identification (Estimation)



into (5.33) yields a second functional [8]:

U001 nð Þ �
3� 2b Ahk k2

 �

D2
n þ D2

nþ1

2Dn 2� b Ahk k2

 � : ð5:37Þ

The regularization algorithm solving Eq. (5.27) can be formulated as a
sequence of steps:

1. Determine the initial approximationb0.
2. Determine the misfit functional

Dn ¼ Ahbn � ydk k; n ¼ 0; 1; 2; . . .;NH: ð5:38Þ

3. Check of condition (5.31). If it is satisfied, then n = NH and the iterative
procedure stops. If it is not satisfied, then go to point 4.

4. Determine the gradient J
0
bn, n = 0, 1, 2, …, NH via (5.12).

5. Determine step bn from (5.14) and (5.17) and check of conditions (5.22) and
(5.26).

6. Determinebn+1 from (5.11) and start at point 2.

In the method of the simple iteration condition (5.31) must be checked through
the substitution

U nð Þ
1 ¼ max U01 nð Þ;U001 nð Þ

� 
; ð5:39Þ

i.e., the greater value of the functional must be used.
The method of minimum errors and the method of the faster slope formulate the

functionals in similar ways:

U2 nð Þ ¼ Dn

2
; ð5:40aÞ

U3 nð Þ ¼
D2

n þ D2
nþ1

2Dn

: ð5:40bÞ

The fixed step of the simple iteration method must satisfy condition (5.22), so

0\b\
2

Ah þ hk kð Þ2
� 2

Ak k2 : ð5:41Þ

The justification of the solution can start if U1(NH) \ W(DH). This can be done
through a decrease of the value of W DHð Þ: If DNH

[ W DHð Þ the step must be
reduced, i.e., define a new step b1(0 \ b1 \ b). Similar justifications of the iter-
ation step are possible [8] also through the procedures of two other methods
mentioned above (theminimum errors and the faster slope methods).

The regularization algorithm described above is based on the misfit criterion
DH; where b0

�� �� is the solution that is unknown at the steps performed. Because of
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that the misfit criterion DH can be employed if h b0
�� ��	 d: Under such a condition

it is evident that

DH ¼ d: ð5:42Þ

This means that DH can be defined in a unique way from the experimental error
during the measurements of the objective function. In the other cases, the general
misfit criterion must be applied. This suggests that bn(n = 0, 1, 2, …) substitutes
for b0, so

DH ¼ h bnk k þ d: ð5:43Þ

6 Parameter Identification in Different Types of Models

The methods of parameter identification depend on the mathematical structure of
the models employed. This requires the solutions to be considered separately in
every particular case.

6.1 Regression Models

Let us consider the regression models formulated earlier (see 2.5.5). The data
given are N experimentally determined values of the objective function yn at fixed
values of the factors xin(n = 1, …, N; i = 1, …, m). This allows us to define the
estimators (b) of the model parameters in a way that minimizes the difference
between the experimental (yn) and the calculated ŷnð Þ values of the objective
function (n = 1, …, N). Thus, the procedure looks for a minimum of one of the
three functions below:

max
n¼1;...;N

enk k;
XN

n¼1

enk k;
XN

n¼1

e2
n; ð6:1Þ

where

en ¼ yn � ŷn; n ¼ 1; . . .;N: ð6:2Þ

The values of ŷn n ¼ 1; . . .;Nð Þ can be calculated as

ŷn ¼
Xk

j¼1

bjfj x1n; . . .; xmnð Þ: ð6:3Þ

Very common practice is the employment of the least-squares method that
considers the minimization of the function
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Q b1; . . .; bkð Þ ¼
XN

n¼1

yn � ŷnð Þ2: ð6:4Þ

The conditions ensuring the minimum of the least-squares function Q are

oQ

obj

¼ 0; j ¼ 1; . . .; k: ð6:5Þ

This leads to a set of linear algebraic equations [6, 7]:

Xn

n¼1

fjn

Xk

i¼1

bifni ¼
XN

n¼1

fjnyn; j ¼ 1; . . .; k; ð6:6Þ

where

fin ¼ fjn ¼ fi x1n; . . .; xmnð Þ; i ¼ j ¼ 1; . . .; k: ð6:7Þ

The set of equations (6.6) allows us to change the order of summation of the left
part and the following symbols are introduced:

aij ¼
XN

n¼1

finfjn; zj ¼
XN

n¼1

fjnyn: ð6:8Þ

The manipulations allow us to arrange a normal set of equations (with the
number of equations equal to the number of unknown variables):

Xk

i¼1

aijbi ¼ zj; j ¼ 1; . . .; k: ð6:9Þ

If A = {aij} denotes the matrix of the coefficients of the unknown variables bi

and Ai is the matrix A formed by substitution of the ith columns by the vector zj [i,
j = 1, …, k] the model parameters are the solutions of (5.9):

bi ¼ det Ai=det A; i ¼ 1; . . .; k, ð6:10Þ

where detA and detAi are the determinants of the matrixes AandAi(i = 1, …, k).
Solution (6.10) allows us to formulate: that
The error of the experiments is concentrated in detAi(i = 1, …, k) if the main

assumption that the model and the independent variables do not introduce errors
in the inverse problem solution is satisfied. If this is not the case, the modifications
of the methods discussed above must be applied.

If detA is close to zero, the set of equations (6.9) is not well defined. This leads
to a strong effect of the experimental errors (detAi) on the solution (i.e., the
parameter value estimated) bi, i = 1, …, k. Therefore, the inverse problem is
incorrect (ill-posed).

There is a possibility to have detA = 0. This means that equations (6.9) are not
independent and the set has a singularity, so no unique solution exists.
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6.2 Selection Methods

The last comments on the least-squares method indicate that the incorrectness of
the inverse problem is accompanied by difficulties concerning the singularity of
detA taking into account the preliminarily defined accuracy of the calculation of it.
The solutions of such problems need the set (6.9) to be considered as an operator
equation:

Ab ¼ y ð6:11Þ

where A ¼ aij

� 
; b ¼ bif g; y ¼ zj

� 
; i; j ¼ 1; . . .; kð Þ:

Characteristic features of the equation are that not only the right-hand side ~y;

but also the operator ~A are tentatively known. The deficiencies are due to the
restrictions coming from the preliminarily assumed accuracy of the calculations
despite the suggestion that model structure does not introduce errors. Thus, (6.11)
can be expressed as

~Ab ¼ ~y; ð6:12Þ

where

~A� A
�� ��� h; ~y� yk k� d: ð6:13Þ

The sense of the norms used in (6.13) depends on the type of the problem to be
solved. Practically, the often-used norms are

Ak k ¼
X

i;j

a2
i;j

( )1
2

; yk k ¼
Xk

i¼1

y2
i

( )1
2

: ð6:14Þ

The exact set of equations (6.11), whose solution is looked for (under the
conditions imposed by 6.13), yields an unrestricted number of sets defined by the
preliminarily suggested accuracy of both the calculations and the experiments. The
tentative solution considered as an approximation of the exact one (6.12) usually
does not give a satisfactory result owing to the fact that the problem cannot be
solved. The latter point means that the problem is unstable owing to small vari-
ations of the right-hand sides of the equations. We therefore need to consider a
new class of practically undistinguishable sets of equations (both singular and
those without solutions). The development of the problem solution employs the
idea of the selection considered earlier (Sect. 4).

If ~b denotes the pseudo-solution of (6.11), it is possible to minimize Ab� yk k;
which yields

Xk

j¼1

Xk

i¼k

aijbi � zj

 !2

: ð6:15Þ
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If the set (6.11) has more than one pseudo-solution, this means that (6.15) also
has several minima. Therefore, b 2 FA, where FA is the set of all pseudo-solu-
tions. One of them is the desired pseudo-solution determined by the condition of
the minimum of the norm:

~b
�� �� ¼ Xk

i¼1

~b2
i

( )1
2

! min : ð6:16Þ

6.3 Variational Regularization

The solution of the essentially ill-posed (incorrect) problem (6.11) utilizes the
variational regularization method. Suppose that b0 is the exact solution of the
exact normal set:

Ab ¼ �y: ð6:17Þ

Really, the approximate values ~y and the error d are known:

~y� yk k ¼ d; ð6:18Þ

i.e., the approximate solution ~bd of the approximate set

Ab ¼ ~y ð6:19Þ

could be found.
If the set (6.19) cannot be solved,

inf Ab� �yk k ¼ l� 0; ð6:20Þ

where inf Ab� �yk k is the minimum of the norm like (6.15).
Let us express the obvious inequality

Ab� ~yk k� Ab� �yk k þ �y� ~yk k� lþd ð6:21Þ

and let ~l denote the lower limit of the norm Ab� ~yk k: So,

~l ¼ inf Ab� ~yk k: ð6:22Þ

The obvious inequalities

Ab� ~yk k� Ab� �yk k þ �y� ~yk k; Ab� �yk k� Ab� ~yk k þ ~y� �yk k ð6:23Þ

allow us to derive (with the help of 6.20, 6.22) that

~l� lþ d; l� ~lþ d; ð6:24Þ

i.e.,

~l� lj j � d: ð6:25Þ
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The relationship

Ab� ~yk k� ~lþ 2d ¼ d1 ð6:26Þ

follows directly from (6.21) and (6.25).
If Bd is the set of solutions b satisfying (6.26), the solutions looked for could be

a random element of Bd, because the solution is unstable with respect to small
variations of the right-hand side of (6.19). This imposes conditions on the
approximate solutions ~bd to satisfy (see Sect. 4) not only (6.26), but also to
minimize the functional

X bð Þ ¼ bk k2¼
Xk

i¼1

~b2
i

( )
: ð6:27Þ

The regularization parameter R allowing us to determine the approximate
solution of (6.19) (i.e., ~b minimizing 6.26) must do two things simultaneously: (1)
satisfy (6.26) and (2) minimize (6.27). Thus,

~bd ¼ R ~y; dð Þ: ð6:28Þ

It is easy to prove [2] that the values of ~bd which minimize (6.27) are on the
border of the area defined by (6.26). This means that ~bd may be determined

through the condition ensuring the minimization of Ab� ~yk k2 if it satisfies

simultaneously the relationship Ab� ~yk k2¼ d1 and the functional (6.27). The
problem is formulated (as shown in Sect. 5.4) in this manner by the method of

Lagrange. This needs the formulation of an approximate solution ~bd as a vector ba

which minimizes the functional

Ma b;~y½ � ¼ Ab� ~yk k2þa bk k2: ð6:29Þ

The parameter a[ 0 follows from the condition

Aba � ~yk k ¼ d1: ð6:30Þ

From this point of view, the approximate solution ba can be considered as the
action of a certain operator (algorithm) on ~y, i.e.,

ba ¼ R ~y; að Þ: ð6:31Þ

This approximate solution satisfies the condition ensuring the problem cor-
rectness, so R is a regularization functional.

The methods discussed concern the determination of the parameters of
regression models. They are built on the basis of different mathematical approa-
ches overcoming the incorrectness of the inverse problems. This incorrectness
comes from the ill-posed set of linear algebraic equations (6.9) (i.e., the small
values of det A in 6.10 induce the solution instability). There are intrinsic physical
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methods to solve the problem that concern the optimal planning of the experiment
ensuring the maximum of det A.

6.4 Similarity Theory Models

As already mentioned in Sect. 2.4. the similarity theory models (after taking the
logarithm) become regression models with respect to parameter identification.
They should take into account that the normal error distribution of the measure-
ments of the objective function does not exist after taking the logarithm of it.
Despite this, the identification methods discussed in this chapter are very applicable
to the similarity theory models. However, they must take into account the inac-
curacy of the determination of b0 in (2.4.23) due to the error of its of logarithm,
which increases after the antilogarithmic operation. In such a situation, a more
convenient approach is to determine the parameters of (2.4.23) in two steps. The
first step concerns the determination of the power–law coefficients bi(i = 1, …, 6).
The next step involves the substitution of bi into (2.4.23). The final one-parameter
model allows the determination of b0 as the ratio of the experimental and the

calculated values of the objective function, i.e., b0 ¼ Sh=
Q6

i¼1 Abi

i :

6.5 Diffusion-Type Models

The parameter identification of the diffusion-type models is of special interest
owing to their structural variety. Besides that variety, a large class of chemical
engineering problems utilize structures of parabolic partial differential equations.
This is the basis of the further development of the problems here and especially the
iterative methods of parameter identification of parabolic partial differential
equations. A typical example of that class is the heat conductivity equation.

6.5.1 Determination of the Heat Conductivity Coefficients in Inverse Heat
Transfer Problems

The general formulation of the heat conductivity problem is

c Tð Þ oT

ot
¼ o

ox
k Tð Þ

ox

h i
þW Tð Þ oT

ox
; t ¼ 0; T ¼ T0 xð Þ;

x ¼ 0; T ¼ g1 tð Þ; �k g1 tð Þð Þ
ox x¼0j ¼ q1 t1ð Þ

h i
;

x ¼ b; T ¼ g2 tð Þ; �k g2 tð Þð Þ oT

ox x¼bj ¼ q2 t1ð Þ
� �

;

ð6:32Þ
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where the second-order boundary conditions expressed in the square brackets can
replace the first-order boundary conditions (g1, g2).

The parameter identification, i.e., the determination of the coefficients
c(T), k(T), and W(T), can be obtained if at points with coordinates
x = di(i = 1, …, N), so that 0 B di B b, there are located temperature pick-ups,
recording the temperature variations with time (0 B t B tm):

Te di; tð Þ ¼ fi tð Þ; i ¼ 1; . . .;N: ð6:33Þ

The problem needs the formulation of the misfit functional in the form

J ¼ 1
2

XN

i¼1

Ztm

0

T di; tð Þ � fi tð Þ½ �2dt� d2; ð6:34Þ

where d is the experimental error of the temperature measurements.
The inverse problem formulated above has solutions [8] only in the cases when

at least one boundary condition is second (or third) order and oT
ox 6¼ 0: For sim-

plicity, the further explanation considers the case of constant coefficients. In this
case the problem is

c
oT

ot
¼ k

o2T

ox2
þW

oT

ox
; t ¼ 0; T ¼ T0 xð Þ;

x ¼ 0; �k
oT

ox x¼0j ¼ q1 tð Þ; x ¼ b; �k
oT

ox x¼bj ¼ q2 tð Þ;

Te di; tð Þ ¼ fi tð Þ: i ¼ 1; 2; . . .;N� 3;

ð6:35Þ

where the functions q1(t), q2(t) and fi(t), i = 1, …, N, are preliminarily known.
The problem solution needs the vector of the parameters c, k, W to be determined,
i.e.,

p ¼ c; k;Wð Þ: ð6:36Þ

6.5.2 Iterative Algorithm

The problem solution needs [8] the formulation of a mean square misfit (2.27) in
the form

J pð Þ ¼ 1
2

X3

i¼1

Ztm

0

T di; t; pð Þ � fi tð Þ½ �2dt� d2: ð6:37Þ

The functional J(p) depends on three variables, i.e., three components of the
vector of the gradient must be determined through the conjugate form J0(p) of
functional (6.37):
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J0c ¼ �
Ztm

0

Zb

0

W
oT

ot
dxdt; J0W ¼

Ztm

0

Zb

0

W
oT

ox
dxdt;

J0k ¼
Ztm

0

Zb

0

W
o2T

ox2
dxdt þ

Ztm

0

W 0; tð Þ oT

ox x¼0j dt �
Ztm

0

W b; tð Þ oT

ox x¼bdtj ;

ð6:38Þ

Here the conjugate function W(x, t) [8, 9] is a solution of the problem

� c
oWi

ot
¼ k

o2Wi

ox2
�W

oWi

ox
; i¼ 1,. . .,Nþ 1,

0\t\tm; di�1\x\di; di�1� x�di; t ¼ tm; Wi x; tmð Þ ¼ 0;

x¼ 0; k
oW1

ox x¼0j ¼WW1 0; tð Þ; x¼ di; Wi di; tð Þ ¼Wiþ1 di; tð Þ; i¼ 1,. . .,N;

k
oWi

ox x¼di
� oWiþ1

ox x¼di
j

����
� �

¼ T di; tð Þ � fi tð Þ; i¼ 1,. . .,N,

k
oWNþ1

ox x¼b ¼WWNþ1j b; tð Þ:

ð6:39Þ

The iterative procedure [8] could be created on the basis of the method of the
faster slope. The procedure depends strongly on the initial approximations of c, k,
and W as well as on the iteration steps of each variable. This complexity requires
the vector determination of the step

pnþ1 ¼ pn � bn
kJ0k;n

h i
; ð6:40Þ

where bn ¼ bn
c ; b

n
k; b

n
W

� 	
; J0k;n ¼ J0c;n; J

0
k;n; J

0
W;n

h i
; k ¼ c; k;W ; and n is the

iteration number.
The above formulation of the procedure needs the following linear set to be

solved:

X3

j¼1

bn
j ajk ¼ gk; k ¼ 1; 2; 3; ð6:41Þ

where

ajk ¼
X3

i¼1

Ztm

0

#j di; t; bj ¼ 1
� �

#k di; t; bk ¼ 1ð Þdt;

gk ¼
X3

i¼1

Ztm

0

T di; tð Þ � f i tð Þ½ �# di; t; bk ¼ 1ð Þdt: ð6:42Þ
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The temperature variation #(x, t) for (k = 1, 2, 3) can be determined from

c
o#k

ot
¼ k

o2#k

ox2
þW

o#k

ox
þ bkRk; t ¼ 0; #k ¼ 0;

x ¼ 0; k
o#k

ox x¼0j þ bkGk

oT

ox x¼0j ¼ 0; x ¼ b; #k ¼ 0;

ð6:43Þ

where the functions Rk and Gk are calculated from

Rk ¼
oT
ot J0c; k ¼ 1;

� o2T
ox2 J0k; k ¼ 2;

� oT
ox J0W; k ¼ 3;

8><
>:

9>=
>;; Gk ¼

0 k ¼ 1;
�J0k; k ¼ 2;

0 k ¼ 3:

8<
:

9=
;: ð6:44Þ

The equations developed permit us to suggest the following algorithm [8] for
the iterative procedure:

1. Suppose the initial approximations are c0, k0, W0.
2. Determine the temperature distributionTn(x, t) by solving (6.25).
3. Solve the conjugated problem (8.6.39) and determine Win(x, t), i = 1, …, N.
4. Determine the vector components of the gradient of the misfit functional

Jk
0
(k = c, k, W) through (6.38).

5. Solve problems (6.41–6.43).
6. Calculate the new approximations of c, k, and W through (6.40) and go to point 2.

If the temperature curves fi(t), i = 1, …, N are obtained with a certain exper-
imental error, the misfit criterion (5.31) must be employed to stop the iteration
procedure. The value of d in (6.37) is an estimator of the general error of the input
data fi(t), i = 1, …, N, so

d2 ¼
XN

i¼1

Ztm

0

ri tð Þ½ �2dt: ð6:45Þ

Here, ri(t), i = 1, …, N. is the quadratic mean deviation of the temperature
measured at points x = di, i = 1, …, N, and the moment t.

6.6 Theoretical Models and Model Theories

The theoretical models and the model theories are characterized by the fact that
their parameters are not defined on the basis of experimental data. A more
important feature is that these parameters are in fact parameters of elementary
processes incorporated into the model of the complex process.

The parameter identification of the models describing elementary processes
utilizes experimental data and inverse problem solutions. The common approaches
are the variational and the iterative methods.
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7 Minimum of the Least-Squares Function

In this chapter it was shown [1, 3, 13, 14, 17–20] that the least-squares method is
the general method for solution of the parameter identification problem, i.e., the
minimum of the least-squares function is the inverse problem solution. Some
properties of the minimum of the least-squares function are the cause of the
incorrectness of the parameter identification problem [24–33].

Let us consider the expression

y ¼ f x; bð Þ; ð7:1Þ

where y is the objective function, x is an independent (regime) variable, b is a
parameter, and f is a function (operator, algorithm), which permit us to calculate
y if x and b are known.

The inverse problem solution uses the expression

b ¼ u x; y; ŷð Þ; ð7:2Þ

where ŷ are experimental values of the objective function. Here u is an algorithm
for minimization of the least-squares function:

Q bð Þ ¼
XN

n¼1

yn � ŷnð Þ2; yn ¼ f xn; bð Þ; n ¼ 1; . . .;N, ð7:3Þ

where n is the experiment number. Obviously the properties of the least-squares
function are related to the type of objective function.

7.1 Incorrectness of the Inverse Problem

Most chemical engineering models (hydrodynamic equations, convection–diffu-
sion equation, convection–conduction equation) are used in the boundary layer
approximation, i.e., in the form of parabolic partial differential equations. A
characteristic peculiarity of these equations is the presence of a small parameter
(viscosity, diffusivity, conductivity) at the highest derivate [23]. In these condi-
tions the direct operator is fully continuous (fully bounded), whereas the corre-
sponding inverse operator is not continuous.

Let us consider a one-parameter model:

ey00 þ y0 ¼ 0; x ¼ 0; y ¼ 1; y0 ¼ b ¼ e�1: ð7:4Þ

The solution of (7.4.) is

y ¼ 1� exp �bxð Þ; ð7:5Þ

i.e., the dependence of y on e (for big values of b) is similar to the cases of the
diffusion-type models (see Fig. 1, Eqs. 1.13).
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Figure 4 shows the relationship between the objective function y and the
parameter b for a constant value of the independent variable x = x0 = 5. Such a
type of relationship is typical for a number of models of heat or mass transfer
processes.

The plot in Fig. 4 permits us to obtain the objective function y0 if the value of
the parameter b0 is known, which is a direct problem solution. However, an
inverse problem looks for the value of the parameter b0 if experimental values of
the objective function y0 are known.

Consider Dy as the experimental error of the objective function. Figure 4 shows
that the error of the parameter identification depends on the magnitude of the
objective function y. For small values of the objective function, there are small
errors Db1, which shows the inverse identification problem is the correct one.
However, if the objective function values are large, the corresponding values of
Db2 are large too and the inverse problem is incorrect. In cases of the parameter
identification of the models describing elementary processes, extremely large
objective function values are utilized and enormous errors Db3 occur, which
classify the inverse identification problem as essentially incorrect.

The results shown in Fig. 4 indicate that the incorrectness of the inverse
problem is not a result of the size of the error of y and the cause is the parameter
sensitivity with respect to the experimental errors of the objective function.

7.2 Incorrectness of the Least Squares Function Method

Consider the two-parameter model

ey00 þ y0 ¼ 0; x ¼ 0; y ¼ 1� b1; y0 ¼ �b1b2
2; b2 ¼ e�1: ð7:6Þ
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The solution of (7.6) is

y ¼ 1� b1exp �b2xð Þ; ð7:7Þ

where �b1 ¼ 1 and �b2 ¼ 5 are the exact values of the parameter.
The parameter identification problem will be solved [24] with help of artificial

experimentaldata provided by a random number generator:

ŷ 1ð Þ
n ¼ 0:95þ 0:1Anð Þyn; ŷ 2ð Þ

n ¼ 0:9þ 0:2Anð Þyn; ð7:8Þ

where An are random numbers within the interval [0, 1]. The values of yn are
obtained from the model (7.7) for x = 0.01n (n = 1,…,100). The maximum rel-
ative errors of these ‘‘experimental’’ data D ŷð Þ are ±5 and ±10%. The values of

yn, ŷ 1ð Þ
n , and ŷ 2ð Þ

n are shown in Fig. 5. Comparison of Figs. 4 and 5 shows that when
0 \ x \ 0.30 the inverse identification problem is correct, whereas in the case of
0.30 \ x \ 0.65 it is incorrect. The problem becomes essentially incorrect when
0.66 \ x \ 1.00.

If the experimental data in the separate intervals 0 \ x \ 0.30 and
0.30 \ x \ 0.65 and 0.66 \ x \ 1.00 (in the cases of ±5% relative experimental
errors) are used, the least-squares function (7.3) yields horizontal lines (see
Figs. 6, 7, 8) when the inverse problem is correct (Fig. 6), incorrect (Fig. 7), or
essentially incorrect (Fig. 8). These results show that when the difference between
the exact parameter values and the determined value (the point of the function
minimum) is very small, the least-squares method is correct (see Fig. 6). In cases
of remarkably large differences between the exact parameter values and the
minimum of the least-squares function, the inverse problem is incorrect (see
Fig. 7). In the extreme case when the least-squares function has no minimum, the
inverse problem is essentially incorrect (see Fig. 8).
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The results obtained show that in the cases of incorrect inverse problems
minimization procedures of least-squares functions do not provide solutions, i.e.,
the minimum of the least-squares function is not a solution of the incorrect inverse
problem.

Consider a gradient method for a minimum search. If the iterative procedure is
convergent, at each step the difference between the iterative solution and the exact
one will decrease towards the minimum of the least-squares function. However,
there is a step after some iteration where this difference begins to increase. The
number of this last iteration is an additional condition, the iterative procedure
must stop, and the last point is the solution of the incorrect inverse problem.

Fig. 6 The horizontals of the
least-squares function Q (n =
1–30; Dŷð%Þ ¼ 
5); cir-
cleb = [1, 5]

Fig. 7 The horizontals of the
least-squares function
Q (n = 31–65;
Dŷð%Þ ¼ 
5); circleb = [1,
5]
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7.3 Regularization of the Iterative Method
for Parameter Identification

Let us assume that the iteration procedure starts with an initial approximation
b(0) = (b1

(0), …, bJ
(0)). The values of bi = (b1i, …, bJi), where i is the iteration

number, are the result of conditions imposed by a movement towards the antig-
radient of the function Q(b):

bji ¼ bj i�1ð Þ � b i�1ð ÞRj i�1ð Þ; j ¼ 1; . . .; J; ð7:9Þ

where

Rj i�1ð Þ ¼
oQ
obj


 �
i�1ð Þ

PJ
j¼1

oQ
obj


 �2

i�1ð Þ

" #1=2
; j ¼ 1; . . .; J: ð7:10Þ

Here bi is the iteration step and b0 = 10-2 (arbitrary small step value). The
gradient of Q(b) gives

oQ

obj

� �
i�1ð Þ
¼ 2

XN

n¼1

f xn; b i�1ð Þ
� �

� ŷn

� 	 of xn; bð Þ
obj

� �
i�1ð Þ

; j ¼ 1; . . .; J, ð7:11Þ

where of
obi

have to be calculated analytically or numerically.

Fig. 8 The horizontals of the
least-squares function
Q (n = 66–100;
Dŷð%Þ ¼ 
5); circleb = [1,
5]
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Each iteration step is successful if two conditions are satisfied:

Qi�1 � Qi ¼
XN

n¼1

b i�1ð Þ 2f xn; b i�1ð Þ
� �

� 2ŷn � b i�1ð Þ
XJ

j¼1

Rj

of

obj

� �
i�1ð Þ

" #(

XJ

j¼1

Rj

of

obj

� �
i�1

)
� 0; bj i�1ð Þ � �bj

� �2� bji � �bj

� �2

¼ b i�1ð Þ 2 bj i�1ð Þ � �bj

� �
� b i�1ð ÞRj i�1ð Þ

h i
Rj i�1ð Þ � 0; j ¼ 1; . . .; J:

The first condition indicates that the iterative solution (bi) approaches the
solution at the minimum (b*).On the other hand, the second condition controls the
difference between the iterative solution (bi) and the exact one �bð Þ: The divergence
is due to the effect of the problem incorrectness �b 6¼ b�(see Figs. 6, 7, 8).

The second condition (7.12) leads to

2 bj i�1ð Þ � �bj

�� ��� bi Rj i�1ð Þ
�� ��; j ¼ 1; . . .; J, ð7:13Þ

where the values of �bj j = 1,. . .; Jð Þ are unknown. They can be replaced by

bj i�1ð Þ � �bj

�� �� ¼ D 0ð Þ
j i�1ð Þ ¼ D 0ð Þ

j bj i�1ð Þ

���
���; j = 1,. . .; J; ð7:14Þ

if the accuracy of the parameter identification is preliminarily defined (desired
accuracy). The desired accuracy Dj(i-1)

(0) should be obtained in each step through the
use of the initial valueDj

(0):

D 0ð Þ
j ¼ c

bj1 � bj0

bj1

; j ¼ 1; . . .; J: ð7:15Þ

The parameter c is related to the desired accuracy (e.g.,c = 0.9) and it plays
the role of a regularization parameter.

From Eq. (7.9) it follows that

bi Rj i�1ð Þ
�� �� ¼ bj i�1ð Þ � bji

�� ��; j ¼ 1; . . .; J: ð7:16Þ

Thus, the second condition (7.12) can be expressed as

2D 0ð Þ
j i�1ð Þ � bj i�1ð Þ � bji

�� ��; j ¼ 1; . . .; J: ð7:17Þ

The condition indicating the point where the iterative solution moves away
from the exact one is

bj i�1ð Þ � bji

�� ��[ 2D 0ð Þ
j i�1ð Þ; j ¼ 1; . . .; J: ð7:18Þ

Hence, condition (7.18) permits a regularization of the parameter identification
problem that leads to sufficiently exact values of the model parameters.
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7.4 Iteration Step Determination and
Iteration Stop Criterion

The step can be modified at each iteration point. In cases of two (or three) suc-
cessful iterations (Qi - Qi-1 \ 0, Qi-1 - Qii-2 \ 0), the step should be enlarged
twice:

biþ1 ¼ 2bi: ð7:19Þ

However, if Qi - Qi-1 \ 0, Qi-1 - Qi-2 C 0, the step should be kept unchanged:

biþ1 ¼ bi: ð7:20Þ

If the step is unsuccessful (Qi - Qi-1 C 0), it should be reduced twice:

biþ1 ¼
1
2

bi; ð7:21Þ

The steps should be reduced also when the iteration is unsuccessful and there is
nonconvergence towards exact parameter values, i.e., when condition (7.18) is
satisfied.

The procedure stops after unsuccessful iterations if the last step is smaller than
the predefined accuracy:

bj i�1ð Þ � bji

�� ��\Dj i�1ð Þ: ð7:22Þ

In cases when the iterative procedure convergences slowly, increase of c
according to (7.17) improves the convergence.

7.5 Iterative Algorithm

The results obtained permit us to build an algorithm for the solution of an inverse
identification problem:

1. Put b0 = 10-2, c = 0.9, bj0 = bj
(0) (initial parameter values), j = 1, …, J.

2. Put i = 1.
3. Calculate yn i�1ð Þ ¼ f xn; bi�1ð Þ; n ¼ 1; . . .;N:

4. Calculate of
obj


 �
i�1
; j ¼ 1; . . .; J:

5. Calculate Qi�1 ¼
PN
n¼1

yn i�1ð Þ � ŷn

� �2
:

6. Calculate oQ
obj


 �
i�1ð Þ
¼ 2

PN
n¼1

yn i�1ð Þ � ŷn

� 	
of
obj

h i
i�1ð Þ

; j ¼ 1; . . .; J:

7. Check if i = 1

(a) If it does, then go to step 8.
(b) If it does not, then go to step 10.

7 Minimum of the Least-Squares Function 471



8. Calculate the parameters and the accuracy

bji ¼ bj i�1ð Þ � b i�1ð ÞRj i�1ð Þ; D 0ð Þ
ji ¼ c

bj1 � bjo

�� ��
bj1

�� �� bji

�� ��; Dji ¼ bji � bj i�1ð Þ
�� ��;

j ¼ 1; . . .; J:

9. Put i = i + 1 and then go back to step 3.
10. Check if Qi�1 � Qi�2 [ 0

(a) If it does, then go to step 11.
(b) If it does not, then go to step 13.

11. Check if Dj i�1ð Þ\D 0ð Þ
j i�1ð Þ

(a) If it does, then go to step 17.
(b) If it does not, then go to step 12.

