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Preface

Over the past decade, the flow equation method has developed into a new ver-
satile theoretical approach to quantum many-body physics. Its basic concept
was conceived independently by Wegner [1] and by G�lazek and Wilson [2, 3]:
the derivation of a unitary flow that makes a many-particle Hamiltonian in-
creasingly energy-diagonal. This concept can be seen as a generalization of
the conventional scaling approaches in many-body physics, where some ultra-
violet energy scale is lowered down to the experimentally relevant low-energy
scale [4]. The main difference between the conventional scaling approach and
the flow equation approach can then be traced back to the fact that the
flow equation approach retains all degrees of freedom, i.e. the full Hilbert
space, while the conventional scaling approach focusses on some low-energy
subspace. One useful feature of the flow equation approach is therefore that
it allows the calculation of dynamical quantities on all energy scales in one
unified framework.

Since its introduction, a substantial body of work using the flow equa-
tion approach has accumulated. It was used to study a number of very dif-
ferent quantum many-body problems from dissipative quantum systems to
correlated electron physics. Recently, it also became apparent that the flow
equation approach is very suitable for studying quantum many-body non-
equilibrium problems, which form one of the current frontiers of modern
theoretical physics. Therefore the time seems ready to compile the research
literature on flow equations in a consistent and accessible way, which was my
goal in writing this book.

The choice of material presented here is necessarily subjective and moti-
vated by my own research interests. Still, I believe that the work compiled in
this book provides a pedagogical introduction to the flow equation method
from simple to complex models while remaining faithful to its nonpertur-
bative character. Most of the models and examples in this book come from
condensed matter theory, and a certain familiarity with modern condensed
matter theory will be helpful in working through this book.1 Purposely, this
book is focussed on the method and not on the physical background and moti-
vation of the models discussed. By working through it, a student or researcher

1An excellent and highly recommended introduction is, for example, P.W. An-
derson’s classic textbook [4].
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should become well equipped to investigate models of one’s own interest using
the flow equation approach. Most of the derivations are worked out in con-
siderable detail, and I recommend to study them thoroughly to learn about
the application and potential pitfalls of the flow equation approach.

The flow equation approach is under active development and many issues
still need to be addressed and answered. I hope that this book will motivate
its readers to contribute to these developments. I will try to keep track of
such developments on my Internet homepage, and hope for e-mail feedback
from the readers of this book. In particular, I am grateful for mentioning
typos, which will be compiled on my homepage.

Both in my research on flow equations and in writing the present book,
I owe debts of gratitude to numerous colleagues. First of all, I am deeply
indebted to my Ph.D. advisor Franz Wegner, whose presentation of his new
“flow equation scheme” in our Heidelberg group seminar in 1992 started both
this whole line of research and my involvement in it. I also owe a very special
acknowledgment to Andreas Mielke, with whom I have started my work on
flow equations back in 1994. Our joint work has set the foundations of many of
the developments presented in this book. During my work on flow equations,
I have also profited greatly from many discussions with Dieter Vollhardt. I
am particularly grateful to him for his continued interest and encouragement.

I also thank the participants of my flow equation lecture in Augsburg
during the summer term 2005, which gave me the opportunity to test my
presentation of the material that is compiled in this book. Among them I
am especially thankful to Peter Fritsch, Lars Fritz, Andreas Hackl, Verena
Körting, and Michael Möckel for proofreading parts of this manuscript.

The original idea to write this book is due to a suggestion by Peter Wölfle,
and I am very grateful to him for starting me on this project and for his
continued interest in the flow equation approach in general. This book project
and a lot of the research compiled in it has only been possible due to a
Heisenberg fellowship of the Deutsche Forschungsgemeinschaft (DFG). This
gave me the necessary free time to pursue this project, and it is pleasure to
acknowledge the DFG for this generous and unbureaucratic support through
the Heisenberg program.

Finally, I thank my colleagues at the University of Augsburg for many
valuable discussions, and everyone else not mentioned here by name with
whom I have worked on flow equations in the past decade.

For everything else and much more, I thank Michelle.

Augsburg Stefan Kehrein
February 2006
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1 Introduction

This introductory chapter provides a brief overview of the flow equation
method and its relation to other methods in condensed matter theory. The
aim of this chapter is to define the framework of the method, which will be
filled out in more detail in the following chapters of this book.

1.1 Motivation

The fundamental challenge of condensed matter theory can be summed up
by the observation that while we know all the relevant laws of nature for
describing condensed matter systems, the number of degrees of freedom in
such systems is typically much too large to allow a direct solution based
on these laws. This observation is reflected in the multitude of phenomena
that can be observed in condensed matter systems, from different kinds of
ordering to phase transitions and novel states of matter like superconductiv-
ity and fractional Quantum Hall liquids. In order to arrive at a theoretical
understanding of such complex phenomena, various stages of simplifications
and suitable modeling are necessary. The resulting many-particle model then
needs to be solved with a reliable theoretical method.

Theoretical methods for solving quantum many-particle problems can be
broadly classified in three main categories:

1. Perturbative analytical expansions
2. Exact analytical solutions
3. Numerical solutions using computers

All these approaches have their specific advantages and shortcomings. Per-
turbative methods require the identification of a sufficiently small parameter
that allows a reliable expansion. Exact analytical solutions like Bethe ansatz
methods work only for very specific (integrable) Hamiltonians. Numerical
solutions often have to be performed for system sizes that are far smaller
than the experimentally relevant one, and therefore a (potentially difficult)
extrapolation is necessary.

Many condensed matter systems are nowadays well-understood through
the solution techniques developed in each of these approaches during the past
decades. In this context, a special role has been played by renormalization and

Stefan Kehrein: The Flow Equation Approach to Many-Body Problems
STMP 217, 1–9 (2006)
c© Springer-Verlag Berlin Heidelberg 2006



2 1 Introduction

scaling ideas, which have led to the classification of microscopically very dif-
ferent systems into specific universality classes that show the same universal
behavior. The behavior on large length scales or at sufficiently small energies
turns out to be insensitive to the specific details of the microscopic interac-
tions [1]. However, many condensed matter systems that involve strong elec-
tron correlations like in high temperature superconductors or heavy fermion
materials have so far been out of our reach, and provide a major motivation
for developing new theoretical tools.

This book introduces the reader to such a new analytical approach to
quantum many-particle systems, the so-called flow equation method intro-
duced by Wegner in 1994 [2]. The flow equation method has by now found
many interesting applications in different fields of condensed matter physics.
Independently, G�lazek and Wilson developed similar ideas in the context of
high-energy physics, the so-called similarity renormalization scheme [3, 4].
Essentially, both approaches are analytical methods that generalize scaling
ideas in the sense that they generate a renormalized perturbative expansion.
However, different from conventional scaling approaches one does not focus
solely on the low-energy physics. Remarkably, these methods also turned out
to be applicable in certain strong-coupling problems, where conventional per-
turbative scaling yields diverging coupling constants.

In this book we will be mainly interested in condensed matter systems and
therefore use the original terminology flow equations introduced by Wegner
in 1994 [2].

1.2 Flow Equations: Basic Ideas

Condensed matter systems are often characterized by very different energy
scales: electronic band widths are typically of the order of a few eV, while
temperatures in experiments can be two or more order of magnitude smaller.
This implies that a theoretical calculation needs to yield reliable results on
an energy scale that is much smaller than the intrinsic energy scales of the
model. In such a situation one needs to do perturbation theory with respect to
large energy differences first before proceeding to smaller energy differences,
even if a small expansion parameter is present in the model [5].1

Scaling concepts in condensed matter theory embody this principle of en-
ergy scale separation by iteratively reducing an ultraviolet (UV)-cutoff ΛRG

from its initial value down to the experimentally relevant scale. This is
achieved by performing a perturbative calculation with a running coupling
constant that depends on the energy scale.

A schematic view of this procedure is depicted in Fig. 1.1a. The ma-
trix denotes a many-particle Hamiltonian with single-particle energies on

1This situation is similar to atomic physics where one first calculates, e.g., the
fine structure of the spectrum before deriving the hyperfine splittings based on
these eigenstates calculated before.
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Fig. 1.1. Schematic view of different scaling approaches: (a) Conventional scaling
methods successively reduce the high-energy cutoff ΛRG. (b) Flow equations make
the Hamiltonian successively more band-diagonal with an effective band width Λfeq

the diagonal reaching from the lowest energy E = 0 to the UV-cutoff Λ.2

The shaded off-diagonal matrix elements correspond to non-vanishing cou-
plings between these various modes. In the conventional scaling approach,
one then eliminates degrees of freedom with single-particle energies in the
interval [Λ − δΛ,Λ] by, e.g., integrating out these degrees of freedom in a
path integral framework. Thereby one finds a Hamiltonian with a reduced
cutoff ΛRG and modified coupling constants that describes the same physics
in the Hilbert space with the retained degrees of freedom [0, ΛRG], where
ΛRG = Λ − δΛ. The flow of the coupling constants is generated from the
mode elimination and generally only accessible in perturbation theory. This
leads to the scaling equations for the coupling constants upon varying ΛRG.

Let us for example consider a (renormalizable) theory with only one run-
ning dimensionless coupling g(ΛRG) and a single dimensionful parameter
which is the cutoff ΛRG. One then finds the following scaling equation

2This is a highly simplified picture since an interacting many-body Hamiltonian
cannot in general be represented as a simple matrix. However, we will see later on
that the lessons learned from this picture apply for the general case as well.
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dg(ΛRG)
d lnΛRG

= β (g(ΛRG)) , (1.1)

with a β-function that is usually determined in an expansion in the running
coupling constant. The differential with respect to the logarithm on the left
hand side of (1.1) appears naturally since the cutoff ΛRG is the only dimen-
sionful parameter.3

The fundamental property of the scaling approach is that the Hamiltoni-
ans H[g(ΛRG), ΛRG] describe the same low-energy physics in the remaining
low-energy Hilbert space when the coupling is varied according to the scaling
equation (1.1). Although the β-function in (1.1) is typically only known per-
turbatively up to a certain power in g, the iterative procedure embodied by
the differential scaling equation allows one to recover nonperturbative energy
scales proportional to fractional powers of the coupling constant gα with α
not an integer, or energy scales behaving like exp(−1/g). Such non-analytic
behavior in the coupling constant around the expansion point g = 0 renders
naive perturbation theory for such energy scales in powers of g impossible.4 A
pragmatic way of thinking about scaling concepts is that they provide a tool
to reorganize perturbation theory into a better-behaved convergent expan-
sion by doing a perturbation expansion for the β-function instead of directly
for the physical observable. Also, by analyzing the possible low-energy fixed
points of the scaling flow one can identify universality classes and universal
properties of such microscopic models. Here “universal” refers to the obser-
vation that only certain fixed points of the scaling flow are possible with
properties that are largely independent from the details of the original bare
interactions: Universality classes are typically determined by symmetries and
dimensionality. The reader is referred to the extensive literature on this sub-
ject for more information about these beautiful concepts that have played a
major role in modern condensed matter theory and beyond (see, for example,
[1]).

The flow equation method depicted in Fig. 1.1b embodies the same prin-
ciple of energy scale separation as the conventional scaling approach. How-
ever, the basic idea of the flow equation method is to retain the full Hilbert
space. The Hamiltonian is made successively more energy-diagonal, that is
band-diagonal in Fig. 1.1b. Another way of expressing this is to say that we
iteratively reduce the energy-diagonality parameter Λfeq of the Hamiltonian.
Different from conventional scaling one does not lower some absolute UV-
cutoff ΛRG, but rather reduces the “cutoff” Λfeq of the energy transfer of
interaction matrix elements.

From the point of view of low-energy physics close to energy E = 0, we
can consider both methods as effectively equivalent with Λfeq ∝ ΛRG. One

3 Furthermore, renormalizability ensures that the right hand side of (1.1) only
depends on the coupling constant.

4 A famous example is the Kondo temperature which behaves like exp(−1/ρF J),
where J > 0 is the antiferromagnetic exchange coupling.
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can see in Fig. 1.1b that excitations to high energies E � Λfeq are suppressed
by higher powers of the running coupling constant (which is as usual assumed
to be small) in the flow equation procedure. In this way, the flow equation
framework is a generalization of the conventional scaling approach with the
additional feature of retaining the full Hilbert space. As we will see below, the
price that we have to pay for this is a more complex set of scaling equations.

The benefit of this new approach is obviously that we keep information
on all energy scales of our system. This is important in situations where we
are interested in

– correlation functions on all energy scales
– systems that contain competing energy scales
– non-equilibrium models.

We will discuss examples for all these applications later on in this book.
It should already be mentioned that in particular the analysis of non-
equilibrium problems has recently emerged as a very interesting and promis-
ing direction for the flow equation approach. Non-equilibrium, either by
preparing a non-equilibrium initial state or by continuously supplying the
system with energy, is characterized by many energy scales that contribute
to the low-temperature behavior. Therefore conventional scaling methods are
problematic in such situations since one “loses” degrees of freedom during the
scaling procedure. We will discuss examples for such applications in Sect. 5.2
and Sect. 5.3.

Our basic goal of implementing a scaling flow of the Hamiltonian while re-
taining the full Hilbert space effectively dictates the choice of the method for
generating the Hamiltonians H(Λfeq). Clearly, the conventional elimination
of degrees of freedom in a path integral framework is impossible. Since we
want the spectrum of the flowing Hamiltonian to remain unchanged, we are
naturally led to look for unitary transformations that connect the Hamiltoni-
ans H(Λfeq) in Fig. 1.1b. And since we need to respect energy scale separation
to create a stable expansion, these transformations will be infinitesimal uni-
tary transformations. During the early stages of the flow (for large Λfeq) we
eliminate the off-diagonal matrix elements in Fig. 1.1b that couple modes
with large energy differences, while during later stages of the flow we start
eliminating couplings between more energy-degenerate states.

Any one-parameter family of unitarily equivalent Hamiltonians H(B) can
be generated by the solution of the differential equation (flow equation)

dH(B)
dB

= [η(B),H(B)] (1.2)

with an antihermitean generator η(B)

η(B) = −η†(B) . (1.3)

All these Hamiltonians H(B) are unitarily equivalent to the initial Hamil-
tonian H(B = 0) if one can solve (1.2) exactly. However, an exact solution
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of (1.2) is generally not possible for generic many-body problems. Therefore
we want to create a systematic expansion where our Hamiltonians H(B) are
approximately unitarily equivalent to H(B = 0) with an error that can be
reduced by going to higher orders in the expansion. A stable way to create
such a systematic expansion is by using energy scale separation as our guide-
line as depicted in Fig. 1.1b. The generator η(B) should therefore first (for
small B) eliminate interaction matrix elements that couple modes with large
energy differences, while it decouples more degenerate states for larger values
of the flow parameter B.

This canonical generator that eliminates the interaction matrix elements
while respecting energy scale separation has been constructed by Wegner in
the following manner [2]. We denote by H0 the diagonal part of the Hamil-
tonian and by Hint the interaction part that we want to eliminate. Wegner’s
canonical generator is then defined via another commutator,

η(B) def= [H0(B),Hint(B)] . (1.4)

It immediately follows that η(B) is antihermitean from its construction as
a commutator of two hermitean operators. η(B) has dimension (Energy)2

since the Hamiltonian has dimension (Energy) and, consequently, the flow
parameter B in (1.2) has dimension (Energy)−2. We will later see that the
canonical generator (1.4) creates exactly the desired kind of energy scale
separation in the Hamiltonian flow with the identification

Λfeq = B−1/2 . (1.5)

The interplay of the two equations (1.2) and (1.4) will be of central im-
portance throughout this book and encodes the basic framework of the flow
equation method. Since the Hamiltonian H(B) eventually becomes diagonal
(typically in a certain order of an expansion), the flow equation method is
sometimes also denoted as flow equation diagonalization. However, different
from exact diagonalization methods like the Bethe ansatz it can be used
for generic non-integrable Hamiltonians. The purpose of the flow equation
method is specifically not to compete with exact analytical diagonalization
methods, but rather to be applicable to generic quantum many-body Hamil-
tonians and to diagonalize them in an approximate systematic expansion that
is nonperturbative in nature.

The basic problem of the flow equation method follows from the observa-
tion that the system of equations (1.2) and (1.4) generates higher and higher
order interaction terms if one starts with a generic many-body Hamiltonian
H(B = 0). Therefore one needs to find a systematic truncation scheme that
renders this system of equations solvable. Typically this will be the run-
ning coupling constant like in conventional scaling approaches. However, in
Sect. 5.1 we will discuss examples where the expansion parameter of the
flow equation method is actually not the running coupling constant, but a
parameter that remains finite even in certain strong-coupling models where
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conventional scaling leads to diverging coupling constants. This has opened
the exciting perspective to solve such strong-coupling models like the Kondo
model, which play a central role in modern condensed matter theory, in a
controlled analytical way without relying on integrability. Based on this flow
equation solution one can then also study deviations away from the integrable
point, like couplings to other degrees of freedom.5

Once a many-particle Hamiltonian is diagonalized with the flow equation
method, the next step is to discuss expectation values of observables and
correlation functions. Since H(B = ∞) is diagonal it generates a very simple
time evolution e−iH(B=∞)t. However, this simple time evolution acts on the
unitarily transformed observables. If we are interested in an observable O,
we need to solve the differential equation

dO(B)
dB

= [η(B), O(B)] (1.6)

with the same generator η(B) that has been employed to diagonalize the
Hamiltonian. The initial condition of (1.6) is O(B = 0) = O. The time
evolution e−iH(B=∞)t then acts on the transformed observable O(B = ∞).
The solution of (1.6) typically leads to transformed operators O(B = ∞)
that have a very complicated structure, while the Hamiltonian H(B = ∞)
has become very simple. Still, the time evolution is straightforward and can
be used to discuss correlation functions on all energy scales as will be explored
later in this book.

From this first presentation of the basic ideas of the flow equation method,
we will now proceed to a systematic and more mathematical discussion in the
subsequent chapters.

1.3 Outline and Scope of this Book

The main purpose of this book is to give the reader a good working knowledge
of the flow equation method, so that it can be applied successfully to one’s
own problems. We will first discuss the fundamental technical aspects of
the flow equation method in Chaps. 2 and 3, and then work out various
applications to important many-body problems in Chap. 4. This core part of
the book should provide a good basis from which the reader can understand
the method with respect to both its advantages and its limitations. Chapter 5
then contains some more recent developments like strong-coupling models and
non-equilibrium problems. Along the way, we will work out in detail many
solutions of model Hamiltonians to illustrate the method. However, since
our focus is to learn how to use the flow equation method, we will be more
interested in the technical aspects of the flow equation method than in the

5An interesting example for this is provided by a model of Ising-coupled Kondo
impurities which exhibits a remarkable quantum phase transition discussed in [6].
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physical motivation behind these model Hamiltonians. For the latter we refer
the reader to textbooks on condensed matter theory.

Chapter 2 contains the basic framework of the flow equation method as
a tool to diagonalize many-body Hamiltonians and to derive flow equations
with respect to the energy-diagonality parameter Λfeq in Fig. 1.1b. These
ideas are illustrated in Sect. 2.1.1, where we work out the flow equation
solution of the potential scattering model very pedagogically and in all detail.
While this model is trivial from a many-body point of view, its solution is
an ideal stepping stone for the more complex problems encountered later on
and highly recommended for detailed study.

Chapter 3 then deals with the transformation of observables under the
unitary flow of the method. This is of central importance for practical appli-
cations of the flow equation method. It also shows one of its key advantages
as compared to other scaling methods, namely the possibility to evaluate
physical quantities on all energy scales in one unified framework. However,
the transformation of observables is frequently the most confusing part of this
method for readers familiar with conventional, e.g. diagrammatic, many-body
techniques. The reason is that observables often change their form completely
under the unitary flow. This somehow unfamiliar concept turns out to be a
key point of the flow equation method. We illustrate this transformation of
observables with a simple example (the resonant level model) in Sect. 3.3.2.
Again this simple example is an ideal stepping stone before studying the more
complex problems later on and recommended for detailed study.

Chapter 4 contains the application of the flow equation method to various
interacting many-body problems that exhibit the complexity of generic inter-
acting many-body Hamiltonians. We analyze the Kondo model in Sect. 4.2,
where its flow equation solution is worked out in pedagogical detail in an
expansion in the running coupling constant to third order. As an example
of a bosonic model, we then study the spin–boson model in Sect. 4.3. This
also helps us to better understand how dissipative effects emerge in a purely
unitary Hamiltonian framework like the flow equation method.

Fermi liquid theory is the cornerstone of the modern theoretical under-
standing of interacting electron systems. In Sect. 4.4 we will work out the
connection between it and the flow equation approach. In fact, the canonical
application of the flow equation approach leads to Fermi liquid theory and
can serve as one of its microscopic foundations. In particular, we will see how
Landau’s quasiparticles with a finite lifetime are related to the transforma-
tion of the fermionic creation and annihilation operators under this unitary
flow.

Section 4.5.1 discusses a somehow different application of flow equations,
namely the derivation of effective Hamiltonians. We re-analyze the famous
Fröhlich unitary transformation [7] from the point of view of the flow equation
method, and find a remarkably different result as first pointed out by Lenz
and Wegner [8]. We will see how this is related to the fact that the flow
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equation effective electron-electron interaction shows retardation effects in a
Hamiltonian framework, which are very important for obtaining the correct
superconducting transition temperature for many materials.

In Chap. 5 we then look at two aspects of the flow equation method
that seem particularly promising for future research, namely strong-coupling
problems in Sect. 5.1 and non-equilibrium problems in Sect. 5.2 and Sect. 5.3.
For such problems traditional scaling methods face severe limitations, some
of which can be overcome with the flow equation approach.

In Sect. 5.1 we investigate the sine–Gordon model. The sine–Gordon
model is a one-dimensional strong-coupling model of paradigmatic impor-
tance in many low-dimensional quantum systems. In its strong-coupling phase
the conventional scaling approach eventually breaks down due to a diverg-
ing running coupling constant. Using flow equations one can identify an
expansion parameter that is different from the running coupling constant,
and thereby generate a systematic controlled expansion even in the strong-
coupling phase. This allows one to study the full crossover from weak-coupling
to strong-coupling physics in this model.

In Sect. 5.2 we then look at stationary non-equilibrium problems, here
specifically the Kondo model with an applied voltage bias. The current-
carrying steady state of this system is characterized by many energy scales
that contribute to the low-temperature behavior. The fact that the flow equa-
tion method retains all degrees of freedom in the Hilbert space (as opposed to
conventional scaling approaches) will turn out to be very important in such
non-equilibrium models. A different application of the flow equation method
to non-equilibrium problems is then discussed in Sect. 5.3, namely the real
time evolution of a quantum system that is not prepared in its ground state.
Again it is of key importance to retain the full Hilbert space and not only
low-lying excitations close to the equilibrium ground state.

Section 5.4 concludes this book with an outlook into the future perspec-
tives of the flow equation method and open questions.
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2 Transformation of the Hamiltonian

In this chapter we set up the basic framework of the flow equation approach
to many-particle systems. We will do this by first clarifying the importance
of energy scale separation in many-particle systems, and then use this as a
guiding principle to develop the flow equation method. The fundamental ideas
of the flow equation approach are summed up in Sect. 2.2.4. As a first example
for the flow equation approach we solve a simple model in Sect. 2.3 and
compare the flow equation solution with the conventional scaling approach.

2.1 Energy Scale Separation

Many of the most intriguing problems in condensed matter physics are char-
acterized by vastly different energy scales: electron band widths or Coulomb
energies are of the order of eV, while we are usually interested in excitations
around the Fermi surface with an energy determined by the temperature.
Even at room temperature these energy scales typically differ by two orders
of magnitude. In a situation like this naive use of perturbation theory can
lead to results that are entirely misleading even for small expansion para-
meters. This makes it necessary to organize perturbation expansions in a
clever way to obtain accurate results. The well-established way to do this
is by combining perturbation theory with scaling arguments. One first per-
forms a perturbation expansion with respect to high-energy excitations, and
then successively moves down in energy until one reaches the energy scale
that one is experimentally or theoretically interested in. The flow equation
method follows the same philosophy. However, we will see that it looks at en-
ergy differences (more precisely, at the energy transfer of interaction matrix
elements) and not at absolute excitation energies above some ground state.

In this chapter, we introduce and discuss two important models that ex-
emplify this observation of the breakdown of naive perturbation theory and
the need to reorganize it using scaling arguments. The first model is the po-
tential scattering model, which describes a potential scatterer in an electron
gas. This leads to a quadratic Hamiltonian that can be solved exactly. How-
ever, even in this very simple model perturbation theory needs to be reorga-
nized using scaling methods. In interacting (that is non-quadratic) problems

Stefan Kehrein: The Flow Equation Approach to Many-Body Problems
STMP 217, 11–41 (2006)
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this will generally be the only feasible procedure available for an analytical
solution.

The potential scattering model allows us to study these tools in a con-
trolled environment where everything can be checked explicitly and exactly.
We will then revisit this model again in Sect. 2.3 and solve it using the flow
equation method. A thorough understanding of the various approaches to
this simple model is extremely helpful for studying more complex models. In
fact, we will later see that we can even study strong-coupling behavior in this
model.

A more challenging strong-coupling model is the Kondo model that we
discuss afterwards. The Kondo model contains the full complexity of an in-
teracting many-body problem and has become of paradigmatic importance
in correlated electron physics. We will make the same observations regard-
ing perturbation theory as in the potential scattering model. In Sect. 4.2 we
will revisit the Kondo model and analyze it using the flow equation method.
Understanding the various approaches to the Kondo model serves as a good
basis for applying the flow equation approach to other problems in modern
condensed matter theory.

2.1.1 Potential Scattering Model

One realization of the potential scattering model is a gas of spinless electrons
interacting with an impurity potential V (x). The Hamiltonian of this system
is

H =
∑

p

εpc†pcp +
∫

dx V (x) c†(x)c(x) . (2.1)

For the scattering potential we use a δ-function of strength g,

V (x) = g δ(x) . (2.2)

For spherical symmetry the Hamiltonian is effectively one-dimensional in
terms of s-waves around the origin. The corresponding electron creation and
annihilation operators are denoted by ck and c†k with the fermionic anticom-
mutation relation {ck, c†k′} = δkk′ . We discretize the system using N band
states and the Hamiltonian takes the form

H =
∑

k

εkc†kck +
g

N

∑

k,k′

c†k′ck . (2.3)

We are interested in the thermodynamic limit N → ∞ with the density of
states

ρ(ε) def=
∑

k

δ(ε − εk) (2.4)

determined by the original problem (2.1). For simplicity we will use a constant
density of states in a band of energy width D:
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ρ(ε) =
{

1/D for 0 < ε < D
0 otherwise. (2.5)

This density of states mimics the density of states of a two-dimensional tight-
binding square lattice, which also exhibits a discontinuity of ρ(ε) at the band
edge. This discontinuity turns out to be responsible for the nonperturbative
behavior in the coupling constant g that we will find below.

Exact solution

For reference we first work out the exact solution for the spectrum of (2.3).
This is an easy problem for this quadratic Hamiltonian. Of course, for in-
teracting non-quadratic problems we will generally have to resort to pertur-
bation theory. The Hamiltonian (2.3) can be written as an N × N matrix
with

H = H0 + Hint (2.6)

and the diagonal part

H0 =





ε1 0 . . . . . . . . . 0
0 ε2 0 . . . . . . 0
0 0 ε3 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 . . . . . . . . . εN




, (2.7)

where εi = (i − 1)∆ε , ∆ε = D/(N − 1). The interaction part is given by

Hint =
g

N





1 1 1 . . . . . . 1
1 1 1 . . . . . . 1
1 1 1 . . . . . . 1

. . . . . . . . . . . . . . . . . .
1 1 1 . . . . . . 1




. (2.8)

For an eigenvector v = (v1, . . . , vN ) with eigenvalue E we can write

H v = E v (2.9)

⇒ ∀i E vi = εi vi +
g

N

∑

j

vj

⇒ vi =
g

E − εi

1
N

∑

j

vj . (2.10)

Summing the left hand side of this equation over i allows us to eliminate the
vi’s, and yields the following condition for the eigenvalue E:

1
N

N∑

i=1

1

E − εi

=
1
g

. (2.11)
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Fig. 2.1. Left hand side of (2.12). The circles denote solutions for a repulsive
potential with g > 0 and the squares show solutions for an attractive potential
with g < 0 (always N = 100)

The summation over i can be performed in closed form and leads to ψ-
functions,

ψ

(
− E

∆ε

)
− ψ

(
− E

∆ε
+ N

)
=

1
ρ g

. (2.12)

We will focus our attention on energies much smaller than the band-
width E � D and we are interested in the thermodynamic limit N → ∞. A
graphical solution can be obtained from plotting the left hand side of (2.12),
compare Fig. 2.1. It is convenient to express each eigenvalue Ej as a shift
of the corresponding diagonal element of H0: Ej = εj + ∆εj . The expansion
of the ψ-functions for large N and for a fixed eigenenergy E > 0 (i.e., for
j → ∞ but j/N fixed) yields

D

N ∆εj

+ ln j − lnN + O(N0) =
1
ρg

, (2.13)

or equivalently

∆εj =
1
N

g

1 + ρg ln(D/εj)
. (2.14)

In the above limit this relation holds except for the eigenvalue E1 < 0 in the
case of attractive potential scattering g < 0. From Fig. 2.1 it is clear that
in this case the ψ(x)-function in (2.12) has to be expanded for large positive
arguments x in the limit N → ∞. This leads to the following relation instead
of (2.13):

ln

(
−∆ε1 N

D

)
− ln N + O(N0) =

1
ρg

. (2.15)
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The lowest lying eigenvalue is therefore given by

E1 = ∆ε1 = −D exp
(

1
ρg

)
. (2.16)

This can be a very small energy scale for weakly attractive potentials
|ρg| � 1, g < 0. The corresponding eigenstate is a localized state that forms
below the continuum of band states. Its energy shift is of order N0 in the
thermodynamic limit N → ∞ unlike the other energy shifts in (2.14). We
will return to this intriguing situation for attractive potentials later on in
more detail when we discuss the flow equation solution of this model.

For the rest of this chapter we focus on the repulsive case g > 0, where we
can use (2.14) and all band energies are shifted by an impurity contribution
proportional to 1/N . We will always assume a small coupling, |ρg| � 1, so
that band edge effects are unimportant. From (2.14) we can deduce that all
band energies are shifted to higher energies with a shift

– that is determined by the coupling constant g at large energies (i.e., en-
ergies not much smaller than the bandwidth) and

– that vanishes as 1/ ln(D/ε) for small energies.

These energy shifts determine (among other quantities) the impurity contri-
bution ∆Eimp to the total energy of the system at zero temperature. For a
conduction band filled with electrons up to the chemical potential µ we find

∆Eimp =
∑

εk<µ

∆εk

= ρ

∫ µ

0

dε
g

1 + ρg ln(D/ε)
. (2.17)

For small filling µ � D exp(−1/ρg) this gives

∆Eimp = µ
1

ln(D/µ)
, (2.18)

while for µ � D exp(−1/ρg) one finds

∆Eimp = µρ g . (2.19)

Perturbation Theory

For a general many-body Hamiltonian we usually have to resort to perturba-
tion expansions to gain analytical insights. Therefore we next perform con-
ventional second perturbation theory for the potential scattering Hamiltonian
(2.3). We will learn some important lessons about perturbation expansions
in general by comparison with the exact result.

Our starting point is the standard perturbative expansion for the eigenen-
ergies in second order:
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E
(2pt)
j = εj + 〈j|Hint|j〉 +

∑

i�=j

〈j|Hint|i〉 〈i|Hint|j〉
εj − εi

. (2.20)

This yields

E
(2pt)
j = εj +

g

N
+

g2

N2

∑

i�=j

1

εj − εi

= εj +
g

N
− ρg2

N
ln

(
D − εj

εj

)
, (2.21)

where we have replaced the summation by an integral (which is possible for
N → ∞). For eigenenergies much smaller than the bandwidth D the energy
shift in second order perturbation theory is therefore given by

∆ε
(2pt)
j = E

(2pt)
j − εj

=
1
N

(
g − ρg2 ln

(
D/εj

))
. (2.22)

This should be compared with the exact expression (2.14). In fact, it is just
the expansion of the exact expression in powers of the coupling constant.

However, this expansion is only possible for |ρ g ln(D/εj)| � 1. For ener-
gies very close to the lower band edge, εj � D exp(−1/|ρg|), the perturbative
results breaks down and even predicts a negative energy shift as opposed to
the correct result. We find a low-energy regime where perturbation theory
breaks down even for a small coupling constant where one would expect to
have a reliable expansion parameter. For example, the second order pertur-
bation theory result for the impurity contribution to the total energy is

∆E
(2pt)
imp = µρ g

(
1 − ρg ln

(
D

µ

))
. (2.23)

We notice that this is quite wrong for small fillings µ � D exp(−1/|ρg|) by
comparison with the exact result (2.18).

From the exact expression (2.14) we can also deduce that going to higher
powers in the perturbative expansion in the coupling constant cannot cure
this problem. In fact, this produces even more uncontrolled terms in the
low-filling limit. Notice that these observations hold for both repulsive and
attractive potential scattering.

Scaling Theory

We have seen that perturbation theory can break down even for a simple
quadratic Hamiltonian with a small expansion parameter. The conventional
approach to overcome this problem is to reorganize the perturbation expan-
sion using scaling theory. The fundamental idea is to first treat the effect of



2.1 Energy Scale Separation 17

high-lying states on the low-energy physics, and then to successively move
to lower and lower energies. We will see that this principle of energy scale
separation leads to a more stable expansion.

There are various ways to accomplish this goal using diagrammatic meth-
ods, path integral methods, etc. We refer the reader to the extensive literature
on this subject (see, e.g., [1]). We will here use a method based on construct-
ing low-energy effective Hamiltonians in order to focus our discussion on the
essential points.1 The basic idea is to split up the Hilbert space H of our
system into two parts by using projection operators P and Q, P + Q = 1.
HP = PHP denotes a low-energy Hilbert space and HQ = QHQ is the
complementary high-energy Hilbert space. Let |Ψ〉 be an eigenstate of the
Hamiltonian:

H |Ψ〉 = E |Ψ〉 . (2.24)

We can split up |Ψ〉 in a part that lives in HP and one that lives in HQ,

|ΨP 〉 def= P |Ψ〉 , |ΨQ〉 def= Q |Ψ〉 . (2.25)

The eigenvalue condition (2.24) then takes the following form:
(

PHP PHQ
QHP QHQ

) (
|ΨP 〉
|ΨQ〉

)
= E

(
|ΨP 〉
|ΨQ〉

)
. (2.26)

We eliminate the component of the eigenstate in the high-energy Hilbert
space,

|ΨQ〉 =
1

E − QHQ
QHP |ΨP 〉 , (2.27)

and express the eigenvalue equation (2.24) in terms of the low-energy Hilbert
HP space only:

PHP |ΨP 〉 + PHQ
1

E − QHQ
QHP |ΨP 〉 = E |ΨP 〉 . (2.28)

In most applications one is interested in eigenenergies E close to the ground
state energy Egs, which are by definition much smaller than the energies in
the high-energy Hilbert space HQ. In this situation we can approximate the
left hand side of (2.28) by an effective Hamiltonian Heff ,

Heff = PHP + PHQ
1

Egs − QHQ
QHP . (2.29)

The eigenvalue equation (2.24) reduces to an eigenvalue equation for Heff in
the low-energy Hilbert space HP :

1 This is not the best method if one is interested in higher orders of the scal-
ing expansion, but it is a particularly pedagogical approach for working out the
fundamental idea of the scaling approach.
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Heff |ΨP 〉 = E |ΨP 〉 . (2.30)

The basic idea of scaling theory is to repeat this construction of low-energy
effective Hamiltonians by successively eliminating high-energy degrees of free-
dom from the original system. We denote the original high-energy cutoff
with Λ. Scaling theory then generates a sequence of effective Hamiltonians

H −→ Heff(Λ1) −→ Heff(Λ2) −→ . . . −→ Heff(ΛIR) (2.31)

with Λ > Λ1 > Λ2 > . . . > ΛIR. Here ΛIR is the low-energy scale (infrared
scale) that we are interested in.

In practice, the sequence (2.31) is constructed by infinitesimal steps with
each step based on (2.29). Typically, the construction of the low-energy ef-
fective Hamiltonians needs to be done perturbatively in order to keep this
sequence tractable. Still, this provides a reorganization of the perturbation
expansion that respects energy scale separation and turns out to be much
more stable than naive perturbation theory.

As an explicit example we now look at the potential scattering Hamil-
tonian (2.3). Let HQ consist of band states close to the upper band edge
with energies ε ∈ [D − δD,D], δD � D. The effective Hamiltonian with the
reduced band width D − δD then takes the following form

Heff(D − δD) =
∑

k:εk<D−δD

εkc†kck +
g

N

∑

k,k′:εk,ε
k′<D−δD

c†kck′ (2.32)

+
∑

k,k′:εk,ε
k′<D−δD

∑

q:εq>D−δD

c†k′
g

N

1

−εq

g

N
ck + O(g3) .

We can rewrite this in terms of a potential scattering Hamiltonian with a
reduced band width and a different scattering strength:

Hpotscat(Deff , geff) =
∑

k:εk<Deff

εkc†kck +
geff

N

∑

k,k′:εk,ε
k′<Deff

c†kck′ . (2.33)

Here the new coupling constant is given by

geff = g − g2

N

∑

q:εq>D−δD

1

εq

+ O(g3)

= g − ρg2 δD

Deff
+ O(g3) . (2.34)

In this way we have constructed a sequence of effective Hamiltonians (2.33)
that describe the same low-energy physics as the original problem if the
effective scattering strength obeys the following scaling equation derived from
(2.34):
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dgeff

dDeff
=

ρ g2
eff

Deff
(2.35)

or equivalently
dgeff

d ln Deff
= ρ g2

eff . (2.36)

Notice that we have neglected all higher order terms in the coupling con-
stant. This scaling approach with the running coupling constant geff(Deff) is
therefore a resummation of second order perturbation theory.

Equation (2.36) can be solved easily with the initial condition geff(D) = g:

geff(Deff) =
g

1 + ρg ln(D/Deff)
. (2.37)

The scattering strength becomes effectively weaker close to the lower band
edge for a repulsive potential g > 0. For attractive scattering, however, the
modulus of the running coupling constant grows and geff eventually diverges.
This signals the formation of the bound state discussed before in the exact
solution. We return to this issue later and for now focus on the repulsive case.

We now work out the shift of the eigenenergies on an energy scale εj using
(2.20):

∆εj = 〈j |Hint(Deff = εj) | j〉 + O(g2
eff) , (2.38)

where Hint(Deff = εj) is the interaction part of the effective Hamiltonian
scaled to the energy scale εj . This gives

∆εj =
1
N

g

1 + ρg ln(D/εj)
+ O(g2

eff) (2.39)

with geff = g/(1 + ρg ln(D/εj)). This is in perfect agreement with the exact
result (2.14). From the exact result we even know that there are no higher or-
der terms on the right hand side of (2.39). However, this is a specific property
of the potential scattering model and does not hold generally.

However, what is generally true is that scaling theory allows us to resum
perturbation theory in such a way that we recover the correct behavior also at
low energies. Figure 2.2 shows the impurity contribution to the total energy
calculated with these various approaches and demonstrates the importance
of energy scale separation embodied in the scaling approach.

