

Lecture Notes in Artificial Intelligence 6505
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

FoLLI Publications on Logic, Language and Information

Editors-in-Chief

Luigia Carlucci Aiello, University of Rome "La Sapienza", Italy

Michael Moortgat, University of Utrecht, The Netherlands

Maarten de Rijke, University of Amsterdam, The Netherlands

Editorial Board

Carlos Areces, INRIA Lorraine, France

Nicholas Asher, University of Texas at Austin, TX, USA

Johan van Benthem, University of Amsterdam, The Netherlands

Raffaella Bernardi, Free University of Bozen-Bolzano, Italy

Antal van den Bosch, Tilburg University, The Netherlands

Paul Buitelaar, DFKI, Saarbrücken, Germany

Diego Calvanese, Free University of Bozen-Bolzano, Italy

Ann Copestake, University of Cambridge, United Kingdom

Robert Dale, Macquarie University, Sydney, Australia

Luis Fariñas, IRIT, Toulouse, France

Claire Gardent, INRIA Lorraine, France

Rajeev Goré, Australian National University, Canberra, Australia

Reiner Hähnle, Chalmers University of Technology, Göteborg, Sweden

Wilfrid Hodges, Queen Mary, University of London, United Kingdom

Carsten Lutz, Dresden University of Technology, Germany

Christopher Manning, Stanford University, CA, USA

Valeria de Paiva, Palo Alto Research Center, CA, USA

Martha Palmer, University of Pennsylvania, PA, USA

Alberto Policriti, University of Udine, Italy

James Rogers, Earlham College, Richmond, IN, USA

Francesca Rossi, University of Padua, Italy

Yde Venema, University of Amsterdam, The Netherlands

Bonnie Webber, University of Edinburgh, Scotland, United Kingdom

Ian H. Witten, University of Waikato, New Zealand

Alain Lecomte Samuel Tronçon (Eds.)

Ludics, Dialogue
and Interaction

PRELUDE Project – 2006-2009
Revised Selected Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Alain Lecomte
Université Paris 8, Laboratoire Structures Formelles du Langage
Bat D salle 324, 2, Rue de la Liberté, 93200 Saint-Denis, France
E-mail: alain.lecomte@univ-paris8.fr

Samuel Tronçon
Résurgences/The NetLab.org
111, Rue Consolat, 13001 Marseille, France
E-mail: stroncon@resurgences.eu

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-642-19210-4 e-ISBN 978-3-642-19211-1

DOI 10.1007/978-3-642-19211-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011920711

CR Subject Classification (1998): I.2, H.4, F.4.1, F.1, F.3, G

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface
The PRELUDE Program

The articles collected in this volume are based on contributions to workshops
and meetings that were held within the context of the PRELUDE project.
PRELUDE, an acronym for “Towards Theoretical Pragmatics based on Ludics
and Continuation Theory,” ran from November 2006 to November 2009, with
funding from the new French National Agency for Research (ANR). The objec-
tive of the project was to develop perspectives on natural language semantics
and pragmatics based on recent developments in logic and theoretical computer
science.

In the history of logic, research on the conditions for a theoretical discourse
to be coherent and rigourous, mainly initiated by G. Frege, was followed in the
mid-twentieth century by a new approach, inspired by the Computing Revolu-
tion, focusing on the study of programs and their transformations. The view
according to which programs could be seen as the proofs of the statements ex-
pressing their correctness made logical formalisms into valuable objects of study
for computer science. Among such logical frameworks, intuitionistic logic was
considered as an attractive system because of its constructiveness, which takes
the form of a famous correspondence between programs and proofs, known as
the Curry–Howard correspondence (Howard 1980). After this discovery, the pos-
sibilities of extending such a correspondence were explored, and denotational
semantics began to give more attention to the interpretation of proofs than to
the interpretation of formulae.

Around the beginning of the 1990s, it became clear, mainly through the semi-
nal work of A. Ranta (Ranta 1994) based on Martin–Löf’s type theory (Martin-
Löf 1984), that the semantics of proofs could provide the foundations for a view
on natural language semantics going beyond the simple truth-conditional ap-
proach usually taken within the Montagovian tradition. Constructive type the-
ory, for instance, turned out to be a suitable basis for an account of anaphora
in so-called donkey sentences, such as every farmer who owns a donkey beats it.
Nevertheless, although the view of a sentence meaning as the set of its proofs
allows for more fine-grained distinctions than a strict Fregean conception, it re-
mains a static view. Interaction, which is the key point of dialogue, was still
ignored. Pragmatics in the type theoretical frameworks remains concentrated on
the agent’s judgements, which are viewed as mainly static.

The frameworks of linear logic (Girard 1987; Curien 2004), and then ludics
(Girard 2001; Girard 2003, Girard 2006; Curien 2004), developed by Jean-Yves
Girard, have provided new ways of thinking about dynamic processes and inter-
action. The objective of the PRELUDE project was to take these into account
in order to analyze argumentation, dialogue, semantics and speech acts.

VI Preface

The first objective was to study discourse in the light of the theory of con-
tinuations. This theory gives equal prominence to text and context (or terms,
or programs and co-terms, or environments), which is exactly what is required
when one considers discourse as a process in which each sentence is interpreted
in the context of the previous ones and where it contributes to create a new one,
the view held in most versions of discourse theory (Kamp 1981; Heim 1988). In
that perspective, actually, several works had already been done following seminal
papers by P. de Groote, C. Barker and K. Shan (de Groote 2001; de Groote 2006;
Barker 2002; Barker 2004; Shan 2004). These approaches were based on differ-
ent ways of extending the Curry–Howard correspondence to classical logic. Such
extensions had been explored by several researchers since the beginning of the
1990s, such as M. Parigot (with the λμ-calculus) (Parigot 1992), P-H. Curien
and H. Herbelin (with the λμμ̃-calculus) (Herbelin 2005, Curien and Herbe-
lin 2000), P. Wadler (Wadler 2003) and V. Danos, J-B. Joinet and H. Schellinx
([Danos, Joinet & Schellinx 2003]). M. Moortgat and R. Bernardi (Bernardi and
Moortgat 2007), during the same period, developed a continuation semantics for
Grishin’s ‘symmetric’ extension of the Lambek calculus, useful for dealing with
grammatical phenomena without using so-called structural modalities. In the
context of the PRELUDE project, we were mostly interested in attempts to
provide accounts of dynamical processes in discourse, like those studied within
the framework of discourse representation theory (see (de Groote 2006)).

The second objective was to study the figures of dialogue and interaction
through the concepts of ludics. Here, incidentally, we were confronted with prob-
lems of client–server dialogues, where continuations are not sufficient since a
whole tree of exchanges must be taken into account as a context (Fouqueré
2009).

This objective rested on the idea that interaction is the key concept to study
language, as it becomes clear as soon as we try, for instance, to understand ques-
tions like the origin of language (Pinker 2007), or, in a more synchronic way, when
we study language in context, even from a syntactic viewpoint, as R. Kempson and
her collaborators have already shown ([Kempson, Meyer-Viol & Gabbay 2001]).

In some respects, our approach converges with previous game theoretical views
such as Hintikka’s game theoretical semantics and Lorenzen’s dialogical logic,
although it also differs from these in many respects1 (Lorenzen 1960; Hintikka-
Sandu 1997; Hintikka-Sandu 1983; Rahman and Keiff 2005). For this reason,
we appealed to some contributors involved in these perspectives. It seemed im-
portant for us to help make distinctions between all these conceptions. Game
theoretical semantics (GTS) has already helped to study linguistic phenomena
from a game viewpoint, thus making a notion of strategic meaning to emerge, a

1 Particularly because the aims of these different frameworks are not identical: Loren-
zen’s dialogical logic was an attempt to show that intuitionistic logic was the most
natural logic; Hintikka’s GTS is also based on a priori rules but mainly aims at
providing a basis for analyzing knowledge from this viewpoint; ludics is prior to any
set of logical rules since it aims at giving new foundations for logic itself.

Preface VII

notion which deserves much attention. Nevertheless, from our viewpoint, it lacks
a dynamical dimension. As is claimed by Hintikka himself, game moves in GTS
must never be seen as sequences of speech acts, but as mere games for “searching
and finding” (see (Pietarinen 2007). For instance, this theory reflects quite well
the mental behavior of a reader trying to find the reference of some proper name
in a text. We could also say that GTS has mainly an epistemic perspective, and
does not try to reflect the dynamics of the interpretation process. Compared to
GTS, ludics is neither based on a priori rules, nor on some evaluation procedure
which would lead to putting various weights on issues. It aims at showing that
rules themselves are determined by more general considerations like symmetry
and orthogonality, that is, geometrical considerations, so that it is possible to
play with the rules of a game themselves, something important when confronted
with dialogue situations.

The primitive objects of ludics are kinds of trees (called designs) that repre-
sent dialogue (or proof) constructions, on which a relation of orthogonality is
defined. This relation represents interaction. It implies duality between objects,
as between statements and tests to validate them, provided that we always see
statements as being themselves tests for tests.

As a mathematical theory, ludics is based on theorems which make clear how
it can be used for typing objects, that is, to identify them as stable and regular.
One of the fundamental tools is thus known as the “separation theorem.” The
separation theorem states that two designs have a distinct behavior if and only
if we can find another one that is orthogonal to one of the two but not to the
other. One can then isolate a notion of observability (Faggin 2006) with which
one can provide a basis for the notion of ambiguity in language: the case where
a sentence gives rise to two observed types of interaction. Ludical objects are
therefore simple but at an abstract level. Stable sets of designs (called behaviors)
may be provided with operations which make it possible to recover the meaning
of logical connectives, and may be then seen as the equivalent of formulae.

The project has resulted in several workshops and a final colloquium. The
present volume collects the key contributions to these meetings. Only a few of
them are devoted to ludics properly speaking:

- M.-R. Fleury and S. Tronçon explore the way of representing speech acts in
ludics. Elaborating on recent conceptions linking speech acts and commitments
(Gunlogson 2003, Walton 2000), they show that speech acts may be represented
as designs in that they include at the same time an utterance seen as a strategy,
and a function which transforms the context.
- P. Livet also addresses the question of speech acts, but from a slightly different
viewpoint. He sees in ludics a particularly good frame to study the breakdowns
which occur in communication and which are precisely repaired by speech acts.
- A. Lecomte and M. Quatrini explore what might be the contribution of ludics to
an inferential semantics, where meanings emerge from the interactions between
utterances in real or virtual dialogues.
- C. Fouqueré shows how ludics may be used for conceiving tools for programming
Web applications.

VIII Preface

- M. Basaldella, A. Saurin and K. Terui bring innovative tools (c-designs) to
extend ludics into a real framework for rebuilding the concepts of computability.

Other papers are devoted to topics which surround ludics, in that they provide:
- A perspective to situate ludics with regards to game theoretical frameworks,
via a philosophical reflection on the content of the logic games (T. Tulenheimo)
- Concrete illustrations of the utility of tools to represent interactive situations
as they occur in the dynamics of language (R. Kempson, Gregoromichelaki and
Meyer-Viol), or the process of discourse (G. Winterstein and G. Schaden)
- Alternative frames to represent commitments (F. Cardone)
- Other alternative frames to represent interaction in the case of questions and
answers (J. Groenendijk and F. Roelofsen)

Our first objective is actually reflected in this only by two papers, one of
which is rather critical about the use of continuations even if it seems that the
position it adopts with regards to questions like scope ambiguities is equivalent
to a solution using them (C. Pollard). The other one (M. Petrolo) is more ori-
ented toward theoretical computer science and gives a survey of various views of
duality. Finally, another topic close to ludics is discussed, concerning coherence
spaces (used as a semantics for linear logic), and their possible applications to
ontologies (M. Romano, C. Fouqueré and M. Abrusci).

The workshops were held in Carry-le-Rouet (June 2007), Pauillac (October
2007), Autrans (May 2008), Hamburg, as part of ESSLLI, (August 2008), and
the final colloquium was held in September 2009 in Paris. During these meetings
several major scientists contributed, including (among researchers not directly
included in the program): M. Abrusci, N. Asher, C. Beyssade, J-L. Dessalles,
C. Faggian, J-Y. Girard, H. Herbelin, J-B. Joinet, L. Keiff, R. Kempson, M. Mar-
ion, P-A. Melies, D. Miller, M. Moortgat, A. Pietarinen, C. Pollard, A. Ranta,
G. Sandu, L. Strassburger, T. Tulenheimo, G. White. The PRELUDE project
was coordinated by Alain Lecomte. Institutions involved were the Mixed Re-
search Units (UMR) ”Formal Structure of Language” (University Paris 8), ”In-
stitute of Mathematics of Luminy (Aix-Marseille 2), LORIA (Nancy) and LABRI
(Bordeaux) and, in the last period, the UMR LIPN (Paris-Nord). The project
began in November 2006 and lasted 36 months. It benefited from an ANR fund-
ing of 147, 397 euros and hired a postdoctoral researcher for for 2 years (Samuel
Tronçon).

The editors of this volume hereby thank all the members of these teams for
their enthusiastic collaboration, and particularly Marie-Renée Fleury and Myr-
iam Quatrini (IML), Laurent Roussarie (SFL), Christophe Fouqueré (LIPN),
Christian Retoré, Richard Moot, Sylvain Salvati (Labri), Philippe de Groote,
Sylvain Pogodalla (LORIA).

April 2010 Alain Lecomte

Preface IX

References

[Andréoli 1992] Andréoli, J.-M.: Logic Programming with Focusing Proofs in Linear
Logic. The Journal of Logic and Computation 2(3), 297–347 (1992)

[Asher & Lascarides 1998] Asher, N., Lascarides, A.: Questions in dialogue. Linguistics
and Philosophy 21, 237–309 (1998)

[Barker 2002] Barker, C.: Continuations and the nature of quantification. Natural Lan-
guage Semantics 10, 211–242 (2002)

[Barker 2004] Barker, C.: Continuations in Natural Language. In: Thielieke, H. (ed.)
Proceedings of the Fourth ACM SIGPLAN Continuations Workshop, pp. 1–11
(2004)

[Bernardi & Moortgat 2007] Bernardi, R., Moortgat, M.: Continuation semantics for
symmetric categorial grammar. In: Leivant, D., de Queiroz, R. (eds.) WoLLIC
2007. LNCS, vol. 4576, pp. 53–71. Springer, Heidelberg (2007)

[Curien 2004] Curien, P.-L.: Introduction to linear logic and ludics, part I and II (to
appear), downloadable from
http://www.pps.jussieu.fr/∼curien/LL-ludintroI.pdf

[Curien & Herbelin 2000] Curien, P., Herbelin, H.: Duality of computation. In: Pro-
ceedings of the Fifth AGM SIGPLAN, Montreal (2000)

[Danos, Joinet & Schellinx 2003] Danos, V., Joinet, J.-B., Schellinx, H.: Computa-
tional isomorphisms in classical logic. Theoretical Computer Science 294, 353–378
(2003)

[Faggian 2006] Faggian, C.: Ludics and interactive observability: the geometry of tests.
Theoretical Computer Science 350, 213–233 (2006)

[Fleury-Quatrini 2004] Fleury, M.-R., Quatrini, M.: First order in Ludics. Mathemat-
ical Structures in Computer Science 14(2), 189–213 (2004)

[Fouqueré 2009] Fouqueré, C.: Ludics and Web: Another Reading of Standard Opera-
tions. Electronic Notes in Theoretical Computer Science,
http://www.elsevier.nl/locate/entcs

[Girard 1987] Girard, J.-Y.: Linear Logic. Theoretical Computer Science 50 (1987)
[Girard 1999] Girard, J.-Y.: On the Meaning of Logical Rules-I. In: Berger, U.,

Schwichtenberg, H. (eds.) Computational Logic. Springer, Heidelberg (1999)
[Girard 2001] Girard, J.-Y.: Locus Solum. Mathematical Structures in Computer Sci-

ence 11, 301–506 (2001)
[Girard 2003] Girard, J.-Y.: From Foundations to Ludics. Bulletin of Symbolic

Logic 09, 131–168 (2003)
[Girard 2006] Girard, J.-Y.: Le Point Aveugle, vol. I, II. Hermann, Paris (2006)
[de Groote 2001] de Groote, P.: Type raising, continuations and classical logic. In:

van Rooy, R., Stokhof, M. (eds.) Proceedings of the Thirteenth Amsterdam Collo-
quium, pp. 97–101 (2001)

[de Groote 2006] de Groote, P.: Towards a Montagovian Account of Dynamics. In:
Proceedings of Semantics and Linguistic Theory, SALT XVI, Tokyo (2006)

[Gunlogson 2003] Gunlogson, C.: True to Form: Raising and Falling Declaratives as
Questions in English. Routledge, New York (2003)

[Heim 1988] The semantics of definite and indefinite noun phrases. Garland Pub., New-
York (1988)

[Hamblin 1970] Hamblin, C.-L.: Fallacies. Vale Press, Newport News (republished in
2004)

[Herbelin 2005] Herbelin, H.: Au coeur de la dualité, PhD thesis, University of Paris
XI (2005)

X Preface

[Hintikka-Kulas 1983] Hintikka, J., Kulas, J.: The Game of Language: Studies in Game
Theoretical Semantics and its Applications. D. Reidel, Dordrecht (1983)

[Hintikka-Sandu 1997] Hintikka, J., Sandu, G.: Game Theoretical Semantics. In: Van
Benthem, J., ter Meulen, A. (eds.) Handbook of Logic and Language, ch. 6. Else-
vier, Amsterdam (1997)

[Howard 1980] Howard, W.A.: The Formulae-as-Types Notion of Construction. In:
Seldin, J.P., Hindley, J.R. (eds.) To H. B. Curry. Essays on Combinatory Logic,
Lambda Calculus and Formalism, pp. 479–490. Academic press, London (1980)

[Kamp 1981] Kamp, H.: A Theory of Truth and Semantic Representations. In: Groe-
nendijk, J., Janssen, T., Stokhof, M. (eds.) Formal Methods in the Study of Lan-
guage, Mathematical Centre Tract 135, Amsterdam, pp. 277–322 (1981)

[Kempson, Meyer-Viol & Gabbay 2001] Kempson, R., Meyer-Viol, W., Gabbay, D.:
Dynamic Syntax: The Flow of language Understanding. Blackwell, Malden (2001)

[Lorenzen 1960] Lorenzen, P.: Logik und Agon, in Atti del XII Congresso Inter-
nazionale di Filosofia, Venezia (1958); reprinted in Lorenzen and Lorenz Dialo-
gische Logik, Wissenschaftliche Buchgesellschaft (1978)

[Martin-Löf 1984] Martin-Löf, P.: Intuitionistic Type Theory, Bibliopolis, Naples
(1984)

[Parigot 1992] Parigot, M.: λμ-calculus: an algorithmic interpretation of classical nat-
ural deduction. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624. Springer, Hei-
delberg (1992)

[Pietarinen 2007] Pietarinen, A.-V.: Game Theory and Linguistic Meaning. Elsevier,
Amsterdam (2007)

[Pinker 2007] Pinker, S.: The Stuff of Thought, Language as a Window into Human
Nature. Viking, New York (2007)

[Rahman & Keiff 2005] Rahman, S., Keiff, L.: On how to be a dialogician. A short
overview on recent development on Dialogues and Games. In: Vanderveken, D.
(ed.) Logic, Thought and Action, pp. 1–51. Springer, Heidelberg (2005)

[Ranta 1994] Ranta, A.: Type-Theoretical Grammar. Oxford University Press, Oxford
(1994)

[Shan 2004] Shan, K.: Delimited continuations in Natural Language: quantification
and polarity sensitivity. In: Thielieke, H. (ed.) Proceedings of the Fourth ACM
SIGPLAN Continuations Workshop, pp. 1–11 (2004)

[Sundholm 1986] Sundholm, G.: Proof Theory and Meaning. In: Gabbay, D., Guenth-
ner, F. (eds.) Handbook of Philosophical Logic, vol. III, pp. 471–506. D. Reidel,
Dordrecht (1986)

[Tronçon 2006] Tronçon, S.: Dynamique des démonstrations et théorie de l’interaction,
PhD thesis, Université d’Aix-Marseille (2006)

[Wadler 2003] Wadler, P.: Call-by-value is dual to call-by-name. In: Proceedings of the
International Conference on Functional Programming, ICFP 2003, Uppsala (2003)

[Walton 2000] Walton, D.: The Place of dialogue theory in logic, computation, and
communication studies. Synthese 123, 327–346 (2000)

[Wittgenstein 1953] Wittgenstein, L.: Philosophische Untersuchungen. Blackwell,
Malden (1953)

Organization

This volume was organized by the PRELUDE program and directed by Alain
Lecomte and Samuel Tronçon. This work was supported by the french National
Agency for Research, project no. 06-BLAN-0032 “PRELUDE.”

Lecture Committee

Myriam Quatrini Aix-Marseille Université, France
Marie-Renée Fleury Aix-Marseille Université, France
Alain Lecomte Université Paris 8, France
Guy Perrier Université Nancy 2, France
Christophe Fouqueré Université Paris 13, France
Claire Beyssade Institut Jean Nicod, France
Francis Corblin Université Paris 4, France
Nicolas Asher Université Paul Sabatier, France
Ahti-Veikko Pietarinen University of Helsinki, Finland
Ruth Kempson King’s College London, UK
Jean-Jacques Szczeciniarz Université Paris 7, France
Laurent Roussarie Université Paris 8, France
Dale Miller INRIA Saclay, France
Jean-Baptiste Joinet Université Paris 1, France
Samuel Tronçon Aix-Marseille Université, France

Table of Contents

Speech Acts in Ludics . 1
Marie-Renée Fleury and Samuel Tronçon

Speech Acts and Ludics: Reacting to Breakdowns of Interaction 25
Pierre Livet

Ludics and Rhetorics . 32
Alain Lecomte and Myriam Quatrini

Ludics and Web: Another Reading of Standard Operations 58
Christophe Fouqueré

On the Meaning of Focalization . 78
Michele Basaldella, Alexis Saurin, and Kazushige Terui

On Some Logic Games in Their Philosophical Context 88
Tero Tulenheimo

Natural-Language Syntax as Procedures for Interpretation: The
Dynamics of Ellipsis Construal . 114

Ruth Kempson, Eleni Gregoromichelaki, Wilfried Meyer-Viol,
Matthew Purver, Graham White, and Ronnie Cann

Relevance and Utility in an Argumentative Framework: An Application
to the Accommodation of Discourse Topics . 134

Grégoire Winterstein and Gerhard Schaden

The Geometry and Algebra of Commitment . 147
Felice Cardone

Compliance . 161
Jeroen Groenendijk and Floris Roelofsen

The Calculus of Responsibility and Commitment . 174
Carl Pollard

Negative Translations and Duality: Toward a Unified Approach 188
Mattia Petrolo

Ontologies and Coherence Spaces . 205
V.M. Abrusci, M. Romano, and C. Fouqueré

Author Index . 221

Speech Acts in Ludics�

Marie-Renée Fleury and Samuel Tronçon

Institut de Mathématiques de Luminy - Aix-Marseille Université

Abstract. In this paper, we attempt to show that recent developments
in proof theory, especially with ludics, are relevant for the study and
the formalization of speech acts. This logical framework does not deal
with truth values but with proofs, and this opens a new way for taking
in charge the performative part of linguistic utterances. After having
presented two models of speech acts and what theoretical elements we
will hold as relevant for our own model, we introduce the ludical point of
view by defining a speech acting conceptualization which renders some
determinations not presented in the former models. We end by giving
some examples of speech acts, presented in their ludical embedding, and
we discuss what features the model provides.

Our aim is to show that recent developments in proof theory, especially with
ludics, are relevant for the study and the formalization of speech acts. A com-
mon view about proof theory is that this logical framework does not deal with
truth values but with proofs, and this opens a new way for taking in charge the
performative part of linguistic utterances. Proofs are sometimes treated in the
litterature as a syntactic objet, and beotians ignore what could be a semantic
for proof theory. According to the cut elimination procedure due to Gentzen,
and the related properties of convergence (the so called ”Hauptsatz”1) and con-
fluence (Church-Rosser), ”denotational semantics” are defined only upon proofs
with proof reduction. And a recent and genious extension of these ideas is given
by the notion of ”encounter” in Ludics, due to Girard [13], by which we can
study convergences and divergences in the process of interaction between dia-
logical structures2.

We present in the first section two models of speech acts and what theoretical
elements we will hold as relevant for our own model. Secondly, we introduce the
ludical point of view by defining a speech acting conceptualization which renders
some determinations not presented in the former models. In the third section
we present the ludic framework, not extensively detailed but focusing on the
main points used in our formalization (designs, behaviors and the normalization
procedure). Last but not least, we give some examples of speech acts, presented
in their ludical embedding, and we discuss what features the model provides.
� This work was supported by the ANR project no. 06-BLAN-0032 ”PRELUDE”.
1 The ”Hauptsatz” is a theorem proved by Gentzen, which ensure the convergence of

calculus (by the process of cut-elimination). This convergence is strong in the case
of an intuitionnistic calculus, and weak for the classical one.

2 For a good introduction to actual development of proof theory and the works of Girard,
you can read recent works of Jean-Baptiste Joinet [17] and Samuel Tronçon [28]..

Lecomte and S. Tronçon (Eds.): PRELUDE 2010, LNAI 6505, pp. 1–24, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 M.-R. Fleury and S. Tronçon

1 Introducing Speech Acts

1.1 Classical View

First we observe that foundationnal remarks about speech acts and the classi-
cal separation between constative and performative assumptions, as given first by
Austin and Searle, opens the way to a bridge with proof theory. For example, the
meaning of a constative sentence like %The weather is good can be explained
in terms of truth and falsity. But, in the case of a performative sentence like %I
wish you to grow old, we can’t say what would be the truth value. We just know
that, in some cases depending of the context, the sentence would be understood
as a real wish or not. For this reason, we can identify a whole class of natural sen-
tences which are not truth valuable and for whose meaning determination require
a contextual analysis : these utterances convey ”Speech Acts”, i.e. (linguistic) ob-
jects which realize some concrete (pragmatic) action. A short analysis of embodied
speech acts shows that their realizability conditions are unhomogeneous. Some of
them are very primitive (for expl. the presence of an addressee which can receipt
messages), others are conventional (for expl. use of water for the baptism) and pro-
cedural (for expl. to get divorced is possible only after being married). We have
also conditions justified by mental states (for expl. sincerity of the promiser), and
behaviors or expectations accorded with actual speech act orientation (for expl. in
the case of the promise, the adressee would expect for the promised object).

We could define the core problem of the speech acts theory as a problem of
assignment of type (Gazdar, 1981) : what markers and processes do we use to
recognize the category of a speech act ? In the tradition, a large place is given to
illocutionary force markers (for expl. %I promise ... in a promise), because
it is the most evident manner for typing a speech act. But, when considering
actual speech acts, explicit and/or pure syntactic markers are not sufficient, and
we would have to consider not explicit markers, pragmatic means and contexts
to specify the type of a speech act.

In the most common view, we can define a speech act as a mean used by a
locutor in order to produce an effect in its environment by its words. By this
use, he wants to inform, incite, convince or demand something to its addressee.

We suppose that for each meaning M , there exist an expression E which is a
relevant formulation of M , i.e. E is sufficient to transmit the meaning’s intention
M to the interlocutor. So, following the founding fathers3, we could define a
speech act as a quadruplet (I,Γ ,B,Υ) given by a communicational intention (I),
a set of pre-requisite conditions (Γ), a body which realize concretely the action
(B), a set of effects (Υ). This definition states speech acts in their purest form,
i.e. the most disembodied one, as we see in the following example.

Example 1 (The promise). A speech act S will be considered of the type ”promise”
when four conditions are respected4 :
3 Evidently, Austin, Searle and their successors.
4 Considering that the object of this article is not to introduce precise categorizations

of speech acts but a reflexion on their formalization, we will not consider in our
examples all the possible conditions, just their most common specificities.

Speech Acts in Ludics 3

– Spk has the intention of meaning some propositional content p
– Spk wants to make a commitment to Add about p
– Spk really wants to fulfil this commitment
– for Spk and Add , it is an evidence that without this speech act, Spk would

not have done the promised action

Some remarks can be done at this stage. First, we do not know exactly how to
consider and take in charge the speaker’s intention of communicate something
because the speech act is defined as if the intention was totally transparent.

Second, the normativity of speech acts is unclear, because it suggests that
conditions are fully established before the realisation of the speech act. But we
know that by convention we intend to justify the fact that speakers associate
linguistics expressions with meanings they want to refers.

Last, the definition suffers from a lack of clarity and precision. It concerns
notably the fact that we do not know exactly where a speech act begins : Is the
speech act distinct from its effects ? What difference can we make between the
effect and the intention ?

Considering these critical points, we consider that a good theory of speech
act would have to define conventions and intentions not only as core notions
but, evidently, as material objects upon which interactions between agents can
be developed. Although these critical points, which we will take in charge in the
last part of this paper, we find here the main connections with our proof-view
in logics. The body of a speech act, i.e. the means which operates an effect, can
be seen as a function responding to an expectation. This function, in order to be
operational (i.e. to produce some effect), must interact with another function,
some set of data and/or contextual elements : we would call all this bunch of
unhomogeneous elements functionnal environment.

Speech Acts Theory Functions Theory
intention function’s type
conditions contextual datas required in a given type

body function
effects output datas produced in a given type

1.2 Inside Games

One hypothesis about speech acts that we do not want to justify is about the
Literal Force Hypothesis [18]. It establishes a bi-univoque relation between a
restricted set of illocutionary forces and a closed set of clause types. We agree
with, for example, Beyssade and Marandin [4] which wants to solve some prob-
lems of assignement in speech acts without assumption about litteral force [9].
For Beyssade and Marandin, we must enrich the semantics and take in charge
in a more fine manner the process of communication. In other words, speech
acts must be seen as actions committed (by a speaker) and accepted (by some
addressee), which updates some databases about facts, things to do and commit-
ments. This mirroring effect can be called the game-play, and the syncing effect

4 M.-R. Fleury and S. Tronçon

between players is like a gameboard (as it is called in [3]). We can see the origin of
this idea of game-play in the fact that sentences can produce dysimetrical effects
on context. They engage a commitment of the speaker about something, and call
on the addressee to take in charge some counterpart. With these ideas, Ginzburg
opens the way to the formalization of speech acts as games, i.e. integrating the
two players in the analysis.

Syntactic Form Speaker’s Call
type committment to addressee

declaratives direct truth truth
interro-declarative truth question

interrogatives direct question question
interro-negative falsity question

So, the notion of commitment is modelized by the means of gameboard in the
Ginzburgh view. It generates a sort of bookkeeping of actions, things to do,
shared knowledge and all the things which must be known for ensuring the
practicability of speech act and/or the reliability with what follows the speech
act. In the classical style, we postulate that a speech act is defined by some
propositional content associated with an illocutionary force, according to the
fact that the content can be affected by the force. For example, (1) (2) and
(3) have the same propositional content (p = ’we laugh’), and three different
illocutionary forces : respectively assertion, question, command :

(1) %We laugh.
(2) %Are we laughing ?
(3) %Let us laugh !

Gazdar said in [9] that the two main problems raised by this foundation are
about the uniformity of the propositional contents transmitted (as if it was
the same in all the variations), and the bijective relation between clause-types
and illocutionary forces (as if it was possible to establish a strict and decidable
correspondance between them). Ginzburg and Sag [11] are morever in favour of
defining multiple types of propositional content accorded to types of speech act,
as we see in table 1.2.

Syntactic Type Semantic Type Pragmatic Type
Declarative Proposition Being able to demonstrate the

proposition
Interrogative Question Being interested in the answer
Imperative Query Being waiting the realization of a

potential state of affairs

In the game view, like for expl. in Gazdar, we see the speech act as a program
which operates on private and shared databases. For a speech act, the program
updates essentially two types of entries : commitments of the player, call on its

Speech Acts in Ludics 5

opponent. Beyssade and Marandin propose to extend the Gazdar’s notion of
commitment [9] defining it as a function operating on the environment. In this
manner, we can see the following examples of speech act types :

Example 2 (Assertion). An assertion about the fact that F is a function which
modifies the context in which the speaker is not committed about the knowledge
of the truth of F , in a context in which the speaker is committed to demonstrate
the truth of F .

So an actual road map of the speech acts theory would be clearly defined by the
aim of taking in account the interactivity and the context dependance.

First, we have to show that speech acts we are interested in can be seen as
a collaboratives results. For this reason, the function played by the addressee in
the felicity of a speech act must attract all our attention.

Second, we must restore the dialogical dimension of speech act, notably in
their evaluation. This point implies to relay the game view, concentrating our
efforts on the chaining and the embedding of speech act.

The third objective is about the extension of the notion of commitment, viewing
it like an impact on an environment. Now, we can define commitment as a regis-
tration, and context modifications as transformations on the data structure (like
for expl. a database). By this way we hope to take account of different possible
realizations for each type : perfect, indirect, partial, disturbed or asymetric...

1.3 Towards a Dialogical View Based on Ludics

In the first subsection, we presented the common view about speech acts, as
developped by Austin, Searle and their followers. With the second subsection,
we introduced the view based on the ”speech acts as games” interpretation, as
developped in the vein of Gazdar, Ginzburg, Beyssade and Marandin. We iden-
tify in these positions two models, promoting different means for understanding
speech acts situations and effects, which do not focuse on the same object. Our
view constitute a third option, not rival but complementary, which focuses on
the structural modifications in the speech act world and view the speech acts as
constrained processii realized in context. In the following table we sum up these
distinctions5 :

classical view game view ludical view
object conditionnal function interactions

variability expression datas [shared] contexts
invariance speech act type inscriptions impacts

It is evident that with the ludical view the complexity rise against the two others
systems. But this complexity is offset by the way opened to the formalisation
of complex and multiscaled architectures of speech acts elements. For example,
in the game view, we got a game design for speech acts, in which we focuse on
5 We call ’object’ the logical form given to speech acts in the corresponding model.

6 M.-R. Fleury and S. Tronçon

commitments by the way of functions modifying some data bases. And by the
use of ludics we introduce also a parallel analysis of speech acts, in which speech
acting structures (contexts and executables) are homogeneously considered, as
well identified by their polarity. In fact, we take the interaction at its more
primitive level, like a sort of “machine language” which “talks” both the language
of executables structures and the contextual structures one.

For another example, the inscriptions, when considered in the game view, are
notifications in a notebook managed by some interacting agent (a gameboard). It
suggests that commitments are countable, and that for each commitment there
is almost two inscriptions in two personal notebooks, or just one inscription
in some big shared notebook. This hypothesis holds very well, but in the case
of a negative condition, as in the promise for expl. , when we have to verify
that the speaker is not already commited to do the promised thing, we do not
know exactly what could be an inscription of the fact that ”someone is not
committed”... A possible approach would define it as the fact that there is no
inscription about that in the available notebooks. Agents would have to scan
notebooks, searching for an inscription, exiting with an error. In a ludical view
we consider that, for a good approximation of the problem, we can define the
negative condition as the absence of opposition of the present speakers to the
presupossed fact contained in the speech act. As if the speaker was saying ”I’m
not actually commited to do the thing I want to realize with this promise” and
nobody would have neither arguments nor the desire to refute this proposition.
The interest in this point is that “absence of reaction” is a procedural definition,
because there could be no known reaction at t time, and a contra-reaction at
t+1 : speech act evaluation became a real-time conceptualization and the model
is self-contained. So, the basic scheme we assume about contexts is summed up
by the following table :

Game view Ludical view
negative condition absence of inscription latence of reaction
positive condition presence of inscription actance of reaction

Latence means that the speaker knows that some reactions are possible, but
there is no reaction in this branch of the design structure, or there is an explicit
giving up. Actance means that some reactions are activated on a branch of the
design structure. Evidently, we must explain how the agent can know something
by himself. We define the process of “knowing by itself” exactly as the process
of “knowing by somebody”, but directed on itself. So, knowing that a condition
is realized from my own view is reduced to the fact of testing possible reactions
of myself about some proposition.

2 Speech Acts in Ludics

As we must justify the relevance of a new model about speech acts, we present
here the most important points for understanding our view, in their most

Speech Acts in Ludics 7

intuitive form. The further sections being devoted to present the technical frame-
work and some examples.

Before going into details of our conceptualisation of speech acts let us intro-
duce some core notions, which are imported form ludics, and would be precisely
defined in the next section.

2.1 Speech Acting

While speech acts are viewed as stable structures, we introduce a “speech acting”
description in which the interaction plays the main part.

Classical speech acts are presented in a synchronous view. But objectively, the
procedurality of embodied speech acts oblige us to introduce some complexity.
Speech acting is the fact of an asynchronous processing, and we will take in
account this fact first in our conceptualization, secondly in our formal view.

First, we recount the interaction process as a parallel processing, realized by
two speaking agents, forming their own actions on the basis of their interlocutor’s
actions.

Process 1 (Speaker’s action)
� Spk proposes a speech act A. It can be seen as a function defined on the

context with values in a subset of the context containing the commitments of
the interlocutors. The context must satisfy some conditions C1, · · · , Cn in C. So
we denote by C a closed6 set filled with justifications of C (C will be called a
behavior, i.e. a set of designs). As we just define A, we can write A ∈ C → E

which means ”there is a construction called A which transforms the contextual
elements in C to obtain contextual elements in E”.

� Spk thinks that he can access in the (open) context to some locus in which
the condition C is justified by a design D : knowing that, he is considering a set
C of justifications of C. This design can be located in a private or a (preferably)
shared part of the context.

� Spk feels himself justified to provoke the commitment E which would be
realized in the context E.

Process 2 (Addressee’s reaction)
� Add perceives the speech act
� Add does not have objectively the same view on the context that Spk had. For

example, he can perceive differently the same situation, i.e. having more elements
in C, or even possessing arguments which contradicts a condition Ci. He can also
refuse arbitrarily the effectivity of a commitment even if the conditions were filled
(for expl. in the order, Add can ignore the authority of Spk on him).

� Add responds by forecasting the speaker’s actions or by acting in some locus,
or by introducing some elements which were not taken in charge by the design
of Spk .

The complexity of speech acting representation is dependent of two important
problems :
6 The notion of closure will then be clarified in the next section.

8 M.-R. Fleury and S. Tronçon

Structures we present get the form of a plan of actions and reactions. In a
schematic view, actions are done by the speaker, reactions are done by the ad-
dressee. But, this pattern masks the fact that these structures renders the subtle
distinction between what is planned, what is added/modified in the interaction
process, and what is finally realized. In our formalization, we present speech acts
as realized, modulo further continuations which left unchanged the given basic
structure. So we must take in charge the difference between the action plan made
by some speaking agent (the potent), parts of the action plan which are invoked
at this time in the speaking situation (the patent), and open branchs which are
not constructed as well at this time (the latent).

of Spk for Spk of Spk for Add

latent planned but not invoked not explored but anticipated
potent opened but not planned not anticipated
patent invoked explored

We see speech acting as a parallel process implying two agent activities : the
observation (”what parts of the context are selected by my speech act’s conditions
of realization”) and the action (”how I want to modify the present context”).The
observation corresponds to what is anticipated by a locutor from its interlocutor
(parts of its plan which have an inverse polarity). And the action corresponds to
what is forecasted by some locutor from its own actions (parts of its plan which
have the same polarity). The situation is slightly different depending on whether
we are in a perfect world or a real world :

perfect world real world
all is transparent there is some opacity

Spk observation Add plan negative steps of Spk plan
Spk action Spk plan positive steps of Spk plan

Add observation Spk plan positive steps of Add plan
Add action Add plan negative steps of Add plan

2.2 Speech Acts

Definition 1 (Ludical speech acts). A ”ludical speech act” is a sequence of
reduction by which some executable (called the speech act) produce an impact
when some conditions in the context are fulfilled.

A type of ”ludical speech act” is a class of executables which produces the same
impact when observed in the same conditions.

The speech act is uttered in some determinated context which can contains facts,
knowledges, past actions, mental states... Each speaking agent selects the parts
of the context he considers as relevant, and acts by reference to these elements.
For example, at the utterance of the speech act by Spk , Add will react by means

Speech Acts in Ludics 9

of parts of the context he “perceives”, and which could be different from those
viewed by Spk . The difference between what views Spk and what uses Add
plays a huge function in the realization of impacts, as Spk can feel himself so
justified by contextual elements to obtain some effects which are refused by Add
by means of some others contextual elements.

In the interaction, these contextual elements takes the form of possible actions
of speaking agents in their plans. They are positive when invoked by Add as con-
texts (negatives for Spk), or invoked by Spk as conditions. They are negative
when used by Add as an action (positives for Spk), or invoked by Spk as an-
ticipation. Evidently, we take the classical conditions (preliminary and essential
rules, commitments...) associated with the running speech act type as the main
contextual elements invoked. In the case of the order, one of the preliminary
conditions is that Spk had some authority on the actions done by Add , when he
is for example his guru, his boss, his baby-sitter or his mother. Speaking agents
refers to these elements essentially as argues in the dialogue, it is under this form
that we will formalise them. For example, the set of actions associated with this
first rule for the order contains the following utterances, which could be used in
a real situation of speech acting dialogue :

– for Spk : %I have authority on Add , %I’m the boss of Add , %Add is

the child whom I am the babysitter, %Add is one of my children...
– for Add (respectively) : %I choosen to follow the lead of this man, %I’m

not working, %She is not my mother !, %ok mum !

Definition 2 (Structure of ludical speech acts). A ludical speech act is
defined by three elements :

– the speech act : some competence of the Spk for impacting the context con-
sidering some actual conditions or anticipated reactions of its interlocutor.
This competence is invoked in the situation as a structured system of actions.

– the test : the interactive situation by which we oppose the speech act and
a complex structure which plays the role of context mixing contextual datas
with interlocutor reactions

– the impact : which is the result of the interaction, i.e. a modification of the
context (inscription, erasing)

So, we decompose the speech act in three levels : the body of the speech act
(i.e. the speech act as we find in the litterature), the speech act in interactive
situation (i.e. taking in account the reaction of addressee) and the achieved act
(main or peripheral effect). In the following design we assume that the active
part take the form of a function modifying context to produce an effect, which
is the basic form underlying our models7.

7 Please consider that it is not exactly the case for all the speech acts situations we
will present in the last section, by the fact that it depends on the type of speech act
and the modus operandi of the interaction. But, as we say in french mathematics, it
is ”morally the same”.

10 M.-R. Fleury and S. Tronçon

A
∈

C� E

B
∈
C

�
C
∈

EF

test impact

speech act context

Where A, B and C are some interactive trees (called “designs”) structured in-
teractively by alternation observation/action. In the case they are negatives,
they are passive and represents a contextual structure (knowledges, mental
states,facts...). When positives, they are active trees and represents the structure
of an operation (fonctions, transformations...). Each design (like C) realizes a be-
havior (here EF) which is a category possessed by the (some) speaking agents.
So we can say that the realisation C is in the behavior EF. The sequence of
transformations between the act and its effects is made by a rule of interaction
(given in the following section) which modify the structures of trees.

The speech act strictly considered (i.e. seen as a program or a function) is
represented here by a design A in the behavior C� E. More exactly, we would
write

⊗
Ci � E where the behaviors in

⊗
Cj are the conditions associated to

the effects
⊗

Ek.
We recall that a design F in a behavior A� B is performing effects somehow

as a fonction f defined in the set A → B. If we present to it a design A ∈ A,
then the interactive situation �F | A� is normalizing in a design B ∈ B, either it
fails.

Main and board effects. In our model, we could have consider that a failing speech
act is formalized by an interaction wich diverges and produces no inscription.
Thus, we consider that, even non felicitous, a speech act can produce some
inscription, almost an inscription of the fact that it fails. So we propose to base
differently our model, taking in charge two types of inscriptions and two types
of evaluation.

evaluation inscriptions
convergence realization of the speech act inscription of main effects
divergence failure of the speech act inscription of null effect

stages of reduction processing the speech act incription of board effects

For example, for the promise, one of the conditions when something is promised
by Spk is that Add prefers the promised to be realized rather it fails. The not-
felicity of the speech act in this case will produce an inscription like %Add don’t
prefer that ..., %Add don’t like This new inscription is available for
further speech act as a contextual element. This product, which has the form
of a design is not, evidently, in the expected behavior E, which represent the
commitment of Spk for Add , that we call ”main effect”. This is one of the

Speech Acts in Ludics 11

properties of designs which are defined out of the behaviors they belong to. The
design A of the behavior C � E, can interacts with a design D which does
not belong to C. This interaction, underdefined (untyped as we say in lambda-
calculus), can performs a convergence with production of some main effect.

The modification of the context is done during the processing (board effects)
and/or after the reduction (main effect). These effects take the form of designs rep-
resenting some heterogeneous datas : commitments, responses, new knowledges...

3 Ludics in a Nutshell

As previousy in Linear Logic, J.-Y. Girard [13] adopts a geometrical point of
view of proofs and an internal approach of dynamics ; so Ludics can be sum up
as a interaction theory.

The objects of the Ludics are no more formulas and proofs, but their geomet-
rical representation, seen as an architectural object ; only what is needed for the
interaction is kept. In order to perform this geometrical work, polarized formulas
are taken in account. This leads us to create a link [8] between Ludics and Game
Semantics which then is a good metaphor for a first approach of Ludics.

The central object of Ludics is the design. From the logical point of view, its
conception is radically monist : syntaxically, it can be seen as the architecture
of a proof (a paraproof), whereas its semantics is the result of its interactions
against the others designs.

Instead of formulas we find the addresses (locus) where formulas and subfor-
mulas are stored. One of its, the focus, represents the locus where the interaction
between designs takes place ; instead of proofs we find designs which can be seen
as trees of addresses with rules for building designs. These rules specify either
the offered possibilities in a point, to make an action, or the anchorage points
that we consider as possible for the reaction. Everything is ready in view of the
interaction.

Here we content ourself to give a basic survey of notions needed to understand
our purpose. The reader concerned with more details on the mathematical notions
and rich concepts of Ludics is recommanded to read the source texts [13], [14].

3.1 The Design

The design is the central object of Ludics ; it can be seen as an infinite tree. By
means of the metaphor of Games, a design can be understood as a strategy, i.e.
as a set of plays (chronicles), sequences of couples action (Player) - reaction
(Opponent). In the description of a strategy, the point of view of Player is taken
in account so that every positive move is the possible action of Player, and
negative moves are anticipations of Opponent moves by Player.

In Ludics, the nodes of a design (seen as a tree) are labelled by two sets (Γ, Δ)
of addresses (loci) denoted Γ � Δ ; an address is a finite sequence of integers, for
example8: ξ ∗ i. Roughtly speaking, Γ � Δ is an organisation of positions from
which the next move can be executed. The root is called the base of the design.
8 We will use ∗ as the sign for the concatenation operation.

12 M.-R. Fleury and S. Tronçon

The designs are built by the means of only three rules schemes: two first
schemes of rules are issued from logical rules (a positive one and a negative
one)9 and a new one called the damon (Dai), seen as a “Giving up”. This rule
does not arise from the logic, but is needed for taking in account the interaction.

Positive action : to perform an action, to ask, to answer
By a positive action, the player selects a branching locus and opens all its possible
loci for continuing the interaction. He chooses to act in the place ξ and he opens
to his interlocutor the range of actions ξ ∗ i1 �, . . . , ξ ∗ in �.

ξ ∗ i1 � Λi . . . ξ ∗ in � Λn (ξ, {i1, ..., in})� Λ, ξ
Where ∪Λi ⊂ Λ.

Remark: By playing an empty ramification, Player prevents Opponent from
any reaction and so he blocks the continuation of the interaction.

Negative action : to receive opponent action, to foresee
Formally, a negative action specifies the ramifications of a directory. In our con-
text, we can say that, in the place ξ, else after one of my action I get ready for
receiving reactions of my interlocutor in a list that I have foreseen, or I receive
a list of messages sent by my interlocutor.

� Λ, ξ ∗ i11, . . . , ξ ∗ i1n . . . � Λ, ξ ∗ ij1, . . . , ξ ∗ jj
m

ξ, {R1, ..., Rj}
ξ � Λ

Where Rk = {ik1 , · · · , ikn}

Giving up : At any time in a positive context, the active player (the one who
has to play a move) can prefer to give up ; so the immediate effect is to stop the
interaction.

†� Λ

Examples 1 (Dai and Fax).
- Dai+ and Dai− I decide to immediately stop, as soon as I have the hand.

Dai+ = †
Δ

Dai− =
†� ξ ∗ I, Δ
(ξ,Pf (N))

ξ � Δ

- The design Faxξ,ξ′ will play a crucial role in the following sections. As it is sug-
gested by its name, this design is a sort of echolalic design. Faxξ,ξ′ allows us by
the means of interaction to move a design D localised at the address (locus) ξ
into a design D’ localised at the address ξ′ ; it is recursevely defined. Rougthly
speaking, it imitates the two first actions of the design D and so on infinitely.

9 The underlying logic is the hypersequentialized linear logic which works with polar-
ized synthetic connectives. So only two rules schemes are needed.

Speech Acts in Ludics 13

Here Pf (N) is the set of finite subsets of N ; it suggests that all the possible
cases are avalaible for the design to be delocalised.

. . .

Faxξ′∗i,ξ∗i

ξ′ ∗ i � ξ ∗ i
(ξ′,I)

� ξ ∗ I, ξ′ . . .

Faxξ′∗j,ξ∗j

ξ′ ∗ j � ξ ∗ j
(ξ′,J)

� ξ ∗ J, ξ′ . . .
(ξ,Pf (N))

ξ � ξ′

From now

�

ξ � Δ
will symbolize the design (seen as a tree) based on ξ � Δ.

3.2 The Interaction

In Linear Logic, the interaction is represented by the cut elimination. In Ludics,
the interaction is a meeting between two players strategies localised in a same
locus10. The dynamics of the interaction is given by a process11 which regu-
lates this meeting. At any step, action-reaction of players are put in coincidence
until one of the players gives up or until this coincidence failed or even endlessly
continues.

Without entering the formalism, we can say that the interaction between
designs is seen as a cut-net, i.e. an acyclic finite graph of designs pairwise con-
nected by their bases. For example, let us consider the following cut-net of base12

σ � λ, ρ :
�

σ � ξ, λ

�

ξ � ρ

We don’t give here a complete description of this procedure, as we just present
two views about how it is processing :

Example 3. In this example the base of the cut-net13 is �. We can observe that in
this example, the ramification R = {1, 3} is in the directory R = {{1, 3}, {2, 3}}

�

ξ ∗ 1 �

�

ξ ∗ 3 �
� ξ

�

� ξ ∗ 1, ξ ∗ 3

�

� ξ ∗ 2, ξ ∗ 3
ξ�

10 The interaction is concretely translated by a coincidence of two loci in dual positions
in the bases of two designs. For example a design of base σ � ξ can interact against
a design of base ξ � ρ.

11 This process is called the “normalisation procedure” in lambda-calculus, or the “cut
elimination procedure” in the sequent calculus, by logicians and computer scientists.

12 The base of the cut-net is obtained by erasing the cut loci, i.e. the loci by which
they are connected.

13 such a cut-net is called a closed cut-net.

14 M.-R. Fleury and S. Tronçon

The first reduction step eliminates dead forks (the branches upon an unconnected
node) and produce the following net:

�

ξ ∗ 1�

�

� ξ ∗ 1, ξ ∗ 3

�

ξ ∗ 3 �

After n reduction steps, there’s only three possible configurations :

– Convergence by “giving up”: Dai is one of the designs produced by the
reduction, then all the net is reduced to the Dai .

– Divergence : the ramification R of the positive design is not in the directory
R of the negative design.

– Divergence because of an infinite interaction : The exchange makes loops or
continues infinitely.

Example 4. Here we present the interaction between a design D of base � ξ and
the Fax of base ξ � ρ. Let us observe that the base of this cut-net is not empty.
In case of convergence, we then obtain a design D′ of base � ρ ; the resulting
design in fact is similar to the design D.

To cut a design D and the Fax enables us to delocalize a design, to move it, to
modify its place of anchoring.

D1

ξ ∗ 1 �
Di

· · · ξ ∗ i � · · ·
Dn

ξ ∗ n �
(ξ, I)� ξ

Fax�

ξ� ρ

Two reduction steps produce the design:

[[Faxρ∗1,ξ∗1, D1]]
ρ ∗ 1 �

[[Faxρ∗i,ξ∗i, Di]]
· · · ρ ∗ i � · · ·

[[Faxρ∗n,ξ∗n, Dn]]
ρ ∗ n �

(ξ, I)� ρ

Finally, let us introduce the notion of orthogonality. It will allow the handling
of complete objects named behaviors and presented in the further section. in-
dexobjetOrthogonality.

Definition 1 (Orthogonality). Two designs D and E are orthogonal if the
reduction of the net [[D ; E]] terminates and produces Dai .

3.3 Behaviors

Definition 2 (Behavior). A behavior C is a set of designs of same base, closed
by biorthogonal.

C = C
⊥⊥

Speech Acts in Ludics 15

Then we can consider the following correspondence:

designs (para-)proofs
D π

behaviors formulas
C A

At the abstract level, the behaviors can be composed by the means of the con-
nectives of the LL:

C1 ⊗ C2, C1 ⊕ C2, C1 � C2, C1℘C2, C1 & C2, · · ·

and then also be interpreted in interactive manner.

For example the behavior C1 � C2 can be seen as a function which transforms
a design in C1 into a design in C2. (remark: we also can speak of a design of
type C1) We can also say that when a design E1 ∈ C1 interact with a design D
in C1 � C2, then the result is a design E2 ∈ C2 :

E1

∈
C1

D
∈

C1 � C2

�
E2

∈
C2

Example 5. Let us consider a record in a data base with three fields : coordonnate
(cd), shape (sh) and color (col). It can be represented by the following design R
based on ξ �:

∅� ξ ∗ cd ∗ 1 ∗ 1
ξ ∗ cd ∗ 1 �
� ξ ∗ cd

∅� ξ ∗ sh ∗ sqr ∗ sqr

ξ ∗ sh ∗ sqr �
� ξ ∗ sh

∅� ξ ∗ col ∗ yell ∗ yell

ξ ∗ col ∗ yell �
� ξ ∗ col

ξ �

Suppose that you want to know the color (blue, red or yellow)written on the record.
LetQbe the designwhich represent the question: “which is your color ? ”.Howdoes
this design is built ? : first you ask the question, secondly you wait for three possible
colors. Then, above any possibilities, you are getting ready to copy out the colour
at the address σ ∗ col. The corresponding design Q is here :

†� ξ ∗ col ∗ blue, σ ∗ col ∗ blue

σ ∗ col � ξ ∗ col ∗ blue

� ξ ∗ col ∗ blue, σ

†� ξ ∗ col ∗ red, σ ∗ col ∗ red

σ ∗ col � ξ ∗ col ∗ red

� ξ ∗ col ∗ red, σ

†� ξ ∗ col ∗ yell, σ ∗ col ∗ yell

σ ∗ col � ξ ∗ col ∗ yell

� ξ ∗ col ∗ yell, σ

ξ ∗ col � σ

� ξ, σ

16 M.-R. Fleury and S. Tronçon

The interaction between these two designs produces the following design based
on σ which records the color stored in the record :

†� σ ∗ col ∗ yell

σ ∗ col �
� σ

4 Some Examples of Speech Acts

4.1 The Promise: “I Promise You the Movie Tonight”

In this example, we assume that the act is made by Sophie, the mother of Adrian.
We will describe the speech act from the speaker point of view.

The context seen by Sophie is made of behaviors whose designs are justifica-
tions of conditions, for example:

– This behaviorCondA.love.movie represents the condition: “Sophie thinksAdrian
prefers going than not going to the movie.” It contains designs which are jus-
tifications of this assertion: for example, Adrian very often asks her mother
for going to the movie, Adrian saw advertising on TV upon the last film of his
favorite actor. Such justifications have been obtained in previous interactions

– The behavior CondS.no.committed represents the condition: “There is nothing
to attest that Sophie would have brought Adrian to the cinema otherwise.”.
This behavior contains designs that justify this assertion: Sophie is tired at
the end of the week and prefers to stay quietly at home, Adrian was so silly
this week ...

– The behavior CondS.committed represents the commitment: “Sophie is now
committed to bring Adrian to the movie”. This behavior has a design showing
this Sophie’s commitment.

The speech act will be successful only if the conditions CondA.love.movie and
CondS.no.committed actually are realized from the point of view of Sophie, ie if
it exists proofs (designs) of these conditions. But these justifications may be
only partial (design / incomplete proof) and therefore Adrian may oppose other
arguments which are not in the shared context.

We draw below the designs representing the strategy of Sophie after the utter-
ance of the speach act and the reaction of Adrian which allows us to categorize
the speech act and to learn about its success. By the notation � ξ, · · · , we refer
to a sequence of locus, in which the first element is ξ.

First case: We assume that Sophie and Adrian share the same knowledges. The
speech act gives the expected effect after interaction between the two interlocu-
tors. The result of the interaction will be a design that will be the record of the
promise from Sophie to Adrian.

– Sophie : “I promise you the movie tonight”
– Adrian : “Fine. (I record your promise)”

Speech Acts in Ludics 17

Condx�

� ξ ∗ 0 ∗ p

Condz�

� ξ ∗ 0 ∗ q

Comm.�

� ξ ∗ 0 ∗ e

[Foreseen answers]
ξ ∗ 0 �

“I promise you ... movie”

� ξ, · · ·

Fax
�

ξ ∗ 0 ∗ e � σ

“Fine!”
� ξ ∗ 0, σ

[Utterance is received]
ξ� τ

is reduced in :

Copy of

commitment�

� σ

Second case : The speech act is not totally recognized as a promise by Adrian.
Adrian knows that Sophie had already promised him the movie (for example,

she had already bought the tickets, ...). He does not recognize this act as a new
promise. Adrian categorizes this act else as an enhancing of the promise or in
thinking that Sophie tells lies.

If he considers this act as the enhancing of a previous promise then the in-
teraction will only add a new design to the context as a new proof of Sophie’s
commitment ; this design will be put in the shared context of both agents.

– Sophie : “I promise you the movie tonight”
– Adrian : “You’ve already promised it, but it is good news if you’re still OK.”

The promise is finally accepted, then the representation is done by the same
design as in the first case.

Second case bis : The promise is rejected by Adrian. The speech act fails14 like
in the following interaction :

– Sophie : “I promise you the movie tonight”
– Adrian : “You’ve already promise it, you are a liar.”

Condx�

� ξ ∗ 0 ∗ p

Condz�

� ξ ∗ 0 ∗ q

Conde�

� ξ ∗ 0 ∗ e

[Foreseen answers]
ξ ∗ 0 �

“I promise you ... movie”

� ξ, · · ·

∅
“... already promise ...”

� ξ ∗ 0
[Utterance is received]

ξ� · · ·

This interaction is reducing in a failure.
14 This is a breakdown in the sense of Livet, in this volume.

18 M.-R. Fleury and S. Tronçon

Third case : As previously, Adrian and Sophie do not have the same knowledges,
the context of Adrian is not identical to the one of Sophie.

Adrian does not want going to the movie tonight because he prefers to watch
the World Cup final live on TV. So Sophie is mistaken. The interaction of Adrian
and Sophie seems to fail; Sophie’s promise fails, her commitment isn’t recorded.
Nevertheless a new knowledge is produced. It is put in the context shared by
the mother and her son.

– Sophie : “I promise you the movie tonight”
– Adrian : “I prefer watch the World Cup final live on TV!”
– Sophie : “Sorry, I have forgotten it.”

In this situation, the speaker is retracting. In Ludics, we represent this by allow-
ing the speaker to “re-play” on a locus ξ. We say that we use “multi-addresses”,
as introduced by M. Basaldella and C. Faggian in [2]. We denote ξ a multi-
address, it is in fact a sequence of addresses, ξ is the first element of it . All is
working as if ξ was not consumed and remains in the sequence of available locus.
In our case, when Sophie plays again on ξ, then she plays the Fax to record this
new information.
- First part of the play:

Condx�

� ξ ∗ 0 ∗ p

Condz�

� ξ ∗ 0 ∗ q

Conde�

� ξ ∗ 0 ∗ e

[Foreseen answers]

ξ ∗ 0 � �ξ, σ

“I promise you ... movie”

� �ξ, σ, · · ·

�

ξ ∗ 0 ∗ 0 �
“... World Cup”

� ξ ∗ 0
[Utterance is received]

ξ� · · ·

- Second part of the play:

Fax
�

[record of this news]
ξ ∗ 0 � σ

“I promise you ...”

� �ξ, σ, · · ·

...
“... World Cup”

� ξ ∗ 0
[Utterance is received]

ξ�

which is reduced in :
�

“... World Cup”

� σ

Speech Acts in Ludics 19

4.2 Polite Request: “Can You Close the Window, Please”

This speech act has an interrogative grammatical form, but it must be under-
stood as a polite request, perhaps as an order. Our aim is to show how the inter-
action between two agents can help us to determine if the act was well received
as a request and not an interrogation; the interaction allows us to recognize the
“felicity” of the act and then its categorization.

We will give the design associated with each of these interactive situations.
In order to simplify the example, we only consider the following conditions of

felicity for a polite request (preliminary conditions and essential ones):

– CondP : Sophie may ask Adrian performing the action (she observes the rules
of politeness, she has authority over him, ...)

– CondM : Adrian has the ability to perform the act
– CondR: The act has not yet been achieved
– CondO: After the statement, Adrian is committed to perform the act

Let us imagine several possible dialogues between Adrian and Sophie. They are
tests allowing us to establish the happiness (or unhappiness) of the act.

First case : Where the felicity of the act is obtained. The normalisation succeed.
Adrian is now commited to perform the act (to close the window). From the
Ludic point of view, a design representing the commitment is created.

– Sophie: “Can you close the window, please”
– Adrian: “OK, I do it immediatly”
– Sophie: “Thanks”

Condx�

� ξ ∗ 0 ∗ p

Condz�

� ξ ∗ 0 ∗ q

Fax
�

ξ ∗ 0 ∗ c ∗ 0 � σ

� ξ ∗ 0 ∗ c, σ

[Foreseen answers]
ξ ∗ 0 � σ

“Can you ... please”

�ξ, σ · · ·

Adrian comm.�

� ξ ∗ 0 ∗ c ∗ 0
ξ ∗ 0 ∗ c �

“OK, I do it...”

� ξ ∗ 0
[Receipt of the utterance]

ξ� · · ·

which is reduced in the following design we can take as the result of the speech
act :

(copy of)

Adrian commitment�

� σ

20 M.-R. Fleury and S. Tronçon

Second case : The felicity fails due to the insatisfiability of the condition CondA

which say that “Adrian is able to perform the act”. We could have the following
interaction :

– Sophie: “Can you close the window, please”
– Adrian: “I can’t, I’m too little”
– Sophie: “Really? I did not know”

Sophie don’t wait for this answer from Adrian because she actually thought
that Adrian was able to perform the act. She has justifications of the condition
CondA, i.e. the design representing her strategy uses delocalisation of designs in
the behavior CA. Consequently, the act can’t be categorized as a polite request.
As previously (in the third case of promise), Sophie has to replay on ξ to recognize
her error and record this new knowledge.

- First step of the interaction:

Condx�

� ξ ∗ 0 ∗ p

Condz�

� ξ ∗ 0 ∗ q

Comm. of A
�

� ξ ∗ 0 ∗ e

[Foreseen answers]

ξ ∗ 0 � �ξ, σ, · · ·
“Can you ... please”

��ξ, σ, · · ·

...
ξ ∗ 0 ∗ 0 �

“...too little ...”
� ξ ∗ 0

[Receipt of the utterance]
ξ�

- Second step of the interaction:

Fax
�

ξ ∗ 0 ∗ 0 ∗ 0 � σ

“Really ?”

� ξ ∗ 0 ∗ 0, σ

[Receipt of the answer]
ξ ∗ 0 � σ

“Can you ... please”

��ξ, σ, · · ·

justification
�

� ξ ∗ 0 ∗ 0 ∗ 0

ξ ∗ 0 ∗ 0 �
“...too little ...”

� ξ ∗ 0
[Receipt of the utterance]

ξ� · · ·

which is reduced in the following design :

justification of

“A is too little ”�

� σ

Speech Acts in Ludics 21

By playing on ξ ∗ 0 ∗ 0, Adrian stop the waited effect of the act which would be
his commitment to perform the act (to close the window). We’ll say that this
speech act fails, it cannot be categorized as a polite request, due to the lack of
ability of Adrian to perform the act.

The result of the interaction between the designs of Sophie and Adrian is the
new knowledge of Sophie: Adrian is more little than she thought.

Third case : The unhappyness of the speech act is due to the insatisfiability of
the condition CondR: [The act isn’t already performed].

– Sophie: “Can you close the window, please”
– Adrian: “It is already closed”
– Sophie: “I don’t understand, I’ve just opened it five minutes ago”
– Adrian: “Look at yourself”
– Sophie: “OK, I agree you”

Adrian begins by attacking Sophie, because he sees that the condition CondR

isn’t realized i.e. he answers on a locus where Sophie has a justification of the
fact that the window is open (“I opened it, only five minutes ago”). The dialogue
could end by giving up of Adrian. He prefers to insist and so Sophie can know
that the window is already closed.

Condx�

� ξ ∗ 0 ∗ p · · ·

†� ξ ∗ 0 ∗ c ∗ 0 ∗ 0
[Receipt of reaction]

ξ ∗ 0 ∗ c ∗ 0 �
“... five minutes ago ...”

� ξ ∗ 0 ∗ c

[Forseen answers]
ξ ∗ 0 �

“can you...please”

� ξ

�

“...look at ...”
� ξ ∗ 0 ∗ c ∗ 0

[Receipt of reaction]
ξ ∗ 0 ∗ c �

“...already closed ...”

� ξ ∗ 0
[Receipt of utterance]

ξ � · · ·

is reduced in Dai .

Fourth case : The unhappyness of the speech act is due to misunderstanding of
the speech act: the polite request is understood as a question.

– Sophie: “Can you close the window, please”
– Adrian: “I can’t answer your question”.

Sophie did not ask a question, but makes a polite demand. Thus, we end in a
failure (of the process of normalization), because Sophie did not foresee answer
to be given to him.

22 M.-R. Fleury and S. Tronçon

Condx�

� ξ ∗ 0 ∗ p

Condz�

� ξ ∗ 0 ∗ q

Commit�

� ξ ∗ 0 ∗ e

[Foreseen answers]
ξ ∗ 0 �

“Can you ...please”

� ξ, · · ·

∅
“...can’t answer ...”

� ξ ∗ 0
[Receipt of the utterance]

ξ � · · ·

which produce a failure.

Last case : The unhappiness of the speech act is due to insatisfiability of the
condition CondP explained by “Adrian don’t recognize the autority of Sophie
over him”.

– Sophie: “Can you close the window, please”
– Adrian: “I have not to do what you want”

This answer of Adrian was not expected by Sophie because she thought she may
ask him closing the window. She had only foreseen justifications for the condition
CondP , ie in the design which represents her strategy, she brings designs which
are delocalization of some designs in CondP . So this answer leads to a failure of
act. Indeed Adrian don’t feel himself forced to close the window. But the effect
of this act is not recorded as a failure but as a new knowledge: I do not recognize
Sophie’s authority on me.

Condx�

� ξ ∗ 0 ∗ p

Condz�

� ξ ∗ 0 ∗ q

Commit�

� ξ ∗ 0 ∗ e

[forseen answers]

ξ ∗ 0 � �ξ, σ

“Can you ... please”

� �ξ, σ, · · ·

†
“ ...not to do ...”

� ξ ∗ 0
[utterance receipt]

�ξ � · · ·

As previously in the second case, we allow Sophie to replay on the multi-address
ξ. So she can record the justification of the refusal of Adrian on a locus σ forseen
for this.

5 Conclusion
In the examples we deal with, we have focused on the geometrical aspect of the
act, represented by a design, tree in which we can discern the possible issues of
the act, depending on the knowledge of the addressee, shared or not with the
speaker. We hope that they can help the reader which is not familiar with the
Ludics to understand the way that we defend.