12. Put b i�1ð Þ ¼ 1
2 b i�1ð Þ and go back to step 8.

13. Check if Dj i�1ð Þ[ 2D 0ð Þ
j i�1ð Þ

(a) If it does, then go to step 12.
(b) If it does not, then go to step 14.

14. Check if Q i�2ð Þ � Q i�3ð Þ[ 0

(a) If it does, then go to step 15.
(b) If it does not, then go to step 16.

15. Put bi�1 ¼ bi�2 and then go back to step 9.
16. Put bi�1 ¼ 2bi�2 and then go back to step 9.
17. Stop.

7.6 Correct Problem Solution

Literature sources [1, 3, 8, 10] teach us that every method for solving incorrect
problems should also solve correct ones. Therefore, the first solution of the inverse
problem considered here corresponds to the interval 0 \ x \ 0.3.

Consider one- and two-parameter models (8.7.5, 7.7). Figure 5 shows the
models (7.5) and (7.7) with exact parameter values b* = 5, b1

* = 1, b2
* = 5

together with ‘‘experimental’’ data (7.8). The proposed algorithm was used for
solution of the identification problem and the results are summarized in
Table 1.

The efficiency of every iterative method for function minimization depends on
the initial approximation. Parameter values obtained under conditions imposed by
different initial approximations are summarized in Table 2.
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7.7 Effect of the Regularization Parameter

The iteration number depends on the value of regularization parameter c and the
efficiency of the minimization increases when the value of c is increased. This
effect is demonstrated through the data summarized in Table 3.

7.8 Incorrect Problem Solution

As mentioned before, if the ‘‘experimental’’ data are captured under conditions
(regimes) corresponding to the interval 0.30 \ x \ 0.65, the parameter identifi-
cation problem will be ill-posed. The problem incorrectness is due to solution
sensitivity with respect to ‘‘experimental’’ errors associated with determination of
the objective function ŷ.

Consider a solution of the parameter identification problem through minimi-
zation of the least-squares function (7.3), with xn = 0.01n, n = 31, …, 65, i.e.,
0.31 B x B 0.65. The solutions of the one-parameter model (b(0) = 6, c = 0.5)
and the two-parameter model (b1

(0) = 1.1, b2
(0) = 6, c = 0.05) are summarized in

Table 4. Comparisons between model predictions and ‘‘experimental’’ data are
illustrated by the plots in Figs. 9 and 10. These plots indicate permits an inverse
problem to be solved in the cases when some of the ‘‘experimental’’ data are not

Table 1 Solutions of one- and two-parameter models (0 B x B 0.3)

Dŷð%Þ b* i b1
* b2

* i

±5 4.9678 337 1.0025 5.0674 128
±10 4.9351 339 0.9940 4.9218 172

Table 2 Effect of the initial approximation (0 B x B 0.3, c = 0.9)

b(0) b* i b1
(0) b2

(0) b1
* b2

* i

1.0 4.9364 33 0.5 6.0 0.9289 4.9372 296
2.0 4.9543 63 0.7 6.0 0.9944 4.9611 240
4.0 4.9672 161 0.9 6.0 0.9955 4.9737 216
6.0 4.9678 337 1.1 6.0 1.0025 5.0674 128
0 4.9678 679 1.3 6.0 0.9934 4.9433 257
10.0 4.9678 1173 1.5 6.0 0.9955 4.9735 224

Table 3 Effect of c (0 B x B 0.3)

c b* i c b1
* b2

* i

0.9 4.9678 337 0.9 1.0025 5.0674 128
0.1 4.9676 3,044 1.2 1.0108 5.1922 104
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Table 4 Incorrect problem solution 0.31 B x B 0.65

Dŷ ð%Þ b* i b1
* b2

* i

±5 5.0614 1,213 1.1797 5.4666 642
±10 5.1232 1,217 1.3778 5.9106 416
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Fig. 9 One-parameter model
and ‘‘experimental’’ data:
asterisks ŷ 1ð Þ

n ; ‘‘experimental’’
data with a maximum error of
±5%; circles ŷ 2ð Þ

n ; ‘‘experi-
mental’’ data with a maxi-
mum error of ±10%; solid
liney = 1 - exp (-
bx); b = 5; dash-dotted
liney1 = 1 - exp (-
b*x); b* = 5.0614; dashed
liney2 = 1 - exp ( -
b*x); b* = 5.1232
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Fig. 10 Two-parameter model and ‘‘experimental’’ data: asterisks ŷ 1ð Þ
n ; ‘‘experimental’’ data with

a maximum error of ±5%; circles ŷ 2ð Þ
n ; ‘‘experimental’’ data with a maximum error of ±10%; sold

liney = 1 - b1 exp (-b2x); b1 = 1; b2 = 5; dash-dotted liney1 = 1 - b1
*exp (-b2

*x);
rb1

* = 1.180; b2
* = 5.467; dashed liney2 = 1 - b1

* exp (-b2
*x); b1

* = 1.3778; b2
* = 5.9106
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sensible ‘‘physically.’’ The latter implies that these data do not have a physical

sense since ŷ 2ð Þ
n [ 1.

The iteration numbers depend on the initial approximations b(0), b1
(0), b2

(0) of the
iterative procedure. The results for 0.31 B x B 0.65 are summarized in Table 5.

The effect of c (initial accuracy value) on the iteration numbers is summarized
in Table 6. The results presented in Figs. 11 and 12 demonstrate that the differ-
ences between the exact model and the models derived through parameter iden-
tification are very small. On the other hand, the results in Table 5 show that the
differences between the exact values of the parameters and the values obtained are
significant. The correctness of the parameter identification will be tested next
through a criterion of model adequacy [6].

7.9 Essentially Incorrect Problem Solution

The parameter identification problem when the inverse problem is essentially
incorrect [28, 30] will be solved by minimization of the least-squares function

Q bð Þ ¼
X100

n¼66

yn � ŷnð Þ2; ð7:23Þ

where yn ¼ f xn; bð Þ; xn ¼ 0:01n; n ¼ 66; . . .; 100; b ¼ b1; b2ð Þ:
The one-parameter model (b1 = 1 and b2 = b) solution was obtained for dif-

ferent sets of ‘‘experimental’’ data (with errors of about ±5 and ±10%) and the
results are shown in Table 7, where b(0) = 6, c = 5, 0.66 B x B 1.

Table 5 Effect of the initial approximation (0.31 B x B 0.65, c = 0.5)

b(0) b* i b1
(0) b2

(0) b1
* b2

* i

1.0 5.0280 25 0.5 6.0 1.1815 5.4708 704
2.0 5.0472 59 0.7 6.0 1.1853 5.4794 619
3.0 5.0562 133 0.9 6.0 1.1797 5.4666 668
4.0 5.0602 301 1.1 6.0 1.1797 5.4666 642
6.0 5.0614 1,213 1.5 6.0 1.1815 5.4709 439
8.0 5.0614 5,171 2.0 6.0 1.1798 5.4664 1,479
10.0 5.0614 15,829 3.0 6.0 1.1798 5.4665 2,944

Table 6 Effect of c (0.31 B x B 0.65)

c b* i c b1
* b2

* i

0.05 5.0614 13,823 0.05 1.1797 5.4666 642
0.5 5.0614 1,213 0.5 1.2052 5.5246 139
1.2 5.0614 552 1.2 1.2375 5.5951 87
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The results in Fig. 11 show that the difference between the models obtained y1

and y2 and the exact model y is very small. The proposed method [28, 30] permits
us to obtain a solution of the inverse problem when most of the ‘‘experimental’’

data are not ‘‘physically’’ correct ŷ 2ð Þ
n [ 1


 �
:

The iteration numbers depend on the initial approximation b(0) of the iterative
procedure. The results for 0.66 B x B 1 are shown in Table 8. The iteration
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Fig. 11 One-parameter
model and ‘‘experimental’’
data (0.66 B x B 1); aster-
isks ŷ 1ð Þ

n ; ‘‘experimental’’ data
with a maximum error of
±5%; circles ŷ 2ð Þ

n ; ‘‘experi-
mental’’ data with a maxi-
mum error of ±10%; solid
liney = 1 - exp (-
bx); b = 5; dash-dotted
liney1 = 1 - exp(-
b*x); b* = 5.1828; dashed
liney2 = 1 - exp(-
b*x); b* = 5.3816
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Fig. 12 Two-parameter model and ‘‘experimental’’ data (0.66 B x B 1); asterisks ŷ 1ð Þ
n ; ‘‘experimen-

tal’’ data with a maximum error of ±5%; circles ŷ 2ð Þ
n ; ‘‘experimental’’ data with a maximum error of

±10%; solid liney = 1 - b1 exp (-b2x); b1 = 1; b2 = 5; dash-dotted liney1 = 1 - b1
* exp

(-b2
*x); b1

* = 2.1720; b2
* = 6.1731; dashed liney2 = 1 - b1

* exp (-b2
*x); b1

* = 4.9003; b2
* = 7.4004

Table 7 Solutions of one- and two-parameter models (0.66 B x B 1)

Dŷ ð%Þ b* i b1
* b2

* i

±5 5.1828 2,066 2.1720 6.1731 54
±10 5.3816 2,156 4.9003 7.4004 128
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numbers also depend on c (the initial desired accuracy) (see Table 9). The results
of the parameter identification of the two-parameter model for initial approxi-
mations b1

(0) = 1.1 and b2
(0) = 6(c = 5) are shown in Table 8 and are compared

with ‘‘experimental’’ data in Fig. 12.
The effects of the initial approximation b1

(0), b2
(0) and the value of c were also

investigated (see Tables 8, 9).
The results in Table 8 and those in Figs. 11 and 12 show that the differences

between the values obtained and exact parameter values are very large, but the
differences between the models obtained and the exact models exhibit the opposite
behavior.

7.10 General Case

In practice, it is very often possible to have experimental data in very large regime
interval (e.g., 0 B x B 1). However, it is unknown which of the experimental data
lead to a correct or an incorrect problem. That is why the parameter identification
problem will be solved by minimization

where yn = f(xn, b), xn = 0.01n, n = 1, …, 100, b = (b1, b2).
In Table 10 the results of the parameter identification for one- and two-

parameter models are shown. This results were obtained for initial approximation
b(0) = 6 (c = 5) and b1

(0) = 1.1, b2
(0) = 6(c = 2). The iteration numbers depend on

the initial approximations of the iterative procedure (Table 11) and c (Table 12).
The model adequacy [24] is a criterion for the correctness of the results of the
parameter identification only.

Table 8 Effect of the initial approximation (0.66 B x B 1)

b(0) b* i b1
(0) b2

(0) b1
* b2

* i

1.0 5.2089 18 0.5 6.0 3.2623 6.7358 177
2.0 5.2089 20 0.7 6.0 2.0153 6.0536 43
3.0 5.1883 54 0.9 6.0 2.1252 6.1230 47
4.0 5.1828 186 1.1 6.0 2.1720 6.1731 54
6.0 5.1828 2,066 1.3 6.0 2.1837 6.1803 40
7.0 5.1828 6,912 1.5 6.0 2.1850 6.1811 44
9.0 5.1828 52,993 3.0 6.0 3.1897 6.7284 56

Table 9 Effect of c (0.66 B x B 1)

c b* i c b1
* b2

* i

0.5 5.1828 18,731 0.5 4.5531 7.1961 470
2 5.1828 4,694 1 4.5787 7.2032 433
3 5.1828 3,692 3 2.5261 6.3797 88
5 5.1828 2,066 5 2.1720 6.1731 54
10 5.1828 1,040 10 2.3818 6.2782 53
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7.11 Statistical Analysis of Model Adequacy

A test of the model adequacy was performed through a statistical analysis. The
parameters b* are derived through calculations of experimental data, so they can
also be assumed to be random numbers. The same suggestion is valid for the
objective function values calculated with random parameter numbers. Moreover,
both the parameter and the objective function also incorporate effects of the model
building that implies a lack of knowledge concerning the mathematical structure
employed [1].

The model is assumed as an adequate one if the variance of the experimental
data error (Se) equals the variance of the model error (S). The test was performed
with the experimental values of the objective function ŷk; k ¼ 1; . . .;Kð Þ
obtained under identical technical conditions (regimes) x = x(0) = (x1

(0), …, xK
(0)),

where j = 5–10. The experimental data variance requires the mathematical
expectation of y ~my

� �
to be estimated [1, 21]:

~my ¼
1
K

XK

k¼1

ŷk; S2
e ¼

1
K � 1

XK

k¼1

ŷk � ~my

� �2
: ð7:25Þ

Table 10 Solutions of one- and two-parameter models (0 B x B 1)

Dŷ ð%Þ b* i b1
* b2

* i

±5 5.0117 50 1.0106 5.1717 65
±10 5.0231 50 1.0196 5.1721 66

Table 11 Effect of the initial approximation (0 B x B 1)

b(0) b* i b1
(0) b2

(0) b1
* b2

* i

1.0 4.9876 12 0.5 6.0 0.9987 5.0180 178
2.0 4.9877 12 0.7 6.0 1.0018 5.0475 136
3.0 4.9930 14 0.9 6.0 0.9987 5.0741 106
4.0 5.0106 22 1.1 6.0 1.0106 5.1717 65
6.0 5.0117 50 1.3 6.0 1.0018 5.0474 123
8.0 5.0117 92 2.0 6.0 1.0072 5.1383 92
10.0 5.0117 188 3.0 6.0 1.0040 5.0863 116

Table 12 Effect of c (0 B x B 1)

c b* i c b1
* b2

* i

0.05 5.0115 4,093 0.5 1.0016 5.0462 106
0.5 5.0116 375 1.0 1.0098 5.0859 94
1.2 5.0116 172 1.2 1.0098 5.0859 94
10 5.0118 28 2.0 1.0106 5.1717 65
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Thus, the variance of the model error [1] is

S2 ¼ 1
N � J

XN

n¼1

yn � ŷnð Þ2 ¼ Q

N � J
; ð7:26Þ

where N is the number of experimental data and J is the number of parameters.
The model adequacy is defined by the variance ratio

F ¼ S2

S2
e

; ð7:27Þ

where S2 [ Se
2 if S contains the error effect of the both model and experimental

data. The value of F is compared with the tabulated values (FJ) of the Fisher
distribution [21]. The condition for the model adequacy is

F�FJða; m; meÞ; ð7:28Þ

where m ¼ N � J; me ¼ K� 1; a ¼ 0:01-0:1:
The statistical analysis of the model adequacy was performed with

0 B x B 0.30 and the results are presented in Table 11. For the tests performed,
N = 30, J = 1(2), K = 10, x(0) = 0.2, and a = 0.05. The results confirm the adequacy
of the model.

The statistical analysis of cases corresponding to an incorrect inverse problem
(0.31 B x B 0.65) was performed with N = 35, J = 1(2), K = 10, x(0) = 0.5,
and a = 0.05 (see Table 14). The models are adequate despite the large dif-
ferences between the calculated and the exact values of the model parameters
(see Table 4).

The statistical analysis of the model adequacy in the case of essential incor-
rectness of the inverse problem (0.66 B x B 1) was done for N = 35, J = 1(2),
K = 10, x(0) = 0.8, and a = 0.05. The results are collected in Table 15. The
models are adequate independently despite the large differences between the
calculated and the exact values of the model parameters.

Statistical analysis of the model adequacy in the case of (0 B x B 1) was made
for N = 100 and the results are shown in [30]. Tables 13, 14 and 15 show that all
of models are adequate owing to F \ FJ (the general case too).

Table 13 Statistical analysis of the model adequacy (0 B x B 0.3)

J Dŷ ð%Þ b1
* b2

* c Se 9 -2 S 9 -2 F FJ

1 ±5 – 4.9678 0.9 1.7933 1.7071 0.9061 2.24
1 ±10 – 4.9351 0.9 3.5867 3.4139 0.9059 2.24
2 ±5 1.0025 5.0674 0.9 1.7933 1.8354 1.0475 2.25
2 ±10 0.99401 4.9218 0.9 3.5867 3.4434 0.9217 2.25
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7.12 Comparison between Correct and Incorrect Problems

The results obtained for inverse identification problem solutions show a large
difference between the least-squares functions in the correct and incorrect problem
cases. Horizontals (contour lines) of the least-squares function exist in Figs. 13
and 14. In all cases Q is a ridge-type function. If the inverse problem is correct, the
distance between the exact solution points and the minimum defined by the least-
squares function should be very small (see Fig. 13). In cases of incorrect problems
this distance is very large (see Fig. 14). Figures 13 and 14 show the ‘‘road’’ of the
iterative procedures from initial parameter values (b1

(0), b2
(0)) towards the parameter

values at the last iterations (b1
*, b2

*). All these trajectories of the iterative solutions
demonstrate the role of the second condition of (7.12).

Table 14 Statistical analysis of the model adequacy (0.31 B x B 0.65)

J Dŷ% b1
* b2

* c Se 9 -2 S 9 -2 F FJ

1 ±5 – 5.0614 0.5 2.6042 2.3588 0.8205 2.19
1 ±10 – 5.1232 0.5 5.2083 4.7328 0.8257 2.19
2 ±5 1.1797 5.4666 0.05 2.6042 2.3656 0.8252 2.20
2 ±10 1.3778 5.9106 0.05 5.2083 4.7349 0.8265 2.20

Table 15 Statistical analysis of the model adequacy (0.66 B x B 1)

J Dŷ ð%Þ b1
* b2

* c Se 9 10-2 S 9 10-2 F FJ

1 ±5 – 5.1828 5 2.7850 2.5988 0.8707 2.19
1 ±10 – 5.3816 5 5.5701 5.2482 0.8723 2.19
2 ±5 2.1720 6.1731 5 2.7851 2.6221 0.8855 2.20
2 ±10 4.9003 7.4004 5 5.5701 5.2482 0.8877 2.20
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Fig. 13 Road of the iterative
procedures (n = 1–30;
Dŷð%Þ ¼ 
10); open circles
b0 = [0.6, 5.9],
b0 = [1.2,4.1]; filled circles
b = [1, 5], b = [1, 5]; crosses
b* = [0.9833, 4.8390],
b* = [0.9691, 4.6444]
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In all cases discussed above, the difference between correct and incorrect
inverse identification problems is based on the distance between the points of the
exact solutions and the minimum of the least-squares function. Actually, exact
parameter values practically do not exist, so a useful criterion for the inverse
problem ‘‘diagnostics’’ is required. Table 16 summarizes solutions of correct and
incorrect inverse problems based on different experimental data sets. It is clear that
large differences between solutions can be used as a criterion of inverse problem
incorrectness (see the ‘‘road’’ of the iterative procedures in Figs. 15, 16, 17, 18).

Tables 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 and Figs. 13 and 18 show a very interesting
influence of the ‘‘correct’’ experimental data (0 B x B 0.3) on the correctness of
the inverse problem solution in the general case (0 B x B 1), where the behavior
of the least-squares function is like that in the case (0 B x B 0.3), when the
inverse problem solution is correct, i.e., the difference between the exact param-
eter values and determined value (the minimum of the function) is very small.

Figures 15, 16, 17 and 18 show that the main reason for the inverse problem
incorrectness is the sensitivity of the inverse problem solution with respect to the
experimental data errors, but not the size of the experimental data error.
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Fig. 14 Road of the iterative
procedures (n = 31–65;
Dŷð%Þ ¼ 
10); open circles
b0 = (0.6, 5.9), b0 = (1.6,
4.2); filled circles b = [1, 5],
b = [1, 5]; crosses
b* = [1.372, 5.900],
b* = [1.376, 5.907]

Table 16 Solutions of correct and incorrect problems, using different ‘‘experimental’’ data sets

b 0ð Þ
1 ¼ 1:1; b 0ð Þ

2 ¼ 6

Different ‘‘experimental’’ data b1
* b1

* c i

0 B x B 0.3 1 1.0025 5.0674 0.9 128
2 1.0115 5.1706 0.9 120
3 1.0068 5.1881 0.9 179

0.31 B x B 0.65 1 1.1564 5.2675 0.05 798
2 0.5789 3.7056 0.05 1,803
3 1.1723 5.2624 0.05 776
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Fig. 15 The horizontals of
the least-squares function
Q (n = 66–100;
Dŷð%Þ ¼ 
5); open circles
b0 = [1.5, 6.7], b0 = [3, 4.5];
filled circles b = [1, 5],
b = [1, 5]; crosses
b* = [2.0848, 6.1160],
b* = [2.1999, 6.2420]
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Fig. 16 The horizontals of
the least-squares function
Q (n = 66–100;
Dŷð%Þ ¼ 
10); open circles
b0 = [1.2, 7.2], b0 = [5, 4.5];
filled circles b = [1, 5], b =
[1, 5]; crosses b* = [5.4289,
7.5596], b* = [5.1861, 7.542]
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Fig. 17 The horizontals of
the least-squares function
Q (n = 1–100;
Dŷð%Þ ¼ 
5); open circles
b0 = [0.6, 5.9], b0 = [1.6,
4.2]; filled circles b = [1, 5], b
= [1, 5]; crosses b* = [1.0015,
5.0450], b* = [0.9793,
4.8743]
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Obviously, this peculiarity of the inverse incorrect problems manifests itself not
only in the iterative methods, but also in the variational methods for the search of
the minimum of the least-squares function (see 4.6).

All of these methods use an additional condition which does not permit a
large difference between exact and approximate solutions to be obtained. This
additional condition regularizes the problem (the problem becomes condi-
tionally correct) and in the method presented [24] c is the regularizing
parameter.

8 Multiequation Models

The kinetics of many chemical, biochemical, photochemical, and catalytic reac-
tions is very complex, i.e., the kinetic model consists of many equations. The
number of parameters of the separate equations is not large, but the total number of
parameters is very large [34].

The parameter identification problem for complex kinetic models is described
[35–37] on the basis of minimization of the least-squares function using experi-
mental data or their spline approximations.

Model parameter identification in these cases is very difficult because of the
multiextremal least-squares function or because of the fact that some minima
are of ravine type. The solution of this problem needs very good initial value
approximations for the parameters (in the attraction area of the global mini-
mum) for the minimum searching procedure. This main problem in the mul-
tiextremal function minimization is solved on the basis of a hierarchical
approach [34].
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Fig. 18 The horizontals of
the least-squares function
Q (n = 1–100;
Dŷ½%� ¼ 
10); open circles
b0 = [0.6, 5.9], b0 = [0.6,
4.1]; filled circles b = [1, 5],
b = [1, 5]; crosses b* =
[0.9999, 5.0481], b* =
[0.9928, 4.9431]
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8.1 Problem Formulation

Let us consider the following multiequation model:

dci

dt
¼ Fi c1; . . .; cM; ki1; . . .; kiai
ð Þ; ci 0ð Þ ¼ c 0ð Þi; i ¼ 1; . . .;M; ð8:1Þ

where t is time, ci(tn) and kij are objective functions (concentrations of the
reagents) and parameters in the model for i = 1, …, M, j = 1, …, ai, where ai is
the number of parameters of the ith equation.

For solution of parameter identification problem we will be use experimental
data for the objective functions:

c eð Þ
i ¼ c eð Þ

i tnð Þ; n ¼ 1; . . .;N, ð8:2Þ

where N is the number of experimental data measurements.
The least-squares functions for the separate model equations are

Qi ki1; . . .; kiai
ð Þ ¼

XN

n¼1

ci tnð Þ � c eð Þ
i tnð Þ

h i2
; i ¼ 1; . . .;M, ð8:3Þ

where ci(tn), i = 1, …, M are obtained after the solution of (8.1).
The least-squares function of the parameter identification in model (8.1) is

Q ¼
XM
i¼1

Qi: ð8:4Þ

The total number of parameters in (4) is very large,

I ¼
XM
i¼1

ai; ð8:5Þ

and in many cases it is not possible to minimize function Q, given in equation
(8.4), because Q is multiextremal and some minima are of ravine type.

Equation (8.4) shows that the minimization of Q is a multicriteria optimization
problem with equal specific weight coefficients of the separate criteria. The
obtaining of the global minimum point needs a very good initial approximation,
i.e., the initial point of the minimization procedure has to be in the attraction area
of the global minimum.

The experimental data for the objective functions (concentrations) can be
represented using polynomial approximations:

c eð Þ
i tnð Þ ! Pi tð Þ; n ¼ 1; . . .;N, i ¼ 1; . . .;M; ð8:6Þ

where Pi(t) are polynomials of fifth or sixth power.
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Let us consider the first equation in (8.1), where all functions, including the first
one, are replaced by the polynomial approximations of the experimental data:

ci tð Þ � Pi tð Þ; 2� i�M; ð8:7Þ
i.e.,

dc1

dt
¼ F1 c1;P2; . . .;PM; k11; . . .; k1a1ð Þ; c1 0ð Þ ¼ c 0ð Þ1: ð8:8Þ

The minimization of the least-squares function,

Q1 k11; . . .; k1a1ð Þ ¼
XN

n¼1

c1 tnð Þ � c eð Þ
1 tnð Þ

h i2
; ð8:9Þ

where c1(tn) is the solution of Eq. (8.8), permits us to calculate the parameters
values ~k11; . . .; ~k1a1

� �
of the first equation in model (8.1). The parameter identifi-

cation errors for equation (8.8) are the result of the experimental data errors and
polynomial approximations errors only, i.e., there is no influence from any other
model equation (2 B i B M) errors (as a result of the parameter identification
errors of the other parameters in the model). In this way the parameter identifi-
cation errors are minimal and the small number of parameters in one equation
excludes the possibility of many minimum points.

This procedure can be repeated for all equations in (8.1) (step by step). The
parameter values obtained ~kij; i ¼ 1; . . .;M; j ¼ 1; . . .; ai, can be used as a zeroth-
order approximation for the model parameter identification and they are the zeroth
hierarchical level in the parameter identification procedure.

Very often the exactness of the zeroth-order approximation of the parameters is
not sufficient for the minimization of Q in (8.4), because the parameters in one
model do not give an account of the errors of another model. The first-order
approximation may be obtained using the zeroth-order one on the first hierarchical
level (step by step).

The first step is to solve the first two equations,

dc1

dt
¼ F1 c1; c2;P3; . . .;PM; ~k11; . . .; ~k1a1

� �
; c1 0ð Þ ¼ c 0ð Þ 1;

dc2

dt
¼ F2 c1; c2;P3; . . .;PM; k21; . . .; k2a2ð Þ; c2 0ð Þ ¼ c 0ð Þ 2;

ð8:10Þ

and to obtain the first-order approximation of the parameters in the second
equation �k21; . . .; �k2a2ð Þ by minimization of the function Q2 (see 8.3).

The next step is the solution of the set of three equations

dc1

dt
¼ F1 c1; c2; c3;P4; . . .;PM; ~k11; . . .; ~k1a1

� �
; c1 0ð Þ ¼ c 0ð Þ1;

dc2

dt
¼ F2 c1; c2; c3;P4; . . .;PM; �k21; . . .; �k2a2ð Þ; c2 0ð Þ ¼ c 0ð Þ2;

dc3

dt
¼ F3 c1; c2; c3;P4; . . .;PM; k31; . . .; k3a3ð Þ; c3 0ð Þ ¼ c 0ð Þ3;

ð8:11Þ

8 Multiequation Models 485



and determination of ð�k31; . . .; �k3a3Þ after the minimization of Q3.
The last step is the solution of a set of i equations,

dc1

dt
¼ F1 c1; . . .; ci; k11; . . .; k1a1ð Þ;

c1 0ð Þ ¼ c 0ð Þ1;
dci

dt
¼ Fi c1; . . .; ci; �ki1; . . .; �kiai
ð Þ; ci 0ð Þ ¼ c 0ð Þi; i ¼ 2; . . .;M,

ð8:12Þ

and determination of �ki1; . . .; �kiai
ð Þ after minimization of Q1.

The last hierarchical level is to solve equations (8.8.1) and to minimize Q using
the first-order-approximation values �kij i ¼ 1; . . .;M; j ¼ 1; . . .; aið Þ as initial
approximations of the minimization procedure.

The hierarchical approach for parameter identification of the multiequation
models is used next for fermentation system modeling.

8.2 Fermentation System Modeling

The mathematical models of fermentation systems contain biomass, product, and
substrate material balances. The models obtained [38, 39] consist of three to four
equations with six to ten parameters, which have to be obtained using experimental
data. The modeling of glucose fermentation was presented in [34]. The fermen-
tation process of gluconic acid production by Gluconobacter oxydans [38] (or by
Aspergillus niger [39]) is oxidation of glucose to gluconic acid and ketogluconic
acids [40]. The mathematical model of the fermentation kinetics consists of four
equations for biomass, product (gluconic acid), and substrates (glucose and
oxygen).

The dependence of the specific growth rate (l) on glucose and oxygen sub-
strates was assumed to follow the Monod kinetic model [34], which considers
substrate limitation. The biomass growth can be described as

dx

dt
¼ lx; ð8:13Þ

where the specific growth rate l is given by the Monod-type model as

l ¼ lmax

cG

kG þ cG

cO2

kO2 þ cO2

: ð8:14Þ

The kinetics of gluconic acid formation was based on the Luedeking–Piret equa-
tion, originally developed for the fermentation of lactic acid [41]. It is a model which
combines growth-associated and non-growth-associated contributions to product
formation, i.e., the growth (dx/dt) and instantaneous biomass concentration (x):

dcGa

dt
¼ k1

dx

dt
þ k2x; ð8:15Þ
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where k1 and k2 are Luedeking–Piret equation parameters for growth-associated
and non-growth-associated product formation, respectively.

The rate of glucose utilization is represented by a mass balance equation [42],
i.e., the glucose from cell material (dx/dt), metabolic product (dcGa=dt), and cell
activity(k4x):

dcG

dt
¼ �k3

dx

dt
� dcGa

dt
� k4x: ð8:16Þ

The dependence of biomass growth (dx/dt), product formation (dcGa=dt), and
cell activity (x) on the oxygen consumption rate is given by

dcO2

dt
¼ kLa c�O2

� cO2


 �
� k5

dx

dt
� 1

2
dcGa

dt
� k6x: ð8:17Þ

The initial conditions of the model equations (8.13–8.17) are

t ¼ 0; x ¼ x 0ð Þ; cGa ¼ c 0ð ÞGa; cG ¼ c 0ð ÞG; cO2 ¼ c 0ð ÞO2
: ð8:18Þ

The model equations (8.13–8.18) are solved in the time interval [0 B t B tn],
where the biomass concentration increases.

The minimization of the least-squares function is used for parameter identifi-
cation. The problem is solved in dimensionless form, where the characteristic
scales are the maximum experimental values of the concentrations ðxmax; cmax

G ; c�O2
Þ

in the interval 0 B t B tn:

X ¼ x

xmax
; CGa ¼

cGa

cmax
G

; CG ¼
cG

cmax
G

; CO2 ¼
cO2

c�O2

: ð8:19Þ

As a result, the model equations (8.8.13–8.8.18) have the form

dX

dt
¼ lmax

CG

KG þ CG

CO2

KO2 þ CO2

X; ð8:20Þ

dCGa

dt
¼ K1

dX

dt
þ K2X; ð8:21Þ

dCG

dt
¼ �K3

dX

dt
� dCGa

dt
� K4X; ð8:22Þ

dCO2

dt
¼ kLa 1� CO2ð Þ � K5

dX

dt
� �cG

2c�O2

dCGa

dt
� K6X; ð8:23Þ

where

KG ¼
kG

cmax
G

; KO2 ¼
kO2

c�O2

; K1 ¼
k1xmax

cmax
G

; K2 ¼
k2xmax

cmax
G

;

K3 ¼
k3xmax

cmax
G

; K4 ¼
k4xmax

cmax
G

; K5 ¼
k5xmax

c�O2

; K6 ¼
k6xmax

c�O2

:

ð8:24Þ
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The initial conditions of equations (8.8.20–8.8.23) are

X ¼ X 0ð Þ; CGa ¼ C 0ð ÞGa ¼ 0; CG ¼ C 0ð ÞG; CO2 ¼ C 0ð ÞO2
: ð8:25Þ

8.2.1 Experimental Data

The parameter identification problem for the fermentation system (8.8.20–8.8.23,
8.8.25) will be solved using the real experimental data [38] (see Table 17).