2.1.2 Kondo Model

The potential scattering model is described by a quadratic Hamiltonian and
can be solved exactly with elementary methods. We next introduce the Kondo
model, which is a genuine interacting many-body problem of paradigmatic
importance for strongly correlated electron systems. While there is an exact
solution for its thermodynamic properties based on the Bethe ansatz [2, 3],
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Fig. 2.2. Impurity contribution to the total energy ∆Eimp for a repulsive potential
scattering model (here ρ g = 0.2) as a function of the chemical potential µ. The full
line depicts the exact/scaling theory result (2.18) and (2.39), while the dashed line
shows the result in unrenormalized second order perturbation theory (2.23)

this solution relies on integrability. It cannot be generalized to an arbitrary
conduction band density of states or to the evaluation of correlation functions
beyond the low-energy limit, etc.2

The Kondo model is similar to the potential scattering model (2.3) in that
it describes potential scattering of electrons. However, the potential scattering
is generated by a quantum mechanical spin-1/2 degree of freedom S that
obeys its own dynamics. The Kondo Hamiltonian has the form

H =
∑

k,α

εk c†kαckα + J
1
2

S ·
∑

k,k′,α,β

c†k′α σαβ ckβ , (2.40)

where J is an antiferromagnetic exchange coupling, J > 0. In correlated
electron systems one thinks of S as describing the spin of an electron in a
strongly correlated singly occupied orbital. The naive twofold ground state
degeneracy of the system is screened by many-particle processes that ef-
fectively screen the impurity spin below an energy scale set by the Kondo
temperature TK ∝ D exp(−1/ρJ). The impurity spin susceptibility becomes
finite in the zero temperature limit and the Fermi sea responds to the for-
mation of this screened Kondo singlet with an increased density of states at
the Fermi level. This increased density of states in turn leads to an increased
impurity contribution to the specific heat. The Kondo problem has triggered

2Especially the development of dynamical mean field theory for strongly cor-
related electron systems [5, 4] has led to renewed interest in reliable analytical
and numerical methods that can solve the Kondo model for an arbitrary (in fact,
self-consistently determined) conduction band density of states.
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many developments in modern condensed matter theory and will be a use-
ful test case for the flow equation method later on. For more details about
the Kondo problem the reader should consult the extensive literature on this
subject, e.g. [6].

We next analyze the Kondo model using scaling methods in the spirit of
(2.31). We assume that the conduction band is symmetric around the Fermi
surface εF = 0 with band width 2D: εk ∈ [−D,D]. The projection opera-
tor Q is defined as projecting on states with energies |εq| ∈ [D − δD,D].
Equation (2.29) then yields the following contribution to the low-energy in-
teraction:

PHQ
1

−QHQ
QHP (2.41)

=
J2

4

∑

k′,k:εk,ε
k′∈HP

∑

q:εq∈HQ

(
c†k′α S · σαβ cqγ

1

−εq

c†qγ S · σγβ ckβ

+c†qγ S · σγβ ckβ

1

−εq

c†k′α S · σαγ cqγ

)
.

We use the standard relation for the spin-1/2 SU(2)-algebra,

Si Sj =
1
4

δij +
i
2

∑

k

εijk Sk . (2.42)

The occupation numbers are given by

n(q) def= 〈FS|c†qβ cqβ |FS〉 , (2.43)

where |FS〉 denotes the non-interacting Fermi sea (no summation over β is
implied in (2.43)). The right hand side of (2.41) can then be simplified to the
following contribution to the interaction term in HP :

J2

4

∑

k′,k:εk,ε
k′∈HP

∑

q:εq∈HQ

1

εq

(
(1 − 2n(q)) c†k′α S · σαβ ckβ

)
. (2.44)

We have ignored an uninteresting constant that contributes to the ground
state energy. The scaling equation for the spin-spin interaction then reads

dJ

dD
= −ρJ2

2D

(
1 − 2n(D) − (1 − 2n(−D))

)
(2.45)

or
dJ

d ln D
= ρJ2

(
n(D) − n(−D)

)
. (2.46)

At zero temperature the occupation number is given by n(ε) = Θ(−ε) and
(2.46) takes the same structure as the scaling equation for the potential scat-
tering model (2.36) except for a minus sign:
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dJ

d lnD
= −ρJ2 . (2.47)

Since the spin-spin coupling is generally antiferromagnetic, J > 0, the solu-
tion is

Jeff(Deff) =
J

1 − ρJ ln(D/Deff)
(2.48)

or
ρJeff(Deff) =

1
ln(Deff/TK)

. (2.49)

Here we have introduced the Kondo temperature

TK
def= D exp

(
− 1

ρJ

)
. (2.50)

The scaling approach breaks down when the effective band width reaches
the Kondo temperature since then the expansion parameter ρJeff diverges.
The Kondo model therefore exhibits strong-coupling behavior similar to the
attractive potential scattering model.3

Still, the scaling approach provides a useful tool to resum perturbation
theory since it identifies the low-energy scale TK of the Kondo model. Screen-
ing of the magnetic impurity moment sets in for temperatures below TK . It
is clearly not possible to identify TK from perturbation theory even for small
coupling constants J since (2.50) does not have a convergent Taylor expansion
around ρJ = 0.

2.2 Flow Equation Approach

2.2.1 Motivation

The flow equation approach is a new way to implement the important prin-
ciple of energy scale separation discussed above. The flow equation approach
goes back to publications by G�lazek and Wilson [7, 8] and Wegner [9] in
1993-94, who have independently proposed this scheme. G�lazek and Wilson
suggested it in the context of high-energy physics under the name similarity
renormalization scheme, while Wegner developed it in the context of con-
densed matter theory under the name flow equations. Since we are interested
in solid state systems in this book, we will generally follow Wegner’s notation,
see also [10, 11, 12, 13] For further information on the similarity renormal-
ization scheme the reader can consult [14, 15, 16].

3This similarity is not accidental. Ultimately, in both the Kondo model and the
potential scattering model the strong-coupling behavior is due to a discontinuity:
the zero temperature discontinuity of the occupation number n(ε) at the Fermi level
in the Kondo model, or the discontinuous band density of states at the lower band
edge in the potential scattering model.
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The fundamental difference between flow equations and the conventional
scaling approach is summed up in Fig. 1.1. Instead of eliminating highly
excited states with an energy |E| ∈ [ΛRG − δΛRG, ΛRG], the flow equation
approach eliminates matrix elements that couple states an energy difference
|∆E| ∈ [Λfeq − δΛfeq, Λfeq]. From the point of view of low-energy physics
both approaches look similar once Λfeq, ΛRG � D: an excitation to a higher
energy � Λfeq in the flow equation approach requires multiple interaction
processes with a coupling constant that we have assumed to be small. For
low-energy excitations above the ground state both methods therefore yield
the same scaling flow with the identification ΛRG = Λfeq. In this sense the flow
equation method contains the conventional scaling approach as a limiting case.
However, in the flow equation approach the Hilbert space remains unchanged
so that we can also get information about, for example, correlation functions
at higher energies.

Since the original proposal in 1994, various other applications of the flow
equation approach have been worked out, for example in non-equilibrium
models where one cannot focus on the ground state in the first place. We
will mention both the similarities and the differences of the flow equation
approach as compared to the conventional scaling approach as we discuss
various models later on. This should allow the reader to choose the suitable
method for a given problem that one is interested in.

2.2.2 Infinitesimal Unitary Transformations

From Fig. 1.1 it is obvious that we need to develop new tools to achieve the
flow Λfeq → Λfeq − δΛfeq. Elimination of a part of the Hilbert space is here
clearly not the appropriate procedure. Since we require our Hamiltonians to
be unitarily equivalent under the flow, we are led to consider infinitesimal uni-
tary transformations that eliminate interaction matrix elements that couple
states with an energy transfer |∆E| ∈ [Λfeq − δΛfeq, Λfeq]. Let us for example
think of a diagonal Hamiltonian

H0 =
∑

n

εn c†ncn (2.51)

and a specific (hermitean) interaction matrix element M that we want to
eliminate from the total interaction term Hint:

M = g (c†m′
1
c†m′

2
cm1

cm2
+ h.c.) . (2.52)

We assume that all interaction terms are proportional to a small coupling
constant g. Then we construct a new Hamiltonian H̃ via a unitary transfor-
mation U (U−1 = U†),

H̃ = U H U† , (2.53)

where U = eη with an antihermitean generator η. In our case we choose
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η =
g

εm′
1
+ εm′

2
− εm1 − εm2

(c†m′
1
c†m′

2
cm1

cm2
− h.c.) (2.54)

and find

H̃ = eη (H0 + Hint)e−η (2.55)

= H0 + Hint + [η,H0 + Hint] +
1
2

[η, [η,H0 + Hint]] + higher orders

= H0 + Hint − M + [η,Hint] +
1
2

[η, [η,H0 + Hint]] + higher orders

= H0 + (Hint − M) + O(g2) . (2.56)

We have therefore eliminated the interaction term M to first order in the
coupling constant from the total interaction term.

We now want to repeat this procedure iteratively by looking at smaller
and smaller energy differences ∆E = εm′

1
+ εm′

2
− εm1

− εm2
. A convenient

way to do this for general interaction terms has been suggested by Wegner
[9]. We label the one-parameter family of unitarily equivalent Hamiltonians
with some flow parameter B 4 and consider the differential equation

dH(B)
dB

= [η(B),H(B)] , (2.57)

where η(B) = −η†(B) is an antihermitean generator.
Let us first of all verify that the solution of (2.57) generates Hamiltonians

H(B) that are unitarily equivalent to the initial Hamiltonian H(B = 0). We
claim that the solution H(B) of (2.57) is given by

H(B) = U(B)H(B = 0)U†(B) , (2.58)

where U(B) is defined as

U(B) = TB exp

(∫ B

0

dB′ η(B′)

)
(2.59)

= 1 +
∞∑

n=1

1
n!

∫ B

0

dB1 . . . dBn TB{η(B1) . . . η(Bn)} . (2.60)

Here TB{. . .} denotes B-ordering defined in the same way as the usual time
ordering. The generator η(Bi) with the largest Bi is commuted to the left
etc.,

TB{η(B1) . . . η(Bn)} def= η(Bπ(1)) . . . η(Bπ(n)) , (2.61)

4The flow parameter is often also denoted by �. In order to avoid confusion
with the common notation where � is the logarithm of the change in length scale
in conventional scaling equations, we use B instead of � in this book.
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with the permutation π ∈ Sn such that Bπ(1) � Bπ(2) � . . . � Bπ(n). One
can easily check that U(B) is a unitary operator, U(B)U†(B) = 1. Also:

d
dB

(
U(B)H(B = 0)U†(B)

)

=
dU(B)

dB
U†(B)H(B) + H(B)U(B)

dU†(B)
dB

. (2.62)

With our definition (2.59) one finds

dU(B)
dB

U†(B) = η(B)U(B)U†(B) = η(B) , (2.63)

and therefore

d
dB

(
U(B)H(B = 0)U†(B)

)
= [η(B),H(B)] . (2.64)

This shows that H(B) defined by H(B) = U(B)H(B = 0)U†(B) obeys the
differential equation (2.57). The correct initial condition is also fulfilled since
U(B = 0) = 1. Therefore H(B) from (2.58) is the solution of (2.57).

After showing unitary equivalence, we next need to construct a suitable
antihermitean generator η(B) that implements (2.56) in an energy scale sep-
arated way.

2.2.3 Choice of Generator

The choice of the generator η that implements Fig. 1.1 is at the heart of the
flow equation method. For a Hamiltonian that can be split up in a diagonal
and an interaction part

H(B) = H0(B) + Hint(B) , (2.65)

Wegner suggested the following canonical generator5

η(B) def= [H0(B),Hint(B)] . (2.66)

With this choice η(B) is antihermitean as required since it is the commutator
of two hermitean operators. η(B) has dimension (Energy)2 and as a conse-
quence the flow parameter B has the dimension (Energy)−2. Let us see what
this means for a typical interacting fermion model with a kinetic energy given
by

H0(B) =
∑

n

εn(B) c†ncn (2.67)

and a two-particle interaction term
5 Similar ideas called double bracket flow and isospectral flow have independently

been developed in numerical mathematics [17, 18, 19].
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Hint(B) =
∑

m′
1,m′

2,m1,m2

gm′
1m′

2m1m2(B) c†m′
1
c†m′

2
cm1

cm2
. (2.68)

Equation (2.66) yields the canonical generator

η(B) =
∑

m′
1,m′

2,m1,m2

gm′
1m′

2m1m2(B) (εm′
1
(B) + εm′

2
(B) − εm1

(B) − εm2
(B))

× c†m′
1
c†m′

2
cm1

cm2
(2.69)

and this in turn the flow equation (2.57):

dH(B)
dB

= [η(B),H0(B)] + [η(B),Hint(B)]

= −
∑

m′
1,m′

2,m1,m2

gm′
1m′

2m1m2
(B)

(
εm′

1
(B) + εm′

2
(B) − εm1

(B) − εm2
(B)

)2

× c†m′
1
c†m′

2
cm1

cm2
+ O(g2) . (2.70)

One can easily verify that the structure of these equations is generic for all
interaction terms:

– In the generator the interaction coefficient is multiplied by the energy
transfer of the scattering process.

– In the flow equation the interaction coefficient is multiplied by the square
of the energy transfer of the scattering process, and the overall sign is
negative.

Identification of the same interaction terms on the left hand and right hand
side of (2.70) leads to the differential equation

dgm′
1m′

2m1m2

dB
= −

(
εm′

1
(B) + εm′

2
(B) − εm1

(B) − εm2
(B)

)2

gm′
1m′

2m1m2
(B)

+O(g2) . (2.71)

As long as we can neglect the coupling constant in comparison with the
energy transfer, we can use the approximate linearized solution:

gm′
1m′

2m1m2
(B) = gm′

1m′
2m1m2

(0) e
−B (ε

m′
1
(B)+ε

m′
2
(B)−εm1

(B)−εm2
(B))2

.

(2.72)
This shows that the canonical choice of the generator (2.66) achieves the de-
sired decoupling of interaction matrix elements in an energy scale separated
way as indicated in Fig. 1.1. For dimensional reasons we have the identifica-
tion

Λfeq = B−1/2 , (2.73)
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i.e. in the initial phase of the flow (for small B) one removes interaction
matrix elements with large energy differences from the interaction term. In
the later stages of the flow (for larger values of the flow parameter B) one
then starts decoupling more and more energetically degenerate states. We
will later see that the interesting scaling properties enter through the term
in O(g2) in (2.71).

Let us go back to the initial split-up of the Hamiltonian in a diagonal
and an interaction part in (2.66). There is of course a certain arbitrariness
in such a separation. From a fundamental point of view we do not know a
priori what the “correct” diagonal part of a Hamiltonian is. However, if one
makes the “wrong” choice, one typically runs into coupling constants and
expansion parameters in the flow equation approach that become large and
therefore uncontrolled during the flow. A flow equation solution based on a
specific choice of the generator becomes justified a posteriori if its expansion
parameter remains small during the flow.

Still, we can identify two conditions that should be met so that the canon-
ical generator has a chance of achieving its goal of making the Hamiltonian
increasingly energy diagonal. These conditions are

Tr (H0(B)Hint(B)) = 0 (2.74)

and

Tr
(

dH0(B)
dB

Hint(B)
)

= 0 . (2.75)

Here the trace is taken over all states in the Hilbert space. Notice that these
conditions are always fulfilled if

– the diagonal part contains all terms which do not change the quantum
numbers of a quantum state: this is e.g. true if H0(B) can be expressed
as a sum over number operators like the kinetic energy (2.67)

– and if the interaction term Hint(B) contains only scattering processes
which change at least one quantum number.

The product of H0(B) and Hint(B) in (2.74) and (2.75) then necessarily
changes at least one quantum number of any state that it acts on. This
implies that the traces (2.74) and (2.75) vanish.

If (2.74) and (2.75) are fulfilled, the canonical generator reduces the in-
teraction part of the Hamiltonian in the sense that

d
dB

Tr(H2
int(B)) � 0 . (2.76)

This is the property that we want to prove now. We first use (2.75) to show

d
dB

Tr
(
H2

int(B)
)

= 2 Tr
(

Hint(B)
dHint(B)

dB

)

= 2 Tr
(

Hint(B)
dH(B)

dB

)
. (2.77)
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Next we employ the definition of the flow equation (2.57) and the possibility
for cyclic exchange under the trace:

d
dB

Tr
(
H2

int(B)
)

= 2 Tr
(
Hint(B) [η(B),H(B)]

)

= 2 Tr
(
η(B)

(
H(B)Hint(B) − Hint(B)H(B)

))

(2.78)

We use the definition of the canonical generator (2.66) and the fact that it
can equivalently be expressed as

η(B) = [H(B),Hint(B)] . (2.79)

Therefore (2.78) is equivalent to

d
dB

Tr
(
H2

int(B)
)

= 2 Tr
(
η2(B)

)

= −2 Tr
(
η†(B) η(B)

)

� 0 , (2.80)

since η†(B) η(B) is a positive semi-definite operator. This implies that the
flow makes the Hamiltonian “more diagonal” as long as the generator η(B)
itself does not vanish. However, if this happens H0(B) and Hint(B) commute
and can be diagonalized in a simultaneous eigenbasis. Therefore the canonical
choice of the generator according to Wegner [9] fulfills our requirements of
generating a more and more energy diagonal unitarily equivalent Hamiltonian
as B → ∞.

However, at this point a word of caution is in order. While (2.80) is a
very desirable property, we should remember that in a many-body Hamil-
tonian such traces are typically divergent in the thermodynamic limit. Also
we will generically be forced to use some approximations for the flow of a
many-body Hamiltonian, while (2.80) holds for the exact unitary flow. These
complications non-withstanding, the canonical generator turns out to be a
remarkably good choice with the desired properties in a large number of
many-body problems.

2.2.4 Flow Equations

Let us sum up the main ingredients of the flow equation method that we have
developed so far.

I. The unitary flow of the Hamiltonian is generated by the flow equation

dH(B)
dB

= [η(B),H(B)] , (2.81)
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where H(B = 0) is the initial Hamiltonian and H(B = ∞) is the final
energy-diagonal Hamiltonian. We want to achieve this flow in an energy
scale separated way as indicated in Fig. 1.1 with the identification Λfeq =
B−1/2. η(B) is an antihermitean operator that generates this flow.

II. The canonical generator is defined as the commutator of the diagonal
part with the interaction part of the Hamiltonian:

η(B) def= [H0(B),Hint(B)] . (2.82)

This choice makes the flowing Hamiltonian more energy-diagonal in an
energy scale separated way as can be seen from (2.80).

III. An interaction matrix element g∆E with energy transfer ∆E (as measured
with respect to H0) decays like

g∆E(B) = g∆E(B = 0) e−B(∆E)2 + O(g2) (2.83)

for the canonical choice of the generator. The higher order terms in this
equation will turn out to be responsible for nontrivial scaling properties,
i.e. nontrivial β-functions. The analysis of such higher order terms will
comprise the main part of this book.

Some remarks are in order concerning this general methodology.

1. The main challenge of the flow equation approach lies in the genera-
tion of higher and higher order interaction terms during the flow. This is
apparent from looking at the differential equation (2.81). If the original
interaction contains two-particle interaction terms, that is terms with two
fermion creation and two fermion annihilation operators, then η has the
same structure. The commutator of η with the interaction Hamiltonian
on the right hand side of (2.81) then produces a term with three creation
and three annihilation operators. This makes the generator more compli-
cated and this progression of higher order terms continues indefinitely. In
Chap. 4 we will discuss possibilities to truncate this infinite sequence to
produce a systematic expansion.

2. If our initial Hamiltonian commutes with some symmetry operator S

[H(0), S] = 0 , (2.84)

then the canonical generator also commutes with S.6 Consequently, the
flow preserves this symmetry:

[H(B), S] = 0 ∀B . (2.85)

One can only destroy this symmetry by making an approximation on the
right hand side of (2.81) that does not respect the symmetry.

6 Notice that [H0, S] = 0 holds trivially in all realistic examples.
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3. The canonical choice of the generator (2.82) is particularly well-behaved
as we have seen in the previous chapter. As a general rule I recommend
working with the canonical generator since this choice is very robust. How-
ever, there can be situations where other choices of the generator turn
out to be more convenient in the sense that they simplify the structure of
differential equations during the flow.7 Different choices of the generator
amount to different ways of doing the expansion around the noninteract-
ing model. A particular choice of the generator can be justified a poste-
riori if the resulting expansion has a small expansion parameter during
the flow since we typically have to neglect certain higher orders in our
expansion parameter on the right hand side of (2.81).
The freedom to choose different generators in the flow equation approach
is therefore nothing “uncontrolled” about this approach. It is simply a
reflection of the fact that different expansions are possible. If one can go to
higher orders in these expansions and if these expansions are convergent,
then the resulting observable quantities will be the same. The key trick
is to find an expansion that already encompasses as much as possible
in low orders so that we can actually manage the calculation.8 This is
just another way of saying that our expansion parameter should be small
during the entire flow.
There are specific cases where a different generator than the canonical
generator can be useful. One should, however, always remember the im-
portance of energy scale separation. Energy scale separation is respected
if the coefficient multiplying an interaction term in η vanishes at least
linearly with the energy transfer ∆E of this interaction term.9 We will
generally work with the canonical generator throughout this book since
it robustly generates stable expansions due to the property (2.80), except
for some specific situations like strong-coupling models.

4. One can ask the question whether it is useful to reconstruct the full uni-
tary transformation U(B = ∞) from the infinitesimal steps using (2.59).
As a general rule such an endeavor is both difficult and not helpful. In
many-body problems the generator at different B-values does generally
not commute, [η(B1), η(B2)] �= 0. This makes the evaluation of the B-
ordered exponential in (2.59) difficult. Also, the full unitary transforma-
tion U(B = ∞) completely hides the fact that it can be expressed as such
an B-ordered exponential, and hence that is generated by infinitesimal

7 We will discuss an example for this in Sect. 4.3.
8Notice that the complexity of such calculations typically grows considerably

with every order.
9A generator that does not respect energy scale separation does not automati-

cally make the approach uncontrolled. Energy scale separation is not important in
all interactions as one knows from the many successful applications of conventional
perturbation theory. However, one needs to be extra careful with a generator that
does not respect energy scale separation and make sure that this does not lead to
uncontrolled errors in higher orders.
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steps that respect energy scale separation. It is therefore more natural to
work with the infinitesimal formulation. One can only properly motivate
the unavoidable approximations for a generic many-body problem in this
infinitesimal formulation.

2.3 Example: Potential Scattering Model

As a first example we now discuss the application of the flow equation method
to the potential scattering model (2.3) in full pedagogical detail. In this way
one can gain some first familiarity with the method and see how it works. Of
course, the potential scattering model is trivial from a many-particle point
of view. Still, it is nontrivial from the scaling point of view as we have seen
before. In Chap. 4 we will then discuss applications of the flow equation
method to models that are both non-trivial from the scaling and the many-
particle point of view.

2.3.1 Setting up the Flow Equations

The basic idea of the flow equation approach is to make the interaction in-
creasingly energy-diagonal. The ansatz for the flowing Hamiltonian should
reflect this. For the potential scattering model (2.3) we write

H(B) =
∑

k

(εk + gkk(B)) c†kck +
∑

k,k′:k �=k′

gk′k(B) c†k′ck (2.86)

with the initial condition

gk′k(B = 0) =
g

N
. (2.87)

The appropriate separation of diagonal and interaction part of the Hamil-
tonian is obvious:

H(B) = H0(B) + Hint(B) (2.88)

with

H0(B) =
∑

k

Ek(B) c†kck (2.89)

Hint(B) =
∑

k,k′:k �=k′

gk′k(B) c†k′ck . (2.90)

Here we have introduced the abbreviation Ek(B) def= εk + gkk(B).
Next we construct the canonical generator (2.82). It is worthwhile to

calculate the basic commutators first and then to plug them into the various
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commutators that generate the flow.10 In the potential scattering model we
therefore need to calculate

[c†1′c1, c
†
2′c2] =? . (2.91)

Let us first think of potential scattering for fermions with the basic anticom-
mutation relations

{c1, c
†
1′} = δ1′1 , {c†1′ , c

†
2′} = {c1, c2} = 0 . (2.92)

We use the following expression that holds generally for all operators A, B,
C, D:

[AB,CD]=ABCD − CDAB

=A{B,C}D − C{D,A}B + CA{B,D} − {C,A}BD (2.93)

With this expression it is straightforward to evaluate (2.91):11

[c†1′c1, c
†
2′c2] = δ2′1c

†
1′c2 − δ1′2c

†
2′c1 . (2.94)

Alternatively, one can consider potential scattering of bosonic particles. Then
we have the basic commutation relations:

[c1, c
†
1′ ] = δ1′1 , [c†1′ , c

†
2′ ] = [c1, c2] = 0 . (2.95)

Here we can use the following expression that also holds generally for all
operators A,B,C,D:

[AB,CD] = A[B,C]D − C[D,A]B + CA[B,D] − [C,A]BD . (2.96)

Remarkably, we see by comparison with (2.93) that only the anticommutators
are replaced by commutators. Hence we also find for bosonic particles

[c†1′c1, c
†
2′c2] = δ2′1c

†
1′c2 − δ1′2c

†
2′c1 . (2.97)

Since all commutators in the flow equation solution of the potential scattering
model can be traced back to this expression, our calculation holds for both
the fermionic and the bosonic case.

The canonical generator of the flow equation approach (2.82) is given by

η(B) = [H0(B),Hint(B)]

=
∑

p,p′

ηp′pc
†
p′cp (2.98)

10I highly recommend this procedure especially for more complex many-body
problems since it i) structures the calculation and ii) makes it much easier to identify
mistakes and to trace them back to some basic commutator.

11Sometimes the fact that a commutator bilinear in fermions can be expressed in
terms of basic fermionic anticommutation relation comes as a surprise. I recommend
to take a moment to check (2.93) explicitly.
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with
ηp′p = (Ep′ − Ep) gp′p . (2.99)

Here we have used (2.94). We will usually not explicitly denote the B-
dependence of the parameters in order to keep the expressions shorter. It
is understood that during the flow all couplings depend on B anyway.

Next we need to work out the commutator of η(B) with the Hamil-
tonian H(B) in order to obtain the right hand side of the fundamental flow
equation (2.57). It is convenient to do this in two steps. First we work out
the (generally simple) commutator [η(B),H0(B)], and then the commutator
[η(B),Hint(B)]. We will later see that the evaluation of this second com-
mutator is the key calculation in the flow equation approach for genuine
many-particle models. Again using (2.94) we find

[η(B),H0(B)] =
∑

p,p′

ηp′p(Ep − Ep′) c†p′cp

= −
∑

p,p′

(Ep − Ep′)2 gp′p c†p′cp (2.100)

and

[η(B),Hint(B)] =
∑

p,p′

(
ηp′pgpk c†p′ck − ηp′pgk′p′ c†k′cp

)

=
∑

k,k′,p

(Ek′ + Ek − 2Ep) gk′pgpk c†k′ck . (2.101)

We are now ready to compare the coefficients of the operators on the left and
and the right hand side of the fundamental flow equation

dH

dB
= [η(B),H(B)] . (2.102)

We find
dgk′k

dB
= −(Ek′ − Ek)2 gk′k (2.103)

+
∑

p

(Ek′ + Ek − 2Ep) gk′pgpk .

Very similar structures of differential equations will appear later again and
again for interacting many-particle systems. One can immediately see that
the flow equations achieve the desired diagonalization from the part of (2.103)
that is linear in the coupling constant:

gk′k(B) ∝ gk′k(0) e−B(Ek′−Ek)2 (2.104)

with B ∝ Λ−2
feq (see Fig. 1.1). Also notice that the shift of the single-particle

energies ∆εk calculated in the exact solution (2.14) is given by

∆εk = gkk(B = ∞) , (2.105)

since all other couplings with k′ �= k vanish for B → ∞ according to (2.104).
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2.3.2 Methods of Solution

Equation (2.103) together with the initial condition (2.87) encodes the flow
equation solution of the potential scattering model. We will now go through
three different ways of solving these systems of coupled differential equations
that are characteristic also for interacting many-particle systems:

1. Exact solution based on numerical implementation on a computer.
2. Diagonal parametrization of the running coupling constant.
3. IR-parametrization of the running coupling constant.

The exact solution solves the system of flow equations without further ap-
proximations and is useful when one needs quantitative results. The IR-
parametrization reduces the system of flow equations to a small set of (here
in fact only one) differential equations that can be solved analytically and
allow immediate analytical insights into the low-energy physics. The price
that one pays for this are quantitative (but usually not qualitative) errors as
compared to the exact solution. The diagonal parametrization is somewhere
in between these two methods. It reduces the set of differential equations to
a number that grows linearly with the number of band states.

In a genuine many-particle system one usually starts with working out the
IR-parametrization, and then proceeds to more accurate solution methods.
For pedagogical reasons and in order to assess the accuracy of the various
methods, we will here start in reverse order and look at the behavior of the
exact solution first.

Exact Solution

For the numerical solution of (2.103) one needs to implement these systems
of differential equations on a computer. In practice, a good algorithm is an
adaptive step-size 5th order Runge-Kutta algorithm that can be found in
many compilations of numerical algorithms (see, e.g., [20]). The conduction
band is discretized with N states and for the potential scattering model we
then end up with N2 coupled differential equations. It is fairly easy to solve
systems up to 500 × 500 coupled equations on a standard workstation in a
few hours. Two hints for a successful implementation:

– Consider the differential equation for a coupling constant gk′k(B) for given
k′, k. Once the flow has proceeded to values of B such that B (εk′ −εk)2 �
5, the coupling gk′k(B) has decayed to values that are typically only e−5 ≈
0.007 of its initial value (i.e. less than 1%). It is then quite appropriate to
set gk′k(B) ≡ 0 for larger values of B since the accuracy of the numerical
solution will be limited anyway. This procedure reduces the number of
differential equations during later stages of the flow considerably. It also
ensures that the numerical algorithm finds the appropriate stepsize for
large values of B.
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Fig. 2.3. Flow of the coupling constants gkk′(B) according to (2.103) for a repul-
sive potential scattering model with ρ g = 0.2 and band energies εk ∈ [0, 1]. The
diagrams show the coupling constants for flow parameters B = 0 (upper left), B = 5
(upper right), B = 50 (lower left) and B = 500 (lower right). One can observe how
the banded structure of the flowing Hamiltonian evolves. Only diagonal couplings
(εk = εk′) remain nonzero for B → ∞. Notice that the nonperturbative scaling
aspects are most noticeable at the lower band edge (εk = εk′ = 0)

– Often the interesting low-energy scale is much smaller than the bandwidth
of the system, e.g. like the Kondo temperature TK (2.50) for small cou-
plings. It is then advantageous to use a discretization mesh that becomes
finer at the relevant low-energy scale in order to resolve such energies and
to safe computer time. For example, one possibility is to use some vari-
ant of logarithmic discretization known from numerical renormalization
group (NRG) [21] (e.g., εi−1/εi = Λ with Λ > 1; the low-energy limit is
reached for i → ∞). Of course, one can also create a finer mesh around
some nonzero energy scale if one is interested in it.12

Figure. 2.3 shows the typical flow of the coupling constants for the repulsive
potential scattering model. One finds very similar pictures for interacting
many-body systems, which makes it worthwhile to study the model here in
some detail. One can see that the Hamiltonian H(B) becomes increasingly

12Notice that logarithmic discretization amounts to an approximation in NRG
that is essential to make the method work. On the other hand, in the numerical
implementation of the flow equations a finer mesh is only a numerical trick to make
our solution of the flow equations more efficient: in principle one can and often does
take the limit Λ → 1.
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Fig. 2.4. Flow of the diagonal coupling constants gkk(B) according to (2.103)
for a repulsive potential scattering model with the same parameters as in Fig. 2.3
(ρ g = 0.2, band energies εk ∈ [0, 1]). Notice that the nonperturbative scaling effects
are largest at the lower band edge εk = 0 and eventually drive g00(B) to zero for
B → ∞

energy-diagonal for larger values of B as expected in the flow equation frame-
work. Only the diagonal couplings with εk = εk′ remain nonzero for B → ∞.
The banded structure of the flowing Hamiltonian as opposed to the reduced
size of the Hilbert space in the conventional scaling approach is immedi-
ately apparent, compare Fig. 1.1. In Figs. 2.3 and 2.4 one can also notice the
“renormalization” of the diagonal couplings that reflects the non-perturbative
scaling properties of our model. Obviously, the numerical solution for B = ∞
agrees with the exact solution from Sect. 2.1.1 and the diagonal couplings
gkk(B = ∞) yield the exact shift of the single-particle energy levels accord-
ing to (2.105) and (2.14).

Diagonal Parametrization

Figures 2.3 and 2.4 motivate an approximate parametrization of the N ×
N coupling constants in terms of its N diagonal entries by solving the
linear part of the differential equation (2.103). For easier notation we de-
fine gk(B) def= gkk(B) and define p = k′k as the arithmetic average εp =
(εk′ + εk)/2:

ε
k′k

def=
εk′ + εk

2
. (2.106)

The diagonal parametrization then amounts to the ansatz

gk′k(B) = gk′k(B) e−B(ε
k′−εk)2 . (2.107)
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Equation (2.107) is obviously an approximation, but we will later see that
it compares very favorably with the exact solution. Let us first work out
its implications for the system of flow equations (2.103). We now only have
differential equations for the diagonal couplings:

dgk

dB
= 2

∑

p

(Ek − Ep) (g
kp

)2 e−2B(εk−εp)2 . (2.108)

We can use the observation that the energy levels are only shifted in order 1/N
in the repulsive case as expected for an impurity model. Therefore we can
replace (Ek − Ep) by (εk − εp) in the thermodynamic limit N → ∞.

In order to work out an analytical solution we next use an approximation
where we replace g

kp
by gk in (2.108). This is justified because gk(B) depends

only weakly on k in the energy range where the exponential factor in (2.108)
does not anyway suppress it completely, compare Fig. 2.3. Therefore we can
write

dgk

dB
= 2g2

k N ρ

∫ D

0

dε (εk − ε) e−2B(εk−ε)2 (2.109)

=
ρN g2

k

2B

(
e−2B(εk−D)2 − e−2Bε2k

)
. (2.110)

The behavior of this equation is regular in the limit B → 0: the flow of gk

is effectively negligible for B � D−2. Hence we can replace (2.110) by the
following simpler equation:

dgk

dB
= −ρN g2

k

2B
e−2Bε2k (2.111)

with the initial condition now posed at B = D−2:

gk(B = D−2) =
g

N
. (2.112)

This equation can be integrated easily

1
N

(
1

gk(B)
− 1

gk(D−2)

)
=

ρ

2

∫ B

D−2
dB′ exp(−2B′ε2k)

B′ (2.113)

yielding

gk(B = ∞) =
1
N

g

1 + ρg Ei(1, 2ε2k/D2)/2
. (2.114)

Here the exponential integral Ei(1, x) appears in the denominator. Notice that
its series expansion for small arguments is given by Ei(1, x) = −γ−ln x+O(x),
which makes the result (2.114) agree with the exact result (2.14) in the low-
energy limit εk � D. From (2.114) we see that the B → ∞ limit of the
diagonal elements of the coupling constant gk′k(B) is just the energy scale
dependent running coupling constant.
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IR-Parametrization

The approximation that is closest to the conventional scaling approach is to
focus only on the infrared limit in the flow equations (2.103). We use the
following parametrization

gk′k(B) =
gIR(B)

N
e−B(ε

k′−εk)2 , (2.115)

and derive the scaling equation for gIR(B) by putting it into the flow equation
(2.103) for k′ = k = 0. This gives

dgIR

dB
= −2g2

IR ρ

∫ D

0

dε ε e−2Bε2 (2.116)

leading to
dgIR

dB
= −ρg2

IR

2B
(2.117)

with the initial condition posed at B = D−2:

gIR(B = D−2) =
g

N
. (2.118)

This is exactly the scaling equation derived from a conventional scaling analy-
sis (2.36) with the identification B = D−2

eff . It therefore agrees with the exact
solution.

The observation that a flow equation parametrization like (2.115) that fo-
cuses on the IR-limit reproduces the conventional scaling equation is generic
also for interacting quantum many-body systems. One can understand this
by noticing that the infrared limit of the flow equation Hamiltonian be-
comes equivalent to the conventional scaling Hamiltonian. Although H(Λfeq)
in Fig. 1.1 contains higher energy excitations than H(ΛRG), these can only
be reached through higher-order processes in the coupling constant that is
assumed to be small.

Finally it is worthwhile to observe that we can recover the result of the
diagonal parametrization in the previous section with the relation

gk(B = ∞) = gIR(B = ε−2
k ) , (2.119)

since the flow on the energy scale εk effectively stops at the corresponding
B-scale of the running coupling constant in the infrared limit. However, a
simple relation like (2.119) does not always hold in interacting many-body
systems. It is generally useful to perform an analysis based on the diago-
nal parametrization after getting some first insights based on the infrared
parametrization.13

13 Typical examples where one needs to be careful are models with another
intrinsic energy scale like the Kondo model with a magnetic field or a nontrivial
density of states.
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2.3.3 Strong-Coupling Case

Our analysis has so far focussed on the case of repulsive potential scattering.
As we had noticed in the exact solution in Sect. 2.1.1, for attractive scattering
g < 0 a bound state with energy

EB = −D exp
(

1
ρg

)
(2.120)

forms below the lower band edge. In the scaling approach this bound state is
indicated by the strong-coupling divergence of the running coupling constant
(2.37)

ρ geff(Deff) =
1

ln(Deff/|EB |) . (2.121)

This indicates the breakdown of the scaling approach as an expansion in the
running coupling. It is interesting to see how the flow equation approach fares
in this situation. As a cautionary remark one should mention that while the
weak-coupling observations in the previous section can be carried over rather
generally to interacting many-body systems, the flow equation analysis of the
strong-coupling potential scattering model seems not to be generalizable to
strong-coupling interacting many-body systems. We will later see this explic-
itly for the case of the Kondo model. However, the flow equation analysis of
the attractive potential scattering model provides some interesting insights
into the method.

Our starting point is the exact numerical solution of the flow equations
(2.103). Figure 2.5 shows the behavior of the single-particle energies Ek(B) =
εk + gkk(B) during the flow. As indicated by the analytical solution of the
scaling equation, the couplings gkk(B) at the lower band edge become very
large during the flow. In fact, the shift of the single particle energies Ek at
the lower band edge is no longer of order 1/N . Putting it otherwise: if we
take the thermodynamic limit N → ∞ in the full flow equations (2.103) and
replace the Ek’s by the εk’s, the system of differential equations does not
converge anymore in the limit B → ∞. The strong-coupling behavior of the
scaling equations in the attractive potential scattering model is therefore due
to taking the thermodynamic limit before the B → ∞ scaling limit. .

The full flow equations for finite N , however, reproduce the exact solution
as shown in Fig. 2.5 and show the development of the bound state below the
continuum. Of course, it should be expected that the flow equation approach
always works for a quadratic Hamiltonian if we work with the full system of
differential equations. For an interesting discussion of the scaling flow of this
quadratic Hamiltonian within G�lazek and Wilson’s similarity renormalization
scheme and its relation to asymptotic freedom the reader should also consult
[22]. A fascinating model which is quite similar to the Hamiltonian discussed
here but which exhibits limit–cycle behavior is discussed in [23, 24].



40 2 Transformation of the Hamiltonian

Fig. 2.5. Flow of the single-particle energies Ek(B) for an attractive potential
scattering model with ρ g = −0.25. Here N = 500 equidistant band states are
used (with εk ∈ [0, 1]) in the numerical solution of the flow equations. Notice the
development of the bound state below the lower band edge
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3 Evaluation of Observables

The evaluation of observables in the flow equation framework is the concept
that tends to be most unfamiliar by comparison with traditional many-body
methods. It introduces novel ideas that take some time getting used to, but
this is well worth the effort. In fact, the flow equation approach is particularly
useful for evaluating observables like correlation functions. In this chapter we
introduce the necessary tools, and then use them to discuss two simple models
in Sect. 3.3 in full pedagogical detail.