Speech Acts in Ludics 23

This work is an attempt to built formalisation of speech acts which does not
give priority neither to syntax nor to semantics, but to the effect and the per-
ception of the act on addressee by studying its reactions through a dialogue.
Our approach of speech acts unifies different previous works of formalization
on speech acts. To do this plan, we followed the direction set by the Ludics:
the interaction. It is the main ingredient which allow us to present in an uni-
fied framework the speech acts and their contexts in which they are uttered
(knowledge of the speaker and his addressee). Moreover, in this unified univers
of designs and behaviors we can altogether decide the categorization of acts and
their evaluation of felicity, as well for direct acts than indirect ones , by the
means of the interaction.

References

1. Austin, J.L.: How to Do Things With Words. Harvard University Press, Cambridge
(2005)

2. Basaldella, M., Faggian, C.: Ludics with repetitions (Exponentials, Interactive
types and Completeness). In: LICS (2009) (to appear)

3. Beyssade, C., Marandin, J.M.: From Complex to Simple Speech Acts: a Bidimen-
sional Analysis of Illocutionary Forces. In: Proceeding of BRANDIAL 2006 (2006)

4. Beyssade, C., Marandin, J.M.: The Speech Act Assignment Problem Revisited: Dis-
entangling Speaker’s Commitment from Speaker’s Call on Addressee. In: Bonami,
Cabredo-Hoffher (eds.) Empirical Studies in Syntax and Semantics, vol. 6, pp.
37–68 (2006)

5. Corblin, F.: Presuppositions and Commitment Stores in Diabruck. In: 7th Work-
shop on the Semantics and the Pragmatics of Dialogue (2003)

6. Currien, P.-L.: Introduction à la Ludique, http://www.pps.jussieu.fr/curien
7. Derrida, J.: Limited Inc. Northwestern University Press (1988)
8. Faggian, C., Hyland, M.: Designs, disputes and strategies. In: Bradfield, J.C. (ed.)

CSL 2002 and EACSL 2002. LNCS, vol. 2471, p. 442. Springer, Heidelberg (2002)
9. Gazdar, G.: Speech act assignment. In: Joshi, Webber, Sag (eds.) Elements of Dis-

course Understanding, pp. 64–83. Cambridge University Press, Cambridge (1981)
10. Ginzburg, J.: On some Semantic Consequences of Turn Taking. In: Dekker, P.,

Stokhof, M., Venema, Y. (eds.) Proceedings of the Eleventh Amsterdam Collo-
quium, pp. 145–150. ILLC, Amsterdam

11. Ginzburg, J., Sag, I.A., Purver, M.: Integrating Conversational Move Types in the
Grammar of Conversation. In: Khnlein, P., Rieser, H., Zeevat, H. (eds.) Perspec-
tives on Dialogue in the New Millennium. Pragmatics & Beyond, vol. 114, pp.
25–42. John Benjamins, Amsterdam

12. Ginzburg, J.: A Semantics for Interaction in Dialogue (2003),
http://www.dcs.kcl.ac.uk/staff/ginzburg/

13. Girard, J.-Y.: Locus Solum: from the rules of logic to the logic of rules. Mathemat-
ical Structures in Computer Science 11(3), 301–506 (2002)

14. Ehrhard, T., Girard, J.-Y., Scott, P.: From foundation to Ludics. Linear Logic
in Computer Science, London Mathematical Society, Lectures Notes Series. Cam-
bridge University Press, Cambridge (2004)

15. Girard, J.-Y., Aveugle, L.p.: Tome 1, vers la perfection; Tome II, vers
l’imperfection. Hermann, coll. ”Visions des Sciences” (2006)

http://www.pps.jussieu.fr/curien
http://www.dcs.kcl.ac.uk/staff/ginzburg/

24 M.-R. Fleury and S. Tronçon

16. Hamblin, C.L.: Mathematical Models of Dialogue. Theoria 37, 130–155 (1971)
17. Joinet, J.-B.: Logique et Interaction, Habilitation à diriger des recherches.

Université Paris 7 (2007)
18. Sadock, J.M.: Toward a Linguistic Theory of Speech Acts. Academic Press,

New-York (1974)
19. Searle, J.R.: Speech Acts. Cambridge University Press, Cambridge (1969)
20. Searle, J.R.: Indirect speech acts. In: Davis, S. (ed.) Pragmatics: A Reader, pp.

265–277. Oxford University Press, Oxford (1975-1991)
21. Searle, J.R., Vandervecken, D.: Foundations of Illocutionary Logic. Cambridge Uni-

versity Press, Cambridge (1985)
22. Searle, J.R., Vandervecken, D.: A taxonomy of illocutionary acts. In: Gunderson,

K. (ed.) Language, Mind and Knowledge, Mineapolis University Press (1985)
23. Seligman, J., Moss, L.: Situation Theory. In: van Benthem, J., ter Meulen, A. (eds.)

Handbook of Logic and Language, pp. 239–309 (1997)
24. Stalnaker, R.C.: Assertion. In: Cole, P. (ed.) Pragmatics, pp. 315–332
25. Stalnaker, R.C.: Inquiry. MIT Press, Cambridge (1987)
26. Stalnaker, R.C.: On the representation of context. Journal of Logic, Language and

Information 7(1), 3–19 (1998)
27. Stalnaker, R.C.: Context and Content: Essays on Intentionality in Speech and

Thought. Oxford University Press, Oxford (1999)
28. Tronçon, S.: Dynamique des démonstrations et théorie de l’interaction. Thèse de

Doctorat, Université de Provence (2006)
29. Truckenbrodt, H.: Sentence Type Meanings. Ms available at (2004),

http://www2.sfs.nphil.uni-tuebingen.de/~hubert/Home/papers/
30. Wittgenstein, L.: Remarks on the Foundations of Mathematics. The MIT Press,

Cambridge (1983)

http://www2.sfs.nphil.uni-tuebingen.de/~hubert/Home/papers/

Speech Acts and Ludics:
Reacting to Breakdowns of Interaction

Pierre Livet

Département de Philosophie - Aix-Marseille Université

Introduction

The first idea of this paper is that speech acts (orders, promises, excuses) are not
simply ways of doing something by the very act of telling what we are doing, or
ways of giving a supposed illocutionary strength to language, but ways of repair-
ing breakdowns of interaction (excuses) or preventing anticipated breakdowns
(orders, promises, declarations). The second one is that Girards ludics could be a
useful tool to represent formally the different kinds of speech acts so conceived.

Ludics are a way to represent interactions that could lead to the construction
of a logical proof. Possible proofs are confronted to their counter-proofs, so to
speak. If the symmetry between a proofs and its counter-proof can be ensured,
if “convergence” is the case, one of the two has to quit the interaction game,
and the remainder is the winner proof. Of course, breakdowns of interaction are
divergences, not convergences. Ludics can represent explicitly some categories
of divergences. The idea is then to try to match each formal representation
of divergence in ludics to a kind of breakdown in language interaction, and
to express basic speech acts as ways to repair divergence and come back to
convergence.

In order to show that this idea could work, we need first to present ludics in a
way that enhances its capacity to express interaction, and lead to grasp its formal
ways of expressing different kinds of divergences as ways of expressing breakdown
of interaction. Then we will try to show that the main categories of speech acts
seen as related to different breakdowns of interaction can be represented formally
by these kinds of divergence.

1 A Presentation of Ludics Orientated towards the
Expression of Speech Acts as Ways of Repairing
Interaction Breakdowns

Ludics can be seen as well as a way of answering to the question:“is this formula
proven?”, or as a way of formalizing interactions between a proponent and an
opponent. There is a family resemblance between ludics and dialogic, but ludics
is more ambitious and complex. One player in the interaction, the proponent,
chooses an action among a set of possible actions. The opponent offers a new set
of actions accessible from this action, and the interaction goes on, alternating

Lecomte and S. Tronçon (Eds.): PRELUDE 2010, LNAI 6505, pp. 25–31, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

26 P. Livet

choices and offers. Choices are said to have a positive polarity, offers a negative
one.

Polarity can be also assigned to connectors as well as to quantifiers. For ex-
ample, “Every” is negative, “Some” is positive, since “every” offers you every
elements in a set, and “some” assumes that some choice has been done. The ad-
ditive disjunction, “Plus”, is positive, as if you choose to develop the formula A
in the sentence “A plus B”, this choice may not lead you to the same premises
(when going upstream in the proof tree by eliminating connectors) than the
choice of B. On the contrary, the additive conjunction, &, is negative, as you
can develop ad libitum A and B. The tensor ⊗ (multiplicative conjunction) is
positive, as we have not the choice of what formula to develop into sub-formula,
we have to develop the two formulas at the same time and level of the proof tree,
etc.. Negative can be said reversible, and positive reversible.

As the negative connectors let you free to make the operations of developing
the proof tree in whatever order you want, it is possible to put together the
negative operations, and to alternate them with the positive operations (the
irreversible ones) each time those appear needed. Ludics imply that the reorga-
nization of the formulas in accordance with such an alternation has been already
done. The proof tree is so built as a level implying a positive operation follows
a level implying a negative one, and conversely. There is no more need of rules
devoted to the elimination or introduction of specific connectors, as what mat-
ters is whether they are positive making an irreversible choice – or negative –
offering the possibility of several reversible choices. What remains needed is only
the alternation of making a choice versus giving choices, and the notations (ad-
dresses or locus) that make possible to identify what sub-formulas are processed
and also from what steps of analysis and from what bigger formulas they are
coming from.

Two rules are sufficient for developing the proof tree, a positive and a nega-
tive one. The positive rule makes a choice among the formulas of the right of the
turnstile, on the side of the consequences, and combines the address of the fo-
cused formula with each address of its premises, on the left of the turnstile. The
addresses of the premises have to be available in a “ramification”. For example:

011 � 012 � 02
� 01, 02

in accordance with (rule +, focus 01, ramification {1, 2}). The negative rule
starts by focusing on a formula on the left side of the turnstile and offers as
consequences at the upper level of the proof tree all the possible combinations of
the address of the focussed formula with the different addresses of the different
available ramifications (the set of which is called a repertory). For example:

� 01, 02 � 01, 03
0 �

(rule −, focus 0, repertory [{1, 2}{1, 3}]). Showing that a formula is proved is
giving inferential justifications for this formula. The positive rule chooses a con-
sequence and gives the different premises that are needed for the justification

Speech Acts and Ludics: Reacting to Breakdowns of Interaction 27

of this consequence. For a given premise, the negative rule gives all the conse-
quences already justified that are the inferential possible bases of the justification
of this premise.

So far ludics seem only to be a new and more compact way of building proof
trees, the highest level of which is usually made of axioms. But ludics dispense
us to use axioms as well as it dispenses us to write formulas we need only their
addresses. If there are no longer axioms, how could we know that a formula is
proved? Girards idea is to use the same alternation between the right (positive)
and the left (negative) side of the turnstile to get a proof by the confrontation of
a formula with what could be called its “counter-formula”, its symmetrical image
with respect to the turnstile. The two symmetrical formulas lead to two develop-
ments using the positive and negative rules- that are called the positive and the
negative “designs”. Between the addresses of the two developments or designs,
cutting addresses is sometimes possible (because address A is a justification on
one side of the turnstile in one design and address A⊥ a justified consequence on
the other side in the other design). Once cuts have been done, one development
has no addresses available for development, and need to use a pseudo-rule, the
“Daimon”. It quits the confrontation, the other formula wins and is proved. The
positive and the negative designs are then said to converge. Proof is not given
by having recourse to exogenous axioms, but by symmetries endogenous to the
interactions between one formula and its symmetrical counterpart.

Of course, such a framework is well fitted for language interactions like con-
versations, maybe better fitted than “dialogic”: the structure of the interaction,
which needs the contribution of the unproved formulas, is more important than
the end of the interaction one formula wins and is proved. In conversations also
the structure of the interaction is the main thing, as we do not talk with other
people just in order to win a game over our partners. This framework can be
adapted to the analysis of a dialog with answers and questions. In this interpre-
tation (Lecomte, Quatrini, Tronçon), the positive rule chooses a question and
determines a restricted set of possible answers; the negative rule is used to antic-
ipate all the possible answers that remain offered to the respondent. To develop
the proof tree and go up in its development implies to progressively specify the
interrogation.

Ludics seems well fitted for analyzing dialogic interactions in conversations.
What about speech acts? Since we conceive speech acts as ways of repairing
or preventing breakdowns of interactions, we need to know what could be the
correspondent of breakdowns of language interaction in ludics.

2 Ludics Breakdowns

Ludics implicitly exclude some breakdowns by its very rules, but it also gives
an explicit formal status to other ones. This specificity (in the domain of logic)
comes from the idea of confronting the different possible developments of a for-
mula and the developments of its counter-formula. As there are choices to make
in the developments (positive steps), only some developments can be related by

28 P. Livet

cuts and some branches of developments are dead ends, but every branch is need
for the interaction to be considered as an endogenous proof. Some breakdowns
take part of the success of the global interaction. Breakdowns are not totally
excluded from this logical game.

Ludics exclude implicitly all the breakdowns which come from failing to orga-
nize the interaction in such a way that the dialog alternates “positive” choices
and their limited ramifications with “negative” exhaustive offers. For exam-
ple, ludics forbid to play the Daimon too early when some ramification is still
available.

Still we have three situations that can be considered from the ludic point of
view as different kinds of breakdown of the interaction. The first one is that at
the same level of the positive and the negative design, the ramification of the
positive design is not in the repertory of the negative one. The two designs can be
developed, but with no hope of cut between common addresses, and no possible
conclusion of the interaction. Each partner can wait in vain for convergence.
Instead the interaction diverges. “Faith” is the name of this kind of breakdown.

Ω� Γ

The two other ones are related by symmetries. The first one, the Sconse, prevents
any development of the design, as it is a negative move that offers an empty
repertory. Nevertheless, it can converges, but with only one positive design, the
positive Daimon. In a sense, playing the Sconse in an interaction forces the
partner to play the Daimon. The interaction has a solution, but a bad one.

F �
Rule −, focus F , repertory ∅, Sconse −

� F

Rule +, focus F , no ramification : Daimon +.
Note that there is also a negative Daimon, starting not from � F but from F �,
with three steps or levels instead of two:

Dai
. . . � F combined with L, . . .

F � L

Focus F , repertory : all possible partitions
The third breakdown is the Bomb, a positive move but with only an empty
ramification. Here again, the only possible response is the Daimon (the negative
one)

(+, F, ∅)
� F

converges only with

Dai −�
F �

Speech Acts and Ludics: Reacting to Breakdowns of Interaction 29

The proponent of an interaction (the positive agent) can use the Bomb in order
to force the opponent to put the Daimon and withdraw. The opponent, as we
have seen, can use the Sconse for the same purpose. Of course this is the opposite
of a successful dialog.

3 Breakdown of Ludics and Speech Acts

We can try now to build correspondences between these breakdowns of ludics
and the more basic speech acts: declarations, commands or orders, promises
and excuses. In this perspective, speech acts imply that some breakdown of the
interaction either has happened in the past (excuses) or could happen in the
future (declaration, orders, promises). In a sense, speech acts are out of the core
of ludics, as they imply these breakdowns. In another one, they are the way by
which we try to repair a past breakdown or to prevent a future one, in order to
come back to the right functioning of the interaction.

Declarations are ways of preventing our opponent or partner in the interaction
to ascribe to us a proposition that we want to avoid saying because it would
commit us to accept consequences that we dislike. We signal the propositions that
commit us and are supposed not to be responsible for other ones. We ensure that
our partner in the interaction will only work on the basis of these propositions.
This is a way to avoid the divergence in the interaction, since if our partner
always sticks to our declared propositions, he cannot use a ramification not
contained in our repertory.

Lecomte and Quatrini have studied questions with presuppositions, like: “at
what time did you stop to be a drinker?” in a similar perspective (in a sense a
symmetrical one). The question presupposes that you have been a drinker and
does not let open the possibility that you have never been a drinker. But this
possibility has to be let open, in order for the interaction to go on. Questions with
presuppositions induce divergence or Faith in the case in which the partner has
not been a drinker. They have to be disentangled in advance, letting one more
step of answers (No, I have not been a drinker or Yes, I have been). Lecomte and
Quatrini suggest that questions with presupposition lead the partner to put the
Sconse and block the development of the interaction, instead of letting installing
Faith. This is an ex post reaction, and most of the time we try to avoid this type
of questions, in order to avoid Faith when it is not necessary. Declarations are
the less ambiguous way to do so, and as long as I have not declared to have been
a drinker, I cannot be asked about the time at which I have ceased to drink.

Let us examine the orders and commands. Here again, we order someone to
do something —instead of just asking her to do that thing– when we suspect or
are afraid that the person would make a choice of action that would differ from
what we want her to do. The usual answer is a declaration (OK, I do it), accom-
panied by the desired action, that not only satisfies our desire but also calms our
anxiety or suspicion. If my partner would choice an action which does figure on a
ramification which is out of my repertory, if he would disobey my order, I would
break the interaction or even force the other to quit it. My order implies this

30 P. Livet

thread, the thread of a negative Sconse (to propose an empty repertory, forcing
the other to abandon by putting the Daimon). Lecomte suggests that we can go
a step further. To my thread is associated a promise: if my partner executes my
order, then I will myself put the Daimon on that branch of the interaction: the
order has been executed, there is no more to demand.

Let us come to the promises. We promise not only because we cannot at the
present time make some action, but only in the future, or because we cannot
satisfy some conditions at the present time, but only in a longer period (as
when we say: I promise to love you). We promise also to counter the possible
suspicion of the other that we will not do something or that we do not satisfy
some conditions. Promise presupposes that the interaction cannot converge at
the present time. The action A is not presently in my ramification. Making
A⊥ (say, B) would imply another breakdown of the interaction (not Faith, but
Bomb). I put myself in a situation that prevents me to play the Bomb. I cannot
really block that, but instead I can give to my partner a weapon against the
Bomb. Lecomte suggests to use for this purpose the strategy coined by Girard
Deterrence. It is the following succession of moves: It starts from a focus on
the left of the turnstile the Bomb starts from the right. The following move
is negative and offers as a repertory the set of all possible partitions, as in the
negative Daimon, but with an exception: the empty set is excluded. As the
empty set is the ramification of the Bomb, if the Bomb is played, the Deterrence
will conclude to divergence. If on the contrary another accessible ramification is
played, the partner is supposed to play the Daimon.

In the promise, I put myself in my partners shoes and offer her in advance the
possibility of Deterrence. If Deterrence is possible, if as a consequence Bomb is
not played and for this very reason Deterrence is not played, then I will put the
Daimon and the interaction will converge on a solution.

Last of all we have to consider excuses. It I have to apologize, I have done
something that runs against the desires or the action of another person. I have
deprived her from a possible choice. This implies that she was in position of
making a choice, that I was in position of offering a choice, and proposed only a
repertory that excludes some of her desired actions. I have already put the Sconse
in the interaction. The usual answer to the Sconse is the positive Daimon, the
other will quit the interaction. But I do not want this disastrous victory. Let us
suppose that I could place the other in an inverse situation, the one in which
she has the choice, and instead of the negative Sconse, could put the positive
Bomb. Then all that I could do would be to converge by putting the negative
Daimon. Making excuses is putting the negative Daimon (after having plaid the
Sconse), instead of letting the other playing the positive Daimon. I replace my
Sconse by a virtual Bomb of her, and as a sign of that I play directly the negative
Daimon. If the other accepts my excuses, she can converge with me by playing
the positive Daimon, which is the orthogonal of the negative one. The virtual
loop will be closed (no real Bomb, in fact), but the positive Daimon of the other
people will not have the same bad meaning as at the beginning of the story.

Speech Acts and Ludics: Reacting to Breakdowns of Interaction 31

Conclusion

This interpretation of some basic speech acts implies not only that breakdowns
are possible in real language interactions as well as in ludics- but also that
repairing breakdowns is possible in ludics (or, as we will say, in “para-ludics”).
And this implies that we can either replace some past move by another one (as
in excuses) or replace in advance a future interactive situation by another one,
instead of waiting for development as in proof trees. Logically, this implies a
strategy of proof. For speech acts, this implies that one played move compacts
several anticipated moves, replacing an anticipated an undesirable sequence by
another one, which cannot be justified except by the now counterfactual antic-
ipated sequence. This imply also the possibility to reorganize the alternation
between positive and negative moves in ludics, by building blocks that com-
pound several alternate moves (and several ways of alternating moves), as when
I imagine myself (as a positive agent) playing at the place of the other as a nega-
tive agent, or conversely. Ludics use this compounding device when it aggregates
several negative connectors in the same negative move. It could be extended to
the analysis of speech acts in a “para-ludic” framework, para-ludic because it
deals with repairing or preventing breakdowns in language interactions.

Ludics and Rhetorics

Alain Lecomte1 and Myriam Quatrini2

1 UMR “Structures Formelles de la Langue”, CNRS-Université Paris 8 - Vincennes-Saint-Denis
2 UMR “Institut de Mathématiques de Luminy”, CNRS-Aix-Marseille Université

Abstract. In this paper, we give some illustrations of the expressive power of
Ludics with regards to some well known problems often regrouped under the
label of Rhetorics. Nevertheless our way of considering Rhetorics encompasses
many questions which have been put nowadays in Semantics and Pragmatics.

1 Introduction

Language is mainly interaction. It may be even said, following famous cognitivist S.
Pinker [Pinker 07] that language emerges from human minds interacting with one an-
other. The main interest of Ludics, for the study of natural language, resides in the
possibility it offers for expressing this interaction.

There are many indices of this interaction in language itself and even in syntax, as
witnessed by the presence of many small words which have essentially a rhetoric or
pragmatic impact, like “even”, “nevertheless” or “but”. Like the French linguist Os-
wald Ducrot [Ducrot 1984] said during the eighties, these words cannot be understood
simply in truth-conditional terms. “But” is not simply “and” for instance, and if, for a
truth-conditional viewpoint, there is not a big difference between “few” and “a few”, it
remains that from a pragmatic side, it is quite obvious that sentences containing these
two words cannot be pursued in the same way. If I say Peter has read few books by
Virginia Woolf, this can be continued by therefore he does not know her well as a
writer, and if I say Peter has read a few books by Virginia Woolf, this can be con-
tinued by therefore he knows her as a writer a little, and the converse discourse cannot
be pronounced. This can be interpreted if we assume that the speaker answers an im-
plicit question which could be : Does Peter know Virginia Woolf well as a writer?,
and that “few” is a negative item, while “a few” is a positive one. Vague quantifiers,
like “few”, “a few”, “many”, “a lot”... denote, as is well known, (approximative) po-
sitions on a scale, but specific vague quantifiers have the property of orienting this
scale in a direction or in another. “But” has a similar property: taking two propositions
as inputs, it does not only provide us with a coordination of them, something which
can be done by a simple “and”, it also creates a scale which can be scanned in two
opposite directions: one proposition is supposed to be oriented towards one end and
the other one towards the other end. This is particularly visible when “but” is used
to coordinate two quantified expressions, thus requiring they have opposite directions
of variation (cf. he has many relatives but few friends vs *he has many relatives but
many friends).

Lecomte and S. Tronçon (Eds.): PRELUDE 2010, LNAI 6505, pp. 32–57, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Ludics and Rhetorics 33

We may also study the phenomenon of presupposition and see about it that it is as if a
dialectical structure was at stake. If A says to B : “I don’t regret to have been watching
the movie”, A not only says something about his/her feelings (that s/he does not regret)
but also restricts the ways B can react to this assertion because B is supposed to know
that A went to see the movie, or if s/he did not know, is required to include in his/her
knowledge database that of course A watched the movie. All these facts are well known.
They all assume a model of conversation where each speaker takes into account not only
the assertions made by the other but also (and perhaps mainly) the set of expectations
that each speaker has concerning the reactions of the other.

The frame of Ludics, that we will characterize soon, which has been proposed by
J. Y. Girard [Girard 01, Girard 03, Girard 06] for foundational purposes with regards
to logic, exactly provides a framework where the ”actions” of one speaker, seen as
“positive”, not only depend on the actions of the other of the same polarity, but also on
its expected answers, that is “negative” actions.

The body of the paper will present concepts of this framework in a rather intuitive
setting, while the Appendix gives more precise definitions. Section 2 presents the lu-
dical notions of designs and normalization, with their interpretations in proof-theoretic
terms and in strategic ones : Ludics formalizes moves in a game as well as in proof
search. Section 3 applies these notions to Rhetorics and Eristics. It makes use of an
extension of designs (c-designs) due to K. Terui [Terui 08] which has two main advan-
tages : it provides a linearized formulation of designs which makes them to look like
λ-terms, and it includes cuts. Section 4 tries to give an account of semantics, as it is
generally understood, that is the context-free study of meanings, but instead of staying
stuck to a truth-conditional conception of meaning, we envisage it as something built in
interactions.

In many respects, our approach has many similarities with a proof-theoretic charac-
terization of meaning, like the one we can find in [Ranta 94]. For this paradigm, mean-
ings are not truth-conditions, like in Fregean semantics, but sets of proofs. Applied to
Natural Language, and not only to the propositions of Mathematics, we could translate
the idea by saying that the meaning of a sentence is the set of facts which prove its
validity. For instance, as said by Ranta, the meaning of Amundsen flight over the North
Pole is provided by... the set of Amundsen’s flights over the North Pole! Of course, this
set is not made of the “real” facts but of precise indications (localizations) about them,
indices which able us to recover the historical facts behind the sentence. But what is
missing in the Type-Theoretical approach is the interactive dimension. After all, some-
body can object to the truth of the sentence Amundsen flight over the North Pole, that
is present some other indices which put in doubts the reality of the event denoted by
the sentence. This set of indices is itself something we may express in proof-theoretic
terms: their proof-theoretic counterpart would be proof attempts to the negation of the
sentence, that is something we will call a counter-proof. We claim that the meaning
of the sentence will reveal during the (generally virtual) dialogue between the two at-
tempts, one for proving, the other for disproving, Simplifying things, we say that the
meaning of a sentence may be viewed as a set of (potential) justifications.

34 A. Lecomte and M. Quatrini

2 Ludics for Language Moves

2.1 Designs

Let us call language move every move that a speaker makes during a conversation. A
positive move consists in an explicit assertion or question. A negative one consists in
a way of collecting the content of the other’s utterrance and reacting to it in a purely
mental way. If somebody says to me:

(1) Are you still smoking?

I will store in my short term memory that this is a question and that it is assumed that
I was a smoker (and even that perhaps I am still one). I also know of course that the
speaker who says (1) has some information on me and, in particular that s/he knows (or
believes) that I was a smoker. Therefore when s/he asked his or her question, s/he had in
mind some of the states in which I can be. In the absolute, these states are combinations
of the following:

I was a smoker vs I was not a smoker
I presently smoke vs I don’t presently smoke

The point here is that by (1), the speaker a priori discards two states, those the common
feature of which is I was not a smoker.

Let us represent the various possible elementary states by integers 0/1, which are
also called biases. A move is a sequence of such biases. Many exchanges are such
that they have only moves of length 1: in such a case, the player who moves (either
negatively or positively) simply adds a bias to a previous sequence which summarizes
the history of the exchange, but sometimes s/he adds three biases at a time or even
perhaps more. Let us suppose a positive move of a player is an elementary question.
By asking it, s/he adds a bias, let us call it 0. After this positive move, s/he makes a
negative one, which consists in expecting an answer 0 or 1 (if there are only two possible
answers, like it is the case for dichotomic questions) : these are precisely the loci where
the other player could play if there would be no presupposition (case of did you ever
smoke?, for instance). But by asking a complex question like (1) (that Aristotle named a
multiple question), two elementary questions are combined (to each of which we assign
a bias 0) so that in fact, the only “loci” the speaker provides to his or her opponent are
0000 and 0001 (and neither 0100 nor 0101). Let us therefore assume that the speaker
starts from scratch (a situation which is in reality never the case!), we represent that by
the empty locus <>. By asserting (1), the speaker directly jumps to the set of possible
answers {0000, 0001}. If it happens that, in reality, I never smoked, I have no locus to
answer: we say that the conversation locally diverges. Only a “meta”-game allows us to
fix the interaction. This ”meta”-game uses pieces of interaction which are ”ready made”,
for instance one of them consists in forcing the speaker to retract oneself. This is done
by erasing the whole interaction and replacing it by a more fine-grained interaction,
according to which:

Ludics and Rhetorics 35

1. the speaker gives at first the alternatives 00 and 01
2. and plans, if the other speaker answers by 00, to give another set of alternatives

0000 and 0001

There is another kind of move, the one in which the speaker decides s/he has got enough
information, for instance by means of an answer from the other speaker which satisfies
him or her. There is no bias added in that situation, only a signal indicating that the ex-
change is over. We note † (called daimon) such a move, which is a positive one. Generally,
no speaker’s viewpoint can end up on an indefinite wait for a positive action1.

We may represent this interaction in the following way:

The Speaker’s viewpoint (S)

†� 0000
†� 0001
(−, 000, {{0}, {1}})

000 �
(+, 00, {0})� 00

†� 01
(−, 0, {{0}, {1}})

0 �
(+, < >, {0})�< >

”My” viewpoint A

0000 �
(+, 000, {0})� 000
(−, 00, {{0}})

00 �
(+, 0, {0})� 0
(−, < >, {{0}})

< >�

or

0001 �
(+, 000, {1})� 000
(−, 00, {{0}})

00 �
(+, 0, {0})� 0
(−, < >, {{0}})

< >�
A third issue is the one for which I object that I never smoked, which would be, on my
viewpoint:

01 �
(+, 0; {1})� 0
(−, < >, {{0}})

< >�
We may contrast this kind of exchange with the one in which there is presupposition
(or multiple question). The Speaker’s viewpoint is replaced by:

†� 0000
†� 0001
(−, 000, {{0}, {1}})

000 �
(+, < >, {0}); (−, 0, {{0}}); (+, 00, {0})�< >

1 Except in case of a partial design, the last positive rule being symbolized by Ω which precisely
means the absence of rule.

36 A. Lecomte and M. Quatrini

A’s viewpoint is replaced by:

0000 �
(+, 0, {0})� 000
C

< >�
or

0001 �
(+, 0, 1})� 000
C

< >�
Where C is the chronicle (−, < >, {0})(+, 0, {{0}})(−, 00, {0}).

What we named viewpoints of, respectively S and A, in this example, consists in
planning, both for S and for A, what will be their observable actions and reactions in a
real dialogue. Presupposition assumes they also have invisible actions and reactions. In
the Appendix, the reader can find the definition of designs. Intuitively speaking, designs
are sequences of moves, each of which being associated with the application of a rule
(positive or negative). Designs are then sequences of steps, some of which are visible
and some are not. Computing requires all the “micro”-steps be displayed, even if the
observable dialogues don’t show them. In this sense, there is a difference between a
dialogue (and a strategy in a dialogue) and a “design”. In other situations, actions and
reactions will stay only potential since there is in fact no real dialogue, but only a virtual
one. Neverheless, the same situation will occur : designs are foundational objects for
dialogues but they are not the dialogues themselves.

2.2 Normalization

Let us examine how the previous designs, that we have associated with dialogues, may
interact.

1. at the bottom of each design, we have either �< > or < >�, that is twice the
same locus but with two different polarities. This is exactly similar to a situation
where the cut-rule may apply in a sequent calculus. The difference is here that
there will be no formulation of cut as a rule, but simply we shall consider a cut as
a situation where two loci meet with two different polarities. In that case, this cut
may be eliminated according to the standard technique. After the first elimination,
what remains is:

†� 0000
†� 0001

000 �
� 00 � 01

0 �

0000 �
� 000

00 �
� 0

2. a new cut appears after this first elimination: between 0 � and � 0. This exactly
illustrates the fact that there is a minimal agreement between two speakers: the
second agrees to record in his or her own knowledge base the question asked by the
first one, what remains is:

†� 0000
†� 0001

000 �
� 00

0000 �
� 000

00 �

Ludics and Rhetorics 37

3. again new cuts appear, the first one between 00 � and � 00, then between 000 �
and � 000, and finally between 0000 � and � 0000, when this last cut is eliminated,
what remains is :

†�
something we shall consider a null object.

Such a termination will be associated to a convergence case (see the Appendix). The
two objects which have converged this way when put together are said to be orthogonal
designs. It is now obvious that our so called third issue does not converge with the pre-
suppositional question made by S since after the first and the second cut-eliminations,
there is no cut situation any longer.

2.3 Strategies, Proofs and Designs

One of the main differences with the usual games lies in the fact that there may be no
“winner” and no trade-of function in that kind of game : the goal is not to win against
the other speaker but to reach together a situation in which there is an agreement on
expectations. Such a situation is expressed in terms of convergence. Divergence, on the
contrary, may be assigned to failure, like presuppositional failure.

Let us otherwise notice that, conceived this way, dialectical exchanges seem to occur
not by opposing steps to steps, one by one, but by opposing a whole strategy to another
one. It is as if each speaker had in his or her own mind, a whole plan, or as if s/he
was projecting an entire design. This seems to be in agreement with present views in
neurosciences, as attested by these words of Jean-Pierre Changeux (himself quoting
works by Sperber and Wilson) [Changeux 04, Changeux 09]:

”Human communication generally takes place in a well defined context of
knowledge in which speakers are informing each other [...] Aiming at maxi-
mizing the efficience of communication, each speaker tries to recognize and to
infer the intention of the one who communicates. In other words, when com-
munication begins, each partner has in his or her own mind the whole possible
content of the speech, which constitutes a subset of all his or her knowledge on
the world. [...] We may think that each speaker constantly tries to project his or
her frame of thought into the mind of his or her co-speaker”.

2.4 c-Designs

In place of Girard’s designs, we shall mainly use their computational variant due to
K. Terui [Terui 08] called c-designs (c for “computational”). They extend ordinary de-
signs in many ways. They may contain explicit cuts inside them (contrarily to designs,
where cuts are external), and they accept variables as terminative negative subdesigns,
thus allowing to represent, in a dialogue, the way in which a speaker gives the flour
to another one. Moreover, their linearity and their ability to handle actions not limited
to representations in terms of integers make them more legible. Lastly, c-designs allow
to define infinite designs by means of their generators.

38 A. Lecomte and M. Quatrini

The reader will find a more complete presentation of c-designs in the Appendix. Let
us only focalize on their main features. Instead of using the proof-like presentation, the
c-designs may be roughly described as generalised λ-terms. In the term calculus which
results, we have not a simple, unique application but many ones, in fact as many as
there are elements in a signature set A consisting in a given set of pairs (a, n) where a
is a name and n is an arity. The normal terms or cut-free c-designs are still sequences
of alternated actions, but :

– positive actions are either constants: † (daimon or abandon) and Ω (divergence or
absence of rule), or proper and specific actions (denoted by a for a given name a);

– negative actions are either variables (x, y, z,. . .) or proper negative actions (denoted
by a(x1, ..., xn)).

Then the terms (or c-designs) are defined as follows:

– a negative c-design is either a variable or a sum of negative actions applied with
positive c-designs as operands: a0(xa0).Pa0 + · · · + ak(xak

).Pak
;

– a positive c-design is either a constant († or Ω) or an application which is de-
noted by N0||a < N1, . . . , Nn > where || indicates an interaction (or cut). Such
an interaction is an application in the following sense: if N0 contains a subterm
a(xa).Pa then we have to perform the application (Pa)N1 . . . Nn. Precisely, in
such a case N0||a < N1, . . . , Nn > reduces into Pa[N1/x1, . . . , Nn/xn]. Other-
wise, if there is no subterm a(xa).Pa in N0 (or, equivalentely, if N0 contains the
subterm a(xa).Ω) the interaction diverges. For instance, the design (i) below is
translated into the term (ii):

(i)

†� x.6.1, x.6.2

x.6.0.3 � x.6.0.4 �
(x.6.0, {3, 4})� x.6.0

(x.6, {{1, 2}, {0}})
x.6 �

(x, {6})� x

(ii) P = x||{6} < {1, 2}(x1, x2).† + {0}(y).y||{3, 4} < Ω−, Ω− >>

where Ω− is a notation for Σa∈Aa(xa).Ω.
Since in P the first negative term is the variable x, there is no cut. In such a case we

use the term ”channel” to talk about the variable x and indicates that it is the locus on
which an interaction may be plugged in. This design, based on x, consists in a positive
action (named {6}) which gives access to two negative c-designs:

• the first one begins by a negative action {1, 2}(x1, x2) which, in principle, binds
the variables x1 and x2 in any c-design which follows (here †, which is a constant).

• the second one performs a negative action {0}(y) which binds y inside the positive
c-design: y||{3, 4} < Ω−, Ω− > which follows this negative action. The later
positive design reduces to a simple positive action {3, 4} since in fact no (total)
negative c-design follows it.

Ludics and Rhetorics 39

Let us note that c-designs (terms) where || occurs between a mere channel and a sub-
design correspond to Girard’s designs. Nevertheless, there are cases for which || occurs
between two subdesigns : in these cases, c-designs extend Girard’s designs, because
they now involve cuts. || is therefore interpreted as a cut-plugging. For instance, the
cut-net (iii) below is translated into the c-design (iv) :

(iii)

z.6.1 � z.6.2 �
� z.6

z �

†� z.6.1, z.6.2

z.6.0.3 � z.6.0.4 �
� z.6.0

z.6 �
� z

L P

(iv) P [L/x] = L||{6} < N >

with:
L = {6}(z).z||{1, 2} < Ω−, Ω− >

N = {1, 2}(x1, x2).† + {0}(y).(y||{3, 4} < Ω−, Ω− >

3 Some Applications to the Argumentation Theory

3.1 More on Dialogues

In the previous section, it was seen that by associating a design with a speaker’s view-
point in a dialogue, we may highlight its interactive features. In doing so, we give an
account of the interactive content of a discourse : a speech turn is anchored on a locus
created by the previous one, due to the other speaker, and creates new loci on which the
interaction may go on. A dialogue is then just seen as an alternation of speech turns (or
utterances for simplicity) on which we may observe:

– the first speech turn : the one which begins the exchange;
– an alternance of speech turns;
– until :
– each intermediate speech turn is anchored on one of the previous speech turns and

creates some openings from which the other speaker continue the interaction.

either a turn speech terminates the exchange (because some information has been given,
because some agreement has been obtained. . .)

or the dialogue “fails” on a disagreement, on a misunderstanding feeling . . .
EXAMPLE : Let us consider again the small dialogue:

– S: Were you a smoker ?
– A: Yes
– S: are you still smoking ?

40 A. Lecomte and M. Quatrini

In the following interaction:

...
000 �
� 00

...
� 01

0 �
�<>

...
00 �
� 0

<>�

the left design (which is the unfolding of the dialogue related by S) may be also repre-
sented by a c-design Es:

Es = x||e1 < e2(y).y||e3 < · · · > +e′2(z) · · · >

where the variable x is the channel making an interaction possible; the positive actions
e1 and e3 are the successive utterances that Speaker puts forward while the negative
ones e2(y) and e′2(z) are the ones that Speaker anticipates (as possible interventions of
his/her adressee) after s/he has said e1.

A problem is that until now, we have only viewed a dialogue as a whole, not as a
progressive, step by step, construction. Thanks to c-designs, the dialogue’s dynamics
may be viewed as a true step by step process. Speech turns are no longer simple actions
but full designs:

Beginning speech turn Intermediate speech turn
x||e1 < y > e0(x).x|e1 < y >

where e1 is the current utterance (which is contained in the current speech turn of
Speaker), e0 is the utterance contained in the immediately previous speech turn (of
Adressee) and we use the variable y to indicate that Speaker does not anticipate the
next utterances of Adressee. At each step, the result of the interaction between the pre-
vious current state and the c-design just played gives a new curent state.

S’s speech turn Interaction /(current state) A’s speech turn
E1=x||e1 < x1 >

I1 = E1

E2=
e1(v).v||e2 < z >

E1[E2/x] =
(e1(v).v||e2 < z >)||e1 < x1 >

�→ I2 = x1||e2 < z >

E3=e2(y).y||e3 < u >

I2[E3/x1]
�→ I3 = z||e3 < u >

Moreover, such a representation enables us to give an account of the difference we
made between visible and invisible steps in a real dialogue. This comes from the fact
that we may insert full complete negative c-designs in place of variables thus taking

Ludics and Rhetorics 41

into account the possible choices made during the speech turn in order to constrain the
dialogue continuation. Speech turns may then be c-designs like what follows :

Beginning Intermediate
x|e1 < N > e0(x).x|e1 < N >

To interact with such a speech turn, the adressee has to locate a chronicle in the Speaker’s
intervention:

e1 < e2 . . . en < x > · · · >

and to be able to answer with an interacting c-design:

e1 . . . e2 < . . . en . . . en+1 < M > >

EXAMPLE : When s/he uses presupposition, the speech turn of Speaker is associated
with the c-design E = x||e1 < e2(y).y||e3 < u >>. And Adresss has to answer by
accepting the sequence : e1e2e3.

3.2 Controversies and Fallacies

Let us define a controversy as a language game in which there is a goal, consisting
in getting a winning position in a debate2. Controversies are therefore a subset of the
class of dialogues. Controversies may contain figures, called fallacies, which are mainly
used to confound the interlocutor. We know that, in his Sophistical Refutations (or De
Sophistis Elenchis), Aristotle was the first to show how to refute these dialectical tricks
[Aristotle].

We will try to see in the following how it is possible to characterize fallacies by
means of special properties of the designs which represent them.

3.2.1 Petitio Principii
A typical fallacy is provided by Petitio Principii, translated by begging the question
in English. Like this expression tells us, it is the rhetorical figure which consists in
smuggling the conclusion into the wording of the premises, thus begging or avoiding
the question at issue in the argument (Schipper and Schuh, quoted by [Hamblin 70]). In
other words, a given argument depends on what it is trying to support, and as a result,
the proposition is being used to prove itself.

We characterise such a fallacy in Ludics as a block where there are no loci on which
a continuation of the interaction can be performed. Like if, during a game, your turn
was never given back. An example is provided by:

(2) Your daughter is dumb because she lost the use of language

2 Technically speaking, a strategy is winning if it does not use the daı̈mon. We retrieve the notion
of winning design defined by J.-Y. Girard.

42 A. Lecomte and M. Quatrini

Let us take the following notations:

– E , E1, E2 and E′ respectively denote the utterances your daughter is dumb be-
cause she lost the use of language, your daughter is dumb, she lost the use of
language and your daughter lost the use of language because she is dumb;

– e, e1, e2 and e′ denote the names of actions which are respectively associated with
them.

Let us describe below the c-design E associated with E:

• E = y||e1 < N > where:

– y is the channel where an answer may be plugged in;
– e1 is the first positive action and corresponds to the claim E1: your daughter is

dumb;
– the c-design N is associated with the justification of E1 contained in the interven-

tion: because she lost the use of language.

• to make E more explicit, we need to refine the c-design N which contains as a
justification for E1, the argument E2. We have : N = e2(x).E ′. Indeed the negative
action e2(x) gives an account of the position which is ready to support E2: she lost
the use of language. Moreover we may forecast3 that such a support may be the
utterance E′: your daughter lost the use of the word because she is dumb, with
which is associated the c-design E ′.

• Clearly the c-design E ′ is equal to E except that the positions of e1 and e2 are
exchanged. Precisely, E ′ = x||e2 < N ′ >, where N ′ is e1(z).E ′′, and E ′′ =
E [z/y], and so on ...

Finally the c-design E associated with the utterance E: your daughter is dumb because
she lost the use of language is:

Ey = y||e1 < e2(x).x||e2 < e1(z).z||e1 · · · >>

The c-design E is infinite. Nevertheless , we may give a finite presentation of it, by
means of a finite generator G (see in appendix):

G = ({s+
1 , s+

2 }, {s−1 , s−2 }, l, s+
1), where the function l is defined as follows:

l(s+
1) = y||e1 < s−1 >

l(s−1) = e2(x).s+
2

l(s+
2) = x||e2 < s−2 >

l(s−2) = e1(y).s+
1

3 And this will be still more convaincing with our semantical formalization: the c-design justi-
fying the utterance e2 has to belong to the set of c-designs associated with the semantics of
e2. Clearly, the semantics of e1 and e2 may share a lot of c-designs, so that the same c-design
than the one used to justify e1 may be reused to justify e2.

Ludics and Rhetorics 43

The c-design-like presentation highlights the characteristics of “petitio principii”:

• the c-design is infinite and we can say it is a block closed to interaction. Indeed the
Adressee can not locate any chronicle: e1 < e2 . . . en < x > · · · > in order to
build some answer as an interacting c-design:

e1 . . . e2 < . . . en . . .en+1 < M > >

since there is no such variable x.

• the c-design’s generator gives an account of the circularity of the argument.

3.2.2 Transfering Premises from a Locus to Another One
A well known work on what is sometimes named eristic, according to the ancient
Greek word Eris meaning ”wrangle” or ”strife”, is the famous The Art of Always Be-
ing Right written by Schopenhauer. In this book, the German philosopher gives several
”stratagems” according to which it is easy to win a controversy against any opponent.
For instance, the ”fourth stratagem” is the following :

Make the opponent to admit the premises of a proposition, in a hidden way
during the conversation. Once it is visible that your opponent has conceded all
the necessary premises, play the sentence implied by these premises.

Let us build the c-design associated with a speaker who argues in favour of his or her
thesis by refering to premises already accepted by the other speaker.

Let us use the following notations :

• the speaker is referred to by ”player” or P

• the addressee by ”opponent” or O.

• the utterances corresponding to the premises already accepted by O are denoted A
and B.

• we assume that the claim made by P by using the premises already accepted by O,
is similar to the following E: Since A and B (that you accepted) imply C, you will
agree that C.

• we denote by I the utterance A and B imply C.

• the names a, b, e, i are respectively associated with the utterances A, B, E and I ,
and their arities will be made precise below.

We associate with E the following c-design:

E = y||e1 <↑ (xa).A, ↑ (xb).B, ↑ (xi).I >

44 A. Lecomte and M. Quatrini

which is built as follows:

– y is the channel where an answer may be plugged in;
– e1 is the first positive action : it consists in the claim of the thesis C. This action is

ternary since it suggests that the interaction may continue on each element which
constitutes the logical argumentation: the two premises and the implication.

– then P is ready to continue the interaction on three channels, represented by three
negative actions ↑ (xa), ↑ (xb), ↑ (xi).

– the c-design I consists in assuming the implication : A and B imply C, so it is
simply equal to xi||i < z >.

– the c-designs A and B respectively associated with the support of the premises A
and B are supposed to be already built when E is played, since they have been
played previously during the dialogue.

Let us consider the following simplified case: during previous dialogues, the utterances
A and B were asserted by P and immediatly accepted by O. We can then represent
each of them by some c-design reduced to an elementary positive action, respectively :
xa||a < Ω− > and xb||b < Ω− >. We give an account of the transfer of these premises
so that they become arguments of the thesis C by the fact that A and B are respectively
obtained in the following way:

A = Faxxa ||a < Ω− > and B = Faxxb
||b < Ω− >

where Faxy is an infinite c-design generated by the following finite4 generator:

({su}u∈U , {sN}, l, sN) where :

l(sN) = Σu∈Uu(xu).su, l(su) = y||u < sN , . . . , sN > when y /∈ xu.

Then Faxya is the negative c-design:

Σu∈Uu(x1, . . . , xn).(ya||u < Faxx1 , . . . , Faxxn >)

with which the normalisation of a positive c-design D = xa|| . . . gives D[ya/xa].

Finally the c-design E is as follows:

y||e1 <↑ (xa).(Faxxa ||a < Ω− >), ↑ (xb).Faxxb
||b < Ω− >, ↑ (xi).xi||i < z >>

The only possibility for O to successfully continue the dialogue is to use the channel
open by the chronicle e1 ↑ i < z >. If O has nothing to oppose to i, then s/he looses:
s/he is obliged to play the daı̈mon.

Let us underline that such an interaction may be taken into account because we are
able to express cuts inside the representations of the speech turns. These internalized
cuts allow us to keep the information coming from previous exchanges and to be able
to reuse it in the future.

4 Provided that U (a set of names associated with some utterances) is finite.

Ludics and Rhetorics 45

4 Ludics and ”Semantics”

4.1 On Natural Language Semantics

In the previous sections, we were concerned by rhetoric, that is the way in which language
is used according to a persuasion goal. Rhetoric is a question of positions that speakers
occupy in their interlocutory space. In particular, we saw in the previous section how a
speaker is bound to make use of the other speaker’s expectations. In contrast with rhetoric
(which takes place in fact inside what is nowadays called pragmatics, that is the study of
the use of language in context), semantics is supposed to deal with the proper content of a
sentence (more or less independantly of its context). Traditional Formal Semantics does
as if there existed an objectivable sentence meaning which could even be reduced to truth
conditions, according to Frege’s program. Another viewpoint amounts to consider that :

• meaning is always decided in context, that is, moreprecisely, in dialectical exchanges,
• meaning is always determined according to reciprocal expectations coming from two

speakers (or more) in a dialogue

Of course, when dealing with content, we are obliged to start from some primitive mean-
ings associated with words (lexical meaning) and from primitive ways in which those
contents may be combined. For instance, when utterring there is a cat on the mat, we re-
fer to primitive concepts like those of cat and mat, and also on relational concepts like
beingon... At a first glance, we may ignore what there is exactly inside those concepts!
Tarskian semantics would say : cat is the concept defined by the function which assigns
1 to every individual x which is a cat, and 0 to the other individuals... We don’t think this
kind of view bring anything to the comprehension of the semantics of natural language. If
we try to reason more in accordance with modern neurocognitive views, we should prefer
to say thatcat is that part of the brain which reacts when the word is heard or when a real
cat crosses the road in front of us... But we can also leave the door open to other concep-
tions : in fact, for us,catwill be... a set of designs which defined by the way they interact
with other designs at the moment we have an exchange about cats with other people. Of
course cat as a notion may be more or less deepened in a given situation : it may suffice
for us to identify a cat simply by a single feature (its miewing, its whiskers or else...), or
we can be in a situation where we expect more, something like a proof that there is a true
cat! Here the separation theorem is fundamental. It states that designs may be ordered
inside the same behaviour. Very long designs may inhabit the behaviour associated with
the notion, as well as shorter and more branching ones.

We propose here a conception of interactive meaning based on Ludics. Metaphorically,
the meaning of a sentence may be viewed by comparison with designs defined by their
orthogonal, but this is not only a metaphor, since we are able to give a precise formulation
of this idea. The set of designs we associate to a sentence in order to represent its semantics
may actually be seen as a set of bearers of potential actions and reactions. It would be
possible to give an account of various semantical features and not only of the part which
corresponds to logical decomposition. Nevertheless, in this paper, we mainly focus on
this part.

Let us take a traditional example of a problem of ambiguity (scope ambiguity).

46 A. Lecomte and M. Quatrini

4.2 Discrimating Meanings by Means of Dual Sentences

Let us consider the statement (from now on denoted by S) :

(4) Every linguist speaks some african language

Usually two ”logical forms” are associated with such a sentence S, depending on
whether some has the narrow or the wide scope. Namely:

S1 = ∀x(L(x) ⇒ ∃y(A(y) ∧ P (x, y)))
S2 = ∃y(A(y) ∧ ∀x(L(x) ⇒ P (x, y)))

where L(x) means“x is a linguist” , A(y) means “y is an african language” and P (x, y)
means “x speaks y”.

In fact, this display of meanings essentially results from stipulations : grammatical
rules are introduced in order to generate these distinct readings (for instance in the
Montague grammar). We suggest it would be more accurate to explain why and how
this divergence survenes, using potential dialogues. it appears for instance that when
”some” has the narrow scope, S tends to converge with sentences like:

(5) There is a linguist who does not know any african language.
(6) Does even John, who is a linguist, speak an african language ?
(7) Which is the African language spoken by John ?

On the opposite, if ”some” has the wide scope, S seems to converge with :

(8) There is no african language which is spoken by all the linguists.
(9) Which african language every linguist speaks ?

The designs associated with S’s meaning are justifications for S, that is bearers of
potential dialogues during which a speaker P can assert and justify the statement S
against an adressee O who has several tests at his/her disposal.

Below, we represent two situations where the c-design on the left-hand side is asso-
ciated with the speech turn of P while the designs on the right-hand side are associated
with speech turns of an adressee O, where s1 (resp. s2) is the name associated with S
when ”some” has the narrow scope (resp. the wide scope), qj and q are respectively the
names associated to the utterances (6) and (9). We may assume the meaning that P has
in mind when uttering S is not explicit. We may then envisage two situations:

– let us assume the first situation is :

Ep = x||s < y > Eo = s1(z).z||qj < t >
Every linguist speaks some african language Does even John speak an african language ?

The interaction Ep[Eo/x] gives as current state the desing y||ql < t >, and it is the
turn of S to make an intervention.

Ludics and Rhetorics 47

– let us assume the second one is :

Ep = x||s < y > E ′
os2(z).z||q < t >

Every linguist speaks some african language Which african language every linguists speaks?

and the interaction Ep[E ′
o/x] immediately diverges.

In such a case, we may say that interaction has separated two meanings and that one of
them, let us call it s1 must be attached to P’s utterance (in Ep, s is equal to s1).

We thus see that the first action in designs associated with sentences enables us to
separate meanings.

4.3 Logical Meaning

Let us denote by S∗ the set of designs associated with the meaning of the sentence
S, we may now consider two disjoined subsets of designs corresponding to the two
situations we just discriminated and that we may associate now either to the meaning
when ”some” has the narrow scope or to the meaning when it has the wide scope. If we
denote them by S∗

1 and S∗
2 , we have : S∗

1∪S∗
2 ⊂ S∗. We are now interested in continuing

the exploration of he meaning of S. More precisely , if we denote by Es = x||s1 < N >
a design belonging to S∗

1 , we will now focus on N .
Since the speaker P anticipates that O may ask questions (denoted by ql) about every

linguists l, N may be written :
Σl∈Lql(y).El

where El is a design belonging to the semantics of the utterance El : the linguist l speaks
an african language.

Let us then explore El. It may be analysed as follows : the speaker is assuming A: F
is the african language that l speaks, and is ready to continue the interaction on each
part of this claim, namely A1: F is an african language and A2: l speaks F . If a is
the name associated with the sentence A, the designs A1 and A2 are justifications of
respectively, A1 and A2, we may write :

El = y||a < A1,A2 >

EXAMPLES :

• We may have: A1= a1(x1).(x1||∅) and A2= a2(x2).(x2||∅). In such a case the
speaker justifies A1 and A2 by saying that there are datas which justify them.

Finally we obtain as a first example of S’s justification:

E0 = x||s1 < Σl∈Lql(y).(y||a < a1(x1).(x1||∅), a2(x2).(x2||∅) >) >

• The following design would also be convenient :

E1 = x||s1 < Σl∈Lql(y).(y||a < Ω−, Ω− >) >

It differs from the previous one by the fact that it doesn’t plan to justify the state-
ment A: F is the african language that l speaks. In such a case, a counter design
may normalize only if it plays the daı̈mon againts P ’s action a.

48 A. Lecomte and M. Quatrini

• The following one is still a design that could be convenient :

E2 = x||s1 < Σl∈Lql(y).(y||a < a1(x1).(x1||∅), a2(x2).(x2||g < N1,N2) >) >

Here, instead of justifying a2 by a data, P goes deeper and gives a more detailed
justification, for example G: (the linguist) l spent his childhood in Tunisia and went
to a local school, N1 and N2 (not detailed here) are the subdesigns associated with
the underlying utterances of G.

Amongst the various designs which may be associated with S (with still the narrow
scope for “some”) we may observe some of them which share the same successive first
actions:

• P asserts s1. The first positive action is s1
• Then s/he is ready to listen objection for every linguist l (the negative actions ql(y)).
• For every linguist l P is able to exhibit some language F , arguing that F is an

african language and F speaks l. This is the positive action a.
• Lastly, if O had still some doubts about one of these two claims (expressed by the

negative actions a1(x1) and a2(x2)), P could continue to give justifications, but
here, s/he asserts that they are provided by mere datas (∅).

4.4 Links with the Classical Approach

As a Theory of Logic, Ludics allows us to consider also designs as abstractions of
proofs, while some sets of designs, provided that they are closed by bi-orthogonality
(cf. Appendix), may be seen as formulas (see in the Appendix the notion of behaviour).
This allows us to view designs as proof attempts. For instance, the design

x||s1 < Σl∈Lql(y).y||a < A1,A2 >

may be viewed as the following proof attempt in the hypersequentialized polarised lin-
ear logic (see the definition of HSLL in Appendix):

Dl′

...

A1
...

↓ A⊥
1 (F) �

A2
...

↓ A⊥
2 (l, F) �

�↓ L(l),⊕y(↑ A1(y)⊗ ↑ A2(l, y))

Dl′′

...

(&x(↑ L(x) −◦ ⊕y(↑ A1(y)⊗ ↑ A2(x, y))))⊥ �
� S

where S, L(x), A1(y) and A2(x, y) are HSLL-formulas respectiveley associated with
the utterances Every linguist speaks an african language, x is a linguist, y is an african
language and The linguist x speaks y. And where the designs Dl′ , Dl′′ , A1 and A2
are some proofs attemps of the HSLL-sequents5 �↓ L(l),⊕y(↑ A1(y)⊗ ↑ A2(l, y)) ;
�↓ L(l),⊕y(↑ A1(y)⊗ ↑ A2(l, y)); ↓ A⊥

1 (F) � and ↓ A⊥
2 (l, F) �.

5 Vertical arrows are shift operators - see the Appendix - which make the formulae negative
ones, a condition that is necessary if we wish to respect the implicit convention in HSLL
according to which formulae are decomposed into maximal blocks of alternate polarities.

Ludics and Rhetorics 49

REMARKS

1. This interactive meaning analysis enables us to observe that there is no reason to
use first order quantifier in the logical decomposition of the meaning of the sentence
S. It appears that the convenient logical operations are the additive connectives (ex-
tended to a finite set of subformulas indexed by a finite set - here of linguists -).
Actually, in the foregoing proof attempt, there is no reason that the subdesigns Dl,
Dl′ , Dl′′ would be based on similar attempts to find a proof. That would be a ne-
cessity if we used the universal quantifier, as shown in [Fleury-Quatrini 04].

2. For the sake of simplicity, we have not dealt with the part l is a linguist. Then in
the foregoing proof scheme the formula ↑ L(l) is simply weakened. It is of course
possible to refine the analysis by taking into account possible exchanges around the
fact that such or such l is indeed a linguist. And thus to recover more detailed proof
schemes.

Finally, we retrieve as a particular case of interactive meaning, the usual notion of “log-
ical form” and among its consequences, the treatment of quantifier scope. We may of
course also retrieve the notion of truth value. Actually, provided that it contains a “win-
ning” design6 a behaviour may be seen as a truth formula.

We may then consider, inside the set of designs S∗, a subset which is a behaviour
which corresponds to the HSLL formula (still denoted by S) :

S = (&x ↑L(x) −◦ (⊕y ↑A(y)⊗ ↑P (x, y))))⊕⊕y ↑A(y)⊗ (↑L(x) −◦ &x ↑P (x, y))).

This behaviour is itself the combination of more elementary ones by operations it is
possible to define on behaviours which exactly reflect the usual connectives of linear
logic!

Nevertheless, we insist upon the fact that logical meaning so characterized is only
a subpart of the sentence semantics. We may also deal with pragmatical aspects of
semantics in a way we outlined in section 3.

5 Conclusion

Intuitively speaking, Ludics allows us to develop a new viewpoint, according to which
very various objects may be assigned to sentence (and word?) meaning. These objects
are technically characterized as sets of designs, among them some stable sets (with
regards to bi-orthogonality) give so-called behaviours. We don’t need to know what is
the essence of meaning because those objects are defined by their reactions with regards
to other ones they are interacting with. As pointed out by C. Faggian [Faggian 2006],
only the properties of these objects that can be tested by means of interaction with
objects of the same kind can be observed, they are the observables.

Moreover, we may make the depth of the characterization vary, according to a sepa-
ration theorem.

6 Roughly speaking a winning design is a design which does not use any daimon. It is, for
example, the case of our design E0.

50 A. Lecomte and M. Quatrini

Let us finally emphasize the following points:

• In Ludics, neither formulae nor the sets of designs (behaviours) correspondng to
them are the primitive objects. The meaning of a sentence is thus assigned an object
which is not a priori closed : the meaning of a sentence may be more and more
refined. In particular, the order between designs given by the separation theorem
enables one to explore more and more precisely the argumentative potential of the
sentence.

• Ludics is built with an explicit attention given to the ”logical frontier” (what falls
inside logic versus what falls not). Logical concepts like formulae, proofs and con-
nectives are defined in a world which is larger than the strict logical word (let us
remember that we have paralogisms like the daı̈mon, and counter-proofs in that
world!). This feature may be used to formalize aspects of meaning which don’t di-
rectly deal with Logic, like it is the case in pragmatics, dialectic and rhetoric, as
seen in the first part of this paper.

• Ludics also refers to the possibility of playing on various interpretations of logical
concepts : localized vs delocalized (or spiritualist in Girard’s sense), where we
see an implementation of the well known distinction between tokens and types (see
[Strawson 50]). The same sentence can be viewed (inside the same framework) as a
token - when seen as an utterance made in a given context - as well as a type - when
seen as delocalized and understood independently of any context. Normalization
with Fax makes the communication possible between the two.

• Ludics also enables us to deal with dynamics for free, like we saw it in the first
part of this paper. This feature is particularly highlighted in the use of c-designs,
which include cuts and therefore a procedure of normalization which is similar to
β-reduction.

References

[Andréoli 92] Andréoli, J.-M.: Logic Programming with Focusing Proofs in Linear
Logic. Logic Programming with Focusing Proofs in Linear Logic 2(3),
297–347 (1992)

[Aristotle] Aristote Les Réfutations Sophistiques, trad. Jules Tricot, ed. Vrin, Paris
(1995)

[Changeux 04] Changeux, J.-P.: L’homme de vérité. In: Jacob, O. (ed.), Paris (2004)
[Changeux 09] Changeux, J.-P.: Du vrai, du beau, du bien. In: Jacob, O. (ed.), Paris

(2009)
[Curien 2004] Curien, P.-L.: Introduction to linear logic and ludics, part I and II, to

appear, downloadable, from
http://www.pps.jussieu.fr/ curien/
LL-ludintroI.pdf

[Ducrot 1984] Ducrot, O.: Le dire et le dit, Editions de Minuit, Paris (1984)
[Faggian 2006] Faggian, C.: Ludics and interactive observability: the geometry of tests.

Theoretical Computer Science 350(2), 213–233 (2006)
[Fleury-Quatrini 04] Fleury, M.-R., Quatrini, M.: First order in Ludics. Mathematical

Structures in Computer Science 14(2), 189–213

http://www.pps.jussieu.fr/~curien/LL-ludintroI.pdf
http://www.pps.jussieu.fr/~curien/LL-ludintroI.pdf

Ludics and Rhetorics 51

[Girard 99] Girard, J.-Y.: On the Meaning of Logical Rules-I. In: Berger, U.,
Schwichtenberg, H. (eds.) Computational Logic, Springer, Heidelberg
(1999)

[Girard 01] Girard, J.-Y.: Locus Solum. Mathematical Structures in Computer
Science 11, 301–506 (2001)

[Girard 03] Girard, J.-Y.: From Foundations to Ludics. Bulletin of Symbolic
Logic 09, 131–168 (2003)

[Girard 06] Girard, J.-Y.: Le Point Aveugle, vol. I, II. Hermann, Paris (2006)
[Hamblin 70] Hamblin, C.-L.: Fallacies. Vale Press, Newport News, republished in

(2004)
[Hintikka-Kulas 83] Hintikka, J., Kulas, J.: The Game of Language: Studies in Game Theo-

retical Semantics and its Applications. D. Reidel, Dordrecht (1983)
[Hintikka-Sandu 97] Hintikka, J., Sandu, G.: Game Theoretical Semantics. In: Van Ben-

them, J., ter Meulen, A. (eds.) Handbook of Logic and Language, ch. 6.
Elsevier, Amsterdam (1997)

[Martin-Löf 84] Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis, Naples (1984)
[Pietarinen 07] Pietarinen, A.-V.: Game Theory and Linguistic Meaning. Elsevier,

Amsterdam (2007)
[Pinker 07] Pinker, S.: The Stuff of Thought, Language as a Window into the Human

Nature. Penguin Books (2007)
[Ranta 94] Ranta, A.: Type-Theoretical Grammar. Oxford University Press, Oxford

(1994)
[Schopenhauer] Schopenhauer, A.: The Art of Always Being Right. Gibson Square Books

Limited (2004)
[Strawson 50] Strawson, P.F.: On Referring. Mind 59 (1959)
[Sundholm 86] Sundholm, G.: Proof Theory and Meaning. In: Gabbay, D., Guenthner, F.

(eds.) Handbook of Philosophical Logic, vol. III, pp. 471–506. D. Reidel,
Dordrecht (1986)

[Terui 08] Terui, K.: Computational Ludics, to appear in Theoretical Computer
Science, J.-Y.Girards Festschrift special issue (2008)

[Tronçon 06] Tronçon, S.: Dynamique des démonstrations et théorie de l’interaction,
PhD thesis, Université d’Aix-Marseille (2006)

[Wittgenstein 53] Wittgenstein, L.: Philosophische Untersuchungen. Blackwell, Malden
(1953)

Appendix A: A Very Short Presentation of Ludics

Ludics in a Nutshell

Ludics is a recent theory of Logic introduced by J.-Y. Girard in [Girard 01]. Here we
don’t give the entire definitions of the core concepts of Ludics but we just give an
account of the objects we use in this paper.

Designs
At a first glance, designs look like proofs. In fact, they come from a deep study of
proofs and their interaction. It was discovered already during the nineties that proofs of
Linear Logic could be decomposed into blocks of opposite polarities (positive like for
⊗ and ⊕ steps, negative like for & and ℘ steps). That opened the field to a polarized and
focalized logic. In such a frame, blocks of a given polarity are reduced to only one step

52 A. Lecomte and M. Quatrini

: it is as if a synthetic connective (involving several premisses, not necessarily one or
two) was used at each step. It is possible in such a frame to make confrontations between
polarized objects : we can think of an attempt to prove a statement vs an attempt to prove
the contrary. At the basis of each attempt, there is a sequent, and bases have opposed
polarities, that is one is positive (trying for instance to prove� P) and the other negative
(trying to prove � ¬P or P �).

Because of the multiplicity of premisses, the calculus, using formulae and the usual
connectives of Linear Logic is called Hypersequentialized Linear Logic (HSLL). This
calculus contains a large number of rules, even if we may present it by using rule
schemata. An overview is given infra.

When opposing two proofs one against the other, it may happen that one of the two
be a real proof. In this case, the other one is of course not a proof but what we may call
a counter-proof. Proofs and counter-proofs together are called paraproofs. Amongst
paraproofs, there are of course singular objects which are real counter-proofs: they are
defeated during the confrontation against a real proof. The prototype of these objects is
the one step paraproof :

†� Γ

where Γ is a sequence of formulae possibly empty, and † is the special positive rule
called Daı̈mon. For a proof-searcher, to make this step in a proof amounts to admit his
or her failure. In Ludics, this has the meaning I’m giving up. It happens that this is the
only paralogism that Ludics allows.

HSLL may be displayed in a standard way, using only positive formulae : the nega-
tive ones are simply put on the left-hand side of the sequent to prove (or to refute). All
the sequents which enter the game are therefore of the general form Γ � Δ, where Γ
and Δ may be empty and Γ contains at most a formula. These sequents are therefore
called forks, and the negative part (the left-hand side) is called the handle. Elements of
the right hand side are the teeth. If Γ is empty, the fork is said to be positive, if not, it is
said to be negative.

Going to Ludics strictly speaking amounts to get rid of formulae in favour of only
their adresses, called loci. These loci are simply sequences of integers (or bias). Forks
are arrangements of loci, some being positive, others negative.

From now on, if we make exception of †, only two rules are necessary, one for the
positive steps, the other for the negative ones. We have therefore :

Definition: A design is a tree of forks Γ � Δ, built by means of the three following
rules :

- Daı̈mon

†� Δ

- Positive rule

· · · ξ.i � Δi · · ·
(ξ, I)

� Δ, ξ

Ludics and Rhetorics 53

where I may be empty and for every indexes i, j ∈ I (i �= j), Δi and Δj are dis-
connected and every Δi is included7 in Δ.