The concentrations of biomass, gluconic acid, glucose, and oxygen as time

functions will be represented in dimensionless forms X eð Þ;C eð Þ
Ga ;C

eð Þ
G C eð Þ

O2


 �
using

(8.8.19).
The dimensionless experimental data for the concentrations permit us to obtain

their polynomial approximations PX;PGa;PG;P02ð Þ and to calculate the polyno-
mial approximation error variances SX; SGa; SG; SO2ð Þ:

PX tð Þ ¼ �2:7125� 10�8t6 þ 2:5023� 10�6t5 � 8:7499� 10�5t4 þ 0:00141t3

� 0:0090543t2 þ 0:030894t þ 0:069996;
SX ¼ 0:00164;

ð8:26Þ

PGa tð Þ ¼ �7:3643� 10�8t5 þ 3:5119� 10�6t4 � 3:0441
� 10�5t3þ0:0002176t2þ0:00013591t þ 9:9851:10�5;

SGa ¼ 0:00167;

ð8:27Þ

PG tð Þ ¼ �3:0467� 10�9t6 þ 2:4717� 10�7t5 � 6:571:10�6t4 þ 4:8921� 10�5t3

� 0:0003017t2 � 0:00058582tþ0:99979;
SG ¼ 0:00155;

ð8:28Þ

Table 17 Initial and maximum experimental data values

Substance Initial concentrations Maximum concentrations Dimensionless initial
conditions

Biomass x 0ð Þ ¼ 0:2040 kg
m3

h i
xmax ¼ 2:9238 kg

m3

h i
X 0ð Þ ¼

x 0ð Þ
xmax ¼ 0:0698

Gluconic
acid

c 0ð ÞGa ¼ 0 kmol
m3

h i
cmax

Ga ¼ cmax
G ¼ 1:1667 kmol

m3

h i
C 0ð ÞGa ¼

c 0ð ÞGa

cmax
G

¼ 0

Glucose c 0ð ÞG ¼ 1:16667 kmol
m3

h i
cmax

G ¼ 1:1667 kmol
m3

h i
C 0ð ÞG ¼

c 0ð ÞG
cmax

G

¼ 1

Oxygen c 0ð ÞO2
¼ 2:41:10�4 kmol

m3

h i
c�O2
¼ 2:41:10�4 kmol

m3

h i
C 0ð ÞO2

¼ c 0ð ÞO2
c�

O2

¼ 1
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PO2 tð Þ ¼ �1:7037� 10�8t6 þ 1:3205� 10�6t5 � 4:1355� 10�5t4

þ 0:00058519t3 � 0:0038151t2 þ 0:0037716t þ 0:99976;
SO2 ¼ 0:00177

ð8:29Þ

It could be supposed that the differences between the polynomial approxima-
tion error variances and the experimental data error variances are negligible, i.e.,
we could use the polynomial approximation instead of concentration as a time
function.

8.2.2 Zeroth-Order Approximations of the Model Parameters

The initial approximation of the model parameters can be obtained by solving
model equations (8.8.20–8.8.23), where the concentration time distribution has to
be replaced by polynomial approximations (8.8.26–8.8.29).

For the parameter identification in the biomass model the following problem
has to be solved:

dX

dt
¼ lmax

PG

KG + PG

PO2

KO2 + PO2

X; t ¼ 0; X ¼ X 0ð Þ: ð8:30Þ

The zeroth-order approximation of the parameter values ~lmax; ~KG; and ~KO2 is
obtained after minimization of the least-squares function:

QX ~lmax; ~KG; ~KO2

� �
¼ min

ZtN

0

X � PXð Þ2dt; ð8:31Þ

where the sum in (8.8.9) is replaced with integral and experimental data by
polynomial approximation (8.8.26).

The next steps are the consecutive solutions of the problems for gluconic acid
production and glucose and oxygen consumption,

dCGa

dt
¼ K1

dPX

dt
þ K2PX; t ¼ 0; CGa ¼ 0; ð8:32Þ

dCG

dt
¼ � K3

dPX

dt
� dPGa

dt
� K4PX; t ¼ 0; CG ¼ 1; ð8:33Þ

dCO2

dt
¼ kLa 1� CO2ð Þ � K5

dPX

dt
� cmax

G

2c�O2

dPGa

dt
� K6PX; t ¼ 0; CO2 ¼ 1;

ð8:34Þ
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after the minimization of the least-squares functions:

QGa
~K1; ~K2

� �
¼ min

ZtN

0

CGa � PGað Þ2dt; ð8:35Þ

QG
~K3; ~K4
� �

¼ min

ZtN

0

CG � PGð Þ2dt; ð8:36Þ

QO2
~kLa; ~K5; ~K6
� �

¼ min

ZtN

0

CO2 � PO2ð Þ2dt: ð8:37Þ

In Eqs. (8.8.35–8.8.37) the experimental data values are replaced by their
polynomial approximations. The zeroth-order approximations obtained for the
parameter values are shown in Table 18 (third column).

8.2.3 First-Order Approximations of the Parameters

The first step is to solve the equations for the biomass growth and gluconic acid
production,

dX

dt
¼ ~lmax

PG

~KG + PG

PO2

~KO2 + PO2

X;

Table 18 Parameter identification

â ~a ��a �a a

1 2 3 4 5

l̂max ¼ 2:427� 10�5 ~lmax ¼ 0:5843 lmax ¼ 0:5999 �lmax ¼ 0:5064 lmax ¼ 0:4345

K̂G ¼ 3:108� 10�5 ~KG ¼ 1:505 KG ¼ 1:505 �KG ¼ 1:541 KG ¼ 0:9914

K̂O2 ¼ 3:412� 10�5 ~KO2 ¼ 0:9894 KO2 ¼ 0:9753 �KO2 ¼ 0:6308 KO2 ¼ 0:8053

K̂1 ¼ 8:067� 10�6 ~K1 ¼ �0:2120 K1 ¼ �0:2179 �K1 ¼ �0:2016 �K1 ¼ �0:2016

K̂2 ¼ 1:555� 10�4 ~K2 ¼ 5:051� 10�2 K2 ¼ 4:998� 10�2 �K2 ¼ 5:047� 10�2 �K2 ¼ 5:047� 10�2

K̂3 ¼ 2:304� 10�5 ~K3 ¼ 2:08� 10�4 K3 ¼ 2:096� 10�4 �K3 ¼ 0 K3 ¼ 1:015� 10�4

K̂4 ¼ 7� 035:10�6 ~K4 ¼ 3:587� 10�2 K4 ¼ 3:516� 10�2 �K4 ¼ 3:692� 10�2 K4 ¼ 3:686� 10�2

k̂La ¼ 1:006� 102 ~kLa ¼ 1:333� 102 kLa ¼ 1:344� 102 �kLa ¼ 1:244� 102 kLa ¼ 1:309� 102

K̂5 ¼ �7:896� 10�6 ~K5 ¼ 6:69� 10�4 K5 ¼ 6:868� 10�4 �K5 ¼ 7:667� 10�4 K5 ¼ 6:632� 10�4

K̂6 ¼ �8:119� 10�5 ~K6 ¼ 1:129� 10�3 K6 ¼ 1:159� 10�3 �K6 ¼ 1:261� 10�3 K6 ¼ 1:126� 10�3

Ŝ ¼ 2:7831 ~S ¼ 0:8657 S ¼ 0:6586 �S ¼ 0:5199 S ¼ 0:3280
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dCGa

dt
¼ K1

dX

dt
þ K2X; t ¼ 0; X ¼ X 0ð Þ; CGa ¼ 0; ð8:38Þ

and to minimize (8.8.35):

QGa
�K1; �K2ð Þ ! min: ð8:39Þ

The parameter values obtained �K1; �K2 are the first-order approximation in the
identification problem solution.

The next steps are consecutive solutions of the problems:

dX

dt
¼ ~lmax

CG

~KG + CG

PO2

~KO2 + PO2

X;
dCGa

dt
¼ �K1

dX

dt
þ �K2X;

dCG

dt
¼ �K3

dX

dt
� dCGa

dt
� K4X; t ¼ 0; X ¼ X 0ð Þ; CGa ¼ 0; CG ¼ 1;

QG
�K3; �K4ð Þ ! min;

ð8:40Þ

dCG

dt
¼ ��K3

dX

dt
� dCGa

dt
� �K4X;

dCO2

dt
¼ kLa 1� CO2ð Þ

� K5
dX

dt
� cmax

G

2c�O2

dCGa

dt
� K6X;

t ¼ 0; X ¼ X 0ð Þ; CGa ¼ 0; CG ¼ 1; CO2 ¼ 1; QO2
�kLa; �K5; �K6ð Þ ! min :

ð8:41Þ

The last step is to solve model equations (8.8.41), where the parameter values
obtained for the oxygen consumption are replaced,

kLa ¼ �kLa; K5 ¼ �K5; K6 ¼ �K6; ~lmax ¼ lmax; ~KG ¼ KG; KO2 ¼ KO2 ;

ð8:42Þ

and the biomass parameter values are calculated by minimization of the least-
squares function:

QX �lmax; �KG; �KO2ð Þ ! min : ð8:43Þ

The values of the parameters obtained are the first-order approximation (see
Table 18, fourth column).

The first-order approximation of the parameter values permits us to obtain the
exact parameter values. For this purpose, model equations (8.8.41) have to be
solved and the exact parameter values will be obtained using the minimization of
the least-squares function (see Table 18, fifth column):
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Q lmax;KG;KO2 ;K1;K2;K3;K4; kLa;K5;K6ð Þ

¼
XN

n¼1

Xn � X eð Þ
n


 �2
þ
XN

n¼1

CGn
� C eð Þ

Gn


 �2
þ
XN

n¼1

CGan
� C eð Þ

Gan


 �2

þ
XN

i¼1

CO2n
� C eð Þ

O2n


 �2

;

ð8:44Þ

where N = 8 is the experimental number of data.
The first-order approximations of the parameter values are used as initial

approximations in the minimization procedure (8.8.44). In Table 18 consecutive
approximations of the model parameters values in (8.8.30) and (8.8.32–8.8.34) and
model error variances (S) are presented.

Arbitrary parameters values of the model equations (8.8.30, 8.8.32–8.8.34) are
used as initial values of the parameters for the model parameter identification in
(8.8.30) and (8.8.32–8.8.34) and the solution is shown in the first column in
Table 18. Using the same initial values of the parameters to obtain the zeroth-order
approximation (the zeroth hierarchical level) leads to the parameters value in the
second column.

The parameter values in the second column are used as initial values to obtain
the parameters in model (8.8.30, 8.8.32–8.8.34) (see the third column), or to obtain
the first-order approximation (see column 4). The parameters values in column 4
are initial values to obtain the exact parameters values (fifth column).

The comparison of the model error variances (see the last row in Table 18)
shows a consecutive variance decrease which is a result of the proposed hierar-
chical approach. A comparison of the calculated biomass, gluconic acid, glucose,
and oxygen concentrations (using the exact parameter values) with the experi-
mental data is given in Figs. 19, 20, 21 and 22.

Fig. 19 Comparison of the
calculated values and experi-
mental data for biomass
dimensionless concentration
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Fig. 20 Comparison of the
calculated values and experi-
mental data for gluconic acid
dimensionless concentration

Fig. 21 Comparison of the
calculated values and experi-
mental data for glucose
dimensionless concentration

Fig. 22 Comparison of the
calculated values and experi-
mental data for oxygen
dimensionless concentration
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9 Experiment Design

As was shown for modeling of a series of stages, the use of experimental data is
required. Most of these data are connected to the identification of the parameters of
the model and represent data of the objective function at different regimes
(combinations of factors values).

The analysis of significance of the parameters requires the determination of the
error of the current experiment, i.e., several measurements of the objective func-
tion (five to ten times) per regime.

The model adequacy is determined on the basis of the experiments, as used for
determination of the parameter assessments as well the analysis of their signifi-
cance. In cases where there is a lack of experimental data for several measure-
ments for the same regime, the suitability of the model can be determined by
single measurements of the objective function in different regimes if it depends
linearly on the model parameters.

One of the fundamental problems of modeling related to the required experi-
mental data is that generally the accuracy of the data obtained increases with
increasing number of experiments and that raises the cost of modeling. In this
sense a problem emerges for the determination of the admissible minimum number
of experiments.

Another underlying problem of modeling is the condition for the selection of
the regimes in which the objective function is measured so that the influence of the
experimental data error on the accuracy of the results obtained in the calculation of
the parameter values is decreased to a minimum.

As a whole, the modeling needs the development of optimal experimental
plans, which permit the maximum accuracy to be achieved for the minimum
number of experiments.

9.1 Experimental Plans of Modeling

The experimental plans can be considered as matrixes:

X ¼ xi;j

���� ; i ¼ 1; . . .;m; j ¼ 1; . . .; k: ð9:1Þ

where m is the number of factors (independent variables) and k is number of the
levels which each of the factors can take. If we suppose that all of factors can take
an equal number of levels, each row of the matrix (8.9.1) represents the experi-
mental plan of one experiment, and the maximum number of rows N is obtained
for full combination between different factors and their levels. So the experimental
plan obtained represents [6] full classification. For three factors of two levels it
directly follows that
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x11 x21 x31

x11 x21 x32

x11 x22 x31

x11 x22 x32

x12 x21 x31

x12 x21 x32

x12 x22 x31

x12 x22 x32

������������������

������������������

ð9:2Þ

The order of the matrix (8.9.1) rises as fast as the increase of the number of
factors and their levels. The minimum number of rows Nmin needs to be deter-
mined for different tasks which will be included in the current experimental plan.
For this purpose, such a combination of Nmin rows should be selected for a given
maximum number of rows in (8.9.1) for which the accuracy of the results obtained
will be a maximum.

9.2 Parameter Identification

The solution of the inverse identification problem places very important require-
ments on the optimal experiment design. The theoretical models and the model
theories use preliminary and exactly identified parameters; because of that they do
not need experimental plans.

The diffusion-type models (as the models of the elementary processes) have
parameters which are defined on the basis of experimental data for the objective
function by solution of inverse incorrect (most frequently) problems. In these
models the development of optimal experimental plans can be done so that the
maximum accuracy in the identification of the model parameters by means of the
minimum number of iterative solutions of the inverse identification problem is
obtained. In these cases the optimal plans represent an aggregation of the fol-
lowing quantities: number of points at which the objective function is measured;
number of repeated measurements; the coordinates of the points. The determina-
tion of the optimal experimental plans depends materially on the mathematical
structure of the model through which they will be considered.

Let us consider [8] the problem of determination of the heat conductivity in the
following model:

oT

os
¼ a

o2T

ox2
; Tðx; 0Þ ¼ T0ðxÞ; 0� x� b;

Txð0; sÞ ¼ g1ðsÞ; 0� s� sm; Txðb,sÞ ¼ g2ðsÞ; 0� s� sm; Tx ¼
oT

ox
:

ð9:3Þ
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For determination of a in (8.9.3) it is necessary for the temperature variation to
be known (e.g., from experimental data) at a given point:

Tðd,sÞ ¼ f ðsÞ: ð9:4Þ

The determination of a can be realized by means of the functional of the misfit
minimization:

J ¼ 1
2

Zsm

0

Tðd,s; aÞ � f ðsÞ½ �2ds: ð9:5Þ

For this purpose the iterative procedure [8] is used:

anþ1 ¼ an þ Dan; n ¼ 0; 1; . . .; ð9:6Þ

where

Dan ¼ �
R sm

0 Tðd;s; anÞ � f ðsÞ½ �#ðd;s; anÞdsR sm

0 #ðd; s; anÞ½ �2ds
: ð9:7Þ

and # is the sensitivity function,

#ðd; s; aÞ ¼ oTðx; s; aÞ
oa x¼dj : ð9:8Þ

It is determined from the problem:

o#

os
¼ a

o2#

ox2
þ o2T

ox2
; #ðx; 0Þ ¼ 0; 0� x� b;

Txð0; sÞ þ a#xð0; sÞ ¼ 0; 0� s� sm;

Txðb; sÞ þ a#xðb; sÞ ¼ 0; 0� s� sm; #x ¼
o#

ox
: ð9:9Þ

Problem (8.9.3) can be a solution for a given case [8]:

a ¼ 1:25:10�7m2=s; g1 ¼ 3:105 K/m; g2 ¼ 0; T0 ¼ 0; b = 0:008 m,

ð9:10Þ

where a is the ‘‘exact’’ value of a in (8.9.3). From the solution obtained for (8.9.3)
the function f ðsÞ ¼ T d; s; �að Þ for values of d=0.001,002,…,0.005 m and sm = 60s
can be determined. The functions obtained f(s) for different d will be used as
‘‘experimental data’’ for iterative solution of the inverse problem. For an initial
approximation in (8.9.6) and (8.9.7) we use a0 = 0.25.10-7m2/s and
f(s) = T(0, 001, s, an), respectively. The iterations continue while
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e ¼ a� anþ1

a
� 10�4: ð9:11Þ

The number of iterations in this case does not depend on errors in model (8.9.3)
or the errors in the ‘‘experimental’’ determination of f(s) (8.9.4) and it determines
only the structure of the operator (algorithm) giving the opposite problem solution.

If the opposite problem is solved for more than several values of d (0.002,
0.003, 0.004, 0.005) it can be seen that condition (8.9.11) is achieved in a different
number of iterations [8] and for d=0.003 m the number of iterations is minimal.

In the example considered the optimal experimental plan represents two
numbers (1, 0.003), i.e., a measurement of the temperature (as a function of time)
for x=0.003 m. The number of iterative procedures depends on the value of a. The
reason for that is the nonlinearity of the dependency of the objective function on
the parameters. That means that above-mentioned algorithm does not give us the
possibility to determine the optimal plan, as a is unknown. A possible way to cope
with this situation is the approach of consecutive design. For this purpose, first, the
optimal plan as described above is determined, and a is assigned some value on the
basis of preliminary information. As a result, an optimal plan d1 is obtained. This
plan is locally optimal and it will be used as a first approximation to find the final
optimal plan. In plan d1 (x=d1) an experiment is carried out and the temperature is
determined as a function of time—f1(s). With this function the inverse problem
(8.9.3) is solved and a1 is determined. The new value of a ¼ a is used for an
iterative determination of the new local-optimal plan d2, etc. while the following
condition is satisfied:

akþ1 � ak

ak

� e: ð9:12Þ

The problem described above becomes considerably more complicated [8, 44]
if there are more parameters in the model and especially when the coefficients of
the heat conductivity and the specific heat depend on the temperature. In these
cases, the optimality of the experimental plan is determined not only by the
solution accuracy and the number of iterative procedures, but also by the condition
for unity solution of the inverse problem.

Parameter identification in the similarity criteria models (after the logarithm
procedure has been accomplished) and regression models is realized in the same
way. In these cases optimal plans are used, which aim to minimize the influence of
the experimental error of the objective function on the accuracy of parameter
identification. Different criteria for optimality are used.

Most frequently the criterion D-optimality is used, in which the experimental
plan is determined so as to maximize the determinant of the information matrix of
the plan A. It can be seen from (8.6.10) that it leads to the minimization of
parameter sensitivity as regards the experimental errors in the objective function,
i.e., the D-optimal experimental plans have a ‘‘regularization’’ effect on the inverse
identification problem solution in the regression models.
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Other criteria for optimality are G-optimality (minimization of the maximum
dispersion of the objective function, calculated through the model), A-optimality
(minimization of the average dispersion of the parameters), and orthogonality
(nondiagonal elements in matrixes A and A-1 are zero, i.e., the model parameters
are not correlated).

9.3 Significance of Parameters

The significance analysis of the parameters is realized in two different ways in the
different types of models, which is related to different experimental plans being
used. In the theoretical models and the model theories, the parameters are not
determined by means of experimental data, and significance analysis of the
dimension model parameters is not required. Here it is essential to determine the
significance of the dimensionless model parameters in the models with generalized
variables, which was considered in the quantity analysis of the models in Chap. 4).
A similar possibility exists in the case of diffusion-type models.

In the regression models and similarity criteria models for significance analysis
of the parameters, a random quantity (5.3.98) is used, from which it can be seen
that the experimental data from several measurements of the objective function in
same regime are required. Moreover, the analysis method using the Student cri-
terion requires all the nondiagonal elements of the matrix C = A-1 to be zero, i.e.,
the usage of orthogonal experimental plans is needed.

9.4 Adequacy of Models

The difference in the adequacy analysis methods for different types of models
leads to different requirements for the experimental plans.

The theoretical models and the model theories need different types of experi-
mental data for determination of the dispersion error of the model and the
experimental data. The data correctness for error determination of the model
requires the data to be obtained at a sufficient number of the factor levels so that
the area of variation of the independent variables is captured maximally uniformly.
This results in a great number of combinations between the levels of all the factors,
and because of that random combinations should be selected, i.e., randomized
plans should be used.

The diffusion-type models can be used in the adequacy analysis of the same
experimental data obtained for the purposes of parameter identification.

A general property of theoretical models, model theories, and diffusion-type
models is that their objective function, as a rule, depends nonlinearly on their
parameters. For this reason it is not possible to prove the suitability of these
models through the coefficient of multiple correlations. In all cases the
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experimental data of multiple measurements in one regime are needed for the
dispersion of the experimental error to be obtained and through it the model
adequacy to be verified.

Regressions and similarity criteria models are most frequently linear ones
regarding their parameters, and because of that the experimental data used for
parameter identification are sufficient for the model adequacy analysis. If there is a
lack of data of multiple measurements for one regime, the adequacy verification
could be replaced by suitability verification.

9.5 Randomized Plans

Randomized plans are used for solution of a wide range of statistical analysis
problems and especially in dispersion analysis, where different factors influencing
the dispersion of a given random quantity are analyzed. In the modeling it is very
important at a previous stage to reject those factors which do not influence the
objective function, i.e., the effect is similar to the effect of the random experi-
mental errors. For this purpose sufficient equality between the dispersion of the
objective function caused by the variation of the analyzed factor on different levels
and the dispersion caused by random disturbances of the objective function must
be proven. The quality of this analysis increases as the interval in which the factor
levels analyzed is located is enlarged and the number of these levels increases. It
can be seen directly from (8.9.2) that an increase in the number of factors and
levels leads to a large increase in the number of experiments needed.

A similar problem emerges in the analysis of the dispersion in the regression
analysis, where the equality of the error dispersion of the model and the experi-
mental error sets the condition of model adequacy. Here also experimental values
of the objective function in the variation of a great number of factors of great
number of levels for each of them are needed.

A possible way to solve the problems described above is the usage of fully
randomized plans. For this purpose the full classification (8.9.2) is used and from it
a reasonable number of experimental plans (rows of matrix 8.9.2) are taken quite
randomly. So, for example, if the row numbers in (8.9.2) are ordered randomly in a
generator of random values in the sequence (4, 1, 5, 2, 6, 3, 8, 7) and we decide to
use a plan of three of components, from (8.9.2) we obtain a fully randomized plan,
using rows 4, 1, and 5:

x11 x21 x32

x11 x22 x32

x12 x21 x32

ð9:13Þ

In many cases it is imposed for some considerations that the plan is responsible
for some conditions (e.g., to contain elements x11). Then the randomization
accomplished between these rows, which contain x11, i.e., between the first four
plans (rows) in (8.9.2) and the randomized block plan obtained, is as follows:
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x11 x21 x31

x11 x22 x31

x11 x22 x32

ð9:14Þ

In three-factor experiments with same number of levels for all of them, Latin
squares are used. This is a square table n 9 n of n Latin letters, which are not
repeated in a row and a column.

Let us consider three factors with four levels for each of them:
First factor of levels 1, 2, 3, 4
Second factor of levels I II, III, IV
Third factor of levels A, B, C, D
From the data presented above we can compose a standard (canonical) Latin

square (Table 19). Each cell of this square is an experimental plan and it is related
to an experimental value of the objective function for a given combination of
factors and levels. So, for example, 2, III, D corresponds to an objective function
obtained in an experiment, in which the first factor has level x12, the second one
has level x23, and the third one has level x34. The full classification is represented
by a matrix of 43 = 64 rows, whereas the Latin square offers a plan for 20
experiments. This experimental plan for 20 experiments can be obtained quite
randomly if two random series of numbers are taken:

3; 2; 4; 1

1; 3; 4; 2;
ð9:15Þ

The rows in the Table 19 of the standard Latin square can be rearranged to
conform with the first row of the numbers in (8.9.15), i.e., the first row gets the
values of the third row, the second row gets the values of the second row, the third
row gets the values of fourth row, and the fourth row gets the values of the first
row:

C D A B

B C D A

D A B C

A B C D

ð9:16Þ

In the same way the columns of (8.9.16) are rearranged in accordance with the
numbers in the second row in (8.9.15):

Table 19 Canonical Latin
square

I II III IV

1 A B C D
2 B C D A
3 C D A B
4 D A B C
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C A B D
B D A C
D B C A
A C D B

ð9:17Þ

The Latin square (8.9.17) offers an experimental plan for 20 experiments,
chosen quite randomly among 64 feasible ones.

Other similar plans [6] such as Greek–Latin squares (for four-factor experi-
ments), Latin rectangles, and parallelepipeds are known.

9.6 Full and Fractional Factor Experiment

The experimental data obtained for the purposes of the inverse identification
problems need the use of optimal experimental plans, which permit the parameter
assessments to be obtained with the minimum error and the maximum sustain-
ability regarding the experimental errors of the input data (the experimental data
for the objective function). In the theoretical models, model theories, and diffu-
sion-type models it was shown that these optimal experimental plans are made
specifically for each of the models. In the regression models (and similarity criteria
models after the logarithmic procedure has been accomplished) plans for different
types of models can be used [6, 43] such as full factor experiment, fractional
replicas, and compositional plans of second and third rows. In these cases the use
of catalogues of consequently generated plans [45] is suitable.

The largest group of regression models are characterized by only the first
powers of the factors and multiplication between them being involved. For
m factors the regression model can have 2m parameters. For example, for m = 2
the model is as follows:

y ¼ b0 þ b1x1 þ b2x2 þ b12x1x2: ð9:18Þ

Let us consider the most frequently occurring cases when for the parameter
identification in (8.9.18) two levels of the factors are used: +1 and -1.

A full factor experiment of two levels of the factors represents an experimental
plan obtained through a full combination of the levels of all the factors (full
classification). For model (9.18) the full factor experiment is represented by
Table 20.

Table 20 Full factor
experiment for (9.18)

No. x1 x2 y

1 1 1 y1

2 -1 1 y2

3 1 -1 y3

4 -1 -1 y4
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The four experiments in Table 20 permit through the least-squares method four
coefficients to be determined in (9.18). From Table 20 the enlarged matrix of the
plan can be obtained (Table 21).

It can be seen from Table 21 that if we substitute column x1x2 by x1
2 the matrix

plan degenerates, as the first column and the second one become the same. An
analogous result is obtained if we introduce x1

3, x1
4, etc., i.e., the full factor

experiment of two levels of the factors can be used only for models which do not
contain powers of higher factors.

In the literature it has been proven [6, 43] that the full factor experiment is an
experimental plan which is orthogonal, D-optimal, G-optimal, and A-optimal.

The matrix for the plan in the full factor experiment of two levels of the factors
for different numbers of the factors m can be obtained by the last rule. The first
column contains only ones, owing to x0 = 1. In the second column the change of
sign is done for each of 1 (20) row, in the third column for each of 2 (21) rows, in
the fourth one for each of 4 (22) rows, etc., i.e., in the kth column for each of (2k - 2)
rows. This rule holds for the (m ? 1)th column, and the following columns
are obtain directly through proper multiplication of the first (m ? 1) columns.

For example, for the model

y ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ b12x1x2 þ b13x1x3 þ b23x2x3 þ b123x1x2x3 ð9:19Þ

the enlarged matrix of the plan is shown in Table 22. In the general case, the
number of experiments N in the full factor experiment of m factors of two levels is
N = 2m.

It can be seen from (8.9.19) that the number of experiments in the full factor
experiment can be larger than the number of model parameters, i.e., from the
number of experiments needed, sufficient for determination of the unknown

Table 21 Enlarged matrix of
the plan for (9.18)

No. x0 x1 x2 x1x2 y

1 1 1 1 1 y1

2 1 -1 1 -1 y2

3 1 1 -1 -1 y3

4 1 -1 -1 1 y4

Table 22 Enlarged matrix of the plan for (9.19)

No. x0 x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3 y

1 1 1 1 1 1 1 1 1 y1

2 1 -1 1 1 -1 -1 1 -1 y2

3 1 1 -1 1 -1 1 -1 -1 y3

4 1 -1 -1 1 1 -1 -1 1 y4

5 1 1 1 -1 1 -1 -1 -1 y5

6 1 -1 1 -1 -1 1 -1 1 y6

7 1 1 -1 -1 -1 -1 1 1 y7

8 1 -1 -1 -1 1 1 1 -1 y8
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parameters by means of the least-squares method. In these cases is possible to use
fractional replicas. So, for example, the model

y ¼ b0 þ b1x1 þ b2x2 þ b3x3 ð9:20Þ

has four parameters, which can be identified from a system of four equations, i.e.,
of four experimental values of y, but the full factor experiment contains eight
values.

Let us consider the matrix of the plan in Table 23. It can be seen directly from
Table 23 that it contains half of the experiments in Table 22 (rows 1, 6, 7, 4). On
the other hand, Table 23 coincides completely with Table 21, i.e., the experi-
mental plan in Table 23 has the same properties (A-, D-, and G-optimality,
orthogonality) as the experimental plan in Table 21. In this sense the experimental
plan in Table 23 represents a semireplica of the experimental plan in Table 22 and
contains N = 2m-1 experiments.

For a great number of factors one-fourth replica (N = 2m/4 = 2m-2), one-
eighth replica (N = 2m/8 = 2m-3), etc. can be used. In the general case of the
experiments in the fractional replica (fractional factor experiment) we have

N ¼ 2m�t; ð9:21Þ

where t is a power of replica fractionality.
The composition of the experimental plan in a fractional factor experiment will

be shown by the following example.
Let us suppose that the parameters are searched for in the model

y ¼ b0 þ
X6

i¼1

b1x1: ð9:22Þ

Apparently the minimum number of experiments required is Nmin = 7, and the
full factor experiment contains 64 experiments. A fractional replica would be
searched for which does not exceed in the number of the experiments a given
maximum number, for example, Nmax ¼ 10:

From the condition

7� 2m�t� 10 ð9:23Þ

we obtains t = 3 because 26–3 = 8.
The factors are divided into main ones, whose number is m - t = 6 - 3 = 3,

and additional ones. Let us suppose that for the main factors we have accepted the

Table 23 Matrix of the plan
for (9.20)

No. x0 x1 x2 x3 y

1 1 1 1 1 y1

2 1 -1 1 -1 y2

3 1 1 -1 -1 y3

4 1 -1 -1 1 y4
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first three. For them the full factor experiment can be composed (the first three
columns in Table 24). The additional three factors equalize the multiplications of
the highest power of the main ones:

x7 ¼ x1x2x3; x6 ¼ x1x3; x5 ¼ x1x2: ð9:24Þ

Expressions (8.9.24) represent generating relations. Table 24 represents the
fractional factor experiment, which contains eight times fewer experiments than
the full factor experiment, but has kept the properties of the it. In this way the
fractional factor experiment with many factors leads to a full factor experiment
with a few ones, keeping the optimality of the full factor experiment.