3.1 Expectation Values

3.1.1 Zero Temperature

We consider a hermitean observable O and are interested in its ground state
(zero temperature) expectation value

〈O〉gs = 〈Ψgs|O|Ψgs〉 . (3.1)

Here |Ψgs〉 is the ground state of the full interacting Hamiltonian H = H0 +
Hint

H |Ψgs〉 = Egs |Ψgs〉 (3.2)

with the ground state energy Egs. How do we proceed to evaluate (3.1) in
the flow equation framework?

In the previous chapter we have learned how to diagonalize the interacting
Hamiltonian. At least in principle we therefore know how to construct the
unitary transformation U(B = ∞) from (2.59) that achieves this goal:

H(B = ∞) = U(B = ∞)H U†(B = ∞) (3.3)

is diagonal. This makes it easy to find the ground state in this transformed
basis. One just needs to construct the eigenstate with the smallest eigenenergy
of H(B = ∞), which is usually a trivial task:

H(B = ∞) |Ψ̃gs〉 = Egs |Ψ̃gs〉 . (3.4)

From this one immediately finds |Ψgs〉 which fulfills (3.2):

Stefan Kehrein: The Flow Equation Approach to Many-Body Problems
STMP 217, 43–61 (2006)
c© Springer-Verlag Berlin Heidelberg 2006
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|Ψgs〉 = U†(B = ∞) |Ψ̃gs〉 . (3.5)

We can rewrite (3.1) in the following way

〈O〉gs = 〈Ψ̃gs|Õ|Ψ̃gs〉 (3.6)

with the transformed observable

Õ
def= U(B = ∞)O U†(B = ∞) . (3.7)

The key challenge lies in the fact that while the ground state wave function
|Ψ̃gs〉 is usually trivial in (3.1), the transformed observable Õ is typically very
complicated. After all we have chosen the unitary transformation U(B = ∞)
such that it diagonalizes the Hamiltonian (3.3) without caring about what it
does with the observable in (3.7).

However, given the structure (3.7) we can rewrite the problem of finding
the transformed observable in a differential form similar to the flow equation
for the Hamiltonian itself:

dO(B)
dB

= [η(B), O(B)] . (3.8)

Here the initial condition O(B = 0) = O is given by the observable in the
original basis. Õ = O(B = ∞) is the transformed operator that we need to
insert in (3.6).

In a many-body problem it can be very difficult to solve (3.8), and we
again have to find reliable approximation and truncation schemes for this
differential equation. This will be discussed later for some important many-
body models in Chap. 4. For now we just assume that this task can be done.
This means that we know how to express Õ as a sum over a usually infinite
number of operators Ta that each contain a specific combination of creation
and annihilation operators:

O(B = ∞) =
∑

a

ta(O)Ta . (3.9)

The coefficients ta(O) in this expansion depend on the observable. We can
choose each Ta such that it consists of a specific combination of creation and
annihilation operators such that

[H(B = ∞), Ta] = Ωa Ta (3.10)

since H(B = ∞) is diagonal. The transformed observable can therefore be
expressed as a sum over operators Ta that act like ladder operators for the di-
agonalized Hamiltonian. For example, in the interacting fermion model (2.68)
one finds the structure

c̃m =
∑

n

tn(m) cn +
∑

n′
1,n1,n2

tn′
1n1n2

(m) c†n′
1
cn1

cn2
+ higher order terms.

(3.11)
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The diagonal Hamiltonian takes the form

H(B = ∞) =
∑

n

En c†n cn (3.12)

and this implies

Ωn(m) = −En

Ωn′
1n1n2(m) = En′

1
− En1 − En2 . (3.13)

The ground state expectation value of O can then be expressed as a sum over
expectation values with respect to the “trivial” state |Ψ̃gs〉,

〈O〉gs =
∑

a

ta(O) 〈Ψ̃gs|Ta|Ψ̃gs〉 , (3.14)

which can usually be performed easily. The key problem in the calculation
lies in finding the expansion (3.9), i.e. in solving the flow equation for the
observable (3.8). Notice that only operators with Ωa = 0 can contribute in
(3.14).

Readers familiar with the evaluation of the asymptotic behavior of corre-
lation functions using Bethe ansatz methods will notice a certain similarity.
There the evaluation of correlation functions can be an even harder task than
the original diagonalization of the Hamiltonian. In particular, in the flow
equation framework we need to solve a differential equation of the type (3.8)
for each observable that we are interested in. It is also already worthwhile
to mention that in realistic models some transformed observables might be
obtained with good accuracy because the solution of their differential equa-
tion (3.8) is easy, while other observables in the same model can pose a much
harder task.

At this point the natural question arises why one does not “simply” focus
on finding the interacting ground state in the original basis, i.e. why one
does not evaluate (3.5) explicitly. However, experience in interacting many-
body problems has taught us that there is no good guiding principle for
the unavoidable approximations in this calculation because of the B-ordered
exponential that defines U(B = ∞).

On the other hand, the truncation to the first few orders in an expansion
like (3.11) often works very well. This is maybe not too surprising considering
the fact that the full interacting ground state in the original basis contains all
the information about this quantum state, while the transformed observables
only extract a limited amount of information about this quantum state. The
expansion of the full interacting ground state in the original basis will there-
fore be a more complicated expression than the corresponding expansion for
a specific observable that we are interested in.
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3.1.2 Nonzero Temperature

In the previous section we have looked at the evaluation of ground state ex-
pectation values in the flow equation framework. These ideas are straightfor-
wardly generalized to the evaluation of thermal expectation values at nonzero
temperature T �= 0,

〈O〉β = Tr(ρ(β)O) . (3.15)

Here the trace is taken over all the states in the Hilbert space. ρ(β) is the
density matrix defined via the Boltzmann weights with respect to the full
interacting Hamiltonian,

ρ(β) =
1

Z(β)
e−βH . (3.16)

β = 1/T is the inverse temperature and Z(β) is the partition function,

Z(β) def= Tr e−βH . (3.17)

Since the trace over all Hilbert space states |n〉 is invariant under cyclic
exchange of the operators, one can insert the unitary transformation U(B =
∞) in the following way:

〈O〉β =
1

Z(β)

∑

n

〈n|U(B = ∞) e−βHOU†(B = ∞)|n〉

=
1

Z(β)

∑

n

〈n|U(B = ∞) e−βHU†(B = ∞)U(B = ∞)O U†(B = ∞)|n〉

=
1

Z̃(β)

∑

n

〈n| e−βH(B=∞) Õ |n〉 . (3.18)

For convenience, the partition function is here also expressed with respect to
the transformed Hamiltonian:

Z(β) = Z̃(β) def=
∑

n

〈n| e−βH(B=∞) |n〉 . (3.19)

Since the trace can be taken over an arbitrary basis in (3.18) and (3.19), it is
most convenient to choose the trivial eigenbasis of the diagonal Hamiltonian
H(B = ∞)

H(B = ∞) |n〉 = En |n〉 , (3.20)

where all states are orthonormal

〈n|m〉 = δnm . (3.21)

In this way we arrive at the finite temperature generalization of (3.14)



3.2 Correlation Functions 47

〈O〉β =
1

Z̃(β)

∑

a

ta(O)
∑

n

e−βEn 〈n|Ta |n〉 (3.22)

with
Z̃(β) =

∑

n

e−βEn . (3.23)

Notice that again only operators with Ωa = 0 can contribute in (3.22).1

3.2 Correlation Functions

3.2.1 Zero Temperature

Next we want to evaluate a zero temperature correlation function of two
observables O1 and O2:

Cgs(t1, t2) = 〈O1(t1)O2(t2)〉gs . (3.24)

Here Oi(ti) are the operators in the Heisenberg picture:

Oi(ti) = eiHti Oi e−iHti . (3.25)

We can use the same trick as before in (3.6) and insert the unitary transfor-
mation as an identity:

Cgs(t1, t2) = 〈Ψ̃gs| eiH(B=∞)t1 Õ1 e−iH(B=∞)(t1−t2) Õ2 e−iH(B=∞)t2 |Ψ̃gs〉
= 〈Ψ̃gs| Õ1 ei(H(B=∞)−Egs)(t2−t1) Õ2 |Ψ̃gs〉 . (3.26)

We employ the expansion (3.9) for the transformed observables that we have
used before and commute Ta2 past H(B = ∞):

Cgs(t1, t2) =
∑

a1,a2

ta1(O1) ta2(O2) 〈Ψ̃gs|Ta1 e−i(H(B=∞)−Egs)(t1−t2) Ta2 |Ψ̃gs〉

=
∑

a1,a2

ta1(O1) ta2(O2) e−iΩa2 (t1−t2) 〈Ψ̃gs|Ta1 Ta2 |Ψ̃gs〉 . (3.27)

Notice that only the matrix elements with Ωa1 = −Ωa2 are nonvanishing.
Therefore we can also write

Cgs(t1, t2) =
∑

a1,a2

ta1(O1) ta2(O2) eiΩa1 (t1−t2) 〈Ψ̃gs|Ta1 Ta2 |Ψ̃gs〉 , (3.28)

1As a side remark we should already mention that the coefficients ta(O) typi-
cally explicitly depend on temperature in an interacting many-body problem, which
introduces another β-dependence in (3.22). We will return to this issue in Chap. 4
when we discuss interacting quantum many-body problems.
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which can equally be obtained by commuting Ta1 past H(B = ∞) in
(3.27).

Equations (3.27) and (3.28) form the basis for the evaluation of correla-
tion functions in the flow equation approach. Notice that once we have the
expansion (3.9) for an observable, it is an easy task to calculate all kinds of
correlation functions.2 The main reason for this is that it is trivial to solve
the Heisenberg equations of motion for our transformed observables. This is
a somehow unusual concept by comparison with conventional many-body
methods. Also notice that the correlation function only depends on the time
difference τ = t1 − t2 as expected in equilibrium.

One frequently needs the symmetrized correlation function for the special
case O1 = O2. For later reference we will give the expression here which
follows immediately from (3.27). The symmetrized correlation function is
real

C(sym)
gs (t1, t2)

def=
1
2
〈{O(t1), O(t2)}〉gs (3.29)

=
∑

a1,a2

ta1(O) ta2(O) cos(Ωa2(t1 − t2)) 〈Ψ̃gs|Ta1 Ta2 |Ψ̃gs〉 ,

and Fourier transformation with respect to the time difference τ yields:

C(sym)
gs (ω) =

∫
dτ eiωτ C(sym)

gs (τ)

= π
∑

a1,a2

ta1(O) ta2(O) 〈Ψ̃gs|Ta1 Ta2 |Ψ̃gs〉 × (δ(ω − Ωa2) + δ(ω + Ωa2)) .

(3.30)

Likewise one finds for the response function

Rgs(t1, t2)
def= −iΘ(t1 − t2) 〈[O(t1), O(t2)]〉gs (3.31)

the following imaginary part of its Fourier transform:

Im Rgs(ω) = π
∑

a1,a2

ta1(O) ta2(O) 〈Ψ̃gs|Ta1 Ta2 |Ψ̃gs〉

× (δ(ω − Ωa2) − δ(ω + Ωa2)) . (3.32)

Another important quantity to make contact with conventional many-body
schemes are retarded Green’s functions, which we will write down explicitly
for fermions. One defines

G+
kk′(τ) def= −iΘ(τ) 〈{ck(τ), c†k′(0)}〉gs (3.33)

2It is trivial to extend the above derivation to three and higher point correlation
functions.
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which gives via Fourier transformation

Gkk′(ω+) =
∑

a1,a2

ta1
(k) t∗a2

(k′)
〈Ψ̃gs| {Ta1

, T †
a2
} |Ψ̃gs〉

ω − Ωa2 + iε
. (3.34)

Here ε > 0 is the usual infinitesimal shift away from the real axis. We have
used the notation

c̃k =
∑

a

ta(k)Ta (3.35)

for the transformed fermion annihilation operators. The creation operators
follow immediately through hermitean conjugation.3 Notice that the Green’s
function (3.34) is independent from the specific form of the ground state if the
transformed fermion operators remain linear in either creation or annihilation
operators in (3.35).

3.2.2 Nonzero Temperature

The generalization of the previous results to nonzero temperature is straight-
forward and follows the same lines as in Sect. 3.1.2. We only give the results
here. The finite temperature correlation function is defined by

Cβ(t1, t2) =
1

Z(β)
Tr
(
ρ(β)O1(t1)O2(t2)

)
, (3.36)

which leads to

Cβ(t1, t2) =
1

Z̃(β)

∑

n

∑

a1,a2

ta1(O1) ta2(O2) e−βEn−iΩa2 (t1−t2) 〈n|Ta1 Ta2 |n〉

(3.37)
Here the first sum runs over all eigenstates |n〉 of H(B = ∞). The sym-
metrized correlation function takes the following form at nonzero tempera-
ture:

C
(sym)
β (ω) =

π

Z̃(β)

∑

n

∑

a1,a2

ta1(O) ta2(O) e−βEn〈n|Ta1 Ta2 |n〉

× (δ(ω − Ωa2) + δ(ω + Ωa2)) . (3.38)

The response function is given by

Im Rβ(ω) =
π

Z̃(β)

∑

n

∑

a1,a2

ta1(O) ta2(O) e−βEn〈n|Ta1 Ta2 |n〉

× (δ(ω − Ωa2) − δ(ω + Ωa2)) . (3.39)

3If the Hamiltonian contains only real couplings then all the coefficients ta are
real for the canonical choice of the generator.
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3.2.3 Fluctuation–Dissipation Theorem

The fluctuation–dissipation theorem is the fundamental relation which con-
nects equilibrium fluctuations and dissipation in a quantum many-body sys-
tem. It can be expressed in the following way as a relation between the
symmetrized correlation function and the response function [1]:

C
(sym)
β (ω) = coth

(
βω

2

)
Im Rβ(ω) . (3.40)

We want to verify that this fundamental relation is fulfilled even if we have
to make approximations in the transformation of the observable. Putting it
otherwise, we want to verify that the fluctuation–dissipation theorem also
holds if we have made approximations in deriving the coefficients ta(O), e.g.
by truncating the flow equation for the observable.

We first discuss zero temperature where the fluctuation–dissipation rela-
tion takes the simple form

C(sym)
gs (ω) = sgn(ω) Im Rgs(ω) . (3.41)

Now this follows immediately from the flow equation formulation (3.30) and
(3.32) because of the following observation:

Ωa2 < 0 ⇒ Ta2 |Ψ̃gs〉 = 0 . (3.42)

This holds because otherwise Ta2 |Ψ̃gs〉 would be an eigenstate of H(B = ∞)
with a lower energy than the ground state energy. Therefore only the first
δ-function on the right hand side of (3.30) or (3.32) contributes for positive
ω. Likewise, for negative ω only the second δ-function on the right hand side
of (3.30) or (3.32) can contribute. This just produces the sign-function in
(3.41).

At finite temperature we insert a complete set of eigenstates in (3.38):

C
(sym)
β (ω) =

π

Z̃(β)

∑

n,m

∑

a1,a2

ta1(O) ta2(O) e−βEn〈n|Ta1 |m〉〈m|Ta2 |n〉

× (δ(ω − Ωa2) + δ(ω + Ωa2)) (3.43)

=
π

Z̃(β)

∑

n,m

∑

a1,a2

(
ta1(O) ta2(O)e−βEn〈n|Ta1 |m〉〈m|Ta2 |n〉δ(ω − Em + En)

+ta1(O) ta2(O) e−βEn〈n|Ta1 |m〉〈m|Ta2 |n〉 δ(ω + Em − En)
)

.

Next we exchange both n ↔ m and a1 ↔ a2 in the second term. This yields

C
(sym)
β (ω) =

π

Z̃(β)

∑

n,m

(
e−βEn + e−βEm

)

×
(
∑

a1,a2

ta1(O) ta2(O)〈n|Ta1 |m〉〈m|Ta2 |n〉δ(ω − Em + En)

)
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=
π

Z̃(β)

∑

n,m

(
e−βEn + e−β(ω+En)

)

×
(
∑

a1,a2

ta1(O) ta2(O)〈n|Ta1 |m〉〈m|Ta2 |n〉δ(ω − Em + En)

)

=
π

Z̃(β)

(
1 + e−βω

)∑

n,m

e−βEn (3.44)

×
(
∑

a1,a2

ta1(O) ta2(O)〈n|Ta1 |m〉〈m|Ta2 |n〉δ(ω − Em + En)

)

Likewise one shows

Im Rβ(ω) =
π

Z̃(β)

(
1 − e−βω

)∑

n,m

e−βEn (3.45)

×
(
∑

a1,a2

ta1(O) ta2(O)〈n|Ta1 |m〉〈m|Ta2 |n〉δ(ω − Em + En)

)

and together with (3.44) this proves the fluctuation–dissipation relation
(3.40).

We have thereby arrived at the important conclusion that while approx-
imations in the flow equation transformation will lead to deviations from
the exact result, the fluctuation–dissipation relation between such an ap-
proximate correlation function and the corresponding approximate response
function still holds exactly. Approximations in the transformation of the ob-
servables do not destroy the fluctuation–dissipation relation as long as we
evaluate the matrix elements 〈n|Ta1 Ta2 |n〉 in (3.38) and (3.39) exactly with-
out further approximations.

3.3 Examples

In order to practice the calculation of observables in the flow equation ap-
proach, we discuss two examples in this chapter: the potential scattering
model and the resonant level model. Both models are “trivial” in the sense
that the Hamiltonian is quadratic and can be solved easily, e.g. using equa-
tions of motion techniques. However, they provide a good opportunity to
study the transformation of observables without additional complications.
As mentioned previously, the transformation of observables is often the topic
that is most difficult to get used to initially because it is unfamiliar by com-
parison with conventional many-body techniques. Many of the observations
that we make here in these very simple models will later reappear in very non-
trivial models, and it is worthwhile to study these examples in pedagogical
detail.
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3.3.1 Potential Scattering Model

We have already worked out the flow equations for the potential scattering
Hamiltonian

H =
∑

k

εkc†kck +
g

N

∑

k,k′

c†k′ck . (3.46)

in Sect. 2.1.1. For simplicity we focus on the case without a bound state, i.e.
on repulsive potentials. Let us say that we are interested in calculating the
retarded Green’s function

G+
kk′(τ) def= −iΘ(τ) 〈{ck(τ), c†k′(0)}〉gs , (3.47)

or more conveniently the T -matrix defined by

Gkk′(ε+) = G
(0)
kk′(ε+) +

∑

p,p′

G
(0)
kp′(ε+)Tp′p(ε

+)G
(0)
pk′(ε+) . (3.48)

Here G
(0)
kk′(ε+) is the noninteracting Green’s function

G
(0)
kk′(ε+) =

δkk′

ε+ − εk

. (3.49)

In order to calculate the T -matrix we need to find the transformation of the
fermion creation or annihilation operators under the unitary flow according
to (3.8). It is easy to verify that the following ansatz is closed under the flow
since η from (2.98) is bilinear in the fermion operators:

c†p(B) =
∑

u

tu(p) c†u (3.50)

with tu(p)(B = 0) = δpu. The flow equation for the operator takes the form:

dc†p(B)
dB

= [η(B), c†p(B)] (3.51)

=
∑

q′,q

(Eq′ − Eq) gq′q tq(p) c†q′ .

By comparing coefficients on the right hand side this yields

dtu(p)
dB

=
∑

q

(Eu − Eq) guq tq(p) . (3.52)

Notice that one immediately concludes

d
dB

(
∑

q

tq(p
′) tq(p)

)
= 0

⇒ ∀B
∑

q

tq(p
′)(B) tq(p)(B) =

∑

q

tq(p
′)(B = 0) tq(p)(B = 0)

= δpp′ , (3.53)



3.3 Examples 53

which is another way of saying that the anticommutator remains invariant
under the unitary flow (as it should):

{cp(B), c†p′(B)} = δpp′ . (3.54)

Similar sum rules are often important when looking at the transformation
of observables in the flow equation framework, particularly when approxima-
tions are unavoidable in many-body problems. We will return to this issue
later in Chap. 4.

Next we have to solve (3.52). We choose the diagonal parametrization
(2.107) and first integrate from B = 0 to B = ∞ with the initial condition
tq(p)(B = 0) = δpq:

tp(p)(B = ∞) = 1 (3.55)

∀u �= p tu(p)(B = ∞) =
∫ ∞

0

dB′ (εu − εp) gup(B
′) e−B′(εu−εp)2

= gup(B = ∞)
1

εu − εp

+ O
(
N g2

up(B = ∞)
)

.

(3.56)

Here we have neglected the feedback of the flow of the coefficients tq(p)(B)
into the system of differential equations. This amounts to neglecting higher
powers of the running coupling constant. Therefore (3.56) is correct in leading
order of the running coupling constant. Because of the slow logarithmic de-
pendence of the coupling constant on the energy scale according to (2.114),
we could also ignore its B′-dependence in (3.56) and replace it by its as-
ymptotic B = ∞ value. Also, strictly speaking, our results only hold in the
thermodynamic limit.4

Next we plug (3.56) into the expression (3.34) for the retarded Green’s
function:

Gkk′(ε+) = δkk′
1

ε+ − εk

+ tk′(k)(B = ∞)
1

ε+ − εk′

+ tk(k′)(B = ∞)
1

ε+ − εk

+
∑

q �=k,k′

tq(k′)(B = ∞) tq(k)(B = ∞)
1

ε+ − εq

= δkk′
1

ε+ − εk

+ g
kk′(B = ∞)

1

εk′ − εk

(
1

ε+ − εk′

− 1

ε+ − εk

)

+O
(
N g2

kk′(B = ∞)
)

= δkk′
1

ε+ − εk

+ g
kk′(B = ∞)

1

ε+ − εk′

1

ε+ − εk

+O
(
N g2

kk′(B = ∞)
)

. (3.57)

4More accurately, for |εu − εp| � D/N . One can check this easily from the
1/N -normalization of the coupling constant.
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By comparison with (3.48) we can read off the T -matrix to leading order in
the running coupling constant (2.114):

Tp′p(ε+) = g
p′p

(B = ∞) . (3.58)

We have therefore achieved a resummation of the conventional perturbative
expansion in the bare coupling constant for the T -matrix and arrived at the
correct renormalized expression (3.58).

3.3.2 Resonant Level Model

In the example in the previous section we could evaluate observables in a
straightforward way using the flow equation formalism and were able to cap-
ture nontrivial scaling aspects with this calculation. We now look at another
simple (i.e. quadratic) Hamiltonian that will teach us some new lessons about
the flow equation method, namely the resonant level model. The resonant
level model (U = 0 Anderson impurity model) is defined by the Hamiltonian

H =
∑

k

εkc†kck + εdd
†d +

∑

k

Vk (c†kd + d†ck) . (3.59)

Here d is a fermionic impurity orbital that hybridizes via the hybridiza-
tion matrix elements Vk with the conduction band described by the oper-
ators c†k, ck. The hybridization matrix elements scale with 1/

√
N where N is

the number of band states.
Unlike the potential scattering model, the resonant level model does not

exhibit interesting nonperturbative scaling behavior. However, its new feature
is the coupling of a localized state (the d-impurity orbital) with a continuum
of band states. Conventional many-body techniques can deal with this sit-
uation easily. Unfortunately, in the flow equation method one needs to put
in a lot of work for the same results. Still, we will later encounter interact-
ing many-body problems where both aspects of nonperturbative scaling and
coupling of a small system to an environment are important. In such situa-
tions flow equations can be advantageous compared to conventional methods.
So while it is exaggerated to use our sophisticated machinery for the simple
model in this section, we will later use the same machinery with little change
in much more complicated problems. This is the main motivation for studying
the resonant level model in pedagogical detail.

Our goal is to calculate the impurity orbital density of states ρd(ω),

ρd(ω) = − 1
π

Im Gd(ω+) , (3.60)

where Gd(ω+) is the impurity orbital Green’s function,

G+
d (τ) = −iΘ(τ) 〈{d(τ), d†(0)}〉 . (3.61)
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The exact answer is (e.g. obtained using equations of motion [2])

ρd(ω) =
∆(ω)

(
ω − εd − Λ(ω)

)2

+ π2 ∆2(ω)
, (3.62)

where Λ(ω) and ∆(ω) are the real and imaginary parts of

∑

k

V 2
k

ω+ − εk

= Λ(ω) + iπ∆(ω), (3.63)

respectively. ∆(ω) is usually called the hybridization function.
In order to find this result in our framework, we first need to set up the

flow equations for diagonalizing the Hamiltonian (3.59). The procedure is very
similar to the calculation in Sect. 2.3. The diagonal part of the Hamiltonian
is

H0(B) =
∑

k

εkc†kck + εdd
†d . (3.64)

When one starts evaluating the commutator [η,H], one notices immediately
that new terms ωk′kc†k′ck are generated which are not present in the original
Hamiltonian (3.59). This makes a more general parametrization of Hint(B)
that includes these new terms necessary to close the flow equations:

Hint(B) =
∑

k

Vk (c†kd + d†ck) +
∑

k′ �=k

ωk′kc†k′ck . (3.65)

Here Vk and ωk′k depend on B and ωk′k = ωkk′ for hermiticity. One easily
checks that the parametrization (3.65) remains form invariant under the flow
induced by the canonical generator. Working out the flow equations is left as
an exercise to the reader. The canonical commutator has the structure:

η = [H0,Hint]

=
∑

Vk (εk − εd) (c†kd − d†ck) +
∑

ωk′k (εk′ − εk) c†k′ck . (3.66)

With it one finds the following set of flow equations:

dVk

dB
= −(εk − εd)

2Vk −
∑

q

(2εq − εk − εd)Vq ωqk (3.67)

dωk′k

dB
= −(εk′ − εk)2ωk′k + (εk′ + εk − 2εd)Vk′ Vk

+
∑

q

(εk′ + εk − 2εq)ωk′q ωqk (3.68)

dεd

dB
= 2

∑

q

(εd − εq)V
2
q (3.69)

dεk

dB
= 2(εk − εd)V

2
k + 2

∑

q

(εk − εq)ω
2
kq . (3.70)
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The general structure of these equations is already familiar from the potential
scattering model:

– The interaction terms Vk and ωk′k are eliminated by differential equations
that are proportional to minus the respective energy transfer squared (in
linear order).

– The band energies are shifted in order 1/N , while the single-particle en-
ergy of the impurity orbital in shifted in order N0. This is expected in an
impurity model.

A new feature is that the potential scattering terms ωk′k are generated during
the flow according to (3.68), even if they are not present in the original
Hamiltonian.5 Notice that these terms are generated in order 1/N as expected
for potential scattering, compare (2.87).

Before proceeding with analyzing the solution of these equations, let us
find the flow equations for the transformation of the impurity orbital creation
and annihilation operators d† and d that we will need for calculating ρd(ω).
The following ansatz is immediately plausible:

d†(B) = h(B) d† +
∑

p

tp(B) c†p . (3.71)

The commutator with the generator takes the following structure:

[η, d†(B)] =
∑

Vk (εk − εd)h c†k −
∑

Vk (εk − εd) tk d†

+
∑

ωk′k(εk′ − εk) tk c†k′ . (3.72)

This leads to the following set of differential equations that determine the
flow of d†(B):

dh

dB
= −

∑

k

Vk (εk − εd) tk (3.73)

dtk
dB

= Vk (εk − εd)h +
∑

q

ωkq(εk − εq) tq . (3.74)

Very similar sets of differential equations will appear later in more compli-
cated models. As in the previous section, a first check of the calculation is

5A careful reader will notice that it is possible to modify the generator η by
introducing new terms

∑
k′,k η

(2)

k′k(B) c†k′ck in such a way that the terms ωk′k are not
generated during the flow. In fact, similar modifications of the canonical generator
have been used in some of the flow equation literature [3]. However, this procedure
introduces energy denominators into the generator that violate our conditions from
Sect. 2.2.4 and can potentially be dangerous. For pedagogical reasons we work with
the canonical choice of the generator in this introductory chapter. For more details
on alternative choices consult the outlook and open questions in Sect. 5.4.
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to verify that the anticommutation relation of d†(B) and d(B) is preserved
under the unitary flow. This is equivalent to

∀B h2(B) +
∑

k

t2k(B) = 1 , (3.75)

which follows from the initial condition h(B = 0) = 1, tk(B = 0) = 0 and

d
dB

(
h2(B) +

∑

k

t2k(B)

)
= 0 (3.76)

according to (3.73) and (3.74).
We first look at the case where all the hybridization matrix elements are

constant, Vk = V , in order to focus on the key issues. We also require that
the conduction band density of states is constant, ρ(ε) = ρ. Notice that this
implies ∆(ω) = ∆ = ρ V 2 and Λ(ω) = 0 in the exact solution (3.62). We
take the hybridization matrix elements V as small parameters and solve the
differential equations to leading order in V . First

Vk (B) = V e−B(εk−εd)2 (3.77)

and with this

dtk
dB

= V e−B(εk−εd)2 (εk − εd)h + O(V 3) . (3.78)

The initial deviation of h(B) from 1 is O(V 2), so we can try to set h(B) = 1
in (3.78) and find

tk(B) =
V

εk − εd

(
1 − e−B(εk−εd)2

)

⇒ tk(B = ∞) =
V

εk − εd

. (3.79)

This result can only be trusted if h(B) is still sufficiently close to 1 on the
B-scale where the main contributions to tk(B = ∞) come from, that is for
B � (εk − εd)

−2. We can check this by plugging our approximate solution for
tk(B) into the differential equation for h(B), or, equivalently, into (3.75):

1 − h2(B) =
∑

k

V 2

(εk − εd)2

(
1 − e−B(εk−εd)2

)2

∝ O(ρV 2)B1/2 . (3.80)

This implies that we can trust (3.79) for |εk − εd| � ∆. The impurity orbital
density of states follows immediately according to (3.34):
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ρd(ω) = ρ t2ω(B = ∞) + h2(B = ∞) δ
(
ω − εd(B = ∞)

)
. (3.81)

Here tω denotes the coefficient tk with εk = ω. One sees that (3.79) is indeed
correct to leading order in the hybridization for |ω − εd| � ∆ by comparison
with the exact result (3.62). Also notice that in our case εd(B = ∞) = εd(B =
0) since the hybridization matrix elements are constant.

Next we also want to learn something about ρd(ω) for |ω − εd| � ∆. This
is unfortunately quite difficult in the flow equation framework.6 In order to
proceed we first need to learn more about the solution of the flow equations
for the Hamiltonian (3.67)–(3.70). We use the following approximate para-
metrization for the flowing coupling constants Vk(B) in the same spirit as for
the IR-parametrization in Sect. 2.3.2:

Vk(B) = Vd(B) e−B(εk−εd)2 . (3.82)

Notice that the coupling constant Vd(B) is never suppressed by an exponen-
tial term. One can verify numerically that this approximation is very accurate
and can be used safely for our purposes. With this parametrization one easily
derives

ωqd(B) = (εq − εd) e−B(εq−εd)2
∫ B

0

dB′ V 2
d (B′) , (3.83)

where we have neglected terms in order V 4
d . This leads to

dVd

dB
= −2Vd(B)

∑

q

(εq − εd)
2e−2B(εq−εd)2

∫ B

0

dB′ V 2
d (B′)

= −
√

2π

4
ρ Vd(B)B−3/2

∫ B

0

dB′ V 2
d (B′) . (3.84)

The full solution is a cumbersome expression and we can restrict our analysis
to the asymptotic behavior: for large B one finds an algebraic decay with a
universal exponent −1/4,

Vd(B) =
1

(8πρ2 B)1/4
. (3.85)

This decay sets in once the flow equation scaling parameter is of order the
hybridization parameter, B−1/2 ∝ ρV 2 = ∆. For smaller values of B the
coupling Vd(B) remains essentially unchanged. Figure 3.1 shows this behavior
of the hybridization matrix elements during the flow obtained from the full
numerical solution of the differential equations.

Next we use this information to analyze the flow of h(B) according to
(3.73) and (3.74). In the initial phase of the flow we can neglect the ωkq-terms

6It would be very desirable to have suitable mathematical tools that allow us to
analytically solve systems like (3.73)–(3.74) for general coupling constants. At the
time of writing this book, however, no such approach has yet been found.
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Fig. 3.1. Decay of hybridization couplings Vk(B) during various stages of the flow
from the exact numerical solution of the flow equations. Curves are for B−1/2/∆ =
∞, 10, 4, 1, 0.25 from top to bottom. The inset depicts the flow of the coupling Vd(B)
and h(B) describing the transformation of the observable (3.73)

in (3.74) since they contribute in O(V 3).7 Integrating up (3.74) therefore
yields

tk(B) = (εk − εd)
∫ B

0

dB′ e−B′(εk−εd)2 Vd(B′)h(B′) . (3.86)

First we will show that a nonvanishing asymptotic value h(B = ∞) > 0 is
inconsistent with the properties of these equations. With the solution (3.85)
for Vd(B′) one immediately derives

tK(B = ∞) ∝ h(B = ∞) sgn(εk − εd) |εk − εd|−1/2 , (3.87)

which leads to a divergent sum
∑

k t2k(B = ∞) that is inconsistent with
(3.75). From this we make the important observation that the operator d†

decays completely into bath modes under the unitary flow.
We will see later on that this is the typical behavior for a degree of free-

dom that is coupled to a thermodynamically large environment with a con-
tinuum of quasi-resonant modes. In particular, this implies that no coherent
δ-function term remains in (3.81). The complete transformation of a degree

7However, this approximation is not accurate in the later phase of the flow
though it gives the qualitatively correct behavior.
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Fig. 3.2. Impurity orbital density of states at various stages of the flow from the

exact numerical solution. The curves show ρd(ω; B)
def
= ρ t2ω(B) for B−1/2/∆ =

10, 4, 1, 0.25 from bottom to top. The dashed line depicts the exact solution (3.62)
that is approached in the limit B → ∞. Notice that the curves for finite B are not
normalized since the δ-contribution for h(B) �= 0 is not included in the definition
of ρd(ω; B)

of freedom into a different form is rather unusual from a standard many-body
point of view. However, it is an essential and unavoidable consequence of the
flow equation goal to generate a diagonal Hamiltonian.

Inserting the expression (3.86) into the differential equation for h(B) leads
to

dh

dB
= −

√
π

2
ρ Vd(B)

∫ B

0

dB′ (B + B′)−3/2 Vd(B′)h(B′) . (3.88)

One notices the similarity to the differential equation (3.84) for Vd(B) which
motivates using a similar solution with h(B) ∝ Vd(B). It is easy to verify
that this ansatz in fact fulfills (3.88) for large values of B. The full numerical
solution confirms that the proportionality h(B) ∝ Vd(B) indeed holds with
very good accuracy during the entire flow, see Fig. 3.1.

With this information it is now straightforward to obtain the coefficients
tk(B = ∞) for |εk − εd| � ∆:

tk(B = ∞) ∝ 1
Vd(0)

(εk − εd)
∫ (εk−εd)−2

0

dB′ V 2
d (B′)

∝ 1
ρVd(0)

sgn(εk − εd) . (3.89)
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This yields the qualitatively correct behavior of ρd(ω) in the vicinity of the
impurity orbital energy:

ρd(ω) ∝ 1
∆

, (3.90)

which smoothly connects with the off-resonance behavior from (3.79).
However, in order to get quantitative results for ρd(ω) one has to resort

to the numerical solution of (3.73) and (3.74). The results that demonstrate
the buildup of ρd(ω) during the flow are shown in Fig. 3.2. One can make the
following important observation from these curves: Since tk(B) necessarily
changes its sign at εk = εd according to (3.74), the function ρd(ω) always
displays a dip at ω = εd for finite B. This dip only closes asymptotically
for B → ∞. It is worthwhile to emphasize again that the finite width of the
spectral function is obtained with a hermitean diagonal Hamiltonian due to
the complete decay of the observable into bath degrees of freedom.

A final remark regarding the changes for a nonflat hybridization function
∆(ω). The main new feature is a nontrivial flow of the impurity orbital energy
εd(B) according to (3.69). It is precisely this flow which mimics the effect of
Λ(ω) in (3.62), and one can show:

εd(B = ∞) = εd(B = 0) + Λ(εd(B = 0)) . (3.91)
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4 Interacting Many-Body Systems

In the previous chapters we have discussed various applications of the flow
equation method for simple Hamiltonians. These applications were meant to
familiarize the reader with the method in a pedagogical way. However, the
flow equation method is designed as an analytical tool for solving nonper-
turbative interacting many-body problems that are much more complicated
than the Hamiltonians in these previous examples. In order to look at such
problems, we first need to introduce another ingredient for realistic flow equa-
tion applications, namely the concept of normal-ordering . Then we will dis-
cuss three examples of flow equation solutions that highlight different aspects
of such many-body applications: the Kondo model as a fermionic impurity
model in Sect. 4.2, the spin–boson model as a bosonic impurity model in
Sect. 4.3, and Fermi liquid theory in Sect. 4.4.

4.1 Normal-Ordering

The fundamental problem in applications of the flow equation method to
interacting systems can be understood by looking at a simple fermionic model:

H =
∑

n

εnc†ncn +
∑

m′
1,m1,m′

2,m2

g(m′
1,m1,m

′
2,m2) c†m′

1
cm1

c†m′
2
cm2

. (4.1)

The canonical generator takes the structure

η =
∑

g(m′
1,m1,m

′
2,m2) (εm′

1
+ εm′

2
− εm1

− εm2
) c†m′

1
cm1

c†m′
2
cm2

. (4.2)

We denote the kinetic energy part of (4.1) by H0. It is easy to work out

[η,H0] = −
∑

g(m′
1,m1,m

′
2,m2) (εm′

1
+ εm′

2
− εm1

− εm2
)2 c†m′

1
cm1

c†m′
2
cm2

.

(4.3)
However, the full flow equation for the Hamiltonian also requires the com-
mutator of η with the interaction part. This leads to a commutator of a
two-particle interaction term with another two-particle interaction term, i.e.

[ c†1′c1c
†
2′c2 , c†3′c3c

†
4′c4 ] = c†1′c1 [ c†2′c2 , c†3′c3 ] c†4′c4 + other permutations

= δ23′ c†1′c1c
†
2′c3c

†
4′c4 − δ2′3 c†1′c1c

†
3′c2c

†
4′c4

+ other permutations, (4.4)

Stefan Kehrein: The Flow Equation Approach to Many-Body Problems
STMP 217, 63–135 (2006)
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where we have used (2.94). We see that this commutator produces a three-
particle interaction term that is not originally contained in the Hamiltonian
(4.1). Taking this new term into account, the canonical generator will also
acquire a three-particle structure. This in turn produces even higher-order
interactions in the commutator with Hint(B). This proliferation of higher-
order terms is the fundamental “problem” of the flow equation method, as it
is in one way or another of all analytical many-particle approaches that do not
require integrability of the Hamiltonian. In order to turn the flow equation
method into a useful nonperturbative tool, we first need to introduce a way
of organizing these higher-order interactions into such a form that this series
becomes well-behaved and can be truncated. This tool will be the normal-
ordering prescription introduced in the next subsection.1

4.1.1 Bosons

Normal-ordering has been formally defined by Wick [1]. It is sometimes
thought of as being no more than the subtraction of ground state expec-
tation values from an operator. However, the normal-ordering prescription is
a more sophisticated tool, which we now first work out for bosons.