- Negative rule

· · · � ξ.I, ΔI · · ·
(ξ,N)

ξ � Δ

where N is a possibly empty or infinite set of ramifications such that for all I ∈ N ,
ΔI is included in Δ.

Let us mention that is is usual to interpret the positive rule as a positive choice made by
a player : s/he can make a ”true” choice, like it is the case when we use the ⊕-rule, or
s/he can keep several issues simultaneously, like we do when using the ⊗-rule. In any
case, s/he selects a locus, considers it a focus (the focus of the action), and s/he selects
a ramification, that is a set of adresses on which the focus is distributed.

Similarly, the negative rule is interpreted as a more passive step, since the focus
is already determined (it is the only locus which occurs on the left-hand side of the
negative fork). Moreover, the set associated to that rule is not a specific ramification,
but a set of ramifications. In our pragmatic, or rhetorical, view, it is as if the player, after
making an assertion (positive step) was waiting for an expected set of answers from his
or her co-player. In terms of proofs: the proof makes a choice and then predicts the kinds
of objections that can be made in the counter-proof. If the player wishes to achieve his
or her proof, s/he has to continue the design for each branch, each corresponding to a
possible refutation. We see here that negative steps are bifurcations in the proof-search.

Because these considerations can be held, a design may be seen also in games terms:
each player sees the paraproof s/he is presently building as a a strategy in a game in
which the goal could be avoid the daı̈mon!.

In this other view, we see a design as a set of possible plays. These plays are called
chronicles. A chronicle may be built from a design according to the first view. Start-
ing from the bottom, we record all the branches and their sub-branches. A branch is
necessarily a sequence of actions, some are positive and some negative (alternatively).
In order to correspond to a true design, these chronicles must satisfy some conditions
(coherence, propagation, positivity, totality).

Interaction
Interaction consists in a coincidence of two loci in dual position in the bases of two
designs. This creates a dynamics of rewriting of the cut-net made of the designs, called,
as usual, normalisation. We sum up this process as follows: the cut link is duplicated
and propagates over all immediate subloci of the initial cut-locus as long as the action
anchored on the positive fork containing the cut-locus corresponds to one of the actions
anchored on the negative one. The process terminates either when the positive action
anchored on the positive cut-fork is the daı̈mon, in which case we obtain a design with
the same base as the starting cut-net, or when it happens that in fact, no negative action

7 Every rule where the union of the Δi is strictly included in Δ correspond to the weakening
rule (respectively for negative rule when ΔI is strictly included in Δ).

54 A. Lecomte and M. Quatrini

corresponds to the positive one. In the later case, the process fails (or diverges). The
process may not terminate since designs are not necessarily finite objects.

When the normalization between two designs D and E (respectively based on � ξ
and ξ �) succeeds, the designs are said to be orthogonal, and we note: D ⊥ E . In this
case, normalization ends up on the particular design :

†�
Let D be a design, D⊥ denotes the set of all its orthogonal designs. It is then possible
to compare two designs according to their counter-designs. Moreover the separation
theorem [Girard 01] ensures that a design is exactly defined by its orthogonal: if D⊥ =
E⊥ then D = E .

Behaviours
One of the main virtues of this ”deconstruction” is to help us rebuilding Logic.

• Formulae are now some sets of designs. They are exactly those which are closed
(or stable) by interaction, that is those which are equal to their bi-orthogonal. Tech-
nically, they are called behaviours.

• The usual connectives of Linear Logic are then recoverable, with the very nice
property of internal completeness. That is : the bi-closure is useless for all linear
connectives. For instance, every design in a behaviour C ⊕ D may be obtained by
taking either a design in C or a design in D.

• Finally, proofs will be now designs satisfiying some properties, in particular that of
not using the daı̈mon rule.

The c-Designs

In [Terui 08] K. Terui proposes an alternative formulation of Ludics which is motivated
by stakes of “developing a monistic, logical and interactive theory for computability
and complexity”. In order to follow such a program, K. Terui modifies and extends the
formalism for Ludics.

We focus here on the notions of c-designs and generators that we use in our text and
we propose a very simplified presentation of them.

c-Designs
Among the new features of the c-designs compared to the original ones of Girard let us
underline the following:

• Instead of objects with absolute address, the c-designs may be described using a
term calculus approach. The absolute addresses are replaced by variable binding.

• The c-designs extend ordinary designs in that they contain explicit interactions.

We then focus on some technical modification into the designs building. The c-designs
still contain sequences of alternated actions, but we may at first observe that we have a
new notion of action. The c-designs are defined according to a signature set A: a set of
couples (a, n) where a is a name and n is its arity. And the positive actions are either
constants: † (daı̈mon or abandon) and Ω (divergence or absence of positive rule), or

Ludics and Rhetorics 55

proper and specific actions (denoted by a for a given name a) while the negative actions
are either variables (x, y, z,. . .) or proper negative actions (denoted by a(x1, ..., xn)).
Secondly, designs contain also cuts which enables to consider applications in a term
calculus approach. Let us underline that in such a term calculus , we do not have a
unique application but as many applications as elements in a signature set A. Then the
terms or c-designs are co-inductivey defined:

• The positive c-designs are: P = Ω | † | N0||a < N1, . . . , Nn >
• The negative c-designs are: N = x | Σa∈Aa(x).Pa

The positive designs really containing a cut are designs N0||a < N1, . . . , Nn > when
N0 is not a variable. In such a case the cut may be seen as an application in the fol-
lowing sense: if N0 contains a subterm a(xa).Pa then we have to perform the appli-
cation (Pa)N1 . . . Nn. Precisely, in such a case N0||a < N1, . . . , Nn > reduces into
Pa[N1/x1, . . . , Nn/xn]. Otherwise, if there is no subterm a(xa).Pa in N0 (or, equiva-
lentely, if N0 contains the subterm a(xa).Ω) the interaction diverges.

When the negative subdesigns are all variables the c-design is said to be a cut-free
design.

Let give as an instance of c-design the one corresponding to the Fax. It is a negative
c-design recursively defined as follows:

Faxy = Σa∈Aa(x1, . . . , xn).(y||a < Faxx1 , . . . , Faxxn >)

Generators
K. Terui introduces in [Terui 08] design generators that provide a means to finitely
describe infinite designs.

A generator is a triple (S+, S−, l) where S+ and S− are disjoint sets of states and
l is a function defined on S = S+ ∪ S− satisfying the following conditions:

• For s+ ∈ S+, l(s+) is either Ω, † or an expression of the form
s−0 ||a < s−1 , . . . , s−n > such that the s−i ’s belong to S−.

• For s− ∈ S−, l(s−) is either a variable x, or an expression on the form Σa∈Aa(x).s+
a

such that the s+
a ’s belong to S+.

A pointed generator is a quadruple (S+, S−, l, sI) where (S+, S−, l) is a generator
and sI ∈ S.

We say that (S+, S−, l, sI) generates a c-design called design(S+, S−, l, sI).
A c-design D is finitely generated if it is generated by a pointed generator which

has finitely many states, and whenever l(s−) = Σa∈Aa(x).sa, all but finitely many sa

have the label Ω.

Examples:
- the pointed generator ({s†}, {s}, l, s†), with: l(s†) = †, l(s) = Σa∈A.s† generates
the negative daı̈mon: Σa∈A.†.
- the pointed generator({sa}a∈A, {sN}, l, sN) with:

l(sN) = Σa∈A(xa).sa and l(sa) = y||a < sN , . . . , sN > if y /∈ xa

generates the Fax.

Remark: Provided that A is finite Dai− and Fax are finitely generated.

56 A. Lecomte and M. Quatrini

Appendix B: An Hypersequentialized Linear Calculus

We give here a short presentation of a hypersequentialized version of linear calculus,
which enables one to manipule the designs as (para)proofs of a logical calculus.

Formulae and Sequents

By means of polarity, we may simplify the calculus by keeping only positive formulae.
Of course, there are still negative formulae... but they are simply put on the left-hand
side after they have been changed into their negation. Moreover, in order to make para-
proofs to look like sequences of alternate steps (like it is the case in ordinary games),
we will make blocks of positive and of negative formulae in such a way that each one is
introduced in only one step, thus necessarily using synthetic connectives. Such connec-
tives are still denoted ⊕ and ⊗ but are of various arities. We will distinguish the case
where both ⊕ and ⊗ are of arity 1 and denote it ↓.

- The only linear formulae which are considered in such a sequent calculus are built
from the set P of linear constants and propositionnal variables according to the
following schema :

F = P |(F⊥ ⊗ · · · ⊗ F⊥) ⊕ · · · ⊕ (F⊥ ⊗ · · · ⊗ F⊥)| ↓ F⊥

• The sequents are denoted Γ � Δ where Δ is a multiset of formulae and Γ contains
at most a formula.

Rules

• There are some axioms (logical and non logical axioms):

P � P � 1 �↓ T, Δ
†

� Δ

where P is a propositionnal variable ; 1 and T are the usual linear constants (re-
spectively positive and negative).

• The ”logical” rules are the following ones :

Negative rule

� A11, . . . , A1n1 , Γ . . . � Ap1, . . . , Apnp , Γ

(A⊥
11 ⊗ · · · ⊗ A⊥

1n1
) ⊕ · · · ⊕ (A⊥

p1 ⊗ · · · ⊗ A⊥
pnp

) � Γ

Positive rule

Ai1 � Γ1 . . . Aini � Γp

� (A⊥
11 ⊗ · · · ⊗ A⊥

1n1
) ⊕ · · · ⊕ (A⊥

p1 ⊗ · · · ⊗ A⊥
pnp

), Γ

where ∪Γk ⊂ Γ and for k, l ∈ {1, . . .p} the Γk ∩ Γl = ∅.

Ludics and Rhetorics 57

Remarks on Shifts

Using the shift is a way to break a block of a given polarity. Separate steps may be
enforced by using the shift operators ↓ and ↑ which change the negative (resp. posi-
tive) polarity into the positive (resp. negative) one. The rules introducing such shifted
formulae are particular cases of the positive and the negative one:

A⊥ � Γ
[+]�↓ A, Γ

� A⊥, Γ
[−]↓ A � Γ

where A is a negative formula.

Example. In a block like A ⊗ B ⊗ C in principle, A, B and C are negative, but if we
don’t want to deal with A, B, C simultaneously, we may change the polarity of B ⊗ C
(which is positive) and make it negative by means of ↑. We write then A⊗ ↑ (B ⊗ C).

Compare the two following partial proofs, where (1) does not use any shifts and (2)
uses one :

instead of (1):
A⊥ � B⊥ � C⊥ �

� A ⊗ B ⊗ C we get (2) :

A⊥ �

B⊥ � C⊥ �
� B ⊗ C

↓ (B ⊗ C)⊥ �
� A⊗ ↑ (B ⊗ C)

Ludics and Web: Another Reading of Standard
Operations

Christophe Fouqueré�

LIPN-UMR7030
Université Paris 13, CNRS

Villetaneuse, France
cf@lipn.univ-paris13.fr

Abstract. The development of the Web lead to new programming languages.
They merely come from well-known sequential languages augmented by specific
libraries dedicated to web usage. They do not seriously take into account inter-
action, that is the most important principle in action. Relevant to the dialogue
paradigm, we show that a web language may be fully designed in this spirit. We
explain in which extent interaction is a central concept in web analysis. For that
purpose, we use ludics as a logical framework. Ludics was developed by J.-Y.
Girard as a semantics able to rebuild the logics from the notion of interaction. We
present then a concrete web language whose type system is derived from ludics.

Keywords: web languages, linear logic, interaction.

1 Introduction

Web is (also) a dialog !

The development of the Web lead to new programming languages. However, they merely
come from well-known sequential languages augmented by specific libraries dedicated
to web usage (Apache as a portal to CGI, .NET, J2EE, PHP, Ruby on Rails, ...). They do
not seriously take into account interaction, although two principles are the core of web
paradigm: dialogue between server and client, and computation and display of accurate
information. This second element is not characteristic of the web as one finds it also
in standard computation, and particularly data retrieval. Exchanges between server and
client make up clearly a dialogue for which rules have to be integrated to the speci-
fications of a web programming language. The dialogue mechanism has not evolved
so much since the first web site written by Berners-Lee, except for efficiency and
automaticity.

At the beginning of the 90’s, web site programs provided static pages, they are now
dynamic. In other words, pages sent to users are computed at run-time according to
user requests and the current situation. It is commonly the case that pages include data
(texts, music, video) together with hyperlinks. If we abstract from peculiarities, we can
summarize web site pages and usage with the following characteristics. A web page is

� This work is supported by the Marie Curie action n. 29849 Websicola.

Lecomte and S. Tronçon (Eds.): PRELUDE 2010, LNAI 6505, pp. 58–77, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Ludics and Web: Another Reading of Standard Operations 59

nothing else but a set of hyperlinks: data displayed on a user screen give information
and explanations but are not per se relevant to the dialogue mechanism. Hyperlinks are
requests to a server: they are composed with the URL address of the server, probably
with a tag, maybe augmented with data collected from the page. Such data may be
given by the user in case of an application form, it may also be so-called cookies dis-
tinguishing different users of the same web site. Tags allow for indexing actions known
by the server. Put together, a web page is a display of a set of named ‘functions’. The
dialogue between a user and a server consists in alternating requests to the server and
display of a web page. But what means ‘displaying a web page’ ? It is an update request
from the user to the (browser of the) user. User and server interacts back and forth.
It suggests also to the user a finite set of choices among her next potential requests !
However, we all know that requests may be handwritten ... and may lead to error sit-
uations. Interaction goes on only if an agreement exists between choices proposed by
the server and request sent by the user. Interaction stops when the user decides to quit,
i.e. not to follow hyperlinks. A server stop is less understandable by the user: suppose
you buy a train ticket without receiving a confirmation of your action ! Well, it arrives
and we all worry because we cannot know if server stops or other problems occur. In
fact, asynchronicity is an important characteristics of web interaction process. Among
other characteristics, one may cite back and reload operations, and more generally use
of history and page caches. These last operations carry a lot of execution errors due to
multiple accesses to the same URL: double payment or reservation, outdated data, ...
Obviously, reuse without control of URL resources is incorrect in many cases, although
addresses should be distinguished all along the interaction process.

Some elements of web sites specifications ensue from the fact that the user is a hu-
man, hence unpredictable: coherence of the interaction cannot be statically checked.
The situation is different with web services. Web services were developed at the turn
of the century as a software designed to support interoperable machine-to-machine in-
teraction over a network. Characteristics already present in web site programming are
available here except that there is no meed to display set of links: acceptance between
the two processes that interact may be checked before the interaction. Client and server
processes may be typed w.r.t. their behaviour, i.e. sequences of actions and reactions
they support.

We show that a language may be fully designed for web usage in the spirit of the
dialogue paradigm. The core of the language is the interaction mechanism between
server and client. In fact, this specification is not only used over a network but also in the
programming language itself: evaluation of expressions matches interaction. Objects in
the language are typed to allow for a static check. The type system may be viewed as
an extension of Ludics. Ludics was developed by J.-Y. Girard as a semantics able to
rebuild logics from the notion of interaction.

The rest of this article is organized as follows. Section 2 examines peculiarities of
web site usage and presents a few solutions proposed in functional programming. We
develop in section 3 an interpretation of client and server behaviours in terms of Lu-
dics we briefly present. Section 4 is devoted to describe FIXC, a functional language
designed for web usage, developed jointly with P. Coupey and J.-V. Loddo. We end in
Section 5 with comments about web services.

60 C. Fouqueré

2 Web Sites: Which Situation ?

2.1 What Is Behind the Screen ?

The Web usage evolved since the first static web pages developed by Tim Berners-
Lee for the CERN around 1990, that initiated the World Wide Web as we know it
now. The http protocol created for that purpose has not really been modified: a request
is sent to a server containing a page to be uploaded, the server sends back the html
page in case it exists. Behind the screen, the situation is more complex. It involves
now the following procedures: dynamic generation of pages, code distribution between
client and server, multiple requests between client and server to complete the download,
use of the hierarchical structure of a page. A page, as it is viewed by a user, contains
static data and hyperlinks, shortly called links later, organized hierarchically in frames.
The html protocol is responsible for specifying how data should be displayed by the
browser and how requests may be built from available hyperlinks. Data may be of any
kind of media: texts, images, music, videos,1 and so on. Links are nothing else but
(authorized) server requests. They precise the address to be called and values given to
parameters if needed. A request is built from this URL, the operation to be used, e.g.
GET or POST, and a body containing data (date, character encoding, and other pieces of
information). Parameter values of the request may be partially or totally hidden to the
user when viewing the request. With a GET form, parameters are sent as part of the URL

as in http://www.optima.fr/proust/type_list.php?type=notebook where
notebook is the value of parameter type. With a POST request, parameter values are
included in the body of the request, hence are no more immediately visible to the user.
In the following, we do not care about these technical differences.

Even if static pages still exist, a large majority of pages are now dynamically gener-
ated either by the server or the client. Web sites are now programmed in html-embedded
languages, e.g. php, asp, jsp, or in general-purposes language, e.g. Perl, Java, or any
other standard programming languages where data are transmitted and received by
means of the CGI protocol (Common Gateway Interface). Servlets, applets, or other
technologies, as well as dedicated libraries or environments (.NET, J2EE, ...), help the
programmer in developping her web sites. Note that some programming languages are
interpreters and almost all web sites are conceived without any possible analysis of html
and/or xhtml data that may be generated. Code able to answer requests may be down-
loaded in an initial request from the server to the client browser, just to speed up the
computation. This is the case, for example, with JavaScript. The dynamic generation
consists in constructing the data to be included in the page together with links the server
can answer to (as we hope if the page is coherent with respect to what the server is able
to do). It may involve from the server requests to other servers.

Generated pages are hierarchically structured into frames. The reason is twofold.
First, structuring the page eases its development by increasing its modularity and
reusability. Second, transferring data from the server to the client may become slow
as data volume increases (e.g. with video), even though requests from the user con-
cern only small changes in the initial page. For example, Ajax mechanism uses frame

1 Even though sounds and videos seem to be dynamic for the user: we abstract from the compu-
tation their listening or viewing requires.

http://www.optima.fr/proust/type_list.php?type=notebook

Ludics and Web: Another Reading of Standard Operations 61

replacement instead of whole page download and relies on a tree specification of the
page. It supposes the possibility to index each frame as a path in the tree.

Without any significant changes since the beginning of the World Wide Web, the
http protocol that supports the infrastructure of web interaction is stateless, i.e. ex-
changes between server and client are not correlated. However web is typically used
as a sequence of interactions between a user and a server: the user sends a request,
the server computes a response following the html protocol, that may include links, the
user clicks on one of these links sending a new request, and the process goes on until
the user has her answer, grows tired of browsing or there is no more available links.
The server being called by an indefinite number of users has to add a piece of informa-
tion in order to distinguish this dialogue from others pending interactions. This piece
of information allows the server to recover the context and the history (maybe stored in
databases on the server side). Such a piece of information is standardly written as a ses-
sion identifier systematically put in the request, or as a cookie stored on the client side
if information should be kept through different sessions of the same user. Remark that
situation is worse in most programming implementations: for efficiency purposes, the
server launches a new thread (with an a priori fresh environment) each time it receives
a request, the thread dies whenever the answer is sent back, whence throwing away the
state of the environment. On the opposite, the execution of standard programs, say your
favorite software, behaves differently: a thread is also started with a fresh environment
and do not quit before the end of the computation (that may include reads and writes).
What is at stake there ? ‘Addresses’ of computation. In fact, a run of a software goes
through various stages characterized by an ‘address’ given as the memory address of
the next instruction to be executed in the program and the content of the heap (not to
speak of the memory itself). Such addresses are still available during reads and writes
but not as soon as the thread dies. Cookies and session identifiers are nothing else but a
way to restore an environment and the current address of execution in that environment.
In the following, we shall see that address usage is a key ingredient of Ludics. Con-
cretely, the programming language we present in Section 4 keeps closures and objects
created during interactions in the current environment, the addresses of which are part
of URL calls. State restoration is a particularly difficult task when user ‘plays’ with the
history of her navigation. In fact, from the beginning of web site creation, back, reload,
refresh and cloning operations are available in menus of browsers or as specific links
present in pages. Cloning allows to duplicate the current page (in a new window or tab)
possibly without any request to the server. This may confuse the server as the cookie
and the session identifier may come with the same values from two different windows,
although the session should have been split as soon as cloning occurs. The reload op-
eration sends the last executed request to the server and displays its result, contrarily
to a refresh operation that only prints again what was already printed without any fur-
ther request (except explicitly mentioned). The back operation sends the penultimate
request. Finally, remark care has to be taken in case of reservation, payment, ... as rep-
etition of requests may induce multiple results. However, this is a tedious task for the
programmer as recovering of environments may be done as many times as desired: a
resource-conscious model may be more accurate. All these operations are problematic
as their semantics is not fully part of the current models of the web languages.

62 C. Fouqueré

2.2 Drawbacks of Current Programming Environments

Three other peculiarities have to be mentioned: asynchronicity, run-time error manage-
ment and correctness of dynamic generation of an html result. Contrarily to standard
programming, where an expression, e.g. a function call, is evaluated as soon as its value
is requested, a user request may be indefinitely delayed because of network overload,
data losses or other problems. Such asynchronicity is not fairly taken into account and
the only method in use concerns a time threshold ‘wired’ at the operational level that
raises some sort of exception. Managing run-time errors poses two different kinds of
problems. Remember that types finitely abstract data structures and functions. In quite
all programming languages, a type checker controls statically if possible the validity
of function calls. This is particularly true with fully-typed functional languages, hence
free from execution errors. In the case of web, data are transferred as character strings
without any distinction even between basic types. Typing is then more difficult to test
and should be done largely by means of a dynamic checker. The second kind of problem
is more relevant to web services than web sites. It concerns the following of the inter-
action: the result of a request is another set of possible requests, and so on. Checking
types is no more reduced to the first interaction but to the full dialogue until one of the
two client or server stops the exchange. This means that types associated to web links
should be tree-like structures of actions instead of just one operation resulting generally
in a basic data type.2 This is particularly true with web services. When dealing with
web services, server and client are programs and it is essential that interaction goes on
without errors. In the community of web services, a contract is a service description
document that characterizes an expected interaction. Server and client must adhere col-
lectively to a shared communication agreement. There does not exist currently a general
standard language for that purpose, even if a well-defined type language may really be
the good solution. Finally, the last particularity of web concerns the correctness of an
html page dynamically generated. html documents are part of so-called semi-structured
data: their content may vary accordingly to schemas. Schemas are specifications that
include optional elements, repetitions, and so on. Because of that, their typing is in-
trinsically more difficult than with usual data structures. If this was not enough, most
programming languages used in web design, in order to favor modularity, accept that
functions or procedures generate strings, untypable as html data, hoping that the final
result sent to the user conforms to some schema. As this is clearly outside the scope
of this paper, we do not develop this point. Although this is taken into account in the
concrete language FICX presented later.

Let us summarize in other words characteristics of web sites sketched above. A client
interacts with a server by requesting maybe part of a tree of html data. To prevent the
user from trying blindly allowed continuations, the server presents them before via the
browser to the user as a set of available links. Data surrounding these links give “expla-
nations" on their usage, or just final information ending the dialogue between the server
and the client. Each request is a call with arguments sent with the request or retrieved by
subsequent server calls. Particular operations are available to travel through the history
of the interaction. However these operations are frequently sources of problems as they

2 Obviously, a result may be a function in functional languages, or pointers to functions in
imperative languages.

Ludics and Web: Another Reading of Standard Operations 63

may induce cycle behaviours. Finally, types to be used have to include an abstraction of
the full process. Taking care of the necessity of a full type checking leads to consider a
functional language as the underlying programming paradigm. The fact that web inter-
action behaves as an alternance of question and answer motivates the use of Ludics as
a type language.

2.3 Concepts in Use in Related Works Coming from the Functional Paradigm

If we abstract from technologies put forward, a few concepts emerge in the functional
programming community to cope with web particularities. Continuations and monads
are the most important ones. Queinnec [8, 9] was the first that motivated the contin-
uation principle as an essential feature able to give an operational semantics to web
traits such as back and reload operations. Developing a CD-ROM to be used by stu-
dents, Queinnec noticed that “the use of a browser to compute over the web naturally
requires the language, in which computations are expressed, to support continuations
and concurrency" [8]. Continuations are used in the following way: whenever a page
is shown to the user via a browser (call to a show function, Fig. 1 on the left), a con-
tinuation is built (call to register-continuation), the name of which is passed
into the content of the web page as part of URLs to be requested. The continuation is
a function containing the code to be executed if the user asked for this link. A request
to the server, e.g. http://my.scheme/resume?contine=k87&exp=4, includes the
continuation name k87 together with parameter values if required (exp=4 in the exam-
ple). It is the server responsability to retrieve the correct function to be called (call to
get-registered-continuation in function server, Fig. 1 on the right).

Thiemann [11, 12] advocated for the use of monads to design a CGI mechanism.
A CGI program is dedicated to parse requests and send html pages back to the client.
Furthermore, each CGI call induces a new thread of computation that ends when answer
is sent. By the way, there is no implicit notion of session inside CGI, where a session
is the sequence of interactions between a specific user and a specific site. As already
mentioned, a standard way consists in logging previous data and operations and use
session identifiers inserted in the URL or cookies in the body of a request to recover
a previous state. Monads [13] may serve that purpose. They are intended to represent
computations, i.e. procedures possibly with data. Thiemann encapsulates in a monad the
current state of the environment together with the function associated to the request. He
uses it also to give a better modularity and control on the construction of html pages.
The implementation proposed by Thiemann imposes the state to be regenerated (by

(define (show page)
(call/cc (lambda (resume)
(let (

(url (register-continuation! resume))
(connection (current-connection))
)

(display (page url) connection)
(close-output-port connection)
(suicide)

))))

(define (server request)
(let* (

(c (get-param request "continue"))
(k (get-registered-continuation c))
)

(if k
(k request)

...)
))

Fig. 1. Example of continuations use in web programming [8]

http://my.scheme/resume?contine=k87&exp=4

64 C. Fouqueré

reexecuting scripts) on each request, but this may be omitted if a closure of the memory
is done instead of logging only data and operations.

In his seminal paper dedicated to Arrows [7] in the context of functional program-
ming, Hughes presented an original way of computing CGI programs for Web pages.
The Arrow concept generalizes the monadic one in such a way that a program may be
viewed as a plug of functions taking one or several inputs and outputs. Such functions
are lifted to arrows objects and combined by means of specific operators. The following
code examplifies these aspects:

arr (λz → "What is your question?") >>> ask
>>> (arr id &&& ask)
>>> arr(λ(q,a) → "The answer to \"" . q . "\" is " . a)

The arrow function arr transforms a function into a computation, i.e. an object to
be combined with other arrows. The operation >>> composes two arrow computations
(hence as if a function name followed an argument) while &&& builds a pair from the
results of two arrows. ask sends its argument (written before ask in the code) to a
client while the answer is the result of the call. The previous code sends the sentence
"What is your question?" to the user whose answer is supposed to be a ques-
tion sent back as is (second call to ask). If we suppose the question from the user is
“How old are you ?" and the user’s response to this question is “40", these two el-
ements are passed as the two arguments of the last unnamed function that sends back
to the client the sentence “The answer to "How old are you ?" is 40". The
shift from monads to arrows allows to better limit the elements of the environment that
are necessary for resuming a computation after an ask operation. Moreover, even if a
monad is generic and simple to use, the overall structure of a program using monads
remains a directed acyclic graph of computations. Arrows usage frees the programmer
from this constraint and allows for a more efficient program execution.

Using monads or arrows eases the programmer task by providing the necessary tools
for high-level and modular code development. However these models do not integrate
a full and coherent semantics for back and reload operations.

Monads or arrows as well as continuations give concrete ways to implement web
sites inside a functional language. It ensures that a strict typing of web programs is
possible, even if interaction between a user and a server has to be dynamically type
checked. Moreover, a verification may be done between hyperlinks provided in a page
and continuations, monad or arrow evaluations available in the server side: at least, the
server should answer to the links it offers ! However these models do not fully integrate
the dialogue itself as a fundamental process. Using dialogue as the core mechanism, its
extension to web services should be made easier. The language we propose in Section 4
has as peculiarities:

– a functional language as a basis programming paradigm to ensure type checking at
a low level,

– a reaction model, that may be implemented by means of continuations, monads or
arrows, to take into account asynchronicity,

– a fully-typed programming language able to check sessions and not local interac-
tions,

– a modular system close to the frame model in use by web designers.

Ludics and Web: Another Reading of Standard Operations 65

3 Web and Ludics

This section is devoted to an interpretation of web dialogue in terms of Ludics. We
first present briefly Ludics and two of its principal ingredients, designs and behaviours.
We recall the definition of a cut between two designs. We show then in which extent
designs may model user and server processes whereas web interaction is nothing else
but a cut reduction. In particular, we recover concepts mentioned in the previous sec-
tion and specifically the importance of the notion of address. Later on, we use Terui’s
works [10] to reformulate Ludics in such a way that it corresponds closely to the type
system involved in our programming language (excepted modular aspects and other
technicalities).

3.1 Interaction in Ludics

J.-Y. Girard defines Ludics [5, 6] as a pre-logical framework upon which (linear) logic is
(re)built. Linear Logic (LL,[4]), also defined by J.-Y. Girard, is deduced from a decom-
position of classical implication: A → B =!A� B meaning that a resource A has to be
reusable (so the ! modality) for being an argument to a function using each resource lin-
early (so the change of implication from classical → to linear�), the function produc-
ing a resource B. This change of viewpoint allows for a nice semantics for logical proofs
and new ways of presenting proofs. By the way, classical ‘and’ and ‘or’ connectives are
each decomposed into multiplicative (⊗ ‘and’ and� ‘or’) and additive (& ‘and’ and ⊕
‘or’) versions together with specific exponential modalities to treat reusability. Notice
that it gives also a profound insight on duality by extending intuitionnistic logic. Lu-
dics is an attempt to reconstruct Linear Logic (but without its exponential part) from the
viewpoint of duality: (i) the meaning of a formula is a set of structures called designs,
(ii) a notion of duality between designs induces duality between formulas, and (iii) the
space of formulas is fully describable in terms of multiplicative and additive connectives
over formulas. The key ingredient to specify what kind of structure should be given to
designs comes from Andreoli’s works on focalization w.r.t. logical programming [1]:
a proof can be organized in such a way that decomposition of clustered deterministic
(say negative) and non-deterministic (say positive) connectives in a formula alternate.
Furthermore, although every negative formulas3 may be concurrently and immediately
decomposed, one positive formula may be chosen when a positive step occurs. Such a
positive formula is called a focus. Following focalization, we can consider that sequents
has at most one negative formula. A decomposition step, i.e. a bottom-up application
of a rule in a sequent calculus, consists in

– either choosing a positive formula to be decomposed, to give raise to a set of (neg-
ative) subformulas, hence a set of sequents (one for each negative formula),

– or decomposing the negative formula to give raise to a set of sets of (positive)
subformulas, hence a set of sequents (one for each set of positive subformulas).

Designs may be viewed as abstracting concrete and focalized proofs, and taking into
account infinity and failures. With that in mind, one throws away (at that moment)

3 A negative formula has a negative connective as the main one.

66 C. Fouqueré

the notion of formula to only keep the one of locus, or address: a subaddress specifies a
subformula when an address denotes a formula. The subaddress of an address is nothing
else but the address completed by some index, e.g. an integer, called a bias.

Definition 1. An action abstracts from a decomposition step (part of for the treatment
of the & connective). It is polarized and is either a focus, i.e. an address, together with
a finite set of biases called ramification, or a daimon (necessarily positive) noted�. A
chronicle has as base a set of addresses noted Υ � Λ, where Υ is either empty (positive
base) or a unique address (negative base), Λ is a finite set of addresses. A chronicle is
given as a sequence of actions with distinct focuses:

– alternating positive and negative actions, when the first one should be negative
when the base is negative,

– justified: if present, a daimon should end the chronicle. A focus should be an ad-
dress built by one of the previous actions (w.r.t. the sequence) or present in the base.
The focus of a negative action should be either in the base (and the action is the
first in the sequence) or generated by the action just before in the sequence.

A design on a basis Υ � Γ is a set of chronicles such that

– the set is prefix closed, with branches on positive actions,
– a splitting property is satisfied: having negative actions just after a branching with

distinct foci imposes distinct foci in the rest of the sequence of actions,
– branches in the arborescence end with a positive action,
– the set is non-empty in case the base is positive.

In the following, designs are presented as arborescences (see Fig. 2).
Interaction, i.e. cut elimination (see Fig. 3), is defined between particular nets of

designs [5]. First of all, addresses in bases should be distinct or present once in a left
part of a base and once in a right part of another base, hence define a cut. The net of
designs should be acyclic and connex w.r.t. the graph of bases and cuts. Therefore, one
main design is distinguished either because it has a left part not part of a cut or it has no
left part:

...

�
�
�

�
�ccc

��� � c
�

...

�

�
�

�
	a� � b�a� � b�a� � b� , a, b . . .

a � ba � ba � b � a� � b�
�a, b�

� c, a� � b�,

�
�

�
	�� �a � b�� � �a � b�� � �a � b�

��a � b�,��

c � �a� � b��c � �a� � b��c � �a� � b�� � � � �a � b�
�c, a� � b��

σ �0, 1�

τ �0, 1�

τ.1 �0, 1�

σ.1 . . .

...

τ.0�

σ.0

c � �a� � b�� � �a � b� � �

In the proof on the left, focuses are in bold font, rules are given w.r.t. the decomposition of the focus. Addresses replace
formulas in the design given in figure on the right where the base is mentioned below. Addresses and formulas are circled
whenever positive. Note that negative formulas are put on the left of the thesis sign (even they behave as if they were put on
the right) to emphasize the fact that there cannot be more than one negative formula.

Fig. 2. From a (Linear Logic) proof to a (Ludics) design

Ludics and Web: Another Reading of Standard Operations 67

Definition 2. Let D be the main design of a net of designs π, with first action (σ, I) or
daimon,

– If the action is a daimon, the result is the design reduced to the daimon.
– If the focus of D is not part of a cut, the result is obtained by applying this rule to

the result of interaction to subdesigns (commutation step).
– Otherwise D has no left part and its focus σ is part of a cut with another design

with last rule (σ,N) (aggregating ramifications of actions on the same focus σ):
• If I �∈ N , then interaction fails.
• Otherwise, interaction follows with the connected part of subdesigns obtained

applying the part I of N .

Following this definition, either interaction fails, or it does not end (π ⇑), or it results
in a design that reduces to � when the net is closed (i.e. no commutation steps occur
during the interaction). Two designs are orthogonal when their interaction reduces ex-
actly to �. Finally behaviours denote formulas, where a behaviour is a set of designs
equal to its biorthogonal. Referring to the Curry-Howard isomorphism, behaviours may
be used as types for web processes.

α

β

β.2

γ

β.1

α.0

β

σ

σ.2

τ

σ.1

β.2

��

α

σ

σ.2

τ

σ.1

γ

The figure presents a cut elimination between two designs (on the left), and its result (on the right). Commutations steps are
marked as dashed arrows whereas other steps are plain lines. For sake of clarity, we omit ramifications beside nodes.

Fig. 3. Cut elimination between two designs

3.2 Interaction and Web Site

Our motto may be: A web site or web service is an alternating of actions/reactions
between two tree-like structures modelling client and server sequences of operations.
The following table summarizes the correspondances we put forward between Ludics
objects, proof theory and web programming:

Ludics: from designs to behaviours w.r.t. interaction
Proof theory: to proofs from formulas w.r.t. rules
Web programming: from sequences of operations to contracts w.r.t. requests

The model of web sites is not equivalent to web services where the client is a program
as the server is. Agreeing the contract terms between a web service and a client means

68 C. Fouqueré

the computation, say the interaction, between the client and the server goes without
execution errors. Obviously, one can abstract requests and arguments as function calls
giving to them types as usual. Having in mind the fact that the process should continue
(and not reduces to the computation of some result), one can type server and client with
sequences alternating between requesting a call and proposing a set of available con-
tinuations. These types may be computed in advance, hence the compliance between
a server and a client may be checked by simulating the interaction between server and
client types, i.e. reducing the cut in terms of Ludics: either it fails and the interaction
cannot take place, or the computation can begin (divergence cannot occur as types are
supposed to be finite). Going back to web sites, a dynamic type checking should be
done as nothing prevents the user from writing its own URL request to the server. Even
though, requests afforded by the server are presented to the user for her to choose one
following among what is presented: a web page is nothing else but available continua-
tions, maybe embellished by html (static) data.

In the following, site addresses are our Ludics loci whereas requests are interaction
calls. Site addresses are noted u, v, w, . . . on the server side and a, b, c, . . . on the user
side. The syntax of requests is identical for server and user: β@v#c where β is a tag

a

b

c

d

e

�user stop

ϑ

δ

user choice

(restricted

by web site)

ϑ

β

ϑ

u

v

w

x

y

z

ϑ

. . .

ϑ

δ

ϑ

x

. . .

δ�

ϑ

. . .

ϑ

x

�

ε

ϑ

β

ϑ

. . .

ϑ

. . .

a layout

β@v#c

ϑ@c#x

page update

δ@x#e

user request

ϑ@e#z

User Server

Fig. 4. A simple Web site dialogue between a user and a server

Ludics and Web: Another Reading of Standard Operations 69

(a request name, i.e. a sub-locus index), v is the address of the receiver of the request,
and c is the address waiting for the result. Requests may also contain a body, viewed
as parameter values.4 Expliciting addresses c and v in the request is necessary to cope
with the distributed situation. In fact, memory spaces being distinct, duality between ad-
dresses (say equality except polarity in terms of Ludics) has to be made explicit: sending
a request β@v#c contains information that address c is the sub-address obtained after
using tag β, hence equivalent to sub-address β of v. In web sites, the situation being
asymmetric between client and server, concrete requests are particular:

– Sent by the server, the only tag at disposal to build a request is ϑ that requires the
user browser to update the user display by data contained in the body of the request
(but see below for other possibilities). Such a body contains tags at disposal for the
next user request, i.e. links in the page to be displayed.

– Sent by the user, the tag used in the request corresponds to the user choice, i.e. her
strategy w.r.t. this dialogue. Obviously, it is preferable that this tag be in the set
of tags previously given by the server, but nothing prevents the user from another
choice.

In terms of Ludics, actions defining user and server designs may then be completely
specified:

– (user side) a positive action is either a daimon or a focus together with the link
‘chosen’ by the user as (part of) ramification. The ramification may not be a sin-
gleton in case values have to be sent to the user. Negative actions have all {ϑ} as
ramification if update is the only action allowed by the browser to the server.

– (server side) Daimon is used to model a wrong page request. Otherwise the ram-
ification of a positive action contains ϑ (call for an update of the browser). In
such a design, negative actions occurring after some positive action have all the
same focus (when the ramification of a positive action is a singleton). They form a
sum of ramifications, each a singleton if complementary values are not requested,
and as such define the layout of the page to be displayed by the user browser
(with texts, ...).

A graphical example of typical interaction between a user and a web site is given
Fig. 4. Let us begin when request ϑ@c#x is sent. This is an answer of the server inter-
preted as an update request toward the browser of the user. c is the state of the browser
waiting for this update and d is its state after this update. The layout is concretely passed
as a value and exposed to the user by the browser. It contains requests available from
the server and presented as hyperlinks. An action at a positive user node may be either
a daimon or with a ramification leading to negative nodes. The daimon is the situation
occurring after negative node e: the user quits the dialogue. The other case occurs at
nodes b and d in the user design. One can distinguish two main situations: (i) The user
chooses a link accepted by the server (say δ at stage d); if coherence is checked between
links present in the layout and server functionalities available at that moment, the link
is in the layout. Interaction proceeds: a result is built by the server and sent next to the
user. (ii) The user constructs a request that does not correspond to server possibilities.

4 Parameter values may also be retrieved by means of additional requests, cf. subsection 3.3.

70 C. Fouqueré

Then the interaction fails if that tag is not present on the server side, or the dialogue
stops if the server anticipated wrong user requests and prepared a specific end (see the
daimon following tag ε after negative server node x). In the two cases, arguments may
be sent (cf. GET and POST html operations) or put at disposal for the server (as cookies
memorized on the user side): in this last case, the ramification is no more a singleton
and values should be retrieved by the server later during the interaction by additional
requests.

An update request is in fact not the only kind of request the server may send: the
browser may be asked to refresh the display, to open a new window or a new tab in
the browser, ... For these cases to be taken into account, on the user side after some
positive node, several negative nodes may be given with the same focus and distinct
ramifications: each such node answers a server request interpreted by the browser.

Back, reload, and in general usage of a browser history, correspond to the following
situations: the user being at a positive node (say s) sends a request already used (say
β@v#e for a reload). In web situations, a page update follows and the user may con-
tinue with the link already chosen in the past or another link (or stop of course). Such a
reuse of old addresses is not linear and thus impossible as such in the Ludics paradigm.
The only safe possibility (w.r.t. linear interaction) is to consider that the current interac-
tion is suspended, a new one is launched with the same steps as the previous one. In that
case, a renaming of addresses occurs to guarantee old and new server and client designs
differ.5 Note that renaming of addresses is a safe operation on designs [10]. Remark
finally that it corresponds to the functional implementations we discussed in Section 2.
It is also a basic ingredient of our FICX language. Session identifiers serve also to im-
plement such a renaming (they are included in the request) when the browser generates
a fresh one. However most of current implementations rely on cookies or session iden-
tifiers that do not allow the renaming to guarantee the correctness of interaction.

3.3 From Ludics Model to FICX Programming Language

K. Terui proposed in [10] a reformulation of Ludics more suitable from a computational
point of view. c-designs are built as Girard’s designs except that (i) variables may occur
as generic addresses (possibly in an infinite number), (ii) positive nodes may be ex-
plicit internal cuts or serve to model divergence of interaction, (iii) c-designs may not
be linear. The syntax of c-designs is such that they may be more easily used for pro-
gramming purposes, and a grammar allows for a finite specification of them by means
of generators. K. Terui uses this model for characterizing word languages where the
acceptance relation between a word and a grammar is expressed w.r.t. orthogonality be-
tween c-designs. c-designs is the core of the type language given for Xobjects in the next
section. Xobjects should be interpreted as the computational object able to answer user
requests, hence has as type a negative (server) node in terms of designs. Besides this
aspect, Xobjects include also xml or html data to be published in a browser, and they
are parameterized in such a way that modular programming and frame programming
are facilitated.

5 In fact, one may keep the same addresses until the requested address.

Ludics and Web: Another Reading of Standard Operations 71

Definition 3. Let T be a set of names (α, β, γ, . . . , denoting page tags) and a function
ar giving for each tag name in T an integer, let V be a set of variables (x, y, . . .).
Addresses are denoted as before a, b, . . . , u, v, . . . and are used as references for posi-
tive and negative c-designs. The sets of positive and negative c-designs are inductively
defined by:

P ::� � daemon

� Ω divergence

� N0 � γ �
��
Nγ � internal cut if N0 is not a variable

N ::� x variable

�
�

γ���xγ�#Pγ sum of functionalities (e.g. links or browser capabilities)

afforded at some stage possibly with required arguments

In the previous definition,
−→
Nγ (resp.−→xγ) is a finite sequence N1, . . . , Nn (resp. x1, . . .xn)

such that ar(γ) = n. Finally, the sum is over a set of tag names. If we go back to example
given Fig. 4, the web server may be defined in the following way (‘[’ and ‘]’ surround
terms, node names as mentioned in Fig. 4are given as upperscript to ‘[’ such that [ublabla]
means that u is a pointer referring to term blabla, u is passed from/to server and client
instead of its content):

[u x | ϑ < [v β()#[w y | ϑ < [x δ()#[y z | ϑ < [z . . .] >]
+δ′()# . . .
+ . . .
+ε()#�] >]] >]

Interaction between a negative c-design
∑

γ(−→xγ)#Pγ and a positive c-design x | δ <−→
Nδ > is equivalent to computing the reduction of thepositivec-design

∑
γ(−→xγ)#Pγ |δ <−→

Nδ >:

Definition 4. The reduction rule is given by (i ∈ [1, ar(γ)]):
∑

γ(−→xγ)#Pγ | γ <
−→
Nγ > −→ Pγ [Ni/xi]

Normalization succeeds (i.e. interaction succeeds) if P −→∗ Q and Q is neither a cut
nor Ω, where −→∗ is the transitive closure of −→.

Design generators are defined by Terui [10] to allow recursive c-designs definitions.
Fresh addresses are created each time a definition is used. This is close to the way
variables are used during resolution in logic programming. Hence a design generator
is nothing else but a definition of a c-design, maybe referring other design generators.
This is particularly useful in concrete (web sites) situations where links may lead to
previously defined pages (however not with the same address when interaction goes
on). We do not develop their formal aspects even if their use is essential when designing
a concrete programming language. Note that this appears as a convenient way to deal
with (maybe infinite) designs but essential logical properties remain.

72 C. Fouqueré

Program
P ::= ε empty program

| S P | d P Xstructure or definition followed by a program
Xstructure
S ::= xstruc d begin w = e where d is a definition, w an identifier, e an expression
Xobject
e ::= xobject〈Y1, . . . ,Yn〉 Xobject definition with abstract paths parameters

e � sr Xdata � reactions
xend

| e1[Y 	→e2] parameter assignment
| τ(e2)@e1 request evaluation
| Y Abstract path name Y

Reactions
sr ::= ε r ::= τp(p)⇒e reaction conditioned by trigger and parameter patterns

| r sr
Triggers
τ ::= Y .C abstract path followed by a tag

Fig. 5. Grammar of FICX

4 FICX: A Web Functional Langage

The language FICX, Functional Interactive and Compositional XML, is devoted to Web
programming [3]. It is the result of a joint work with P. Coupey and J.-V. Loddo, done
independently from Ludics. However, the type system of FICX fits well into a Ludics
interpretation of interaction. FICX uses a functional programming language, currently
OCaml, as a core language for functions, definitions, ... This core is extended by means
of an Xobject data structure that integrates an extended XML structure called Xdata to
publish data and hyperlinks, and a functional part called reaction intended to answer
requests built from hyperlinks. Moreover Xobjects may be parameterized by abstract
paths defined below. Finally, an Xstructure is a specific top-level definition for spec-
ifying interactive data and functionalities to be used by clients. The grammar of the
language FICX, specific to our aim, is given in Fig. 5. We use the following notations: e
is an expression and p is a pattern, a, A, C, x, y are identifiers, τ is a trigger6, Y , Z are
abstract paths, finally r states for a reaction. Abstract paths are defined according to the
following grammar, where y is an identifier, parent, root and self are keywords:
Y ::= parent | root | self | y | Y.Y Let us define the following rewriting: y.parent
→ ε , Y.root→ root , Y.self→ self , it gives rise on abstract paths (and abstract
path patterns or path types in the same way) to two kinds of normal forms: root.Y
and self.Y with self and root not in Y. The intended meaning is that a set of such
abstract paths should partially define two rooted trees, one with abstract root root and
another ‘centered’ on self where self.parent. . . .parent should represent a path
‘up’ to some concrete root. Abusively, self may be omitted in the following from
abstract paths writings.

An Xobject is structured in two parts: an Xdata structure together with reactions,
and is parameterized by means of abstract paths. Parameterization is a convenient way
to refer to yet unknown Xobjects while parameter assignment merges partial trees of

6 A trigger is a tag name maybe preceded by an abstract path.

Ludics and Web: Another Reading of Standard Operations 73

xstruc
link = xobject <root.H1> (x:string)

root.H1.T<a>[x]
� xend;

message = xobject <> (msg:string)
<h1 align="center">[msg]

� xend;
phandler = xobject <M1> (k:int)

M1 <p>["Visits for this session (cs): " k]
�

T(<a>[x]) ⇒ (let y=(if (x = "Hello") then "Salut" else "Hello") in
(phandler (k + 1))[M1 �→(message y)])

xend;
home = xobject <L1, L2, H1>

<html>[<head>[<title>["Welcome"]] <body>[H1
 L1
 L2]]
� xend;

m1 = (message "Hello");
h1 = (phandler 0)[M1 �→ m1];
l1 = (link "Increment cs and reload with Hello");
l2 = (link "Increment cs and reload with Salut");
o = home[L1 �→ l1][L2 �→ l2][H1 �→ h1];

begin website = o

Fig. 6. An example of a website definition in FICX

components. Abstract paths that are used in an Xobject body are declared in the header:
in Fig. 6, Xobject home expects three subcomponents L1,L2,H1. Note the reference to
root.H1 in the definition of link: this Xobject is expected to be in a tree whose Xobject
root has at least a subcomponent for label H1. website is declared as an entry point. The
tree of components is rooted at o, that has two links l1 and l2 and one phandler h1 as
subcomponents, h1 having a child m1. Two triggers are declared, posted in l1 and l2,
authorizing interactive requests of the form H1.T(x)@website.

The operational semantics corresponding to an Xobject declaration is straightfor-
wardly a closure (as for functions) and assignment of abstract path parameters is similar
to the standard treatment of handlers in functional programming. The language for the
Xdata part extends XML: an abstract path may be used in place of an XML node and
each node in an XML structure may be labelled by a trigger τ . A trigger τ has the gen-
eral form Y .C where C is an interaction tag (tag for short) and the abstract path Y is
the path to the abstract last possible receiver. Setting down a trigger means that a func-
tionality should be available, as a GET in HTML or the description of a service. In case
of Xstructures, a built-in function get_Xdata is available that extracts the Xdatum to
build a (standard) XML structure that can be sent interactively. When encountering an
abstract path in place of an XML node, the function is recursively called on the value
at the abstract path. In case of a trigger, a request is prepared that includes the address
of the value of root (called the initial concrete receiver), the abstract path from it to
the last possible receiver, the interaction tag and an XML structure (the parameter of
the request). Note that the abstract path to the last possible receiver is now given from
root, then may be different from the abstract path set up in the Xdata. Such an inter-
active request is at first received (and executed) by the initial concrete receiver. In fact
a request is a first-class citizen that has the general form τ (e2)@e1: e1 is the concrete
receiver of the request, τ (e2) gives the trigger and the parameter value for the request.

74 C. Fouqueré

The operational semantics of a request may be given informally in the following way:
if the concrete receiver has an adequate reaction (the reaction matches trigger and pa-
rameter of the request), the reaction is evaluated ; otherwise the request is delegated
following the path to the last possible receiver until some Xobject has an adequate reac-
tion. It is the type system that is responsible for checking that there cannot be run-time
errors. Note that an Xobject value is rebuilt when a delegation occurs. Going back to
Fig. 6, a tag T is set down in the Xdata part of link: root.H1.T<a>[x] states that the tag
T is an anchor. Requests available in this case may be for example T("Hello")@h1 or
H1.T("Hello")@website. This last request is the only one that can be used interactively.
As website has no appropriate reaction, the request is delegated to h1, value of H1 as it is
given in website. The reaction part of this phandler contains a reaction that is fired with
result the Xobject (phandler 1)[M1 �→(message "Salut")]. The final value sent back to the
requester is home[L1�→l1][L2 �→l2][H1 �→(phandler 1)[M1�→(message "Salut")]].

The type system associated is closely related to what has been set up in previous
sections (see Fig. 7). An Xobject type consists of a type for its Xdata part together with
a type for its reactions. The type for its set of reactions is a sum over the available reac-
tions that should be declared as hyperlinks in the Xdata part. Each reaction is indexed
by a tag and may require arguments. The result of a reaction is an Xobject. Requests
inside the programming language are typed as internal cuts. The only extension done to
the language of c-designs concerns the need to type the tree-like structure of Xobjects.
The complete type system may be found in [3]. It is not too difficult to prove a safety
theorem stating that well-typed expressions are evaluable, i.e. there cannot be evalua-
tion errors (provided for the functional language part an operational semantics safe with
respect to a standard typing):

Xdata
ts ::= [τ]<a lt>[rt] Xdata tree

| Y abstract path type name
Xobjects
to ::= TT | Y an Xobject is an abstract tree or a path type

where an abstract tree is a function
from paths to TTnode values

vn ::= ts � ρ type of a TTnode value
ρ ::= ε reactions are a sequence of Xobject types

| τp1 → ts
p1 [→ to

1]; . . . ;τpn → ts
pn [→ to

n] for a pattern type for trigger type

Fig. 7. Type language of FICX (except XML and functional type language)

Theorem 1. Let e be an expression of the language, if � e : t is provable, i.e. the
expression is typable, then there exist a value v and a handler environment H′ such that
� e ⇓ v,H′ is provable, i.e. the expression may be evaluated without errors.

5 Towards Web Services

Web Services have been largely developed since the first examples programmed in 1997
with the framework Jini. It was originally designed to overcome problems due to secu-
rity and code mobility in distributed situations. A web service is currently given as

Ludics and Web: Another Reading of Standard Operations 75

a name, i.e. a URL address, a program, a contract, maybe with a list of semantic at-
tributes. Semantic attributes are intended to abstract from concrete names in favor of a
characterization of the kind of service that is provided, e.g. ‘train timetable’, ‘notebook
furnisher’, ... On the contrary, a contract specifies the model of interaction the web ser-
vice can have with a client. A client of a web service is given as a program together
with a co-contract, that is a model of interaction in the point of view of such a client.

The operational steps may be summarized as follows: (i) The server providing the
web service publishes its name, contract and possibly the list of attributes to a dedi-
cated publisher server. (ii) When a client program searches for a specific web service,
it sends a request to the publisher server to retrieve the list of web services satisfy-
ing a given name or a given list of attributes. In particular, it gets a list of contracts.
(iii) The client checks the compatibility between contracts and its own co-contract, and
chooses a web service satisfying its requirements. (iv) Interaction begins between the
client and the selected web service until the end. We do not develop steps (i) and (ii) in
this paper and only turn our attention towards the content of contract and co-contract.
Contract and co-contract differ in that it is the client responsability to begin and quit
a conversation. Having that in mind, we can forget about these differences and only
speak of contracts as soon as a language for contracts integrates the two point of views.
Even if contracts and co-contracts are concretely abstract descriptions of programs, we
should remark that the semantics of current standards is far from being completely for-
mal. Various contract description languages exist, WSDL, WSCL, BPEL among others.
WSDL, Web Services Description Language, is still widely used even if extremely
limited as the specification of an interaction is limited to the description of a single
exchange between the client and the server: at most one output of values and/or one
input of results. A contract is written as an XML document. Available functionalities
are named operations, each of them precises if it is a one-way or a two-way method (the
pattern gives its semantics). It may include options or treatments of exceptions (called
robustness) as well as argument types. On the contrary, WSCL (Web Service Conver-
sation Language) and BPEL (Business Protocol Evaluation Language) are sufficiently
rich to support abstract description of the full interactive behaviour of a program (case
structures, loops, ...). BPEL focuses on combining web services to better specify their
orchestration. One may find at http://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.html7 examples of BPEL processes. Documents necessary for such
web services include one document for a semantic description, another one for the low-
level protocols to be used, ... and a document describing the process itself. This last
document begins with a definition of types in use in the document, followed by the
names of variables and partners (say the client, the server, ...). Finally a part describes
the behavior of the interaction as a program schema.

Carpineti et al. [2] define a process language devoted to WSDL web services in a
fragment of CCS. Contracts are abstract definitions of such process descriptions. An
example is given Fig. 8. Contracts are either void (end of a computation), or begin with
a named request (e.g. waiting for an input for tag A) or result (e.g. output of the value
of tag A), or are given as choices among different contracts. Choices may be external

7 XML documents are generally verbose. It is worse with web service descriptions so we omit
to include even a simple example in this paper.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

76 C. Fouqueré

Login.(INVALIDLOGIN . END

⊕ VALIDLOGIN . Query . CATALOG .
(

Logout . END
+ Purchase .(ACCEPTED . END

⊕ INVALIDPAYMENT . END

⊕ OUTOFSTOCK . END
)))

Fig. 8. A contract for a simplified web purchase service [2]

(connective +) or internal (connective ⊕). External choice means a partner choice,
whereas internal choice is done locally. Carpineti et al. defines a compliance relation
compatible with the operational semantics of the CCS fragment they use for modelling
web service processes: a contract c is compliant with a contract d if operations with
c are possible with d, whence the same operational compatibility between processes.
Their specification of a web service contract, therefore of a compliance relation, has a
few drawbacks among which the fact that it is not transitive. As authors notice “The
lack of transitivity has a non negligible impact on the use the relation. For instance,
while it is possible to replace a given service with a new service whose subcontract
is greater than the original service’s contract, it is not possible to renew this operation
without taking into account the original contract."

We consider the problem may be overcome by rebuilding a contract language in the
same spirit we do for web sites. In particular, this supposes that polarity has to be strictly
taken into account contrarily to Carpineti et al.’ contract language (see example Fig. 8
where actions of identical polarities follow). The + connective is straightforwardly the
sum as given in subsection 3.3. The use of ⊕ suggests to view a contract as a set of
designs (distinguishing the various interactions w.r.t. local choices). Beginning with
designs, contracts are then biorthogonal of sets of designs, hence transitivity follows as
a general property of behaviours.

This line of research may help defining a fully distributed language built over the
concept of interaction. Moreover, it allows for an identical view of web sites and web
services. One may try also to extend such a point of view to other program-to-program
and program-to-user cases when non textual information is present, e.g. the window
system for computers or even distributed ontologies in Web 2.0. Let us summarize the
benefits of interpreting computations in web site or web service domains as (c-Ludics)
dialogues: (i) the overall framework has nice logical properties, hence it induces safe
and natural type systems, (ii) a large set of combined dialogues/computations may
be modelled giving a clean meaning to distributed computational situations, (iii) be-
haviours are closures of sets of designs and denote formulas, hence induce a safe notion
of contract, (iv) interaction as well as expression calls (internal to the language) are
represented in a coherent way with c-designs as proposed by K. Terui. Nevertheless, it
is clear that the restriction of Ludics to linearity is a limit in some cases: the reusability
of memory objects may well be clearly safe but difficult to grasp without exponentials.

Ludics and Web: Another Reading of Standard Operations 77

References

[1] Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Log. Com-
put. 2, 297–347 (1992)

[2] Carpineti, S., Castagna, G., Laneve, C., Padovani, L.: A formal account of contracts for web
services. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184,
pp. 148–162. Springer, Heidelberg (2006)

[3] Coupey, P., Fouqueré, C., Loddo, J.-V.: Tree components programming: An application
to xml. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp.
139–153. Springer, Heidelberg (2007)

[4] Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
[5] Girard, J.-Y.: Locus solum: From the rules of logic to the logic of rules. Mathematical

Structures in Computer Science 11, 301–506 (2001)
[6] Girard, J.-Y.: Le Point Aveugle: vers l’imperfection. Visions des Sciences 2, Hermann

(2007)
[7] Hughes, J.: Generalising monads to arrows. Sci. Comput. Program. 37, 67–111 (2000)
[8] Queinnec, C.: The influence of browsers on evaluators or, continuations to program web

servers. In: ICFP, pp. 23–33 (2000)
[9] Queinnec, C.: Continuations and web servers. Higher-Order and Symbolic Computation 17,

277–295 (2004)
[10] Terui, K.: Computational ludics. Theoretical Computer Science (2008) (to appear)
[11] Thiemann, P.: Wash/cgi: Server-side web scripting with sessions and typed, compositional

forms. In: Krishnamurthi, S., Ramakrishnan, C.R. (eds.) PADL 2002. LNCS, vol. 2257, pp.
192–208. Springer, Heidelberg (2002)

[12] Thiemann, P.: Wash server pages. In: Hagiya, M., Wadler, P. (eds.) FLOPS 2006. LNCS,
vol. 3945, pp. 277–293. Springer, Heidelberg (2006)

[13] Wadler, P.: Comprehending monads. In: LISP and Functional Programming, pp. 61–78
(1990)

On the Meaning of Focalization

Michele Basaldella1,�, Alexis Saurin2,��, and Kazushige Terui1,�

1 RIMS, Kyoto University
mbasalde@kurims.kyoto-u.ac.jp, terui@kurims.kyoto-u.ac.jp

2 Università degli Studi di Torino
alexis.saurin@pps.jussieu.fr

Abstract. In this paper, we use Girard’s ludics to analyze focalization,
a fundamental property of the proof theory of linear logic. In particular,
we show how focalization can be realized interactively thanks to suitable
section-retraction pairs between semantical types.

1 Introduction

Focalization is a deep outcome of linear logic proof theory, putting to the fore-
ground the role of polarity in logic. It resulted in important advances in various
fields ranging from proof-search (the original motivation for Andreoli’s study [1]
of focalization) and the ability to define hypersequentialized calculi (via synthetic
connectives) [6, 7] to game semantical analyses of logic.

In particular, focalization deeply influenced Girard’s ludics [8] which is a pre-
logical framework which aims to analyze various logical and computational phe-
nomena at a foundational level. For instance, the concluding results of Locus
Solum are a full completeness theorem with respect to focalized multiplicative–
additive linear logic MALL.

Another characteristics of ludics is that types are built from untyped proofs
(called designs). More specifically, types (called behaviours) are sets of designs
closed under a certain closure operation. This view of types as sets of proofs
opens a new possibility to discuss focalization and other properties of proofs at
the level of types.

The purpose of this abstract is to show that ludics is suitable for analyz-
ing focalization and that this interactive analysis of focalization is fruitful. In
particular, our study of focalization in ludics was primarily motivated by the
concluding remarks of the third author’s paper on computational ludics [12]
where focalization on data designs was conjectured to correspond to the tape
compression theorem of Turing machines.

Still, for the very reason that ludics abstracts over focalization (being built on
hypersequentialized calculi) it is not clear whether an analysis of focalization can
(or shall) be pursued in ludics: an obstacle is, however, that ludics is already fully
focalized, so that there seems to be no room to discuss and prove focalization
� Supported by Grant-in-Aid for Scientific Research, JSPS.

�� Supported by a Bourse Lavoisier.

Lecomte and S. Tronçon (Eds.): PRELUDE 2010, LNAI 6505, pp. 78–87, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On the Meaning of Focalization 79

internally. This can be settled by using a dummy shift operator. For instance,
a compound formula L ⊕ (M ⊗ N) of linear logic can be expressed in ludics in
two ways; either as a flat behaviour ⊕ ⊗ (L, M, N) built by a single synthetic
connective ⊕⊗ from three sub–behaviours L, M, N , or as a compound behaviour
L⊕ ↑ (M ⊗ N), which consists of three layers: M ⊗ N (positive), ↑ (M ⊗ N)
(negative), and L⊕ ↑ (M ⊗N) (positive).

Focalization can then be expressed as a mapping from the latter to the former
behaviour. Hence we can deal with it as if it were an algebraic law, which may be
compared with other logical isomorphisms such as associativity, distributivity, etc.
To be precise, however, focalization is not an isomorphism but is an asymmetric
relation. In this paper, we think of it as a retraction L⊕ ↑ (M ⊗ N) −→ ⊕ ⊗
(L, M, N) which comes equipped with a section⊕⊗(L, M, N) −→ L⊕ ↑ (M⊗N).

The aim of our current work is to promote this “algebraic” view of focalization
in the setting of ludics. Furthermore, section-retraction pairs can be naturally
lifted by applications of logical connectives (Theorem 3). Hence we also have
focalization inside a compound behaviour (or inside a context). This would allow
us to recover the original focalization theorem as a corollary to our “algebraic”
focalization, though we leave it as future work.

2 Focalization in Linear Logic

Linear logic (LL) comes from a careful analysis of structural rules in sequent calcu-
lus resulting in a very structured proof theory, in particular regarding dualities. A
fundamental outcome of those dualities is Andreoli’s discovery [1] of focalization,
providing the first analysis of polarities in LL. Andreoli’s contribution lies mainly
in the splitting of logical connectives in two groups – positive (⊗,⊕,0,1, ∃, !) and
negative (�, &,�,⊥, ∀, ?) connectives – besides the at-the-time more traditional
multiplicative–additive–exponential distinction.

The underlying meaning of polarization comes from proof-search motivations.
The introduction rules for negative connectives�, &,�,⊥, ∀ are reversible: in the
bottom–up reading, the rule is deterministic, i.e., there is no choice to make and
provability of the conclusion implies provability of the premisses. On the other
hand, the introduction rules for positive connectives involve choices: e.g., splitting
the context in⊗ rule, or choosing between⊕L and⊕R rules, resulting in the possi-
bility to make erroneous choices during proof-search. Still, positive connectives sat-
isfy a strong property called focalization [1]: let us consider a sequent
 F1, . . . , Fn

containing no negative formulas, then there is (at least) one formula Fi which can
be used as a focus for the search by hereditarily selecting Fi and its positive sub-
formulas as principal formulas up to the first negative subformulas.

This property induces the following strategy of proof–search called focalization
discipline:

Sequent Γ contains a negative formula Sequent Γ contains no negative formula
choose any negative formula (e.g. the choose some positive formula and decompose
leftmost one) and decompose it using it (and its subformulas) hereditarily until

the only possible negative rule we get to atoms or negative subformulas

80 M. Basaldella, A. Saurin, and K. Terui

A sequent calculus proof is called focussing if it respects the focalization dis-
cipline. It is proven in [1] that if a sequent is provable, then it is provable with
a focussing proof: the focalization discipline is therefore a complete proof-search
strategy. Other approaches to focalization consider proof transformation tech-
niques [10, 11].

A very important consequence of focalization is the possibility to consider
synthetic connectives [7, 4]: a synthetic connective is a maximal cluster of con-
nectives of the same polarity. They are built modulo commutativity and associa-
tivity of binary connectives and some syntactical isomorphism [9] of linear logic.
For MALL, the underlying syntactical isomorphism in action is the distributiv-
ity of ⊗ with respect to ⊕, namely (A ⊕ B) ⊗ C ∼= (A ⊗ C) ⊕ (B ⊗ C) and its
dual.

3 Ludics in Three Pages

Syntax. We recall the term syntax for designs introduced in [12] which uses a
process calculus notation inspired by the close relationship between ludics and
linear π-calculus [5].

Designs are built over a given signature A = (A, ar), where A is a set of names
a, b, c, . . . and ar : A −→ N assigns an arity ar(a) to each name a. Let V be a
countable set of variables V = {x, y, z, . . .}. Over a fixed signature A, a (proper)
positive action is a with a ∈ A, and a (proper) negative action is a(x1, . . . , xn)
where x1, . . . , xn are distinct variables and ar(a) = n. In the sequel, an expression
of the form a(�x) always stands for a negative action.

The positive (resp. negative) designs P (resp. N) are coinductively generated
by the following grammar (where ar(a) = n and �x = x1, . . . , xn):

P ::= Ω (divergence)
∣∣ � (daimon)

∣∣ N0|a〈N1, . . . , Nn〉 (application),
N ::= x (variable)

∣∣ ∑
a(�x).Pa (abstraction),

where the formal sum
∑

a(�x).Pa is built from |A|-many components {a(�x).Pa}a∈A.
Designs may be considered as infinitary λ-terms with named applications and su-
perimposed abstractions. P, Q, . . . (resp. N, M, . . ., resp. D, E, . . .) denote positive
(resp. negative, resp. arbitrary) designs. Any subterm E of D is called a subdesign
of D. Ω is used to encode partial sums: given a set α = {a(�x), b(�y), . . . } of negative
actions,wewritea(�x).Pa +b(�y).Pb + · · · to denote the negative design

∑
α a(�x).Ra,

where Ra = Pa if a(�x) ∈ α, and Ra = Ω otherwise.
A design D may contain free and bound variables. An occurrence of subterm

a(�x).Pa binds the free-variables �x in Pa. Variables which are not under the scope
of the binder a(�x) are free. fv(D) denotes the set of free variables occurring in
D. Designs are considered up to α-equivalence, that is up to renaming of bound
variables (see [12] for further details).