9.7 Compositional Plans

In the cases when the process depends nonlinearly on the factors, in the regression
models higher powers of the factors appear and the matrix of the full factor
experiment degenerates owing to the appearance of equal columns. The same also
holds for all fractional replicas which contain some of the rows of the matrix of the
full factor experiment.

Degeneration of the matrix of the full factor experiment (in the second, third,
etc., powers of the factors appearing in the model) can apparently to avoided if
only one row is added, which can make the equal columns different ones. In this
way the compositional plan is made. Apparently from the fractional replicas also
the compositional plans can be made.

In the general case, the number of experiments in the compositional plan is

N ¼ 2m�t þ 2mþ N0 ð9:25Þ

where 2m is the number of additional experiments noted with ‘‘starry’’ points, for
which each of the factors are assigned two values (±a) for zero values of the other
factors. The experiments N0 are observations in the center of the plan
(x1 = x2 = _ = xm = 0).

Table 24 Fractional factor experiment for (9.22)

No. x0 x1 x2 x3 x1x2 x1x3 x1x2x3 y

1 1 1 1 1 1 1 1 y1

2 1 -1 1 1 -1 -1 -1 y2

3 1 1 -1 1 -1 1 -1 y3

4 1 -1 -1 1 1 -1 1 y4

5 1 1 1 -1 1 -1 -1 y5

6 1 -1 1 -1 -1 1 1 y6

7 1 1 -1 -1 -1 -1 1 y7

8 1 -1 --1 -1 1 1 -1 y8

504 Parameter Identification (Estimation)



Optimal compositional plans are developed [6] through following rule:

1. The plan of the factor experiment of is composed of a number experiments
N = 2m-t, where t = 0 at m B 4 and t = 1 at m � 4.

2. 2m ‘‘starry’’ points are added at a = 1.
3. Point x1 = x2 = 0 is added at m = 2. At m . 2; N0¼ 0.

In this way the optimal compositional plan for m = 3 is shown [6] in Table 25.
This is the optimal compositional plan of second order, which has the useful
property that if in the verification of the model adequacy with a full and a frac-
tional factor experiment inadequacy is proven, then the addition of 2m new
experiments permits the verification of the adequacy of the new model, where
nonlinear effects are accounted for. When the third powers of the factors are used,
the composition of the plans of the third row is needed, which can be found in
proper catalogues [45].

10 Examples

10.1 Regression Models

In many cases, the use of regression models is very convenient. In the general case
(see 2.2.5) the regression models have the form

y ¼ b0 þ
XI

i¼1

bifi xð Þ; ð10:1Þ

where y is an objective function, bi(i = 0, …, I) are model parameters,
fi(x)(i = 0, …, I) are linear or nonlinear functions, and x = xk(k = 0, …, K) are
independent variables (regime parameters).

The parameter identification uses experimental data for objective function ŷn

for different regimes xn, n = 1, …, N, where N is the number of the experiments.
The least-squares function has the form

Table 25 Optimal compositional plan of second order

No. x1 x2 x3 No. x1 x2 x3

1 1 1 1 8 -1 -1 -1
2 -1 1 1 9 1 0 0
3 1 -1 1 10 1 0 0
4 -1 -1 1 11 0 1 0
5 1 1 -1 12 0 -1 0
6 -1 1 -1 13 0 0 1
7 1 -1 -1 14 0 0 -1
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Q b0; b1; . . .; bIð Þ ¼
XN

n¼1

ŷn � b0 �
XI

i¼1

bifi xnð Þ
" #2

: ð10:2Þ

The iterative method [24] is used [25, 26] for parameter identification of two-
and three-parameter regression models.

Let us consider the strong nonlinear regression model

y ¼ b1x� b2 exp �5xð Þ; ð10:3Þ

where �b1¼ 1;�b2¼� 1 are exact parameter values.
The parameter identification problem is solved with the help of the ‘‘experi-

mental’’ data obtained by a generator for random numbers:

ŷ 1ð Þ
n ¼ 0:95þ 0:1Anð Þyn; n = 1,. . .;N, ð10:4Þ

where An are random numbers in the interval [0,1] and yn are obtained from model
(8.10.3) for b1 ¼ �b1 ¼ 1; b2 ¼ �b2 ¼ �1;

yn ¼ 1� exp �5xnð Þ; xn ¼ 0:01n, n ¼ 1; . . .;N: ð10:5Þ

Obviously the maximum error of the ‘‘experimental’’ data (6) is ±5%.
The conventional least-squares method for parameter identification in the

regression models uses the conditions for the minimum of the least-squares
function oQ

obi
¼ 0; i = 0,1,. . .; I: This is the normal set of equations and its solution

is the model parameter identification of model (8.10.1). The least-squares method
for parameter identification uses the determinant A of the matrix of the normal set
of equations (see Sect. 2.5). For model (8.10.3) we obtain

A ¼
XN

n¼1

x2
n

XN

n¼1

exp �10xnð Þ �
XN

n¼1

exp �10xnð Þ
" #2

: ð10:6Þ

For large values of A the inverse problem is correct, for small values it is
incorrect, and for very small values it is essentially incorrect. If the normal set of
equations has the form (for a two-parameter model):

a11b1 þ a12b2 ¼ B1

a21b1 þ a22b2 ¼ B2
ð10:7Þ

and

a1 ¼ max a11; a12f g; a2 ¼ max a21; a22f g; ð10:8Þ

the scale of the determinant A leads to

A ¼ A11A22 � A12A21; ð10:9Þ
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where

A11 ¼
a11

a1
; A12 ¼

a21

a1
A21 ¼

a21

a2
; A22 ¼

a22

a2
: ð10:10Þ

The values of �A for different intervals of xn are shown in Table 27.
The conditions of correctness are:
10�2\�A\1—correct inverse problem
10�3\�A\10�2—incorrect inverse problem
�A\10�4—essentially incorrect problem
In the cases 0 \ xn \ 0.6 the inverse problem is correct and a solution can be

obtained as a solution of the normal set (b1
min, b2

min) or by minimization of the
least-squares function (b1

*, b2
*).

The results of the solutions are shown in Table 26 for different experimental
data (0 \ xn \ 0.6).

From Table 26 it is seen that in the cases of correct inverse problems, the
differences between the exact and calculated parameter values are very small. The
differences between calculated values for different experimental data sets (data
nos. 1 and 2 are obtained using different random number sets in 10.4) are very
small too and this is a criterion for the problem correctness. In Fig. 23 b0 = [b1

0, b]
is the initial step, b* = [b1

*, b2
*] is the end step, and b ¼ �b1; �b2½ � is the exact

solution. In Fig. 24 a comparison between the mathematical model and
the’’experimental’’ data for the correct inverse problem (0 \ xn \ 0.6) is shown.

In the cases (0.6 \ xn \ 0.8), (0.8 \ xn \ 1), and (1 \ xn \ 1.5) the inverse
problem is incorrect, and the results of the solutions are shown in Table 27.

Table 26 Correct problem solutions

N ¼ 50; b0
1 ¼ 0:85; b0

2 ¼ �1:4; �b1 ¼ 1; �b2 ¼ �1

n Data no. b1
min b2

min b1
* b2

* c i �A

1–60 1 0.9986 -0.9950 0.9989 -0.9945 0.2 90 0.8531
2 0.9935 -1.0035 0.9932 -1.0038 0.1 164

Table 27 Incorrect problem solutions

b0 ¼ 0:01; N ¼ 50; b0
1 ¼ 0:85; b0

2 ¼ �1:4; �b1 ¼ 1; �b2 ¼ �1

n Data no. b1
min b2

min b1
* b2

* c i �A

61–80 1 1.0052 –1.2008 1.0109 –1.3441 0.2 543 0.0056
2 0.9781 –0.6099 0.9820 –0.7050 0.2 3,830

81–100 1 1.0060 –1.7821 1.0050 –1.3982 0.5 17 0.0014
2 0.9767 –0.4769 0.9874 –0.5045 0.5 15,652

101–150 b0 = 0.1
2 1.0003 –3.0484 1.0500 –1.3997 1 3 0.0013
1 0.9872 –2.8910 0.9500 –1.4000 1 5
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From Table 27 it is obvious that in the cases of incorrect inverse problems, the
differences between the exact and the calculated parameter values are large. The
differences between the calculated parameters values for different experimental
data sets (data no. 1, 2, obtained with the help of different sets of random numbers)
are large too and this is a criterion for the problem incorrectness.

In Figs. 25, 26 and 27 the horizontals of the least-squares function Q and the
iteration steps are shown. Figures 28, 29 and 30 show comparisons between the
mathematical model and the ‘‘experimental’’ data for the incorrect inverse problem
(0.6 \ xn \ 1.5).

In the case (1.5 \ xn \ 2) the inverse problem is essentially incorrect and the
results of the solutions are shown in Table 28.

Fig. 23 Horizontals of the
least-squares function Q and
the iteration steps for
0 \ xn \ 0.6dx: open circle
b0 = [0.85,–1.4]; filled circle
b = [1, –1]; asterisk b* =
[0.9989, –0.9945]

Fig. 24 Mathematical model
and ‘‘experimental’’ data
(0 \ xn \ 0.6): circles ŷn;
values of y with a maximum
‘‘experimental’’ error of
±5%; solid line �y ¼
1� exp �5xð Þ and dashed
liney = 0.9989 -
0.9945 exp (-5x) coincide
practically
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In Table 28 it is seen that the differences between the exact and the calculated
parameter values are very large. The differences between the calculated parameter
values for different experimental data sets (1.5 \ xn \ 2) are very large too and
show that the inverse problem is essentially incorrect. Figure 31 shows that in this
case the least-squares function does not have a minimum. A comparison between the
mathematical model and the ‘‘experimental’’ data in this case is shown in Fig. 32.

Very often the regression models have many parameters. As an example of a
three-parameter model we can consider

y ¼ b1 þ b2x� b3 exp �5xð Þ; ð10:11Þ

where the exact parameter values are b1 = 0, b2 = 1, b3 = -1. The ‘‘experi-
mental’’ data were obtained from (8.10.4), where yn are obtained from (8.10.5).

Fig. 25 The horizontals of
the least-squares function
Q and the iteration steps for
0.6 \ xn \ 0.8: open circle
b0 = [0.85,–1.4]; filled circle
b = [1, –1]; asterisk b* =
[1.0109, –1.3441]

Fig. 26 The horizontals of
the least-squares function
Q and the iteration steps for
0.8 \ xn \ 1: open circle b0

= [0.85, –1.4]; filled circle b =
[1, –1]; asterisk b* = [1.0050,
–1.3982]
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The solutions of the inverse problem for different experimental data sets are shown
in Table 29.

In this case we must analyze the parameter significance and the model
adequacy.

10.2 Statistical Analysis of the Parameter Significance
and Model Adequacy of the Regression Models

Statistical analysis of the parameter significance [21] in the case when the inverse
matrix is not diagonal is very hard. That is why the SROV procedure [47] is used

Fig. 27 The horizontals of
the least-squares function
Q and the iteration steps for
1 \ xn \ 1.5: open circle b0

= [0.85, –1.4]; filled circle b =
[1, –1]; asterisk b* = [1.0500,
–1.3997]

Fig. 28 Mathematical model
and ‘‘experimental’’ data
(0.6 \ xn \ 0.8): circles ŷn;
values of y with a maximum
‘‘experimental’’ error of
±5%; solid line
�y ¼ 1� exp �5xð Þ;dashed
line y = 1.0109 -

1.3441exp( - 5x)
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[25, 26], where the relative errors are used because the changes of the objective
function values are in a very large interval.

The results of the statistical analysis of the adequacy of two- and three-
parameter models are shown in Tables 30 and 31.

The results in Figs. 30 and 32 and in Table 30 show that some of the models
(1 \ xn \ 1.5 and 1.5 \ xn \ 2) are not adequate because the experimental error
is very small .

The results in the cases when the experimental error is ±10% are shown in
Table 32. Comparison of Table 27 and Table 28 shows that the accuracy
parameter of identification is the same, but the models are adequate (see Table 32).

The comparison of the variance of model error of both the two-parameter model
and the three-parameter model (see Tables 30, 31) does not provide the possibility
to analyze the parameter significance.

Fig. 29 Mathematical model
and ‘‘experimental’’ data
(0.8 \ xn \ 1): circles ŷn;
values of y with a maximum
‘‘experimental’’ error of
±5%; solid line
�y ¼ 1� exp �5xð Þ;dashed
liney = 1.0050 -
1.3982exp(-5x)

Fig. 30 Mathematical model
and ‘‘experimental’’ data
(1 \ xn \ 1.5): circles ŷn;
values of y with a maximum
‘‘experimental’’ error of
±5%; solid line
�y ¼ 1� exp �5xð Þ;dashed
liney = 1.0500 -
1.3997exp(-5x)
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Fig. 31 The horizontals of
the least-squares functions
Q and the iteration steps for
1.5 \ xn \ 2: open circle b0

= [0.85, –1.4]; filled circle b =
[1, –1]; asterisk b* = [1.0500,
–1.4000]

Table 28 Essentially incorrect problem solutions

b0 ¼ 0:1; N ¼ 50; b0
1 ¼ 0:85; b0

2 ¼ �1:4; �b1 ¼ 1; �b2 ¼ �1

n Data no. b1
min b2

min b1
* b2

* c i �A

151–200 1 1.0004 –37.7863 1.0500 –1.4000 1 3 6.97.10-5

2 0.9870 69.2971 0.9500 –1.4000 1 5

Fig. 32 Mathematical model
and ‘‘experimental’’ data
(1.5 \ xn \ 2): circles ŷn;
values of y with a maximum
‘‘experimental’’ error of
±5%; solid line
�y ¼ 1� exp �5xð Þdashed line
y = 1.05 - 1.4 exp (- 5x)
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Table 29 Solutions of the three-parameter problem

N ¼ 50;b ¼ 0:01; b0
1 ¼ 0:5; b0

2 ¼ 0:85; b0
3 ¼ �1:4; �b1 ¼ 0; �b2 ¼ 1; �b3 ¼ �1

n Data no. c b1
* b2

* b3
* i

1–60 1 0.5 0.0196 0.9607 –1.0203 327
2 1 0.1459 0.7142 –1.1926 100

61–80 1 0.2 0.0591 0.9334 –1.4731 758
2 0.2 0.1369 0.8204 –1.4452 594

81–100 1 0.2 0.0044 1.0068 –1.4403 1415
2 0.2 0.1944 0.7859 –1.4153 454

101–150 1 0.2 –0.0211 1.0141 –1.4103 555
2 0.2 0.0887 0.9250 –1.4075 439

151–200 1 0.2 –0.0495 1.0246 –1.4011 1135
2 0.2 0.1694 0.8987 –1.4006 752

Table 30 Adequacy of the two-parameter model

Dŷ ¼ 
5% ; Se
2ð Þ ¼ 0:0283; Ft

2ð Þ ¼ 2:8111

n x Data no. b1
* b2

* F(2) S(2)

60–80 0.7 1 1.0109 –1.3441 1.1361 0.0302
2 0.9820 –0.7050 1.0361 0.0288

80–100 0.9 1 1.0050 –1.3982 1.1401 0.0302
2 0.9874 –0.5045 1.0654 0.0292

100–150 1.3 1 1.0500 –1.3997 4.3717 0.0592
2 0.9500 –1.4000 4.3424 0.0590

150–200 1.8 1 1.0500 –1.4000 4.4571 0.0597
2 0.9500 –1.4000 4.1995 0.0580

Table 31 Adequacy of the three-parameter model

Dŷ ¼ 
5% ; Se
3ð Þ ¼ 0:0283; Ft

3ð Þ ¼ 2:8148

n x Data no. b1
* b2

* b3
* F(3) S(3)

60–80 0.7 1 0.0591 0.9334 –1.4731 1.1571 0.0304
2 0.1369 0.8204 –1.4452 1.0598 0.0291

80–100 0.9 1 0.0044 1.0068 –1.4403 1.2665 0.0318
2 0.1944 0.7859 –1.4153 1.0872 0.0295

100–150 1.3 1 -0.0211 1.0141 –1.4103 1.1497 0.0303
2 0.0887 0.9250 –1.4075 1.0554 0.0291

150–200 1.8 1 –0.0495 1.0246 –1.4011 1.1498 0.0304
2 0.1694 0.8987 –1.4006 1.0551 0.0291
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10.3 Clapeyron and Antoan Models

Let us consider experimental data [46] for the temperature dependence of the
vapor pressure of ethane. As mathematical models we may use linear or nonlinear
forms of the Clapeyron and

Antoan models:

y ¼ ln P ¼ b1 þ
b2

T
; P ¼ exp b1 þ

b2

T

� �
;

y ¼ ln P ¼ b1 þ
b2

b3 þ T
; P ¼ exp b1 þ

b2

b3 þ T

� �
; ð10:12Þ

where P (mmHg) is the vapor pressure and T (K) is the temperature. The parameter
identification results, obtained with the help of the method presented [24] and a
comparison (the last lines in Tables (33, 34, 35, 36) with the conventional method
[47] are shown in Tables 33, 34, 35 and 36. The solutions were obtained for
different initial parameter values.

The calculation of the variance S for different cases shows that increase of the
nonlinearity (for the model parameters) of the model leads to the inverse problem
incorrectness (increase of the model error variance). In the cases when we do not
have different experimental data for one temperature, it is not possible to obtain
the experimental error variance and to analyze the model adequacy. That is why
we must use model suitability (see Sect. 5.3) on the basis of the set correlation
coefficientR (5.3.115). The model is suitable if R & 1.

Table 32 Adequacy of the two-parameter model (error ±10%)

Dŷ ¼ 
10% ; Se
2ð Þ ¼ 0:0564; Ft

2ð Þ ¼ 2:8111

n x Data no. b1
* b2

* F(2) S(2)

100–150 1.3 1 1.0500 –1.3997 2.0087 0.0800
2 0.9500 –1.3997 1.8498 0.0768

150–200 1.8 1 1.0500 –1.4000 2.0315 0.0804
2 0.9500 –1.4000 1.8115 0.0760

Table 33 Linear form of the Clapeyron model

y ¼ ln P ¼ b1 þ b2
T

b0 c b1
0 b2

0 b1
* b2

* S R F

0.01 5 22 –1,915 21.801 –1,915.2 0.058672 0.9995 1.07249105

0.01 10 22 –1,916 21.840 –1,916.0 0.061541 0.9945 9.53669104

21.815 –1,919.5 0.055669 0.9995 1.08519105
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Another possibility is to use the variance ratio F (5.3.116), where the condition
F [ F(a, m0, m1) shows that the coefficient R is significant and the model may be
used for simulation. In this inequality F(a, m0, m1) is the tabulated value of the
Fisher distribution, a—level of significance.

Tables 33, 34, 35 and 36 show values of R and F for all cases. These results
show that the models are suitable.

10.4 Incorrectness Criterion

The inverse problem solutions obtained using different experimental data sets
permit us to obtain an incorrectness criterion [25]. For this purpose, after solution
of the identification problem, the parameter values b* obtained may be put into the
model equation:

Table 34 Nonlinear form of the Clapeyron models

P ¼ exp b1 þ b2
T

� �
b0 c b1

0 b2
0 b1

* b2
* S R F

0.01 6 21.80 –1,915 21.70 –1,915 0.16530 0.99939 8.59329104

0.1 3 21.84 –1,916 21.84 –1,916 0.11798 0.98066 2.63639103

0.1 10 22.00 –1,920 22.00 –1,920 0.18904 0.92448 6.17469102

22.00 –1920 21.3205 –1,811 0.19806 0.99980 2.92579106

Table 35 Linear form of the Antoan model

y ¼ ln P ¼ b1 þ b2

b3þT

b0 c b1
0 b2

0 b3
0 b1

* b2
* b3

* S R F

0.01 5 21.55 –1,935 9 21.885 –1,935.6 0.2763 0.0519 0.9995 5.0739104

0.1 5 21.55 –1,935 9 21.530 –1,935.1 7.9571 0.1297 0.9944 4.5849103

0.01 5 50 –2,000 0 22.400 –2,000.1 0.0607 0.0295 0.9981 1.3539104

50 –2000 0 20.790 –1,574.1 –14.18 8.5910-3 0.9999 6.6899105

Table 36 Nonlinear form of the Antoan model

P ¼ exp b1 þ b2

b3þT


 �

b0 c b1
0 b2

0 b3
0 b1

* b2
* b3

* S R F

0.01 0.5 21.88 -1,935.6 0.2763 21.744 -1,935.6 0.5443 0.2001 0.9994 4.5179104

0.01 0.8 21.53 -1,935.1 7.9571 21.570 -1,935.6 8.1732 0.2715 0.9999 1.2799106

0.01 0.5 22.40 -2,000.1 0.0607 21.975 -2,000.1 0.2073 1.0138 0.6876 46.644
0.01 10 21.55 -1,935.6 9 21.540 -1,935.6 8.9998 0.2874 0.9999 3.889105

21.55 -1,935.6 9 21.772 -2,061.1 17.728 0.3440 0.9999 3.2349106
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y ¼ f b*; xð Þ; ð10:13Þ

where x is vector of the independent variables. If we put (10.13) into (10.4), it is
possible to obtain different (four to five) experimental data sets using different sets
of random numbers.

Inverse problem solutions for different models using different (five) experi-
mental data sets (different random numbers sets in 10.4) are shown in Tables 37,
38, 39, 40, 41 and 42. The results obtained show that increase of the inverse
problem incorrectness leads to increase of the differences between the inverse
problem solutions, i.e., these differences are a criterion for the identification
problem incorrectness.

10.5 Increase of the Exactness of the Identification Problem
Solution

In many cases (see, e.g., 10.12) the parameter values b* obtained are very large. A
scaling of the model parameters leads to an increase of the exactness the identi-
fication problem solution. Comparison results for models (8.10.12) are shown in
Tables 43 and 44. The model error variance values show the scale effect. The last
lines in Tables 43 and 44 show that the scaling of the objective function and

Table 37 Two-parameter model

y ¼ 1� b1exp �b2xnð Þ; b0 ¼ 0:01; b0
1 ¼ 1:1; b0

2 ¼ 6;Dŷ ¼ 
5%

b1 ¼ 1:0025; b2 ¼ 5:0674

n Data no. b1
* b2

* c i

1–30 1 1.0188 5.2191 0.9 136
2 1.0167 5.1762 0.9 132
3 1.0032 5.1133 0.9 148
4 1.0220 5.2217 0.9 120
5 1.0136 5.1107 0.9 141

b1 = 1.1797, b2 = 5.4666
31–65 1 1.5104 6.1650 0.05 503

2 1.2751 5.8012 0.05 456
3 0.9009 4.8649 0.05 956
4 1.7406 6.4392 0.05 648
5 1.2914 5.7424 0.05 482

b1 = 2.1720, b2 = 6.1731
66–100 1 4.7330 7.3917 5 113

2 4.3706 7.7028 5 256

3 0.3071 3.8643 5 175
4 6.1273 7.3698 5 148
5 2.9416 6.7350 5 144
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Table 38 Two-parameter model

y = b1xn ? b2exp( - 5xn); b0 ¼ 0:01; b0
1 ¼ 0:85; b0

2 ¼ �1:4; Dŷ ¼ 
5%

b1 = 0.9989, b2 = - 0.9945

n Data no. b1
* b2

* c i

1–60 1 1.0009 –1.0025 0.2 93
2 0.9976 –0.9929 0.2 88
3 1.0053 –0.9960 0.2 90
4 1.0005 –0.9880 0.2 90
5 0.9990 –0.9923 0.2 90

y = b1xn ? b2exp( - 5xn) b0 ¼ 0:1; b0
1 ¼ 0:85; b0

2 ¼ �1:4; Dŷ ¼ 
5%

b1 = 0.95022, b2 = - 1.3308
61–150 1 0.8518 –1.3356 1.5 63

2 1.0496 –1.3554 1.5 267
3 1.0500 –1.3985 1.5 3
4 1.0500 –1.3992 1.5 3
5 1.0487 –1.3348 1.5 210

Table 39 Clapeyron model

y ¼ LP ¼ b1 þ b2
xn

; b0
1 ¼ 22 ; b0

2 ¼ �1915 ) b1 ¼ 21:801 ; b2 ¼ �1915:2
92 B xn B 304; n = 107

b1
0 = 22, b2

0 = - 1915, c = 10, b0 = 0.01 b1
0 = 15, b2

0 = - 1500, c = 3, b0 = 1

Data no. b1
* b2

* i Data no. b1
* b2

* i

1 21.760 –1,915 11 6 23 –1,500 8
2 21.840 –1,915 9 7 23 –1,500 8
3 21.760 –1,915 11 8 23 –1,500 8
4 21.840 –1,915 9 9 23 –1,500 8
5 21.840 –1,915 9 10 23 –1,500 8

Table 40 Clapeyron models

y ¼ exp b1 þ b2
xn


 �
; b0

1 ¼ 21:801 ; b0
2 ¼ �1915:2 ) b1 ¼ 21:7 ; b2 ¼ �1915:2

92� xn� 304 ; n ¼ 107

b0
1 ¼ 21:801 ; b0

2 ¼ �1915:2 ; c ¼ 6 ;b0 ¼ 0:01 b0
1 ¼ 15 ; b0

2 ¼ �1500 ; c ¼ 6 ; b0 ¼ 0:01

Data no. b1
* b2

* i Data no. b1
* b2

* i

1 21.721 –1,915.2 8 6 20.4 –1,500 25
2 21.721 –1,915.2 8 7 20.4 –1,500 25
3 21.721 –1,915.2 8 8 20.4 –1,500 25
4 21.721 –1,915.2 8 9 20.4 –1,500 25
5 21.721 –1,915.2 8 10 20.4 –1,500 25
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independent variable leads to an additional increase of the solution exactness (see
variance values). The influence of the initial iterative step value b0 on the
exactness of the identification problem solution is very big. Results where a
decrease of the b0 values leads to a decrease of the model error variance are shown
in Tables 43 and 44.

10.6 Incomplete Experimental Data Cases

The use of the hierarchical approach [34] to solve multiequation models is
impossible in the case of incomplete experimental data, i.e., the experimental data
for concentration–time dependences of some reagents or reaction products are
missing. An example of this case is modeling ofmicroalgae growth kinetics [72].

Microalgae are a natural source of high-value compounds for the pharmaceu-
tical and food industries, such as bioactive compounds, vitamins, pigments, and
fatty acids [48]. In addition, in the long term, algal culture may be useful for

Table 41 Antoan model

y ¼ LP ¼ b1 þ b2

xnþb3
; b0

1 ¼ 21:55; b0
2 ¼ �1935; b0

3 ¼ 9) b1 ¼ 21:725; b2 ¼ �1935:5;

b3 ¼ 3:007892 B xn B 304; n = 107

b0
1 ¼ 21:55; b0

2 ¼ �1935; b0
3 ¼ 9;

c ¼ 5;b0 ¼ 0:01

b0
1 ¼ 15; b0

2 ¼ �1500; b0
3 ¼ 9;

c ¼ 5;b0 ¼ 0:01

Data no. b1
* b2

* b3
* i Data no. b1

* b2
* b3

* i

1 21.732 –1,935.9 2.9160 581 6 20.362 –1,505.4 –14.499 1814
2 21.814 –1,935.9 2.5890 634 7 20.487 –1,505.6 –15.246 1718
3 21.756 –1,935.8 3.0162 605 8 20.465 –1,505.1 –14.869 924
4 21.753 –1,935.7 2.9115 554 9 20.401 –1,504.7 –14.448 762
5 21.648 –1,935.6 3.7792 608 10 20.388 –1,504.8 –14.266 825

Table 42 Antoan model

y ¼ exp b1 þ b2

xnþb3


 �
; b0

1 ¼ 21:725; b0
2 ¼ �1935:5; b0

3 ¼ 3:0078) b1 ¼ 21:681;

b2 ¼ �1935:5; b3 ¼ 3:195692� xn� 304; n ¼ 107

b0
1 ¼ 21:725; b0

2 ¼ �1935:5; b0
3 ¼ 3:0078;

c ¼ 0:5;b0 ¼ 0:01

b0
1 ¼ 15; b0

2 ¼ �1500; b0
3 ¼ 9;

c ¼ 15; b0 ¼ 0:1

Data no. b1
* b2

* b3
* i Data no. b1

* b2
* b3

* i

1 21.690 –1,935.5 3.0070 9 6 21.400 –1,500 9.1099 10
2 21.700 –1,935.5 2.9348 1477 7 21.400 –1,500 9.1101 10
3 21.700 –1,935.5 2.8877 2530 8 21.400 –1,500 9.1100 10
4 21.680 –1,935.5 3.0930 2718 9 21.400 –1,500 9.1099 10
5 21.700 –1,935.5 2.9054 2788 10 21.400 –1,500 9.1100 10
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production of clean fuels. Photosynthetic algal culture is carried out in photobi-
oreactors that may be illuminated naturally (outdoors) or artificially (indoors). The
availability and the intensity of light are the major factors affecting the produc-
tivity of photosynthetic cultures [49].

Photobioreactors using algae, plants cells, or photosynthetic bacteria have
received considerable attention from biochemical engineers. Industry is presently
engaged in developing new products and testing a new generation of algae-derived
natural products [50]. The algae near the irradiation source are exposed to a high
photon flux density, which enhances their growth rate. The cells at the core of the
reactor receive less light as a result of mutual shading and will show a lower
growth rate [51–54].

Table 43 Clapeyron models

Model b0 c b1
0 b2

0 b1
* b2

* i S

yn ¼ b1 þ b2
xn

0.1 30 –60 –5,000 37.954 –4,916.7 2712 5.6290

yn ¼ 10B1 þ 1;000B2
xn

0.1 44 –6 –5 1.1566 –1.3772 15 2.7860

yn ¼ exp b1 þ b2
xn


 �
0.1 8 19 –2,400 23 –2,400 8 11.039

yn ¼ exp 10B1 þ 1;000B2
xn


 �
0.1 5 1.9 –2.4 2.6537 –2.1317 5 0.97665

gn ¼ exp b1 þ b2
nn


 �

gn ¼ yn=10; nn ¼ xn=100 0.1 18 16 –25 22.039 –22.881 10 0.73217

Table 44 Antoan models

yn ¼ b1 þ b2

xnþb3

b0 c b1
0 b2

0 b3
0 b1

* b2
* b3

* i S

0.01 2 –60 –5,000 9 28.606 –4,982.1 97.815 6,210 0.12975

yn ¼ 10B1 þ 1;000B2

xnþb3

b0 c b1
0 b2

0 b3
0 b1

* b2
* b3

* i S
0.01 10 –6 –5 9 2.3065 –2.2419 9.4647 4,688 0.058769

yn ¼ exp b1 þ b2

xnþb3


 �

b0 c b1
0 b2

0 b3
0 b1

* b2
* b3

* i S
0.01 1 19 –2400 9 22.907 –2,400 17.001 8,165 0.53226

yn ¼ exp 10B1 þ 1;000B2

xnþb3


 �

b0 c b1
0 b2

0 b3
0 b1

* b2
* b3

* i S
0.01 0.05 1.9 –2.4 9 2.2003 –2.0696 9.0044 1,508 0.20390

gn ¼ exp b1 þ b2

nnþb3


 �
; gn ¼ yn=10; nn ¼ xn=100

b0 c b1
0 b2

0 b3
0 b1

* b2
* b3

* i S
0.01 0.5 16 –25 9 20.197 –25.001 0.46693 1,832 0.43947
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The process of photosynthesis can be divided into light and carbon-fixation
reactions because they are physically separated [55, 56]. Photosynthesis is obvi-
ously linked to the availability of CO2.