We denote bosonic creation and annihilation operators collectively by Ak.
The key ingredient of a normal-ordering procedure are its contractions Ckl,
which are real numbers with the property

[Ak, Al] = Ckl − Clk . (4.5)

In practice the contractions will either be expectation values with respect to
some reference state |ΨNO〉 (usually the ground state of the free theory H0),

Ckl
def= 〈ΨNO |AkAl |ΨNO〉 , (4.6)

or expectation values in some mixed state described by a density matrix ρ,

Ckl
def= Tr(ρAk Al) . (4.7)

It is easy to verify that (4.5) is always fulfilled if the contractions are defined
in one of these two ways since the commutator of two bosonic creation or
annihilation operators is a c-number:

[ak, a†
l ] = δkl , [a†

k, a†
l ] = [ak, al ] = 0 . (4.8)

For example normal-ordering with respect to the vacuum |Ω〉 leads to the
following contractions:

1The presentation closely follows unpublished notes by F. Wegner.
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〈Ω | a†
kal |Ω〉 = 0

〈Ω | aka†
l |Ω〉 = δkl

〈Ω | a†
ka†

l |Ω〉 = 0

〈Ω | akal |Ω〉 = 0 . (4.9)

Normal-ordering of a composite operator O is denoted by : O : and is defined
by the following three rules due to Wick:

1. Initial step: c-numbers remain unchanged,

: 1 := 1 . (4.10)

2. Normal-ordering is linear,

: α1O1 + α2O2 := α1 : O1 : +α2 : O2 : , (4.11)

where α1, α2 are arbitrary complex numbers.
3. Recurrence relation

Ak : O :=: Ak O : +
∑

l

Ckl :
∂O

∂Al
: , (4.12)

where O is considered as a function of the creation and annihilation
operators Al.

Let us solve this recurrence relation explicitly for the first normal-ordering
steps with respect to the vacuum:

: a†
k : = a†

k , : ak := ak (4.13)

: a†
ka†

l : = a†
ka†

l , : akal := akal (4.14)

: a†
kal : = a†

kal (4.15)

: aka†
l : = aka†

l − δkl . (4.16)

From the recurrence relation we can deduce Wick’s first theorem:

Ak1Ak2 . . . Akm
= :

(
Ak1 +

∑

l1

Ck1l1

∂

∂Al1

)(
Ak2 +

∑

l2

Ck2l2

∂

∂Al2

)
. . .

× . . .



Akm−1 +
∑

lm−1

Ckm−1lm−1

∂

∂Alm−1



 Akm
: (4.17)

or

: Ak1Ak2 . . . Akm
: =

(
Ak1 −

∑

l1

Ck1l1

∂

∂Al1

)(
Ak2 −

∑

l2

Ck2l2

∂

∂Al2

)
. . .

× . . .



Akm−1 −
∑

lm−1

Ckm−1lm−1

∂

∂Alm−1



 Akm
(4.18)
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For example we find for vacuum normal-ordering

: ak1
ak2

a†
k3

a†
k4

: = ak1
ak2

a†
k3

a†
k4

(4.19)

−δk1k3
ak2

a†
k4

− δk1k4
ak2

a†
k3

− δk2k3
ak1

a†
k4

− δk2k4
ak1

a†
k3

+δk1k3
δk2k4

+ δk1k4
δk2k3

.

On closer inspection this is simply

: ak1
ak2

a†
k3

a†
k4

:= a†
k3

a†
k4

ak1
ak2

, (4.20)

that is all annihilation operators have been moved all the way to the right,
and the creation operators all the way to the left. However, this “simple”
interpretation of normal-ordering only works with respect to the vacuum
(which is what we are often used to from quantum field theory). It cannot,
e.g., be generalized to normal-ordering with respect to a finite temperature
state defined by a density matrix like in (4.7).

We will frequently need to express the product of two normal-ordered
operators as a sum of normal-ordered terms. This is the content of Wick’s
second theorem:

: O1 : : O2 :=: exp




∑

k,l

Ckl
∂2

∂Ak∂A′
l



 O1(A)O2(A′) :
∣∣∣
A′=A

. (4.21)

Here the operators on the right hand side are formally thought to be func-
tions of different sets of creation and annihilation operators A and A′ for the
purpose of differentiation, and only afterwards identified again. Let us see
how this works in a simple example for vacuum normal-ordering:

: a†
k3

ak1
: : a†

k4
ak2

:=: a†
k3

ak1
a†

k4
ak2

: +δk1k4
: a†

k3
ak2

: . (4.22)

Condition (4.5) leads to the important property that operators within a
normal-ordered expression can be commuted. We first exchange two neigh-
boring factors

:Ak1 . . . Aki−1Aki
Aki+1Aki+2 . . . Akm

:− :Ak1 . . . Aki−1Aki+1Aki
Aki+2 . . . Akm

:
(4.23)

According to (4.18) this leads to the following commutator on the right hand
side:

[(
Aki

−
∑

li

Ckili

∂

∂Ali

)
,



Aki+1 −
∑

li+1

Cki+1li+1

∂

∂Ali+1









= [Aki
, Aki+1 ] − Ckiki+1 + Cki+1ki

= 0 . (4.24)
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Therefore the difference (4.23) vanishes, which can easily be extended to the
statement that any two operators in a normal-ordered expression
: Ak1Ak2 . . . Akn

: can be exchanged. This commutativity property combined
with Wick’s second theorem (4.21) is often the fastest way to normal-order
a complicated composite operator.

We now come to the underlying reason for the usefulness of normal-
ordering for organizing flow equation expansion schemes. The following con-
siderations are only applicable if normal-ordering is defined with respect to
either the ground state of a Hamiltonian H0 that is bilinear in creation and
annihilation operators, or with respect to its density matrix,

ρ =
e−βH0

Tr e−βH0
. (4.25)

We denote both these expectation values by 〈O〉. Next we show that the
expectation value of a normal-ordered composite operator that contains at
least one creation or annihilation operator vanishes. For this purpose we first
employ the recurrence relation (4.12),

〈: Ak O :〉 = 〈Ak : O :〉 −
∑

l

Ckl 〈:
∂O

∂Al
:〉 . (4.26)

Now one can easily prove the following rule for a bilinear operator H0:

〈Ak O〉 =
∑

l

〈Ak a†
l 〉 〈 [al , O] 〉 −

∑

l

〈Ak al 〉 〈 [a†
l , O] 〉 . (4.27)

From the fundamental bosonic commutation relations one derives

[a†
l , O] = −∂O

∂al
, [al , O] =

∂O

∂a†
l

, (4.28)

which allows one to express (4.27) in compact form:

〈Ak O〉 =
∑

l

〈Ak Al〉
〈

∂O

Al

〉

=
∑

l

Ckl

〈
∂O

Al

〉
. (4.29)

Combined with (4.26) this proves

〈: Ak O :〉 = 0 (4.30)

and therefore the expectation value of a normal-ordered operator always van-
ishes unless this operator is just a c-number.

We arrive at the following fundamental property: Let E
(1)
n and E

(2)
n be

two composite operators consisting of a total of n creation or annihilation
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operators. We think of these operators as n-particle excitations out of the
ground state/mixed state. Then for any normal-ordered operator consisting of
2m creation or annihilation operators : O2m : we can only have a nonvanishing
matrix element with respect to these excited states,

〈E(1)
n : O2m : E(2)

n 〉 �= 0 , (4.31)

if n � m.
The proof for this property is straightforward by noticing that a prod-

uct of two normal-ordered operators with s1 and s2 creation or annihila-
tion operators can be written as a sum over normal-ordered operators with
s = |s1 − s2|, . . . , |s1 + s2| creation or annihilation operators (compare (4.21).
Therefore 〈: Os1 : : Os2 :〉 can be nonzero if and only if s1 = s2. From this one
immediately deduces (4.31). Notice that this property is trivial for normal-
ordering with respect to the vacuum if one looks at (4.20).

What does this property (4.31) mean in physical terms? Imagine that
we are interested in a one-particle excitation energy, e.g. for a boson with
quantum number k. For a normal-ordered Hamiltonian we can write in lowest
order of the coupling constant

E
(1)
k = 〈ak : H : a†

k〉
= 〈ak : H2 : a†

k〉 , (4.32)

where : H2 : contains only operators consisting of two elementary (i.e., cre-
ation or annihilation) operators. Likewise for the interaction energy of two
excited particles:

E
(2)
k1,k2

= 〈ak1
ak2

: H : a†
k1

a†
k2
〉 − E

(1)
k1

− E
(1)
k2

= 〈ak1
ak2

: H4 : a†
k1

a†
k2
〉 . (4.33)

This means that : H2 : contains all the information about the one-particle
excitations (quasiparticle energies), : H4 : contains all the information about
two-particle interactions (quasiparticle interaction), etc.2 Without normal-
ordering for example the coefficients from H4 could also contribute to the
one-particle energies in (4.32). If we later on truncate the series of higher and
higher order interactions in the flow equation scheme by neglecting normal-
ordered interactions : Hn : with n � nmax, we make a “smaller” error than
by neglecting not normal-ordered terms since normal-ordered terms only con-
tribute for higher particle excitations from the ground state. Loosely speaking
normal-ordered operators have less “content” (nonvanishing matrix elements)
than their not normal-ordered counterparts. And if we are forced to use an

2The terminology “quasiparticle” as it is used here differs from Landau quasi-
particles in Fermi liquid theory A different terminology would be to speak of “flow
equation quasiparticle”. We will have more to say on this subject in Sect. 4.4.1 on
Fermi liquid theory.
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approximation, we obviously want to use an approximation that has the
smallest possible deviation from the exact result. Normal-ordering will also
turn out to be the necessary ingredient to obtain the conventional scaling
equations in the IR limit of the flow equation approach.3

4.1.2 Fermions

For fermions some of the above expressions need to be modified since com-
mutation relations are replaced by anticommutators. We again collectively
denote fermionic creation and annihilation operator by Ak and have instead
of (4.5):

{Ak, Al} = Ckl + Clk . (4.34)

For deriving Wick’s first theorem one now needs to use the rule

∂

∂Al
Ak = δkl − Ak

∂

∂Al
, (4.35)

otherwise (4.17) and (4.18) remain unchanged. Let us work out two simple
examples:

: c†k3
ck1

: = c†k3
ck1

− Ck3k1
(4.36)

: c†k3
ck1

c†k4
ck2

: = c†k3
ck1

c†k4
ck2

(4.37)

−Ck4k2
c†k3

ck1
− Ck3k1

c†k4
ck2

− Ck1k4
c†k3

ck2
− Ck3k2

ck1
ck4

+Ck3k1
Ck4k2

+ Ck1k4
Ck3k2

= : c†k3
ck1

: : c†k4
ck2

: (4.38)

+Ck3k2
: c†k4

ck1
: −Ck1k4

: c†k3
ck2

: −Ck1k4
Ck3k2

.

In Wick’s second theorem we need to take into account the correct sequence
of differentiations, which for fermions leads to

: O1 : : O2 :=: exp




∑

k,l

Ckl
∂2

∂A′
l∂Ak



 O1(A)O2(A′) :
∣∣∣
A′=A

. (4.39)

Notice that (4.34) also holds for the exchange of the fields A and A′. This
gives us another (faster) way for deriving (4.38):

: c†k3
ck1

: : c†k4
ck2

: = : c†k3
ck1

c†k4
ck2

: (4.40)

+Ck3k2
: ck1

c†k4
: +Ck1k4

: c†k3
ck2

: +Ck1k4
Ck3k2

.

3Without normal-ordering there is no feedback from higher orders in the cou-
pling constant to lower orders, which leads to worse convergence properties of a not
normal-ordered expansion since it cannot describe nonperturbative energy scales.
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This expression agrees with (4.38) since the exchange of neighboring fermionic
creation or annihilation operators picks up a minus sign. Therefore (4.23) is
replaced by

:Ak1 . . . Aki−1Aki
Aki+1Aki+2 . . . Akm

:+ :Ak1 . . . Aki−1Aki+1Aki
Aki+2 . . . Akm

:
= 0 . (4.41)

The rules for multiple exchanges etc. can all be easily derived from this rule.
Finally the properties (4.30)–(4.33) of expectation values of normal-ordered
operators with respect to a Hamiltonian bilinear in fermionic creation and
annihilation operators carry over without change.

4.1.3 Important Commutators

We will here briefly sum up some of the most important commutators and
normal-ordered expressions that one needs for deriving the Hamiltonian flow
for interacting many-particle systems. In practice, all terms will always be
normal-ordered, so we will focus on commutators of normal-ordered interac-
tion terms.

Bosons

We consider normal-ordering with respect to the usual diagonal Hamiltonian

H0 =
∑

k

ωk a†
kak with ωk � 0 . (4.42)

Therefore the only nonvanishing contractions are

〈a†
k′ak〉 = δk′k n(k) . (4.43)

Hence n(k) is the particle-number expectation value at either zero (n(k) ≡ 0)
or finite temperature. Notice that

〈aka†
k′〉 = δk′k (n(k) + 1) (4.44)

due to the bosonic commutation relations.
Here is a list of some important normal-ordered expressions (the notation

should be obvious):

a†
1′a1 = : a†

1′a1 : +δ1′1 n(1) (4.45)

a1a
†
1′ = : a†

1′a1 : +δ1′1 (n(1) + 1) (4.46)

: a†
1′a1 : : a†

2′a2 : = : a†
1′a

†
2′a2a1 : (4.47)

+δ12′(n(1) + 1) : a†
1′a2 : +δ1′2n(1′) : a†

2′a1 :

+δ12′δ1′2 (n(1) + 1) n(1′)
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The first commutators of normal-ordered operators are:

[a1, a
†
1′ ] = δ1′1 (4.48)

[: a†
1′a1 :, : a†

2′a2 :] = δ12′ : a†
1′a2 : −δ1′2 : a†

2′a1 : (4.49)

+δ12′δ1′2 (n(1′) − n(1))

[: a†
1′a

†
2′a2a1 :, : a†

3′a3 :] = (4.50)

= δ23′ : a†
1′a

†
2′a3a1 : +δ13′ : a†

1′a
†
2′a3a2 :

−δ2′3 : a†
1′a

†
3′a2a1 : −δ1′3 : a†

2′a
†
3′a2a1 :

+δ23′δ2′3 (n(2′) − n(2)) : a†
1′a1 : +δ23′δ1′3 (n(1′) − n(2)) : a†

2′a1 :

+δ13′δ2′3 (n(2′) − n(1)) : a†
1′a2 : +δ13′δ1′3 (n(1′) − n(1)) : a†

2′a2 : .

The last expression can be somehow simplified: in flow equation commutators
the indices are always summed over with suitably symmetric functions due
to the bosonic exchange symmetry. Therefore we will usually be interested in
a commutator of the form

∑

1′,2′,1,2,3′,3

A(1′2′, 21)B(3′, 3) [: a†
1′a

†
2′a2a1 :, : a†

3′a3 :] , (4.51)

where
A(1′2′, 21) = A(2′1′, 21) = A(1′2′, 12) = A(2′1′, 12) . (4.52)

This yields a more compact expression than (4.50):
∑

A(1′2′, 21)B(3′, 3) [: a†
1′a

†
2′a2a1 :, : a†

3′a3 :] (4.53)

=
∑(

A(1′2′, x1)B(x, 2) + A(1′2′, 2x)B(x, 1)

−A(1′x, 21)B(2′, x) − A(x2′, 21)B(1′, x)
)

: a†
1′a

†
2′a2a1 :

+4
∑

A(1′x, y1)B(y, x) (n(x) − n(y)) : a†
1′a1 : ,

where the sums run over all indices including x and y.

Fermions

The diagonal Hamiltonian that we use subsequently for normal-ordering pur-
poses describes a noninteracting Fermi gas,

H0 =
∑

k

(εk − µ) c†kck . (4.54)

Therefore the only nonvanishing contractions are
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〈c†k′ck〉 = δk′k n(k) . (4.55)

Here n(k) is the Fermi function at either zero (n(k) ≡ Θ(µ − εk)) or finite
temperature. Notice

〈ckc†k′〉 = δk′k (1 − n(k)) (4.56)

due to the fermionic anticommutation relation {ck, c†k′} = δk′k.
Here are some important normal-ordered expressions:

c†1′c1 = : c†1′c1 : +δ1′1 n(1) (4.57)

c1c
†
1′ = − : c†1′c1 : +δ1′1 (1 − n(1)) (4.58)

: c†1′c1 : : c†2′c2 : = : c†1′c
†
2′c2c1 : (4.59)

+δ12′ (1 − n(1)) : c†1′c2 : −δ1′2 n(1′) : c†2′c1 :

+δ1′2δ12′ n(1′) (1 − n(1)) .

The first commutators of normal-ordered operators are:

[: c†1′c1 :, : c†2′c2 :] = δ12′ : c†1′c2 : −δ1′2 : c†2′c1 : (4.60)

+δ12′δ1′2 (n(1′) − n(1))

[: c†1′c
†
2′c2c1 :, : c†3′c3 :] = (4.61)

= δ23′ : c†1′c
†
2′c3c1 : −δ13′ : c†1′c

†
2′c3c2 :

−δ2′3 : c†1′c
†
3′c2c1 : +δ1′3 : c†2′c

†
3′c2c1 :

+δ23′δ2′3 (n(2′) − n(2)) : c†1′c1 : +δ23′δ1′3 (n(2) − n(1′)) : c†2′c1 :

+δ13′δ2′3 (n(1) − n(2′)) : c†1′c2 : +δ13′δ1′3 (n(1′) − n(1)) : c†2′c2 : .

Similar to the discussion for bosons in the previous chapter we will usually
need expressions of the type

∑

1′,2′,1,2,3′,3

A(1′2′, 21)B(3′, 3) [: c†1′c
†
2′c2c1 :, : c†3′c3 :] , (4.62)

where

A(1′2′, 21) = −A(2′1′, 21) = A(2′1′, 12) = −A(1′2′, 12) . (4.63)

This yields a more compact expression than (4.61):
∑

A(1′2′, 21)B(3′, 3) [: c†1′c
†
2′c2c1 :, : c†3′c3 :] (4.64)

=
∑(

A(1′2′, x1)B(x, 2) + A(1′2′, 2x)B(x, 1)

−A(1′x, 21)B(2′, x) − A(x2′, 21)B(1′, x)
)

: c†1′c
†
2′c2c1 :

+4
∑

A(1′x, y1)B(y, x) (n(x) − n(y)) : c†1′c1 : .
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Notice that (4.49) and (4.53) for bosons are structurally identical with (4.60)
and (4.64) for fermions. Therefore the corresponding flow equations for a
fermionic and a bosonic system are structurally identical if only the above
commutators appear. However, this property cannot be generalized, for ex-
ample it does not hold anymore for commutators of two-particle interaction
terms.

4.1.4 Normal-Ordered Expansions

We next analyze the general structure of a flow-equation expansion for an
interacting many-particle system before proceeding with concrete model in-
vestigations. A suitable Hamiltonian for bringing out the general structure
is, e.g., a system of interacting spinless fermions:

H =
∑

εk c†kck + λ
∑

g(k′
1k

′
2, k2k1) : c†k′

1
c†k′

2
ck2

ck1
: . (4.65)

Here λ is an expansion parameter that we assume to be small, |λ| � 1. The
diagonal part of H is

H0 = Hkin + λD(4)

=
∑

εk c†kck + λ
∑

g(diag)(k′
1k

′
2, k2k1) : c†k′

1
c†k′

2
ck2

ck1
: , (4.66)

where g(diag)(k′
1k

′
2, k2k1) contains only energy-diagonal scattering processes,

εk′
1
+ εk′

2
− εk2

− εk1
�= 0 ⇒ g(diag)(k′

1k
′
2, k2k1) = 0 . (4.67)

The remaining interaction part in H = H0 + Hint is then given by

Hint(4) =
∑

g(n−diag)(k′
1k

′
2, k2k1) : c†k′

1
c†k′

2
ck2

ck1
: , (4.68)

where g(n−diag)(k′
1k

′
2, k2k1) contains only non-energy-diagonal scattering ma-

trix elements,

εk′
1
+ εk′

2
− εk2

− εk1
= 0 ⇒ g(n−diag)(k′

1k
′
2, k2k1) = 0 . (4.69)

Notice that in impurity models terms like D(4) only contribute in O(1/N)
(where N is the number of degrees of freedom), as we have seen in Sect. 2.3.
Such energy-diagonal scattering processes can therefore be ignored when one
works out the perturbative flow equations for impurity models. However,
this statement is no longer true in translation-invariant models like Fermi
liquids as we will see in Sect. 4.4.1. For this reason we now first work out the
flow equation expansion for an impurity model where we can ignore terms
like D(4). Afterwards, we discuss the modifications when we cannot ignore
such energy-diagonal interaction matrix elements for thermodynamic reasons
alone.
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Let us derive the flow equation expansion in powers of λ for an impurity
model with:

H0 = Hkin (4.70)

Hint(4) =
∑

g(k′
1k

′
2, k2k1) : c†k′

1
c†k′

2
ck2

ck1
: . (4.71)

The canonical generator is given by

η = [H0, λHint(4)] = λ η(1) . (4.72)

Structurally, the flow equations take the following form with this generator:

λ
∂g(k′

1k
′
2, k2k1)

∂B
= −(εk′

1
+ εk′

2
− εk1

− εk2
)2 λ g(k′

1k
′
2, k2k1)

+λ2 R(1)
g (4.73)

∂εk

∂B
= λ2 R(1)

ε (4.74)

∂E

∂B
= λ2 R

(1)
E (4.75)

λ2 ∂u(k′
1k

′
2k

′
3, k3k2k1)

∂B
= λ2 R(1)

u . (4.76)

Here R
(1)
g denotes the normal-ordered part of [η(1),Hint(4)] that has the struc-

ture of the g-interaction term (4.71), etc. The flowing Hamiltonian is given
by

H(B) =
∑

εk(B) c†kck + λHint(4)(B) + λ2Hint(6)(B) + E(B) . (4.77)

Here
Hint(6) =

∑
u(k′

1k
′
2k

′
3, k3k2k1) : c†k′

1
c†k′

2
c†k′

3
ck3

ck2
ck1

: (4.78)

is a newly generated three-particle interaction term and E(B) is a (usually
uninteresting) constant.

Let us see how the newly generated interactions modify the flow. In order
to eliminate them we extend our generator to take Hint(6) into account:

η = λ η(1) + λ2 η(2) , (4.79)

where
η(2) = [H0,Hint(6)] . (4.80)

We have to evaluate the following new commutators in order λ3:

[λη(1), λ2Hint(6)] and [λ2η(2), λHint(4)] . (4.81)

In the above example this leads to the contribution:
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[λη(1), λ2Hint(6)] + [λ2η(2), λHint(4)] (4.82)

= λ3
∑

(εk′
1
+ εk′

2
− εk1

− εk2
− εk′

3
− εk′

4
− εk′

5
+ εk3

+ εk4
+ εk5

)

×g(k′
1k

′
2, k2k1)u(k′

3k
′
4k

′
5, k5k4k3) [: c†k′

1
c†k′

2
ck2

ck1
:, : c†k′

3
c†k′

4
c†k′

5
ck5

ck4
ck3

:]

This yields the following new terms in the above set of flow equations:

λ
∂g(k′

1k
′
2, k2k1)

∂B
= −(εk′

1
+ εk′

2
− εk1

− εk2
)2 λ g(k′

1k
′
2, k2k1)

+λ2 R(1)
g + λ3 R(2)

g (4.83)

∂εk

∂B
= λ2 R(1)

ε + λ3 R(2)
ε (4.84)

∂E

∂B
= λ2 R

(1)
E + λ3 R

(2)
E (4.85)

λ2 ∂u(k′
1k

′
2k

′
3, k3k2k1)

∂B
= −(εk′

1
+ εk′

2
+ εk′

3
− εk1

− εk2
− εk3

)2

×λ2u(k′
1k

′
2k

′
3, k3k2k1)

+λ2 R(1)
u + λ3 R(2)

u (4.86)

λ3 ∂v(k′
1k

′
2k

′
3k

′
4, k4k3k2k1)

∂B
= λ3 R(2)

v . (4.87)

Here the v-coefficient describes a new four-particle interaction term Hint(8).
Analyzing these equations we can see that the result of the leading order

of the flow equation expansion

∂H(B)
∂B

= λ [η(1),H0(B) + λ Hint(4)(B)] + λ2 [η(2),H0(B)] (4.88)

takes the form

H(B = ∞) =
∑

εk(B = ∞) c†kck + E(B = ∞) + O(λ3) . (4.89)

Here the flow of the coupling constants is determined by (4.73)–(4.75), in
particular the newly generated term (4.76) can be ignored. Notice that Hint

does not appear explicitly anymore in H(B = ∞) since all interactions vanish
everywhere in order λ and λ2 (except for energetically degenerate points that
are thermodynamically irrelevant).

Going one order further in the flow equation expansion we find

H(B = ∞) =
∑

εk(B = ∞) c†kck + E(B = ∞) + O(λ4) , (4.90)

where the flow of the coupling constants is now determined by (4.83)–(4.86).
While this expansion is perturbative in λ for a finite step ∆B, the overall
integration over the flow parameter B makes it nonperturbative similar to
the conventional scaling approach. We will later see that in a suitable limit
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(4.89) reproduces the 1-loop β-function for the running coupling constant g,
and (4.90) reproduces the results of a 2-loop calculation. The generalization
to higher orders is straightforward, albeit the computational effort increases
considerably. Notice that in order to get the 2-loop β-function for g from
(4.83), we can ignore the λ3-terms in the other differential equations (4.84)–
(4.86).

After looking at an impurity model, we now investigate the translation-
invariant system (4.65) with the split-up (4.66) and (4.68). Here we cannot
ignore the energy-diagonal scattering processes D(4) as we could do in the
impurity model discussed above. For simplicity we only study the differences
in the leading order of the flow equations (4.73)–(4.75).

First of all, the generator (4.72) acquires a term in O(λ2),

η = [H0,Hint(4)] = λ η(1) + λ2 η(2−part) , (4.91)

with

η(1) = [Hkin,Hint(4)]

η(2−part) = [D(4),Hint(4)] . (4.92)

Equations (4.73)–(4.75) are then replaced by

λ
∂g(diag)(k′

1k
′
2, k2k1)

∂B
= λ2 R

(1)
g−diag (4.93)

λ
∂g(n−diag)(k′

1k
′
2, k2k1)

∂B
= −(εk′

1
+ εk′

2
− εk1

− εk2
)2 λ g(n−diag)(k′

1k
′
2, k2k1)

+λ2 R
(1)
g−n−diag + λ2 R

(2−part)
g−n−diag (4.94)

∂εk

∂B
= λ2 R(1)

ε (4.95)

∂E

∂B
= λ2 R

(1)
E (4.96)

λ2 ∂u(k′
1k

′
2k

′
3, k3k2k1)

∂B
= λ2 R(1)

u + λ2 R(2−part)
u . (4.97)

Notice that there is no contribution from the commutator [Hkin, η(2−part)] in
(4.93) since normal-ordering of this commutator cannot yield energy-diagonal
2-particle interactions. Likewise the contribution R

(2−part)
g−n−diag in (4.94) vanishes

linearly with its energy transfer ∆E = εk′
1

+ εk′
2
− εk1

− εk2
. Its feedback

does therefore not affect the leading scaling behavior of the energy-diagonal
scattering processes (4.93). The generalization of (4.89) takes the form:

H(B = ∞) =
∑

εk(B = ∞) c†kck + E(B = ∞) (4.98)

+λ
∑

g(diag)(k′
1k

′
2, k2k1)(B = ∞) : c†k′

1
c†k′

2
ck2

ck1
: +O(λ3) .
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We conclude that terms like D(4) do not influence the flow equation results
in leading order in the universal low-energy limit. This observation does not
hold anymore in higher orders of the flow equation expansion.

4.1.5 Normal-Ordering with Respect to Which State?

In the above discussion we have ignored a subtle point that can be important
in higher order calculations. The normal-ordering procedure should be defined
with respect to the ground state of the interacting system. This is just the
ground state |GS〉 of the diagonal Hamiltonian H(B = ∞), which can usually
be identified easily. However, in the initial basis for B = 0 this state will look
very different. In order to use a normal-ordering prescription with respect
to the same quantum state for all values of B, we need to define normal-
ordering with respect to the interacting ground state in the basis for a given
value of B,

|GS(B)〉 def= U(B)U†(B = ∞) |GS〉 . (4.99)

Equation (3.5) is a special case of this relation for B = 0. For example for
fermions the definition of normal-ordering (4.55) then becomes B-dependent,

n
(int)
k′k (B) def= 〈GS(B)|c†k′ck|GS(B)〉 . (4.100)

In the language of infinitesimal unitary transformations one can rewrite
(4.100) as

n
(int)
k′k (B) = 〈GS|c̄†k′(B)c̄k(B)|GS〉 . (4.101)

Here
Ō(B) def= U(B = ∞)U†(B)O U(B)U†(B = ∞) , (4.102)

which can be found as the solution of two differential equations: First solve

dO(B′)
dB′ = −[η(B′), O(B′)] (4.103)

with the initial condition O(B′ = 0) = O up to B′ = B, O∗
B

def= O(B′ = B).
Then solve

dO(B′)
dB′ = [η(B′), O(B′)] (4.104)

with the initial condition O(B′ = 0) = O∗
B . The result of this differential

equation for B′ = ∞ is the operator we are looking for,

Ō(B) = O(B′ = ∞) . (4.105)

All the contractions on the right hand side of (4.83)–(4.86) should then be
performed with respect to the B-dependent contraction (4.101). The problem
with this normal-ordering prescription is that one first needs to know the
interacting ground state, i.e. η(B) for all values of B in (4.104), before one



78 4 Interacting Many-Body Systems

can actually define normal-ordering for any finite value of B. A possible
way out of this problem is to first run the flow equations from B = 0 to
B = ∞ with the trivial normal-ordering prescription for a noninteracting
system, n

(int)
k′k (B = ∞), and then to define the B-dependent normal-ordering

prescription according to (4.101). This allows one to find an improved result
for the interacting ground state by running the flow equations again from
B = 0 to B = ∞ with the B-dependent normal-ordering. This procedure can
be iterated until convergence is reached.

While (4.101) is in principle important to define the flow equation pro-
cedure to higher orders, few calculations have been published that actually
make use of such B-dependent normal-ordering. The main reason is that
the difference between the “naive” B-independent definition (that we will
generically use in the following chapters)

n
(0)
k′k = 〈GS|c†k′ ck|GS〉 (4.106)

and n
(int)
k′k (B) is at least of order λ. Therefore this difference does not affect

our results in leading order of the normal-ordered flow equation expansion
(4.89) or (4.98). Putting it otherwise: In leading order of the flow equation
expansion we can use contractions that are simply given by noninteracting
occupation numbers according to Bose-Einstein (for bosons) or Fermi-Dirac
statistics (for fermions).4

One situation where B-dependent normal-ordering can be very important
is for systems with phase transitions, where the interacting ground state is
very different from the noninteracting ground state. This has been cleverly
demonstrated for the phase transition in the Lipkin model using an imple-
mentation of (4.100) in [2, 3]. Similar ideas have been applied in the context
of symmetry breaking in fermionic systems where normal ordering is adjusted
to the flow of H0 [4].5 However, more research needs to be done along these
lines, which presents a promising future direction for applications of the flow
equation method.

4.2 Kondo Model

The Kondo model is of paradigmatic importance in correlated electron
physics. It was already introduced in Sect. 2.1.2, where its scaling proper-
ties were derived using the conventional “poor man’s” scaling approach. In
this chapter we use the Kondo model as a pedagogical example for the flow
equation approach in an interacting many-particle system, and for an explicit
realization of the general ideas outlined in Sect. 4.1.4.

4Except possibly for the constant E(B), which, however, does not feed back into
the other equations.

5Related ideas can also be found in [5, 6].
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In the next subsection we will first derive the leading order of the flow
equation expansion, which will essentially yield the β-function in 1-loop order.
In Sect. 4.2.2 we then extend this calculation to the next order. Since the
Kondo model is a strong-coupling model, we can only trust the expansion
scheme in the running coupling constant presented here for sufficiently large
temperature.6 This is analyzed in more detail in 4.2.3, followed by the explicit
evaluation of dynamical spin correlation functions in 4.2.4 and 4.2.5. The
final Sect. 4.2.6 contains a discussion of the pseudogap Kondo model in the
flow equation framework, which features a quantum phase transition with
nontrivial power laws. Sections. 4.2.4 to 4.2.6 are of particular importance
since they demonstrate the evaluation of observables in an interacting many-
body system, thereby extending the ideas presented in Chap. 3.

4.2.1 Expansion in 1st Order (1-Loop Results)

The calculations shown here and in the next subsection are largely taken
from [8] and presented in a more pedagogical way. We start with the para-
metrization of the flowing Kondo Hamiltonian,

H(B) = H0 + Hint(B) . (4.107)

Here H0 denotes the conduction band of electrons

H0 =
∑

t,α

εt c†tαctα , (4.108)

and Hint describes the interaction with the spin-1/2 degree of freedom S,

Hint(B) =
∑

t′,t

Jt′t(B) : S · st′t : . (4.109)

Here t′ and t denote general multi-indices. For the equilibrium Kondo model
discussed here they just represent wave vectors, but for the non-equilibrium
Kondo model discussed later in Sect. 5.2 more general representations are
possible. st′t is an abbreviation for the conduction band electron spin oper-
ator,

st′t
def=

∑

α,β

c†t′α
σαβ

2
ctβ , (4.110)

where σ are the usual Pauli matrices. The normal-ordering prescription in
(4.109) is defined with respect to the noninteracting Fermi sea as the ground

6In fact, it is also possible to derive a controlled flow equation expansion in
the strong-coupling regime of the Kondo model [7]. However, we postpone the dis-
cussion of such strong-coupling expansions to Sect. 5.1. Controlled strong-coupling
expansion are not always possible and in this section we mainly want to illustrate
the generic approach to interacting many-body systems.
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state of H0 where we take the chemical potential to be zero.7 The initial
condition for a constant antiferromagnetic exchange interaction is Jt′t(B =
0) ≡ J/N > 0, where N is the number of band states. Notice that the
hermiticity property Jt′t(B) = Jtt′(B) always remains fulfilled during the
flow.

Canonical Generator

The canonical generator follows immediately from [H0,Hint(B)],

η(1)(B) = [H0,Hint(B)]

=
∑

t′,t

η
(1)
t′t (B) : S · st′t : (4.111)

with
η
(1)
t′t (B) = (εt′ − εt)Jt′t(B) . (4.112)

The commutator of the canonical generator with H0 then takes the expected
form:

[η(1)(B),H0] = −
∑

t′,t

(εt′ − εt)
2 Jt′t(B) : S · st′t : . (4.113)

Commutator [η, Hint]

The evaluation of the commutator of the generator with the interaction part
of the Hamiltonian, and the subsequent normal-ordering of the resulting
terms plays the key role in the flow equation solution of an interacting many-
body system (compare Sect. 4.1.4). In leading order of the flow equation
analysis of the Kondo model we have to evaluate

C(1) = [η(1)(B),Hint(B)]

= [
∑

t′,t

η
(1)
t′t (B) : S · st′t : ,

∑

u′,u

Ju′u(B) : S · su′u : ] . (4.114)

Therefore we have to work out the following commutator:

B(1) = [ : S · st′t : , : S · su′u : ] . (4.115)

Let us do this in full detail. We use the following fundamental property of
the spin-1/2 algebra,

Si Sj =
1
4

δij +
i
2

∑

k

εijk Sk , (4.116)

7One can in fact omit normal-ordering : . . . : in (4.109) due to the properties
of the Pauli matrices and the absence of a magnetic field acting on the conduction
band electrons.
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and insert it into the above commutator:

B(1) =
1
4

∑

i,j

(
SiSj : c†t′ασi

αβctβ : : c†u′µσj
µνcuν :

−SjSi : c†u′µσj
µνcuν : : c†t′ασi

αβctβ :
)

=
i
8

∑

i,j,k

εijkσi
αβσj

µνSk
(
: c†t′αctβ : : c†u′µcuν : + : c†u′µcuν : : c†t′αctβ :

)

+
1
16

∑

i

(σi
αβσi

µν) [ : c†t′αctβ : , : c†u′µcuν : ]

=
i
8

∑

i,j,k

εijkσi
αβσj

µνSk
(
: c†t′αctβ : : c†u′µcuν : + : c†u′µcuν : : c†t′αctβ :

)

+
3
16

∑

α

(
δtu′ : c†t′αcuα : −δt′u : c†u′αctα :

)

+
3
8

δtu′ δt′u (n(t′) − n(t)) . (4.117)

The last term follows from using (4.60). The additional factor 2 is due to the
sum over the spin index α since normal-ordering is independent of α,

n(t) = 〈GS|c†t↑ct↑|GS〉 = 〈GS|c†t↓ct↓|GS〉 . (4.118)

Next we need to normal-order the four fermion terms in (4.117) using (4.59).
The result is straightforward using the standard identities for Pauli matrices
and we find:

B(1) = i : S · (st′t × su′u) : (4.119)

+ : S · st′u : δtu′(n(t) − 1/2)− : S · su′t : δt′u(n(t′) − 1/2)

+
3
16

∑

α

(
δtu′ : c†t′αcuα : −δt′u : c†u′αctα :

)

+
3
8

δtu′δt′u (n(t′) − n(t)) .

Using this it is easy to work out (4.114):

C(1) = i
∑

t′,t,u,u′

(εt′ − εt)Jt′tJu′u : S · (st′t × su′u) : (4.120)

+
∑

t′,t,v

(εt′ + εt − 2εv)Jt′vJvt (n(v) − 1/2) : S · st′t :

+
3
16

∑

t′,t,v,α

(εt′ + εt − 2εv)Jt′vJvt : c†t′αctα :

+2 × 3
16

∑

t,v

(2εt − 2εv)JtvJvt n(t) .



82 4 Interacting Many-Body Systems

Flow Equations

As we have discussed in Sect. 4.1.4, in first order of the flow equation ex-
pansion we only need to identify the terms that have the structure of the
original interaction term in (4.120). The flow equation for the coupling con-
stants Jt′t(B) in the Kondo Hamiltonian (4.107) is therefore determined by
(4.113) and the second line of (4.120):

dJt′t

dB
= −(εt′ − εt)

2Jt′t (4.121)

+
∑

v

(εt′ + εt − 2εv)Jt′vJvt (n(v) − 1/2)

+O(J3) .

Now the solution methods that have been introduced in Sect. 2.3.2 can be
employed to tackle this system of coupled differential equations.. In the sequel
we will mainly be interested in the behavior in the vicinity of the Fermi
surface. Therefore the natural parametrization is the infrared parametrization
from Sect. 2.3.2,

Jt′t(B) =
JIR(B)

N
e−B(ε

t′−εt )2 . (4.122)

Here the flow of JIR(B) is determined by the flow of J00(B) in (4.121) (t = 0
corresponds to the Fermi level). This leads to

dJIR

dB
= −2J2

IR

1
N

∑

v

εv e−2Bε2v (n(εv) − 1/2)

= −2J2
IR

∫
dε ρ(ε) ε e−2Bε2 (n(ε) − 1/2) . (4.123)

We assume a constant density of states, ρ(ε) ≡ ρεF
, conduction band

width 2D (ε ∈ [−D,D]) and zero temperature. The electron occupation num-
ber with respect to the noninteracting Fermi sea is then simply:

n(ε) =
{

0 for ε > 0
1 for ε < 0 .

(4.124)

The flow equation for the dimensionless coupling constant g
def= ρεF

J takes
the following form:

dg

dB
= g2

∫ D

−D

dε |ε| e−2Bε2

=
g2

2B

(
1 − e−2B D2

)
. (4.125)
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The flow is negligible for B � D−2 as should be expected. Therefore we can
replace this differential equation by the simpler form

dg

dB
=

g2

2B
(4.126)

with the initial condition now posed at B = D−2:

g(B = D−2) = g0 = ρεF
J . (4.127)

Here J is the bare coupling constant of the original Kondo Hamiltonian (2.40).
Equation (4.126) can be rewritten in terms of the flow parameter Λfeq =
B−1/2:

dg

d ln Λfeq
= −g2 . (4.128)

This agrees with the conventional β-function (2.47)

dg

d lnΛRG
= −β(g) = −g2 + O(g3) (4.129)

up to higher order terms with the identification Λfeq = ΛRG. In the next
section we also derive the term in order g3 in (4.128).