A positive design which is neither Ω nor � is either of the form
(
∑

a(�x).Pa)|a〈N1, . . . , Nn〉 and called a cut or of the form x|a〈N1, . . . , Nn〉 and
called a head normal form. The head variable x in the design above plays the
same role as a pointer in a strategy does in Hyland-Ong games and an address

On the Meaning of Focalization 81

(or locus) in Girard’s ludics. On the other hand, a variable x occurring in a
bracket (as in N0|a〈N1, . . . , Ni−1, x, Ni+1, . . . , Nn〉) does not correspond to a
pointer nor address but rather to an identity axiom (initial sequent) in sequent
calculus, and for this reason is called an identity.

A design D is said: total, if D �= Ω; linear (or affine), if for any subdesign of
the form N0|a〈N1, . . . , Nn〉, the sets fv(N0), . . . , fv(Nn) are pairwise disjoint.

Normalization. The reduction relation −→ is defined on positive designs as
follows:

(∑
a(x1, . . . , xn).Pa

)|a〈N1, . . . , Nn〉 −→ Pa[N1/x1, . . . , Nn/xn].

We denote by −→∗ its transitive closure. Given two positive designs P, Q, we
write P ⇓ Q if P −→∗ Q and Q is neither a cut nor Ω. We write P ⇑ if there is
no Q such that P ⇓ Q.

The normal form function � � : D −→ D is defined by corecursion as follows:

�P � = � if P ⇓ �; �
∑

a(�x).Pa� =
∑

a(�x).�Pa�;
= x|a〈� �N �〉 if P ⇓ x|a〈 �N〉; �x� = x.
= Ω if P ⇑;

Normalization is associative:

�D[N1/x1, . . . , Nn/xn]� = ��D�[�N1�/x1, . . . , �Nn�/xn]�.

Orthogonality. In the rest of this work, we restrict ourselves to the special
subclass of total, cut-free, linear and identity-free designs (corresponding to [8]).

A positive design P is closed if fv(P) = ∅, atomic if fv(P) ⊆ {x0} for a certain
fixed variable x0. This variable plays the same role as the empty address 〈〉 in [8].

A negative design N is atomic if fv(N) = ∅. Two atomic designs P, N of oppo-
site polarities are said orthogonal (written P⊥N) when �P [N/x0]� = �. If X is
a set of atomic designs of the same polarity, then its orthogonal set is defined by
X⊥ := {E : ∀D ∈ X, D⊥E}. Although possible, we do not define orthogonality
for non-atomic designs. Accordingly, we only consider atomic behaviours which
consist of atomic designs.

An (atomic) behaviour X is a set of atomic designs of the same polarity such
that X⊥⊥ = X. A behaviour is positive or negative according to the polar-
ity of its designs. We denote positive behaviours by P,Q,R, . . . and negative
behaviours by N,M,K

There are the least and the greatest behaviours among all positive (resp.
negative) behaviours with respect to set inclusion (with �− =

∑
a(�x).�):

0+ := {�}, 0− := {�−}, ���+ := 0−⊥, ���− := 0+⊥.

A positive sequent Γ is a set of the form x1 : P1, . . . , xn : Pn, where x1, . . . , xn are
distinct variables and P1, . . . ,Pn are (atomic) positive behaviours. We denote
by fv(Γ) the set {x1, . . . , xn}. A negative sequent Γ,N is a positive sequent

82 M. Basaldella, A. Saurin, and K. Terui

Γ enriched with an (atomic) negative behaviour N, to which no variable is
associated.

A positive design P belongs to a positive sequent Γ (notation: P |= Γ) if
fv(P) ⊆ {x1, . . . , xn} and �P [N1/x1, . . . , Nn/xn]� = � for any N1 ∈ P⊥

1 , . . . ,
Nn ∈ P⊥

n .
Analogously, we write N |= Γ,N whenever fv(N) ⊆ {x1, . . . , xn} and

�P [N [N1/x1, . . . , Nn/xn]/x0]� = � for any N1 ∈ P⊥
1 , . . . , Nn ∈ P⊥

n , P ∈ N⊥.
Clearly, N |= N iff N ∈ N, and P |= y : P iff P [x0/y] ∈ P. Furthermore, by

the associativity of normalization, we get the following closure principle:

P |= Γ, x : P⇐⇒ ∀N ∈ P⊥, �P [N/x]� |= Γ,

N |= Γ,N⇐⇒ ∀P ∈ N⊥, �P [N/x0]� |= Γ.

Logical Connectives and Behaviours. We next describe how behaviours are
built by means of logical connectives in ludics.

An n-ary logical connective α is a pair (�xα, {a1(�x1), . . . , am(�xm)}) where �xα =
x1, . . . , xn is a fixed sequence of variables called the directory of α (see [8]) and
{a1(�x1), . . . , am(�xm)} is a finite set of negative actions, called the body of the
connective, such that the names a1, . . . , am are distinct, the variables �x1, . . . , �xm

are subsequences of �xα.
To enlighten the notation, we often identify a logical connective with its body

and so in many occasions we abuse the notation, writing expression like a(�x) ∈ α.
Given an n-ary logical connective α and behaviours N1, . . . ,Nn, P1, . . . ,Pn we
define:

a〈Ni1 , . . . ,Nim〉 := {x0|a〈N1, . . . , Nm〉 : N1 ∈ Ni1 , . . . , Nm ∈ Nim},
α〈N1, . . . ,Nn〉 :=

(⋃
a(�x)∈α a〈Ni1 , . . . ,Nim〉

)⊥⊥
,

α(P1, . . . ,Pn) := α〈P⊥
1 , . . . ,P⊥

n 〉⊥,

where indices i1, . . . , im are determined by the vector �x = xi1 , . . . , xim given for
each a(�x) ∈ α.

A behaviour is logical if it is inductively built as follows:

P := α〈N1, . . . ,Nn〉, N := α(P1, . . . ,Pn)

(with α an arbitrary logical connective).
Notice that the orthogonal of a logical behaviour is again logical.

Usual MALL connectives can be defined as follows (∗ is a 0-ary name):

&

:= {℘(x1, x2)}, ⊗ :=

&

, ↑↑ := {↑(x1)}, ⊥ := {∗}, • := ℘, ↓ := ↑,
& := {π1(x1), π2(x2)}, ⊕ := &, ↓↓ := ↑↑, � := ∅, ιi := πi.

With these logical connectives we can build (semantic versions of) usual linear
logic types (we use infix notations such as N ⊗M rather than the prefix ones
⊗〈N,M〉):
N⊗M = •〈N,M〉⊥⊥ N⊕M = (ι1〈N〉 ∪ ι2〈M〉)⊥⊥ ↓↓ N =↓〈N〉⊥⊥ 0 = ∅⊥⊥

P

&

Q = •〈P⊥,Q⊥〉⊥ P & Q = ι1〈P⊥〉⊥ ∩ ι2〈Q⊥〉⊥ ↑↑ P =↓〈P⊥〉⊥ �� = ∅⊥

On the Meaning of Focalization 83

Material and Winning Designs. Given a behaviour X and D ∈ X, there is
a “minimal portion” of D which is needed to interact with designs of X⊥. It is
called material part of D in X. Formally, the intersection ∩ on designs is defined
by corecursion as follows:

– P ∩Ω = Ω ∩ P = Ω; � ∩� = �;
– x|a〈 �Ni〉∩x|a〈 �Mi〉 = x|a〈 �Ni ∩Mi〉 if Ni∩Mi are defined for every 0 ≤ i ≤ n;
–

∑
a(�x).Pa ∩

∑
a(�x).P ′

a =
∑

a(�x).(Pa ∩ P ′
a) if Pa ∩ P ′

a is defined for every
a ∈ A;

– D ∩ E is not defined otherwise.

The material part of D in X is formally defined as |D|X :=
⋂{E ⊆ D : E ∈ X}

and it is always a design of X [8, 12]. A design D ∈ X is said material if
D = |D|X, winning if material and daimon-free. |X| (resp. Xw) denotes the set
of material (resp. winning) designs of X.

Internal Completeness. In [8], Girard proposes a purely monistic, local notion
of completeness, called internal completeness. It means that we can give a precise
and direct description to the elements in logical behaviours without using the
orthogonality and without referring to any proof system. Logical connectives
easily enjoy internal completeness [12]:

– α〈N1, . . . ,Nn〉 =
⋃

a(�x)∈α a〈Ni1 , . . . ,Nim〉 ∪ {�}.
– α(P1, . . . ,Pn) = {∑ a(�x).Pa : Pa |= xi1 : Pi1 , . . . , xim :

Pim for every a(�x) ∈ α}.
In the last equation, Pb can be arbitrary when b(�x) /∈ α. For example:

P & Q = {π1(x1).P + π2(x2).Q + · · · : P ∈ P and Q ∈ Q},
where the non-material components of the sum are suppressed by “· · · .” If we
consider the material designs of P&Q, we have that |P&Q| is isomorphic to the
cartesian product of |P| and |Q|: a phenomenon called mystery of incarnation
in [8].

4 An Analysis of Focalization in Ludics

Focalized Logical Behaviours. In the rest of the paper, we
shall be interested in how to transform a positive logical be-
haviour P = α〈�(β〈N1, . . .Nm〉),M2, . . . ,Mn〉 into a behaviour
Q = αβ〈N1, . . . ,Nm,M2, . . . ,Mn〉, where Mi,Nj are negative logical
behaviours and α = (�xα, {a1(�x1), a2(�x2), . . .}) with �xα = x1, . . . , xn,
β = (�yβ , {b1(�y1), b2(�y2), . . .} with �yβ = y1, . . . , ym such that �xα and �yβ

are disjoint. Q is called the focalized behaviour associated to P (relative to α, β)
while αβ is the synthetic connective associated to α, β.

The choice of having �(β〈N1, . . .Nm〉) as M1 and not, for example as Mj, is
of course completely arbitrary and aims at making the presentation simpler. On

84 M. Basaldella, A. Saurin, and K. Terui

the other hand, while M2, . . . ,Mn are arbitrary, �(β〈N1, . . .Nm〉) has always
this special form, with the negative connective � as prefix: focalization roughly
asserts that such dummy actions occurring in designs of P can always be removed
by considering synthetic connectives.

In the remaining of this section, and unless otherwise stated, P
and Q will respectively denote α〈�(β〈N1, . . .Nm〉),M2, . . . ,Mn〉 and
αβ〈N1, . . . ,Nm,M2, . . . ,Mn〉.
Synthetic Connectives. In order to define the focalized behaviour Q we shall
define properly the synthetic connective αβ, by specifying its directory and its
body:
– The directory of αβ is �zαβ := y1, . . . , ym, x2, . . . , xn. Hence, αβ has arity

n + m− 1.
– The body of αβ consists of the set of negative actions ab(�z) defined as follows.

First notice that our definition of logical connectives ensures that if some
action a(xa1 , . . . , xaka

) in α is such that x1 ∈ xa1 , . . . , xaka
, then x1 = xa1 .

Thus, for any a(xa1 , . . . , xaka
) in the body of α and b(yb1 , . . . , yblb

) in the
body of β, we define a new action ab as:

ab(xa1 , . . . , xaka
) if x1 /∈ xa1 , . . . , xaka

,
ab(yb1 , . . . , yblb

, xa2 , . . . , xaka
) if x1 = xa1 .

To sum up, we can associate to α〈�(β〈N1, . . .Nm〉),M2, . . . ,Mn〉 its focalized
behaviour (relative to α, β) αβ〈N1, . . .Nm,M2, . . . ,Mn〉. The following exam-
ples illustrate this:

(a) Let P be ⊗〈�(�〈N〉),M〉 (written as ��N⊗M in infix notation). Since � and
� are respectively (x1x2, {℘(x1, x2)}) and (y, {�(y)}) with x1, x2, y distinct,
we have �� = ({yx2, ℘�(y, x2)}) and Q = ��〈N,M〉 = ⊗�〈N,M〉. Note
that ⊗� and ⊗ are isomorphic.

(b) Let P be ⊕〈�(⊗〈N1,N2〉),M〉 (written �(N1 ⊗ N2) ⊕ M in infix no-
tation). Since & and � are respectively (x1x2, {π1(x1), π2(x2)}) and
(y1y2, {℘(y1, y2)}) we have that &� = (y1y2x2, {π1℘(y1, y2), π2℘(x2)}) and
finally Q = &�〈N1,N2,M〉 = ⊕ ⊗ 〈N1,N2,M〉. Notice that in this case
π2℘(x2) is just π2(x2), with an irrelevant change of name.

Now we show how to obtain Q from P interactively, by means of interactive
functions.

Interactive Functions. Given two positive (resp. negative) logical behaviours
F, G, an interactive function (i–function for short) f : F −→ G is any design
f |= F⊥, x0 : G (resp. f |= G, x0 : F⊥). We write f(P) for �P [f/x0]� if P ∈ F
(resp. f(M) for �f [M/x0]� if M ∈ F) and f a i–function. We also write f(F) for
{f(D) : D ∈ F}. Observe that since our setting is fully linear, i–functions have
to be intended as “linear” functions. Two examples follow:
(a) A very important i–function is the fax [8] (or η-expanded iden-

tity) recursively defined as i(x0) :=
∑

i(x0)a with i(x0)a :=
a(y1, . . . , yk).x0|a〈i(y1), . . . i(yk)〉 in [12].

On the Meaning of Focalization 85

i(x0) plays the role of the identity function for designs: i(x0)(D) = D for
any D.

(b) We define uαβ : Q −→ P as uαβ :=
∑

αβ uab +
∑

c �∈αβ i(x0)c with uab, for any
ab ∈ αβ, defined as (abbreviating yb1 , . . . , yblb

by y and i(yb1), . . . , i(yblb
) by

i(y)):

uab := ab(xa1 , . . . , xaka
).x0|a〈i(xa1), . . . , i(xaka

)〉 if x1 �= xa1

uab := ab(y, xa2 . . . , xaka
).x0|a〈�(y).y|b〈i(y)〉, i(xa2), . . . , i(xaka

)〉 if x1 = xa1 .

uαβ , which sends designs in Q to designs in P, will be important in analyzing
the interactive focalization process of the focalizing-design f. The role of uαβ

is to break a synthetic connective αβ into its more atomic connectives α and
β.

Section-Retraction Pairs. Given two logical behaviours of the same polarity
F,G, a section-retraction pair from G to F is a pair of i-functions (s, r) with
s : G −→ F, the section, and r : F −→ G, the retraction, such that r ◦ s =
�s[r/x0]� = i(x0). A section-retraction pair is strict if it sends a daimon-free
design to a daimon-free one. Section-retraction pairs can be considered in a
context:

Theorem 1. Any (strict) section-retraction pairs between Pi and Qi (i =
1, . . . , n) can be extended to a (strict) section-retraction pair between
α(P1, . . . ,Pn) and α(Q1, . . . ,Qn) for any logical connective α. The same holds
for the positive case.

Then, focalization can be expressed as the existence of a section-retraction pair
from Q to P with uαβ as section.

The Focalizing-Design fαβ. We now introduce the i–function fαβ : P −→ Q,
which will be the retraction associated with uαβ and shall interactively build the
focalized designs. fαβ is defined as fαβ :=

∑
αβ fab +

∑
c �∈αβ i(x0)c with, for any

ab ∈ αβ, fab being defined as:

fab := a(xa1 , . . . , xaka
).x0|ab〈i(xa1), . . . , i(xaka

)〉 if x1 �= xa1 ,

fab := a(x1, xa2 , . . . , xaka
).x1|�〈∑β b(y).x0|ab〈i(y), i(xa2), . . . , i(xaka

)〉〉 if x1 = xa1 .

Theorem 2

1. fαβ(P) = Q and winning conditions are preserved: fαβ(Pw) ⊆ Qw (actually,
fαβ(Pw) = Qw).

2. uαβ(|Q|) = |P| and winning conditions are preserved: uαβ(Qw) ⊆ Pw.

Composing fαβ and uαβ. To establish that (uαβ , fαβ) is a section-retraction
pair from Q to P, we shall study the composition of the two i-functions fαβ ◦uαβ .
We have:

Proposition 1. fαβ ◦ uαβ = i(x0).

86 M. Basaldella, A. Saurin, and K. Terui

Proof. By definition of fαβ and uαβ , it is immediate that

fαβ ◦ uαβ = �uαβ [fαβ/x0]� = �
∑

αβ uab[
∑

αβ fab/x0]� +
∑

c/∈αβ i(x0)c.

Moreover, since �
∑

αβ uab[
∑

αβ fab/x0]� =
∑

αβ�uab[fab/x0]�, the left member
of the sum can be further decomposed and we have two cases: if ab(�z) is
ab(xa1 , . . . , xaka

), we have that:

�uab[fab/x0]� = ab(xa1 , . . . , xaka
).�fab|a〈i(xa1), . . . , i(xaka

)〉�
= ab(xa1 , . . . , xaka

).x0|ab〈�i(i(xa1))�, . . . , �i(i(xaka
))�〉

= ab(xa1 , . . . , xaka
).x0|ab〈i(xa1), . . . , i(xaka

)〉 = i(x0)ab.

Otherwise, if ab(�z) = ab(yb1 , . . . , yblb
, xa2 . . . , xaka

), writing x for xa2 , . . . , xaka
,

we have that

�uab[fab/x0]� = ab(y,x).�fab|a〈�(y).y|b〈i(y)〉, i(x)〉�
= ab(y,x).�

(
�(y).y|b〈i(y)〉)|�〈∑β b(y).x0|ab〈i(y), i(i(x))〉〉�

= ab(y,x).�
(∑

β b(y).x0|ab〈i(y), i(i(x))〉)|b〈i(y)〉�
= ab(y,x).x0|ab〈�i(i(y))�, �i(i(x))�〉
= ab(y,x).x0|ab〈i(y), i(x)〉
= i(x0)ab.

Finally, we have obtained that �fαβ(uαβ)� = i(x0).

Focalization Theorem. We can now conclude with the focalization theorem:

Theorem 3 (Focalization Theorem). For any logical connectives α and β,
there is a strict section-retraction pair from αβ〈Y,X〉 to α〈�(β〈Y〉),X〉 which
is the pair (uαβ , fαβ).

An important thing to notice is that Theorem 1 applies to (uαβ , fαβ) and that the
section-retraction pair is strict. This will allow to carry the building of synthetic
connectives inside contexts and to ensure that we will obtain proofs via full
completeness. fαβ is thus a retraction from P to Q which will map proofs to
proofs with synthetic connectives. Moreover, uαβ ◦fαβ : P −→ P is an interactive
function from P to P which preserves winning conditions: given a proof (winning
design), it shall build a focussing version of that proof.

5 Conclusion and Future Works

We have considered in this short abstract how focalization can be considered
from the point of view of ludics itself. In order to do so, we considered inter-
active functions which have the ability to make a cluster of two positive logical
connectives which are separated by a single trivial ↑ logical connective (that
is to merge them in a single synthetic connective), while preserving winning
conditions.

Our present work naturally leads to directions that we shall develop in future
works:

On the Meaning of Focalization 87

– A natural direction is to get a more semantical proof of the focalization
theorem for MALL by combining the results in the present paper with the
full completeness results of ludics [8].

– We would like to extend our results to the case of the exponentials [2, 3],
not only because our current analysis is restricted to the linear case, but
also because it might clarify several elements of the proof–theory of the
exponentials (and their bipolar behaviour).

– The initial motivation of our work was to find an analogous to the tape
compression theorem for Turing machines. We also plan to develop this line
of work in the future.

References

[1] Andreoli, J.-M.: Logic Programming with Focusing Proofs in Linear Logic. Journal
of Logic and Computation 2(3), 297–347 (1992)

[2] Basaldella, M., Faggian, C.: Ludics with Repetitions (Exponentials, Interactive
Types and Completeness). In: LICS (2009)

[3] Basaldella, M., Terui, K.: On the meaning of logical completeness. In: Curien,
P.-L. (ed.) TLCA 2009. LNCS, vol. 5608, pp. 50–64. Springer, Heidelberg (2009)

[4] Curien, P.-L.: Introduction to LL and ludics, I & II. In: Advances in Mathematics,
China, vol. 34(5), pp. 513–544 (2005); vol. 35(1), pp. 1–44 (2006)

[5] Faggian, C., Piccolo, M.: Ludics is a model for the finitary linear pi-calculus.
In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 148–162. Springer,
Heidelberg (2007)

[6] Girard, J.-Y.: On the meaning of logical rules I: syntax vs. semantics. In:
Berger, U., Schwichtenberg, H. (eds.) Computational Logic, pp. 215–272. Springer,
Heidelberg (1999)

[7] Girard, J.-Y.: On the meaning of logical rules II: multiplicatives and additives. In:
Berger, Schwichtenberg (eds.) Foundation of Secure Computation, pp. 183–212
(2000)

[8] Girard, J.-Y.: Locus solum: From the rules of logic to the logic of rules. Mathe-
matical Structures in Computer Science 11, 301–506 (2001)

[9] Laurent, O.: Étude de la polarization en logique. PhD thesis, Univ. Aix-Marseille
II (2002)

[10] Laurent, O.: A proof of the focalization property of Linear Logic (2004) (unpub-
lished note)

[11] Miller, D., Saurin, A.: From proofs to focused proofs: A modular proof of focal-
ization in linear logic. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS,
vol. 4646, pp. 405–419. Springer, Heidelberg (2007)

[12] Terui, K.: Computational ludics. To appear in Theoretical Computer Science
(2008)

On Some Logic Games in Their Philosophical
Context

Tero Tulenheimo�

STL-CNRS / University of Lille 3

Abstract. In the present paper Hintikka’s game-theoretical semantics
and the dialogical logic of Lorenzen and Lorenz are discussed and com-
pared from the viewpoint of their underlying philosophical meaning the-
ories. The question of whether the proposed meaning theories can be
claimed to suffer from circularity is taken up. The relations of the two
frameworks to verificationist and anti-realist ideas are considered. Fi-
nally, van Heijenoort’s concept of ‘logic as calculus’ generalized by Hin-
tikka to the idea of ‘language as calculus’ will be reformulated as a view
we label ‘anti-universalism.’ We discuss briefly the fourfold division of
foundational views obtained by relating a distinction between ‘univer-
salism’ and ‘anti-universalism’ to the distinction between ‘realism’ and
‘anti-realism.’

1 Introduction

The topic ‘logic and games’ is en vogue these days, on many fronts. Due to
their interest in interactive computation, various researchers have been led to
utilize games in connection with logic for different purposes: game semantics
of programming languages (Abramsky & Jagadeesan & Malacaria, Hyland &
Ong), ludics (Girard) and computability logic (Japaridze), to name some of the
best-known examples. A host of others (notably van Benthem and his collab-
orators) seek to see logic from a generalized viewpoint as a study of rational
agency and intelligent interaction. The latter agenda in principle subsumes the
former, but in practice the research questions that emerge from van Benthem’s
approach use classical logic and model-theoretical tools whereas those interested
in interactive computation typically have a proof-theoretical inclination and take
inspiration from intuitionistic logic. Also, representatives of the former agenda
think of semantics as associating certain sorts of actions or processes with logi-
cal operators, in contrast to the latter framework where model-theoretical truth
conditions are usually used for describing whatever sorts of actions or processes
one happens to be interested in1. There are, then, essential differences in the
� The research for the present paper was partially funded by the Academy of Finland

(project no. 207188, ‘Modalities, Games and Independence in Logic’), and partially
supported by a personal grant from Ella and Georg Ehrnrooth foundation. I wish to
thank Shahid Rahman and Helge Rückert for helpful discussions, and the anonymous
referee for useful comments.

1 For representatives of the two agendas, see [1, 4, 9, 25, 26].

Lecomte and S. Tronçon (Eds.): PRELUDE 2010, LNAI 6505, pp. 88–113, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On Some Logic Games in Their Philosophical Context 89

approaches of the researchers in the area of ‘logic and games’ — which is not
surprising, as related ‘foundational’ or ‘motivational’ differences have existed at
least ever since the contrast between classical and intuitionistic logic became a
theme for philosophical reflection2.

The present paper does not discuss the two above-mentioned contemporary
trends in the study of ‘logic and games.’ Rather, the two main historical pre-
cursors of this field are discussed with reference to the philosophical ideas that
underlie them: Lorenzen’s dialogical logic and Hintikka’s game-theoretical se-
mantics (or GTS)3. Both approaches associate games with logical formulas in
such a way that the semantic attributes of interest become definable via the
existence of a winning strategy for a suitable player, wherefore they both may
be said to offer, each in its own way, a game-theoretical semantics. In refer-
ring to Hintikka’s approach, ‘game-theoretical semantics’ has come to be used
as a proper name. Since Lorenzen’s approach can be termed ‘dialogical logic’
or be said to provide a ‘dialogue semantics,’ in the interest of clarity we avoid
applying the common noun ‘game-theoretical semantics’ when speaking of it.
This decision is reasonable not only to avoid confusion but also because the two
frameworks represent, as will be seen, very different views on what counts as
semantics in the first place. The choice is not intended to suggest any priorities.
Lorenzen enjoys the historical priority of having been, with his 1958 talk ‘Logik
und Agon’ (published in 1960), the first in the 20th century who began to draw
systematic and philosophically motivated connections between logic and games.
Hintikka’s ideas were first expounded in his John Locke lectures at Oxford in
1964; the first publication, ‘Language-Games for Quantifiers,’ appeared in 1968.
Incidentally, Lorenzen too delivered John Locke lectures at Oxford, during the
academic year 1968–19694.

We begin by sketching the basic ideas of dialogical logic on the one hand and
GTS on the other (Sections 2 and 3). These approaches are then compared for
their underlying philosophical meaning theories. Their differences are stressed.
Potentially problematic ideas in both approaches will be detected (Section 4).
We consider the relations of the two frameworks to verificationist and anti-realist
ideas (Section 5). Finally, van Heijenoort’s idea of ‘logic as calculus’ generalized
by Hintikka to the idea of ‘language as calculus’ will be reformulated as a view
to be labeled ‘anti-universalism.’ We discern Hintikka’s and Lorenzen’s posi-
tions in the fourfold division of foundational views induced by the distinctions
realism/anti-realism and universalism/anti-universalism (Section 6).

Throughout the paper we confine our discussion to logical expressions, more
specifically to the logical operators of first-order logic, at the expense of lex-
ical items and, generally, expressions and constructions appearing in natural

2 Of course in many concrete cases one’s ‘foundational ideas’ are imposed by the
research tradition one happens to find oneself in, rather than being results of any
sophisticated weighing of the options.

3 For a discussion, see [37, 42, 48] (dialogues), [5, 22, 39] (GTS), [46, 50] (comparing
the two).

4 For the respective lectures in published form, see [12] and [33].

90 T. Tulenheimo

languages5. In connection with logical expressions, both approaches work on
two fronts: on the one hand their goal is to explicate how these expressions re-
ceive their meaning, and on the other hand they aim to indicate how the relevant
semantic attributes emerge. For GTS, the attribute of interest is (material) truth.
For the dialogian it can be truth as well as validity — which one, depends on the
sort of dialogue at hand. Often people discussing dialogues are exclusively inter-
ested in the so-called formal dialogues; they are preoccupied with the semantic
attribute of validity.

2 Dialogical Logic

The basic idea of the dialogical approach is that meanings of expressions are
always connected with actions. The specific meaning that an expression has is
determined by the sorts of norms or rules to which the use of this expression is
subjected. One may discern rules of more than one type, but all the rules are,
one could say, argumentative or discursive. The basic unit on which the rules
operate is an utterance or assertion (Behauptung, Aussage), not an expression
or a sentence in isolation from the act of uttering it. Dialogue rules taken jointly
serve to pin down a dialogue context in which utterances of the relevant lan-
guage may be evaluated. These rules can be seen as determining a ‘language
game’ or a linguistic practice — or perhaps more specifically an argumentative
practice. There is in principle no claim that one could not choose one’s rules in
different ways, obtaining different linguistic practices even for the same logical
expressions. In practice, though, Lorenzen himself took one set of rules to be
fundamental in connection with logic (namely the one leading to ‘intuitionistic
dialogues,’ to be described below).

Among dialogue rules it is customary to distinguish between particle rules
(Partikelregeln) and structural rules (Rahmenregeln). The former, a.k.a. attack-
defense rules, incorporate the idea that utterances induce commitments. The
rules are normative: they tell how such commitments may be tested, and specify
the utterer’s obligations triggered by a given test. To express it otherwise, the
particle rules indicate how an utterance may be attacked and how one may
defend one’s utterance against a given attack. If X and Y are distinct players,
the rules are often given schematically along the following lines:

(R.∧):
utterance X : (A ∧ B)
attack Y : ?L or Y : ?R

defense X : A resp. X : B
(R.∨):

utterance X : (A ∨ B)
attack Y : ?∨
defense X : A or X : B

(R.→):
utterance X : (A → B)
attack Y : A
defense X : B

(R.¬):
utterance X : ¬A
attack Y : A
defense X : —

5 For GTS and natural languages, see [19, 20, 21]. For Lorenzen’s views, see e.g. [27,
32, 34].

On Some Logic Games in Their Philosophical Context 91

(R.∀):
utterance X : ∀xA
attack Y : ?t

defense X : A[x/t]
(R.∃):

utterance X : ∃xA
attack Y : ?∃
defense X : A[x/t]

In the quantifier rules, t is a term taken from some stock of terms assumed
to be available6. The rule (R.¬) states that no response to an attack on ¬A is
possible. (Insofar as the attack is concerned, this leaves for X only the possibility
to present a counterattack, i.e., to attack against Y ’s utterance of A; intuitively
such a counterattack should be successful if ¬A is defensible as a thesis stated
by X .) Particle rules are meant to lay down local instructions for how to act: at
any position the players have reached in the course of a dialogue, these rules tell
how a sentence that has already been uttered can be attacked or defended — if
no further rule blocks it from being so processable.

Structural rules complement the particle rules by a sufficient number of addi-
tional stipulations so as to determine in detail how a dialogue can be conducted.
Jointly these rules specify, for each sentence A of the language considered, how
the dialogue D(A) about A is played7. The sentence A is termed the thesis of
the dialogue D(A). Dialogues have two players or dialogue partners X and Y ,
one of whom adopts the ‘role’ of proponent and the other that of opponent; for
simplicity the players are referred to via their roles — as P and O8. We say that
Y is the ‘adversary’ of X and vice versa. Here is a formulation of the structural
rules for formal dialogues about first-order sentences:

1. Starting rule: The initial move consists of P’s uttering the thesis, if pos-
sible. (Rule 5 prevents him from doing so if the thesis is atomic.) If P has
made the initial move, player O chooses a natural number n and then player
P chooses a natural number m. (Rule 2 will make use of these numbers.)
Thereafter the players move alternately, each move after the initial move
being an attack or a defense.

2. Repetition rule: The numbers n and m chosen initially are termed the
repetition ranks of O and P, respectively9. In the course of the dialogue,
O (P) may attack or defend any single (token of an) utterance at most n
(respectively m) times.

3. Winning rule: Whoever cannot move has lost and his or her adversary has
won.

4. (a) Intuitionistic rule: Each player may attack any complex sentence ut-
tered by the adversary, or respond to the last attack (against one of his or
her earlier utterances) to which no defense has yet been presented. That

6 A[x/t] is the result of replacing all free occurrences of x in A by t.
7 We define dialogues for sentences only, though they could be formulated for arbitrary

formulas.
8 These ‘roles’ are in effect defined by the starting rule (see below): the player who is

supposed to move first is P, the other player is O. Let us agree that O is female
(‘she’) and P male (‘he’).

9 For attack and defense ranks, cf. [28, pp. 40, 84–85, 98–99], [33, p. 28]. The notion
of repetition rank subsumes both attack and defense ranks.

92 T. Tulenheimo

is, the move that has been attacked last must be defended first. One may
never revise an earlier defense, and in general one may not postpone a
defense indefinitely without losing the possibility of that defense. (One
might return to respond to an earlier attack only by first successfully
responding to all intervening attacks.)

(b) Classical rule: Each player may attack any complex sentence uttered
by the adversary, or respond to any attack against his or her earlier utter-
ance, including those that have already been defended. That is, not only
can one postpone responses to attacks indefinitely without endangering
the possibility to come back to them, but also revising old defenses is
possible.

5. Formal rule: Player P may not utter an atomic sentence unless it has
already been uttered by O. We may say that P’s utterance of an atomic
sentence must be grounded by O’s previous utterance of the same atomic
sentence.

The particle rules combined with the structural rules (1), (2), (3), (4a) and (5)
give rise to intuitionistic formal dialogues. To obtain classical formal dialogues,
rule (4a) is replaced by rule (4b). The so-called material dialogues — which will
not be systematically discussed in the present paper — presuppose that (at least
implicitly) a model determining the truth-values of atomic sentences be given.
Repetition ranks may be infinite ordinal numbers if the domain of the model is
infinite. The winning rule says that whoever utters a false atomic sentence, or
cannot move, has lost while his or her adversary has won. Material dialogues
have no formal rule and, as a matter of fact, in connection with them it makes
no difference whether the intuitionistic rule (4a) or the classical rule (4b) is
adopted10.

The players are assumed to agree on criteria for settling whether the rules are
followed, whether a play has come to an end, and who in that case has won11.
The dialogical criteria for the ‘correctness’ of an utterance are ultimately inter-
subjective; the final arbiter is mutual agreement, rather than an independently
existing reality as such. Any sequence of moves made in accordance with the
dialogue rules (i.e., particle rules and structural rules) is a partial play. A play is
a partial play at which the player whose turn it is to move is incapable of doing
so. A strategy for player Z is a set of instructions which for every partial play
at which it is Z’s turn to move indicates, if possible, a move complying with
the rules. A strategy for Z is winning if against any sequence of moves by Z’s
adversary, it yields moves so that the resulting play is won by Z.

The dialogicians take the meanings of the logical operators to be given by the
dialogue rules — in such a way that the particle rules contribute some sort of
core meaning or local meaning of the logical operators, thought of as remaining
intact when structural rules are varied. Semantic attributes, again, emerge with
10 For a comparison between material dialogues and the semantic games of GTS, see

[52].
11 Cf. [28, p. 35] and [31, p. 21]. These requirements introduce an anti-realist element

into the dialogical framework.

On Some Logic Games in Their Philosophical Context 93

reference to the notion of winning strategy. Meaning is determined by fixing the
level of plays, while semantic attributes are determined at the strategic level.
Quite generally, the thesis A of the dialogue D(A) has one semantic attribute
when there exists a winning strategy for P in D(A), and it has another semantic
attribute when it is O for whom there is a winning strategy12. E.g., the dia-
logician might define the validity (refutability) of sentence A of intuitionistic
first-order logic as the existence of a winning strategy for P (respectively, O) in
the formal intuitionistic dialogue about A. Similarly, material truth (falsity) of a
sentence can be defined as the existence of a winning strategy for P (respectively,
O) in the material dialogue about that sentence.

Let us take a couple of examples of plays, starting with formal dialogues.
The numbers in the margins indicate the order in which the moves are made.
Numbers near the middle divide appear only in connection with attacks and
specify to which utterance by the adversary the attack pertains. We write an
attack and the reply to that attack, if any, always on the same row.

O P
A ∨ ¬A 0

1 n := 1 m := 2 2
3 ?∨ 0 ¬A 4
5 A 4 —

A (revising the defense
against move 3) 6

O P
A ∨ ¬A 0

1 n := 1 m := 2 2
3 ?∨ 0 ¬A 4
5 A 4 —

Fig. 1. Classical play won by P (left); intuitionistic play won by O (right)

Player P can force a win in the classical dialogue about A ∨ ¬A by choosing
m ≥ n + 1. In the corresponding intuitionistic dialogue, it is O who can force a
win: she may simply choose n := 1. The intuitionistic rule blocks P’s possibility
of revising the defense of the disjunction (since P would first need to reply to O’s
attack against the negation ¬A which is impossible); and there are no attacks
for him to repeat. For the following example, let B be a formula in which the
variable x does not appear free, e.g., P (c).

O P
∀x(B ∨ C) → (B ∨ ∀xC) 0

1 n := 1 m := 1 2
3 ∀x(B ∨ C) 0 B ∨ ∀xC 4
5 ?∨ 4 ∀xC 6
7 ?t 6
9 B ∨ C[x/t] 3 ?t 8

11 B 9 ?∨ 10

Fig. 2. Intuitionistic play won by O

12 Formal dialogues for first-order logic are well-founded (each play is finitely long)
games of perfect information (each player is fully informed of all the past moves).
By the Gale-Stewart theorem, any such dialogue is determined: there is a winning
strategy for one or other of the players.

94 T. Tulenheimo

In the above play there are no more defensive moves available for P, because
the first such move would have to be a response to the attack of move 7 to
which he cannot respond, and he has furthermore already attacked once all
moves available for attack. There is actually a winning strategy for O in the
intuitionistic dialogue about ∀x(B∨C) → (B ∨ ∀xC). It suffices that she chooses
n := 1, takes care not to introduce B before P has uttered ∀xC, attacks P’s
utterance of ∀xC as soon as possible by some term k and then takes care of never
introducing C[x/k], which is possible since B can be introduced instead. (It is
not difficult to see that P cannot improve his payoff by choosing his repetition
rank to be greater than 1.)

Let us then illustrate material dialogues. Let M be a model of vocabulary
{R, t1, t2} making both atomic sentences Rt2t1 and Rt2t2 true13. Further, let N
be a model of vocabulary {P, Q, t1, t2, t3, . . .} in which all of the following atomic
sentences are true: P t7 and Qt1, Qt2, Qt3, etc.

O P
¬∃x∀yRxy 0

1 n := 1 m := 2 2
3 ∃x∀yRxy 0 —
5 ∀yRt2y 3 ?∃ 4
7 Rt2t1 5 ?t1 6
9 Rt2t2 5 ?t2 8

11 ∀yRt2y 3 ?∃ 10
13 Rt2t1 5 ?t1 12
15 Rt2t2 5 ?t2 14

Fig. 3. Play of a material dialogue relative to M, won by O

In this play all atomic sentences uttered by O are true in M. P cannot make
any further move since there is nothing for him to defend, and he has attacked
already twice all utterances of O. As a matter of fact, there is a winning strategy
for O in the material dialogue about ¬∃x∀yRxy played relative to M: P cannot
improve his payoff by making his choice of repetition rank differently.

O P
∃xPx → ∀xQx 0

1 n := ω m := 1 2
3 ∃xPx 0 ∀xQx 4
5 ?t1 4 Qt1 6

: :
2n + 3 ?tn 4 Qtn 2n + 4

: :

Fig. 4. Play of a material dialogue relative to N , won by P

In this play O has granted herself the right to repeat any question a countable
infinity of times (i.e., as many times as there are individual constants referring
13 A model of a given vocabulary τ may be regarded as a representation of a possi-

ble world looked upon from the perspective of limited conceptual resources (those
embodied by the constant and relation symbols of τ).

On Some Logic Games in Their Philosophical Context 95

to elements of the domain of N). Repetition does not help O, however, since P
can safely utter Qti for all constants ti. Observe that while O could not attack
the thesis of the dialogue without uttering the antecedent of this implication,
it would be pointless (though perfectly possible) for P to counterattack O’s
utterance of ∃xPx: player O could easily defend herself by uttering P t7, and
therefore this counterattack would be useless in the sense that afterwards P
would in any event need to defend the claim ∀xQx. On the other hand, there is
indeed a way for P to successfully defend the consequent ∀xQx, as illustrated
in Figure 4. Actually it is clear that there is a winning strategy for P in the
material dialogue about ∃xPx → ∀xQx played relative to N .

For Lorenzen, the task of philosophy applied to language was to methodi-
cally reconstruct linguistic practices, which would then permit us to understand
how those practices were possible in the first place. The role of philosophy was,
then, ‘synthetic.’ Given that his general meaning theory14 was based on norms
and actions, such reconstructions would take the form of specifying rules giving
rise to the relevant linguistic practices. The investigation would proceed from
phenomena to their constitutive rules. Now, typically different practices rely on
mutually conflicting rules. For a concrete example, insofar as the dialogue rules
for classical and intuitionistic formal dialogues can be taken to offer a reconstruc-
tion of classical logic and intuitionistic logic, respectively, these logics are based
on conflicting sets of rules: one can follow rule (4b) without thereby following
rule (4a). For Lorenzen, preferences between different practices were a matter
of rationality considerations pertaining to their dialogical reconstructions. This
might lead one to prefer, say, the intuitionistic dialogues over and above the
classical ones (as Lorenzen in fact did), but it does not mean that there are no
other kinds of practices, reconstructed by different sets of rules. Lorenzen was
particularly clear about the possibility of formulating logical dialogue rules in
different ways in his first publication on his game-theoretical interpretation of
logic, ‘Logik und Agon.’ There he not only considered classical logic, but went
so far as to say (without apparent irony) that it is fortunate that in mathe-
matics we need not abandon classical logic [29, p. 194] — that by modifying the
intuitionistic dialogue rules we may obtain another set of rules providing a recon-
struction of classical logic15. (Later in his career Lorenzen became increasingly
hostile to classical logic and classical mathematics and would probably not have
pronounced about the prospect of retaining mathematics based on classical logic
in that way.) As to intuitionistic logic, Lorenzen took his intuitionistic dialogue
rules as justifying the logical ideas of Brouwer and Heyting, whom he considered
to have arrived at the right logic for wrong reasons16.
14 When we speak of ‘meaning theories’ we intend theories about meaning in the generic

sense (i.e., what Peacock [38] has proposed to call ‘theories of meaning’), though in
practice we concentrate on the particular case of first-order logic (and therefore on
one specific ‘meaning theory’ in Peacock’s sense).

15 K. Lorenz attempted in his doctoral thesis Arithmetik und Logik als Spiele (1961) to
characterize in a game-theoretically precise way the difference between intuitionistic
and classical dialogues; see [35, pp. 17–95].

16 See [30, pp. 193–194], [33, p. 39].

96 T. Tulenheimo

Dialogically reconstructing an independently established logic L means ex-
hibiting a suitable set of dialogue rules which capture the logic in the sense
of allowing to prove the following ‘equivalence theorem’: for any sentence A of
L, A is valid if and only if there is a winning strategy for P in the formal
dialogue D(A). The dialogicians’ claims about formal properties like those ex-
pressed by such ‘equivalence theorems’ have often dramatically outrun what has
actually been warranted by their arguments. Many of these failures have been
documented by Felscher, who also was the first, in 1985, to substantiate the
‘equivalence theorem’ for intuitionistic first-order logic — claimed to hold al-
ready in Lorenzen’s 1958 talk17. There is, however, another way of dialogically
approaching existing logics. Instead of attempting a reconstruction, one may
consider how different existing logics have been motivated, and then proceed to
see what such a motivation would mean in the dialogical framework. In this way
Shahid Rahman and his collaborators have studied free, relevance, paraconsis-
tent and linear logics [41, 43, 44, 45]. Here the idea is not to find suitable rules so
as to dialogically reconstruct, say, relevance logic, but to see what happens when
the ideas that have motivated relevance logic are looked upon from the dialog-
ical viewpoint. This approach is fruitful from the dialogue-internal perspective,
leading to definitions of new ‘argumentative practices.’ The resulting dialogically
defined logics may very well differ in many respects from the corresponding log-
ics as standardly defined. It is an additional research question to study how, for
example, the dialogically defined relevance logic relates, for its metatheoretical
properties, to the standard relevance logic. (Research of this kind has not been
pursued in the literature.)

Dialogicians think that the particle rules capture a non-trivial portion of the
semantics of the logical operators. It has been suggested that keeping the parti-
cle rules constant while varying the structural rules, one can substantiate such
philosophical ideas as logical pluralism18. As they are stated, the particle rules
are symmetric in the sense that no matter whether we take X to be P and Y
to be O or vice versa, the rules remain the same. Such symmetry is taken to be
pivotal for the intended semantic role of the particle rules. Surely the schematic
rules themselves must look more or less like they do, as long as we assume, as is
done in dialogical logic, that we are dealing with formulas which can be attacked
and defended in terms of their subformulas19. But why should we accept these
specific rules — how are they justified, what are the grounds for accepting them?
Can they be justified in a symmetric fashion, i.e., in such a way that the justifi-
cation does not depend on the role distribution considered, X �→ P, Y �→ O or

17 See Felscher [8]. Dialogicians like Rückert however oppose Felscher’s formulation of
dialogues, suggesting that his dialogue rules are fine-tuned so as to match certain
strategy-level desiderata, whereas the conceptual order should be the reverse and
strategy-level properties should emerge from an independently motivated definition
of the play level (personal communication). Therefore the dialogicians of the latter
kind still lack a justification for the claim that their dialogues capture intuitionistic
logic!

18 For logical pluralism, see [3]. For dialogical logic and logical pluralism, see [42, 48].
19 Cf., e.g., [27, p. 197], [28, pp. 41–42].

On Some Logic Games in Their Philosophical Context 97

X �→ O, Y �→ P? Insofar as the symmetry of the rules is semantically crucial,
the requirement of symmetry appears to extend to the justification of the rules.
If the grounds on the basis of which we may accept such rules are sensitive to
the role distribution, these rules as parts of our theoretical framework are, on
the whole, asymmetric — even if they could be schematically laid down with no
reference to role distributions.

If we consider how the particle rules could be justified, we observe that at least
two parameters must be fixed before we can proceed: a role distribution and a
semantic attribute associated with the type of dialogue at hand. The sorts of
commitments that are induced by the utterances of a player depend on his or her
role, and these commitments are relative to a semantic attribute. In particular,
there appears to be no hope in symmetrically motivating the rule for implication
in connection with the semantic attribute of validity. From the viewpoint of
validity, the rule can be motivated for the role distribution X �→ P, Y �→ O
as follows: if P has asserted A → B and O grants A, then P is committed to
asserting B under that assumption. On the other hand, the motivation for the
role distribution X �→ O, Y �→ P is totally different: if O has granted A → B,
then in order for P to be able to make use of this concession he must be prepared
to assert A, and if O does not go against that assertion she must then grant
B as well. Further, if we switch to the semantic attribute of material truth,
these justifications no longer work, since granting has no role in connection with
material truth. The particle rule for implication in connection with material
truth is justified by saying that if X asserts A→ B and Y asserts A, then X must
assert B; in this case the justification does not depend on the role distribution but
does depend on the semantic attribute. If dialogicians can be forced to accept
these allegations, their whole meaning theory will appear circular — because
then particle rules require for their justification some specific notion of semantic
attribute, which the dialogician however would like to define on the strategic
level utilizing the dialogues whose conceptual building blocks those very same
particle rules are.

How could the dialogicians meet the above critique? One possibility would be
to deny that particle rules are in need of justification to begin with, and to claim
that it makes as little sense to demand that they be further justified as it would
make to ask for a justification of why conjunction has the truth table it has in
classical logic, or why the rules of intuitionistic natural deduction look like they
do20. To this we could object that at least it should be possible to explicate such
basic rules in terms of the primitive informal notions of one’s theory. For example,
proof-conditional semanticists attempt to clarify their inference rules using what
they call ‘meaning explanations’ — using informally understood basic notions of
proof and constructive procedure to explicate specific formal proof rules. In their
case the informal notion explaining, and the formal notion to be explained, are
notions of the same level, so to say. By contrast, if one is to give such an informal
explanation to the particle rules — and if the above analysis is correct — then
one ends up applying an informally understood notion of semantic attribute to

20 Helge Rückert holds this view (personal communication).

98 T. Tulenheimo

clarify the particle rules. This would be unsatisfactory, as it would suggest that
conceptually the particle rules call for their explication the higher-order notion
of semantic attribute, after all. As to other possible responses, from Lorenzen’s
own viewpoint one might refer to his ‘methodic’ or reconstructive approach and
suggest that indeed we start from a situation where we already have notions
such as that of semantic attribute available, the whole point being to explicate
how the situation emerged. In such a synthetic approach there is no pretense
that we could jump outside the linguistic practice in the midst of which we
find ourselves. The goal is to understand the practice while partaking to it.
Some reference to higher-level notions in explicating their own emergence might
be warranted. Anyway, insisting that we just accept the particle rules in their
schematic form — requiring no further justification or explication — appears
too cheap a trick to be conceptually convincing.

3 GTS

Like Lorenzen in particular and the dialogical approach in general, also Hin-
tikka sees a crucial connection between meanings of expressions and correlated
actions. But whereas for the dialogicians the relevant actions are utterances of
sentences, for Hintikka the actions are related to words and phrases, which can
then be used to compose sentences. Also, the actions in question are not any
sort of speech acts (e.g., they do not consist of uttering a word). Instead, in
cases crucial to creating semantic relationships between language and reality —
‘reality’ standing here for what the language is about and what the language
is used to deal with — the activities are nonverbal and they consist of link-
ing words and phrases to objects in the world. In important cases (quantifiers)
the objects to which logical words are related are non-linguistic. The activities
are governed by rules. Practices maintaining such rules give rise to ‘language
games’ which Hintikka terms semantic games. Semantic relations do not prevail
abstractly and independently of human practices; to the contrary, they exist in
and through semantic games. Semantic games constitute semantic relations21.
The rules giving rise to semantic games are not argumentative or discursive, as
we proposed to label the dialogicians’ rules; they are correlative or projective. A
move in a semantic game consists of creating a correlation between a word and
an object; it is not any sort of communicative act.

Semantic games are two-player games defined for a language fragment. Here
we restrict attention to (classical) first-order logic. The task, then, is to single out
rules which correlate suitable actions with quantifiers and connectives, providing
meanings of these expressions. Assuming a pre-existing mastery of symbol mean-
ing — proficiency with the meanings of the items in the non-logical vocabulary
(constant and relation symbols) — the role of the GTS rules is to associate logi-
cal words with activities which give them their meaning22. When such rules are
21 For semantic games and Hintikka’s interpretation of Wittgenstein’s language games,

cf. e.g. [12, Ch. 3], [16, pp. 40–41, 67–69], [18, pp. 190–194, 212–236].
22 In GTS, interpreted first-order languages are considered. For ‘symbol meaning’ and

‘sentence meaning’ in connection with GTS, cf. [14, p. 26].

On Some Logic Games in Their Philosophical Context 99

provided for all logical words of the language fragment in question, they jointly
define, for every sentence of that fragment, a semantic game. More specifically,
when properly formulated, they determine a set of partial plays (sequences of
moves made in accordance with the game rules), as well as conditions for winning
and losing a play. Now, it is a trivial but consequential general feature of games
that as soon as the winning conditions and the set of partial plays of a game are
fixed, also all strategic properties of the game are fixed23. Unavoidably we get
two things at the price of one. The basis formed by the game rules gives rise to the
superstructure on which notions making use of strategic considerations reside. In
connection with semantic games there appear at the level of the superstructure
the notions of truth and falsity (in a model). Hintikka [14, pp. 127–128] speaks
of the ‘two hats’ problem when referring to the initially perhaps perplexing fact
that semantic games can serve two purposes which are as different as giving
meaning to the logical operators and constituting the notion of truth/providing
sentence meanings. He takes sentence meaning to consist of the condition that
must be satisfied in order for a sentence to be true. Failing to understand the
two sides of all games — play level and strategy level — could lead someone to
think that insofar as we can speak of truth at all, we need special game rules for
the word ‘true,’ so that any attempt to apply the notion of truth in connection
with one language game would force us to move to another language game. Hin-
tikka maintains that when the notion of game is correctly understood, it is seen
that the notion of truth is constituted by the very same language games that
yield the meanings of logical operators — it is neither a metalogical notion nor
a matter of switching to a fresh language game. Turning to speak of the truth
of first-order sentences simply marks a step from considerations pertaining to
particular moves to considerations pertaining to winning strategies of a suitable
player [14, p. 128].

Speaking of first-order logic, what are, then, the activities that according to
Hintikka’s analysis are associated with quantifiers? As Hintikka explains [16,
pp. 41, 67], Wittgenstein had taken it as a criterion for something to be an ob-
ject that it can be looked for and found. Applying this idea to quantifiers with
such objects as values, Hintikka took the activities associated with quantifiers
to be looking for and finding24. What does it mean, more specifically, that the
meanings of the quantifiers are given by means of these activities? Think of the
institution of searching and (possibly) finding. It can be viewed from two per-
spectives. On the one hand, we may think of searching as an activity which is
carried out by simple acts such as spotting an object and observing whether it
is of the sort looked for. One can perform such acts blindly, without any dis-
crimination as to which object to inspect. Carrying out activities like searching
admits of repetitions. Getting disappointed once or twice means nothing: the
search can go on. Typically, then, searching lends itself to a whole panorama of
realizations, some leading to success (finding), others not. This brings us to the

23 In technical terms, the extensive form of a game uniquely determines its strategic
form.

24 For a critique of this idea, see [24] and cf. [37, pp. 7–9].

100 T. Tulenheimo

second perspective on the institution of looking for and finding: the strategic
perspective. Since among the multitude of acts by means of which to implement
the task of searching, there are good ones and bad ones (relative to the purpose,
viz. finding), and since in general it depends on the circumstances which acts are
to be preferred to which others, searching presents itself as a strategic task —
in addition to being, from the first-mentioned perspective, merely a simple mat-
ter of blindly performing an act. Conceptually the blind acts are what first and
foremost constitute the language–world links and what other people can observe
us executing, without subjecting our actions to their efforts of understanding.
Any attempts to see us acting in a goal-oriented fashion or to analyze our ac-
tions in terms of notions such as intentions are results of a leap to the strategic
level. In brief, there are two ways to understand the activities of searching and
finding, to which we may refer as the ‘blind interpretation’ and the ‘strategic
interpretation.’ The former gives rise to the latter: indicating all possible blind
acts and specifying which of those yield the desired outcome, is all that is needed
for answering all questions of the strategic nature. This notwithstanding, when
speaking of the activities of looking for and finding, there is a tension between
the two interpretations and it is crucial to keep them apart. Hintikka [14, p. 128]
discusses basically the same distinction by speaking of ‘definitory rules’ and
‘strategic rules’ of semantic games — the former laying down winning condi-
tions as well as the available moves at a given position, the latter incorporating
comparisons between moves in terms of better and worse. Speaking of rules in
both cases may involve some risk of confusion. In order to specify a game, the
only rules needed are the rules of the former kind; the latter ‘rules’ are just
systematizations of strategic facts, themselves entirely fixed by the definitory
rules.

A further feature of institutions such as that of searching and finding is that
they may be considered as involving interaction of two players, call them player
1 and player 225. To remain on the heuristic level for a while, think of player 2
as the one who searches, while player 1 can affect the circumstances in which
player 2 may perform the act of selecting an object for inspection. In cases
where searching must result in success (finding) in a number of different cir-
cumstances, not just in one particular isolated case, there must be a strategy
yielding a suitable act for player 2 depending on the circumstances chosen by
player 1. We may, then, say that player 1 co-searches and seeks to co-find26.
Also the activities of player 1 can be seen from two perspectives (play level,
strategy level). But crucially, the success of player 1 is measured differently:
what is bad for the other is good for him. So if the result of the co-search by
player 1 is a certain scenario in which player 2 picks out an object not of the
suitable sort, player 1 wins. Else if player 2 hits on a suitable object in that
scenario, player 1 loses. As to the strategic side, player 1 has a way of guar-
anteeing a personally advantageous outcome if he can single out a scenario in

25 Let us agree that player 2 is female (‘she’) and player 1 male (‘he’).
26 Hintikka does not employ such terminology. Here the prefix ‘co-’ is intended to

connote duality, not anything done jointly.

On Some Logic Games in Their Philosophical Context 101

which player 2 cannot find a suitable object, no matter to which object the
latter turns attention. Player 2, again, holds the keys to an outcome advanta-
geous to her if for any scenario resulting from the co-search of the adversary,
she can find a suitable object. When the activities of looking for and finding
are considered in the context formed by a web of further activities, or simply
when these activities themselves are iterated, the ‘circumstances’ or ‘scenarios’ in
which player 2 must make her choices grow strategically more involved — while
the relevant blind actions remain of the same kind, totally irrespective of the
context.

Let us consider the semantic games for first-order logic in some detail. These
games are played relative to a model M of some non-logical vocabulary τ . Once
such a model is fixed, it is also fixed which atomic sentences, producible in
vocabulary τ , are true and which are false27. That a truth-value distribution
among the relevant atomic sentences is given at the outset is a special case of
the more general assumption that the relevant symbol meanings be given. (Their
being given means that the interpretations of the non-logical symbols are fixed
separately for every model in some appropriate class of models.) In addition
to the two players of the semantic games, there are two roles to consider: call
them V and F28. Bijective maps ρ : {V, F} → {1, 2} are role distributions. The
transposition of a role distribution ρ is denoted by ρ∗ and satisfies ρ∗(V) = ρ(F)
and ρ∗(F) = ρ(V). If M is a model of vocabulary τ , a is an element of its
domain, and c /∈ τ , then we write Mc

a for the model which is otherwise like M
but interprets the constant symbol c as the element a29. For every first-order
sentence A, model M and role distribution ρ : {V, F} → {1, 2}, a semantic game
G(A,M, ρ) is associated:30

1. Suppose A = R(c1, . . . , cn). If M |= A, the player whose role is V wins while
the player whose role is F loses; otherwise ρ(F) wins and ρ(V) loses.

2. If A = ¬B, then the play continues as G(B,M, ρ∗). That is, the players
switch roles and the play continues with the sentence B.

3. If A = (B ∧C), then ρ(F) makes a choice between left and right, and if D is
the corresponding conjunct, the play continues as G(D,M, ρ).

4. If A = (B ∨C), then ρ(V) makes a choice between left and right, and if D is
the corresponding disjunct, the play continues as G(D,M, ρ).

5. If A = ∀xB(x), then ρ(F) picks out some element a of the domain of M,
gives it a name unless it already has one, and if c is the name, the play
continues as G(B[x/c],Mc

a, ρ). In other words, the player having the role F

chooses an object out there and baptizes it if needed, whereafter the play
continues with the result of substituting the relevant constant symbol c for

27 If α is atomic, then ‘M |= α’ abbreviates ‘α is true in M.’
28 ‘V’ stands for verifier and ‘F’ for falsifier. For how to understand these terms, see

Section 5.
29 The model Mc

a is an expansion of M to the vocabulary τ ∪ {c}.
30 In GTS, implication is not given a game rule of its own; (A → B) is taken to be

defined as (¬A ∨ B).

102 T. Tulenheimo

all free occurrences of x in B(x). If the element had initially no name, then
as a result of the baptizing we no longer consider the model M but its
expansion, having an interpretation even for the new symbol c.

6. If A = ∃xB(x), then ρ(V) picks out some element a of the domain of M,
gives it a name unless it already has one, and if c is the name, the play
continues as G(B[x/c],Mc

a, ρ). Here it is the player whose role is V who
chooses an element and names it if needed.

Recall the two examples of plays of material dialogues depicted in Figures 3 and
4; here are examples of plays of the corresponding semantic games.

Example (a): Let us start with the sentence ¬∃x∀yRxy and the model M
whose domain consists of two objects which already have a name, t1 and t2.
Initially player 1 has the role F and player 2 the role V. The first thing that hap-
pens when the game is played is that the players switch roles: player 1 assumes
the role V and player 2 the role F, and the play continues with the unnegated
sentence ∃x∀yRxy. Then the player whose role is V, viz. player 1, chooses an
element of the domain. Suppose he picks out t2. Thereafter the play continues
with respect to ∀yRt2y, and the player whose role is F, i.e., player 2, must choose
an element. Suppose she chooses t1. So the play has come to an end. Since the
atomic sentence Rt2t1 is true in M, the player whose role is V — namely player
1 — wins the play. Observe that here there is no way of continuing the play once
the atomic level has been attained. In the corresponding material dialogue this
is possible, provided that player P has not yet consumed the repetition rank he
had initially chosen. As a matter of fact, there is a winning strategy for player
1 in the semantic game correlated with the sentence ¬∃x∀yRxy and the model
M. It consists of choosing the element t2 for ∃x. Both possible choices of player
2 for ∀y lead to a win for player 1.

Example (b): Let us look at the sentence ∃xPx → ∀xQx and the model N .
The domain of N consists of objects carrying the names t1, t2, t3, etc. First
recall (from footnote 30) that in connection with GTS implication is taken to
be defined in terms of disjunction and negation: ∃xPx → ∀xQx abbreviates
¬∃xPx ∨ ∀xQx. Since initially player 1 has the role F and player 2 the role
V, it is player 2 who starts by choosing a disjunct. Suppose she picks out the
right disjunct. The the play goes on with the sentence ∀xQx and the player
whose role is F selects an element of the domain, say t127. The play has come
to an end with the atomic sentence Qt127. Since this sentence is true in N , the
player whose role is V — i.e., player 2 — wins. Note that while the play of the
corresponding material dialogue depicted in Figure 4 is infinitely long, the play
of the relevant semantic game just described involves only two moves. Actually,
there is a winning strategy for player 2 in the semantic game associated with
the sentence ¬∃xPx∨∀xQx and the model N ; it consists simply of choosing the
right disjunct.

On Some Logic Games in Their Philosophical Context 103

In GTS one might wish to define the model-relative notions of truth and falsity
of a first-order sentence using semantic games in the following way, letting ρ0 or
the ‘initial role distribution’ satisfy ρ0(V) = 2 and ρ0(F) = 131.

– Truth: A is true inM, if there is a winning strategy for player 2 in G(A,M, ρ0)
– Falsity: A is false in M, if there is a winning strategy for player 1 in

G(A,M, ρ0).

The GTS definition of what it means for a sentence to be true is linked to the
standard model-theoretical Tarski-type definition by the following fact. Assume
the Axiom of Choice. Then for any model M of any vocabulary τ , and for any
first-order sentence A written in the vocabulary τ , we have: M |= A holds in
the Tarskian sense if and only if there is a winning strategy for player 2 in game
G(A,M, ρ0)32.

By inspecting the game rules it is immediate that for any first-order sentence
A, all plays of game G(A,M, ρ) come to an end in finitely many steps. The
number of steps needed is bounded above by the maximum number of nested
logical operators in A. This may be compared with the case of dialogues (both
formal and material), where the syntax of the thesis does not alone suffice to
yield a finite bound to the length of a play: this is why the players choose the
repetition ranks. The reader may check, for instance, that taking the sentence
¬∀x∃yR(x, y) as the thesis of a formal dialogue, whether classical or intuition-
istic, player P can by his choice of repetition rank make a play of the dialogue
exceed any given finite length, while player O forces a win simply by passively
responding to P’s questions and waiting until P could only continue by overrun-
ning his rank. For comparison, any play of the semantic game associated with
the sentence ¬∀x∃yR(x, y) — played relative to any suitable model and with
either role distribution — is made up of three steps, one of which transposes
the roles and two of which are moves consisting of the players’ picking out an
object — player ρ(F) first, player ρ(V) then. When comparing GTS to other
model-theoretical approaches to semantics, it is worth noting that in GTS we
need neither to introduce variable assignments nor to assume that all elements
of the domain carry a preassigned name; the former assumption is needed in the
objectual Tarski-type semantics of quantifiers and the latter in the substitutional
Tarski-type semantics. In particular GTS does not interpret quantifiers substi-
tutionally; they are evaluated by choosing an extralinguistic object from the
domain (which is then given a name unless it already has one), cf. [12, pp. 102–
104]. Quantifiers are processed by choosing locally — relative to a play — names
to stand as signposts for the objects picked out. When a new play is considered,

31 Semantic games for first-order logic are games of perfect information with finite
horizon (for each game there is a fixed finite upper bound to the number of moves
in a play of that game). By the Gale-Stewart theorem, then, semantic games are
determined.

32 See [20, pp. 6–7], [23, p. 94]. Hodges [24] notes that we can avoid the assumption of
the Axiom of Choice by adopting a weakened notion of strategy (nondeterministic
strategies).

104 T. Tulenheimo

those temporary labels are deleted; they are not kept in store for future usage.
Hintikka and Kulas [20, pp. 87–112] have suggested that linguistic phenomena
such as anaphora might be best analyzed with reference to such play-relative
labels standing for individuals.

As was already stressed, moves made in accordance with GTS rules have noth-
ing to do with speech acts such as uttering. In fact, the players of the semantic
games must not be thought of as actual language users or as participants of a
conversation. Hintikka has attributed to Peirce the contrary view according to
which the players of language games are the utterer and the audience, cf. [17,
p. 538]. In Hintikka’s own view, language users do not play semantic games. In-
stead, they reason about semantic games. They make hypotheses and predictions
about them. Asserting a sentence involving quantifiers is to make a claim about
what can and what cannot happen when a certain language game is played. Using
language involving quantifiers requires mastering the rules of the corresponding
semantic games33. They provide the relevant semantic background for language
use. Hintikka has ascribed this latter view on language games to Wittgenstein.

4 Threats of Circularity

Both dialogical logic and GTS are meant by their exponents to offer a substantial
meaning theory for logical words. In this respect they differ from Tarski’s model-
theoretical truth definition, which cannot offer a substantial meaning theory: its
precondition is that logical words such as ‘and,’ ‘not,’ and ‘all’ are already under-
stood, and it uses them to recursively bestow truth conditions on a recursively
defined set of strings34. It would take a gross misunderstanding of the goal of
a model-theoretical truth definition for strings involving symbols such as ∧, ¬
and ∀ to think that it attempts to offer a substantial meaning theory for logical
words.

It was suggested above that in a closer analysis dialogical logic does not fare
well in avoiding circularity. Dialogue rules relate utterances to other utterances.
Particle rules are supposed to lay down the commitments to which an utterance
leads, as well as to explicate the ways of testing such commitments. Whether the
dialogician says that one is committed to the uttered sentence’s having a certain
semantic attribute, or to the defensibility of the utterance against any critique
by the adversary, the notion of semantic attribute is presupposed: the attribute
of there existing a certain sort of strategy. Commitment is a strategic notion,
in an explosive manner: not only does commitment require finding a response
to all attacks; any one of those responses gives rise to a new commitment. We
are caught in circularity: while the goal is to capture a semantic attribute at the
strategic level, it is presupposed already at the play level — not in the sense that
particle rules could not be laid down with no reference to strategic notions, but
in the sense that the justification of those particle rules appears unavoidably to
require ascent to the strategic level. What could be a way out for the dialogician?
33 See, e.g., [12, pp. 63–66], [14, p. 128], [16, p. 538].
34 Cf., e.g., [12, p. 58, footnote 12].

On Some Logic Games in Their Philosophical Context 105

As already suggested in Section 2, one option would be to insist that particle
rules are in need of no justification precisely because they are, according to the
dialogican, the primitive rules which are responsible for the meanings of logical
operators. Another option is to actually present a credible account of particle
rules which completely avoids resorting to strategic notions. And a third option
would be to say that particle rules are a part of the dialogical reconstruction of
the linguistic reality in the midst of which we find ourselves, and for this reason
they may be motivated in terms of characteristics (such as semantic attributes)
that are in an unreconstructed form available to be theorized about, even though
in the reconstruction they emerge only on the basis of those particle rules. None
of these options appears to be developed in the literature in a detailed and
satisfactory manner. If this conceptual problem about game rules cannot be
solved, one must give up the idea that dialogues have a meaning-theoretically
fundamental role; they are then reduced to mere systematizations of ways of
intersubjectively agreeing upon the semantic attribute of a sentence, rather than
providing a substantial analysis of meanings of the logical operators and yielding
an explication or definition of what it is for a sentence to have a given semantic
attribute.