Although several cell-based models of photosynthesis have been proposed
[57–66], they consider only light availability. These models use classic enzyme
kinetics and assume slow enzyme-controlled reactions dependent only on light to
account for the carbon-fixation reactions [57, 60, 63, 66] or assume that photosyn-
thesis rates are mainly related to light intensity [61, 63, 65]. Other models recognize
the CO2 dependence but ignore it in the model [62] or assume that carbon fixation is
proportional to the light intensity and the available carbon [33, 34].

The rate of biomass concentration increase is determined by the photon flux
intensity and interphase mass transfer rate of CO2. If the photon flux is constant,
the process rate depends on the CO2 concentration in the liquid phase, i.e., on the
interphase mass transfer rate in the gas–liquid system, and the modeling of the
photosynthetic processes in an airlift reactor will be presented.

Let us consider the airlift reactor for photosynthetic processes where the
interphase mass transfer of CO2 is realized in the riser zone and the photochemical
reaction is in the downcomer zone. The main particularity in these cases is the low
rate of the photosynthetic processes. The theoretical analysis will be made on the
basis of the diffusion model of the airlift reactor [68, 69]. In the case of a non-
stationary process, the airlift reactor can be considered as a circulation tubular
reactor, where the CO2 distribution in the liquid phase is determined by the
convection–diffusion equation with a volume reaction:

oc

ot
þ u

oc

ox
¼ D

o2c

ox2
þ 1

r

oc

or
þ o2c

or2

� �
� kc; t ¼ 0; c ¼ c0; r ¼ 0;

oc

or
¼ 0;

r ¼ r0;
oc

or
¼ 0;

x ¼ 0; c t; r; 0ð Þ ¼ �c t; lð Þ; �u�c t; lð Þ ¼ u�c t; lð Þ � D
oc

ox
; ð10:14Þ

where u(r) and c(x, r, t) are the velocity and the concentration distribution of CO2

in the liquid phase in the reactor, �uand �c are the average velocity and concentration
of CO2 at the entrance (exit) of the reactor, D is diffusivity, k is the coefficient of
the reaction rate, l is the height of the liquid column in the reactor, r0 is the reactor
radius, and t is time.

Problem (8.10.14) is analyzed [72] in dimensionless form using the charac-
teristic scale of the process

t ¼ t0T ; x ¼ lX; r ¼ r0R; u ¼ �uU; c ¼ c0C; �c ¼ c0 �C: ð10:15Þ

Substitution of (8.10.15) into (8.10.14) leads to

oC

oT
þ �ut0

l
u
oC

oX
¼ �ut0

l

1
Pe

o2C

oX2
þ l2

r2
0

1
R

oC

oR
þ o2C

oR2

� �� �
� kt0C;
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T ¼ 0; C ¼ 1; R ¼ 0;
oC

oR
¼ 0; R ¼ 1;

oC

oR
¼ 0;

X ¼ 0; C T;R; 0ð Þ ¼ �C T ; 1ð Þ; U� 1ð Þ�C T ; 1ð Þ ¼ 1
Pe

oC

oX
; ð10:16Þ

where

Pe ¼ �u l

D
: ð10:17Þ

The process is nonstationary as a result of the recirculation (see the boundary
conditions at x = 0), and depends on the coefficient of the reaction rate (k), i.e., for
the characteristic time we can use

t0 ¼
1
k
: ð10:18Þ

Substitution of (8.10.18) into (8.10.16) leads to

d
oC

oT
þ C

� �
¼ 1

Pe

o2C

oX2
þ l2

r2
0

1
R

oC

oR
þ o2C

oR2

� �� �
� u

oC

oX
; ð10:19Þ

where d ¼ kl
�u is a small parameter (d 	 1) in cases of a small coefficient of the

reaction rate (k 	 1). That gives us the possibility to find the solution of (8.10.19)
in the form

C T ;R;Xð Þ ¼ C0 R;Xð Þ þ Cl Tð Þ ð10:20Þ

and from (8.10.19) and (8.10.20) we obtain

d
oC1

oT
þ C0 þ Cl

� �
¼ 1

Pe

o2C0

oX2
þ l2

r2
0

1
R

oC0

oR
þ o2C0

oR2

� �� �
� u

oC0

oX
;

T ¼ 0; C0 ¼ 0; Cl ¼ 1; R ¼ 0;
oC0

oR
¼ 0; R ¼ 1;

oC0

oR
¼ 0;

X ¼ 0; C0 R; 0ð Þ ¼ C0 1ð Þ; U � 1ð Þ �C0 1ð Þ þ �Cl 1ð Þð Þ ¼ 1
Pe

oC0

oX
: ð10:21Þ

The solution for C0(R, X) can be obtained from (8.10.21) in the zeroth
approximation of parameter d:

u
oC0

oX
¼ 1

Pe

o2C0

oX2
þ l2

r2
0

1
R

oC0

oR
þ o2C0

oR2

� �� �
;

X ¼ 0; C0 R; 0ð Þ ¼ 0;
oC0

oX
¼ 0; R ¼ 0;

oC0

oX
¼ 0; R ¼ 1;

oC0

oX
¼ 0:

ð10:22Þ
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The boundary conditions in (8.10.22) at X = 0 follow from the absence of a
volume reaction oC0

oX ¼ 0
� �

and the initial condition at T = 0(C0 = 0). Under these
conditions the solution of (8.10.22) is C0(R, X) : 0, which permits us to obtain
Cl(T):

oCl

oT
¼ �Cl; T ¼ 0; Cl ¼ 1; Cl ¼ e�T : ð10:23Þ

This result shows that for slow volume reactions the process rate is determined
by the kinetics and the column (airlift) reactor exercises the function of an
apparatus with an ideal mixing regime. Thus, the photosynthetic process model in
an airlift reactor is reduced to a model of photosynthesis kinetics.

The experimental data for increasing the microalgae (Pophyridium sp.) con-
centration the time (the points in Figs. 33, 35, 37) lead to the hypothesis that the
growth mechanism comprises two processes whose rates level off with time, and
the concentration of the microalgae becomes steady.

The kinetic equation corresponding to this mechanism has the form

dcX

dt
¼ lmax

c

k1 þ c
cX � k0cX; ð10:24Þ

where cX ¼ cX tð Þ; c ¼ c tð Þ:
Porphyridium sp. was grown in artificial seawater [70]. Air enriched with

w = 3% CO2 was sparged into the reactor. A bank of fluorescent lamps was used
as an illumination source giving a photon flux density 250 lEm-2s-1. All
experiments were carried out in a room with controlled temperature (23–25�C).

The cultivation of Porphyridium sp. experiments were carried out in a labo-
ratory tubular device in an airlift photobioreactor of 13-dm3 volume [71] in
conditions close to the ideal mixing regime in the liquid phase.

Fig. 33 Comparison of the
calculated values and experi-
mental data for biomass
concentration
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The dependence of the change of CO2 concentration with time c(t) on the
balance of the rate of CO2 consumption for biomass growth and the interphase
mass transfer rate in the gas phase is

dc

dt
¼ Q� Axlmax

c

k1 þ c
cX: ð10:25Þ

The volumetric mass transfer rate Q can be determined from the average CO2

concentration in the gas phase of the input and output from the column:

Q ¼ u

h
c0;gas � ch;gas

� �
: ð10:26Þ

The overall mass transfer rate Q depends on the local mass transfer rate q in the
column:

Q ¼ 1
h

Zh

0

qdcX; q ¼ k cgas � kHc
� �

: ð10:27Þ

Assuming that the CO2 concentration in the gas phase changes linearly in the
column from cgas(0, t) = c0,gas to cgas(h, t) = ch,gas,

cgas ¼ c0;gas �
v
h

c0;gas � ch;gas

� �
: ð10:28Þ

Putting cgas in (8.10.27) leads to

Q ¼ k
c0;gas þ ch;gas

2
� kHc

� �
: ð10:29Þ

The expressions for Q (8.10.26, 8.10.29) allow determination of the average
CO2 concentration in the gas outlet:

ch;gas ¼
u
h� k

2

� �
c0;gas þ kkHc
u
hþ

k
2

: ð10:30Þ

The process model is represented by (8.10.24–8.10.26) and (8.10.30) with the
following boundary conditions:

t ¼ 0; cX ¼ cX0 ; c ¼ c0; ð10:31Þ

where cX0 is the initial biomass concentration and c0 = c0,gas/kH if the process
starts with the start of illumination.

This model is characterized by four parameters that can be obtained from the
experimental data.

A previous study [33, 34] showed that in cases of models with many equations
and parameters the least-squares function is frequently multiextremal or of ravine
type. Therefore, a very good initial parameter value for determining the
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coefficients is needed. For that purpose the parameters were obtained consecu-
tively in the separate equations, where the unknown functions were replaced by for
a polynomial approximation of the experimental data. In this case the substitution
is difficult, because there are published experimental data for the biomass con-
centration only.

As already demonstrated [33, 34], the experimental data for the biomass con-
centration will be represented by the polynomial approximation:

cX tð Þ ¼ P tð Þ; dcX

dt
¼ dP

dt
¼ P0 tð Þ; A tð Þ ¼ P0 tð Þ

P tð Þ : ð10:32Þ

Owing to the lack of experimental data for the concentration, c(t) will be
substituted by the ‘‘experimental data’’ ĉ tð Þ that are obtained from (8.10.24) after
using (8.10.32):

ĉ tð Þ ¼ k1 k0 þ A tð Þ½ �
lmax � k0 � A tð Þ : ð10:33Þ

The ‘‘experimental data’’ ĉ tð Þ are obtained from the experimental data for the
biomass (microalgae), but they are conditional because they depends on several
quantities lmax, k0, k1 that are the subject of determination.

For identification of the model parameters the least-squares function must be
used:

F ¼
XN

i¼1

cX tið Þ � cXexp
tið Þ

� 	2 þ a
XN

i¼1

c tið Þ � ĉ tið Þ½ �2; ð10:34Þ

where ti(i = 1, …, N) are the times at which the biomass is quantified and a ¼
10-100 is a specific weight that compensates for the differences in the orders of
magnitude of the two sums.

To determine the function F it is necessary to the solve the model equations
(8.10.24), (8.10.25), (8.10.29), and (8.10.30) at the given quantity values
lmax, k0, k1.

The boundary conditions (8.10.31) must be replaced with

t ¼ 0; cX0 ¼ cXexp;1
; c0 ¼

k1A 0ð Þ
lmax � A 0ð Þ ; ð10:35Þ

where it is supposed that at the beginning of the process the effect of the second
term in (8.10.24), i.e., k0, can be ignored.

The experimental data for the biomass show that for t� tN; cX ¼ cXN
; dcX

dt ¼
0 and from (8.10.24) it follows that

cN ¼ c tNð Þ ¼
k0k1

lmax � k0
¼ const: ð10:36Þ
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Under this condition t� tNð Þ dc
dt ¼ 0; i.e.,

u

h
c0;gas � ch;gas tNð Þ
� �

� Axlmax

cN

k1 þ cN

cXN
¼ 0;

ch;gas tNð Þ ¼
c0;gas

u
h� k

2

� �
þ kkHcN

u
hþ

k
2

: ð10:37Þ

Substitution of (10.36) into (10.37) and (10.38) and subsequently of (10.38) into
(10.37) leads to an equation that represents the relationship between the param-
eters lmax, k, k0, k1.

The latter enables the determination of k as a function of the other quantities:

k ¼ 2uAxcXN
k0 lmax � k0ð Þ

2u c0;gaslmax � c0;gask0 � kHk0k1
� �

� Axh cXN
k0 lmax � k0ð Þ

: ð10:38Þ

Substitution of (8.10.38) into (8.10.29) leads to a model with three parameters
and the least-squares function (8.10.34) depends on the quantities lmax, k0, k1.

The determination of the model parameters is made [72] by minimization of
(8.10.34) using the procedure fminsearch in MATLAB 6.5 and the results obtained
are

lmax ¼ 0:7386 h�1; k ¼ 2:5 h�1; k0 ¼ 0:01095 h�1;

k1 ¼ 0:2715 kg m�3;F ¼ 0:812:
ð10:39Þ

A test for the correctness of the inverse identification problem is made [72]
using different sets of experimental data.

The coefficient k can be obtained more accurately by minimization of F as a
function of four parameters using (8.10.34) as a zeroth approximation. The
result is

lmax ¼ 0:9314 h�1; k ¼ 2:742 h�1; k0 ¼ 0:0113 h�1; k1 ¼ 0:0642 kg m�3;F
¼ 0:721;

ð10:40Þ

i.e., this solution can be regarded as more precise given the value of F being less
than in (8.10.39).

The gas velocity is the most important variable in pneumatic reactor operation.
The amount of gas supplied to the reactor strongly influences the mixing of the
medium, the distribution of cells in the reactor, availability of nutrient to cells, and
absorption of CO2. Increased gas velocity improves mixing and therefore mass
transfer [49, 67].

Intensification of growth with increasing gas velocity can be explained by
improvement of mass transfer in the reactor. The interphase mass transfer is
obviously very important since it is responsible for the provision of the CO2

required as a building block for the cells’ growth. This step is relatively fast owing
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to the high solubility of CO2 in the gas used. Within the liquid itself, far from the
gas–liquid interface, two mechanisms of mass transfer can be distinguished. The
first is convective transfer that takes place throughout the reactor and is related to
the total liquid circulation and macromixing. This is a function of the reactor
design, the physical properties of the medium, and the gas flow rate. The second is
the transfer from the bulk of the liquid towards the suspended cells [49]. Liquid–
cell mass transfer is influenced by the liquid properties and fluid dynamics, and
also depends on cell aggregation.

Comparisons between the model, with calculated parameters (see Table 45),
and the experimental data for different superficial gas velocities are shown in
Figs. 33, 34, 35, 36, 37 and 38. Table 45 shows the model parameter values and
the values of the least-squares function (F).

Assuming that the gas velocity does not essentially influence the coefficients
lmax, k0, k1, we can calculate their average values �lmax; k0; k1 from the three given
superficial gas velocities. Then with use of the averages we can minimize the least-
squares function (F) to determine the mass transfer coefficient �kð Þ:

�lmax ¼ 0:9749 h�1; k0 ¼ 0:0104 h�1; k1 ¼ 0:041 kg m�3: ð10:41Þ

Table 45 The model parameter values and the values of the least-squares function for different
superficial gas velocities

Model parameter values
Superficial gas velocity (m h-1)

lmax;

h�1

k0;

h�1

k1;

kg m�3

k,

h�1

F

u = 1.944 1.0185 0.0094 0.0177 3.7282 0.281
u = 5.76 0.93139 0.01127 0.06419 2.7417 0.7213
u = 11.88 0.45007 0.00805 0.7758 1.6004 1.304

Fig. 34 Comparison of the
calculated values and experi-
mental data for CO2 concen-
tration in the liquid phase
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Fig. 37 Comparison of the
calculated values and experi-
mental data for biomass
concentration

Fig. 35 Comparison of the
calculated values and experi-
mental data for biomass
concentration

Fig. 36 Comparison of the
calculated values and experi-
mental data for CO2 concen-
tration in the liquid phase
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The results obtained show a dependence of the mass transfer coefficient on the
superficial gas velocity:

k ¼ 5:286u�0:3811: ð10:42Þ

The ‘‘experimental data’’ for c(t) are obtained from (8.10.33) with the param-
eter values given in Table 45.

The proposed parameter identification method offers a possibility for finding a
solution to a problem connected with insufficient experimental information.

The comparison of the theoretical and experimental data in Figs. 33, 34, 35, 36,
37 and 38 shows that the accuracy of the solution could be increased provided
more detailed experimental data for the beginning of the process (0 B t B 24 h)
are available.

The good agreement between the model and the experimental data confirms the
hypothesis that the growth mechanism comprises two processes whose rates level
off with time, and the concentration of biomass becomes steady. On the basis of
the existence of a relationship between the concentration of biomass and the CJ2

concentration in the liquid phase, it is demonstrated that the comparison of the
theoretical and experimental data in Figs. 33, 34, 35, 36, 37 and 38 shows that the
accuracy of the solution could be increased provided more detailed experimental
data for the substitution of missing experimental data with a ‘‘provisional exper-
imental data set’’ are available The last set depends on the model parameters.

The method presented is applicable for different photosynthetic processes.
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Optimization

The optimization of chemical engineering processes addresses the task of
obtaining the best results under given conditions, i.e., the maximum (minimum)
value of the target (object) function of the process. As a rule, the optimization
methods are methods for function minimization because in the opposite case a
change of the sign of the function is enough. On the other hand, the main problem
of the identification of the model parameters is the minimization of the least-
squares function. In all these cases, the problem is to minimize a function when the
independent variables satisfy different equality and inequality constraints:

K ¼ f ðx1; x2; . . .; xNÞ; ð1Þ

/1 x1; x2; . . .; xNð Þ ¼ 0; i ¼ 1; 2; . . .; I;

wj x1; x2; . . .; xNð Þ� 0; j ¼ 1; 2; . . .; J:
ð2Þ

According to the type of the functions f, /, and w, different optimization
methods exist.

1 Analytical Methods

The analytical solution of the minimization problem is an exact solution. The basis
of every optimization method is minimization of (1) without the constraints (2).

1.1 Unconstraints Minimization

In the case of a one-variable function f(x), the solution of the minimization
problem is the solution of the equation

C. Boyadjiev, Theoretical Chemical Engineering,
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df

dx
¼ 0; x ¼ xs; s ¼ 1; 2; 3; . . .; ð1:1Þ

where xs are the roots of (1.1) which satisfy the conditions

d2f

dx2

� �
x¼xs

[ 0: ð1:2Þ

The minimization of a two-variable function uses the conditions

of

ox1
¼ 0;

of

ox2
¼ 0; x1 ¼ xs

1; x2 ¼ xs
2; s ¼ 1; 2; 3; . . .; ð1:3Þ

where the roots of (1.3) satisfy the conditions

o2f

ox2
1

[ 0;
o2f

ox2
2

[ 0;
o2f

ox12

� �2

� o2f
2
1

o2f

ox2
2

\0; x1 ¼ xs
1; x2 ¼ xs

2;

s ¼ 1; 2; 3; . . .:

ð1:4Þ

In the case of multivariable functions, conditions (1.4) must be replaced by
additional analysis.

1.2 Constraints Minimization

The minimization of function f (1) in the case of equality constraints u (2) uses
Lagrange’s method of indeterminate coefficients, introducing the Lagrange
function:

F ¼ f x1; x2; . . .; xNð Þ þ
XI

i¼1

ki/i x1; x2; . . .; xNð Þ; ð1:5Þ

where ki, i = 1, 2,…, I, are the Lagrange multipliers (indeterminate coeffi-
cients). The minimum of f in the case of equality constraints
/i(x1, x2,…, xN) = 0, i = 1,…, I, is equivalent to the minimum of F without
equality constraints, i.e., the roots of the next set of N + I equations are
solution of the problem:

dF

dxn
þ
XI

i¼1

ki
d/i

dxn
¼ 0; /i ¼ 0; n ¼ 1; 2; . . .;N; n ¼ 1; 2; . . .;N; ð1:6Þ

where xn, n = 1, 2,…, N and ki, i = 1, 2,…, I, are the independent variables.
The method of Lagrange has a generalization in the case of inequality con-

straints wj B 0, j = 1, 2,…, J (see Sect. 2).
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1.3 Calculus of Variations

In Sect. 8.2 in Chap. 8 a functional was shown [1] (see 8.2.15 in Chap. 8). Here
we will consider the functional

z ¼
Zx1

x0

Fðx; y; y0Þ dx; y ¼ yðxÞ; ð1:7Þ

where z has different values for different functions y = y(x). The problem of the
calculus of variations is to obtain a continuous function y = y(x) along withð
the first derivative y0 ¼ dy

dxÞ in the interval [x0, x1] which minimize the functional z.
The properties of the functionals and the calculus of variations will be considered
on the basis of comparison with the functions and minimization of the functions.

Let us consider the function y and the functional z:

y ¼ f ðxÞ; z ¼ z½yðxÞ�: ð1:8Þ

The increment of the argument (independent variable) is equal to the differ-
ential of the argument dx. The analogue in the calculus of variations is the
variation of the function dy:

Dx ¼ x� x ¼ dx; dy ¼ yðxÞ � yðxÞ: ð1:9Þ

The linearities of the functions and the functionals are similar:

lðcxÞ ¼ clðxÞ; L½cyðxÞ� ¼ cL½yðxÞ�: ð1:10Þ

The function increment and the functional increment can be represented in a
similar way:

Df ¼ f ðxþ DxÞ � f ðxÞ; Dz ¼ z½yðxÞ þ dy� � z½yðxÞ�: ð1:11Þ

To obtain the function differential df and the functional variation dz we will use
the expressions

f xþ aDxð Þ ¼ f xð Þ; a ¼ 0
f xð Þ þ Df ; a ¼ 1

� �
; z y xð Þ þ ady½ � ¼ z; a ¼ 0

zþ Dz; a ¼ 1

� �
:

ð1:12Þ

The differentiation of (1.12) leads to

o

oa
f xþ aDxð Þ½ �a¼0¼ f 0 xþ aDxð ÞDx½ �a¼0¼ f 0 xð ÞDx ¼ f 0 dx ¼ df ; f 0 ¼ df

dx
;

o

oa
z y xð Þ þ ady½ �f ga¼0¼ dz:

ð1:13Þ
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The extremum conditions are df = 0 and dz = 0, i.e.,

o

oa
f xþ aDxð Þ½ �a¼0¼ 0;

o

oa
z y xð Þ þ ady½ �f ga¼0¼ 0: ð1:14Þ

Let us consider functional (1.7):

z ¼
Zx1

x0

F½x; yðxÞ; y0ðxÞ� dx; y0 ¼ yðx0Þ ¼ yðx0Þ; y1 ¼ yðx1Þ ¼ yðx1Þ: ð1:15Þ

The function variation and the variation of the first derivative can be represent
as

dy ¼ yðxÞ � yðxÞ; ðdyÞ0 ¼ y0ðxÞ � y0ðxÞ ¼ dy0; ð1:16Þ

where yðxÞ is used for comparison.
The functional extremum will be searched for using the family of

characteristics:

y ¼ yðx; aÞ ¼ yðxÞ þ ady ¼ yðxÞ; a ¼ 0
yðxÞ; a ¼ 1

� �
: ð1:17Þ

Substitution of (1.17) into (1.15) leads to

z ¼
Zx1

x0

F x; y x; að Þ; y0 x; að Þ½ � dx ¼ u að Þ; dz ¼ u0 að Þ½ �a¼0;

/0 að Þ ¼ d/
da
¼
Zx1

x0

oF

oy

o

oa
y x; að Þ½ � þ oF

oy0
o

oa
y0 x; að Þ½ �

� �
dx;

ð1:18Þ

where

o

oa
y x; að Þ½ � ¼ o

oa
y xð Þ þ ady½ � ¼ dy;

o

oa
y0 x; að Þ½ � ¼ o

oa
y0 xð Þ þ ady0½ � ¼ dy0;

ð1:19Þ

i.e.,

/0 að Þ ¼
Zx1

x0

oF

oy
dyþ oF

oy0
dy0

� �
dx;

/0 0ð Þ ¼
Zx1

x0

oF

oy

� �
a¼0

dyþ oF

oy0

� �
a¼0

dyð Þ0
� �

dx ¼ dz:

ð1:20Þ
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One of the integrals in (2.20) can be represented as

Zx1

x0

oF

oy0

� �
dyð Þ0

� �
dx ¼

Zx1

x0

oF

oy0
d dyð Þ ¼ dy

oF

oy0

� �x¼x1

x¼x0

�
Zx1

x0

dy
o

ox

oF

oy0

� �
dx

¼
Zx1

x0

o

ox

oF

oy0

� �
dy dx;

ð1:21Þ

because dy = 0 at x = x0 and x = x1 (see 1.15, 1.16). As a result, from (1.20) and
(1.21) it follows that

dz ¼
Zx1

x0

oF

oy
� o

ox

oF

oy0

� �� �
dy dx ð1:22Þ

and the condition of the functional extremum is

oF

oy
� o

ox

oF

oy0

� �
¼ 0;

oF

oy
� o2F

oxoy0
� o2F

oyoy0
y0 � o2F

oy02
y00 ¼ 0; y x0ð Þ ¼ y0; y x1ð Þ ¼ y1:

ð1:23Þ

The result obtained (1.23) is the Euler–Lagrange equation and permits one to
solve different chemical engineering problems (e.g., optimal temperature distri-
bution in the column apparatuses for chemical reactions).

A classic problem of the calculus of variations is obtaining of the shortest
distance between two points in a plane. If y = y(x) is the line which connects the
points (x0, y0) and (x1, y1), the length of the route is a functional,

z ¼
Zx1

x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

p
dx; yðx0Þ ¼ y0; yðx1Þ ¼ y1 ð1:24Þ

and the Euler equation has the form

ð1þ y02Þ�3=1y00 ¼ 0; y00 ¼ 0; yðx0Þ ¼ y0; yðx1Þ ¼ y1; ð1:25Þ

i.e., the straight line representing the shortest distance:

y ¼ y1 � y0

x1 � x0
xþ x1y0 � x0y1

x1 � x0
: ð1:26Þ
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For minimization of the functionals with upper order of the derivatives

z ¼
Zx1

x0

Fðx; y; y0; y00; . . .; yðnÞÞ dx; y ¼ yðxÞ; yðx0Þ ¼ a0; yðx1Þ ¼ a1 ð1:27Þ

we can use the Euler–Poisson equation:

oF

oy
� o

ox

oF

oy0

� �
þ o2

ox2

oF

oy00

� �
� � � � þ �1ð Þn on

oxn

oF

oy nð Þ

� �
¼ 0;

y ið Þ x0ð Þ ¼ yi; i ¼ 1; . . .; n� 1:

ð1:28Þ

In the case of a two-variable function u = u(x, y) and its partial derivatives, the
functional has the form

z ¼
ZZ

D
Fðx; y; u; p; qÞ dx dy; p ¼ ou

ox
; q ¼ ou

oy
ð1:29Þ

and the Ostrogradski equation can be used:

oF

ou
� o

ox

oF

op

� �
� o

oy

oF

oq

� �
¼ 0: ð1:30Þ

The minimization of multifunction functionals,

z ¼
Zx1

x0

F x; y1; y2; . . .; yn; y01; y
0
2; . . .; y0n

	 

dx; ð1:31Þ

uses a set of Euler equations.
The minimization of functional (1.31) in the case of equality constraints

g(y1, y2) = 0 uses the Lagrange method, where the indeterminate coefficient is the
function k = k(x).

The solutions of the functional minimization problems encounter difficulties in
the cases:

• Inequality constraints g(y1, y2) C 0.
• Two-point boundary conditions (uniqueness of the solution).
• Linearity of the function F with respect to y and y0 (in the absence of equality or

inequality constraints); in the opposite case the extremum is on the border.

1.4 Solution of a Set of Nonlinear Equations

The analytical methods presented for function minimization lead to the solution of
sets of nonlinear equations which must be solved numerically. Most of the
methods use linearization procedures. Here we will present the method of Newton.
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Let us consider the set of nonlinear equations

fiðx1; . . .; xNÞ ¼ 0; i ¼ 1; 2; . . .; I; ð1:32Þ

and the coordinates of point P�ðx�1; . . .; x�NÞ are the solution of (1.32), i.e.,

fi x�1; . . .; x�N
	 


� 0; i ¼ 1; 2; . . .; I: ð1:33Þ

If point PðsÞðxðsÞ1 ; . . .; xðsÞN Þ is near point P�ðx�1; . . .; x�NÞ the differences between
the coordinates are small:

x�n ¼ xðsÞn þ dxn; dxnj j � en; n ¼ 1; 2; . . .;N: ð1:34Þ

Let us substitute (1.34) into (1.33) and tore present function (1.33) in the
neighborhood of point P�ðx�1; . . .; x�NÞ as a Taylor series:

fi x�1; . . .; x�N
	 


¼ fi x sð Þ
1 þ dx1; . . .; xðsÞN þ dxN

� �

¼ fi x sð Þ
1 ; . . .; xðsÞN

� �
þ
XN

n¼1

dxn
ofi
oxn

� �
� 0:

ð1:35Þ

From (1.35) the set of linear equations for dxn, n = 1, 2,…, N, follows:

XN

n¼1

dxn
ofi

oxn

� �
¼ �fi x sð Þ

1 ; . . .; x sð Þ
N

� �
; n ¼ 1; 2; . . .;N: ð1:36Þ

If fi, i = 1, 2,…, I, are quadratic functions (1.34) is the direct solution of the
set. In all other cases an iterative procedure must be used:

xðsþ1Þ
n ¼ xðsÞn þ ðdxnÞðsÞ; n ¼ 1; . . .;N; s ¼ 0; 1; 2; . . . ð1:37Þ

2 Numerical Methods

The numerical methods for function minimization are named mathematical pro-
gramming (linear programming, nonlinear programming, convex programming,
integer programming, etc.). Here we will be presented linear and nonlinear
programming.

2.1 Linear Programming

In many cases the functions f, u, and w in optimization problem (1) and (2) are
linear:
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y ¼
Xn

i¼1

cixi;
Xn

i¼1

aijxi \;¼; [f gbj� 0; xi� 0; i ¼ 1; . . .; n; j ¼ 1; . . .;m;

ð2:1Þ

where a, b, c are constants.
As a rule the available software minimizes the linear function y at equality

constraints, which imposes the condition of introduction of auxiliary variables xn+j:

Xn

i¼1

aijxi 	 xnþj ¼ bj� 0; j ¼ 1; . . .;m: ð2:2Þ

In the case of equality constraints and n = 2, the geometrical interpretation of
the linear programming show that the constraints form a polygon at the plane
x10x2. The vertical projection of this polygon on the plane y = c1x1 + c2x2 gen-
erates a new polygon and the distance from an apex (or line) of this new polygon
to the plane x10x2 is minimal, i.e., the coordinates of this apex are the solution of
the problem.

For the solution of linear programming problems it is possible to use the
simplex method of Dantzig [2]. The modified simplex method is more useful for
computer realization with specialized software (GAMS, MATLAB).

2.2 Nonlinear Programming

The nonlinear functions f, u, and w in optimization problem (1) and (2) lead to
nonlinear programming problems [3–6]. The solutions of these problems use
numerical methods based on the iterative approach. The different types of con-
straints (2) use different iterative algorithms, but the basis is the unconstraints
function minimization algorithms.

The function minimization without constraints uses algorithms which search for
function minimum step by step in the direction of a decrease of the function
values. The search strategies are zeroth, first, and second orders, i.e., using the
values of the function, first or second derivative.

The main zeroth-order methods are direct search methods and simplex methods.
The direct search methods minimize the function with respect to one variable

only (all other variables are constants). At the minimum the same procedure start
again with respect to the next variable.

The simplex methods minimize the function with the help of regular or irregular
simplexes, i.e., polyhedrons. In the case of n = 2 the procedure starts from
function values at three points y1, y2, y3, which form an equilateral triangle.
If y1 [ y2 [ y3, the next point y4 is symmetric with y1 with respect to the straight
line between points y2 and y3. The next simplex is y2, y3, y4 and the same pro-
cedure starts again. It is possible to use a scalene triangle.
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The first-order methods use the first partial derivatives of the function.
The relaxation method starts from an initial point and minimizes func-

tion (1) with respect to this variable, whose negative partial derivative is the least
(the greatest steepness of descent). The minimum obtained is the next initial point,
etc.