A final comment regarding the relation between the full system of differen-
tial equations (4.121) and the infrared parametrization (4.122). The analysis
of Sect. 2.3.2 for the potential scattering model can be carried through in the
same way, especially if one is interested in the coupling constant at higher
energies. We will return to this point later when we discuss dynamical cor-
relation functions. However, if one is only interested in the behavior at the
Fermi level, the infrared parametrization becomes asymptotically correct by
comparison with the full numerical solution.

4.2.2 Expansion in 2nd Order (2-Loop Results)

As we have seen in Sect. 4.1.4 we need to take the newly generated terms in
(4.120) into account to go to the next order in the flow equation expansion.
Let us first look at the term in the third line of (4.120). This contributes a
new potential scattering term

∑

t′,t,α

Vt′t(B) : c†t′αctα : (4.130)

in the flowing Hamiltonian H(B):

dVt′t

dB
=

3
16

∑

v

(εt′ + εt − 2εv)Jt′vJvt . (4.131)

Now we plug in the infrared parametrization (4.122) and find
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dVt′t

dB
=

3
16

J2
IR

N2

∑

v

(εt′ + εt − 2εv) e−B((ε
t′−εv)2+(εv−εt )2)

= 0 (4.132)

by explicitly performing the v-summation assuming a constant density of
states. We neglect band edge effects by taking the universal scaling limit
|εt′ |, |εt | � D. Therefore no potential scattering term is generated in or-
der J2, and likewise also the constant contribution in the fourth line of (4.120)
vanishes.8

K-Term

The only newly generated term from the leading order of the flow equa-
tion expansion is therefore given by the first line of (4.120). As discussed
in Sect. 4.1.4 we take this into account by allowing this new term in the
interaction Hamiltonian (4.109):

Hint(B) =
∑

t′,t

Jt′t(B) : S · st′t : (4.133)

+i
∑

t′,t,u′,u

Kt′t,u′u(B) : S · (st′t × su′u) : .

Hermiticity requires Kt′t,u′u(B) = −Ktt′,uu′(B) and the initial condition is
Kt′t,u′u(B = 0) ≡ 0. According to (4.80) our generator picks up a new
term η(2):

η =
∑

t′,t

η
(1)
t′t : S · st′t : + i

∑

t′,t,u′,u

η
(2)
t′t,u′u : S · (st′t × su′u) : , (4.134)

where

η
(1)
t′t = (εt′ − εt)Jt′t

η
(2)
t′t,u′u = (εt′ + εu′ − εt − εu)Kt′t,u′u . (4.135)

We can now combine the source term for the K-interaction in the first line of
(4.120) with the usual linear term generated by [η(2),H0]. We find the flow
equation:

dKt′t,u′u

dB
= −(εt′ + εu′ − εt − εu)2 Kt′t,u′u (4.136)

+(εt′ − εt)Jt′tJu′u ,

which implies that the K-term is generated in O(J2).
8By comparison with the Bethe ansatz solution one can deduce that the poten-

tial scattering term is in fact only generated in order J4.
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Commutator [η, Hint]

Next we need to identify the new terms in O(J3) in the commutator [η,Hint].
There are two contributions

C(2)
a =




∑

u′,u

η
(1)
u′u : S · su′u : , i

∑

v′,v,w′,w

Kv′v,w′w : S · (sv′v × sw′w) :





(4.137)
and

C
(2)
b =



 i
∑

v′,v,w′,w

η
(2)
v′v,w′w : S · (sv′v × sw′w) : ,

∑

u′,u

Ju′u : S · su′u :



 .

(4.138)
These can be combined into

C(2) =
∑

(εu′ − εu − εv′ + εv − εw′ + εw)Ju′uKv′v,w′w

× i [: S · su′u : , : S · (sv′v × sw′w) :] . (4.139)

The basic commutator that we need to work out is:

B(2) = [: S · su′u : , : S · (sv′v × sw′w) :] . (4.140)

The evaluation is straightforward but somehow lengthy (for details see [8]):

B(2) =
i

2
δw′uδwu′

(
n(w′)(1 − n(w)) + n(w)(1 − n(w′))

)
: S · sv′v :

− i

2
δv′uδvu′

(
n(v′)(1 − n(v)) + n(v)(1 − n(v′))

)
: S · sw′w :

+ normal − ordered terms with different structure . (4.141)

With the same reasoning as above, we can ignore the other normal-ordered
terms in this expression. Interaction terms that are not contained in (4.133)
do not play a role in this order of the flow equation expansion. Notice that
B(2) does also contain a contribution to the K-term. However, this contri-
bution is necessarily O(J3) in (4.136). Therefore the feedback of this contri-
bution into the flow equation for J is only of order J4, which is one order
further than our current calculation allows anyway.

Putting everything together we find:

C(2) =
1
2

∑
(2εu − 2εu′ + εt − εt′) Ju′u(Ku′u,t′t − Kt′t,u′u)

×
(
n(u′) (1 − n(u)) + n(u) (1 − n(u′))

)

× : S · st′t : (4.142)
+ normal − ordered terms with different structure .
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Flow Equations

With the new contribution from (4.142) we can now write down the full set
of flow equations:

dJt′t

dB
= −(εt′ − εt)

2Jt′t (4.143)

+
∑

v

(εt′ + εt − 2εv)Jt′vJvt (n(v) − 1/2)

+
1
2

∑

u′,u

(2εu − 2εu′ + εt − εt′) Ju′u(Ku′u,t′t − Kt′t,u′u)

×
(
n(u′) (1 − n(u)) + n(u) (1 − n(u′))

)

+O(J4)

dKt′t,u′u

dB
= −(εt′ + εu′ − εt − εu)2 Kt′t,u′u (4.144)

+(εt′ − εt)Jt′tJu′u

+O(J3) .

This system of differential equations contains the whole flow behavior of the
Kondo Hamiltonian up to O(J4) in (4.143) and up to O(J3) in (4.144). It will
be the basis for discussing the very interesting and nontrivial scaling behavior
of the non-equilibrium Kondo model later in Sect. 5.2. For now we will,
however, restrict ourselves to the equilibrium case with a constant density
of states. Notice that the hermiticity conditions for the running coupling
constants in the flowing Hamiltonian always remain fulfilled in the system of
equations (4.143) and (4.144).9

IR-Parametrization

We use the infrared parametrization (4.122) and find the following flow equa-
tion for the dimensionless coupling constant:

dg

dB
= −2g2

∫ D

−D

dε ε e−2Bε2 (n(ε) − 1/2) (4.145)

+
∫ D

−D

dεdε′ (ε − ε′) g e−B(ε′−ε)2 (Kε′ε,00 − K00,ε′ε)

×
(
n(ε′)(1 − n(ε)) + n(ε)(1 − n(ε′))

)
.

We first need to determine the flow of K from (4.144) in order to solve this
differential equation:

9It is very worthwhile to verify this as a consistency check for every flow equation
calculation.
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K00,ε′ε(B) ≡ 0 (4.146)
dKε′ε,00

dB
= −(ε′ − ε)2 Kε′ε,00 + g2 e−B(ε′−ε )2 (ε′ − ε) . (4.147)

Equation (4.147) can be solved easily,

Kε′ε,00(B) = (ε′ − ε) e−B(ε′−ε)2
∫ B

0

dB′ g2(B′) . (4.148)

Since the running coupling constant g(B′) grows logarithmically (i.e., very
slowly), one can replace the integral on the right hand side of this equation by
the value on the scale B (up to higher order corrections that do not contribute
in this order of the calculation anymore):

Kε′ε,00(B) = (ε′ − ε) e−B(ε′−ε)2 B (g2(B) + O(g3)) . (4.149)

We now have a closed differential equation for the dimensionless coupling
constant:

dg

dB
= −2g2

∫ D

−D

dε ε e−2Bε2 (n(ε) − 1/2) (4.150)

−2g3 B

∫ D

−D

dεdε′ (ε′ − ε)2 e−2B(ε′−ε)2 n(ε′)(1 − n(ε)) .

Zero Temperature

Let us analyze (4.150) for zero temperature (4.124). As before we extend
the energy integrations to ±∞, but pose the initial condition at the scale
B = D−2. Then the integrals in the second line of (4.150) can be done in
closed form,

∫ ∞

−∞
dεdε′ (ε′ − ε)2 e−2B(ε′−ε)2 n(ε′)(1 − n(ε)) (4.151)

=
∫ ∞

0

dε

∫ 0

−∞
dε′(ε′ − ε)2 e−2B(ε′−ε)2

=
1

8B2
. (4.152)

This yields
dg

dB
=

g2

2B
− g3

4B
+

O(g4)
B

. (4.153)

and with the identification Λfeq = B−1/2:
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dg

d ln Λfeq
= −g2 +

1
2

g3 + O(g4) . (4.154)

This is the correct β-function of the Kondo model to 2-loop order.
This result shows that it is possible to extend flow equation calculations

beyond the leading order. A careful reader might wonder about the effect of
the B-independent normal-ordering prescription that we have implicitly used
here. In Sect. 4.1.5 we had argued that beyond leading order it is generally
necessary to use n

(int)
k′k (B) defined in (4.101). However, it is easy to verify that

c̄kα(B) = ckα +O(J)× composite operator containing one spin operator S .
(4.155)

Since 〈GS|S|GS〉 = 0 without an external magnetic field, the expectation
value n

(int)
k′k (B) can only differ from the noninteracting value in order J2,

n
(int)
k′k (B) − 〈GS|c†k′αckα|GS〉 ∝ O(J2) . (4.156)

If we plug n
(int)
k′k (B) into the second line of (4.143), the difference from the

noninteracting normal-ordering prescription is effectively of order O(J4) in
the differential equations. It is therefore negligible in the present order of the
expansion.

4.2.3 Nonzero Temperature

The β-function of the Kondo model shows strong-coupling behavior. The
solution of (4.153) takes the following form (plus subleading corrections):

g(Λfeq) =
1

ln(Λfeq/TK)
. (4.157)

The Kondo temperature is given by

TK = D
√

g0 e−1/g0 , (4.158)

where g0 is the original (bare) coupling constant in the Kondo Hamiltonian.
Since we are effectively performing an expansion in the running coupling
constant g(Λfeq), this means that our expansion parameter becomes large and
therefore our results unreliable once the scaling parameter Λfeq is of order
the Kondo temperature. One possibility to retain a controlled expansion in
a small parameter is to go to nonzero temperature T � TK, where g(Λfeq)
always remains small as we will see below.

We go back to (4.150) and insert the fermion occupation numbers at
nonzero temperature,

n(ε) =
1

eε/T + 1
. (4.159)

The leading behavior of the integrations remains unchanged for B � T−2

and therefore the scaling equation (4.154),
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dg

dΛfeq
= − g2

Λfeq
+

1
2

g3

Λfeq
, (4.160)

remains unchanged for Λfeq � T as expected.
For B � T−2 the leading behavior of the integrals in (4.150) is given by:

dg

dB
= g2

∫ ∞

−∞
dε ε e−2Bε2 tanh(ε/2T )

−2g3 B

∫ ∞

−∞
dεdε′ (ε′ − ε)2 e−2B(ε′−ε)2 n(ε′)(1 − n(ε)) .

=
g2

2T

∫ ∞

−∞
dε ε2 e−2Bε2

−2g3 B

∫ ∞

−∞
dε n(ε)(1 − n(ε))

∫ ∞

−∞
dε′ ε′

2 e−2Bε′2

=
√

2π

16
g2 1

T B3/2
−

√
2π

4
g3 T

B1/2
(4.161)

Equivalently (Λfeq � T ):

dg

dΛfeq
= −

√
2π

8
g2 1

T
+

√
2π

2
g3 T

Λ2
feq

. (4.162)

At this point it is worthwhile to pause a moment and to remember that one
stops the scaling flow once ΛRG ≈ T in the conventional scaling analysis.
Then all excitation energies up to approximately the temperature scale con-
tribute to the physical properties. However, the flow equation expansion can
be viewed as a diagonalization procedure. Therefore there is no reason to
stop the flow at the scale Λfeq ≈ T . In fact, we do not want to stop there
in order to be able to calculate dynamical correlation functions also for very
small frequencies.

Due to this conceptual difference (4.162) is structurally different from the
scaling equations that we are used to from conventional scaling analysis. First
of all, it is worthwhile to verify that all dimensions are correct: Since tem-
perature has the dimension of energy, not only the familiar 1/Λfeq-behavior
from (4.160) occurs on the right hand side of (4.162).

We can argue that we can integrate (4.160) down to Λfeq = T , and then
use

g∗
def=

1
ln(T/TK)

(4.163)

as the initial condition of (4.162) at Λfeq = T , g(Λfeq = T ) = g∗. If it were only
for the second order term in (4.162), the scaling flow of the coupling constant
would then effectively stop below the temperature scale.10 This agrees with
the philosophy of the conventional scaling approach. However, the term in

10To be precise: there would only be a small additional shift of O(g2
∗)
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third order of the coupling constant in (4.162) dominates the scaling equation
for Λfeq � T due to its more infrared divergent 1/Λ2

feq-behavior. One finds
the following solution,

g(Λfeq) =
g∗√

1 + Γrel/Λfeq

(1 + O(g∗)) , (4.164)

with
Γrel =

√
2π g2

∗ T . (4.165)

The flow of the coupling constant therefore crosses over to a universal decay
for scaling parameters smaller than the energy scale set by Γrel:

g(Λfeq) = (2π)−1/4

√
Λfeq

T
for Λfeq � Γrel . (4.166)

Going back to the discussion of the resonant level model in Sect. 3.3.2, we will
remember that there an algebraic decay set in once the scaling parameter was
of order the hybridization strength (3.85). The onset of the algebraic decay
signaled the width of the peak in the impurity density of states around εd.
We will see in the next chapter that a similar interpretation holds in the
Kondo model: Γrel determines the width of the zero frequency peak in the
spin-spin correlation function. In physical terms this means that Γrel is the
spin relaxation rate. The way in which decoherence like finite temperature
spin relaxation enters into the scaling equation (4.162) is the first “real”
difference between flow equations and the conventional scaling approach up
to this point in this book. These decoherence terms in the flow equation
formalism will later play a major role in understanding the scaling behavior
of the non-equilibrium Kondo model in Sect. 5.2.

Putting everything together, we have shown that the flow equation expan-
sion is reliable as long as the running coupling remains small during the entire
flow, g∗ � 1 for all Λfeq. This is achieved for sufficiently high temperature
T � TK.

Before proceeding with the evaluation of correlation functions, a short
comment on the question why our diagonalization procedure depends on
temperature in the first place. For an exact diagonalization of the Hamil-
tonian this should of course not be the case, and in fact it was never the case
in our solutions of quadratic Hamiltonians in Sects. 2.3 and 3.3. However, for
an interacting Hamiltonian like the Kondo model we are effectively trying to
find a diagonal Hamiltonian that comes as close as possible to describing the
dynamics for a given nonzero temperature. Hence this “effective” diagonal
Hamiltonian for a given temperature will in general depend on temperature.11

11Technically the way in which temperature enters into the flow equations is
through the normal-ordering procedure.
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4.2.4 Transformation of the Spin Operator

After finding the approximate flow equation diagonalization of the Kondo
Hamiltonian, we now want to make use of this to evaluate dynamical corre-
lation functions. Different from the examples in Chap. 3, additional approx-
imations in the transformation of the observable are necessary in a generic
interacting many-body system. Since the spin-spin correlation functions in
the Kondo model are of particular interest, we will use them as a pedagogical
example to introduce the reader to this very important topic.

Flow Equation

First we need to solve the flow equation (3.8) for the observable Sa, a = x, y, z,

dSa(B)
dB

= [η(B), Sa(B)] . (4.167)

Similar to the expansion of the Hamiltonian in terms of a small parame-
ter (4.77), we expand the operator Sa(B) in terms of the running coupling
constant of the Kondo model. The leading terms are then given by the com-
mutator with η(1) from (4.111): Since the initial condition is Sa(B = 0) = Sa,
we first need to evaluate:

[η(1)(B), Sa] =
∑

t′,t

∑

i

(εt′ − εt)Jt′t [Si, Sa] : si
t′t :

= i
∑

t′,t

(εt′ − εt)Jt′t : (S × st′t)a : . (4.168)

This suggests the following ansatz for the flowing observable,

Sa(B) = h(B)Sa + i
∑

u′u

γu′u(B) : (S × su′u)a : . (4.169)

In order to solve (4.167) we also need the commutator

[: S · st′t :, : (S × su′u)a :] = +i : sa
u′u (S · st′t) : −iSa : st′t · su′u : (4.170)

+
i
4

δtu′ : sa
t′u : +

i
4

δt′u : sa
u′t :

− i
2
Sa

(1
2

δtu′(1 − 2n(t))
∑

α

: c†t′αcuα : +
1
2

δt′u(1 − 2n(t′))
∑

α

: c†u′αctα :

+2δtu′δt′u (1 − n(t))n(t′)
)

−1
4

δtu′(1 − 2n(t)) : (S × st′u)a : +
1
4

δt′u(1 − 2n(t′)) : (S × stu′)a :

after some straightforward algebra. This shows a number of new terms not
contained in the ansatz (4.169). However, all these terms will initially only
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be generated in O(J2), therefore we restrict the calculation to terms of the
structure (4.169) and neglect all other terms. We obtain the following set of
differential equations after identifying the coefficients from (4.169), (4.168)
and (4.170):

dh

dB
=

∑

t′,t

(εt′ − εt)Jt′t γtt′ n(t′) (1 − n(t)) (4.171)

dγt′t

dB
= h (εt′ − εt)Jt′t (4.172)

−1
4

∑

u

(
(εt′ − εu)Jt′u γut + (εt − εu)Jut γt′u

)
(1 − 2n(u)) .

Sum Rules

We remember from the examples in Chap. 3 that commutation or anticom-
mutation relations of operators resulting in c-numbers should remain exactly
fulfilled under the unitary flow, for example (3.75). In the present example
this would imply

(
Sa(B)

)2 =
1
4

∀B . (4.173)

Since we are using a normal-ordering prescription for truncating the flow
equations for the flowing observable, this is clearly a too ambitious require-
ment. We can only expect (4.173) to hold with respect to the state used for
the normal-ordering prescription,

〈
(
Sa(B)

)2〉 =
1
4

∀B . (4.174)

Here the expectation value is taken either with respect to the ground state
of H0 or the respective finite temperature density matrix.

Let us work this out explicitly for (4.169):

〈
(
Sa(B)

)2〉 =
1
4

h2(B) − 1
4

∑

t,t′

γt′t(B)γtt′(B)n(t′) (1 − n(t)) . (4.175)

Initially for B = 0 the condition is of course fulfilled and we differentiate with
respect to B,

d
dB

〈
(
Sa(B)

)2〉 =
1
2



dh(B)
dB

h(B) −
∑

t,t′

γt′t(B)
dB

γtt′(B)n(t′) (1 − n(t))





=
1
8

∑

t,t′,u

(
(εt′ − εu)Jt′u γut + (εt − εu)Jut γt′u

)
γtt′

×(1 − 2n(u))n(t′) (1 − n(t)) . (4.176)
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Notice that the terms coming from (4.171) and the first line of (4.172) cancel
exactly.

However, the remaining term (4.176) is generally nonzero and amounts
to a violation of the property (4.174). This is a rather general observation
in flow equation expansions for interacting many-body systems:12 Working
within a given set of operators like in (4.169) and taking all flow equations
into account except for the ones generating additional terms is no guarantee
for fulfilling a condition like (4.174). In fact, one can verify that only with
the additional property

〈[η(B),
(
Sa(B)

)2]〉 = 0 (4.177)

can one expect
d

dB
〈
(
Sa(B)

)2〉 = 0 (4.178)

to hold exactly . Still the violation of (4.178) will become smaller if one takes
more terms into account in the ansatz (4.169) since these new terms are
generated in higher orders of the expansion parameter (as long as the ex-
pansion parameter itself remains sufficiently small during the flow). For our
purposes here we will restrict ourselves to the ansatz (4.169), therefore we
can consistently neglect the effect of η(2) since it only produces higher order
terms.

Summing up, violations of sum rules like (4.178) are often encountered
in flow equation expansions. Notice that the size of the violation gives some
measure for the reliability of the ansatz for the flowing observable. In the
next section we will see in detail that e.g. for the Kondo model the additional
terms (4.176) lead to very small effects. Sometimes one can also show that
additional higher order terms cannot contribute to the dominant long-time
behavior in correlation functions and are asymptotically irrelevant. We will
return to this point in Sect. 4.3 for the spin–boson model.

Approximate Solution

We now deduce an approximate analytical solution of the system of differen-
tial equations (4.171) and (4.172) along the same lines as in the discussion of
the resonant level model in Sect. 3.3.2. Later we will verify the accuracy of our
approximations with a full numerical solution in order to obtain quantitative
results. Still the analytical solution derived here is very valuable because it
gives us analytical insights into the qualitative behavior.

First we notice that γs′s(B) is generated in order J , therefore the second
term on the right hand side of (4.172) can initially be neglected since it only
contributes in O(J2). Next (similar to Sect. 3.3.2) we take h(B) as unchanged
and find

12In other interacting fermion systems one e.g. often encounters conditions like
{c†k′(B), ck(B)} = δk′k ∀B.
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γs′s(B) =
JIR(B = ε−2

s′s
)

εs′ − εs

(
1 − e−B(ε

s′−εs)2
)

. (4.179)

Notice that the coupling constant can be taken at the average energy (2.106),
ε
s′s

= (εs′ + εs)/2 to leading order. Of course, we need to verify up to what
point the approximation h(B) ≈ 1 can still be used. We put the approximate
solution (4.179) into (4.171) and find:

dh

dB
= −J2

∑

s,s′

e−B(ε
s′−εs)2

(
1 − e−B(ε

s′−εs)2
)

n(εs) (1 − n(εs′)) . (4.180)

As long as B � T−2 the integrations yield a simple result,

dh

dB
= − g2

4B
. (4.181)

This implies that h(B) deviates only very slowly from 1 with

1 − h(B = T−2) = 2g2(B = T−2) ln(D/T ) , (4.182)

which is in leading order negligible for T � TK. Let us analyze what happens
once B � T−2. Then the integrations in (4.180) give

dh

dB
= −g2 T B−1/2 . (4.183)

One concludes that h(B) starts to deviate noticeably from its initial value
once g2(B)T B1/2 ∼ 1. This is equivalent to Λfeq ∼ Γrel, where Γrel is the
spin relaxation rate introduced in (4.165):

Γrel =
√

2π g2(Λfeq = T )T . (4.184)

This implies

ρ γs′s(B = ∞) =
g(B = ε−2

s′s
)

εs′ − εs

(4.185)

for energy differences |εs′ − εs| � Γrel. Due to the decay of h(B) these coeffi-
cients remain approximately constant for energy differences |εs′ − εs| � Γrel

(compare the discussion in Sect. 3.3.2):13

ρ γs′s(B = ∞) ∼ g∗

Γrel sgn(εs′ − εs)

∼ sgn(εs′ − εs)
g∗ T

. (4.186)

13Here it becomes important that the decoherence term in the flow equation
(4.162) drives the coupling constant to zero for Λfeq → 0 as one can verify from the
numerical solution.
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Asymptotically one finds h(B = ∞) = 0, that is the observable becomes com-
pletely entangled with environmental degrees of freedom. In the next section
we will explore what (4.185) and (4.186) imply for spin-spin correlation func-
tions.

4.2.5 Spin Correlation Function and Dynamical Susceptibility

We are interested in the symmetrized spin-spin correlation function,

C(t) =
1
2
〈{Sz(0), Sz(t)}〉 . (4.187)

We use (3.38) and express the Fourier transform in terms of the coefficients
γs′s(B) for B = ∞:

C(ω) = − π

Z̃(β)

∑

n

e−βEn

∑

t,t′

∑

u,u′

γt′t(B = ∞)γu′u(B = ∞) (4.188)

×〈n| : (S × st′t)z : : (S × su′u)z : |n〉
×
(
δ(ω − εu′ + εu) + δ(ω + εu′ − εu)

)
.

Now

〈n| : (S × st′t)z : : (S × su′u)z : |n〉 (4.189)

=
∑

i,j,k,l

εzijεzkl 〈n|SiSk|n〉 〈n| : sj
t′t : : sl

u′u : |n〉

and the only contributions come from i = k (since 〈n|Sx,y,z|n〉 = 0). One
easily shows

〈n| : (S × st′t)z : : (S × su′u)z : |n〉 =
1
6
〈n| : st′t : · : su′u : |n〉

=
1
6
〈n| : suu′ : · : su′u : |n〉(4.190)

since only matrix elements with t′ = u, t = u′ can be nonvanishing. Plugging
this back into (4.188) yields:

C(ω) = π
∑

u,u′

γ2
u′u(B = ∞)

1
6
× 3

2
n(u) (1 − n(u′))

×
(
δ(ω − εu′ + εu) + δ(ω + εu′ − εu)

)
(4.191)

=
π

4

∑

u

γ2
εu+ω,εu

(B = ∞)

×
(
n(εu) (1 − n(εu + ω)) + n(εu + ω) (1 − n(εu))

)
.(4.192)

We distinguish three cases:
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1. |ω| � Γrel: Then according to (4.186)

C(ω) ∼ 1
g2
∗ T 2

∑

u

(
n(εu) (1 − n(εu + ω)) + n(εu + ω) (1 − n(εu))

)

∝ 1
Γrel

, (4.193)

since the summation over u yields a factor proportional to temperature.
Hence for small frequencies the spin-spin correlation function is propor-
tional to the inverse of the spin relaxation rate Γrel as expected.

2. Γrel � |ω| � T : Likewise according to (4.185)

C(ω) ∼ g2
∗

ω2

∑

u

(
n(εu) (1 − n(εu + ω)) + n(εu + ω) (1 − n(εu))

)

∝ Γrel

ω2
, (4.194)

since again the summation over u yields a factor proportional to T .
3. T � |ω|: For such large frequencies

C(ω) ∼ g2(Λfeq = |ω|)
ω2

∑

u

(
n(εu)(1 − n(εu + ω)) + n(εu + ω)(1 − n(εu))

)

∝ g2(Λfeq = |ω|)
ω

, (4.195)

since here the summation over u yields a factor proportional to ω. The
coupling constant has to be evaluated at the flow parameter scale corre-
sponding to ω.

The dynamical quantity most frequently discussed in the literature is not
the symmetrized spin correlation function, but the imaginary part of the dy-
namical spin susceptibility χ′′(ω). Using the fluctuation–dissipation theorem
(3.40),

χ′′(ω) = tanh
( ω

2T

)
C(ω) , (4.196)

it is easy to deduce its behavior from our results for the spin correlation
function:

1. |ω| � Γrel: At small frequencies the dynamical spin susceptibility is linear
in ω:

χ′′(ω) ∝ ω

Γrel T
. (4.197)

2. Γrel � |ω|: Both (4.194) and (4.195) lead to the same behavior for the
dynamical spin susceptibility:

χ′′(ω) ∝ g2(Λfeq = |ω|)
ω

. (4.198)
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Fig. 4.1. Universal curves for the spin-spin correlation function C(ω) and the
imaginary part of the dynamical spin susceptibility χ′′(ω) obtained from the full
numerical solution of (4.171) and (4.172) for various temperatures. The fluctuation–
dissipation theorem (3.40) is exactly fulfilled for these curves

Typical curves are shown in Fig. (4.1). Notice that the symmetric spin-spin
correlation function shows the expected zero frequency decoherence peak with
width Γrel. The dynamical spin susceptibility has its maximum for ω ≈ Γrel

with
χ′′(ω = Γrel) ∝

1
T

. (4.199)

Since the curves in Fig. (4.1) are obtained from the solution of (4.171) and
(4.172), the sum rule ∫ ∞

0

dω C(ω) =
π

4
(4.200)

will generally be violated due to the remaining nonzero terms in (4.176). This
violation was due to the second line of (4.172), which should be a small term
for small running coupling constants. We can see this explicitly in Fig. 4.2
where we compare the full solution of (4.171) and (4.172) with the approx-
imate solution where the second line of (4.172) is omitted (and therefore
the sum rule exactly fulfilled). The agreement between the curves is excel-
lent. The inset of Fig. 4.2 shows the violation of the sum rule that becomes
smaller for larger temperature and therefore smaller coupling constants.

Via a Kramers-Kronig relation one can also obtain the static susceptibil-
ity,
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Fig. 4.2. The spin-spin correlation function C(ω) obtained from the full numerical
solution of (4.171) and (4.172) (full line) versus the numerical solution where the
second line of (4.172) is omitted (dashed line) for T/TK = 30. The inset shows the
violation of the sum rule (4.200) from the full solution of (4.171) and (4.172), see
text

χ0 =
2
π

∫ ∞

0

dω
χ′′(ω)

ω
. (4.201)

From the above results for χ′′(ω) it is easy to see that

χ0(T ) ∝ 1
T

. (4.202)

In fact one can verify (see Fig. 4.3):

T χ0(T ) =
1
4

(1 − g∗) =
1
4

(
1 − 1

ln(T/TK)

)
(4.203)

for T/TK � 1, which shows the correct crossover to a free spin-1/2 at high
temperature [9].

4.2.6 Pseudogap Kondo Model

In this chapter we discuss the pseudogap Kondo model [10], that is the Kondo
model with a nontrivial density of states

ρ(ε) = ρ0 |ε|r (4.204)

with r > 0. Such models have been widely discussed in the literature to
describe magnetic impurities in hosts with a pseudogap density of states [11].
From our point of view, we are interested in this model since it allows us to
understand:
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Fig. 4.3. Effective magnetic moment squared T χ0(T ) from (4.203) as a function
of temperature. The circles denote data points obtained using the flow equation
solution and the full line is the analytical result (4.203) describing the leading
logarithmic correction. The data in Fig. 4.1 need to be calculated to very large
frequencies in order to see the reduction of the effective magnetic moment when
lowering temperature

– how quantum phase transitions emerge within the flow equation frame-
work

– how nontrivial power laws in correlation functions can be generated
through the nonperturbative structure of the transformation of observ-
ables in the flow equation method.

Let us first study the scaling behavior of the coupling constant in the infrared
limit at zero temperature. Equation (4.123) takes the following form

dJIR

dB
= −2J2

IR ρ0

∫
dε |ε|r ε e−2Bε2 (n(ε) − 1/2) nn (4.205)

= 2J2
IR ρ0

Γ (1 + r/2)
(2B)1+r/2

. (4.206)

This differential equation allows the following solution with a scaling struc-
ture,

JIR(B) = Jc Br/2 , (4.207)

with a specific critical coupling

ρ0Jc = gc =
r

2r/2 Γ (1 + r/2)
= r + O(r2) . (4.208)

The expansion parameter of the flow equation approach (and conventional
scaling approaches) is given by the dimensionless parameter
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g(B) def= ρ(ε = B−1/2)JIR(B) . (4.209)

Here the density of states is evaluated at the energy scale corresponding
to the flow parameter. For the critical coupling (4.207) g(B) becomes B-
independent,

g(B) ≡ gc = ρ0 Jc . (4.210)

For J(B = D−2) < Jc D−r the expansion parameter flows to zero, and it
diverges for J(B = D−2) > Jc D−r. The critical coupling therefore describes
a quantum phase transition between a weak-coupling and a strong-coupling
phase. Notice that we can reliably describe both the weak-coupling phase
and the quantum phase transition for small r at zero temperature according
to (4.210).14

In the sequel we are interested in analytical results at the quantum phase
transition for small parameters r.15 The quantity that we want to study is
the dynamical spin susceptibility, in particular its scaling behavior at the
quantum phase transition. We will see that this is linked to the behavior of
h(B) in the flow equation framework.

Similar to the previous discussion for the conventional Kondo model we
can formally solve (4.172):

γt′t(B) = (εt′ − εt)Jc

∫ B

0

dB′ (B′)r/2 h(B′) e−B′(ε
t′−εt )2 . (4.211)

Inserting this into the differential equation (4.171) for h(B) yields:

dh

dB
= −J2

c

∫ ∞

0

dε′ ρ(ε′)
∫ 0

−∞
dε ρ(ε)Br/2 (ε′ − ε)2 e−B(ε′−ε)2

×
∫ B

0

dB′ (B′)r/2 h(B′) e−B′(ε′−ε)2

= −J2
c

∫ ∞

0

dε′ ρ(ε′)
∫ 0

−∞
dε ρ(ε)Br/2 e−B(ε′−ε)2

× ∂

∂B

∫ B

0

dB′ (B′)r/2 h(B′) e−B′(ε′−ε)2

+J2
c × O(r) . (4.212)

Here we have used partial integration over B. The terms J2
c ×O(r) ∝ r3 can

be neglected in leading order of the calculation as we will see below. The

14In order to have a controlled expansion in the strong-coupling phase we would
again need nonzero temperature similar to the discussion of the conventional Kondo
model in the previous section.

15Notice that we can safely neglect higher order terms in (4.206) in this regime
since they only produce corrections in O(r2).
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integrations over ε′ and ε can now be done in closed form16 and we find a
simple differential equation for h(B):

dh

dB
= −g2

c h(B)
1

4B
. (4.213)

Its solution is
h(B) ∝ B−g2

c/4 , (4.214)

and inserting this back into (4.211) results in

γt′t(B = ∞) =
sgn(εt′ − εt)

|εt′ − εt |1+r−g2
c/2

. (4.215)

The low-frequency behavior of the spin-spin correlation function is then ac-
cording to (4.192):

C(ω) ∝ 1
|ω|2+2r−g2

c

∫ ∞

0

dε′
∫ 0

−∞
dε ρ(ε) ρ(ε′) δ(|ω| − ε′ + ε)

∝ 1
|ω|1−g2

c
. (4.216)

Respectively, the imaginary part of the dynamical spin susceptibility at the
quantum phase transition is given by

χ′′(ω) ∝ sgn(ω)
|ω|1−g2

c
. (4.217)

The flow equation calculation therefore reproduces the correct result [12] for
the anomalous dimension ηχ defined as χ′′(ω) ∝ |ω|−1+ηχ ,

ηχ = r2 + O(r3) . (4.218)

Notice that this is a rather nontrivial result from the point of view of the
perturbative renormalization group. Using the flow equation method we have
in fact been able to explicitly extract a nontrivial power-law. We did not have
to resort to the usual reasoning of summing up leading logarithms under a
scaling assumption for the dynamical behavior.

The deeper reason for this observation is the highly nontrivial and non-
perturbative structure of the differential equations (4.171) and (4.172) gov-
erning the transformation of the observable. In a way this is also responsible
for our difficulties in finding a good analytical solution for the transformation
of observables in a simple model like the resonant level model in Sect. 3.3.2.
The systems of differential equations are essentially the same and govern very
different behavior from local Fermi liquids to nontrivial power laws. Our diffi-
culties in finding a good analytical solution are probably related to the wealth
of different phenomena that can be described by these differential equations.

16 We can set r = 0 in the integral to leading order of the calculation.
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This concludes our discussion of the Kondo model as a pedagogical intro-
duction to “real” applications of the flow equation machinery in interacting
many-body systems. We will return to the Kondo model later in Sect. 5.2
when we discuss its behavior in non-equilibrium.

4.3 Spin–Boson Model

The spin–boson model is of paradigmatic importance for understanding dis-
sipative quantum systems. It has also played an important role in the de-
velopment of the flow equation method. While there are many similarities
to the Kondo model discussed above, the spin–boson model also highlights
some new aspects in applications of the flow equation technique. We dis-
cuss its flow equation solution in this chapter, though in a somehow more
abbreviated manner than the discussion of the Kondo model above.

4.3.1 Flow of the Hamiltonian

The spin–boson model is defined by the Hamiltonian:

H = −∆

2
σx +

1
2

σz

∑

k

λk (ak + a†
k) +

∑

k

ωk a†
kak . (4.219)

It describes a two-level system defined by Pauli matrices coupled to a thermo-
dynamically large bath consisting of harmonic oscillators with bosonic cre-
ation and annihilation operators a†

k, ak. ∆ is the tunneling matrix element
of the two-level system and the matrix elements λk describe the coupling to
the bath degrees of freedom. One can verify that the two-level dynamics is
completely determined by the spectral function J(ω),

J(ω) def=
∑

k

λ2
k δ(ω − ωk) . (4.220)

For reviews of the many applications of the spin–boson model one can con-
sult [13, 14]. Notice that in particular for an Ohmic bath, J(ω) = 2αω,
the spin–boson model can be mapped to a Kondo model and vice versa via
bosonization and refermionization techniques.

Flow Equations

Let us set up the flow equations for the Hamiltonian (4.219). Our presen-
tation follows [15, 16], which can be consulted for more details. Clearly, the
interaction term that we want to eliminate in (4.219) is the coupling of system
and bath,
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Hint =
1
2

σz

∑

k

λk (ak + a†
k) . (4.221)

The canonical generator takes the following structure

η = i σy

∑

k

η
(y)
k (ak + a†

k) + σz

∑

k

η
(z)
k (ak − a†

k) (4.222)

with
η
(y)
k =

λk

2
∆ , η

(z)
k = −λk

2
ωk . (4.223)

If we work out the commutator [η,H0], we see that a new coupling of system
and bath is generated with the structure:

i σy

∑

k

µk (ak − a†
k) . (4.224)

The coefficients µk are generated in linear order of the small parameters λk.
Along the lines of the discussion in Sect. 4.1.4 we therefore need to take these
new terms into account even in lowest order of the flow equation expansion.

However, we can take a different route that remains faithful to the general
principles of the flow equation approach by using a different generator than
the canonical one. We keep the general structure (4.222) of the canonical
generator, but allow a more general parametrization of its coefficients:

η
(y)
k =

λk

2
∆f

(y)
k , η

(z)
k = −λk

2
ωk f

(z)
k . (4.225)

Here f
(y)
k and f

(z)
k are suitable dimensionless coefficients. We then obtain the

following commutator:

[η,H0] = σz

∑

k

(ωk η
(z)
k − ∆η

(y)
k ) (ak + a†

k)

+iσy

∑

k

(ωk η
(y)
k − ∆η

(z)
k ) (ak − a†

k) . (4.226)

The second term on the right hand side vanishes if we choose f
(y)
k = −f

(z)
k ,

while the flow equation for λk determined from [η,H0] takes the following
form:

dλk

dB
= −λk (ω2

k − ∆2) f
(z)
k . (4.227)

We want to achieve the usual energy scale separation with respect to energy
differences:

dλk

dB
= −(ωk − ∆)2 λk . (4.228)

This dictates the structure of f
(z)
k :
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f
(z)
k =

ωk − ∆

ωk + ∆
(4.229)

⇒ η
(y)
k = −λk

2
∆

ωk − ∆

ωk + ∆
, η

(z)
k = −λk

2
ωk

ωk − ∆

ωk + ∆
. (4.230)

Notice that we could modify our generator such that the structure of the
system of flow equations simplified considerably, while remaining faithful to
the underlying principle of energy scale separation. In particular, the matrix
elements in our new generator vanish linearly for energy-diagonal scattering
processes |ωk − ∆| → 0 as required in our discussion in Sect. 2.2.4. For an
in depth discussion regarding the choice of the flow equation generator the
reader can consult [17], where the Rabi model is analyzed both with the
canonical and the form-invariant generator.