Is GTS, then, definitely beyond the reach of any criticism of circularity?
Promisingly for GTS, the linguistic entities on which the game rules operate
(logical words) are not of the same type as those linguistic entities (sentences)
to which the relevant semantic attributes (truth, falsity) are ascribed. The game
rules are in terms of actions that pertain either to the world (quantifiers) or to
the syntax (junctions) or correspond to a role shift (negation). Yet, GTS cannot
in any obvious way be said to go against Frege’s context principle according to
which words only have meaning in a sentential context. While the blind activities
of looking for and finding, considered in isolation, arguably avoid presupposing
the notion of truth, these activities are in GTS employed to provide the mean-
ings of quantifiers (and other logical expressions) precisely relative to sentential
contexts — as already a superficial inspection of the GTS rules reveals. In fact,
the relevant sentential context serves to define what is looked for, and provides
the criteria of having found! E.g., the game rule for the existential quantifier tells
us that if the position is ∃xB(x), the player whose role is V picks out an object,
call it c, whereafter the play goes on from the position B[x/c]. The choice by the
relevant player is supposed to be the result of a blind search. What was looked
for? An object satisfying the formula B(x). On which condition is c a successful
choice? On the condition that the sentence B[x/c] is true. Hintikka [14, p. 26]
wishes to reassure us that the notion of truth is not involved in his game rules,
but is this view tenable? Technically speaking we can recursively generate the
set of all partial plays of a semantic game — just as we can, for that matter,
generate all partial plays of a dialogue — without presupposing semantic at-
tributes. The problem is interpretational: what justifies the chosen rules? In the
case of GTS, how do the recursive rules manage to constitute the meanings of
quantifiers without presupposing the notion of truth? The problem appears gen-
uine since the rules are relative to a sentential context and the objects looked

106 T. Tulenheimo

for are described in terms of the truth of sentences obtained syntactically from
that very sentential context. There is a way out, but it makes the GTS rules
appear semantically less innocent than Hintikka seems willing to admit. The
justification of the game rules is not circular: (a) in order to motivate the rule
applied to the quantifier Qx in a sentence QxB(x) of quantifier rank n + 1, the
associated activities of searching and finding can be explicated with reference to
the truth of sentences of quantifier rank at most n. What is also crucial is that
(b) the act of processing the sentence QxB(x) does not even implicitly involve
the attribution of truth to this sentence (or any other sentence of quantifier
rank at least n + 1), it is all about relating the logical word Qx to an object of
the domain, relative to a sentential context which is specified by a sentence of
quantifier rank at most n. It would be a misrepresentation of Hintikka’s ideas
to suggest that his game rule, say, for the existential quantifier incorporates the
following blatantly circular justification: in order for the sentence ∃xB(x) to be
true, there must be a witness somewhere, call it c, so that B[x/c] is true. Such a
transition from ∃xB(x) to B[x/c] is of course truth preserving, but as a justifica-
tion for Hintikka’s game rule it would be circular, since truth is a strategy-level
notion and can only on pain of circularity be applied to the input of a game rule
when the justification of that game rule is being considered. The dialogicians’
approach defies a clarification like the one just presented in items (a) and (b) for
GTS: in order to justify the particle rules, we must explicate the ascription of a
semantic attribute to an utterance in terms of ascriptions of semantic attributes
to logically simpler utterances. Even if the GTS rules are not circular in this
way, the notion of truth seems to force its appearance to the explication of GTS
rules, rendering their justification a more subtle matter than first meets the eye.
In the present paper we content ourselves to pointing out that this issue deserves
attention when discussing merits and dismerits of GTS as a meaning-theoretical
approach.

5 Ambiguity of ‘Verification’

The way in which GTS defines the notion of truth of a sentence makes it not
so far-fetched to think of GTS as some sort of ‘verificationist’ meaning the-
ory. Winning strategies of player 2 in the semantic game G(A,M, ρ0) ‘verify’
the sentence A relative to the model M. These strategies, then, may look
like perfect candidates for means of establishing the truth of A in M. Such
a verificationist perspective may seem to link semantic games in an interesting
way to proof-theoretical considerations and to the anti-realist or justification-
ist meaning theory of philosophers like Dummett and Prawitz,35 as well as to
meaning-theoretical ideas underlying dialogical logic. It is the purpose of this
section to clarify in which sense these impressions are correct and in which sense
they are not.
35 For work in this direction, see [47]. For problems, see [14, pp. 22–45], [19, pp. 34–35,

38–42]. By ‘anti-realism’ I mean the idea according to which truth-ascriptions are
meaningful only in the presence of means of recognizing whether the ascription is
correct (cf., e.g., [7, Ch. 5]).

On Some Logic Games in Their Philosophical Context 107

It must be noted, to begin with, that in spite of its ‘verificationist’ charac-
ter, the meaning theory to which GTS gives rise is perfectly truth-conditional.
Truth conditions originate from semantic games. The condition for sentence A
to be true in model M is simply that there exists a winning strategy for player
2 in game G(A,M, ρ0). The notion of verification emerging from GTS must be
kept apart from the notion of verification operative in versions of anti-realism.
Hintikka’s position is not one of an anti-realist. Actually, as Hintikka [13] ar-
gues, GTS offers a middle ground between entirely ‘static’ variants of the truth-
conditional view and the verificationist views which lay stress on the epistemic
capacities of the language users.

From the anti-realist perspective, it makes sense to ascribe truth only to a
sentence for which we possess a means of recognizing it as true; similar remarks
apply to attributions of any semantic attribute, say falsity or validity. The dialog-
ical meaning theory could arguably be seen as a variant of anti-realism: ascribing
a semantic attribute to the sentence A amounts to there being a means for P
to force, in a suitable dialogue about A, intersubjective recognition of A’s hav-
ing this attribute. At the very least, winning conditions for individual plays of
dialogues have such an anti-realist flavor (cf. footnote 11). For the realist, by con-
trast, meaningful sentences have truth conditions which prevail or fail to prevail
independently of our epistemic efforts such as inference or argumentation; it is
one thing for a sentence to be true and quite another for us to be in a position
to say that we know it is true. The realist considers it as a fatal mistake to
think that the activities used for establishing material truth could be modeled
on proofs — activities by means of which we establish logical truths (validities),
cf., e.g., [19, pp. 35, 38]. This is because for the realist the proofs of logical truths
are simply a matter of symbol manipulation in accordance with rules whose cor-
rectness does not depend on what the world happens to be like; their application
is a language-internal activity and as such cannot possibly create the sorts of
links between language and the world that are the sine qua non of all semantics.
The anti-realist, again, finds it entirely appropriate to liken processes of estab-
lishing material truths to logical and mathematical proofs, since all of these are
means of gaining knowledge of semantic attributes of sentences. The anti-realist
would, furthermore, not accept the allegation that these activities remain on the
level of symbol manipulation; these activities are rather seen as constitutive of
sentence meaning.

For purposes of disambiguation, let us use the terms ‘verification1’ and
‘verification2’ so that the latter stands for winning strategies of player 2 in se-
mantic games, whereas the former stands for real-life verification processes36.
More specifically, ‘verification1’ will be used to designate notions such as means

36 The distinction verification1/verification2 resembles the distinction proof/proof ob-
ject made in Martin-Löf’s type theory (cf., e.g., [51]). There, proofs are what provide
epistemic access to proof objects. On the other hand, the latter distinction has its
most obvious domain of application in connection with formal proofs, and therefore
proof objects are to be compared primarily with P’s winning strategies in formal
dialogues rather than with winning strategies of player 2 in semantic games.

108 T. Tulenheimo

of gaining knowledge (of the truth of a sentence), or recognizing the truth of
a sentence, or establishing the sentence as true. Also processes or strategies or
plans or ‘methods’ of knowledge-seeking are counted as verifications1. In a gen-
eralized sense mathematical proofs, as well as proofs establishing logical truths
(validities) are verifications1. Let us take an example. Consider evaluating the
sentence ‘There are diamonds in Kuhmo’ relative to the actual world. The fol-
lowing could be the specification of a real-life procedure for coming to know the
truth of this sentence — or putting oneself in a position to ascribe truth to it:
drive 120 kilometers to the northeast, follow the marked path, proceed to drill,
send the sample to the laboratory and wait for the results of the analysis. By
contrast, a winning strategy of player 2 in the relevant semantic game would con-
sist of singling out coordinates for a diamond lying in a kimberlite pipe within
the boundaries of Kuhmo. As this example for its part illustrates, there are un-
mistakable formal similarities between verifications1 and verifications2, but there
are also crucial differences. Verifications1 deliver knowledge of truths, they are
means of knowledge acquisition — instead of merely constituting the requisites
for a sentence’s being true. Verifications2, again, are those strategy-level entities
emerging from semantic games whose existence constitutes the truth of a sen-
tence. Their precise relationship is that verifications1 implement verifications2
or are their epistemically accessible realizations. Verification1 of the sentence A
aims to produce verification2 of this sentence in a way that allows us to recognize
that a verification2 of A has been yielded — thereby guaranteeing not only that
A is true, but also that we know it to be true; cf. [14, p. 35].

Regarding the two notions of verification, it may be noted that while in logical
empiricism certain sorts of verifications1 were used to formulate a criterion of
meaningfulness of sentences, anti-realism is more liberal in meaningfulness at-
tributions but uses verifications1 to articulate a criterion for ascribing truth to
sentences. In GTS, verifications2 constitute truth. Only when attention is turned
from truth to knowledge of truths, verifications1 enter the picture as implemen-
tations of verifications2. Semantic relations exist only via the activities which
give rise to semantic games, but it does not follow that the question of the truth
of a sentence depends on the epistemic abilities of the language users, cf. [14,
pp. 42–43]. The meaning theory of GTS is not a variant of anti-realism. Just
because the semantic links are created by human activities does not mean that
there are no objective facts about those links. Attempts to gain knowledge of
such facts may be blurred by epistemic shortcomings, but this does not imply
that the facts themselves are not objective.

An important part of the reason why the views of Hintikka and the anti-realists
are so totally at odds with each other on the issue of truth lies in the sorts of
activities that the two parties take to provide meanings of linguistic expressions.
The anti-realists consider actions pertaining to sentences. They conclude that
the assertibility conditions of a sentence such as ∀xB(x), if it involves quantifica-
tion over an infinite totality, can never be satisfied, since we cannot possess means

On Some Logic Games in Their Philosophical Context 109

of recognizing the requisite infinity of facts37. In GTS, again, the actions are
related to words used to compose sentences, and it is a perfectly manageable
human activity to associate the quantifier ∀x with a single object in an infinite
domain. The truth of ∀xB(x) is not a matter of a one-time ascription whose
justification is subject to our human limitations; it is constituted by the totality
of the different ways in which the quantifier ∀x may be correlated with an object,
any such object satisfying the formula B(x). From the viewpoint of GTS, the
notion of truth emerges via activities giving meanings to words. It might be
worthwhile to stress that consequently there is no need for separate language
games for ‘truth.’ Also, we do not learn to apply the notion of truth case by
case, depending on the sort of sentence and the sort of circumstances at hand.

6 A Fourfold Division of Foundational Views

Van Heijenoort [10] distinguished between two essentially different ways of under-
standing the scope and limits of logic and the character of logical theorizing: logic
as language and logic as calculus. The former view (which van Heijenoort attributes
to Frege) is characterized by the idea of the universality of logic. We cannot mean-
ingfully consider varying the domain of quantification; there is one and only one
universe, it is fixed, and it comprises all that there is. Further, we cannot assume an
outsider’s perspective on logic; we cannot theorize about it from above, metatheo-
retical questions are notmeaningful, and we cannot systematically vary interpreta-
tions of non-logical symbols in the sense of developing a model theory or an explicit
formal semantics. Positively, logical research takes the form of studying formal sys-
tems: we must content ourselves with symbol manipulation — developing explicit
semantic ruleswould require a disinterested perspective that we cannot attain. Un-
der the contrasting view, logic is a calculus in the sense of something that can be
re-interpreted: the domain of quantification can be changed and interpretations of
non-logical symbols systematically varied.Metatheoretical questions canbe posed.
Van Heijenoort mentions Löwenheim as an early representative of the latter view.
The idea of logic as calculus, then, gives rise to model-theoretical considerations.

Hintikka has proposed to generalize van Heijenoort’s distinction from logic to
language at large, speaking of ‘language as the universal medium’ and ‘language
as calculus.’38 The former view is associated with the ‘universalist tradition,’ ac-
cording to which we cannot step outside our language and theorize about it from
outside. Semantics in general and the notion of truth in particular are considered
ineffable. Varying interpretations and reasoning in terms of alternative ‘possible
worlds’ is not judged meaningful. By contrast, the idea of ‘language as calculus’
goes together with the ‘model-theoretical tradition’ within which it is considered
possible to explicitly theorize about semantics, vary interpretations and resort to
many-world conceptualizations.Hintikka includesFrege,Russell andWittgenstein
37 If a concrete model is needed, consider the model M = (D, BM) with D =

{a1, a2, . . .} = BM, where ai and aj are distinct for any distinct i, j. Thus, nothing
else is assumed of the structure of the elements of the domain except that they all
satisfy the unary predicate B.

38 See the articles collected in [15].

110 T. Tulenheimo

in the first-mentioned tradition, and Gödel and Peirce in the second tradition39. He
refers to the two views as ‘ultimate presuppositions’ [15, p. 21] because typically
they are not expressly asserted by the philosophers adhering to them. Besides, the
different ideas lumped together in terms of the distinction need not be neatly dis-
tributed in the case of a particular thinker; one and the same person may enter-
tain ideas from both sides. In the 1930s Carnap belonged to the universalist camp,
switching to the model-theoretical side during his later period. Tarski, again, ap-
plied model-theoretical methods freely to formal languages but was a universalist
regarding natural language [15, p. 108].

Hintikka sees the two views as involving contrasting assumptions about the
relation between language and reality. The way in which he sees the distinc-
tion is predicated on his unquestioned conviction that semantics is a matter of
creating and maintaining objectively prevailing language–world links. For the
universalist such links are a precondition of our language of which nothing can
be said in the language itself, while a representative of the calculus view finds
it possible to theorize about such links. On the other hand, we have noted that
philosophers like Dummett, Lorenzen and Prawitz adopt a different approach
to meaning — an approach where sentences are conferred meaning via epistem-
ically conditioned activities associated with those sentences. It seems preferable
to phrase the distinction so as not to rule out at the outset such an alternative
meaning-theoretical view. Consequently, let us distinguish between ‘universal-
ism’ and ‘anti-universalism.’ Universalism regards it as impossible to explicitly
theorize about semantics (no matter how the meanings of linguistic expressions
are thought to arise). According to anti-universalism, again, explicit semantic
theorizing is possible and we can systematically vary those factors that give
rise to meanings of linguistic expressions (again irrespective of one’s theoretical
standpoint on semantics).

Let us now consider the fourfold division determined jointly by the two dis-
tinctions realism/anti-realism and universalism/anti-universalism. For each of
the resulting four categories, we may ask for examples of philosophers belonging
to the category. Frege and Wittgenstein of the Tractatus are clear examples of
realist universalists, and Hintikka is a realist anti-universalist. It appears cor-
rect to classify Dummett as an anti-realist universalist40. But who could be an

39 While in particular Frege’s distinction between Bedeutung and Sinn certainly serves
to increase awareness of the fact that the referents of lexical items might be different
from what they in fact are, only when phrased by Carnap as the distinction between
extension and intension in the context of a totality of possible states of affairs did this
distinction lead to properly model-theoretical considerations.

40 Dummett is prepared to consider different domains of quantification and recognizes
the possibility of varying interpretations. Yet he thinks that a meaning theory of a
specific language deals with a single interpretation: the ‘intended’ or ‘correct’ one [6,
p. 20]; he maintains that meaning is a one-world issue. Further, proof-theoretically
motivated explications of meanings of logical constants and justifications of logi-
cal laws are in keeping with the universalist attitude. They are language-internal
comments on how aspects of the same language work, not any metasystematic char-
acterizations.

On Some Logic Games in Their Philosophical Context 111

anti-realist anti-universalist? That would mean imposing epistemic criteria on
truth ascriptions, but at the same time seeing semantic theorizing as essentially
relying on systematic variation of meanings conferred to linguistic expressions.
Lorenzen appears to fulfill these criteria. It is correct that he comes close to the
universalists in maintaining that we cannot posit ourselves outside our language
— that natural language is a boat from which we cannot disembark [32, p. 28]
— but he refuses to accept as a consequence that we could not attempt to ‘me-
thodically construct’ the practical preconditions of our language. The starting
point for our theorizing is a complex linguistic practice in the midst of which
we find ourselves; the philosophical task is to understand how it has emerged by
effecting its ‘practical transcendental deduction’ from a network of postulated
simple actions. While a coherent universalist finds it literally impossible to pro-
nounce upon semantic relations (any comments on them take the form of indirect
clues or perhaps metaphors), Lorenzen takes understanding a linguistic practice
to consist of postulating suitable simple practices and methodically showing
how the complex practice may emerge from these ingredients. Lorenzen’s anti-
universalism has two roots. On the one hand, a given linguistic practice might
admit of a variety of rational reconstructions. On the other hand, one and the
same syntax can in principle be associated with a variety of practices; thereby
even meanings associated with logical expressions can be varied (whereas the
model-theoretical variant of anti-universalism varies domains of quantification
and interpretations of non-logical symbols). The latter possibility is realized no-
tably in the difference between classical and intuitionistic dialogue rules; more
specifically, in this case the particle rules remain the same and certain structural
rules are varied.

As the considerations in the present paper for their part show, systematically
comparing the two game-based approaches to philosophical meaning theory —
GTS and dialogical logic — offers insights into many highly interesting issues
in the philosophy of logic. In particular, despite the fact that these approaches
share some important conceptual tools, the associated philosophical views are
in most respects very different indeed.

References

[1] Abramsky, S., Jagadeesan, R., Malacaria, P.: Games and Full Abstraction for
PCF. Information and Computation 163(2), 409–470 (2000)

[2] Auxier, R.E., Hahn, L.E. (eds.): The Philosophy of Jaakko Hintikka. Library of
Living Philosophers, vol. 30. Open Court, Chicago (2006)

[3] Beall, J.C., Restall, G.: Logical Pluralism. Oxford University Press, Oxford (2006)
[4] van Benthem, J.: Logic, Rational Agency, and Intelligent Interaction. ILLC Pre-

publication Series, PP-2008-6 (2008)
[5] Clark, R.: Games, Quantification and Discourse Structure. In: [36], pp. 139–150

(2009)
[6] Dummett, M.: The Logical Basis of Metaphysics. Harvard University Press, Cam-

bridge (1991)
[7] Dummett, M.: Thought and Reality. Clarendon Press, Oxford (2006)

112 T. Tulenheimo

[8] Felscher, W.: Dialogues, Strategies, and Intuitionistic Provability. Annals of Pure
and Applied Logic 28, 217–254 (1985)

[9] Girard, J.-Y.: Locus Solum. Mathematical Structures in Computer Science 11,
301–506 (2001)

[10] van Heijenoort, J.: Logic as Calculus and Logic as Language. Synthese 17, 324–330
(1967)

[11] Hintikka, J.: Language-Games for Quantifiers. In: Rescher, N. (ed.) Studies in
Logical Theory, pp. 46–72. Basil Blackwell, Oxford (1968)

[12] Hintikka, J.: Logic, Language-Games, and Information: Kantian Themes in the
Philosophy of Logic. Clarendon Press, Oxford (1973)

[13] Hintikka, J.: Game-Theoretical Semantics as a Synthesis of Verificationist and
Truth-Conditional Meaning Theories. In: LePore, E. (ed.) New Directions in Se-
mantics, pp. 235–258. Academic Press, London (1987)

[14] Hintikka, J.: The Principles of Mathematics Revisited. Cambridge University
Press, Cambridge (1996)

[15] Hintikka, J.: Lingua Universalis vs. Calculus Ratiocinator: An Ultimate Presuppo-
sition of Twentieth-Century Philosophy. Jaakko Hintikka: Selected Papers, vol. 2.
Kluwer, Dordrecht (1997)

[16] Hintikka, J.: Intellectual Autobiography. In: [2], pp. 3–84 (2006)
[17] Hintikka, J.: Reply to Wilfrid Hodges. In: [2], pp. 535–540 (2006)
[18] Hintikka, J., Hintikka, M.B.: Investigating Wittgenstein. Basil Blackwell, Oxford

(1986)
[19] Hintikka, J., Kulas, J.: The Game of Language: Studies in Game-Theoretical

Semantics and Its Applications. Reidel, Dordrecht (1983)
[20] Hintikka, J., Kulas, J.: Anaphora and Definite Descriptions: Two Applications of

Game-Theoretical Semantics. Reidel, Dordrecht (1985)
[21] Hintikka, J., Sandu, G.: On the Methodology of Linguistics: A Case Study. Basic

Blackwell, Oxford (1991)
[22] Hintikka, J., Sandu, G.: Game-Theoretical Semantics. In: van Benthem, J., ter

Meulen, A. (eds.) Handbook of Logic and Language, pp. 361–410. Elsevier,
Amsterdam (1997)

[23] Hodges, W.: Elementary Predicate Logic. In: Gabbay, D.M., Guenthner, F. (eds.)
Handbook of Philosophical Logic, vol. 1, pp. 1–131. Reidel, Dordrecht (1983)

[24] Hodges, W.: Logic and Games. In: Zalta, E. (ed.) The Stanford Encyclopedia of
Philosophy (2006) (Summer 2006 Edition),
http://plato.stanford.edu/archives/sum2006/entries/logic-games/

[25] Hyland, J.M.E., Ong, L.: On Full Abstraction for PCF I, II, and III. Information
and Computation 163(1), 285–408 (2000)

[26] Japaridze, G.: Introduction to Computability Logic. Annals of Pure and Applied
Logic 123, 1–99 (2003)

[27] Kamlah, W., Lorenzen, P.: Logische Propädeutik oder Vorschule des vernünftigen
Redens. Bibliographisches Institut, Mannheim (1967)

[28] Lorenz, K.: Dialogspiele als semantische Grundlage von Logikkalkülen. Archiv für
mathematische Logik und Grundlagenforschung 11, 32–55, 73–100 (1967)

[29] Lorenzen, P.: Logik und Agon. In: Atti del, X.I.I. (ed.) Congresso Internazionale
di Filosofia (Venezia, 1958), pp. 187–194. Sansoni, Firenze (1960)

[30] Lorenzen, P.: Ein dialogisches Konstruktivitätskriterium. In: Infinitistic Methods,
pp. 193–200. Pergamon Press, New York (1961)

[31] Lorenzen, P.: Metamathematik. Bibliographisches Institut, Mannheim (1962)
[32] Lorenzen, P.: Methodisches Denken. Suhrkamp, Frankfurt am Main (1968)

http://plato.stanford.edu/archives/sum2006/entries/logic-games/

On Some Logic Games in Their Philosophical Context 113

[33] Lorenzen, P.: Normative Logic and Ethics. Bibliographisches Institut, Mannheim
(1969)

[34] Lorenzen, P.: Die dialogische Begründung von Logikkalkülen. In: Gethmann,
C.F. (ed.) Theorie des wissenschaftlichen Argumentierens, pp. 43–69. Suhrkamp,
Frankfurt am Main (1980)

[35] Lorenzen, P., Lorenz, K.: Dialogische Logik. Wissenschaftliche Buchgesellschaft,
Darmstadt (1978)

[36] Majer, O., Pietarinen, A.-V., Tulenheimo, T. (eds.): Games: Unifying Logic, Lan-
guage, and Philosophy. Springer, Heidelberg (2009)

[37] Marion, M.: Why Play Logical Games? In: [36], pp. 3–26 (2009)
[38] Peacock, C.: The Theory of Meaning in Analytical Philosophy. In: Fløistad, G.

(ed.) Contemporary Philosophy, pp. 35–56. Nijhoff, The Hague (1981)
[39] Pietarinen, A.-V.: Most Even Budged Yet: Some Cases for Game-Theoretic Se-

mantics in Natural Language. Theoretical Linguistics 27, 20–54 (2001)
[40] Prawitz, D.: Meaning and Proofs: On the Conflict Between Classical and Intu-

itionistic Logic. Theoria 43, 2–40 (1977)
[41] Rahman, S., Carnielli, W.: The Dialogical Approach to Paraconsistency. Syn-

these 125, 201–232 (2000)
[42] Rahman, S., Keiff, L.: On How to Be a Dialogician. In: Vanderveken, D. (ed.)

Logic, Thought and Action, pp. 359–408. Springer, New York (2005)
[43] Rahman, S., Rückert, H.: Dialogische Logik und Relevanz. Universität des Saar-

landes, memo no. 27 (December 1998)
[44] Rahman, S., Rückert, H.: Eine neue dialogische Semantik für lineare Logik. In:

[49], pp. 141–172 (2007)
[45] Rahman, S., Rückert, H., Fischmann, M.: On Dialogues and Ontology. The Dia-

logical Approach to Free Logic. Logique et Analyse 160, 357–374 (1997)
[46] Rahman, S., Tulenheimo, T.: From Games to Dialogues and Back: Towards a

General Frame for Validity. In: [36], pp. 153–208 (2009)
[47] Ranta, A.: Propositions as Games as Types. Synthese 76, 377–395 (1988)
[48] Rückert, H.: Why Dialogical Logic? In: Wansing, H. (ed.) Essays on Non-Classical

Logic, pp. 15–30. World Scientific, London (2001); reprinted in [49], pp. 15–30
[49] Rückert, H.: Dialogues as a Dynamic Framework for Logic. Ph.D. thesis. Depart-

ment of Philosophy, Universiteit Leiden (2007)
[50] Saarinen, E.: Dialogue Semantics versus Game-Theoretical Semantics. In: Pro-

ceedings of the Biennial Meeting of the Philosophy of Science Association, pp.
41–59 (1978)

[51] Sundholm, G.: Proof-Theoretical Semantics and Fregean Identity Criteria for
Propositions. The Monist 77, 294–314 (1994)

[52] Tulenheimo, T.: Comparative Remarks on Dialogical Logic and Game-Theoretical
Semantics. In: Bour, P.E., Rebuschi, M., Rollet, L. (eds.) Construction. Festschrift
for Gerhard Heinzmann, pp. 417–430. College Publications, London (2010)

Natural-Language Syntax as Procedures for
Interpretation: The Dynamics of Ellipsis

Construal

Ruth Kempson1, Eleni Gregoromichelaki1, Wilfried Meyer-Viol1,
Matthew Purver2, Graham White2, and Ronnie Cann3

1 Philosophy Department, King’s College London
2 School of Electronic Engineering and Computer Science,

Queen Mary University of London
3 Linguistics and English Language, University of Edinburgh

Abstract. In this paper we set out the preliminaries needed for a for-
mal theory of context, relative to a linguistic framework in which natural-
language syntax is defined as procedures for context-dependent
interpretation. Dynamic Syntax provides a formalism where both rep-
resentations of content and context are defined dynamically and struc-
turally, with time-linear monotonic growth across sequences of partial
trees as the core structure-inducing notion. The primary data involve
elliptical fragments, as these provide less familiar evidence of the req-
uisite concept of context than anaphora, but equally central. As part
of our sketch of the framework, we show how apparent anomalies for
a time-linear basis for interpretation can be straightforwardly charac-
terised once we adopt a new perspective on syntax as the dynamics of
transitions between parse-states. We then take this as the basis for pro-
viding an integrated account of ellipsis construal. And, as a bonus, we
will show how this intrinsically dynamic perspective extends in a seam-
less way to dialogue exchanges with free shifting of role between speaking
and hearing (split-utterances). We shall argue that what is required to
explain such dialogue phenomena is for contexts, as representations of
content, to include not merely partial structures but also the sequence
of actions that led to such structures.

1 Preliminaries

Despite extensive research on the context-dependence of natural-language (NL)
understanding over the last thirty years, with formal modelling of a wide range
of individual phenomena, there has been little attempt to bring everything to-
gether in order to seek an overall concept of context-dependence. In particular,
ellipsis has been treated wholly differently from anaphora, despite the fact that,
like anaphora, ellipsis is a phenomenon which, by definition, exhibits radical
context-dependency. An elliptical construction is one “that lacks an element
that is, nevertheless, recoverable or inferable from the context” (Wikipedia: el-
lipsis). This characterisation corresponds to the robust folk intuition that, in

Lecomte and S. Tronçon (Eds.): PRELUDE 2010, LNAI 6505, pp. 114–133, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Natural-Language Syntax as Procedures for Interpretation 115

language use, expressions can be omitted because context fully determines the
way the fragment utterance is to be understood. Seen from this point of view, it
is reasonable to expect that the phenomenon of ellipsis will provide a basis from
which the notion of context needed for language interpretation can be explored;
and indeed in this paper we shall use investigation of ellipsis exactly to this end.
As [Purver et al., 2006; Cann et al., 2007] argue, if suitably dynamic concepts of
structure and context are defined, a unitary account of ellipsis, in all contexts,
can be provided making sense of all the distinct aspects of context-dependence
exhibited in language use.

2 Ellipsis and the Syntax-Semantics Interface

Current accounts of ellipsis do not in general purport to provide a point of depar-
ture for the study of context [though cf. Ginzburg and Cooper, 2004; Fernández,
2006]. The consensus is that ellipsis is not a homogeneous phenomenon. Rather,
it splits into syntactic, semantic and pragmatic types, with only the last type
depending on context for construal.

The general background for both syntactic and semantic accounts is the
methodology of conventional grammars which dictates the sentence as the unit
of characterisation: the only forms of ellipsis addressed have been those where
the ellipsis site can in some sense be analysed sententially – either as a second
conjunct of a compound conjunctive form or as an answer to a question with
both of these being analysed in sentential terms:

(1) A: Have you seen Mary?
B: Mary? No, I haven’t. I have, Bill. Tom too.

(a) (b) (c) (d)
B: Have I seen Mary? No, I haven’t seen Mary but I have seen Bill; and I
have seen Tom too.

Thus (1a) can be understood as an echo of the original question, (1b) as the
negative answer I have not seen Mary, and so on. Indeed (1) illustrates a num-
ber of different ellipsis types. Each of them has been argued to be a separate
syntactic phenomenon on the evidence of apparently different structural con-
straints governing their reconstruction as full sentential forms. However, the
ever-accumulating set of phenomena, all labelled ellipsis, do not seem reducible
to some general abstract account. Indeed, the general phenomenon, ellipsis, re-
mains puzzling, with apparent conflicting evidence for both semantic and syntac-
tic forms of explanation [see Ginzburg and Cooper, 2004; Merchant, 2007]. On
the one hand, a semantic explanation is available for cases where, for a single
antecedent form and assigned interpretation, ambiguity nonetheless arises:

(2) John checked over his mistakes, and so did Bill/Bill too.
‘Bill checked Bill’s mistakes’ (“sloppy”)
‘Bill checked John’s mistakes’ (“strict”)

116 R. Kempson et al.

This is argued to reflect a process of abstraction over some content provided by
the antecedent (‘John checked over John’s mistakes’) creating distinct abstracts
to apply to the content of the fragment in the elliptical conjunct (a process in-
volving higher-order unification): (a) abstraction over solely the subject of the
antecedent, or (b) abstracting over the subject and all other references to the
individual it denotes. Two resulting predicates can then apply to the ellipti-
cal fragment which yields so-called strict/sloppy ambiguities [Dalrymple et al.,
1991]. Since these abstraction operations affect content (not syntactic structure)
this provides the semantic basis for explanation. A second argument for seman-
tic accounts of ellipsis is provided with the almost invariant parallelism of the
mode of interpretation between an elliptical second conjunct and its antecedent
clause, as in e.g. parallelism of quantifier dependencies (scope):

(3) Every professor got to meet with a visiting government official, and so did
every administrator.

Such parallelism of interpretation is said to arise in virtue of variation in the
abstraction steps available for the antecedent clause at the ellipsis site. If ab-
straction applies prior to quantifying in the quantified expression within the
predicate, then, with only a variable in place of this quantified form in that
first conjunct, the result will be an interpretation in which the quantifier si-
multaneously binds a variable in both conjuncts, hence incorporating the entire
conjunction within its scope. If, however, the abstraction operation to create
the requisite predicate takes place after all quantified expressions in the first
conjunct are quantified in, then whatever quantifying terms are contained in
the resulting abstract will be interpreted as taking narrow scope with respect to
the subject expression with which the created predicate is to be combined. So
far so good. But there are three possible interpretations for a sentence such as
(3), not just two. The third is where the indefinite is construed as taking wider
scope than the subject NP of the conjunct in which it is contained but neverthe-
less not wide scope with respect to the whole conjunction. In (3) this involves
there being two visiting government officials, one visiting the professors, and
one visiting the administrators. This third interpretation cannot be captured by
the Dalrymple et al. account (an observation due to Mark Steedman), so the
semantic account is at best incomplete.

In any case, there is competing evidence that sensitivity to structure is es-
sential to the way in which the elliptical fragment is reconstructed. Ellipsis is
highly sensitive to syntactic/morphological requirements set up by the sequence
of expressions preceding the ellipsis site:

(4) A: Who did every husband visit? B: His wife.

Moreover, there are cases of ellipsis, so-called antecedent-contained ellipsis, that
display sensitivity to the very constraints taken to be diagnostic of syntactic
phenomena. These are the so-called ‘island’ constraints which are taken as ev-
idence that at least those forms of ellipsis must be analysed in syntactic terms
[Fiengo and May, 1994; Merchant, 2004]:

Natural-Language Syntax as Procedures for Interpretation 117

(5) John interviewed every student who Bill already had.

(6) *John interviewed every student who Bill ignored the teacher who already
had.

In (6), an instance of antecedent-contained ellipsis, the ellipsis site cannot be as-
sociated with the relative pronoun (who) even though this is possible in (5). This
is because a relative-clause boundary intervenes between the relative pronoun
and the elliptical element. This type of violation is directly redolent of the is-
land restrictions constraining long-distance dependencies as in e.g. wh-questions
(wh binding also not being possible across a relative-clause boundary). Because
such restrictions are taken not to be expressible in semantic terms – the lambda
calculus underpinning semantic combinatorics would impose no such structure-
particular restriction – they have been taken as evidence for a level of syntac-
tic structure independent of semantics, and a diagnostic of what constitutes a
syntactic phenomenon. Hence, so the argument goes, at least some types of el-
lipsis require syntactic explanation, involving full projection of clausal structure
at the ellipsis site with subsequent deletion of phonological material. However,
even though structural restrictions can be captured by syntactic reconstructions
of ellipsis, this provides no explanation of parallelism effects, which require the
definition of independent constraints [see e.g. Fox, 1999].

Over and above the division of ellipsis into semantic and syntactic types, there
is the very widespread use of fragments in dialogue. Even though grammatical
formalisms have neglected these as “performance data”, more recently, as dia-
logue modelling has developed, this omission is being repaired. Extending the
Dalrymple et al. pattern, Ginzburg and Sag [2000], Ginzburg and Cooper [2004]
defined multiple types of abstraction mechanisms to reflect distinct identified
types of ellipsis, ranging over semantic, syntactic and morphological specifica-
tions associated with the antecedent of the elliptical form. But the move made is
not straightforward, for, retaining the sentence-based methodology, these frag-
ments are analysed as full sentences, with type-lifting of the fragment not merely
in the semantics but also in the syntax. This assumption is problematic if the
fragment occurs, as in (7), at a point in the dialogue exchange when no an-
tecedent of appropriate type is available in context to yield the appropriate
abstract:

(7) A: And er they X-rayed me, and took a urine sample,
took a blood sample.

A: Er, the doctor
B: Chorlton?
A: Chorlton, mhm, he examined me, erm, he, he said now they

were on about a slide [unclear] on my heart. [BNC: KPY 1005-1008]

An additional problem for any such assumption, is that anaphoric and quantifi-
cational dependencies can be seamlessly continued across from one speaker to
another, as in (4), involving the binding of a pronoun by a quantifying expression.
Any syntactic dependency whatsoever can be split between speaker and hearer,

118 R. Kempson et al.

with the hearer-turned-speaker continuing an initiated utterance relative to the
structural context provided by the first part (see Purver et al. [2009]):

(8) A: Have you read
B: any of your books? Certainly not.

(9) A: Are you OK? Did you burn
B: myself? Fortunately not.

Beyond the syntax/semantics controversy, there are yet further cases where there
is no linguistic basis for assigning interpretation to the fragment. Stainton [2006]
argues that such cases do not allow any analysis as sentential reconstructions
but have to be seen as a speech act that is performed without recourse to a
sentential structure:

(10) A (coming out of lift): McWhirter’s?
B: Second left.

In these, it is non-linguistic aspects of context that determine the way the frag-
ment is understood. What this illustrates is that, from a pre-theoretical point of
view, fragments in general can occur whenever the context provides elements rel-
ative to which the fragment can be processed in an appropriate way. The context
may provide linguistic structure on the basis of which the fragment may yield
a propositional content as in (4), in the fragment interruptions of the questions
in (8)-(9) and their subsequent fragment replies. But, as in the case of anaphora
(e.g. bridging phenomena, see Clark [1977]), sometimes both contents and the
appropriate context for processing have to be constructible on the fly as in (10).
Even further, the fragment expression may have to be interpreted as an exten-
sion of a nonpropositional structure given in the context, as in (7). The disparate
ways in which elliptical fragments can be understood have been taken as evi-
dence of the so-called “fractal heterogeneity” of ellipsis [Ginzburg and Cooper,
2004] in that its resolution apparently involves cross-cutting constraints across
whatever information the grammar manipulates, with morphological, syntactic,
semantic, even phonological information yielding multiple bases for ellipsis. In
addition, the grammar interacts with a range of dialogue interpretation principles
which also contribute to disambiguating the function of each type of fragment.
In the complexity that results from this reconstruction of context as multiple
sets of constraints on interpretation across distinct modes of representation, the
robustness of the folk intuition is getting lost: how can the context, from which
speakers and hearers freely draw, require such complex cross-module constraints
and heterogeneity in need of disambiguation online? The challenge of providing
a uniform account of ellipsis processing thus remains.

An alternative is to take ellipsis as a phenomenon from which we can glean
evidence of the types of information that context records, and on that basis, to
explore processes of dynamic update manipulating this information in a unified
way. And for this, we turn to Dynamic Syntax, where the dynamics of how in-
formation accrues along the time-line of processing is integral to the formalism’s
structural underpinnings.

Natural-Language Syntax as Procedures for Interpretation 119

3 Dynamic Syntax

Dynamic Syntax (DS) is a model of how interpretation is built up relative to con-
text, reflecting how hearers (and speakers) construct interpretations for strings
of words incrementally using linguistic information and context as it becomes
available. Crucially, the output of any processing task is a representation of the
content of the string uttered in a particular context (not a representation of some
hierarchical structure defined over the string, i.e., not a sentence type assumed
to hold over any linguistic context). NL syntax, on this view, is conceived of as
the process by which such semantic representations are built up, using instruc-
tions associated with words and contextual information to drive the incremental
development of the output representation. Since pragmatics may interact at any
point with the online syntactic process, output semantic representations may
differ for the same string uttered in different contexts.

Formally, DS is a lexicalized grammar using labelled sequences and trees as
basic data structures. The labelled sequences are time-linear sequences of words
with accompanying phonological, morphological and word-boundary specifica-
tion; the trees formalize the semantic, functor-argument structure induced from
utterances of such sequences in the form of (unordered) trees labeled by terms
of a typed lambda calculus and other process-control labels. This emphasis on
strings and trees DS shares with other tree-based linguistic theories like Trans-
formational Generative Grammar (in all its guises), Tree Adjoining Grammar,
Head-driven Phrase Structure Grammar, and Categorial Grammar. It differs
from virtually all these in the way it relates the two data structures. Other theo-
ries identify linearity with the yield of ordered trees; in DS, the string determines
a sequential ‘derivation tree’; the words are interpreted as instruction packages to
construct parts of a lambda term in a labelled tree representation. The packages
are executed word-by-word from-left-to-right. The terminal nodes of a lambda
term produced by a grammatical sentence in some instances stand in one-to-one
correspondence with the words of the sentence, but an individual word may also
induce sub-structure containing more than one labelled node; and there is no
direct relation between the yield of the eventual tree and the sequential order
of the string. Terms of only a small, fixed, set of semantic types are used, so no
new types (functions) can be constructed (unlike categorial frameworks). Struc-
tural underdetermination and update replace concepts of ‘movement’ (and its
analogues in non-transformational frameworks) and function-composition.

The tree is incrementally constructed by tree substitution and addition or
extension of labels, but there are two ways to escape the strict linear evaluation
order: by structural underdetermination and by underdetermination of labels;
both may lead to delay in choices to be made. Structural underdetermination
involves the addition of a sub-term to the tree, an unfixed node, whose location
in that tree is characterised as merely dominated by a previously constructed
term without, as yet, a fully specified hierarchical position. So, for example, in
the characterisation of Mary, John likes instructions license the introduction of
a typed sub-term into the tree as specified by the word Mary that cannot yet
be given a fixed location in the tree skeleton of the term under construction.

120 R. Kempson et al.

Underspecification in the labels dimension is implemented by means of employ-
ing meta-variables, indicated as U, V, etc., as temporary labels allowing identi-
fication from some larger context given their associated type specification (and
any other constraints that may be identified, such as gender, person, and so on).

The parsing process is lexically driven and directed by requirements. The
main requirement is ‘?t’, the type requirement to produce a formula of proposi-
tion type t from the word string; but imposition of such requirements for other
types induces the creation of new labeled tree structure, providing the basis for
expressing how one word may ‘subcategorize’ for others. As there are only a finite
number of types, type requirements can be viewed as non-terminal symbols to
be rewritten to a terminal symbol (supplied by a word). Tree-growth actions are
defined as general or lexically triggered options, dividing into two broad types:
those for developing a tree-structure for which a number of strategies may be
available; and those annotating non-terminal nodes through algorithmic appli-
cation of β-reduction and its associated type-deduction. These in combination
yield a resulting structure, with all nodes properly annotated and no require-
ments outstanding. Type requirements are not the only form of requirement.
Indeed all forms of underspecification are associated with requirements for up-
date, for example, meta-variables co-occur with a requirement for instantiation,
represented as ?∃x.Fo(x). Well-formedness for a string is defined in terms of the
possibility of constructing a proper tree rooted in type t with no outstanding
requirements left on any node in the tree.

3.1 Tree Growth and LOFT: The Logic of Finite Trees

To round out this summative characterisation, we now sketch the general process
of parsing as the induction of a sequence of partial trees, whose input is a one-
node tree annotated with only the requirement ?t and a pointer ♦ indicating
the node under development, and whose output is a binary branching tree whose
nodes reflect the content of some propositional formula. The left-to-right parse
of the string Bob upset Mary gives rise to the sequence of partial trees shown in
Fig. 1, with the final tree completing the initial requirement.

The parsing task, using both lexical input and information from context, is
thus to progressively enrich the input tree to yield a complete output using gen-
eral tree-growth actions, lexical tree-growth actions, and, when triggered by some
lexical item, pragmatic tree-growth actions. As all types of action are defined in
the same terms, i.e., as actions that map one partial tree to another, different
types of action can interleave at any point. Decorations on nodes include content-
representing formulae, type specifications, a treenode indicator (with one node
distinguished as the rootnode: Tn(0)), and requirements for such decorations as
imposed by the unfolding process. The primitive types are types e and t as in
formal semantics but construed syntactically1. Each node must be eventually
decorated with a pairing of formula and type specifications written as α : φ (α
the formula labelling φ the type). Annotations on non-terminal nodes are in-
duced algorithmically in the final evaluation of the trees, in terms inspired by
1 There are other types, but the list is highly restricted.

Natural-Language Syntax as Procedures for Interpretation 121

0

?t,
♦

	→
1
?t

?e,♦ ?e → t

	→

2
?t

Bob′Bob′Bob′ : e
?e → t,

♦

	→

3
?t

Bob′ : e ?e → t

?e,♦ Upset′Upset′Upset′: e → (e → t)

	→

4

Upset′(Mary′)(Bob′) : t,♦

Bob′ : e
Upset′(Mary′) :

e → t

Mary′Mary′Mary′ : e
Upset′:

e → (e → t),

Fig. 1. Monotonic tree growth in DS

the Curry-Howard isomorphism and labelled type-deduction. In all cases, the
output is a fully annotated (decorated) tree whose topnode is a formula value
representing a proposition derived by the string of words processed relative to a
particular context of utterance2.

At the heart of the formal characterisation is the (modal) logic of finite trees
[LOFT: Blackburn and Meyer-Viol, 1994] which permits addressing any node in
the tree from the perspective of any other node using the immediate-dominance
modalities 〈↓〉 and 〈↑〉 and variations over these. Such operators can be used to
indicate nodes that exist already in the tree (e.g. 〈↓〉α indicates that there is a
daughter of the current node decorated by label α), with variants distinguishing
↓0/↓1 as argument/functor daughter respectively, and Kleene * operations over
these to define general dominance relations. Such decorations are used in con-
junction with the requirement operator ?, to indicate nodes that, at some stage,
must occur on the tree but may not currently do so (e.g. ?〈↓〉α indicates that
there must, eventually in the derivation, exist a daughter of the current node
decorated by label α). Tree-growth is thus defined relative to the imposition and
subsequent satisfaction of requirements: ?X for any annotation on a node con-
stitutes a constraint on how the subsequent parsing steps must progress, i.e. X
must be derived. Hence requirements such as ?t, ?e, ?e → t impose constraints
on tree development that formulae of the relevant types must be provided by
the end of the parsing process. Constraints on growth may also be modal, e.g.
2 We simplify the exposition here: the full presentation of Dynamic Syntax includes the

assumption that the proposition expressed is relative to a time point given by a term
denoting some temporal/modal relation to the time of utterance [Gregoromichelaki,
2006]. A further simplification is that names and words with conceptual content
are assumed to be in one-to-one correspondence with concepts, with no attempt to
address the substantial issues in addressing the context-sensitivity of either.

122 R. Kempson et al.

while a decoration ?e requires a term to be constructed at the current node,
?〈↓〉e requires a daughter node to be so decorated. Although type-requirements
are the primary drivers of the syntactic process, in principle, any label may be
associated with a requirement. For example, ?∃x.Fo(x) requires some contentful
formula value to decorate a node and is associated with the parsing of pronouns
and other anaphoric expressions such as auxiliary verbs in elliptical structures.

An essential ancillary notion to that of tree growth is the concept of proce-
dure or action for mapping one partial tree to another. These are defined in
a language involving such commands as make(〈↓〉), go(〈↓〉), put(α), make(〈↓∗〉),
〈IF..., THEN..., ELSE...〉 etc. Sets of such actions incorporated in individual pack-
ages can be either general computational rules or lexical actions associated with
words contributing content-formulae and other aspects of structure. For exam-
ple, verbs in English are parsed when the pointer resides at a node decorated
with ?e → t induced by a computational rule. The verb itself contributes not
only a concept formula (e.g. Upset′) but also creates a new node and moves the
pointer to the object node (the transition induced is that of transition 2-3 in
Fig. 1)3. Parsing of an object will then provide the appropriate formula value
for this node. Computational rules can then compositionally determine the com-
bination of those formulae to satisfy the requirements remaining in a strictly
bottom-up fashion.

3.2 Semantic Underspecification and Update

As indicated earlier, pronouns, and indeed elements at ellipsis sites like aux-
iliaries, project temporary, underspecified formula values which are required
(through the injunction ?∃x.Fo(x)) to be instantiated at some point during
the parsing process. This interim value is given as a metavariable, e.g., U, V...,
which satisfies a type requirement, allowing the parse to continue, but leaves
the content of a node open to be satisfied perhaps later in the derivation. The
update for such a metavariable is given by selection of a proper value from
context. Thus all context-dependent linguistic elements may allow as an option
the assignment of a value from the parsing process subsequent to their original
processing. Consider such a delayed resolution:

(11) It emerged that John was wrong.

In (11), the metavariable projected by it in string-initial position licenses the
further unfolding of the parse process, allowing the parse of the verb emerged.
The pointer then returns to the semantic subject node and permits the parse
of the post-verbal complement clause whose content satisfies the requirement
for determinate content, yielding an output formula Emerge′(Wrong′(John′))
(ignoring tense), without any final indication that an expletive pronoun appeared
in the uttered string.

The same dynamics applies to quantifying terms. It is wellknown that indefi-
nites can take wide scope over any previously introduced term:
3 Formally: 〈IF ?Ty(e → t), THEN make(〈↓1〉), go(〈↓1〉), put(Fo(Upset′), T y(e → (e →

t))), go〈↑1〉, make(〈↓0〉), go(〈↓0〉), put(?Ty(e)),ELSE Abort〉.

Natural-Language Syntax as Procedures for Interpretation 123

(12) Every teacher confirmed that two students had written a report on a
famous philosopher. ∀ < ∃ < ∃2 < ∃; ∃ < ∃ < ∀ < ∃2; . . .

But inversion of scope for other quantifiers is available only if an indefinite
precedes:

(13) A nurse interviewed every patient. (ambiguous)

(14) Most nurses interviewed every patient. (unambiguous)

Within DS, this is addressed through combining underspecification and the se-
lected logic. All noun phrases, even quantified ones, project terms of type e.
There is no type-lifting mechanism reversing functor-argument relationships as
in generalised quantifier theory: in all predicate-argument arrays constructed
within this framework, argument-hood is non-negotiable. Rather, quantifying
expressions are analysed in the manner of arbitrary names of predicate-logic
natural deduction, as formulated in the epsilon calculus of [Hilbert and Bernays,
1939], a conservative, but more expressive, extension of predicate logic. Intro-
duction of such terms in the language is based on the following equivalence:

∃x.F (x) ≡ F (εx.F (x))

This indicates that an existential statement is equivalent to one in which a wit-
ness of the truth of the statement can appear as an argument of the statement’s
predicate. Such a witness appears as an epsilon term containing as its restrictor
the predicate itself and denotes some arbitrary entity satisfying the predicate (if
such an entity exists).

Exploiting this equivalence, in DS, such terms are employed because they may
carry a record of the context within which they occur inside their restrictor. Ac-
cording to the computational rules defined, an intermediate representation of a
sentence such as A man is waving will take the form Wave′(ε, x, Man′(x)) de-
rived by simple functional application. But this will be eventually algorithmically
transformed to a formula where an appropriate epsilon term, abbreviated as a
below, appears as the argument of the conjunction of the predicates contributed
by the common noun and verb:

Man′(a) ∧Wave′(a)

where
a = (ε, x, Man′(x) ∧Wave′(x))

The restrictor of this term contains a record of the propositional structure that
gave rise to it so that it provides a suitable antecedent for subsequent cases of
E-type anaphora [see Kempson et al., 2001]. Quantifier scope is not expressed
as part of the tree architecture but through scope constraints collected incre-
mentally during the parse process. Multiple quantification of course yields more
complex restrictor specifications, but the evaluation algorithm applies to ar-
bitrarily complex combinations of terms and with variation in the connective
depending on the type of quantifier involved.

124 R. Kempson et al.

This separation of scope dependencies from the representation structure then
allows inverse scope readings for sentences such as (12)-(13) to be treated as a
form of context-dependency analogous to anaphoric construal. Scope constraints
for indefinites are formulated as partially underspecified, a metavariable indicat-
ing availability of choice with respect to source of dependency. This is lexically
encoded as U < x for the variable x associated with the indefinite. This simul-
taneously allows (a) selection of antecedents as the source of dependency among
whatever other terms are already constructed within a domain, and (b) license to
delay scope-dependency choice until some other noun phrase has been parsed: it
is this license for delay (rather than some unrestricted quantifier storage device)
which gives rise to scope inversion as in (12)-(13) but not (14).

3.3 Linking Trees through Shared Terms

For the full array of compound adjunct structures displayed in NL, DS em-
ploys a license to build paired, so-called linked, trees associated through a link
modality, 〈L〉. This device is utilised for allowing incorporation within a tree of
information that is to be structurally developed externally to it. Relative clause
construal, being one core case of adjunction, involves constructing a linked
tree bearing a requirement that it contains as a sub-term the formula from the
source-node from which the link relation is defined:

(15) John, who smokes, left

Leave′(John′) ∧ Smoke′(John′) : t

Tn(n), John′ : e Leave′ : e → t

〈L−1〉Tn(n), Smoke′(John′) : t,

John′ : e Smoke′ : e → t

L

In the building up of such paired linked trees for relative clauses, the require-
ment imposed for a common term is satisfied by the processing of the relative
pronoun which induces an unfixed node annotated with the requisite copy of
that term. This is then necessarily constrained to appear within the newly emer-
gent propositional structure (reflecting island constraints associated with such
structures).

A second pattern is provided by apposition structures, in which a sequence of
NPs are construed as co-denoting:

(16) A friend of mine, a painter, is outside.

(17) The candidate, a linguist, is outside.

In DS terms, the second NP is defined as extending the term derived by process-
ing the first through construction of a linked structure. This involves evaluat-
ing such paired terms as a single term incorporating both restrictors: (ε, x, φ(x))
and (ε, x, ψ(x)) thus leading to the term: (ε, x, φ(x) ∧ ψ(x)), in (16) yielding
(ε, x, Friend′(x) ∧ Painter′(x)).

Natural-Language Syntax as Procedures for Interpretation 125

Given this dynamic perspective of progressively building up representations
of content, we now examine consequent requirements on a model of context. As
we shall see, given the strictly incremental approach to the processing of strings,
context is definable as a composite record of what has just taken place, i.e., the
representation of (partial) content so far established in tree form and the actions
used to gradually build it up4.

3.4 Intra-sentential Context

We conceive of each parsing step (the processing of each word in a sentence)
as taking place in some context. As already set out, a parsing step is defined in
terms of tree expansion: its input is a a partial tree including a pointer as built by
the preceding steps so far; its output is another, more fully-specified (although
still possibly partial) tree. As natural language is inherently ambiguous, a single
sequence of words w0 . . . wi might be associated with more than one possible
sequence of parsing actions a0 . . . ai, a′

0 . . . a′
i, a′′

0 . . . a′′
i etc. The parser state

when parsing the next word wi+1 may therefore contain multiple (partial) trees
Ti, T ′

i , T ′′
i etc., according to the degree of ambiguity exhibited by the string

of words or the firing of different parsing actions all of which yield well-formed
partial trees, i.e. several independent parsing paths may ensue. However, only
one such partial tree will provide the basis for a particular update by a particular
word. It is thus important that the context in which any lexical action ai+1 is
applied corresponds only to the partial tree which ai+1 is itself extending. If the
role of context is to provide information built by previous interpretations, and
the interpretations Ti and T ′

i are mutually exclusive alternatives, an extension of
Ti must not be able to access information from T ′

i . Therefore a minimal model
of context in DS consists of the current partial tree that is being extended, and
ambiguity of parsing paths and/or interpretation may thus be conceived of as
involving multiple, but independent, contexts.

As a grammar formalism, nothing internal to DS definitively determines selec-
tion of interpretation in cases of genuine ambiguity: in such cases the grammar
must make available all the options required. Nonetheless, because of the in-built
left-to-right incrementality, a fine-grained concept of context is definable incor-
porating the monotonically growing information provided not only by previous
discourse but also by the evolving parse of the current utterance. Such a con-
text provides a record of (a) the partial terms so far constructed, as well as (b)
the actions used in constructing them, thus providing the requisite information
for resolution of metavariables as well as (as we shall see below) other forms of
underspecification.
4 The formal notion of context in DS also includes the set of words parsed so far but

as we will not make use of this here we put it aside for simplicity.

126 R. Kempson et al.

4 Ellipsis and Context

4.1 Inter-utterance Context

When we consider dialogue, our concern with “context” includes what must be
provided at speaker-turn boundaries. A new speaker can begin a new sentence,
of course, so the default null context is available, in DS terms, the requirement
?t. Yet a previous complete sentence may provide material enabling a hearer to
reconstruct information, as in elliptical utterances, so the context must contain
previous (complete) trees. Additionally speakers may continue or collaborate
on incomplete utterances spoken by others, as in (7), and this means that we
require having incomplete (partial) trees available. We therefore take context
after a change of speaker also to contain the current tree (partial or not) from
the parser state developed immediately before the change.

For grammar formalisms which define solely the well-formedness of full sen-
tences, this might be problematic, as suitable representations for partial sen-
tences cannot be available without further ado. But with partial trees being
well-defined formal objects in the DS representation language, this is straight-
forward. Moreover, although defined primarily in terms of parsing processes, DS
incorporates a parallel account of generation. In the DS implementation, gener-
ation follows exactly the same steps as parsing, with the added constraint that
some desired output tree or goal tree (possibly a complete tree as in 4 in Figure 1)
constitutes a filter on each transition, so is present from the initial stage (as the
content of what the speaker intends to communicate). Hence, parsing/generation
processes in DS use interchangeable representations and modelling the distinc-
tion between speaking and hearing does not necessitate switching to distinct
formal vocabularies or sets of actions [see Purver and Kempson, 2004, as in this
paper we set out parsing derivations only].

4.2 Access to Structure

This perspective on context provides all we need to treat common dialogue
fragment phenomena such as short answers, acknowledgements and clarification
requests: in all these cases, the fragment updates the existing tree representation
in the context provided by the preceding utterance. In question/answer pairs as
in (18), the tree produced by parsing a wh-question includes underspecification
(in DS, wh-terms encode a specialised WH metavariable).

(18) A: Who did John upset?
B: Mary.

If this tree is taken as present in the context in which B’s fragment is parsed
(19), we can see that parsing the word Mary can directly update this tree,
through link adjunction, as introduced in section 3.3, to the node decorated
with the interrogative metavariable, WH. The result is to provide a complete
semantic formula and an answer to the question via evaluation of the two formula
decorations as being equivalent to Mary′, which is by definition a legitimate way

Natural-Language Syntax as Procedures for Interpretation 127

to further specify metavariables. Such an update is like the appositive further
specification of a noun phrase as in my friend, the doctor where a pair of noun
phrases is taken to identify the same entity, the only difference being that WH
adds no further information to the term.

(19) Processing Mary:

Tree as Context: Final Tree:

(Upset′(WH))(John′) : t

John′ : e Upset′(WH) : e → t

WH : e
♦

Upset′ :
e → (e → t)

(Upset′(Mary′))(John′) : t

John′ : e Upset′(Mary′) : e → t

Tn(n),WH : e
Mary′ : e,♦

Upset′ :
e → (e → t)

〈L−1〉Tn(n), Mary′ : e

L

This approach needs no extension for split utterance cases such as (9) in which
a reflexive pronoun must be understood relative to what is provided by the first
half. Here, the tree in context is partial, as in (20), with the pointer at a node
awaiting processing of the object. The actions associated with B’s completion
of A’s utterance as myself merely copy the formula at the semantic subject
node, just in case that term picks out the current speaker5. This is exactly as
parsing yourself copies the subject formula just in case it picks out the current
addressee, a parse of Did you burn yourself? thus yielding exactly the same tree
as the resulting tree in (20). There is, on this view, nothing mysterious about
shifts in perspective within dialogue:

(20) Processing (9):

Tree from Context: 	→ Resulting Tree:

Did you burn myself?

?t, +Q

B′ : e ?e → t

?e,♦ Burn′ :
e → (e → t)

?t, +Q

B′ : e ?e → t

B′ : e,♦ Burn′ :
e → (e → t)

5 〈IF ?Ty(e),THEN 〈IF 〈↑0〉〈↑∗
1〉〈↓0〉αSpeaker, THEN put(α), ELSE Abort〉, ELSE Abort〉.

128 R. Kempson et al.

Examples such as (7) also follow, given that the contextual trees at speaker
change can show a further degree of (temporary) underspecification: partially
specified content. The tree constructed by B after processing the utterance-
initial the doctor is highly partial, but provides a node of type e which B can
use as the basis for a clarification request. Such requests are modelled in DS via
the same link relations used for appositions. Like appositions, clarifications are
interpreted as providing or requesting further information on a specific term.
Modelling this via a linked sub-tree provides a possible update of the original
term, much like an answer to a wh question provides an extension of the term
queried, as we saw in (18), except that here the clarification question provides
additional information: the name of the doctor [see Kempson et al., 2009]:

(21) Processing Chorlton:

Tree from Context: �→ Resulting Tree:

?t

(ι, x, Doctor′(x)) :
e, ♦

?e → t

?t

(ι, x, Doctor′(x)) : e, ♦
(ι, x, Chorlton′(x) ∧ Doctor′(x)) ?e → t

˙
L−1¸

Tn(n),
(ι, x, Chorlton′(x)) : e

L

As discussed earlier, switch of roles between the two interlocutors does not im-
pede the term-construction process: it is merely the presence of well-defined
partial structures in context, as required by the strictly incremental nature of
DS parsing, that makes the analysis possible.

4.3 Access to Formulae

Since context provides us with structure so far built – the labelled, partial trees
– it also provides us with the logical formulae decorating these trees. As out-
lined in section 3.2, this is all we need for the analysis of anaphora: anaphoric
elements decorate the tree with metavariables, which require for full resolution
the presence in context of a suitably typed formula. The same applies to strict
forms of VP-ellipsis, as these can also be modelled as formula underspecification
resolved by directly re-using a contextually provided predicate. The only differ-
ence between pronoun and ellipsis construal is their logical type assignment, e
vs. (e → t) (the arrow in the diagram below represents the formal process of
Substitution of a metavariable by some term in context and DO is a specialised
metavariable contributed by did):

(22) A: Who upset Mary?
B: John did.

Natural-Language Syntax as Procedures for Interpretation 129

Parsing John did:

Context: Tree under Construction:

(Upset′(Mary′))(WH) : t

WH : e Upset′(Mary′) : e → t

Mary′ : e
Upset′ :

e → (e → t)

?t

John′ : e
DO : e → t

?∃x.Fo(x),♦
S

4.4 Access to Parsing Actions

However, cases of sloppy ellipsis must require something else: here the processing
of the fragment leads to a different interpretation from that of its antecedent –
neither an exact copy of the antecedent content nor an extension of it, but
still maintaining some parallelism in the way the interpretation is established.
We can see now that, given the DS procedural modelling of interpretation, this
parallelism can be suitably expressed in terms that do justice to what constitutes
context-dependency in such cases: the actions used in parsing the antecedent
may now be invoked and re-run at the ellipsis site. This provides a new formula
value, but one which is constrained to be built in the same way as the antecedent
formula was already constructed:

(23) A: Who hurt himself?
B: John did.

Informally, the DS processing for the question in (23) involves the following
actions after parsing of the subject who: constructing a two-place predicate as
indicated by the verb, introducing an object argument, and then, because this
object derives from a reflexive pronoun, it is obligatorily identified with the ar-
gument provided as subject (for the formulation of such actions see fn. 3,5).
When it comes to processing B’s elliptical did, the reconstruction we require is
essentially the same: the same verbal predicate but this time an object which be-
comes identified with the subject B has provided, i.e., John. This can be achieved
precisely by re-running the same set of parsing actions as used when parsing A’s
utterance – provided that these have been stored as a sequence in context and
thus are accessible for re-use, in this case the sequence of actions given by up-
set+himself. This is a possibility that, according to DS, is associated with the
resolution of the metavariable DO contributed by did. The effect achieved is the
same as the higher-order unification account but without anything beyond what
has already been used for the processing of previous linguistic input: the parsing
actions themselves stored in context and able to be re-run.

4.5 Context Defined

To sum up, we take as context a record of (a) the partial tree under construction,
with its semantic annotations, (b) the trees provided by previous utterances, and

130 R. Kempson et al.

(c) the sequence of parsing actions used to build (a) and (b). Considering the
incremental, action-based nature of DS, this reflects well the state of the parser.
Trees provide structural context for the incorporation of dialogue fragments;
their decorating formulae provide antecedents for anaphora and strict readings
of VP-ellipsis; parsing actions allow reconstruction of the sloppy equivalents. A
context, then, is a sequence of actions and tree representations contributed by a
sequence of words and utterances in a discourse.

Examples like (10) might be taken to motivate an extra dimension of con-
text, provided by no obvious linguistic input but instead by the situation or
prior knowledge or belief, i.e. the general cognitive context. Nonetheless, the
DS semantic representations are expressed in a language intended to imple-
ment the interface among information sources in any modality and this kind
of example provides confirmation for this strategy. Any type of information is
then by definition represented in the same way as the other aspects of context
discussed here, namely, as formulae in tree format present within the contex-
tual tree sequence. Such trees would provide the means by which an utter-
ance of Second left may be construed as an answer to the elliptical question
McWhirter’s? which itself induced a tree with top node decorated by the formula:
Located′(McWhirter′s,WH) obtained by exploiting knowledge representations
available as context.

There are consequences to be explored from this perspective, both linguis-
tic and formal. With this preliminary characterisation of context, some of the
problems facing other accounts of ellipsis become resolvable. Parallelism effects
associated with ellipsis such as (3) are expected to follow. The actions used to
establish an interpretation for the first conjunct will form part of the immediate
context for the interpretation of the second conjunct containing the ellipsis site.
So, in the resolution of the ellipsis, these actions will be replicated yielding par-
allel results in the scopal interpretation of the indefinite. According to DS, the
indefinite in (3) can be interpreted with free choice as its being dependent on the
subject, the event term associated with the immediately containing proposition,
or the event term for the overall formula6. Whatever choice is made in the first
conjunct will be necessarily replicated in the second as the same actions need
to be repeated. This pattern is expected for scopal dependencies of arbitrary
complexity, unlike in accounts that involve copying of logical form or strings.

On the other hand, the structural restrictiveness associated with antecedent
contained ellipsis is predicted as it involves the processing of relative clauses.
The relative pronoun in English, given its appearance at the left periphery of
its clause, in DS is taken to decorate an unfixed node. Such nodes by definition
have to be resolved within the local containing tree, and not across a link rela-
tion (this is the formal reflection of island constraints in DS). This independent
constraint is respected in (5) but not in (6). In (6) a second relative clause (who
already had) intervenes between who and its argument position. This induces
an island violation and explains the inability of who to provide an argument
for the predicate to be reconstructed from interviewed [Kempson et al., 2001;

6 DS semantic representations include event arguments (Gregoromichelaki 2006).

Natural-Language Syntax as Procedures for Interpretation 131

Cann et al., 2005]. The island sensitivity of antecedent contained ellipsis in (6)
thus follows from this independent constraint on relative clause processing in an
entirely expected way.

From this point of view, the notion of context as a record of previous parse
states remains unchallenged even by the occurrence of expletive pronouns or
scope dependencies that are apparently determined non-linearly. In all such
cases, the lexical specifications of pronouns/indefinites dictate only partial up-
dates to the node they decorate with metavariables licensing delay – delay of
content value assignment for subject expletives and delay of scope-dependency
for indefinites. As, in DS, full resolution of underspecified content is not imposed
until after the predicate value in some local domain has been determined, the
context available for late resolutions of this type will contain terms constructed
after the initial, first pass processing of the expletive/indefinite. These terms
can then provide values for the underspecified content initially provided. So
what superficially appears to be evidence for phenomena that do not conform to
the usual context-dependency properties of underspecified expressions reverts to
the usual pattern once the concept of context is defined in terms of immediately
preceding parse states that can accommodate localised underdetermination.

4.5.1 Formal Considerations
Nonetheless, this novel approach on context specification requires a reconsidera-
tion of the DS formal mechanism in order to be expressible in the most apposite
terms. DS actions for building up structure currently retain a second-class status,
being construction mechanisms which are not themselves quantified over. Several
questions on the technical level might then be raised regarding the possibility of
a neater formalisation.

One approach might be the following. DS relies on the interrelationship of two
different structures: the sequential order of the input (or output) string, and the
applicative structure of the tree with typed nodes that it thereby built up (or
serialised). We can express both structures using a suitable logical framework
based on dependent type theory with subtypes and equality: type dependency
can be used to express the sequential order, whereas subtyping can be used to
express the applicative structure. To be precise, terms x : e, φ : e → t and φx : t
correspond to triples 〈s, x, φ〉 inhabiting, respectively, the types 〈t, e, {φ : e →
t|φx = s}〉 – types which are expressible in a suitable dependent type theory and
whose dependency corresponds to the serial order of the corresponding elements
of the input string. Having done this, further questions present themselves. The
first is whether the underlying type theory ought to be linear or intuitionistic:
that is, whether it should allow explicit contraction and/or weakening. In fact,
both seem to have roles: relative pronouns, for example, seem to behave linearly,
whereas anaphora (and E-type phenomena generally) are classical. So we would
seem to need a mixed linear/intuitionistic system: the validity of a suitable such
system is plausible, but needs further investigation.

In a framework like this, we can pose further questions. One concerns the inter-
action between type extension and subtyping: systems with dependent intersec-
tion – such as that of Kopylov [2003] – assimilate type extension to

132 R. Kempson et al.

subtyping, and we have an independent motivation for dependent intersection
as a means of expressing the contribution of adjuncts (via link-structures). The
next concerns the possibility of a constructive variant of the ε-calculus, which
would allow ε-terms which were not everywhere defined (and which would pro-
vide a semantic basis for the generation of clarification requests). So we can
ask about the compatibility of such a system with ε-terms (which includes the
question as to how we formulate proof rules for such ε-terms). Finally, we can
raise the following issue: if, in the spirit of Miller [2009], we formalise algorithms
using proof search, can we recover the algorithmic side of DS in terms of a search
for the proof of a suitable judgement (a proof, it may be, that the input string
inhabits a suitable type)? Such a viewpoint could be a very powerful means of
relating DS to other type-theoretic linguistic formalisms.