The fastest descent method is similar to the relaxation method. The difference is
that the direction of the function minimization is the antigradient direction.

The gradient method is the basis of many first-order methods [4–6]. The min-

imization of function (1) starts from an initial point f0 ¼ f ðxð0Þ1 ; xð0Þ2 ; . . .; xð0ÞN Þ:
Every next iteration step must be made in the antigradient direction:

x sþ1ð Þ
n ¼ x sð Þ

n � h sð Þg sð Þ
n ; g sð Þ

n ¼ gn x sð Þ
1 ; x sð Þ

2 ; . . .; x sð Þ
N

� �
; n ¼ 1; . . .;N; ð2:3Þ

where h(s) is the step of the s iteration and gn are the components of the gradient
vector:

gn ¼
of

oxn

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

n¼1

of

oxn

� �2
vuut

,
; n ¼ 1; . . .;N: ð2:4Þ

The iteration step fsþ1 ¼ f ðxðsþ1Þ
1 ; xðsþ1Þ

2 ; . . .; xðsþ1Þ
N Þ is successful if fs+1 \ fs.

In the opposite case (fs+1 C fs), the step is unsuccessful. The stopping criterion for
the iterative procedure is

fsþ1� fs; xðsþ1Þ
n � xðsÞn

 � e
 1: ð2:5Þ

The convergence speed depends on the strategy for choosing the step value at
every step and the difference between gradient methods [3] is related to this
strategy.

A simple algorithm for the choice of the step value uses the distance between
the iterative point and the minimum point, i.e., the number of successful iteration
steps (cs = 1) before an unsuccessful step (cs = 0):

cs ¼
1 if fs\fs�1;
0 if fs� fs�1:

� �
: ð2:6Þ

The step values are defined from the conditions

h sð Þ ¼
2h s�1ð Þ if d sð Þ

1 ¼ 1;

h s�1ð Þ if d sð Þ
2 ¼ 1;

0:5h s�1ð Þ if d sð Þ
3 ¼ 1:

8><
>:

9>=
>;; ð2:7Þ

where the values of c and d are presented in Table 1.
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The method presented is inapplicable to multiextremal functions, where one
must search for the global minimum. A possibility is to obtain consecutively all
local minima. For the transition between two minima it is possible to use the same
procedure, but after every minimum one must seek in an arbitrary direction a
maximum and after a step in the same direction one falls into the attraction area of
the next minimum.

Functions with a ravine-type minimum are another problem. The procedure
presented leads to oscillations of the iteration point at the bottom of the ravine.
After that a large step must be made in a direction perpendicular to the oscillations,
and then the same procedure is continued.

The basis of the second-order methods [4–6] is the method of Newton, which
can be used in the case of a small distance between the (initial) iterative point and
the minimum point.

Let us represent function (1) in the neighborhood of point P0ðxð0Þ1 ; xð0Þ2 ; . . .; xð0ÞN Þ
as a Taylor series:

K ¼ f0 þ
XN

n¼1

of

oxn

� �
P0

xn � x 0ð Þ
n

� �
þ
X
m;n

o2f

oxmoxn

� �
P0

xm � x 0ð Þ
m

� �
xn � x 0ð Þ

n

� �
;

ð2:8Þ

where the values of the function and derivatives are at point P0:

f0 ¼ f x 0ð Þ
1 ; x 0ð Þ

2 ; . . .; x 0ð Þ
N

� �
: ð2:9Þ

The first partial derivatives of K are

oK

oxn
¼ of

oxn

� �
P0

þ2
XN

m¼1

o2f

oxmoxn

� �
P0

xn � x 0ð Þ
n

� �
: ð2:10Þ

If P1 x 1ð Þ
1 ; x 1ð Þ

2 ; . . .; x 1ð Þ
N

� �
is the point of the minimum, the first partial derivatives

of K are equal to zero, i.e.,

of

oxn

� �
P0

þ2
XN

m¼1

o2f

oxmoxn

� �
P0

x 1ð Þ
n � x 0ð Þ

n

� �
¼ 0: ð2:11Þ

Table 1 Values of c and d in the iterative algorithm

cs-2 cs-1 cs d sð Þ
1 d sð Þ

2 d sð Þ
3

cs-2 cs-1 cs d sð Þ
1 d sð Þ

2 d sð Þ
3

1 1 1 1 0 0 1 0 0 0 0 1
1 1 0 0 0 1 0 1 0 0 0 1
0 1 1 0 1 0 0 0 1 0 1 0
1 0 1 0 1 0 0 0 0 0 0 1
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If f is a quadratic function (2.11) is the direct solution of the minimization
problem, i.e., it permits the coordinates of the minimum point

P1ðxð1Þ1 ; xð1Þ2 ; . . .; xð1ÞN Þ to be obtained. In all other cases we must use an iterative
procedure:

x sð Þ
n ¼ x s�1ð Þ

n þ d sð Þ
n ; n ¼ 1;. . .;N; ð2:12Þ

where d sð Þ
n ; n ¼ 1; . . .;N; are the solution of the linear set,

of

oxn

� �
P s�1ð Þ

þ2
XN

m¼1

o2f

oxmoxn

� �
P s�1ð Þ

d sð Þ
n ¼ 0; n ¼ 1; . . .;N: ð2:13Þ

An absence of convergence is possible if the initial point P0ðxð0Þ1 ; xð0Þ2 ; . . .; xð0ÞN Þ
and the minimum point P1ðxð1Þ1 ; xð1Þ2 ; . . .; xð1ÞN Þ are widely separated. In these cases
preliminary use of a gradient method is very useful.

A numerical iterative algorithm [4–6] for minimization of function f (1) in the
case of equality constraints u (2) uses the penalty function method, i.e., the
minimization of the function:

U ¼ f x1; x2; . . .; xNð Þ þ a
XI

i¼1

/2
i ð2:14Þ

without constraints, where a is a big enough number. The function U is a ravine-
type function and an increase of the value of a leads to an increase of the exactness
of the solution.

Another possibility for solution of this problem is the gradient projection
method [4–6]. For this method, in the space of the variables (x1, x2,…, xN), we
must obtained a point P0 on the hypersurfaces /i(x1, x2,…, xN) = 0,
i = 1, 2,…, I, by the minimization of the function

/ ¼
XI

i¼1

/2
i : ð2:15Þ

The next step is to obtain the hyperplanes through point P0, which are tangents to
the hypersurfaces /i = 0. The vector gradient of the function f(x1, x2,…, xN) must
be projected on the lines of intersection of the hyperplanes. These gradient pro-
jections are the vector v ¼ ðv1; v2; . . .; vNÞ and show the direction of the iteration
steps, but after several steps it is necessary to correct the coordinates of point P0.

The iterative procedure starts from point P0:

x sþ1ð Þ
n ¼ x sð Þ

n þ hðsÞvn; n ¼ 1; 2;. . .;N; s ¼ 0; 1; 2; . . . ð2:16Þ

The vector v is tangential with respect to the hypersurfaces /i = 0 and lies on
the hyperplanes, i.e., it must be orthogonal with respect to the vector grad /i,
i = 1, 2,…, I:
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XN

n¼1

vn
o/i

oxn
¼ 0; i ¼ 1; 2; . . .; I;

XN

n¼1

v2
n ¼ 1: ð2:17Þ

The directional derivative of the function f(x1, x2,…, xN) regarding the vector
v ¼ ðv1; v2; . . .; vNÞ must be obtained from the scalar product:

df

dv
¼
XN

n¼1

vn
of

oxn
: ð2:18Þ

It is possible to find the direction of the fastest decrease of the function
f(x1, x2,…, xN) by maximization of function (2.18) with the equality constraints
(2.17):

U ¼
XN

n¼1

vn
of

oxn
� k0

2

XN

n¼1

v2
n � 1

 !
þ
XI

i¼1

ki

XN

n¼1

vn
o/i

oxn

 !
: ð2:19Þ

From the conditions oU=ovn ¼ 0; n ¼ 1; 2; . . .;N it follows that

vn ¼
of
oxn
þ
PI

i¼1 ki
o/i
oxn

k0
; n ¼ 1; 2;. . .;N; ð2:20Þ

where k0, ki, i = 1, 2,…, I can be obtained from (2.17) and (2.20).
The gradient methods for minimization of function f (1) in the case of inequality

constraints w (2) use the function

U ¼ f x1; x2; . . .; xNð Þ þ
XJ

j¼1

Qj wj

	 

; Qj wj

	 

¼ 0 if wj� 0

kwj if wj [ 0

� �
; ð2:21Þ

where k is a big enough number and the problem is similar to (2.14).
In the general case,

U ¼ f x1; x2; . . .; xNð Þ þ a
XI

i¼1

/2
i þ

XJ

j¼1

Qj wj

	 

: ð2:22Þ

Another possibility is to use Lagrange’s method of indeterminate coefficients:

K ¼ f x1; x2; . . .; xNð Þ; /i x1; x2; . . .; xNð Þ ¼ 0; i ¼ 1; 2; . . .; I;

wj x1; x2; . . .; xNð Þ þ cj ¼ 0; cj� 0; j ¼ 1; 2; . . .; J;

F ¼ f x1; x2; . . .; xNð Þ þ
XI

i¼1

ki/i x1; x2; . . .; xNð Þ þ
XJ

j¼1

xjwj x1; x2; . . .; xNð Þ;

cjxj ¼ 0; j ¼ 1; 2;. . .; J:

ð2:23Þ
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For solution of concrete minimization problems it is convenient to use spe-
cialized software (GAMS, MATLAB).

3 Dynamic Programming and the Principle of the Maximum

Dynamic programming optimizes the multistage processes in time or in space
[7–9]. Typical multistage processes in time are change (regeneration) of equip-
ment, catalyst, etc. The processes in the system of apparatuses, dishes (plates),
columns, etc. are examples for multistage processes in space.

3.1 Functional Equations

The basis of dynamic programming is so-called functional equations. A typical
functional equation has the form

fN xð Þ ¼ max
0� yN � x

gN yNð Þ þ fN�1 x� yNð Þ½ �; ð3:1Þ

where fN(x) is the target (objective) function of the process (income, profit,
quantity, quality, etc.) for the next N stages, starting from state x at stage N. The
term gN(yN) is the target function value at stage N, whereas fN-1(x - yN) is the
target function value for all the other stages, starting from the state (x - yN).

The solution of Eq. 3.1 is the optimal value of the control variable (strategy)
y�Nð0� y�N � xÞ; where y�N must be obtained by using some of the optimization
methods. Equation (3.1) is a recurrent correlation, i.e., it can be used for all the
other stages fN�1ðx� y�NÞ, starting from the state ðx� y�NÞ:

fN�1 x� y�N
	 


¼ max
0� yN�1 � x�y�N

gN yN�1ð Þ þ fN�1 x� y�N � yN�1
	 
� �

: ð3:2Þ

3.2 Principle of Optimality

The solution of all functional equations leads to a set of values of the control
variable fy�1; y�2; . . .; y�Ng, which is the optimal strategy for the realization of
multistage processes according to Bellman’s principle of optimality [7–9], i.e., the
optimization of every stage of a multistage process must be made so that the
complete process is optimal.
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3.3 Principle of the Maximum

Pontryagin’s method for solution of nonclassical problems of the calculus of
variations is based on the principle of the maximum [10]. This method will be
considered in the case of a chemical process in a periodic reactor with ideal
mixing, where the mathematical model of chemical kinetics is represented by a set
of ordinary differential equations:

dxi

dt
¼ fi x1; x2; . . .; xn; u1; u2; . . .; ur; tð Þ; xi t0ð Þ ¼ x 0ð Þ

i ; i ¼ 1; 2; . . .; n: ð3:3Þ

In (3.3) xi tð Þ; x 0ð Þ
i ; i ¼ 1; 2; . . .; n; are phase coordinates of the process (con-

centrations of the reagents), its initial values, uj(t), j = 1, 2,…, r, are control
strategies (temperature, pressure), and t is time in the interval t0 B t B t1.

The optimization problem is to obtain the maximum of the expression

S ¼
Xn

i¼1

cixi; ð3:4Þ

where ci, i = 1, 2,…, n, are constants, which permits us to formulate different
optimization problems. For example, if we must obtain the conditions (uj(t),
j = 1, 2,…, r) for the maximum value of x1 (maximum concentration of the
reagent x1), c1 ¼ 1; c2 ¼ c3 ¼ � � � ¼ cn ¼ 0. In the case of functional maximiza-
tion (chemical reaction efficiency),

S ¼
Z t

0

Fðx1; x2; . . .; xn; u1; u2; . . .; ur; tÞ dt; ð3:5Þ

a new variable must to be introduced,

xnþ1 ¼
Z t

0

Fðx1; x2; . . .; xn; u1; u2; . . .; ur; tÞ dt; ð3:6Þ

and after differentiation

dxnþ1

dt
¼ F x1; x2; . . .; xn; u1 ; u2; . . .; ur; tð Þ; xnþ1 0ð Þ ¼ 0: ð3:7Þ

Equation (3.7) must be added to (3.3) and we obtain the maximum of the
expression

S ¼
Xnþ1

i¼1

cixi; c1 ¼ c2 ¼ � � � ¼ cn ¼ 0; cnþ1 ¼ 1: ð3:8Þ
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Let us consider (3.3) in the case t1 = T, where T is not constant, and the
minimization of the functional

S ¼
Xn

i¼1

cixiðTÞ: ð3:9Þ

This problem is equivalent to the optimization of a chemical reaction in a
periodic reactor with ideal mixing, without time restrictions in one working cycle.
It is necessary to obtain the optimal time variations of the temperature and pressure
in the reactor.

Let us introduce the new set of functions pi(t), i = 1, 2,…, n, which is full
determinate if the control strategies (functions) uj(t), j = 1, 2,…, r, and phase
coordinates of the process xi(t), i = 1, 2,…, n (concentrations of the reagents) are
known:

dpi

dt
¼ �

Xn

s¼1

ps
o

oxi
fs x1; x2; . . .; xn; u1; u2; . . .; ur; tð Þ½ �; pi Tð Þ ¼ �ci;

i ¼ 1; 2; . . .; n:

ð3:10Þ

Let us consider a new function:

H ¼ H x1; x2; . . .; xn; p1; p2; . . .; pn; u1; u2; . . .; ur; tð Þ

¼
Xn

i¼1

pi
dxi

dt
¼
Xn

s¼1

psfs x1; x2; . . .; xn; u1 ; u2; . . .; ur; tð Þ:
ð3:11Þ

The function H is very useful because it permits us to obtain xi(t) and pi(t),
i = 1, 2,…, n, as a solution of the set of equations

dxi

dt
¼ oH

opi
;

dpi

dt
¼ �oH

oxi
; xi t0ð Þ ¼ x 0ð Þ

i ; pi Tð Þ ¼ �ci; i ¼ 1; 2; . . .; n:

ð3:12Þ

Let u 0ð Þ
j ðtÞ; j ¼ 1; 2;. . .; r; be concrete control strategies, which are introduced

into (3.3) and (3.10). As a result, we obtain xðuÞi ðtÞ and pðuÞi ðtÞ; i ¼ 1; 2;. . .; n: The

substitution of xðuÞi ðtÞ; pðuÞi ðtÞ; and uð0Þj ðtÞ into (3.11) leads to a new function K:

K u1; u2; . . .; ur; tð Þ � H x uð Þ
i tð Þ; p uð Þ

i tð Þ; u 0ð Þ
j tð Þ; t

h i
: ð3:13Þ

According to Pontryagin’s theorem the control strategies uð0Þj ðtÞ satisfy the
condition of the maximum (minimum), i.e., the optimization criterion S (3.9) is
maximal (minimal), if at every moment t(t0 B t B t1) the function K reaches the

absolute maximum (minimum) for the values of uð0Þj ðtÞ at the same moment.
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4 Examples

4.1 Problem of Optimal Equipment Change

In many cases the efficiency of the equipment (catalyzer activity, thermal resis-
tance, etc.) changes with time. As a rule, the profit (related to this equipment)
decreases and a natural question is about the stage when it is better to change the
equipment than to continue using the current equipment. The answer to this
question leads to the problem of the optimal equipment change [9].

Let us introduce the next symbols:

r(t) is the production value, produced for a year, for t-year-old equipment.
u(t) is the servicing expenditure for 1 year, for t-year-old equipment.
s(t) is the residual value of t-year-old equipment.
p is the price of new equipment.

Let us consider N years as a space of time and we must obtain the optimal cycle
for equipment change.

The equipment age reading will start from t = 0, and the time stages of the
process will be numbered from the end of the process, i.e., N = 1 is the last stage
(a time stage remains to the end of the process) and N = N is the start of the
process.

At every stage of an N-stage process a decision must be taken to retain or
change the equipment. The aim of this decision is to obtain the maximum profit
from the full N-stage process.

Let fN(t) be the maximum profit, obtained for t-year-old equipment for all the
other N years of the equipment-use cycle. The functional equations obtained on the
basis of the principle of optimality have the form

fNðtÞ ¼ max
r tð Þ � u tð Þ þ fN�1 t þ 1ð Þ preservation

s tð Þ � pþ r 0ð Þ � u 0ð Þ þ fN�1 1ð Þ change

� �
: ð4:1Þ

The functional equations (4.1) represent the maximum profit fN(t0), where the
initial state (t = t0) of the system is obtained from the maximum profit of the first
stage (the state is t = t0) and the maximum profit of all the other N - 1 stages to
the end (the state is t = t0 + 1). By analogy, it is possible to obtain

fN�1 t þ 1ð Þ ¼ max
r t þ 1ð Þ � u t þ 1ð Þ þ fN�2 t þ 2ð Þ preservation

s t þ 1ð Þ � pþ r 1ð Þ � u 1ð Þ þ fN�2 2ð Þ change

� �
:

ð4:2Þ

The functional equations (4.1) are recurrent relations and permit us to obtain the
equations for the last stage:

f1 tð Þ ¼¼ max
r tð Þ � u tð Þ preservation

s tð Þ � pþ r 0ð Þ � u 0ð Þ change

� �
: ð4:3Þ
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The method presented will be exemplified numerically:

rðtÞ � uðtÞ ¼ nðtÞ; sðtÞ ¼ 0; p ¼ 10; ð4:4Þ

where the function n(t) is presented in Table 2.
For this example, Eqs. 4.1 and 4.3 have the form

fN tð Þ ¼ max
n tð Þ þ fN�1 t þ 1ð Þ preservation

n 0ð Þ � 10þ fN�1 1ð Þ change

� �
;

f1 tð Þ ¼ max
n tð Þ preservation

n 0ð Þ � 10 change

� �
:

ð4:5Þ

For a one-stage process and t = 0,

f1 tð Þ ¼ max
n 0ð Þ

n 0ð Þ � 10

� �
¼ max

10
10� 10 ¼ 0

� �
¼ 10! preservation: ð4:6Þ

For a one-stage process and t = 1,

f1 tð Þ ¼ max
n 1ð Þ

n 0ð Þ � 10

� �
¼ max

9
10� 10 ¼ 0

� �
¼ 9! preservation: ð4:7Þ

These calculation procedures continue for t = 2, 3,…, 12. After that, calcu-
lations are started for a two-stage process using the one-stage-process
calculations:

f2 0ð Þ ¼ max
n 0ð Þ þ f1 1ð Þ

n 0ð Þ � 10þ f1 1ð Þ

� �
¼ max

10þ 9 ¼ 19
10� 10þ 9 ¼ 9

� �
¼ 19

! preservation: ð4:8Þ

The calculation results are presented in Table 3.
Let us consider a 15-stage process which starts with new equipment. From

Table 3 it is seen that the maximum profit is f15(0) = 100 and every subsequent
year (t = 1, 2,…) the maximum profits (see the diagonals) are 90, 81, 73, 66, and
60ch (where ch is a stage for a change), i.e., the first change must be made
(instantly) at the beginning of the sixth year. The next year the maximum profit is
f9(1) = 60 and after that the maximum profits (see diagonally) are 51, 43, 36, and
30ch, i.e., the next (second) change must be made (instantly) at the beginning of
the 11th year. The next year the maximum profit is f4(1) = 30 and after that the

Table 2 Values of the function n(t)

t 0 1 2 3 4 5 6 7 8 9 10 11 12
n(t) 10 9 8 7 6 5 4 3 2 1 0 0 0
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maximum profits (see diagonally) are 21, 13, and 6. The maximum profit for
15 years can be obtained after the summation of the separate cycles:

f15 0ð Þ ¼ f15 0ð Þ � f10 5ð Þ½ � þ f9 1ð Þ � f5 5ð Þ½ � þ f4 1ð Þ; ð4:9Þ

i.e., 100 = 40 + 30 + 30.

4.2 A Calculus of Variations Problem

The principle of the maximum can be exemplified by the maximization of a
functional:

F ¼ 1
2

ZT

0

x2 þ u2
	 


dt; ð4:10Þ

where u(t) is the control strategy and the object model is

dx

dt
¼ �axþ u; x 0ð Þ ¼ x0: ð4:11Þ

The introduction of the new variables

x1 tð Þ � x tð Þ; x2 tð Þ � 1
2

Z t

0

x2 þ u2
	 


dt ð4:12Þ

Table 3 Multistage process optimization

t 0 1 2 3 4 5 6 7 8 9
f1(t) 10 9 8 7 6 5 4 3 2 1
f2(t) 19 17 15 13 11 9 9ch
f3(t) 27 24 21 18 17ch
f4(t) 34 30 26 24 24ch
f5(t) 40 35 32 31 30 30ch
f6(t) 45 41 39 37 36 35 35ch
f7(t) 51 48 45 43 41 41ch
f8(t) 58 54 51 48 48ch
f9(t) 64 60 56 55 54 54ch
f10(t) 70 65 63 61 60 60ch
f11(t) 75 72 69 67 66 65 65ch
f12(t) 82 78 75 73 72ch
f13(t) 88 84 81 79 78 78ch
f14(t) 94 90 87 85 84 84ch
f15(t) 100 96 93 91 90 90ch

ch, a stage for a change
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leads to the set of equations

dx1

dt
¼ �ax1 þ u;

dx2

dt
¼ 1

2
x2

1 þ
1
2

u2; x1 0ð Þ ¼ x0; x2 0ð Þ ¼ 0 ð4:13Þ

and the functional for minimization is

S ¼ x2ðTÞ: ð4:14Þ

The use of (3.11) and (3.12) permits us to obtain the function H and equations
for the functions p1(t) and p2(t):

H ¼ �ap1x1 þ
1
2

p2x2
1 þ p1uþ 1

2
p2u2; ð4:15Þ

dp1

dt
¼ ap1 � p2x1;

dp2

dt
¼ 0; p1 Tð Þ ¼ 0; p2 Tð Þ ¼ �1: ð4:16Þ

From (4.16) it follows that p2 : -1 and for H we obtain

H ¼ �ap1x1 �
1
2

x2
1 þ p1u� 1

2
u2: ð4:17Þ

For the condition of the maximum we obtain

oH

ou
¼ 0; u ¼ p1 tð Þ ð4:18Þ

and introduction of u = p1(t) and p2 : -1 into (4.13) and (4.16) leads to

dx1

dt
¼ �ax1 þ p1;

dp1

dt
¼ ap1 þ x1; x1 0ð Þ ¼ x0; p1 Tð Þ ¼ 0: ð4:19Þ

The solution of (4.19) is

x1 ¼ A1 exp k1tð Þ þ A2 exp k2tð Þ;
p1 ¼ B1 exp k1tð Þ þ B2 exp k2tð Þ; k1;2 ¼ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1

p
;

ð4:20Þ

where the constants of the integration depend on x0 and the control strategy is
u = p1(t).
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Part IV
Chemical Plant Systems



Systems Analysis

Modeling and simulation of chemical plant systems (CPS) is a basic task in
chemical technology and requires the quantitative description of industrial systems
for the purpose of their optimal design, control, and renovation.

CPS represent a combination of mutually influenced processes in chemical
production. Because of this the model of CPS obviously represents a combination
of the models of the separate processes, which are supplemented by the equations
for the connections (interactions) between them. Straightaway it is clear that
during modeling of CPS the problems for the creation of mathematical structures
occur, for determining the parameters of the model from experimental data, for
statistical analysis of the significance of the parameters, and the adequacy of the
model. This means that the problem of the creation of the model of CPS is almost
solved since the models of the separate processes exist and the only remaining
issue is to add the equations linking the submodels; this is not a complicated task.
In this manner the qualitative description of CPS as a set of subproblems is
complete mainly regarding their simulations.

1 Simulation of Chemical Plant Systems

CPS represent a combination of technological blocks which are connected in a
definite way with technological streams. The streams which do not realize con-
nections between the blocks are the inlet and outlet streams of the CPS.

The technological streams are simultaneously material and thermal. In fact they
must be examined as informational because they transfer information (without
change) from block to block, containing quantitative data for the quantity and
composition of the material stream, for its energy, for its physical constants, and
parameters. This means that the pipelines which connect two blocks can be
examined as a blocks or streams.

C. Boyadjiev, Theoretical Chemical Engineering,
DOI: 10.1007/978-3-642-10778-8_10, � Springer-Verlag Berlin Heidelberg 2010

553



1.1 Model of Chemical Plant Systems

The model of CPS is built [1–5] from mathematical structures, providing a con-
nection between inlet regime variables (x), outlet regime variables (y), construc-
tive variables (a), and variables (b) characterizing the state of the equipment. For a
block with number i they could be represented by vectors (arranged as sequences
of numbers):

xi ¼ xi
1; . . .; xi

m

�� ��; yi ¼ yi
1; . . .; yi

n

�� ��; ai ¼ ai
1; . . .; ai

q

���
���; bi ¼ bi

1; . . .; bi
r

�� ��:
ð1:1Þ

The inlet and outlet regime variables in essence represent the parameters of the
inlet and outlet streams of the block. The constructive variables are parameters of
the apparatus, in which the ith process runs. The parameters characterizing the
state of the equipment account for some effects from quasi-stationary processes,
such as decrease of the activity of the catalysts and the appearance of incrustation
over the pipes of the heat exchangers.

The model of the ith block represents a system of equations giving the con-
nection between all variables:

f xi; yi; ai; bi
� �

¼ 0: ð1:2Þ

The combination of models of every block (i = 1, …, I, where I is the general
number of the blocks in CPS) also becomes model of CPS if to it are added
equations for the connections, which have the aspect

ys
n0
¼ xt

m0
; ð1:3Þ

i.e., the inlet regime variable yn0 in block s is the outlet regime variable xm0 from
the tth block.

The inlet and outlet variables in (1.1), which do not participate in the equations
for the connections (1.3), form the vectors of the inlet (X) and outlet (Y) regime
variables of the CPS:

X ¼ X1; . . .;XMj j; Y ¼ Y1; . . .; YNj j; A ¼ A1; . . .;AQj j; B ¼ B1; . . .;BRj j;
ð1:4Þ

where A and B are the common combined (vectors) of the constructive variables
and variables characterizing the state of the equipment. In this way the model of
the CPS is obtained analogously to (1.2) as a system of equations with description

F X;Y;A;Bð Þ ¼ 0: ð1:5Þ
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1.2 Simulation Methods

The simulation of the CPS represents the creation of methods, algorithms, and
program systems for the determination of the outlet regime variables:

Y ¼ G X;A;Bð Þ: ð1:6Þ

To solve this problem three basic approaches are used: simultaneous equations,
simultaneous modules, and sequential modules [4, 5].

The simultaneous approach solves globally the system from Eqs. 1.2 and 1.3. In
practice the CPS contains 20–30 apparatuses, which makes the system of equations
examined very large. As an example [5], for the production of carbide 250 vari-
ables are used; in the model of the production of sulfuric acid around 1,000
variables are used and 500 equations, half of them, are nonlinear.

The computing problems in the simultaneous equation approach come from
three characteristics of the task—the large number of the variables and equations,
the nonlinearity of the equations, and the small number of variables in the separate
equations. The problem with the nonlinearity is usually solved [4] by preliminary
linearization of the equations. A large number of equations remain, which,
together with the small number of variables in the separate equations, leads to
incomplete Jacobians. To overcome these problems, methods are used for packing
the Jacobian matrix, which further essentially increases the effectiveness of the
algorithms for simulation.

The simultaneous equation approach overcomes the problems during simulation
of CPS entirely by mathematical means, but this obstructs the close scrutiny of the
physical relevance of the results obtained in progressing to the solution.

The simultaneous module approach is the opposite of the simultaneous equation
approach. In this approach equations are searched for which can be solved sepa-
rately with respect to one of the outlet variables; when this is impossible groups of
equations are determined, and these should be solved as a system. The sequential
module approach has quite a wide application range. Here the simulation of the
CPS is reduced to sequential simulation of the blocks (modules). This approach in
practice traces the physical sequence of the processes and at each step the simu-
lation can be stopped if physically unreasonable results are obtained.

1.3 Sequential Module (Hierarchical) Approach

Simulation of CPS using sequential simulation of the separate blocks is possible if
it is built as one hierarchical method, i.e., this is possible by building one hierarchy
structure for simulation. The main premise of this method is the obvious fact that
one block can be simulated if all its inlet variables are regulated (known). From
this it follows that CPS can be simulated sequentially block by block if such a
sequence (row) of blocks is found where the inlet variables of each block are the
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outlet variables of the preceding blocks in a row or are inlet blocks of the CPS.
This, of course, is possible only if all inlet regime variables are regulated, which is
seen directly in the example in Fig. 1. Obviously, for given inlet variables of
streams 1 and 2 blocks in the sequence 1, 4, 5, 2, 3, 6 can be simulated and as a
result the outlet regime variables of streams 7 and 9 are determined.

1.4 Acyclic Chemical Plant Systems

The order of simulation of CPS, shown in Fig. 1 is obtained directly from the
condition that in this sequence only blocks whose inlet variables are known can be
recorded, i.e., given (specified) or calculated as a result of the simulation of the
blocks already recorded. This is possible only for acyclic (open) CPS, i.e., when in
the scheme there are no recirculation streams. For a small number of blocks
obviously this task is solved elementarily, but for a large number of blocks or for
repeated solving, utilization of computers and appropriate algorithms is necessary.

The topological structure of CPS can be expressed in different ways. Here we
shall use [3, 5] a matrix of the streams

A ¼ aikk k; i ¼ 1; . . .; I; k ¼ 1; . . .;K, ð1:7Þ

where I and K are the whole numbers of the blocks and streams, and the values of
aik are

aik ¼
1 if the kth stream is the inlet in the ith block;
�1 if the kth stream is the outlet from the ith block;
0 if the kth stream is not connected to the ith block:

8<
: ð1:8Þ

The matrix A contains all the information for the CPS and to it can only be
added the vector of the number of the parameters of the streams:

B ¼ bkj j; k ¼ 1; . . .;K; ð1:9Þ

where bk is the number of the parameters of the kth stream.
All this information is sufficient for determination of the order of the simulation

of the blocks which is recorded in the vector of the order of the calculation:

C ¼ cj

�� ��; j ¼ 1; . . .; I; ð1:10Þ

where cj are the numbers of the blocks recorded in a suitable sequence.

Fig. 1 Order of simulation
of chemical plant systems
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The vector C can be filled consecutively with the help of two executive vectors
D and E.