Next we need to work out the commutator with the interaction part of
the Hamiltonian. Using normal-ordering with respect to the bosonic vacuum
or the finite temperature free density matrix one finds:

[η,Hint] = −σx

∑

k

η
(y)
k λk (2n(k) + 1)

−1
2

σx

∑

k,l

(η(y)
k λl + η

(y)
l λk) : (ak + a†

k)(al + a†
l ) :

+
∑

k

η
(z)
k λk . (4.231)

In leading order we can neglect the feedback of the newly generated interac-
tion in the second line of the above equation. We find the following system
of differential equations by comparing coefficients:

d∆(B)
dB

= −∆(B)
∫

dω J(ω,B)
ω − ∆(B)
ω + ∆(B)

coth (βω/2) (4.232)

∂λk(B)
∂B

= − (ωk − ∆(B))2 λk(B) . (4.233)

Equivalently, one can write instead of (4.233):

∂J(ω,B)
∂B

= −2 (ω − ∆(B))2 J(ω,B) . (4.234)

Here we have introduced the flowing spectral function

J(ω,B) def=
∑

k

λ2
k(B) δ(ω − ωk) . (4.235)

The final Hamiltonian has the following structure in this order of the calcu-
lation:
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H(B = ∞) = −∆(B = ∞)
2

σx +
∑

k

ωk a†
kak (4.236)

−1
2

σx

∑

k,l

ωkl(B = ∞) : (ak + a†
k)(al + a†

l ) : +E(B = ∞) .

The newly generated terms are produced by differential equations deduced
from the second and third line of (4.231):

dωkl(B)
dB

= −λk(B)λq(B)
2

∆(B)
(

ωk − ∆(B)
ωk + ∆(B)

+
ωq − ∆(B)
ωq + ∆(B)

)
(4.237)

dE(B)
dB

= −1
2

∫
dω J(ω,B) ω

ω − ∆(B)
ω + ∆(B)

. (4.238)

In (4.236) we have therefore eliminated the interaction of system and bath
in linear order of the small matrix elements λk.

Renormalized Tunneling Matrix Element

The solution of the flow equations (4.232) and (4.234) is of major importance
for our analysis. We will restrict ourselves to the zero temperature case,
though the generalization to nonzero temperature is straightforward. For T =
0 we can rewrite (4.232) as:

d ln ∆(B)
dB

=
1
2

∫
dω

∂J(ω,B)
∂B

1
ω2 − ∆2(B)

. (4.239)

Fast modes renormalize the tunneling matrix element to smaller values, while
slow modes try to shift the tunneling matrix element to larger values. This
is essentially an effect of level repulsion.

Eventually, the flowing spectral function only has nonzero matrix elements
around ω = ∆(B = ∞), see Fig. 4.4. The numerical solution of (4.239)
is straightforward for any spectral function that one might be interested
in. However, important insights can also be gained analytically for spectral
functions that are of particular importance in many applications:

– Super-Ohmic bath:

J(ω) = K1−sωs Θ(ωc − ω) with s > 1 , (4.240)

where is K is a parameter with dimension energy.
– Ohmic bath:

J(ω) = 2αω Θ(ωc − ω) , (4.241)

where α is a dimensionless parameter measuring the strength of dissipa-
tion.
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Fig. 4.4. The behavior of the spectral function J(ω, B) during the flow equation
procedure (here for an Ohmic bath with α = 0.1). The flow is generated by (4.260)
and already incorporates the higher-order terms responsible for the algebraic decay
of J(ω = ∆r, B)

In both cases ωc is a high-frequency cutoff, ωc � ∆. Except for the final phase
of the flow when B−1/2 � ∆(B = ∞), large frequencies ω � ∆(B) dominate
the integral in (4.239) and we can reformulate it as a self-consistency problem:

d ln ∆(B)
dB

=
1
2

∫
dω

∂J(ω,B)
∂B

1
ω2 − ∆2(B = ∞)

⇒ ln
(

∆(B = ∞)
∆(B = 0)

)
= −1

2

∫
dω

J(ω,B = 0)
ω2 − ∆2(B = ∞)

. (4.242)

Denoting ∆r = ∆(B = ∞) and ∆0 = ∆(B = 0), this gives the following
solutions for the super-Ohmic bath:

∆r ∝ ∆0 exp
(
− 1

2(s − 1)

(ωc

K

)s−1
)

(4.243)

and the Ohmic bath:

∆r ∝ ∆0

(
∆0

ωc

)α/(1−α)

. (4.244)

In both cases the proportionality constant is of order 1. Notice the strong
nonperturbative renormalization effects (also known from other approaches
[13]) that render naive perturbation theory in the small matrix elements λk

useless. Also notice the quantum phase transition that occurs in the Ohmic
case for α = 1, when the renormalized tunneling matrix elements becomes
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zero. This is a Kosterlitz–Thouless transition where the tunneling particle
becomes localized in one state [13].

A final note regarding the comparison with the conventional scaling ap-
proach. There the term ∆2(B) in the denominator on the right hand side
of (4.239) is absent [13]. This leads to the mistaken interpretation that all
modes contribute to a downward renormalization of the tunneling matrix
element, which then necessitates some gesticulations in order to obtain the
correct result (4.244).

4.3.2 Low-Energy Observables

We have previously encountered various impurity models where the flow equa-
tions have generated a flow of the single particle energy levels in order 1/N
that could be neglected for solving the differential equations, compare e.g.
(3.70). However, if one is interested in the impurity contribution to the spe-
cific heat, these O(1/N)-terms add up and give a finite contribution. We will
use the example of the spin–boson model to show this explicitly.

Impurity Specific Heat

The impurity contribution to the specific heat cimp(T ) is defined as the dif-
ference of two thermodynamically large quantities, namely the specific heat
of system plus bath minus the specific heat of only the bosonic bath. In
the ground state of (4.236) we certainly have 〈σx〉 = 1 (since ∆r > 0) and
therefore the single particle energy levels are shifted to

Ek = ωk − ωkk(B = ∞) . (4.245)

For small energies ωk � ∆r this is easily worked out from the solution of
(4.237):

Ek = ωk − λ2
k(B = 0)

2∆r
. (4.246)

Then17

cimp(T ) =
∂

∂T

(
∑

k

Ek

eEk/T − 1
−
∑

k

ωk

eωk/T − 1

)

=
∂

∂T

(
∑

k

(Ek − ωk)
∂

∂ω

∣∣∣∣
ω=ωk

ω

eω/T − 1

)

= − 1
2∆r

∂

∂T

(∫
dω J(ω)

∂

∂ω

∣∣∣∣
ω=ωk

ω

eω/T − 1

)

=
J(T )
∆r

s

2
Γ (s + 2) ξ(s + 1) (4.247)

17Notice that E(B = ∞) in (4.236) is independent of temperature and therefore
does not contribute to cimp(T ).
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for low temperatures T/∆r → 0. We see that the impurity contribution to the
specific heat depends on the renormalized parameter ∆r. It has a power-law
behavior determined by the spectral function, cimp(T ) ∝ T s.

Dynamical Spin Susceptibility

Next we are interested in the spin dynamics. For example, we want to calcu-
late the following spin-spin correlation function:

C(sym)
zz (t) def=

1
2
〈GS|{σz(0), σz(t)}|GS〉 . (4.248)

As usual we need to study the transformation of the observable σz,

dσz(B)
dB

= [η(B), σz(B)] . (4.249)

We make the following ansatz and neglect higher order terms:

σz(B) = h(B)σz + σx

∑

k

χk(B) (ak + a†
k) . (4.250)

The system of differential equations then takes the following form:

dh

dB
= −∆

∑

k

λk χk
ωk − ∆

ωk + ∆
coth(βωk/2) (4.251)

dχk

dB
= ∆hλk

ωk − ∆

ωk + ∆
. (4.252)

It is easy to verify that under this transformation

〈(σz(B))2〉 = 1 (4.253)

remains fulfilled with respect to the ground state or the finite temperature
free density matrix. As by now seen numerous times, the observable “decays”
completely into a different form where it is entangled with environment de-
grees of freedom, h(B) B→∞−→ 0. This is true when

– ∆r lies in the support of J(ω)
– and ∆r �= 0, that is we are not in the localized phase of the Ohmic spin–

boson model.

These observations are indicative of decoherence in the flow equation frame-
work. Conventionally, decoherence is associated with a growing entanglement
of system and environment as a function of time. In the flow equation frame-
work the Hamiltonian is diagonalized and no exchange of energy between
system and bath is possible for B = ∞. However, now the observable be-
comes entangled with environment degrees of freedom.18

18These observations were in fact first made in the flow equation analysis of the
spin–boson model in [15].
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The above system of flow equations is quite sufficient if one is interested in
the dynamics away from the resonance. For example for the zero temperature
long-time limit |ω| � ∆r one finds:

χk(B = ∞) = −λk(B = 0)
∆r

(|ωk| � ∆r) (4.254)

⇒ χ′′
zz(ω) = sgn(ω)C(sym)

zz (ω) = π
J(ω)
∆2

r

. (4.255)

This is equivalent to a t−s−1-algebraic decay of the spin-spin correlation
function. This is the correct power law behavior, which can be quite difficult
to obtain with other analytical methods (compare [13]). It should also be
mentioned that higher order terms in the expansion of the flowing observable
(4.250) do not contribute to or modify this long-time behavior. It is easy
to verify that due to zero temperature phase space arguments terms with
more bosonic creation or annihilation operators lead to contributions with
additional powers of ω in (4.255).

4.3.3 Resonant Behavior

We need to be more careful when studying the dynamics in the vicinity of
the resonance, ω ≈ ∆r. We focus on the zero temperature case. Remember
that the unitary transformations generated a new term with the structure

− 1
2

σx

∑

k,l

ωkl(B) : (ak + a†
k)(al + a†

l ) : (4.256)

in the flowing Hamiltonian. The matrix elements ωkl were determined by the
differential equation (4.237). It is easy to verify that these matrix elements
do not remain small close to the resonance, and therefore we cannot ignore
them if we want to describe the resonance peak in χ′′

zz(ω) or C
(sym)
zz (ω).

Canonical Approach

To deal with this problem in the canonical approach, we should go one order
further in the flow equation expansion. The flowing Hamiltonian then takes
the structure:

H(B) = −∆(B)
2

σx +
1
2

σz

∑

k

λk(B) (ak + a†
k) +

∑

k

ωk a†
kak

+σx

∑

k,l

(
tkl(B) (a†

ka†
l + akal ) + 2skl(B) a†

kal

)
. (4.257)

The generator acquires a new part:
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η(2) = σx

∑

k,l

(
(ωk + ωl ) tkl(a

†
ka†

l − akal ) + 2(ωk − ωl ) skl a
†
kal

)
. (4.258)

One finds the following flow equations for the new coefficients:

dtkl

dB
= −(ωk + ωl)2 tkl +

∆

4
λkλl

(
ωk − ∆

ωk + ∆
+

ωl − ∆

ωl + ∆

)

dskl

dB
= −(ωk − ωl)2 skl +

∆

4
λkλl

(
ωk − ∆

ωk + ∆
+

ωl − ∆

ωl + ∆

)
. (4.259)

We need to discuss the feedback of these new terms on the coefficients already
present in the Hamiltonian. The only modification arises from the commuta-
tor of η(y) from (4.222) with the second line in (4.257). It gives

dλk

dB
= −(ωk − ∆)2 λk − 2∆

∑

p

λp
ωp − ∆

ωp + ∆
(tpk + spk) , (4.260)

which replaces (4.233). It is easy to verify that this yields a differential equa-
tion of the same kind that we have seen for the resonant level model (3.84)
or the Kondo model (4.162):

dλ∆r

dB
= −c λ3

∆r
ρ(ω = ∆r)B−1/2 , (4.261)

where c is a positive constant of order 1. Similar to the discussion for the
resonant level model or the Kondo model, this means that an algebraic B−1/4-
decay of λ∆r

(B) sets in once B−1/2 = Λfeq ≈ J(ω = ∆r). It is easy to verify
that on the same energy scale h(B) from (4.251) starts to deviate noticeably
from its initial value h(B = 0) = 1. For a more in depth discussion of the
asymptotic behavior of the flow equations the reader can consult [18].

We can conclude that the width of the resonance peak in the dynamical
spin function is given by J(ω = ∆r). This is the correct zero temperature
result also known from other approaches [13]. However, the full line shape of
C

(sym)
zz (ω) in the vicinity of ω ≈ ∆r is not very accurately described by the

above system of flow equations, in fact only the width comes out reliably. This
is different from the situation in the finite temperature Kondo model where
this order of the flow equation expansion was already sufficient. The deeper
reason for this lies in the nontrivial flow behavior of ∆(B), which has no
analogue in the SU(2)-symmetric Kondo model. If one wants to obtain the line
shape of the correlation functions in the spin–boson model accurately even
close to the resonance, one actually needs to take all interaction terms into
account that contain up to two bosonic bath operators, including their mutual
feedback.19 The same holds for the transformation of the observable σz(B).20

19 This observation appears to hold generally, not only in the spin–boson model.
20This is reminiscent of the observations for the resonant level model in

Sect. 3.3.2.
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While one can certainly follow the above route with very accurate re-
sults, the resulting systems of differential equations are rather lengthy and
cumbersome. In the next subsection we will therefore present an alterna-
tive approach that is “less canonical” but considerably shorter, and in fact
produces essentially the same quantitative results.

Ground State Approximation

The basis for this approximation is the observation that σx has a nonvanishing
ground state expectation value, 〈σx〉 = 1, with respect to H(B = ∞) at zero
temperature. It is therefore a plausible idea to split up σx into its expectation
value and a fluctuating part,

σx = 〈σx〉 + ∗σx∗ . (4.262)

This defines the operation ∗ ∗, which amounts to subtracting the ground
state expectation value. It can be thought of as a simplistic normal-ordering
prescription. We now neglect the fluctuating ∗σx∗-part in (4.256) and take
only the expectation value into account in the new term generated by the
unitary transformations:

− 1
2

∑

k,l

ωkl(B) : (ak + a†
k)(al + a†

l ) : . (4.263)

This is simply a potential scattering term. We next use the observation that
we can prevent this term from appearing at all if we introduce the additional
part of the generator

η(2) =
∑

k,l

ηkl(B) : (ak + a†
k)(al − a†

l ) : (4.264)

with

ηkl =
λkλl ∆ωl

2(ω2
k − ω2

l )

(
ωk − ∆

ωk + ∆
+

ωl − ∆

ωl + ∆

)
. (4.265)

The flowing Hamiltonian then remains form invariant:

H(B) = −∆(B)
2

σx +
1
2

σz

∑

k

λk(B) (ak + a†
k) +

∑

k

ωk a†
kak . (4.266)

The only change is a new differential equation for λk which replaces (4.233):

dλk

dB
= −(ωk − ∆)2 λk + ∆λk

∑

p

λ2
p ωp

ω2
k − ω2

p

(
ωk − ∆

ωk + ∆
+

ωp − ∆

ωp + ∆

)
. (4.267)

Also the flow equations governing the transformation of the observable σz(B)
from (4.250) change:
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dh

dB
= −∆

∑

k

λk χk
ωk − ∆

ωk + ∆
(4.268)

dχk

dB
= ∆hλk

ωk − ∆

ωk + ∆
+ ∆λk

∑

p

χp λp ωp

ω2
k − ω2

p

(
ωk − ∆

ωk + ∆
+

ωp − ∆

ωp + ∆

)

(4.269)

Notice that the sum rule (4.253) is no longer exactly fulfilled. However, the
violation turns out to be very small in all the cases discussed below with
errors not larger than a few percent.

Several correlation functions obtained for an Ohmic bath via the equations
(4.232), (4.267), (4.268) and (4.269) are shown in Fig. 4.5. One of the very
useful features of the flow equation approach is that it is not limited to
power-law spectral functions like (4.240) and (4.241), but that one can use an
arbitrary spectral density J(ω). This property has been used in the context of
quantum computing in [19] for evaluating a number of nontrivial correlation
functions based on the above system of differential equations.

However, it should also be mentioned that limitations of our approach
show up in the Ohmic case for stronger dissipation α � 0.1: The analysis of
higher orders in the flow equation expansion reveals strong-coupling behavior
[15] and a different approach is needed.21 On the other hand, for a super-
Ohmic bath the flow equation expansion shown above has generally proven
to be very reliable for all coupling strengths.

At this point, it is appropriate to have a critical look at the “ground state
approximation” used here instead of the full canonical approach. The latter
gives essentially the same results, but with a more complicated system of
differential equations. Two issues require justification:

1. η(2) introduced in (4.264) contains an energy denominator that violates
the idea of energy scale separation in the flow equation approach. This
was the price that we had to pay in order to keep the Hamiltonian H(B)
form invariant. However, η(2) has the structure of a potential scattering
term and its commutators can be evaluated exactly without any approx-
imations. Therefore we cannot generate energy denominator problems in
higher orders of the expansion, and the energy denominator in (4.265) is
unproblematic.

2. In what sense is the approximation to neglect the fluctuating part ∗σx∗
controlled? A detailed analysis shows that this approximation becomes
asymptotically exact in the limit when the flowing spectral function
J(ω,B) couples only modes in the vicinity of the resonance, that is in
the late stages of the flow in Fig. 4.4. This motivates our approxima-
tion to take only the expectation value 〈σx〉 into account since only the

21 This strong-coupling behavior is related to the strong-coupling physics of the
zero temperature Kondo model and a different kind of expansion is needed, compare
Sect. 5.1.
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Fig. 4.5. Spin-spin correlation functions for the spin–boson model with an Ohmic
bath (4.241) for various dissipation strengths α at zero temperature. For details of
the flow equation calculation see the text

matrix elements ωkl close to the resonance become large anyway. The
deeper reason for this observation is the fact that the spin–boson model
for Λfeq � ∆r becomes equivalent to a dissipative harmonic oscillator,
which can be solved exactly. More information regarding this issue can
be found in the literature [15].

Summing up, we have seen that it was straightforward to obtain the low-
energy behavior of observables plus the renormalized resonance frequency
and its decay rate (= the peak width in the correlation function). Extra
work was needed if one wants additional quantitative information regarding
the line shape close to the resonance.

4.4 Interacting Fermions in d > 1 Dimensions

In the previous sections we have used the flow equation method to study
various impurity models like the Kondo model or the spin–boson model. In
this section, we look at another important class of interacting many-body
systems: those with a translation-invariant interaction like interacting elec-
trons on a lattice. In fact, Wegner’s initial publication [20] on flow equations
dealt with such a system in d = 1 dimension, namely a Luttinger liquid. In
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this section, we give a brief overview over d > 1 dimensional applications of
flow equations.. In particular, we will see that Landau’s Fermi liquid theory
emerges as the natural result of the flow equation approach and can thereby
be justified in a new microscopic way.

4.4.1 Flow Equations and Fermi Liquid Theory

The starting point is a d dimensional electron system with a two-particle
interaction described by the Hamiltonian:

H =
∑

k,α

ε0k : c†kαckα : (4.270)

+
1

2Ω

∑

k′
1,k′

2,k1,k2

∑

α1,α2

Vα1α2(k
′
1,k

′
2;k1,k2) : c†k′

1α1
ck1α1

c†k′
2α2

ck2α2
: .

Here Ω denotes the system size, the Fermi energy is set to zero (εF = 0) and
translation invariance implies that only the interaction matrix elements with

k′
1 + k′

2 = k1 + k2 (4.271)

are nonzero. We now diagonalize (4.270) by using the canonical generator
η = [H,Hint], where Hint contains all the interaction matrix elements in
(4.270) that do not conserve the energy, εk′

1
+ εk′

2
�= εk1

+ εk2
. This means

that our diagonalized Hamiltonian H̃ only contains energy-diagonal matrix
elements

εk′
1
+ εk′

2
= εk1

+ εk2
. (4.272)

For a general model in d > 1 dimensions the combination of (4.271) and
(4.272) implies the following form for H̃:

H̃ =
∑

k,α

εk : c†kαckα : (4.273)

+
1

2Ω

∑

k,p

∑

α,β

VH(k,p) : c†kαckαc†pβcpβ :

+
1

2Ω

∑

k,p

∑

α,β

VF (k,p) : c†kαcpαc†pβckβ :

plus normal-ordered 3-particle interactions and higher order interaction
terms. Notice that (4.271) and (4.272) are equivalent in one-dimensional sys-
tems with a linear dispersion relation. Therefore the above form (4.273) of
the diagonal Hamiltonian is too restrictive in d = 1. This leads to unpleasant
divergences in the running coupling constants if one still tries to implement
the above diagonalization route in one-dimensional systems. In this case a
more appropriate route is to reach a form of the Hamiltonian that conserves
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the number of quasiparticles. For a discussion of these points the reader
is referred to [20, 21]. Alternatively, one can combine flow equations with
bosonization [22].

Let us return to d > 1 dimensional interacting electron systems. The
energy-diagonal Hamiltonian (4.273) is closely related to Landau’s Fermi liq-
uid theory (for a good review see, e.g., [23, 24]). Landau assumed a one to
one correspondence between noninteracting electrons and quasiparticles with
the same quantum numbers upon adiabatically turning on the interaction.
At low temperature and close to the Fermi surface, these quasiparticles are
long-lived excitations and Landau assumed that the energy of the system can
be expressed as

E = E0 +
∑

k,α

εk δnkα +
1

2Ω

∑

k,α,p,β

f(kα,pβ) δnkαδnpβ . (4.274)

Here δnkα denotes the change in the number of quasiparticles with quantum
numbers momentum k and spin α from the ground state distribution, i.e. the
number of quasiparticles added above the Fermi level or removed from below
the Fermi level. Adding or removing a quasiparticle changes the total energy
by

Ekα =
dE

dδnkα

= εk +
1
Ω

∑

p,β

f(kα,pβ) δnpβ . (4.275)

This identifies εk as the single-particle energy for adding or removing this qua-
siparticle, while the coefficients f(kα,pβ) describe the interaction between
quasiparticles.

It is easy to verify that Landau’s expression (4.274) follows from the
energy-diagonal Hamiltonian (4.273) with the following mapping of coeffi-
cients:

f(kα,pβ) = VH(k,p) − 1 + αβ

2
VF (k,p) . (4.276)

Notice that the flow to the energy-diagonal Hamiltonian also leads to a flow
of the single-particle energies: in general one finds εk �= ε0k. Different from
impurity models, this shift is not negligible since the interaction is translation-
invariant. This results in a different density of states for the Hamiltonian H̃,
which will show up in thermodynamic observables like the specific heat. In
the language of Fermi liquid theory, the flow of the single-particle energies
εk(B) amounts to a nontrivial ratio m∗/m �= 1 and a Sommerfeld coefficient
different from its noninteracting value.

Landau’s Fermi liquid picture therefore appears as the natural structure
of a theory describing interacting electrons resulting from the application of
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the flow equation method with the canonical generator. The connection be-
tween the physical fermions and the quasiparticles follows from the unitary
transformation of the fermion creation and annihilation operators. The gen-
eral structure of this transformation for a translation-invariant spin-SU(2)-
symmetric interaction is

c̃kα = ckα(B = ∞) (4.277)

= hk(B = ∞) ckα +
1
Ω

∑

k1,k2

γ
(s:k)
k1k2

(B = ∞) : c†k1+k2−k,αck1αck2α :

+
1
Ω

∑

k1,k2

γ
(a:k)
k1k2

(B = ∞) : c†k1+k2−k,−αck1−αck2α :

plus higher normal-ordered terms. Given this structure, it is easy to verify
that the discontinuity of the electron occupation number in the interacting
system is determined by

(
lim

k→k−
F

− lim
k→k+

F

)
〈c†kαckα〉 = h2

kF
(B = ∞) . (4.278)

Here the notation means that we approach the same point at the Fermi
surface from inside (k−

F ) and outside (k+
F ). The terms with more creation

and annihilation operators in (4.277) only lead to continuous contributions
in this limiting process (due to phase space arguments) which vanish if the
difference is taken in (4.278).22 Equation (4.278) allows us to identify

ZkF
= h2

kF
(B = ∞) , (4.279)

where ZkF
is just the usual Z-factor of Fermi liquid theory.

Let us illustrate these observations with an example, namely the Hubbard
model:

H =
∑

k,α

εk : c†kαckα : +
U

Ω

∑

k′
1,k′

2,k1,k2

δk′
1+k′

2,k1+k2 : c†k′
1↑

ck1↑c
†
k′

2↓
ck2↓ : .

(4.280)
During the flow, we have a more general structure:

H(B) =
∑

k,α

εk(B) : c†kαckα : (4.281)

+
1
Ω

∑

k′
1,k′

2,k1,k2

V
(a)
k′

1,k′
2;k1,k2

(B) : c†k′
1↑

ck1↑c
†
k′

2↓
ck2↓ :

+
1
Ω

∑

k′
1,k′

2,k1,k2

∑

α

V
(s)
k′

1,k′
2;k1,k2

(B) : c†k′
1αck1αc†k′

2αck2α :

22 The coefficients γ
(a:k)
k1k2

(B = ∞) are well-behaved for non-singular interactions.
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plus higher-order normal-ordered interaction terms. Initially

V
(a)
k′

1,k′
2;k1,k2

(B = 0) = U δk′
1+k′

2,k1+k2 (4.282)

V
(s)
k′

1,k′
2;k1,k2

(B = 0) = 0 .

The canonical generator has the following structure:

η(B) =
1
Ω

∑

k′
1,k′

2,k1,k2

(εk′
1
+ εk′

2
− εk1

− εk2
)V

(a)
k′

1,k′
2;k1,k2

(B)

× : c†k′
1↑

ck1↑c
†
k′

2↓
ck2↓ : (4.283)

+
1
Ω

∑

k′
1,k′

2,k1,k2

∑

α

(εk′
1
+ εk′

2
− εk1

− εk2
)V

(s)
k′

1,k′
2;k1,k2

(B)

× : c†k′
1αck1αc†k′

2αck2α : ,

where we have ignored all higher order terms since we will focus on the
leading-order results. The resulting flow equations can be worked out easily
using the results from Sect. 4.1:

dV
(a)
k′

1,k′
2;k1,k2

dB
= −(εk′

1
+ εk′

2
− εk1

− εk2
)2 V

(a)
k′

1,k′
2;k1,k2

(4.284)

+
1
Ω

∑

q1,q2

(εk′
1
+ εk′

2
+ εk1

+ εk2
− 2(εq1

+ εq2
))

×V
(a)
k′

1,k′
2;q1,q2

V
(a)
q1,q2;k1,k2

(1 − n(q1) − n(q2))

+
1
Ω

∑

q1,q2

(εk′
1
− εk′

2
+ εk1

− εk2
− 2(εq1

− εq2
))

×V
(a)
k′

1,q2;q1,k2
V

(a)
q1,k′

2;k1,q2
(n(q1) − n(q2))

dV
(s)
k′

1,k′
2;k1,k2

dB
= −(εk′

1
+ εk′

2
− εk1

− εk2
)2 V

(s)
k′

1,k′
2;k1,k2

(4.285)

+
1

2Ω

∑

q1,q2

(εk′
1
− εk′

2
− εk1

+ εk2
+ 2(εq1

− εq2
))

×V
(a)
k′

1,q1;k1,q2
V

(a)
k′

2,q2;k2,q1
(n(q1) − n(q2))

plus terms in O(U3). Integrating (4.284) and (4.285) in leading order in an
expansion in U results in a Hamiltonian of the form (4.273) with only energy-
diagonal interactions with the coefficients:23

23Compare also the identical results obtained in [25] within a somehow different
framework.
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VF (k,p) = U − U2

Ω

∑

q1,q2

1 − n(q1) − n(q2)

εq1 + εq2 − εk − εp

δq1+q2,k+p

+O(U3) (4.286)

VH(k,p) = VF (k,p) − U2

Ω

∑

q1,q2

n(q1) − n(q2)

εq1 − εq2 + εk − εp

δq1+q2,k+p

+O(U3) . (4.287)

Likewise one can work out the flow of the single-particle energies εk(B), which
gives rise to an increased density of states at the Fermi surface implying a
ratio m∗/m > 1.

Next we analyze the transformation of the fermion operators under this
unitary flow. In the notation of (4.277) one finds (again in leading order):

dhk(B)
dB

=
U

Ω2

∑

p1,p2

(εp1
+ εp2

− εk − εp1+p2−k) e−B(εp1
+εp2

−εk−εp1+p2−k)2

×γ(a:k)
p1p2

(B) (4.288)

×
[
n(p1 + p2 − k)(1 − n(p2)) + n(p1)(n(p2) − n(p1 + p2 − k))

]

dγ
(a:k)
k1k2

(B)
dB

= hk(B)U (εk + εk1+k2−k − εk1
− εk2

) e−B(εk+εk1+k2−k−εk1
−εk2

)2

(4.289)

The differential equation for γ
(s:k)
k1k2

(B) can be ignored in this order of the
calculation since it is only generated in order U2. We next analyze the large-
B behavior of (4.288) and (4.289). Let us assume a nonzero limit hk(B =
∞) > 0. Then we can (approximately) integrate (4.289) and find

γ
(a:k)
k1k2

(B) ∝ U

εk + εk1+k2−k − εk1
− εk2

(
1 − e−B(εk+εk1+k2−k−εk1

−εk2
)2
)

(4.290)
with a nonzero positive proportionality factor. Plugging this into the differ-
ential equation for hk(B) yields

1 − hk(B = ∞)

∝ −U2

Ω2

∑

p1,p2

1

(εp1 + εp2 − εk − εp1+p2−k)2
(4.291)

×
[
n(p1 + p2 − k)(1 − n(p2)) + n(p1)(n(p2) − n(p1 + p2 − k))

]
,

again with a nonzero positive proportionality factor. This is only consistent
with our initial assumption hk(B = ∞) > 0 when the summation over p1,p2

gives a finite result. However, the energy denominator in (4.291) makes the
sums diverge in many circumstances:
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– At nonzero temperature the summations always lead to a divergent result.
For example we set p2 = k and find

[
n(p1 + p2 − k)(1 − n(p2)) + n(p1)(n(p2) − n(p1 + p2 − k))

]

p2=k

= n(p1)(1 − n(p1)) > 0 , (4.292)

which implies that the double pole in (4.291) has a nonvanishing positive
coefficient for T > 0.

– At zero temperature one can easily verify that the combination of occu-
pation numbers in the square brackets in (4.291) is only nonzero for

n(p1) > 0, n(p2) > 0 and n(p1 + p2 − k) < 0 (4.293)

or
n(p1) < 0, n(p2) < 0 and n(p1 + p2 − k) > 0 . (4.294)

Therefore we can rewrite (4.291) in the following way:

1 − hk(B = ∞) ∝ −U2

(∫ ∞

εF

dεp1
dεp2

Θ(εF − εp1+p2−k) (4.295)

+
∫ εF

−∞
dεp1

dεp2
Θ(εp1+p2−k − εF )

)

×ρ(εp1
) ρ(εp2

)
1

(εp1 + εp2 − εk − εp1+p2−k)2

For a given value of the total energy E = εp1
+ εp2

− εp1+p2−k these
integrals over εp1

, εp2
are of the typical structure that also appears in

the evaluation of the imaginary part of the electron self-energy. Phase
space arguments lead to the well-known factor (E − εF )2, which vanishes
quadratically as one approaches the Fermi surface. We end up with

1 − hk(B = ∞) ∝ −U2

∫
dE ρ(E)

(E − εF )2

(E − εk)2
, (4.296)

which can only be finite for εk = εF .

From the above calculations we conclude that hk(B = ∞) > 0 is only possible
for zero temperature and at the Fermi surface εk = εF . Otherwise necessarily
hk(B = ∞) = 0 and the structure of the perturbative solution (4.290) has to
be modified close to the resonance, that is for εk ≈ εk1

+ εk2
− εk1+k2−k.

While we have derived these results in a specific model, our observations
hold quite generally for interacting electron systems in d > 1 dimensions. We
can draw the following conclusions:
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– Only for zero temperature and directly at the Fermi surface can a fraction
of the physical fermion creation and annihilation operators survive the
flow in (4.277). The square of this fraction can be identified with the
Z-factor of Landau’s Fermi liquid theory, see (4.279).

– Such a nonvanishing term hk(B = ∞) ckα in (4.277) has a coherent time
evolution under the energy-diagonal Hamiltonian H̃. In the language of
many-body theory this amounts to a quasiparticle pole in the Green’s
function of the physical electrons. The contributions from γ

(a:k)
k1k2

(B = ∞)

and γ
(s:k)
k1k2

(B = ∞) lead to a decoherent background of finite width.
– While the structure of the transformed operator c̃kα changes discontin-

uously away from the Fermi surface, this discontinuity is not visible in
physical Green’s functions. Close to the Fermi surface, the coefficients
γ

(a:k)
k1k2

(B = ∞) and γ
(s:k)
k1k2

(B = ∞) become more and more dominated by
nearly energy-diagonal contributions, εk1

+ εk2
− εk1+k2−k ≈ εk. There-

fore these contributions have a “nearly” coherent time evolution, which
merges into the well-defined quasiparticles at the Fermi surface.

– In this way, one can trace the quasiparticles from the Fermi surface to Lan-
dau’s picture of quasiparticles with a finite lifetime even away from the
Fermi surface. This just amounts to following how the hkF

(B = ∞) ckα

contribution decays into a nearly energy-diagonal operator product. No-
tice that the background of particle-hole excitations already present in
the solution of (4.277) at the Fermi surface does not change very much
as one goes away from the Fermi surface, and is not considered part of
Landau’s quasiparticle.

– If additional fields are coupled to a physical fermion in the vicinity of
the Fermi surface, then at low energies only the

√
ZkF

= hkF
(B = ∞)

fraction of this coupling acts as the coupling to a fermionic excitation:
One thinks of Landau’s quasiparticles as the “dressed” physical electrons.

Summing up, from the flow equation point of view the effective Hamiltonian
(4.273) of the Landau type is not restricted to the vicinity of the Fermi
surface. However, only close to the Fermi surface can the single-particle ex-
citations of (4.273) be directly related in a one to one correspondence with
the original fermions. One needs to distinguish carefully between

– the flow equation quasiparticles: these are well-defined single-particle ex-
citations of H̃, which are away from the Fermi surface, however, not in
one to one correspondence with the physical fermions.

– Landau’s quasiparticles: these have an incoherent time-evolution under H̃
away from the Fermi surface (meaning a finite lifetime), but are in one
to one correspondence with the physical fermions even away (though not
too far away) from the Fermi surface. In the flow equation picture they
emerge from the evolution of the hkF

(B = ∞) ckα-part into the nearly
energy-diagonal (εk1

+εk2
−εk1+k2−k ≈ εk) part of the operator products
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: c†k1+k2−kck1
ck2

: in the solution of (4.277) as one goes away from the
Fermi surface.24

4.4.2 Flow Equations and Molecular-Field Type Hamiltonians

In the previous section we have derived the Hamiltonian (4.273) from a
model lattice Hamiltonian. Notice that H̃ contains only biquadratic terms
like c†kαckα, which means that H̃ is of molecular-field type and does not lead
to any fluctuations around the molecular-field behavior. Putting it otherwise,
the Hartree–Fock approximation becomes exact when applied to (4.273). One
way of looking at the analysis in the previous chapter is therefore to see it as
the derivation of an effective Hamiltonian,25 which in turn can now be solved
exactly using the molecular-field approximation.

This route has been pursued by Wegner and coworkers in a series of
papers [25, 26, 27, 28]. We follow their calculation in [25] and introduce the
expectation values:

〈GSint|c†kαckβ |GSint〉 = δαβ (n0(k) + νs(k)) +
∑

i

σi
αβ νa

i (k) . (4.297)

Here |GSint〉 is the ground state of the interacting system that we want to
determine, and n0(k) is the occupation number in the noninteracting sys-
tem. The coefficients νs(k) and νa

i (k) therefore describe a deviation from
the symmetric state: the symmetric state is unstable if one can find nonzero
coefficients with a lower free energy than the symmetric state. Due to the
biquadratic nature of H̃, it is easy to work out the energy

EHF =
1
Ω

∑

k,q

(2VH(k, q) − VF (k, q)) νs(k) νs(q) (4.298)

− 1
Ω

∑

k,q

∑

i

VF (k, q) νa
i (k) νa

i (q)

and entropy

SHF = −
∑

k

(
1 + eβ(εk−εF )

)(
1 + e−β(εk−εF )

)
(4.299)

×
(
νs(k) νs(k) +

∑

i

νa
i (k) νa

i (k)
)

.

24And, of course, higher order contributions with more particle-hole pairs.
25 Another interesting point worth studying in more detail would be the deriva-

tion of Landau parameters beyond the Hartree–Fock approximation. This is an
interesting point because the calculation of Landau parameters from a microscopic
model is difficult.
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Therefore the free energy
F = E − T S (4.300)

is a quadratic form in νs(k) and νa
i (k), of which one needs to find the mini-

mum. For details of these calculations the reader is referred to [25].
Typical instabilities that can occur in this system are ferromagnetism

and Pomeranchuk-instabilities. This exhibits one interesting feature of this
approach: these instabilities occur for a Hamiltonian with finite effective in-
teractions.26 The observation that effective interactions in the flow equation
scheme remain finite could be useful for making statements about the conver-
gence of the flow equation approach – this topic seems worthwhile exploring
in more detail.

At this point it also becomes apparent that the scheme presented in the
previous section will be too restrictive in certain situations. Where do other
instabilities like antiferromagnetism or superconductivity show up? In fact,
closer inspection (here: a nonperturbative analysis of the flow equations)
reveals that one has diverging coupling constants on the road to (4.273) if
such instabilities are present in a given model Hamiltonian. In order to avoid
these divergences, Wegner and coworkers developed a generalization of the
ideas leading to (4.273). They showed how one can choose a generator η such
that the final Hamiltonian for B = ∞ consists of a given set of biquadratic
terms. The key step is to introduce a continuously varying “elimination”
factor r that indicates whether an interaction should be eliminated (r �= 0)
or kept for B → ∞ (r = 0). The generator is constructed as usual as a
commutator

η(B) = [H(B),Hr
int(B)] , (4.301)

where Hr
int(B) is obtained from the interaction part of the Hamiltonian

(4.270):

Hr
int =

1
2Ω

∑

k′
1,k′

2,k1,k2

∑

α1,α2

r(k′
1,k

′
2;k1,k2)Vα1α2(k

′
1,k

′
2;k1,k2)

× : c†k′
1α1

ck1α1
c†k′

2α2
ck2α2

: . (4.302)

Notice that η from (4.301) leads to flow equations that respect energy scale
separation.

For the explicit case of the two-dimensional Hubbard model (4.280) with
nearest neighbor hopping on a square lattice one has the dispersion relation

εk = −2t (cos kx + cos ky) , (4.303)

where t is the hopping matrix element. At half-filling the Fermi surface is
nested, εk = −εk+Q, with Q = (π, π), and one expects antiferromagnetic

26 In other renormalization group inspired approaches to interacting electron
systems [29, 32] one deals with truncated and partially integrated interactions,
which show divergences at such phase transitions.
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instabilities. The two-dimensional Hubbard model is also a candidate for su-
perconductivity. Wegner and coworkers have therefore chosen the elimination
factor r(k′

1,k
′
2;k1,k2) such that it vanishes for products of biquadratic terms

c†p′
1α1

cp1α2
, c†p′

1α1
c†p′

2α2
and cp1α1

cp2α2
with total momenta 0 or Q [25, 28].

The final Hamiltonian H̃ for B → ∞ is then of molecular-field type with the
following interactions:

VH(k, q) = V (k, q;k, q) (4.304)
VF (k, q) = V (k, q; q,k) (4.305)
VA(k, q) = V (k, q + Q; q,k + Q) (4.306)
VB(k, q) = V (k,−k; q,−q) (4.307)
VC(k, q) = V (k, q + Q;k + Q, q) (4.308)
VY (k, q) = V (k,Q − k; q,Q − q) . (4.309)

VH(k, q) and VF (k, q) correspond to the Landau parameters already dis-
cussed in the previous section. VA(k, q) allows for antiferromagnetic insta-
bilities and VB(k, q) for superconducting instabilities. VC(k, q) and VY (k, q)
can lead to more complicated forms of symmetry breaking involving e.g. a
staggered structure of the superconducting condensate. The specific form of r
cancels out in the calculation of these effective interactions to second order
in U . In particular, the Hartree–Fock type interactions VH(k, q) and VF (k, q)
have exactly the same form (4.286) and (4.287) as derived previously.