References

Blackburn, P., Meyer-Viol, W.: Linguistics, logic and finite trees. Logic Journal of the
Interest Group of Pure and Applied Logics 2(1), 3–29 (1994)

Cann, R., Kempson, R., Marten, L.: The Dynamics of Language. Elsevier, Oxford
(2005)

Cann, R., Kempson, R., Purver, M.: Context and well-formedness: the dynamics of
ellipsis. Research on Language and Computation 5(3), 333–358 (2007)

Clark, H.H.: Bridging. In: Thinking: Readings in Cognitive Science, pp. 169–174.
Cambridge University Press, Cambridge (1977)

Dalrymple, M., Shieber, S.M., Pereira, F.C.N.: Ellipsis and higher-order unification.
Linguistics and Philosophy 14(4), 399–452 (1991)

Fernández, R.: Non-Sentential Utterances in Dialogue: Classification, Resolution and
Use. PhD thesis, King’s College London, University of London (2006)

Fiengo, R., May, R.: Indices and Identity. MIT Press, Cambridge (1994)
Fox, D.: Economy and Semantic Interpretation. MIT Press, Cambridge (1999)
Ginzburg, J., Cooper, R.: Clarification, ellipsis, and the nature of contextual updates

in dialogue. Linguistics and Philosophy 27(3), 297–365 (2004)
Ginzburg, J., Sag, I.: Interrogative Investigations: the Form, Meaning and Use of

English Interrogatives. CSLI Lecture Notes, vol. 123. CSLI Publications, Stanford
(2000)

Gregoromichelaki, E.: Conditionals: A Dynamic Syntax Account. PhD thesis, King’s
College London (2006)

Hilbert, D., Bernays, P.: Grundlagen der Mathematik II. Julius Springer, Berlin (1939)
Kempson, R., Gregoromichelaki, E., Sato, Y.: Incrementality, speaker-hearer switching

and the disambiguation challenge. In: Proceedings of SRSL 2009, the 2nd Work-
shop on Semantic Representation of Spoken Language, pp. 74–81. Association for
Computational Linguistics, Athens (2009)

Kempson, R., Meyer-Viol, W., Gabbay, D.: Dynamic Syntax: The Flow of Language
Understanding. Blackwell, Malden (2001)

Kopylov, A.: Dependent intersection: A new way of defining records in type theory. In:
LICS, pp. 86–95. IEEE Computer Society, Los Alamitos (2003)

Merchant, J.: Fragments and ellipsis. Linguistics and Philosophy 27, 661–738 (2004)
Merchant, J.: Three kinds of ellipsis: Syntactic, semantic, pragmatic? Ms University of

Chicago (2007)

Natural-Language Syntax as Procedures for Interpretation 133

Miller, D.: Formalizing operational semantic specifications in logic. In: Proceedings of
the 17th International Workshop on Functional and (Constraint) Logic Programming
(WFLP 2008), vol. 246, pp. 147–165 (2009)

Purver, M., Cann, R., Kempson, R.: Grammars as parsers: Meeting the dialogue
challenge. Research on Language and Computation 4(2-3), 289–326 (2006)

Purver, M., Howes, C., Gregoromichelaki, E., Healey, P.: Split utterances in dialogue:
a corpus study. In: Proceedings of the 10th SIGDIAL Workshop on Discourse and
Dialogue (2009)

Purver, M., Kempson, R.: Incremental context-based generation for dialogue. In: Belz,
A., Evans, R., Piwek, P. (eds.) INLG 2004. LNCS (LNAI), vol. 3123, pp. 151–160.
Springer, Heidelberg (2004)

Stainton, R.: Words and Thoughts: Subsentences, Ellipsis, and the Philosophy of
Language. Oxford University Press, Oxford (2006)

Relevance and Utility in an Argumentative Framework:
An Application to the Accommodation of Discourse

Topics

Grégoire Winterstein1 and Gerhard Schaden2

1 Université Paris Diderot-Paris 7
CNRS UMR 7110 LLF

2 Université Lille 3 Charles de Gaulle
CNRS UMR 8163 STL

{gregoire.winterstein,gerhard.schaden}@linguist.jussieu.fr

In this paper, we address the question of the exact place one should attribute to game
theory in the analysis and modelisation of meaning in natural language. One can think
of at least three possible positions with respect to this issue:

1. Game theory is not inscribed at all in the grammar, but is an effective frame-
work to describe effects of language use (that is, a formal method of dealing with
pragmatics) 1.

2. Every aspect of game theory has grammatical effects, i.e. any kind of pay-off is
inscribed in the semantics of linguistic items.

3. Grammar deals with a specific type of games. If this should be the case, linguists
need to identify the relevant subpart of game theory.

We will focus in our paper on positions (1) and (3). A plausible candidate for a linguistic
phenomenon that can be successfully modeled by a subset of game-theory is argumen-
tation (cf. Ducrot (1980)). Argumentation concerns aspects of the meaning of sentences
(words) that are not reducible to truth conditions. As such, one may ask whether these
aspects are properly grammatical (i.e., encoded in the linguistic system), or pertain to
the realm of pragmatics (i.e., contextual effects).

In order to sort these things out, we investigate the link between the notions of re-
levance (in a theory of argumentation, as implemented in Merin’s decision-theoretic
pragmatics) and the notion of (expected) utility in a game-theoretical framework of
pragmatics. Crucially, our aim is to see if those two notions can and should be unified,
which can only mean that relevance should be reduced to the expected utilities of the
discourse participants — which would bring us to position (1), above. We will present
arguments against such a move.

To illustrate our point, we will study the accommodation of discourse topics in dia-
logues. We will show that relevance in an argumentative sense can easily be linked to
the establishment of a discourse topic, since both notions are meant to relate to the point
of discourse or to what the discourse is all about.
1 This stance would naturally need to exclude for instance game-theoretic formulations of logics

that can be used to represent truth conditions of natural language semantics, as proposed by
Hintikka & Sandu (1997).

Lecomte and S. Tronçon (Eds.): PRELUDE 2010, LNAI 6505, pp. 134–146, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Relevance and Utility in an Argumentative Framework 135

Our hypothesis is that full-fledged game theory, as a very general and powerful theory
of the strategic interaction of (rational) agents, should be left to deal with particular tokens
of utterances in particular situations. That is, we take it to serve best as a formal theory
of pragmatics. Argumentation theory, however, is concerned with general linguistic pro-
perties of utterances, that is with the types of utterances, and can yield predictions in the
grammar of a given language, which in principle is blind to a speaker’s utility.

1 Utility and Relevance

1.1 Argumentation and Argumentation Theory

The notion of argumentation in the sens of argumentation theory (as developped by
Anscombre and Ducrot, cf. Ducrot (1980), Anscombre & Ducrot (1983)) describes
some regularities in natural language that cannot be straightforwardly treated through
truth-conditional considerations alone. One classical example of a word with argumen-
tative properties is almost. Clearly, almost P entails ¬P. However, almost P argues for
the same conclusions as would P, and not for the conclusions that would induce ¬P.

In (1-a), even though the first part of the utterance conveys that it is not dark yet,
this does not support the targeted conclusion, namely that more than sidelights would
be too much. In this respect, (1-a) is identical to (1-b), which has rather different truth
conditions. On the other hand, (1-c), which is truth-conditionally nearly equivalent to
(1-a), is very different in the targeted inference it licenses.

(1) a. #It’s almost dark, so turn on only your sidelights.
b. #It’s dark, so turn on only your sidelights.
c. It’s not yet completely dark, so turn on only your sidelights.

Example (2) shows as well that two seemingly contradictory statements can be part of
the same utterance and serve the same conclusion.

(2) A : Is the dinner ready ?
B : Yes, almost.

Once again, if the dinner is almost ready, then it is not ready, but that does not prevent
B to present this state of affairs as being identical to the one of being ready, at least for
the purpose of that particular context.

Based on examples like (1) and (2) it has been argued that the concept of argu-
mentation reveals a dimension of discourse that is distinct from and orthogonal to
truth-conditions.

Argumentation theory, a development which focuses on and seeks to account for
such types of effects, has developed two central hypotheses: first, speakers always speak
to a point, such that all conversation is argumentative ; and second, that argumentative
properties are hardcoded in the grammar of natural languages. Such a theory makes
clear that argumentative goals must be somehow present and modeled in a framework
of dialogue ; the whole question is how precisely this should be done.

Argumentation can be explicated by the notion of Relevance, for example as in
the probabilistic Discourse Theoretic Semantics framework of Merin (1999) (or in

136 G. Winterstein and G. Schaden

comparable ways, e.g. see van Rooij (2004)). Merin framed his work in decision theory,
which is a subpart of game theory.

Merin states that a sentence E positively (resp. negatively) argues for a conclusion
H if and only if the probability of H after learning E is raised (resp. lowered). The
higher the (positive or negative) effect on the probability of H, the more relevant is the
uttered proposition E . A proposition is relevant to a question if it is relevant to at least
an element of πQ (the partition induced by the question in Hamblin style semantics). A
question is relevant to another question if at least one element of the partition induced
by the first is relevant to at least one element of the partition induced by the second.

Depending on the discourse situation the argumentative goal might be explicit (e.g.
after an imperative), or needs to be induced somehow from the semantic meaning of
the speaker’s utterance. According to Merin, this is one part of what conversation is all
about. Inducing such a goal amounts to finding the proposition H∗ in the set of all pro-
positions for which the uttered proposition E is an argument, i.e. H∗ ∈ {H|rH(E) > 0}
(where rH(E) is the relevance of E to H). Decision theoretic considerations on the argu-
mentative goal can be used to derive a variety of pragmatic effects (e.g. conversational
and conventional implicatures, presupposition. . .)

In such a framework, the relevance of an utterance is always defined with respect to
an argumentative goal. It is, however, not quite clear whether the argumentative goal
is a proposition or a disposition to act (of one of the discourse participants). As far as
Merin is concerned, it seems that he identifies the fact of believing a proposition with
the disposition to act in a specific way, citing Ramsey (1926) as inspiration.

1.2 Argumentation and Game Theory

At first sight, the question of how to represent argumentative goals may look like so-
mewhat orthogonal to what is relevance, and that this is rather about what it means to
believe a sentence. However, we do not think that these issues are entirely unrelated,
given our initial question of whether argumentation could or should be treated as a part
of pragmatics.

The theoretical issue at stake can be stated as follows: if an argumentative goal is
to be modeled as a disposition to act of the discourse participants, relevance can be an
instance of the expected utility of the speaker in the usual game-theoretical sense, that
is, an indication of speaker preferences that will further dictate their actions, assuming
rational behaviour. By uttering a sentence, the speaker will induce (under certain cir-
cumstances) the addressee to react in a certain way, and the utilities of a given sentence
would be the utilities the speaker receives from the (re)action of the addressee upon
hearing that sentence.

Conceived in such a way, relevance and expected utility would be two instances of the
same phenomenon, and fall into what one may call the use of language in a broad sense.
In any way, relevance falls out of the langue under such a perspective. If the argumenta-
tive goal is to be modeled as a proposition, the identification of relevance and expected
utility is not possible. But this leaves open the possibility that relevance (and argumenta-
tion) are part of the langue. As such, it is rather clear that relevance should not be directly
encoded in a sentence. What we are looking for are rather “relevance-conditional” se-
mantics, that impose conditions on relevance, than direct reference to pay-offs. This is

Relevance and Utility in an Argumentative Framework 137

the same as truth-conditional semantics, which does not deal directly with truth or falsity
of propositions, but the conditions which would render them true or false.

Maybe surprisingly, given his stance on belief, Merin (1999) is quite explicit about
the technical side of the issue : for him, relevance is a relation between two proposi-
tions and an epistemic state (what he calls the ‘epistemic context’). The two proposi-
tions involved are the argumentative goal H and the proposition that is uttered, E . The
epistemic context provides a probability distribution over propositions, including the
argumentative goal H.

Merin’s way of dealing with relevance has several highly attractive consequences.
First, relevance as a relation between propositions given a certain context makes it pos-
sible to conceive that items in the grammar may be sensitive to such relations, or even
manipulate, constrain or order the possible relevance-relations between an uttered pro-
position and a given or inferred proposition H. Thus, it becomes possible to conceive
argumentative properties as based in the langue, rather than as being by-products of
the use of a language. Such a position seems to be necessary in order to account for a
certain type of data (e.g., almost, as we have seen above, and adversative conjunctions,
cf. below). There is thus a good reason for grounding relevance in purely epistemic
terms, as far as it enables one to make predictions on the type of utterances. Neverthe-
less, some properties related to token utterances cannot be accounted for by epistemic
means alone, and we argue that those context-specific issues are the ones that benefit
from a game-theoretic approach based on a notion of utility distinct from the epistemi-
cally based notion of relevance advocated by Merin.

Second, the fact that propositions can be assigned a quantified amount of relevance
allowed Merin (2003) to develop relevance-scales, which are able to cover more em-
pirical ground with respect to implicatures than traditional entailment-scales (e.g., like
the ones proposed in the neo-Gricean tradition, notably by Horn (1989)).

Having said that, is such an approach conclusively opposed to a direct encoding of
expected utilities of the speaker ? No. Merin’s position is not inconsistent. One may
indeed still identify the utility of the speaker with the relevance of a proposition E to
a given goal H : believing H (or coming closer to it) will influence the disposition to
act of the players, from which one can derive straightforwardly their utilities. However,
assuming this identity makes it difficult to imagine how a grammatical item (belonging
to some langue) should manipulate such a volatile and contextual entity such as a given
goal H. As already mentioned, argumentation and relevance do have proper linguistic
characteristics, that bear on the felicity and interpretation of utterances. We will exa-
mine this proper linguistic characterisation further in the next section with respect to
the issue of discourse topics.

While relations between propositions are quite standard elements in a semantician’s
toolbox, it is not an obvious move to state a grammatical relation between an utterance
and a disposition to act. A proposition, whatever may be the precise way in which one
wishes to define it, clearly is a linguistic entity. A disposition to act is not a linguistic
item, and it is delicate to assume that there could be words sensitive to such an entity 2.

2 One could certainly model a disposition to act as a set of propositions, but this is a way of not
addressing the basic problem.

138 G. Winterstein and G. Schaden

Setting aside the theoretical issue of what one’s position may be with respect to the
technical side of representing the argumentative goal H, there is an empirical issue
with respect to H, namely that H is not always expressed expressis verbis. Yet, figuring
out H plays a considerable role in establishing the contextual meaning of a sentence.
The question that needs to be addressed is thus the following: are there any rules (or
constraints) in the inference of H ? And can we link this process to other processes in
discourse interpretation, like the inference of a discourse topic ?

2 The Point of Talking

As is well known, what is said often stands in a rather indirect relation to what is meant.
The following example (adapted from Beyssade & Marandin (2002)) illustrates this:

(3) A : Who has been invited ?
B : The post is on strike.
A : Alright, we cancel.

Pragmaticians like Grice (1975) have insisted on the fact that figuring out out what
the speaker had in mind is a central element in determining the contextual meaning of
a sentence. This procedure of second-guessing the speaker’s intention is certainly not
grounded in the grammatical rules of a language, and is clearly pragmatic in nature.
This ‘point of talking’ has been called the discourse topic.

Most often, the notion of Discourse Topic (now D-Topic) has been worked out from
a different perspective than the notion of an argumentative goal.

However, the two concepts have in common that they somehow embody the point
of an utterance : either the (possibly implict) question to which an utterance answers
in the case of D-Topics or the objective the speaker has in mind when asserting his
utterance. We will consider both types of approaches in the remainder of this section.
First, we will give a brief reminder about the notions of D-Topic and argumentative
goal, and then give our technical argument to link the two. We conclude the section
with an application of our proposal to adversative conjunction.

Before moving any further, we should mention however that there are out-spoken
opponents to the notion of discourse topics, for instance Asher (2004). He advocates
against a unified approach to discourse topics, arguing that the various cases requiring a
notion of discourse topic have different, and sometimes incompatible, requirements on
what a discourse topic should be. It is not our aim to tip the balance towards a unified
or multifarious approach to discourse topics, even though we assume that all utterances
do have a discourse topic related to their argumentative orientation.

It is, however, worth noting that Asher acknowledges that there are grammatical
devices (such as contrastive accents) which help to disambiguate discourse topics. His
central claim is that contrastive accents are not sufficient to clearly identify a single
topic (e.g. when accents are omitted). We share the same intuition and our proposition
is that other cues are available to single out a discourse topic. However, the crucial
point we wish to make is the following : the pragmatic inference of a D-Topic is not
only costly, but extremely difficult ; grammatical means of restricting the search space
will therefore be more than welcome.

Relevance and Utility in an Argumentative Framework 139

2.1 Discourse Topics

Inspired by the works of Roberts (1996), Büring (e.g. Büring (2003)) represents the
structure of discourse as a tree whose nodes are moves representing declarative or inter-
rogative sentences. This, he calls a D-Tree. A grammar of discourse is then a grammar
of well-formed D-Trees. Crucially, questions in a D-Tree can be implicit and accom-
modated. This allows for a close match between the informational structure of an utte-
rance and the question(s) it answers in a D-tree. Chiefly, a declarative sentence must be
congruent to its question, otherwise the D-tree containing it is ill-formed. The informa-
tional structure of an utterance is often represented in the form of a question, and thus,
congruence is here defined by comparing the informational structure of the actually
uttered utterance with the D-tree.

More precisely, Contrastive Topic (now: CT) accents and Informational Focus ac-
cents are linguistic marks that indicate the exact strategy used by a speaker. When an
utterance is uttered out of the blue, these marks indicate which questions a hearer has
to accommodate in order to figure out the speaker’s strategy 3. In the case of overt ques-
tion, the resulting tree has to match the actual question. The exact marking of these
features differs from one language to another : in English CT-marking is done with a
B-accent, whereas in French it is done with a C-accent (see Marandin et al. (2002)).

The classical example (4), reproduced in Büring (2003), illustrates the effect of CT
in discourse.

(4) FREDCT ate the BEANSF

a. Step 1: What did Fred eat ?
b. Step 2: What did Fred eat ? What did Mary eat ? . . . = Who ate what ?

Example (4) is first interpreted as an answer to a question obtained by replacing the in-
formational focus by a wh-word, i.e. (4-a). Next, CT-marking indicates a more complex
strategy, i.e. that the first question is subsumed by a larger one, given by an abstraction
of the first question over the CT-marked item: (4-b). This will lead us to the represen-
tation of a D-Tree as follows:

(5) Who ate what ?

What did Fred eat ?

FREDCT ate the BEANSF

What did Mary eat ?

MARYCT ate . . .

What did . . . eat ?

. . . ate . . .

In a nutshell, Büring’s approach is one that tries to constrain the possible discourse
topics one could infer for an utterance, by using the informational structure of that
utterance.

3 The speaker strategy is the set of questions that subsume the utterance in the D-tree.

140 G. Winterstein and G. Schaden

2.2 Argumentative Goals

The notion of Discourse Topic is also used in argumentation theory, albeit in a different
way.

Merin (and works in the argumentative perspective in general) considers a special
case of non-cooperative discourse situation, characterized by speaker and addressee
having opposite preferences regarding a given goal H. In this case, Merin calls the
partition {H,H̄} the issue of the game and he calls H the Discourse Topic. To avoid
confusion between theories, we will name the discourse topic in such a setting the
Relevance-Topic (R-Topic). The R-Topic is meant to be the descriptively most conve-
nient element of the bipartition and is intended to be a neutral term regarding the parti-
cipants. Given an utterance E of the speaker, the Protentive Speaker Meaning (PSM) is
that element of the issue for which E is an argument.

Although most argumentative theories deal with non-cooperative discourses, this
does not need be so, as acknowledged in Merin (1999). When participants do not have
opposite preferences, notions of PSM and Relevance Topic still have intuitive sense
and we extend the definitions to the general case. By PSM we will thus mean the goal
supported by the speaker, independently of the preferences of the addressee. What we
intend to show is that the R-Topic is related to the notion of D-Tree, and that the two
theories have independent contributions to the establishment of the general notion of
Discourse Topic.

2.3 Linking the Two Perspectives

At this point of our discussion, we will adopt without discussion the view of com-
munication as conceived of in argumentation theory, namely that linguistics items are
related by argumentative relations, and that, in speaking, speakers argue for certain
conclusions.

In the argumentative perspective, the dichotomic bi-partition {H,H̄} is reminiscent
of the semantics of polar questions in a Hamblin-style approach 4.

In a non-dichotomic situation, similar parallels can be drawn between a set of pos-
sible argumentative goals {H0, . . . ,Hn} and the representation of the meaning of ques-
tions as sets of propositions.

Hence, instead of taking the most descriptively convenient element of the partition
as the R-Topic, we propose to identify the R-Topic with the question whose semantics
are the set of argumentative goals.

Büring’s approach can thus be refined in the following way. When accommodating
a question in a D-Tree it seems plausible to assume that the question must reflect the
argumentative properties of the utterance from which it is derived. More precisely, the
inferred question is the question whose semantics match the partition induced by the
argumentative situation at hand, that is, the strategy (in Büring’s sense) must contain
the R-Topic inferred from the argumentative properties of the sentence.

4 This is actually independent of the choice of representation for questions. A similar point can
be made in a structured meaning approach to questions. The set {H, H̄} would be obtained by
applying each member of the restriction to the background of the question.

Relevance and Utility in an Argumentative Framework 141

Given that, usually, utterances are not congruent to the R-Topic one infers from them,
the R-Topic needs to be accommodated at the top of the D-Tree, thus indicating the
starting point of the speaker’s strategy.

In the case of overt polar questions such as (6-a), no accommodation would be
required.

(6) a. A : Do you like beer ?
b. B : I do

From (6-b), one can infer the R-topic: {B likes beer, B doesn’t like beer} which matches
the question in (6-a). Furthermore, (6-b) meets the requirements of congruence imposed
by its information structure, which means that the whole dialogue is predicted to be fine
without any accommodated strategy.

A more complex example that illustrates our point involves adversative coordination,
as marked by the connective but. Adversative coordination is often treated in argumen-
tative terms. As observed in Anscombre & Ducrot (1977), sentential but connects two
propositions E and F such that rH(E) > 0,rH(F) < 0, i.e. such that they are arguments
for opposite conclusions, and thus establishing a dichotomic situation.

(7) This ring is beautiful, but it is expensive.

It is not clear which exact strategy should be inferred from (7) in Büring’s framework
alone. Probably, what should be inferred is a multiple polar question such as Is this ring
beautiful and is it expensive ? Yet, this does not account for the presence of but, nor for
the intuitive R-topic that comes out of the argumentative properties of (7).

According to our proposition the R-topic is constructed out of the argumentative
orientations of each segment. These do not stem from lexical properties but depend on
the discourse situation. In our example (7), H ′, that is, the question which is forming the
R-topic, must belong to the set of propositions satisfying the argumentative configura-
tion of (7), i.e. H ′ ∈ {H|sign(rH(E)) �= sign(rH(F))}. Out of all the propositions in the
set, H ′ is chosen as the one with the highest values of relevance. In the context of (7) a
likely candidate for H ′ would be the purchase of the ring and the R-topic would then be
“Should we buy this ring ?”. The first segment of the utterance would be understood as
supporting an affirmative answer to the question, while the second segment supports a
negative answer.

Adding the R-topic, and allowing in this way for enriching the final D-tree, leads to
a better representation of the actual meaning of the utterance in (7).

A similar observation has already been noted in Umbach (2005) for example
such as (8).

(8) What did John and Mary do ? (Did they do the same ?)

a. [John]CT [prepared the dinner]F , but [Mary]CT [washed the dishes]F .

Umbach’s proposal is that but-coordinations with CTs answer (negatively) an implicit
quaestio asking whether both CTs are subject to the same predication (indicated in
parenthesis in the example). The exact working out of this particular R-Topic is feasible,
but too complex to fit in this space. What is interesting is that in this case informational

142 G. Winterstein and G. Schaden

structure helps to disambiguate the argumentative goal of the utterance, rather than the
other way around (as in (7)).

2.4 Intermediate Summary

So far we have shown how to link argumentative approaches to information structure
based accounts of discourse.

Our claim is that the argumentative properties of an utterance constrain the accom-
modation of discourse strategy, just like the presence of a CT-accent does. However,
while CT define a strategy rather non-ambiguously, argumentative constraints are broa-
der in the sense that they do not identify a single discourse topic. What is interesting
about the latter constraints is that they apply to any utterance, and help to retrieve mea-
ning related to speaker’s intentions.

3 Where Relevance and Utility Need to be Kept Apart

In the previous section, we have addressed the question of the relation of R-Topics and
D-Topics in the inference of the point of talking. We have argued that relevance in
Merin’s sense is encoded in the grammatical properties of some linguistic items, and
allows to pin-point the speaker’s strategy with greater accuracy than by recurring to
information-structural criteria alone.

We did not use the game-theoretic notion of an expected speaker/hearer utility — or
game-theory for that matter —, since relevance on its own could account for everything
required in the examples discussed, and since our discussion did not focus on the actual
behaviour we would expect from discourse participants. For instance, in some cases,
though an addressee is very well able to identify the speaker’s strategy, he will want to
modify it, and not in the strictly opposing way of partitioning assumed in Merin (1999).

Therefore, in the present section, we will drop the requirement that all instances of
conversation are conflictual, that is, assimilable to strictly opposing zero-sum games.
Instead, we will suppose with van Rooy (2001) that conversation may take place in a
purely cooperative, strictly opposing, or in a mixed setting.

In the remainder of this section, we will study some of these settings. Relevance
and expected utility may diverge, and even conflict. More precisely, we will look at
situations where the notions of relevance and utility both play a role, albeit a different
one, in order to establish a discourse topic or unify the properties of the utterance with
an overt discourse topic.

3.1 Bi-partisan Relevance

Abandoning the idea of a strictly opposing setting, it becomes necessary to define a spe-
cial kind of relevance, that one may call bi-partisan relevance. The idea is the following:
bi-partisan relevance is the absolute (Merin-)relevance of a proposition with respect to
the discourse-topic (identified to H). Assume for instance that speaker and addressee
want to know whether H is the case, and that neither of them has any particular stake
with respect to H or H̄. In such a (purely cooperative) setting, the relevance of a propo-
sition E is the greater, the more it drives to either H or H̄. That is, if confronted with the

Relevance and Utility in an Argumentative Framework 143

choice between an E1, which would be positively pertinent to a degree rH(E1) = n, and
an E2, which would be negatively pertinent to a degree rH(E2) =−k with |k|> |n|, both
speaker and addressee should prefer E2. The reason is that E2 allows to sort out the is-
sue with far greater accuracy. Clearly, in such a fully cooperative context, and with two
sentences arguing for opposite conclusions, the directionality of the relevance-relation
is not helpful, and must be neutralized.

As an example consider (9), and imagine that both A and B are honest law-abiding
policemen, whose unique goal is to establish the identity of Sue’s killer.

(9) A : Did John kill Sue ?

a. He was the last one to see her = E
b. He was in Tokyo at the time of the murder = F

H can be considered to be set by A’s utterance to John killed Sue. Then, it will be
the case that rH(E) > 0 and that rH(F) < 0, i.e. that E and F argue for oppposite
conclusions. Furthermore F appears as a better argument for H̄ than E for H. So we
have: |rH(F)| > |rH(E)|. In that case, if B knows that E and F are both true he should
utter F given that it resolves the issue better than E , even though E is relevant to the
issue.

3.2 Changing Goals

The fact of teasing apart relevance and utility furthermore allows us to give an analysis
of situations where the inference of an argumentative goal is subject to modification
because of the participants’ preferences.

Consider the dialogue in (10).

(10) (At the restaurant, after receiving the tab)

a. A : I know someone from Austria who will lend me 5 euros.
b. B (himself Austrian) : Yes, Kurt will be happy to do it.

Let’s assume that the intended goal of A’s utterance is H0 =B will lend 5 euros to
A. Let’s further assume that participants preferences are represented by the amount of
money they gain (positive preference) or lend (negative preference) in the described
situation. Hence B’s preference for H0 is −5. Among the compatible argumentative
goals of (10-a) is H1 =Kurt will lend 5 euros to A. B’s preference for H1 is 0 which
means that he prefers it over H0. Ultimately, A is neutral between H0 and H1, and hence
he’s prone to accept the shift in argumentative goal imposed to him by B.

Therefore, in this situation, the argumentative goal is conjointly established by the
participants, given their actual preferences in a game-theoretical kind of approach.

3.3 Mixed Motive Games

A last argument against an identification between relevance and expected utility —
which would mean, as we have said before, that belief must be reducible to a disposition
to act — comes from the considerations of van Rooy (2001) with respect to mixed

144 G. Winterstein and G. Schaden

motive games. In such contexts, it may occur that, even though somebody believes
some information to be true, he will not act according to this belief.

The setting of the games he considers is a quite different one from what we have
seen so far, which were signalling games. In this precise case, we are facing a game
with communication preceding it, and the result of the communication may influence
the pay-offs of speaker and addressee in the game that follows.

Van Rooy (2001) stresses the fact that the common ground (i.e. the set of mutually,
and generally accepted information) does not just serve to determine the choice of
words of the speaker, and the choice of interpretation of a hearer. The common ground
also determines the actions of the discourse-participants in a game that follows the ex-
change of information.

The scenario goes as follows: a rational speaker will assert a proposition E — which
means: risking E to become part of the common ground, and as such influencing the
established payoffs for the speaker and addressee — only if E is as least not defavorable
to his expected utility. But the addressee has a strategy, too : he will not accept an
utterance to become part of the common ground if this reduces his expected utilities.
This holds even if he believes the asserted information to be true. And clearly, the
addressee must play the resulting game with respect to his old beliefs, because otherwise
he would jeopardize the expected utilities.

Let us consider an (invented) example. In the fictive country of Franconia, the prime
minister and the minister of the interior compete for the office of the president of Fran-
conia. The prime minister is sent a listing claiming that the minister of the interior has
a substantial amount of money in a foreign bank. The prime minister therefore sends
the secret service to investigate this claim. Assume that the situation is the following: it
would be greatly damaging the campain of the minister of the interior if he had such a
bank account, and therefore, a great help for the prime minister. Some months later, the
prime minister receives the message:

(11) The minister of the interior does not have a bank account in this foreign bank.

As a rational player, the situation being as put above, the prime minister should not
take into account this information, since it would harm his expected outcome in the
presidential election.

Now, the proposition in (11) is highly relevant (depending on the person, positively
or negatively), in that it might provoke a considerable shift in the outcome of the game.
Yet, one must see that it does not affect a preceding disposition to act in any way.

Therefore, such a configuration again shows that belief in a game-theoretic setting
cannot be reduced to a disposition to act.

4 Conclusion

In this paper, we have examined the applicability of (parts of) game theory for the se-
mantics (i.e., for the grammatically encoded parts of meaning) of natural languages. We
have argued that relevance should be represented explicitly in the grammar of natural
languages, and that decision theoretic semantics (as developed in Merin (1999, 2003))
is a possible way to go, making use of a subpart of game theory.

Relevance and Utility in an Argumentative Framework 145

We have also examined the possibility of reducing the phenomenon of argumentation
to pragmatics (i.e., purely contextually parts of meaning), and argued against the iden-
tification of the concept of relevance, as used in argumentative approaches, with that of
expected utility, as defined in more general game-theoretical settings. Such a reduction
could be achieved through the identification of belief with a disposition to act.

Our arguments to oppose such a reductive approach were partly theoretical and partly
based on practical considerations regarding the accommodation of a discourse topic. We
have shown how the two concepts can both contribute independently to the establish-
ment of a given topic, and that from a linguistic perspective, there are good reasons to
keep them apart.

Among the perspectives of this work is the integration of our considerations into a
formal model of dialogue, especially with respect to relating argumentation and spea-
ker’s utility to the concept of grounding (e.g. as used in Ginzburg (to appear)) in the
case of mutually agreed upon changing goals (as exemplified in section 3.2).

Another direction of research is to find other cues and constraints for the accom-
modation of discourse topics, that is, what additional elements besides informational
structure, argumentation and utility allow us to infer what a speaker wants to convey.

Reference

Anscombre, J.-C., Ducrot, O. : Deux mais en français. Lingua 43, 23–40 (1977)
Anscombre, J.-C., Ducrot, O. : L’argumentation dans la langue. Pierre Mardaga, Bruxelles (1983)
Asher, N. : Discourse Topic. Journal Theoretical Linguistics 30, 163–201 (2004)
Beyssade, C., Marandin, J.-M. : Topic Marking, Discourse Topic and Discourse Moves. In :

Workshop on Topics, University of Stuttgart (2002)
Büring, D. : On D-Trees, Beans, and B-Accents. Journal Linguistics and Philosophy 26(5), 511–

545 (2003)
Ducrot, O. : Les échelles argumentatives. Les Éditions de Minuit (1980)
Ginzburg, J. : Semantics and Interaction in Dialogue. In : Studies in Computational Linguistics.

CSLI Publications, Stanford (to appear)
Grice, H.P. : Logic and Conversation. In : Cole, P., Morgan, J.L. (eds.) Syntax and Semantics.

Speech Acts, vol. 3, pp. 41–58. Academic Press, New York (1975)
Hintikka, J., Sandu, G. : Game Theoretical Semantics. In : van Benthem, J., ter

Meulen, A. (eds.) Handbook of Logic and Language, pp. 361–410. Elsevier,
Amsterdam (1997)

Horn, L.R. : A Natural History of Negation. University of Chicago Press, Chicago (1989)
Marandin, J.-M., Beyssade, C., Delais-Roussarie, E., Rialland, A. : Discourse

Marking in French : C Accents and Discourse Moves. In : Speech Prosody 2002, Aix
en Provence, France, pp. 471–474 (2002)

Merin, A. : Information, Relevance and Social Decision-Making. In : Moss, L.S., Ginzburg, J., de
Rijke, M. (eds.) Logic, Language, and Computation, vol. 2, pp. 179–221. CSLI Publications,
Stanford (1999)

Merin, A. : Replacing ‘Horn-Scales’ by Act-Based Relevance-Orderings to Keep Negation and
Numerals Meaningful. In : Forschungsberichte der DFG-Forschergruppe ‘Logik in der Philo-
sophie’ 110 (2003)

Ramsey, F.P. : Truth and Probability. In : Braithwaite, R.B. (ed.) The Foundations of Mathematics
and other Logical Essays, ch. VII, pp. 156–198. Kegan, Paul, Trench, Trubner & Co, London
(1926)

146 G. Winterstein and G. Schaden

Roberts, C. : Information Structure in Discourse : Towards an Integrated Formal Theory of Prag-
matics. In : Yoon, J.H., Kathol, A. (eds.) OSU Working Papers in Linguistics. Papers in Se-
mantics, vol. 49, pp. 91–136 (1996)

van Rooij, R. : Cooperative versus argumentative communication. Philosophia Scientia 2, 195–
209 (2004)

van Rooy, R. : Relevance of Communicative Acts, Ms., University of Amsterdam (2001)
Umbach, C. : Contrast and Information Structure : A focus-based analysis of but. Journal Lin-

guistics 43(1), 207–232 (2005)

The Geometry and Algebra of Commitment

Felice Cardone

Università di Torino, Dipartimento di Informatica
felice@di.unito.it

Abstract. We propose a formal description, by means of graphical and
categorical structures, of mechanisms for handling the dynamics of rights
and obligations familiar in jurisprudence. We argue that the formal study
of commitment in this setting can contribute new insights to the anal-
ysis of a large variety of communicative situations relevant to formal
pragmatics.

1 Background and Motivations

This paper is a preliminary description of ongoing research motivated by the
desire to express formally the regularities of patterns of interaction that arise
in a wealth of communicative situations, e.g., rules of order [18], dialogues in
argumentation theory [20] and logic [15], or the exchange of promises that takes
place among parties while setting up a contract. We believe that this study is a
suitable item in a research agenda for formal pragmatics, primarily as a chapter
of the analysis of performatives encompassing not only speech acts but also more
general semiotic acts.

The notion of commitment has been singled out as a key one for the analysis
of interactive situations, from argumentation (see, for example, [20]) to the diag-
nosis of pathologies of communicative behavior in psychiatry [21]. For example,
the notion of commitment store in formal dialectics is an accounting device for
the obligations (and rights) that the two parties in a dialogue bring into play
by performing speech acts like statements and questions: “A speaker who is
obliged to maintain consistency needs to keep a store of statements representing
his previous commitments, and require of each new statement he makes that
it may be added without inconsistency to this store [. . .] We shall call them
commitment-stores: they keep a running tally of a person’s commitments” [11,
Chapter 8].

We identify commitment with the distribution of rights and obligations across
places, and focus on their transformations. Among these, traditional jurispru-
dence, in particular the Roman law, has singled out the mechanisms of confusio,
compensatio and delegatio, which we analyze by reducing them to more gen-
eral transformations that involve a conservative flow of rights and obligations
through a network of generalized systems of accounts expressing a notion of
state by means of double-entry recording.

We describe in Section 2 the dynamics of the rights and obligations that
bind the participants in an instance of commitment by means of directed graphs

Lecomte and S. Tronçon (Eds.): PRELUDE 2010, LNAI 6505, pp. 147–160, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

148 F. Cardone

representing compositions of basic transformations. Beside a purely arithmetic
interpretation of rights and obligations, these graphs also support a more con-
crete interpretation as describing the flow of documents of a special kind, the
stocks representing rights to their owners, and the stubs, representing obligations.

We introduce in Section 3 an alternative framework where graphs are replaced
by morphisms in a category whose objects are systems of accounts. This approach
has been stimulated by the algebraic treatment of double-entry accounting given
in [7], and connects to recent research on categorical models of computation,
especially by Abramsky and his coworkers [1,3,2].

Finally, in the last Section we discuss the relations of the ideas discussed in
this paper with the neighboring literature, and outline applications and future
developments of our approach.

2 The Geometry of Commitment

We identify the basic form of commitment or obligation with the existence of
a pairing of places, the active and the passive end of the obligation. This idea
is based on the principle of double-entry accounting, whereby commitments are
recorded commitment both in active (right) and in passive (obligation) forms, in
different accounts. We represent the existence of such a relation by the presence
at each end of one of two types of documents. At the active end, we have the
stock, at the passive end the stub. The terminology comes from the tradition of
accounting by means of tally sticks: “the medieval tally was split into two bits
of unequal length. The longer (the stock, with a stump or handle) was kept as a
receipt by the person who handed over goods or money. The shorter [here, the
stub] was kept by the receiver” [4, page 48]. Other examples of stock include
bonds and promissory notes. The use of places is needed as the documents we
consider confer rights to their bearer and may lose this property as they change
place.

The dynamics of a system of rights and obligations will be identified with the
flow of these two types of documents through places, as a result of three kinds of
events: (1) creation of 〈stub, stock〉 pairs, (2) destruction of such pairs, and (3)
exchange of stock and stub located at different places. Our goal is to find out a
way of representing formally the scripts that schedule actions of the above three
types so as to implement the traditional mechanisms for extinguishing rights
and obligations. We do this operationally, by means of graphical structures on
which tokens representing stocks and stubs flow.

2.1 Space-Time Diagrams: Definitions

We assume given a set T of types, with a fixed-point free involution associating
to each type T a type T ∗. Then T = T + + T −, where T + = {A, B, C, . . .} is
the subset of positive types and T − = {A∗, B∗, C∗, . . .} is the subset of negative
types. We also have a set of places P = {U, V, W, . . .}.

A system of accounts is a string over the set T × P , whose elements are
pairs TU consisting of a type and a place, where ε denotes the empty string.

The Geometry and Algebra of Commitment 149

The notation |X | denotes the length of the string X . A single account (at place
U) is then a string over T × {U}. Given a system of accounts X and a place U ,
we can extract from X an account at place U by means of a projection operation
denoted by X � U and defined inductively as follows:

ε � U = ε

(TV)X ′ � U = X ′ � U if V �= U

= (TU)(X ′ � U) if V = U

An account X = X � U encodes a traditional T-account (see [7]) whose debit
and credit part are respectively the left and right columns

U

X− X+

Given a system of accounts X , the notations X+ and X− for the positive and
negative parts of X are defined inductively on X :

ε− = ε

((TV)Y)− = (AV)Y − if T = A∗

= Y − if T = A

ε+ = ε

((TV)Y)+ = (AV)Y + if T = A

= Y + if T = A∗

Observe that both X+ and X− are strings over T + ×P . The involution defined
on T can be extended to systems of accounts following the same pattern:

ε∗ = ε

((TV)Y)∗ = (T ∗V)Y ∗

A system of accounts X , as a string, has an associated set Pos(X) of positions,
which is the subset of N defined inductively by the clauses:

Pos(ε) = ∅
Pos((TV)Y) = {1} ∪ {n + 1 | n ∈ Pos(Y)}.

In the opposite direction, for every n ∈ Pos(X), we define X(n) as the element
occurring at position n in X :

((TV)Y)(1) = TV

((TV)Y)(n + 1) = Y (n) if n ∈ Pos(Y)
undefined otherwise

Pairs from the set T × P are used to label the edges of oriented graphs whose
nodes have one of the forms shown in Figure 1, where U and V are places:

150 F. Cardone

� �e2e1

(creation)

createA

� �
destroyA

e1 e2

(destruction)

A∗U AU

AU A∗U

�
TV

e′
2e′

1

e1 e2

TU

�

TV

TU

(exchange)

Fig. 1. Nodes, edges and their labels

Intuitively, createA represents the creation of a pair 〈stub, stock〉, with the stub
(of type A∗) and the stock (of type A) located at the same place U . Dually,
destroyA represents the annihilation of a stock of type A and a stub of type A∗

meeting at the same place U . An exchange node represents the trading of a stock
of type T at place U for a stock of the same type at a different place V .

Larger graphs, that we shall call space-time diagrams, are built from primi-
tive nodes inductively, by connecting each outgoing edge of one space-time di-
agram to at most one incoming edge (labeled by the same type and place) of
another diagram, and symmetrically for incoming edges. (In the sequel, when
drawing space-time diagrams, we shall freely cross wires located at the same
place whenever this is necessary in order to match types: such a crossing should
not be confused with an exchange node, which instead involves wires at different
places.)

2.2 Executing Space-Time Diagrams

Space-time diagrams are meant to describe the motion of stocks and stubs
through places whose states are (recorded as) systems of accounts. For exam-
ple, the space-time diagrams depicted in Figure 2(b),(c) describe two different
transformations whose input state is a system of accounts

U

A
V

A

(stocks on the right columns). Both transformations do not alter the state; how-
ever, diagram (b) corresponds to the identical transformation, whereas diagram
(c) exchanges the stocks on the incoming edges.

We can execute space-time diagrams in a way that resembles the token game
played on Petri nets. Indeed, by regarding the nodes as transitions and edges as
places, every such diagram becomes a special kind of condition/event net, see
[17], where every condition has at most one incoming and at most one outgoing
event: the resulting net can be represented as an oriented graph whose arcs are
the conditions and whose nodes are the events.

A marking of a space-time diagram Δ is an injective assignment m of at most
one token to the edges of Δ. In particular, a diagram Δ with n incoming edges
i1, . . . , in and m outgoing edges o1, . . . , om has an input marking min assigning
to edge ik token τk. The notion of enabling of a node in a marking, the firing

The Geometry and Algebra of Commitment 151

� �

��

AU

AU

� �

��

AU

AU

� �

��

AU

AU

(a) (b) (c)

AV

AV

AV

AV

AV

AV

Fig. 2. Two space-time diagrams describing different scripts of the same type

rule and the notion of reachability of a marking from another marking are the
same as for condition/event nets [17, §2.1].

We want now to make precise the straightforward notion of identity of a
token through a sequence of firings. To this end, let m be a marking of Δ, and
τ = m(e) for some edge e. For every sequence of firings σ starting at m, we
define the residual of τ after σ (written τ/σ), when it exists, by induction on
the length of σ:

– if e is not the input edge of any node, then τ/σ = τ ;
– otherwise, let e be the input edge of a node ν.

• If ν is never fired in σ, then τ/σ = τ ;
• otherwise, there is a step m → m in σ in which node ν is fired. We

consider the possible forms of ν, according to Figure 1:
∗ (exchange) assume that e = e1, the other case is symmetric: m(e1) =

τ and m(e′2) = τ , therefore τ/σ is again the residual of τ after the
final segment of σ that starts at m (if this exists);

∗ (destroyA) there are three cases:
(a) ν occurs in the context shown in Figure 3(i). Observe now that, in

order for ν to be enabled, the node createA must have fired earlier
giving origin to a marking m∗ in σ from which m is reachable
and such that m∗(e′′) = τ ′ for some new token τ ′. Then τ/σ is
the residual of τ ′ after the final segment of σ that starts at m∗

(if this exists).
(b) ν occurs in the context shown in Figure 3(ii). This case is the

symmetric of the former.
(c) Otherwise, τ has no residual after σ.

The preservation of the identity of tokens through the transformations described
in Figure 3 corresponds to the disciplined copying of a document by destroying
the original. The residual of a token τ of the input marking min of Δ after
firing all nodes in Δ (in any order) is written simply τ/Δ. Observe that for
every space-time diagram Δ, every token has at most one residual after σ, and
residuals after σ of distinct tokens are distinct, for any firing sequence σ.

Definition 1. Space-time diagrams Δ, Δ′ with incoming edges i1 . . . in and out-
going edges o1, . . . , om, labeled by pairs T1U1, . . . , TnUn and T ′

1V1, . . . , T
′
mVm,

152 F. Cardone

�

�

�
destroyA

createAAU
e

AU

e′′A∗U e′(i) (ii)

�

� �

createA

destroyAA∗U
e′′

AU e′

A∗U
e

Fig. 3. Contexts for regenerating a token

respectively, are equal if, for every incoming edge ik, min(ik)/Δ exists and is on
edge o� if and only if min(ik)/Δ′ exists and is on edge o�.

Equality of space-time diagrams is almost trivial, due to the very special nature
of the nodes. It holds whenever one input token has residuals on corresponding
outcoming edges of the two diagrams. With this definition, for each place U ,
the diagram in Figure 3(i) is equal to a single edge labeled AU , whereas the
diagram in Figure 3(ii) is equal to a single edge labeled A∗U . However, the two
space-time diagrams shown in Figure 2(b),(c) turn out to be different: any input
token has residuals on different outgoing edges after executing each diagram.

2.3 Delegatio, Compensatio and Confusio

We shall discuss the intuitive interpretation of space-time diagrams and show
their uses in modeling the interactions prescribed by the traditional mecha-
nisms for the transfer and extinction of obligations. We shall interpret stocks
and stubs of type A as tokens of type A and A∗, respectively. A type is as-
sumed to characterize completely the content of an obligation. Let us consider
the following example from [4, page 54], where all obligations involved are of
type A:

If V owes Z, but is owed by U , let him – V – make out a receipt to U
and give it to Z, and let Z not part with it till he receives the money.

We look at these actions as a dialogue involving three places, U, V and Z, in
which the speech acts are replaced by exchanges of 〈stub, stock〉 pairs. Observe
that this mechanism coincides with delegation in Roman law (according to Book
46th of the Digest of Justinian, “Delegare est vice sua alium reum dare creditori
vel cui iusserit”). The initial state of this series of transformations is represented
by the system of accounts

U

A
V

A A
Z

A
,

the final state is
U

A
V Z

A
.

The Geometry and Algebra of Commitment 153

(a)

� �
destroyA

A∗U

A∗U

A∗V AV

AV

AZ

AZ

� �

(b)

��
destroyA

A∗U

A∗U A∗V AV AZ

AZ��

Fig. 4. Scripts for delegation

Delegation is implemented by the space-time diagram in Figure 4(a) or, alter-
natively, by that in Figure 4(b). Observe, however, that only the first diagram
describes the flow of stocks and stubs as in the example.

Other mechanisms from the Roman law of a similar nature include confusio
and compensatio. The former refers to the situation where the position of debtor
and creditor with regard to one and the same obligation merge in one person
[22]. In our view, this is expressed by the meeting at one place of a stub and a
stock of the same type, which can then be annihilated, as in the relative script
which coincides with one application of destruction.

Similarly, compensation can be applied to a situation where two obligations
of reverse sign are simultaneously present, represented by the system of accounts

U

A A
V

A A

leading to the situation in which U and V are empty. This transformation can
be implemented in the two ways illustrated in Figure 5.

� � ��
destroyA destroyA

A∗U A∗V AVAU

� � ��
destroyA destroyA

A∗U A∗V AVAU
(a) (b)

Fig. 5. Scripts for compensation

154 F. Cardone

3 The Algebra of Commitment

We study now the algebraic structure of systems of accounts. In order to define a
category of systems of accounts, we exploit the familiar construction of a compact
closed category from a traced monoidal category [12], in a variant devised by
Abramsky [1] as a model of both Girard’s Geometry of Interaction [10] and of
a simple form of game semantics. However, we first need to describe further
operations on systems of accounts.

Definition 2. 1. The tensor product X ⊗ Y of systems of accounts X and Y
is their concatenation,

2. the dual of a system of accounts X is the system of accounts X∗,
3. the system of accounts 0 is ε.

Intuitively, the operation X∗ exchanges credit and debit parts of all accounts of
the system X , i.e., (X∗)+ = X− and (X∗)− = X+. The operations on systems
of accounts just introduced satisfy an elegant equational theory: for example,
(X ⊗ Y)∗ = (X∗ ⊗ Y ∗). By the same argument, we also have the equations
(X ⊗ Y)+ = (X+ ⊗ Y +) and (X ⊗ Y)− = (X− ⊗ Y −). In the present context
we are, however, more interested in a congruence relations that captures the
equality of balance on accounts, whose formal description is our next topic.

Definition 3 (Matching)

1. Given strings X, Y over T + × P, a matching f of X with Y is a bijection
f : Pos(X) � Pos(Y) such that, for all p ∈ Pos(X), X(p) = TV if and
only if Y (f(p)) = TU .

2. Two matchings f, f ′ of X with Y are equal if and only if, for every p ∈
Pos(X), Y (f(p)) = Y (f ′(p)).

A matching of X with Y is then just a way of associating positions of Y to
positions of X , bijectively and in such a way as to preserve the types (but not
necessarily the places).

3.1 Matchings as Morphisms

We consider a category M whose objects are strings over T + × P and whose
morphisms with domain X and codomain Y are the matchings of X with Y .
This is a monoidal category with tensor product given by concatenation, it is
symmetric and, more importantly from the present standpoint, it is traced.
Indeed, let f : X ⊗ Z � Y ⊗ Z be a morphism. Then f is a bijection
Pos(X) + Pos(Z) � Pos(Y) + Pos(Z), and the algorithm below describes
exactly the iterative procedure exploited by (a variant of) the Garsia-Milne in-
volution principle [8] in order to construct a bijection Pos(X) � Pos(Y):

for any position p ∈ Pos(X):
q := f(p);
while (q is a position of Z)

q := f(|X | + q − |Y |);
return q

The Geometry and Algebra of Commitment 155

Observe that the loop terminates within |Z| iterations, yielding a matching of X
with Y . This is the same as the trace of f obtained by regarding f as a partial
injective function Pos(X)+Pos(Z) � Pos(Y)+Pos(Z), [3, §5.1]. Summarizing
these observations, we can state:

Proposition 1. M is a traced symmetric monoidal category.

We now recall briefly how a new category G(M) is built out of M, following
[1,3]. The objects of G(M) are pairs 〈X+, X−〉 of objects of M, a morphism
f : 〈X+, X−〉 � 〈Y +, Y −〉 in G(M) is a morphism f : X+⊗Y − � X−⊗Y +

in M. The identity morphism X+ ⊗X− � X−⊗X+ is the obvious matching
that exchanges positions. Composition in G(M) is given by symmetric feedback,
exploiting the traced structure of M, which can be expressed graphically by the
diagram:

�

�

�

�

X+

X−

� �

f g

Y −

Y +

Y +

Y − Z+

Z−

Fig. 6. Composition in G(M) as symmetric feedback

3.2 A Category of Accounts

A 0-account is an account X for which there is a matching of X+ with X−. A
0-system is a system X of accounts such that X � U is a 0-account, for every
place U . The tensor product of 0-systems is again a 0-system, because 0-accounts
are closed under tensor product.

Definition 4. Given systems of accounts X, Y as above, define X ∼ Y if and
only if X ⊗ Y ∗ is a 0-system.

The proof of the following properties is mostly straightforward. The proof that
∼ is transitive exploits composition of matchings X+ ⊗ Y − � X− ⊗ Y + and
Y + ⊗ Z− � Y − ⊗ Z+ by means of symmetric feedback, which amounts to
their composition in G(M). In this case, X, Y and Z can be taken to be accounts
at the same place.

Proposition 2. 1. X ∼ Y if and only if X ⊗ Y ∗ ∼ 0,
2. ∼ is a congruence (w.r.t. the ⊗-∗ structure on systems of accounts),
3. X ⊗ X∗ ∼ 0,
4. systems of accounts modulo ∼ form an abelian group.

We now define a category Acc whose objects are going to be systems of accounts,
inspired the construction of the Pacioli group in [7], which is an instance of
a classical construction of the group of differences of a commutative monoid.

156 F. Cardone

Intuitively, we want the morphisms of our category of systems of accounts to
be conservative, i.e., they preserve the balance of every single account in the
system. In particular, our morphisms must connect congruent objects.

Definition 5. Let Acc be the category whose objects are the systems of accounts
where, if X ⊗ Y ∗ ∼ 0, a morphism f : X � Y is a matching of (X ⊗ Y ∗)+

with (X ⊗ Y ∗)−.

So, a morphism f : X � Y in Acc is a morphism X+ ⊗ Y − � X− ⊗ Y +

in M, and therefore also a morphism 〈X+, X−〉 � 〈Y +, Y −〉 in G(M).
Assume now that f : X � Y and g : Y � Z. Observe first that

X ⊗ Z∗ ∼ 0 in Acc, by Proposition 2. We define g ◦ f : X � Z in Acc to be
the same as the composition of f and g in G(M). More explicitly, by looking at
the diagram of Figure 6 as a flow diagram for computing composition in G(M),
for any position p ∈ Pos((X⊗Z∗)+), (g ◦f)(p) ∈ Pos((X⊗Z∗)−) is the position
q returned by the algorithm described as follows in the case when p ∈ Pos(X+)
(the case when p ∈ Pos(Z−) is symmetrical):

q := f(p);
if (q is is a position of X−) then

return q;
while (q is a position of Y +) do

q := g(q − |X−|);
if (q is a position of Y −) then

q := f(|X+| + q);
else return q

We can visualize morphisms of Acc by representing negative types with hollow
circles (◦) and positive types with solid circles •), omitting their names and the
places. Matching types are then represented by links of the form � �. With
this notation we can illustrate schematically the composition g ◦ f in Figure 7
in the case when p is a position of X+ (the lower row represents X , the middle
rows Y and Y ∗ respectively, and the upper row Z∗).

Proposition 3. Composition of morphisms in Acc is well-defined and is
associative.

We shall not dwell upon the structure of the category Acc any further, leaving
this to future work. With hindsight, it is not surprising that symmetric traced

p�

�

f

� �
� �

�

� �g

� �f

� �g
�
�

� �

�
�

�

g
q

(a) (b)
p�

�

f

� �
� �

�

� �g

� �f

� �g
�
�

�

�

�
�

q
f
�

Fig. 7. Two examples for composition

The Geometry and Algebra of Commitment 157

monoidal categories and related compact closed categories like G(M) enter in
the present account. The elementary formalization of double-entry accounting
given by Ellerman [7] relates it to the construction of the group of differences
from a commutative (additive) monoid generalizing the well-known construction
of the integers from the natural numbers. If the monoid is regarded as a discrete
symmetric monoidal category, the tensor product being the monoid operation,
and if in addition the monoid has the cancellation property, this category is
traced monoidal and the construction of the group of differences turns out to be
a special case of the Int construction studied in [12], which inspired Abramsky’s
categorical reconstruction of Girard’s geometry of interaction for linear logic
[1,10], taking the form of G(C) for a traced symmetric monoidal C. The relevance
of (compact closed bi)categories in modeling double-entry accounting was first
pointed out in [13].

3.3 Examples

The following examples describe the interpretation of the space-time diagrams
of Section 2.1 as morphisms of Acc. A space-time diagram with incoming edges
i1 . . . in and outgoing edges o1, . . . , om labeled by pairs T1U1, . . . , TnUn and
T ′

1V1, . . . , T
′
mVm, respectively, is interpreted as a morphism of Acc of the form

[[Δ]] : T1U1 ⊗ · · · ⊗ TnUn
� T ′

1V1 ⊗ · · · ⊗ T ′
mVm.

Creation and destruction Observe that A∗U ⊗ AU = (A∗U)(AU) is an object
for any place U and type A, representing the account

U

A A
.

The only possible matching describes both the morphism createA : 0 � A∗U⊗
AU , and the morphism destroyA : AU ⊗ A∗U � 0

Exchange Consider the types AU ⊗AV and (AV ⊗AU)∗ = A∗V ⊗A∗U . Observe
that (AU ⊗ AV) ⊗ (A∗V ⊗ A∗U) ∼ 0, and the matching that associates the
occurrence of A at U with the occurrence of A∗ at V , and the occurrence of A
at V with the occurrence of A∗ at U is a morphism, corresponding to exchange.

This interpretation can be extended inductively to all space-time diagrams. As
a further example of this interpretation, Figure 8 shows the construction of the
morphisms of Acc associated with the diagrams shown in Figure 3 of Section 2.1.
Both are equal to the identities at the respective types (the zig-zag identities).

Finally, we state without proof the relation between the operational equiva-
lence of space-time diagrams of Definition 1 and the equality of their interpre-
tations as morphisms of Acc, observing that matchings are just another way of
presenting the paths followed by tokens through space-time diagrams.

Proposition 4. If space-time diagrams Δ, Δ′ with incoming and outgoing edges
labeled by pairs T1U1, . . . , TnUn and T ′

1V1, . . . , T
′
mVm are equal, then [[Δ]] = [[Δ′]] :

T1U1 ⊗ · · · ⊗ TnUn
� T ′

1V1 ⊗ · · · ⊗ T ′
mVm.

158 F. Cardone

�

�
� �

� �
�

�

� �

� �

=

�

�

� 	

(a) (b)
�

�
� �

� �
�

�

� �

� �

=

�

�

 �

Fig. 8. The zig-zag identities

4 Related Research and Future Work

In order to place our proposal in context, we mention some of the ideas that have
been influential on our development. It has been observed in [5,9] that the use of
stock and stub as an accounting device, dating back to the prehistory of writing,
can be described by means of Feynman graphs, looking at stocks and stubs as
particles and antiparticles that can move forward and, interestingly, backwards,
allowing a nice description of the possible ways of transferring assets (and liabil-
ities). By means of space-time diagrams we side-step the metric complications
entailed by this mechanical model of double-entry accounting.

The idea of having tokens of two kinds on a graph to be executed like a Petri
net is similar to what happens in the financial game of [16]. Again, this gives rise
in a straightforward way to compact closed categories, as stressed recently in [2].
There, however, the placement of tokens along the graphs does not follow the
double-entry principle, which instead lies at the basis of our explicit representa-
tion of the interactions that bring about the transfers of rights and obligations.

What we regard as an advantage of our proposal is the simultaneous repre-
sentation of the states of a system of rights and obligations, which is what is
represented traditionally by accounts, and the transformations of these states by
means of the flow of documents of a simple kind. Furthermore, these two dimen-
sions are linked by an equational theory that includes familiar laws. One area
for further work is the complete analysis of this theory and its relations to the
graphical calculi for monoidal categories studied in [19] and in the recent cate-
gorical approaches to quantum physics [6]. Also the striking similarities between
matchings in Acc and Kelly-Mac Lane graphs [14] need more investigation.

One of the original motivations for the work outlined in this paper was the
search for a rationale behind the procedural rules of Lorenzen dialogues [15].
While attack/defense rules for the logical constants have a natural justification,
procedural rules have an ad hoc character that hinders the foundational interpre-
tation of the dialogical setting. We believe that the arithmetic of commitments
that we propose can be extended to the management of the flow of rights and
obbligations in a Lorenzen dialogue. While the types used in this paper represent
very special kinds of contracts, namely unilateral contracts that are either pure
rights or pure obligations, we are currently exploring the possibility to enrich this
repertoire with contracts of other kinds. In particular, every implication ϕ → ψ
acts, in the dialogical context, as a contract that commits the asserting party to
ψ in exchange for the adversary’s commitment to ϕ (with adversary triggering
the application of the contract).

The Geometry and Algebra of Commitment 159

As a first, almost trivial but suggestive example, consider the dialogue for the
formula A → A asserted by the Proponent (at place P). When the Opponent
(at place O) asserts A he triggers the contract associated to A → A, reaching a
stage represented by the system

A∗O ⊗ AO ⊗ A∗P ⊗ AP.

This is a 0-system corresponding to the initial state of the script for compensa-
tion, whose execution yields 0. The justification of the dialogical validity of this
formula by means of a procedural rule is replaced in this case by the requirement
that the system of accounts arising from this dialogue be a 0-system, where all
proof obligations can be extinguished by scripts representing morphisms in Acc.
We are currently striving to define a formal setting for associating systems of
accounts to dialogues so that validity correspond to the fact that the relevant
accounts balance.

Acknowledgements. I would like to thank the referees for their stimulating and
encouraging comments. Marco Gaboardi, Michele Pagani, Mauro Piccolo and
Luca Vercelli have listened patiently to a long presentation of the ideas sketched
in this paper, providing valuable suggestions. Jean-Yves Girard pointed out prob-
lems arising from the sloppy use of the notion of occurrence during the presenta-
tion of an earlier version of this material in Paris. This research has been partly
supported by MIUR Project PRIN07RNC 7.7.2.60 “CONCERTO”.

References

1. Abramsky, S.: Retracing some paths in process algebra. In: Sassone, V., Montanari,
U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 1–17. Springer, Heidelberg (1996)

2. Abramsky, S.: Petri nets, discrete physics, and distributed quantum computation.
In: Degano, P., De Nicola, R., Bevilacqua, V. (eds.) Concurrency, Graphs and
Models. LNCS, vol. 5065, pp. 527–543. Springer, Heidelberg (2008)

3. Abramsky, S., Haghverdi, E., Scott, P.: Geometry of interaction and linear com-
binatory algebras. Mathematical Structures in Computer Science 12(5), 625–665
(2002)

4. Baxter, W.: Early accounting: The tally and the checkerboard. The Accounting
Historians Journal 16(2), 43–83 (1989)

5. Braun, D.: Assets and liabilities are the momentum of particles and antiparticles
displayed in Feynman-graphs. Physica A: Statistical Mechanics and its Applica-
tions 290(3-4), 491–500 (2001)

6. Coecke, B.: Kindergarten quantum mechanics (2005),
http://arxiv.org/abs/quant-ph/0510032

7. Ellerman, D.P.: The mathematics of double entry bookkeeping. Mathematics Mag-
azine 58(4), 226–233 (1985)

8. Feldman, D., Propp, J.: Producing new bijections from old. Advances in Mathe-
matics 113, 1–44 (1995)

9. Fischer, R., Braun, D.: Nontrivial bookkeeping: a mechanical perspective. Physica
A: Statistical Mechanics and its Applications 324(1-2), 266–271 (2003)

http://arxiv.org/abs/quant-ph/0510032

160 F. Cardone

10. Girard, J.Y.: Geometry of interaction I: Interpretation of system F. In: Bonotto,
C., Ferro, R., Valentini, S., Zanardo, A. (eds.) Logic Colloquium 1988, pp. 221–260.
North-Holland, Amsterdam (1989)

11. Hamblin, C.: Fallacies. Methuen & Co., London (1970)
12. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Mathematical Pro-

ceedings of the Cambridge Philosophical Society 119, 447–468 (1996)
13. Katis, P., Sabadini, N., Walters, R.: On partita doppia (1998) (unpublished)
14. Kelly, G.M., Mac Lane, S.: Coherence in closed categories. Journal of Pure and

Applied Algebra 1, 97–140 (1971)
15. Lorenzen, P.: Ein dialogisches Konstructivitätskriterium. In: Infinitistic Methods,

pp. 193–200. Pergamon Press and PWN, Oxford and Warsaw (1961)
16. Mart́ı-Oliet, N., Meseguer, J.: From Petri nets to linear logic through categories:

A survey. International Journal of Foundations of Computer Science 2(4), 297–399
(1991)

17. Reisig, W.: Petri nets: an introduction. Springer, Heidelberg (1985)
18. Robert, H.: Roberts Rules of Order. In: The Standard Guide to Parliamentary

Procedure. Bantham Books, New York (1986)
19. Selinger, P.: A survey of graphical languages for monoidal categories (December

2008) (unpublished)
20. Walton, D.N., Krabbe, E.C.: Commitment in Dialogue: Basic Concepts of Inter-

personal Reasoning. State University of New York Press, Albany (1995)
21. Watzlawick, P., Beavin, J.H., Jackson, D.D.: Pragmatics of Human Communica-

tion. In: A Study of Interactional Patterns, Pathologies, and Paradoxes. W.W.
Norton & Co., New York (1967)

22. Zimmermann, R.: The Law of Obligations: Roman Foundations of the Civilian
Tradition. Oxford University Press, Oxford (1996)

Compliance

Jeroen Groenendijk and Floris Roelofsen

ILLC/Department of Philosophy
Universiteit van Amsterdam

http://www.illc.uva.nl/inquisitive-semantics

1 Introduction

The aim of this paper is to motivate and specify the logical notion of compliance,
which judges whether or not a certain sentence makes a significant contribution
towards resolving a given issue in a cooperative dialogue that is geared towards
the exchange of information. We assume that such a contribution may consist
in (partially) resolving the issue, or in raising an easier to answer sub-issue (cf.
Roberts, 1996). Thus, among other things, compliance will provide a character-
ization of answerhood and subquestionhood : it will tell us which sentences count
as (partial) answers to a given question, or as subquestions of that question.

Compliance will be defined within the framework of inquisitive semantics
(Groenendijk, 2008; Mascarenhas, 2008), which departs from partition theories
of questions (Groenendijk and Stokhof, 1984; Groenendijk, 1999) in a crucial
way: questions are no longer analyzed as partitions of logical space, but as sets
of alternative (though possibly overlapping!) ‘possibilities’. We will see that, as a
consequence of this departure, answerhood and subquestionhood can no longer
be defined in terms of entailment.

The paper is organized as follows. Section 2 reviews the basic notions of
inquisitive semantics, and points out why answerhood and subquestionhood can
not be defined in terms of entailment in this framework. Section 3 introduces the
notion of compliance, and section 4 discusses the notion of homogeneity, which
captures certain quantitative preferences among compliant responses.

2 Inquisitive Semantics

Classically, the meaning of a sentence is identified with its informative content.
Stalnaker (1978) gave this informative notion a dynamic and conversational twist
by taking the meaning of a sentence to be its potential to change the common
ground, where the common ground is viewed as a body of shared information as
it has been established in a conversation.

The notion of meaning that resulted from this ‘dynamic turn’ reflects the
active use of language in changing information. However, what it does not yet
capture is the interactive use of language in exchanging information. This re-
quires yet another turn, an ‘inquisitive turn’, leading to a notion of meaning
that directly reflects the nature of informative dialogue as a cooperative process
of raising and resolving issues.

Lecomte and S. Tronçon (Eds.): PRELUDE 2010, LNAI 6505, pp. 161–173, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

162 J. Groenendijk and F. Roelofsen

2.1 Propositions as Proposals

We follow the standard practice of referring to the meaning of a sentence as
the proposition that it expresses. The classical logical-semantical picture of a
proposition is a set of possible worlds, those worlds that are compatible with
the information that the sentence provides. The common ground is also stan-
dardly pictured as a set of worlds, those worlds that are compatible with the
conversational participants’ common beliefs and assumptions. The communica-
tive effect of a sentence, then, is to enhance the common ground by excluding
certain worlds, namely those worlds in the common ground that are not included
in the proposition expressed by the sentence.