The vector of the inlet blocks contains all the information about the blocks
having just one known inlet stream:

D ¼ dij j; i ¼ 1; . . .; I; ð1:11Þ

where

di ¼
1 if the ith block has just one known inlet stream;
0 in the other case:

�
ð1:12Þ

The vector of the particular blocks contains information about the blocks
having just one unknown inlet stream:

E ¼ eij j; i ¼ 1; . . .; I; ð1:13Þ

where

ei ¼
1 if the ith block has just one known inlet stream;
0 in the other case:

�
ð1:14Þ

The utilization of vectors D and E enables consecutive filling of C with the help
of the following algorithm:

1. Substitute di ¼ 0; ei ¼ 0; i ¼ 1; . . .; I:
2. From D we determine the numbers of the inlet streams of the CPS (an example

from
PI

i¼1 aik ¼ 1).
3. From the numbers of the inlet streams (through A) are determined the numbers

of the inlet blocks and we create vector D.
4. Check whether there are blocks in D for which all inlet streams are known

(determined in step 2).

(a) If there are, go to step 5.
(b) If there are not, go to step 6.

5. Blocks for which all inlet streams are known are recorded in C. They are
deleted from A (their rows) and from D. After that put ei ¼ di; i ¼ 1; . . .; I
and begin from step 1.

6. Check if ei ¼ 0; i ¼ 1; . . .; I:

(a) If it does, go to step 7.
(b) If it does not, go to step 8.

7. End (the order of the calculation in acyclic CPS is determined or is an
independent contour).

8. Begin determination of the serial independent contour.
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1.5 Cyclic Chemical Plant Systems

From the algorithm in the previous section it is obvious that it is not possible in
every case to determine to the very end the order of the simulation. In these cases
CPS are cyclic (closed), i.e., they have circulation streams. As an example from
Fig. 2a, it is clearly seen that the additional circulating stream 10 (in comparison
with Fig. 1) does not give us the possibility to apply the algorithm. This problem
could be solved if recirculated stream 10 is broken (Fig. 2b). Then the order of the
simulation of the CPS in Figs. 1 and 2b could be the same. This would allow us to
obtain the values of the outlet regime variables of streams 7, 9, and 1000 for given
values of the inlet regime variables of streams 1, 2, and 100. Obviously breaking
stream 10 will not affect the simulation if the variables (the parameters) of streams
100 and 1000 are equal. In practice this does not happen and that is why after the
simulation the values of the parameters of 1000 are assumed for the values of the
parameters of 100 and the simulation is repeated. This iterative procedure ends
when the given values of the parameters of 100 and the calculated values of the
parameters of 1000 are equal with the preliminarily required precision. In this way
the simulation of one cyclic CPS is reduced to repeated simulation of acyclic CPS
obtained after suitable breaking of the circulating streams.

1.6 Independent Contours

From Fig. 2a is clear that the cyclic CPS has an acyclic part (blocks 1 and 4) and
contours (blocks 2, 3, 5, and 6). The sequence of blocks (2, 3, 6, 5) is connected
with one-way streams (6, 8, 10, 5) and that is why going from a given block by
way of the streams we reach the same block; this is called an elementary contour.

Fig. 2 Cyclic chemical plant
systems. a Cyclic system;
b acyclic system if recircu-
lated stream 10 is broken
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As already demonstrated, to determine the order of the simulation of the blocks in
an elementary contour it is necessary to break one of its streams.

The aggregate of elementary contours which has common blocks represents an
independent contour. Determination of the order of the simulation of the blocks in
the independent contours is possible only after breaking all elementary contours of
which they are composed.

From every mentioned, we see that CPS can be examined as being composed of
acyclic parts and independent contours. The blocks in the acyclic parts are sim-
ulated only once and the blocks in the separate independent contours (after their
breaking) are simulated repeatedly (iteratively). In these iterations blocks from
only one independent contour participate. All this is possible if we determine the
independent contours in CPS and the elementary contours of which they are
composed on the basis of a structural analysis of CPS [1–5].

The algorithm for determination of the elementary contours in an independent
contour is shown in Fig. 3.

In the literature different methods for determination of the independent con-
tours have been reported [1–5]. Here will be use the method given in [5], which
first determines one block from the independent contour and after that starts from
it and traces routes from blocks in a direction opposite that of the streams until the
cycle is closed, i.e., finding the elementary contour. Repeating this procedure for
all branches from the route leads to the determination of all elementary contours.
For this purpose are used the vector of the routes F and the vector of the
branchings G:

F¼ fsj j; s¼ 1; . . .;S[ I; G¼ gtj j; t¼ 1; . . .;T[ I; G¼ gtj j;
t¼ 1; . . .;T[ I;

ð1:15Þ

where in an appropriate way the routes (in a direction opposite that of the streams)
and their branches are recorded.

The algorithm for determination of the independent contour [5] starts as a
continuation of step 8 in the algorithm in Sect. 1.4 when the vector of the par-
ticular blocks is not empty and obviously the numbers of the blocks from the serial
independent contour are recorded:

1. First, in F the number of the block corresponding to the first nonzero element
in E is recorded. Then, this element in E is equal to zero and in G -1 is
recorded (with -1 the branches of the block from the route are delimited). For
the concrete example F ¼ 1; 0; . . .; G ¼ �1; 0; . . .

Fig. 3 Independent contours
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2. From A are determined the blocks whose outlet streams are the inlet for the
block whose number is the last nonzero element in F (branch from the last
block in F in a direction opposite that of the streams) and these are recorded
consecutively in G, i.e., F = 1, 0,…, G = -1, 3, 0, ….

3. Check whether there are nonzero elements in G.

(a) If there are, go to step 4.
(b) If there are not, go to step 13.

4. Find the last nonzero element in G (i.e., 3).
5. Check whether the last nonzero element in G is -1.

(a) If it is, go to step 6.
(b) If it is not, go to step 7.

6. Make the last nonzero elements in F and G equal to zero and start from step 3.
7. Check whether the last nonzero element in G is not present in E.

(a) If it is not present, go to step 8.
(b) If it is present, go to step 9.

8. Make F, G, and Q equal to zero and start from step 1.
9. Check whether the last nonzero element in G is recorded in F.

(a) If it is, go to step 10.
(b) If it is not, go to step 12.

10. This means that the serial elementary contour is revealed in F. Detect the
streams which connect the last blocks in F to the repeated block and record
them in an appropriate way in the matrix of the elementary contours Q ¼
qwkj j; w ¼ 1; 2; . . .; k ¼ 1; . . .; K, where qwk = 1 when the kth stream

participates in the wth elementary contour and qwk = 0 in the opposite case.
11. The last nonzero element in G is deleted and start from step 3.
12. Make the last nonzero element in G equal to zero and recorded it in F; in G

record -1 and start from step 2, i.e., F ¼ 1; 0; . . .; G ¼ �1; 3; 0;. . .:
13. All elementary contours are discovered in the serial independent contour and

start to find the optimal breaking sets (OBS).

In such an algorithm steps 2 and 7 guarantee the determination of the ele-
mentary contours only in one independent contour. For the example in Fig. 3, after
step 12 we go back to step 2 (F = 1, 3, 0,…; G = -1, 2, 0, …). After that we
again reach step 12 (F = 1, 3, 2, 0,…; G = -1, -1, -1, 0, …) and go back in step
2 (F = 1, 3, 2, 0,…; G = -1, -1, -1, 4, 1, 0,…). The process continues through
steps 3, 4, 5, 7, 9, and 10, i.e., an elementary contour is discovered which consists
of blocks 1, 3, and 2. In this way six elementary contours are determined in the
independent contour in Fig. 3: I—1, 2, 3; II—2, 3, 5, 4; III—4, 6, 7, 5; IV—4, 6, 5;
V—5, 4, 8, 6; VI—4, 5, 7, 6, 8. They are recorded in the matrix of the elementary
contours, which looks like (1.16), where the last row represents the vector of the
parameters.
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W\K 1 2 3 4 5 6 7 8 9 10 11 12

    I     1     1     1 

   II     1     1     1     1 

   III     1     1     1     1 

   IV     1     1     1 

   V     1     1     1     1 

   VI     1     1     1     1     1 

kb 3     2     3     1     3     1     4     1     1     1     1     1  

ð1:16Þ

1.7 Breaking Sets

The independent contour is transformed into an open scheme if all its elemen-
tary contours are broken. This can be realized from different combinations of
a minimum number of streams, which we will call minimum breaking sets
(MBS). As an example for Fig. 2a, every one of streams 5, 6, 8, and 10 represents
an MBS. For the independent contour in Fig. 3, one MBS contains streams 1
and 5.

The presence of more than one MBS for a given independent contour raises the
question for selection between them. For this purpose, after the breaking of
the streams from the MBS iterative procedures follow till the parameters of the
streams are equal (with a given precision) at the places where the breaking occurs.
Obviously the number of iterations will depend on the number of parameters of the
broken streams. From this it follows that from all the MBS, the one that should be
used is the one which has the minimum summary number of parameters of the
streams participating in it; we will call this the optimal breaking set (OBS).

In the literature different methods for determination of OBS have been
described [1–5]. We will consider one of the most effective methods [2], which
uses the matrix of the elementary contours (1.16) according to the following
algorithm:

1. Those streams in Q which cannot participate in OBS (annulment of the cor-
responding columns in 1.16), i.e., from two streams one falls away which
breaks a smaller (or equal) number elementary contours and has a bigger (or
equal) number of parameters. For this purpose it is sufficient to find columns in
(1.16) which are contained in other columns and are annulled if they have a
greater (equal) number of parameters.

2. As a result, from the procedures in step 1 it is possible for rows to appear in (1.16)
with rank 1, i.e., rows which contain only one unit. This means that these are
elementary contours which could be broken only with a stream whose number
corresponds to this unit. This forces this stream to be memorized and subsequently
entered directly in MBS or OBS. All contours (rows) which are broken from these
streams could fall away (to be annulled) from matrix Q (1.16).
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3. As a result, from the procedures in steps 1 and 2 it is possible for a row
(contour) to appear in (1.16) which is entirely contained in another row, i.e., the
breaking of the first one leads to automatic breaking of the second one. This
gives the opportunity in (1.16) for all elementary contours to fall away which
are broken automatically on breaking of the others.

4. After the operations in steps 1–3 in (1.16) there remain the minimum number of
streams, from which can be obtained different MBS. For this purpose:

(a) MBS of the first elementary contour are determined—they contain one
stream from it.

(b) MBS for the first and the second contours are determined through appro-
priate combinations between MBS for the first contour and the streams
from the second contour.

(c) MBS for the first three contours are determined through appropriate com-
binations between MBS of the first two contours and the streams of the
third contour.

This recursive procedure continues until all elementary contours in the inde-
pendent contour are exhausted.

5. To the four MBS obtained are added the streams memorized in step 2. For each
of the MBS obtained, the summary number of parameters of the streams are
determined. That (those) which has (have) the minimum summary number of
parameters represents (represent) the OBS.

This algorithm can be demonstrated simply by matrix (1.16):

1. As a result of step 1 in the previous algorithm columns 1, 3, 4, 7, 8, are 11 are
annulled.

2. The first row has rank 1, i.e., the number of stream 2 is memorized and rows I
and II are annulled because the first two contours are broken by stream 2.

3. Row III is contained entirely in row IV, i.e., the last one is annulled. Row IV is
contained entirely in row V and the last one is annulled.

4. From (1.16) only columns 5, 9, and 10 and rows III and IV remain. We will
look further at two contours from the following streams (1.17) 5, 9 and 5, 10.
According to the recursive procedure, there are two MBS for the first contour—
5 and 9. The MBS for the first two contours are 5 and 9, 10.

5. To the MBS, obtained in step 4, must be added stream 2, i.e., the MBS are 2, 5
and 2, 9, 10. Their summary numbers of parameters are, respectively, 5 and 4,
i.e., the OBS is 2, 9, 10.

1.8 Optimal Order

The algorithms examined in this section permits a structural analysis of CPS to be
made, as a result the acyclic parts, independent contours, and the streams to be
determined have to be broken for the algorithm for simultaneous module
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simulation to be applied for the independent contours. On this basis we can find the
optimal order for simulation of the apparatuses in CPS. This optimum consists of
separating the apparatuses into two parts, one of which is simulated once (acyclic
part) and the other is simulated repeatedly (iterative simulation of the independent
contours). The second substantial peculiarity of the optimal order is that the
iterative procedures envelop the apparatuses of only one (serial) independent
contour, which decreases the number of iterations. This acceleration of the itera-
tive calculations is increased by OBS, i.e., finding the optimal order of simulation
inside the independent contour.

Thus, the optimal order for simulation of the blocks in CPS can be obtained
through the following algorithm:

1. Input of the information for the technological structure for CPS, i.e., matrix A
(1.7) and vector (1.9).

2. Determination of the order for simulation in acyclic CPS with the help of the
algorithm described after (1.14).

3. Check of whether the numbers of all blocks are recorded in the vector of the
optimal order C (9.1.10).

(a) If they are, go to step 7.
(b) If they are not, go to step 4.

4. Determination of the elementary contours in the serial independent contour
with the help of the algorithm described after (1.15).

5. Determination of the OBM of the serial independent contour with the help of
algorithm described after (1.16).

6. Breaking of the serial independent contour (in the columns of A corresponding
to the OBS -1 is replaced with 0) and start from step 2.

7. End. The vector C is filled up. In parallel, it is convenient to form the vector
�C ¼ �cj

�� ��; j ¼ 1; . . .; I; where �cj ¼ 0 for the blocks from the acyclic part, �cj ¼ 1
for the blocks from the first independent contour, �cj ¼ 2 for the blocks from the
second independent contour, etc.

The optimal order for simulation of apparatuses in CPS obtained in this way is
used in cases when all inlet regime variables are regulated and all outlet regime
variables are free.

2 Simulation for Specified Outlet Variables

In a lot of cases and especially for the purposes of design, the simulation of CPS
when some of the outlet regime variables are specified [5–9] is necessary. Thus, as
an example Fig. 4 shows CPS where the variables �x and �y are specified. Obviously
the simultaneous module approach proposed in Sect. 1 cannot be applied directly
because of the existence of specified outlet variables (SOV) �y1; . . .;�y5ð Þ: This
problem can be solved if the function is composed as
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F x1; . . .; x7ð Þ ¼
X5

i¼1

yi � �yið Þ2; ð2:1Þ

which can be minimized by varying the free inlet variables x1,…, x7, as for each
composition of values of x1; . . .; x7; are determined y1; . . .; y5; using the method for
simulation described in Sect. 1 (obviously the order of simulation will be 2, 1, 3, 4,
6, 5, 7, 8, 9). If we denote the coordinates of the minimum of (2.1) as �x1; . . .;�x7; it
is obvious that the simulation of CPS in Fig. 4 can be made through the algorithms
in Sect. 1 if we accept �x1; . . .; �x7; as specified variables and y1,…, y7, as free
variables. Under these conditions the specified values �y1; . . .; �y5; are obtained
automatically as a result of the simulation for such specified variables �x1; . . .; �x9;
[5–9].

The proposed approach for simulation for the existence of SOV is difficult
owing to the fact that a minimization problem with large dimension has to be
solved. The decrease of the dimension of the problem can be achieved through its
decomposition. Thus, as an example instead of the minimum of F from (2.1) we
could search for the minimum of two other functions with a smaller number of
variables:

F1 x1; . . .; x4ð Þ ¼
X3

i¼1

yi � �yið Þ2; F2 x5; . . .; x7ð Þ ¼
X5

i¼4

yi � �yið Þ2: ð2:2Þ

In (2.1) and (2.2) obviously the number of SOV should not exceed the number
of free inlet variables, i.e., the CPS should have the necessary number of degrees
of freedom. This condition will be further called a ‘‘parametric condition.’’

2.1 Zone of Influence

The decomposition approach is possible because the free inlet variables of block 1
(Fig. 4) influence the SOV of block 7 and do not influence the SOV of block 9. In
contrast, the free inlet variables of block 3 influence the SOV of block 9 and have
no influence on the SOV of block 7. That is because of the fact that block 1 enters
into the zone of influence of block 7 and block 3 enters into the zone of influence
of block 9 [5–9].

Fig. 4 Zone of influence
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The zone of influence of a block represents a combination of blocks from which
can be reached the block moving towards the direction of the technological
streams. Thus, as an example in Fig. 4, the zone of influence of block 8 contains
blocks 1–7.

We will further examine zones of influence of blocks with SOV. These blocks
will be most often used as the outlet for CPS but they could be the inlet or
somewhere in-between. If in CPS there is an independent contour and one block
from the contour participates in a zone of influence, then obviously the other
blocks from the contour participate in it also. When searching for zones of
influence of the independent contours this permits the blocks to be replaced with
superblocks, i.e., a CPS is transformed from acyclic into cyclic. If the block with
SOV participates in an independent contour, the other blocks from the contour
have the same zone. This permits the superblock to replace in these cases the block
with SOV. From this it follows that the first step when searching for zones of
influence is structure analysis of CPS through the algorithms in Sect. 1 and the
independent contours are replaced with superblocks. We will further examine the
acyclic CPS thus obtained.

The zone of influence of a block with SOV is obtained if we start from this
block and trace all the routes in a direction opposite that of the streams. For this
purpose an algorithm is used to search for the elementary contours (Sect. 1), with
the difference that we do not start from a particular block but from the block with
SOV and stop the searching on a given block.

The route is not complete when the number of the block appears over again
(closing of an elementary contour) but when the number of an inlet block in the
CPS is reached. The results from these procedures are saved in the matrix of the
zones of influence, where in the first column are saved the numbers of the blocks
with SOV and the other columns correspond to the numbers of the blocks in CPS.
The rows correspond to the blocks with SOV and contain their zones of influence.
As an example, the matrix of the zones of influence of blocks 7 and 9 corre-
sponding to Fig. 4 appear like (2.3).

   1    2    3    4    5    6    7    8    9 

   7    1    1    1 

   9    1    1    1 

ð2:3Þ

Having in mind that the SOV will be influenced by the free inlet variables, it is
obvious that the inlet blocks should be determined, i.e., the inlet zone of influence
should be obtained. In this way from (2.3) we get directly (2.4):

   1    2    3    4    5    6    7      8        9 

   7    1    1 

   9    1    1 

ð2:4Þ
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2.2 Absolutely Independent Influence

From the matrix of the inlet influence (2.4) we can obtain the zones of absolutely
independent inlet influence (2.4). For this purpose all columns in the matrix of the
zone of inlet influence are annulled which contain more than one unit. In this way
we get the matrix for absolutely independent inlet influence (2.5):

   1    2    3    4    5    6    7    8    9 

   7    1 

   9    1 

ð2:5Þ

From (2.5) it can be seen that in the zone of absolutely independent inlet influence
of block 7 (with SOV), block 1 enters and for block 9, block 3 enters. From this it
follows that SOV of blocks 7 and 9 can be obtained through minimization of the
function in (2.2), i.e., through varying (separately and absolutely independently)
the free inlet variables of blocks 1 and 3. In this way we can be solve the problem
of the simulation of CPS with SOV as the values of xj at the points of the minima
are accepted as regulated values �xj j ¼ 1; . . .; 7ð Þ; and the regulated values �yi are for
free yi i ¼ 1; . . .; 5ð Þ. For this purpose obviously two conditions must be fulfilled:

1. The matrix of the zones of absolutely independent inlet influences (2.5) should
not have zero rows.

2. The parametric condition should be fulfilled for each row in (2.5)

In cases when one of these conditions is not fulfilled, zones of independent inlet
influence are searched for.

2.3 Independent Influence

The determination of the zones of independent inlet influence is made in a different
way depending on which of the two conditions listed at the end of the previous section
is not fulfilled. For this reason, two examples will be scrutinized. Figure 5 shown CPS
whose zone of inlet influence looks like (2.6). When searching for the zone of
absolutely independent inlet influence, we get matrix (2.7), which has one nonzero
row, i.e., there are no zones of absolutely independent inlet influence (but not
absolutely independent) and we check whether the parametric condition is fulfilled.

  1   2   3   4   5   6   7   8   9  10  11  12 

   9   1   1   1 

 10   1   1 

 12   1   1 

ð2:6Þ
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   1    2    3    4    5    6    7    8    9   10   11   12 

   9    1 

 10 

 12    1 

ð2:7Þ

If it is fulfilled, minimization of the functions is suggested:

F1 x1; . . .; x3ð Þ ¼
X3

i¼1

yi � �yið Þ2; F2 x6; x7ð Þ ¼
X8

i¼7

yi � �yið Þ2: ð2:8Þ

In (2.6) the rows for which the zones of independent inlet influence are obtained
are made equal to zero and to the rest of the rows are applied operations for
obtaining the zone for absolutely independent inlet influence. As a result, the
matrix (2.9) is obtained. For the nonzero rows thus obtained, the parametric
condition is checked and if it is fulfilled, minimization of the function is suggested:

 1  2  3  4  5  6  7  8  9 10 11 12 

10  1  1 
ð2:9Þ

F3 x4; x5ð Þ ¼
X5

i¼4

yi � �yið Þ2: ð2:10Þ

In the example examined (Fig. 5), CPS have no zones of absolutely indepen-
dent inlet influence but there are zones of independent inlet influence if the
minimization of the functions is made in a definite sequence F3, F1, F2, where F1

and F2 could arbitrarily change places. In this way, in a first step the specified
values �x4; �x5; are determined and in the second step �x1; . . .;�x3 and �x6; �x7 or �x6; �x7

and �x1; . . .;�x3 are determined.
The other characteristic example is from Fig. 4 if the specified inlet streams are

�x3;�x4;�x7, and �x9: From this it follows that the parametric condition for the first row

Fig. 5 Independent
influence
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of matrix (2.5) is not fulfilled. Then the rows (the second) for which the parametric
condition is fulfilled require that the function F1 be minimized:

F1 x5; x6ð Þ ¼
X5

i¼4

yi � �yið Þ2: ð2:11Þ

After that these rows are made equal to zero in (2.4) and to it are applied again
the operations for obtaining the matrix of absolutely independent inlet influence.
As a result, matrix (2.12) is obtained:

1 2 3 4 5 6 7 8 9 10 11 12
7 1 1

ð2:12Þ

The parametric condition for the rows in (2.12) is checked and if it is fulfilled,
minimization of the function is suggested:

F2 x1; x2; x8ð Þ ¼
X3

i¼1

yi � �yið Þ2: ð2:13Þ

From what has been described it is seen that CPS in Fig. 4 with specified
variables �x3;�x4;�x7 and �x9;�y1;�y2;�y3;�y4 and �y5 could be simulated if functions (1.11)
and (2.13) are preliminarily minimized in sequence F2, F1. At the points of the
minima �x1;�x2;�x8 and �x5;�x6 are determined, which are further accepted as specified
variables and �y1;�y2;�y3;�y4, and �y5 are accepted as free variables. This means this
CPS has zones of independent inlet influence but it is not absolutely independent,
i.e., it is necessary to respect a definite sequence.

2.4 Combined Zones

The two algorithms examined for simulation of CPS with SOV through determi-
nation of the zones of absolutely independent and independent inlet influence
cannot cover the cases when the matrix of the zones of absolutely independent
inlet influences (2.5) is zero or when in the matrix of independent inlet influence
(2.7) there is a row for which the parametric condition is not fulfilled. For these
cases two algorithms are created [6] for determination of combined zones for
independent inlet influence. For this purpose combinations are found from two
(if this is not necessary, from three and more) blocks with SOV and the zone of
influence for every combination is determined—combined zone of independent
inlet influence.

3 Models of Separate Blocks

The simulation of CPS is connected with the necessity for simulation of a large
number of processes (blocks) and one substantial part of them (which participates
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in the independent contours) is simulated repeatedly. This forces a series of
conditions when creating the models of the blocks (calculation modules) in CPS
[1, 5].

3.1 Types of Modules

The necessary time for simulation of CPS depends on the time for simulation of
the separate blocks, the number of blocks, and the number of iterations (at acyclic
CPS). From these, in reality, two factors can be decreased, the first and the third
one.

The time for simulation of the separate blocks depends on the effectiveness of
the calculation algorithm and the complexity of the mathematical structure of its
mathematical description. This means that decrease of this time could be achieved
through simplifying the mathematical description. This could be realized in dif-
ferent ways, of which the most used one is not accounting for the temperature
dependence of the parameters, replacing the kinetic and balance equations,
replacing the kinetics constants with coefficients of effectiveness, and linearization
of the equations. This leads to the possibility of composing different kinds of
modules depending on their precision (accuracy), as the inaccuracy in creating
calculation procedures on this basis is on account of increasing the quickness of
their operation.

The number of the iterations (at correctly found OBS of streams) depends on
the initial approximations of the values of the parameters of the broken streams,
which starts with the iteration procedure. This forces the search for a good initial
approximation.

All this gives us the opportunity to create effective algorithms for simulation of
two stages. The first stage represents simulation with the help of simple but high-
speed modules for not good initial approximations of the parameters. This gives
the opportunity to realize quickly a large number of iterations from which are
determined not very exact approximate values of the parameters of the broken
streams. In the second stage these values are used as good initial approximations
for real simulation with precise modules, which leads to one accurate final result
with a small number of iterations.

Simulation of CPS for the purposes of the optimal control or design sets also
different conditions on the calculation modules. As an example, the modules for
control calculate the outlet regime variables for given inlet regime variables of the
process and constructive variables of the apparatus. On the other hand, the mod-
ules for design calculate the constructive variables (parameters) of the apparatus
for given inlet and outlet regime variables of the process. This does not exclude the
possibility of using different modules for control or design in a simple or precise
variant depending on the accuracy of the initial approximations.

The different kinds of calculation modules described can be applied in different
stages when creating CPS:
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1. Determination of the outlet regime variables for given inlet regime variables
through balance equations with given coefficients of effectiveness and constant
physical parameters (example in relation to temperature).

2. Repeat step 1 with good initial approximations and precise balance equations.
3. Determination of the constructive parameters of the apparatuses through

modules for design and the values obtained in step 2 for the inlet and outlet
regime variables.

4. Determination of the outlet regime variables through kinetic equations and the
given inlet regime variables, constructive variables, and constant physical
parameters.

5. Simulation of CPS through precise kinetic models and good initial
approximations.

The optimal design and control of CPS is achieved through solving the opti-
mization problems at each of the above-mentioned stages.

Some of the considerations so expressed will be illustrated through simplified
modules for control of processes in heat exchangers, separators, and chemical
reactors [1, 5].

3.2 Heat Transfer

A countercurrent heat transfer apparatus (Fig. 6) will be examined with con-
structive variables:

a ¼ F; aq

�� ��; ð3:1Þ

where a is the vector of the constructive variables, F is the heat transfer surface,
and aq is the vector of the other constructive variables.

In the heat exchanger cold and hot streams and their vectors of the inlet regime
variables are, respectively,

x1 ¼ x1f ; x1t; x1c; x1p

�� �� cold stream;
x2 ¼ x2f ; x2t; x2c; x2p

�� �� hot stream;
ð3:2Þ

where xf, xt, xc are the capacity, temperature, and the specific heat of the stream
and xp is the vector of the rest of the parameters of the stream. Analogously we can
write the vectors of the outlet regime variables:

y1 ¼ y1f ; y1t; y1c; y1p

�� ��; y2 ¼ y2f ; y2t; y2c; y2p

�� ��: ð3:3Þ

Fig. 6 Heat transfer module
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The mathematical description of the process is obtained from the balance
equation at countercurrent flow:

Q ¼ x1fx1c x1t � y1tð Þ ¼ x2fx2c y2t � x2tð Þ; ð3:4Þ

where Q depends on the effectiveness of the heat transfer and should be expressed
through a given coefficient of effectiveness.

The maximum quantity heat which could be exchanged between the cold and
the hot stream is determined by their final temperatures for a sufficiently large heat
transfer surface:

y1t ¼ y1tmax
¼ x2t; Qmax ¼ Q0max; y2t ¼ y2tmin

¼ x1t; Qmax ¼ Q00max; ð3:5Þ

where

Q0max ¼ x1fx1c y1tmax
� x1tð Þ ¼ x1fx1c x2t � x1tð Þ;

Q00max ¼ x2fx2c x2tmax
� y2tmin

ð Þ ¼ x2fx2c x2t � x1tð Þ: ð3:6Þ

Obviously Qmax ¼ min Q0max;Q
00
max

� �
; i.e.,

Qmax ¼
Q0max if x1fx1c\x2fx2c;

Q00max if x1fx1c [ x2fx2c:

8<
: ð3:7Þ

Now, we can define the coefficient of the effectiveness of the heat transfer:

Q ¼ EQmax: ð3:8Þ

Thus mathematical description of the heat transfer obtained permits the creation
of a simplified (but highly effective) calculation module through the following
algorithm:

1. Set x1, x2 and E.
2. Determine xfxcð Þmin¼ min x1fx1c; x2fx2cf g:
3. Determine Qmax ¼ xfxcð Þmin x2t � x1tð Þ:
4. Determine Q = EQmax.
5. Determine y1t ¼ x1t þ Q=x1fx1c:
6. Determine y2t ¼ x2t � Q=x2fx2c:
7. Substitute y1f ¼ x1f ; y2f ¼ x2f :
8. Substitute y1c ¼ x1c; y2c ¼ x2c; y1p ¼ x1p; y2p ¼ x2p:

3.3 Separation

Different processes could be introduced into the mathematical model as calcula-
tion modules ‘‘separators’’ (Fig. 7), where one multicomponent mixture is
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separated into several phases (parts). If with i we denote the number of the block,
s = 1,…, S is the number of the component and j = 1,…, J is the number of the
phase, then Gi is the quantity of the mixture coming in for separation and kis is its
composition:

Gi ¼
XS

s¼1

kis: ð3:9Þ

In the separator the inlet stream is divided into J phases Gij = (j = 1,…, J), as
each phase contains quantity gijs of the sth component (s = 1,…, S), i.e.,

Gi ¼
XJ

j¼1

Gij; Gij ¼
XS

s¼1

gijs; kis ¼
XJ

j¼1

gijs: ð3:10Þ

The process in the separator is fully defined if the coefficients of the split are
given:

dijs ¼
gijs

kis

; j ¼ 1; . . .; J; s ¼ 1; . . .; S: ð3:11Þ

From (3.10) and (3.11) it follows directly that

XJ

j¼1

dijs ¼ 1: ð3:12Þ

Thus mathematical description of the process separation allows the creation of a
simple and effective calculation module for dividing multicomponent mixtures
through the following algorithm:

1. Set Gi, kis and dijs; j ¼ 1; . . .; J; s ¼ 1; . . .; S:
2. Calculate gijs ¼ kisdijs; j ¼ 1; . . .; J; s ¼ 1; . . .; S:.

3. Calculate Gij ¼
PS
s¼1

gijs; j ¼ 1; . . .; J:This algorithm allows the parameters of the

outlet streams, yij ¼ Gij; gij1; . . .; gijs

�� ��, to be determined for given values of the
parameters of the inlet streams, xi ¼ Gi; ki1; . . .; kisj j, and the coefficients of
separation, dijs; j ¼ 1; . . .; J; s ¼ 1; . . .; S:

Fig. 7 Separation module
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3.4 Chemical Processes

The modules of the processes which flow in chemical reactors (Fig. 8a) can be
built conditionally from the modules of two separators (Fig. 8b). In reactor i
substance kis enters and nonreacting substance ws comes out and the product of the
reaction is we (Fig. 8a). Conditionally it could be accepted that kis enters separator
i0 and is divided into a reaction part (kis - ws) and a nonreaction part (ws). The
nonreaction part is mixed with the quantity of component we received in the
reactor and they are divided in separator i00. For these two separators we can define
the coefficients of separation:

di0s1 ¼
ws

kis

; di0s2 ¼
kis � ws

kis

; di00s1 ¼
ws

ws þ we

; di00s2 ¼
we

ws þ we

: ð3:13Þ

The above equations allows us to build the following simple algorithm for
simulation:

1. Set kis and the coefficients of separation d.
2. Determine ws ¼ di0 s1kis:
3. Determine ws þ we ¼ ws=di00s1:
4. Determine we ¼ di00s2 ws þ weð Þ:

For solution of concrete problems in the field of the modeling and simulation of
CPS it is convenient to use specialized software (ChemCad, Asspen, Pro II,
Hysim).
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Synthesis of Systems

1 Optimal Synthesis of Chemical Plants

One of the main tasks of modeling and simulation in chemical engineering and
chemical technology is to obtain a quantitative description for the purposes of
optimal design or control. This represents the optimization of some parameter
(most often economic) in the design of a new operating process or system or the
control of operating processes or systems [1].