Wegner and coworkers have thereby established a mapping from an inter-
acting electron system to an effective molecular-field type Hamiltonian that
is more general than Fermi liquid theory (4.273). In a similar manner to the
analysis leading to (4.298) and (4.299), one can now analyze this effective
Hamiltonian with interactions (4.304)–(4.309) in molecular-field theory and
derive a phase diagram with various kinds of symmetry breaking. Results
from this analysis for the two-dimensional Hubbard model [28] are shown in
Fig. 4.6, which compare favorably with other approaches [32, 33]. It seems
very worthwhile to explore this route in more detail. One of the important
questions to address in this context is up to which values of the expansion
parameter U/t one can trust the results quantitatively or qualitatively, resp.
Wegner and Körding have also shown that the stability of such expansions
can be improved by normal ordering with respect to the interacting (possibly
symmetry–broken) ground state [4], which should be explored further.

4.5 Other Applications

In this section we want to outline other applications of the flow equation
method that are somehow different in spirit from the previous examples,
but that have proven useful in their own right. First we study a system with
electron–phonon interaction, where the flow equation method is used to derive
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Fig. 4.6. Phase diagram of the two-dimensional Hubbard model (4.280) on a square
lattice at half-filling and zero temperature as obtained by the flow equation method
(4.304)–(4.309). AF denotes an antiferromagnetic phase, PI a Pomeranchuk insta-
bility, BS band splitting, FP a flux phase and SC a d-wave superconducting phase
[figure from [28] with friendly permission]

an effective (attractive) electron–electron interaction. This effective electron–
electron attraction turns out to be different from the classic result by Fröhlich
[34] because the flow equation result also describes retardation effects which
are absent in the Fröhlich result. In Sect. 4.5.2 we then use the flow equation
method to systematically generate block-diagonal Hamiltonians: this idea has
been initiated by Mielke [35] and was then developed further by Uhrig and
coworkers in a series of papers.

This is also a good opportunity to mention another “indirect” application
of flow equations, namely photorefractive two-beam coupling. It was shown by
Anderson et al. [36] that this problem can be cast into a double commutator
structure where the density operator of the optical field takes the role of
the Hamiltonian. For more details the reader should consult the original
literature.

4.5.1 Construction of Effective Hamiltonians: The Fröhlich
Transformation Re-examined

Electron–phonon interactions are responsible for conventional superconduc-
tivity. The well-known key observation is the fact that electron–phonon
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interactions can lead to an attractive electron–electron interaction, which
in turn can then generate a pairing instability. The step from the electron–
phonon interaction to the attractive electron–electron interaction is conven-
tionally done with the Fröhlich transformation [34]. One starts with the
Hamiltonian

H = H0 + He−ph (4.310)

H0 =
∑

k,α

εk : c†kαckα : +
∑

q

ωq : a†
qaq : (4.311)

He−ph =
1√
Ω

∑

k,q,α

Mq :
(
c†k+q,αckαaq + c†kαck+q,αa†

q

)
: , (4.312)

Here a†
q, aq are the bosonic creation and annihilation operators for the

phonons and the parameters Mq describe their interaction with the elec-
trons. We assume time-reversal invariance εk = ε−k and ωq = ω−q. Fröhlich
performs a unitary transformation

H
(Fr)
eff = eS(Fr)

H e−S(Fr)
, (4.313)

where the generator S(Fr) = −
(
S(Fr)

)†
is determined from the condition that

H
(Fr)
eff should only contain phonon-number conserving terms in order M . This

yields the condition
He−ph − [H0, S

(Fr)] = 0 , (4.314)

which is solved by

S(Fr) =
1√
Ω

∑

k,q,α

Mq

εk+q − εk − ωq

:
(
c†k+q,αckαaq − c†kαck+q,αa†

q

)
: .

(4.315)
It is straightforward to derive

H
(Fr)
eff = H0 +

1
Ω

∑

k1,k2,q,α,β

V
(Fr)
k1,k2,q : c†k1+q,αc†k2−q,βck2βck1α : +O(M3)

(4.316)
with the effective electron–electron interaction

V
(Fr)
k1,k2,q =

M2
q

2

[
ωq

(εk2−q − εk2
)2 − ω2

q

+
ωq

(εk1+q − εk1
)2 − ω2

q

]
. (4.317)

Alternatively, let us apply the flow equation method. In the context of the
electron–phonon problem this was first done by Lenz and Wegner [37]. The
generator η is chosen as

η(B) = [H0(B),He−ph(B)] , (4.318)



126 4 Interacting Many-Body Systems

so we try to eliminate the electron–phonon interaction. It is straightforward
to derive the flow equation for the effective electron–electron interaction:

dV
(feq)
k1,k2,q(B)

dB
= M2

q

[
(εk2

− εk2−q − ωq) e−B[(εk2
−εk2−q−ωq)2+(εk1+q−εk1

−ωq)2]

+(εk2−q − εk2
− ωq) e−B[(εk2−q−εk2

−ωq)2+(εk1
−εk1+q−ωq)2]

]

(4.319)

Integration over B gives (after symmetrization):

V
(feq)
k1,k2,q(B = ∞) =

M2
q

2

[
εk1+q − εk1

− εk2−q + εk2
− 2ωq

(εk2−q − εk2
+ ωq)2 + (εk1+q − εk1

− ωq)2

+
εk2−q − εk2

− εk1+q + εk1
− 2ωq

(εk2−q − εk2
− ωq)2 + (εk1+q − εk1

+ ωq)2

]
.

(4.320)

Remarkably, the flow equation result for the effective Hamiltonian

H
(feq)
eff = H0 +

1
Ω

∑

k1,k2,q,α,β

V
(feq)
k1,k2,q(B = ∞) : c†k1+q,αc†k2−q,βck2βck1α :

+O(M3) (4.321)

differs from the Fröhlich result in O(M2) although both calculations are cor-
rect to O(M3). Why is this the case? The simple reason is that the condition
(4.314) does not uniquely determine a unitary transformation. Any interac-
tion term in O(M2) that conserves the number of phonons can be added
to S(Fr). Putting it otherwise: the effective Hamiltonians differ by a unitary
transformation with an electron–electron interaction term in O(M2). Such a
unitary transformation cannot change energy-diagonal scattering processes in
leading order, and in fact the two results (4.317) and (4.320) for the effective
interaction agree when εk1+q + εk2−q = εk1

+ εk2
.

However, differences occur for the processes with k1 = −k2 which are
important for superconductivity:

V
(Fr)
k,−k,q = −

ωq M2
q

ω2
q − (εk+q − εk)2

(4.322)

V
(feq)
k,−k,q = −

ωq M2
q

ω2
q + (εk+q − εk)2

. (4.323)

This is depicted in Fig. 4.7. Notice that the flow equation result is attractive
for all momenta and does not contain divergences. This observation that the
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Fig. 4.7. Effective electron–electron interaction as a function of the energy transfer
E = 2(εk+q − εk). The full line is the flow equation result (4.323) and the dashed
line the classic result (4.322) of the Fröhlich transformation

flow equation result shows less singular behavior can be traced back to (4.320)
with its energy denominator consisting of a sum of squares.27

At this point the question arises which result is “better”, the Fröhlich
result for the effective electron–electron interaction or the flow equation re-
sult. One criterion would be to look at the neglected higher-order terms in
(4.316) and (4.321), and in particular to require that they do not become
large due to vanishing energy denominators. With respect to this criterion
the flow equation result seems “better”. We have seen many times in the pre-
vious chapters the importance of energy scale separation in order to arrive
at controlled results. The key principle of the flow equation method is just
to avoid vanishing energy denominators in each iterative step.28

The main advantage of a controlled expansion using the flow equation
method is that the effective electron–electron interaction (4.320) correctly

27Similar results for the effective electron–electron interaction with a sharp cutoff
in energy transfer have been obtained by Becker et al. [38] using related schemes.
Our observations hold for their results as well.

28From a pragmatic point of view it can also be observed that the flow equa-
tion result (4.321) can be used to determine very accurately the superconducting
transition temperature of realistic materials within BCS-theory, even for strong
electron–phonon coupling. This has been demonstrated by Mielke [39, 40].
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describes retardation effects, which are absent in the Fröhlich result (4.317).
Since this point is of fundamental importance, we want to discuss it in some
detail.

Retardation plays a very important role in many metallic superconduc-
tors. The key observation is that the phonon induced attractive electron–
electron interaction is not instantaneous in time due to the exchange of a
virtual phonon. On the other hand, the Coulomb repulsion of electrons can
be considered instantaneous and therefore, in the conventional picture, less
effective for destroying the pairing instability. As is traditional, let λ denote
the dimensionless attractive electron–electron interaction and µ the dimen-
sionless Coulomb repulsion (that is both couplings are multiplied with the
density of states ρF ). Then the superconducting transition temperature is
given by [41]

Tc ∝ ωD exp
(
− 1

λ − µ∗

)
, (4.324)

with the “renormalized” Coulomb repulsion

µ∗ =
µ

1 + µ ln(D/ωD)
. (4.325)

Here ωD is the Debye frequency and D is the conduction band width. λ > µ∗

is a necessary condition for the applicability of (4.324), otherwise there is no
pairing instability. One observes that for D/ωD � 1 (as is the case in many
metallic superconductors with ratios up to 1000), the Coulomb repulsion is
strongly renormalized in (4.325). Only because of this renormalization can it
in many real materials be overcome by the weak effective attractive electron–
electron interaction. This raises the question how such retardation effects
can be described within a Hamiltonian framework with a time-independent
interaction. It is sometimes asserted that such a Hamiltonian theory can only
be phenomenological and must miss the essential physics of retardation [41].

However, a careful analysis shows that this argument is incorrect. Let us
introduce the total energy transfer of the electron–electron scattering process
(4.321),

E = εk1+q + εk2−q − εk1
− εk2

, (4.326)

and the partial energy transfer

Epart = εk2−q − εk2
. (4.327)

We can rewrite the flow equation result for the effective interaction (4.320)
in terms of these parameters:

V (feq)(E,Epart) = M2
q

[
−Epart − ωq + E/2

(Epart + ωq)2 + (E − Epart − ωq)2

+
Epart − ωq − E/2

(Epart − ωq)2 + (E − Epart + ωq)2

]
. (4.328)
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The Fröhlich effective interaction (4.317) takes the following form:

V (Fr)(E,Epart) = M2
q

[
ωq/2

E2
part − ω2

q

+
ωq/2

(E − Epart)2 − ω2
q

]
. (4.329)

The behavior of these two effective interactions is depicted in Fig. 4.8. One no-
tices the main difference that the flow equation effective interaction vanishes
for |E| � ωq, while the Fröhlich result does not have this property. Going
from energy to time this means that V (feq)(E,Epart) describes an interaction
that only contributes for scattering processes on a time scale ∆t � 1/ωq.
But this is just what we mean by retardation; the induced attractive interac-
tion is only present on a time scale larger than the inverse Debye frequency.
On the other hand, the Fröhlich result in Fig. 4.8 describes an instantaneous
interaction, which is physically wrong.

Now we would like to show that this interpretation of retardation in
V (feq)(E,Epart) is consistent with the “renormalization” of the Coulomb re-
pulsion through retardation effects as described by (4.325). In order to do
this we study the flow of the electron–electron interaction

Hint(B) =
1
Ω

∑

k1,k2,q

Uk1,k2,q(B) : c†k1+q,↑c
†
k2−q,↓ck2↓ck1↑ : (4.330)

under the canonical generator. For a local Coulomb repulsion U the initial
condition of the flow equations is then

Uk1,k2,q(B = 0) = U + V
(feq)
k1,k2,q(B = ∞) , (4.331)

with V
(feq)
k1,k2,q(B = ∞) according to (4.320). In the sequel, we neglect the flow

of the electron and phonon single-particle energies, which is justified for weak
electron–phonon interaction. Taking these flows into account is important for
calculating transition temperatures for strong electron–phonon coupling as
shown by Mielke in [39].

In the BCS-channel we can use the IR-parametrization

Uk,−k,q(B) = gBCS(B) e−4B(εk+q−εk)2 , (4.332)

where gBCS(B) is determined from the behavior at the Fermi surface with
small momentum transfer q. From (4.284) one can then easily derive the
following flow equation in the BCS-channel:

dgBCS(Λfeq)
d ln Λfeq

= ρF g2
BCS . (4.333)

This scaling equation has already been deduced in [24] by conventional scaling
methods (see also [42] for its relation to (4.325)). If we plug in the initial
condition (4.331) we need to remember that the induced interaction V

(feq)
k1,k2,q
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Fig. 4.8. Modulus of the effective electron–electron interaction as a function of its
two parameters: the total energy transfer E of the scattering process, and the energy
transfer of one of the involved electrons Epart (see (4.327)). Dark areas indicate
large values of |V (E, Epart)|, light areas smaller values. The upper diagram shows
the effective interaction (4.328) as derived from the flow equation method, the lower
diagram the classic result (4.329) of the Fröhlich transformation. Notice that the
Fröhlich result is divergent along the lines Epart = ±ωq and E −Epart = ±ωq . The
flow equation result describes a retarded interaction since |V (feq)(E, Epart)| decays
to zero everywhere for large total energy transfer E, which is not the case for the
Fröhlich effective interaction
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is absent for energy transfer |E| � ωD. Therefore we have to integrate (4.333)
from Λfeq = D (conduction band width) to Λfeq = ωD with the initial value
gBCS(B = 0) = U . This leads to

gBCS(Λfeq = ωD) =
U

1 + ρU ln(D/ωD)
. (4.334)

Since we have obtained scaling equations with respect to energy-diagonality
Λfeq, the second part of (4.331) starts to contribute too once Λfeq ≈ ωD. At
this scale we can replace

gBCS(Λfeq = ωD) −→ U

1 + ρU ln(D/ωD)
− M2

D

ωD
. (4.335)

Here the second term is the induced electron–electron interaction in the BCS-
channel (4.323).29 If we integrate (4.333) further down starting at Λfeq = ωD,
the running coupling constant gBCS(Λfeq) diverges at the scale

Λfeq = Tc ∝ ωD exp
(

1
g∗BCS

)
(4.336)

if

g∗BCS = gBCS(Λfeq = ωD) = −M2
D

ωD
+

U

1 + ρU ln(D/ωD)
(4.337)

is negative.30 This shows the retardation effect by renormalizing the Coulomb
repulsion as discussed in (4.325). Other effects of retardation can be seen
in dynamical correlation functions. However, these are conceptually easy to
understand from the transformation of observables similar to the discussion
of the spin–boson model in Sect. 4.3. For example see [43] where the phonon
damping due to the electron–phonon interaction is discussed within the flow
equation framework.

Notice that there is no contradiction between our description with an
effective Hamiltonian and the more conventional framework of an effective
retarded action obtained from integrating out the phonon degrees of free-
dom in a path integral framework: the latter can no longer be mapped to
a Hamiltonian due to its non-instantaneous interactions. The resolution of
this apparent conflict is the observation that the degrees of freedom in these
two effective theories differ: the physical electrons still appear in the effective
action description, while the fermionic operators in the effective Hamiltonian
description are not in one to one correspondence with the physical electrons.

29For clarity we assume that only the phonon modes at the Debye frequency are
important, which is often a good assumption anyway.

30An alternative way for obtaining the superconducting transition temperature
would be to use the mapping to a Hamiltonian of molecular-field type as discussed
in Sect. 4.4.2.
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Therefore no direct mapping between these two effective theories need to
exist without extending the Hilbert space to include the phonon degrees of
freedom.

The above observations regarding the construction of effective interac-
tions using flow equations seem to be generic and occur in other models as
well. Another case discussed in the literature is the Schrieffer–Wolff trans-
formation for mapping the Anderson impurity model to an effective Kondo
model [44]. The comparison with the flow equation result worked out in [45]
shows similar features to the electron–phonon problem with no divergences in
the induced interactions due to quadratic terms in the denominator (4.320).
For the Schrieffer–Wolff transformation it is also explicitly clear by compari-
son with exact Bethe ansatz results that the flow equation result is “better”
(for details see the discussion in [45]). Other applications of the flow equation
method to construct effective Hamiltonians can be found in the literature (e.g.
for spin chains [46], for the mapping of the Hubbard model to the t−J-model
[47], in the field of cold atom physics when analyzing Feshbach resonances
[48] and boson–fermion models [49, 50], etc.) Since the derivation of effective
interactions is a common topic in many-particle physics, it should be very
interesting to re-analyze other many-body problems using the flow equation
method.

4.5.2 Block-Diagonal Hamiltonians

In many physical problems the Hamiltonian has a “banded” structure with
respect to some counting operator Q. For example, in interacting fermion
systems one can introduce the number of quasiparticles, that is the number
of particles above the Fermi surface plus the number of holes below the Fermi
surface:

Q =
∑

k,α

sgn(|k| − kF ) : c†kαckα : . (4.338)

A two-particle interaction term can change Q by 0,±2,±4. It would certainly
be desirable to have a scheme such that the final Hamiltonian conserves Q,

[H(B = ∞), Q] = 0 , (4.339)

while at the same time the interaction terms in H(B) retain their banded
structure during the flow. That is Q changes only by 0,±2,±4. A general way
to achieve this was first introduced by Mielke for band-diagonal matrices [35],
and later generalized to many-body problems by Uhrig and coworkers [51,
52].31 However, this route is often not as robust as Wegner’s original approach
as we will see in a moment.

Let us denote the states in the many-particle Hilbert space that are eigen-
states of Q with eigenvalue qi by |i, λi〉. We can then express the Hamiltonian

31This scheme has been called the CUT method by Uhrig et al.
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in terms of its matrix elements with respect to a basis constructed from these
states,

H(iλi)(jλj)
def= 〈i, λi|H|j, λj〉 . (4.340)

Notice that in general the subspace with a given value of qi will be more than
one-dimensional, therefore the need for an additional quantum number λi. In
order to keep the notation compact, we will, however, suppress these addi-
tional quantum numbers subsequently. One chooses the following generator
[35, 51]

ηij(B) def= sgn(qi(B) − qj(B))Hij(B) (4.341)

and finds the flow equation:

dHij

dB
= −sgn(qi − qj)

(
HiiHij − HijHjj

)
(4.342)

+
∑

k �=i,j

(sgn(qi − qk) + sgn(qj − qk))Hik Hkj .

It is easy to verify that this choice of the generator leads to the desired
structure (4.339). In particular, if the maximum change of Q in the initial
Hamiltonian is N , then H(B) has the same property for all B. However, one
can notice a potential danger when Hii < Hjj while qi > qj : this leads to
contributions to matrix elements Hij that (initially) grow exponentially and
can make the method uncontrollable. Therefore the generator (4.341) does
in general not respect energy scale separation and has to be used with some
caution. Situations where the above scheme can be applied successfully are
when the number of excitations correlates well with the energy, so that no
such instabilities can occur. This has been employed by Uhrig and coworkers
in a number of very interesting papers on spin chains [53, 54, 55, 56, 57].
One advantage of this scheme in these models is that the structure of the
Hamiltonian stays simpler during the flow than with the canonical generator,
so that one can computerize the generation of flow equations and calculate
them to higher orders.32

References

1. G.C. Wick, Phys. Rev. 80, 268 (1950)
2. F.G. Scholtz, B.H. Bartlett, and H.B. Geyer, Phys. Rev. Lett. 91, 080602 (2003)
3. J.N. Kriel, A.Y. Morozov, and F.G. Scholtz, J. Phys. A 38, 205 (2005)
4. E. Körding and F. Wegner, J. Phys. A 39, 1231 (2006)
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5 Modern Developments

In this final chapter we discuss three developments of the flow equation ap-
proach that promise to be particularly fruitful directions for future applica-
tions:

– Strong-coupling models (Sect. 5.1)
– Non-equilibrium problems (Sect. 5.2)
– Real time evolution (Sect. 5.3)

These problems are often difficult to treat with conventional analytical many-
body techniques, while first applications of the flow equation method have
shown remarkable success. We discuss one model application in each of these
categories – and hope that readers of this book will contribute to the future
development of these ideas.

5.1 Strong-Coupling Behavior: Sine–Gordon Model

Many of the most interesting many-body systems are strong-coupling models,
which means that the scaling flow drives the interaction couplings to larger
and larger values in the physically relevant scaling limit. Famous examples
are the Kondo model in condensed matter physics, or QCD in high-energy
theory. Since the scaling equations themselves are derived perturbatively,
strong-coupling behavior implies that we are eventually leaving the region
of applicability of our scaling equations. While one can still obtain valuable
information about the low-energy physics from the scaling equations, like
the scaling invariants which determine the relevant low-energy scales, it is
generally not possible to say what kind of physics takes place at these energy
scales. A good example is the Kondo model, where the perturbative scaling
equations identify the Kondo temperature, which corresponds to the energy
scale where the impurity spin is screened into a Kondo singlet. However, what
we really need to know in order to describe low-temperature experiments is
the response of the Fermi sea to the formation of this Kondo singlet, which
is out of reach for the perturbative scaling analysis.

Flow equations have turned out to be a tool that can go beyond these
limitations of conventional scaling analysis for some strong-coupling models.
Examples discussed so far in the literature are the sine–Gordon model [1, 2]

Stefan Kehrein: The Flow Equation Approach to Many-Body Problems
STMP 217, 137–168 (2006)
c© Springer-Verlag Berlin Heidelberg 2006
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and the Kondo model [3]. The key feature of these applications is that the
expansion parameter of the flow equation approach turns out to be different
from the running coupling constant, and in fact remains finite during the
entire flow from weak to strong coupling. However, in order to make use of
such an expansion parameter one cannot work with the canonical genera-
tor η, which in turn makes it clear that these ideas cannot be generalized to
all strong-coupling models. We will see below what kind of conditions seem
necessary to make strong-coupling problems amenable to a flow equation
analysis with a controlled expansion parameter.

It is also worthwhile to remark that both the Kondo model and the sine–
Gordon model can be solved exactly using integrable model methods [4].
However, as usual such techniques are limited to linear dispersion relations
and other integrability constraints. These limitations do not appear in the
flow equation strong-coupling analysis. For example, based on the flow equa-
tion solution of the Kondo model [3] it has been possible to discuss time-
dependent Kondo physics [5] and Ising-coupled Kondo impurities [6], both of
which have so far not been solved by exact analytical methods. This observa-
tion that the flow equation solution does not rely on integrability constraints
is one key motivation for studying such strong-coupling models using flow
equations. Since we have already looked at numerous impurity models in the
past chapters, we will here outline the flow equation diagonalization of the
sine–Gordon model.

5.1.1 Sine–Gordon Model

The sine–Gordon model describes a one-dimensional translation-invariant
system of interacting bosons,

H =
∫

dx

(
1
2

Π2(x) +
1
2

(
∂φ

∂x

)2

+ g Λ2 cos(βφ(x))

)
. (5.1)

Here φ(x) is a bosonic field and Π(x) its conjugate momentum field with the
canonical commutator

[Π(x), φ(y)] = −iδ(x − y) . (5.2)

The sine–Gordon model (5.1) is of paradigmatic importance in condensed
matter theory and describes a large number of physical systems like the one-
dimensional Hubbard model, the spin-1/2 X-Y-Z chain , the Thirring model
or the two-dimensional Coulomb gas [4]. Its behavior is determined by the
coupling constant g > 0 and the parameter β. Λ in (5.1) is the UV-cutoff,
which is also implicitly cutting off all momentum sums that occur in the
mode expansion of the Hamiltonian.

A perturbative scaling analysis in the coupling constant leads to the fol-
lowing two scaling equations upon varying the cutoff [4]:
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Fig. 5.1. Perturbative scaling flow and phase diagram of the sine–Gordon model.
The strong-coupling phase is to the left and/or above the Kosterlitz–Thouless tran-
sition line S+, the weak-coupling phase lies below S+. The dotted line for β2 = 4π
corresponds to the noninteracting Thirring model, see text

dβ−2

d lnΛRG
= − g2

4π
+ O(g3)

dg

d lnΛRG
=

(
β2

4π
− 2

)
g + O(g2) . (5.3)

The resulting scaling flow is depicted in Fig. 5.1. In the weak-coupling phase I
below the line S+ (that is for sufficiently large values of β2/4π) the running
coupling constant g flows to zero in the infrared limit and we can trust our
scaling equations (5.3) along the entire flow. On the other hand, in the strong-
coupling regimes II and III the running coupling constant becomes larger
and larger, which shows that the perturbative scaling approach eventually
breaks down. The separatrix S+ between the weak- and strong-coupling phase
describes a Kosterlitz–Thouless phase transition.

From the exact inverse scattering solution [4] we know that a mass gap M
opens in the spectrum of the sine–Gordon model in the strong-coupling phase.
For example for 1 − β2/8π � g one derives
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M ∝ Λ

(
g

2 − β2/4π

)1/(2−β2/4π)

, (5.4)

which is also a scaling invariant of the equations (5.3). We next derive the
flow equation generalization of (5.3), which allows us to see how this mass gap
develops and what the low-energy excitations above the mass gap are. This
kind of information cannot be inferred from the conventional perturbative
scaling picture.

5.1.2 Flow Equation Analysis

Our discussion of the flow equation diagonalization of the sine–Gordon Hamil-
tonian (5.1) follows closely the presentation in [2], to which we refer the reader
for more details. The main purpose of this presentation is to outline the es-
sential steps and ideas without going into the technical and somehow lengthy
steps of the full calculation. For this reason we also quote many results with-
out giving a self-contained derivation.

First we need to rewrite the Hamiltonian (5.1) in a form that is better
suited for the flow equation approach. We expand the fields in normal modes:

φ(x) = − i√
4π

∑

k>0

1√
k

(
e−ikx (a†

l (k) + ar(−k)) − eikx (al (k) + a†
r(−k))

)

Π(x) =
1√
4π

∑

k>0

√
k
(
e−ikx (a†

l (k) − ar(−k)) + eikx (al (k) − a†
r(−k))

)
.

(5.5)

Here and in the sequel all sums over wavevectors are to be understood as

∑

k

def=
2π

L

∞∑

n=−∞
, (5.6)

where k = 2πn/L. L is the system size which we keep finite until the very
end of the calculation (when we can send it to infinity) in order to avoid
infrared problems. The operators a†

t(k), at (k) with t = l, r correspond to left-
and right-movers, resp. The only nonvanishing commutators are

[at(k), a†
t′(k

′)] = δtt′ δkk′
L

2π
. (5.7)

The bosonic vacuum is annihilated by

al (k)|Ω〉 = ar(−k)|Ω〉 = 0 (5.8)

for k > 0. The Hamiltonian (5.1) can be rewritten in the following way:
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H =
∑

k>0

k
(
a†

l (k)al (k) + a†
r(−k)ar(−k)

)
(5.9)

+
g

2πa2

(
2πa

L

)α2 ∫
dx

(
Vl(α;x)Vr(−α;x) + Vr(α;x)Vl(−α;x)

)
.

Here we have used the identification

α
def=

β√
4π

. (5.10)

In (5.9) a ∝ Λ−1 plays the role of the inverse UV-cutoff, which now only
appears inside the vertex operators:

Vl(α;x) def= : exp

(
α
∑

k>0

e−ak/2 1√
k

(
e−ikx a†

l (k) − eikx al (k)
))

: (5.11)

Vr(α;x) def= : exp

(
α
∑

k>0

e−ak/2 1√
k

(
e−ikx ar(−k) − eikx a†

r(−k)
))

: .

Vertex Operators

We sum up some fundamental properties of vertex operators before we con-
tinue with our derivation. Vertex operators are essentially normal-ordered
exponentials of bosonic fields like (5.11).1 For more details and the deriva-
tion of these properties one can for example consult [7].

The operator product expansion of two left-moving vertex operators leads
to:

Vl(α;x)Vl(−α; y) =
(

L/2π

i(y − x) + a

)α2

(5.12)

×
(

1 + iα(y − x)
∑

k>0

e−ak/2
√

k
(
e−ikx a†

l (k) + eikx al (k)
)

+ O((y − x)2)

)

Likewise for the right-movers:

Vr(α;x)Vr(−α; y) =
(

L/2π

i(x − y) + a

)α2

(5.13)

×
(

1 + iα(x − y)
∑

k>0

e−ak/2
√

k
(
e−ikx ar(−k) + eikx a†

r(−k)
)

+O((y − x)2)
)

.

1Remember that normal-ordering with respect to the bosonic vacuum just
amounts to commuting all annihilation operators to the right, see (4.20).
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Using the representation of the δ-function

lim
a→0

(
1

i(y − x) + a
+

1
i(x − y) + a

)
= 2π δ(x − y) , (5.14)

one can immediately deduce the following anticommutation relation from
(5.12) and (5.13) for α = 1:

{Vt(1;x), Vt(−1; y)} = Lδ(x − y) . (5.15)

This holds without any higher order terms if we take the limit a → 0. For
α = 1 the vertex operators therefore behave like fermions. In fact, they are
fermionic solitons made up of bosonic excitations [8].

We will later also need the following normalized Fourier transforms of
vertex operators:

Pt(α; k) def=

(
Γ (α2)
2πL

(
L |k|
2π

)1−α2)1/2 ∫
dx e−ikx Vt(−α;x) . (5.16)

These operators act like soliton creation and annihilation operators for left
and right movers with the properties

Pl (α; k)|Ω〉 = P †
l (α;−k)|Ω〉 = 0 for k > 0

Pr (α;−k)|Ω〉 = P †
r (α; k)|Ω〉 = 0 for k > 0 (5.17)

and

〈Pl (α; k)P †
l (α; k′)〉 = 〈P †

r (α; k′)Pr (α; k)〉 = δkk′ Θ(k)
L

2π

〈P †
l (α; k′)Pl (α; k)〉 = 〈Pr (α; k)P †

r (α; k′)〉 = δkk′ Θ(−k)
L

2π
(5.18)

with respect to the bosonic vacuum.

Generator (Part 1)

The elimination of interaction matrix elements that couple modes with large
energy differences implies that the interaction in (5.9) becomes nonlocal. Of
course, translation invariance is preserved, which leads us to the following
ansatz for the flowing Hamiltonian:

H(B) = H0 + Hint(B) (5.19)

with

H0 =
∑

k>0

k
(
a†

l (k)al (k) + a†
r(−k)ar(−k)

)
(5.20)

Hint(B) =
∫

dxdy u(y;B)
(
Vl(α;x)Vr(−α;x − y) + Vr(α;x − y)Vl(−α;x)

)

(5.21)
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Here

u(y;B = 0) =
1

2πa2

(
2πa

L

)α2

g δ(y) , (5.22)

where g is the initial dimensionless coupling constant from (5.1). One can
easily verify:

[
∑

k>0

k a†
l (k)al (k), Vl(α;x)

]
= i∂x Vl(α;x)

[
∑

k>0

k a†
r(−k)ar(−k), Vr(α;x)

]
= −i∂x Vr(α;x) . (5.23)

The canonical generator follows as:

η(1)(B) def= [H0,Hint(B)]

= −2i

∫
dxdy

∂u(y;B)
∂y

(
Vl(α;x)Vr(−α;x − y) + h.c.

)
. (5.24)

From [η(1)(B),H0] we can now deduce the linear part of the flow equations:

[η(1)(B),H0] = 4
∫

dxdy
∂2u(y;B)

∂y2

(
Vl(α;x)Vr(−α;x − y) + h.c.

)

⇒ ∂u(y;B)
∂B

= 4
∂2u(y;B)

∂y2
. (5.25)

The solution with the initial condition (5.22) is:

u(y;B) =
1

2πa2

(
2πa

L

)α2

g
e−y2/16B

√
16πB

. (5.26)

We are working in position space instead of the more familiar momentum
representation. This turns out to be the more convenient notation for the
operator product expansion that we encounter later on. However, these two
representations are, of course, fully equivalent.

Commutator [η(1), Hint]

The commutator [η(1),Hint] is as usual the centerpiece of the calculation. A
typical term that enters here is2

[Vl(α;x1)Vr(−α;x1 − y1), Vr(α;x2)Vl(−α;x2 − y2)] . (5.27)

2 [η(1), Hint] generates another term with only scaling dimensions +α or −α in
(5.27). However, such commutators lead to terms with larger scaling dimensions in
the OPE, which we can neglect later on anyway [2].
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Since vertex operators are complicated exponentials of bosonic operators,
such commutators produce new interactions that were not previously con-
tained in the interaction Hamiltonian. Our usual procedure to organize the
resulting expansion was normal-ordering. However, it is easy to see that
normal-ordering of products of vertex operators leads to non-local vertex
operators. Therefore we will be less ambitious than usual and introduce a
simplified procedure that only subtracts the ground state expectation values.
We denote this by ∗O∗ to avoid confusion with the usual normal-ordering
prescription,

∗ O∗ def= O − 〈O〉 (5.28)

for any composite operator O. Inserting this in (5.27) leads to

[Vl(α;x1)Vr(−α;x1 − y1), Vr(α;x2)Vl(−α;x2 − y2)] (5.29)
= 〈Vl(α;x1)Vl(−α;x2 − y2)〉 〈Vr(−α;x1 − y1)Vr(α;x2)〉

−〈Vl(−α;x2 − y2)Vl(α;x1)〉 〈Vr(α;x2)Vr(−α;x1 − y1)〉
+〈Vl(α;x1)Vl(−α;x2 − y2)〉 ∗Vr(−α;x1 − y1)Vr(α;x2)∗
+ ∗Vl(α;x1)Vl(−α;x2 − y2)∗ 〈Vr(−α;x1 − y1)Vr(α;x2)〉
−〈Vl(−α;x2 − y2)Vl(α;x1)〉 ∗Vr(α;x2)Vr(−α;x1 − y1)∗
− ∗Vl(−α;x2 − y2)Vl(α;x1)∗ 〈Vr(α;x2)Vr(−α;x1 − y1)〉
+R

with

R = ∗Vl(α;x1)Vl(−α;x2 − y2)∗ ∗Vr(−α;x1 − y1)Vr(α;x2)∗
− ∗Vl(−α;x2 − y2)Vl(α;x1)∗ ∗Vr(α;x2)Vr(−α;x1 − y1)∗ . (5.30)

Even if the reader skips the remaining somehow technical aspects of the
calculation, it is recommended to go through the following argument that
explains the essential difference between conventional scaling and the flow
equation approach in this model.

The only terms that are structurally more complicated than the terms
originally contained in the Hamiltonian consist of products of four vertex
operators and enter via the R-term in (5.29). In the R-term we now use the
operator product expansions (5.12) and (5.13) and neglect all higher order
terms that consist of more than two bosonic operators.3 After some algebra
[2] this yields

[η(1),Hint] −→ −2ψ(B)
∑

k>0

k
(
a†

l (k)a†
r(−k) + ar(−k)al (k)

)
(5.31)

with
3In the language of conventional RG this amounts to neglecting irrelevant op-

erators.
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ψ(B) = −32
a2

(
32B

a2

)1−α2

g2 α2

4Γ (α2 − 1)
(5.32)

for small momenta |k| � B−1/2. This operator product expansion in the
R-term is the only step in the calculation where we are forced to use an
approximation. The key observation of our calculation is the Γ -function in the
denominator of (5.32), which implies that the R-term itself vanishes for α2 =
1. This is easy to understand since for α = ±1 the vertex operator describe
fermions which obey the usual anticommutation relations (5.15). Therefore
according to (2.93) no higher order terms are generated in a commutator of
the structure (5.29), and we are able to solve the unitary flow on the line α = 1
(corresponding to β2 = 4π) exactly. This line β2 = 4π corresponds to the
non-interacting Thirring model. From our discussion here we can therefore
already conclude that the scaling flow deduced from the flow equation method
will not cross the line β2 = 4π in Fig. 5.1.

New diagonal term Hdiag(B)

Before we deal with the R-term (5.31), let us look at the terms in the third to
sixth line of (5.29) that are generated even for α = 1. They are not contained
in the original Hamiltonian and we take them into account by introducing a
new term

Hdiag(B) =
∑

k>0

ωk(B)
(
Pl (α;−k)P †

l (α;−k) + P †
l (α; k)Pl (α; k)

+P †
r (α;−k)Pr (α;−k) + Pr (α; k)P †

r (α; k)
)

(5.33)

with a differential equation for ωk(B). Of course, one also needs to calcu-
late [η(1)(B),Hdiag(B)]. One arrives at the following system of differential
equations (for |a k| � 1, for details see [2]):

dωk(B)
dB

= − 4g2

a3Γ 2(α2)

(
cos(πα2) (ak)2α2−1 v2

k(B) (5.34)

+
Γ (α2/2)

2π
sin(πα2) (ak)α2−1

(
8B

a2

)−α2/2 )

dvk(B)
dB

= −4k2 vk(B) − 4k ωk(B) vk(B) . (5.35)

The initial conditions are ωk(B = 0) = 0, vk(B = 0) = 1. Notice that

[H0,Hdiag(B)] = 0 , (5.36)

therefore it is appropriate to consider Hdiag(B) part of the diagonal Hamil-
tonian which cannot be removed through unitary transformations.



146 5 Modern Developments

Generator (Part 2)

Next we need to deal with the newly generated term (5.31). At this point we
depart from the usual choice of the canonical generator in order to simplify
our calculation. We add another part to the previous generator, η(B) =
η(1)(B) + η(2)(B), with

η(2)(B) def= −ψ(B)
∑

k>0

(
a†

l (k)a†
r(−k) − ar(−k)al (k)

)
. (5.37)

It is easy to verify that the commutator

[η(2)(B),H0] (5.38)

exactly cancels the term (5.31). Notice that η(2)(B) is still a well-behaved
generator without low-energy divergences in its matrix elements. We there-
fore expect our expansion to be controlled without small-energy denominator
problems, as will indeed be the case.

Now we need to investigate the effect of η(2)(B) on Hint(B).4 The key
part of this calculation is the transformation of the bosonic fields:

eη(2)(B) al (k) e−η(2)(B) = al (k) cosh(ψ(B)) + a†
r(−k) sinh(ψ(B))

eη(2)(B) ar(k) e−η(2)(B) = ar(k) cosh(ψ(B)) + a†
l (−k) sinh(ψ(B)) . (5.39)

From this it is easy to show (in leading order of the operator product expan-
sion)

eη(2)(B) Hint(B) e−η(2)(B) =

(
2πs

√
B

L

)2ψα2 ∫
dxdy u(y;B) (5.40)

× (Vl(α(1 + ψ);x)Vr(−α(1 + ψ);x − y) + h.c.) ,

where the prefactor appears due to normal-ordering of the vertex operators.
s is a constant of order 1.

5.1.3 Conventional Scaling vs. Flow Equations

The shift in the scaling dimension of the vertex operators in (5.40) can be
interpreted as a flow of α (or β), while the prefactor leads to a flow of the
coupling constant g. After some algebra one finds:

dβ−2

d ln Λfeq
= − g2 + O(g3)

4πΓ (−1 + β2/4π)
(5.41)

dg

d ln Λfeq
=

(
β2

4π
− 2

)
g + O(g2) . (5.42)

4The effect of η(2)(B) on Hdiag(B) vanishes in leading order of the operator
product expansion [2].



5.1 Strong-Coupling Behavior: Sine–Gordon Model 147

These scaling equations should be compared with the scaling equations (5.3)
from the conventional scaling approach. The main difference is the Γ -function
in the denominator of (5.41), which can be directly traced back to the struc-
ture of the R-term (5.32). The resulting flow diagram is depicted in Fig. 5.2.
Its key difference from the conventional scaling picture Fig. 5.1 is the strong-
coupling fixed line for β2 = 4π that attracts the flow in the strong-coupling
phase. Since the R-term vanishes exactly for β2 = 4π, we can even say that
this fixed line is stable to all orders in the expansion. The structure of (5.41)
also explains why it is a futile exercise to try to find this strong-coupling
fixed line by expanding around g = 0 and β2 = 8π: the correct pole in the
Γ -function can only emerge after summing up all orders in the expansion
around β2 = 8π.