Of course, this picture is limited in several ways. First, it only applies to
sentences which are used exclusively to provide information. Even in a typical
informative dialogue, utterances may serve different purposes as well. Second, the
given picture does not take into account that enhancing the common ground is a
cooperative process. One speech participant cannot simply change the common
ground all by herself. All she can do is propose a certain change. Other speech
participants may react to such a proposal in several ways. These reactions play
a crucial role in the dynamics of conversation.

In order to overcome these limitations, inquisitive semantics starts with an
altogether different picture. It views propositions as proposals to enhance the
common ground. These proposals do not always specify just one way of changing
the common ground. They may suggest alternative ways of doing so, among
which the responder is then invited to choose.

Formally, a proposition consists of one or more possibilities. Each possibility
is a set of possible worlds—a set of indices, as we will call them—and embodies
a possible way to change the common ground. If a proposition consists of two
or more possibilities, it is inquisitive: it invites the other participants to respond
in a way that will lead to a cooperative choice between the proposed alterna-
tives. In this sense, inquisitive propositions raise an issue. They give direction to
a dialogue. Purely informative non-inquisitive propositions do not invite other
participants to choose between different alternatives. But still, they are propos-
als. They do not automatically establish a change of the common ground.

Thus, the notion of meaning in inquisitive semantics is directly related to
the interactive process of exchanging information. Propositions, conceived of as
proposals, give direction to this process. Changes of the common ground come
about by mutual agreement among speech participants.

2.2 Support, Possibilities, and Propositions

We define an inquisitive semantics for a propositional language, which is based
on a finite set of propositional variables, and has ¬, ∧, ∨, and → as its basic
logical operators. We add two non-standard operators: ! and ?. !ϕ is defined as
¬¬ϕ, and ?ϕ is defined as ϕ ∨ ¬ϕ. !ϕ is called the non-inquisitive closure of ϕ,
and ?ϕ is called the non-informative closure of ϕ.

The basic ingredients for the semantics are indices and states. An index is a
binary valuation for the atomic sentences in the language. A state is a non-empty

Compliance 163

set of indices. We use v as a variable ranging over indices, and σ, τ as variables
ranging over states. The set of all indices is denoted by ω, and the set of all
states is denoted by S.

The proposition expressed by a sentence ϕ is defined indirectly, via the notion
of support (just as, classically, the proposition expressed by a sentence is usually
defined indirectly in terms of truth). We read σ |= ϕ as state σ supports ϕ.
Support is recursively defined as follows.

Definition 1 (Support)

1. σ |= p iff ∀v ∈ σ : v(p) = 1
2. σ |= ¬ϕ iff ∀τ ⊆ σ : τ �|= ϕ

3. σ |= ϕ ∨ ψ iff σ |= ϕ or σ |= ψ

4. σ |= ϕ ∧ ψ iff σ |= ϕ and σ |= ψ

5. σ |= ϕ → ψ iff ∀τ ⊆ σ : if τ |= ϕ then τ |= ψ

In terms of support, we define the possibilities for a sentence, and the proposition
expressed by a sentence.

Definition 2 (Possibilities and Propositions)

1. A possibility for ϕ is a maximal state supporting ϕ, that is, a state that
supports ϕ and is not properly included in any other state supporting ϕ.

2. The proposition expressed by ϕ, denoted �ϕ�, is the set of possibilities for ϕ.

We will illustrate the behavior of atomic sentences and the logical operators by
means of the examples displayed in figure 1. In doing so, it will be useful to
distinguish between classical and inquisitive sentences.

Definition 3 (Classical and Inquisitive Sentences)

1. ϕ is classical iff �ϕ� contains at most one possibility;
2. ϕ is inquisitive iff �ϕ� contains at least two possibilities.

Atoms. The proposition expressed by an atomic sentence p always consists of
exactly one possibility: the possibility containing all indices that make p true.
So atomic sentences are always classical.

Negation. The proposition expressed by ¬ϕ always consists of at most one
possibility. If there are indices that make ϕ false (classically speaking), then the
unique possibility for ¬ϕ consists of all such indices; if there are no indices that
make ϕ false, then there is no possibility for ¬ϕ. In any case, negated sentences,
like atomic sentences, are always classical.

Disjunction. Disjunctions are typically inquisitive. To determine the proposi-
tion expressed by a disjunction ϕ ∨ ψ we first collect all states that support ϕ
or ψ. The maximal elements among these states are the possibilities for ϕ ∨ ψ.
Figures 1(a)–1(c) give some examples: a simple disjunction of two atomic sen-
tences p ∨ q, a polar question ?p (recall that ?p is defined as p ∨ ¬p), and the
disjunction of two polar questions ?p∨ ?q.

164 J. Groenendijk and F. Roelofsen

11 10

01 00

(a) p ∨ q

11 10

01 00

(b) ?p

11 10

01 00

(c) ?p∨ ?q

11 10

01 00

(d) (p∨q)∧(¬p∨¬q)

11 10

01 00

(e) ?p∧ ?q

11 10

01 00

(f) p → ?q

Fig. 1. Some examples of inquisitive sentences. It is assumed in these examples that
there are only two proposition letters, p and q, and thus only four indices: 11 is the
index where p and q are both true, 10 is the index where p is true and q is false, etc.

Conjunction. The proposition expressed by a conjunction ϕ ∧ ψ consists of
all maximal states supporting both ϕ and ψ. If ϕ and ψ are both classical,
then conjunction amounts to intersection, just as in the classical setting. If ϕ
and/or ψ are inquisitive, then the conjunction ϕ ∧ ψ may be inquisitive as well.
Figures 1(d) and 1(e) show what this amounts to for the conjunction of two
disjunctions (p ∨ q) ∧ (¬p ∨ ¬q) and the conjunction of two polar questions
?p ∧ ?q.

Implication. The proposition expressed by ϕ → ψ consists of all maximal states
σ such that all substates of σ that support ϕ also support ψ. If the consequent
ψ is classical, then ϕ → ψ behaves just as it does in the classical setting: in
this case, �ϕ → ψ� consists of a single possibility, containing all indices that
make ψ true or ϕ false. If the consequent ψ is inquisitive, then ϕ → ψ may
be inquisitive as well. Figure 1(f) shows what this amounts to for a conditional
question p → ?q. There is much more to say about implication, but that would
take us too far astray from the central concern of this paper (see, for instance,
Groenendijk, 2009; Ciardelli and Roelofsen, 2009).

2.3 Truth-Sets and Excluded Possibilities

Besides the proposition expressed by a sentence ϕ it will also be useful to speak
of the truth-set of ϕ, and of the possibility excluded by ϕ.

Definition 4 (Truth Sets). The truth-set of ϕ, denoted by |ϕ|, is the set of
indices where ϕ is classically true.

In a classical setting, the truth-set of ϕ is simply the proposition expressed by ϕ.
In the inquisitive setting, |ϕ| is identical to the union of all the possibilities

Compliance 165

that make up the proposition expressed by ϕ. In both cases, |ϕ| embodies the
informative content of ϕ: someone who utters ϕ proposes to eliminate all indices
that are not in |ϕ| from the common ground.

Definition 5 (Excluded Possibility)

1. If ω − |ϕ| �= ∅, then ω − |ϕ| is called the possibility excluded by ϕ;

2. If ω − |ϕ| = ∅, then we say that ϕ does not exclude any possibility;

3. The (singleton- or empty) set of possibilities excluded by ϕ is denoted by �ϕ�.

The semantics for ¬, ?, and ! can be stated in a transparent way in terms of
exclusion (recall that !ϕ was defined as ¬¬ϕ and ?ϕ as ϕ ∨ ¬ϕ).

Fact 1 (¬, ?, and ! in terms of exclusion)

1. �¬ϕ� = �ϕ�
2. �!ϕ� = �¬ϕ�
3. �?ϕ� = �ϕ� ∪ �ϕ�

2.4 Questions, Assertions, and Hybrids

We already defined a sentence ϕ to be inquisitive just in case �ϕ� contains at
least two possibilities. Uttering an inquisitive sentence is one way of making a
significant contribution to a conversation. The other way in which a significant
contribution can be made is by being informative. A sentence ϕ is informative
iff there is at least one possibility for ϕ, and also a possibility that ϕ excludes.

Definition 6 (Informative Sentences)
ϕ is informative iff �ϕ� and �ϕ� both contain at least one possibility.

In terms of whether a sentence is inquisitive and/or informative or not, we dis-
tinguish the following four semantic categories:

informative inquisitive

question – +
assertion + –
hybrid + +
insignificant – –

A question is inquisitive and not informative, an assertion is informative and
not inquisitive, a hybrid sentence is both informative and inquisitive, and an
insignificant sentence is neither informative nor inquisitive. Some examples are
provided in figure 2.

166 J. Groenendijk and F. Roelofsen

11 10

01 00

(a) Question

11 10

01 00

(b) Assertion

11 10

01 00

(c) Hybrid

11 10

01 00

(d) Insignificant

Fig. 2. One example for each of the four semantic categories

2.5 Inquisitive Entailment

Classically, ϕ entails ψ iff the proposition expressed by ϕ is contained in the
proposition expressed by ψ. In inquisitive semantics, every possibility for ϕ must
be contained in some possibility for ψ.

Definition 7 (Entailment) ϕ |= ψ iff ∀α ∈ �ϕ� : ∃β ∈ �ψ� : α ⊆ β

Entailment may also be formulated in terms of support rather than in terms
of possibilities. This formulation is analogous to the classical formulation of
entailment in terms of truth.

Fact 2 (Entailment in terms of support)
ϕ |= ψ iff every state that supports ϕ also supports ψ.

If an assertion !ϕ entails a question ?ψ, then !ϕ completely resolves the issue
raised by ?ψ. To some extent this means that !ϕ |= ?ψ characterizes answer-
hood. We say to some extent since it only characterizes complete and not partial
answerhood, and it is not very ‘precise’ in characterizing complete answerhood
in that it allows for over-informative answers: if !ϕ |= ?ψ and !χ |= !ϕ, then also
!χ |= ?ψ.

For some questions, but not for all, we can characterize precise and partial
answerhood in terms of entailment by saying that !ϕ is an answer to ?ψ iff
?ψ |= ?!ϕ. The intuition here is that !ϕ is an answer to ?ψ just in case the
polar question ?!ϕ behind !ϕ is a subquestion of ?ψ (cf. Groenendijk, 1999;
ten Cate and Shan, 2007).

This characterization gives correct results as long as we are dealing with ques-
tions whose possibilities are mutually exclusive. Such questions partition logical
space. However, since in inquisitive semantics questions do not necessarily par-
tition logical space, ?ψ |= ?!ϕ does not give us a general characterization of
answerhood, and neither does ?ϕ |= ?ψ give us a general characterization of
subquestionhood.

Problems arise as soon as we consider questions with overlapping possibilities.
Conditional questions and alternative questions are questions of this kind. First,
consider a conditional question p → ?q (If Alf goes to the party, will Bea go
as well?). We certainly want p → q to count as an answer to this question,

Compliance 167

11 10

01 00

(a) p → ?q

11 10

01 00

(b) ?(p → q)

11 10

01 00

(c) ?(p ∨ q)

11 10

01 00

(d) ?p

Fig. 3. Questions with overlapping possibilities are problematic for characterizations
of answerhood and subquestionhood in terms of entailment

but p → ?q �|= ?(p → q). This can easily be seen by inspecting the propositions
expressed by p → ?q and ?(p → q), depicted in figure 3(a) and 3(b). In fact,
entailment obtains in the other direction in this case: ?(p → q) |= p → ?q.

Similarly, we certainly want p to count as an answer to the alternative question
?(p ∨ q) (Does alf or bea go to the party?). But ?(p ∨ q) �|= ?p, as can be seen
by comparing figure 3(c) and 3(d).

This does not mean that there is anything wrong with the entailment rela-
tion as such. It does what it should do: provide a characterization of meaning-
inclusion. In particular, entailment between an assertion and a question means
that the assertion fully resolves the issue raised by the question, and entailment
between two questions ?ϕ and ?ψ means that the issue raised by ?ψ is fully
resolved whenever the issue raised by ?ϕ is.

At the same time, given that entailment does not lead to a general notion of
answerhood and subquestionhood, we surely are in need of a logical notion that
does characterize these relations.

3 Compliance

The logical notion of compliance will judge whether a certain conversational
move makes a significant contribution to resolving a given issue. Before stating
the formal definition, however, let us first discuss the basic logico-pragmatical
intuitions behind it.

Basic intuitions. Consider a situation where a sentence ϕ is a response to
an initiative ψ. We are mainly interested in the case where the initiative ψ is
inquisitive, and hence proposes several alternatives. In this case, we consider
ϕ to be an optimally compliant response just in case it picks out exactly one
of the alternatives proposed by ψ. Such an optimally compliant response is an
assertion ϕ such that the unique possibility α for ϕ equals one of the possibilities
for ψ: �ϕ� = {α} and α ∈ �ψ�. Of course, the responder will not always be able
to give such an optimally compliant response. It may still be possible in this
case to give a compliant informative response, not by picking out one of the
alternatives proposed by ψ, but by selecting some of them, and excluding others.

168 J. Groenendijk and F. Roelofsen

The informative content of such a response must correspond with the union of
some but not all of the alternatives proposed by ψ. That is, |ϕ| must coincide
with the union of a proper non-empty subset of �ψ�.

If such an informative compliant response cannot be given either, it may still
be possible to make a significant compliant move, namely by responding with
an inquisitive sentence, replacing the issue raised by ψ with an easier to answer
sub-issue. The rationale behind such an inquisitive move is that, if part of the
original issue posed by ψ were resolved, it might become possible to subsequently
resolve the remaining issue as well.

Summing up, there are basically two ways in which ϕ may be compliant with ψ:

(a) ϕ may partially resolve the issue raised by ψ;
(b) ϕ may replace the issue raised by ψ by an easier to answer sub-issue.

Combinations are also possible: ϕ may partially resolve the issue raised by ψ and
at the same time replace the remaining issue with an easier to answer sub-issue.

Compliance and over-informative answers. Compliance does not allow for
over-informative answers. For instance, p is a compliant response to ?p, but p∧q
is not. More generally, if ψ is an inquisitive initiative, and ϕ and χ are two
assertive responses such that the unique possibility for ϕ coincides with one of
the possibilities for ψ, and the unique possibility for χ is properly included in the
one for ϕ, then ϕ is regarded as optimally compliant, while χ is not consisered
to be compliant at all, because it is over-informative.

The rationale behind this is that over-informative answers incur an unnec-
essary risk of being inconsistent with other participants’ information states. If
so, the proposal they express will be rejected. For instance, in the scenario just
considered, ϕ and χ both have the potential to fully resolve the issue raised by
ψ. However, χ is over-informative, and therefore unnecessarily runs a higher risk
of being rejected. And if it is indeed rejected, the given issue remains unresolved.

These considerations are captured by the following definition:

Definition 8 (Compliance). ϕ is compliant with ψ, ϕ ∝ ψ, iff

1. every possibility in �ϕ� is the union of a set of possibilities in �ψ�
2. every possibility in �ψ� restricted to |ϕ| is contained in a possibility in �ϕ�

Here, the restriction of α ∈ �ψ� to |ϕ| is defined to be the intersection α ∩ |ϕ|.
To explain the workings of the definition, we will consider the case where ψ is
an insignificant sentence, an assertion, a question, and a hybrid one by one.

If ψ is a contradiction, the first clause can only be met if ϕ is a contradiction as
well. The second clause is trivially met in this case. Similarly, if ψ is a tautology,
the first clause can only be met if ϕ is a tautology as well, and the second clause
is also satisfied in this case. Thus, if ψ is insignificant, ϕ is compliant with ψ
just in case ϕ and ψ are equivalent.

Fact 3. If ψ is insignificant, then ϕ ∝ ψ iff �ϕ� = �ψ�.

Compliance 169

Next, consider the case where ψ is an assertion. Then the first clause says that
every possibility for ϕ should coincide with the unique possibility for ψ. This
can only be the case if ϕ is equivalent to ψ. In this case, the second clause is
trivially met. Thus, the only way to compliantly respond to an assertion is to
confirm it.

Fact 4. If ψ is an assertion, then ϕ ∝ ψ iff �ϕ� = �ψ�.
If ψ is a question and ϕ is an assertion, then the first clause in the definition
of compliance requires that |ϕ| coincides with the union of a set of possibilities
for ψ. The second clause is trivially met in this case. Such an assertion provides
information that is fully dedicated to partially resolving the issue raised by the
question, and does not provide any information that is not directly related to the
issue. Recall that at the end of section 2 we criticized the notion of entailment
for not delivering a notion of ‘precise’ (partial) answerhood. This is precisely
what compliance of assertions to questions characterizes.

Fact 5. If ψ is a question and ϕ an assertion, then ϕ ∝ ψ iff |ϕ| coincides with
the union of a set of possibilities for ψ.

If ϕ and ψ are both questions, then the first clause requires that ϕ is related to ψ
in the sense that every complete answer to ϕ is at least a partial answer to ψ. In
this case the second clause has work to do as well. However, since ϕ is assumed
to be a question, and since questions are not informative, the second clause can
be simplified in this case: the restriction of the possibilities for ψ to |ϕ| does not
have any effect, because |ϕ| = ω. Hence,the second clause simply requires that
every possibility for ψ is contained in a possibility for ϕ (i.e., that ψ entails ϕ).
This constraint prevents ϕ from being more difficult to answer than ψ.

We illustrate this with an example. Consider the case where ψ ≡ ?p ∨ ?q and
ϕ ≡ ?p. The propositions expressed by these sentences are depicted in figure 4.

Intuitively, ?p∨?q is a choice question. To resolve it, one may either provide an
answer to the question ?p or to the question ?q. Thus, there are four possibilities,
each corresponding to an optimally compliant response: p, ¬p, q and ¬q. The
question ?p is more demanding: there are only two possibilities and thus only
two optimally compliant responses, p and ¬p. Hence, ?p is more difficult to
answer than ?p∨ ?q, and should therefore not count as compliant with it. This is

11 10

01 00

(a) ?p∨ ?q

11 10

01 00

(b) ?p

Fig. 4. Two non-compliant questions

170 J. Groenendijk and F. Roelofsen

not taken care of by the first clause in the definition of compliance, since every
possibility for ?p is also a possibility for ?p∨ ?q. So the second clause is essential
in this case: it says that ?p is not compliant with ?p∨ ?q because two of the
possibilities for ?p∨ ?q are not contained in any possibility for ?p. The fact that
these possibilities are, as it were, ‘ignored’ by ?p is the reason that ?p is more
difficult to answer than ?p∨ ?q.

Recall that at the end of section 2, we criticized the notion of entailment
for not delivering a satisfactory notion of subquestionhood. The difference with
compliance, which does give the right characterization, lies in the first clause
of the definition, which requires that the two questions are related. As we saw
above, entailment only covers (the simplified version of) the second clause.

Fact 6. If both ψ and ϕ are questions, then ϕ ∝ ψ iff

1. every possibility in �ϕ� is the union of a set of possibilities in �ψ�
2. every possibility in �ψ� is contained in a possibility in �ϕ�

The second clause in the definition of compliance only plays a role in case both
ϕ and ψ are inquisitive. Moreover, the restriction of the possibilities for ψ to
|ϕ| can only play a role if |ϕ| ⊂ |ψ|, which is possible only if ϕ is informative.
Thus, the second clause can only play a role in its unsimplified form if ϕ is
both inquisitive and informative, i.e., hybrid. If ϕ is hybrid, just as when ϕ is a
question, the second clause forbids that a possibility for ψ is ignored by ϕ. But
now it also applies to cases where a possibility for ψ is partly excluded by ϕ.
The part that remains should then be fully included in one of the possibilities
for ϕ.

As an example where this condition applies, consider p ∨ q as a response to
p∨ q∨ r. One of the possibilities for p∨ q ∨ r, namely |r|, is ignored by p∨ q: the
restriction of |r| to |p∨q| is not contained in any possibility for p∨q. Again, this
reflects the fact that the issue raised by p∨ q is more difficult to resolve than the
issue raised by p ∨ q ∨ r.

A general characterization of what the second clause says, then, is that ϕ
may only remove possibilities for ψ by providing information. A possibility for
ψ must either be excluded altogether, or it must be preserved: its restriction to
|ϕ| must be contained in some possibility for ϕ.

4 Homogeneity: Say More, Ask Less!

There may be several possible compliant responses to a given initiative. Among
these compliant responses, some may be preferable over others. The main point
of this section—as is foretold by its title—is that there is a general preference
for more informative, and less inquisitive responses. To make this more precise,
let us introduce comparative notions of informativeness and inquisitiveness. In
order to do so, we first need to relativize the semantic notions defined in section 2
to information states.

Compliance 171

Definition 9 (Relative Semantic Notions)

1. A possibility for ϕ in σ is a maximal substate of σ supporting ϕ.
2. The proposition expressed by ϕ in σ, denoted by σ�ϕ�,

is the set of possibilities for ϕ in σ.
3. We say that ϕ excludes a possibility in σ iff the union

of all the possibilities for ϕ in σ is not identical to σ itself.
4. ϕ is inquisitive in σ iff there are at least two possibilities for ϕ in σ;
5. ϕ is acceptable in σ iff there is at least one possibility for ϕ in σ;
6. ϕ is eliminative in σ iff ϕ excludes a possibility in σ;
7. ϕ is informative in σ iff ϕ is both acceptable in σ and eliminative in σ.

Definition 10 (Comparative Informativeness and Inquisitiveness)

1. ϕ is at least as informative as ψ iff in every state where ψ is eliminative,
ϕ is eliminative as well.

2. ϕ is at most as inquisitive as ψ iff in every state where ψ is not inquisitive,
ϕ is not inquisitive either.

Note that comparative informativeness is defined in terms of eliminativity. If it
were formulated in terms of informativity, it would give very counter-intuitive
results. Suppose that we defined ϕ to be at least as informative as ψ iff in every
state where ψ is informative, ϕ is informative as well. Then, for instance, p ∧ q
would not count as more informative than p. To see this consider the state |¬q|.
In this state, p is informative, but p ∧ q is not, because it is unacceptable in
|¬q|. More generally, for any non-tautological sentence χ, it would be impossible
to find a formula that is more informative than χ. This is clearly undesirable.
Thus, in order to measure comparative informativeness, the acceptability aspect
of informativeness must be left out of consideration—the only relevant feature
is eliminativity.

Now let us motivate the general preference for more informative and less in-
quisitive responses to a given initiative. In each case, we will provide a general
argument, and a concrete example.

Say More! Consider an inquisitive initiative ψ and two compliant assertive
responses ϕ and χ, such that ϕ is more informative than χ. This means that
ϕ rules out more of the possibilities proposed by ψ than χ does. In this sense,
ϕ more fully resolves the issue raised by ψ, and thus makes a more substantial
contribution to enhancing the common ground than χ does. Therefore, ϕ is
preferred over χ.

To illustrate this with a concrete example, consider a conversation between
two people, A and B. Suppose A utters ?p∧?q. This sentence expresses a propo-
sition consisting of four possibilities (see figure 1). Now, consider q and p → q,
which are both compliant responses to A’s initiative. q is more informative than
p → q. In particular, q rules out two of the possibilities proposed by ?p ∧ ?q,
while p → q only rules out one of these possibilities. Therefore, q is preferred.

172 J. Groenendijk and F. Roelofsen

However, q is not yet optimal. An even more informative compliant response
is p ∧ q. This response picks out exactly one of the possibilities proposed by
?p ∧ ?q, and thus fully resolves the issue. In general, one compliant response is
preferred over another if it more fully resolves the given issue.

Ask Less! Now consider an initiative ψ and an inquisitive compliant response
ϕ. In this case, ϕ raises a sub-issue, which addresses the original issue in an
indirect way. The hope is that the sub-issue may be resolved first, and that,
subsequently, there will be a better chance of resolving the original issue as well.
Now, this strategy will only work if it is indeed possible to resolve the sub-issue
first. And this is more likely to be the case if ϕ is less inquisitive. This is why
less inquisitive responses are generally preferred over more inquisitive responses.

To illustrate this, consider again the example sketched above. As before, sup-
pose that A raises an issue by uttering ?p ∧ ?q (see figure 1). But now suppose
that B is not able to resolve this issue directly. Then he may try to resolve it
indirectly by raising a sub-issue. Consider the following two sentences that B
may utter in this situation: ?q and p → ?q (see again figure 1). Now, it is very
unlikely that A will have an answer to ?q, given that he has just asked ?p ∧ ?q
himself. On the other hand, it is not so unlikely that A will have an answer to
p → ?q. This question is weaker than ?q, it merely asks whether or not p and q
are related in a certain way. Thus, it is much more advisable for B to ask p → ?q
than to ask ?q. Both ?q and p → ?q are compliant with the original question.
But p → ?q is preferred because it is less inquisitive.

These considerations lead to the following definitions:

Definition 11 (Homogeneity)

ϕ is at least as homogeneous as χ, ϕ � χ iff ϕ is at least as informative
and at most as inquisitive as χ.

Definition 12 (Comparative Compliance)

ϕ is a more compliant response to ψ than χ iff ϕ and χ are both compliant
responses to ψ, and ϕ is more homogeneous than χ.

Finally, the following fact characterizes most and least compliant responses.

Fact 7 (Ultimate Compliance)

1. ϕ is a least compliant response to ψ iff ϕ is equivalent to ψ.

2. ϕ is a most compliant response to ψ iff there is a single possibility α for ϕ,
and α is a possibility for ψ as well.

3. If ψ is a question, ϕ is a most compliant non-informative response to ψ iff
ϕ is a polar sub-question of ψ.

Compliance 173

5 Conclusion

We have specified and given motivation for the logical notion of compliance,
which determines whether a sentence makes a contribution to resolving a given
issue. In particular, this notion yields a characterization of answerhood and
subquestionhood. And the additional notion of homogeneity captures certain
quantitative preferences among compliant responses.

To be sure, we have abstracted away from certain issues that should certainly
be considered in a more comprehensive analysis. For instance, whether or not a
sentence makes a contribution to a given issue partly depends on the information
that is already available. For now, we hope to have made a convincing initial
case for the logical and linguistic interest of the notion of compliance.

References

Ciardelli, I., Roelofsen, F.:Inquisitive Logic. Journal of Philosophical Logic, published
online (July 16, 2010)

Groenendijk, J.: The logic of interrogation. In: Matthews, T., Strolovitch, D. (eds.)
Semantics and Linguistic Theory, pp. 109–126. Cornell University Press, Ithica
(1999)

Groenendijk, J.: Inquisitive semantics: Two possibilities for disjunction. In: Bosch, P.,
Gabelaia, D., Lang, J. (eds.) Seventh International Tbilisi Symposium on Language,
Logic, and Computation. Springer, Heidelberg (2008)

Groenendijk, J.: Inquisitive semantics: Questions, assertions, and hybrids, Amsterdam
(2009), http://www.illc.uva.nl/inquisitive-semantics (manuscript)

Groenendijk, J., Stokhof, M.: Studies on the Semantics of Questions and the Pragmatics
of Answers. Ph.D. thesis, University of Amsterdam (1984)

Mascarenhas, S.: Inquisitive semantics and logic. MSC Thesis, ILLC, University of
Amsterdam (2009)

Roberts, C.: Information structure in discourse. In: Yoon, J., Kathol, A. (eds.) OSU
Working Papers in Linguistics, vol. 49, pp. 91–136. Ohio State University (1996)

Stalnaker, R.: Assertion. Syntax and Semantics 9, 315–332 (1978)
ten Cate, B., Shan, K.: Axiomatizing Groenendijk’s logic of interrogation. In: Aloni, M.,

Butler, A., Dekker, P. (eds.) Questions in Dynamic Semantics, pp. 63–82. Elsevier,
Amsterdam (2007)

http://www.illc.uva.nl/inquisitive-semantics

The Calculus of Responsibility and Commitment

Carl Pollard

INRIA-Lorraine and Ohio State University

1 Introduction

Ever since Montague (1974 [1970]) laid the foundations for formally precise anal-
ysis of natural language (hereafter NL) semantics in the late 1960’s, the typed
lambda calculus (hereafter TLC) and certain of its extensions1 have been the
linguists’ tool of choice for representing the meanings of NL expressions. But
starting around the turn of the millenium, motivated by a range of linguis-
tic phenomena collectively known as covert movement phenomena2, logical
grammarians of various persuasions have proposed the use of other seman-
tic term calculi that embody, directly or indirectly, some notion or other of
continuation.

In this paper, I will do the same thing. My justification for stepping into
the fray, in spite of my distinctly amateur standing vis-à-vis the mathematics
and computer science of continuations, is that the proposals I have seen so far
seem, for various reasons, not yet able to compete with conventional Montague-
style compositional semantics in the linguistic marketplace. Some of the propos-
als appear to be incompletely specified; others require technical knowledge of
mathematics or computer science that almost no linguists control (or even have
straightforward access to); and in others, the sheer complexity seems incom-
mensurate with the difficulty of the problems to be solved. At the heart of my
proposal is a term calculus called RC which is suggested by way of a replacement
for TLC as a notational system for NL meanings. It is my intention that RC be
as easy for linguists to learn and use as TLC is, while at the same time doing the
semantic heavy lifting performed by existing systems of continuized semantics.

This paper is highly programmatic in nature. For more of the linguistic moti-
vation and analysis of linguistic examples, the reader is referred to the companion
piece (Pollard in press).

1 Specifically, variants of Church’s (1940) and Henkin’s (1950) simple theory of types,
especially Montague’s own Intensional Logic (IL) and Gallin’s (1975) Ty2.

2 So-called because they are analyzed by transformational generative grammarians via
tree operations on syntactic representations which are reflected in the logical form
(LF) of the sentence being analyzed, but which take place too late in the derivation
to be reflected in the phonetic form (PF). By no means does the use of the term
‘covert movement’ imply advocacy of the technology of transformational grammar,
such as arboreal structural representations of linguistic expressions (not to mention
derivations upon such representations made up of structural operations that delete,
copy, or move subtrees.

Lecomte and S. Tronçon (Eds.): PRELUDE 2010, LNAI 6505, pp. 174–187, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

The Calculus of Responsibility and Commitment 175

2 Background

The so-called covert movement phenomena involve a linguistic expression that
seems, pretheoretically speaking, to have semantic scope, but to occupy a syn-
tactic position appropriate not for an operator with such a scope, but rather,
for a variable bound by such an operator. In the parlance of transformational
grammar, the operator remains, in overt syntax, in situ, and moves to its scope
position only covertly, leaving in its place a variable which it binds at the level
of LF. Examples of in situ operators include (but are by no means limited to)
the following:

(1) Quantificational Noun Phrases
Kim thinks [everyone walks].

Quantifer scope ambiguity: the QNP everyone can take scope in
either the root clause or the embedded clause.

(2) In-situ interrogative expressions (wh-in situ)
Who asked [who ordered what]?

Ambiguity of wh-in-situ construal: the in-situ wh-expression what
can scope in either the root question or the embedded question (‘Baker’s
ambiguity’).

(3) Pied Piping

a. [To whose parents]i were you speaking ti?
b. These are the reports [the height of the lettering on the covers of

which]i the government prescribes ti.

The ‘pied piped’ (interrogative or relative) expression is in situ relative
to a larger expression which undergoes ‘overt movement’.

(4) Comparative Word (more/less) or Morpheme (-er)
Russell thought [the yacht was longer] than it was.

Ambiguity of comparative operator construal: the comparative
morpheme -er can scope in either the root question (how long Russell
thought the yacht was exceeded the actual length) or in the embedded
clause (Russell stupidly thought the yacht’s length was self-exceeding).

(5) Focus
Mary thinks that John[H*] will vote for McCain.

The focal or ‘A’ [H*] pitch accent on John somehow conveys that there
is at least one contextually salient individual different from John who
Mary does not think will vote for McCain.

(6) In-situ Contrastive Topic
He thinks she likes bagels[L+H*].

176 C. Pollard

The contrastive-topic or ‘B’ [L+H*] pitch accent on bagels somehow
conveys that whether he thinks she likes certain things, including bagels,
is at issue, and that the answers may vary.

(7) Phrasal-Comparative Associates

a. The Pope goes to Minneapolis more often than St. Paul.
(St. Paul = the saint)

b. The Pope goes to Minneapolis more often than St. Paul.
(St. Paul = the city)

Roughly speaking, the pitch-accented phrase in the main clause (the as-
sociate) and the complement phrase to than (the remnant) are plugged
into the same context and then the least upper bounds of the two result-
ing sets of degrees compared.

(8) Superlative Associates

a. Kim likes Sandy the most.
(Kim likes Sandy more than anyone else likes Sandy.)

b. Kim likes Sandy the most.
(Kim likes Sandy more than Kim likes anyone else.)

c. Kim likes Sandy the most.
(Kim likes Sandy more than anyone else likes anyone else.)

A superlative sentence asserts that the interpretation of the (possibly dis-
continuous) associate is where a certain degree-valued function assumes
its maximum value.

If we call the linguistic material surrounding the in situ operator its linguistic
context and that part of the linguistic context which expresses the operator’s
scope the (delimited) continuation3 of the operator, then it is easy to see
why Barker (2002), who pioneered continuation semantics for NL, asserted what
he called the Continuation Hypothesis:

(9) Barker 2002

a. The Continuation Hypothesis: Some linguistic expressions (in
particular, QNPs) have denotations that manipulate their own
continuations.

b. Barker shows how to transform a CFG with conventional Montague-
style compositional semantics into one with ‘continuized semantics’,
by analogywith Fischer’s (1972)/Plotkin’s (1975)call-by-valueCPS
transform.

3 Here, the sense of ‘delimited’ is that the scope of the operator need not be the entire
linguistic context (the root clause).

The Calculus of Responsibility and Commitment 177

c. In terms, variables with overbars are called ‘continuation variables’
and certain implicative types with result type t are called ‘continua-
tion types’.

d. Formally, these are ordinary variables and ordinary types; the se-
mantic calculus is embedded into ordinary (intuitionistic) TLC.

(10) de Groote 2001

a. de Groote uses a nonconfluent calculus with an involutive nega-
tion (similar in some respects to Parigot’s (2000) symmetric λμ-
calculus), with Montague’s type t as ⊥, to analyze one example of
quantifier scope ambiguity.

b. Unlike Barker’s CPS approach, this one (like those of Shan and
Bernardi/Moortgat mentioned below, is in ‘direct-style’.

c. Though it is claimed that λμ-calculus “allows Cooper’s (1983) stor-
age to be given a type-logical foundation”, it is not clear how to
generalize this approach to operators whose scope has type different
from t, or whose result type differs from the scope type.

(11) Shan 2004

a. Shan pioneered the use of delimited continuations (Felleisen 1988)
in NL.

b. The term calculus (‘logical metalanguage’) mixes syntactic and se-
mantic constructs (for example it has directional applications and
abstractions).

c. The ternary type constructor AC
B provides the types for operators

that ‘scope over a B to bind an A-variable, resulting in a C.’
d. Thisconstructor isa semanticanalogofMoortgat’s (1996)q-constructor.
e. AC

B is mapped by the CPS transform to (A → B) → C.
f. Besides familiar TLC and Lambek-calculus constructs, the language

employs a hierarchy of control operators (generalized shift and
reset supercripted with ‘strength levels’, Danvy and Filinsky 1990).

(12) Bernardi and Moortgat 2007

a. Curien and Herbelin’s (2000) λ̄μμ̃-calculus “is to sequent calculus
as [the original, not the symmetric] λμ-calculus [Parigot 1992] is to
natural deduction.”

b. Bernardi and Moortgat develop a linear, directional variant of λ̄μμ̃-
calculus to provide a semantic interpretation for symmetric cate-
gorial grammars based on the Lambek-Grishin calculus (Moortgat
2007).

c. Unlike other systems of continuation semantics (and predecessors
such as Cooper 1983 and Hendriks 1993), but like mainstream cate-
gorial grammar, the Bernardi-Moortgat semantics is functional in
the sense that interpretation is a function from syntactic proofs to
meanings.

178 C. Pollard

3 Cooper Storage and Retrieval

Unlike the approaches mentioned in the previous section, the inspiration for the
RC calculus comes not from computer science but from linguistics, more specif-
ically the storage-and-retrieval approach to scope developed by Robin Cooper
(1975, 1983). The basic idea is easy to describe in a way that a first-year lin-
guistic graduate student with a basic understanding of TLC can grasp almost
immediately.

(13) Cooper Storage and Retrieval (Intuitively)

a. Suppose that while semantically interpreting a syntactic derivation
bottom up, you encounter an in-situ operator with semantics a of
semantic type (A → B) → C. Then (storage) you can replace a by
a variable x : A and place the pair (a, x) in the store.

b. Stores ’percolate upward’ through derivations.
c. If you get to a node in the derivation with semantics b : B, then

(retrieval) you can remove (a, x) from the store and replace b : B
by a(λxb) : C.

d. In case the in-situ operator is a QNP, A = e, and B = C = t.

(14) Sociology of Cooper Storage and Retrieval

a. Cooper didn’t describe it this way. He expressed it all in terms of
Montagovian model theory.

b. Cooper was at pains to avoid using λ-calculus, to make it clear he
was not advocating some form of LF.

c. Even though this technology makes syntax much simpler (e.g. QNPs
are just NPs), the resulting nonfunctionality of semantic interpreta-
tion was widely viewed with alarm.

d. However it was embraced in some quarters (e.g. Bach and Partee
1980, and in HPSG).

e. Categorial grammarians tend to describe this technology as ‘noncom-
positional’, ‘baroque’, ‘ad hoc’, ‘a mess’, ‘as bad as covert movement’,
etc. (some of the more charitable characterizations).

f. The schemes of continuized semantics mentioned above are presented
as major improvements on Cooper storage and retrieval.

(15) Why RC Calculus?

a. In spite of its reputation, Cooper’s basic approach to scoping in situ
operators is simple, illuminating, and easy to grasp.

b. But Cooper’s insistence on a model-theoretic presentation made stor-
age look more complicated than it really was.

c. RCcalculus is designed to render the intuitionsunderlyingCooper stor-
age more immediately graspable, via a purely syntactic presentation.

The Calculus of Responsibility and Commitment 179

(16) Toward RC Calculus

a. RC is a term calculus in the labelled Gentzen-sequent style of natural
deduction.

b. As far as I have been able to discern so far, RC can do all the linguistic
work that has been done so far with continuized semantics.

c. RC can be directly semantically interpreted, but the easiest way is
to transform RC meaning terms into TLC.

d. This transform is the RC analog of CPS transforms, but much simpler.
e. Morover RC meaning terms look familiar to people used to LF.

4 RC Types, Terms, and Commitments

Like TLC, RC has types, terms, and typing judgments. Also like TLC, the
variable environment of an RC typing judgment is just a set of variable/type
pairs to the left of the turnstile, which we will call the variable context; but
an RC variable environment additionally has a Cooper store, written to the
right and demarcated by a co-turnstile � :

(17) Format for RC Typing Judgments
Γ � a : A � Δ

The Cooper store is also called the variable co-context; the ‘co-’ here is
mnemonic not only for ‘Cooper’; but also for ‘Commitment’ (for reasons to be
explained soon), for ‘Covert Movement’, and for ‘Continuation’ (since the oper-
ators stored in them will scope over their own continuations). Thus a judgment
like (17) is read ‘the term a is assigned the type A in the context Γ and the
co-context Δ.’

(18) RC Types

a. There are some basic types.
b. If A and B are types, then A → B is an implicative type with

antecedent type A and consequent type B.
c. If A, B, and C are types, then O[A, B, C], usually abbreviated (fol-

lowing Shan 2004) to AC
B, is an operator type with binding type

A, continuation type (or scope type) B, and result type C.

(19) Basic Types
Here, for expository simplicity, just Montague’s extensional types e and
t. But to do serious semantics, we really need to work in an intensional
(or hyperintensional) semantic type theory.

(20) Implicative Types
No surprises here.

180 C. Pollard

(21) Operator Types

a. These will be the semantic types for expressions which would be
analyzed in TG as undergoing Ā-movement (either overt or covert).

b. The O-constructor is essentially like Moortgat’s (1996) q-constructor,
with the crucial difference that it belongs to the semantic logic, not
the syntactic one.

c. Thus, for example, while for Moortgat (1996) a QNP would have
syntactic category q[NP, S, S] and semantic type (e → t) → t, in RC
it has syntactic type (simply) NP and semantic type et

t
4

d. Operator types are similar to Shan’s (2004) impure types.

(22) RC Terms

a. There is a denumerable infinity of variables of each type.
b. There can be finitely many basic constants of each type.
c. There are functional terms of the form (f a), where f and a are

terms.
d. There are binding terms of the form (axb) where a and b are terms

and x is a variable.
e. But there is no λ binder.

(23) What goes into the Cooper Store?

a. The Cooper stores (co-contexts) will contain operators to be scoped,
each paired with the variable that it will eventually bind.

b. We call such stored pairs commitments, and write them in the form
ax, where the type of x is the binding type of a.

c. Then we call x a committed variable, and say that a is committed
to bind x.

d. By contrast, the variables in the (left-of-turnstile) context are called
uncommited variables.

We can now give the rules of RC.

5 RC Rules

(24) Schema H (Hypotheses)

x : A � x : A � (x fresh)

4 Actually QNPs have to be polymorphically typed as etσ
tσ where σ ranges over strings

of types and Aε =def A, ABσ =def B → Aσ. This is necessary to account for the
fact that QNPs can scope not only over propositions, but also over propositional
functions (e.g. ones of type e → t, as in Kim tried [to find a unicorn) or Mia
knows every [owner of a hash bar]). I am grateful to Patrick Blackburn and Scott
Martin for alerting me to this issue. It does not arise in HPSG because VPs and N̄s
have propositional semantics (since arguments are incorporated into predicates by
structure-sharing, not by Modus Ponens).

The Calculus of Responsibility and Commitment 181

a. This is the usual ND schema for positing hypotheses.
b. It is the sole mechanism provided for introducing uncommitted vari-

ables into a semantic derivation.
c. We presuppose a syntax-semantics interface that recursively specifies

a set of syntactic-semantic derivation pairs (Pollard in press). An
uncommitted semantic variable will always be paired with a trace
(syntactic variable) 5.

(25) Schema A (Nonlogical Axioms)

� c : A � (c a basic constant of type A)

a. The basic constants notate lexical meanings, not just of words but
also of bound morphemes that function as basic syntactic elements,
such as argument clitics, phrasal affixes, sentence particles, etc. (some
of which might have intonational or even empty phonological real-
izations).

b. The rules of the syntax-semantics interface that pair basic syntactic
entities with their meanings are the lexicon.

(26) Schema M (Modus Ponens)

If Γ � f : A → B � Δ and Γ ′ � a : A � Δ′

then Γ ; Γ ′ � (f a) : B � Δ; Δ′

a. This is the usual ND Modus Ponens, except that co-contexts as
well as contexts have to propagated from premisses to conclusions
(cf. (13b)).

b. Semicolons in (co-)contexts represent set union (necessarily disjoint,
since variables are always posited fresh).

c. The syntax-semantics interface will pair instances of M with syntactic
merges.

(27) Schema C (Commitment)

If Γ � a : AC
B � Δ then Γ � x : A � ax : AC

B; Δ (x fresh)

a. This is a straightforward ND formulation of Cooper storage (13a).
b. It generalizes Carpenter’s (1997) ND Introduction rule for Moortgat’s

(1988) ⇑ (essentially the special case of q where the scope type and
the result type are the same), but in the semantics, not in the syntax.

(28) More about Schema C

a. The type of a committed variable always matches the binding type
of the operator it is committed to.

5 This is in keeping with an overall parallel grammar architecture, as opposed to
the cascaded achitecture of mainstream generative grammar, which requires that,
somehow or other, traces be replaced by ‘logical variables’ during the derivation from
overt syntax to LF.

182 C. Pollard

b. The syntax-semantics interface will guarantee that when an opera-
tor gets committed in the semantic derivation, no corresponding
syntactic change takes place.

c. This is one of two reasons why the relation between syntax and se-
mantics is not a function.

d. In this respect, our proposed architecture for the syntax-semantics
interface resembles Cooper 1975/1983, Hendriks 1993, and HPSG, as
well as most of the continuized-semantics proposals.

e. This sets it apart from mainstream categorial grammar, as well as
the Bernardi-Moortgat functional style of continuized semantics.

(29) Schema R (Responsibility)

If Γ � b : B � ax : AC
B ; Δ then Γ � (axb) : C � Δ

(x free in b but not in Δ)6

a. This is a straightforward ND formulation of Cooper retrieval (13c).
b. It generalizes Carpenter’s (1997) Elimination rule for Moortgat’s ⇑,

but, again, in the semantics, not in the syntax.
c. It is called Responsibility because it is about fulfilling commitments.
d. As with Commitment, the syntax-semantics interface will ensure that

instances of Responsibility correspond to no syntactic change.
e. This is the other reason why the relation between syntax and seman-

tics is not a function.

(30) Schema O (Outside Assistance)

If Γ � a : AC
B � Δ and x : A, Γ ′ � b : B � Δ′ then Γ ; Γ ′ � (axb) : C �

Δ, Δ′

The schema is so-called because if you cannot discharge your responsi-
bilities (to make sure all variables eventually get bound) on your own
(as the in-situ operators within you fulfil their commitments), then you
have to get help from somewhere else.

(31) More about Schema O

a. O is also mnemonic for Overt Movement, because in TG the expres-
sion whose meaning is a would be analyzed as having moved (in overt
syntax) from the position occupied by the trace (which somehow gets
converted to x in between overt syntax and LF).

b. Note the strong similarity of the conclusions in Schemas R and O: in
both cases the operator a binds the x in b to produce a C.

c. The difference is that in the former (in situ binding) case, b is a’s
continuation.

6 This side condition and the one for Schema C express the linearity of co-contexts.
They rule out illicit retrievals of the kind that motivated Keller’s (1988) nested stores
(see Blackburn and Bos pp. 122-125 for discussion).

The Calculus of Responsibility and Commitment 183

d. The idea for this schema was triggered by Guy Perrier’s recent ob-
servation (p.c.) that the Topicalization Rule in Pollard 2007 was an
elimination rule for the movement flavor of implication (slash, sim-
ilar to the ↑ connective of Bach 1981 and Moortgat 1988).

(32) Schema O vs. Anoun and Lecomte’s � IE

a. The� IE schema and Schema O have the same philosophy: to ‘en-
capsulate’ implication introductions within rules that immediately
eliminate the implication.

b. But � IE has (A � B) � C) in place of AC
B , and a(λxb) in place

of (axb). A problem with that formulation is that not all expressions
with types of the form (A� B)� C can undergo ‘overt movement’.

c. In � IE, controlled hypotheses constrain extraction paths analo-
gously to the use of functional uncertainty in LFG.

d. � IE is inspired by Vermaat’s (1999) multimodal CG reformulation
of Stabler’s (1999) computational embodiment of Chomsky’s (1995)
MP.

e. Whereas Schema O is inspired by Gazdar’s (1979) linking schemata
for topicalization, wh-relatives, and wh-questions (his (28), (51), and
(57), via GPSG and HPSG.

f. Unfortunately the feature-structural encoding of HPSG obscured the
fact that it was essentially (albeit unknowingly) a natural-deduction
system.

6 Conclusion

There are still a few loose ends to tie up. For one thing, so far we have not
analyzed even one example. Since this paper is already getting overlong for
a workshop paper, we offer just the obligatory QNP scope-ambiguity example
and refer to Pollard in press for other examples (and for an explication of the
Convergent Grammar (CVG) framework that the semantic approach sketched
here is intended to work with).

(33) Obligatory QNP Scope Ambiguity Example

a. Kim thinks everyone walks.
b. CVG syntactic analysis:

� (s Kim (thinks (s everyone walks) c)) : S

All the subterms here are instances of the CVG syntactic schemas
SM (Subject Merge) or CM (Complement Merge). The absence of
a co-turnstile here is not a typo: syntactic derivations do not have
co-contexts!

c. Narrow-scope semantic analysis:
� ((think’ (everyone’x(walk’ x))) Kim’) : t �

184 C. Pollard

d. Wide-scope semantic analysis:
� everyone’x ((think’ (walk’ x)) Kim’) : t �

Second, what do these RC terms really mean? The easiest way to explain
this is to translate them into TLC, since everybody knows how to semantically
interpet that. Fortunately, the translation from RC to TLC is a considerably
simpler than the CPS transforms of (say) the λ̄μμ̃-calculus:

(34) From RC to TLC

a. First make sure the term is responsible (the Cooper store is empty),
because commitments have no translation into TLC.

b. Replace every operator type AC
B by (A → B) → C), and every

binding subterm (axb) by (a λxb).7

c. By convention we write application terms as (f a) in RC and as f(a)
in TLC, just to make it easy to tell at a glance which calculus the
term belongs to.

For example, the TLC translations of the RC terms in (33) are as expected:

(35) TLC Terms for Scope Ambiguity Example

a. Narrow-scope semantic analysis:
think’(everyone’(λxwalk’(x)))(Kim’) : t

b. Wide-scope semantic analysis:
everyone’(λxthink’(walk’(x))(Kim’)) : t

Finally, since (in case it is still not obvious) the name RC is a (minimally)
veiled reference to Robin Cooper, I want to emphasize that when he first de-
veloped his theory of storage and retrieval, Cooper by no means advocated a
term-calculus formulation of the theory, quite the contrary in fact. So it’s any-
body’s guess whether he will mind my naming a proof-theoretic embodiment of
his theory after him. But since he has been working in Martin-Löf type theory
for a number of years now, I like to think tht perhaps he won’t mind too much.

Ackowledgments

For helpful discussion and comments on earlier stages of this work, I am grate-
ful to Chris Barker, Patrick Blackburn, Wojciech Buszkowski, Robin Cooper,
David Dowty, Philippe de Groote, Ruth Kempson, Brad Kolb, Oleg Kiselyov,
Yusuke Kubota, Alain Lecomte, Tim Leffel, Jim Lambek, Scott Martin, Michael
Moortgat, Glyn Morrill, Reinhard Muskens, Guy Perrier, Andy Plummer, Ken
Shan, Elizabeth Smith, Chris Worth, workshop participants at the ESSLLI 2007
Workshop on New Directions in Type-Theoretic Grammar (Dublin), the Fourth

7 For polymorphically typed operators, this is only for the lowest (ε) types. For σ =
A0 . . . An (n > 0), the transform is λx0 . . . λxn(a λxb(x0) . . . (xn)).

The Calculus of Responsibility and Commitment 185

Workshop on Lambda Calculus and Formal Grammar (Nancy, 2007), the Col-
loque en l’honneur d’Alain Lecomte (Pauillac, 2007), the Second Workshop on
Types, Logic, and Grammar (Barcelona, 2007), and colloquium audiences at the
Séminaire de l’UMR 7023, CNRS/Université de Paris 8 (2008) and the Centre
de Lingǘıstica Teòrica, Universitat Autònoma de Barcelona (2008). For their
help in providing the conditions that made this research possible, I am grateful
to Philippe de Groote, Carlos Martin Vide, and to the Department of Linguis-
tics and College of Humanities of Ohio State University. Some of the research
reported here was supported by grant no. 2006PIV10036 from the Agència de
Gestió d’Ajuts Universitaris i de Recerca of the Generalitat de Catalunya.

Appendix: The RC Schemata

H: x : A � x : A � (x a fresh variable of type A)
A: � c : A � (c a basic constant of type A)
M: If Γ � f : A → B � Δ and Γ ′ � a : A � Δ′

then Γ ; Γ ′ � (f a) : B � Δ; Δ′

C: If Γ � a : AC
B � Δ

then Γ � x : A � ax : AC
B; Δ (x fresh)

R: If Γ � b : B � ax : AC
B; Δ

then Γ � (axb) : C � Δ

O: If Γ � a : AC
B � Δ and x : A, Γ ′ � b : B � Δ′

then Γ ; Γ ′ � (axb) : C � Δ, Δ′

References

Anoun, H., Lecomte, A.: Linear grammars with labels. Formal Grammar 2006 (2007)
Bach, E., Partee, B.: Anaphora and semantic structure. In: Krieman, J., Ojeda, A.

(eds.) Papers from the Parasession on Pronouns and Anaphora, pp. 1–28. Chicago
Linguistic Society, Chicago (1980)

Bach, E.: Discontinuous constituents in generalized categorial grammar. NELS 11, 1–22
(1981)

Barker, C.: Continuations and the nature of quantification. Natural Language Seman-
tics 10, 211–242 (2002)

Bernardi, R., Moortgat, M.: Continuation semantics for symmetric categorial grammar.
In: Leivant, D., de Queiroz, R. (eds.), pp. 53–71 (2007)

Blackburn, P., Bos, J.: Representation and Inference for Natural Language. CSLI,
Stanford (2005)

Carpenter, B.: A deductive account of scope. In: Proceeding of the Thirteenth West
Coast Conference on Formal Linguistics, San Diego, CSLI, Stanford (1994)

Carpenter, B.: Type-Logical Semantics. MIT Press, Cambridge (1997)
Curien, P.-L., Herbelin, H.: The duality of computation. In: ICFP 2000, pp. 233–243

(2000)
Church, A.: A formulation of a simple theory of types. Journal of Symbolic Logic 5,

56–68 (1940)

186 C. Pollard

Cooper, R.: Montague’s Semantic Theory and Transformational Syntax. Ph.D. disser-
tation, University of Massachusetts at Amherst (1975)

Cooper, R.: Quantification and Syntactic Theory. Reidel, Dordrecht (1983)
Danvy, O., Filinski, A.: Abstracting control. In: Proceedings of the 1990 ACM Con-

ference on Lisp and Functional Programming, pp. 151–160. ACM Press, New York
(1990)

Felleisen, M.: The theory and practice of first-class prompts. In: POPL 1988, pp. 180–
190. ACM Press, New York (1988)

Fischer, M.: Lambda calculus schemata. In: Proceedings of the ACM Conference Prov-
ing Assertions about Programs. SIGPLAN Notices, SIGACT News, vol. 7(1), (14),
pp. 104–109 (January 1972)

Gazdar, G.: English as a context-free language. Unpublished manuscript dated April
1979, Cognitive Science Program, University of Sussex (1979)

de Groote, P.: Type raising, continuations, and classical logic. In: van Rooy, R., Stokhof,
M. (eds.) Proceedings of the Thirteenth Amsterdam Colloquium. Institute for Logic,
Language, and Computation, Universiteit van Amsterdam, Amsterdam, pp. 97–101
(2001)

Gallin, D.: Intensional and Higher Order Modal Logic. North-Holland, Amsterdam
(1975)

Hendriks, H.: Studied Flexibility: Categories and Types in Syntax and Semantics.
Ph.D. dissertation, Universiteit van Amsterdam (1993)

Henkin, L.: Completeness in the theory of types. Journal of Symbolic Logic 15, 81–91
(1950)

Keller, W.: Nested Cooper storage: the proper treatment of quantification in ordinary
noun phrases. In: Reyle, U., Rohrer, C. (eds.) Natural Language Parsing and Lin-
guistic Theories, pp. 432–447. Reidel, Dordrecht (1988)

Leivant, D., de Queiroz, R. (eds.): WoLLIC 2007. LNCS, vol. 4576. Springer, Heidelberg
(2007)

Montague, R.: The proper treatment of quantification in ordinary English. In: Thoma-
son, R. (ed.) Formal Philosophy: Selected Papers of Richard Montague, pp. 247–270.
Yale University Press, New Haven (1974)

Moortgat, M.: Categorial Investigations: Logical and Linguistic Aspects of the Lambek
Calculus. Ph.D. dissertation, Universiteit van Amsterdam. Foris, Dordrecht (1988)

Moortgat, M.: Generalized quantifiers and discontinuous type constructors. In: Bunt,
H., van Horck, A. (eds.) Discontinuous Constituency, pp. 181–207. De Gruyter,
Berlin (1996)

Moortgat, M.: Symmetries in natural language syntax and semantics. In: Leivant, D.,
de Queiroz, R. (eds.), pp. 264–268 (2007)

Morrill, G.: Type Logical Grammar: Categorial Logic of Signs. Kluwer, Dordrecht
(1994)

Parigot, M.: λμ-calculus: an algorithmic interpretation of classical natural deduction.
In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624. Springer, Heidelberg (1992)

Parigot, M.: On the computational interpretation of negation. In: Clote, P.G., Schwicht-
enberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 472–484. Springer, Heidelberg
(2000)

Plotkin, G.: Call-by-name, call-by-value, and the λ-calculus. Theoretical Computer
Science 1(2), 125–159 (1975)

Pollard, C.: Nonlocal dependencies via variable contexts. In: Muskens, R. (ed.) Work-
shop on New Directions in Type-Theoretic Grammar. ESSLLI 2007, Dublin. Revised
and extended version under review for a special issue of Journal of Logic, Language,
and Information (2007)

The Calculus of Responsibility and Commitment 187

Pollard, C.: Covert movement in logical grammar. In: Pogodalla, S., Quatrini, M.,
Retoré, C. (eds.) Logic and Grammar: Essays Presented to Alain Lecomte on the
Occasion of his 60th Birthday. LNCS/FOLLI (in press)

Shan, C.-c.: Delimited continuations in natural language: quantification and polar sen-
sitivity. In: Continuation Workshop 2004, Venice (2004)

Stabler, E.: Remnant movement and structural complexity. In: Bouma, G., Hinrichs,
E., Kruiff, G.-J., Oehrle, R. (eds.) Constraints and Resources in Natural Language,
CSLI, Stanford (1999)

Vermaat, W.: Controlling Movement: Minimalism in a Deductive Perspective. Master’s
thesis, Utrecht University (1999)

Negative Translations and Duality:
Toward a Unified Approach

Mattia Petrolo

SPHERE, Université Paris Diderot - Paris 7
mattia.petrolo@univ-paris-diderot.fr

Abstract. We address two related topics concerning recent develop-
ments of constructive classical logic. The first topic concerns the well
known relationships that negative translation (a.k.a. CPS translation)
establishes between classical and intuitionistic logic. We examine why
they fail to give us a clear and complete picture of constructive classi-
cal logic. Secondly, we analyze some recently developed classical calculi
which shed new light on negative translation and its connections with
the concept of syntactical duality.

1 Introduction

1.1 Proofs-as-Programs for Classical Logic

The extension of the proofs-as-programs paradigm to classical logic sheds new
light on the relationships between logic and computation. It provides a new
understanding in two different ways: on one hand there are more possibilities
for a logical “modelization” of computational features, on the other hand there
is the discovery of new features in logic.

The fundamental discovery concerning the computational meaning of classical
logic was made in [15], based on previous works by Felleisen and his collabora-
tors. Griffin discovered that, the rules of classical logic (i.e. intuitionistic rules
extended with double-negation elimination rule) can type a computational cal-
culus equipped with control operators and that the usual negative translations
from classical to intuitionistic logic correspond to what computer scientists call
continuation passing style (CPS) translations. Further developments in this di-
rection showed how classical logic can be used to type other well known features
of imperative programming languages, namely storage operators (see [19]).

On the other hand, classical logic benefited from the input of computer sci-
ence. One of the main examples of this is the discovery of polarities in logic. The
first “good” constructive classical system is Girard’s LC. In his article A new
constructive logic: classical logic, Girard introduces a classical system which sur-
prisingly keeps the good computational properties of intuitionistic logic: strong
normalization and confluence. Moreover, LC is equipped with a denotational se-
mantics. These unexpected results are obtained exploiting a polarized classical
calculus and then applying the focalization algorithm.

Lecomte and S. Tronçon (Eds.): PRELUDE 2010, LNAI 6505, pp. 188–204, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Negative Translations and Duality: Toward a Unified Approach 189

1.2 Constructive Classical Systems

Since then, many different classical systems appeared, each of which pointed
out a specific aspect of the constructive meaning of classical logic. If we look
at these calculi from an epistemological point of view, we can distinguish two
main categories. The first one includes “polarized” calculi (e.g. LC, λμ-calculus,
LKη

p ...), the second one “symmetric” calculi (λ̄μμ̃, LKtq, λSym...). The difference
between these two categories is that we achieve straightforwardly the confluence
property only in the first class of calculi. Each of these two categories can be
further analyzed: the polarized calculi can be divided in explicit and implicit
polarized calculi. On the other hand, we can distinguish between potential and
actual symmetrical calculi1, as shown in Fig. 1.

Fig. 1. A classification of constructive classical systems

So today the traditional problem about the limits of the constructivity of
classical logic has become the problem to find new criteria to define the “good”
computational properties for classical systems. In both approaches, it is assumed
that a good computational system must be closed under a cut elimination pro-
cedure (i.e. β-reduction) and under an identity axioms expansion procedure (i.e.
η-expansion). But they agree also on the fact that these requirements are gen-
erally insufficient. As a matter of fact, it is not clearly established that the
confluence property is a necessary condition for “good” computational behavior
in a system of classical logic.

In the present paper our aim is two folded: firstly, we want analyze how the
traditional notion of negative translation can be related to the recent debate
concerning the constructivization of classical logic; secondly, we shall recognize
what insights negative translations can bring for the definition of what counts
as a “good” system of constructive classical logic.
1 Recent developments of constructive classical logic point out interesting links be-

tween polarized classical logic and game-semantics on one hand and symmetrical
classical systems and concurrent computation on the other.

190 M. Petrolo

2 Negative Translations

2.1 A Brief History of Negative Translations

The first formulation of a negative translation can be found in an article that
Kolmogorov published in 1925 (see [17]). His article was an explicit attempt to
establish that hilbertian infinitary methods lead only to correct finitary results.

Kolmogorov presents the first (partial) axiomatization of propositional and
predicate minimal logic and shows that classical propositional logic is inter-
pretable in an intuitionistically acceptable fragment of it. In order to do so, he
develops an interpretation AK for every proposition A such that if A is classically
provable, then AK is intuitionistically provable.

The (−)K -interpretation is defined by recurrence on formulas. If X is an
atomic formula, then XK is ¬¬X . If A is a composed formula, F (φ1, φ2, ..., φk),
then AK is ¬¬F (φK

1 , φK
2 , ..., φK

k). Kolmogorov considers explicitly only the ¬ and
→ connectives, but his interpretation can be extended straightforwardly to the
connectives ∨ and ∧. It is clear that this interpretation is far from being minimal
(e.g. for negation the definition gives (¬AK) = ¬¬¬AK , when we know that
(¬AK) = ¬AK suffices), but it is extremely systematic. Kolmogorov also made
explicit suggestions concerning the treatment of predicate logic, even though his
treatment of quantifiers was incomplete.

Few years after the publication of Kolmogorov’s paper, Glivenko presents an
argument in order to disarm the criticism of Barzin and Errera concerning the
fact that intuitionistic logic was a three valued logic and that it was inconsistent
(see [13]). Glivenko proves that

1. If A is provable in classical propositional logic, then ¬¬A is provable in intuition-
istic propositional logic;

2. If ¬A is provable in classical propositional logic, then it is also provable in intu-
itionistic propositional logic.

So, as pointed out in [2], this is not exactly a negative translation (as Kol-
mogorov’s is), because it does not translate subformulas of A. But it is strong
enough to show that the classical and intuitionistic propositional systems are
equiconsistent.

Glivenko’s result cannot be extended to quantified formulas. Such an extension
is given by Kuroda (see [20]). In fact, his strategy is exactly to construct AK from
A by putting ¬¬ before the whole formula and after every universal quantifier.
But, in order to obtain the Kuroda negative translation, it is required to use
intuitionistic logic (not only minimal logic).

It is worth noting that Kolmogorov and Glivenko’s systems are not equivalent,
notably the former rejects ex falso quodlibet, while the latter accepts it.

Both works of the Russian mathematicians failed to give a complete and
correct treatment of propositional logic. The first published work to give a full
account of negative translation for first order logic was [14]. Gödel showed also
a partial improvement in his interpretation, by adding the double-negation only
on atoms, →, ∨ and ∃. Gentzen found independently from Gödel an equivalent

Negative Translations and Duality: Toward a Unified Approach 191

translation, withdrawn upon learning of Gödel’s paper and finally published
only in 1936 (see [11]). In fact, Gentzen’s interpretation is a slightly optimized
version of Gödel’s one. It shows how it is possible to add a double-negation only
on atoms, ∨ and ∃, the “crucial” intuitionistic connectives. We present what is
usually called the Gödel-Gentzen negative translation:

If X is atomic, then XG is ¬¬X
(A ∧ B)G is AG ∧ BG

(A ∨ B)G is ¬(¬AG ∧ ¬BG)
(A → B)G is AG → BG

(¬A)G is ¬AG

(∀xA)G is ∀xAG

(∃xA)G is ¬∀x¬AG

Gödel extends his negative translation to Number Theory; such an extension
shows that Peano Arithmetic (PA) is translatable into Heyting Arithmetic (HA).
This completes and generalizes Kolmogorov’s result from 1925, which at the time
was known to neither Gentzen nor Gödel. By carrying out such a translation,
Gödel gives the first relative consistency proof of classical number theory with
respect to intuitionistic one.

A first step toward a proof-theoretical understanding of negative translations
was carried out through Friedman’s A-translation (see [10]). Such a translation
explains how to recover the proof of the original sentence once we have its double-
negated version. Moreover, a combination of negative translation with the A-
translation provides a simpler proof of a well-know conservative result due to
Kreisel. Let A and B are intuitionistic formulas, where no free variable of B
is quantified in A. The translation (−)A is defined by replacing each atomic
subformula X of A by X ∨ A. I.e.

XA = X ∨ A
(A ∧ B)A = AA ∧ BA

(A ∨ B)A = AA ∨ BA

(A → B)A = AA → BA

(∀xA)A = ∀xAA

(∃xA)A = ∃xAA

Friedman considered ⊥ an atomic formula as well, hence it is replaced with
⊥ ∨ A (which is equivalent to A). Note that ¬B is defined as an abbreviation
for B → ⊥, hence (¬B)A = BA → A. A-translation can be combined both with
Gödel-Gentzen and Kolmogorov negative translation. By doing so, it is possible
to generalize Gödel’s result for number theory and prove Π0

2 -conservativity of
many classical theories T over their intuitionistic counterpart Ti. As a corollary
of this, one gets that T has the same provably recursive functions as Ti.

In particular, Friedman shows that if PA � ∀x∃yf(x, y) = 0, then HA �
∀x∃yf(x, y) = 0. This result is today known as the Kreisel-Friedman theorem.
It is worth noting that such a result not only pointed out the possibility to
extract a “constructive” meaning from proofs based on classical logic, but also

192 M. Petrolo

provides the concrete means to carry out such an extraction. It is actually an
evidence of the constructivity of classical logic long before the Curry-Howard
isomorphism was extended to it.

2.2 CPS and the Computational Meaning of Negative Translations

The idea of continuations and continuation-passing-style translation originated
with work in the denotational semantics of programming languages2. A contin-
uation in denotational semantics is a value that needs to be applied to a value
and/or store, and returns a final answer, the result of the entire computation.
Programs fragments are viewed as continuation transformers, which take con-
tinuations as arguments and return other continuations. Within this framework,
one can define the mathematical semantics of nonfunctional languages.

The next step toward the understanding of continuations has been the de-
velopment of specific operators allowing to access the current continuation. The
(nonfunctional) control operator C was invented explicitly to achieve this effect.
Its evaluation semantics can be expressed through another nonfunctional control
operator , A, and two evaluation rules:

E[C(M)] −→ M(λx.A(E[x]))
E[A(M)] −→ M

First rule explains how the continuation E gets captured. C, when applied to a
term M , packages up its current evaluation context in a function, and resumes
evaluating M applied to that function. The effect is to allow M to do what it
wants when it is finished and wants to exit - it can resume execution at the orig-
inal evaluation context, or resume at another evaluation context if it has others
available, etc. A simply discards away its current evaluation context and pro-
ceeds with evaluating its argument in the empty context. In the terminology of
abstract machines, the continuation E can be conceived as the stack of all things
that are waiting to be done in the future. Mathematically, a continuation can
be seen as a functional applying its function argument to a stack of arguments.
It turns out that many nonfunctional control operations can be expressed with
these simple additions to a functional language.

Fischer introduced in [9] the continuation-passing-styles (CPS) translations by
exploiting the basic features of continuation semantics; such a translation, when
applied to a program, converted that program to one in which the evaluation
order was specified not externally, but explicitly in the program.