1.1 Optimization

The optimization of a parameter of the system requires the search for the maxima
or minima of one objective function characterizing in some way the system. It
depends on the variables of the system (10.1.4) and satisfies the equations of the
model in ( 10.1.5):

z ¼ z X; Y ; A; Bð Þ; F X; Y ; A; Bð Þ ¼ 0: ð1:1Þ

Usually, the optimal design reduces to searching for the maxima (minima) of
z in relation to some of the constructive variables A, whereas in the optimal control
this role is given to the inlet regime variables X. In both cases the limitation placed
upon the variables F = 0 must be satisfied and depends on the topological
structure of chemical plant systems (CPS). Obviously, the attempt to optimize CPS
through variation of the structure could lead to new results, but this sets the task for
optimal synthesis of CPS.

1.2 Optimal Synthesis

Searching for the optimum of the objective function of CPS for an inconstant
topological structure is reduced to determination of
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zopt ¼ opt
A;a

z X; Y ; A; að Þ; ð1:2Þ

i.e., to minimization (maximization) of z in relation to variables A and a; where a
is the vector of the structure variables (parameters). It expresses quantitatively the
topological structure of CPS [1].

The mathematical task thus formulated for optimal synthesis of CPS means that
for given values of the inlet regime variables X and for desired values of the outlet
regime variables Y, there need to be found such a topological structure að Þ and
apparatuses for the separate processes (A) that CPS are optimal in some meaning
(z). Obviously, solving such a global task is impossible not only because of the
lack of appropriate methods, but also because of its simple formulation. Having
this in mind, we will use a hierarchical approach which will reduce the task for
optimal synthesis of CPS several main tasks, where obviously the synthesis of the
optimal topological structure is connected with the corresponding synthesis of
models of CPS.

1.3 Main Problems

The most general task for optimal synthesis of CPS has the purpose of finding the
optimal composition of apparatuses and the technological connections between
them in such a way that for a given composition of substances (raw materials,
semiproducts) in terms of kind and quantities definite products (of a given kind and
quantity) are to be produced through appropriate physical and chemical influences
upon the substances entering CPS. This problem can be solved only if it is
decomposed in an appropriate way. One possible approach [1] suggests solving
different optimization problems at the following hierarchical levels:

1. Selection of routes and conditions for implementing the reactions
2. Determination of optimal chemical reactor systems
3. Determination of optimal systems for separation of mixtures
4. Selection of supporting subsystems
5. Determination of optimal heat exchanger systems
6. Qualitative analysis of the reliability of CPS
7. Analysis of the dynamic properties of CPS
8. Preliminary optimal structure of CPS

The separate tasks of the optimal synthesis thus outlined show that homoge-
neous CPS which contain monotype processes (chemical, separation, heat transfer,
etc., processes) are most often examined. Of no lesser interest is the optimal
synthesis of heterogeneous CPS (consisting of different types of processes).

One often-solved problem is the optimal synthesis of a separation system
concerning a certain mixture of n substances: the task is to find the optimal
separation system by dividing the mixture into pure substances (at minimal annual
expense).
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Another task of no less importance and especially relevant economically is the
synthesis of an optimal system for recuperative heat transfer (OSRHT). There are
two given material stream systems. One system represents hot streams which
should be cooled to a given temperature and the second system is the cold streams
which should be warmed up to a given temperature. A system of heat exchangers
is searched for where the cold and hot streams exchange heat and the inadequacies
are compensated by heating agents and cooling agents. The optimal system is
chosen in such a way that the costs for heat transfer equipment and heating and
cooling agents are minimal.

1.4 Methods of Synthesis

The variety of tasks for synthesis of CPS forces the creation of a series of methods,
most of which differ in principle.

The method which permits the most mathematical formalization of the task is
that of the structural parameters [1]. If the model of CPS is expressed as

yk ¼ f k xk; ak
� �

; k ¼ 1; . . .;N; ð1:3Þ

then the vectors of the outlet and inlet regime variables of the kth block and its
constructive variables can be expressed as

yk ¼ yk
1; . . .; yk

nk

�� ��; xk ¼ xk
1; . . .; xk

mk

�� ��; ak ¼ ak
1; . . .; ak

pk

���
���: ð1:4Þ

Between the inlet and the outlet regime variables of the different blocks con-
nections exist which can be expressed through structural parameters:

xk
1 ¼

Xn

i¼1

Xn1

j¼1

aik
ji yi

j; ð1:5Þ

where

aik
ji ¼

1 if there is a connection betweenthe kth

and theith block in thedirection from l to k;

0 if there isno connection between blocks k and l:

8><
>: ð1:6Þ

The quality of the synthesized CPS is determined by the values of a particular
objective function z and its extreme value is searched for in relation to parameters
a and A:

zopt ¼ opt
A;a

z X; Y ;A; að Þ ! extremum: ð1:7Þ

1 Optimal Synthesis of Chemical Plants 577



Evidently the integer variables a create difficulties when searching for the
extreme values in (1.7). These inconveniences disappear when a can have arbitrary
values in the interval 0� a� 1, but then a expresses the part from the outlet stream
from a given block which becomes the inlet stream in other block.

The method of dynamic programming also finds application in the optimal
synthesis of CPS. As an example separation of n substances in n stages is
examined. In the first stage the costs are determined for the separation of one
substance (from all n substances), which are obviously zero. In the second stage
the costs are determined for the separation of two substances for all combinations
of n substances, i.e., n(n-1)/2 combinations from more than two substances. In the
third stage the costs are determined for separation of three substances in two parts,
one of which contains only one substance. In this way stage n is reached for
different variants for separations of n substances, from which the most economical
is chosen.

Heuristic methods for optimal synthesis [1] use algorithms which in the
first stage are composed of a set of heuristics, i.e., rules for making decisions in
given technological situations which usually comprise much engineering experi-
ence. The second stage in the heuristic algorithms represents the way to make
decisions to choose (at a given stage of the synthesis) one or another heuristic.
The last stage of the algorithm is the way to tune and train the heuristic algorithm.

In a series of cases it is especially convenient (example, for reconstruction of
CPS) to use evolutionary methods, which start from an initial structure of CPS and
then use different algorithms for the gradual optimization. Some tasks for optimal
synthesis permit the use of combinatorial methods, through which the full set of
variants of CPS is obtained (in the form of a tree of the variants) and the optimal
variant is searched for.

The combinatorial method leads to difficulties as a result of the possibility to
obtain a large number of variants. It could be combined with the heuristic
method, which during the creation of the variants rejects (discards) the
futureless variants used for evaluation of the variants of the heuristic rules.
Such a combined method [2–4] will be examined more carefully in the next
example.

1.5 Optimal Synthesis of a System for Recuperative
Heat Transfer

N hot streams which should be cooled from temperature T in
hi to Tout

hi i ¼ 1; . . .;mð Þ
and n cold streams which should be heated from temperature T in

cj to Tout
cj will be

examined. For given thermal/physical parameters of the streams and in particular
of the water equivalent of the hot and cold streams Whi and Wcj; i ¼ 1; . . .;m; j ¼
1; . . .; n (product of the mass consumption and the specific heat), we search for the
OSRHT with minimal annual remittance expenses:
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C ¼ Ck þ Ce þ Cg; ð1:8Þ

where Ck is the capital expenses (for heat exchangers), Ce is exploitation expenses
(for heating and cooling agents), and Cg is other expenses (pipelines, pumps,
hydraulic losses, etc.).

The solution of the problem will be searched for through consecutive unifica-
tion of hot and cold streams in appropriate recuperative heat exchangers, calcu-
lation of these heat exchangers, and determination of the necessary additional heat
exchangers for the necessary additional cooling (heating) of the hot (cold) streams
and the necessary cooling agents (heating agents) for this purpose.

The minimum of C is searched for among a system for recuperative
heattransfer (SRHT) obtained through different combinations of the hot and cold
streams. This direct combined approach is difficult because of the large number of
possible combinations [2–4]. This forces us to use a heuristic approach for
selection of the most likely combinations. For this purpose the combinatorial–
heuristic method [2–4] is created in which the procedure for optimal synthesis of
CPS is reduced to using the sets of the hot and cold streams:

Ih ¼ i ¼ 1; . . .;mð Þf g; Ic ¼ j j ¼ 1; . . .; nð Þf g; ð1:9Þ

where the transfer of heat is realized between streams i = j. This could lead to an
SRHT if the streams are arranged in a proper (optimal) way in the sets Ih and Ic.

The analysis of a series of particular cases proves [2–4] that an SRHT can be
obtained if ‘‘the sets of the hot (cold) streams represent sequences at which their
initial (final) temperatures decrease and in the heat exchangers are combined
sequentially a couple of streams with equal numbers i = j =1, 2,….’’ This will
be used further as a basic heuristic for building the combinatorial–heuristic
method.

The heat transfer between the hot and the cold stream (i = j) could flow under
different conditions. If we use the notation in Fig. 1, where the inlet and outlet
temperatures of the streams do not match their initial and final values, we see that
the heat transfer depends materially on the admissible minimal temperature dif-
ference DTmin, which results in the obvious limitations

tin
h � tout

c �DTmin; tout
h � tin

c �DTmin; T initial
h � T initial

c [ DTmin; Q�Qmax;

ð1:10Þ

Fig. 1 Inlet and outlet temperatures of the streams
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where

Qmax ¼ min Qh;Qcð Þ; Qh ¼ Wh T initial
h � T final

h

� �
; Qc ¼ Wc T final

c � T initial
c

� �
;

Q ¼ Wq tin
q � tout

q

� �
¼ Wc tout

c � tin
c

� �
:
;

ð1:11Þ

Heat transfer between the two streams in Fig. 1 is possible under the following
condition

Qh�Qc; Wh�Wc; Qh [ Qc; Wh [ Wc; T initial
h � T final

c

� �
�DTmin;

T final
h � T initial

c

� �
�DTmin; T initial

h � T final
c

� �
[ DTmin; T final

h � T initial
c

� �
[ DTmin;

ð1:12Þ

the combination of which leads [2–4] to a large number of variants of the heat
transfer between two streams, from which the real ones are those which satisfy
conditions (1.10).

The above considerations permit the creation of an algorithm for optimal
synthesis of one variant [2–4]:

1. Input of the data for the hot and cold streams.
2. Arranging of the streams in accordance with their final temperatures

T initial
h1 [ T initial

h2 [ � � � [ T initial
hm ; T initial

c1 [ T final
c2 [ � � � [ T final

cn

� �
:

3. Choosing the serial couple of streams i = j.
4. Checking whether the heat transfer is possible T initial

h � T initial
c �DTmin

� �
.

(a) If it is, go to step 7.
(b) If it is not, go to step 5.

5. An external heat carrier is used to heat the cold stream to specified T final
c .

Calculation of the necessary heat exchanger for this heating and the annual
cost for its use. This cold stream from the set is excluded and the algorithm
starts from step 2.

6. Checking whether there are more cold streams.

(a) If there are, go to step 7.
(b) If there are not, go to step 10.

7. Choice of a variant depending on Qh; Qc; Wh; Wc; and DTmin [2–4].
8. Calculation of the necessary recuperative heat exchanger and its capital

expenses.
9. Further the processed parts from the two streams are excluded and the algo-

rithm starts from step 2.
10. The hot parts are cooled with an external cool carrier.
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The necessary heat exchanger for this cooling and the annual use expenses are
calculated.

This algorithm permits the synthesis of an initial approximation of an OSRHT.
It represents one local minimum of (1.8) because such a chosen couple of streams
are not always optimal. To search for the optimal couple of streams the main
permutation of the set of the cold streams (obtained through the main heuristics) is
used and from it another two permutations are obtained in which the second and
third elements of the main permutation are exchanged with the first one, i.e., with
the above algorithm generally three OSRHT are synthesized. As an example in
step 3 besides i = j = 1 two more cases are examined: i = 1, j = 2 and i = 1,
j = 3. The OSRHT are determined, their rendered expenses are compared, and
from the minima of these three numbers are determined the optimal couple of
streams and the algorithm starts from step 2. This algorithm permits us to get close
to the global extreme of the task through the introduction of additional heuristics.
The admissible permutations are built from the main one through a limited number
(three) of sequential elements. Each next permutation differs from the main one by
the number of the element situated in the first place preserving the range of the
others.

The optimal couple of streams are excluded from the sets of the hot and cold
streams and their places are taken by the remaining hot and cold streams and
everything starts from the beginning until all hot streams are exhausted. In this
way the approach presented solves the problem of optimal synthesis of an SRHT
as a task of optimal arranging [2–4]. Created on this basis, the program SYNTI
permits automated creation of OSRHT for the purposes of optimal design and
renovation. The test and industrial examples solved show [2–4] good agreement
with other methods.

Using the method for optimal synthesis of SRHT leads to serious economy of
power. In the literature [4–6] these economies in petrochemical manufacturing
are an average 30%, but in separate cases they reach 50% (production of
ethylene).

2 Renovation of Chemical Plant Systems

The main task of chemical engineering is the quantitative description of CPS for
the purposes of their optimal design and control. The analysis of the solutions of
the tasks for optimal design of a new CPS and optimal control of an operating
CPS during the last 10–20 years shows that the optimization of the design stage
is very advantageous in comparison with the exploitation stage. This advantage
obviously arises from the possibility for optimization of the construction of the
apparatuses and in some cases of the plant scheme. On the other hand, the
solution of the problem for optimal control could have great economical effec-
tiveness owing to the fact that the number of operating CPS is much larger than
the number which should be designed in the future and this relation increases
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with the intensive development of the industry. The advantages of the optimi-
zation of the stages of design and exploitation can be combined (summed up) if
the operating CPS is driven to a new condition which is more effective (eco-
nomically) in comparison with the previous one through renovation [‘‘renovate’’
means to bring to a better condition than earlier, or to a more effective (eco-
nomically) condition], i.e., solving the problem for optimal reconstruction of the
operating CPS [7].

The task for renovation of CPS differs from the tasks for optimal design and
control through the variables which are used for optimization (free) in the math-
ematical description of CPS.

2.1 Mathematical Description

A CPS consists of separate blocks connected by streams in correspondence with its
topological structure. Each block u can be characterized by an ordered sequence of
three numbers

u ¼ r; s; tð Þ; ð2:1Þ

where r is the number of the apparatus in the register of the type of apparatuses,
s is the number of the process in the register of the type of processes, and t is the
number of the block in the topological structure of the CPS.

The technological streams between the blocks are characterized by their
number q in the topological structure and their direction in the values of its
parameters (composition, capacity, temperature, pressure, etc.).

The topological structure of the CPS can be expressed simply with the help of
the matrix of the streams:

A ¼ atq

�� ��; t ¼ 1; . . .;T; q ¼ 1; . . .;Q; ð2:2Þ

where

atq ¼
1 if stream q is theinlet in block t;

�1 if stream q is theoutlet in block t;

0 if stream q is not connected with block t;

8><
>: ð2:3Þ

and T and Q are the whole numbers of the blocks and the streams in the CPS.
The set of the inlet regime variables in block u0 ¼ r0; s0; t0ð Þ is

xr0s0t0 ¼ x
qx1
r0s0t0 [ x

qx2
r0s0t0 [ . . .; ð2:4Þ

where xq
r0s0t0 are the sets of the variables of the inlet streams in block u0;
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xr0s0t0 ¼ gq: ð2:5Þ

for q ¼ qx1 ; qx2 . . . and at0qx1
¼ at0qx2

¼ . . . ¼ 1; i.e., qx1 ; qx2 ; . . . are the numbers of

the whole inlet streams of block u0; gq are the set of the variables of stream q.
The set of the outlet regime variables can be expressed analogously:

yr0s0t0 ¼ y
qy1
r0s0t0 [ y

qy2
r0s0t0 [ . . .; ð2:6Þ

where yq
r0s0t0 are the sets of the variables of the outlet streams from block u0;

yq
r0s0t0

¼ gq: ð2:7Þ

for q ¼ qy1
; qy2

; . . . and at0qy1
¼ at0qy2

¼ . . . ¼ �1; i.e., qy1
; qy2

; . . .are the numbers

of all outlet streams of block u0:
The set of constructive variables of apparatus r0 corresponding to block u0 can

be expressed as

zr0s0t0 ¼ z1
r0t0
; z2

r0t0
; . . .; z

br0
r0t0

n o
; ð2:8Þ

where br0 is the number of constructive variables of apparatus r0:
The mathematical description of block u0 represents a system of equations

related to the regime and the constructive variables:

f i
rst xrst; yrst; zrstð Þ ¼ 0; i ¼ 1; . . .; Is; ð2:9Þ

where Is is the number of equations describing the process with number s.
The equations for the connections between the blocks represent all equations of

the type

y
qy

rysyty ¼ xqx
rxsxtx ð2:10Þ

for qy ¼ qx and ry 6¼ rx; sy 6¼ sx; ty 6¼ tx:

The combination of Eqs. (2.9) and (2.10) represents the mathematical
description of the CPS.

The inlet xq
rstð Þ and outlet xq

rstð Þ regime variables of the separate blocks of the
CPS which are not equations of the type (2.10) generate the set of inlet Xrst

� �
and

outlet Yrst

� �
variables of the CPS:

Xrst � xrst; Yrst � yrst; ð2:11Þ

The general number of Eqs. in (2.9) and (2.10) is always less than the general
number of the regime and constructive variables. Having this in mind, the use of
the mathematical description of CPS for the purposes of their simulation forces the
separation of the variables into free (not regulated) and given (regulated) variables
in such way that the number of free variables is equal to the numbers of Eqs. in
(2.9) and (2.10). The regulated (not regulated) variable could be a regime variable
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as well as a constructive, variable i.e., several subsets of regulated variables can be
differentiated:

xR
rst � xrst; XR

rst � Xrst; yR
rst � yrst; YR

rst � Yrst; zR
rst � zrst:; ð2:12Þ

Depending on which are the regulated variables in the system of Eqs. (2.9) and
(2.10) the solution requires the creation of different algorithms on the basis of
which different mathematical model of CPS are created.

2.2 Mathematical Models

A quantitative description of CPS for the purposes of the optimal control [1] needs
the creation of models where the inlet regime variables and the constructive
variables are specified:

XR
rst ¼ Xrst; YR

rst 6¼ 0; zR
rst ¼ zrst: ð2:13Þ

Simulation of CPS can be realized in the cases when some of the outlet regime
variables are specified. Obviously some of the inlet regime variables should be
free, i.e.,

YR
rst 6¼ 0; XR

rst 6¼ Xrst: ð2:14Þ

Obviously system (2.9) and (2.10) can be solved if it has the necessary degrees
of freedom, i.e., if the number of specified outlet variables does not exceed the
number of free inlet variables:

YR
rst

�� ��� Xrst � XR
rst

�� ��: ð2:15Þ

In these cases one can use the method [8–11] for determination of the zones of
independent inlet influence of a block with specified outlet variables.

The quantitative description of CPS for the purposes of the optimal design
requires the creation of models where the regime variables are specified:

XR
rst ¼ Xrst; YR

rst ¼ Yrst; zR
rst 6¼ 0: ð2:16Þ

With this in mind, when solving the design task, it is advisable to use standard
equipment. Some of the constructive variables could be given:

zR
rst 6¼ 0: ð2:17Þ

Renovation [2–7] differs from the optimal design or control in that some of the
constructive variables should be free, but in the essential part they should be
specified. This as a rule requires some of the regime variables to be free also.
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In this way a quantitative description of a CPS for the purposes for its renovation
should be obtained on the basis of mathematical models where the regime as well
as the constructive variables is partially specified:

XR
rst 6¼ 0; YR

rst 6¼ 0; zR
rst 6¼ 0: ð2:18Þ

From (2.18) one can see the possibility for a large variety when specifying the
variables of CPS and from there the large variety of renovation problems which
can be solved. This requires the creation of the necessary variety of methods,
algorithms, and mathematical models also. Independently from the large number
of models the tasks for renovation can be reduced to several main types.

2.3 Main Problems

The renovation of CPS represents reducing the system to a new, more economi-
cally effective condition in comparison with the earlier state. The tasks are more
general than the tasks of the optimal reconstruction of CPS since they are realized
through introduction of a new apparatus, a new process, or changing the topo-
logical structure of CPS. This leads to the introduction of new values of the
variables r, s, and t. As far as they simply determine the blocks of CPS this is
equivalent to introducing new blocks in CPS. If by ra; sa; ta are denoted the new
values of the parameters characterizing the new block, it is possible to introduce
the following types of new blocks:

r; s; tað Þ; ra; s; tð Þ; r; sa; tð Þ; ra; s; tað Þ; r; sa; tað Þ; ra; sa; tð Þ; ra; sa; tað Þ: ð2:19Þ

In practice, introducing a new process or apparatus in general changes the
topological structure of CPS, i.e.,

ra; s; tð Þ ¼ ra; s; tað Þ; r; sa; tð Þ ¼ r; sa; tað Þ; ra; sa; tð Þ ¼ ra; sa; tað Þ:
ð2:20Þ

Introducing a new process is practically always connected with introducing new
apparatus:

r; sa; tað Þ ¼ ra; sa; tað Þ: ð2:21Þ

From (2.19) to (2.21) it directly follows that all new blocks can be reduced to
three main types:

r; s; tað Þ; ra; s; tað Þ; ra; sa; tað Þ: ð2:22Þ

From (2.22) it can be seen that there are three main tasks of the renovation and
they are accomplished on the basis of the optimal synthesis of CPS, creation of
highly intensive apparatuses, and introduction of highly effective processes.
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2.4 Renovation by Optimal Synthesis of Chemical
Plant Systems

The renovation of CPS through optimal synthesis is solved through the intro-
duction of new blocks of type r; s; tað Þ, i.e., through finding a new topological
structure of CPS for given types of processes and apparatuses. On the other hand,
however, from (2.18) it follows that some of the constructive variables are regu-
lated at some of the blocks. In this way, this renovation task is equivalent to the
task for optimal synthesis for partially given equipment. In all cases of practical
interest, maximal preservation of the present equipment is necessary.

One of the first attempts to solve this problem was realized [5, 6] for renovation
of subsystems for recuperative heat transfer in CPS. In this case the solution was
obtained in two stages. In the first stage, methods for optimal synthesis of sub-
systems for recuperative heat transfer are used [2–4]. This part of the subsystem
will stay unchanged until the end because of the fact that is too close to the optimal
one. In the second stage the problem of the optimal design of subsystems for
recuperative heat transfer [6] is solved for the rest of the subsystem.

The problem of renovation on the basis of optimal synthesis can be solved for
multirange (multiassortment) CPS [7]. In these cases the blocks of CPS are
universal apparatuses with given connections between them where several pro-
duction activities are realized simultaneously and consecutively. Obviously the
time s should be the fourth parameter, characterizing the blocks of the multi-
range CPS:

u ¼ r; s; t; sð Þ; ð2:23Þ

i.e., the block with number t at moment s represents apparatus r where process s is
realized.

Multirange CPS are characterized by a set of universal apparatuses connected in
a given system for each of them. Very often it should be determined which process
will be realized in them in connection with production of different ranges or on
changing the production program (changing the stages of the production of the
existing assortments, introduction of new ones, etc.). With this in mind, the task of
renovation of multiassortment CPS is reduced to finding the distribution of the
separate operations of all the production activities over the universal apparatuses.
Obviously, here we could also use other criteria for optimization. This problem can
be solved by finding the optimal schedules of the apparatuses in CPS [7]. This
solution would be significantly more effective if new connections between the
apparatuses are added or if the number of some of the universal apparatuses is
increased.

For a boundary case, the task of renovation of multiassortment CPS can be
reduced to determination of the optimal schedule of the apparatuses of the mul-
tiassortment CPS if its multivariant realization is possible. Here the addition of
apparatuses and the connections between them could lead to interesting optimal
solutions.
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2.5 Renovation by Introduction of Highly
Intensive Equipment

The optimal reconstruction of CPS is realized most often through exchange of
some of the apparatuses with new, more intensive ones. This approach is widely
used and that is why it is considered as a main method for renovation of CPS.

The creation of highly intensive apparatuses is realized through intensification
of the processes flowing in them. As an example, for the heat and mass transfer
apparatuses this is most often achieved through intensification of the hydrody-
namic interaction of the phases through new packing (in absorption apparatuses),
creation of a boiling layer (in apparatuses for drying and catalytic reactions), etc.

The analysis of the task of creation of apparatuses for realization of intensive
processes shows that this is achieved through the introduction of external energy to
the system. From an economic point of view, in vapor–liquid and vapor–solid
systems the introduction of external energy is most profitable through the vapor
phase. In the liquid–liquid systems the small differences in the density do not
permit the energy to be introduced in a hydrodynamic way and because of this the
use of vibrations, pulsation, etc. is recommended. All these considerations should
be used in the creation of intensive apparatuses for the purposes of renovation.

2.6 Renovation by Introduction of Highly
Effective Processes

One of the most effective approaches for the renovation of CPS is realized through
the introduction of new processes. This provides the opportunity to obtain a greater
variety of optimal solutions and, on the other hand, permits the use of the
achievements of chemical engineering in the creation of a new, highly effective
process. In this approach the new processes replace the old ones or they are
introduced additionally with the purpose of solving ecological problems or
decreasing of costs of raw materials and energy.

From a economic point of view, the introduction of processes which signifi-
cantly decrease the energy cost per unit of production is particularly interesting.
The first step when solving these problems is the analysis of the thermodynamic
effectiveness of the separate processes in CPS, with the purpose of finding those
which should be replaced or to which should be added processes to increase the
thermodynamic effectiveness of CPS as a whole.

The replacement of one process with another with the purpose of increasing the
thermodynamic effectiveness is used in separation processes with a phase transi-
tion. The replacement of the distillation processes with extraction or adsorption
processes is particularly effective in the cases when that is impossible.

The introduction of additional processes with the purpose of utilization of heat
is one of the most important methods for renovation of CPS. This is confirmed by
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the wide use of heat pumps in distillation, evaporation, drying, etc., installations
where huge quantities of low-potential heat are separated. As an example, the use
of thermocompressors to increase the pressure and temperature of the steam of the
distillate in distillation columns could decrease the energy cost by 40–60%.

The methods for renovation of CPS are created in parallel with the methods of
optimal design and control of CPS. In contrast with the optimal control (where the
constructive variables are regulated and the free regime variables are changing
continuously) and the optimal design (where the regime variables are discreet), in
renovation the constructive as well as the regime variables are regulated and the
free variables are changing continuously and are discreet.

The renovation of CPS operates with one considerable set of methods which are
created for solving different classes of problems. From the description given, it is
evident that some of these methods were already known long ago, but for the
larger part they have been created comparatively recently. On this basis, a series of
interesting practical problems have been solved for renovation of CPS through the
introduction of heat pumps, the creation of optimal schemes for recuperative heat
transfer, optimization of multiassortment productions, etc.
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Conclusion

Chemical engineering is related to practices in various industries, such as
chemical, food processing, power engineering, biotechnology, and ecology.
According to an old sentence ‘‘there is nothing more useful to practice than a good
theory’’ theoretical chemical engineering provides the background to solve
numerous practical problems using modeling and simulation methods.

Most of the theoretical results presented here are related to chemical
macrokinetics, i.e., a mutual area of chemical, hydrodynamic, mass transfer, and
heat transfer processes. This simply means that the reagent concentrations in the
chemical kinetics models are related to the equations of hydrodynamics, diffusion,
and heat conduction and the models express a full correspondence between
physical effects and mathematical operators.

The basic difficulty in developing analytical solutions of the models is due to
the nonlinearity of the hydrodynamic equations. In the first half of the twentieth
century, the theory avoided the hydrodynamic problem and Nernst’s film concept
(Langmuir, Lewis, and Whitman) was used, where the velocity is assumed to be
zero. According to this assumption, the mass transfer taking place is due to a
stationary diffusion trough an immovable fluid film with unknown thickness. The
basic disadvantages of this theory are (1) the linear dependence of the mass
transfer coefficient on diffusivity, which is not confirmed experimentally, and (2)
the unknown thickness of the film, which does not allow theoretical determination
of the mass transfer coefficient. However, despite these general drawbacks, the
theory is still valid and widely applied to practical problems such as a thin layer at
the phase boundary, the thermodynamic equilibrium at the interphase, as well as
the basic consequence of the theory regarding the additivity of the diffusion
resistances.

The next step beyond the Nernst concept is Higbie’s penetration theory and
some related versions of it: Higbie’s concept refers to an assumed constant fluid
velocity and a transient mass transfer in a coordinate system moving with the same
velocity. This concept, however, does not take into account the velocity
distribution in the boundary layer.

589



Theoretical analyses of various hydrodynamic approximations (zero or constant
velocity) without correct physical backgrounds reveal that the boundary layer
approximation is the best concept ever conceived owing to its adequacy in
describing the physical conditions in real processes. The laminar boundary layer
theory (Prandtl, Schlichting, Gerstein, and Loitsianskii) has gained advances in
cases such as turbulent boundary layers and diffusion boundary layers (Prandtl,
Taylor, Karman, Landau, and Levich). The diffusion boundary layer theory (Landau
and Levich) has allowed the modeling of many processes pertinent to nonlinear mass
transfer in electrochemical systems (Krylov) and those of nonlinear mass transfer
and hydrodynamic stability in one- and two-phase systems (Boyadjiev).

Advances in numerical methods and computer hardware and software have
permitted quite complicated nonlinear boundary problems to be solved numerically
if, however, the differential equations and boundary conditions are well formulated.

Numerous chemical engineering processes take place in two-phase systems and
the model boundary conditions have to be formulated at the interphase surfaces.
However, commonly the phase interfaces are unknown, which does not allow the
well-developed models to applied and well-developed software codes to be
employed. A way of avoiding some of these problems was the use of diffusion-type
models of columnar devices, where both the velocity and the concentration
distributions are replaced by their averages over the column cross-sectional area.

The solutions of many problems of practical interest lead to models where the
parameters must be obtained by using experimental data. Two main problems
concerning these cases (incorrectness of the inverse problem and multiextremality
of the least-squares function) can be solved by the methods presented in this book.

The information about the methods applied to model and simulate chemical
plant systems allows specially developed software codes to be used.

This book does not address the common topic of distillation column modeling.
The modeling of distillation devices in plate columns uses the approach ‘‘from
plate to plate’’: the model equations relevant to each plate are mass and heat
balance equations, where the parameters of mass and heat transfer kinetics are
replaced by efficiency coefficients. To this end, the thermodynamic liquid–vapor
equilibrium at each plate has to be calculated too. All these parameters depend on
the types and concentrations of the components in both the liquid and the vapor
phases. The use of iterative methods to solve the model equations at each plate
requires very effective thermodynamic methods allowing repeated calculations of
the liquid–vapor equilibria. The models of distillation plate columns contain many
equations, but every equation contains few variables. This leads to model
equations with scarce matrixes and the use of special mathematical software to
solve them is necessary. Obviously, the modeling of distillation plate columns is
more of a thermodynamic and mathematical nature without involving a
hydrodynamic background. The solutions of such problems are commonly
performed by especially developed codes (e.g., ChemCad).

The basic reason for this book is to provide correct formulations and solutions
of theoretical problems in chemical engineering by use of modeling and simulation
methods allowing problems in practical cases to be solved.
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