Fig. 5.2. Flow equation flow diagram of the sine–Gordon model: Notice that the
scaling flow in the strong-coupling phase approaches the noninteracting Thirring
model β2 = 4π. This is the main difference from the conventional perturbative
scaling flow depicted in Fig. 5.1 and allows for a finite expansion parameter (5.43)
of the flow equation solution
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Expansion Parameter

From Fig. 5.2 one concludes that the running coupling constant g(Λfeq) still
diverges in the strong-coupling phase, which makes one wonder about the
reliability of our expansion. However, all the approximations that we en-
countered along the way were triggered by the nonvanishing R-term (5.32),
implying that our expansion parameter is actually the prefactor of this term
and not simply the running coupling constant. We therefore identify the di-
mensionless combination

ε(Λfeq) = g2(Λfeq)
β2/4π

Γ (−1 + β2/4π)
(5.43)

from (5.32) as the genuine expansion parameter of the flow equation solution
of the sine–Gordon model:

– In the weak-coupling phase the running coupling constant eventually van-
ishes and so does the expansion parameter, which makes the results as-
ymptotically exact.

– In the strong-coupling phase the running coupling constant diverges. How-
ever, the flow of β2 approaches the strong-coupling fixed line much faster,
so that the expansion parameter 5.43 becomes small again. This behav-
ior is depicted in Fig. 5.3. Notice that these are universal curves in units
of the mass gap M (compare (5.4)), therefore the error in our approxi-
mation always becomes largest on the energy scale set by the mass gap.
Since the expansion parameter ε(Λfeq) remains finite throughout the whole
crossover from weak to strong coupling, we expect that the present or-
der of the calculation gives reliable results, which can be systematically
improved by going to higher orders.

Low-Energy Excitations

Since we have performed a controlled approximate diagonalization of the
sine–Gordon Hamiltonian, we can now try to learn something about its low-
energy physics. We have seen before that

H(B = ∞) = H0 + Hdiag(B = ∞) (5.44)

with:
H0 =

∑

k>0

k
(
a†

l (k)al (k) + a†
r(−k)ar(−k)

)
(5.45)

Hdiag(B = ∞) = (5.46)

=
∑

k>0

ωk(B = ∞)
(
Pl (αk;−k)P †

l (αk;−k) + P †
l (αk; k)Pl (αk; k)

+P †
r (αk;−k)Pr (αk;−k) + Pr (αk; k)P †

r (αk; k)
)

.
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Fig. 5.3. Universal curves for the expansion parameter (5.43) of the flow equation
solution in the strong-coupling phase of the sine–Gordon model. M denotes the mass
gap and the curves are labeled from top to bottom with their initial parameter β2.
Notice that ε(Λfeq) ≡ 0 for β2 = 4π

Here αk is the scaling dimension on the energy scale where this particular
contribution to Hdiag has been generated,

αk =
β
(
Λfeq = (k4 + k2 M2)1/4

)

√
4π

. (5.47)

Single bosonic creation and annihilation operators are not ladder operators
of H(B = ∞) anymore. One can verify that they are replaced by (again in
leading order of an operator product expansion):

[H(B = ∞), P †
l (αk;−k)] = Ek P †

l (αk;−k)

[H(B = ∞), Pl (αk; k)] = Ek Pl (αk; k)

[H(B = ∞), P †
r (αk; k)] = Ek P †

r (αk; k)
[H(B = ∞), Pr (αk;−k)] = Ek Pr (αk;−k) (5.48)

with Ek = k + ωk(B = ∞). Here P †
l (αk;−k), Pl (αk; k), P †

r (αk; k) and
Pr (αk;−k) generate left moving solitons/antisolitons and right moving soli-
tons/antisolitons, resp. From (5.34) and (5.34) one can verify that their dis-
persion relation is to very good accuracy given by [2]:
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Ek =
√

k2 + M2 (5.49)

with the mass gap

M =
1
a

lim
Λfeq→0

[
g(Λfeq)Λ

2−β2(Λfeq)/4π
feq

]
. (5.50)

We see that the low-energy excitations are fermionic solitons and antisolitons
with a finite mass M that depends nonperturbatively on the initial parame-
ters, compare (5.4). Notice that eventually for Λfeq → 0

g(Λfeq) ∝
1

Λfeq
, (5.51)

therefore the expression (5.50) for M is finite and nonzero. Relation (5.50)
also shows that a diverging dimensionless coupling constant is physically
necessary and unavoidable in a scaling framework since the system exhibits
a nonzero mass gap. The scaled Hamiltonian H(Λfeq) has to describe the
same mass gap irrespective of Λfeq, even in the limit Λfeq � M . Therefore its
dimensionless coupling constant has to diverge according to (5.51) in order
to produce a constant dimensionful product M ∝ g(Λfeq)Λfeq.

For this reason the search for a scaling expansion without such a strong-
coupling divergence, e.g. with a critical point in the RG β-function for g, is a
futile exercise. What one can realistically achieve is an approximation scheme
with a finite expansion parameter that is not the running coupling constant,
as we have demonstrated in this chapter.

Perspectives and Limitations

Strong-coupling models with diverging coupling constants play an important
role in modern theoretical physics. It is a natural question to ask whether
our flow equation calculation for the sine–Gordon model can be generalized
to other models. Looking back at the key ingredients of our solution we can
identify two essential points:

– The existence of a point in the parameter space where the Hamiltonian
becomes simple and can be solved exactly. This is the noninteracting
Thirring model in Fig. 5.1. Notice that the Hamiltonian becomes “simple”
in complex objects, namely fermionic solitons and antisolitons. However,
this is no problem for the flow equation machinery since we only need to
know the fundamental commutators or anticommutators.

– The fact that the scaling flow drives us to this exactly solvable line in
the parameter space (Fig. 5.2). In particular, this approach to the ex-
actly solvable line turns out to be fast enough to yield a finite expansion
parameter (5.43).
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These conditions are very specific and do not hold for all strong-coupling
problems, e.g. certainly not for QCD. One important case where the sine–
Gordon calculation can be carried over is the Kondo model [3]. Here the
exactly solvable line in the parameter space is the famous Toulouse line.5

5.2 Steady Non-Equilibrium: Kondo Model
with Voltage Bias

Our current understanding of many-body physics is strongly focused on equi-
librium properties or near-to-equilibrium, i.e. linear response properties. This
is mainly due to a lack of suitable analytical and numerical methods that can
deal with quantum many-body systems out of equilibrium. One of the main
reasons for this is that typically many energy scales contribute to the be-
havior far out of equilibrium, while e.g. conventional RG methods only focus
on the low energy degrees of freedom. Since the flow equation method does
not eliminate parts of the Hilbert space, it turns out to be a very useful tool
for studying quantum systems in steady non-equilibrium states beyond the
linear response regime. We will discuss this below for the Kondo model with
voltage bias.

5.2.1 Kondo Model in Non-Equilibrium

Recent theoretical interest in the Kondo model with voltage bias has grown
largely out of experiments on quantum dots in the Coulomb blockade regime.
We will leave the experimental realization aside in our discussion here, and
start immediately with the suitable Hamiltonian that describes a spin-1/2
degree of freedom coupled to conduction electrons in a left (l) and a right (r)
lead:

H =
∑

a,p,α

(εp − µa)c†apαcapα+
∑

a′,a

Ja′a

∑

p′,p

: S · s(a′p′)(ap) : . (5.52)

Here a′, a = l, r label the two leads and p′, p are momentum labels, other-
wise the notation is like in Sect. 4.2. We are interested in the steady non-
equilibrium state that develops when we have a potential difference voltage V
between the two leads: we take the chemical potentials as µl,r = ±V/2. The

5 It is possible that other models with a mass gap can also be solved in a
controlled way using flow equations even without such an exactly solvable point.
The key idea would be that a mass gap can eliminate IR-divergences, which one
could try to employ to obtain a controlled expansion in combination with the ideas
in Sect. 4.1.5. This is similar in spirit to the symmetry-broken normal ordering
prescription used in [9], and it would be very worthwhile to explore such ideas in
more detail.
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couplings Ja′a describe the exchange interaction with the localized spin de-
gree of freedom (Jlr = Jrl for hermiticity). If the quantum dot can be derived
from an underlying Anderson single-impurity model with tunneling rates Γl,r

from the left/right lead, the coupling constants of the effective Kondo model
are related by: [10, 11]

J2
lr = JllJrr

r
def= Jll/Jrr = Γl/Γr . (5.53)

Here r is the asymmetry parameter of the model.
The fundamental theoretical problem when analyzing the Hamiltonian

(5.52) is that it is unbounded from below. By moving electrons from the left
to the right lead we can lower the total energy indefinitely. However, for a
non-equilibrium problem like this we are not interested in the ground state,
but rather in the steady state that develops when we start the time evolution
with some given initial state (here, e.g., the noninteracting Fermi seas in the
left and right leads) and then wait long enough.

Still, from the flow equation point of view nothing much changes in the
analysis of (5.52) as compared to the equilibrium discussion in Sect. 4.2. We
attempt to make the Hamiltonian (5.52) energy-diagonal through suitable in-
finitesimal unitary transformations. An approximation scheme is introduced
through normal-ordering with respect to the noninteracting ground state like
before in Sect. 4.2.6 Essentially we can take over the whole system of flow
equations derived in Sect. 4.2 without any additional work and just re-analyze
it in a non-equilibrium setting. This is a significant advantage as compared
to Keldysh-based diagrammatic calculations which need to be derived from
scratch without the benefit of re-using parts of a previous calculation in a
similar manner.

Before starting with the flow equation analysis, we can simplify the Hamil-
tonian (5.52) somewhat by making use of the relations (5.53). We introduce
the following linear combination of left and right lead fermion operators

fpα
def=

1√
1 + r

crpα +
1√

1 + r−1
clpα , (5.54)

which obey the usual anticommutation relations {fpα, f†
p′β} = δpp′δαβ . The

Kondo Hamiltonian (5.52) can then be rewritten as

H =
∑

p,α

εp f†
pαfpα + J

∑

p′,p

: S · sp′p : , (5.55)

where now the conduction band spin operators sp′p = 1
2

∑
α,β f†

p′ασαβfpβ are
defined for the f -operators. The antisymmetric combination

6We remind the reader that this is a consistent procedure up to two-loop order,
see the discussion following (4.156).
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1√
1 + r−1

crpα − 1√
1 + r

clpα (5.56)

decouples from the impurity spin and can be ignored when deriving the flow
equations. The coupling constant in (5.55) is given by J = Jll + Jrr, and the
zero temperature Fermi distribution function for our new f -operators follows
from the original fermions in (5.52):

nf (p) = 〈f†
pαfpα〉

=
1

1 + r
〈c†rpαcrpα〉 +

1
1 + r−1

〈c†lpαclpα〉

=






0 εp > V
2

1
1 + r−1 |εp| � V

2

1 εp < −V
2 .

(5.57)

5.2.2 Flow Equation Analysis

The analysis presented here follows [12]. The starting point is the system of
flow equations (4.143) and (4.144) derived previously:

dJp′p

dB
= −(εp′ − εp)

2Jp′p (5.58)

+
∑

q

(εp′ + εp − 2εq)Jp′qJqp (nf (q) − 1/2)

+
1
2

∑

q′,q

(2εq − 2εq′ + εp − εp′) Jq′q(Kq′q,p′p − Kp′p,q′q)

×
(
nf (q′) (1 − nf (q)) + nf (q) (1 − nf (q′))

)

+O(J4)

dKp′p,q′q

dB
= −(εp′ + εq′ − εp − εq)

2 Kp′p,q′q (5.59)

+(εp′ − εp)Jp′pJq′q + O(J3)

with the initial conditions Jp′p(B = 0) = Jll + Jrr and Kp′p,q′q(B = 0) = 0.
We could now proceed directly with the numerical solution of these equa-

tions and for example work out the phase diagram of the non-equilibrium
Kondo model. However, we can gain valuable analytical insights by using the
diagonal parametrization,

ρJp′p(B) = g
p′p

(B) e−B(ε
p′−εp)2

. (5.60)

Notice that here the IR-parametrization would not be a suitable approach
since the coupling constants g

p′p
(B) develop a strong and complicated depen-

dence on the energy scale due to the presence of two Fermi surfaces. On the
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other hand, we will later see by comparison with the full numerical solution
that the diagonal parametrization (5.60) yields an excellent approximation.

Inserting the diagonal parametrization into (5.58) for p′ = p results in:

dgp

dB
=

g2
p

2B

( 1
1 + r

e−2B(−εp−V/2)2 +
1

1 + r−1
e−2B(−εp+V/2)2

)
(5.61)

−2
∫

dεq′ dεq (εq′ − εq)
2 gq e−2B(ε

q′−εq)2

×nf (q′) (1 − nf (q))
∫ B

0

dB′ gp(B′) gq(B′) .

Because nf (q′) (1 − nf (q)) �= 0 for all energies |εq′ |, |εq| � V/2, this whole
range of energies contributes to the integral in the second line of (5.61).
This is the main difference from the equilibrium case where V = 0. It turns
out that we can replace these couplings by their average over the window
[−V/2, V/2] (which is responsible for transport) with very good accuracy,

gt(B) def=
1
V

∫ V/2

−V/2

dεq gq(B) . (5.62)

We insert this in (5.61) and average both sides over εp ∈ [−V/2, V/2], which
gives a closed equation for gt(B):

dgt

dB
=

g2
t (B)
2B

√
π√

8BV
erf(

√
2BV ) (5.63)

−gt(B)
4B2

1
(1 + r)(1 + r−1)

∫ B

0

dB′ g2
t (B′)

×
(
r + r−1 + 2e−2BV 2

+
√

2πBV erf(
√

2BV )
)

.

Of particular importance are the running coupling constants at the left and
right Fermi surfaces,

gl (B) def= gεp=V/2(B) , gr(B) def= gεp=−V/2(B) , (5.64)

which determine the behavior of the quasiparticle resonances (Kondo peaks)
and the phase diagram. Their flow equations follow immediately from (5.61):

dgl

dB
=

g2
l (B)
2B

( 1
1 + r−1

+
1

1 + r
e−2BV 2

)
(5.65)

−gt(B)
4B2

1
(1 + r)(1 + r−1)

∫ B

0

dB′ gl(B′) gt(B′)

×
(
r + r−1 + 2e−2BV 2

+
√

2πBV erf(
√

2BV )
)
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dgr

dB
=

g2
r(B)
2B

( 1
1 + r

+
1

1 + r−1
e−2BV 2

)
(5.66)

−gt(B)
4B2

1
(1 + r)(1 + r−1)

∫ B

0

dB′ gr(B′) gt(B′)

×
(
r + r−1 + 2e−2BV 2

+
√

2πBV erf(
√

2BV )
)

.

Before proceeding with an analytical analysis of (5.63), (5.65) and (5.66),
we should verify that the solutions of these differential equations agree suf-
ficiently accurately with the full numerical solution of the original system
of differential equations (5.58) and (5.59). This step serves as an a posteri-
ori justification of the diagonal parametrization and is important in the flow
equation analysis of a complicated many-body system. Figure 5.4 contains
such a comparison and shows that the approximations leading from (5.58)
and (5.59) to (5.63)–(5.66) were indeed very reliable.
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Fig. 5.4. Comparison of the flow of the coupling constants gl and gt from the
full numerical solution of (5.58) and (5.59) with the effective equations (5.63) and
(5.65). Depicted here is a symmetric Kondo dot (therefore gl = gr). The full lines
refer to the full numerical solution and the dashed lines to the effective equations.
Results are shown for various ratios V/TK labeling the pairs of curves from top to
bottom
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Scaling Analysis

After confirming that (5.63)–(5.66) provide an accurate description of the
flow, we continue with an analytical analysis. First of all, one notices that all
three differential equations coincide for Λfeq � V (B−1/2 � V ),

dga

dΛfeq
= − g2

a

Λfeq
+

g3
a

2Λfeq
(5.67)

with a = l, r, t. As expected one finds the conventional 2-loop scaling equation
for the Kondo model (4.154) in this initial phase of the flow where the voltage
bias plays no role.

Once the flow parameter is smaller than the voltage bias, Λfeq � V , the
scaling equations take a different structure. The effective transport coupling
obeys:

dgt

dΛfeq
= g3

t

V

Λ2
feq

√
π

2
1

(1 + r)(1 + r−1)
. (5.68)

We notice that the strong-coupling growth from the second order term has
disappeared since there is no Fermi discontinuity for energy-diagonal trans-
port processes with energy transfer � V . This equation has a striking (and
not accidental) similarity to (4.162) for the Kondo model at finite tempera-
ture once Λfeq � T . We can therefore use the solution (4.164):

gt(Λfeq) =
g∗√

1 + Γrel/Λfeq

(5.69)

for Λfeq � V . Here

Γrel
def=

√
2π g2

∗ V
1

(1 + r)(1 + r−1)
(5.70)

and g∗ is the running coupling constant on the scale Λfeq = V . From the
solution of (5.67) we then find

g∗ = gt(Λfeq = V ) =
1

ln(V/TK)
, (5.71)

with the Kondo temperature defined from the equilibrium model:

ρ TK =
√

ρJll + ρJrr e−1/(ρJll+ρJrr) . (5.72)

Like for the case of the finite temperature Kondo model, Γrel is interpreted
as a spin decoherence rate (see the results below for the spin-spin correlation
function). The main difference is that here Γrel is due to the Schottky noise
produced by the non-equilibrium current. One can show that for V � TK

the current is given by [11]
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I =
e2

h

3π2

2
g2
∗ V

1
(1 + r)(1 + r−1)

, (5.73)

and therefore indeed
Γrel ∝ I (5.74)

with a proportionality factor independent of V , TK and r.
This spin decoherence rate has an important effect in the scaling equa-

tions for the couplings at the Fermi surfaces. For Λfeq � V (5.65) takes the
following form:

dgl

dΛfeq
= − 1

1 + r−1

g2
l

Λfeq
+ gl g

2
t

V

Λ2
feq

√
π

2
1

(1 + r)(1 + r−1)
. (5.75)

This leads to

dgl

d lnΛfeq
= − g2

l

1 + r−1
+ gl

d ln gt

d ln Λfeq

= gl

(
− gl

1 + r−1
+

1
2

Γrel

Λfeq + Γrel

)
, (5.76)

where we have inserted the solution (5.69) for gt(Λfeq). Likewise at the right
Fermi surface:

dgr

d ln Λfeq
= gr

(
− gr

1 + r
+

1
2

Γrel

Λfeq + Γrel

)
. (5.77)

We observe an interesting competition between strong-coupling second order
terms due to inter-lead scattering processes, and the spin decoherence effects
due to the current [12]. When the running coupling constants have not become
too large at the energy scale set by the decoherence rate, Λfeq ≈ Γrel, then
the second terms on the right hand sides of (5.76) and (5.77) take over and
the couplings gl and gr eventually decay to zero. This is depicted in Fig. 5.4
for some examples.

Phase Diagram

We can now determine the phase diagram of the Kondo model with voltage
bias that is generated by the competition between strong-coupling coher-
ence effects and non-equilibrium decoherence. We define the weak-coupling
regime to be the part of parameter space where the couplings gl and gr re-
main smaller than 0.75 during the entire flow. Likewise, if at least one of
these couplings becomes larger we are in the strong-coupling regime. The
crossover line actually hardly depends on the specific value 0.75. The choice
of this specific value is motivated by the observation that then the T -matrix
reaches its unitarity limit in second order perturbation theory at the respec-
tive Fermi surface. The crossover line therefore indicates the breakdown of
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Fig. 5.5. Phase diagram of the non-equilibrium Kondo model as a function of
asymmetry r = Γl/Γr and voltage bias. The dashed line separates the weak-coupling
regime from the strong-coupling regime, see text

the perturbative expansion in the running coupling constants, but also that
the quasiparticle resonance reaches its Friedel limit. This is the physical in-
terpretation of the crossover line, i.e. it does not indicate a phase transition.
The phase diagram determined in this way from the full numerical solution
of the flow equations is depicted in Fig. 5.5.

Flow Equations vs. Conventional Scaling

One important observation in the phase diagram Fig. 5.5 is that one needs to
go to rather large values of the voltage bias for asymmetrically coupled Kondo
dots in order to find weak-coupling physics. This is due to the suppression
of the current and therefore the spin decoherence rate (5.70) for r �= 1.
However, in order to work out the resulting phase diagram quantitatively one
needs to be able to quantitatively investigate the competition of coherence
and decoherence effects in (5.76) and (5.77). We have just seen that this
is straightforward in the flow equation framework, and it is worthwhile to
understand this better since it is a major difference to the conventional scaling
approach,

First of all, the reason why we could analyze the effect of non-equilibrium
decoherence in a controlled way (that is for small running coupling constants)
is the appearance of the decoherence term in linear order of the coupling
constant in (5.76) and (5.77). This term was originally a third order con-
tribution in the running coupling constant. Its remarkable transmutation to
a first order term is due to the V/Λ2

feq-factor in (5.68). Similar to the finite
temperature Kondo model (4.161) and (4.162), this factor is due to the phase
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Fig. 5.6. Left : Conventional scaling picture where states are integrated out around
the two Fermi surfaces with voltage bias V (here depicted for cutoff ΛRG < V ).
Right : Flow equation approach. Here all interaction matrix elements with energy
transfer |∆E| � Λfeq are retained in H(Λfeq)

space proportional to V open for energy-diagonal processes even in the limit
Λfeq → 0 in the second line of (5.61). However, once this prefactor V appears,
the 1/Λ2

feq-dependence follows immediately for dimensional reasons.
The key difference between the conventional scaling approach and flow

equations can then be summed up in Fig. 5.6. In the conventional scaling ap-
proach one integrates out degrees of freedom around the two Fermi surfaces.
Once ΛRG � V the Hamiltonian H(ΛRG) cannot produce a phase space fac-
tor V anymore since the energy window available for transport processes is
only proportional to ΛRG. On the other hand, since all sufficiently energy-
diagonal scattering processes are retained in the flow equation Hamiltonian
H(Λfeq), the phase space factor V emerges naturally (see Fig. 5.6).

On a technical level the difference is that in the conventional scaling
approach one purports to be able to eliminate energy-diagonal and nearly
energy-diagonal scattering elements between the left and the right lead in
Fig. 5.6. Even for small coupling constants this is not possible in a con-
trolled way. Therefore a term like the one on the right hand side of (5.68)
is necessarily absent and one cannot study the competition of coherence and
decoherence with the scaling equations. We have thereby come full circle to
our matrix picture Fig. 1.1 in the introduction where we have emphasized
the difference between

– flow equations, where we retain energy-diagonal processes with |∆E| �
Λfeq, and

– conventional scaling equations, where we retain states with an absolute
energy smaller than the cutoff, |E| < ΛRG.

5.2.3 Correlation Functions in Non-Equilibrium: Spin Dynamics

In Chap. 3 we have worked out how to evaluate equilibrium expectation values
and correlation functions within the flow equation framework. This needs to
be reanalyzed now in a non-equilibrium setting like the Kondo model with
voltage bias. As mentioned previously, the key problem of non-equilibrium
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many-particle physics is that unlike in equilibrium one has no variational
construction principle for a steady non-equilibrium state. Therefore we are
forced to “construct” the steady state dynamically. Let us assume that the
system is prepared in an initial state |Ψi〉 at time t = 0. In our example this
is the ground state of the free electron system when the Kondo dot is not
coupled to the leads. Then a correlation function in the steady state is given
by

Cneq(t)
def= lim

tw→∞
C(t, tw) , (5.78)

where

C(t, tw) def= 〈Ψi|O(t + tw)O(tw) |Ψi〉 (5.79)
= 〈Ψi| eiH(t+tw) O e−iH(t+tw) eiHtw O e−iHtw |Ψi〉 .

Here the thermodynamic limit needs to be taken before sending the waiting
time tw for the measurement to infinity.7 If we now insert the diagonalizing
unitary transformation everywhere (like in going from (3.24) to (3.26)), we
obtain

C(t, tw) = 〈Ψi|U†(B = ∞) eiH̃(t+tw) Õ e−iH̃t Õ e−iH̃tw U(B = ∞) |Ψi〉 .
(5.80)

Here H̃ and Õ are the unitarily transformed Hamiltonian and observable,
resp. The basic difference from our analysis in Sect. 3.2 is that now U(B =
∞) |Ψi〉 is not the ground state of the diagonal Hamiltonian H̃. However, the
difference

C(t, tw) − 〈Ψi| eiH̃(t+tw) Õ e−iH̃t Õ e−iH̃tw |Ψi〉 ∝ O(g) (5.81)

is proportional to the running coupling constant since (loosely speaking)
U(B = ∞) differs from the identity operator in order the running coupling
constant. So in our specific problem at hand we are left with the easier task
of evaluating

〈FS| eiH̃(t+tw) Õ e−iH̃t Õ e−iH̃tw |FS〉 (5.82)

to leading order in the coupling constant. Here |FS〉 is the noninteracting
Fermi sea in the left and right lead since we took the Kondo dot to be
decoupled from the leads for t < 0. The diagonal Hamiltonian itself takes the
form

H̃ =
∑

p,α

εp f†
pαfpα + i

∑

p′,p,q′,q

Kp′p,q′q(B = ∞) : S · (sp′p × sq′q) : , (5.83)

where Kp′p,q′q(B = ∞) is nonvanishing only for energy-diagonal processes. If
we replace H̃ by the free conduction electron part H0, we are again neglecting
terms in order the running coupling constant. We can say

7Notice that in general Cneq(t) could depend on the initial state |Ψi〉. How-
ever, similar to the Keldysh approach we assume that this is not the case for a
“reasonable” initial state |Ψi〉.
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Cneq(t) − C(0)
neq(t) ∝ O(g) (5.84)

with

C(0)
neq(t) = 〈FS| eiH0(t+tw) Õ e−iH0t Õ e−iH0tw |FS〉

= 〈FS| eiH0t Õ e−iH0t Õ |FS〉 . (5.85)

Notice that (5.85) does not depend on the waiting time anymore since |FS〉
is an eigenstate of H0. To leading order the calculation of a correlation func-
tion in the steady state therefore reduces to the same expression as in the
equilibrium case. It should be mentioned that there are observables where
the leading order C

(0)
neq(t) vanishes exactly. The most important example for

this is the current across the Kondo dot. Then one has to work out the above
terms in O(g) explicitly, which turn out to give the leading contributions.8

Spin Dynamics

Let us use the above considerations to work out to the symmetrized spin-spin
correlation function C(ω) and the imaginary part of the response function
χ′′(ω) to leading order. We can use the expressions from the previous equi-
librium calculation (4.192):

C(ω) =
π

4

∑

u

γ2
εu+ω,εu

(B = ∞) (5.86)

×
(
nf (εu) (1 − nf (εu + ω)) + nf (εu + ω) (1 − nf (εu))

)

χ′′(ω) =
π

4

∑

u

γ2
εu+ω,εu

(B = ∞) (5.87)

×
(
nf (εu) (1 − nf (εu + ω)) − nf (εu + ω) (1 − nf (εu))

)
.

Notice that here we need to calculate C(ω) and χ′′(ω) individually since
they will in general not be related by the fluctuation–dissipation theorem
(3.40). Remember that the fluctuation–dissipation theorem does in general
only hold for the ground state or the equilibrium finite temperature mixed
state, whereas here we are interested in a steady non-equilibrium state.

We can use the results (4.185) and (4.186) for the coefficients:

ρ γε+ω,ε(B = ∞) ∼






g(B = ω−2)
ω for |ω| � Γrel

g∗
Γrel sgn(ω) for |ω| � Γrel ,

(5.88)

where Γrel is given by (5.70). It is easy to work out the qualitative behavior
for the spin-spin correlation function and the dynamical spin susceptibility
from (5.86) and (5.87):

8A detailed discussion of these issues is beyond the scope of this book and the
reader should consult recent research publications.
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C(ω) ∼






1
Γrel

for |ω| � Γrel

Γrel

ω2 for Γrel � |ω| � V
(1 + r)(1 + r−1)

g2(Λfeq = |ω|)
ω for |ω| � V

(1 + r)(1 + r−1)

(5.89)

χ′′(ω) ∼






g2
∗

Γ 2
rel

ω for |ω| � Γrel

g2(Λfeq = |ω|)
ω for |ω| � Γrel ,

(5.90)

The spin-spin correlation function has a zero frequency peak of width Γrel,
which confirms our previous interpretation of Γrel as a spin relaxation rate.
The dynamical spin susceptibility has its maximum at ω ≈ Γrel,

χ′′(ω = Γrel) ∼
(1 + r)(1 + r−1)

V
. (5.91)

Some quantitative results obtained from the full numerical solution of the
flow equations are shown in Fig. 5.7.

Static Spin Susceptibility

The comparison of (5.89)–(5.91) with the corresponding results for the equi-
librium Kondo model at finite temperature shows that the non-equilibrium
Kondo model effectively looks like the equilibrium model at the temperature

Teff =
V

(1 + r)(1 + r−1)
. (5.92)

This is also precisely the relation that maps the two decoherence rates (4.165)
and (5.70) in equilibrium and non-equilibrium onto one another. It is therefore
not surprising that the static spin susceptibility (4.201)

χ0 =
2
π

∫ ∞

0

dω
χ′′(ω)

ω
(5.93)

obeys

V χ0(V ) =
(1 + r)(1 + r−1)

4
(5.94)

for V � TK.9 A large voltage bias therefore suppresses the static spin suscep-
tibility in the characteristic way (5.94), which can be interpreted as replacing
the 1/4T -Curie law by a (1 + r)(1 + r−1)/4V -behavior.

9More accurately one should actually put the stronger constraint Γrel � TK.
For the discussion of logarithmic corrections in (5.94) the reader should consult the
recent research literature.
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Fig. 5.7. Universal curves for the spin-spin correlation function C(ω) and the
imaginary part of the dynamical spin susceptibility χ′′(ω) obtained from the full
numerical solution of the flow equations (symmetric model r = 1) for various values
of the voltage bias at zero temperature. The fluctuation–dissipation theorem (3.40)
is clearly not fulfilled for these curves since we are investigating a non-equilibrium
steady state

It is worthwhile to mention that this result is highly nontrivial in the
framework of conventional expansion methods since it differs in zeroth order
of the coupling constant from the noninteracting case, i.e. the static sus-
ceptibility of a free spin-1/2 degree of freedom. This makes it necessary to
carefully reconsider perturbative expansions, and the nonequilibrium calcula-
tion is substantially more complicated than the equilibrium calculation [13].
For a very enlightening discussion of this point the reader should consult [14].
On the other hand, the derivation of (5.94) within the flow equation frame-
work was straightforward. In fact, we could essentially just carry over the
calculation for the equilibrium model at nonzero temperature.

5.3 Real Time Evolution: Spin–Boson Model

In the previous section we discussed a steady non-equilibrium situation gen-
erated by a nonzero voltage bias of the external leads. Another class of non-
equilibrium problems is related to the real time evolution of a quantum sys-
tem that is not prepared in its ground state, or that contains time-dependent
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external parameters. Such situations occur very naturally in physical systems,
and are far less well understood than equilibrium many-body systems.

The flow equation method also offers an interesting new tool for study-
ing this class of non-equilibrium models. The key observation is that the
flow equation diagonalization amounts to being able to solve the Heisenberg
equations of motion for observables in an interacting system in a controlled
approximation. Once one has worked out the time evolution of an opera-
tor, the time-dependent expectation value can be evaluated with respect
to a given quantum state. This can be the equilibrium ground state, but
also some non-equilibrium initial state. The key difference from conventional
many-body techniques is that we are not following the time evolution of the
quantum state (Schrödinger picture), but rather the time evolution of the
operators (Heisenberg picture). In the flow equation formalism, the latter
is independent of the quantum state and we can carry over the equilibrium
calculation.10 The new part of the non-equilibrium calculation is to express
the initial state in the diagonal basis, or to evaluate matrix elements of the
initial state with respect to the diagonal flow equation basis.

As a pedagogical example we will here study the real time evolution of
the spin–boson model with an external field that is suddenly switched off at
time t = 0. The spin–boson model in equilibrium has already been discussed
in Sect. 4.3. We generalize the Hamiltonian in the following way:

H(t) = h(t)σz − ∆

2
σx +

1
2

σz

∑

k

λk (ak + a†
k) +

∑

k

ωk a†
kak . (5.95)

We take

h(t) =
{

h0 for t � 0
0 for t > 0 (5.96)

and assume that at time t = 0 the system is in its ground state |Ψi〉 with
respect to the nonvanishing external field h0. One quantity of immediate
interest is the subsequent decay of the spin expectation value

P (t) def= 〈Ψi|σz(t)|Ψi〉 (5.97)

at zero temperature.
The structure of this non-equilibrium situation allows a very straight-

forward solution based on the flow equation diagonalization obtained in
Sect. 4.3. Neglecting all higher-order terms, we deduce from (4.236) and
(4.250) that H(t) takes the following form in the diagonal basis for t > 0:

H̃(t) = h(t)σx

∑

k

χk(B = ∞) (a†
k + ak) − ∆r

2
σx +

∑

k

ωk a†
kak . (5.98)

10However, it should be mentioned that approximations are of course done with
respect to a certain state. Therefore initial quantum states that are “very different”
from the ground state can make the approach more complicated. This is a subject
for future research.
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The time-evolved observable σz(t) for t > 0 is given by the following expres-
sion in the diagonal basis:

σ̃z(t) = σx

∑

k

χk(B = ∞) (eiωkt a†
k + e−iωkt ak) , (5.99)

which leads to

P (t) =
∑

k

χk(B = ∞)
(
eiωkt 〈Ψi|a†

k|Ψi〉 + e−iωkt 〈Ψi|ak|Ψi〉
)

. (5.100)

We need to find the ground state of (5.98) for t < 0 in order to extract these
matrix elements. Clearly 〈Ψi|σx|Ψi〉 = 1 for ∆r > 0, and therefore H̃(t � 0)
can be rewritten as the quadratic form

∑

k

ωk

(
a†

k +
h0χk(B = ∞)

ωk

) (
ak +

h0χk(B = ∞)
ωk

)
(5.101)

plus an uninteresting constant. We need to find the ground state of (5.101).
This is a trivial exercise:

ak |Ψi〉 = −h0χk(B = ∞)
ωk

|Ψi〉 , (5.102)

and we find in (5.100):

P (t) = −2h0

∑

k

χ2
k(B = ∞)

ωk
cos(ωk t) . (5.103)

Interestingly, the Fourier transform can be expressed in a straightforward
way through the equilibrium correlation function C

(sym)
zz (ω) from (4.248):

P (ω) = −2
h0

ω
C(sym)

zz (ω) . (5.104)

Universal curves for an Ohmic bath with various dissipation strengths are
depicted in Fig. 5.8. Notice that P (ω = 0) �= 0 for an Ohmic bath, which
indicates an exponential decay of the spin oscillations. The non-equilibrium
preparation of the spin–boson system therefore leads to a different long-time
behavior. According to (4.255) the long-time decay of the equilibrium spin-
spin correlation function was algebraic, C

(sym)
zz (t) ∝ t−2.

Notice that it was straightforward to solve this non-equilibrium problem
based on the previous equilibrium solution, while e.g. in a Keldysh-type per-
turbation expansion it is quite nontrivial to recover the exponential long-time
decay. In the real time domain this amounts to a resummation of all powers
of the system-bath coupling.

One key reason why the flow equation solution worked so easily is that
we used the same flow equation diagonalization for the system with and



166 5 Modern Developments

Fig. 5.8. Zero temperature decay of the spin expectation value P (t) for the non-
equilibrium spin–boson model (5.95) with an Ohmic bath (4.241) for various dissi-
pation strengths α

without external field in going from (5.95) to (5.98). This is not a good
approximation for large external fields (when |h0| � ∆r does no longer hold)
since then h0 σz should be considered as part of the diagonal Hamiltonian and
the unitary diagonalizing transformation is different. In addition, one then
needs to reconsider the ansatz for the transformation of the observable σz to
make sure that the sum rule (4.253) is fulfilled with good accuracy also with
respect to the ground state for nonzero field h0.

Therefore the results obtained in this chapter are restricted to the regime
of small fields, |h0| � ∆r. Flow equation calculations for large fields and
product initial states can be found in [5], where the time-dependent Kondo
model has been studied using the ideas outlined above. The main difference
is that the evaluation of the matrix elements in (5.100) becomes more com-
plicated.

In conclusion, we have seen in the previous two chapters about the non-
equilibrium Kondo and spin–boson model that the flow equation method
allowed a very straightforward roadmap from the equilibrium model to the
non-equilibrium model. While the flow equation diagonalization can be hard
work for an equilibrium many-body problem as compared to conventional
many-body methods, it is precisely this additional information encoded in the
diagonalization procedure that permits us to go beyond equilibrium physics
without much extra effort.
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5.4 Outlook and Open Questions

The flow equation approach is under active development and many topics
still need to be addressed and answered. I want to end this book by listing
some questions and suggestions for future research:

1. The transformation of observables in a generic many-body problem needs
to be better understood. Are there new considerations to be taken into
account in non-equilibrium problems? Both in equilibrium and in non-
equilibrium, in particular the effect of higher order terms in the flow
equation expansion should be studied in more detail. What can one say
about the spectral weight of these higher order terms as compared to
the leading order ones? In principle it might even be possible that all the
spectral weight is moved into higher and higher orders of the transformed
operator expansion in an interacting many-body system.11 Also it would
be very desirable to develop reliable analytical methods for solving the
flow equations for an operator that decays completely for B → ∞, so
that one can gain more analytical insights.

2. It would be desirable to put the relation between the flow equation ap-
proach and renormalization group methods on a more formal footing, es-
pecially the notions of relevant, marginal and irrelevant operators. What
is the role of the flow equation transformation of observables and possible
complete decay into a different structure in this context? What is the re-
lation of the flow equation approach to other functional renormalization
group frameworks [15, 16, 17, 18] developed recently?

3. The construction of effective theories plays a major role in many mod-
els. We have seen in Sect. 4.5.1 that contrary to conventional wisdom,
Hamiltonian theories are capable of describing retardation effects in such
effective theories. It would be interesting to see in which other models
this observation can be useful.

4. The possibility to have a well-behaved expansion parameter in the flow
equation approach which is different from the running coupling con-
stant played a pivotal role in the strong-coupling model applications in
Sect. 5.1. In what other strong-coupling models can one find similar well-
behaved expansion parameters? Is it possible to use the observation that
the interacting ground state can be very different from the non-interacting
one to construct better behaved expansions in certain strong-coupling
models, along the lines mentioned in Sect. 4.1.5 and [9]?

5. One of the most promising future applications of the flow equation
method are non-equilibrium problems, both for steady states like dis-
cussed in Sect. 5.2, and for the time evolution of some initial state like in
Sect. 5.3. In particular, it would be very interesting to see whether these
ideas can also be used in a controlled way in strong-coupling models.

11Although this would not necessarily affect the results when actually evaluating
correlation functions.
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6. The choice of the generator is at the heart of the flow equation method.
While the canonical generator seems to be the best choice from a math-
ematical point of view, we have sometimes encountered modifications
to keep the number of newly generated terms small (for example in
Sect. 4.3). Such modifications can become unavoidable in the numerical
implementation of flow equations beyond the leading order calculation,
since higher order interactions carry many indices and therefore lead to
many differential equations. I believe that such modifications of the gen-
erator that violate energy scale separation are allowed if one deals with
interactions that are quadratic (i.e., potential scattering terms) or irrele-
vant in the conventional scaling sense. It would be very desirable to gain
a better understanding of this issue.

I hope that this book has equipped and motivated its readers to contribute
to these and other developments.
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