In [27], Plotkin extended this work by showing that one could, in a certain
sense, simulate a call-by-value programming language in a call-by-name lan-
guage, and vice-versa. More precisely, given a language L (the object-language)
and a language M (the meta-language), Plotkin gives a translation • : L −→ M
such that for any term X of L, if X → b, then X• → b′, where b′ is a value which
mimics in a precise sense the operational semantics of b. Plotkin’s translation
can be defined as follows:
2 Our presentation is based on [24] where classical CPS translations are analyzed in

depth for the first time.

Negative Translations and Duality: Toward a Unified Approach 193

x• = λk(x)k
(λxu)• = λk(k)λxu•

((u)v)• = λk(u•)λm((m)v•)k

By extending Plotkin’s translation to types, it becomes clear that it is a version
of Friedman’s A-translation3:

X• = X
(A → B)• = ¬¬A• → ¬¬B•

Thus, by exploiting a CPS-translation, Plotkin showed that one could simulate a
call-by-name (CBN) lambda-calculus in a call-by-value (CBV) lambda-calculus
and that the converse is also true. Plotkin refers to his translation from L to
M as providing a definitional interpreter for a programming language L in a
programming language L. That is, such a translation provides a way of under-
standing programs in L without understanding the evaluation order on programs
in L. [8] extended the CPS-translation idea to encompass the operator control
(C), showing that one could translate a functional language with instances of C
into a language without such instances, such that the original program and the
translated program give equal values.

Griffin observed that the typing constraints inferred by reduction are met
exactly when M and C(M) in the rules above have type (A → R) → R (for any
type R) and A, respectively, i.e.

Γ � M : (A → R) → R

Γ � C(M) : A

If R is interpreted as ⊥ and ¬A is defined as A → ⊥, we obtain the classical
rule of ¬¬-elimination

Γ � M : ¬¬A
Γ � C(M) : A

Griffin then observed that call-by-value CPS-translations translated a program
typed in typed λ-calculus + C to the typed λ-calculus, in such a way that the
original program computed to an integer b if and only if the translated program
also computed to the same integer. Moreover, the translation upon types induced
by such a translation corresponds to a double-negation translation. In order to
achieve this result, Griffin used the implicational fragment of the A-translation
combined with a modified Kuroda double-negation translation. Thus, exploiting
the Curry-Howard isomorphism, Griffin discovered that to change negative trans-
lation corresponds to change the evaluation order. >From a semantical point of
view, Griffin proved that CPS-translation of programs with C preserves their
3 As showed in [23] the “dual” of such a translation in terms of linear analysis is given by

Krivine’s translation (see [18]), a slight amelioration of Gödel-Gentzen translation.
It is defined as follows: X∗ = ¬X | (A → B)∗ = A∗ → B∗. So, the formula A∗ is
obtained by putting only one ¬ before every atomic subformula of A.

194 M. Petrolo

semantics (i.e. the program in the object-language is semantically equivalent to
the program in the meta-language).

All the above-mentioned CPS translations (and continuation semantics) com-
prise a notion of value even for the call by name variants. An effect of such a
choice is that they do not validate the η-reduction. In order to overcame such
a difficulty, Lafont, Streicher and Reus define a translation that does not admit
a basic notion of value but, instead, a basic notion of continuation (see [21]).
In a type-theoretic setting, Lafont-Streicher-Reus translation can be defined as
follows:

XL = ¬X
(A ∧ B)L = AL ∨ BL

(A ∨ B)L = (AL ∧ BL)
(A → B)L = ¬AL ∧ BL

(¬A)L = ¬AL

Note that such a translation is different form Gödel-Gentzen and Kolmogorov
negative translations which correspond to a call-by-name CPS translation with
values and a call-by-value one, respectively4. From a categorical point of view,
the continuation semantics of Lafont-Streicher-Reus negative translation gives
rise to a cartesian closed category called the category of “negated domains”.
Such a development was one of the main inspiration for the discovery of control
categories (see [28]), a well-behaved categorical semantics for languages with
continuation-like control construct, such as Felleisen’s C or Parigot λμ5.

Nonetheless, as remarked by Danvy et al. in [6], “Yet no standard CPS-
transformation algorithm has emerged, and this missing piece contributes to
maintaining continuations, CPS, and CPS transformations as mystifying arti-
facts [...] in the land of programming and programming languages”.

2.3 Negative Translations and Constructive Classical Logic

By now, it should be clear that negative translations bring an understanding
of classical logic through intuitionistic logic. The extension of Curry-Howard
isomorphism to classical logic enables us to reconsider such a position.

As showed in [29], in classical non-confluent symmetric systems there exist
some normal forms that are not reachable in strongly normalizing and conflu-
ent polarized systems. What is more, [3] gives an example of a classical proof
meaningful from a computational viewpoint but which cannot be extracted by a

4 It is possible to add to L-translation ∀, but not ∃: in a sequent calculus setting the
∃ left rule cannot be correctly translated.

5 The λμ-calculus is the first clear proof-theoretical account of the computational
meaning of classical logic (see [26]). In the computational framework we are consid-
ering here, Parigot’s calculus can be regarded as a prototypical call-by-name language
with control primitives for handling continuations. In this respect, it is similar to
programming languages with Felleisen’s C operator, except that the latter language
is call-by-value.

Negative Translations and Duality: Toward a Unified Approach 195

double-negation translation. Indeed, in these non-confluent calculi it is possible
to choose how to reduce cuts during the cut-elimination process. This shows
that a notion of non-determinism present in classical logic is not captured by
negative translations.

These facts seem to suggest the need for a re-examination of the traditional
notion of negative translation. A first obvious question is: which restrictions are
enforced by negative translations so to lead to a single normal form from a clas-
sical proof? Then, if we turn our attention to the dynamical aspects of classical
logic, we should try to understand what are the relationships between negative
translations and the process of cut-elimination. In particular, do negative trans-
lations correspond to particular strategies of how to eliminate cuts? Let us give
a concrete example based on [30] in order to address the answers to these tricky
questions.

In a sequent calculus setting, the Gödel-Gentzen negative translation given in
paragraph 2.1 is a translation of a classical proof having an end-sequent

...
Γ � Δ

to an intuitionistic proof with end-sequent

...
Γ G,¬ΔG �

preserving the “structure” of the classical proof.
Let us now translate the ∧R rule through the (−)G translation. When trans-

lating from a classical proof

...
� B

...
� C ∧R� B ∧ C

we have by induction hypothesis two intuitionistic proofs ending in

...
...

� B � C

So we can construct the following translated proof for ∧R:

...
¬BG � ¬R

� ¬¬BG

...
¬¬BG � BG

Cut� BG

...
¬CG � ¬R

� ¬¬CG

...
¬¬CG � CG

Cut� CG
∧R

� BG ∧ CG
¬L

¬(BG ∧ CG) �

196 M. Petrolo

In order to obtain the translated proof, the property that the sequent ¬¬(−)G �
(−)G is always derivable in LJ is needed. Remark that in the example, the (−)G

translation introduces new cuts not present in the classical version. Following
[30], we replace a cut introduced by the (−)G translation with a shorter rule
(¬¬R), i.e.

Γ � ¬¬B ¬¬B � B
Cut

Γ � B
�

� ¬¬B ¬¬R� B

When trying to translate the instances of the cut-rule we stumble upon a prob-
lem: it can be (−)G translated in two different ways. The following cut-rule

π1

...
� B

π2

...
B �

Cut�
can be translated either as

πG
1

...
¬BG �

πG
2

...
BG � ¬R

� ¬BG
Cut�

or

πG
1

...
¬BG � ¬R

� ¬¬BG
¬¬R

� BG

πG
2

...
BG �

Cut�
i.e. as a left or a right-translation of a cut, respectively. Let us now turn to
the problem to simulate all classical cut-reduction sequences through the (−)G

translation.
One of the more comprehensive studies of confluent variants of classical sys-

tems is carried out in [7] through the system LKtq (i.e. the “colored” version of
LK), which is strongly normalizing and confluent. The tq-protocol establishes
two different deterministic reduction-strategies, depending on the chosen color
for a formula. Once the color of a formula has been chosen, the normal form
is uniquely determined. Such a choice is not equivalent to choose a strategy for
cut-elimination, but it rather corresponds to the way how cuts are reduced. A
crucial technical feature of LKtq is that once a “color” (right or left) for a formula
A has been chosen, all occurrences of A in the proof must have the same color.
By exploiting the system LKtq, we are able to analyze the behavior of negative
translations during the cut-elimination process. For example, the logical cut

π1

...
� B ∨R1� B ∨ C

π2

...
B �

π3

...
C � ∨L

B ∨ C �
Cut�

Negative Translations and Duality: Toward a Unified Approach 197

can be reduced to
π1

...
� B

π2

...
B �

Cut�
and, assuming that B is not freshly introduced in π1, the cut-rule can be elim-
inated. In LKtq this behavior corresponds to the ‘←’ color annotation for B,
i.e.

π1

...
� ←−

B ∨R1

� ←−
B ∨ C

π2

...←−
B �

π3

...
C � ∨L←−

B ∨ C �
Cut�

As showed in [30], the behavior of this proof can be simulated by the (−)G

translation as follows:

πG
1

...
¬BG � ∧L1

¬BG ∧ ¬CG � ¬R

� ¬(¬BG ∧ ¬CG) ¬L

¬¬(¬BG ∧ ¬CG) �

πG
2

...
BG � ¬R

� ¬BG

πG
3

...
CG � ¬R

� ¬CG
∧R

� ¬BG ∧ ¬CG
¬L

¬(¬BG ∧ ¬CG) � ¬R

� ¬¬(¬BG ∧ ¬CG)
Cut�

This proof reduces in three steps to

πG
1

...
¬BG �

πG
2

...
BG � ¬R

� ¬BG
Cut�

In this proof ¬BG is freshly introduced so the cut-rule can only be reduced to
the left, exactly as the color-annotation prescribes.

Let us now simulate the opposite color-annotation for B, i.e.
π1

...
� −→

B ∨R1

� −→
B ∨ C

π2

...−→
B �

π3

...
C � ∨L−→

B ∨ C �
Cut�

198 M. Petrolo

It turns out that such a color-annotation cannot be simulated through the (−)G

translation: it would not respect the constraints given by colored formulas. Urban
and Ratiu show that the behavior of the new color annotation can be simulated
through the (−)K translation we have defined in paragraph 2.1. Once we have
applied the (−)K translation, we obtain the following proof after four steps of
cut reduction:

πK
1

...
¬BK � ¬R

� ¬¬BK
¬¬R

� BK

πK
2

...
BK �

Cut�
It is clear that such a proof cannot be reduced on the left, because the cut-
formula is freshly introduced. So we must reduce the cut to the right, exactly as
the color annotation prescribed.

This example provides an evidence to support the claim that we need more
than a single negative translation in order to capture the whole computational
meaning of classical proofs.

2.4 Limits of Standard Negative Translations

Negative translations aim to give a finer meaning to classical logic through
intuitionistic logic. From this viewpoint, intuitionistic logic tries to “deconstruct”
6 through negative translations standard classical operations in order to look for
their actual constructive meaning.

Nonetheless, when we consider intuitionistic logic as a tool of deconstructive
analysis for classical logic, some of its limits appear clearly. First of all, there are
cases in which a single negative translation is ambiguous. The example we have
seen in paragraph 2.3 shows that the (−)G translation cannot correctly simulate
the whole cut-elimination process for the classical system LKtq. Another limit
of an intuitionistic analysis of classical logic appears if we focus our attention on
the sequent calculus. As remarked in [7], intuitionistic sequent calculus is based
on an ad hoc dissymetrization of LK, not better than the dual dissymetrization,
as we shall see in next section. Finally, from a technical point of view, negative
translations have several flaws pointed out by Girard in [12]: 1) they are not
compatible with substitution; 2) negation is not involutive; 3) disjunction is not
associative.

On the one hand, these limits lead to think that intuitionistic logic is not
the right framework in which the constructive meaning of classical logic should
be analyzed. On the other hand, they suggest that we are not completely on
the wrong track and that we need some (though crucial) refinement to have
a deeper and unified view of constructive classical logic. Such a refinement is
6 The expression is borrowed from [7].

Negative Translations and Duality: Toward a Unified Approach 199

obtained through linear logic. Sometimes it is claimed that linear logic (LL) rep-
resents a refined analysis of intuitionistic logic. More precisely, Girard discovered
a decomposition of the usual intuitionistic operations: for example, the intuition-
istic implication A → B becomes (!A)� B in LL. The fundamental difference
between linear and intuitionistic negation is that the former is involutive, the
latter is not.

Thus, one of the main reasons for which LL can be seen as a good candidate
to achieve a correct deconstructive analysis for classical logic, is precisely its
deep investigation and accurate treatment of negation. Linear logic allows a
refinement of the connective ¬ as used in negative translations. In particular, it
allows us to separate the “real” operation of negation from a simple change of
side of the symbol � in a sequent.

3 Polarization and Duality

3.1 Co-intuitionistic Logic and Classical Logic

As already remarked, the intuitionistic system LJ impose an ad hoc dyssimetriza-
tion of the classical calculus LK. It is clearly possible to adopt a dual formulation
of LJ. At the level of sequents it means to pass from Γ � A to A � Γ , where A
is at most one formula. Let us call co-LJ the system obtained by dualizing the
intuitionistic sequent calculus LJ. Such a calculus was introduced in [5].

Let us analyze the formal relationships between LJ and co-LJ. A translation
from LJ to co-LJ is easily defined in the following way:

X = X
A ∧ B = A ∨ B

¬A = ¬A
A ∨ B = A ∧ B

From this translation we obtain the following property:

Duality between LJ and co-LJ. Γ �LJ A if and only if A �co−LJ Γ .
Remark that such a translation gives an involution on formulas: A = A. As

proved in [5] there is no loss of provability by moving from LK to co-LJ7.
In order to show some interesting proof-theoretical relationships between

LJ/co-LJ and LK, we need again the technical apparatus developed in [7] where
classical logic is “constructivized” through linear logic. Remember that LKtq

can be divided in two dual subsystems both complete with respect to classical
provability:

Γ �LKQ Δ; A ⇐⇒ A; Δ �LKT Γ

7 As showed in [22], LJ and co-LJ have an identical, computational behavior. Exploit-
ing this fact, Laurent obtains a proof-net syntax for both calculi.

200 M. Petrolo

where ; A is called the stoup and contains at most one formula. Then, the re-
lationships between intuitionistic and classical systems can be spelled out as
follows:

Translations

If Γ �LKQ Δ; A then Γ,¬Δ �LJ A

If A; Γ �LKT Δ then A �co−LJ ¬Γ, Δ

Remark that a flaw of standard negative translations becomes finally evident
through the linear analysis of classical logic carried out in [7]. LJ and co-LJ
dissymetrizations make a “connective-preserving” translation of LK impossible:
LJ lacks a multiplicative ∨ and co-LJ lacks a multiplicative ∧.

3.2 Polarization and Negative Translations

Polarization was originally discovered in a linear logic setting (see [1]), but here
we shall give a polarized version of intuitionistic, co-intuitionistic and classical
logic based on [31], [22].

Intuitionistic Polarization. Positive formulas P, Q are obtained through pos-
itive atoms X, Y combined with positive connectives

P, Q ::= X | P ⊗ Q | P ⊕ Q | ¬+P

In terms of provability, there is a simple relationship between positive formulas
and ordinary intuitionistic logic. Let | P | be the operator that converts a positive
formula to an ordinary formula:

| X | = X
| ¬+P | = ¬ | P |

| P ⊗ Q | = | P | ∧ | Q |
| P ⊕ Q | = | P | ∨ | Q |

Co-intuitionistic Polarization. Negative formulas N, M are obtained through
negative atoms X, Y combined with negative connectives:

N, M ::= X | N & M | N ` M | ¬−N

Such a polarization correspond to co-intuitionistic logic.
In order to be able to let intuitionistic and co-intuitionistic logic interact, we

add a pair of mediating connectives called shifts:

P, Q ::= · · · | ´N
N, M ::= · · · | ˆP

Negative Translations and Duality: Toward a Unified Approach 201

We obtain Propositional Polarized Logic (PPL, see [31]). Classical logic is eas-
ily obtained from PPL, by defining an operator | − | that “forgets” polarities,
converting a polarized formula to an ordinary propositional formula.

| X | = X
| X | = X

| A ⊗ B | = | A & B | = | A | ∧ | B |
| A ⊕ B | = | A ` B | = | A | ∨ | B |

¬+P	= ¬	P
¬−N	= ¬	N
´N	= ¬	N
ˆP	= ¬	P

Following this characterization each formula has infinitely many polarizations.
Zeilberger proves that PPL and classical logic are interchangeable in terms

of provability. The difference is that polarization impose a particular strategy
for proving a classical formula. Exploiting the focalization algorithm (see [1]),
Zeilberger proves that all strategies are acceptable. Thus, by defining different
polarizations of the classical connectives, it is possible to reconstruct different
negative translations. For example, by polarizing a formula into the purely pos-
itive fragment of PPL, gives us Glivenko’s theorem; by polarizing a formula into
the purely negative fragment gives us the Lafont, Reus, and Streicher negative
translation.

The Gödel-Gentzen translation can be obtained through the following
polarization

X∗ = ´ˆX+

(A ∧ B)∗ = A∗ ⊗ B∗

(A ∨ B)∗ = ´(ˆA∗ ` ˆB∗)
(¬A)∗ = ¬+A∗

Thus, the focusing completeness theorem establish that each of the infinitely
many polarizations results in a negative translation.

3.3 Advantages of the Polarized Approach

Let us spell out what we have gained through a polarized analysis of negative
translations.

Firstly, from a logical viewpoint, advantages of an approach based on
polarizations are clear. Such a translation is compatible with substitution, it
has an involutive negation and finally enjoys associativity of ∧ and ∨. Nonethe-
less, from a technical point of view, it should be noted that finding a meaningful
equivalence relation between syntactically different negative translations is still
an open problem.

Secondly, from a computational point of view, polarization allows us to make
a bridge between CPS translations and evaluation order in programming. In
fact, what we obtain by applying the Curry-Howard isomorphism to PPL is a

202 M. Petrolo

computational system where the evaluation order is reflected at the level of types.
Then, a further analysis of classical polarized and focalized systems leads to
relate positive and negative polarities to eager and lazy computational behaviors.

Finally, from an epistemological point of view8, we have reached the unifying
view that we were looking for: we have a simple characterization of all negative
translations in terms of polarities. What is more, polarization give us a more
clever idea of what is the computational meaning of classical logic, by showing
that there is not a single constructive content of a classical theorem, because
there are many different ways to polarize a classical proposition.

To summarize, if linear logic is thought as intuitionistic logic with (“classical”)
dualities9, we can say that polarized logic is classical logic with negative transla-
tions. Such negative translations are now completely internalized, i.e. defined on
fragments of the same unified logic. As remarked in paragraph 2.2, CPS transla-
tions, the computational counter-parts of negative translations, are also defined
in terms of internal operations. We can conclude that polarized logic is actually
the correct logic in which it is possible to formalize CPS translations.

4 Conclusion

The traditional view that classical logic is symmetrical was pointed out for the
first time by Gentzen : “There exists complete symmetry between ∧ and ∨, ∀
and ∃. All of the connectives have, to a large extent, equal status in the system;
no connective ranks notably above any other connective”10.

More recently, classical symmetries also appeared in computer science, for
example between a program and its evaluation context (see [4]).

Nonetheless, in the de-constructive framework we have described in the last
section of the present paper, such a view can be challenged: classical symme-
tries have disappeared, at least partially. It is usually claimed that there exists
a symmetry in classical sequent calculus between the structural treatment of
formulas in the hypothesis and formulas in the conclusion. However, when we
analyze the dynamics of classical systems, it should be noted that such a symme-
try is effective only for atomic formulas. In fact, during cut-elimination process,
the reversibility properties for compound formulas break this symmetry. Polar-
ities provide us a “natural” way to break these symmetries and define strongly
normalizing and confluent classical systems.

Accepting the dissymetrization of classical logic has deep consequences when
a proof is considered as the place where two actions of opposite polarity interact.
Such a departure from the traditional view of logic is made possible exploiting
the linear analysis of classical logic. In the linear deconstructive setting, nega-
8 Zeilberger’s work opens another interesting philosophical line of research concerning

the meaning of logical constants. The evaluation and the study of the consequences
of such an analysis go beyond the scope of the present paper and shall be discussed
elsewhere.

9 Such a view is advocated for example in [25] or in [23].
10 Cf. [11], p. 259.

Negative Translations and Duality: Toward a Unified Approach 203

tion becomes a relation defined modulo De Morgan’s laws. Philosophically, as
remarked by Joinet in [16], this theoretical change is a decisive one: it corre-
sponds to shift from a view of negation as a trivial connective to a conception
of negation as an act. From this perspective, for example, the law of excluded
middle A∨¬A is far from being symmetrical: when analyzing the computational
behavior of proofs, one formula act, while its negation react. In this way it is
possible to define two dual alternate phases of interaction.

A natural extension of this point of view should lead to both philosophical and
technical improvements. In particular, this treatment of classical logic opens the
door to a new game-theoretical interpretation of negative translations based on
the cut-elimination process. What is more, it could bridge different approaches
to logic, among which is Ludics.

References

[1] Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. Journal
of Logic and Computation 2(3), 297–347 (1992)

[2] van Atten, M.: The Development of Intuitionistic Logic, The Stanford Encyclo-
pedia of Philosophy (Summer 2009 Edition). Zalta, E.N. (ed.) (2009),
¡http://plato.stanford.edu/archives/sum2009/entries/
intuitionistic-logic-development¿

[3] Barbanera, F., Berardi, S., Schivalocchi, M.: “Classical” Programming-with-Proofs
in λ-sym: An Analysis of Non-Confluence. In: Ito, T., Jayaraman, K. (eds.) TACS
1997. LNCS, vol. 1281, pp. 365–390. Springer, Heidelberg (1997)

[4] Curien, P.-L., Herbelin, H.: The Duality of Computation. In: Proc. Int. Conf. on
Functional Programming. ACM press, New York (2000)

[5] Czermak, J.: A remark on Gentzen’s calculus of sequents. Notre Dame Journal of
Formal Logic 18, 471–474 (1977)

[6] Danvy, O., Millikin, K., Nielsen, L.R.: On one-pass CPS transformations. J. Funct.
Program. 17(6), 793–812 (2007)

[7] Danos, V., Joinet, J.-B., e Schellinx, H.: A New Deconstructive Logic: Linear
Logic. Journal of Symbolic Logic 62(3), 755–807 (1997)

[8] Felleisen, M., Friedman, D., Kohlbecker, E., Duba, B.: Reasoning with Continu-
ations. In: LICS 1986, pp. 131–141 (1986)

[9] Fischer, M.J.: Lambda calculus schemata. In: Proceedings of an ACM Conference
on Proving Assertions about Programs, pp. 104–109 (1972)

[10] Friedman, H.: Classically and Intuitionistically Provable Recursive Functions. In:
Bird, R.S., Woodcock, J.C.P., Morgan, C.C. (eds.) MPC 1992. LNCS, vol. 669,
pp. 21–27. Springer, Heidelberg (1993)

[11] Gentzen, G.: The Collected Papers of Gerhard Gentzen. In: Studies in Logic and
the Foundations of Mathematics, North-Holland, Amsterdam (1969)

[12] Girard, J.-Y.: A New Constructive Logic: Classical Logic. Mathematical Struc-
tures in Computer Science 1(3), 255–296 (1991)

[13] Glivenko, V.: Sur quelques points de la logique de M. Brouwer. Acadmie Royale
de Belgique, Bulletin de la classe des sciences 5(15), 183–188 (1929)

[14] Gödel, K.: Zur intuitionistischen Arithmetik und Zahlentheorie. Ergebnisse eines
mathematischen Kolloquiums 4, 286–295 (1933)

[15] Griffin, T.: A Formulae-as-Types Notion of Control. In: Principles of Programming
Languages, pp. 47–58. ACM Press, New York (1990)

http://plato.stanford.edu/archives/sum2009/entries/intuitionistic-logic-development
http://plato.stanford.edu/archives/sum2009/entries/intuitionistic-logic-development

204 M. Petrolo

[16] Joinet, J.-B.: Sur la ngation, Manuscript communicated by the author in winter
2009, 20 pages (2009)

[17] Kolmogorov, A.: O principe tertium non datur. Matematiceskij Sbornik 32,
646–667 (1925)

[18] Krivine, J.-L.: Oprateurs de mise en mmoire et traduction de Gödel. Arch. Math.
Logic 30(4), 241–267 (1990)

[19] Krivine, J.L.: Classical logic, storage operators and second-order lambda-calculus.
Ann. Pure Appl. Logic 68(1), 53–78 (1994)

[20] Kuroda, S.: Intuitionistische Untersuchungen der formalistischen Logik. Nagoya
Math. 3, 35–47 (1951)

[21] Lafont, Y., Reus, B., Streicher, T.: Continuation Semantics or Expressing Impli-
cation by Negation, Technical Report 93-21, University of Munich (1993)

[22] Laurent, O.: Intuitionistic Dual Intuitionistics Nets (2008) (submitted)
[23] Laurent, O., Regnier, L.: About translations of Classical Logic into Polarized

Linear Logic. In: Proc. LICS 2003. ACM Press, New York (2003)
[24] Murthy, C.R.: Extracting Constructive Content from Classical Proofs. PhD thesis.

Cornell University (1990)
[25] Okada, M.: Some remarks on linear logic. In: van Atten, M., Boldini, P., Bourdeau,

M., Heinzmann, G. (eds.) One Hundred Years of Intuitionism. Birkhauser, Basel
(2007)

[26] Parigot, M.: λμ-calculus: An Algorithmic Interpretation of Classical Natural De-
duction. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer,
Heidelberg (1992)

[27] Plotkin, G.D.: Call-by-name, Call-by-value and the λ-calculus. Theoretical Com-
puter Science 1, 125–159 (1975)

[28] Selinger, P.: Control Categories and Duality: on the Categorical Semantics of the
lambda-mu calculus. Mathematical Structures in Computer Science 11, 207–270
(2001)

[29] Urban, C., Bierman, G.M.: Strong Normalisation of Cut-Elimination in Classical
Logic. Fundamenta Informaticae 20, 1–33 (2001)

[30] Urban, C., Ratiu, D.: Classical logic is better than intuitionistic Logic: a conjecture
about double negation translations (2008) (submitted)

[31] Zeilberger, N.: On the Unity of Duality. Ann. Pure Appl. Logic 153, 66–96 (2008)

Ontologies and Coherence Spaces

V.M. Abrusci1, M. Romano1, and C. Fouqueré2

1 Research group “Logica e geometria della cognizione”, Università Roma Tre
{abrusci,mromano}@uniroma3.it

2 LIPN, Université Paris-Nord & CNRS, UMR7030
cf@lipn.univ-paris13.fr

1 Introduction

Semantic Web is the initiative supported by the W3C that aims to make the
WorldWideWeb a place of interaction among machines – or at least among their
“representatives” known as autonomous agents [3] – thanks to the exchange of
“labelled” data. It is clearly something more complex and more interesting than
today’s Web, which allows only for the exchange of files and “raw” data that
machines simply display on a monitor.

Within the Semantic Web initiative it is assumed that expressive formal
description of data sources will lead to their interconnection throughout the
WorldWideWeb via logical inter-definition of concepts appearing in different
descriptions. According to this core idea, the research area of Knowledge Repre-
sentation (KR) has been co-opted; the merge of the more promising KR models
(namely ontologies) with standard markup languages to be used in the Web has
been followed by the adoption of inferential engines to be plugged into knowledge
bases (KB) in order to exploit the expressivity of languages designed to comply
with some Description Logic (DL), namely OWL. Thus, the interconnection of
datasources depends on their specification in a formal way suitable for automatic
reasoning. In the meantime, the social evolution of the Web (Web2.0) has shown
the effects of collective intelligence and its potential to manage large amounts
of information with user-friendly tools requiring no specific (or none at all) skill
in KR. However, while the top-down approach of the Semantic Web initiative
looks like being too close to Artificial Intelligence, the bottom-up practices of
Web2.0 lack any theoretical set-up to be really useful for autonomous agents’
operations. We think that the community that is developing the technological
layer of the Semantic Web should strictly cooperate with, and take advantage of,
the Web2.0 communities that spontaneously provide the Web with collections of
resources that are categorized (though roughly) according to some collectively
developed knowledge framework.

After a brief discussion of the logical assumptions claimed or implied with KR
involvement – and of their aptness to account for low-level, untrained and sponta-
neous categorization of resources – we propose an alternative logical framework,
that of Linear Logic, which, we argue, can trigger the dynamic exchange of re-
sources and data through different datasources. In particular we expect that it
can provide the tools to describe and realize the passage from a datasource to

Lecomte and S. Tronçon (Eds.): PRELUDE 2010, LNAI 6505, pp. 205–219, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

206 V.M. Abrusci, M. Romano, and C. Fouqueré

any other without the need for a given-in-advance and usually “hand-made” for-
mal description of any single datasource involved and of the mapping between
every pair of them. This way, we could also get Semantic Web closer to Social
Web using directly the knowledge put into Web2.0 environments (e.g. tagging
spaces) without the step of ontology extraction that requires the definition of a
conceptual hierarchy to be validated somehow.

2 KR and Web Resources

About ten years after the adoption of KR to support the building of the Semantic
Web it is apparent that there are some major problems that make it a long
and hard way to walk. To have knowledge representations suitable for use with
current technologies and according to the theoretical background of Knowledge
Engineering (KE), we need both given in advance formal descriptions of the
datasources, and the provision of rules for the mapping between datasources to
have them really exchanging data and resources. As regards the need for formal
descriptions, it requires both specialists to define the domain ontologies [8] and
professionals to give them the formal dressing. As regards the mapping issue,
it prevents to compare any two datasources (i.e. to use them in the sense of
Semantic Web) unless the mapping instructions have been provided. Put in this
way, the Semantic Web looks like too ambitious as a research initiative, since
it expects enormous efforts to properly define suitable ontologies, while as a
commercial initiative (as it is at least partially) it follows a completely top-
down and anti-dynamic approach since ontology definition invariably freezes the
knowledge about something according to its understanding on the part of a
restricted group of experts, thus behaving in an opposite way to the dynamic
and unpredictable character of Web communities.

By contrary, within the Web2.0 movement have emerged some systems for
quick and easy classification of resources, on the part of both the authors and the
users, that we can generally indicate with the term tagging, which is studied as
the form of emerging categorization called folksonomy [9]. In spite of ontologies,
such bottom-up and popular systems are expressively very poor and usually
generate no taxonomy but flat spaces where, even if there may be some hierarchy
among the concepts that are identified by tag-terms, it is neither shown nor
recorded when tagging.

We will not hold that tagging spaces are first class knowledge representations
since they completely lack any interest for the global consistency and awareness
of the complete resulting terminology or concept-scheme. Nevertheless tagging
is the form of “naive categorization”, made by sticking labels to resources in the
Web, where folksonomy comes from. Folksonomies are aggregations of tag-terms
that can be used to find out the resources that match some tag and, with it, also
the corresponding concept expressed by the term, precisely as it should be for
Semantic Web ontologies. Secondly, flat tag spaces are categorizing greater and
greater amounts of web resources. So they seem able to do for Semantic Web that
part of the work that ontologies cannot manage, i.e. large scale categorization.

Ontologies and Coherence Spaces 207

If we then consider that KR has entered the Web in order to help in making
machine-readable the information in it, and not primarily to develop the finest
descriptions of particular worlds, we should exploit any contribution able to
cooperate in achieving Semantic Web.

2.1 A Logical Model to Rely on

Being a major result of KE, ontologies and especially DL ontologies have a
precise logical meaning, i.e. a definite semantic interpretation [1]. It relies on
Set theory and associates to the ideas expressed by concept names (and their
logical definitions) the corresponding set of “all the objects that . . . ” within the
specific domain of interest that the ontology is designed to describe according to
a usually not well defined interpretation function. The inferences that a reasoner
can draw from such KBs are generated according to the axioms offered as concept
definitions and possibly also presented in a “facts box” in form of assertions about
individuals. Generally an OWL ontology is exposed in the WorldWideWeb in the
form of an XML document which includes:

– a preamble that is the presentation of the ontology itself: i.e. its title, its
identifier and possibly the identifiers of other ontologies that it is linked to.
As an example we show below an extract from the OWL specification of the
foaf ontology (Friend Of A Friend) [4] – i.e. an ontology about people, their
personal information and other people that they know – whose preamble
looks like this:

<owl : Ontology rd f : about="http : // xmlns . com/ f o a f /0 .1/"
dc : t i t l e ="Friend o f a Friend (FOAF) vocabulary "
dc : d e s c r i p t i o n="The Friend o f a Friend (FOAF) RDF vocabulary ,

d e s c r i b ed us ing W3C RDF Schema and the Web Ontology Language.">
</owl : Ontology>

– The list of concepts and their relations that constitute the conceptual domain
description, structured in the form of a hierarchy of terms – this part is usu-
ally called T-box (box of the Terminology). The following extract from the
same ontology shows an example about the concept Person that is subclass
of the concept Agent:
<rdfs : Class rdf : about="http : // xmlns . com/ foaf /0 .1/ Person"

rdfs : l a b e l="Person" rdfs : comment="A person .">
<rdf : type rdf : r e sou r c e="http : //www.w3 . org /2002/07/owl#Class"/>
<rdfs : subClassOf>

<owl : Class rdf : about="http : // xmlns . com/ foaf /0 .1/Agent"/>
</rdfs : subClassOf>

</rdfs : Class>

– and, possibly, a “store” of assertions that state the membership of some
individuals into some concepts or their participation in some relationship –
this part is usually called A-box (box of the Assertions), or facts box. The
following is an example of A-box that provides the foaf ontology with a
very small collection of data just describing one of the authors of this paper:

208 V.M. Abrusci, M. Romano, and C. Fouqueré

<foaf : Person rdf : ID="me">
<foaf : name>V. Michele Abrusci</foaf : name>
<foaf : workInfoHomepage rdf : r e sou r c e=
"http://host.uniroma3.it/dipartimenti/filosofia/Docenti/infoprof/Abrusci.html"/>

<foaf :mbox rdf : r e sou r c e="mai l to : abrusci@uniroma3 . i t "/>
<foaf : knows>

<foaf : Person>
<foaf : name>Marco Romano</ foaf : name>
<foaf : mbox rdf : r e sou r c e="mai l to : romano@uniroma3. i t "/>

</foaf : Person>
</foaf : knows>

</foaf : Person>

The A-box is only one manner among others to ground the conceptual schema
of an ontology to a collection of data – this is why one can find quite often
ontologies with no facts box – and in general the presence of an A-box does
not provide per se a model of the ontology. Thus legal inferences derived by
the reasoners are those which holds in all the possible models based on the
particular concrete domain (the collection of data) and interpretation function
chosen. By the way we remark that usually the domain of interpretation is never
given any concreteness, so that operations between ontologies do not take into
account the extension of concepts but affect primarily the labels used to denote
them, while the semantic interpretation is produced simply as a by-product of
formalization, since it is always possible to declare which set should be the result
of some operation. This would not be a problem if ontologies were not to assist
interchange of data in a Web of concrete resources. But Semantic Web ontologies
are precisely to describe what is within different datasources and to enable the
jump from each other so that what exactly is such a domain is not a minor
problem. In order to achieve a working Semantic Web, we think we should talk
about applied ontologies, i.e. ontologies together with the collection of data or
resources that are accounted for within the ontologies, so that also the operations
between ontologies should be considered primarily as affecting the resources.

Now let’s observe the semantic interpretation of folksonomies. To be honest,
they have no definite semantic interpretation, but it seems quite easy to adopt
once again Set theory and consider them as very poor ontologies without concept
definitions. It would be straightforward to take some domain Δ and interpret all
the resources that share a specific tag as a particular subset of Δ identified with
the concept lying behind the tag-term. As regards the calculus they support,
no inference is allowed, but mere resource retrieval by using tag-terms as search
keys. Operations between folksonomies have not even been conceived.

2.2 One Step Further with More Structure

We propose a theoretical framework for KR specially conceived for use within
the Semantic Web scenario. Behind this proposal there is a doubt about the
adequacy of the current approach based on Set theory (for KR) and linguistic
analysis of KBs’ intensional level (for the discovery of compatible resources) w.r.
to the full achievement of the Semantic Web. So, instead of focusing on concep-
tual schemes of ontologies, we propose to focus on the extensional level of KBs,
i.e. on “real” objects, by adopting a logical framework capable to geometrically

http://host.uniroma3.it/dipartimenti/filosofia/Docenti/ infoprof/Abrusci.html

Ontologies and Coherence Spaces 209

represent relations among resources, possibly discovering the concepts from re-
source aggregations that are actually in the Web. In particular we suggest to
consider another kind of semantic interpretation that relies on structures richer
than sets, the coherence spaces, where the interpretation of a concept (or tag-
term) produces graph theoretical objects along with the determination of the
extensional counterpart within the collection of resources that is the domain of
interpretation.

Coherence spaces [7] are webs whose points may or may not be linked to each
other according to a binary symmetric reflexive relation called coherence. They
allow for the definition of a denotational semantic, so that we can get one also
for data exchange within the Web and for a definition of operations between
ontologies that is primarily focused on resources. Coherence spaces come from
Linear Logic (LL) and have been the first semantic interpretation of that logical
system. What is more is that it is not truth-valued semantics, useful only for
talking about formulas – as it always happens w.r. to Classical Logic (LK) – but
precisely denotational semantics, useful for talking also about proofs. Indeed,
they offer the domain of interpretation of the objects manipulated by the logical
calculus, i.e. proofs.

LL [5] is a logical system developed by imposing some restrictions on the use
of structural rules for the construction of deductions within Gentzen’s proof cal-
culus for first order logic (FOL) known as sequent calculus. The affected rules
are Contraction and Weakening which deal with the number of times formulas
may be used within the same proof. In LL they are re-defined in form of logical
rules (instead of structural) so that their usage has to be marked with specific
connectives, called exponentials. This way everything that holds in LK also holds
in LL, although LL is able to better describe what is happening in a proof: the
ability to mark for which formulas it is licit to have weakening and contraction
means that one can control the times resources are used. We note, by the way,
that this one looks like an interesting property to have at hand while working
for a Semantic Web of resources. As a consequence of the control on contraction
and weakening, LL deconstructs the connectives ∧ and ∨ doubling them in the
multiplicative and additive variants, since their behaviour is different according
to the possible uses of the context (i.e. the other formulas) where the formulas
in which they occur are interacting with. To put it in a nutshell, the multiplica-
tive connectives operate on the coherence space resulting as the product of the
coherence spaces corresponding to the proofs of the connected formulas, while
the additives on their disjoint union.

Moreover, LL has developed a geometrical representation of proofs by means
of graphs called proof-nets. It exploits graph structures to compose partial proofs
and provides graph properties to determine when a proof structure is correct.
Such graph structures have a model in coherence spaces, where the denotation
of the proof of a formula is a set of pairwise coherent points, called clique. The
operations between coherence spaces interpret the composition of formulas and
their proofs according to LL connectives. In order to account for the interpreta-
tion of ontologies through coherence spaces we need a particular class of them,

210 V.M. Abrusci, M. Romano, and C. Fouqueré

with a typical support set (see below). In addition, because of the context of
Semantic Web and its need for datasource integration, we propose to call the
structuring relation of such coherence spaces compatibility rather than coher-
ence. As a consequence, we propose to call this special class of coherence spaces
“Ontological Compatibility Spaces” (OCS).

3 Ontological Compatibility Spaces

Let A be a semantic web ontology in a language like OWL. Let L(A) be the
set of all the symbols for individuals, concepts and roles of A (i.e. individual
symbols, unary predicate symbols, binary predicate symbols), M a set of data,
φ a valuation through suitable mapping from L(A) to M , i.e. if c is an individual
symbol of L(A) then φ(c) is a singleton set included in M , if P is a unary
predicate symbol of L(A) then φ(P) ⊆ M , if P is a binary predicate symbol of
L(A) then φ(P) ⊆ M × M .

This defines an applied ontology 〈A, M, φ〉 and we can represent every concept,
role and individual of it by means of a special kind of coherence spaces.

Definition 1 (Ontological Compatibility Spaces, OCSs). Based on an
applied ontology 〈A, M, φ〉, an OCS [A, M, φ] is defined as follows:

– its support, as usual noted |[A, M, φ]|, is M ∪ (M × M)
– the coherence relation between every two points of [A, M, φ], noted ¨[A,M,φ],1

is assigned according to the following:

∀(x, y) ∈ [A, M, φ] × [A, M, φ], x ¨[A,M,φ] y ⇔ ∃P ∈ L(A)s.t. {x, y} ⊆ φ(P)

As for general coherence spaces, a group a of pairwise compatible points of
[A, M, φ] is called a clique, and is noted a � [A, M, φ]. More formally:

a � [A, M, φ] ⇔ |a| ⊂ |[A, M, φ]| ∧ ∀(x, y) ∈ a × a, x ¨ y

Finally, the class of OCSs is the class of all the coherence spaces [A, M, φ] as
above that represent some applied ontology, and is closed under operations on
coherence spaces.

The coherence relation formalizes the notion of compatibility emerging whenever
an ontology is applied to a set of data. Indeed, from an abstract point of view, the
retrieved values for any predicate symbol P of A form some subset of M ∪ (M ×
M) whose elements share with each other something more than all the other
elements of M ∪ (M × M). Such a property, instead of being named according
to any specific symbol P occurring in the ontology, may be rewarded as the
compatibility between all the points of that subset of |[A, M, φ]|.

Defined as a coherence relation, the compatibility relation is reflexive, sym-
metric and non-transitive. Thanks to reflexivity, every point is a clique and may
be considered as a minimal class of compatibility. Symmetry expresses the core
1 For sake of clarity we may note simply ¨ when the coherence space is obvious.

Ontologies and Coherence Spaces 211

of the idea of compatibility, since for compatibility we mean the possibility to
put two “objects” together based on their sharing of some common property –
not necessarily an expressed one – and such a commonality has to be inevitably a
reciprocal fact. Non-transitivity prevents the overwhelming distribution of com-
patibility that would mix up different P s of A whenever they have some common
points. However it does not forbid to make a clique of points that inherit their
compatibility due to the hierarchy in which P s are organized.

As with coherence spaces, an OCS [A, M, φ] can be represented through a
graph G(V, E): V = |[A, M, φ]| is the set of nodes and E ⊆ |[A, M, φ]|×|[A, M, φ]|
is that of edges with the constraint that for every two points x, y of |[A, M, φ]| we
have {x, y} ∈ E ⇔ x ¨ y that is to say {x, y} ∈ E ⇔ ∃P ∈ L(A) s.t. {x, y} ⊆
φ(P). Based on the definition of coherence, when looking at the graph of an
OCS, a clique a � [A, M, φ] turns out to be a completely connected subgraph.

Remark. We observe that the representation of ontologies as OCSs successes:

1. for every symbol s ∈ L(A) (that is every individual or concept or role of
〈A, M, φ〉) φ(s) � [A, M, φ].

2. following the inverse direction, every clique of the OCS is the denotation of:

– some concept or role or individual of 〈A, M, φ〉;
– or a new concept not identified by any predicate of L(A) which corre-

sponds to either a subconcept of some other concept specified in 〈A, M, φ〉
or to a new concept “spreading” over different concepts already identified
in L(A).2

As every coherence space OCSs satisfy also the properties of down-closure and
binary completeness, i.e.:

– if a � [A, M, φ] and a′ ⊂ a then a′ � [A, M, φ]
– if B ⊂ [A, M, φ] and ∀a1, a2 � B (a1 ∪ a2 � B) then

⋃
B � [A, M, φ]

Talking about ontologies this means that: i) any subconcept of a concept has to
be considered as a concept, even if there is no name for it in L(A), since we care
only about cliques of compatible points; and ii) when the union of two concepts
still forms a clique for every two concepts in (a subset of the concepts of) an
OCS, all those concepts together form a concept too – i.e. a whole (branch of
an) ontology forms a concept when also the union of any two of its concepts is
still a concept.

Example. Based on the same ontology of which we have shown above some
extracts, we now show what looks like its representation as an OCS. We remark
that what is going to be shown in an OCS are the actual objects accounted for
in the ontology, grouped as cliques as long as one concept fits for all the objects
of a clique.
2 This is a possible way to discover new concepts that is especially interesting with

folksonomies.

212 V.M. Abrusci, M. Romano, and C. Fouqueré

Regarding our very simple ontology (cf. section 2.1) we have the following “points
of information”: two Persons, their Email accounts and the Web-page of one of
them. So we have an OCS that shows (step by step):

• a clique of Persons

It counts two points because in the few
lines of the example A-box above we
have just two resources bearing the label
foaf:Person

• and a clique of Email accounts

Again two points as in the “code” above
we have two strings introduced by the
label foaf:mbox

• and a clique of Web-pages

It counts just a single point since in the
example A-box there is only one string
with the label foaf:workInfoHomepage

• and also a clique of pairs made of a Person and his Email account

This clique counts two points (dashed
circles in the figure) because in the A-
box we have two pairs made of a resource
labelled foaf:Person and a string at-
tributed to it by the role foaf:mbox

As the example suggests, concepts look just like completely connected subgraphs
while the roles of the ontology let one take pairs of points instead of single points.

4 Operations between Ontologies

The best that the interpretation of ontologies as OCSs may bring to Semantic
Web is the consequent interpretation of operations between ontologies as op-
erations between coherence spaces, which may provide a theoretical frame to
describe the use of ontologies as sources of information for Web-agents. Usual
operations with ontologies range from union of ontologies to module extraction
(that may be considered as the inverse of the union), ontology mapping and
ontology merging (which is the result of the combining of mapping and union),
while coherence spaces interpret all the operations available within the logical
system of LL, so that we have some “new” operations with ontologies that is
worth to further study as to define their possible role in describing actual inter-
actions (information exchanges) between agents in the Web. For the time being,
let’s have a glance on some of these operations.

Ontologies and Coherence Spaces 213

– The dual of an ontology

The dual of [A, M, φ] is a coherence space noted [A, M, φ]⊥ with the same web,
where the compatibility has been replaced by incompatibility (˚), so that all
compatibilities holding in [A, M, φ] are removed and new compatibilities are
assigned in [A, M, φ]⊥ only to pairs of points which are either identical or not
together a clique of [A, M, φ]. The cliques of [A, M, φ]⊥ may be found according
to the correspondence between a coherence space and its dual: a � [A, M, φ]⊥ ⇔
∀(x, y) ∈ a × a x ˚[A,M,φ] y so that a clique of [A, M, φ] and one of [A, M, φ]⊥

can share at most one common point. Duality of coherence spaces provides us
with an unusual idea of negation for ontologies, one that does not deal with an
operator for concept definition (complementarity) but one that affects the whole
ontology: compatibility becomes incompatibility and the other way around, a
phenomenon that can be understood as a radical change of the observational
standpoint about the knowledge described in the ontology.

• The union of ontologies (⊕)

The sum ⊕ of two OCSs is the disjoint union of their webs; nothing is added to
the compatibility. Thus, each point of the web of [A, M, φ] remains incompatible
with any point of [A′, M ′, φ′]. We observe that such a sum corresponds to a spe-
cial case of the usual operation of (controlled) ontologies union, where concepts
from ontology A′ are to be added to concepts from ontology A provided that no
mixing of concepts may occur. In fact, from the graph of [A, M, φ]⊕ [A′, M ′, φ′]
one can recover only cliques which are either cliques of [A, M, φ] or of [A′, M ′, φ′].

• The dual of the sum (&)

Since duality is characteristic of coherence spaces we consider also the dual
of the operations between them. The dual of [A, M, φ] ⊕ [A′, M ′, φ′] is
[A, M, φ]⊥&[A′, M ′, φ′]⊥, whose cliques are all the cliques of [A, M, φ]⊥ and of
[A′, M ′, φ′]⊥ along with the union of all the cliques of [A, M, φ]⊥ with the cliques
of [A′, M ′, φ′]⊥. The dual of the union of two ontologies is far less comfortable
to deal with since, as it is for the same notion of dual, it is quite unknown to on-
tology practice. Nevertheless, while the union of ontologies simply adds the list
of concepts in A′ to concepts in A, we remark that with the dual of the union
we consider a new unified space where the points of [A′, M ′, φ′]⊥ are always
compatible with the points of [A, M, φ]⊥.

• Mapping ontologies in ontologies (�)

The expression “ontology mapping” covers a variety of quite different techinques
to compose two (or more) ontologies in a single ontology where possibly new rela-
tions between concepts from the two ontologies are shown. Usually it is operated
only caring for the signature (i.e. the concept names and their specifications) of
the involved ontologies. We want to deal with applied ontologies so we should
describe what happens with the collections of tagged data. This is to say we

214 V.M. Abrusci, M. Romano, and C. Fouqueré

consider the mapping of a collection of data as a whole, concerning not only its
formal specification and presentation.

Mapping an ontology in another one actually produces a third ontology (which
sometimes is called the “reconciled ontology”) then we can represent this as
follows: two applied ontologies 〈A, M, φ〉 and 〈A′, M ′, φ′〉 are mapped into a
third ontology 〈A′′, M ′′, φ′′〉 which is actually produced taking a copy of every
point of [A, M, φ] and [A′, M ′, φ′] into the new space [A′′, M ′′, φ′′] and preserving
all the compatibilities of each point with the others in the OCS it comes from.
Being a point-by-point projection in the new OCS, such a process can easily be
seen as a linear function F : [A, M, φ] ⊕ [A′, M ′, φ′]� [A′′, M ′′, φ′′].

What is really going to be the resulting OCS is by far the most interesting part,
even though it is also the less predictable. Having no a priori information about
what is in [A, M, φ] and [A′, M ′, φ′] we should assume that the resulting space is
either [A, M, φ] ⊕ [A′, M ′, φ′] or [A, M, φ] & [A′, M ′, φ′]. For the general case we
have that [A, M, φ]⊕ [A′, M ′, φ′] ⊆ [A′′, M ′′, φ′′] ⊆ [A, M, φ] & [A′, M ′, φ′], what
gives an idea of the increase of mutual compatibility between the two spaces.
Indeed, the actual appearence of [A′′, M ′′, φ′′] may be much more complex than
the cases of ⊕ and & due to the mixing of some cliques of [A, M, φ] with some
others of [A′, M ′, φ′] that is possible thanks to the discovery of new inclusion
relations between concepts of the two original ontologies. This is exactly the
kind of result that is expected with the adoption of empirical techniques – that
typically rely on linguistic analysis and implement some form of machine learning
– for what is usually called the “discovery of mappings” between ontologies. Such
an empirical result is beyond the action of the mapping function and is what we
suggest to adopt Ludics [6] for during the further development of our research.
New maximal cliques that possibly can be found within [A′′, M ′′, φ′′] – i.e. those
resulting from the mixing of the projections of cliques of [A, M, φ] and [A′, M ′, φ′]
– will be the new concepts proper to the new OCS, i.e. what is eventually the
increase of knowledge produced by the mapping operation, which is a mapping
function together with some empirical acquisition.

As regards the details of our mapping function F , we define it as follows
(noting for short [A, M, φ]⊕ [A′, M ′, φ′] as X and [A′′, M ′′, φ′′] as Y): i) F (∅) =
∅ ; ii) ∀x ∈ |X | ∃y ∈ |Y |s.t.F (x) = y ; iii) x �= y → F (x) �= F (y) ; iv)
∀a � X F (a) =

⋃
[F (x)|x ∈ a]. Such a function is linear: given any two concepts

of an applied ontology 〈A, M, φ〉, e.g. a, b � [A, M, φ], we have that F (a)∪F (b) =
F (a ∪ b). This is straightforward if one considers that F pointly reconstructs in
the new OCS exactly what is in each of the original ones. Also stability can be
easily proved, and together with the preservation of inclusions and unions, we
have that F safely preserves the relations between concepts.

Having an interesting tool to account for the mapping of collections of data,
the open challenge will be to develop some technique suitable for the account of
the empirical findings about concepts – i.e. the additional mixing of cliques in a
mapping of ontologies that is due only to their actual “meaning”, or value.

Ontologies and Coherence Spaces 215

Example. Let’s have a look to what is the representation of such operations
in form of OCSs. We tackle here just the two cases that are familiar to usual
work with ontologies. The applied ontologies we will use in the following are the
A-box we have already shown above (in section 2.1) and the one that we show
below, which is based on another ontology for personal information management
(PIM) [2], developed by a small group of researchers involved in the W3C’s
Semantic Web Initiative3.

As regards our second A-box, you may note that its language is not OWL,
but RDF (Resource Description Framework). In fact, since it is just an A-box
and it makes no use of OWL special terms, it can be expressed in a more basic
language for data description (which by the way is also more largely supported
over the Web). The axioms and concept definitions that form the T-box – the
conceptual description – for which this A-box provides a collection of data, are
not listed here, but are recalled by the import mechanism of namespaces. Indeed
an ontology is not to be copied in its entirety every time one has to refer to
one or more concepts that the ontology defines; it needs just to “import” that
ontology, that is to put a link to it. Once an ontology is imported one can freely
use everything that is stated in it thanks to the technique of namespaces and
the use of a special prefix (in bold in our examples) to refer to before each term
in the ontology. This allows to unambiguously refer to each term’s specification
wherever may be the file containing such specification. Links to other ontologies
are stated in the preamble, where a special prefix is associated to each namespace
that will be recalled in the ontology.

<rdf :RDF
xmlns : rdf="http ://www.w3 . org /1999/02/22−rdf−syntax−ns#"
xmlns : rdfs="http ://www.w3 . org /2000/01/ rdf−schema#"
xmlns :pim="http ://www.w3 . org /2000/10/ swap/pim/ contact#">
<pim : Person rdf : ID="me">

<pim : name>Marco Romano</pim : name>
<pim : t i t l e >Mr</pim : t i t l e >
<pim : mailbox rdf : r e s ou r c e="mai l to : mromano@uniroma3 . i t "/>
<pim : homePageAddress rdf : r e s ou r c e="http://www-lipn.univ-paris13.fr/~romano/"/>

</pim : Person>
</rdf :RDF>

First of all we consider the simplest (trivial) way to put together the infor-
mation within two different (applied) ontologies, i.e. what we have called their
sum (⊕).

As the figure shows, facts asserted in
the two ontologies are just put side by
side, no mixing of information can take
place with such operation. The result is
simply to have all the cliques from the
two OCSs collected in a new single OCS.
3 The ontology is available on-line at http://www.w3.org/2000/10/swap/pim/contact.

Among the people who have been working on it since early 2000s let us mention Tim
Berners-Lee, co-inventor of the WorldWideWeb.

216 V.M. Abrusci, M. Romano, and C. Fouqueré

Then we consider the more interesting operation of mapping. We recall that
this operation aims to establish equivalence between labels specified in different
ontologies whenever such labels are intended to describe the same concept. How
to discover when actually two labels may be used for the same concept is the cru-
cial point, but for the present example we will rely on the very simple statement
of mapping between the two ontologies that is provided within the definition
of the concept Person in the foaf ontology. Indeed it states that foaf:Person
is a subclass of pim:Person and this allows to infer that everything with the
label foaf:Person can be used as if it had the label pim:Person. Now we show
how the mapping established as a T-box axiom affects the actual information
available in the applied ontologies.

The mixing of cliques affects only
the cliques corresponding to the la-
bels foaf:Person and pim:Person
even though, reasonably, if one consid-
ers the actual meaning of the other
facts described in the two A-boxes,
also other cliques should mix (e.g.
those corresponding to foaf:mbox and
pim:mailbox).

To say all the story, one could expect that there is also some form of collapse of
the graph in the mapping because both the ontologies state something about an
instance of the concept Person that is named Marco Romano – and the same holds
for his email address. But this is quite far to achieve with nowadays techniques
although it may look so trivial to a human being to recognize that this is indeed
the same person. Since mappings are established only for T-box elements and
then, if necessary, projected over A-boxes – and since here we are given only the
mapping instruction for the two labels about persons – the other cliques simply
cannot mix, and there is no way for the single points to be identified as referring
to the same “real” objects. Obviously, what we look for in the following of our
research is a way to have cliques conveniently mixing not only according to what
is stated as special mapping rules (or occasional inter-definitions of concepts),
but also depending on other factors like e.g. the use of the actual resources on
the part of some user.

5 OCS vs. Ontology

How may OCSs be of better use than ontologies w.r. to the social (and pragmatic)
aspects of Web2.0? In fact we have designed OCSs specially for representing
ontologies, but actually it looks like folksonomies can benefit even more than
ontologies from OCSs.

Nowadays when looking at the set of tag-terms adopted within a community
it is expected to reconstruct a formal ontology out of that, establishing a neat
and formal hierarchy among concepts, useful for resource retrieval according to
the traditional top-down approach of progressive specification. The major side
effect of such a reduction is the loss of the dynamic aspect of Web2.0.

Ontologies and Coherence Spaces 217

We may observe that building the Semantic Web by means of ontologies re-
quires predefined sets of metadata (the schemes) to be adopted and respectfully
obeyed. Their usefulness – and the wealth of Semantic Web itself as the work-
place of autonomous agents – will depend in fact on the number of resources
whose set of metadata matches one or more of the predefined schemes so that
programs specially written according to the same scheme(s) will be able to use
those resources. So the Web of data that W3C indicates turns out to be some-
thing like a giant database where a neat definition of the logical scheme (even
composed of many different ontologies) can be achieved only thanks to the stan-
dardization of the metadata tags to be used to describe resources.

In the opposite direction goes the practice of free tagging, so that folksonomies
emerge as everlasting works in progress where concept-terms institution and re-
source description and classification always happen in the same time, with no
hope for standardization. In fact, when people tag they freely choose and es-
tablish their own categories in an unending process of ontology elaboration.
Moreover, while using their very personal categories people also express their
own “world’s understanding” so that tagging spaces are not only useful for clas-
sification, but also convenient for collective intelligence to share knowledge.

We remark that tagging spaces publish enormous amounts of resources with
some kind of classification while providing a cognitive framework that has not
the claims of ontology but it is powerful enough to let one recognize and find
classes of resources that are compatible, i.e. similar to some extent. Maybe such a
cognitive framework is a lower quality contribution, w.r. to formal DL ontologies,
to have the content of the Web surely recognizable, but it seems to show a more
feasible way to do that. In fact, since it relies on no pre-emptive requirements,
no standardized label to tag resources, it preserves the dynamical behaviour of
Web2.0 and lets Semantic Web to be a “common people affair” as it has been
for last years for WorldWideWeb, and for its big boom.

Instead of the usual techniques for tags clustering and concept extraction, we
may exploit OCSs in order to recover from tagging spaces a description of the
resources in a datasource that is formal enough to be useful for data exchange but
that does not need ad hoc specification of a conceptual hierarchy. We look only
for compatibility between resources observing the connections given within an
OCS. Our proposal is to give more logical dignity to flat tagging spaces without
rising too high in formal complexity so as to prevent large contribution from
common web-users. We simply aim to describe flat spaces in such a way that it
makes sense to talk about operations between them. In order to have an OCS
out of a flat tagging space we need nothing more than what has been stated for
ontologies, since we consider it as a very simple ontology, with just some niceties:
the language L(F) of such a folksonomy F will be the pair (T, I) where T is the
set of tag-terms and I the set of the resource identifiers (the WorldWideWeb
standard Universal Resource Identifiers). The web of the OCS [F, I, φ] will be
|[F, I, φ]| = I. φ is the valuation of a tag-term t on the set φ(t) ⊆ I of the
resources tagged with t – i.e. it is a query. The compatibility relation is slightly
revised as x ¨[F,I,φ] y ⇔ ∃t ∈ L(F) s.t. {x, y} ⊆ φ(t).

218 V.M. Abrusci, M. Romano, and C. Fouqueré

6 Conclusions

In conclusion, we recall some of the most challenging aspects that are to be
further investigated in our research along with the results that we can see at
present. Recurring to coherence spaces to describe operations between ontolo-
gies (and folksonomies), we have to face some deep questions that emerge from
aspects inner to LL and coherence spaces theory. Indeed, coherence spaces and
their cliques represent proofs of (multisets of) formulas (from here on we use
formula while meaning multiset). Each coherence space offers the place for the
denotation of one formula and shows a correspondence regarding a clique, a
formula and its proof, while operations between coherence spaces provide the
denotation for the calculus when composing formulas. When adopting coherence
spaces for ontologies, we have to find the right place to put other elements in this
correspondence, i.e. concepts and resources, together with ontology. We have to
clearly set the circle of correspondences and a first attempt is to compare the
formulas appearing in the right-hand side of a sequent in LL with an ontology
seen as the union of its concepts, so that the proof satisfying one of the concepts
satisfies also the whole ontology.

Another point is to find out precisely what may be the meaning – and use-
fulness for Semantic Web – of certain operations that OCSs make possible for
ontologies (e.g. the dual) that at present have no apparent meaning w.r. to stan-
dard use of ontologies.

For the time being, we propose something like an alternative description lan-
guage to represent datasources. With such a language we are given the easy of use
of tagging space, the ontology/folksonomy extraction procedure described above
and a calculus based on LL connectives, that are a little finer than those usually
adopted working with ontologies. We have already mentioned the doubling of
some connectives (∧ and ∨, in their multiplicative and additive formulation) in
LL, together with the appearing of two new connectives, the exponentials, that
control the use of contraction and weakening, i.e. the use of resources. Without
doubt it is worth to assess the usefulness of such “logical controllers” in order to
account for operations in the Web that involve resources.

Finally, as the most interesting perspective deriving from the present research,
we indicate the involvement of Ludics as the theory able to account for the dis-
covery of compatibility between resources (points of OCSs) in the Web, even (and
most of all) between resources coming from different datasources and counted in
different OCSs.

References

[1] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logics Handbook: Theory, Implementation and Applications.
Cambridge University Press, Cambridge (2003)

[2] Berners-Lee, T., Connolly, D., et al: PIM ontology,
http://www.w3.org/2000/10/swap/pim/contact

http://www.w3.org/2000/10/swap/pim/contact

Ontologies and Coherence Spaces 219

[3] Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web, Scientific American
(May 2001)

[4] Brickley, D., Miller, L.: The Friend Of A Friend (FOAF) Project,
http://www.foaf-project.org/

[5] Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
[6] Girard, J.-Y.: Locus solum: from the rules of logic to the logic of rules. Mathematical

Structures in Computer Science, 301–506 (2001)
[7] Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge University Press,

Cambridge (1989)
[8] Gruber, T.: Towards principles for the design of ontologies used for knowledge

sharing. Int’l Journal of Human and Computer Studies 43(5-6), 907–928 (1995)
[9] Vander-Wal, T.: Folksonomy (2007), http://vanderwal.net/folksonomy.html

http://www.foaf-project.org/
http://vanderwal.net/folksonomy.html

Author Index

Abrusci, V.M. 205

Basaldella, Michele 78

Cann, Ronnie 114
Cardone, Felice 147

Fleury, Marie-Renée 1
Fouqueré, Christophe 58, 205

Gregoromichelaki, Eleni 114
Groenendijk, Jeroen 161

Kempson, Ruth 114

Lecomte, Alain 32
Livet, Pierre 25

Meyer-Viol, Wilfried 114

Petrolo, Mattia 188
Pollard, Carl 174
Purver, Matthew 114

Quatrini, Myriam 32

Roelofsen, Floris 161
Romano, M. 205

Saurin, Alexis 78
Schaden, Gerhard 134

Terui, Kazushige 78
Tronçon, Samuel 1
Tulenheimo, Tero 88

White, Graham 114
Winterstein, Grégoire 134

	Title Page
	Preface
	Organization
	Table of Contents
	Speech Acts in Ludics
	Introducing Speech Acts
	Classical View
	Inside Games
	Towards a Dialogical View Based on Ludics

	Speech Acts in Ludics
	Speech Acting
	Speech Acts

	Ludics in a Nutshell
	The Design
	The Interaction
	Behaviors

	Some Examples of Speech Acts
	The Promise: ``I Promise You the Movie Tonight"
	Polite Request: ``Can You Close the Window, Please"

	Conclusion
	References

	Speech Acts and Ludics: Reacting to Breakdowns of Interaction
	A Presentation of Ludics Orientated towards the Expression of Speech Acts as Ways of Repairing Interaction Breakdowns
	Ludics Breakdowns
	Breakdown of Ludics and Speech Acts
	Conclusion

	Ludics and Rhetorics
	Introduction
	Ludics for Language Moves
	Designs
	Normalization
	Strategies, Proofs and Designs
	c-Designs

	Some Applications to the Argumentation Theory
	More on Dialogues
	Controversies and Fallacies

	Ludics and ''Semantics''
	On Natural Language Semantics
	Discrimating Meanings by Means of Dual Sentences
	Logical Meaning
	Links with the Classical Approach

	Conclusion
	References
	Appendix

	Ludics and Web: Another Reading of Standard Operations
	Introduction
	Web Sites: Which Situation ?
	What Is Behind the Screen ?
	Drawbacks of Current Programming Environments
	Concepts in Use in Related Works Coming from the Functional Paradigm

	Web and Ludics
	Interaction in Ludics
	Interaction and Web Site
	From Ludics Model to FICX Programming Language

	FICX: A Web Functional Langage
	Towards Web Services
	References

	On the Meaning of Focalization
	Introduction
	Focalization in Linear Logic
	Ludics in Three Pages
	An Analysis of Focalization in Ludics
	Conclusion and Future Works
	References

	On Some Logic Games in Their Philosophical Context
	Introduction
	Dialogical Logic
	GTS
	Threats of Circularity
	Ambiguity of `Verification'
	A Fourfold Division of Foundational Views
	References

	Natural-Language Syntax as Procedures for Interpretation: The Dynamics of Ellipsis Construal
	Preliminaries
	Ellipsis and the Syntax-Semantics Interface
	Dynamic Syntax
	Tree Growth and LOFT: The Logic of Finite Trees
	Semantic Underspecification and Update
	Linking Trees through Shared Terms
	Intra-sentential Context

	Ellipsis and Context
	Inter-utterance Context
	Access to Structure
	Access to Formulae
	Access to Parsing Actions
	Context Defined

	References

	Relevance and Utility in an Argumentative Framework: An Application to the Accommodation of Discourse Topics
	Utility and Relevance
	Argumentation and Argumentation Theory
	Argumentation and Game Theory

	The Point of Talking
	Discourse Topics
	Argumentative Goals
	Linking the Two Perspectives
	Intermediate Summary

	Where Relevance and Utility Need to be Kept Apart
	Bi-partisan Relevance
	Changing Goals
	Mixed Motive Games

	Conclusion
	Reference

	The Geometry and Algebra of Commitment
	Background and Motivations
	The Geometry of Commitment
	Space-Time Diagrams: Definitions
	Executing Space-Time Diagrams
	Delegatio, Compensatio and Confusio

	The Algebra of Commitment
	Matchings as Morphisms
	A Category of Accounts
	Examples

	Related Research and Future Work
	References

	Compliance
	Introduction
	Inquisitive Semantics
	Propositions as Proposals
	Support, Possibilities, and Propositions
	Truth-Sets and Excluded Possibilities
	Questions, Assertions, and Hybrids
	Inquisitive Entailment

	Compliance
	Homogeneity: Say More, Ask Less!
	Conclusion
	References

	The Calculus of Responsibility and Commitment
	Introduction
	Background
	Cooper Storage and Retrieval
	RC Types, Terms, and Commitments
	RC Rules
	Conclusion
	References

	Negative Translations and Duality: Toward a Unified Approach
	Introduction
	Proofs-as-Programs for Classical Logic
	Constructive Classical Systems

	Negative Translations
	A Brief History of Negative Translations
	CPS and the Computational Meaning of Negative Translations
	Negative Translations and Constructive Classical Logic
	Limits of Standard Negative Translations

	Polarization and Duality
	Co-intuitionistic Logic and Classical Logic
	Polarization and Negative Translations
	Advantages of the Polarized Approach

	Conclusion
	References

	Ontologies and Coherence Spaces
	Introduction
	KR and Web Resources
	A Logical Model to Rely on
	One Step Further with More Structure

	Ontological Compatibility Spaces
	Operations between Ontologies
	OCS vs. Ontology
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

